

Uday K. Chakraborty (Ed.)

Computational Intelligence in Flow Shop and Job Shop Scheduling

Studies in Computational Intelligence,Volume 230

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 208. Roger Lee, Gongzu Hu, and Huaikou Miao (Eds.)
Computer and Information Science 2009, 2009
ISBN 978-3-642-01208-2

Vol. 209. Roger Lee and Naohiro Ishii (Eds.)
Software Engineering,Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2009
ISBN 978-3-642-01202-0

Vol. 210.Andrew Lewis, Sanaz Mostaghim, and
Marcus Randall (Eds.)
Biologically-Inspired Optimisation Methods, 2009
ISBN 978-3-642-01261-7

Vol. 211. Godfrey C. Onwubolu (Ed.)
Hybrid Self-Organizing Modeling Systems, 2009
ISBN 978-3-642-01529-8

Vol. 212.Viktor M. Kureychik, Sergey P. Malyukov,
Vladimir V. Kureychik, and Alexander S. Malyoukov
Genetic Algorithms for Applied CAD Problems, 2009
ISBN 978-3-540-85280-3

Vol. 213. Stefano Cagnoni (Ed.)
Evolutionary Image Analysis and Signal Processing, 2009
ISBN 978-3-642-01635-6

Vol. 214. Been-Chian Chien and Tzung-Pei Hong (Eds.)
Opportunities and Challenges for Next-Generation Applied
Intelligence, 2009
ISBN 978-3-540-92813-3

Vol. 215. Habib M.Ammari
Opportunities and Challenges of Connected k-Covered Wireless
Sensor Networks, 2009
ISBN 978-3-642-01876-3

Vol. 216. Matthew Taylor
Transfer in Reinforcement Learning Domains, 2009
ISBN 978-3-642-01881-7

Vol. 217. Horia-Nicolai Teodorescu, Junzo Watada, and Lakhmi
C. Jain (Eds.)
Intelligent Systems and Technologies, 2009
ISBN 978-3-642-01884-8

Vol. 218. Maria do Carmo Nicoletti and
Lakhmi C. Jain (Eds.)
Computational Intelligence Techniques for Bioprocess
Modelling, Supervision and Control, 2009
ISBN 978-3-642-01887-9

Vol. 219. Maja Hadzic, Elizabeth Chang,
Pornpit Wongthongtham, and Tharam Dillon
Ontology-Based Multi-Agent Systems, 2009
ISBN 978-3-642-01903-6

Vol. 220. Bettina Berendt, Dunja Mladenic,
Marco de de Gemmis, Giovanni Semeraro,
Myra Spiliopoulou, Gerd Stumme,Vojtech Svatek, and
Filip Zelezny (Eds.)
Knowledge Discovery Enhanced with Semantic and Social
Information, 2009
ISBN 978-3-642-01890-9

Vol. 221. Tassilo Pellegrini, Sören Auer, Klaus Tochtermann, and
Sebastian Schaffert (Eds.)
Networked Knowledge - Networked Media, 2009
ISBN 978-3-642-02183-1

Vol. 222. Elisabeth Rakus-Andersson, Ronald R.Yager,
Nikhil Ichalkaranje, and Lakhmi C. Jain (Eds.)
Recent Advances in Decision Making, 2009
ISBN 978-3-642-02186-2

Vol. 223. Zbigniew W. Ras and Agnieszka Dardzinska (Eds.)
Advances in Data Management, 2009
ISBN 978-3-642-02189-3

Vol. 224.Amandeep S. Sidhu and Tharam S. Dillon (Eds.)
Biomedical Data and Applications, 2009
ISBN 978-3-642-02192-3

Vol. 225. Danuta Zakrzewska, Ernestina Menasalvas, and Liliana
Byczkowska-Lipinska (Eds.)
Methods and Supporting Technologies for Data Analysis, 2009
ISBN 978-3-642-02195-4

Vol. 226. Ernesto Damiani, Jechang Jeong, Robert J. Howlett, and
Lakhmi C. Jain (Eds.)
New Directions in Intelligent Interactive Multimedia Systems
and Services - 2, 2009
ISBN 978-3-642-02936-3

Vol. 227. Jeng-Shyang Pan, Hsiang-Cheh Huang, and
Lakhmi C. Jain (Eds.)
Information Hiding and Applications, 2009
ISBN 978-3-642-02334-7

Vol. 228. Lidia Ogiela and Marek R. Ogiela
Cognitive Techniques in Visual Data Interpretation, 2009
ISBN 978-3-642-02692-8

Vol. 229. Giovanna Castellano, Lakhmi C. Jain, and
Anna Maria Fanelli (Eds.)
Web Personalization in Intelligent Environments, 2009
ISBN 978-3-642-02793-2

Vol. 230. Uday K. Chakraborty (Ed.)
Computational Intelligence in Flow Shop and Job Shop
Scheduling,2009
ISBN 978-3-642-02835-9

Uday K. Chakraborty (Ed.)

Computational Intelligence in
Flow Shop and Job Shop
Scheduling

123

Uday K. Chakraborty
Mathematics & Computer Science Department

University of Missouri

Saint Louis, MO 63121
USA

E-mail: uday@cs.umsl.edu

ISBN 978-3-642-02835-9 e-ISBN 978-3-642-02836-6

DOI 10.1007/978-3-642-02836-6

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: Applied for

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general
use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

For over fifty years now, the famous problem of flow shop and job shop scheduling
has been receiving the attention of researchers in operations research, engineering,
and computer science. Over the past several years, there has been a spurt of interest in
computational intelligence heuristics and metaheuristics for solving this problem.
This book seeks to present a study of the state of the art in this field and also direc-
tions for future research.

The ten chapters in this volume have been written by leading experts in the
area. Chapter 1 provides a survey of the effect of the flow shop problem’s structural
properties on algorithm performance and analyzes the advantages of a structural prop-
erty-based tabu search. In Chapter 2 a comprehensive review and evaluation of no-idle
permutation flow shop scheduling is presented, with iterated greedy methods shown to
outperform the other algorithms for this problem. Chapter 3 presents a new multi-
objective ant-colony algorithm for minimizing makespan and total flowtime. A new,
multi-objective simulated annealing approach for solving the permutation flow shop is
introduced in Chapter 4. The blocking flow shop scheduling problem is considered in
Chapter 5 where a new strategy is developed by combining an estimation of distribution
algorithm with local search. Chapter 6 develops a scatter search-based strategy for mul-
tiobjective (average tardiness and the number of tardy jobs) fuzzy permutation flow
shop and applies that to a real-world problem of engine piston manufacturing, produc-
ing results better than those obtained with a hybrid genetic algorithm. Chapter 7 presents
new, genetic algorithm-based methods for job shop scheduling under uncertainty (fuzzy
processing times, fuzzy due dates, stochastic processing times, and flexible job shop with
fuzzy processing times). Classical and flexible job shop scheduling is also considered in
Chapter 8 where Giffler-Thompson procedure-based genetic algorithms minimize
makespan and also a weighted sum of makespan, total tardiness and total idle time. Chap-
ter 9 presents a broad survey of recent research in flow shop and job shop scheduling.
Chapter 10 proposes new ways of applying two continuous optimization heuristics,
namely particle swarm optimization and differential evolution, to single-machine schedul-
ing which is a discrete optimization problem. While single-machine scheduling does not
belong to flow shop or job shop scheduling, this work has been included because of its
novelty value and its potential for extension to flow shop scheduling.

I gratefully acknowledge the inspiration, advice and support that I received from
Springer’s Janusz Kacprzyk, Thomas Ditzinger and Heather King. I am grateful to

VI Preface

Charles Chui, Prabhakar Rao, Richard Friedlander and Nasser Arshadi, all of UMSL,
for their encouragement and advice. Thanks to the contributing authors for being so
patient during the long review process. I owe much to the following researchers for
their help with reviewing the manuscripts: A. Agarwal, M. Chakraborty, C.Z.
Janikow, B. Jarboui, C. Kahraman, A. Konar, D. Lei, C. Rajendran, R. Ruiz, P. Si-
arry, M.F. Tasgetiren, L. Wang, Q. Zhang, H. Ziegler.

St. Louis,
April 2009

Uday Kumar Chakraborty

Contents

Structural Property and Meta-heuristic for the Flow Shop
Scheduling Problem
Feng Jin, Shiji Song, Cheng Wu . 1

Scheduling in Flowshops with No-Idle Machines
Rubén Ruiz, Eva Vallada, Carlos Fernández-Mart́ınez 21

A Multi-Objective Ant-Colony Algorithm for Permutation
Flowshop Scheduling to Minimize the Makespan and Total
Flowtime of Jobs
Chandrasekharan Rajendran, Hans Ziegler . 53

Multi-objective Simulated Annealing for Permutation Flow
Shop Problems
E. Mokotoff . 101

An Estimation of Distribution Algorithm for Minimizing the
Makespan in Blocking Flowshop Scheduling Problems
Bassem Jarboui, Mansour Eddaly, Patrick Siarry,
Abdelwaheb Rebäı . 151

A Scatter Search Method for Multiobjective Fuzzy
Permutation Flow Shop Scheduling Problem: A Real World
Application
Orhan Engin, Cengiz Kahraman, Mustafa Kerim Yilmaz 169

Genetic Algorithm for Job Shop Scheduling under Uncertainty
Deming Lei . 191

Giffler and Thompson Procedure Based Genetic Algorithms
for Scheduling Job Shops
S.G. Ponnambalam, N. Jawahar, B.S. Girish . 229

VIII Contents

Scheduling Practice and Recent Developments in Flow Shop
and Job Shop Scheduling
Betul Yagmahan, Mehmet Mutlu Yenisey . 261

Metaheuristics for Common due Date Total Earliness and
Tardiness Single Machine Scheduling Problem
M. Fatih Tasgetiren, Quan-Ke Pan, P.N. Suganthan, Yun-Chia Liang,
Tay Jin Chua . 301

Author Index . 341

Index . 343

Structural Property and Meta-heuristic for the
Flow Shop Scheduling Problem

Feng Jin1,2, Shiji Song2, and Cheng Wu2

1 Shanghai Baosight Software Co., Ltd., Shanghai 201203, China
jinfeng99@tsinghua.org.cn

2 Department of Automation, Tsinghua University, Beijing 100084, China
{shijis,wuc}@tsinghua.edu.cn

Summary. According to the No Free Lunch Theorem, all algorithms equal to the ran-
domly blind search if no problem information is known. Therefore, it is very important
to study the problem properties (especially structural properties) and introduce them
into algorithms so as to improve the algorithm performance (both solution quality and
computational effort). For the flow shop scheduling problem (FSP) with makespan
criterion, structural properties are wildly used in the existing literature, but there is
no systematic review on it. This chapter surveys the existing structural properties,
which are divided into two types: neighborhood properties (such as the famous block
property) and solution space properties (such as the big-valley phenomenon).

This chapter also shows how to introduce the structural properties into meta-
heuristic algorithms like tabu search (TS). By comparing the performance of struc-
tural property based TS with the simple version of TS, it is shown how much the
meta-heuristic algorithm can benefit from the structural properties.

1 Introduction

Makespan minimization in permutation flow shop scheduling problem (PFSP) is
an OR topic that has been intensively addressed in the last 50 years. Since the
problem is known to be NP-complete for more than two machines, most of the
research effort has been devoted to the development of heuristic procedures in
order to provide good approximate solutions to the problem.

The currently reported approximation algorithms can be categorized into one
of two types: constructive methods or improvement methods. Constructive meth-
ods include slope-index-based heuristics [1, 2], the CDS heuristic [3], the RA
heuristic [4] and the NEH algorithm [5] (more refer to [6]). Most of the im-
provement approaches are based on modern meta-heuristics, such as simulated
annealing [7, 8], tabu search [9, 10, 11] and genetic algorithms [12, 13, 14].

Among these algorithms, meta-heuristic algorithms perform very well. Since
the framework of meta-heuristic algorithms are quite open and are problem-
independent, they can be easily applied to various PFSPs. In the past 20 years,
meta-heuristic algorithms were very popular in solving PFSPs and they did
provide many good results. Encouraged by the meta-heuristic algorithms, more

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 1–20.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

2 F. Jin, S. Song, and C. Wu

intelligent algorithms, such as Ant Colony Optimization (ACO) algorithm and
Particle Swarm Optimization (PSO) algorithm are developed very quickly.

Because of the generality and portability of the meta-heuristic algorithm,
many researchers tend to focus on the method innovation while ignoring the
properties of the scheduling problem itself. As a result, many algorithms would
catch one and lose another on optimization effect and efficiency. Many pa-
pers show that the meta-heuristic algorithm can obtain better solutions than
the constructive method, and require less computational time than the exact
method such as branch and bound algorithm. However, it also implies that the
meta-heuristic algorithm requires more computational time than the construc-
tive method and obtains worst results than the exact method.

Therefore, in some sense, comparing to the constructive method and the exact
method, a meta-heuristic algorithm with on problem information is only a kind
of compromise between optimization effect and efficiency. It conforms to the re-
sults in Kalczynski and Kamburowski [15], who find that many meta-heuristic
algorithms are not better than the simple NEH algorithm after a fairer compari-
son. In fact, this validates the No Free Lunch (NFL) Theorem, which points out
that all algorithms equal to the randomly blind search if no problem information
is known.

On the other hand, NFL Theorem also suggests that algorithm performance
can be improved by introducing problem information (problem property). For
the continuous optimization problem, local search can be nicely guided by the
gradient information. However, no such structural information is available for
the combinatorial optimization problem to which PFSP belongs. This motivates
us to study the structural properties (similar as the gradient information) and
let the structural property guide the search process in solving PFSPs.

In fact, there are already a lot of structural properties studied for the PFSP
in the previous research. Nowicki and Smutnicki [9] propose the block proper-
ties and successfully introduce them into the tabu search algorithm. Reeves and
Yamada [13] study the distribution of local optimums in the solution space and
introduce the Big Valley phenomenon into the genetic algorithm. These two
algorithms are considered as the best two in the existing algorithms for PFSP
[16, 17]. However, little attention has been devoted to establish a common frame-
work for these properties so they can be effectively combined or extended. In
this chapter, we review and classify the main contributions regarding this topic
and discuss future research issues.

In this chapter, we divide the exiting structural properties into two types:
neighborhood property and solution space property. The former considers the
relation between two solutions, namely basic solution and its neighbor. The latter
considers the statistic property of all solutions in the solution space.

The remainder of the chapter is organized as follows: Section 2 gives the
definition of the problem. Structural properties of neighborhood and solution
space are reviewed in Section 3 and Section 4, respectively. A structural property
based tabu search is proposed and compared with the simple version of tabu

Structural Property and Meta-heuristic 3

search in Section 5. Section 6 concludes this chapter and gives some directions
for future research.

2 Problem Definition

The permutation flow shop scheduling problem (PFSP) considered in this chapter
is commonly defined as follows: a set N = {1, 2, . . . , n} of n jobs is to be processed
through a set M = {1, 2, . . . , m} of m machines. Each job i ∈ N is processed on
machine 1 first, machine 2 second, . . . , and machine m last. Thus, the work-flow
in this shop is unidirectional. Associated with each job i ∈ N and machine j ∈ M
is the known and deterministic processing time pij . All jobs are available at time
zero. Each job can only be processed on at most one machine and each machine
can process only one job at any time. Preemption is not allowed, i.e., once the
processing of a job has started on a machine, it must be completed without
interruption at that machine. Only permutation schedules are considered, i.e.,
different jobs have the same processing order on all machines. Let Π denote
the set of all n! possible permutation schedules in the solution space. Because
of various simplifying assumptions about PFSPs stated above and found in the
literature [18, 19], the completion time of job π(i) at sequence position i in
schedule π = (π(1), π(2), . . . , π(n)) on machine j, Cπ(i),j can be expressed as:

Cπ(i),j = max{Cπ(i−1),j ; Cπ(i),j−1} + pπ(i),j (1)

with the boundary conditions Cπ(i),0 = Cπ(0),j = 0 for all i ∈ N and all j ∈ M .
Then the PFSP considered here is to find a permutation schedule π ∈ Π

such that its makespan Cmax(π) = Cπ(n),m is minimum. Note that expanding
the recursive relation (1) above, the makespan of permutation schedule π =
(π(1), π(2), . . . , π(n)) can be written as either:

Cmax(π) = max
u0≤u1≤u2≤...≤um−1≤um

m∑
j=1

uj∑
i=uj−1

pπ(i),j (2)

where u0 = 1 and um = n.

3 Neighborhood Property

For the continuous optimization problem, the relation between the basic solution
and its neighbor is described as gradient information. In this section, we consider
the relation between basic solution and its neighbor for the PFSP. We address
the following questions: if we have evaluated the basic solution, can we know
anything about its neighbor? By the relation, can we easily identify the non-
improving neighbors so as to accelerate the local search process? Before we review
the neighborhood property, the definition of neighborhood is given as follows.

4 F. Jin, S. Song, and C. Wu

3.1 Neighborhood

Usually, neighbors of π are generated by changing the positions of one or more
jobs in π. In this chapter, we generate neighbors based on shift operation, which
is commonly used in the existing literature. To describe the shift operation, let
x, y (x, y = 1, 2, . . . , n and x �= y) be two positions in π. With respect to π, a
pair v = (x, y) defines a shift operation, i.e., removing job π(x) from position x
and inserting it in position y. Then the shift operation v generates a neighbor
of π as follows:

πv =

⎧⎨
⎩

(π(1), . . . , π(x − 1), π(x + 1), . . . , π(y), π(x), π(y + 1), . . . , π(n)) if x < y

(π(1), . . . , π(y − 1), π(x), π(y), . . . , π(x − 1), π(x + 1), . . . , π(n)) if x > y

For a given schedule π with n jobs, the original neighborhood can be expressed
as

N0(π) = {πv | v ∈ V0} (3)

where V0 = {(x, y) | y �= x, x − 1; x, y = 1, 2, . . . , n}. Generally, there are
(n− 1)2 such neighbors in the neighborhood for a given schedule π with n jobs.
It requires O(n3) time to evaluate all these neighbors as each schedule needs
O(n) time. This is quite time consuming especially when we repeatedly evaluate
a neighborhood in a local search based algorithm.

In fact, such neighborhood is knowledge-poor. It is not necessary to evaluate
all the (n − 1)2 schedules in N0(π). Structural properties shown in the next
subsection will reveal that some neighbors are definitely not better than the
basic solution. Obviously, if such non-improving neighbors are excluded from
the neighborhood, the search process can be greatly accelerated.

3.2 Critical Path and Block

To describe the block property, we should introduce the definition of critical path
and block first. Consider the following network N(π) with vertex valuations for
each permutation π ∈ Π . The vertex (i, j) represents the operation of job π(i)
on machine j and the valuation is the processing time pπ(i)j .

(1, 1) (2, 1) (n, 1)

(1, 2) (2, 2) (n, 2)

(1, m) (2, m) (n, m)

Fig. 1. Network N(π)

Structural Property and Meta-heuristic 5

For any path in N(π), its length is given by the sum of the valuations
of all vertices of the path. To be convenient, let a sequence of integers u =
(u1, u2, . . . , um−1) satisfying 1 ≤ u1 ≤ u2 . . . ≤ um−1 ≤ n denote a path
from (1, 1) to (m, n) in π, which contains vertices (1, 1), (2, 1), . . . , (u1, 1), (u1 +
1, 2), . . . , (u2, 2), . . ., (um−1 + 1, m), . . . , (n, m). Then the length of path u can
be expressed as

l(u) =
m∑

j=1

uj∑
i=uj−1

pπ(i),j (4)

where u0 ≡ 1 and um ≡ n.

Definition 1 (Critical Path). A path u∗ = (u∗
1, u

∗
2, . . . , u

∗
m−1) is called a crit-

ical path of π if it is the longest path in N(π), i.e. l(u∗) = max
u

l(u).

Comparing to formulation (2), we know that the length of a critical path equals
the makespan of π namely Cmax(π). Then for a critical path u∗ and any general
path u of π, it has

Cmax(π) = l(u∗) ≥ l(u) (5)

Definition 2 (Block). Based on the critical path u∗, a sequence of jobs Bk =
(π(u∗

k−1), π(u∗
k−1 + 1), . . . , π(u∗

k)) is called the kth block in π, k = 1, 2, . . . , m.
And the kth internal block is defined as a subsequence of Bk:

B∗
k =

⎧⎨
⎩

Bk − {π(u∗
1)} if k = 1,

Bk − {π(u∗
k−1), π(u∗

k)} if 1 < k < m,
Bk − {π(u∗

m−1)} if k = m.

The use of these definitions is illustrated in the following example.

Example 1. Figure 2 shows a schedule of seven jobs on three machines. The
permutation is π = (1, 7, 3, 2, 4, 5, 6) and its critical path is u∗ = (2, 6) which
generates three blocks: B1 = (1, 7), B2 = (7, 3, 2, 4, 5) and B3 = (5, 6) and three
relevant internal blocks: B∗

1 = (1), B∗
2 = (3, 2, 4) and B∗

3 = (6).

1 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

3 2 4 5 6

1 7 3 2 4 5 6

1 7 3 2 4 5 6

Fig. 2. Gantt chart of permutation π = (1, 7, 3, 2, 4, 5, 6)

3.3 Block Property

With the definition of block, Nowicki and Smutnicki [9] propose the neighbor-
hood property.

6 F. Jin, S. Song, and C. Wu

Theorem 1 (Block Property 1 [9]). Shifting a job within the internal block
does not generate a better neighbor.

Let permutation πv be the neighbor generated by shifting a job within an in-
ternal block of permutation π. Theorem 1 holds because πv has a general path
containing exactly the same vertices as the critical path of π [9]. By formulation
(5), we can know Cmax(πv) ≥ Cmax(π) without evaluating πv.

While Theorem 1 deals with shifting a job within the same block, the following
theorem considers shifting a job from one block to another block.

Theorem 2 (Block Property 2 [10, 11]). Suppose πv is generated by move
v = (x, y), where jobs π(x) and π(y) are in the p-th and l-th internal blocks of
π, respectively. Then it has

Cmax(πv) ≥ Cmax(π) + pπ(x)l − pπ(x)p (6)

Theorem 2 holds because πv has a general path where there is only one ver-
tex different from the critical path of π [10]. In fact, moving a job within the
same internal block implies l = p in Theorem 2. Therefore, Theorem 1 can be
considered as a special situation of Theorem 2.

Obviously, Theorem 2 gives a lower bound of πv. With the lower bound, a lot of
non-improving neighbors can be identified and excluded from the neighborhood
in O(1) time (note that evaluating a neighbor requires O(mn) time). It will
greatly save the computational effort in a local search algorithm.

Example 2. For the data and permutation π = (7, 1, 3, 2, 4, 5, 6) in Example
1, suppose job 3 is to be shifted, i.e. π(x) = 3. By Theorem 1, we can easily
identify that neighbors (1,7,2,3,4,5,6) and (1,7,2,4,3,5,6) are not better than π,
as they are generated by shifting job 3 within the same block. By Theorem 2,
neighbors (3,1,7,2,4,5,6) and (1,3,7,2,4,5,6), which are generated by shifting job
3 to the first block, have lower bounds of 40(= 38 + 5 − 3). Therefore, without
evaluating the exact makespans of these two neighbors, we know they are not
better than π either. Similarly, we can know lower bounds for (1,7,2,4,5,3,6) and
(1,7,2,4,5,6,3) are 37(= 38 + 2 − 3) without extra evaluation.

Lower bounds of neighbors of π are summarized in Table 1. There are totally
36 neighbors of π but we can obtain tight lower bounds for 26 of them. From
Table 1, 14 neighbors can be excluded from the original neighborhood without
evaluation as their lower bounds are not less than Cmax(π).

Although block properties are developed for the standard PFSP with
makespan criterion, they have been extended to PFSPs in more complex en-
vironment, such as PFSP with mixed no-wait/no-store [20], or with buffers
/blocking/finite intermediate storage [21, 22, 23, 24]. The ideas of critical path
structure and blocks of jobs have also been extended to other scheduling problem
with other criterions [25, 26, 27, 28, 29, 30]. Block properties have successfully
been introduced into various meta-heuristics for solving the PFSP, such as TS
[9, 10, 11, 20, 21, 22, 23, 24, 25, 26, 27, 31, 32], GA [13, 33] and SA [34]. References
[9] and [13], which successfully employ the block properties, are considered the

Structural Property and Meta-heuristic 7

Table 1. Lower bound of πv

π(x) πv LB(πv)

1 (7,1,3,2,4,5,6),(7,3,1,2,4,5,6),(7,3,2,1,4,5,6),(7,3,2,4,1,5,6) 39
(7,3,2,4,5,1,6),(7,3,2,4,5,6,1) 37

3 (3,1,7,2,4,5,6),(1,3,7,2,4,5,6) 40
(1,7,2,3,4,5,6),(1,7,2,4,3,5,6) 38
(1,7,2,4,5,3,6),(1,7,2,4,5,6,3) 37

2 (2,1,7,3,4,5,6),(1,2,7,3,4,5,6) 36
(1,7,3,4,2,5,6) 38
(1,7,3,4,5,2,6),(1,7,3,4,5,6,2) 39

4 (4,1,7,3,2,5,6),(1,4,7,3,2,5,6) 40
(1,7,4,3,2,5,6) 38

6 (6,1,7,3,2,4,5),(1,6,7,3,2,4,5) 37
(1,7,6,3,2,4,5),(1,7,3,6,2,4,5),(1,7,3,2,6,4,5),(1,7,3,2,4,6,5) 37

best two papers in solving PFSP with makespan criterion [16, 17]. Block prop-
erties have also been used for improving the classic NEH algorithm [35] or for
the worst-case analysis [36].

3.4 Statistic Analysis on the Block Property

Computational results from the above references show that block properties can
greatly reduce the computational effort of meta-heuristics. However, it brings up
a new question: how much effort be saved by the block properties from the view
of statistics. Then the following two questions are of interest:

1) How large is the average number of neighbors in which there exists a general
path with the same vertices as the critical path of π? These neighbors cannot
lead to a cost improvement as Cmax(πv) ≥ Cmax(π). Denote E|U0(m, n)| such
average number for the PFSP with m machines and n jobs.

2) How large is the average number of neighbors in which there exists a gen-
eral path that differs only by one vertex from the critical path of π? For such
neighbors we can easily state a lower bound for the objective value. Denote
E|U1(m, n)| such average number for the PFSP with m machines and n jobs.

In fact, as early as at the beginning of 1990s, the answers were given by Werner
[37], who studies the path structure of PFSP. However, we should note that the
following theorems are based on the random PFSP, in which all processing times
are randomly generated from the same distribution1. Let z(a, b) =

(
a+b−2

b−1

)
.

Theorem 3 ([37]). Let n ≥ 3 and m ≥ 2. Then

E|U0(m, n)| =
2[(n − 1) · z(m + 1, n − 2) − z(m + 2, n − 3)] − z(n − 2, m)

z(n, m)
(7)

1 For more information about random PFSP and structured PFSP, please refer to
[38, 39].

8 F. Jin, S. Song, and C. Wu

Theorem 4 ([37]). Let n ≥ 2 and m ≥ 3. Then

E|U1(m, n)| =
3(n − 1) · z(n − 1, m − 1) + 2

(
n−1

2

) · z(n − 1, m)
z(n, m)

−2(n − 2) · z(m + 1, n − 4) − 2z(m + 2, n − 5)
z(n, m)

(8)

Figure 3(a) and Figure 3(b) show the percentage of E|U0(m, n)| and E|U1(m, n)|
with respect to neighborhood size (n − 1)2, respectively. For the given number
of machines m, the expectation values of both E|U0(m, n)| and E|U1(m, n)|
increase when the number of jobs n increases. Figure 3(a) indicates that the
percentage of non-improving neighbors is rather large for large ratio of n/m.
Figure 3(b) shows that it is possible to obtain lower bounds for more than half
of the neighborhood in theory.

From Theorem 1 to Theorem 3, it is clear that meta-heuristics, such as TS or
SA, can be greatly benefited from the adaptive neighborhoods which take the
block properties into consideration.

0%

5%

10%

15%

20%

25%

30%

35%

10 20 30 40 50 60 70 80 90 100

Number of jobs (n)

m=5 m=10 m=15

(a) Percentage of E|U0(m, n)|

30%

40%

50%

60%

70%

80%

90%

10 20 30 40 50 60 70 80 90 100

Number of jobs (n)

m=5 m=10 m=15

(b) Percentage of E|U1(m,n)|

Fig. 3. Percentage of (a) E|U0(m, n)| and (b) E|U1(m,n)| with respect to neighbor-
hood size (n − 1)2

4 Solution Space Property

It is clear that the search process should be adjusted to peculiar properties of
the solution space. However, research on the solution space property is not so
extensive as the neighborhood property. Till now, only some space phenomena
have already been detected and reported, including the big valley phenomenon
and the normality of makespan distribution.

4.1 Big Valley Phenomenon

In fact, the notion of big valley is not precisely defined. However, it visualizes the
structure of solution space and implies: 1) local optima are radially distributed in

Structural Property and Meta-heuristic 9

the problem space relative to a global optimum at the center; 2) the more distant
the local optima are from the center, the worse are their objective function values.

The concept of a big-valley structure was fist introduced by instances of the
Traveling Salesman Problem (TSP) [40] using the 2-opt local search operator.
For the PFSP, it has been empirically demonstrated that when the shift operator
defined in Section 3.1 is applied to random FSPs (such as Taillard’s benchmark
suite), it yields a big valley structure [13, 41]. To show the big-valley structure of
PFSP, an operator-independent precedence-based measure is defined as follows:

D(π, π′) =
n(n − 1)

2
−

∑
i,j,i�=j

pre(i, j, π, π′) (9)

where the function pre(i, j, π, π′) equals 1 if job i is scheduled before job j both
in permutation π and in π′; otherwise it equals 0.

Figure 4, which is taken from [13], shows the correlation between distances
and relative makespans. The x-axis in Figure 4(a) represents the average distance
from other local optima (MEAND), and in Figure 4(b) represents the distance
from the global optima (BESTD). The y-axis represents their makespans relative
to the global optimum (OBJFN). Figure 4(a) indicates that local optima tend to
be relatively close to other local optima and local optima near one another have
similar evaluations. Figure 4(b) shows that better local optima tend to be closer
to global optima. These two plots empirically verifies the big-valley hypothesis.

Many papers have demonstrated the existence of big-valley structure for
PFSP’s solution space [13, 41, 42, 43, 44].

Recently, a few more results on big-valley structure are presented. Notable
results are: 1) for the random PFSP, big-valley structure holds for all solutions

(a) (b)

Fig. 4. 2313 distinct local optima for the ta021 (20×20) problem are plotted in terms
of (a) average distance from other local optima and (b) distance from global optima
(x-axis), against their relative makespans(y-axis)[13]

10 F. Jin, S. Song, and C. Wu

from the space, not only for local minima [42]; 2) for the structured PFSP,
the big-valley structure degrades into a stepped valley structure composed of
plateaus of equivalent fitness solutions [43, 44].

Such big-valley structure suggests that when going along trajectory linking
two local optima, it is possible to find a new local optimum or even a global
one. This is the foundation of scatter search and path relinking. Therefore, big-
valley structure is widely applied in scatter search and path relinking, which is
commonly employed as a part of GA or TS [13, 42].

4.2 Normality of the Makespan Distribution

Since FSP is NP-hard in the strong sense [45], numerous heuristic algorithms
have proposed for finding optimal or near optimal schedules [16, 46]. An inherent
shortcoming, which is common for most heuristic algorithms for combinatorial
problems, is that it is difficult to evaluate the goodness of the heuristic solution,
i.e., find the gap between the value of a heuristic solution and its corresponding
optimal value.

A possible way to overcome this shortcoming is to study the makespan distri-
bution in the solution space. If the distribution curve can be determined, it will be
possible to determine, in the probabilistic sense, the number of better solutions
that may still exist in the solution space. Because of this reason and the desire
to use the developments in simulation techniques to solve scheduling problems,
the makespan distribution of PFSP was first studied by Heller [47, 48] and was
claimed to be asymptotically normal if the number of jobs is sufficiently large.

Heller’s normality claim is very attractive. We know that a normal distribution
is determined only by two parameters namely mean and variance, which can be
obtained by sampling. If Heller’s claim is right, the makespan distribution can
be easily determined by sampling in the solution space, and then we can evaluate
the goodness of a given heuristic solution of PFSP.

The normality phenomenon can be observed from the empirical results for
the random PFSP. For example, we randomly sampled 200,000 schedules of
Ta061 and calculated the corresponding makespan. In Figure 5, x-axis represents
relative makespan Cr

max, which is defined as:

Cr
max(π) = Cmax(π) − C∗

max(π)

where C∗
max(π) is the smallest makespan value among the 200,000 sampled sched-

ules2 and y-axis represents the frequency of makespan in the solution space. Fig-
ure 5 shows the makespan distribution fits the normal distribution quite well.

Besides Heller’s observation [48] and the theoretical analysis [47], the normal-
ity phenomenon is also observed by several other researchers [49, 50, 51, 52]3.

2 Such transformation shifts the makespan distribution curve to make it start from 0
but doesn’t change its shape.

3 However, Moras et al. [52] also imply that the minimum and the maximum makespan
values for the PFSs are not symmetrical from the mean value of the normal distri-
bution.

Structural Property and Meta-heuristic 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00

Relative Makespan

F
re

qu
en

cy
(%

)

Fig. 5. Makespan distribution of random FSP (Ta061)

They support the normality claim and use it to develop solution procedures to
find approximate solutions to FSPs. Elmaghraby [53] and Nowicki and Smut-
nicki [42] took the normality of makespan distribution as a doubtless result in
their research.

However, since its first appearance, Heller’s normality claim has been a topic of
debate among researchers. For example, Giffler et al. [54], Nugent [55], Conway
et al. [56], Gupta et al. [57] and Ashour [58] raise doubts about the validity
of the claim that the makespan distribution of permutation flowshop schedules
(PFSs) is normal even if the number of jobs is large. Analysis of the extreme
value distribution of PFSs [59, 60] found that the left tail of the makespan
distribution is different than the typical normal distribution, thus raising doubt
about the validity of the normality claim. Taillard [61] mentioned the normality
of makespan distribution in his experimental results. He neither confirmed nor
refuted the normality claim.

While there has been considerable debate about the validity of the normal-
ity claim, there is no systematic and theoretical investigation of the makespan
distribution of permutation flow shop schedules until Jin et al. [39]. They point
out errors in Heller [47], which is supposed to give the proof of normality of the
makespan distribution. Because of the errors, theoretical analysis in [47] can nei-
ther prove the normality nor prove the non-normality of makespan distribution.
Then they theoretically and empirically investigate the makespan distribution
of the structured PFSP. They show that the normality claim is not valid for
the structured PFSPs such as job-dominated and machine-dominated PFSPs
(Figure 6 shows makespan distribution for typical structured PFSPs). There-
fore, Heller’s claim is not right for all PFSPs, at least not right for the structural
PFSPs.

However, considering the observation on random PFSP, it is still possible that
makespans of random PFSP are normally distributed when the number of jobs is

12 F. Jin, S. Song, and C. Wu

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00

Relative Makespan

F
re

q
u

en
cy

 (
%

)

(a) Job-dominated PFSP (b) Machine-dominated PFSP

Fig. 6. Makespan distribution of structured PFSPs

very large. But the problem how to prove the normality of makespan distribution
for random PFSPs remains open.

5 Case Study: Structural Property Based Tabu Search

As reviewed above, structural properties (especially the block property and big
valley phenomenon) have been widely introduced into meta-heuristics. However,
to reach the best performance, many other elements, that are often not explained
thoroughly to the reader, are introduced the into the algorithm [62]. Therefore, it
is difficult to know that how much efficiency is purely brought by the structural
property4.

Therefore, in this section, we do not attempt to propose an algorithm as good
as the state-of-the-art best algorithm. Instead, we will first present a simple
version of a tabu search algorithm and then extend it a little to include structural
properties. By comparing the improvement in performance, it can be shown that
how much meta-heuristics can benefit from the structural property.

5.1 Reduce Neighborhood by Structural Property

Consider the neighborhood generated by shift operator in Section 3.1. There
are (n − 1)2 neighbors in the original neighborhood for a given schedule π with
n jobs. Such large-sized neighborhood can assist local search methods to avoid
being trapped in a bad local optimum. However, the number of neighbors in the
neighborhood drastically increases with the number of jobs. For such a neighbor-
hood, it requires O(n3) time to evaluate all the neighbors as each schedule needs
O(n) time. Although the computational complexity can be reduced to O(n2) by
the fast computation technique [61], it is still quite time consuming especially
when we repeatedly evaluate a neighborhood in the local search method.
4 For the similar reason, Watson et al. [63] de-construct the algorithm proposed by

Nowicki and Smutnicki [27] to determine the components that are integral to its
performance, and the degree to which they share the responsibility.

Structural Property and Meta-heuristic 13

However, we can obtain a lower bound of Cmax(πv) by Theorem 2. Denote
LB(πv) = Cmax(π)+pπ(x)l−pπ(x)p the lower bound of πv. Obviously, if pπ(x)l ≥
pπ(x)p, LB(πv) ≥ Cmax(π), which implies Cmax(πv) ≥ Cmax(π). Then we can
know that πv is not better than π without evaluating πv.

Therefore, we can reduce the original neighborhood by the structural proper-
ties as follows:

N(π, UB) = N0(π) − {πv | LB(πv) ≥ UB} (10)

where UB is a given upper bound. Such definition excludes neighbors whose
performance is worse than UB.

Let UB = Cmax(π). Then the following tow points are worth noting.

(1) Note that y (the position to insert) does not appear in the right side
of Formulation (6). It implies neighbors generated by shifting job π(x) to any
position in the lth block can be excluded. Since the average block size is n/m, a
lot of non-improving neighbors can be excluded if n � m.

(2) According to Formulation (6), the larger Cmax(π) is, the larger LB(πv)
will be. It implies the worse the basic solution π is, the more non-promising
neighbors can be excluded and then the smaller N(π, UB) will be.

5.2 Algorithm Description and Computational Complexity

The tabu search (TS) algorithm is commonly used in solving combinatorial op-
timization problems. It starts from an initial basic solution and searches its
neighborhood for a solution with the best performance. Then the search moves
to this best one as a new basic solution, and then repeats the process until some
stopping condition is satisfied. Obviously, TS algorithm is a local search based
approach. It avoids being trapped at a local optimum by introducing a mecha-
nism called tabu list, which defines some moves that are forbidden to be applied
currently.

There are three basic elements in TS algorithm: initial solution, tabu list and
neighborhood. The choice of neighborhood is very important as it affects the
search effectiveness and efficiency. The details of elements are given as follows.

Initial Solution
The initial solution is generated by the famous NEH algorithm [5].

Tabu List
Let T = (T1, T2, . . . , Tmaxt) denote a tabu list where Ti = (g, h) is a job pair and
maxt is the length of the tabu list. If search moves from a basic schedule π to
its neighbor πv through a move v = (x, y), we add the job pair (π(x), π(x + 1))
to the tabu list if x < y and add (π(x), π(x − 1)) otherwise. If the length of the
tabu list exceeds maxt, remove the oldest element from the tabu list. During the
search, move v = (x, y) is forbidden if one of the following conditions is satisfied:

14 F. Jin, S. Song, and C. Wu

1) there are one or more job pairs (π(j), π(x)),j = x+1, . . . , y in the tabu list
if x < y,

2)there are one or more job pairs (π(x), π(j)),j = y, . . . , x− 1 in the tabu list
if x > y.

Neighborhood
In the simple version of TS, we employ the original neighborhood N0(π) and in the
block property based TS, we employ the reduced neighborhood N(π, Cmax(π)).

Denote STS and BTS the simple version of TS and block property based TS,
respectively.

Tabu Search Procedure
The main procedures of the two TS algorithms (STS and BTS) are almost the
same. The only difference exists in the neighborhood selection. The procedure
of STS algorithm is given as follows.

Algorithm STS: Simple Tabu Search

Input: Basic solution πbasic = null, best solution ever known π∗
cur = null, num-

ber of maximum iterations maxIter, length of tabu list maxt
Output: Best solution ever known π∗

cur

Step 1: Generate the initial solution π0 and set πbasic = π0 and π∗
cur = π0;

Step 2: For 1 to maxIter
Step 2.1: Generate the original neighborhood N0(πbasic);
Step 2.2: Find the best unforbidden neighbor and let it be πbasic;
Step 2.3: Update the tabu list;
Step 2.4: If πbasic is better than π∗

cur, set π∗
cur = πbasic;

Step 3: Return π∗
cur.

Algorithm BST, as follows, is identical to algorithm STS except Step 2.1
(neighborhood generation). Therefore, only the modified Step 2.1 is given below.

Algorithm BTS: Block Property based Tabu Search

Step 2.1: Generate the original neighborhood N0(πbasic) and reduce it to
N(πbasic, Cmax(πbasic));

Computational Complexity Analysis
In the procedure presented above, the computational complexity of Step 1 is
O(n2). For Step 2 in algorithm STS, since there are O(n2) neighbors in the
original neighborhood and each requires O(n) times to be evaluated, the com-
putational complexity to evaluate the original neighborhood is O(n3). However,
it can be reduced to O(n2) by the fast computing technique [61]. Therefore, the
computational complexity of STS is O(n2∗maxIter). Algorithm BTS only differs
from STS in Step 2.1. As the reduction depends on the neighborhood structure,
it is hard to exactly figure out how much computational effort can be saved by
applying the structure property. However, we do know that the computational
complexity BTS is not more than O(n2 ∗ maxIter) either.

Structural Property and Meta-heuristic 15

5.3 Computational Results

Algorithms STS and BTS were coded in C++ and run on a Pentium 4 computer
(2.6 GHz) with 512M Bytes of memory. The two algorithms were tested on
the largest 50 benchmark problems taken from Taillard [64](Ta071-Ta120). The
benchmark set contains problems of various sizes, including 100, 200 and 500 jobs
and ten and 20 machines respectively. There are ten problems in each problem
size. Set the length of tabu list maxt = 8 and the maximum iteration number
maxIter = 1000.

A measure called PRD (percentage relative difference) for each algorithm A
is defined as follows:

PRD(A) =
CA

max − C∗
max

C∗
max

× 100% (11)

where CA
max is the makespan obtained by algorithm A and C∗

max is the optimal
makespan or the best known lower bound, obtained from Taillard’s homepage
(http://mistic.heig-vd.ch/taillard/).

Figure 7(a) shows the average CPU time required for solving PFSPs in var-
ious sizes. For both TS algorithms, CPU time increases with the problem size.
However, Figure 7(a) indicates that CPU time of STS algorithm increase much
quicklier than BST algorithm. Figure 7(b) shows the CPU time required for
solving the largest ten PFSPs in Taillard’s benchmark suit. From Figure 7(b), it
is clear that BTS algorithm requires only about half of the CPU time consumed
by STS algorithm. It is because all neighbors in the neighborhood are evaluated
in STS algorithm and only the promising neighbors, which are possible to yield
improvement, are evaluated in BTS algorithm. Computational effort is greatly
reduced by the structural property. While less time is required, PRD values in
Figure 8 show that BTS algorithm can provide much better solutions than STS
algorithm.

Algorithms STS and BTS are tested in the same environment and the pro-
cedure is almost the same. The only difference is the introduction of structural
properties in BTS. Computational results shown in Figures 7 and 8 suggest

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100×10 100×20 200×10 200×20 500×20

STS BTS

(a)

700

900

1100

1300

1500

1700

1900

2100

Ta1
11

Ta1
12

Ta1
13

Ta1
14

Ta1
15

Ta1
16

Ta1
17

Ta1
18

Ta1
19

Ta1
20

A
ve

ra
ge

C
P
U

T
im

e
/s

STS BTS

(b)

Fig. 7. Computational time for the two TS algorithms

16 F. Jin, S. Song, and C. Wu

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ta1
11

Ta1
12

Ta1
13

Ta1
14

Ta1
15

Ta1
16

Ta1
17

Ta1
18

Ta1
19

Ta1
20

STS BTS

Fig. 8. PRD values for the largest ten instances

that structural properties can not only reduce the computational effort, but also
enhance the solution quality.

6 Conclusions and Directions of Future Research

In this chapter, we reviewed the structural property of permutation flow shop
scheduling problem with makespan criterion. We mainly considered two types of
structural properties, including neighborhood properties (block properties) and
solution space properties (big-valley phenomenon and normality of makespan
distribution). For each part, we tried to give a brief literature review by not-
ing contributions and gave a glimpse of meta-heuristics which employed the
structural properties. We also gave an example to show how to introduce the
structural properties into meta-heuristic algorithms like Tabu Search. By com-
paring the performance of the simple version of tabu search (STS) and block
property based tabu search (BTS), we have shown how much the meta-heuristic
can benefit from the structural property.

From the above discussion, it is clear that structural properties are important
to meta-heuristics and require continued research. Based on our review of exist-
ing research work, we suggest the following fruitful directions for future research:

1) Since block property has successfully applied in meta-heuristic for solving
PFSPs with makespan criterion, it is possible to extend the idea of critical path
to PFSPs with other criterions and more realistic constraints.

2) The problem, whether the makespan distribution of random FSP is normal,
remains open. As most test problems in the existing belongs to the random FSP,
it is valuable to prove it or refute it.

3) The description of big-valley structure is intuitive but not precise. There-
fore, we may mathematically formulate the big-valley structure and make the
property more clear and powerful.

4) We may introduce structural properties into more meta-heuristics to de-
velop more efficient algorithms.

Structural Property and Meta-heuristic 17

Acknowledgments

This work is partially supported by 973 Program of China under 2002CB312205,
National Science Foundation of China under 60574077 and 60874071, 863 Pro-
gram of China under 2007AA04Z102.

References

[1] Palmer, D.S.: Sequencing jobs through a multistage process in the minimum total
time: a quick method of obtaining a near optimum. Operational Research Quar-
terly 16(1), 101–107 (1965)

[2] Gupta, J.N.D.: A functional heuristic algorithm for the flowshop scheduling prob-
lem. Operational Research Quarterly 22(1), 39–47 (1971)

[3] Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n job,
m machine sequencing problem. Management Science 16(10), 630–637 (1970)

[4] Dannenbring, D.G.: An evaluation of flow shop sequencing heuristics. Management
Science 23(11), 1174–1182 (1977)

[5] Nawaz, M., Enscore Jr., E.E., Ham, I.: A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega-International Journal of Management
Science 11(1), 91–95 (1983)

[6] Laha, D., Chakraborty, U.K.: A constructive heuristic for minimizing makespan
in no-wait flowshop scheduling. International Journal of Advanced Manufacturing
Technology (2008), doi: 10.1007/s00170-008-1454-0

[7] Osman, I.H., Potts, C.N.: Simulated annealing for permutation flow-shop schedul-
ing. Omega-International Journal of Management Science 17(6), 551–557 (1989)

[8] Ogbu, F.A., Smith, D.K.: Application of the simulated annealing algorithm to the
solution of the cmax flowshop problem. Computers & Operations Research 17(3),
243–253 (1990)

[9] Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow-
shop problem. European Journal of Operational Research 91(1), 160–175 (1996)

[10] Grabowski, J., Pempera, J.: New block properties for the permutation flow shop
problem with application in tabu search. Journal of the Operational Research
Society 52(2), 210–220 (2001)

[11] Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for the permu-
tation flow shop problem with makespan criterion. Computers & Operations Re-
search 31(11), 1891–1909 (2004)

[12] Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers & Opera-
tions Research 22(1), 5–13 (1995)

[13] Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking, and the flowshop
sequencing problem. Evolutionary Computation 6(1), 45–60 (1998)

[14] Wang, L., Zheng, D.Z.: An effective hybrid heuristic for flow shop scheduling.
International Journal of Advanced Manufacturing Technology 21(1), 38–44 (2003)

[15] Kalczynski, P.J., Kamburowski, J.: On the NEH heuristic for minimizing the
makespan in permutation flow shops. Omega-International Journal of Manage-
ment Science 35(1), 53–60 (2007)

[16] Framinan, J.M., Gupta, J.N.D., Leisten, R.: A review and classification of heuris-
tics for permutation flow-shop scheduling with makespan objective. Journal of the
Operational Research Society 55(12), 1243–1255 (2004)

18 F. Jin, S. Song, and C. Wu

[17] Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation
flowshop heuristics. European Journal of Operational Research 165(2), 479–494
(2005)

[18] Gupta, J.N.D.: A review of flowshop scheduling research. In: Ritzman, L.P., Kra-
jewski, L.J., Berry, W.L., Goodman, S.M., Hardy, S.T., Vitt, L.D. (eds.) Dis-
aggregation Problems in Manufacturing and Service Organizations, pp. 363–388.
Martin Nijhoff Publishers, The Hague (1979)

[19] Gupta, J.N.D., Stafford Jr., E.F.: Flowshop scheduling research after five decades.
European Journal of Operational Research 169(3), 699–711 (2006)

[20] Grabowski, J., Pempera, J.: Sequencing of jobs in some production system. Euro-
pean Journal of Operational Research 125(3), 535–550 (2000)

[21] Smutnicki, C.: A two-machine permutation flow shop scheduling problem with
buffers. Or. Spektrum 20(4), 229–235 (1998)

[22] Grabowski, J., Pempera, J.: The permutation flow shop problem with blocking. A
tabu search approach. Omega-International Journal of Management Science 35(3),
302–311 (2007)

[23] Nowicki, E.: The permutation flow shop with buffers: A tabu search approach.
European Journal of Operational Research 116(1), 205–219 (1999)

[24] Li, S.H., Tang, L.X.: A tabu search algorithm based on new block properties
and speed-up method for permutation flow-shop with finite intermediate storage.
Journal of Intelligent Manufacturing 16(4-5), 463–477 (2005)

[25] Nowicki, E., Zdrzalka, S.: Single machine scheduling with major and minor setup
times: a tabu search approach. Journal of the Operational Research Society 47(8),
1054–1064 (1996)

[26] Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem.
Management Science 42(6), 797–813 (1996)

[27] Nowicki, E., Smutnicki, C.: New algorithm for the job shop problem. Technical
report, Institute of Engineering Cybernetics, Wroclaw University of Technology
(2003)

[28] Bozejko, W., Grabowski, J., Wodecki, M.: Block approach - tabu search algorithm
for single machine total weighted tardiness problem. Computers & Industrial En-
gineering 50(1-2), 1–14 (2006)

[29] Bozejko, W., Wodecki, M.: A new inter-island genetic operator for optimization
problems with block properties. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A.,
Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 334–343. Springer, Hei-
delberg (2006)

[30] Jin, F., Song, S.J., Wu, C.: A simulated annealing algorithm for single ma-
chine scheduling problems with family setups. Computers & Operations Research
(2008), http://dx.doi.org/10.1016/j.cor.2008.08.001

[31] Nowicki, E., Smutnicki, C.: The flow shop with parallel machines: A tabu search
approach. European Journal of Operational Research 106(2-3), 226–253 (1998)

[32] Negenman, E.G.: Local search algorithms for the multiprocessor flow shop schedul-
ing problem. European Journal of Operational Research 128(1), 147–158 (2001)

[33] Tseng, L.-Y., Lin, Y.-T.: A hybrid genetic algorithm for the flow-shop scheduling
problem. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031,
pp. 218–227. Springer, Heidelberg (2006)

[34] Wodecki, M., Bozejko, W.: Solving the flow shop problem by parallel simulated
annealing. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 236–244. Springer, Heidelberg (2002)

http://dx.doi.org/10.1016/j.cor.2008.08.001

Structural Property and Meta-heuristic 19

[35] Jin, F., Song, S.J., Wu, C.: An improved version of the NEH algorithm and its
application to large-scale flow-shop scheduling problems. IIE Transactions 39(2),
229–234 (2007)

[36] Smutnicki, C.: Some results of the worst-case analysis for flow shop scheduling.
European Journal of Operational Research 109(1), 66–87 (1998)

[37] Werner, F.: On the combinatorial structure of the permutation flow shop problem.
ZOR, Methods and Models of Operations Research 35(4), 273–289 (1991)

[38] Watson, J.P., Barbulescu, L., Whitley, L.D., Howe, A.E.: Contrasting structured
and random permutation flow-shop scheduling problems: Search-space topology
and algorithm performance. Informs Journal on Computing 14(2), 98–123 (2002)

[39] Jin, F., Gupta, J.N.D., Song, S.J., Wu, C.: Makespan distribution of permutation
flowshop schedules. Journal of Scheduling 11(6), 421–432 (2008)

[40] Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for
combinatorial global optimizations. Operations Research Letters 16(2), 101–113
(1994)

[41] Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations
Research 86, 473–490 (1999)

[42] Nowicki, E., Smutnicki, C.: Some aspects of scatter search in the flow-shop prob-
lem. European Journal of Operational Research 169(2), 654–666 (2006)

[43] Watson, J.P., Barbulescu, L., Howe, A.E., Whitley, L.D.: Algorithm performance
and problem structure for flow-shop scheduling. In: Proceedings of the National
Conference on Artificial Intelligence, pp. 688–696 (1999)

[44] Barbulescu, L., Watson, J.P., Whitley, L.D., Howe, A.E.: Problem structure and
flow-shop scheduling. In: Proceedings of the Sixteenth Congreso de Ecuaciones
Diferencialesy Aplicaciones, pp. 27–38 (1999)

[45] Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory
of NP-completeness. Freeman, New York (1979)

[46] Reza Hejazi, S., Saghafian, S.: Flowshop-scheduling problems with makespan cri-
terion: A review. International Journal of Production Research 43(14), 2895–2929
(2005)

[47] Heller, J.: Combinatorial, probabilistic, and statistical aspects of an mxj scheduling
problem. Technical Report NYO-2540, Institute of Mathematical Sciences. New
York University, New York (1959)

[48] Heller, J.: Some numerical experiments for mxj flow shop and its decision-
theoretical aspects. Operations Research 8(2), 178–184 (1960)

[49] Pulle, C.V.: An analysis of Inter-relationship of multiple criteria in a flowshop
with set-up sequence dependence. PhD thesis, Texas Tech University (1976)

[50] Azim, M.A., Moras, R.G., Smith, M.L.: Antithetic sequences in flow shop schedul-
ing. Computers & Industrial Engineering 17(1-4), 353–358 (1989)

[51] Caffrey, J., Hitchings, G.: Makespan distributions in flow shop scheduling. Inter-
national Journal of Operations & Production Management 15(3), 50–58 (1995)

[52] Moras, R., Smith, M.L., Kumar, K.S., Azim, M.A.: Analysis of antithetic se-
quences in flowshop scheduling to minimize makespan. Production Planning and
Control 8(8), 780–787 (1997)

[53] Elmaghraby, S.E.: The machine sequencing problem review and extensions. Tech-
nical report (1968)

[54] Giffler, B., Thompson, G.L., Van Ness, V.: Numerical experience with linear and
monte carlo algorithms for solving scheduling problems. In: Muth, J.F., Thompson,
G.L. (eds.) Industrial Scheduling. Prentice Hall, Englewood Cliffs (1963)

20 F. Jin, S. Song, and C. Wu

[55] Nugent, C.E.: On sampling approaches to the solution of n-by-m static sequencing
problem. PhD thesis, Cornell University (1964)

[56] Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. John Wiley
and Sons Inc., New York (1967)

[57] Gupta, J.N.D., Smith, M.L., Martz, H.F., Dudek, R.A.: Monte carlo experimenta-
tion with flowshop scheduling problem. Technical Report QT-103-68, Department
of Industrial Engineering, Texas Technological College (1968)

[58] Ashour, S.: Sequencing Theory. Springer, New York (1972)
[59] Dannenbring, D.G.: Procedures for estimating optimal solution values for large

combinatorial problems. Management Science 23(12), 1273–1283 (1977)
[60] Panwalker, S.S., Charles, O.E.: Analysis of the left tail for the makespan distribu-

tion in flowshop problems. Journal of Operational Research Society of India 18(4),
215–220 (1981)

[61] Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47(1), 65–74 (1990)

[62] Ruiz, R., Stutzle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Re-
search 177(3), 2033–2049 (2007)

[63] Watson, J.P., Howe, A.E., Whitley, L.D.: Deconstructing nowicki and smutnicki’s
i-tsab tabu search algorithm for the job-shop scheduling problem. Computers &
Operations Research 33(9), 2623–2644 (2006)

[64] Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64(2), 278–285 (1993)

Scheduling in Flowshops with No-Idle Machines

Rubén Ruiz, Eva Vallada, and Carlos Fernández-Mart́ınez

Grupo de Sistemas de Optimización Aplicada. Instituto Tecnológico de Informática
(ITI). Ciudad Politécnica de la Innovación, Edificio 8G. Acceso B. Universidad
Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
rruiz@eio.upv.es, evallada@eio.upv.es, cfernandez@iti.upv.es

Summary. This chapter deals with an interesting and not so well studied variant of
the classical permutation flowshop problem with makespan criterion. In the studied
variant, no idle time is allowed on machines. In order to ensure this no-idle constraint,
the start times of jobs on machines must be delayed until all assigned jobs can be
processed without incurring in idle times. This is a real situation arising in practice
when expensive machinery is operated or when specific machines cannot be easily
started and stopped due to technological constraints.

We provide a comprehensive characterization and modelization of the no-idle per-
mutation flowshop, along with a detailed literature review. Existing methods are crit-
ically evaluated. We propose several improvements over existing approaches as well
as adaptations of state-of-the-art algorithms that were proposed for related problems.
An extensive computational campaign is conducted. Results are carefully analyzed by
means of sound statistical techniques. The results indicate that the recent Iterated
Greedy methods outperform existing algorithms by a significant margin.

1 Introduction

Flowshop scheduling is a very active field of research with close to 55 years
of history. Flowshop problems are easy to formulate yet remarkably complex,
both from a mathematical as well as from a computational point of view. In a
flowshop, there is a set N = 1, 2, . . . , n of n unrelated product orders to produce.
These are usually referred to as “jobs”. The production shop is composed of a
set M = 1, . . . , m of m machines that are disposed in series. Each job visits each
machine in order. This order might be, without loss of generality, machine 1,
machine 2 and so on until machine m. As a result of this, each job j, j ∈ N is
composed of m serial tasks, each one to be performed on a machine i, i ∈ M .
The processing time of the tasks is referred to as pj,i which basically denotes the
non-negative, known and deterministic processing time of job j at machine i.

The flowshop problem then consists of finding a production sequence of the n
jobs in the m machines so that a given performance criterion is optimized. The
total number of feasible solutions to this problem is derived from the possible
job’s arrangements on machines. For each machine, we have n! possible job
permutations. Thus, the total number of feasible solutions or schedules is (n!)m.

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 21–51.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

22 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

However, this general case is seldom considered in the flowshop research field.
Instead, a simplification is to consider a single permutation of jobs for all the
machines. This brings the overall number of solutions down to n! Under this
simplification, the problem is referred to as permutation flowshop scheduling
problem or PFSP in short.

In this chapter we study an interesting variant of this problem where no idle
time is allowed on machines. As we will see, this results in a different problem.
The chapter continues with detailed characterizations of both the regular as well
as the no-idle flowshops. Later, the chapter also provides a detailed literature re-
view in Section 2, along with a discussion of existing approaches, improvements
over published methods and adaptations of high performing state-of-the-art al-
gorithms in Section 3. A complete computational and statistical campaign is
performed in Section 4. Finally, conclusions and suggestions for future research
are given in Section 5.

1.1 Regular Flowshop Problem

Before going into details, a more formal definition of the PFSP is given. First of
all, a number of assumptions are usually considered: (Baker, 1974):

• All jobs are independent and available for processing at time 0.
• All machines are continuously available.
• Each machine can process at most one job at a time and each job can be

processed only on one machine at a time.
• The processing of a given job at a machine cannot be interrupted once started,

i.e, no preemption is allowed.
• Setup times are sequence independent and are included in the processing

times or are otherwise ignored.
• An infinite in-process storage buffer is assumed. If a given job needs an

unavailable machine then it joins a queue of unlimited size waiting for that
machine.

Most optimization criteria are based on the completion times of the jobs at the
different machines which are denoted by Cj,i. Similarly, Cj denotes the time at
which job j is completed at the last machine. The completion times Cj,i can be
easily calculated as follows:

Given a permutation π of n jobs, where π(j) denotes the job in the j-th posi-
tion, the completion times are calculated in O(nm) with the following recursive
expression:

Cπ(j),i = max
{
Cπ(j),i−1, Cπ(j−1),i

}
+ pπ(j),i (1)

where Cπ(j),0 = 0 and Cπ(0),i = 0, ∀i ∈ M, ∀j ∈ N . The most common optimiza-
tion criterion is the minimization of the maximum completion time or makespan
(Cmax) where Cmax = Cπ(n),m. Under this objective, the PFSP is denoted as
F/prmu/Cmax following the well known α|β|γ notation for scheduling problems
given in Graham et al. (1979).

Scheduling in Flowshops with No-Idle Machines 23

The earliest research papers on the PFSP focused on makespan minimization.
The seminal paper of Johnson (1954) is widely recognized as the first study.
However, a closer look brings even earlier papers, like the one of Salveson (1952).

Johnson mainly studied the PFSP with only two machines (m = 2) and
provided a polynomial algorithm of O(n log n) steps to solve this special case to
optimality. The three or more machines problem is known to be NP-Complete
in the strong sense (Garey et al., 1976).

Exact approaches for the PFSP under makespan criterion (PFSP-Cmax) are
fairly effective, but only for a small number of jobs, and specially, machines. For
the sake of completeness, and in order to completely characterize the PFSP, we
introduce the following Mixed Integer Programming (MIP) model. Note that
this is a well known model and certainly not the only possible one.

Decision variables:

Xj,k =
{

1, if job j occupies position k of the sequence
0, otherwise

j, k = {1, . . . , n}
Ck,i = Completion time of job at position k on machine i

k = {1, . . . , n}, i = {1, . . . , m}
Objective function:

min Cmax = Cn,m (2)

Constraints:
n∑

k=1

Xj,k = 1, j = {1, . . . , n} (3)

n∑
j=1

Xj,k = 1, k = {1, . . . , n} (4)

Ck,1 ≥
n∑

j=1

Xj,k · pj,1, k = {1, . . . , n} (5)

Ck,i ≥ Ck,i−1 +
n∑

j=1

Xj,k · pj,i, k = {1, . . . , n}, i = {2, . . . , m} (6)

Ck,i ≥ Cl,i +
n∑

j=1

Xj,k · pj,i, k = {2, . . . , n}, l = {1, . . . , k − 1}, i = {1, . . . , m}

(7)

Ck,i ≥ 0, k = {1, . . . , n}, i = {1, . . . , m} (8)

Xj,k ∈ {0, 1}, j, k = {1, . . . , n} (9)

We can see that minimizing Cmax is equivalent to minimizing the completion
time of the job in the last position of the sequence and on the last machine.

24 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

Constraint sets (3) and (4) ensure that each position is occupied by exactly one
job. Sets (5) and (6) control the completion times of all jobs in the first and on
subsequent machines, making sure that these completion times are larger than
those of previous machines. With constraint set (7) we ensure that completion
times also take into account jobs in preceding positions on all machines. Finally,
sets (8) and (9) define the nature of the decision variables.

The PFSP-Cmax has been thoroughly studied in the literature. Here we pro-
vide just some of the most cited papers, like the heuristics by Page (1961),
Palmer (1965), Campbell et al. (1970) or Dannenbring (1977). By far, the most
known heuristic for the F/prmu/Cmax problem is the NEH by Nawaz et al.
(1983). NEH is considered as the champion among heuristics, according to
many studies like Turner and Booth (1987), Taillard (1990) and more recently,
Ruiz and Maroto (2005). As a matter of fact, in the study of Ruiz and Maroto,
NEH is confronted against more modern –and complex– heuristics like the ones
of Koulamas (1998), Suliman (2000) and Davoud Pour (2001) and NEH is proved
to perform better.

Apart from the review and computational evaluation of Ruiz and Maroto
(2005), the reader might find additional valuable information in the reviews
of Framinan et al. (2004) and Hejazi and Saghafian (2005).

Of course, Cmax is not the only criterion studied. Total completion time,
defined as TCT =

∑n
j=1 Cj , results in a NP-Hard problem already for m ≥ 2

(Gonzalez and Sahni, 1978). Furthermore, if there are no release times for the
jobs, i.e., if rj = 0, ∀j ∈ N , then the total or average completion time equals the
total or average flowtime, denoted as F in the literature. Other studied criteria
are those based in due dates. Given a due date dj for job j, Tj denotes the
tardiness of job j, which is defined as Tj = max{Cj − dj , 0}. Total tardiness
minimization results in a NP-Hard problem in the strong sense for m ≥ 2 as
shown in Du and Leung (1990). A recent review for the total tardiness version
of the PFSP (the F/prmu/

∑
Tj problem) is given by Vallada et al. (2008).

Lastly, there is a recent trend in which several objectives are jointly considered.
A comprehensive review and evaluation of multiobjective approaches for PFSP
is provided by Minella et al. (2008).

1.2 No-Idle Flowshop Variant

In this chapter we are interested in a variant of the PFSP that arises when no
idle time is allowed at machines. This constraint models an important practi-
cal situation that arises when expensive machinery is employed. Idling on such
expensive equipment is often not desired. Clear examples are the steppers used
in the production of integrated circuits by means of photolithography. Other
examples come from sectors where less expensive machinery is used but where
machines cannot be easily stopped and restarted. Ceramic roller kilns, for exam-
ple, consume a large quantities of natural gas when in operation. Idling is not
an option because it takes several days to stop and to restart the kiln due to a
very large thermal inertia. In all such cases, idling must be avoided.

Scheduling in Flowshops with No-Idle Machines 25

Table 1. Processing times for a PFSP example with four machines and five jobs

jobs (j)

machines (i) 1 2 3 4 5

1 31 39 23 23 33
2 22 25 22 22 41
3 25 41 47 14 27
4 30 34 22 13 19

In order to better understand the no-idle constraint, we make use of an exam-
ple problem with five jobs and four machines. The processing times pj,i are given
in Table 1. The optimum solution, easily obtainable by complete enumeration
or by solving the corresponding instance of the model given in Section 1.1 is
π∗

idle = {3, 1, 2, 5, 4} and is depicted in Figure 1. It is straightforward to see that
all machines, with exception of machine 1, have idle times. For example, there is
an idle time on the second machine of 18 time units between the completion time
of the job 1 in second position and the beginning of job 2 in the third position.
These idle times are necessary because by the time job 1 is finished in machine
2, job 2 cannot start processing since it is still being processed in machine 1.
Despite idle times, the makespan value is of 226 time units.

In the no-idle flowshop problem with makespan criterion, denoted as
F/prmu, no−idle/Cmax, these idle times are not allowed. In order to ensure this,
and following the previous example, the start times of jobs 3, 1 and 2 on machine
2 need to be delayed so that no idle time is present in the schedule. The same
previous sequence {3, 1, 2, 5, 4} results in a makespan of value 258 if the no-idle
constraint is enforced. As a result, the makespan value is more than 14% worse.

Makespan: 226

Job 1 Job 2 Job 3 Job 4 Job 5

25023021019017015013011090705030100

Machine

1

Machine

2

Machine

3

Machine

4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

C2,2=76 C3,2=119

P2,2=25
I2,3=18

Fig. 1. Optimum solution for the PFSP example. Idle time allowed.

26 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

Makespan: 247

Job 1 Job 2 Job 3 Job 4 Job 5

25023021019017015013011090705030100

Machine

1

Machine

2

Machine

3

Machine

4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

Fig. 2. Optimum solution for the PFSP example. No idle time allowed.

Although related, the no-idle PFSP and the regular PFSP are very different.
As a matter of fact, the optimum solution for the example problem of Table 1 is
π∗

no−idle = {2, 5, 1, 3, 4}, with a makespan value of 247 and is shown in Figure 2.
We can see that π∗

idle and π∗
no−idle are very different and only job 4 is located in

the same position in both sequences. Similarly, the optimum makespan with the
no-idle constraint is better than the makespan obtained by enforcing the no-idle
constraint to π∗

idle.
Calculating the completion times Cj,i in a no-idle flowshop is not trivial.

Following the previous examples of Figures 1 and 2 we see that for each machine,
jobs are delayed until we are sure that they can be processed without idle time.
Therefore, we first need to calculate when a given machine can start processing
with no needed idle time. We denote this as Si, i = {1, . . . , m}. Obviously, S1 = 0.
With this in mind, we calculate the Si values as follows:

Si = Si−1 + max
1≤h≤n

⎧⎨
⎩

h∑
j=1

pπ(j),i−1 −
h−1∑
j=1

pπ(j),i

⎫⎬
⎭ , i = {2, . . . , m} (10)

Once the Si values are known, calculating the completion times is straightforward
since the jobs are processed with no-idle time:

Cπ(1),i = Si + pπ(1),i, i = {1, . . . , m} (11)

Cπ(j) ,i = Cπ(j−1),i + pπ(j),i, j = {2, . . . , n}, i = {1, . . . , m} (12)

As a result, Cmax = Cπ(n),m. However, it is interesting to mention that the
completion times are not really needed for makespan criterion as Cmax = Sm +∑n

j=1 pj,m. As we can see, calculating Cmax for the no-idle PFSP has the same

Scheduling in Flowshops with No-Idle Machines 27

complexity as for the regular PFSP (O(nm)) although more calculations are
needed at each step. Note that in order to come up with a O(nm) complexity,
the summations inside the max term in expression (10) have to be stored at each
step. For example:

h∑
j=1

pπ(j),i−1 =
h−1∑
k=1

pπ(k),i−1 + pπ(h),i−1

Similarly to the PFSP, it is easy to come up with a MIP model to obtain the
optimum solution for the no-idle PFSP. We propose an adaptation of the model
presented in Saadani et al. (2005) here. The variable definition, objective func-
tion and constraint sets (3), (4) and (8), (9) are unchanged.

Constraint sets (5)-(7) are changed by:

C1,1 =
n∑

j=1

Xj,1 · pj,1 (13)

Ck+1,i = Ck,i +
n∑

j=1

Xj,k+1 · pj,i, k = {1, . . . , n − 1}, i = {1, . . . , m} (14)

Ck,i+1 ≥ Ck,i +
n∑

j=1

Xj,k · pj,i+1, k = {1, . . . , n}, i = {1, . . . , m − 1} (15)

We see that the structure of these constraints has changed. The most important
aspect is constraint set (14) where we enforce that the completion time of a job
in position k + 1 is exactly equal to the completion time of job in position k
plus the processing time of the job in position k + 1. This ensures the no-idle
constraint.

The computational complexity of the F/prmu, no − idle/Cmax problem is
briefly commented in Tanaev et al. (1994) which in turn refers to an older com-
munication in Russian. In any case, the NP-Hardness of the F3/prmu, no −
idle/Cmax was proved in Baptiste and Hguny (1997). Similarly, and accord-
ing to Adiri and Pohoryles (1982), when Garey et al. (1976) proved the NP-
Completeness in the strong sense of the problem F2/prmu/

∑
Cj they did so

with a no-idle instance, and therefore, the problem F2/prmu, no − idle/
∑

Cj

is also NP-Complete.

2 Literature Review

To the best of our knowledge, Adiri and Pohoryles (1982) where the first to
address the no-idle PFSP. They studied also the no-wait flowshop. The main
contribution is a polynomial algorithm for solving the F2/prmu, no−idle/

∑
Cj

problem to optimality. They also provided results for m > 2 but for special cases
with dominating machines only.

28 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

Vachajitpan (1982) was the first to study the makespan objective. He proposed
a MIP model with the additional characteristic that non-permutation sequences
are allowed. Of course, the proposed model is shown to be impracticable even
for small problem sizes. A Branch and Bound (B&B) method is also presented,
but in this case for the permutation case. No computational results are provided
beyond a small example.

Heuristics for the general m-machine no-idle PFSP were first examined by
Woollam (1986) for the makespan objective. Basically, several heuristics were
taken from the literature, including some of the aforementioned ones like the
NEH. From the solution given in those heuristics (idle time allowed), a no-idle
sequence was calculated, followed by a series on n−1, adjacent pairwise exchange
moves. Computational results were carried out with five heuristics and instances
of up to 25 jobs and 25 machines in size (25 × 25). Nowadays, such sizes are
deemed as small. However, for such cases, NEH produced the best results.

Baptiste and Hguny (1997) proposed a B&B method for the general m-
machine no-idle PFSP with makespan criterion. They also proved the NP-
Hardness of the problem.

Čepek et al. (2000) pointed out some errors found in the paper by
Adiri and Pohoryles (1982). Furthermore, they demonstrated that in the case
of total completion time criterion and two machines, it suffices to search permu-
tation schedules only.

In a fairly unknown paper, Narain and Bagga (2003) study the F3/prmu, no−
idle/Cmax problem. They provide a MIP model and a B&B algorithm along with
some rather limited computational results. The same problem with three ma-
chines is studied by Saadani et al. (2003). They proposed a lower bound and an
effective heuristic. This heuristic compared favorably against an earlier method
by the authors (Saadani et al., 2001). Notice that this work was later published
in Saadani et al. (2005).

Kamburowski (2004) elaborates over Saadani et al. (2003) paper. The author
proposes a network representation and identifies some paradoxes by which re-
ducing some processing times might result in a prolongation of the makespan
and viceversa.

Saadani et al. (2005) propose a Traveling Salesman Problem (TSP)-based
heuristic for the F/prmu, no − idle/Cmax. Basically, the authors modelize the
distance between any two possible jobs as the resulting no-idle makespan value
when sequencing these two jobs in all m machines. Starting from the minimum
distance, the Nearest Insertion Rule (NRI) heuristic is applied by inserting, one
by one, and in all positions, all pending jobs. The heuristic has a complexity of
O(n3) and is easily implementable. The authors tested the proposed heuristic
against a MIP model and its optimum solution provided by LINGO in problems
of sizes up to 17 × 30.

In two similar papers, Narain and Bagga (2005a,b), study the F2/prmu, no−
idle/

∑
Cj and F/prmu, no− idle/Cmax problems, respectively. However, in the

second case, only special variants with dominating machines are studied and
heuristics are presented.

Scheduling in Flowshops with No-Idle Machines 29

Kalczynski and Kamburowski (2005) proposed a heuristic for the F/prmu,
no− idle/Cmax problem with a reported computational complexity of O(n2m).
The heuristic is compared against that of Saadani et al. (2005) with instances
of size up to 100 × 40. Better results are reported on most instance sizes. The
authors also present an adaptation of the NEH for the no-idle problem. Their
proposed method is also shown to outperform this NEH heuristic.

As of late, no-idle flowshop has received renewed interest.
Kalczynski and Kamburowski (2007) study special situations and problem
combinations between the no-idle and no-wait flowshops.

Recently, Baraz and Mosheiov (2008) have proposed a simple two stage
heuristic for the F/prmu, no − idle/Cmax. In the first stage, pending jobs are
added, one at a time, at the end of an incomplete sequence, and the job re-
sulting in the least no-idle added makespan, is appended to the sequence. This
phase carries out O(n2) steps. In the second phase, all possible job interchanges
are tested and the best moves are performed. There are n(n − 1) possible job
pairs. Therefore, the authors conclude that the running time of their proposed
heuristic is O(n2). However, we want to point out a very important mistake here.
The authors are not considering the added complexity of calculating the no-idle
makespan at each step. Since this calculation has a computational complexity
of O(nm), we conclude that the correct total computational complexity of their
proposed heuristic is actually O(n3m). In any case, the authors demonstrate
the superiority of their proposed heuristic against that of Saadani et al. (2005)
but bypass other important papers like the one of Kalczynski and Kamburowski
(2005). The size of the instances tested go all the way up to 400 × 8.

Also recently, in two similar papers, Pan and Wang (2008a,b) propose discrete
differential evolution and a discrete particle swarm algorithms for the same prob-
lem. In both papers, an acceleration for the insertion neighborhood is proposed.
This reduces the computational complexity of a single insertion neighborhood
scan from O(n3m) to O(n2m) if the insertion is done in order. This accelera-
tion is based on the very well known accelerations presented in Taillard (1990)
for the same neighborhood but for the PFSP. Both algorithms use a form of
advanced local search called Iterated Greedy (Ruiz and Stützle, 2007) that will
be discussed later. The authors use the also well known benchmark of Taillard
(1993) –extended to the no-idle flowshop– to test the results. In both papers, the
authors test the proposed methods against the heuristics of Baraz and Mosheiov
(2008) and Kalczynski and Kamburowski (2005). The results indicate that both
the differential evolution and the particle swarm methods provide state-of-the-
art results. However, these two methods are not compared between them.

As we can see, not many approaches have been suggested for the general m-
machine F/prmu, no− idle/Cmax problem. However, it seems that this trend is
reversing as several papers have appeared recently. It is one of the objectives of
this paper to quantitatively compare these last approaches in order to identify
the state-of-the-art.

There are other related papers that consider no-idle times, although not as
a hard constraint or on related settings. For example, Liao (1993) relaxes the

30 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

no-idle constraint and tries to minimize the number of idle intervals instead.
This number is treated as a goal, that is subject to minimum makespan. The
author presents a MIP model and a heuristic. A similar problem is studied
in Saadani and Baptiste (2002) where the no-idle constraint is relaxed. In this
case, a B&B algorithm is proposed for the three machine case where an optimal
placement for one or more idle intervals is sought. A different paper is that by
Giaro (2001) where “compact” open and flowshop problems are studied. Com-
pact means that both no-idle and no-wait constraints exist. The author shows
the incredible complexity of these problems where even proving the existence of
a feasible compact schedule is already NP-Hard.

Other shop settings are also studied in the literature.
Narasimhan and Panwalkar (1984) and Narasimhan and Mangiameli (1987)
study a two stage hybrid flowshop with no-idle parallel machines in the first
stage. The symmetric problem is studied by Wang et al. (2005) where some
heuristics are proposed for the case where the no-idle machines are on the
second stage.

Niu and Gu (2006) study a no-idle PFSP with the additional consideration of
fuzzy processing times. In this case, the mean makespan along with the makespan
spread are studied with a mixture between particle swarm optimization and
genetic algorithms. Deteriorating jobs on no-idle dominant machines –a very
special case– is studied in two related papers, Cheng et al. (2007a,b).

3 New Approaches, Discussion and Adaptation of
Existing State-of-the-Art Methods

It is frequent in the scheduling literature to propose new algorithms for a given
specific problem and to compare against existing approaches for that problem
only. While this is reasonable, sometimes it is worthwhile to look for state-of-
the-art methods in related problems. As we have seen in Sections 1.1 and 1.2, the
regular and no-idle flowshop problems are different from a mathematical point
of view. However, the search space is based on permutations and much of the
existing knowledge –specially in the field of metaheuristics– might be applicable.

Therefore, in this Section we discuss improvements to some of the earlier re-
viewed methods that were specifically proposed for the no-idle flowshop. We also
propose adaptations of high performing existing methods that where proposed
for related problems like the regular PFSP.

Let us first analyze the recent proposal of Baraz and Mosheiov (2008). We
refer to this heuristic as GH BM. For the sake of complexity, we detail the
heuristic here.

1. STEP 1 (greedy). Perform n iterations. At each iteration, append to the
current sequence the unscheduled job yielding the least additional no-idle
makespan.

2. STEP 2 (pairwise job interchange). From the sequence obtained at STEP 1,
perform a single pass in the interchange neighborhood, testing all possible
pairs of job exchanges. Accept those exchanges improving makespan.

Scheduling in Flowshops with No-Idle Machines 31

At STEP 1, n jobs are tested in the first iteration, n − 1 in the second and
so on until the last job. Therefore, we have n(n + 1)/2 steps. At each step, the
makespan has to be calculated, with a cost of nm. Therefore the computational
complexity, as discussed before, is O(n3m). STEP 2 is essentially similar, as
it is well known that the cardinality of the interchange neighborhood is also
n(n + 1)/2.

We want to focus our attention to this heuristic. The choice of the construc-
tive heuristic in STEP 1 is probably not the best one. It has been long known
that the NEH (Nawaz et al., 1983) heuristic is the best performer for flowshop
problems in many different scenarios. See for example Framinan et al. (2003) or
Ruiz and Maroto (2005) for recent results on this and for different objectives.
Furthermore, NEH was shown very recently to be an excellent performer for the
regular PFSP (see Rad et al., 2009). NEH considers lengthy jobs early in the
sequence and then carries out insertions as shown in the following steps:

1. Sum the processing times of all jobs on all machines: Pj =
∑m

i=1 pj,i.
2. Sort jobs in descending order of Pj .
3. Take job j, j = 1, . . . , n from the sorted list, insert it in all possible j positions

of the partial incumbent sequence and place it in the position that results
in the lowest Cmax.

Even without the accelerations of Taillard (1990), the complexity of the NEH
heuristic is O(n3m), which is the same as STEP 1 in the GH BM heuristic.
Considering the good performance of the NEH, it seems reasonable to substitute
STEP 1 by the NEH heuristic. Furthermore, using Taillard (1990) accelerations
reduces the complexity of the NEH to O(n2m). The extension of these accel-
erations to the no-idle flowshop have been proposed, as already mentioned, by
Pan and Wang (2008a,b). Accelerations for the PFSP are extremely effective.
As shown in Rad et al. (2009), a very efficient NEH implementation results in
CPU times of only 77 milliseconds for instances as large as 500×20 in a modern
desktop computer.

As regards STEP 2, it has been long known that for the PFSP, insertion
neighborhoods give better results than adjacent interchange and general inter-
change neighborhoods. This was tested in many domains as early as in the work
of Osman and Potts (1989). This is also true even for genetic mutation operators
as an insert mutation performs much better than a swap or interchange mutation
as shown in Reeves (1995) or more recently, in Ruiz et al. (2006). Furthermore,
when scanning all the insertion neighbors of a single job, the same accelerations
discussed before can be applied. This effectively brings down the application of
a single pass of the insertion neighborhood to O(n2m). As a result, a better
alternative is to apply the insertion local search in STEP 2.

Considering the previous discussion, we propose an improvement of the
GH BM heuristic –which we call GH BM2– that uses NEH with accelerations in
STEP 1 and that uses a single pass insertion local search, also with accelerations,
in STEP 2.

32 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

The second heuristic we want to draw our attention upon is the TSP-based
SGM method by Saadani et al. (2005). This heuristic is composed of several
steps:

1. Calculate the distance Djk between any possible pair of jobs j, k={1, . . . , n},
j �= k. Djk is actually equivalent to Sm from expression (10) if just jobs j
and k are scheduled in all m machines considering no-idle constraints.

2. Take the minimum Djk and schedule jobs j and k in this order. Store the
scheduled jobs in a partial sequence πp

3. For every unscheduled job l, insert the job in every possible position of the
incomplete sequence, this is, insert job l in the first position, in the second
and so on until position |πp| + 1. Among all pending jobs and all possible
positions, insert the job in the position that resulted in the minimum tour
length increase.

4. Go back to step 3 until all jobs are scheduled.

At first, SGM heuristic might look expensive. However, it is actually very fast
if implemented with care. As the heuristic is no more than an adaptation of the
Nearest Insertion Rule (NRI) from the TSP to the no-idle PFSP, we do not have
to calculate any makespan value. For example, the different “tour lengths” when
inserting a given job 5 into all positions of πp = {1, 2, 3} are obtained by two
simple summations and a single substraction. For this example, the current tour
length is L = D12 + D23 + D31. As a result, when inserting job 5 in the second
position the new length is calculated as follows: L′ = L − D12 + D15 + D52.
This does not reduce the theoretical complexity of the heuristic, as step 1 has
a complexity of O(n2) and step 3 has a complexity of O(n3)1. However, the
amount of work per step is very low and the result is a very fast heuristic. For
our tests, we have implemented such a fast version of the SGM algorithm.

Another heuristic considered in this chapter is the one proposed by
Kalczynski and Kamburowski (2005). This heuristic is referred to as KK and
consists of the following steps:

1. Calculate the sequence πi by applying Johnson’s (1954) algorithm on ma-
chines i and i + 1, for i = {1, . . . , m − 1}. Set ω = ∅, K = |ω| = 0, and
σi = πi for i = {1, . . . , m − 1}.

2. Assume that the current sequences are πi = (σi, ω), where ω is the sub-
sequence of scheduled jobs. For every unscheduled job s and position k =
{1, . . . ,
n/(n−K)�} in ω, compute R(s, k) =

∑m−1
i=1 Cmax((σi−{s}, ω(s, k));

1 In computational complexity, constants multiplying large numbers are normally
overlooked. However, in the case of scheduling, n and m are usually not mea-
sured in the thousands. Therefore, constants might be relevant. More specifi-
cally, in the first iteration of the third step of the SGM heuristic, n − 2 pend-
ing jobs are inserted in 3 possible positions. In the second iteration, n − 3 jobs
are inserted in 4 positions and so on. This gives a total number of insertions of∑n−1

j=2 {(n − j) · (j + 1)} = 1
6
n3 + 1

2
n2 − 8

3
n + 2. As we have seen, at each insertion,

only three basic operations are carried out. The result is that although the heuristic
is O(n3), its performance is practice is very good.

Scheduling in Flowshops with No-Idle Machines 33

Mi, Mi+1). The sequence σi − {s}, ω(s, k) is that obtained by deleting job
s from σi and inserting it into the k-th position of ω. The objective is to
find s∗ and k∗ that minimize R(s, k). Set ω = ω(s∗, k∗), σi = σi − {s∗} for
i = {1, . . . , m − 1} and K = K + 1.

3. If K < n, return Step 2. Otherwise, πkk = ω is the final sequence.

In this case, the method starts from m-1 sequences built with Johnson’s al-
gorithm. For each sequence, Step 2 chooses the best job to be deleted from the
current Johnson’s sequence and to be inserted in the subsequence of scheduled
jobs. The complexity of this method is O(n3m). However, the authors state that
the complexity of the heuristic is O(n2m) since a speed up procedure based on
the Critical Path Method (CPM) can be applied to compute the makespan value
in O(1). Nevertheless, the cost to obtain the CPM is O(n) and it is necessary to
compute it again when the sequence changes. On the other hand, the value of
m is a very strong factor to compute the R(s, k) values. Moreover, we have to
consider that several searches and additional operations have to be carried out
before the makespan value can be computed, since it is necessary to know the po-
sition of the deleted job in the Johnson’s sequence. So, despite great efforts, and
after coding all the speed-ups and formulae from Kalczynski and Kamburowski
(2005), the complexity of the implemented KK heuristic remains at O(n3m).
We want to remark that in the original paper, the authors do not report CPU
times. Additionally, we contacted Dr. Quan-Ke Pan for help as he did code the
KK heuristic in the papers Pan and Wang (2008a,b). The code we received did
not include the alleged accelerations either.

Recently, Rad et al. (2009) have proposed some algorithms based on the NEH
procedure. From the proposed heuristics, here we adapt the three best perform-
ing ones to the no-idle PFSP. Namely, we consider the following heuristics:

• FRB3. It is an extension of the NEH method. After inserting a job in a given
position, all jobs inserted in previous iterations are again reinserted in all
possible positions. This reinsertion is motivated by the fact that after insert-
ing a new job, existing jobs could be moved in order to better accommodate
the new one. FRB3 was shown in Rad et al. (2009) to improve the perfor-
mance of the NEH method almost a 300% on average. However, this comes
at a cost, since the worst case computational complexity rises to O(n3m).

• FRB4k. It is a simplification of the FRB3 method. After inserting a job j,
only the jobs at positions ±k from the position where job j has been finally
inserted are reinserted. Since typically k � n, the computational complexity
of FRB4k is O(n2m). In any case, the empirical observed running time will
be much higher that the accelerated NEH.

• FRB5. It is an extension of FRB3. Basically, after placing a given job j, a
full local search in the insertion neighborhood until local optima is carried
out. Furthermore, jobs are extracted at each step at random and without
repetition to enforce an unbiased and powerful search. Given that the number
of local search steps cannot be derived, the worst case complexity cannot be
calculated. FRB5 was shown in Rad et al. (2009) to be much slower than
NEH on average. However, it also produced the best results.

34 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

FRB3, FRB4k and FRB5 are adapted to the no-idle PFSP by simply calculating
no-idle Cmax values at each step. We employ the mentioned accelerations in the
insertions. Furthermore, for FRB4k, we test two k values, namely 4 and 12.

Lastly, we are interested in a recent state-of-the-art algorithm proposed for
the regular PFSP-Cmax. The Iterated Greedy method with local search (IGLS)
was shown in Ruiz and Stützle (2007) to produce better results than other
much more complex state-of-the-art methods. Iterated Greedy (IG) has been
successfully applied to other shop environments, like the SDST flowshop in
Ruiz and Stützle (2008), no-wait flowshops (Pan et al., 2008), hybrid flowshops
(Ying, 2008) and many others. Recently, Vallada and Ruiz (2009) have devised
cooperative IG methods that have improved the results even further. There
have been even approaches for multiobjective PFSP like the one shown in
Framinan and Leisten (2008). It is clear that there is a strong recent trend in
the application of IG methods to flowshop problems.

As the name implies, IG iterates over greedy constructive heuristics. IGLS

starts from the solution given by the NEH. Then a local search step is carried
out (this local search will be explained later). Then, three phases are iteratively
applied until a termination criterion is met. First, we have the destruction. Dur-
ing this phase, some jobs are extracted from the incumbent sequence, at random.
The second phase is construction, were the removed jobs are inserted, one by
one, in all positions of the partially destructed sequence. Each job is placed in
the position resulting in the lowest Cmax increase. The reconstruction phase is
applied until a new complete sequence is obtained. Lastly, this new sequence
undergoes a local search step. After the application of these three steps, the
new solution is considered for replacing the incumbent one. More details can be
seen in Ruiz and Stützle (2007). IGLS uses the principle and accelerations of the
NEH. Of special mention is the local search step, which is detailed in Figure 3.
As we can see, it is not a straightforward local search. First of all, in the inner

procedure LocalSearch Insertion(π)
improve := true;
while (improve = true) do

improve := false;
for i := 1 to n do

remove a job k at random from π without repetition
π′ := best permutation after inserting k in all positions of π;
if Cmax(π′) < Cmax(π) then

π := π′;
improve := true;

endif
endfor

endwhile
return π

end

Fig. 3. Local search employed in IGLS (Ruiz and Stützle, 2007)

Scheduling in Flowshops with No-Idle Machines 35

loop, all jobs are extracted one by one, but instead of doing this in order, it is
done at random, to avoid a biased result. Each job is inserted in all possible po-
sitions (using accelerations) and if a better Cmax value is found, the solution is
replaced. We continue until all jobs have been reinserted and if an improvement
is found, the search starts again for all jobs. The local search is finished when no
improvements are found after reinserting all jobs. Note that this is also the local
search employed in the FRB5 heuristic. A very similar local search is applied in
the second step of the GH BM2 method. However, we apply a single pass, i.e.,
the while loop is eliminated.

As mentioned in Section 2, Pan and Wang (2008a,b) employ IGLS as a local
search method inside their proposed approaches. More specifically, they carry out
a few iterations of IGLS to good solutions found during the search. In this chapter
we propose the application of the pure IGLS method and not as a surrogate local
search step.

4 Computational Evaluation

In this Section we aim at comparing all existing heuristics that we have reviewed
with detail in the previous Section. We will comment first on the benchmark
employed.

The vast majority of the flowshop literature concentrates on the well known
benchmark of Taillard (1993). This benchmark is composed of 12 groups of 10
instances each, totalling 120 instances. Each group is characterized by a com-
bination of n and m values (n × m). The groups are {20, 50, 100}× {5, 10, 20},
200×{10, 20} and 500×20. However, this benchmark was proposed as a difficult
set of instances for the PFSP-Cmax only. Despite of this, it is common in the
literature to “adapt” this benchmark to other objectives and to other problem
variants. We have, however, several concerns with this approach. First of all,
Taillard’s benchmark is not complete, in the sense that some combinations of n
and m are missing. For example, there are no instances in the sets 200× 5, and
500 × {5, 10}. Apart from not being complete, the different values of n and m
are not equidistant. These two facts make statistical testing complicated as one
cannot easily analyze the factor effect of n and m. Second, a benchmark of only
120 instances is not enough if small differences on performance are to be detected
with some statistical significance. Third, there is no guarantee that a set of hard
instances for the PFSP-Cmax will be also hard for other problem variants. Last
but not least, Taillard’s benchmark is already aging and most instances have
been already solved to optimality (at least for the problem for which they were
originally devised). As a result of all of the above discussion, we propose an
extended benchmark of instances specifically designed for the no-idle PFSP.

In the proposed benchmark we have 250 instances where we have all
combinations of n = {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and m =
{10, 20, 30, 40, 50}. There are five replicates per combination. The processing
times are uniformly distributed in the range [1, 99] as usual in the literature. As
we can see, there are more values of n and m and all of them are equidistant, with

36 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

all combinations present. Such a larger benchmark is easier on statistical testing.
The proposed benchmark, along with the best known solutions is available for
download at http://soa.iti.es. Notice that we even have a second smaller
benchmark for calibration and testing so that calibration and final results are
not carried out over the same set of instances.

In the evaluation, we will test the following heuristic methods. All of them
are deterministic:

1. NEH from Nawaz et al. (1983) with the accelerations published in
Pan and Wang (2008a,b). Computational complexity O(n2m).

2. Original NEH with no accelerations, referred to as NEHna. Computational
complexity O(n3m)

3. SGM from Saadani et al. (2005). Computational complexity O(n3). Highly
efficient version.

4. KK from Kalczynski and Kamburowski (2005) Computational complexity
O(n3m).

5. GH BM from Baraz and Mosheiov (2008). Computational complexity
O(n3m).

6. New proposed algorithm GH BM2 with accelerations. Based on the two
phases of GH BM. Computational complexity O(n2m).

7. GH BM2 without accelerations, referred to as GH BM2na. Computational
complexity O(n3m).

8. FRB3 from Rad et al. (2009). Computational complexity O(n3m).
9. FRB4k from Rad et al. (2009) with k values of 4 and 12. (FRB44 and

FRB412). Computational complexity O(kn2m) or O(n2m).

As we can see, we also wanted to test NEH and GH BM2 without accelerations
(NEHna and GH BM2na). This way we can assess the impact of accelerations
in the CPU times.

We will also test the following metaheuristics. These are stochastic and do
not provide the same result after each run. Most of them also have a stopping
criterion that will be discussed later.

1. HDPSO from Pan and Wang (2008a).
2. DDELS from Pan and Wang (2008b). We will simply refer to this method

as “DDE”.
3. FRB5 from Rad et al. (2009).
4. IGLS from Ruiz and Stützle (2007).

It has to be reminded that the local search step in HDPSO and DDE is actually
a few applications of the IGLS method. In turn, IGLS and FRB5 share the same
local search step which was detailed in Figure 3 before.

All methods have been coded in Delphi 2007. All algorithms share most code
and especially the critical functions that evaluate the no-idle Cmax as well as
accelerations. Therefore, results are completely and fully comparable. For the
tests we have used a cluster of 12 PC/AT computers with Intel Core 2 Duo
E6600 processors running at 2.4 GHz and with 1 GB of RAM. There is no

http://soa.iti.es

Scheduling in Flowshops with No-Idle Machines 37

multi-core or multi-threading programming so a single core on each computer is
actually used.

The performance measure that we will be using is the Relative Percentage
Deviation (RPD) over the best known solution for each instance:

Relative Percentage Deviation (RPD) =
Heusol − Bestsol

Bestsol
× 100 (16)

where Heusol is the solution given by any of the tested heuristics for a given
instance and Bestsol is the best known solution for each instance. These best
known solutions are available from http://soa.iti.es.

It has to be noted that all metaheuristic methods (HDPSO, DDE, FRB5 and
IGLS) are stochastic and therefore five different runs are carried out. Further-
more, these methods –with the exception of FRB5– have a natural stopping cri-
terion. Following previous works like Ruiz and Maroto (2005), Ruiz et al. (2006),
Ruiz and Stützle (2007), Vallada et al. (2008) and others, we set a stopping time
based on elapsed CPU time (not wall time). This elapsed CPU time is accurately
measured inside each method in order to stop it whenever the maximum allowed
CPU time has passed. Moreover, this maximum elapsed CPU time is set with
the following formula: n · (m/2) · t milliseconds. Setting the time limit in this
way allows more computational effort as the number of jobs and/or the number
of machines increases. This helps in lessening the effect of the instance size on
the results and on the statistical analysis. Lastly, in order to test the effect of
CPU time, these three methods (HDPSO, DDE and IGLS) are tested with three
different elapsed CPU time termination criteria, where t=10, 20 and 30. This
means that for the largest instances of 500×50 and the highest value of t = 30, a
maximum elapsed time of 500 · (50/2) ·30 =375,000 milliseconds or 6.25 minutes
are allowed. Results are separated in values of t. For example, HDPSO10 refers
to the same method where t has been set to 10.

All in all, we have 10 heuristics that are run a single time and four metaheuris-
tics that are run five times, three of them are run for three different stopping
criteria. As a result we have a total of 15,000 data points. As we will see, with
such a large dataset and comprehensive computational campaign, we are able to
draw strong and statistically sound conclusions.

4.1 Heuristic Results

We first comment on the results of the 10 tested heuristics. The Average Relative
Percentage Deviations (RPD), grouped by n and m values, are given in Table 2.
The elapsed CPU times (in seconds) needed by each method are given in Table 3.
Note that first we comment on averages but afterwards we will provide statistical
analyses.

As expected, NEH and NEHna give the same exact results. The same applies
to GH BM2 and GH BM2na. The only difference is the CPU time employed. We
can see that NEHna is about 76 times slower, on average, than NEH. Similarly,
GH BM2na is about 104 times slower than GH BM2. Clearly, the accelerations

http://soa.iti.es

38 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

Table 2. Average Relative Percentage Deviation (RPD) over the best solution known
obtained by the tested heuristics

n m NEH NEHna SGM KK GH BM GH BM2 GH BM2na FRB3 FRB44 FRB412

50 10 8.24 8.24 19.62 3.80 5.15 3.04 3.04 2.51 3.43 3.29
20 10.78 10.78 24.03 6.90 8.94 5.18 5.18 4.64 5.74 4.74
30 12.15 12.15 27.20 7.72 8.63 7.04 7.04 4.65 6.49 5.58
40 12.00 12.00 27.09 7.51 9.40 6.57 6.57 4.21 6.54 5.15
50 11.75 11.75 29.85 9.39 11.25 7.73 7.73 5.21 7.18 6.89

100 10 5.54 5.54 14.03 1.61 4.21 2.04 2.04 1.55 2.32 1.53
20 7.95 7.95 23.85 2.29 5.55 3.34 3.34 2.06 4.09 3.76
30 10.32 10.32 29.83 5.78 6.54 6.11 6.11 3.63 6.25 4.52
40 11.40 11.40 34.66 6.14 11.30 6.93 6.93 5.28 8.01 6.74
50 11.60 11.60 30.68 6.64 9.57 7.43 7.43 4.59 7.87 6.16

150 10 2.54 2.54 11.19 0.69 1.26 0.60 0.60 0.06 0.59 0.42
20 6.54 6.54 21.07 2.52 4.73 2.71 2.71 2.18 3.12 2.96
30 7.60 7.60 26.08 2.66 5.13 3.33 3.33 1.95 4.54 3.28
40 11.13 11.13 32.25 4.87 9.21 6.15 6.15 3.93 6.03 5.43
50 10.35 10.35 31.87 6.15 8.92 5.89 5.89 4.01 7.07 4.52

200 10 2.38 2.38 9.87 0.55 1.09 0.42 0.42 0.34 0.40 0.33
20 4.08 4.08 18.53 1.43 3.26 1.70 1.70 1.02 2.24 2.03
30 6.62 6.62 25.60 1.73 4.77 2.80 2.80 1.90 3.66 2.65
40 9.24 9.24 30.57 3.31 7.53 4.10 4.10 2.38 5.18 3.96
50 8.70 8.70 33.72 4.24 7.10 4.97 4.97 2.94 5.82 4.57

250 10 1.42 1.42 8.00 0.52 0.35 0.18 0.18 0.22 0.21 0.21
20 4.53 4.53 19.83 1.35 3.09 1.59 1.59 0.74 2.20 1.34
30 6.02 6.02 26.72 1.49 4.51 2.20 2.20 1.27 2.83 2.18
40 8.13 8.13 30.34 1.89 5.95 3.80 3.80 1.51 4.70 2.99
50 9.46 9.46 34.40 2.81 7.17 4.81 4.81 3.13 5.75 4.79

300 10 1.57 1.57 8.00 0.23 0.64 0.18 0.18 0.08 0.19 0.15
20 4.08 4.08 18.85 1.06 2.43 1.75 1.75 0.53 1.44 1.22
30 5.77 5.77 24.73 1.16 3.40 1.59 1.59 1.64 2.61 2.36
40 6.48 6.48 27.91 1.43 5.03 2.70 2.70 1.71 3.39 2.72
50 8.49 8.49 32.28 2.46 6.91 3.93 3.93 2.15 4.90 4.23

350 10 1.18 1.18 7.69 0.24 0.58 0.16 0.16 0.17 0.29 0.16
20 3.16 3.16 15.83 0.79 2.33 0.89 0.89 0.43 1.05 0.90
30 4.79 4.79 23.43 1.16 3.57 2.07 2.07 0.95 2.30 2.01
40 5.60 5.60 26.39 1.24 4.29 2.63 2.63 1.48 3.20 2.89
50 7.31 7.31 29.88 1.27 5.35 3.43 3.43 1.38 4.09 3.16

400 10 1.05 1.05 7.84 0.33 0.49 0.20 0.20 0.04 0.11 0.10
20 3.12 3.12 16.07 0.76 2.16 1.02 1.02 0.62 1.29 1.00
30 4.26 4.26 21.36 0.87 3.08 1.63 1.63 1.04 1.95 1.56
40 5.32 5.32 24.61 1.36 3.19 1.67 1.67 0.57 2.26 1.72
50 6.66 6.66 28.99 1.44 5.89 2.90 2.90 1.55 3.72 3.19

450 10 1.04 1.04 8.72 0.28 0.49 0.18 0.18 0.12 0.26 0.19
20 3.01 3.01 17.18 0.75 1.95 0.96 0.96 0.44 1.08 0.71
30 4.29 4.29 21.41 0.61 2.90 1.36 1.36 0.89 2.18 1.81
40 4.60 4.60 25.82 0.98 3.42 1.85 1.85 0.78 2.28 1.86
50 6.67 6.67 28.37 1.24 5.15 2.62 2.62 1.74 3.05 2.39

500 10 1.04 1.04 7.13 0.34 0.50 0.16 0.16 0.03 0.12 0.18
20 1.89 1.89 13.22 0.47 0.96 0.47 0.47 0.23 0.51 0.44
30 3.25 3.25 20.70 0.67 1.95 1.16 1.16 0.60 1.30 1.00
40 4.90 4.90 23.96 1.04 3.54 2.22 2.22 0.99 2.83 2.05
50 6.11 6.11 29.19 1.25 4.51 2.61 2.61 1.20 3.21 2.30

Average 6.12 6.12 22.61 2.35 4.59 2.82 2.82 1.75 3.24 2.61

proposed by Pan and Wang (2008a,b) should be applied at all costs. Addition-
ally, our initial hypothesis from Section 1.2 that calculating the Cmax value for
the no-idle PFSP is costlier than for the regular PFSP is confirmed. Observing
the results from Rad et al. (2009), we see that for the largest instances tested

Scheduling in Flowshops with No-Idle Machines 39

Table 3. Elapsed CPU times needed by the tested heuristics (in seconds)

n m NEH NEHna SGM KK GH BM GH BM2 GH BM2na FRB3 FRB44 FRB412

50 10 0.001 0.009 0.001 0.047 0.041 0.003 0.028 0.022 0.001 0.013
20 0.003 0.016 0.001 0.088 0.059 0.006 0.056 0.044 0.013 0.022
30 0.001 0.019 0.003 0.131 0.088 0.009 0.084 0.066 0.016 0.034
40 0.003 0.031 0.003 0.184 0.106 0.009 0.109 0.088 0.016 0.047
50 0.006 0.034 0.001 0.228 0.128 0.009 0.134 0.109 0.028 0.053

100 10 0.001 0.050 0.006 0.325 0.228 0.016 0.197 0.172 0.028 0.069
20 0.003 0.103 0.003 0.681 0.406 0.016 0.403 0.344 0.044 0.100
30 0.016 0.153 0.006 1.034 0.569 0.022 0.597 0.509 0.069 0.138
40 0.016 0.203 0.009 1.391 0.756 0.034 0.791 0.684 0.088 0.191
50 0.016 0.253 0.006 1.753 0.938 0.044 1.000 0.863 0.109 0.250

150 10 0.003 0.163 0.009 1.075 0.684 0.022 0.647 0.563 0.050 0.113
20 0.016 0.331 0.016 2.241 1.275 0.038 1.303 1.147 0.106 0.231
30 0.019 0.494 0.016 3.425 1.856 0.056 1.981 1.713 0.156 0.356
40 0.028 0.666 0.016 4.609 2.475 0.072 2.638 2.284 0.197 0.444
50 0.031 0.838 0.022 5.788 3.075 0.094 3.313 2.869 0.259 0.578

200 10 0.009 0.375 0.025 2.516 1.572 0.031 1.500 1.334 0.094 0.203
20 0.031 0.781 0.025 5.297 2.950 0.066 3.100 2.691 0.181 0.416
30 0.031 1.172 0.031 8.116 4.353 0.103 4.656 4.047 0.281 0.641
40 0.044 1.563 0.038 10.906 5.769 0.125 6.284 5.403 0.366 0.819
50 0.047 1.991 0.038 13.691 7.147 0.163 7.881 6.756 0.469 1.075

250 10 0.022 0.747 0.041 4.953 2.994 0.063 3.009 2.597 0.153 0.334
20 0.031 1.519 0.047 10.441 5.738 0.109 6.159 5.256 0.291 0.650
30 0.050 2.294 0.053 15.950 8.428 0.150 9.228 7.928 0.428 0.969
40 0.075 3.100 0.063 21.419 11.238 0.200 12.475 10.559 0.575 1.338
50 0.081 3.853 0.063 26.847 13.922 0.244 15.525 13.272 0.722 1.622

300 10 0.028 1.309 0.066 8.691 5.219 0.078 5.288 4.528 0.216 0.484
20 0.050 2.638 0.078 18.269 9.959 0.141 10.747 9.172 0.413 0.959
30 0.069 4.000 0.084 27.863 14.769 0.216 16.300 13.728 0.628 1.428
40 0.094 5.431 0.097 37.572 19.650 0.281 22.019 18.256 0.850 1.950
50 0.122 6.719 0.106 47.197 24.375 0.353 27.275 22.803 1.047 2.450

350 10 0.034 2.091 0.103 14.166 8.341 0.100 8.578 7.222 0.284 0.634
20 0.063 4.288 0.116 29.753 16.109 0.188 17.431 14.506 0.584 1.394
30 0.103 6.481 0.131 45.559 23.872 0.291 26.328 21.731 0.853 1.978
40 0.128 8.675 0.150 61.197 31.822 0.375 35.369 28.931 1.153 2.719
50 0.166 10.884 0.159 76.753 39.809 0.494 44.147 36.300 1.431 3.391

400 10 0.050 3.138 0.156 21.666 12.497 0.134 12.916 10.666 0.375 0.850
20 0.084 6.447 0.175 45.522 24.291 0.266 26.316 21.594 0.763 1.784
30 0.125 9.697 0.188 69.759 36.263 0.375 39.753 32.359 1.119 2.625
40 0.166 13.122 0.209 93.481 48.697 0.500 53.541 43.313 1.491 3.513
50 0.213 16.494 0.225 117.806 60.347 0.628 67.084 54.031 1.906 4.438

450 10 0.053 4.513 0.228 31.372 17.734 0.163 18.516 15.213 0.481 1.109
20 0.109 9.272 0.244 66.203 34.856 0.319 37.803 30.672 0.959 2.256
30 0.163 14.034 0.266 101.606 52.313 0.475 57.481 46.175 1.450 3.434
40 0.216 18.959 0.284 136.275 69.600 0.628 77.481 61.731 1.931 4.494
50 0.269 23.953 0.309 172.106 87.506 0.788 97.922 78.138 2.403 5.853

500 10 0.069 6.228 0.303 43.463 24.322 0.206 25.525 20.881 0.591 1.366
20 0.134 12.859 0.334 91.925 47.778 0.394 52.341 42.216 1.213 2.906
30 0.194 19.509 0.359 141.178 73.450 0.584 79.722 63.297 1.772 4.250
40 0.263 26.309 0.391 189.394 96.788 0.788 107.088 84.556 2.384 5.759
50 0.325 33.894 0.422 240.416 120.406 0.972 137.872 106.172 2.972 7.088

Average 0.077 5.834 0.114 41.447 21.551 0.229 23.759 19.190 0.680 1.596

there of size 500 × 20, the regular PFSP NEH needed 0.0773 seconds to give a
solution. For the instances of the same size in this chapter, the NEH tested here
for the no-idle PFSP needs 0.134 seconds, which is almost two times more costly.
In any case, NEH is the fastest heuristic tested here. If coded with accelerations,
it needs about 77 milliseconds, on average, to obtain a solution.

40 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

The next fastest method is SGM. As we hypothesized, its complexity of O(n3)
is compensated with the little work that is needed at each iteration. As a matter
of fact, SGM is many times faster, on average, than GH BM2 or both FRB4
methods, that have a complexity of O(n2m). This also confirms the hypothe-
sis that for scheduling problems, high constants in computational complexity
calculations should not be overlooked.

As far as the RPD goes, we have that SGM gives rather poor results
when compared to the other methods. Clearly, SGM is not recommended
even if CPU time is considered as it is both slower and worse performing
than NEH. The fact that SGM is not a good performer was already ob-
served by Kalczynski and Kamburowski (2005), Baraz and Mosheiov (2008) and
Pan and Wang (2008a,b). Although we have carried out a very effective coding,
it does not suffice.

KK gives good results, better than NEH, which confirms the original findings
of Kalczynski and Kamburowski (2005). However, our results in our implemen-
tation of KK are much better (when compared against NEH) than those reported
by Pan and Wang (2008a,b). In these two papers, KK is tested against NEH and
is shown only marginally better. Our results show that KK improves NEH on al-
most all instances. This is a very interesting result since as has been mentioned,
NEH is unbeatable for the regular PFSP-Cmax. It seems that this is not true
for the no-idle PFSP. In any case, these results have to be considered only when
CPU time is also accounted for. As mentioned, we have been unable to reproduce,
despite our best efforts, the speed-ups reported in Kalczynski and Kamburowski
(2005). As a matter of fact, our implementation of the KK heuristic results in
a very slow method –the slowest among all tested heuristics–. Actually, and as
we will see in next section, the average CPU time required by our KK imple-
mentation is very similar to that used by HDPSO10, DDE10 or IG10

LS while the
results are much worse. We do not claim here that KK cannot be implemented
more efficiently, but after so much effort, it is clear that something is amiss
in Kalczynski and Kamburowski (2005) paper and that additional information
might be needed in order to code the speed-ups.

Another interesting result comes after comparing GH BM and GH BM2. As
we stated initially, GH BM2 is much faster, as using the insertion neighborhood
allows important speed-ups. Actually, GH BM is about 94 times slower than
GH BM2. Notice that Baraz and Mosheiov (2008) reported CPU times of 2.94
seconds for instances of size 200×8 on a Pentium IV 2.8 GHz. Our closer results
are of 1.572 seconds on average for instances of size 200 × 10. Our Core 2 Duo
processor running at 2.4 GHz is actually faster than a Pentium IV 2.8 GHz (even
if running at a lower frequency clock). Therefore, we can safely state that we have
a good implementation of GH BM. If we compare the RPD values, GH BM2
is about 63% better. Consequently, we can easily conclude that GH BM2 is
preferable to GH BM. Of course, it could be argued that GH BM could have
been also accelerated. However, this is only true for step 1 as no accelerations are
known for reducing the complexity of scanning the interexchange neighborhood

Scheduling in Flowshops with No-Idle Machines 41

in the PFSP. In any case, GH BM2na is only a bit slower than GH BM and also
a 63% better.

The last three methods in the comparison offer very good results. FRB3, for
example, gives the lowest RPD among all tested heuristics. The CPU times
needed, however, are the third highest after KK and GH BM. FRB44 is domi-
nated, both from a CPU time and RPD by GH BM2. FRB412 gives better RPD
than GH BM2 but at a significantly larger CPU time.

From the heuristics tested, we can conclude that FRB3 and GH BM2 are
the best performers, the first one as regards RPD and the second one as the
best compromise between quality of results and CPU time. While KK gives
results that are a bit better than GH BM2, improving its speed to match that
of GH BM2 is certainly a challenge.

Of course, comparing average results could be misleading. We need to carefully
test the statistical significance of these observed average differences. This will be
done in later sections.

4.2 Metaheuristic Results

We now provide the results of the four tested metaheuristics. Recall that for three
of them we have tested three different stopping criteria. The (RPD) values and
CPU times, also grouped by n and m values, are given in Tables 4 and 5.

As expected, the CPU times employed by all three methods that stop at t = 10
are almost identical. The same applies to t = 20 and t = 30. FRB5 has a rather
erratic stopping time. This is because the method stops when the local search
of Figure 3 reaches a local optimum and this depends on the stochastic order in
which the jobs are inserted and on the instance data. Also, the local search is
applied after each job is inserted in the NEH method which is extremely lengthy
for larger instances. As a matter of fact, for instances with 500 jobs, FRB5 is
actually slower than most methods. In any case, when comparing FRB5 with
FRB3 we see that the added CPU time produces better results as the RPD of
FRB5 is 1.36 versus that of FRB3 at 1.75.

A striking outcome are the results of DDE (DDELS as named in
Pan and Wang, 2008b). The RPD does not improve from the original 2.65 given
by DDE10 as DDE30 results in 2.65 as well. We checked our implementation
carefully and found no errors. Dr. Quan-Ke Pan did send us his full source code.
However, we decided to implement this DDE method following the details given
in Pan and Wang, 2008b to the letter. In any case, DDE shares about 90% of
the code with the HDPSO method by the same authors, since both use the NEH
for initialization, PTL crossover, insertion mutation and IG for local search.
Our hypothesis is that the problem is that, at each generation, two populations
of size PS are generated. One by applying mutation to the original popula-
tion, and another one by applying crossover. Then the original population and
the two newly created ones undergo selection so to create a single population
with PS individuals for the next generation. Only better individuals are passed
over. After this, the best individual undergoes several iterations of the IG local
search. Our observations indicate that when a certain level of evolution has been

42 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

Table 4. Average Relative Percentage Deviation (RPD) over the best solution known
obtained by the tested metaheuristics

n m HDPSO10 HDPSO20 HDPSO30 DDE10 DDE20 DDE30 FRB5 IG10
LS IG20

LS IG30
LS

50 10 0.97 0.79 0.58 3.86 4.17 4.17 2.64 0.54 0.41 0.25
20 0.99 0.61 0.52 4.77 4.88 4.89 3.11 0.59 0.39 0.33
30 1.15 1.11 1.19 5.60 5.67 5.56 4.15 0.97 0.61 0.64
40 1.20 1.12 1.16 5.81 5.70 5.11 3.51 1.09 0.96 0.78
50 2.32 1.62 1.47 6.33 6.36 6.22 5.51 1.92 1.42 1.52

100 10 0.26 0.21 0.25 2.34 2.43 2.60 0.90 0.23 0.13 0.17
20 0.74 0.62 0.58 2.95 2.85 3.04 1.72 0.57 0.44 0.33
30 1.22 0.90 0.83 4.82 4.81 4.55 2.92 0.87 0.54 0.46
40 1.65 1.15 1.23 6.49 6.40 6.30 4.56 1.49 0.87 0.87
50 1.85 1.30 0.93 5.95 5.80 5.85 4.47 1.47 1.09 0.73

150 10 0.10 0.03 0.02 0.83 0.73 0.89 0.08 0.03 0.01 0.01
20 0.84 0.61 0.54 2.94 2.73 2.61 1.39 0.59 0.45 0.34
30 0.82 0.75 0.70 3.05 3.24 3.28 1.58 0.78 0.51 0.42
40 1.95 1.16 1.27 6.25 6.38 6.19 3.02 1.52 0.91 0.73
50 1.72 1.19 0.81 4.58 4.70 4.51 2.62 1.51 0.96 0.68

200 10 0.15 0.10 0.11 0.60 0.70 0.61 0.24 0.14 0.13 0.06
20 0.42 0.25 0.25 1.50 1.52 1.62 0.60 0.36 0.22 0.12
30 0.63 0.56 0.37 3.08 2.83 2.86 1.26 0.50 0.33 0.21
40 1.24 0.91 0.49 4.07 4.24 4.03 2.05 0.83 0.49 0.44
50 1.55 0.89 0.75 4.56 4.17 4.18 2.68 1.11 0.63 0.42

250 10 0.05 0.02 0.03 0.37 0.33 0.37 0.13 0.02 0.01 0.01
20 0.37 0.28 0.23 1.55 1.80 1.69 0.52 0.22 0.21 0.17
30 0.77 0.56 0.45 2.29 2.25 2.52 0.83 0.52 0.41 0.31
40 1.02 1.01 0.66 3.60 3.62 3.65 1.45 1.04 0.64 0.54
50 1.70 0.90 0.68 4.14 4.39 4.45 2.66 1.54 0.91 0.56

300 10 0.05 0.06 0.02 0.32 0.35 0.37 0.09 0.04 0.02 0.01
20 0.36 0.33 0.30 1.46 1.68 1.75 0.54 0.31 0.28 0.23
30 0.45 0.41 0.29 2.03 2.02 2.05 0.67 0.47 0.28 0.23
40 0.75 0.57 0.43 2.93 2.81 2.73 0.87 0.76 0.45 0.26
50 1.05 0.87 0.67 3.69 3.61 3.60 1.63 1.12 0.60 0.42

350 10 0.09 0.04 0.05 0.30 0.38 0.37 0.14 0.05 0.04 0.03
20 0.40 0.28 0.28 1.28 1.23 1.33 0.33 0.32 0.21 0.23
30 0.68 0.53 0.42 2.13 1.83 2.02 0.71 0.59 0.44 0.33
40 1.01 0.71 0.49 2.33 2.44 2.42 0.97 0.85 0.48 0.39
50 1.20 0.65 0.57 2.90 2.96 2.79 1.11 1.05 0.68 0.40

400 10 0.05 0.04 0.02 0.22 0.19 0.21 0.08 0.04 0.03 0.01
20 0.26 0.21 0.23 1.06 1.09 1.06 0.53 0.25 0.17 0.14
30 0.57 0.51 0.47 1.76 1.79 1.73 0.57 0.60 0.46 0.25
40 0.57 0.39 0.35 1.87 1.84 2.08 0.51 0.41 0.29 0.33
50 0.99 0.62 0.66 2.50 2.49 2.38 0.86 0.96 0.57 0.37

450 10 0.07 0.05 0.05 0.32 0.31 0.33 0.05 0.06 0.03 0.02
20 0.25 0.18 0.19 1.00 1.00 1.13 0.28 0.22 0.18 0.12
30 0.41 0.29 0.21 1.52 1.72 1.67 0.47 0.37 0.24 0.20
40 0.58 0.48 0.44 1.66 1.77 1.59 0.48 0.58 0.44 0.36
50 0.95 0.74 0.57 2.51 2.39 2.59 0.72 0.76 0.68 0.58

500 10 0.07 0.04 0.04 0.25 0.26 0.25 0.08 0.06 0.04 0.03
20 0.20 0.15 0.13 0.60 0.65 0.72 0.15 0.20 0.15 0.10
30 0.34 0.30 0.30 1.07 1.08 1.11 0.34 0.28 0.31 0.20
40 0.82 0.62 0.46 2.08 2.00 2.11 0.65 0.69 0.45 0.35
50 1.02 0.66 0.46 2.30 2.38 2.31 0.57 0.80 0.55 0.45

Average 0.78 0.57 0.48 2.65 2.66 2.65 1.36 0.65 0.43 0.34

achieved, mutation and crossover only deteriorate individuals and after selec-
tion, the new PS population is exactly equal to the original population and the
algorithm stalls. Obviously, this is a design shortcoming. Our proposal for fixing
this is that a selective local search should be applied to good individuals in the

Scheduling in Flowshops with No-Idle Machines 43

Table 5. Elapsed CPU times needed by the tested metaheuristics (in seconds)

n m HDPSO10 HDPSO20 HDPSO30 DDE10 DDE20 DDE30 FRB5 IG10
LS IG20

LS IG30
LS

50 10 2.52 5.02 7.51 2.50 5.00 7.50 0.10 2.50 5.00 7.50
20 5.02 10.01 15.02 5.00 10.00 15.00 0.16 5.00 10.00 15.00
30 7.51 15.02 22.51 7.50 15.00 22.50 0.22 7.50 15.00 22.50
40 10.01 20.01 30.01 10.00 20.00 30.00 0.29 10.00 20.00 30.00
50 12.50 25.01 37.51 12.50 25.00 37.50 0.34 12.50 25.00 37.50

100 10 5.03 10.03 15.02 5.00 10.00 15.00 0.54 5.00 10.00 15.00
20 10.02 20.02 30.02 10.00 20.00 30.00 1.08 10.00 20.00 30.00
30 15.02 30.02 45.01 15.00 30.00 45.00 1.74 15.00 30.00 45.00
40 20.02 40.01 60.02 20.00 40.00 60.00 2.32 20.00 40.00 60.00
50 25.01 50.01 75.01 25.00 50.00 75.00 2.93 25.00 50.00 75.00

150 10 7.56 15.03 22.54 7.50 15.00 22.50 1.36 7.50 15.00 22.50
20 15.02 30.03 45.01 15.00 30.00 45.00 3.36 15.00 30.00 45.00
30 22.52 45.02 67.54 22.50 45.00 67.50 5.49 22.50 45.00 67.50
40 30.01 60.02 90.01 30.00 60.00 90.00 7.91 30.00 60.00 90.00
50 37.51 75.03 112.50 37.50 75.00 112.50 10.34 37.50 75.00 112.50

200 10 10.06 20.06 30.07 10.00 20.00 30.00 3.09 10.00 20.00 30.00
20 20.05 40.03 60.04 20.00 40.00 60.00 7.29 20.00 40.00 60.00
30 30.02 60.04 90.03 30.00 60.00 90.00 12.71 30.00 60.00 90.00
40 40.02 80.01 120.03 40.00 80.00 120.00 18.30 40.00 80.00 120.00
50 50.01 100.02 150.03 50.00 100.00 150.00 24.74 50.00 100.00 150.00

250 10 12.55 25.11 37.62 12.50 25.00 37.50 5.25 12.50 25.00 37.50
20 25.05 50.06 75.05 25.00 50.00 75.00 13.65 25.00 50.00 75.00
30 37.52 75.02 112.54 37.50 75.00 112.50 23.72 37.50 75.00 112.50
40 50.03 100.03 150.03 50.00 100.00 150.00 35.69 50.00 100.00 150.00
50 62.51 125.02 187.52 62.50 125.00 187.50 48.19 62.50 125.00 187.50

300 10 15.04 30.08 45.05 15.00 30.00 45.00 8.56 15.00 30.00 45.00
20 30.05 60.09 90.06 30.00 60.00 90.00 23.18 30.00 60.00 90.00
30 45.01 90.03 135.07 45.00 90.00 135.00 39.63 45.00 90.00 135.00
40 60.02 120.03 180.02 60.00 120.00 180.00 57.49 60.00 120.00 180.00
50 75.02 150.01 225.03 75.00 150.00 225.00 84.26 75.00 150.00 225.00

350 10 17.57 35.12 52.57 17.50 35.00 52.50 13.42 17.50 35.00 52.50
20 35.09 70.03 105.02 35.00 70.00 105.00 30.86 35.00 70.00 105.00
30 52.56 105.05 157.52 52.50 105.00 157.50 60.53 52.50 105.00 157.50
40 70.03 140.04 210.04 70.00 140.00 210.00 85.70 70.00 140.00 210.00
50 87.56 175.00 262.52 87.50 175.00 262.50 126.35 87.50 175.00 262.50

400 10 20.11 40.08 60.10 20.00 40.00 60.00 18.75 20.00 40.00 60.00
20 40.09 80.05 120.07 40.00 80.00 120.00 49.25 40.00 80.00 120.00
30 60.03 120.05 180.06 60.00 120.00 180.00 87.66 60.00 120.00 180.00
40 80.03 160.05 240.05 80.00 160.00 240.00 132.54 80.00 160.00 240.00
50 100.00 200.05 300.02 100.00 200.00 300.00 182.26 100.00 200.00 300.00

450 10 22.60 45.07 67.58 22.50 45.00 67.50 26.36 22.50 45.00 67.50
20 45.04 90.04 135.03 45.00 90.00 135.00 70.96 45.00 90.00 135.00
30 67.53 135.03 202.57 67.50 135.00 202.50 121.36 67.50 135.00 202.50
40 90.09 180.05 270.04 90.00 180.00 270.00 179.74 90.00 180.00 270.00
50 112.55 225.03 337.51 112.50 225.00 337.50 249.74 112.50 225.00 337.50

500 10 25.13 50.11 75.12 25.00 50.00 75.00 36.54 25.00 50.00 75.00
20 50.01 100.02 150.05 50.00 100.00 150.00 84.77 50.00 100.00 150.00
30 75.03 150.00 225.10 75.00 150.00 225.00 156.72 75.00 150.00 225.00
40 100.06 200.01 300.04 100.00 200.00 300.00 229.99 100.00 200.00 300.00
50 125.05 250.04 375.04 125.00 250.00 375.00 344.56 125.00 250.00 375.00

Average 41.29 82.54 123.79 41.25 82.50 123.75 54.64 41.25 82.50 123.75

mutated and crossed populations, before actually applying selection or that a
certain elitist strategy should be employed. In any case, such improvements are
not necessary as the overall performance of DDE is not high. Much faster and
simpler methods like GH BM2 and FRB412 are comparable as far as RPD is con-
cerned and are faster in return. Also, FRB3 is both faster and better performing.

44 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

As a result, DDE is hard to recommend over other algorithms for the no-idle
PFSP.

Lastly, we comment on the performance of HDPSO and IGLS . First of all, it
must be reminded that IGLS is used as a subroutine in HDPSO. Since we are
stopping both algorithms at the same elapsed CPU time and since both share
most code, the results are completely comparable. As we can see, the stand
alone IGLS gives significantly better results than HDPSO. Measuring the average
percentage deviation between HDPSO and IGLS we have that HDPSO10 is a full
20% worse than IG10

LS since the two RPD values are 0.78 and 0.65, respectively.
What is more, the performance lead of IGLS widens as more CPU time is allowed.
For example, HDPSO20 is 32.56% worse than IG20

LS and HDPSO30 is 41.18%
worse than IG30

LS . From the 1250 available results (250 instances and 5 replicates),
IG30

LS produces better results than HDPSO30 in 736 cases, equal results in 150
cases and worse results in 364 cases. Most importantly, we want to strongly
draw our attention to these last type of measurements. Counting “the number of
times” a given method is better, equal or worse than another is not an indicator
of performance. It is a strongly biased measure and can mislead conclusions.
The average percentage deviation of IG30

LS over HDPSO30 in these 364 cases in
which IG30

LS gives a worse solution is a mere 0.24%. Therefore, it is easy to see
that IG30

LS is many times better (and by large) than HDPSO30 and for the times
where it is worse, it is by a small amount.

Summing up, the Particle Swarm part of the algorithm is actually hindering
results. A simple, easy to code and straightforward IG method works much better
by itself.

4.3 Statistical Analysis of Results

As mentioned in previous Sections, careful statistical testing is necessary to really
ascertain the observed differences in average values. While it is expected, for
example, that SGM will be statistically worse than all other methods, concluding
the same when comparing two methods of similar performance like GH BM2 and
FRB412 is risky to say the least.

One of the most powerful and tested methodologies is the Design of Experi-
ments (DOE), Montgomery (2005). DOE is a structured and organized method
for determining the relationship between factors affecting the output of a pro-
cess. In our case, we are interested in studying the effect on the response variable
RPD. From the 15,000 data points available from the computational evaluation
of the previous Section, we carry out a full factorial analysis where the effect of
the following factors is studied:

• Number of jobs n
• Number of machines m
• Algorithm, (NEH, KK, GH BM, GH BM2, FRB3, FRB44, FRB412, HDPSO,

DDE, FRB5 and IGLS)
• Stopping criterion t

Scheduling in Flowshops with No-Idle Machines 45

Note that the last factor can only be studied in conjunction with the algo-
rithms HDPSO, DDE and IGLS . We have eliminated from the tests NEHna and
GH BM2na as they give the same results than the accelerated versions. Also,
SGM is not tested as it is clear that its results are far worse than the others.

The initial means plot with Tukey 95% confidence intervals is shown in
Figure 4. Recall that overlapping intervals for means indicates that the observed
means are statistically equivalent. It has to be noted that the means plot of
Figure 4 is not explicitly considering the interactions of the algorithms with the
different n and m values. Therefore, it is an “overall” picture. For example, the
means plots of IG30

LS and IG20
LS overlap. This means that for the overall observed

RPD, there is no statistically significant difference. However, zooming-in for

IG

3
0

IG

2
0

H
D
P
S
O

3
0

H
D
P
S
O

2
0

IG

1
0

H
D
P
S
O

1
0

F
R
B
5

F
R
B
3

K
K

F
R
B
4

1
2

D
D
E

3
0

D
D
E

1
0

D
D
E

2
0

G
H
_
B
M
2

F
R
B
4

4

G
H
_
B
M

N
E
H

0

1

2

3

4

5

6

7

A
v
e
ra
g
e
R
e
la
ti
v
e
P
er
c
en
ta
g
e
 D
e
v
ia
ti
o
n

L
S

L
S

L
S

Fig. 4. Means plot for the algorithms RPD and 95% Tukey confidence intervals

46 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

different levels of n and m we observe statistically significant differences. We
will provide some additional plots later.

What can be concluded is that most observed differences are statistically sig-
nificant. For example NEH is statistically worse than all other methods. GH BM
is the second worst and there is a statistically significant difference between
FRB44 and GH BM2. However, all DDE methods are statistically equivalent to
GH BM2 and FRB412. We also see how IG30

LS is indeed statistically better than
HDPSO30. All in all, most observed averages are statistically different.

Of high interest is to study which instance sizes affect algorithms the most.
This information is not easy to see from large tables full of numbers. Instead, we
give an interaction plot of factors n and m in Figure 5. We have to proceed with
caution in the analysis of this plot. Since we do not know the optimum solution,
we cannot state which instances are harder in an absolute way. Instead, we can

n

-0.2

0.8

1.8

2.8

3.8

4.8

5.8

50

100

150

200

250

300

350

400

450

500

m

10

20

30

40

50

A
v
e
ra
g
e
R
e
la
ti
v
e
 P
e
rc
en
ta
g
e
D
ev
ia
ti
o
n

Fig. 5. Interaction plot between factors n and m with 95% Tukey confidence intervals

Scheduling in Flowshops with No-Idle Machines 47

point which combinations of n and m result in higher and statistically significant
RPD values for all algorithms. It is clear that increasing the number of machines
results in higher percentage deviations. Interestingly, increasing the number of
jobs results in lower percentage deviations. We hypothesize that with a larger
number of jobs there are more options to come up with a better schedule even
though the search space becomes larger. By far, the “hardest” instances are
those with 50 jobs and 50 machines. There are not so many jobs and therefore
fitting 50 no-idle machines becomes daunting for all methods.

Lastly, we zoom-in the performance of the two best methods, IGLS and
HDPSO. We plot the average performance against the different values of t in Fig-
ure 6. As can be seen, there is a clear statistically significant difference between
IGLS and HDPSO for all tested t values. As a matter of fact, for some instances

t

0.31

0.41

0.51

0.61

0.71

0.81

10 20 30

Algorithm

HDPSO

IGLS

A
v
er
a
g
e
 R
el
a
ti
v
e
 P
e
rc
e
n
ta
g
e
 D
e
v
ia
ti
o
n

Fig. 6. Interaction plot between the algorithms IGLS and HDPSO and t with 95%
Tukey confidence intervals

48 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

sizes –not shown here– IG20
LS is statistically better than HDPSO30 which effec-

tively means that IGLS is able to reach better quality results when given one
third less CPU time than HDPSO.

5 Conclusions and Future Research

This chapter has focused in a flowshop problem variant where idle times are not
allowed on machines. This problem, known as the no-idle permutation flowshop,
has been much less studied than the regular counterpart. We have provided
a critical review of the existing literature, where each proposed algorithm has
been carefully studied, and in some cases, improved. Namely, we have discussed
a very effective implementation of the SGM method by Saadani et al. (2005)
that despite not having improved its computational complexity of O(n3), it has
shown much lower empirical CPU running times when compared to other meth-
ods with better theoretical computational complexities. We have also provided
an enhanced version of the GH BM heuristic of Baraz and Mosheiov (2008).
This improved version –referred to as GH BM2– is much faster and effective
than the original. Along with these improvements, we have made adaptations
of methods that have been published very recently for the regular permutation
flowshop problem. More specifically, we have adapted the Iterated Greedy (IG)
metaheuristic from Ruiz and Stützle (2007) to the no-idle version. Some of the
recent heuristics proposed in Rad et al. (2009) have also been adapted.

A total of 14 methods have been evaluated in a comprehensive computational
campaign. State-of-the-art algorithms have been identified and validated through
thorough statistical analyses. As the results indicate, adapted IG algorithms, as
well as the proposed improved GH BH2, together with the recent heuristics from
Rad et al. (2009) constitute the best existing methods up to date for the no-idle
permutation flowshop problem with makespan criterion.

There are many open research lines as this interesting problem variant has
been seldom studied in the literature. No metaheuristic approaches have been
proposed for other objectives apart from makespan. Furthermore, no-idle con-
straints in other environments like hybrid flowshops or job shops have not been
studied. Additionally, more research is needed in exact methodologies, bounds
and mathematical approaches for no-idle constraints. This way, researchers
would benefit from a better understanding and characterization of this inter-
esting problem.

References

Adiri, I., Pohoryles, D.: Flowshop no-idle or no-wait scheduling to minimize the sum
of completion times. Naval Research Logistics 29(3), 495–504 (1982)

Baker, K.R.: Introduction to Sequencing and Scheduling. John Wiley & Sons, New
York (1974)

Baptiste, P., Hguny, L.K.: A branch and bound algorithm for the F/no − idle/Cmax.
In: Proceedings of the International Conference on Industrial Engineering and Pro-
duction Management, IEPM 1997, Lyon, France, vol. 1, pp. 429–438 (1997)

Scheduling in Flowshops with No-Idle Machines 49

Baraz, D., Mosheiov, G.: A note on a greedy heuristic for flow-shop makespan minimiza-
tion with no machine idle-time. European Journal of Operational Research 184(2),
810–813 (2008)

Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n- job, m-
machine sequencing problem. Management Science 16(10), 630–637 (1970)

Cheng, M.B., Sun, S.J., He, L.M.: Flow shop scheduling problems with deteriorat-
ing jobs on no-idle dominant machines. European Journal of Operational Re-
search 183(1), 115–124 (2007a)

Cheng, M.B., Sun, S.J., Yu, Y.: A note on flow shop scheduling problems with a learning
effect on no-idle dominant machines. Applied Mathematics and Computation 184(2),
945–949 (2007b)

Dannenbring, D.G.: An evaluation of flow shop sequencing heuristics. Management
Science 23(11), 1174–1182 (1977)

Davoud Pour, H.: A new heuristic for the n-job, m-machine flow-shop problem. Pro-
duction Planning & Control 12(7), 648–653 (2001)

Du, J., Leung, J.Y.-T.: Minimizing total tardiness on one machine is NP-hard. Math-
ematics of Operations Research 15(3), 483–495 (1990)

Framinan, J.M., Gupta, J.N.D., Leisten, R.: A review and classification of heuristics
for permutation flow-shop scheduling with makespan objective. Journal of the Op-
erational Research Society 55(1), 1243–1255 (2004)

Framinan, J.M., Leisten, R.: A multi-objective iterated greedy search for flowshop
scheduling with makespan and flowtime criteria. OR Spectrum 30(4), 787–804 (2008)

Framinan, J.M., Leisten, R., Rajendran, C.: Different initial sequences for the heuris-
tic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the
static permutation flowshop sequencing problem. International Journal of Produc-
tion Research 41(1), 121–148 (2003)

Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research 1(2), 117–129 (1976)

Giaro, K.: NP-hardness of compact scheduling in simplified open and flow shops. Eu-
ropean Journal of Operational Research 130(1), 90–98 (2001)

Gonzalez, T., Sahni, S.: Flowshop and jobshop schedules: Complexity and approxima-
tion. Operations Research 26(1), 36–52 (1978)

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of Dis-
crete Mathematics 5, 287–326 (1979)

Hejazi, S.R., Saghafian, S.: Flowshop-scheduling problems with makespan criterion: A
review. International Journal of Production Research 43(14), 2895–2929 (2005)

Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly 1(1), 61–68 (1954)

Kalczynski, P.J., Kamburowski, J.: A heuristic for minimizing the makespan in no-idle
permutation flow shops. Computers & Industrial Engineering 49(1), 146–154 (2005)

Kalczynski, P.J., Kamburowski, J.: On no-wait and no-idle flow shops with makespan
criterion. European Journal of Operational Research 178(3), 677–685 (2007)

Kamburowski, J.: More on three-machine no-idle flow shops. Computers & Industrial
Engineering 46(3), 461–466 (2004)

Koulamas, C.: A new constructive heuristic for the flowshop scheduling problem. Eu-
ropean Journal of Operational Research 105(1), 66–71 (1998)

Liao, C.J.: Minimizing the number of machine idle intervals with minimum makespan
in a flowshop. Journal of the Operational Research Society 44(8), 817–824 (1993)

50 R. Ruiz, E. Vallada, and C. Fernández-Mart́ınez

Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multi-objective algo-
rithms for the flowshop scheduling problem. INFORMS Journal on Computing 20(3),
451–471 (2008)

Montgomery, D.: Design and Analysis of Experiments, 6th edn. John Wiley & Sons,
New York (2005)

Narain, L., Bagga, P.C.: Minimizing total elapsed time subject to zero total idle time
of machines in n × 3 flowshop problem. Indian Journal of Pure & Applied Mathe-
matics 34(2), 219–228 (2003)

Narain, L., Bagga, P.C.: Flowshop/no-idle scheduling to minimise the mean flowtime.
Anziam Journal 47, 265–275 (2005a)

Narain, L., Bagga, P.C.: Flowshop/no-idle scheduling to minimize total elapsed time.
Journal of Global Optimization 33(3), 349–367 (2005b)

Narasimhan, S.L., Mangiameli, P.M.: A comparison of sequencing rules for a two stage
hybrid flowshop. Decision Sciences 18(2), 250–265 (1987)

Narasimhan, S.L., Panwalkar, S.S.: Scheduling in a two stage manufacturing process.
International Journal of Production Research 22(4), 555–564 (1984)

Nawaz, M., Enscore Jr., E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMEGA, The International Journal of Management
Science 11(1), 91–95 (1983)

Niu, Q., Gu, X.S.: An improved genetic-based particle swarm optimization for no-idle
permutation flow shops with fuzzy processing time. In: Yang, Q., Webb, G. (eds.)
PRICAI 2006. LNCS, vol. 4099, pp. 757–766. Springer, Heidelberg (2006)

Osman, I., Potts, C.: Simulated annealing for permutation flow-shop scheduling.
OMEGA, The International Journal of Management Science 17(6), 551–557 (1989)

Page, E.S.: An approach to the scheduling of jobs on machines. Journal of the Royal
Statistical Society, B Series 23(2), 484–492 (1961)

Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum total
time - a quick method of obtaining a near optimum. Operational Research Quar-
terly 16(1), 101–107 (1965)

Pan, Q.-K., Wang, L.: No-idle permutation flow shop scheduling based on a hybrid
discrete particle swarm optimization algorithm. International Journal of Advanced
Manufacturing Technology 39(7-8), 796–807 (2008a)

Pan, Q.-K., Wang, L.: A novel differential evolution algorithm for no-idle permutation
flow-shop scheduling problems. European Journal of Industrial Engineering 2(3),
279–297 (2008b)

Pan, Q.-K., Wang, L., Zhao, B.-H.: An improved iterated greedy algorithm for the no-
wait flow shop scheduling problem with makespan criterion. International Journal
of Advanced Manufacturing Technology 38(7-8), 778–786 (2008)

Rad, S.F., Ruiz, R., Boroojerdian, N.: New high performing heuristics for minimizing
makespan in permutation flowshops. OMEGA, the International Journal of Man-
agement Science 37(2), 331–345 (2009)

Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers & Operations
Research 22(1), 5–13 (1995)

Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research 165(2), 479–494 (2005)

Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flow-
shop scheduling problem. OMEGA, the International Journal of Management Sci-
ence 34(5), 461–476 (2006)

Scheduling in Flowshops with No-Idle Machines 51

Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permuta-
tion flowshop scheduling problem. European Journal of Operational Research 177(3),
2033–2049 (2007)

Ruiz, R., Stützle, T.: An iterated greedy heuristic for the sequence dependent setup
times flowshop problem with makespan and weighted tardiness objectives. European
Journal of Operational Research 187(3), 1143–1159 (2008)

Saadani, N.E.H., Baptiste, P.: Relaxation of the no-idle constraint in the flow-shop
problem. In: Proceedings of the International Conference on Industrial Engineering
and Production Management, IEPM 1997, Lyon, France, pp. 305–309 (2002)

Saadani, N.E.H., Guinet, A., Moalla, M.: A travelling salesman approach to solve
the F/no − idle/Cmax problem. In: Proceedings of the International Conference on
Industrial Engineering and Production Management, IEPM 2001, Quebec, Canada,
vol. 2, pp. 880–888 (2001)

Saadani, N.E.H., Guinet, A., Moalla, M.: Three stage no-idle flow-shops. Computers
& Industrial Engineering 44(3), 425–434 (2003)

Saadani, N.E.H., Guinet, A., Moalla, M.: A travelling salesman approach to solve the
F/no−idle/Cmax problem. European Journal of Operational Research 161(1), 11–20
(2005)

Salveson, M.E.: On a quantitative method in production planning and scheduling.
Econometrica 20(4), 554–590 (1952)

Suliman, S.M.A.: A two-phase heuristic approach to the permutation flow-shop schedul-
ing problem. International Journal of Production Economics 64(1-3), 143–152 (2000)

Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47(1), 67–74 (1990)

Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Opera-
tional Research 64(2), 278–285 (1993)

Tanaev, V.S., Sotskov, Y.N., Strusevich, V.A.: Scheduling Theory. Multi-Stage Sys-
tems. Kluwer Academic Publishers, Dordrecht (1994)

Turner, S., Booth, D.: Comparison of heuristics for flow shop sequencing. OMEGA,
The International Journal of Management Science 15(1), 75–78 (1987)

Vachajitpan, P.: Job sequencing with continuous machine operation. Computers &
Industrial Engineering 6(3), 255–259 (1982)

Vallada, E., Ruiz, R.: Cooperative metaheuristics for the permutation flowshop schedul-
ing problem. European Journal of Operational Research 193(2), 365–376 (2009)

Vallada, E., Ruiz, R., Minella, G.: Minimising total tardiness in the m-machine flowshop
problem: A review and evaluation of heuristics and metaheuristics. Computers &
Operations Research 35(4), 1350–1373 (2008)

Čepek, O., Okada, M., Vlach, M.: Note: On the two-machine no-idle flowshop problem.
Naval Research Logistics 47(4), 353–358 (2000)

Wang, Z.B., Xing, W.X., Bai, F.S.: No-wait flexible flowshop scheduling with no-idle
machines. Operations Research Letters 33(6), 609–614 (2005)

Woollam, C.R.: Flowshop with no- idle machine time allowed. Computers & Industrial
Engineering 10(1), 69–76 (1986)

Ying, K.-C.: An iterated greedy heuristic for multistage hybrid flowshop scheduling
problems with multiprocessor tasks. In press at Journal of the Operational Research
Society (2008)

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 53–99.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

A Multi-Objective Ant-Colony Algorithm for
Permutation Flowshop Scheduling to Minimize the
Makespan and Total Flowtime of Jobs

Chandrasekharan Rajendran1 and Hans Ziegler2

1 Department of Management Studies
 Indian Institute of Technology Madras, Chennai - 600 036, India
 craj@iitm.ac.in
2 Faculty of Business Administration and Economics
 Department of Production and Logistics
 University of Passau, D-94032 Passau, Germany
 ziegler@uni-passau.de

Summary. The problem of scheduling in permutation flowshops is considered with the
objectives of minimizing the makespan and total flowtime of jobs. A multi-objective ant-colony
algorithm (MOACA) is proposed. The salient features of the proposed multi-objective ant-
colony algorithm include the consideration of two ants (corresponding to the number of ob-
jectives considered) that make use of the same pheromone values in a given iteration; use of a
compromise objective function that incorporates a heuristic solution’s makespan and total
flowtime of jobs as well as an upper bound on the makespan and an upper bound on total
flowtime of jobs, coupled with weights that vary uniformly in the range [0, 1]; increase in
pheromone intensity of trails by reckoning with the best solution with respect to the
compromise objective function; and updating of pheromone trail intensities being done only
when the ant-sequence’s compromise objective function value is within a dynamically updated
threshold level with respect to the best-known compromise objective function value obtained in
the search process. In addition, every generated ant sequence is subjected to a concatenation of
improvement schemes that act as local search schemes so that the resultant compromise
objective function is improved upon. A sequence generated in the course of the ant-search
process is considered for updating the set of heuristically non-dominated solutions. We
consider the benchmark flowshop scheduling problems proposed by Taillard (1993), and solve
them by using twenty variants of the MOACA. These variants of the MOACA are obtained by
varying the values of parameters in the MOACA and also by changing the concatenation of im-
provement schemes. In order to benchmark the proposed MOACA, we rely on two recent
research reports: one by Minella et al. (2008) that reported an extensive computational
evaluation of more than twenty existing multi-objective algorithms available up to 2007; and a
study by Framinan and Leisten (2007) involving a multi-objective iterated greedy search algo-
rithm, called MOIGS, for flowshop scheduling. The work by Minella concluded that the multi-
objective simulated annealing algorithm by Varadharajan and Rajendran (2005), called MOSA,
is the best performing multi-objective algorithm for permutation flowshop scheduling.
Framinan and Leisten found that their MOIGS performed better than the MOSA in terms of
generating more heuristically non-dominated solutions. They also obtained a set of heuristically
non-dominated solutions for every benchmark problem instance provided by Taillard (1993) by
consolidating the solutions obtained by them and the solutions reported by Varadharajan and
Rajendran. This set of heuristically non-dominated solutions (for every problem instance, up to

54 C. Rajendran and H. Ziegler

100 jobs, of Taillard’s benchmark flowshop scheduling problems) forms the reference or
benchmark for the present study. By considering this set of heuristically non-dominated
solutions with the solutions given by the twenty variants of the MOACA, we form the net
heuristically non-dominated solutions. It is found that most of the non-dominated solutions on
the net non-dominated front are yielded by the variants of the MOACA, and that in most
problem instances (especially in problem instances exceeding 20 jobs), the variants of the
MOACA contribute more solutions to the net non-dominated front than the corresponding
solutions evolved as benchmark solutions by Framinan and Leisten, thereby proving the
effectiveness of the MOACA. We also provide the complete set of heuristically non-dominated
solutions for the ninety problem instances of Taillard (by consolidating the solutions obtained
by us and the solutions obtained by Framinan and Leisten) so that researchers can use them as
benchmarks for such research attempts.

1 Introduction

Flowshop scheduling problem involves the determination of an order of processing n
jobs over m machines, arranged in series, to meet a desired objective or a measure of
performance. The static permutation flowshop scheduling problem has been widely
investigated over the years by considering separately the objectives of minimizing the
makespan and total flowtime of jobs, and with the consideration of developing exact
or heuristic methods (e.g. Johnson (1954), Ignall and Schrage (1965), Campbell et al.
(1970), Gelders and Sambandam (1978), Miyazaki et al. (1978), Miyazaki and
Nishiyama (1980), Nawaz et al. (1983), Rajendran (1993), Ho (1995), Wang et al.
(1997), Woo and Yim (1998), Liu and Reeves (2001), Chung et al. (2002), Allahverdi
and Aldowaisan (2002), Framinan and Leisten (2003), Framinan et al. (2005), Ruiz
and Stuetzle (2007), Kalczynski and Kamburowski (2007) and (2008), Dong et al.
(2008), Laha and Chakraborty (2008)). The use of metaheuristics such as simulated
annealing, genetic algorithm and tabu search has been frequently resorted to solve
flowshop scheduling problems (e.g. Widmer and Hertz (1989), Ben-Daya and Al-
Fawzan (1998), and Ruiz et al. (2006)). In recent times, attempts are being made to
solve combinatorial optimization problems by making use of swarm-intelligence
algorithms. An important algorithm in this class is the ant-colony-optimization
algorithm (or simply, ant-colony or ACO algorithm). The pioneering work has been
done by Dorigo (1992), and an introduction to the ACO algorithms had been dealt
with in Dorigo et al. (1996). Attempts have been made to solve the permutation
flowshop scheduling problem with the objective of minimizing the makespan / total
flowtime of jobs using ACO algorithms (e.g. Stuetzle (1998) dealing with the
permutation flowshop scheduling problem with the objective of minimizing the
makespan; Merkle and Middendorf (2000) dealing with the single-machine
scheduling problem; T′kindt et al. (2002) considering the two-machine flowshop
scheduling problem; and Rajendran and Ziegler (2004) and (2005) considering the m-
machine permutation flowshop scheduling problem). Another swarm intelligence
algorithm is the particle swarm algorithm which has shown promising results to solve
flowshop scheduling problems (e.g., Tasgetiren et al. (2007) and Liao et al. (2007)).

While many attempts have been made to minimize separately makespan and total
flowtime, only some attempts have been made to simultaneously minimize such

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 55

measures of performance. In such a case, it is common to develop algorithms to
obtain a set of Pareto-optimal solutions (or at least a set of heuristically non-
dominated solutions). Two approaches to multi-objective scheduling are widely
followed, namely, a priori approach in which the objectives are combined in the form
of a weighted compromise function (mostly linear), and a posteriori approach in
which a set of efficient or Pareto-optimal solutions (in the case of optimality being
guaranteed) or a set of heuristically-efficient or heuristically non-dominated solutions
(in the case of optimality being not guaranteed) is obtained. In the following, the term
‘non-dominated solutions’ or ‘non-dominated sequences’ refers to heuristically-
efficient or heuristically non-dominated solutions or sequences, without the guarantee
of efficiency or Pareto optimality. Some attempts in these directions are due to
Rajendran (1994) and (1995), Sridhar and Rajendran (1996), Murata et al. (1996),
Ishibuchi and Murata (1998), Bagchi (1999), Chang et al. (2002), Framinan et al.
(2002), and Arroyo and Armentano (2005). In addition, attempts have also been done
with the consideration of a lexicographical approach of optimizing a set of objectives
(e.g., Daniels and Chambers (1990), Rajendran (1992), Chakravarthy and Rajendran
(1999), T’kindt et al. (2002), Allahverdi (2004), and Framinan and Leisten (2006)).

Varadharajan and Rajendran (2005) developed a multi-objective simulated-
annealing algorithm (with two variants, called MOSA-I and MOSA-II) for flowshop
scheduling to minimize the makespan and total flowtime of jobs. The MOSA aims at
discovering non-dominated solutions through the use of a simple probability function
that is varied in such a way that the entire objective space is covered uniformly,
thereby obtaining many non-dominated and well-dispersed solutions. The authors
considered the benchmark flowshop problems of Taillard (1993), and obtained the
non-dominated solution set for every problem, yielded by existing multi-objective
flowshop scheduling algorithms, namely, the algorithms by Ishibuchi and Murata
(1998), Bagchi (1999), Chang et al. (2002), and Framinan et al. (2002), as well as
those by MOSA-I and MOSA-II. Subsequently they obtained the net non-dominated
front by consolidating all the non-dominated fronts. They found that, in most cases,
the MOSA contributes the most to the net non-dominated solution set, in comparison
to the existing algorithms. Framinan and Leisten (2007) proposed a multi-objective
iterated greedy search, called MOIGS, that is based on a partial enumeration heuristic.
The MOIGS uses a parameter, called d, and the authors tried with the values of d
ranging from 3 to 10. They found that the MOIGS discovers more non-dominated
solutions than those discovered by Varadharajan and Rajendran (2005). In addition,
they consolidated the solutions yielded by their MOIGS (with different values for d)
and the solutions obtained by Varadharajan and Rajendran. It is be noted that
Varadharajan and Rajendran consolidated the solutions yielded by MOSA-I, MOSA-
II, and the solutions yielded by the algorithms of Ishibuchi and Murata (1998), Bagchi
(1999), Chang et al. (2002), and Framinan et al. (2002). It is therefore evident that the
final non-dominated solutions obtained by Framinan and Leisten are drawn from the
implementations of MOIGS with eight different values of d, and from the
implementations of MOSA-I, MOSA-II, and other algorithms considered by
Varadharajan and Rajendran. These non-dominated solutions consolidated by
Framinan and Leisten for a problem instance of Taillard (1993) could serve as the
benchmark for researchers in the area of flowshop scheduling.

56 C. Rajendran and H. Ziegler

It is to be noted that most of the multi-objective flowshop scheduling algorithms
were evaluated by the respective authors by comparing with the previously available
literature, and that too, with the related objectives. It also appears that many
researchers did not attempt to consider the possible adaptation of the generic multi-
objective algorithms (such as NSGA by Srinivas and Deb (1994), SPEA by Zitzler
and Thiele (1999), PESA by Corne et al. (2000), PESA-II by Corne et al. (2001), and
NSGA-II by Deb et al. (2002)) to flowshop scheduling problems. A recent study by
Minella et al. (2008) is possibly the first significant attempt to perform a compre-
hensive analysis by considering a number of flowshop scheduling algorithms (such as
the multi-objective genetic algorithm by Murata et al. (1996), multi-objective tabu
search (MOTS) by Armentano and Arroyo (2004), multi-objective genetic local
search by Arroyo and Armentano (2005), MOSA by Varadharajan and Rajendran
(2005), multi-objective genetic algorithm by Pasupathy et al. (2006), and PILS by
Geiger (2007)), and also a number of generic multi-objective algorithms such as the
NSGA, SPEA, PESA, PESA-II and NSGA-II. In all, a total of twenty three multi-
objective algorithms were considered, and performance analyses were carried out.
The authors consolidated the solutions for Taillard’s benchmark problem instances. It
was found that the MOSA by Varadharajan and Rajendran is the best performer
among these twenty three algorithms with respect to multi-objective flowshop
scheduling.

In the following, the problem of scheduling in permutation flowshops is considered
with the objectives of minimizing the makespan and total flowtime of jobs. We
present a multi-objective ant-colony algorithm (MOACA) for obtaining heuristically
efficient or heuristically non-dominated solutions. Variants of the MOACA are
proposed by varying the values of parameters in the MOACA and also by varying the
concatenation of local search or improvement schemes that consider a compromise
objective function. We make use of data set containing the benchmark flowshop
problems of Taillard (1993) (up to 100 jobs), and generate the non-dominated
solutions for every flowshop problem instance by using the different variants of the
MOACA and the benchmark solutions consolidated by Framinan and Leisten (2007).

2 Formulation of the Multi-Objective Static Permutation
Flowshop Scheduling Problem under Study

The static permutation flowshop scheduling problem consists in scheduling n jobs
with given processing times on m machines, where the sequence of processing a job
on all machines is identical and unidirectional for each job. In studying flowshop
scheduling problems, it is a common assumption that the sequence in which each
machine processes all jobs is identical on all machines (permutation flowshop). A
schedule of this type is called a permutation schedule and is defined by a complete
sequence of all jobs. We also consider only permutation sequences in the following.

Let
tij processing time of job i on machine j.

Di due-date for job i.

n total number of jobs to be scheduled.

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 57

m total number of machines in the flowshop.

σ ordered set of jobs already scheduled, out of n jobs; partial sequence.

q(σ, j) completion time of partial sequence σ on machine j (i.e. the release time of
machine j after processing all jobs in partial sequence σ).

q(σi, j) completion time of job i on machine j, when the job is appended to partial
sequence σ.

For calculating the start and completion times of jobs on machines in permutation
flowshops, recursive equations are used as follows.

Initialize q(σi, 0), the completion time of job i on machine 0, equal to zero. This
time indicates the time of availability of a job in the flowshop, and it is equal to 0 for
all jobs in case of static flowshops.

For j = 1 to m do

q(σi, j) := max { q(σ, j) ; q(σi, j-1)} + tij. (2.1)

The flowtime of job i, Ci , is given by

Ci = q(σi, m). (2.2)

It is to be noted that q(φ, j) is equal to 0 for all j, where φ denotes a null schedule.
When all jobs are scheduled, the total flowtime F and the makespan Cmax of jobs

are obtained as follows:

F =
1=∑ n

ii
C , (2.3)

and

Cmax = max { Ci , i = 1, 2, ... , n }. (2.4)

The objective is to simultaneously minimize F and Cmax. Exceptions set aside, there
exists no single solution minimizing both objectives simultaneously. An optimal
solution then must have the property of non-dominance.

To present in brief the principle of non-dominance in the context of the problem
under study, let us assume that the makespan and total flowtime of jobs yielded by
sequence S are denoted by Cmax(S) and F(S) respectively. For the sake of generality,
we let Z1(S) and Z2(S) denote Cmax(S) and F(S) respectively. Sequence S is said to
dominate S′ if Zr(S) ≤ Zr(S′) ∀ r, and Zr(S) < Zr(S′) for at least one r. Sequence S′′ is
efficient if there exists no other sequence S dominating S′′. It is to be noted that the m-
machine permutation flowshop scheduling problem with the consideration of a single
objective, in most cases, was shown by Garey et al. (1976) to be NP-hard. It is
therefore evident that researchers develop heuristic methods to obtain heuristically
non-dominated solutions (without the guarantee of efficiency) in the case of multi-
objective flowshop scheduling problems. A Sequence S'' is called heuristically non-
dominated or heuristically efficient with respect to a given set of heuristic solutions if
there exists no other known heuristic sequence S dominating S''. Suppose we have a

58 C. Rajendran and H. Ziegler

set of heuristically non-dominated sequences, denoted by ψ. A new heuristic se-
quence S′′ qualifies for entry into ψ if and only if for each sequence S in ψ there exists
at least one r for which Zr(S′′) < Zr(S). Likewise, a sequence S′ can be eliminated
from the set ψ due to the inclusion of S′′ if Zr(S′′) ≤ Zr(S′) ∀ r. Readers may see
T′kindt and Billaut (2002) for a complete treatment on scheduling with multiple
objectives. In the following, the a posteriori approach is considered, i.e., a set of
heuristically efficient sequences with respect to the two objectives of minimizing total
flowtime and minimizing makespan is to be determined.

3 Description of the Proposed Multi-Objective Ant-Colony
Algorithm

3.1 General Structure of Ant-Colony Algorithms

ACO algorithms make use of simple agents, called ants, that iteratively construct
solutions to combinatorial optimization problems. The solution generation or
construction by ants is guided by (artificial) pheromone trails and problem-specific
heuristic information. In the context of combinatorial optimization problems,
pheromones indicate the intensity of ant-trails with respect to solution components,
and such intensities are determined on the basis of the influence or contribution of
each solution component with respect to the objective function. An individual ant
constructs a complete solution by starting with a null solution and iteratively adding
solution components until a complete solution is constructed. Typically, solution
components which are part of better solutions used by ants over many iterations
receive a higher amount of pheromone, and hence, such solution components are
more likely to be used by the ants in future iterations of the ACO algorithm. This is
enhanced by also making use of pheromone evaporation in updating trail intensities.
In the context of application of ACO algorithms to scheduling problems, pheromone
trail intensity (or desirability) of placing job i in position k of a sequence can be
denoted by τik. It is to be noted that for every job i for any possible position k, a
pheromone value is stored and updated in each iteration of the ACO algorithm. An
explanation on the structure of ACO algorithms is given in Stuetzle (1998), and
Rajendran and Ziegler (2004).

3.2 Details of the Proposed Multi-Objective Ant-Colony Algorithm (MOACA)

We highlight the salient features of the proposed algorithm with respect to the search
in the two-dimensional objective-function space enabled through the use of a
compromise objective function incorporating relative weights for each objective
function and the use of upper bounds on the makespan and total flowtime of jobs.

3.2.1 Characterization of the MOACA
In view of two objectives being considered, two seed sequences are used
corresponding to every combination of the two relative weights related to the
makespan and total flowtime of jobs, and these sequences are used to initialize the
pheromone trail intensities τik. A front that consists of non-dominated sequences

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 59

obtained during the search process is maintained. The trail intensities and the best
sequence obtained so far are used as the basis to construct multiple (in our study, two)
ant sequences which are subsequently improved, with respect to the compromise
objective function, by using different concatenations of two local search schemes,
called JIS and JSS. We construct two ant sequences in view of the number of
objectives being two; moreover, pilot runs with the construction of a greater number
of multiple ant sequences have indicated the best performance of the proposed
algorithm with two ant sequences, given our restriction on the total number of
sequences enumerated in the MOACA. It is to be noted that every ant sequence that is
generated (including every sequence generated in local search schemes) is checked
for possible entry into the non-dominated front, so as to discover as many solutions
lying on the multi-modal non-dominated front as possible.

In the MOACA, we define a compromise objective function for a given sequence S
as follows:

Z(S) = w1×(Cmax(S) / up_Cmax) + w2×(F(S) / up_F), (3.1)

where up_Cmax refers to an upper bound on the makespan for a given problem, up_F
refers to an upper bound on total flowtime of jobs, and w1+w2 = 1 with w1, w2 ≥ 0.
This approach of using a compromise objective function with the incorporation of
upper bounds on the makespan and total flowtime of jobs has been found to be
effective in the case of multi-objective flowshop scheduling; the reason is that we
basically normalize a heuristic solution’s makespan and total flowtime of jobs,
thereby avoiding the inconsistency in the magnitude of the makespan and total
flowtime of jobs. In fact, similar approaches were also taken by Rajendran (1994) and
(1995), and also by Sridhar and Rajendran (1996).

Note that to start with, for a given Taillard’s problem instance, we use the upper
bound on makespan that was reported by Taillard (1993) (denoted by upmake for a
given problem instance), and we use the best upper bound on total flowtime that was
reported by Rajendran and Ziegler (2004) (denoted by upflow for a given problem
instance). Initialize up_Cmax = upmake, and up_F = upflow. However, during the
execution of the MOACA, better upper bounds, if obtained, are used to update
up_Cmax and up_F for their use in the compromise objective function. Note that the
weights have to be appropriately chosen in order to discover many non-dominated
solutions. We vary w1 uniformly (and consequently w2) in the range [0, 1]. In the
MOACA, we initially set w1 = 0, implying that we first seek to minimize total
flowtime of jobs, and we increase w1 in steps of 0.1, up to 1. This means that the basic
MOACA is repeated 11 times, corresponding to different values of w1 and w2, and our
experimental investigations have shown that the MOACA with these values for
weights is able to discover many solutions lying on the non-dominated front (with no
possible guarantee of Pareto optimality or efficiency). We now present the mechanics
of the basic MOACA, for the given w1 and w2, in Sections 3.2.2, 3.2.3 and 3.2.4.

3.2.2 Generation of Two Initial Ant Sequences and Initialization of Trail
Intensities

We generate one seed sequence by ordering jobs in the ascending order of the
weighted sum of process times of jobs (i.e., in the non-decreasing order of

60 C. Rajendran and H. Ziegler

1
(1)

=
− +∑m

ijj
m j t ; see Rajendran (1993) for details), followed by the improvement

scheme presented by Nawaz / Enscore / Ham (1983) if w1 is less than or equal to 0.5, or
by ordering jobs in the non-increasing order of the sum of process times of jobs, and
then using the improvement scheme presented by Nawaz / Enscore / Ham (1983) if w1

is greater than 0.5. Note that all partial and complete sequences (generated during these
procedures) are evaluated by using Eq. (3.1), and the best partial (or complete)
sequence is accordingly chosen. The second seed sequence is generated randomly by
selecting the job to be placed in position k of the sequence with equal probability from
the set of unscheduled jobs, k = 1(1)n. Check if each complete sequence can enter the
existing non-dominated front. If so, enter it and update the front accordingly. Every
seed sequence is subjected to the improvement schemes, namely, the job-index-based
insertion scheme (called JIS), followed by the job-index-based swap scheme (JSS)
in the given concatenation, with the consideration of Z(S) for the given w1 and w2 (see
Eq. (3.1)). The details of different concatenations of the JIS and JSS, namely, JIS-JSS-
JIS-JSS, JIS-JIS-JSS-JIS and JIS-JIS-JIS-JSS, are presented later. The effectiveness of
concatenation of the local search schemes is due to the fact that each of these schemes
perturbs the seed sequence in different ways, thereby discovering many more local
minima in the neighborhood than a single local search scheme applied more than once.
These improvement schemes have been found to be effective in single-objective
flowshop scheduling by earlier works as well (see Rajendran and Ziegler (2004) and
(2005)). In fact, our computational experiments have also shown that the concatenation
of such local search schemes has been found to perform better than the successive
application of one single local scheme in terms of discovering many more solutions on
the non-dominated front. The details of the JIS and JSS are given in the Appendix.
Note that the JIS involves a relatively mild perturbation of the seed sequence, as
opposed to the JSS. In fact, the JIS can be considered as an intensification of local
search, while the JSS can be considered as a diversification of local search. It is also to
be noted that each of the two local search schemes aims at improving the seed
sequence with the consideration of the compromise objective function (as given in
Eq. (3.1)) for the given w1 and w2, and that every sequence that is generated in a local
search scheme is considered for possible entry in the non-dominated front. The two
final sequences that are yielded by the application of concatenation of JIS and JSS on
each of the two seed sequences are taken as the final ant sequences. These sequences,
denoted by S1 and S2, are used to set the trail intensities for a given w1 and w2. Let these
two sequences’ compromise objective function values (computed by using Eq. (3.1))
be denoted by Z(S1) and Z(S2) respectively. Let the minimum of these two values be
denoted by Z*, and the corresponding sequence be denoted by S*. We initialize
pheromone trail intensities as follows:

τik = 1/(Z*)p, ∀ k and ∀i. (3.2)

In the above, p (>= 1) denotes the index of power. Initialize no_iter, the number of
iterations in respect of generation of ant sequences in the search process for the given
w1 and w2, to 0. Subject S1 and S2 to an adjacent pairwise interchange of jobs
(interchanging jobs found in positions k and k+1, for k = 1, 2, ..., n-1), thereby
generating 2(n-1) sequences in the neighbourhood. Check every generated sequence
for possible entry into the non-dominated front and also check for the consequent

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 61

updating of the non-dominated front. Note that these 2(n-1) sequences do not have
any impact on trail intensities, and that these sequences are generated to primarily
explore the neighbourhood for non-dominated solutions.

3.2.3 Modification of Trail Intensities
We first modify the trail intensities as follows:

τik := ρ×τik , ∀ k and ∀i, (3.3)

where ρ denotes the persistence rate of pheromone trail intensities (or equivalently, 1-
evaporation rate).

Then, we further modify the trail intensities τik as follows, by taking into account
the position occupied by a job.

For r = 1 and 2, do the following: /*corresponding to two sequences*/

if ((Z(S r) – Z*) / Z*) ≤ cut_off
then

 for i = 1(1) n do the following: /*corresponding to n jobs*/
 for k = 1(1) n do the following: /*corresponding*/

 /*to n positions*/
 if | hr(i) - k | ≤ ⎣n/50⎦
 then

 set τik := τik + 1 / (2×(Z(S r))p). (3.4)

In the above, cut_off refers to the threshold value with respect to the deviation of

the compromise objective function value of a given sequence from the best value
obtained so far in the MOACA, for the given w1 and w2. If the deviation is less than or
equal to the cut_off, then we use the sequence to update the trail intensities. This is
done so because we do not want to use an inferior sequence to be used in updating
pheromone values, as otherwise, we would lose the good trail intensities that have
been obtained in the search process. In the above, hr(i) refers to the position occupied
by job i in sequence S r. It is to be noted that we update the trail intensity for every job
with respect to more than one position, depending upon the value of ⎣n/50⎦. This is
done so because we believe that the trail intensities of such positions fairly close to
the position of job i need to be updated in the same way as the position of job i, with
the number of such positions being governed by the number of jobs in the given
problem (also see the related observations by Rajendran and Ziegler (2004) and
(2005) in the case of single-objective flowshop-scheduling problems). We have 2 in
the denominator in Expression (3.4) because we use two ants in our MOACA. It is
also to be noted that the value of cut_off is not static across all iterations (with each
iteration involving the generation of two ant sequences) carried out for the given w1

and w2 . After the generation of two ant sequences (to be presented in the following),
we set cut_off equal to (cut_off×0.9), and we do the task of updating the pheromone
values, as given in Expressions (3.3) and (3.4). In the current study, we initially set
cut_off to 0.025.

In order to guide the MOACA towards discovering solutions possibly lying on the
Pareto-optimal front by making use of S*, the best sequence obtained so far (for the

62 C. Rajendran and H. Ziegler

given w1 and w2, and with respect to Equation (3.1), we supplement the trail intensities
as follows.

For i = 1(1) n do the following: /*corresponding to n jobs*/

 for k = 1(1) n do the following: /*corresponding to n positions*/
 compute diff = (| h*(i) - k | + 1)
 and
 set τik := τik + 1 / ((Z(S*))p × (diff)c). (3.5)

In the above, c denotes the power index for diff, and h*(i) refers to the position of

job i in sequence S*. It is evident that τik is updated for job i with respect to position k
depending upon the relative difference between this position and the position of job i
in S*. Power index c is introduced for enhancing the differentiation.

3.2.4 Construction of Two Ant Sequences and Their Improvement with Respect
to the Compromise Objective Function by Local Search Schemes

In the MOACA, a complete sequence is built up, by starting from a null sequence and
choosing a job by the following procedure in order to append it to the available partial
sequence in position k, for k = 1, 2, …, n, and with the initial available partial
sequence being a null set.

Set Tik = 1=
τ∑ k

iqq
and sample a uniform random number u in the range

(0, 1).

If u ≤ 0.4
then

the first job in S* that is not yet scheduled in the present partial sequence is
chosen;

else
if u ≤ 0.8
then

among the set of the first (4+⎣n/K⎦) jobs in S* that are not yet scheduled
in the present partial sequence, choose the job with the maximum value
of Tik ;

else
job i is selected from the same set of (4+⎣n/K⎦) unscheduled jobs for
position k as a result of sampling from the following probability
distribution:

pik = (Tik / ∑
l

Tlk), (3.6)

where job l belongs to the same set of (4+⎣n/K⎦) unscheduled jobs.

Note that when there are unscheduled jobs less than this prescribed
number, then all such unscheduled jobs are considered for possible
selection.

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 63

In the above, K is a parameter that helps to decide on the number of unscheduled
jobs to be considered while constructing an ant sequence. The rationale behind the
selection of the job to be scheduled next is that the choice is governed between the
best sequence and the best value of Tik with equal probability, and the probabilistic
choice of the job is done with half of the probability of going in for the first
unscheduled job found in the best sequence. In addition, the number of unscheduled
jobs considered for selection is not the same across all problem sizes, which is quite
logical. Readers may see the related works by Rajendran and Ziegler (2004) and
(2005) for single-objective flowshop-scheduling problems.

By performing the above procedure for k = 1, 2, ..., n, a complete ant sequence can
be generated. Repeat the process for generating one more ant sequence. Check
whether an ant sequence can enter the exiting non-dominated front; if so, enter it and
accordingly update the front. Note that each of these two sequences is subjected to the
JIS and JSS (in different combinations or concatenations) with the consideration of
the compromise objective function for the given w1 and w2. Let us denote the two final
sequences thus obtained by S1 and S2 , with the values of the compromise objective
functions denoted by Z(S1) and Z(S2) respectively. Update Z* and S*, if necessary, by
comparing Z* with Z(S1) and then with Z(S2). We wish to point out here that we use
two different uniform random number streams, while developing an ant sequence: one
for sampling u to decide on the choice between the best sequence and the set of
unscheduled jobs; and another uniform random number stream for sampling from the
probability distribution. Subject S1 and S2 to an adjacent pairwise interchange of jobs
(interchanging jobs found in positions k and k+1, for k = 1, 2, ..., n-1), thereby
generating 2(n-1) sequences in the neighbourhood; and check every generated
sequence for possible entry into the non-dominated front and also check for the
possible updating of the non-dominated front. Note that these 2(n-1) sequences do not
have any impact on trail intensities and that these sequences are generated to
primarily explore the neighbourhood for non-dominated solutions.

Set cut_off := (cut_off×0.9), and no_iter := no_iter + 1.

If no_iter is < 16, then repeat the steps given in Sections 3.2.3 and 3.2.4; else
increase w1 by 0.1, decrease w2 accordingly, initialize cut_off to 0.025 and no_iter to
0, and go back to repeat the steps given in Sections 3.2.2, 3.2.3 and 3.2.4.

It is to be noted that we have opted to vary w1 from 0 to 1, in steps of 0.1, and set
the upper limit on the number of iterations to 16. This is done so in order to restrict
the computational effort. Every variant of the proposed MOACA enumerates about
1500n2 sequences in the course of the entire search process. It is noteworthy that
when each variant has been coded in FORTRAN (DOS version) and executed on a
PC with Pentium 4 processor, 3 GHz, 512 MB RAM, a variant requires the execution
time of about 10 hours to obtain the non-dominated solutions for all the 90 problem
instances. It is also to be noted that the actual execution time is not large in view of
the fact that the JIS and JSS are computationally fast schemes, unlike the relatively
more-demanding crossover and mutation operations involved in genetic algorithms
for permutation flowshop scheduling. Readers may see the related observations by
Minella et al. (2008) in respect of the MOSA that also uses similar local search
schemes involving job insertion or job swap. Of course, one can perform the MOACA

64 C. Rajendran and H. Ziegler

with more enumeration of sequences by increasing the upper limit on the number of
iterations so that an enhanced performance of the MOACA can possibly be achieved.

3.3 Step-by-Step Procedure of the MOACA

We now present the step-by-step procedure consolidating the salient features of the
MOACA.

Step 1: Set w1 = -0.10 and w2 = 1.10. Obtain an upper bound on makespan and an
upper bound on total flowtime for the given problem instance from the available
literature, and hence obtain up_ Cmax and up_F.

Step 2: Set w1 := w1 + 0.10, and w2 := w2 - 0.10. Generate one seed sequence by

ordering the jobs in the ascending order of
1
(1)

=
− +∑m

ijj
m j t followed by the

improvement scheme presented by Nawaz et al. (1983) if w1 is less than or equal to
0.5, or by ordering jobs in the non-increasing order of the sum of process times of
jobs, and then using the improvement scheme presented by Nawaz et al. if w1 is
greater than 0.5, with the consideration of the current w1 and w2. Generate the second
seed sequence randomly. Update the non-dominated front by considering these two
seed sequences. Every seed sequence is then subjected to the given concatenation of
JIS and JSS. Call the final sequences S1 and S2. Update S* and Z(S*) by using S1 and
S2. In addition apply adjacent pairwise interchange of jobs to the sequences S1 and S2.

Note: Check each sequence generated for non-dominance and if necessary update
the non-dominated front.

Initialize τik as per Eq. (3.2). Set cut_off = 0.025 and no_iter = 0.
Step 3: Modify τik as given by Eq. (3.3), and modify also by reckoning with S1 and

S2 , see Exp. (3.4), and thereafter reckoning with S* , see Exp. (3.5).
Step 4: Construct two ant sequences by using the procedure given in Section 3.2.4,

with each sequence thereafter improved by the given concatenation of JIS and JSS.
Call the final sequences S1 and S2. Update S* and Z(S*) by using S1 and S2. In addition
apply adjacent pairwise interchange of jobs to the sequences S1 and S2.

Note: Check each sequence generated for non-dominance and if necessary update
the non-dominated front.

Step 5: Set cut_off := cut_off×0.9 and no_iter := no_iter + 1. If no_iter < 16 then
go to Step 3; else return to Step 2 as long as w1 ≤ 0.9. Return the final set of
heuristically non-dominated solutions for the given problem instance. STOP.

4 Performance Analysis of the MOACA

In line with previous researchers, we have considered the ninety benchmark flowshop
scheduling problem instances by Taillard (1993), with the number of jobs being 20,
50 and 100, and with the number of machines being 5, 10 and 20. In order to evaluate
the performance of a multi-objective flowshop scheduling algorithm, many
researchers basically used the following metric in one form or another: the number of
solutions contributed by an algorithm to the final or net non-dominated front (e.g.,
Ishibuchi and Murata (1998), Chang et al. (2002), Varadharajan and Rajendran

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 65

(2005), and Framinan and Leisten (2007)). We have also used a similar metric given
as follows:

number of solutions contributed by a given multi-objective algorithm to the net
non-dominated front / total number of solutions in the net non-dominated front.

 (4.1)

This metric is relatively easy in terms of comprehending how a multi-objective
algorithm performs in relation to other multi-objective algorithms.

As the first step, we have set p = 2, 1 and 1.5, with K = 50 and 20, c = 1 and ρ =
0.75 in the proposed MOACA. Note that for every given p, c and ρ, we experiment
with K = 50 and 20. The reason is that the parameter K is involved in the generation
of an ant sequence, and hence we would prefer to always experiment with these two
values of K. The setting of ρ in the neighbourhood of 0.75 is found to work well by
previous researchers as well (Stuetzle (1998), and Rajendran and Ziegler (2004) and
(2005)). The corresponding variants are termed Variants 1-6 of the MOACA. From
the performance analyses of these variants, we have observed that these variants
perform not much differently on an average, and every variant does contribute to the
final or net non-dominated front in a similar manner. Hence we have decided to freeze
p at 1.5. We now set c = 2, and ρ = 0.75 and 0.7. We find that these variants, namely
Variants 7-10, do perform well, especially in the case of the larger-sized problems.
For the further two variants (namely Variants 11 and 12), we set c = 1.5 and ρ =
0.725. We find that these two variants also perform well, especially for the larger-
sized problems. Note that in all these variants, the concatenation of JIS and JSS is
done in the following manner: JIS-JSS-JIS-JSS.

As further analysis, we have decided to see the performance of the MOACA by
changing the concatenation of the JIS and JSS. First picking up on Variants 11 and
12, we have experimented with the following concatenation of the JIS and JSS: JIS-
JIS-JSS-JIS, followed by the concatenation of JIS-JIS-JIS-JSS. The corresponding
variants are termed Variants 13 and 14 (derived from Variant 11), and Variants 15
and 16 (derived from Variant 12). Similarly, we have derived Variants 17-20 from
Variants 9 and 10 respectively by implementing these two concatenations of JIS and
JSS. Our performance analyses have shown that different concatenations of JIS and
JSS have indeed served to discover additional non-dominated solutions, especially in
the case of larger-sized problems. Table 1 presents the details of settings for different
variants of the MOACA.

As mentioned earlier, we have made use of the benchmark solutions provided by
Framinan and Leisten (2007), and consolidated the solutions yielded by all the
variants of the MOACA with those obtained by Framinan and Leisten. The final sets
of non-dominated solutions thus obtained for every problem instance are given in
Tables 2a - 4c. We believe that these solutions can possibly serve as benchmarks for
future research attempts as much the solutions obtained by Framinan and Leisten
served for us as benchmarks. It is be noted again that the solutions obtained by
Framinan and Leisten are through the implementation of their MOIGS with eight
different values for d, and from the consolidation with the solutions reported by
Varadharajan and Rajendran (2005).

We have also evaluated every variant of the MOACA and the set of solutions
obtained by Framinan and Leisten (denoted by F&L), by using the metric given in

66 C. Rajendran and H. Ziegler

Table 1. Settings for MOACA variants

MOACA
Variant

ρ c p K
Concatenation of local

search schemes

1 0.75 1 2 50 JIS-JSS-JIS-JSS

2 0.75 1 2 20 JIS-JSS-JIS-JSS

3 0.75 1 1 50 JIS-JSS-JIS-JSS

4 0.75 1 1 20 JIS-JSS-JIS-JSS

5 0.75 1 1.5 50 JIS-JSS-JIS-JSS

6 0.75 1 1.5 20 JIS-JSS-JIS-JSS

7 0.75 2 1.5 50 JIS-JSS-JIS-JSS

8 0.75 2 1.5 20 JIS-JSS-JIS-JSS

9 0.7 2 1.5 50 JIS-JSS-JIS-JSS

10 0.7 2 1.5 20 JIS-JSS-JIS-JSS

11 0.725 1.5 1.5 50 JIS-JSS-JIS-JSS

12 0.725 1.5 1.5 20 JIS-JSS-JIS-JSS

13 0.725 1.5 1.5 50 JIS-JIS-JSS-JIS

14 0.725 1.5 1.5 20 JIS-JIS-JSS-JIS

15 0.725 1.5 1.5 50 JIS-JIS-JIS-JSS

16 0.725 1.5 1.5 20 JIS-JIS-JIS-JSS

17 0.7 2 1.5 50 JIS-JIS-JSS-JIS

18 0.7 2 1.5 20 JIS-JIS-JSS-JIS

19 0.7 2 1.5 50 JIS-JIS-JIS-JSS

20 0.7 2 1.5 20 JIS-JIS-JIS-JSS

Exp. (4.1). The results of such an analysis are presented in Table 5. In Table 5, an
entry in a given row under a given approach denotes the number of non-dominated
solutions contributed by a given approach to the net non-dominated front for that
problem instance. We then compute the metric given in Exp. (4.1), and sum it up with
respect to that approach over ten problem instances. The average over these ten
problem instances for that approach is then computed and reported, see the last row in
a given problem set or size. Note that for the problem instances with jobs equal to 20,

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 67

Table 2a. Net set of non-dominated solutions obtained for the problem size (20×5)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
Cmax F Cmax F Cmax F Cmax F Cmax F
1278 14064 1359 16112 1081 13818 1293 16619 1235 14163
1313 14058 1360 16071 1085 13759 1299 16342 1239 14151
1315 14048 1361 15567 1086 13666 1301 15983 1243 14047
1324 14041 1364 15548 1095 13665 1304 15925 1244 14002
1339 14033 1368 15535 1096 13587 1306 15852 1250 13943

 1372 15525 1097 13560 1307 15844 1254 13927
 1377 15454 1099 13524 1309 15828 1264 13890
 1379 15450 1100 13505 1311 15819 1266 13885
 1383 15156 1107 13496 1313 15793 1278 13875
 1385 15151 1111 13418 1319 15758 1285 13872
 1122 13400 1320 15587 1289 13834
 1140 13358 1329 15484 1298 13827
 1183 13347 1354 15447 1301 13811
 1289 13301 1305 13763
 1311 13732
 1328 13668
 1338 13619
 1360 13552
 1387 13529

Table 2a. (continued)

Problem 6 Problem 7 Problem 8 Problem 9 Problem 10
Cmax F Cmax F Cmax F Cmax F Cmax F
1195 14908 1242 14280 1206 14581 1230 14977 1108 13649
1198 14889 1245 14200 1211 14429 1232 14936 1112 13584
1200 14888 1252 13999 1212 14345 1245 14929 1113 13514
1202 14741 1254 13887 1213 14302 1246 14902 1115 13429
1203 14699 1255 13749 1214 14253 1247 14756 1133 13419
1207 14681 1264 13730 1217 14157 1248 14729 1134 13344
1210 14346 1265 13728 1222 14153 1249 14715 1138 13173
1213 14247 1266 13722 1226 14148 1253 14505 1150 13126
1217 14121 1267 13695 1229 14128 1255 14493 1151 13122
1218 14042 1274 13632 1233 14093 1256 14485 1153 13026
1224 13608 1278 13578 1234 14080 1259 14449 1163 12999
1233 13583 1283 13548 1240 14075 1271 14446 1179 12981
1241 13581 1245 14073 1272 14386 1184 12943
1245 13437 1246 14072 1281 14367
1247 13412 1247 14059 1284 14329
1248 13410 1252 14051 1336 14317
1251 13391 1254 13994 1337 14295
1252 13280 1320 13987
1255 13274 1329 13948
1256 13212
1257 13171
1260 13160
1261 13139
1266 13123

68 C. Rajendran and H. Ziegler

Table 2b. Net set of non-dominated solutions obtained for the problem size (20×10)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Cmax F Cmax F Cmax F Cmax F Cmax F

1582 22121 1664 23888 1496 20905 1377 19738 1419 19277
1583 21731 1666 23877 1501 20672 1380 19721 1420 19205
1590 21706 1667 23527 1508 20433 1385 19579 1422 19203
1592 21421 1668 23525 1515 20364 1386 19533 1432 18966
1595 21420 1671 23519 1521 20118 1387 19523 1435 18952
1608 21385 1672 23399 1534 20061 1392 19431 1446 18873
1629 21337 1676 23375 1546 20036 1393 19413 1463 18829
1640 21284 1683 23356 1547 20003 1394 19410 1466 18798
1641 21204 1684 23303 1577 19962 1397 19344 1473 18794
1656 21122 1690 23274 1589 19958 1399 19280 1476 18766
1685 21025 1692 23242 1615 19927 1403 19273 1485 18754
1686 21011 1694 23166 1624 19917 1406 19177 1486 18641
1698 21003 1699 23156 1650 19877 1409 19149
1705 20957 1700 23112 1693 19861 1416 19094
1707 20911 1701 22999 1703 19833 1424 19082

 1706 22995 1425 19044
 1708 22853 1432 19020
 1728 22807 1437 18992
 1737 22726 1443 18987
 1744 22720 1445 18948
 1764 22714 1451 18908
 1779 22711 1473 18893
 1781 22617 1476 18852
 1782 22608 1493 18828
 1818 22606 1494 18800
 1827 22559 1509 18792
 1831 22524 1525 18751
 1841 22492 1558 18750
 1847 22473
 1872 22446
 1893 22440

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 69

Table 2b. (continued)

Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

Cmax F Cmax F Cmax F Cmax F Cmax F

1397 20725 1484 19232 1544 22075 1593 20779 1591 22719
1402 20612 1492 19166 1545 21827 1597 20765 1595 22575
1403 20512 1498 19159 1546 20927 1602 20763 1598 22334
1404 20374 1500 18894 1552 20845 1607 20761 1604 21945
1409 20278 1510 18846 1553 20756 1608 20725 1608 21930
1413 20127 1525 18765 1556 20674 1612 20651 1612 21882
1421 20102 1526 18658 1561 20489 1616 20592 1630 21872
1423 20049 1533 18598 1570 20480 1622 20591 1632 21675
1424 20027 1540 18584 1573 20471 1627 20564 1642 21662
1427 20024 1543 18526 1577 20466 1635 20538 1647 21659
1429 19896 1550 18476 1578 20381 1648 20487 1652 21632
1436 19862 1562 18445 1579 20374 1657 20454 1659 21581
1440 19856 1579 18409 1589 20358 1668 20421 1671 21497
1441 19838 1594 18377 1598 20347 1669 20419 1681 21462
1442 19775 1600 18376 1608 20288 1676 20412 1684 21459
1448 19774 1617 18363 1641 20241 1677 20374 1685 21453
1450 19761 1685 20356 1712 21418
1451 19721 1749 20347 1735 21405
1455 19711 1762 20330 1768 21402
1471 19666 1770 21359
1475 19641 1774 21352
1477 19543 1778 21320
1483 19522
1498 19517
1522 19495
1523 19473
1529 19422
1551 19382
1554 19357
1568 19340
1594 19331
1635 19290
1655 19283
1659 19249
1696 19245

70 C. Rajendran and H. Ziegler

Table 2c. Net set of non-dominated solutions obtained for the problem size (20×20)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Cmax F Cmax F Cmax F Cmax F Cmax F

2297 35831 2099 33261 2328 36809 2223 33282 2294 36054
2298 35764 2100 32912 2332 36578 2224 32841 2300 36040
2299 35724 2104 32874 2336 35985 2225 32546 2305 35992
2300 35665 2105 32786 2353 35829 2233 32516 2309 35834
2301 35623 2111 32769 2363 35821 2234 32231 2314 35608
2302 35384 2118 32762 2366 35739 2249 32124 2322 35528
2303 35358 2119 32734 2369 35363 2251 32121 2336 35451
2310 35322 2120 32684 2373 35251 2253 32025 2337 35440
2313 35274 2125 32681 2383 35243 2260 31993 2343 35365
2317 35237 2129 32647 2385 35217 2261 31928 2345 35215
2324 35195 2132 32489 2388 35120 2263 31855 2390 35214
2325 34965 2145 32482 2395 35094 2264 31826 2399 35154
2341 34961 2147 32462 2399 34991 2265 31804 2401 35131
2344 34954 2149 32360 2400 34959 2276 31753 2402 35076
2345 34738 2153 32339 2402 34917 2289 31726 2411 34942
2346 34581 2154 32316 2407 34840 2296 31714 2434 34805
2351 34533 2163 32205 2414 34783 2301 31708 2508 34782
2352 34467 2166 32089 2422 34732 2311 31690 2519 34710
2355 34374 2196 31906 2426 34707 2387 31677 2538 34667
2363 34220 2206 31826 2429 34703 2405 31661 2560 34659
2380 34139 2214 31777 2430 34679 2564 34649
2386 34126 2254 31716 2433 34614 2570 34645
2388 34026 2259 31713 2435 34480 2571 34616
2391 33998 2261 31612 2449 34400 2607 34605
2392 33901 2275 31597 2453 34388 2613 34602
2412 33827 2334 31587 2456 34385 2617 34590
2418 33799 2465 34377 2622 34557
2427 33742 2466 34364
2434 33735 2474 34232
2437 33623 2484 34127

 2508 34125
 2526 34110
 2535 34107
 2547 34101
 2549 34084
 2554 34082
 2555 34072
 2557 34055
 2564 34051
 2567 34016
 2578 33977
 2579 33932
 2608 33920

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 71

Table 2c. (continued)

Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

Cmax F Cmax F Cmax F Cmax F Cmax F

2230 34231 2276 34517 2200 34792 2237 34532 2180 33462

2232 33853 2278 33756 2202 34758 2243 34516 2183 33264

2234 33652 2282 33438 2205 34712 2248 34363 2191 33240
2239 33557 2292 33436 2209 34612 2253 34360 2196 33125

2242 33407 2299 33425 2210 34555 2258 34338 2202 32937

2252 33395 2305 33390 2212 34129 2260 34183 2229 32824

2253 33383 2307 33353 2221 34123 2281 34178 2231 32805
2257 33351 2320 33325 2222 33931 2289 34138 2238 32764

2258 33330 2324 33295 2224 33882 2292 34133 2242 32731

2260 33160 2334 33282 2234 33843 2297 34077 2245 32654

2263 32876 2335 33276 2237 33744 2308 34065 2246 32583
2270 32853 2336 33253 2238 33661 2310 34062 2249 32497

2281 32810 2340 33221 2242 33640 2319 34046 2250 32477

2284 32778 2343 33211 2243 33420 2320 34031 2270 32423

2292 32758 2350 33206 2257 33267 2336 34029 2287 32383
2304 32752 2353 33184 2266 33107 2337 34015 2308 32375

2307 32714 2356 33178 2273 33068 2343 33959 2309 32331

2318 32707 2359 33139 2284 33045 2356 33900 2329 32310

2320 32693 2368 33107 2294 32990 2360 33847 2338 32299
2324 32656 2407 32987 2297 32975 2372 33805 2339 32292

2334 32655 2415 32970 2299 32943 2379 33772 2345 32269

2358 32652 2453 32951 2311 32921 2418 33734 2365 32262

2359 32650 2466 32922 2312 32909 2419 33729
2360 32625 2314 32897 2425 33727

2365 32616 2318 32880 2427 33722

2369 32604 2323 32865 2428 33641

2372 32564 2330 32854 2448 33634
 2331 32814 2455 33625

 2341 32803 2458 33623

 2351 32793 2486 33612

 2360 32775
 2373 32679

 2380 32663

 2391 32642

 2393 32629
 2394 32603

 2396 32552

 2408 32524

 2415 32509
 2433 32506

 2470 32499

 2476 32494

 2478 32485
 2492 32444

72 C. Rajendran and H. Ziegler

Table 3a. Net set of non-dominated solutions obtained for the problem size (50×5)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Cmax F Cmax F Cmax F Cmax F Cmax F

2724 67351 2838 76083 2621 65944 2753 72139 2864 70577
2728 67344 2841 76073 2622 65743 2757 70199 2865 70558
2729 67291 2843 75098 2630 65278 2758 70088 2886 70236
2731 67208 2848 69791 2641 65081 2764 70036 2887 70036
2735 65937 2849 69708 2642 65028 2766 69961 2904 69739
2743 65782 2853 69693 2645 64907 2767 69633
2744 65776 2854 69656 2648 64851 2768 69613
2745 65752 2857 69522 2660 64817 2775 69586
2746 65726 2859 69173 2663 64550 2779 69549
2747 65698 2860 69167 2665 64232 2782 69499
2752 65218 2861 69088 2667 64108 2785 69490
2774 65191 2862 69047 2671 64053 2788 69424
2840 65168 2864 69011 2672 63930 2792 69408

 2865 68920 2694 63879 2797 69297
 2867 68894 2698 63861 2800 69256
 2875 68840 2703 63859 2806 69080
 2886 68836 2735 63856 2810 69067
 2889 68811 2776 63838 2856 69000
 2890 68798 2889 68968
 2892 68685 2919 68958
 2896 68683 2930 68864
 2910 68641 2931 68814
 2915 68631
 2916 68622
 2917 68617
 2918 68610
 2929 68599
 2930 68589
 2933 68580
 2934 68575
 2937 68540
 2951 68507
 2954 68491
 2957 68457
 2960 68415
 2967 68413

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 73

Table 3a. (continued)

Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

Cmax F Cmax F Cmax F Cmax F Cmax F

2829 72618 2725 72171 2683 70478 2554 72756 2782 71801
2832 69630 2732 70120 2686 69432 2560 72368 2783 70644
2839 68900 2736 69580 2694 68338 2561 67091 2784 70600
2841 68787 2737 69491 2697 68208 2564 66120 2785 70563
2845 68346 2741 68586 2703 68033 2565 65558 2789 70193
2846 68343 2743 68487 2704 67890 2566 65552 2791 70080
2847 68095 2745 67533 2705 65088 2569 65522 2792 69884
2882 67833 2746 67482 2706 65082 2570 65196 2793 69882
2886 67424 2758 67380 2707 65030 2571 64442 2794 69620
2888 67342 2760 67212 2710 64985 2572 64360 2796 69597
2894 67264 2767 66685 2713 64932 2573 64313 2803 69573
2978 67258 2768 66662 2718 64889 2577 64303 2833 69564

 2785 66545 2719 64883 2581 64190 2835 69546
 2811 66543 2727 64851 2584 64143 2836 69536
 2936 66508 2748 64835 2589 64122 2839 69516
 2810 64828 2590 64100 2841 69515
 2851 64804 2595 64072 2843 69508
 2596 63998 2844 69489
 2603 63966
 2610 63929
 2615 63862
 2627 63854
 2628 63846
 2648 63788
 2652 63721
 2654 63686
 2657 63627
 2664 63561
 2697 63559
 2699 63382
 2723 63371
 2739 63350

74 C. Rajendran and H. Ziegler

Table 3b. Net set of non-dominated solutions obtained for the problem size (50×10)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Cmax F Cmax F Cmax F Cmax F Cmax F

3027 97529 2911 88604 2878 86459 3064 93360 3012 92036
3031 97447 2917 88575 2879 86207 3065 92283 3013 92013
3033 96868 2918 88213 2883 85762 3067 91415 3016 91982
3034 93859 2921 88028 2885 85740 3072 91243 3018 91375
3037 93457 2923 87720 2887 85112 3073 91236 3019 91112
3039 93395 2925 87170 2891 85075 3077 91104 3024 91040
3040 92537 2926 86816 2896 85050 3078 90722 3037 90983
3043 92513 2927 86753 2904 85027 3086 90696 3038 89182
3045 92332 2928 86603 2915 84984 3087 90582 3042 88694
3051 91407 2929 86399 2916 84722 3089 90476 3045 88455
3057 90587 2931 85928 2917 83316 3090 90139 3061 88131
3059 90415 2940 85913 2956 83034 3092 90046 3063 88124
3062 90363 2947 85904 2960 82822 3109 89960 3065 88044
3063 90171 2948 85781 2972 82487 3110 89915 3080 88025
3065 89894 2949 85716 2977 82399 3111 89756 3084 88010
3069 89312 2950 85285 2979 82154 3114 89403 3085 87668
3089 89273 2952 85240 2983 81943 3115 89260 3107 87667
3111 89060 2953 85189 2986 81900 3116 89053 3117 87638
3124 89045 2958 85140 2994 81897 3123 89005 3138 87616
3127 88853 2971 85087 2995 81889 3127 88736 3148 87606
3129 88570 2975 85017 2997 81838 3128 88720 3188 87583
3130 88523 2976 84916 3001 81742 3130 88483 3193 87510
3173 88467 2989 84885 3005 81545 3139 88434 3201 87462
3177 88461 2993 84842 3012 81458 3143 88209
3202 88435 2994 84839 3013 81234 3150 88083
3206 88387 2995 84835 3024 81231 3168 88066
3215 88386 2996 84803 3028 80888 3216 88064
3265 88299 3005 84673 3105 80828 3218 88028
3273 88297 3015 84509 3239 87963

 3020 84469 3262 87892
 3034 84332 3264 87692
 3059 84284 3274 87574
 3083 84262 3287 87509
 3085 84206 3289 87321
 3090 84198
 3095 84099
 3100 84084
 3106 83844
 3108 83812
 3116 83808
 3136 83722

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 75

Table 3b. (continued)

Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

Cmax F Cmax F Cmax F Cmax F Cmax F

3043 91681 3115 99295 3043 99269 2908 91310 3112 95762
3044 91470 3124 97762 3045 98936 2909 91160 3113 95376
3045 91268 3126 96113 3046 98444 2910 89958 3118 93950
3047 90923 3127 93536 3048 97405 2920 89740 3121 93676
3056 90902 3128 93535 3050 97236 2923 89384 3129 93632
3057 90901 3129 92846 3052 97222 2949 89152 3131 92599
3060 90720 3131 92808 3055 96960 2952 88649 3138 92289
3064 90563 3133 92305 3056 95518 2972 88346 3139 91716
3065 89754 3136 92229 3057 94768 2988 88278 3142 91666
3075 89376 3138 91984 3058 92976 2994 88126 3146 91342
3076 89361 3140 91586 3061 92738 2996 88095 3147 91275
3077 89335 3157 91198 3064 92537 3002 88018 3149 91256
3080 89174 3158 91167 3066 92496 3017 87488 3150 91148
3082 88786 3161 91150 3067 91428 3025 87269 3152 90902
3084 88749 3165 91082 3069 91420 3026 87250 3157 90839
3087 88704 3169 90859 3072 91389 3031 87063 3158 90081
3099 88698 3170 90814 3074 91327 3044 87031 3164 89992
3111 88679 3176 90802 3077 89908 3073 86984 3192 89946
3114 88603 3180 90770 3078 89746 3077 86977 3198 89804
3116 88579 3182 90678 3082 89709 3078 86974 3204 89709
3119 88552 3191 90509 3083 89595 3079 86894 3208 89535
3120 88128 3196 90485 3086 89553 3080 86866 3241 89231
3167 88113 3197 90446 3087 89541 3090 86862 3261 89209
3172 88066 3201 90402 3091 89504 3100 86631 3270 89082
3179 88019 3202 90391 3092 89474 3272 89075
3183 87996 3207 90349 3093 89416 3275 89054
3205 87873 3213 90337 3101 89336 3276 89051
3244 87850 3221 90300 3113 89322 3279 89033
3340 87826 3229 90261 3118 89316 3335 89019

 3230 90229 3128 89315 3449 88982
 3231 90196 3132 89169
 3233 90132 3134 88906
 3266 90095 3139 88863
 3275 90067 3141 88790
 3301 90046 3144 88742
 3328 90042 3146 88737
 3352 89989 3148 88673
 3391 89929 3157 88608
 3169 88593
 3176 88585
 3177 88527
 3178 88334
 3274 88237
 3276 88224
 3319 88185
 3326 87993

76 C. Rajendran and H. Ziegler

Table 3c. Net set of non-dominated solutions obtained for the problem size (50×20)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Cmax F Cmax F Cmax F Cmax F Cmax F

3908 137314 3769 125037 3718 121229 3785 127750 3668 125806

3911 136711 3775 124846 3719 121194 3786 127731 3672 125107

3912 130906 3783 124831 3720 118930 3793 127710 3675 124900

3915 130783 3798 124094 3760 118911 3794 127700 3682 124472

3932 129913 3799 123802 3761 118906 3795 127600 3684 124444

3933 129685 3810 123778 3763 118893 3797 126628 3694 122330

3934 129376 3816 123464 3773 118850 3799 126470 3701 122102

3941 129338 3829 123201 3788 118817 3800 125246 3708 122094

3955 129170 3831 123103 3794 118769 3807 124900 3729 122082

3963 129169 3833 123078 3796 118739 3811 124869 3736 121771

3966 128600 3847 122626 3799 118647 3812 124863 3754 121673

3970 128544 3852 122559 3804 118593 3823 124146 3762 121393

3982 128483 3853 122208 3809 118525 3824 123909 3764 121339

3983 128371 3862 121942 3831 118517 3825 123838 3777 121152

3988 128362 3888 121916 3834 118464 3826 123718 3789 121066

3991 128357 3894 121903 3845 118269 3831 123648 3802 120956

4013 128306 3895 121898 3937 118086 3837 123640 3808 120898

4015 128219 3915 121895 3946 118083 3839 123568 3812 120857

4021 127837 3920 121881 4004 118036 3842 123315 3821 120773

4036 127770 3921 121345 4005 117926 3846 123314 3830 120723

4043 127661 3961 121169 4020 117636 3847 123286 3832 120545

4045 127655 3962 121050 4068 117619 3850 122646 3837 120516

4064 127603 3964 120562 4072 117600 3860 122611 3842 120342

4087 127518 4099 120486 4096 117556 3863 122583 3850 120329

4094 127338 4106 117500 3867 122390 3856 120256

4109 127308 3868 122389 3861 120213

4140 127302 3876 122306 3866 120199

4146 127040 3914 122297 3869 119810

4170 127037 3915 122152 3882 119775

4177 126861 3919 122103 3896 119628

4184 126846 3907 119502

4202 126713 3909 119348

 3917 119314

 3931 119313

 3954 119222

 3960 119183

 3969 119165

 3989 119156

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 77

Table 3c. (continued)

Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

Cmax F Cmax F Cmax F Cmax F Cmax F
3751 126155 3765 129180 3775 131886 3812 130514 3820 128480
3755 125986 3771 128924 3780 131831 3813 129684 3828 128410

3758 125764 3773 128327 3781 129295 3817 129331 3835 128407

3763 125663 3774 128285 3786 127910 3818 129020 3839 128345

3765 125601 3787 128235 3791 127519 3820 128129 3840 127939

3769 125590 3796 127847 3792 127448 3827 128126 3842 127933

3771 125569 3797 127466 3793 126788 3828 126339 3846 127769

3783 125558 3800 127450 3794 126593 3831 126321 3849 127624

3803 125379 3818 127410 3800 126546 3833 126188 3851 127047

3811 124897 3819 127388 3805 126515 3842 125873 3853 126829

3820 124219 3822 126995 3806 126469 3846 125577 3859 126820

3823 124052 3830 126474 3813 125832 3850 125575 3861 126796

3827 123906 3831 126472 3817 125813 3857 125573 3863 126772

3835 123822 3832 126419 3829 125782 3860 125552 3889 126617

3836 123818 3838 126397 3830 125760 3869 125522 3899 126139

3855 123791 3842 126032 3831 125421 3887 125484 3907 126124

3856 123423 3845 125914 3847 125397 3889 125429 3935 126103

3861 123339 3850 125905 3851 125381 3898 125026 3942 125775

3866 123325 3855 125841 3852 125289 3910 124723 3956 125712

3873 123274 3858 125715 3860 125282 3911 124359 4239 125702

3880 123034 3892 125700 3863 125259 3912 124324 4278 125542

3885 123001 3899 125553 3864 125222 3914 124200

3889 122989 3901 125551 3865 125189 3921 124185

3891 122671 3911 125550 3868 125094 3922 124180

3904 122157 3912 125371 3884 124518 3929 124141

3915 122114 3914 125366 3889 124512 3932 123818

3921 122054 3924 125146 3910 124470 3934 123812

4092 122032 3939 125101 3924 124453 3935 123809

4098 122012 3948 125090 3944 124449 3936 123356

4106 121895 3950 125058 3946 124445 3944 123292

 3965 125043 3949 124381 3979 123081

 3978 125033 3951 124369 3992 122879

 3994 124972 3959 124322 3998 122779

 4002 124959 3968 124199

 4039 124937 3983 124141

 4049 124894 3997 124088

 4051 124816 4044 124072

 4079 124725 4050 124033

 4227 124706 4063 124019

 4259 124007

 4317 123883

78 C. Rajendran and H. Ziegler

Table 4a. Net set of non-dominated solutions obtained for the problem size (100×5)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Cmax F Cmax F Cmax F Cmax F Cmax F

5493 262040 5284 247380 5175 271196 5017 269625 5250 255617

5495 257719 5286 247261 5177 268438 5018 264631 5251 255583

5500 256992 5287 247127 5183 267517 5019 244402 5252 255567

5527 256068 5288 247056 5186 267344 5021 234041 5255 247072

5564 256056 5291 246957 5193 255989 5032 232875 5256 246971
5570 256010 5297 246937 5195 253303 5035 230917 5257 246765

5609 255943 5299 246879 5206 244864 5042 230812 5259 246663

 5301 246864 5208 243806 5043 230707 5260 245660

 5302 246245 5209 243748 5044 229982 5261 244612
 5311 245621 5212 242690 5082 229933 5263 244514

 5341 245585 5221 242187 5112 229881 5264 244450

 5345 245578 5239 241938 5182 229866 5267 244135

 5240 241564 5189 229857 5272 244104
 5244 240708 5195 229769 5276 244011

 5250 240634 5298 243919

 5251 240594 5303 243668

 5262 240509 5304 243475
 5267 240412 5305 243376

 5294 240378 5307 243301

 5297 240363 5320 243258

 5368 240282 5324 243155
 5369 240198 5333 242928

 5339 242822

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 79

Table 4a. (continued)

Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

Cmax F Cmax F Cmax F Cmax F Cmax F

5135 262520 5247 252470 5094 251687 5448 280016 5322 278222

5139 242167 5251 251231 5096 251658 5454 256252 5328 257564
5141 242024 5255 247623 5097 248092 5465 252622 5329 257174

5143 241709 5256 247599 5100 247674 5469 252421 5330 255535

5146 240991 5257 247270 5101 246505 5470 252258 5334 250817

5148 240787 5265 247167 5102 245524 5471 252173 5342 247238
5150 238910 5270 245856 5104 245488 5474 251859 5346 246752

5156 237401 5275 245558 5105 243726 5477 251854 5348 246746

5157 236947 5276 244786 5106 243411 5479 251584 5372 246241

5158 236466 5277 244483 5108 241799 5481 251560 5386 245651
5159 236098 5279 244321 5111 241677 5513 251541 5389 245545

5161 236039 5282 243988 5121 240670 5519 251448

5162 236030 5296 243522 5127 240547 5523 251287

5164 235841 5298 243281 5130 236569 5542 251277
5172 235832 5305 242469 5133 236238

5178 235607 5376 242417 5135 235532

5179 235466 5140 235146

5181 235425 5150 234557
5183 235373 5152 234189

5204 235347 5155 233910

5220 235326 5159 233908

5288 235270 5196 233754
 5218 233738

most algorithms are able to discover many of the non-dominated solutions on the net
front. This is evident from comparing the elements in a given row with the number in
the last column of the corresponding row. However, this is not the case when the
number of jobs are equal to 50 and 100. It shows that as the number of jobs increases,
it becomes increasingly difficult for any single algorithm to discover many non-
dominated solutions. In addition, as stated earlier, the different concatenations of the
JIS and JSS have served to discover many non-dominated solutions, especially in the
case of relatively large-sized problems.

It appears that the proposed variants are able to discover many non-dominated
solutions, especially for the larger-sized problems, as opposed to the benchmark
solutions provided by Framinan and Leisten. It is interesting to note that we are not
able to identify which variant is the best among all proposed ones. This is so because
the permutation flowshop scheduling problems become harder to solve as the number
of jobs increases, and it requires the implementation of many variants of the MOACA
to discover as many non-dominated solutions possible. These observations point to
the fact that it is indeed challenging to develop a single multi-objective flowshop
scheduling algorithm that can discover many non-dominated solutions, all or most by
itself.

80 C. Rajendran and H. Ziegler

Table 4b. Net set of non-dominated solutions obtained for the problem size (100×10)

Problem 1 Problem 2 Problem 3

Cmax F Cmax F Cmax F

5781 339398 5362 299003 5691 300928

5782 339268 5364 297917 5692 300822
5785 337379 5365 297799 5695 299691

5787 317712 5367 297348 5696 299481

5789 317638 5370 297159 5698 299342

5792 315311 5372 297037 5700 298874
5799 315182 5373 296576 5701 298842

5800 314591 5375 296557 5702 298829

5801 314449 5377 289483 5703 298254

5802 313699 5380 289090 5704 298240
5807 313256 5386 286373 5705 296260

5810 312685 5387 283589 5720 295830

5811 312656 5391 283584 5724 295394

5812 311939 5394 283533 5726 295343
5814 311913 5395 283258 5731 295299

5834 311071 5403 282655 5732 295189

5863 309427 5407 282501 5736 295042

5865 309314 5410 282206 5737 295030
5866 309193 5414 281538 5738 294362

5869 309122 5418 281040 5748 294359

5873 308550 5422 280611 5750 294046

5874 306790 5426 280444 5753 293608
5875 306581 5434 279914 5755 293489

5878 306563 5437 279897

5880 305547 5447 279259

5884 305467 5449 278666
5897 305449 5450 278656

5902 305341 5452 278650

5910 305076 5462 278591

5914 304996 5464 278464
5915 304846 5465 278418

5920 304829 5575 278415

5934 304500 5593 278229

5935 304305 5648 278189
6010 304148 5653 278142

6022 304128 5661 278077

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 81

Table 4b. (continued)

Problem 4 Problem 5

Cmax F Cmax F Cmax F Cmax F

5826 342759 6048 307189 5501 326804 5649 290309

5828 342586 6053 307102 5505 326777 5650 290256
5829 340868 6063 307047 5507 301808 5670 290138

5831 340587 6065 306547 5509 301785 5672 290086

5837 339158 6069 306527 5512 298541 5673 289995

5839 323104 6074 306430 5520 297036 5676 289959
5852 322128 6086 306249 5521 296912 5769 289957

5855 322122 6088 306165 5530 296881 5797 289915

5860 321668 6105 306153 5535 296620 5799 289827

5861 320315 6153 306137 5536 295339 5821 289714
5865 319834 6157 306034 5537 295293 5831 289682

5868 319585 5545 294866 5835 289667

5870 319446 5548 294856 5836 289589

5871 318276 5549 294668 5869 289498
5872 317697 5552 294610

5874 317065 5554 293697

5875 316522 5566 293475

5880 316507 5569 293399
5883 313202 5570 293396

5884 311505 5571 293255

5886 311480 5573 293120

5891 310851 5576 293013
5902 309761 5580 292715

5907 309571 5584 292566

5911 309244 5587 292561

5922 309212 5588 292507
5923 309156 5589 292506

5933 309090 5595 292424

5938 308370 5597 292346

5943 308319 5600 292268
5952 308301 5602 292165

5957 308212 5605 292005

5987 307969 5607 291647

5994 307854 5621 291297
6010 307675 5628 291114

6037 307488 5631 290582

6042 307235 5645 290567

6047 307233 5646 290424

82 C. Rajendran and H. Ziegler

Table 4b. (continued)

Problem 6 Problem 7 Problem 8 Problem 9 Problem 10

Cmax F Cmax F Cmax F Cmax F Cmax F

5308 310735 5602 299370 5653 313225 5916 354188 5881 328588

5311 310461 5603 298022 5655 312447 5918 353627 5883 328000
5314 309833 5604 298018 5657 308086 5919 349544 5889 327950

5315 309763 5611 296590 5658 307545 5920 348927 5892 327706

5316 309576 5617 296255 5668 306254 5923 347760 5897 327126

5317 292932 5619 296149 5670 306097 5928 319642 5903 300553
5318 292018 5620 295646 5672 306018 5932 319589 5904 300541

5319 291083 5622 292096 5675 304991 5935 319029 5907 300520

5321 289478 5623 292018 5677 303990 5940 313635 5909 300223

5323 282469 5641 290126 5687 303534 5941 312810 5910 299016
5326 281203 5643 288820 5689 303284 5942 312755 5911 298938

5331 280751 5662 288389 5690 302373 5955 312314 5912 298285

5332 280337 5673 287045 5694 301378 5958 312309 5914 298114

5334 280324 5676 286988 5695 299976 5966 311647 5916 298045
5345 279544 5696 286907 5697 299968 5969 311282 5918 297909

5347 279248 5701 285714 5698 299909 5971 310409 5921 297824

5348 278753 5702 284972 5699 299598 5975 310374 5932 297333

5350 278714 5794 284844 5709 299062 5979 310081 5933 297131
5358 278438 5832 284811 5717 298993 5982 310012 5938 296920

5359 278282 5839 284795 5721 298957 5988 309728 5951 296736

5361 277590 5902 284792 5723 298119 5989 309149 5961 296729

5404 277316 5931 284765 5726 298072 6010 308630 5962 296575
5405 277299 5933 284700 5730 298027 6025 308627 5978 296442

5406 277240 5945 284678 5732 297881 6027 308614 6001 296406

5413 277205 5959 284671 5745 297642 6028 308121 6002 296398

5414 277084 5753 297475 6032 308099 6015 296343
5422 276743 5761 296902 6035 307375 6023 296140

5425 276612 5770 296787 6045 307314

5429 276591 5777 296511 6065 307269

5432 276275 5825 296203 6098 307260
5434 276227 5864 296191 6122 307083

5435 276196 5871 296094 6144 307034

5440 275644 5881 296083 6163 306982

5449 275639 5896 296031 6178 306794
5452 275164 5915 295714

5454 274997 5988 295638

5462 274813

5465 274749
5510 274701

5611 274700

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 83

Table 4c. Net set of non-dominated solutions obtained for the problem size (100×20)

Problem 1 Problem 2 Problem 3

Cmax F Cmax F Cmax F Cmax F Cmax F

6350 394882 6521 375831 6306 396288 6383 400928 6682 379809

6361 391134 6571 375818 6307 395091 6389 400907 6710 379412
6370 390878 6581 375537 6309 394851 6390 400820 6711 379373

6373 390861 6585 375381 6312 394722 6391 400743 6821 379168

6374 390802 6588 375000 6314 394441 6394 400720 6822 379119

6375 390755 6590 374806 6315 393407 6395 392250 6823 379111
6377 389788 6593 374671 6317 393346 6425 391946 6830 379110

6380 389685 6651 374663 6328 393284 6426 387453 6832 379103

6386 386479 6736 374010 6332 391493 6452 386915 6833 379079

6387 386441 6786 373687 6338 391188 6471 386879 6838 379026
6389 386403 6790 373563 6357 391020 6475 386455 6842 378955

6392 386402 6799 373534 6367 390464 6477 384609 6868 378783

6395 386283 6800 373462 6382 390404 6489 384063

6402 385681 6809 373250 6383 390189 6503 384058

6403 385482 6814 373218 6385 390149 6504 384040

6405 385028 6838 373193 6386 390119 6506 383913

6415 384986 6840 373148 6397 389714 6513 383880

6418 384977 6902 373140 6398 389576 6514 383868
6420 384015 6915 373051 6403 387929 6515 383813

6423 383628 6405 387610 6522 383017

6424 383613 6408 387375 6523 382953

6426 383595 6411 387010 6525 382821

6440 383142 6412 386878 6529 382789

6444 382900 6413 386726 6530 382774

6446 382899 6420 385568 6536 382178

6447 382390 6423 384944 6546 382078

6451 381468 6426 384892 6547 381796

6452 381426 6429 383777 6548 381783

6455 381416 6431 383224 6567 381432

6457 381372 6433 383211 6575 381220

6464 381365 6538 382977 6579 381125

6475 380330 6543 382973 6580 381074

6476 380215 6549 382925 6581 381052

6481 380196 6557 382658 6582 380687

6487 379899 6562 382625 6599 380225

6492 379866 6572 382540 6600 380222

6493 379847 6594 382249 6601 380152

6497 379795 6599 381994 6610 380146

6506 378838 6625 380997 6651 380101

6510 378524 6816 380868 6653 379948

6514 375922 6818 380840 6666 379813

6520 375833 6835 380664 6667 379812

84 C. Rajendran and H. Ziegler

Table 4c. (continued)

Problem 4 Problem 5 Problem 6

Cmax F Cmax F Cmax F Cmax F

6363 403871 6690 382236 6433 394215 6488 394212
6364 401043 6692 382176 6439 388296 6490 394184
6369 399804 6699 381909 6442 387483 6491 394131
6370 399801 6711 381861 6443 386821 6495 394128
6372 399748 6716 381532 6445 386813 6501 394056
6375 398295 6727 381290 6447 386485 6506 392865
6377 398225 6820 381012 6448 386464 6508 391704
6380 397772 6823 380950 6450 386448 6513 391193
6383 397764 6825 380885 6451 386210 6514 391152
6385 396809 6924 380771 6452 386194 6533 389728
6388 396808 6928 380594 6458 385961 6536 389501
6392 396788 6461 385900 6547 389401
6393 396571 6468 385883 6555 388696
6395 396169 6474 384655 6557 387309
6398 395924 6475 384458 6558 386700
6400 395858 6488 384267 6563 386689
6405 394698 6489 384114 6564 386365
6407 392664 6491 383889 6569 386332
6409 392493 6499 383632 6583 385920
6414 392489 6504 381632 6587 385885
6417 392201 6510 381470 6591 385066
6423 390799 6516 381031 6592 384814
6447 389527 6519 381000 6593 384692
6450 388340 6538 380632 6602 384684
6456 387805 6546 380283 6618 383656
6462 387791 6565 380246 6625 383452
6464 387637 6571 380112 6675 383147
6496 387134 6572 379488 6679 383093
6503 387084 6601 379214 6680 383014
6512 386838 6602 378929 6681 382480
6516 386682 6615 378847 6693 382430
6526 386593 6619 378771 6695 382385
6530 386104 6621 378717 6699 382189
6538 386012 6631 378533 6705 381665
6541 385885 6639 378509 6722 381548
6543 385628 6642 377717 6731 381444
6545 385608 6643 377579 6757 380832
6548 383630 6656 377482 6786 380640
6571 383263 6658 377466 6789 380601
6573 383056 6667 377336 6790 380479
6582 383033 6670 377302 6804 380466
6616 382980 6673 377257 6816 380253
6619 382857 6682 376806 6827 380235
6644 382855 6699 376432 6829 379890
6660 382854 6701 376421 6864 379836
6682 382414 6709 375943
6686 382393 6732 375857
6688 382306 6733 375346

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 85

Table 4c. (continued)

Problem 7 Problem 8 Problem 9 Problem 10

Cmax F Cmax F Cmax F Cmax F Cmax F

6394 403384 6654 383872 6541 411389 6413 397716 6528 409325

6395 403352 6658 383581 6543 411309 6415 397701 6529 409286
6397 398870 6663 383551 6549 411152 6419 397305 6544 407571

6398 398859 6665 383232 6557 410992 6425 396813 6545 401166

6400 398775 6669 383185 6566 410727 6426 388701 6551 400822

6419 398477 6677 382680 6567 410658 6430 388686 6556 400049
6421 398436 6679 382665 6568 409888 6433 388652 6559 399751

6431 398154 6688 382360 6570 409723 6435 388620 6564 398717

6432 396999 6698 381782 6573 405352 6451 388522 6569 398087

6435 396899 6699 381671 6575 405308 6456 388273 6570 396745
6442 396896 6701 381579 6579 405213 6468 387912 6573 396017

6445 396365 6824 381504 6585 402822 6470 387370 6583 395563

6450 393029 6592 402554 6479 387006 6585 395375

6456 392973 6599 401899 6480 386888 6588 394639
6458 392923 6600 400210 6483 386846 6603 393528

6461 392831 6614 400202 6494 386821 6606 393255

6466 392755 6615 400093 6497 386799 6624 392822

6470 392704 6638 400061 6507 386701 6625 392802
6471 392650 6639 399929 6523 386308 6626 392699

6473 391149 6641 399572 6532 385566 6628 392668

6477 391045 6643 398987 6533 385554 6637 391442

6478 390977 6644 398953 6540 385510 6644 391163
6485 390884 6652 398752 6543 385057 6654 390946

6490 390566 6653 398713 6545 384624 6663 389961

6499 389357 6654 398649 6568 383717 6667 389957

6509 389329 6662 398398 6571 383642 6672 389951
6510 388908 6677 398346 6689 383329 6674 389815

6512 388044 6678 397274 6695 383090 6678 389796

6513 387837 6679 396833 6701 382870 6688 389734

6515 387810 6680 396752 6774 382841 6693 389711
6516 387804 6694 396682 6786 382622 6708 389661

6549 387666 6706 395013 6795 382492 6714 389348

6554 385481 6711 394922 6803 382326 6721 388859

6563 385460 6721 394850 6812 382320 6725 388567
6577 385174 6731 394669 6834 382269 6734 388468

6578 385009 6733 393458 6863 382215 6742 388048

6581 384358 6847 393310 6871 382200 6764 387826

6627 384326 6849 393077 6874 382151 6769 387817
6628 384311 6874 392935 6907 382089 6813 387803

6635 384299 6891 392906 6919 381969 6845 387564

6636 384046 6982 392592 6944 381918 6852 387169

6639 384008 7018 392477 6858 387096

86 C. Rajendran and H. Ziegler

(n
m

)

(2
0

5)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
4

3
4

3
4

3
3

2
3

1
2

4
4

4
4

4
4

4
4

4
1

5

2
3

2
3

0
3

2
0

2
2

1
2

2
0

0
0

1
0

0
0

1
6

10

3
4

6
4

5
4

5
3

3
2

2
2

5
0

1
2

4
0

0
0

4
6

14

4
7

4
7

4
7

4
5

3
6

2
7

2
8

5
7

7
7

5
7

6
0

13

5
12

12

12

12

12

12

13

12

13

12

13

13

14

13

14

13

12

14

13

13

13

19

6
10

8

10

8
10

8

9
9

9
7

10

12

9
8

8
8

9
8

8
7

8
24

7
0

0
0

0
0

0
1

3
1

5
1

0
0

0
0

0
0

4
0

0
2

12

8
9

9
9

9
9

9
6

7
7

7
7

8
4

7
5

5
6

7
5

5
2

19

9
2

11

2
11

2

11

5
5

5
7

5
7

5
10

4

8
4

8
5

4
6

17

10

4
5

4
5

4
5

5
5

4
3

5
8

8
6

4
5

7
3

5
3

2
13

A
ve

ra
ge

0.

39

0.
40

0.
39

0.
37

0.
39

0.
39

0.
33

0.
33

0.
35

0.
30

0.
35

0.
41

0.
37

0.

37

0.
34

0.
39

0.
34

0.
37

0.
33

0.
34

0.
30

T
ab

le
 5

. C
on

tr
ib

ut
io

ns
 o

f
th

e
M

O
A

C
A

 v
ar

ia
nt

s
an

d
th

e
so

lu
tio

ns
 f

ro
m

 F
ra

m
in

an
 a

nd
 L

ei
st

en
 to

 th
e

ne
t n

on
-d

om
in

at
ed

 f
ro

nt

A
bs

ol
ut

e
nu

m
be

rs
, e

xc
ep

t A
ve

ra
ge

; A
ve

ra
ge

 is
 r

el
at

iv
e

co
nt

ri
bu

tio
n

co
ns

id
er

in
g

al
l p

ro
bl

em
s

in
 th

e
re

sp
ec

ti
ve

 s
et

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 87

(n
m

)

(2
0

10
)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
8

4
8

6
8

6
2

4
4

4
3

4
6

4
4

5
3

3
2

6
6

15

2
13

3

13

3
13

3

10

9
10

11

9

8
10

12

6

12

11

5
9

12

20

31

3
7

4
8

4
8

4
3

2
1

6
6

3
5

3
6

8
7

5
1

2
6

15

4
8

8
8

8
8

8
8

11

4
4

11

4
9

11

7
6

5
7

7
9

2
28

5
5

2
5

2
5

2
5

5
2

3
1

2
0

1
4

3
0

2
2

2
1

12

6
4

7
4

7
4

7
5

7
7

6
7

8
14

1

5
9

10

3
4

6
0

35

7
7

9
7

9
7

9
5

8
5

8
5

10

12

13

13

15

13

14

13

14

12

16

8
10

2

10

2
10

2

5
1

4
0

5
0

2
5

1
0

3
3

0
1

2
16

9
9

12

8
13

9

12

9
7

11

12

11

10

2
7

5
6

4
6

8
2

8
19

10

5
5

5
5

5
5

5
4

5
8

8
10

5

3
10

3

4
5

4
1

5
22

A
ve

ra
ge

0.

40

0.
28

0.
40

0.
30

0.
41

0.
30

0.
28

0.
28

0.
25

0.
31

0.
31

0.
29

0.
30

0.

30

0.
32

0.
34

0.
29

0.
28

0.
24

0.
27

0.
31

T
ab

le
 5

. (
co

nt
in

ue
d)

88 C. Rajendran and H. Ziegler

(n
m

)

(2
0

20
)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
10

8

7
8

7
8

10

9
6

8
14

9

8
12

11

11

6

8
12

7

23

30

2
4

6
4

6
4

6
4

1
4

2
7

2
3

7
3

7
1

3
3

4
9

26

3
20

20

20

20

20

20

13

14

12

13

20

21

14

16

6

11

11

9
7

15

23

43

4
10

6

10

6
10

6

10

10

10

6
10

8

4
6

7
8

7
8

4
8

6
20

5
7

2
9

2
7

2
2

1
8

0
5

1
7

1
5

1
0

6
2

4
10

27

6
7

9
7

9
7

9
4

8
6

10

4
7

6
6

8
9

6
7

4
8

6
27

7
14

7

14

7
14

7

13

7
10

9

13

11

8
14

5

16

9
13

5

10

17

23

8
12

12

6

12

6
12

3

13

0
6

2
10

10

5

8
5

8
5

9
11

10

44

9
8

6
8

6
8

6
5

10

5
12

10

4

9
10

9

12

7
10

3

10

2
30

10

6
7

6
10

6

7
4

9
5

10

3
10

8

10

11

5
6

7
8

11

6
22

A
ve

ra
ge

0.

34

0.
28

0.
32

0.
29

0.
32

0.
28

0.
25

0.
28

0.
25

0.
27

0.
31

0.
29

0.
26

0.

31

0.
27

0.
31

0.
22

0.
28

0.
20

0.
31

0.
39

T
ab

le
 5

. (
co

nt
in

ue
d)

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 89

(n
m

)

(5
0

5)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
0

0
0

0
0

0
1

3
1

2
1

0
2

0
1

1
1

0
0

0
0

13

2
4

0
5

0
5

0
3

0
7

1
4

0
1

0
0

1
1

0
0

10

0
36

3
1

1
0

1
0

2
2

0
3

3
2

2
0

1
0

0
1

0
2

0
0

18

4
0

4
0

0
0

4
2

0
6

1
0

4
3

0
1

0
1

0
0

0
0

22

5
0

1
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

1
1

0
0

5

6
0

0
0

1
0

0
0

2
0

3
0

1
1

1
0

0
0

0
2

1
0

12

7
2

0
2

0
2

0
2

1
0

0
0

1
0

1
0

0
3

2
2

0
1

15

8
0

1
0

1
0

1
1

1
0

1
0

5
0

0
1

0
6

0
0

1
0

17

9
0

3
0

1
0

1
5

0
2

0
3

2
5

0
0

1
3

3
6

0
0

32

10

0
3

0
0

0
2

1
6

0
0

7
1

0
0

0
0

0
0

0
0

0
18

A
ve

ra
ge

0.

03

0.
08

0.
03

0.
02

0.
03

0.
05

01
0

0.
11

0.
08

0.
07

0.
08

0.
09

0.
06

0.

02

0.
02

0.
01

0.
09

0.
04

0.
08

0.
04

0.
01

T
ab

le
 5

. (
co

nt
in

ue
d)

90 C. Rajendran and H. Ziegler

 (n
m

)

(5
0

10
)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
3

0
3

1
3

1
4

2
1

0
4

4
2

1
0

2
2

3
0

0
0

29

2
3

0
3

1
3

1
0

0
1

6
4

0
1

7
0

3
7

1
2

5
0

41

3
3

8
3

1
3

8
1

0
1

0
5

2
3

0
2

0
0

1
0

1
0

28

4
0

1
1

1
0

0
0

0
0

2
5

0
0

1
0

8
7

3
0

2
3

34

5
0

0
0

0
0

0
0

0
0

0
2

0
0

5
0

0
0

0
11

5

0
23

6
0

0
0

1
0

1
0

0
0

2
6

8
8

0
0

1
1

0
1

1
0

29

7
0

1
0

2
0

1
7

2
0

4
4

6
0

1
0

3
2

3
3

1
0

38

8
1

0
1

0
4

0
0

0
0

1
1

5
2

12

4
2

2
3

7
2

0
46

9
0

3
6

0
0

0
3

1
0

1
0

0
2

0
3

2
0

0
3

0
0

24

10

0
4

0
3

0
2

0
0

0
5

0
6

3
8

0
0

2
1

0
0

0
30

A
ve

ra
ge

0.

03

0.
06

0.
06

0.
03

0.
04

0.
05

0.
05

0.
02

0.
01

0.
06

0.
10

0.
10

0.
07

0.

10

0.
03

0.
06

0.
06

0.
04

0.
09

0.
05

0.
01

T
ab

le
 5

. (
co

nt
in

ue
d)

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 91

 (n
m

)

(5
0

20
)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
2

0
4

2
5

2
0

0
8

1
1

0
3

0
0

2
1

0
3

0
0

32

2
0

4
0

0
0

1
4

0
0

1
0

0
0

0
4

3
0

5
3

0
0

24

3
0

0
1

0
0

0
0

0
4

0
0

0
0

0
5

1
6

0
3

3
2

25

4
1

0
0

0
0

0
0

3
0

10

0
0

0
0

1
0

5
7

0
3

0
30

5
0

0
0

0
0

0
0

2
9

0
0

0
0

0
1

2
9

0
15

0

0
38

6
0

0
0

0
0

0
4

3
0

2
0

0
0

0
2

7
0

1
7

0
4

30

7
0

0
0

0
0

1
3

11

5
0

3
5

1
4

3
0

0
0

3
0

0
39

8
0

0
0

8
0

6
0

8
1

0
1

2
1

5
0

4
0

8
2

1
0

41

9
0

0
0

0
0

0
3

0
0

3
0

0
6

0
6

0
11

2

0
1

1
33

10

0
0

0
0

0
0

0
0

0
1

0
2

1
4

1
0

10

1
1

0
0

21

A
ve

ra
ge

0.

01

0.
02

0.
02

0.
03

0.
02

0.
03

0.
05

0.
07

0.
08

0.
06

0.
01

0.
03

0.
04

0.

04

0.
08

0.
06

0.
15

0.
08

0.
11

0.
03

0.
02

T
ab

le
 5

. (
co

nt
in

ue
d)

92 C. Rajendran and H. Ziegler

 (n
m

)

(1
00

5)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
0

0
0

0
0

0
0

0
0

0
2

0
1

0
0

0
4

0
0

0
0

7

2
0

2
0

0
0

0
3

1
1

0
0

0
1

0
0

0
0

0
4

0
0

12

3
2

0
1

0
0

0
1

1
1

7
1

2
3

3
1

0
1

0
0

0
0

22

4
4

0
4

0
4

1
3

0
0

0
1

3
0

0
0

0
0

0
0

0
0

14

5
3

3
2

0
2

0
0

2
0

1
6

1
0

3
0

0
0

0
0

2
0

23

6
0

2
6

0
1

0
0

1
7

1
1

0
0

0
0

2
0

0
1

0
0

22

7
0

2
0

2
0

2
3

2
4

1
2

2
0

1
0

0
1

1
0

0
0

16

8
1

0
7

1
1

1
0

0
0

0
3

5
1

1
0

2
1

1
0

0
0

23

9
2

1
1

0
0

0
0

0
1

1
0

0
0

0
0

4
0

0
3

2
0

14

10

1
2

1
0

0
0

1
0

0
0

2
0

0
1

0
0

2
1

0
0

0
11

A
ve

ra
ge

0.

08

0.
08

0.
12

0.
02

0.
05

0.
02

0.
08

0.
04

0.
08

0.
05

0.
12

0.
07

0.
04

0.

05

0.
01

0.
05

0.
09

0.
02

0.
06

0.
02

0.
00

T
ab

le
 5

. (
co

nt
in

ue
d)

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 93

 (n
m

)

(1
00

10
)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
2

0
1

2
3

1
3

0
3

8
2

0
0

1
0

0
7

0
4

0
0

36

2
2

0
2

0
0

0
0

2
3

0
3

0
4

1
1

0
10

0

10

0
0

36

3
8

3
0

0
2

0
0

5
0

0
2

1
0

0
0

0
2

0
0

0
0

23

4
1

0
5

3
8

0
2

3
5

8
1

0
0

4
0

1
8

0
4

1
0

49

5
2

0
0

0
3

2
0

0
4

0
5

2
7

2
0

6
0

11

2
6

0
52

6
0

0
3

0
0

0
4

4
3

1
12

0

2
3

0
0

0
0

7
1

0
40

7
0

2
0

5
0

1
4

0
1

0
4

0
1

0
1

1
2

3
2

0
0

25

8
2

1
4

0
3

2
0

0
2

0
0

6
1

6
1

0
0

7
2

3
0

36

9
3

3
2

0
0

0
0

1
0

0
0

0
1

8
3

1
6

2
1

3
0

34

10

0
2

5
0

0
0

6
0

0
2

3
0

4
1

0
2

1
0

1
0

0
27

A
ve

ra
ge

0.

07

0.
04

0.
06

0.
03

0.
05

0.
02

0.
06

0.
05

0.
05

0.
05

0.
09

0.
03

0.
05

0.

07

0.
02

0.
03

0.
10

0.
06

0.
09

0.
03

0.
00

T
ab

le
 5

. (
co

nt
in

ue
d)

94 C. Rajendran and H. Ziegler

(n
m

)

(1
00

20
)

M
O

A
C

A
 v

ar
ia

nt
s

P
ro

bl
em

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

F
&

L

N
um

be
r

of
 s

ol
u-

ti
on

s
in

th
e

ne
t

fr
on

t

1
3

0
0

0
0

0
7

0
19

0

0
0

0
0

11

4
5

0
8

3
1

61

2
4

0
0

0
0

0
0

0
7

2
9

1
6

0
2

0
2

0
2

7
0

42

3
2

3
9

0
1

0
5

2
2

7
7

3
0

1
0

0
1

4
7

0
0

54

4
1

0
0

0
3

0
0

1
2

3
0

0
8

4
15

5

8
7

1
0

1
59

5
0

2
3

0
2

0
0

0
0

0
0

9
1

2
0

0
19

2

2
8

0
48

6
3

0
5

0
0

0
0

0
2

0
2

5
7

6
0

0
6

5
4

0
0

45

7
0

2
2

0
0

0
0

0
0

5
2

7
4

3
2

0
8

15

0
4

0
54

8
0

0
1

0
0

3
8

3
7

0
2

0
0

6
0

0
2

0
10

0

0
42

9
6

0
0

0
0

0
4

0
0

0
1

0
0

2
4

0
8

8
0

8
0

41

10

0
1

1
0

0
0

4
0

3
0

0
1

9
2

6
3

2
5

3
2

0
42

A
ve

ra
ge

0.

04

0.
02

0.
04

0.
00

0.
01

0.
01

0.
06

0.
01

0.
08

0.
03

0.
05

0.
05

0.
07

0.

06

0.
08

0.
02

0.
13

0.
09

0.
08

0.
07

0.
00

T
ab

le
 5

. (
co

nt
in

ue
d)

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 95

5 Conclusions

The problem of scheduling in permutation flowshops with the objectives of
minimizing the makespan and total flowtime of jobs was investigated. A new multi-
objective ant-colony algorithm, called MOACA, has been developed with many
unique features. Twenty variants of MOACA have been proposed. Benchmark
flowshop scheduling problems have been solved by using these variants of the
MOACA, and a non-dominated solution front is obtained by consolidating the
solutions obtained from these variants and the benchmark solutions available in the
literature. It is evident from the computational evaluation that the proposed variants
of the MOACA are quite effective in discovering many non-dominated solutions. We
believe that the non-dominated solutions obtained by us could serve as possible
benchmarks for future researchers as much as we have benefited from the earlier
researchers. The complete set of non-dominated solutions for every problem instance
is given to serve an as easy reference for future researchers.

Acknowledgments. The first author thanks the Alexander-von-Humboldt Foundation
for supporting him through the Fellowship in 2003, 2004 and 2006. Thanks are also
due to Varadharajan, Madhushini and Christian Petri for their help in consolidating
the results. Special thanks are due to Jose Framinan and Rainer Leisten for sharing
their benchmark solutions with us.

Appendix

The step-by-step procedure of the job-index-based insertion scheme (JIS) is presented
below.

Step 1: Let the input sequence to the JIS be denoted, in general, by S. Let Z(S) denote

its compromise objective function value for the given w1 and w2. Let [k]
denote the job found in position k of S. Initialize i = 0.

Step 2: Set i := i + 1.
Step 3: For k = 1 to n do the following:

if i ≠ [k]
then

remove job i from its current position in S, insert job i in position k of S
and adjust the sequence accordingly by not changing the relative
positions of other jobs in S. Let the resultant sequence be denoted by Σk;
calculate its makespan and total flowtime denoted respectively by
Cmax(Σk) and F(Σk); let its compromise objective function value be
denoted by Z(Σk); check if Σk enters the non-dominated front, and if so,
accordingly update the front; also, if Cmax(Σk) < up_Cmax, set up_Cmax =
Cmax(Σk); and likewise, if F(Σk) < up_F, set up_F = F(Σk).

else
set k′ = k.

Step 4: Determine sequence Σl such that
Z(Σl) = min{ Z(Σk) for k = 1, 2, …, n, and k ≠ k′ }.
If Z(Σl) < Z(S) then set S = Σl and Z(S) = Z(Σl).

96 C. Rajendran and H. Ziegler

Step 5: Go back to Step 2 if i < n; else stop. Sequence S is the output sequence from
the JIS.

The step-by-step procedure of the job-index-based swap scheme (JSS) is presented
below.

Step 1: Let the input sequence to the JSS be denoted, in general, by S. Let Z(S)

denote its compromise objective function value for the given w1 and w2. Let
[k] denote the job found in position k of S. Initialize i = 0.

Step 2: Set i := i + 1.
Step 3: For k = 1 to n do the following:

if i ≠ [k]
then

generate sequence Σk which differs from S only by having swapped jobs
i and [k]; calculate its makespan and total flowtime; let its compromise
objective function value be denoted by Z(Σk); check if Σk enters the non-
dominated front, and if so, accordingly update the front; also, if
Cmax(Σk) < up_Cmax, set up_Cmax = Cmax(Σk); and likewise, if F(Σk) <
up_F, set up_F = F(Σk)

else
set k′ = k.

Step 4: Determine sequence Σl such that
Z(Σl) = min{ Z(Σk) for k = 1, 2, …, n, and k ≠ k′ }.
If Z(Σl) < Z(S) then set S = Σl and Z(S) = Z(Σl).

Step 5: Go back to Step 2 if i < n; else stop. Sequence S is the output sequence from
the JSS.

References

Allahverdi, A.: A new heuristic for m-machine flowshop scheduling problem with bicriteria of
makespan and maximum tardiness. Computers & Operations Research 31, 157–180 (2004)

Allahverdi, A., Aldowaisan, T.: New heuristics to minimize total completion time in m-
machine flowshops. International Journal of Production Economics 77, 71–83 (2002)

Armentano, V.A., Arroyo, J.E.C.: An application of a multi-objective tabu search algorithm to
a bicriteria flowshop problem. Journal of Heuristics 10, 463–481 (2004)

Arroyo, J.E.C., Armentano, V.A.: Genetic local search for multi-objective flowshop scheduling
problems. European Journal of Operational Research 167, 717–738 (2005)

Bagchi, T.P.: Multiobjective scheduling by genetic algorithms. Kluwer Academic Publishers,
Boston (1999)

Ben-Daya, M., Al-Fawzan, M.: A tabu search approach for the flow shop scheduling problem.
European Journal of Operational Research 109, 88–95 (1998)

Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n-job, m-machine
sequencing problem. Management Science 16, B630–B637 (1970)

Chakravarthy, K., Rajendran, C.: A heuristic for scheduling in a flowshop with the bicriteria of
makespan and maximum tardiness minimization. Production Planning and Control 10, 707–
714 (1999)

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 97

Chang, P.-C., Hsieh, J.-C., Lin, S.G.: The development of gradual priority weighting approach
for the multi-objective flowshop scheduling prob¬lem. International Journal of Production
Economics 79, 171–183 (2002)

Chung, C.-S., Flynn, J., Kirca, O.: A branch and bound algorithm to minimize the total flow
time for m-machine permutation flowshop problems. International Journal of Production
Economics 79, 185–196 (2002)

Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algorithm for
multiobjective optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E.,
Guervos, J.J.M., Schwefel, H.P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848.
Springer, Heidelberg (2000)

Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based selection in
evolutionary multiobjective optimization. In: Spector, L., Goodman, E.D., Wu, A., Langdon,
W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E.
(eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pp. 283–290. Morgan Kaufmann, San Francisco (2001)

Daniels, R.L., Chambers, R.J.: Multiobjective flow-shop scheduling. Naval Research
Logistics 37, 981–995 (1990)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

Dong, X., Huang, H., Chen, P.: An improved NEH-based heuristic for the permutation
flowshop problem. Computers & Operations Research 35, 3962–3968 (2008)

Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)

Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics – Part B 26, 29–
41 (1996)

Framinan, J.M., Leisten, R.: An efficient constructive heuristic for flowtime minimisation in
permutation flow shops. OMEGA 31, 311–317 (2003)

Framinan, J.M., Leisten, R.: A heuristic for scheduling a permutation flowshop with makespan
objective subject to maximum tardiness. International Journal of Production Economics 99,
28–40 (2006)

Framinan, J.M., Leisten, R.: A multi-objective iterated greedy search for flowshop scheduling
with makespan and flowtime criteria. OR Spectrum, published online before print, August 4
(2007)

Framinan, J.M., Leisten, R., Ruiz-Usano, R.: Efficient heuristics for flowshop sequencing with
the objectives of makespan and flowtime minimisation. European Journal of Operational
Research 141, 559–569 (2002)

Framinan, J.M., Ruiz-Usano, R., Leisten, R.: Comparison of heuristics for flowtime
minimisation in permutation flowshops. Computers & Operations Research 32, 1237–1254
(2005)

Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research 1, 117–129 (1976)

Geiger, M.J.: On operators and search space topology in multi-objective flow shop scheduling.
European Journal of Operational Research 181, 195–206 (2007)

Gelders, L.F., Sambandam, N.: Four simple heuristics for scheduling a flow-shop. International
Journal of Production Research 16, 221–231 (1978)

Ho, J.C.: Flowshop sequencing with mean flow time objective. European Journal of
Operational Research 81, 571–578 (1995)

Ignall, E., Schrage, L.: Application of the branch-and-bound technique to some flowshop
scheduling problems. Operations Research 13, 400–412 (1965)

98 C. Rajendran and H. Ziegler

Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application
to flowshop scheduling. IEEE Transactions on Sys¬tems, Man and Cybernetics – Part C:
Applications and Reviews 28, 392–403 (1998)

Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quarterly 1, 61–68 (1954)

Kalczynski, P.J., Kamburowski, J.: On the NEH heuristic for minimizing the makespan in
permutation flow shops. OMEGA 35, 53–60 (2007)

Kalczynski, P.J., Kamburowski, J.: An improved NEH heuristic to minimize makespan in
permutation flow shops. Computers & Operations Research 35, 3001–3008 (2008)

Laha, D., Chakraborty, U.K.: A constructive heuristic for minimizing makespan in no-wait
flow shop scheduling. International Journal of Advanced Manufacturing Technology (2008)
(DOI: 10.1007/s00170-008-1454-0)

Liao, C.-J., Tseng, C.-T., Luarn, P.: A discrete version of particle swarm optimization for
flowshop scheduling problems. Computers & Operations Research 34, 3099–3111 (2007)

Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the P//∑Ci scheduling
problem. European Journal of Operational Research 132, 439–452 (2001)

Merkle, D., Middendorf, M.: An ant algorithm with a new pheromone evaluation rule for total
tardiness problems. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty,
T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000,
EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS,
vol. 1803, pp. 287–296. Springer, Heidelberg (2000)

Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multi-objective algorithms for
the flowshop scheduling problem. INFORMS Journal on Computing published online
before print, April 2 (2008)

Miyazaki, S., Nishiyama, N.: Analysis for minimizing weighted mean flowtime in flowshop
scheduling. Journal of the Operations Research Society of Japan 23, 118–132 (1980)

Miyazaki, S., Nishiyama, N., Hashimoto, F.: An adjacent pairwise approach to the mean
flowtime scheduling problem. Journal of Operations Research Society of Japan 21, 287–299
(1978)

Murata, T., Ishibuchi, H., Tanaka, H.: Multi-objective genetic algorithm and its applications to
flowshop scheduling. Computers & Industrial Engineering 30, 957–968 (1996)

Nawaz, M., Enscore Jr, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flowshop
sequencing problem. OMEGA 11, 91–95 (1983)

Pasupathy, T., Rajendran, C., Suresh, R.K.: A multi-objective genetic algorithm for scheduling
in flow shops to minimize the makespan and total flow time of jobs. International Journal of
Advanced Manufacturing Technology 27, 804–815 (2006)

Rajendran, C.: Two-stage flowshop scheduling problem with bicriteria. Journal of the
Operational Research Society 43, 871–884 (1992)

Rajendran, C.: Heuristic algorithm for scheduling in a flowshop to minimize total flowtime.
International Journal of Production Economics 29, 65–73 (1993)

Rajendran, C.: A heuristic for scheduling in flowshop and flowline-based manufacturing cell
with multi-criteria. International Journal of Production Research 32, 2541–2558 (1994)

Rajendran, C.: Heuristics for scheduling in flowshop with multiple objectives. European
Journal of Operational Research 82, 540–555 (1995)

Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to
minimize makespan / total flowtime of jobs. European Journal of Operational Research 155,
426–438 (2004)

Rajendran, C., Ziegler, H.: Two ant-colony algorithms for minimizing total flowtime in
permutation flowshops. Computers & Industrial Engineering 48, 789–797 (2005)

Ruiz, R., Stuetzle, T.: A simple and iterated greedy algorithm for the permutation flowshop
scheduling problem. European Journal of Operational Research 177, 2033–2049 (2007)

 A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling 99

Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop
scheduling problem. OMEGA 34, 461–476 (2006)

Sridhar, J., Rajendran, C.: Scheduling in flowshop and cellular manufacturing systems with
multiple objectives – a genetic algorithmic approach. Production Planning & Control 7,
374–382 (1996)

Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic
algorithms. Evolutionary Computation 2, 221–248 (1994)

Stuetzle, T.: An ant approach to the flow shop problem. In: Proceedings of the 6th European
Congress on Intelligent Techniques & Soft Computing (EUFIT 1998), Verlag Mainz,
Aachen, pp. 1560–1564 (1998)

Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational
Research 64, 278–285 (1993)

Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G.: A particle-swarm optimization
algorithm for makespan and total flowtime minimization in the permutation flowshop
sequencing problem. European Journal of Operational Research 177, 1930–1947 (2007)

T′kindt, V., Billaut, J.-C.: Multicriteria scheduling: Theory, models and algorithms. Springer,
Berlin (2002)

T′kindt, V., Monmarche, N., Tercinet, F., Lauegt, D.: An ant colony optimization algorithm to
solve a two-machine bicriteria flowshop scheduling problem. European Journal of
Operational Research 142, 250–257 (2002)

Varadharajan, T.K., Rajendran, C.: A multi-objective simulated-annealing algorithm for
scheduling in flowshops to minimize the makespan and total flowtime of jobs. European
Journal of Operational Research 167, 772–795 (2005)

Widmer, M., Hertz, A.: A new heuristic method for the flowshop sequencing problem.
European Journal of Operational Research 41, 186–193 (1989)

Wang, C., Chu, C., Proth, J.-M.: Heuristic approaches for n/m/F/∑Ci scheduling roblems.
European Journal of Operational Research 96, 636–644 (1997)

Woo, H.S., Yim, D.S.: A heuristic algorithm for mean flowtime objective in flowshop
scheduling. Computers and Operations Research 25, 175–182 (1998)

Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and
the strength pareto approach. IEEE Transactions on Evolutionary Computation 3, 257–271
(1999)

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 101–150.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Multi-objective Simulated Annealing for Permutation
Flow Shop Problems

E. Mokotoff

Universidad de Alcalá
Department of Economics
Plaza Victoria 3, 28802 Alcalá de Henares, Spain
ethel.mokotoff@uah.es

Summary. In this chapter we present a Multi-Objective Simulated Annealing algorithm to deal
with the Permutation Flow Shop Scheduling Problem in a real context. We have designed the
models taking into account results obtained from a study conducted in the Spanish Ceramic
Tile Sector. The proposed methods consist in obtaining a good approximation of the efficient
frontier. Starting with a set of initial sequences, the algorithm samples a point in its neighbour-
hood. If this generated sequence is dominated, we still accept it with a certain probability. Dif-
ferent heuristics and constructive algorithms are used to compute initial good sequences and
lower bounds for the different criteria. Makespan and flow time are considered. The procedure
is good enough to give efficient solutions with little computational effort. A computational ex-
periment has been carried out to check the performance of the proposed algorithms. Different
metrics for comparing algorithms have been computed, and have been analyzed together with
the CPU time. We have studied how the number of initial solutions, the neighbouring proce-
dure, and other parameters, affect the results. For all the tested instances a net set of potentially
efficient schedules has been obtained.

1 Introduction

In this chapter we consider a classic permutation flow shop scheduling problem for
which, after more than 50 years of scientific research, there is an important gap be-
tween theory and practice. This problem results in the context where multi-purpose
machines are used to manufacture different jobs and, for every one, the operations are
carried out in the same order among the machines. So, to find the schedule that
optimizes a certain performance measure simply means finding the optimal job se-
quencing, that is to say the order in which those jobs should be processed, as in the
production of textiles and ceramic tiles. Ceramic tiles are produced in processing lines
composed of several stages: molding press, dryer, glazing line, kiln, quality control,
finally, packing and delivery [4, 96]. To the complexity that naturally arises in this
problem, considering only one criterion [33], we have to add the additional complex-
ity that comes from the multivariant condition of corresponding alternative schedules.
In fact the description and valuation of alternative decisions are not naturally accom-
plished by only one criterion, but by several (e.g. makespan, flow-time, completion-
time, tardiness, inventory, utilization, etc.). This is certainly the natural framework of
the Multicriterion Decision Making discipline (MDM). A solution which is optimal

102 E. Mokotoff

with respect to a given criterion might be a poor candidate for another. The trade-offs
involved in considering several different criteria provide useful insights for the deci-
sion-maker. Thus considering Combinatorial Optimization (CO) problems with more
than one criterion is more relevant in the context of real-life scheduling problems. Re-
search in this important field has been scarce when compared to research in single-
criterion scheduling. Until the late 1980’s, only one criterion was considered in
scheduling problems. Furthermore, until the 1990’s, most work in the area of multiple
criteria scheduling consists of bi-criteria studies of the single machine case [45].

Of course, to expect to find the “Optimum” schedule must usually be discarded. We
would be satisfied to find the Pareto optimal alternatives. At this point we have to let
some subjective considerations intervene, such as the decision-maker preferences. It is
actually an MDM Problem, and at the present time, there is no other rational tool to
apply to discard alternatives. Only with the breakthrough of metaheursitcs in solving
CO problems, did researchers begin to adapt metaheuristics to solve Multi-Objective
Combinatorial Optimization problems. Then, the acronym MOCO started to appear in
the scientific literature to refer to Multi-Objective Combinatorial Optimization prob-
lems and the techniques specially developed to deal with them. Multi-Objective Simu-
lated Annealing (MOSA) methods are metaheuristics based on Simulated Annealing
(SA) to tackle MOCO problems. SA has demonstrated its ability to solve combinato-
rial problems such as vehicle routing, production scheduling, timetabling, etc. Based
on this MOSA scheme, we have developed our models to provide the decision-maker
with efficient solutions for the scheduling problem we are dealing with.

The aim of this chapter is to present the proposed MOSA techniques and their per-
formance analysis, after a review regarding the permutation flow shop scheduling
problem, the MOCO theory, including recent developments considering more than
one optimization criterion (the detailed theorems and proofs have been omitted to
avoid a huge chapter). The main proposed procedures find a good approximation of
the set of non-dominated solutions in a relatively short time. We carried out an inten-
sive computational experiment by making use of the 90 benchmark problems given
by Taillard [113]. The performance analysis includes a set of metrics specific for
evaluating Multi-Objective Optimization algorithms (MOO). The influence on the
number of potential efficient solutions, the neighborhood search procedure and SA
parameters have been analyzed together with the CPU time. With all these experi-
ments we have obtained a net set of potentially efficient schedules and we have up-
dated some published net set, for the same instances.

In the next section, the classical permutation flow shop problem statement is pre-
sented. Since we are facing the multi-objective nature of the problem, we will briefly
introduce multi-objective theory and notations (section 3), followed by a brief survey
on MOCO algorithms devoted to scheduling problems (section 4). In section 5 we
present the proposed approaches based on the MOSA scheme. Section 6 reports on
the computational experiment. We conclude, in section 7, with a summary discussion
on research directions.

2 Permutation Flow Shop Scheduling Problem

In the classical permutation flow shop scheduling problem, there are n jobs and
m machines, or stages. Each job needs to complete one operation on each of the

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 103

machines during a fixed processing time. So, the aim is to find the schedule, or job
sequence, that optimizes certain performance measures. In this chapter we focus at-
tention on the permutation flow shop situation, where all jobs must pass through all
machines in the same order ([87] presents a comparative study of permutation versus
non-permutation flow shop scheduling problems).

The scheduling process involves just finding the optimal job sequencing. Neverthe-
less, the computational complexity usually grows exponentially with the number of
machines, m, making the problem intractable. This problem, like almost all determi-
nistic scheduling problems, belongs to the wide class of CO problems, many of which
are known to be NP-hard [33]. What it means is that it is unlikely that efficient opti-
mization algorithms exist to solve them. Only a few scheduling problems have been
shown to be tractable, in the sense that they are solvable in polynomial time. For the
remaining ones, the only way to secure optimal solutions is usually by enumerative
methods, requiring exponential time. The investigation has focused on two ap-
proaches: developing approximation algorithms, and optimally solving restricted,
more tractable, cases. Thus, heuristic methods have been developed, some of them
showing an acceptable performance.

Many real life problems can be modeled as permutation flow shop scheduling
ones. On production lines, it is common to find multi-purpose machines carrying out
different products. We are working with the ceramic tile manufacturing sector, how-
ever many problems could be mentioned when we speak about scarce resources, or
machines, dedicated to the production of some goods, or jobs.

2.1 Notation

We will use the notation that follows:

J: set of n jobs Ji (i=1,...,n)
M: set of m machines Mj (j=1,...,m)
pij: processing time of job Ji on machine Mj
di: due date of job Ji, time limit by which Ji should be completed
ri: time at which the job Ji is ready to be processed
wi: priority or weight of job Ji
Ci: completion time of job Ji
Cmax: the maximum completion time of all jobs Ji (this is the schedule length, which is
also called the makespan)
Fi: flow time of job Ji, Fi = Ci - ri, if ri = 0, then Fi = Ci
Li: lateness of job Ji, Li = Ci - di
Ti: tardiness of job Ji, Tmax = max{Li ,0}
Ei: earliness of job Ji, Emax = max{-Li ,0}

The optimal value of any criterion is denoted with an asterisk, e.g. *
maxC denotes the

optimal makespan value.
We will use the three-parameter notation, γβα // , introduced by Graham et al.

[38] and, extended for T’kindt and Billaut [109] to MultiCriteria scheduling problems.
The first field specifies the machine environment (F represents general permutation
flow shop); the second, job characteristics; and the third refers to the chosen optimality

104 E. Mokotoff

criterion for single criteria models, and it extends to cover multicriteria as well as
methodology.

2.2 Definitions

Consider a set of n independent jobs Ji (i=1,...,n) to be processed, each of them on a
set of m machines Mj (j=1,...,m), that represent the m stages of the production process.
Every job requires a known, deterministic and non-negative processing time, denoted
as pij, for completion at each machine. Each machine processes the jobs in the same
order, thus knowing the order of jobs the resulting schedule is entirely fixed. Any fea-
sible solution is then called a permutation schedule or a sequence. In a single-criterion
problem we look for the permutation of jobs from set J that would optimize the per-
formance criterion, while for more than one criterion the objective is to find out the
set of Pareto optimal solutions. The most used criterion is the minimization of the to-
tal completion time of the schedule, often referred to as makespan (Cmax). But there
are many performance criteria to be considered when solving scheduling problems.

2.3 Criteria

French [31] presents the following classification:

Criteria based upon completion time measures

• Fmax= max{F1, F2,..., Fn}, the maximum flow time
• Cmax= max{C1, C2,..., Cn}, the maximum completion time

• ∑ n
Fi or ∑ iF , mean flow time or total flow time, respectively

• ∑ n
Ci or ∑ iC , mean completion time or total completion time, respectively

• iiCw∑ , weighted completion time

• ∑ iiFw , weighted flow time

Flow time is applied as a criterion when the cost function is related to the job standing
time. Completion time reflects a criterion where the cost depends on the finish time.
In the event of all ready times being zero, ri=0, ∀i, completion time and flow time
functions are identical. Maximum criteria should be used when interest is focused on
the whole system. When some jobs are more important than others, weighted meas-
ures could be considered.

Criteria based upon due date measures

• Lmax= max{L1, L2,..., Ln}, maximum lateness
• Tmax= max{T1, T2,..., Tn}, maximum tardiness

•
∑ n

Li

 or ∑ iL , mean lateness or total lateness, respectively

•
∑ n

Ti

 or ∑ iT , mean tardiness or total tardiness, respectively

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 105

• ∑ ii Lw
, weighted lateness

• ∑ iiTw
, weighted tardiness

• ∑ iU , total tardy jobs. The indicator function Ui denotes whether the job Ji is

tardy, then Ui = 1, or on time, then Ui = 0.

When maintaining customer satisfaction by observing due dates, or any other just
in time concept has to be considered, measures related to the notion of how much is
lost by not meeting the due dates are applied. If the penalty is applied only to the de-
lays, tardiness measures are used. When there is a positive reward, or penalization, for
completing a job early and that reward/penalization is larger the earlier a job is com-
pleted, lateness measures are appropriate. In the case where all the due dates are zero,
di=0, ∀i, tardiness or lateness are identical to completion time functions.

All of the above mentioned criteria are regular in the sense that they are non-
decreasing functions of job completion times. French's classification includes some
non-regular criteria, such as measures based upon the inventory and utilization costs.
For example, to measure the idle time of a machine, the following criterion is used.

• Ij= Cmax - ∑
=

n

i
ijp

1

, total time during which machine Mj is waiting for a job or has

finished processing jobs, but the total process of jobs has not finished jet.

In this chapter we focus on the maximum completion time criterion (makespan) and
the total flow time, even though we shall also refer to other measures. In the literature,
the most common criterion is the makespan. Only a relative few published works are
devoted to flow time and tardiness measures.

2.4 Assumptions

Unless explicitly indicated, in the text that follows we assume that:

• Each job is an entity, composed of m operations, which cannot be processed on
more than one machine simultaneously.

• At every machine, there are no precedence constraints among operations of differ-
ent jobs.

• No preemption is allowed. That is to say, once an operation has started, it must be
completed before another operation may initiate on the same machine.

• No cancellation. Each job must be finished.
• Processing times are independent of sequencing.
• Job accumulation is allowed. Jobs can be waiting for a free machine.
• Machine idle time is allowed. The machines can be waiting for jobs or for the end

of the total process.
• No machine can process more than one job simultaneously.
• Machines never break down and are available throughout the scheduling period.
• Ready times are zero for all jobs.

106 E. Mokotoff

• There is no randomness:
– the number of jobs, n, is known and fixed;
– the number of machines, m, is known and fixed;
– the processing times, pij (i=1,...,n; j=1,...,m), are known and fixed;
– all other specifications, needed to define a particular problem, are known and

fixed.

The assumptions listed above characterize the classical permutation flow shop mod-
els. However, it is possible to find in the literature variants of permutation flow shop
problems which do not accomplish these features.

Computational Complexity
Since the early Johnson Algorithm [54] that solves F2//Cmax in polynomial time, only
a few restricted cases have been shown to be efficiently solvable. Minimizing the sum
of completion times is still NP-complete for two machines [33].

The following cases have been shown to be polynomially solvable:

• F/pij=1, intree, ri/Cmax
• F/pij=1, prec/Cmax
• F2/chains/Cmax
• F2/chains, pmtn/Cmax
• F2/ri/Cmax
• F2/ri, pmtn/Cmax
• F3//Cmax
• F3/pmtn/Cmax
• F/pij=1, outtree/Lmax
• F2//Lmax
• F2/pmtn/Lmax
• F2//∑ iC

• F2/pmtn/∑ iC

• Fm/pij=1, chains/ iiCw∑

• Fm/pij=1, chains/∑ iU , for each m≥2

• Fm/ pij=1, chains/∑ iT , for each m≥2

Review of permutation flow shop scheduling algorithms, considering only a
single-criterion
Despite the large amount of papers dealing with flow shop problems, most of the re-
search has been devoted to the permutation problem. From the pioneer paper by John-
son [54] until the present day, a lot of papers devoted to permutation flow shop prob-
lem have been published. The majority of them consider the problem of minimizing
the makespan.

Johnson’s rule, states that job i must precede job k in a sequence if min{pi1, pk2}<
min{pk1, pi2}. Thus, jobs with shorter processing time in the first machine are set to be
processed before, and jobs with shorter processing time in the second machine are set
to be processed after. The algorithm that applies this rule is optimal for m=2, and can
approximate solutions for m>2 [13].

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 107

For the problem restricted to n=2, and general m, the graphical method due to
Akers [3] gets the minimum makespan [9].

[48, 69] propose the earliest branch and bound algorithms applied to permutation
flow shop. [60] presents a general bounding scheme for permutation flow shop prob-
lem, considering makespan. Though the original intention was to improve branch and
bound techniques (in vogue at the time of its publication), their contributions are still
useful in saving computational effort when looking for non-dominated solutions. [86]
presents a branching rule. [102] proposes a Goal Programming formulation. [113]
presents, besides very useful benchmarks, a lower bound for the makespan. [14] pre-
sents two branch and bound algorithms.

Heuristics and metaheuristics have been mainly developed for CO problems. In
contrast to exact methods that guarantee optimality, heuristic methods seek near op-
timal solutions in a reasonably bounded time. Metaheuristics are more general than
heuristics, in the sense that they are applicable to different problems, while heuristics
are usually problem-dependent.

A constructive algorithm builds a solution, starting from the input data (without it
being necessary to know a previous feasible solution), following a set of rules. There
is a class of algorithms which share a similar way of making a schedule: a sorting list
with all the jobs is made. The accuracy of any list scheduling algorithm is intimately
related to the priority rule applied. There are more than one hundred dispatching rules,
as can be seen in [81, 42].

The most important constructive algorithms dedicated to the F//Cmax problem can
be classified by their design as a list scheduling algorithm. In order to minimize the
makespan, the list of jobs must be made in such a way as to give higher priority to the
jobs consuming more total processing time. That is to say, the jobs with the longest
total processing time should not be placed at the last positions of the list. Based on
this premise, a simple algorithm is presented by Nawaz, Enscore and Ham (NEH al-
gorithm, in the following) in [75]. NEH algorithm produces very good sequences in
comparison with heuristics existing even up to the present. The results of the pro-
posed algorithm show that it performs especially well on large flow shop problems, in
both the static and dynamic sequencing environments. [112] presents an important
improvement in saving computational effort for the NEH algorithm.

[39] presents three algorithms to deal with total flow time and maximum flow time

(not simultaneously). [63, 89] present constructive algorithms for the F//∑ iC prob-
lem. The first one is based on the principle of job insertion, and the second one could
be thought as an extension of the NEH algorithm and performs very well.

Improvement algorithms need a feasible solution as a starting-point and are in-
tended to improve it by iterative small changes. This iterative improvement can be
achieved by means of many different processes.

Threshold Algorithms are designed according to three techniques: Iterative Im-
provement, Threshold Accepting and Simulated Annealing (SA), the most popular one.

Considering F//Cmax, [80] presents four SA algorithms varying the neighbor gener-
ating method. Their results show that insertion performs better than swapping. The
SA algorithms presented by [78] have similar performance than [80]. Only the algo-
rithm presented in [50] seems to perform better for large instances. [62] introduces
SA in the NEH algorithm and [119] presents a parallel SA.

108 E. Mokotoff

[83] presents an application of SA to the F//∑ iiTw . In this paper the authors intro-
duced the Random Insertion Perturbation Scheme that is employed in some later papers
(One of our proposed neighbouring generating procedure is based on this technique).

In [61] SA is applied to solve the F//∑ iC problem. [68 and 92] consider also this
problem, [68] using pair-wise exchange and [92] Ant Colony techniques. [91] pre-
sents heuristics dealing with the total weighted flow time.

Based on Johnson’s rule, [58] proposes an improvement heuristic which uses job
passing.

Tabu Search is probably the most tested local search concerned with scheduling
problems. Some applications to the flow shop scheduling problem have been pre-
sented in: [112, 93] and, more recently, in [37].

Unlike the previously-mentioned techniques, Genetic and Evolutionary Algorithms
(GA and EA, in the following) start with a set of solutions instead of only one: [94]
applies GA to the flow shop scheduling problem. Differential evolutionary optimiza-
tion is applied to permutation flow shop scheduling problem for minimizing
makespan, mean flow time and total tardiness, individually considered, in [79].

Research on metaheuristics is quite extensive. Ruiz and Maroto [97] and Dorn
et al. [22] survey this field.

Real-life scheduling problems require more than one criterion. Nevertheless, the
complex nature of flow shop scheduling has prevented the development of models
with multiple criteria. In the following, we will consider the Multi-Objective Flow
Shop Scheduling problems.

For further information about deterministic scheduling and flow shop, considering
only single-criterion problems, we refer the reader to the books and PhD thesis of:
Blazewicz et al. [8]; Brucker [10]; Ruiz [96]; Pinedo [85]; Andrés [4]; Schulz [101]
and Parker [82]; or the survey papers of: Lawler et al. [65]; Dudek et al. [23]; Monma
and Rinnooy Kan [72] and the earliest Baker [7].

3 Multi-objective Combinatorial Optimization Problem

Quality is, in real-life, a multidimensional notion. A schedule is valued on the basis of
a number of criteria, for example: makespan, work-in-process inventories, idle times,
observance of due dates, etc. If only one criterion is taken into account, no matter
what criterion is considered, some aspect of the quality of the schedule will result re-
gardless. An appropriate schedule can not be obtained unless one observes the whole
set of important criteria. The multidimensional nature of the problem at hand leads us
to the area of MultiCriteria Optimization (see Ehrgott and Wiecek [28], for a state of
the art).

When a problem appears as a multicriteria case, it is necessary to take into account
different objective functions. The solution may vary according to the criterion consid-
ered individually. If the criteria are not conflicting, it is possible to obtain a global op-
timal solution. In the vast majority of cases, they are conflicting and thus the knowl-
edge of the decision-maker preferences is necessary to solve the problem.

Considering only one regular criterion, the general permutation flow shop schedul-
ing has been shown to be NP-hard, and to belong to the CO field (except for the re-
stricted special cases already mentioned).

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 109

Even though MDM, as well as CO, have been intensively studied by many re-
searchers for many years, it is surprising that a combination of both, i.e. Multi-
Objective Combinatorial Optimization (MOCO), was not widely studied until the last
decade, as it is not long since interest in this field has been shown [27]. The prolifera-
tion of metaheuristic techniques has encouraged researchers to apply them to this
highly complex problem.

In this section we will present a brief introduction to MOCO problems, including a
general problem formulation, the most important theoretical properties, and the exist-
ing methods for dealing with this kind of problem.

3.1 Formulation of a MOCO Problem

A MOCO problem is a discrete optimization problem, where each feasible solution X
has n variables, xi, constrained by a specific structure, and there are K objective func-
tions, zk, to be optimized. Without loss of generality we can formulate the problem as
follows:

() KkXzMin k
DX

,...,1, =
∈

 (1)

where functions zk are the objectives, X is the vector that represents a feasible solution
(a sequence for the flow shop scheduling problem), and D is the set of feasible solu-
tions: a discrete set.

The criteria (reviewed in the previous section) are of two different kinds:

• sum function: ∑ if

• bottleneck function: fmax= max{f1, f2,..., fn}

We call a feasible solution, X(e)∈D, efficient, non-dominated, or Pareto optimal, if
there is no other feasible solution X∈D such that,

() () kXzXz e
kk ∀≤ ,)(

 (2)

with at least one strict inequality.
The corresponding vector of objective values,

() () () ()())()(
2

)(
1

)(,...,, e
K

eee XzXzXzXz =

(3)

is called non dominated vector.
The set of feasible Efficient solutions, X(e), is denoted by E, and the set of non-

dominated vectors by ND.

3.2 Some Theoretical Concepts

A general result for Multi-Objective Linear Programming (MLP) problems is that the
set of efficient solutions for the MLP problem,

min{cX:AX=b, X≥0} (4)

110 E. Mokotoff

is exactly the set of solutions of

min{ ∑
= Kj

jj Xc
,...1

λ :AX=b, X≥0}, (5)

where ∑
=

=
Kj

j
,...1

1λ , jλ >0, j=1, …K.

It is important to point out that we are dealing with a CO problem, which means
that the transformation of the objective functions into a linear function (aggregating
into weighted sums) does not transform the problem into a Linear Programming one.
Except in some special cases, e.g. preemption allowance, or where idle time insertion
is advantageous, for which Linear Programming can be applied, the discrete structure
of a MOCO problem persists. An important consequence is the fact that the previous
result for MLP is not valid, so there could be some efficient solutions not optimal for
any weighted sum of the objectives. The set of these solutions are named Non-
supported Efficient solutions (NE), whereas the set of the remaining ones are called
Supported Efficient solutions (SE) [27].

The cardinality of the NE set depends on the number of sum objective functions.
For a problem with more than one sum objective function, NE has many more solu-
tions than SE.

Despite these results which constitute the essence of the difficulty of MOCO prob-
lems, many published works ignore the existence of NE.

Concerning computational complexity, in obtaining the set of efficient solutions
MOCO problems are in general NP-complete. Results are presented by Ehrgott [25].
The cardinality of E for a MOCO problem may be exponential in the problem size
[29], therefore algorithms could determine just an approximation of E in many cases.
Thus, methods may be exact or approximate, and metaheuristics are nowadays being
applied intensively to MOCO problems.

3.3 MultiCriteria Optimization Methods

The “minimization” concept in the above formulation is not restricted to one meaning.
At this point we have to point out that MOO was originally conceived to find a set of
Pareto optimal alternative solutions, because hoping to find the minimum schedule
must usually be discarded. The MDM always assumes that subjective considerations,
such as the decision-maker preferences, have to intervene. Besides the classic classifi-
cation for optimization methods between exact or approximation, it is usual to
distinguish the MOO methods according to when the decision-maker intervenes in the
resolution process, as follows:

• a priori: All the preferences are known at the beginning of the decision-making proc-
ess. The search for the solution is carried out on the basis of the known information.

• interactive: The decision-maker intervenes during the search process. Computing
steps alternate with dialogue steps. At each step a satisfying compromise determi-
nation is achieved. It requires the intensive participation of the decision-maker.

• a posteriori: The set of efficient solutions (the complete set or an approximation of it)
is generated. This set can be analyzed according to the decision-maker preferences.
The choice of a solution from the set of efficient solutions is an a posteriori approach.

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 111

If the problem criteria show a hierarchical structure, more important criteria should
be minimized before less important ones. Thus, optimization methods can be classi-
fied as hierarchical or simultaneous.

In bicriteria models, if z1 is more important than z2, then it seem to be natural to
minimize with respect to z1 first, and choose, from among these optimal solutions, the
optimum with respect to z2. This hierarchical approach is called lexicographic optimi-
zation, and is denoted by α/β/Lex(z1, z2).

In a general case, lexicographic minimization consists in comparing the objective
values of a feasible solution X, with respect to another Y, in a lexicographical order,
denoted by <lex. Objective functions are ranked according to their importance. We say
X<lexY, if, and only if, there is a j such that zj(X)<jzj(Y), and there is not any h<j, such
that zh(Y)<hzh(X). This means that the first objective function index, Ki ,...,1∈ , for
which zi(X), is not equal to zi(Y), zi(X)<zi(Y).

Simultaneous optimization has to be applied when there is no dominant relation
among the criteria. Optimizing with respect to one criterion at a time leads to unbal-
anced results. It is common, in a case such as this, to use a composite objective func-
tion with the original criteria. It gives rise to another classification, because we can
generate solutions by means of scalarization and non-scalarizing methods.

Scalarization is made by means of a real-valued scalarizing on the objective func-
tions of the original problem [117]. Well known examples of scalarization methods
are the following.

The Weighted Sum approach consists in building a new objective criterion with the
original ones [49]. This composite function can be linear (in the majority of cases),
where the scalar coefficients represent the relative importance of every criterion, or it
may present a more complex composition. Despite the apparent simplicity of the
methods, it conceals two difficulties:

i) the difficulty of expressing the decision-maker preferences by means of a function
(interactive approaches overcome this drawback, e.g. AHP procedures could be use-
ful, [99]);
ii) the computational complexity of minimizing the function in a direct manner.

The set of all supported efficient solutions can be found considering a wide diversi-
fied set of weights (Parametric Programming may be used to solve this problem).
[102, 118] apply this technique, considering a linear combination of makespan and
flow time. [104] proposes a linear combination of the makespan and a total cost func-
tion, for unrelated parallel machine models.

The distance to the ideal point approach [46] consists in minimizing the distance to
an ideal solution. The ideal point is settled according to the optimum of each individ-
ual single-criterion. It is also known as the compromise solution method.

The ε-constraint [17] and the Target-Vector approaches are scalarization as well as
hierarchical methods. A constraint system representing levels εi of satisfaction, for
some criteria, is established, and the objective is to find a solution which provides a
value, as close as possible, to the pre-defined goal for each objective. A single-
objective minimization subject to constraints of levels εi for the other objective func-
tions is formulated. The formulation is solved for different levels εi, to generate the

112 E. Mokotoff

entire Pareto optimal set. Some authors consider that the main criteria must be fixed
by constraints, others put the main criteria in the objective of the formulation by turn.
It would depend on the mathematical programs to solve. [66, 24] present algorithms
to minimize the makespan, subject to a determined flow time level (the first one is
devoted to preemptive job models). [35] proposes minimizing the makespan, subject
to a bound on the number of preemptions. [105] considers the problem of minimizing
the makespan and the number of preemptions, for a set of jobs, constrained to due
dates.

When a set of goals for each criterion is known, the target vector approaches are
appropriate. The most popular is Goal Programming (introduced by [18]), for which
the minimization of the deviation from the specified goals is the aim.

Non-scalarizing approaches do not explicitly use this kind of scalarizing function.
For example, Lexicographic and Max-ordering are non-scalarizing approaches.

Max-ordering chooses the alternative with the minimum value of the worst values.
After a normalization process, zj is the worst value of X, if and only if,

() () () ()()XzXzXzXz Kj ,...,,max 21= (6)

Then, X is the best alternative, if, and only if, there is not Y such that zj(y)(Y)<zj(x)(X).
Only a few algorithms have been developed based on branch and bound techniques

for MOCO problems [26].
The two phases method [114] consists in determining the set of supported efficient

solutions by means of a weighted sum scalarization algorithm, and then, in the second
phase, searching for the non-supported ones, following a specific problem-dependent
method.

Approximation for MOO is a research area which has gained increasing interest in
recent years. Multi-Objective Metaheuristics seek an approximate set of Pareto opti-
mal solutions. The main question is how to ensure that the obtained non-dominated
set covers the Pareto front as widely as possible. In the beginning, methods were ad-
aptations of single-objective optimization. Nowadays they have their own entity.
They are initially inspired by EA or neighborhood search. Furthermore, recent devel-
opments are more hybridized, given rise to Multi-Objective Hyperheuristic methods.
A hyperheuristic can be thought as a heuristic method, which iteratively selects the
most suitable heuristic amongst many [12].

The problem of obtaining a uniformly distributed set of non-dominated solutions is
of great concern in Pareto optimization. The specification of the search direction, by
tuning weights, is the method that directly attempts to drive the current solution to-
wards the desired region of the trade-off frontier. Hyperheuristic approaches attempt
to do it by applying the neighbourhood search heuristic that is more likely to drive the
solution in the desired direction. This technique can be applied to single-solution and
population-based algorithms.

Most of the published works in MOO are a priori methods since they assume that
the decision-maker preferences can be expressed. The hierarchical approach penalizes
too much the less important criteria, while setting a criterion as the most important
one. In reality, the decision-maker preferences are usually smooth, giving less impor-
tance to the main criterion and more to the less important criteria. Considering a com-
posed function of the criteria involved in the problem, it is implicitly assumed that the

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 113

decision-maker preferences are accurately reflected in this objective function. The de-
cision-maker knows the preferable schedule, but it is not easy to express this prefer-
ence in a function. In general, a priori approaches give a solution to the problem,
which cannot usually be trusted to be the most preferred solution.

To be confident with a particular solution to a problem with multiple objectives,
the decision-maker active involvement is required. In interactive methods, she indi-
cates their preferences during the process of solution, guiding the search direction. [1]
proposes an interactive particle-swarm metaheuristic for MOO. The approach pre-
sented by [53] can be placed between the a priori and interactive procedures. The
method that this paper presents includes some interaction with the decision-maker,
but is based on the assumption that decision-maker preferences are already relatively
well-defined at the beginning of the solution process.

For methods that should offer the complete set of efficient solutions (a posteriori
approaches), it is guaranteed that no potential preferable solution has been eliminated,
but the number of efficient solutions can be overwhelmingly high to warrant proper
examination by the decision-maker.

In the following we are going to focus on scheduling and flow shop applications of
the MOO.

We refer to [115, 27] for further information on MOCO theory. [64, 55] present
overviews to the metaheuristics applied to solve MOCO problems. [52] compares
metaheuristics for bicriteria optimization problems. For each particular metaheuris-
tics, we refer the reader to the following references:

• For Multi-Objective Genetic Algorithms (MOGA), to [2, 52]. For general Evolu-
tionary Multi-Objective Algorithms, to [19, 34].

• For MOSA, to [103, 114, 41, 70].
• For Multi-Objective Tabu Search, to [32].

4 Multicriteria Scheduling Review

Starting with the just-in-time philosophy, the earliness–tardiness problem becomes
one of the most appealing bicriteria in Scheduling Theory. Early completion time re-
sults in the need to store the product until it can be shipped. [44] presents an extensive
review for the case where the due dates have been determined already, which is con-
trary to the due date assignment model (one has the freedom to determine the optimal
due date, at a certain cost), for which we refer to the survey by [36].

We refer to [44, 77] for a survey of the field of scheduling with controllable proc-
essing times, in which the processing times can be compressed at the expense of some
extra cost, which is called the compression cost. Hoogeveen [44] also presents an
overview of bi-criteria worst-case analysis.

In this section we will focus on Multi-Objective flow shop scheduling problems.
For further information on general Multi-Objective Scheduling we refer to the follow-
ing surveys or books:

[98] provides the earliest survey of papers on multiple-objective scheduling. Subse-
quently, [74, 108, 44] have been published, and they present exhaustive surveys of Mul-
tiCriteria Scheduling problems. [64] reviews metaheuristics for general Multi-Objective

114 E. Mokotoff

problems and presents the application of these techniques to some Multi-Objective
Scheduling problems.

The book of T’kindt and Billaut [109] can be useful as a good reference work, and
also an introduction to any field of Multicriteria Scheduling.

4.1 Multicriteria Flow Shop Scheduling Problem Review

Permutation flow shop scheduling research has been mostly restricted to the treatment
of one objective at a time. Furthermore, attention focused on the makespan criterion.
However, the total flow time performance measure has also received some attention.
These two measures, each of which is a regular performance measure, constitute a
conflicting pair of objectives [95]. Specifically, the total flow time criterion is a work
in process inventory performance measure, and the makespan criterion is equivalent
to the mean utilization performance measure. While total flow time is a customer-
oriented performance measure, the makespan criterion is a firm-oriented performance
measure. Therefore, the set of efficient solutions to a bicriteria model that seeks to op-
timize both measures simultaneously would contain valuable trade-off information
crucial to the decision-maker, who has to identify the most preferable solution, ac-
cording to her preferences.

Solving a bi-criteria model for a general number of machines implies heavy com-
putational requirements, since both criteria makespan and total flow time, lead to NP-
hard problems even when they are treated individually. Due to the fact that only the
F2//Cmax problem can be solved in polynomial time (the rest of flow shop scheduling
problems are NP-complete), research production concentrates on heuristics and enu-
merative approaches. The majority of research on bicriteria flow shop problems con-
cerns the two-machine case, in which some combination of ∑ iC and Cmax has to be

minimized.
Since F2//∑ iC is NP-hard in the strong sense, any lexicographic approach includ-

ing ∑ iC will be NP-hard too. [88, 76, 40, 110], present heuristics for the two-

machine flow shop problem, where total flow time has to be minimized among the
schedules that minimize makespan (lexicographical approach). Local search algo-
rithms based on Ant Colony Optimization have been proposed by [111]. [47] presents
a technique named Local Dynamic Programming. [110] presents a branch and bound
algorithm, which can solve problem instances of up to 35 jobs to optimality.

[74, 106] present heuristics and branch and bound algorithms for the
F2//),(max∑ CCf i problem.

For the two-machine flow shop scheduling problem of minimizing makespan and
sum of completion times simultaneously, [100] presents an a posteriori approach
based on branch and bound.

[21] presents a branch and bound algorithm for the F2//),(maxmax TCf , and a

heuristic to approximate the set of non-dominated solutions for the more general

F//),(maxmax TCf problem.

[67] presents branch and bound algorithms for the F2//),(max ∑ iUCf and

F2//),(max ∑ iTCf problems.

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 115

[102, 118] consider a linear combination of makespan and flow time. [22] presents
a comparison of four iterative improvement techniques for flow shop scheduling
problems that differ in local search methodology. These techniques are iterative deep-
ening, random search, tabu search and GA. The evaluation function is defined accord-
ing to the gradual satisfaction of explicitly represented domain constraints and opti-
mization functions. The problem is constrained by a greater variety of antagonistic
criteria that are partly contradictory.

[43, 90] propose heuristic procedures for the general m machine case, consider-
ing ∑∑ ji ICC ,, max . They are based on the idea of minimizing the gaps between the

completion times of jobs on adjacent machines (one of our proposed improvement
techniques was inspired by this paper). [120] applies Ant Colony Optimization to the
same problem.

[6] presents a MOGA that improves the previous MOGA presented by [107]. [73]
presents a MOGA considering the makespan, total flow time and total tardiness,
based on a weighted sum of objective functions with variable weights. This algorithm
belongs to the class of evolutionary multi-objective optimization algorithms and [51]
shows that this algorithm can be improved by adding a local search procedure to the
offspring. [15] applies subpopulation GA to the same problems. Artificial chromo-
somes are created and introduced into the evolution process to improve the efficiency
and the quality of the solution.

[5] proposes a MOGA algorithm with preservation of dispersion in the population,
elitism, and use of a parallel bi-objective local search so as intensify the search in dis-
tinct regions. The algorithm is applied to the makespan-maximum tardiness and
makespan-total tardiness problems.

[30] investigates a priori and a posteriori heuristics. The a posteriori heuristic
does not require a decision-maker preference structure and uncovers non-dominated
solutions by varying the weight criteria in an effective way.

[16] proposes a GA algorithm for the F//),(max∑ CCf i problem based on the

concept of gradual priority weighting (the search process starts along the direction of
the first selected objective function, and progresses such that the weight for the first
objective function decreases gradually, and the weight for the second objective func-
tion increases gradually). [116] applies a similar idea for a MOSA. [84] presents a
Pareto GA with Local Search, based on ranks that are computed by means of crowding
distances. Both papers apply the same initial population and improvement schemes.

[11] applies Dantzig-Wolfe reformulation and Lagrangian relaxation to an Integer
Programming formulation to minimize a total cost of job function that includes: earli-
ness, tardiness and work in process inventory costs.

[34] presents a study of the problem structure and the effectiveness of local search
neighborhoods within an evolutionary search framework on Multi-Objective flow
shop scheduling problems.

5 Proposed Algorithms

We present a new approximation algorithm for the Pareto solution set of the MOCO prob-
lem defined by minimizing makespan and total flow time in the classical permutation flow

116 E. Mokotoff

shop scheduling problem. The most promising practical approach to MOCO consists in
generating efficient solutions with metaheuristic procedures. Different approaches are ap-
plicable to tackle MOCO problems, each of them having their own advantages and draw-
backs. The chosen approach depends essentially on the aim of the study. SA (introduced
by Kirkpatrick et al. [56]), has demonstrated their ability in solving combinatorial intracta-
ble problems considering just one criterion [59]. [103] presents a broad study of the appli-
cation of SA to MOO. (A brief survey of published papers in this field has already been
presented in the previous section).

SA is a generic technique (based on an analogy to physical cooling studied by sta-
tistical mechanics), and has to be adapted in the context of the specific problem being
studied. It is basically an improvement technique, by which an initial solution is im-
proved by means of local perturbations. All MOSA methods have in common:

• An acceptance rule for new solutions, with some probability that depends on the
temperature level.

• A scheme of cooling.
• A mechanism for browsing the efficient frontier.
• Information is obtained from the set of solutions.

The proposed method is based on the MOSA scheme that follows.

5.1 MOSA Scheme

The procedure begins with an initial iterate solution, X0, that belongs to a set S of ini-
tial points (feasible solutions of ()∑ iCCF ,// max , which are good solutions for one of

the two simplified single-criterion versions of the problem). X0 is then sampled with a
point Y in its neighbourhood. But instead of accepting Y if it is better than the current
iterate regarding an objective function, we now accept it, if it is not dominated by the
current solution. In this case, we make Y the current iterate, add it to the Potentially
Efficient solution set (PE), and throw out any point in PE that is dominated by Y.

On the other hand, if Y is dominated by X0, we still make it the current iterate with
some probability. This randomization is introduced in the procedure to attempt to re-
duce the probability of getting stuck in a poor locally optimal solution.

The solutions that are generated, during the optimization process, make iterative
updates to the PE point set, to get closer to the Pareto optimal set (E). The only com-
plicated aspect of this algorithm is the necessity of generating solutions in several di-
rections of the bi-objective space search. So, to be able to cover the entire efficient
frontier, a diversified set of points must be generated. Neighbourhood search proce-
dures play a crucial role in the performance of the algorithm.

At each time during the search, the selection of the next heuristic to be used is
based on the quality of the current seed. A set of simple neighbourhood exploration
heuristics has been developed. Then, the approach proposed here selects the most ap-
propriate neighbourhood heuristic at certain points during the search, in order to un-
cover the solution in the Pareto optimal front.

The objective function of the MOCO problem plays here the role of acceptance
rule. The discrete nature of the problem at hand makes it possible that some efficient
solutions do not minimize any aggregated function of the criteria. Only supported
efficient solutions will be admitted for entrance into the PE. In order to avoid the
non-supported efficient solutions to enable entrance into the PE, we have developed a

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 117

bi-objective model where, simultaneously, both criteria are minimized. For just bi-
criteria models, checking whether a solution is dominated by another, is not computa-
tionally costly, and besides, updating the non-dominated solution set have to be face
up in any case (for more than two criteria models, the use of aggregated functions
may be absolutely justified).

A set of feasible initial solutions, S, is constituted. For each initial solution X0εS,
the following procedure is applied.

• Initialization (Xn= X0, Ncount=n=0)
• Iteration n

– Sample a neighbor Y
– Evaluate Y
– If Y is acceptable: Xn= Y, Ncount=0. Else, we accept the solution with probability

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−=
nT

p
φ

exp

⎪⎩

⎪
⎨
⎧

+=⎯⎯ ⎯←
=⎯⎯←

−+
1NN,

0N,

countcount
1

count
1

n
p

p

n
X

Y
X

– Update PE.

– n=n+1. If n(modNstep)=0, then Tn=αTn-1, else Tn=Tn-1. If countN =Nstop or Tn < Tstop,

then stop. Else iterate.

This generic scheme is completed with the different particularities that are described
in the following sections.

5.2 Set of Initial Solutions

The quality of seed solutions helps to reduce the search space. In this model we pro-
pose using constructive techniques to compute a set, S, of initial feasible sequences,
which are good for one of the criteria at a time. The size of S, may take values from 2
to N, N being a parameter of the algorithm.

The first two solutions are obtained by means of the two simple but effective con-
structive algorithms: NEH [75], looking for the minimum Cmax, and the algorithm for

the ∑ iCF // problem presented by Rajendran [89]. We recall both of them here.

NEH algorithm (X1)
The steps for generating the NEH seed sequence can be fully described as follows:

Step 1: For each job i calculate the total processing time ∑
=

=
m

j
iji pp

1

.

Step 2: List the jobs according to descending order of pi.

118 E. Mokotoff

Step 3: Schedule the first two jobs (from the list) in order to minimize the partial
makespan (as if there were only these two jobs).
Step 4: For k=3 to n, insert the job k at the position which minimizes the partial
makespan, among the k possible places.

X1 is considered as a good solution for the makespan criterion. The computation
of the minimum partial makespan in Step 4 is made by the algorithm presented by
Taillard [112].

Rajendran algorithm (X2)
The steps for generating the Rajendran seed sequence are analogous with the NEH al-
gorithm. The difference is in the way of making the list of jobs. Here the schedule is
made as follows:

Step 1: For each job i calculate the index ∑
=

+−=
m

j
iji pjmw

1
)1(.

Step 2: List the jobs according to ascending order of wi.
Step 3: Schedule the first two jobs (from the list) in order to minimize the partial total
flow time (as if there were only these two jobs).
Step 4: For k=3 to n, insert the job k at the position which minimizes the partial total
flow time, among the k possible places.

X2 is considered as a good solution for the total flow time criterion.
Sequence X1 and X2, obtained in Step 4 of the corresponding algorithms, become

the seed sequences to be given as input to the Improvement Schemes presented in the
following section.

This common list scheduling procedure is also applicable re-combining making list
(ordering by pi or wi), and criterion to be minimized (makespan or total flow time). X3
is obtained following the NEH algorithm, only altering in Steps 3 and 4 the minimiza-
tion criterion. Now the Steps 3 and 4 will read:

Step 3: Schedule the first two jobs (from the list) in order to minimize the partial total
flow time (as if there were only these two jobs).
Step 4: For k=3 to n, insert the job k at the position which minimizes the partial total
flow time, among the k possible places.

So, X3 is considered a good solution for the total flow time criterion.
By analogy, Rajendran algorithm is applied to obtain X4, a good solution for the

makespan criterion. X4 is obtained following the Rajendran algorithm, only altering in
Steps 3 and 4 the minimization criterion. Now the Steps 3 and 4 will read:

Step 3: Schedule the first two jobs (from the list) in order to minimize the partial
makespan (as if there were only these two jobs).
Step 4: For k=3 to n, insert the job k at the position which minimizes the partial
makespan, among the k possible places.

All of these four generation algorithms share the same four-step structure. (These
four initial solutions are used by the MOGA algorithm presented in [84]).

To obtain eight solutions for the set S, we have followed this strategy: At Step 3, in
each of the four algorithms we keep both partial schedules, and proceed to Step 4 for
each of both seeds. Thus, we obtain eight, instead of four, initial solutions.

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 119

For a larger S, at Step 4 (of each of the eight partial schedules) we conserve the k
generated partial schedules, and proceed with every partial schedule until the
permutation is complete. For k = 3, we will count on twenty-four feasible solutions.
Continuing with this strategy we can generate as many initial solutions as desired.
Therefore, [S] becomes a parameter for the algorithm (where [] denotes cardinality).

In the computation of the initial solutions, the procedure keeps the useful data in
order to save computational effort (e.g. job lists, best partial schedules, etc.). With this
technique it is possible to obtain a selective list of efficient solutions as seeds, instead
of just randomly-generated ones.

When sampling solutions, only those who pass the domination control are taken
into account for listing in the PE solutions set. The rest of the generated solutions are
only used as input (for improvement or neighbouring search) and discarded later.

5.3 Improvement Techniques

Improvement of the initial solutions and neighbouring generation are carried out by
simple neighbourhood exploration heuristics. The objective of these procedures is to
approximate the trade-off surface in a more efficient way by using those movements
that are more promising according to the quality of the current solution.

One can set a relation between the optimization criterion for which the iterate solu-
tion presents the least deviation (which coincides, in general, with the minimizing cri-
terion for which it has been calculated) and the criterion taken into account for the
improvement technique, thereby distinguishing three kinds of movement strategies:

• Direct search: if the best criterion value corresponds to, or if the seed was calcu-
lated considering, makespan/total flow time, then, the improvement technique
looks for solutions with less makespan/total flow time.

• Cross search: if the best criterion value corresponds to, or if the seed was calcu-
lated considering, makespan/total flow time, then the improvement technique looks
for solutions with less total flow time/makespan.

• Combining search: one of the two criteria is chosen for applying the improvement
technique at random.

These procedures induce a privileged direction of search to the efficient frontier.
So, to be able to cover the entire efficient frontier, a diversified combination of initial
solutions and neighbouring generation heuristics must be considered.

In the MOSA scheme described previously, a neighbouring solution of the current
permutation must be chosen. The most important neighborhoods based on a single
permutation as an input are:

• Exchange, swapping the positions of two jobs at i and k, with i≠k. The remaining
jobs in the sequence conserve their positions.

• Insertion, forward or backward shift, removing a job at i and reinserting it at a dif-
ferent position k, with k>i in forward case, and with k<i in backward case. The re-
maining jobs in the sequence must be re-arranged in order to keep their relative po-
sitions.

In our development we have implemented the improvement and perturbation
schemes, which are described in the following section.

120 E. Mokotoff

Improvement Scheme
Instead of inducing the search direction by tuning weights, to improve the distribution
of non-dominated solutions we apply different neighbouring search heuristics based
on the features of the current solution. Heuristics are selected in order to achieve im-
provements on the objective with relative worse value, while keeping the quality of
better value on the other objective.

While insertion have been shown to lead to superior results compared with ex-
change, for flow shop scheduling problems with Cmax objective [112], it seems not to
be possible to derive a similar general rule when considering total flow time criterion.
So, for improving makespan, we have just implemented insertion. Instead, for flow
time, we try with insertion and exchange.

In the valuation of a neighbor, it is very important to save computational effort in
order to check a larger neighbourhood. When inserting or exchanging jobs in a sched-
ule, it should be possible to discard some potentially dominated candidate permuta-
tion with small computational requirements just considering the corresponding partial
schedules. With this in mind, we have developed two neighbouring generating heuris-
tics: one devoted to search for neighbouring solution superior than the current one re-
garding makespan; another sampling better solution according to total flow time
measure.

Improving Makespan
In order to reduce the search space, we have developed a technique based on elimina-
tion by domination conditions. Furthermore, we compute the lower bound for the
makespan introduced by [113]. Thus, if we find out a permutation having this
makespan value, we stop searching on decreasing value on the Cmax axis, and concen-

trate effort in exploring the direction of reducing ∑ iC , in the neighborhood of the

permutation with *
maxC . The lower bound is computed as:

∑∑∑
+==

−

=
++=

m

jk
ik

i

n

i
ij

j

k
ik

ij
pppCLB
11

1

1
max minmin(max)((7)

The algorithm for the max// CF problem (improvement over NEH), by Taillard [112],
is actually a procedure to compute the value of the partial makespan when a job i is
added in a partial schedule at position k. We employ this algorithm embedded in our
neighbourhood search heuristic as a shortcut to evaluate a partial permutation. So, we
do not need to compute the objective function for the complete schedule. Based on
domination criteria for partial schedules [48, 71], we have developed our elimination
neighbouring search.

Any partial schedule of t jobs, Jp
(t)={J1, J2,… Jt}, where t=1, 2, …, n, is a sequence

of the indexes corresponding to the jobs in Jp
(t), and it could be named as σI(J

p
(t)). The

completion time for a partial schedule σI(J
p

(t)) on machine k, where k=1, 2, …, m, is
denoted by C(σI(J

p
(t)), k). It was proved that:

Elimination Criterion 1. If C(σII(J
p
(t)), k) ≤ C(σI(J

p
(t)), k) for k=1, 2, …, m, then

σII(J
p

(t)) dominates σI(J
p

(t)).

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 121

For the case where σII(J
p

(t)) and σI(J
p

(t-1)) are partial schedules of Jp
(t) ⊃Jp

(t-1), being Jp
(t)-

Jp
(t-1)={Jj}, Δk=C(σII(J

p
(t)), k) - C(σI(J

p
(t-1)), k) is defined. It was proved that:

Elimination Criterion 2. If Δk-1≤Δk≤pjk for k=2, 3, …, m, then σII(J
p
(t)) dominates

σI(J
p

(t-1)).

Both theorems allow us to discard any completion of a partial schedule σI(J

p
(t)) or

σI(J
p

(t-1)), because a schedule at least as good exists among the completion of another
partial schedule σII(J

p
(t)).

The improvement scheme proposed in this section is based on the sequential inser-
tion of a job in the current sequence at each possible different position. Since jobs
with larger total processing time at the beginning of the schedule bring, in general,
schedules with less makespan value, the proposed scheme selects, for insertion, a sub-
set of jobs which are located at the first β% of the total positions in the current se-
quence. Hence, the set of t jobs scheduled at {1, 2, …, t} positions, in the current
permutation, σXk, where t=β%n, is selected for exploration consisting in checking
whenever a better partial permutation, involving these t jobs, could be built.

Theoretically, we have to check and compare, for each job placed at i on σXk, with
i=1 to t, the makespan that results when this job is placed at a different position j, with
j=1 to t. Nevertheless, the elimination criteria described above leads to efficiency
gains. The Elimination Criterion 2 will filter any potential permutation generated by
moving a job for which, to be placed at a different position with respect to its position
in the current schedule, will not yield a sequence with less total completion time.
Only for a potential permutation that passes this control, specified for a job to be
moved, we check then for the different positions. By the Elimination Criterion 1, any
potential schedule σY, for which the current schedule σXk is at least as good, will be
discarded. If one partial schedule is not eliminated, then the corresponding complete
schedule, σY, becomes the generated neighbouring solution, σXk=σY, and the lower
bounds used for computations are updated.

Improving Total Flow Time
Following the ideas of [43, 90], we have developed an improvement heuristic looking
for permutations with less total flow time values, but attempting not to loss the level
obtained in makespan. The original idea was to minimize gaps between successive
operations that would lead to a better quality solution. The pair of jobs with the most
positive gaps has to be placed at the beginning, while the pair of jobs with the most
negative gaps has to be placed at the end of the schedule. During the total processing
of the whole set of jobs, the larger gaps would have more chance of being compen-
sated with the negative gaps corresponding to the pair of jobs scheduled at the end of
the sequence.

In order to improve the quality of solutions in total flow time measure the follow-
ing heuristic is implemented.

The improvement scheme proposed in this section is based on the interchange of
adjacent pairs of jobs with positive gaps in the current permutation. Since the objec-
tive is to minimize gaps, the jobs are listed in descending order of gaps. Exchanging
adjacent jobs with larger gaps is more likely result in a permutation which yields less
flow time value. The procedure selects, for exchanging, a subset of jobs, Jp

(t), which

122 E. Mokotoff

are located at the later β% of the total positions in the current sequence σXk. The ex-
ploration consists in checking whenever a new permutation obtained by exchanging
an adjacent pair of jobs of Jp

(t), yields a schedule with less flow time value.

Step 1: The subset of jobs placed at the last t positions of σXk, where t=β%n, is se-
lected to constitute the set Jp

(t).
Step 2: For the jobs of Jp

(t), the gaps between every pair of adjacent jobs in σXk, is
then computed as

∑∑
=

+
=

−=
m

j
ji

m

j
iji ppG

1
1

1 , for i=n-t, n-t+1,…, n-1 (8)

Step 3: Jobs in Jp
(t) are listed in descending order of gaps Gi. Jobs with negative gaps

are not included in the list, and ties are broken in descending order of this similar gap:

∑∑
=

+
=

+−−+−=
m

j
ji

m

j
iji pjmpjmG

1
1

1

')1()1(
, for i=n-t, n-t+1,…, n-1 (9)

that is computed only in the case of a tie.
Step 4: The first job in the list, JσXk(i), scheduled at position i in the current permuta-
tion σXk, will be set at i+1, in a new permutation σII, and its counterpart, the job
placed at i+1 in σXk, will be set at position i in σII.
Step 5: If ∃j/Ci,j(σII)+Ci+1,j(σII)<Ci,j(σXk)+Ci+1,j(σXk), or Ci,m(σII)<Ci+1,m(σXk), then σII
is accepted as a new permutation, σXk = σII, then return to Step 1. Otherwise proceed
to Step 6.
Step 6: Remove JσXk(i) from the list of jobs. If the list is not exhausted, then return to
Step 4.

Perturbation of Xk

In our algorithm, we have implemented the following two perturbation schemes:

Scheme A
In this simple procedure one of these three different procedures is randomly chosen.

Swapping
Two integer numbers, i and k, in the range (1, 2, … n), are chosen. The job at i will be
set at position k, and the job at k will be set at position i.

Insertion
Two integer numbers, i and k, in the range (1, 2, … n), are chosen. Job at i will be in-
serted at position k. If i<k, then the job at k will be set at position k-1. However, if i>k,
then the job at k will be set at position k+1.

At random
Randomly, swapping or insertion is chosen.

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 123

Scheme B
Based on the Random Insertion Perturbation Scheme, introduced by [83], we have
developed a perturbation scheme that explores the neighbourhood of the current per-
mutation, Xk, and yields a neighbor Y with a good objective value in conformance
with a preferable criterion. According to the three kinds of movement strategies de-
fined previously, this criterion will be determined. Let zi be the preferable criterion.
For the permutation σXk={I1, I2,… In}, where Ii, with i=1, 2,…n, is the index of the
job scheduled at the position i in σXk, we will check its neighbourhood for finding out
a good neighbor with respect to zi. As it is known that insertion brings better im-
provement than exchange, this procedure generates potential permutations by insert-
ing, forward and backward, removing each job JIi, and reinserting it in a different po-
sition at random. For each job, JIi, where Ii≠I1, and Ii≠In, the procedure will choose
randomly two positions for insertion. One position to its right, choosing randomly a
number between i+1 and n, for forward insertion, and another position to its left,
choosing randomly a number between 1 and i-1, for backward insertion. For jobs in
extreme positions, I1 and In, only one direction of insertion can be chosen. For I1 only
forward insertion is possible to apply, hence, to select a new position, a random num-
ber between 2 and n must be generated. In a similar way, In can only be inserted at
positions to its left, so a number between 1 and n-1 has to be chosen. Thus, the zi

value of the 2(n-1) potential permutations has to be evaluated and the permutation
with minimum zi, is then selected as the neighbouring solution Y.

5.4 Updating Potential Efficient Set

When a neighbouring solution Y is accepted and made the current solution, Xk=Y, the
set of PE solutions should be updated. If Xk is a new non-dominated solution, it
should be added to the archive set and the archive set should be updated. Any solution
dominated by the added one will be removed from the set. For the efficiency of this
algorithm the updating PE process is crucial.

In order to save computational effort in updating PE, non-dominated solutions are
always stored in ascending order of one of the criterion values, thus their other crite-
rion values will be in descending order.

This arrangement constitutes a fast method of finding out dominated instances with
respect to the new solution, and of updating the PE.

5.5 Simulated Annealing Parameters

The acceptance rule is essential in an SA algorithm. p is the probability, for a domi-
nated permutation, of being admitted to the PE set. This probability is computed by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−=
nT

p
φ

exp , where the numerator of the exponent evaluates the candidate solu-

tion, and the denominator is the temperature at any iteration. In the SA technique,
temperature is reduced at every step of iterations. This cooling process makes the pos-
sibility of admitting a dominated solution to be decreased during the search process.
By means of this high probability, at the beginning of the process, one attempts to
avoid being trapped in a local optimum.

124 E. Mokotoff

The deviation function for computing this probability is normalized as follows:

()∑ ×=Δ −

k
xz

xzyz

nk

nkk 100
2

)(

)()(φ (10)

With this normalization we diminish the influence of the different dimensions of the
criteria, hence we have a dimensionless quantity which indicates the relative deviation
of the quality of the generated solution, Y, from that of the current one, Xn. Since Δφ is
not dependent upon the instance size, the initial and final temperature values can be
fixed more reasonably and accurately to minimize the computational effort without
sacrificing the quality of the final solution.

Similar SA parameters have been employed by previous SA applications. Particu-
larly the single objective algorithm presented by [83] and the MOSA procedures in-
troduced by [70] and [116], in which the present work has found inspiration.

After a study carried out by varying SA parameters we have determined the setting
values. Here we point out some aspects of them.

Initial temperature should permit the acceptance of inferior quality solutions. The
algorithm starts with a temperature value of 475, and finishes when the temperature is
below 20. This value is set to limit the inferior quality of acceptance of a generated
permutation by 50%. This means that the probability of accepting a solution with de-
viation of performance criteria of 50% is 0.9 at the beginning of the iterations and
0.08 at the later iterations. The temperature will be reduced by the factor α=0.968.
This reduction takes place at every length of step iterations (with or without im-
provements). Thus, the temperature will be at 100 different steps (Tf=α100T0). In order
to control the computational effort a stopping criterion must be fixed, thus the number
of iterations without improvement, Nstop has been fixed. Furthermore, the length of the
temperature step, Nstep, is essential in driving the cooling process. After the mentioned
analysis, we have fixed the following values: Nstop=2500 and Nstep =500.

6 Evaluation of MOCO Approaches

6.1 Metrics

For the MOO algorithms, the analysis of performance is more complex than for sin-
gle-objective ones. The goal of multiple objective metaheuristic procedures is to find
a good approximation of the set of efficient solutions. It is unlikely that the whole set
of efficient solutions (E) is fully known. While the outcomes from compared algo-
rithms are different, they can still be all equally Pareto efficient.

Usually, the three following conditions are considered as desirable for a good
multi-objective algorithm:

1. The distance of the obtained PE solutions to the E should be minimized.
2. The distribution of the solutions found should be uniform.
3. The larger the number of obtained solutions, i.e. the cardinality of PE, the better

the algorithm.

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 125

The last two conditions present more weaknesses than strengths. If E does not pre-
sent a uniform distribution, or [E]=1, the algorithm that obtains the proper E will not
fulfill conditions 2 and 3. Furthermore, an algorithm that just reports a huge number of
solutions does not ensure their quality (in terms of efficiency). To have an idea of qual-
ity, a reference set of E (R in the following) should be considered. The ideal R is the set
E. However, for MOCO problems it is unlikely that the whole E is known (except for
small size instances, with non-practical application). A useful practice is having a set R
as close to E as possible, then filtering the PE output with R. The obtained net set of

non-dominated solutions in the net set is N={X is Pareto efficient in ()RPE ∪ }, and

it will be at least as good as R. One can measure the quality of the output as the per-
centage of solutions in PE that survive the filtering process with the R set:

[]
[] %100)(1 PE

NPE
PEQ

∩= (11)

[20] presents a quality measure of the percentage of reference solutions found by the
algorithm:

[]
[] %100)(2 R

RPE
PEQ

∩= (12)

Both of the above metrics are cardinal. However, in the case of real-life MOCO
problems it may be impossible to obtain, in a reasonable time, a significant percentage
of efficient solutions. Obtaining near-efficient solutions would also be highly appreci-
ated. Following [57], a more general and economic criterion may be to concentrate on
evaluating the distance of solutions to the efficient frontier. The C metric by [121],
and the Dist1R and Dist2R metrics by [20], can serve this purpose. We have chosen
them because they are not difficult to compute, and they seem to be complementary
(to each other) with respect to the properties analyzed by [57].

The C metric, also a cardinal measure, compares two sets of PE, A and B. A refer-
ence set, R, is not required and it is really easy to compute as:

[]
[]B

baAaBb
BAC

≺:/
),(

∈∃∈= (13)

The following statements can aid the understanding of C(A,B):

• If C(A,B)=1, all solutions in B are weakly dominated by A.
• If C(A,B)=0, none of the solutions in B are weakly dominated by A.

When two algorithms are compared, C(A,B) and C(B,A) must be computed, be-
cause they are not necessary complementary. Unless C(A,B)=1 and C(B,A)<1, it is not
possible to establish that A weakly outperfoms B.

As non-cardinal measures we have the Dist1R and Dist2R, but in obtaining them, R
is required. Their computations, although more complicated than C, do not imply a
high complexity. They are based on an achievement scalarizing function:

126 E. Mokotoff

{ }))()((,0max),(
,...1

XzYzYXd kkk
Kk

−=
=

λ (14)

where X∈R, Y∈PE, and
() ()⎟

⎠
⎞⎜

⎝
⎛ −

=

∈∈
XzXz k

RX
k

RX

k
minmax

1λ

Dist1R is defined as:

() [] (){ }{ }∑
∈ ∈

=
Rx PEY

R YXd
R

PEDist ,min
1

1 (15)

While Dist1R measures the mean distance, over the points in R, of the nearest point in
PE, Dist2R gives the worst case distance, thus is defined as:

() (){ }{ }YXdPEDist
PEYRX

R ,minmax2
∈∈

=

(16)

The lower the values the better PE approximates R. Moreover, the lower the ratio
Dist2R/ Dist1R the more uniform the distribution of solutions from PE over R. Dist1R
induces a complete ordering and let to weak outperformance relations.

Combining PE yielded by different algorithms, a net set of non-dominated solu-
tions, N, for an instance problem is obtained. The N set is very useful as a reference
for many evaluations of new developments. An important contribution is updating the
published N set obtained for benchmark instances.

6.2 Computational Experiments

The proposed methods have been investigated with respect to their effectiveness in
solving 90 test instances presented in [113], with the number of jobs varying from 20
to 100, and the number of machines varying from 5 to 20. Each setting of the algo-
rithm has been tested in each of these instances. The quality of the obtained approxi-
mations is analyzed regarding the Q1(PE), Q2(PE), C(A,B), Dist1R and Dist2R meas-
ures described in the previous section.

To compare the performance of the proposed improvement approaches we have
also implemented the Job-Index-Based Insertion Scheme (JIBIS), Overall-Seed Se-
quence-Based Insertion Scheme (OSSBIS), and Job-Index-Based Swap Scheme
(JIBSS), employed in MOSAI and MOSAII [116], and PGA-ALS [84]. Thus, we
have 5 variants considering the improvement technique: none improvement (N), direct
search (D), cross search (I), combining search (C), JIBIS-OSSBIS-JIBSS (J). For per-
turbation, we have tested the two schemes: A and B, described previously. In our ex-
periment we have tried with initial solution sets of 2, 4 and 8 points. In order to con-
firm the hypothesis of the superiority of simultaneous optimization (S) versus
aggregated function (A), we have also tested a model where the objective function is
the weighted sum of the makespan and the flow time, generating different weight vec-
tors (λ1, λ2), with λ1>1, λ2>1, and λ1+λ2=1. The scheme presented in Table 1 de-
scribes how the proposed algorithms are coded. In the following we refer to them with
their corresponding code.

With the PE for the 90 instances obtained by means of all these algorithms, we
have built a net set to be used as reference (R) for this computational experiment.

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 127

Table 1. Code for the proposed algorithms

Improvement Perturbation Initial Solutions O.F. CODE

N B 4 S NB4S

I B 4 S IB4S

D B 4 S DB4S

C B 4 S CB4S

J B 4 S JB4S

I B 2 S IB2S

I B 8 S IB8S

J B 2 A JB2A

D B 2 A DB2A

J A 4 S JA4S

D A 4 S DA4S

N A 4 S NA4S

In column Improvement: N means no-improvement; I means
cross search; D means direct search; C means combined search;
and J means JIBIS-OSSBIS-JIBSS. In column Perturbation: A/B
means that scheme A/B has been applied. In column Initial Solu-
tions the number of the initial seeds is indicated. In column O.F.:
S means simultaneous optimization, and A means aggregated
function. The final column indicates the acronym of the algo-
rithm in each row.

We have also updated the net sets for the cases published in [116, 84]. We have
made a net based on results from:

1. Net of MOSA I, MOSA II, GPWGA [16], a posteriori [30], MOGLS [51], ENGA
[6], published in [116] (size instances: 20x20, 50x20, and 100x20).

2. Net of PGA-ALS, MOGLS, ENGA, GPWGA, published in [84] (size instances:
50x5, 50x10, 50x20, 100x5, and 100x10).

3. PE of the proposed algorithms (size instances: 20x5, 20x10, 20x20, 50x5, 50x10,
50x20, 100x5, 100x10, and 100x20).

Tables 2 shows the net sets corresponding to the size instance problems 50x20 and
the proportion of the solution on the final net contributed by every algorithm is re-
ported in Table 3. Only as an example we comment on an experiment with Problem 1,
instance size 50x20. The net set published in [116] has been updated with the net set
published in [84]. Then, the resulting net set has been updated just with the output of
one of our proposed algorithm, CB4S (details are showed in Table 4). The interesting
significance of this test is that, in spite of the robustness of MOSAI, MOSAII and
PGA-ALS, the proposed algorithm is superior to them in the sense that it does not
give a large percentage of dominated solutions in the resulting PE.

In results presented by [116], after comparing with the PE sets obtained from dif-
ferent algorithms (updating net sets), solutions from MOSA I, GPWGA, a posteriori
and ENGA, are null. The number of reported solutions of MOSA II, after filtering
(one can suppose, before it was even superior), is 23 and just 7 of them persisted the

128 E. Mokotoff

P
ro

bl
em

 1

P

ro
bl

em
 2

P
ro

bl
em

 3

P

ro
bl

em
 4

P
ro

bl
em

 5

C
m

ax
∑

i
C

C

m
ax

∑
i

C

C
m

ax
∑

i
C

C

m
ax

∑
i

C

C
m

ax
∑

i
C

39
00

13

60
88

03

37
42

12

87
65

09

36
97

12

38
29

08

37
69

12

87
24

09

36
64

12

68
89

09

39
01

13

53
35

09

37
44

12

85
85

09

37
00

12

29
33

13

37
73

12

82
59

09

36
67

12

59
57

02

39
05

13

35
03

13

37
45

12

79
60

09

37
24

12

29
19

02

37
75

12

82
53

09

36
70

12

59
39

02

39
12

13

34
22

13

37
47

12

71
68

09

37
46

12

09
40

04

37
92

12

74
64

02

36
74

12

59
09

02

39
13

13

31
78

13

37
54

12

69
54

09

37
66

12

08
26

04

38
07

12

74
01

11

36
79

12

58
42

09

39
15

13

31
72

13

37
65

12

67
54

09

37
68

12

08
22

04

38
10

12

71
65

13

36
84

12

52
28

09

39
53

13

15
06

06

37
72

12

67
10

13

37
82

12

06
84

04

38
11

12

70
62

13

37
00

12

51
95

09

39
54

13

14
81

06

37
75

12

63
32

13

37
92

12

06
54

04

38
16

12

70
55

13

37
01

12

51
90

09

39
58

13

11
53

06

37
77

12

62
23

13

37
95

12

03
21

06

38
50

12

64
43

06

37
04

12

50
99

07

39
97

13

09
65

01

38
00

12

59
40

04

38
04

11

99
27

01

38
51

12

63
57

06

37
13

12

46
17

07

39
98

13

03
51

01

38
40

12

57
83

04

38
10

11

98
84

01

38
53

12

63
11

06

37
14

12

45
58

04

40
18

13

03
11

01

38
47

12

57
81

04

38
12

11

98
53

01

38
60

12

59
53

06

37
35

12

40
62

01

40
22

13

02
83

01

38
54

12

44
17

04

38
14

11

98
42

01

38
63

12

50
08

01

37
46

12

40
61

01

40
30

13

00
76

01

38
60

12

43
36

04

38
17

11

91
50

01

38
74

12

44
31

01

37
47

12

36
98

01

40
31

12

98
35

01

38
64

12

33
67

06

38
18

11

90
50

01

38
86

12

41
97

01

37
61

12

32
22

01

40
36

12

98
07

01

38
69

12

32
82

06

38
22

11

89
78

01

38
88

12

41
49

01

37
67

12

18
00

01

40
49

12

94
51

01

38
72

12

30
49

06

38
24

11

89
25

01

39
00

12

35
99

06

37
86

12

15
68

01

40
68

12

94
36

01

38
75

12

30
25

06

38
25

11

88
94

01

39
10

12

35
24

06

38
62

12

13
57

01

41
64

12

93
32

06

39
25

12

29
72

04

38
42

11

88
80

01

39
82

12

35
06

06

38
64

12

12
41

01

T
ab

le
 2

. N
et

 s
et

 o
f

no
n-

do
m

in
at

ed
 s

ol
ut

io
ns

 o
bt

ai
ne

d
fr

om
 v

ar
io

us
 m

ul
ti

-o
bj

ec
ti

ve
 f

lo
w

 s
ho

p
sc

he
du

li
ng

 a
lg

or
ith

m
s

fo
r

th
e

be
nc

hm
ar

k
pr

ob
le

m
s

gi
ve

n
by

 [
11

3]
, s

iz
e

(5
0×

20
)

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 129

41
73

12

93
09

06

39
30

12

28
78

04

38
53

11

87
77

01

39
84

12

32
47

06

38
68

12

12
03

01

41
75

12

92
95

06

39
50

12

27
66

01

38
59

11

87
61

01

39
85

12

32
11

06

38
75

12

11
86

01

41
81

12

92
93

06

39
54

12

26
63

01

38
79

11

87
31

01

39
93

12

31
02

06

38
78

12

11
72

01

41
89

12

92
12

05

39
64

12

24
77

01

38
82

11

86
28

01

40
19

12

30
10

06

38
87

12

10
79

01

42
03

12

91
37

05

39
68

12

24
30

01

-
-

-
40

72

12
29

59
06

39

02

12
10

47
06

42
16

12

90
88

05

39
83

12

23
74

01

-
-

-
40

76

12
29

04
06

39

05

12
10

14
06

42
18

12

90
40

05

39
86

12

23
66

01

-
-

-
41

27

12
28

86
06

39

12

12
09

01
06

42
20

12

90
34

05

40
20

12

23
09

01

-
-

-
41

50

12
28

47
06

39

27

12
06

24
01

42
21

12

89
82

05

40
60

12

18
70

06

-
-

-
-

-
-

39
64

12

07
80

01

42
57

12

88
88

05

40
72

12

17
08

06

-
-

-
-

-
-

40
22

12

04
75

02

-
-

-
40

79

12
15

56
06

-

-
-

-
-

-
-

-
-

-
-

-
40

88

12
14

43
06

-

-
-

-
-

-
-

-
-

-
-

-
40

99

12
13

83
06

-

-
-

-
-

-
-

-
-

-
-

-
41

04

12
12

75
06

-

-
-

-
-

-
-

-
-

-
-

-
41

09

12
11

75
06

-

-
-

-
-

-
co

nt
in

ue
d

on
 n

ex
t p

ag
e

T
ab

le
 2

. (
co

nt
in

ue
d)

F
or

 e
ac

h
pr

ob
le

m
:

In
 th

e
1st

 c
ol

um
n

m
ak

es
pa

n
is

 in
di

ca
te

d.
 I

n
th

e
2nd

 c
ol

um
n

to
ta

l
fl

ow
 t

im
e

is
 in

di
ca

te
d.

 I
n

th
e

3rd
 c

ol
um

n
th

e
al

-
go

ri
th

m
 t

ha
t

yi
el

de
d

th
e

co
rr

es
po

nd
in

g
so

lu
ti

on
 i

s
in

di
ca

te
d

as
 f

ol
lo

w
s:

 1
 i

s
P

G
A

-A
L

S
;

2
is

 I
B

8S
 ;

 3
 i

s
C

B
4S

;
4

is
 M

O
S

A
I;

 5
 i

s
M

O
G

L
S;

 6
 is

 M
O

SA
II

; 7
 is

 D
B

4S
; 8

 is
 I

B
4S

; 9
 is

 J
B

4S
; 1

0
is

 N
B

4S
;1

1
is

 D
B

2A
; 1

2
is

 G
P

W
G

A
; a

nd
 1

3
is

 J
B

2A
.

130 E. Mokotoff

T
ab

le
 2

. (
co

nt
in

ue
d)

Pr
ob

le
m

 6

Pr

ob
le

m
 7

Pr
ob

le
m

 8

Pr

ob
le

m
 9

Pr
ob

le
m

 1
0

C
m

ax
i

C

C
m

ax
i

C

C
m

ax
i

C

C
m

ax
i

C

C
m

ax
i

C

37
24

13

05
63

 1
0

37
63

13

10
57

10
37

85

12
94

03
03

38
26

13

33
74

 0
2

38
15

13

16
62

07

37
25

13

05
56

 1
0

37
67

13

10
54

10
37

87

12
94

01
03

38
29

13

32
77

 0
2

38
20

13

14
39

07

37
27

13

04
97

 1
0

37
70

13

10
49

10
37

96

12
93

12
03

38
30

13

00
69

 0
6

38
22

13

11
48

07

37
31

13

04
80

 1
0

37
73

13

08
28

10
38

03

12
93

01
08

,1
0

38
33

12

94
52

 0
6

38
26

13

11
46

07

37
34

13

02
31

 1
0

37
78

13

06
58

10
38

05

12
92

83
03

38
48

12

94
32

 0
6

38
28

13

10
31

07

37
36

13

00
80

 0
7

37
81

13

06
35

10
38

07

12
87

78
06

38
62

12

92
62

 0
6

38
38

13

09
64

07

37
39

12

96
47

 0
7

37
91

13

06
14

10
38

08

12
86

29
06

38
64

12

81
45

 0
1

38
40

13

08
21

07

37
40

12

91
76

 0
8

37
92

13

06
05

10
38

16

12
84

84
06

38
72

12

81
39

 0
1

38
51

13

07
43

10

37
43

12

87
07

 0
8

37
96

13

01
43

10
38

17

12
84

51
06

38
79

12

79
13

 0
1

38
54

13

04
69

04

37
45

12

84
80

 0
8

38
04

12

96
12

04
38

19

12
76

29
06

38
80

12

76
54

 0
1

38
55

12

83
34

01

37
46

12

84
71

 0
7

38
17

12

95
82

01
38

23

12
75

83
06

38
83

12

73
06

 0
1

38
69

12

81
30

01

37
54

12

80
10

 0
8

38
18

12

87
81

01
38

36

12
75

15
06

38
96

12

72
09

 0
1

38
96

12

74
40

04

37
82

12

79
31

 0
1

38
23

12

87
78

01
38

54

12
71

35
04

39
05

12

71
41

 0
1

39
07

12

73
98

04

37
90

12

76
98

 0
1

38
29

12

83
96

01
38

60

12
67

27
04

39
16

12

69
76

 0
1

39
14

12

67
55

06

37
91

12

67
59

 0
1

38
33

12

83
13

01
38

65

12
58

71
01

39
17

12

65
82

 0
6

39
15

12

66
97

06

38
07

12

64
39

 0
1

38
37

12

82
77

01
38

69

12
58

40
01

39
21

12

64
54

 0
6

39
18

12

66
94

06

38
10

12

63
46

 0
1

38
40

12

79
16

01
38

78

12
57

59
01

39
24

12

61
50

 0
1

39
22

12

66
18

06

38
14

12

63
14

 0
1

38
41

12

79
12

01
38

84

12
55

79
01

39
33

12

57
71

 0
6

39
36

12

64
62

06

38
21

12

58
39

 0
1

38
54

12

79
10

01
38

89

12
53

31
01

39
54

12

56
19

 0
1

39
52

12

64
23

06

38
27

12

56
82

 0
1

38
67

12

66
95

01
38

91

12
52

36
01

39
65

12

53
55

 0
6

40
46

12

63
88

06

38
34

12

55
79

 0
1

38
92

12

65
40

01
38

94

12
52

03
01

39
74

12

53
34

 0
6

-
-

-

38
36

12

55
67

 0
1

38
94

12

64
55

01
39

01

12
50

79
01

39
81

12

51
92

 0
6

-
-

-

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 131

T
ab

le
 2

. (
co

nt
in

ue
d)

38
40

12

54
68

 0
1

39
02

12

63
36

01
39

05

12
50

63
01

39
82

12

51
87

 0
6

-
-

-

38
41

12

54
62

 0
1

39
27

12

63
11

01
39

10

12
50

24
01

39
83

12

51
42

 0
6

-
-

-

38
43

12

54
38

 0
1

39
53

12

60
63

04
39

18

12
48

59
01

39
84

12

51
37

 0
6

-
-

-

38
45

12

54
22

 0
1

39
54

12

60
45

04
39

29

12
47

94
01

39
88

12

51
11

 0
6

-
-

-

38
48

12

48
24

 0
6

40
32

12

59
49

04
39

31

12
47

60
01

39
90

12

50
31

 0
6

-
-

-

38
62

12

46
33

 0
6

40
98

12

58
84

01
39

35

12
47

42
01

39
91

12

50
26

 0
6

-
-

-

38
78

12

45
53

 0
6

41
45

12

58
53

07
40

76

12
46

96
01

40
04

12

48
74

 0
6

-
-

-

38
86

12

45
38

 0
6

41
47

12

58
52

07
41

27

12
46

77
01

40
06

12

48
57

 0
6

-
-

-

38
91

12

39
73

 0
6

42
69

12

58
35

11
41

31

12
45

39
07

40
13

12

47
01

 0
6

-
-

-

39
33

12

38
24

 0
6

42
73

12

58
27

11
41

61

12
45

29
07

40
40

12

46
18

 0
6

-
-

-

39
44

12

37
93

 0
6

-
-

-
41

76

12
45

18
07

40
43

12

44
67

 0
6

-
-

-

39
46

12

37
66

 0
6

-
-

-
-

-
-

40
44

12

43
85

 0
6

-
-

-

39
56

12

36
83

 0
6

-
-

-
-

-
-

40
52

12

43
26

 0
6

-
-

-

39
59

12

36
01

 0
6

-
-

-
-

-
-

40
56

12

43
17

 0
6

-
-

-

39
64

12

35
92

 0
6

-
-

-
-

-
-

41
43

12

42
99

 0
6

-
-

-

39
79

12

35
35

 0
6

-
-

-
-

-
-

-
-

-
-

-
-

40
08

12

31
63

 0
6

-
-

-
-

-
-

-
-

-
-

-
-

40
11

12

31
21

 0
6

-
-

-
-

-
-

-
-

-
-

-
-

40
52

12

30
93

 0
6

-
-

-
-

-
-

-
-

-
-

-
-

40
53

12

30
57

 0
6

-
-

-
-

-
-

-
-

-
-

-
-

41
16

12

29
98

 0
6

-
-

-
-

-
-

-
-

-
-

-
-

41
56

12

29
10

 0
6

-
-

-
-

-
-

-
-

-
-

-
-

41
77

12

28
84

 0
6

-
-

-
-

-
-

-
-

-
-

-
-

F
or

 e
ac

h
pr

ob
le

m
:

In
 t

he
 1

st
 c

ol
um

n
m

ak
es

pa
n

is
 i

nd
ic

at
ed

.
In

 t
he

 2
nd

 c
ol

um
n

to
ta

l
fl

ow
 t

im
e

is
 i

nd
ic

at
ed

.
In

th

e
3rd

 c
ol

um
n

th
e

al
go

ri
th

m
 t

ha
t

yi
el

de
d

th
e

co
rr

es
po

nd
in

g
so

lu
tio

n
is

 i
nd

ic
at

ed
 a

s
fo

llo
w

s:
 1

 i
s

PG
A

-A
L

S
;

2
is

 I
B

8S
 ;

3
is

 C
B

4S
; 4

 is
 M

O
S

A
I;

 5
 is

 M
O

G
L

S
; 6

 is
 M

O
S

A
II

; 7
 is

 D
B

4S
; 8

 is
 I

B
4S

; 9
 is

 J
B

4S
; 1

0
is

 N
B

4S
;1

1
is

D
B

2A
;1

2
is

G
PW

G
A

;a
nd

13
is

JB
2A

.

132 E. Mokotoff

A
lg

or
ith

m

Pr
ob

le
m

 1
 P

ro
bl

em
 2

 P
ro

bl
em

 3
Pr

ob
le

m
 4

 P
ro

bl
em

 5
Pr

ob
le

m
 6

 P
ro

bl
em

 7
 P

ro
bl

em
 8

 P
ro

bl
em

 9
 P

ro
bl

em
 1

0

1-
PG

A
-A

L
S

31
,0

3
20

,5
9

60
,8

7
14

,8
1

48
,2

8
31

,1
1

46
,8

8
47

,0
6

27
,0

3
10

,0
0

2-
IB

8S

0,
00

0,

00

4,
35

3,

70

13
,7

9
0,

00

0,
00

0,

00

5,
41

0,

00

3-
C

B
4S

3,

45

0,
00

0,

00

0,
00

0,

00

0,
00

0,

00

14
,7

1
0,

00

0,
00

4-
M

O
SA

 I

0,
00

20

,5
9

21
,7

4
0,

00

3,
45

0,

00

12
,5

0
5,

88

0,
00

15

,0
0

5-
M

O
G

L
S

24
,1

4
0,

00

0,
00

0,

00

0,
00

0,

00

0,
00

0,

00

0,
00

0,

00

6-
M

O
SA

 I
I

24
,1

4
32

,3
5

4,
35

55

,5
6

10
,3

4
42

,2
2

0,
00

20

,5
9

67
,5

7
35

,0
0

7-
D

B
4S

0,

00

0,
00

0,

00

0,
00

6,

90

6,
67

6,

25

8,
82

0,

00

35
,0

0

8-
IB

4S

0,
00

0,

00

4,
35

0,

00

0,
00

8,

89

0,
00

2,

94

0,
00

0,

00

9-
JB

4S

3,
45

17

,6
5

0,
00

11

,1
1

17
,2

4
0,

00

0,
00

0,

00

0,
00

0,

00

10
-N

B
4S

0,

00

0,
00

0,

00

0,
00

0,

00

11
,1

1
28

,1
3

0,
00

0,

00

5,
00

11
-D

B
2A

0,

00

0,
00

0,

00

3,
70

0,

00

0,
00

6,

25

0,
00

0,

00

0,
00

12
-G

PW
G

A

0,
00

0,

00

0,
00

0,

00

0,
00

0,

00

0,
00

0,

00

0,
00

0,

00

13
-J

B
2A

13

,7
9

8,
82

4,

35

11
,1

1
0,

00

0,
00

0,

00

0,
00

0,

00

0,
00

Fo
r

ea
ch

 p
ro

bl
em

, t
he

 f
ig

ur
es

 in
di

ca
te

 th
e

pe
rc

en
ta

ge
 o

f
so

lu
tio

ns
 o

n
th

e
ne

t o
bt

ai
ne

d
by

 e
ac

h
al

go
ri

th
m

.

T
ab

le
 3

. P
ro

po
rt

io
n

of
 th

e
so

lu
tio

n
on

 th
e

fi
na

l n
et

 c
on

tr
ib

ut
ed

 b
y

ev
er

y
al

go
ri

th
m

 f
or

 th
e

be
nc

hm
ar

k
pr

ob
le

m
s

gi
ve

n
by

 [
11

3]
, s

iz
e

(5
0×

20
)

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 133

Table 4. The process of updating Net set published by [84] and [116], with the output of one of the
proposed algorithm: CB4S, for the instance: Problem 1, size 50x20

NET NET 1 NET 2 PE(DB4S)

Cmax ∑ iC Cmax ∑ iC Cmax ∑ iC Cmax ∑ iC

4036 129807 PGAALS 3928 138212 MOSAII 4182 129314 PGAALS 4267 129205 -

4031 129835 PGAALS 3929 138137 MOSAII 4036 129807 PGAALS 4233 131799 -

4018 130311 PGAALS 3932 138095 MOSAII 4031 129835 PGAALS 3976 133707 -

4049 129451 PGAALS 3936 138078 MOSAII 4018 130311 PGAALS 3966 133753 -

4068 129436 PGAALS 3938 138030 MOSAII 4049 129451 PGAALS 3957 133855 -

4030 130076 PGAALS 3953 131506 MOSAII 4068 129436 PGAALS 3956 133867 -

4022 130283 PGAALS 3954 131481 MOSAII 4030 130076 PGAALS 3955 133914 -

3998 130351 PGAALS 3958 131153 MOSAII 4022 130283 PGAALS 3921 134022 *

3997 130965 PGAALS 4009 130558 MOSAII 3965 133658 PGAALS 3920 134074 *

3953 131506 MOSAII 4037 130317 MOSAII 3984 131387 PGAALS 3919 134107 *

3954 131481 MOSAII 4060 130217 MOSAII 3973 131538 PGAALS 3916 134423 *

3958 131153 MOSAII 4067 130153 MOSAII 3971 131728 PGAALS 3912 134424 *

4164 129332 MOSAII 4071 130110 MOSAII 3969 131922 PGAALS 3911 134438 *

4173 129309 MOSAII 4084 130099 MOSAII 3967 132131 PGAALS 3907 134612 *

4175 129295 MOSAII 4098 130083 MOSAII 3965 132133 PGAALS 3905 134995 *

4181 129293 MOSAII 4100 129685 MOSAII 3962 132782 PGAALS 3901 135529 *

4189 129212 MOGLS 4105 129632 MOSAII 3998 130351 PGAALS 3900 136088 *

4203 129137 MOGLS 4108 129572 MOSAII 3996 131378 PGAALS - - -

4216 129088 MOGLS 4137 129525 MOSAII 3997 130965 PGAALS - - -

4218 129040 MOGLS 4164 129332 MOSAII - - - - - -

4220 129034 MOGLS 4173 129309 MOSAII - - - - - -

4221 128982 MOGLS 4175 129295 MOSAII - - - - - -

4257 128888 MOGLS 4181 129293 MOSAII - - - - - -

3921 134022 PE(CB4S) 4189 129212 MOGLS - - - - - -

3920 134074 PE(CB4S) 4203 129137 MOGLS - - - - - -

3919 134107 PE(CB4S) 4216 129088 MOGLS - - - - - -

3916 134423 PE(CB4S) 4218 129040 MOGLS - - - - - -

3912 134424 PE(CB4S) 4220 129034 MOGLS - - - - - -

3911 134438 PE(CB4S) 4221 128982 MOGLS - - - - - -

3907 134612 PE(CB4S) 4257 128888 MOGLS - - - - - -

3905 134995 PE(CB4S) - - - - - - - - -

3901 135529 PE(CB4S) - - - - - - - - -

3900 136088 PE(CB4S) - - - - - - - - -

Each solution is followed by the acronym of the algorithm that has yielded it. Exception is made in
column corresponding to CB4S, because it shows the output of CB4S, not a Net set. Asterisks in this
column indicate a solution that is still in the final net set.

134 E. Mokotoff

n
m

IB

4S

-
-

D
B

4S
-

-
C

B
4S

-
-

JB
4S

-

-
IB

2S

-
-

IB
8S

-

-

-
-

D
is

t1
 D

is
t2

 D
is

t1
/D

is
t2

D
is

t1
 D

is
t2

 D
is

t1
/D

is
t2

D
is

t1
 D

is
t2

 D
is

t1
/D

is
t2

D
is

t1
 D

is
t2

 D
is

t1
/D

is
t2

D
is

t1
 D

is
t2

 D
is

t1
/D

is
t2

D
is

t1
 D

is
t2

 D
is

t1
/D

is
t2

20

5
37

,5
1

37
,8

3
0,

63

0,
22

0,

49

0,
53

37

,4
1

37
,7

7
0,

54

37
,7

6
38

,0
7

0,
69

37

,6
9

37
,9

6
0,

74

36
,3

5
36

,6
6

0,
49

20

10

0,
64

0,

80

0,
58

50

,0
3

50
,2

1
0,

55

0,
27

0,

41

0,
52

14

,9
2

15
,0

8
0,

63

0,
61

0,

85

0,
60

0,

22

0,
38

0,

53

20

20

0,
19

0,

38

0,
42

0,

26

0,
51

0,

46

0,
20

0,

42

0,
44

0,

26

0,
49

0,

46

0,
19

0,

35

0,
55

0,

06

0,
16

0,

31

50

5
0,

28

0,
50

0,

53

0,
17

0,

38

0,
42

0,

25

0,
40

0,

53

0,
54

0,

70

0,
74

0,

35

0,
60

0,

57

0,
23

0,

43

0,
51

50

10

0,
27

0,

44

0,
53

0,

10

0,
29

0,

33

0,
26

0,

41

0,
54

0,

34

0,
51

0,

63

0,
37

0,

60

0,
59

0,

17

0,
40

0,

36

50

20

0,
21

0,

36

0,
57

0,

13

0,
32

0,

39

0,
13

0,

30

0,
44

0,

22

0,
36

0,

55

0,
30

0,

46

0,
60

0,

07

0,
19

0,

33

10
0

5
0,

15

0,
41

0,

34

0,
19

0,

40

0,
40

0,

23

0,
45

0,

44

0,
36

0,

69

0,
44

0,

48

0,
73

0,

46

0,
11

0,

28

0,
48

10
0

10

0,
07

0,

22

0,
22

0,

04

0,
21

0,

18

0,
02

0,

09

0,
48

0,

08

0,
24

0,

34

0,
08

0,

25

0,
32

0,

06

0,
16

0,

65

10
0

20

0,
12

0,

26

0,
45

0,

16

0,
36

0,

54

0,
14

0,

35

0,
32

0,

17

0,
31

0,

50

0,
20

0,

40

0,
39

0,

05

0,
14

0,

37

T
ab

le
 5

. A
ve

ra
ge

s
va

lu
es

 o
f

di
st

an
ce

 m
ea

su
re

s
D

is
t1

R
, D

is
t2

R
, D

is
t1

R
/D

is
t2

R
 f

or
 I

B
4S

, D
B

4S
, C

B
4S

, J
B

4S
, I

B
2S

 a
nd

 I
B

8S

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 135

n
m

D

A
4S

 -

-
JA

4S

-
-

N
A

4S
-

-
N

B
4S

-
-

JB
2A

-
-

D
B

2A
-

-

-
-

D
is

t1

D
is

t2

D
is

t1
/D

is
t2

D
is

t1

D
is

t2

D
is

t1
/D

is
t2

D
is

t1
D

is
t2

D
is

t1
/D

is
t2

D
is

t1
D

is
t2

 D
is

t1
/D

is
t2

D
is

t1

D
is

t2

D
is

t1
/D

is
t2

D
is

t1
D

is
t2

D
is

t1
/D

is
t2

20

5
43

,3
9

43
,6

5
1,

27

41
,9

1
42

,2
2

0,
79

43

,5
5

43
,8

40
,8

4
37

,7
7

38
,0

00
,7

4
38

,4
0

38
,7

2
0,

70

40
,8

7
41

,1
30

,7
8

20

10

60
,6

4
60

,8
6

1,
32

56

,6
2

56
,9

2
0,

68

60
,6

7
60

,8
80

,8
0

45
,6

9
45

,8
20

,7
0

10
5,

27
10

5,
64

0,
58

36

,4
8

36
,8

10
,5

9

20

20

0,
87

1,

07

1,
25

0,

67

0,
89

0,

74

0,
88

1,

08
 0

,8
1

0,
21

0,

40
 0

,5
0

0,
44

0,

80

0,
54

0,

48

0,
79

 0
,5

7

50

5
0,

59

0,
86

1,

52

0,
84

0,

97

0,
86

0,

88

1,
05

 0
,8

4
0,

52

0,
73

 0
,6

8
0,

84

1,
02

0,

81

0,
80

0,

98
 0

,7
9

50

10

0,
75

1,

08

1,
49

0,

77

0,
99

0,

76

0,
95

1,

20
 0

,7
8

0,
31

0,

55
 0

,5
4

0,
58

0,

89

0,
64

0,

51

0,
79

 0
,6

2

50

20

0,
77

1,

01

1,
33

0,

72

0,
95

0,

76

0,
87

1,

07
 0

,8
0

0,
21

0,

41
 0

,4
9

0,
58

0,

87

0,
67

0,

57

0,
85

 0
,6

5

10
0

5
0,

44

0,
82

3,

33

0,
55

0,

99

0,
47

0,

72

1,
18

 0
,5

4
0,

37

0,
72

 0
,5

0
0,

80

1,
24

0,

52

0,
82

1,

28
 0

,5
2

10
0

10

0,
21

0,

49

3,
34

0,

25

0,
54

0,

43

0,
32

0,

66
 0

,4
6

0,
06

0,

18
 0

,5
0

0,
25

0,

59

0,
40

0,

25

0,
59

 0
,4

0

10
0

20

0,
53

0,

80

2,
01

0,

50

0,
82

0,

56

0,
61

0,

91
 0

,6
1

0,
18

0,

35
 0

,3
9

0,
40

0,

78

0,
49

0,

40

0,
78

 0
,4

9

T
ab

le
 6

. A
ve

ra
ge

 v
al

ue
s

of
 d

is
ta

nc
e

m
ea

su
re

s
D

is
t1

R
, D

is
t2

R
, a

nd
 D

is
t1

R
/D

is
t2

R
 f

or
 D

A
4S

, J
A

4S
, N

A
4S

, N
B

4S
, J

B
2A

 a
nd

 D
B

2A

136 E. Mokotoff

updating process. On the other hand, MOGLS presents 7 solutions in results pub-
lished in [116], and all of them are still in our net set.

In a similar way, results reported by [84], after comparing PGA-ALS with the PE
of MOGLS, ENGA and GPWGA, only PGA-ALS survived, and the number of PGA-
ALS solutions in the published results for the net set is 19, of which, 9 are still in the
net set after updating. (The different results for MOGLS, ENGA and GPWGA, in
both papers, is surely due to the different parameter setting).

To have a numerical idea of these comments, the percentage of the number of solu-
tions in the final net set over the number of solutions in the set before filtering are the
following:

MOSA I=0%, MOSA II=30%, GPWGA=0%, a posteriori=0%, MOGLS=100%,
ENGA=0%, PGA-ALS =47%, CB4S=59%. (Considering other of the proposed algo-
rithms this tendency is similar, e.g. the corresponding percentage for IB4S is 53, and
for DB4S is 75).

It is important to note that the PE considered for CB4S (IB4S or DB4S) is just the
output of the algorithm, and even though, when comparing with results from net sets,
it is only outperformed by MOGLS. (Only for CB4S, IB4S, and DB4S algorithms the
computed percentage values coincide with Q1(PE)).

The advantage of yielding a large PE set (as by MOSAI, MOSAII and PGA-ALS
algorithms) is the possibility of covering the efficient frontier with a more diversified
set of solutions, even though they are not efficient. To clarify this idea, we present, in
Fig. 1, the efficient frontier obtained for the Problem 10, size 50x20, from the Tail-
lard’s benchmarks. In spite of having a high percentage of non-efficient solutions,
PGA-ALS gives a wide set of near-efficient solutions.

In order to evaluate the diversification, we use the DistR1, DistR2 and
DistR1/DistR2 metrics. To compute these metrics, the complete set of PE is required.
In Tables 5 and 6 we present the average results for each size of the 90 benchmark in-
stances obtained for the variants of the proposed algorithms.

We have also computed Q1 and Q2 metrics and for pair-wise comparison between
different algorithms, C(A,B) have been calculated. Because of limited space only av-
erage figures of the obtained results are presented (Table 7 and 8 present the average
values of Q1 and Q2, respectively). However, we comment on the most important re-
sults. It could be observed that the rules direct search (DB4S) and combined search
(CB4S) yield more solutions which are kept in the final net set (efficient). On the
other hand, cross search (IB4S) and JIBIS-OSSBIS-JIBSS (JB4S) give similar results.
JB4S was implemented, following [116], in cross search movement strategy. One can
conclude that this way of searching is less efficient for the MOSA scheme presented
in this paper. Even with NB4S (none improvement), the obtained results are the same,
when Q2 figures are observed.

Going deeply into quality relations between these five manners of improvement,
we have the C(A,B) and C(B,A) measures that make clear how many solutions pro-
vided by A are dominated by solutions from B, and vice versa. Tables 9, 10 and 11
show the comparison between each pair of techniques. On average, we can affirm that
any improvement is better than none (NB4S shows the worst figures in Table 10).
However the outperformance of JB4S over NB4S is negligible. IB4S, DB4S and
CB4S are superior to JB4S (see Table 9). CB4S shows its prominence with respect to

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 137

F
ig

. 1
. E

ff
ic

ie
nt

 F
ro

nt
ie

r
ob

ta
in

ed
 f

or
 P

ro
bl

em
 1

0,
 s

iz
e

(5
0x

20
)

of
 T

ai
ll

ar
d’

s
be

nc
hm

ar
ks

138 E. Mokotoff

n
m

IB

4S

D
B

4S

C
B

4S

JB
4S

IB

2S

IB
8S

D

A
4S

JA

4S

N
A

4S

N
B

4S

JB
2A

D

B
2A

20

5
0,

27
50

 0
,4

05
0

0,
39

50
0,

04
25

 0
,0

79
3

0,
37

39
 0

,0
00

0
0,

04
25

 0
,0

00
0

0,
07

93
0,

17
50

 0
,0

09
1

20

10

0,
26

59
 0

,1
21

0
0,

48
46

0,
15

95
 0

,2
60

3
0,

50
97

 0
,0

00
0

0,
15

95
 0

,0
00

0
0,

26
03

0,
12

50
 0

,0
73

3

20

20

0,
33

56
 0

,1
53

0
0,

27
23

0,
33

33
 0

,3
04

8
0,

57
39

 0
,0

00
0

0,
33

33
 0

,0
00

0
0,

30
48

0,
09

50
 0

,0
50

0

50

5
0,

19
41

 0
,4

28
3

0,
23

25
0,

14
09

 0
,1

21
7

0,
17

03
 0

,0
00

0
0,

14
09

 0
,0

00
0

0,
12

17
0,

00
00

 0
,0

20
0

50

10

0,
23

69
 0

,4
64

1
0,

14
62

0,
15

44
 0

,2
14

7
0,

45
78

 0
,0

00
0

0,
15

44
 0

,0
00

0
0,

21
47

0,
00

00
 0

,0
16

7

50

20

0,
06

88
 0

,4
60

9
0,

29
57

0,
04

19
 0

,0
63

6
0,

50
96

 0
,0

00
0

0,
04

19
 0

,0
00

0
0,

06
36

0,
00

00
 0

,0
20

0

10
0

5
0,

13
87

 0
,4

52
5

0,
55

45
0,

14
75

 0
,1

33
4

0,
47

00
 0

,0
83

3
0,

14
75

 0
,0

00
0

0,
13

34
0,

07
50

 0
,0

00
0

10
0

10

0,
15

41
 0

,4
38

5
0,

50
21

0,
11

05
 0

,1
43

8
0,

29
58

 0
,0

50
0

0,
11

05
 0

,0
00

0
0,

14
38

0,
08

89
 0

,0
88

9

10
0

20

0,
27

38
 0

,2
40

4
0,

37
28

0,
20

16
 0

,2
26

5
0,

41
73

 0
,0

00
0

0,
20

16
 0

,0
00

0
0,

22
65

0,
07

50
 0

,0
75

0

T
ab

le
 7

. A
ve

ra
ge

 v
al

ue
s

of
 th

e
ca

rd
in

al
 m

ea
su

re
s

Q
1

fo
r

IB
4S

, D
B

4S
, C

B
4S

, J
B

4S
, I

B
2S

, I
B

8S
, D

A
4S

, J
A

4S
, N

A
4S

, N
B

4S
, J

B
2A

 a
nd

 D
B

2A

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 139

n
m

IB

4S

D
B

4S

C
B

4S

JB
4S

IB

2S

IB
8S

D

A
4S

JA

4S

N
A

4S

N
B

4S

JB
2A

D

B
2A

20

5
0,

11
67

 0
,3

42
8

0,
17

44
0,

11
67

 0
,1

16
7

0,
37

61
 0

,0
00

0
0,

11
67

 0
,0

00
0

0,
11

67
0,

06
83

 0
,0

25
0

20

10

0,
23

57
 0

,1
31

1
0,

37
64

0,
23

57
 0

,2
35

7
0,

33
51

 0
,0

00
0

0,
23

57
 0

,0
00

0
0,

23
57

0,
05

75
 0

,0
76

7

20

20

0,
26

57
 0

,1
15

6
0,

19
65

0,
26

57
 0

,2
65

7
0,

42
21

 0
,0

00
0

0,
26

57
 0

,0
00

0
0,

26
57

0,
02

73
 0

,0
06

7

50

5
0,

18
12

 0
,3

68
6

0,
23

83
0,

18
12

 0
,1

81
2

0,
22

87
 0

,0
00

0
0,

18
12

 0
,0

00
0

0,
18

12
0,

00
00

 0
,0

10
0

50

10

0,
16

34
 0

,3
71

9
0,

09
59

0,
16

34
 0

,1
63

4
0,

36
25

 0
,0

00
0

0,
16

34
 0

,0
00

0
0,

16
34

0,
00

00
 0

,0
06

3

50

20

0,
05

05
 0

,3
49

4
0,

19
01

0,
05

05
 0

,0
50

5
0,

40
33

 0
,0

00
0

0,
05

05
 0

,0
00

0
0,

05
05

0,
00

00
 0

,0
03

3

10
0

5
0,

12
54

 0
,3

75
3

0,
24

49
0,

12
54

 0
,1

25
4

0,
32

75
 0

,0
22

2
0,

12
54

 0
,0

00
0

0,
12

54
0,

01
88

 0
,0

00
0

10
0

10

0,
09

52
 0

,3
35

0
0,

29
94

0,
09

52
 0

,0
95

2
0,

22
31

 0
,0

04
5

0,
09

52
 0

,0
00

0
0,

09
52

0,
03

48
 0

,0
34

8

10
0

20

0,
19

75
 0

,2
03

0
0,

20
37

0,
19

75
 0

,1
97

5
0,

37
59

 0
,0

00
0

0,
19

75
 0

,0
00

0
0,

19
75

0,
02

00
 0

,0
20

0

T
ab

le
 8

. A
ve

ra
ge

 v
al

ue
s

of
 th

e
ca

rd
in

al
 m

ea
su

re
s

Q
2

fo
r

IB
4S

, D
B

4S
, C

B
4S

, J
B

4S
, I

B
2S

, I
B

8S
, D

A
4S

, J
A

4S
, N

A
4S

, N
B

4S
, J

B
2A

 a
nd

 D
B

2A

140 E. Mokotoff

N
m

C

(J
B

4S
,I

B
4S

)
C

(I
B

4S
,J

B
4S

)
C

(J
B

4S
,D

B
4S

)
C

(D
B

4S
,J

B
4S

)
C

(J
B

4S
,C

B
4S

)
C

(C
B

4S
,J

B
4S

)

20

5
0,

14

0,
55

0,

13

0,
80

0,

02

0,
85

20

10

0,
29

0,

51

0,
40

0,

28

0,
27

0,

61

20

20

0,
30

0,

49

0,
58

0,

39

0,
51

0,

35

50

5
0,

18

0,
60

0,

09

0,
87

0,

26

0,
67

50

10

0,
22

0,

53

0,
19

0,

59

0,
40

0,

44

50

20

0,
42

0,

36

0,
44

0,

48

0,
29

0,

55

10
0

5
0,

27

0,
44

0,

21

0,
74

0,

26

0,
57

10
0

10

0,
54

0,

33

0,
46

0,

53

0,
39

0,

54

10
0

20

0,
33

0,

55

0,
33

0,

53

0,
46

0,

48

T
ab

le
 9

. A
ve

ra
ge

 v
al

ue
s

of
 C

 m
et

ri
c

fo
r

co
m

pa
ri

ng
 a

lg
or

ith
m

s
w

ith
 th

e
pr

op
os

ed
 im

pr
ov

em
en

ts
 w

ith
 J

B
4S

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 141

N
m

C

(I
B

4S
,N

B
4S

)
C

(N
B

4S
,I

B
4S

)
C

(D
B

4S
,N

B
4S

)
C

(N
B

4S
,D

B
4S

)
C

(C
B

4S
,N

B
4S

)
C

(N
B

4S
,C

B
4S

)
C

(J
B

4S
,N

B
4S

)
C

(N
B

4S
,J

B
4S

)

20

5
0,

58

0,
20

0,

81

0,
12

0,

71

0,
04

0,

45

0,
37

20

10

0,
40

0,

29

0,
41

0,

45

0,
61

0,

31

0,
43

0,

37

20

20

0,
49

0,

15

0,
41

0,

35

0,
45

0,

44

0,
43

0,

41

50

5
0,

46

0,
32

0,

76

0,
11

0,

64

0,
19

0,

37

0,
51

50

10

0,
51

0,

41

0,
72

0,

26

0,
43

0,

39

0,
46

0,

44

50

20

0,
40

0,

36

0,
55

0,

25

0,
57

0,

27

0,
49

0,

41

10
0

5
0,

44

0,
35

0,

57

0,
33

0,

55

0,
39

0,

39

0,
49

10
0

10

0,
32

0,

50

0,
60

0,

34

0,
54

0,

28

0,
50

0,

41

10
0

20

0,
58

0,

31

0,
48

0,

30

0,
49

0,

33

0,
44

0,

37

T
ab

le
 1

0.
 A

ve
ra

ge
 v

al
ue

s
of

 C
 m

et
ri

c
fo

r
co

m
pa

ri
ng

 a
lg

or
ith

m
s

w
ith

 th
e

pr
op

os
ed

 im
pr

ov
em

en
ts

 w
ith

 N
B

4S

142 E. Mokotoff

Table 11. Average values of C metric for comparing algorithms with the proposed improvements
between them

N m C(DB4S,IB4S) C(IB4S,DB4S) C(CB4S,DB4S) C(DB4S,CB4S) C(CB4S,IB4S) C(IB4S,CB4S)

20 5 0,43 0,37 0,40 0,29 0,42 0,08

20 10 0,39 0,46 0,61 0,22 0,56 0,17

20 20 0,17 0,66 0,44 0,34 0,34 0,49

50 5 0,52 0,35 0,38 0,55 0,41 0,46

50 10 0,64 0,29 0,24 0,53 0,40 0,49

50 20 0,66 0,23 0,36 0,42 0,62 0,27

100 5 0,48 0,27 0,40 0,49 0,38 0,41

100 10 0,63 0,31 0,43 0,41 0,65 0,25

100 20 0,44 0,35 0,44 0,33 0,42 0,41

Table 12. Average values of C metric for comparing algorithms with different neighbouring
generation techniques

n m C(DB4S,DA4S) C(DA4S,DB4S) C(JB4S,JA4S) C(JA4S,JB4S) C(NB4S,NA4S) C(NA4S,NB4S)

20 5 0,87 0,00 0,83 0,00 0,98 0,00

20 10 0,92 0,00 0,92 0,00 0,94 0,00

20 20 0,97 0,00 0,86 0,01 0,98 0,00

50 5 0,68 0,00 0,93 0,00 0,95 0,00

50 10 0,85 0,00 0,92 0,00 1,00 0,00

50 20 0,90 0,00 0,92 0,00 0,94 0,00

100 5 0,82 0,00 0,86 0,00 0,96 0,00

100 10 0,85 0,00 0,81 0,00 0,89 0,00

100 20 0,95 0,01 0,97 0,00 1,00 0,00

IB4S and DB4S, and between these last two, DB4S performs better than IB4S. Ob-
serving the figures of Table 11, the superiority of DB4S and CB4S is evident, in the
sense that they present the PE with more solutions that are efficient with respect to the
reference set. Furthermore, DB4S outperforms CB4S for some instance sizes, while
CB4S outperforms DB4S for others.

Referring to the perturbation techniques, scheme B is absolutely superior to
scheme A. Table 12 shows how scheme A is incapable of obtaining solutions non-
dominated by solutions obtained with the same algorithm, using scheme B.

With respect to the aggregated function, we can claim that in this MOSA scheme it
does not work. Table 13 shows that the outputs are worse, in both reported cases and
for all the tested instances, than the outputs yielded by simultaneous optimization. In
the case of DB2S vs. DB2A the differences are more significant.

In order to evaluate the influence of the size of the initial solution set, we have ob-
tained C(A,B) for every pair of combinations between IB2S, IB4S and IB8S (Table 14).
As could be expected, the larger the set, the better the results. Nevertheless, when com-
pared with a reference set (see Table 8) the resulting efficient solutions are the same.

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 143

Table 13. Average values of C metric for evaluating algorithms with aggregation versus
algorithms with simultaneous optimization

N m C(JB2A,JB4S) C(JB2S,JB4A) C(DB2A,DB4S) C(DB2S,DB4A)

20 5 0.16 0.55 0.02 0.95

20 10 0.10 0.63 0.05 0.76

20 20 0.16 0.71 0.10 0.62

50 5 0.04 0.68 0.01 0.93

50 10 0.05 0.60 0.06 0.86

50 20 0.04 0.75 0.04 0.94

100 5 0.10 0.65 0.00 1.00

100 10 0.12 0.61 0.05 0.79

100 20 0.13 0.46 0.00 0.68

Table 14. Average values of C metric for comparing algorithms with different number of initial
seeds

N m C(IB4S,IB2S) C(IB2S,IB4S) C(IB8S,IB4S) C(IB4S,IB8S) C(IB8S,IB2S) C(IB2S,IB8S)

20 5 0.55 0.28 0.69 0.18 0.79 0.07

20 10 0.43 0.39 0.57 0.24 0.37 0.31

20 20 0.52 0.32 0.54 0.35 0.53 0.33

50 5 0.64 0.14 0.43 0.36 0.73 0.17

50 10 0.53 0.19 0.73 0.23 0.90 0.01

50 20 0.67 0.22 0.69 0.13 0.79 0.12

100 5 0.70 0.19 0.69 0.10 0.83 0.00

100 10 0.55 0.24 0.59 0.33 0.67 0.13

100 20 0.91 0.05 0.57 0.23 0.81 0.03

The benefit could be expected in a better distribution for the larger set (see Table 5). To
complete this comparison requirement concepts must be considered.

A comparative study of the computational effort for the proposed algorithms has
been made including CPU time consumption and the number of sequences generated
during the entire search process for all the problem instances considered. Essential
summaries are presented in Tables 15 and 16. The CPU time employed by IB2S is
taken as the reference unity, because the algorithm with 2 seeds may correspond to
the least time requiring for the presented battery of tests. Although eight-seed algo-
rithm (IB8S) consumes almost four unities (predictable fact), the algorithms with four
initial solutions always require less than twice as much. Even, IB4S nearly always
consumes less or equal CPU time than IB2S. The DB2A and JB2A, besides giving
non-efficient solutions, and with only two seeds, employed more time than IB2S.

Since the computational effort for a variant algorithm with eight seeds is consid-
erably higher than the corresponding four-seed algorithm (see Table 14), the best
trade off corresponds to the four-initial-solution version.

144 E. Mokotoff

Table 15. CPU time required by the proposed algorithms, relative to the IB2S consumption

N m IB4S DB4S CB4S JB4S NB4S IB2S IB8S JB2A DB2A

20 5 0,55 1,59 0,97 1,59 1,81 1,00 4,21 1,40 0,84

20 10 0,71 0,75 1,32 1,25 1,44 1,00 3,73 1,77 1,06

20 20 0,98 0,81 1,24 1,24 1,23 1,00 4,09 1,96 1,18

50 5 1,17 2,05 2,02 2,34 2,43 1,00 4,17 2,02 1,21

50 10 1,87 2,41 8,84 2,43 2,64 1,00 4,12 1,80 1,08

50 20 1,00 1,42 1,91 1,72 1,18 1,00 3,53 1,00 0,60

100 5 1,00 1,54 1,95 1,68 1,47 1,00 2,59 1,62 1,04

100 10 0,98 1,89 2,89 2,61 2,29 1,00 3,69 1,51 0,92

100 20 1,60 1,21 1,34 0,65 0,62 1,00 2,20 1,62 0,81

Table 16. Average number of sequences generated for each proposed algorithm

N m IB4S DB4S CB4S JB4S NB4S IB2S IB8S JB2A DB2A DA4S JA4S NA4S

20 5 4.409 3.144 4.065 4.270 3.561 1.673 42.174 45.429 49.173 188.273 188.253 188.274

20 10 4.563 5.366 4.453 4.838 5.350 1.855 142.977 114.096 128.215 189.860 189.854 189.850

20 20 4.500 3.405 3.912 3.459 3.884 1.619 140.623 102.856 139.505 191.339 191.342 191.326

50 5 9.709 9.934 10.922 10.922 10.922 4.520 115.425 324.751 106.955 194.083 194.083 194.083

50 10 19.173 15.338 15.311 13.179 14.637 7.074 736.424 418.993 146.924 194.486 194.449 194.478

50 20 23.187 21.071 15.822 30.200 17.940 12.685 272.971 960.152 355.239 194.707 194.741 194.714

100 5 12.979 10.863 12.409 11.654 11.796 5.313 318.605 273.743 266.539 194.758 194.748 194.749

100 10 14.083 13.090 13.087 13.500 15.322 8.946 587.628 535.067 502.796 195.185 195.189 195.185

100 20 15.320 27.223 26.205 29.173 24.006 12.148 285.386 660.537 154.851 195.435 195.436 195.427

It is possible to conclude that the influence of the improvement technique is crucial

for the efficiency of the output, while a larger number of generated solutions (both by
initial seeds or neighbouring generation) help to improve the diversification of the
output with non-efficient solutions, increasing considerably the computational effort.

7 Conclusions

In this work we present new algorithms based on MOSA techniques for a hard multic-
riteria scheduling problem. Starting with initial permutations obtained by single crite-
ria constructive algorithms, improvements are made by computing lower bounds on
the partial scheduling of neighbors, reducing the objective search space. The selection
is made according to a criterion that is the preferred at each iteration.

Due to the complexity of evaluating the quality of solutions, a set of different met-
rics have been computed, considering the different attributes of the methods. Fur-
thermore, net set of non-dominated solutions for the benchmarks problems of Taillard
[113] have been obtained. After an extensive computational analysis, including a

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 145

comparison with other metaheuristic algorithms that have been published in the last
few years, we can conclude that, though this kind of approach presents less percent-
age in the final net set (Q2), it results in less percentage of non-efficient solutions in
the potential efficient output set (Q1).

Results of the computational experiment give support to the hypothesis which
states that specially-developed algorithms, combining general metaheuristic tech-
niques, for specified combinatorial problems, perform better than general methods. It
is not realistic to hope for general meta-optimization methods that solve MOCO prob-
lems efficiently.

The main proposed algorithms (IB4S, DB4S, and CB4S) are appropriate to warrant
a quick approximation output, which can serve as input for an interactive procedure.
The search process should continue in the direction of the decision-maker preferences.

We are working now on developing similar approaches considering more than two
criterion scheduling problems.

Acknowledgments

This research was in part supported by the Research Projects DPI2004-06366-C03-02
and ECO2008-05895-C02-02, Ministerio de Ciencia e Innovación, Spain.

The author is indebted to the referees for their helpful remarks and comments, and
to Paul Alexander Ayres for his help in the correct use of English.

References

[1] Agrawal, S., Dashora, Y., Tiwari, M.K., et al.: Interactive Particle Swarm: A Pareto-
Adaptive Metaheuristic to Multiobjective Optimization. IEEE T. Syst. Man Cy. A. 38(2),
258–277 (2008)

[2] Aickelin, U.: Genetic Algorithms for Multiple-Choice Problems. PhD Thesis. University
of Wales, Swansea (1999)

[3] Akers, S.B.: A graphical approach to production scheduling problems. Oper. Res. 4,
244–245 (1956)

[4] Andrés, C.: Programación de la Producción en Talleres de Flujo Híbridos con Tiempos
de Cambio de Partida Dependientes de la Secuencia: Modelos, Métodos y Algoritmos de
Resolución: Aplicación a Empresas del Sector Cerámico. PhD Thesis. Universidad Poli-
técnica de Valencia, Valencia (2001)

[5] Arroyo, J., Armentano, V.: Genetic local search for multi-objective flowshop scheduling
problems. Eur. J. Oper. Res. 167, 717–738 (2005)

[6] Bagchi, T.P.: Multiobjective Scheduling by Genetic Algorithms. Kluwer Academic Pub-
lishers, Dordrecht (1999)

[7] Baker, K.R.: A comparative study of flow shop algorithms. Oper. Res. 23, 62–73 (1975)
[8] Blazewicz, J., Ecker, K., Pesch, E., et al.: Handbook on Scheduling. Springer, Berlin

(2007)
[9] Brucker, P.: An efficient algorithm for the job-shop problem with two jobs. Comput-

ing 40, 353–359 (1988)
[10] Brucker, P.: Scheduling Algorithms. Springer, Berlin (2004)
[11] Bülbül, K., Kaminsky, P., Yano, C.: Flow shop scheduling with earliness, tardiness, and

intermediate inventory holding costs. University of California, Berkeley (2003)

146 E. Mokotoff

[12] Burke, E.K., Landa-Silva, J.D., Soubeiga, E.: Hyperheuristic Approaches for Multiob-
jective Optimization. In: Proceedings of the 5th Metaheuristics International Confer-
ence, Kyoto (2003)

[13] Campbell, H.G., Dudek, R.A., Smith, M.L.: A Heuristic Algorithm for the n-Job, m-
Machine Sequencing Problem. Manag. Sci. 16(10), 630–637 (1970)

[14] Carlier, J., Rebaï, I.: Two branch and bound algorithms for the permutation flow shop
problem. Eur. J. Oper. Res. 90, 238–251 (1996)

[15] Chang, P.C., Chen, S.H., Liu, C.H.: Sub-population genetic algorithm with mining gene
structures for multiobjective flowshop scheduling problems. Expert. Syst. Appl. 33,
762–777 (2007)

[16] Chang, P.C., Hsieh, J.-C., Lin, S.G.: The development of gradual priority weighting ap-
proach for the multi-objective flowshop scheduling problem. Int. J. Prod. Econ. 79, 171–
183 (2002)

[17] Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Methodol-
ogy. Elsevier Science, New York (1983)

[18] Charnes, A., Cooper, W.: Management Models and Industrial Applications of Linear
Programming. John Wiley and Sons, Chichester (1961)

[19] Coello, C., Mariano, C.: Algorithms and Multiple Objective. In: Ehrgott, M., Gandi-
bleux, X. (eds.) Multiple Criteria Optimization. State of the Art Annotated Bibliographic
Surveys. Kluwer Academic Publishers, Boston (2002)

[20] Czyzak, P., Jaszkiewicz, A.: Pareto Simulated Annealing – a metaheuristic technique for
multiple objective combinatorial optimization. J. Multicriteria. Dec. Anal. 7, 34–47
(1998)

[21] Daniels, R.L., Chambers, R.J.: Multiobjective flow-shop scheduling. Nav. Res. Log. 37,
981–995 (1990)

[22] Dorn, J., Girsch, M., Skele, G., et al.: Comparison of iterative improvement techniques
for schedule optimization. Eur. J. Oper. Res. 94, 349–361 (1996)

[23] Dudek, R.A., Panwalkar, S.S., Smith, M.L.: The lessons of flowshop scheduling re-
search. Oper. Res. 40, 7–13 (1992)

[24] Eck, B.T., Pinedo, M.: On the minimization of the makespan subject to flowtime opti-
mality. Oper. Res. 41, 797–801 (1993)

[25] Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization
problems. Int. T. Oper. Res. 7, 5–31 (2000)

[26] Ehrgott, M., Gandibleux, X.: Bounds and bound sets for biobjective Combinatorial Op-
timization problems. Lect. Notes Econ. Math., vol. 507, pp. 242–253 (2001)

[27] Ehrgott, M., Gandibleux, X.: Multiobjective Combinatorial Optimization: Theory,
Methodology, and Applications. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria
Optimization: State of the Art Annotated Bibliographic Surveys. Kluwer Academic Pub-
lishers, Boston (2002)

[28] Ehrgott, M., Wiecek, M.: Multiobjective Programming. In: Figueira, J., Greco, S., Ehr-
gott, M. (eds.) Multiple Criteria Decision Analysis. Springer, New York (2005)

[29] Emelichev, V.A., Perepelista, V.A.: On cardinality of the set of alternatives in discrete
many-criterion problems. Discrete. Math. Appl. 2(5), 461–471 (1992)

[30] Framinan, J.M., Leisten, R., Ruiz-Usano, R.: Efficient heuristics for flowshop sequenc-
ing with the objectives of makespan and flowtime minimisation. Eur. J. Oper. Res. 141,
559–569 (2002)

[31] French, S.: Sequencing and Scheduling: An Introduction to the Mathematics of the Job
Shop. Ellis Horwood, Chichester (1982)

[32] Gandibleux, X., Mezdaoui, N., Fréville, A.: A tabu search procedure to solve multiob-
jective combinatorial optimization problems. Lect. Notes Econ. Math., vol. 455, pp.
291–300 (1997)

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 147

[33] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco (1979)

[34] Geiger, M.: On operators and search space topology in multi-objective flow shop sched-
uling. Eur. J. Oper. Res. 181, 195–206 (2007)

[35] González, T., Johnson, D.B.: A new algorithm for preemptive scheduling of trees. J.
Assoc. Comp. Mach. 27, 287–312 (1980)

[36] Gordon, V., Proth, J.M., Chu, C.: A survey of the state of the art of common due date
assignment and scheduling research. Eur. J. Oper. Res. 139, 1–25 (2002)

[37] Grabowski, J., Wodecki, M.: Some local search algorithms for no-wait flow-shop prob-
lem with makespan criterion. Comp. Oper. Res. 32, 2197–2212 (2004)

[38] Graham, R.L., Lawler, E.L., Lenstra, J.K., et al.: Optimization and approximation in de-
terministic sequencing and scheduling: A survey. Ann. Discrete Math. 5, 287–326
(1979)

[39] Gupta, J.N.D.: Heuristic Algorithms for Multistage Flowshop Scheduling Problem. AIIE
T. 4(1), 11–18 (1972)

[40] Gupta, J.N.D., Neppalli, V.R., Werner, F.: Minimizing total flow time in a two-machine
flowshop problem with minimum makespan. Int. J. Prod. Econ. 69(3), 323–338 (2001)

[41] Hapke, M., Jaszkiewicz, A., Slowinski, R.: Interactive Analysis of multiple-criteria pro-
ject scheduling problems. Eur. J. Oper. Res. 107(2), 315–324 (1998)

[42] Haupt, R.: A survey of priority rule-based scheduling. Oper. Res. Spektrum 11, 3–16
(1989)

[43] Ho, J.C., Chang, Y.-L.: A new heuristic for the n-job, m-machine flowshop problem.
Eur. J. Oper. Res. 52, 194–202 (1991)

[44] Hoogeveen, H.: Multicriteria Scheduling. Eur. J. Oper. Res. 167, 592–623 (2005)
[45] Hoogeveen, J.A.: Single-Machine Bicriteria Scheduling. PhD Thesis. The Netherlands

Technology, Amsterdam (1992)
[46] Horsky, D., Rao, M.R.: Estimation of attribute weights from preference comparison.

Manag. Sci. 30(7), 801–822 (1984)
[47] Huang, G., Lim, A.: Fragmental Optimization on the 2-Machine Bicriteria Flowshop

Scheduling Problem. In: Proceedings of 15th IEEE International Conference on Tools
with Artificial Intelligence (2003)

[48] Ignall, E., Schrage, L.E.: Application of the branch-and-bound technique to some flow-
shop scheduling problems. Oper. Res. 13, 400–412 (1965)

[49] Isermann, H.: The enumeration of the set of all efficient solutions for a linear multiple
objective program. Oper. Res. Quart. 28(3), 711–725 (1977)

[50] Ishibuchi, H., Misaki, S., Tanaka, H.: Modified simulated annealing algorithms for the
flow shop sequencing problem. Eur. J. Oper. Res. 81, 388–398 (1995)

[51] Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its appli-
cation to flowshop scheduling. IEEE T. Syst. Man Cy. C. 28(3), 392–403 (1998)

[52] Jaszkiewicz, A.: A Comparative Study of Multiple-Objective Metaheuristics on the Bi-
Objective Set Covering Problem and the Pareto Memetic Algorithm. Ann. Oper.
Res. 131(1-4), 135–158 (2004)

[53] Jaszkiewicz, A., Ferhat, A.B.: Solving multiple criteria choice problems by interactive
trichotomy segmentation. Eur. J. Oper. Res. 113(2), 271–280 (1999)

[54] Johnson, S.M.: Optimal two- and three-stage production schedules with setup times in-
cluded. Nav. Res. Log. 1, 61–68 (1954)

[55] Jones, D.F., Mirrazavi, S.K., Tamiz, M.: Multi-objective meta-heuristics: An overview
of the current state of the art. Eur. J. Oper. Res. 137, 1–9 (2002)

[56] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220, 671–680 (1983)

148 E. Mokotoff

[57] Knowles, J., Corne, D.: On Metrics Comparing Nondominated Sets. In: Proceedings of
the 2002 Congress on Evolutionary Computation Conference, pp. 711–716. IEEE Press,
Los Alamitos (2002)

[58] Koulamas, C.: A new constructive heuristic for the flowshop scheduling problem. Eur. J.
Oper. Res. 105, 66–71 (1998)

[59] van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Practice. Klu-
wer Academic Publishers, Dordrecht (1987)

[60] Lageweg, B.J., Ixnstra, J.K., Rinnooy Kan, A.H.G.: A general bounding to minimize
makespan/total flowtime of jobs. Eur. J. Oper. Res. 155, 426–438 (1978)

[61] Laha, D., Chakraborty, U.K.: An efficient heuristic approach to flowtime minimization
in permutation flowshop scheduling. Int. J. Adv. Manuf. Technol. (2007) (DOI:
10.1007/s00170-007-1156-z)

[62] Laha, D., Chakraborty, U.K.: An efficient stochastic hybrid heuristic for flowshop
scheduling. Engineering Applications of Artificial Intelligence 20, 851–856 (2007)

[63] Laha, D., Chakraborty, U.K.: A constructive heuristic for minimizing makespan in no-
wait flowshop scheduling. Int. J. Adv. Manuf. Technol. (2008) (DOI: 10.1007/s00170-
008-1454-0)

[64] Landa-Silva, J.D., Burke, E.K., Petrovic, S.: An Introduction to Multiobjective Meta-
heuristics for Scheduling and Timetabling. Lect. Notes Econ. Math., vol. 535, pp. 91–
129 (2004)

[65] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Sequencing and scheduling: Algo-
rithms and complexity. In: Handbooks in Operations Research and Management Sci-
ence, Logistics of Production and Inventory, vol. 4, pp. 445–524. North-Holland, Am-
sterdam (1993)

[66] Leung, J.Y.-T., Young, G.H.: Minimizing schedule length subject to minimum flow
time. Siam. J.Comp. 18, 314–326 (1989)

[67] Liao, C.J., Yu, W.C., Joe, C.B.: Bicriterion scheduling in the two-machine flowshop. J.
Oper. Res. Soc. 48, 929–935 (1997)

[68] Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the P//∑Ci
scheduling problem. Eur. J. Oper. Res. 132, 439–452 (2001)

[69] Lomnicki, A.: Branch-and-bound algorithm for the exact solution of the three-machine
scheduling problem. Oper. Res. Quart. 16, 89–100 (1965)

[70] Loukil, T., Teghem, J., Tuyttens, D.: Solving multi-objective production scheduling
problems using metaheuristics. Eur. J. Oper. Res. 161, 42–61 (2005)

[71] McMahon, G.B.: Optimal Production Schedules for Flow Shop. Can. Oper. Res. Soc.
J. 7, 141–151 (1969)

[72] Monma, C.L., Rinnooy Kan, A.H.G.: A concise survey of efficiently solvable special
cases of the permutation flow-shop problem. RAIRO-Rech. Oper. 17, 105–119 (1983)

[73] Murata, T., Ishibuchi, H., Tanaka, H.: Multi-Objective Genetic Algorithm and its Appli-
cations to Flowshop Scheduling. Comp. Ind. Eng. 30(4), 957–968 (1996)

[74] Nagar, H.J., Heragu, S.S.: Multiple and bicriteria scheduling: A literature survey. Eur. J.
Oper. Res. 81, 88–104 (1995)

[75] Nawaz, M., Enscore Jr., E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flowshop sequencing problem. OMEGA-Int. J. Manage. S. 11, 91–95 (1983)

[76] Neppalli, V.R., Chen, C.L., Gupta, J.N.D.: Genetic algorithms for the two-stage bicrite-
ria flowshop problem. Eur. J. Oper. Res. 95, 356–373 (1996)

[77] Nowicki, E., Zdrzałka, S.: A survey of results for sequencing problems with controllable
processing times. Discrete Appl. Math. 26, 271–287 (1990)

[78] Ogbu, F.A., Smith, D.K.: The Application of the Simulated Annealing Algorithm to the
Solution of the n/m/Cmax Flowshop Problem. Comp. Oper. Res. 17(3), 243–253 (1990)

[79] Onwubolu, G., Davendra, D.: Scheduling flow shops using differential evolution algo-
rithm. Eur. J. Oper. Res. 171, 674–692 (2006)

 Multi-objective Simulated Annealing for Permutation Flow Shop Problems 149

[80] Osman, I.H., Potts, C.N.: Simulated Annealing for Permutation Flowshop Scheduling.
OMEGA-Int. J. Manage. S. 17(6), 551–557 (1989)

[81] Panwalkar, S.S., Iskander, W.: A survey of scheduling rules. Oper. Res. 25, 45–61
(1977)

[82] Parker, R.G.: Deterministic Scheduling Theory. Chapman & Hall, New York (1995)
[83] Parthasarathy, S., Rajendran, C.: An experimental evaluation of heuristics for scheduling

in a real-life flowshop with sequence-dependent setup times of jobs. Int. J. Prod.
Econ. 49, 255–263 (1997)

[84] Pasupathy, T., Rajendran, C., Suresh, R.K.: A multi-objective genetic algorithm for
scheduling in flow shops to minimize the makespan and total flow time of jobs. Int. J.
Adv. Manuf. Technol. 27, 804–815 (2006)

[85] Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall, New Jersey
(2002)

[86] Potts, C.N.: An adaptive branching rule for the permutation flow-shop problem. Eur. J.
Oper. Res. 5, 19–25 (1980)

[87] Potts, C.N., Shmoys, D.B., Williamson, D.P.: Permutation vs. non-permutation flow
shop schedules. Oper. Res. Lett. 10, 281–284 (1991)

[88] Rajendran, C.: Two-stage flowshop scheduling problem with bicriteria. J. Oper. Res.
Soc. 43(9), 879–884 (1992)

[89] Rajendran, C.: Heuristic algorithm for scheduling in a flowshop to minimize total flow-
time. Int. J. Prod. Econ. 29, 65–73 (1993)

[90] Rajendran, C.: Heuristics for scheduling in flowshop with multiple objectives. Eur. J.
Oper. Res. 82, 540–555 (1995)

[91] Rajendran, C., Ziegler, H.: An efficient heuristic for scheduling in a flowshop to mini-
mize total weighted flowtime of jobs. Eur. J. Oper. Res. 103, 129–138 (1997)

[92] Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation: flowshop scheduling.
Eur. J. Oper. Res. 155, 426–438 (2004)

[93] Reeves, C.R.: Improving the Efficiency of Tabu Search for Machine Scheduling Prob-
lems. J. Oper. Res. Soc. 44(4), 375–382 (1993)

[94] Reeves, C.R.: A Genetic Algorithm for Flowshop Sequencing. Comp. Oper. Res. 22, 5–
13 (1995)

[95] Rinnooy Kan, A.H.G.: Machine Scheduling problems: Classification, Complexity and
Computations, Martinus Nijhoff, The Hague (1976)

[96] Ruiz, R: Técnicas Metaheurísticas para la Programación Flexible de la Producción. PhD
Thesis. Universidad Politécnica de Valencia, Valencia (2003)

[97] Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop
heuristics. Eur. J. Oper. Res. 165, 479–494 (2005)

[98] Ruiz-Díaz, F.S.: A survey of multi-objective combinatorial scheduling. In: French, S.,
Hartley, R., Thomas, L.C., et al. (eds.) Multi-Objective Decision Making. Academic
Press, New York (1983)

[99] Saaty, T.L.: The Analytic Hierarchy Process. McGrawHill, New York (1980)
[100] Sayin, S., Karabati, S.: A bicriteria approach to the two-machine flow shop scheduling

problem. Eur. J. Oper. Res. 113, 435–449 (1999)
[101] Schulz, A.: Scheduling and Polytopes. PhD Thesis. Technical University of Berlin, Ber-

lin (1996)
[102] Selen, W.J., Hott, D.D.: A mixed-integer goal-programming formulation of the standard

flow-shop scheduling problem. J. Oper. Res. Soc. 12(37), 1121–1128 (1986)
[103] Serafini, P.: Simulated annealing for multiple objective optimization problems. In: Pro-

ceedings of the Tenth International Conference on Multiple Criteria Decision Making,
Taipei (1992)

[104] Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment
problem. Math. Program. 62, 461–474 (1993)

150 E. Mokotoff

[105] Sin, C.C.S.: Some topics of parallel-machine scheduling theory. Thesis. University of
Manitoba (1989)

[106] Sivrikaya-Serifoglu, F.S., Ulusoy, G.: A bicriteria two machine permutation flowshop
problem. Eur. J. Oper. Res. 107, 414–430 (1998)

[107] Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting
genetic algorithms. Evol. Comp. 2(3), 221–248 (1995)

[108] T’kindt, V., Billaut, J.-C.: Multicriteria scheduling problems: a survey. RAIRO-Oper.
Res. 35, 143–163 (2001)

[109] T’kindt, V., Billaut, J.-C.: Multicriteria scheduling: Theory, Models and Algorithms,
2nd edn. Springer, Berlin (2006)

[110] T’kindt, V., Gupta, J.N.D., Billaut, J.-C.: Two machine flowshop scheduling problem
with a secondary criterion. Comp. Oper. Res. 30(4), 505–526 (2003)

[111] T’kindt, V., Monmarche, N., Tercinet, F., et al.: An ant colony optimization algorithm to
solve a 2-machine bicriteria flowshop scheduling problem. Eur. J. Oper. Res. 142(2),
250–257 (2002)

[112] Taillard, E.: Some efficient heuristic methods for the flor shop sequencing problem. Eur.
J. Oper. Res. 47, 67–74 (1990)

[113] Taillard, E.: Benchmark for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285
(1993)

[114] Ulungu, E.L.: Optimisation Combinatoire MultiCritère: Détermination de l’ensemble
des solutions efficaces et méthodes interactives. PhD Thesis. Université de Mons-
Hainaut, Mons (1993)

[115] Ulungu, E.L., Teghem, J.: Multiobjective Combinatorial Optimization problems: A sur-
vey. J. Multicriteria Dec. Anal. 3, 83–104 (1994)

[116] Varadharajan, T.K., Rajendran, C.: A multi-objective simulated-annealing algorithm for
scheduling in flowshops to minimize the makespan and total flowtime of jobs. Eur. J.
Oper. Res. 167, 772–795 (2005)

[117] Wierzbicki, A.P.: A methodological guide to the multiobjective optimization. Lect.
Notes Contr. Inf., vol. 1(23), pp. 99–123 (1980)

[118] Wilson, J.M.: Alternative formulation of a flow shop scheduling problem. J. Oper. Res.
Soc. 40(4), 395–399 (1989)

[119] Wodecki, M., Bozejko, W.: Solving the Flow Shop Problem by Parallel Simulated An-
nealing. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM
2001. LNCS, vol. 2328, pp. 236–244. Springer, Heidelberg (2002)

[120] Yagmahan, B., Yenisey, M.M.: Ant. colony optimization for multi-objective flow shop
scheduling problem. Comp. Ind. Eng. 54, 411–420 (2008)

[121] Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Ap-
plications. PhD Thesis. Swiss Federal Institute of Technology, Zurich (1999)

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 151–167.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

An Estimation of Distribution Algorithm for Minimizing
the Makespan in Blocking Flowshop Scheduling
Problems

Bassem Jarboui1, Mansour Eddaly1, Patrick Siarry2, and Abdelwaheb Rebaï1

1 FSEGS, route de l’aéroport km 4.5, B.P. No. 1088, Sfax 3018, Tunisie
 bassem_jarboui@yahoo.fr, eddaly.mansour@gmail,
 abdelwaheb.rebai@fsegs.rnu.tn
2 LiSSi, Université de Paris 12, 61 avenue du Général de Gaulle, 94010 Créteil, France
 siarry@univ-paris12.fr

Summary. This chapter addresses to the blocking flowshop scheduling problem with the aim
of minimizing the makespan. An Estimation of Distribution Algorithm, followed by a local
search procedure, after the step of creating a new individual, was developed in order to solve
this problem. Our comparisons were performed against representative approaches proposed in
the literature related to the blocking flowshop scheduling problem. The obtained results have
shown that the proposed algorithm is able to improve 109 out of 120 best known solutions of
Taillard’s instances. Moreover, our algorithm outperforms all competing approaches in terms of
solution quality and computational time.

1 Introduction

In the nature, the evolution of species in a population, through the sexual reproduc-
tion, was formulated by Charles Darwin (T. Back, 1996). It can be modelled by
means of three mechanisms: recombination (or crossover), mutation and selection.
The process of recombination occurs during meiosis resulting from crossover between
parental chromosomes. Through this process, the offspring inherit different combina-
tions of genes from their parents. The mutation arises from errors of copying in ge-
netic materials during cell division. It creates changes into offspring’s chromosomes.
Under selection, individuals with best traits tend to have more luck to survive and re-
produce for further generations. Evolutionary algorithms (EAs) are a class of algo-
rithms that use computers to simulate the natural evolution of species to solve hard
optimization problems through evolving a population of candidate solutions. EAs
have proved their performance against classical techniques of optimization (Fogel,
1995). Several algorithms are included in this class such as the Genetic Algorithm
(GA), which is the most popular. Neighbouring nature-inspired approaches are Ant
Colony Optimization, Particle Swarm Optimization, etc.

Recently, a new EA was introduced by Mühlenbein and Paaß in (Mühlenbein and
Paaß, 1996), called Estimation of Distribution Algorithm (EDA). It constitutes a new
tool of evolutionary algorithms (Larranaga P. and Lozano J.A., 2002), based on the

152 B. Jarboui et al.

probabilistic model learned from a population of individuals. Starting with a popula-
tion of individuals (candidate solutions), generally randomly generated, this algorithm
selects good individuals with respect to their fitness. Then a new distribution of prob-
ability is estimated from the selected candidates. Next, new offspring are generated
from the estimated distribution. The process is repeated until the termination criterion
is met. In the literature, diverse versions of EDAs were developed, depending on the
chosen probabilistic model. The EDAs can be classified into three classes: EDAs with
no dependencies between the variables, EDAs with two-order dependencies and
EDAs with multiple dependencies between the variables.

EDAs have been employed for solving combinatorial optimization problems. So, sev-
eral successful applications were proposed such as: quadratic assignment problem
(Zhang et al., 2006), 0-1 knapsack problem (Hui Li et al., 2004), n-queen problem (Paul
TK and Iba H, 2002), travelling salesman problem (Robles et al., 2006) and hybrid flow-
shop scheduling problem (Salhi et al., 2007). In recent works, the EDAs were devoted to
solve multi-objective optimization problems (Zhang et al. 2008, Hui Li et al., 2004).

In this work, we propose to adopt this new technique for solving the blocking flow-
shop scheduling problem. In this variant of flowshop scheduling, there is a set of n jobs
that must be processed on a set of m machines in the same order. While the storage is
not allowed, when a job is completed on a machine, the latter is blocked until a free
next machine becomes available. Blocking constraints takes place because of the
automation of new production systems and the use of the robotic manufacturing. Typi-
cal areas are chemical and pharmaceutical industries, where a partially completed job
cannot quit the machine on which it is processed, while downstream machines are busy
(Grabowski and Pempera, 2007). Grabowski and Pempera (2000) have presented a real
case of scheduling client orders in a building industry that produces concrete blocks.
Also, Hall and Sriskandarajah (1996) have presented a review of applications of block-
ing scheduling models. They have indicated that blocking environment occurs from
characteristics of the process technology itself or from the lack of the storage capacity
between the machines. They have proved that this problem is strongly NP-complete for

m=3, where the makespan ()maxC is a measure of performance.

In the literature, various approaches were developed to solve the permutation flow-
shop scheduling problem under blocking constraints, including branch and bound al-
gorithm (B&B) (Levner, 1969, Suhami and Mah, 1981, Ronconi, 2005, Company and
Mateo, 2007), constructive heuristics (McCormick et al., 1989, Leisten, 1990, Abadi
et al., 2000, Ronconi and Armentano, 2001, Ronconi, 2004), genetic algorithm (GA)
(Caraffa et al., 2001) and tabu search (TS) (Grabowski and Pempera, 2007).

The remaining of this chapter is organized as follows: section 2 presents the Esti-
mation of Distribution Algorithm and its variants; section 3 presents the existing
works with EDA in combinatorial optimization. The blocking flowshop is described
in section 4. Our proposed algorithm is presented in section 5. Section 6 presents the
computational results and conclusion is given in section 7.

2 Estimation of Distribution Algorithm (EDA)

EDA is an evolutionary algorithm proposed by Mühlenbein and Paaß in 1996. Instead
of recombination and mutation, EDA generates new individuals with respect to a
probabilistic model, learned from the population of parents.

 An Estimation of Distribution Algorithm for Minimizing the Makespan 153

2.1 Basic EDA

The general framework of the basic EDA can be presented as follows (Mühlenbein
and Paaß, 1996). Starting with a randomly generated initial population, one selects a
subpopulation of M parent individuals through a selection method based on the fitness
function. Next, one estimates the probability of distribution of the selected parents
with a probabilistic model. Then, one generates new offspring, according to the esti-
mated probability distribution. Finally, some individuals in the current population are
replaced with new generated offspring. These steps are repeated until one stopping
criterion is met. The pseudo-code of the canonical EDA is given in Figure 1.

Basic EDA

Generate an initial population of P individuals;

do

• Select a set of Q parents with a selection method;

• Build a probabilistic model for the set of selected parents;

• Create new P1 offspring according to the estimated probability distribution;

• Replace some individuals in the current population with new individuals;

while a stopping criterion is not met

Fig. 1. Canonical version of EDA

Three classes of EDA were developed, according to the chosen probabilistic
model. The first class consists of models which don’t take into account the dependen-
cies between variables of candidate solutions, i.e. all variables are independent. The
second class assumes at most two-order dependencies between these variables and the
last class assumes multiple dependencies between the variables.

2.2 EDAs with No Dependencies

Let iX , 1,2,.....,i n= , be a random variable and ix its possible realization and let

() ()i i ip X x p x= = the mass probability of iX over the point ix . By analogy, we

denote by { }1 2 nX ,X ,.....,X=X a set of n-dimensional random variables,

{ }1 2 nx ,x ,.....,x=x its possible realizations and () ()p p= =X x x the joint mass

probability of X over the point x .
In this class of EDAs, it is assumed that the n-dimensional joint probability distri-

bution is calculated through the product of the marginal probabilities of n variables, as
follows:

154 B. Jarboui et al.

() ()
1

n

i
i

p x p x
=

=∏ .

In other hand, the hypothesis of interaction between the variables is rejected.
Among the EDAs included in this class we can cite: Bit-Based Simulated Cross-

over (BBSC) of Syswerda (1993), Population-Based Incremental Learning (PBIL) of
Baluja (1994), Compact Genetic Algorithm (CGA) of Harik et al. (1998) and Uni-
variate Marginal Distribution Algorithm (UMDA) of Mühlenbein et al. (1998).

Although these approaches have provided better results for some problems, their
assumption seems to be inexact for difficult optimization problems, where we cannot
exclude the interdependencies between the variables completely (Paul TK and Iba H,
2002).

2.3 EDAs with Two-Order Dependencies

In this class, only paired interactions between the variables are taken into account. So,
EDAs belonging to this group constitute an extension of the previous one. Therefore,
the parametric learning of model, proposed in EDAs with no interaction, becomes
structural.

In the literature, several approaches were developed in this class, such as: Mutual
Information Maximization for Input Clustering (MIMIC) in De Bonet al. (1997),
Combining Optimizers with Mutual Information Trees (COMIT) in Baluja and Da-
vies (1997) and Bivariate Marginal Distribution Algorithm (BMDA) in Pelikan and
Mühlenbein (1999).

2.4 EDAs with Multiple Dependencies

This last class of EDAs is the most general case, and the leaning process of models
proposed here is more complex, because the estimation of joint probability is per-
formed by taking into account an order of dependencies greater than two.

The following approaches of EDAs are included in this class: Factorized Distribu-
tion Algorithm (FDA) (Mühlenbein et al., 1999), Estimation of Bayesian Networks
Algorithm (EBNA) (Etxeberria and Larranaga, 1999), Bayesian Optimization Algo-
rithm (BOA) (Pelikan et al., 1999), Learning Factorized Distribution Algorithm
(LFDA) (Mühlenbein and Mahning, 1999) and the Extended Compact Genetic Algo-
rithm (ECGA) (Harik, 1999).

3 Some EDAs for Combinatorial Optimization Problems

Although, EDA was recently invented, the number of its applications in the field of
combinatorial optimization increases rapidly. In this section, we will present some
applications of EDA to combinatorial optimization problems and we will mainly fo-
cus on the constructed probabilistic model for each application.

The Jobshop Scheduling Problem (JSP) was addressed by J. Lozano et al. (in Lar-
rañaga and Lozano, 2002). The authors have selected some variants of EDA and used
both continuous and discrete versions. The selected algorithms are UMDA, BBSC,
PBIL, MIMIC and EBNA.

 An Estimation of Distribution Algorithm for Minimizing the Makespan 155

The obtained results are comparable to those obtained using GA. In particular the
continuous EDAs perform better than the discrete EDAs.

Paul TK and Iba H have proposed, in (Paul TK and Iba H, 2002), an UMDA to
solve n-queen problem. The objective of this problem is to find a way of putting nq
queens (4qn ≥) on a q qn n× chessboard, such that none of them can capture any

other, i.e. two queens cannot share the same row, column or diagonal. A problem’s

solution x was represented as follows: { }1 2 nqx ,x ,........,x=x , where ix , 1 qi n≤ ≤ ,

denotes the column position in row i where the queen i can be put. The initial popula-
tion was randomly generated while excluding cases where two queens are in the same
column or row. The fitness of each individual is calculated as the number of queens
that do not share the same diagonal. Next, the first 50% of individuals (best individu-
als) were selected according to their fitness. Then, the joint probability was selected
using the marginal frequencies of each ix and new individuals were generated accord-

ing to it. Finally, the elitism was used for the replacement step and the algorithm was
stopped when the fitness of the best individual was equal to qn . The computational re-

sults show that this algorithm is able to reach a good solution in a reasonable amount
of time.

Hui et al. (2004) have proposed a hybrid EDA for solving the multiobjective 0-1
knapsack problem. For modelling the joint probability distribution, an UMDA is used.
At each generation t, an individual is selected, based on the following probability, de-
pending on the set of selected individuals at generation t-1:

() ()() ()
1

selected individuals 1
kn

i
i

p x,t p x / t p x ,t
=

= − =∏

where { }0 1 kn
x ,∈ .

The results showed that the EDA performed better than the Genetic Algorithm,
both in convergence and in diversity.

Salhi et al. (2007) have proposed an EDA for hybrid flowshop scheduling problem

with respect to the makespan criterion. The joint probability ()ijp t denotes the prob-

ability that the job i is located on the position j at the generation t

()1 and 1i n j n≤ ≤ ≤ ≤ .

This probability was initially set to 21 / n and updated as follows:

() () () ()
1

1
1 1

N

ij ij k ij
k

p t I p t
N

β π β
=

= − + −∑

where kπ is the thk solution of the population at the generation t ()1 k N≤ ≤ ,

()1

0
ij

if i j
I

otherwise

π⎧ =⎪= ⎨
⎪⎩

 and ()0 1β≤ ≤ .

156 B. Jarboui et al.

The obtained results were compared with those provided by two heuristic algo-
rithms, a Random Key Genetic Algorithm and a Genetic Algorithm. The results show
that EDA outperforms these two algorithms for the considered instances.

4 Problem Description

In a blocking flowshop problem, there is a set of n jobs to be processed on a set of m
machines in the same order, while having no intermediate buffers, i.e. a job

{ }1,2,....,j n∈ cannot pass from machine { }1,2,.....,k m∈ to machine k+1 while

the latter is busy. Since the makespan is the criterion to be minimized in our case, this
problem can be denoted by max/ /mF blocking C (Graham et al., 1979).

Let []j kp denote the processing time of the job in the jth position in the sequence

on the machine k and []j kD denote the departure time (starting time) of the job in the

jth position in the sequence on the machine k.

The makespan ()maxC can be found through the recursive expression of the depar-

ture time, as follows:

[]1 0 0;D =

[] [1]1
1

 1,2,....., 1;
k

ik
i

D p k m
=

= = −∑

[] []0 1 1 2,3,....., ;j jD D j n−= =

[] [] []{ }[]1 1 1max , 2,3,....., , 1,2,....., 1;j kj k j k j kD D p D j n k m− − += + = = −

[] [] []1 1,2,....., ;j mj m j mD D p j n−= + =

Thus,

max [] 1 []n m n mC D p−= +

5 Hybrid EDA for BFSP

In this section we present in detail an EDA to solve the Blocking Flowshop Schedul-
ing Problem (BFSP), which is aimed at makespan minimization.

5.1 Solution Representation

For encoding the solution, we use the well-known representation scheme for the
PFSP, that is the permutation of n jobs, where the thj number in the permutation de-

notes the job located in position j.

 An Estimation of Distribution Algorithm for Minimizing the Makespan 157

5.2 Initial Population

For generating the initial population of P individuals, we propose to generate P-1 in-
dividuals randomly and we apply NEH algorithm, proposed by Nawaz et al. (1983),
for the remaining element.

NEH can be described as follows:

Step1: The jobs are sorted with respect to the decreasing order of sums of their proc-
essing times.
Step2: Take the first two jobs and evaluate the two possible schedules containing them.
The sequence with better objective function value is taken for further consideration.
Step 3: Take every remaining job in the permutation given in Step 1 and find the best
schedule, by placing it at all possible positions in the sequence of jobs that are already
scheduled.

5.3 Selection

In our algorithm, we adopted the same procedure of selection employed by Reeves
(1995) for solving the flowshop scheduling problem. We describe this procedure as
follows.

First, for each individual p, the fitness value () ()max

1
f p

C p
= is calculated, sec-

ond the individuals of the initial population are sorted in ascending order according to
their fitness, i.e. the individual with a higher makespan value will be at the top of the
list. Finally, a set of Q individuals are selected from the sorted list.

5.4 Construction of a Probabilistic Model and Creation of New Individuals

The probabilistic model constitutes the main issue for an EDA and the performance of
the algorithm is closely related to it (Lozano J.A et al., 2006), the best choice of the
model is crucial. This step consists in building an estimation of distribution for the
subset of Q selected individuals.

 In our algorithm, we select at random a sequence of jobs, denoted sr, from the set
of 25% best solutions in the sorted list of sequences. Based on the priority rules of the
order of the q first jobs in the sr, we determine the estimation of distribution model
while taking into account both the order of the jobs in the sequence and the similar
blocks of jobs presented in the selected parents. In fact, the parameter q is an intensi-
fication parameter because, when it is possible, it leads to maintain the same structure
of q first jobs and setting it to a constant value preserves the linearity of the algorithm.

Let:

– jkη be the number of times of apparition of job j before or in the position k in the

subset of the selected sequences augmented by a given constant 1δ . The value of

jkη refers to the importance of the order of the jobs in the sequence.

158 B. Jarboui et al.

 – []1j kμ − be the number of times of apparition of job j after the job in the position

k-1 in the subset of the selected sequences augmented by a given 2δ . []1j kμ − indicates

the importance of the similar blocks of jobs in the sequences. In such way, we prefer
to conserve the similar blocks as much as possible.

We note that 1δ and 2δ are two parameters used for the diversification of the solu-

tions. Indeed, we employ these parameters in order to slow down the convergence of
the algorithm.

– Let kΩ be the set of q first jobs not already scheduled following their order in sr

until position k.

We define jkπ the probability of selection of the job j in the thk position by the

following formula:

[]

[]

1

1
k

jk j k

jk
lk l k

l

η μ
π

η μ
−

−
∈Ω

×
=

×∑

For each position k in the sequence of a new individual, we select a job j among the
set of q first jobs not already scheduled, following their order in sr by sampling from
the probability distribution jkπ .

5.5 Replacement

Replacement is the last phase in the EDA, it consists in updating the population.
Therefore, at each iteration, O offspring are generated from the subset of the selected
parents. There are many techniques available to decide if the new individuals will be
added to the population.

In our algorithm, we compare the new individual with the worst individual in the
current population. If the offspring is best than this individual and the sequence of the
offspring is unique, then the worst individual quits the population and is replaced with
the new individual.

5.6 Stopping Criterion

The stopping condition indicates when the search will be terminated. Various stop-
ping criteria may be listed, such as maximum number of generations, bound of time,
maximum number of iterations without improvement, etc. In our algorithm, we set a
maximum number of generations and a maximal computational time.

5.7 Local Search

To improve the performance of EDA, the successful way is to hybridize it with local
search methods (Lozano J.A. et al., 2006). We propose to apply a local search algo-
rithm as an improvement procedure, after the creation of a new individual.

 An Estimation of Distribution Algorithm for Minimizing the Makespan 159

We propose to restrict the application of the local search procedure to a part of in-
dividuals by employing a probability of improvement that depends on the quality of
the subjected individual. We define this probability as follows:

Let expc RD
p

α
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 be the calculated probability for application of local search,

where:

() ()
()

current best

best

f x f x
RD

f x

⎛ ⎞−
= ⎜ ⎟⎜ ⎟
⎝ ⎠

with currentx denotes the created offspring and bestx denotes the best solution found by

the algorithm. For each individual, we draw at random a number between 0 and 1. If
this number is less than or equal to pc, then we apply the local search procedure to the
individual under consideration.

At each iteration of the local search procedure, we select one among two kinds of
neighbourhoods randomly. The first one leads to choose two distinct positions (i, j) at
random, following the uniform distribution in the range [1,n], and the jobs on these
positions are exchanged. The second one consists in selecting at random a job j from
the sequence and inserting it on a random position i. This procedure will be repeated
as far as reaching the maximal number of iterations itermax.

6 Computational Results

In this section, we discuss the performance of our proposed algorithms: EDA (without
hybridization) and H-EDA. All computations for blocking flowshop scheduling prob-
lem, with respect to the makespan criterion, were implemented using C++ program
and carried out on an Intel Pentium IV 3.2 GHz, RAM 512 MB based computer, run-
ning under Windows XP. In order to evaluate the performances of the proposed algo-
rithms, the Taillard’s instances were used for the flowshop scheduling problem (Tail-
lard E., 1993). These instances consist of a set of 120 problems with sizes m=5, 10
and 20 and n=20, 50, 100, 200 and 500. The performance measure employed in our
numerical study was average relative percentage deviation in makespan averageΔ :

1

100
R

i known

i known
average

Heu Best

Best

R
=

⎛ ⎞− ×⎜ ⎟
⎝ ⎠Δ =

∑

where iHeu is the solution given by any of the R replications of the considered algo-

rithms and knownBest is the best solution provided by a competing algorithm for the

specified problem or by one of our algorithms.
The parameters of the algorithms were fixed after a set of preliminary experiments,

as follows: P = 60, δ1 = δ2 = 4/n, the number of the selected parents Q = 3, q = 20, the

160 B. Jarboui et al.

number of generated offspring O = 3. Numerically, pc = 0.5 leads to accepting a se-
quence with a makespan superior by 5% relatively to the best value of makespan found.

So,
0.01

log() log(0.5)c

RD

p
β = = thereafter we determined cp according to this

formula:

expc RD
p

β
⎛ ⎞= ⎜ ⎟
⎝ ⎠

.

The maximum number of iterations of the local search procedure was set to 22n .

6.1 Comparison with GA

For testing the efficiency of our proposed EDA (without local search) against another
evolutionary algorithm, we have implemented the GA of Caraffa et al. (2001). For
performing a meaningful comparison we have set the same stopping criterion of 1000
generations for both algorithms.

The obtained results for each class of instances, over R=10 replications, are given
in Table 1. For the small instances, with 200n < , in average, EDA outperforms GA
both in terms of Δaverage and Δmax , so, EDA can find better results than GA in average
and worst case. Regarding Δmin the two algorithms provide almost the same results.
Also, for these instances, the range of changes for EDA solutions, i.e. the difference
between Δmin and Δmax, is smaller than that range for GA, in average, thus EDA is
more robust than GA. For large instances, with n = 200 and 500, EDA confirms its
superiority, in terms of Δaverage and Δmax, and it is better than GA for finding the best
results (Δmin). Although EDA is better than GA in term of solution quality, the latter
appears faster after 1000 generations (Table 6).

Table 1. Comparison between EDA and GA

instances EDA GA
 Δmin Δavg Δmax Δmin Δavg Δmax

20*05 0.01 0.02 0.03 0.01 0.03 0.05
20*10 0.01 0.02 0.03 0.01 0.03 0.05
20*20 0.01 0.01 0.02 0.01 0.02 0.03
50*05 0.02 0.03 0.04 0.03 0.04 0.06
50*10 0.02 0.03 0.04 0.02 0.04 0.06
50*20 0.03 0.03 0.04 0.01 0.03 0.05
100*05 0.04 0.05 0.06 0.05 0.06 0.07
100*10 0.03 0.04 0.04 0.03 0.04 0.06
100*20 0.02 0.03 0.03 0.02 0.03 0.04
200*10 0.04 0.04 0.05 0.06 0.07 0.08
200*20 0.03 0.03 0.03 0.04 0.04 0.05
500*20 0.02 0.02 0.02 0.05 0.05 0.05

average 0.02 0.03 0.03 0.03 0.04 0.05

 An Estimation of Distribution Algorithm for Minimizing the Makespan 161

Table 2. Results of H-EDA for 20 jobs instances

instances
Best

known
RON TS+M H-EDA

 Δmin Δavg Δmax
ta_20_5_01 1374 0.01 0.01 0.00 0.00 0.01
ta_20_5_02 1411 0.00 0.01 0.00 0.00 0.00
ta_20_5_03 1280 0.01 0.01 0.00 0.00 0.01
ta_20_5_04 1448 0.00 0.00 0.00 0.00 0.00
ta_20_5_05 1342 0.02 0.01 0.00 0.00 0.00
ta_20_5_06 1363 0.00 0.00 0.00 0.00 0.00
ta_20_5_07 1381 0.00 0.00 0.00 0.00 0.01
ta_20_5_08 1379 0.00 0.01 0.00 0.00 0.00
ta_20_5_09 1373 0.00 0.01 0.00 0.00 0.01
ta_20_5_10 1283 0.00 0.01 0.00 0.00 0.01
ta_20_10_01 1698 0.02 0.00 0.00 0.00 0.00
ta_20_10_02 1833 0.03 0.00 0.00 0.00 0.00
ta_20_10_03 1659 0.01 0.00 0.00 0.00 0.01
ta_20_10_04 1535 0.06 0.01 0.00 0.00 0.01
ta_20_10_05 1617 0.03 0.01 0.00 0.00 0.01
ta_20_10_06 1592 0.03 0.01 0.00 0.00 0.01
ta_20_10_07 1622 0.01 0.00 0.00 0.00 0.00
ta_20_10_08 1731 0.01 0.01 0.00 0.00 0.01
ta_20_10_09 1747 0.02 0.01 0.00 0.00 0.01
ta_20_10_10 1782 0.04 0.00 0.00 0.00 0.00
ta_20_20_01 2436 0.04 0.00 0.00 0.00 0.00
ta_20_20_02 2234 0.03 0.00 0.00 0.00 0.00
ta_20_20_03 2480 0.03 0.00 0.00 0.00 0.01
ta_20_20_04 2348 0.02 0.00 0.00 0.00 0.00
ta_20_20_05 2435 0.04 0.01 0.00 0.00 0.01
ta_20_20_06 2389 0.03 0.00 0.00 0.00 0.01
ta_20_20_07 2390 0.05 0.00 0.00 0.00 0.01
ta_20_20_08 2328 0.04 0.01 0.00 0.00 0.01
ta_20_20_09 2363 0.02 0.00 0.00 0.00 0.01
ta_20_20_10 2323 0.04 0.00 0.00 0.00 0.00

average 0.02 0.01 0.00 0.00 0.01

6.2 Performance of H-EDA

The performance of H-EDA is evaluated against the representative approaches devel-
oped for the same problem. The competing algorithms are the branch and bound algo-
rithm of Ronconi (2005) and the Tabu Search of Grabowski and Pempera (2007), de-
noted by RON and TS+M respectively. We set the CPU time limit of each replication
to () 20 / 3n m× × seconds.

Table 2 to Table 5 present the results found by our H-EDA. First, in total, our algo-
rithm has improved 109 solutions out of 120 and, even for the 11 remaining instances,

162 B. Jarboui et al.

Table 3. Results of H-EDA for 50 jobs instances

instances
Best

known
RON TS+M H-EDA

 Δmin Δavg Δmax
ta_50_5_01 3055 0.03 0.04 0.00 0.01 0.01
ta_50_5_02 3249 0.05 0.03 0.00 0.01 0.01
ta_50_5_03 3056 0.04 0.04 0.00 0.01 0.01
ta_50_5_04 3170 0.05 0.04 0.00 0.01 0.01
ta_50_5_05 3200 0.03 0.05 0.00 0.01 0.01
ta_50_5_06 3224 0.06 0.04 0.00 0.00 0.01
ta_50_5_07 3079 0.05 0.03 0.00 0.00 0.01
ta_50_5_08 3097 0.06 0.05 0.00 0.01 0.01
ta_50_5_09 2963 0.06 0.04 0.00 0.00 0.01
ta_50_5_10 3160 0.04 0.04 0.00 0.01 0.01
ta_50_10_01 3737 0.06 0.02 0.00 0.00 0.01
ta_50_10_02 3562 0.06 0.02 0.00 0.01 0.02
ta_50_10_03 3554 0.05 0.01 0.00 0.00 0.01
ta_50_10_04 3754 0.04 0.02 0.00 0.00 0.01
ta_50_10_05 3698 0.06 0.01 0.00 0.01 0.02
ta_50_10_06 3678 0.05 0.03 0.00 0.01 0.01
ta_50_10_07 3765 0.06 0.01 0.00 0.01 0.01
ta_50_10_08 3632 0.04 0.02 0.00 0.01 0.01
ta_50_10_09 3604 0.05 0.02 0.00 0.01 0.01
ta_50_10_10 3691 0.06 0.01 0.00 0.01 0.01
ta_50_20_01 4591 0.07 0.01 0.00 0.00 0.01
ta_50_20_02 4373 0.07 0.01 0.00 0.01 0.01
ta_50_20_03 4354 0.07 0.01 0.00 0.01 0.02
ta_50_20_04 4448 0.05 0.01 0.00 0.01 0.01
ta_50_20_05 4353 0.03 0.01 0.00 0.00 0.01
ta_50_20_06 4368 0.04 0.00 0.00 0.01 0.01
ta_50_20_07 4386 0.04 0.00 0.00 0.00 0.01
ta_50_20_08 4415 0.07 0.01 0.00 0.01 0.01
ta_50_20_09 4400 0.03 0.00 0.00 0.00 0.01
ta_50_20_10 4502 0.08 0.03 0.00 0.01 0.01

average 0.05 0.02 0.00 0.01 0.01

it can reach 9 upper bounds found by TS+M. Additionally, the most important im-
provement occurs for the instances with the size larger than 20. Especially when n =
50, 100 and 200, H-EDA has improved all upper bounds provided by previous ap-
proaches. In other hand, concerning the CPU time, in average, when we take into ac-
count the difference between the computer characteristics, H-EDA is faster than the
TS+M approach (Table 6).

 An Estimation of Distribution Algorithm for Minimizing the Makespan 163

Table 4. Results of H-EDA for 100 jobs instances

instances
Best

known
RON TS+M H-EDA

 Δmin Δavg Δmax
ta_100_5_01 6256 0.01 0.06 0.00 0.00 0.01
ta_100_5_02 6075 0.00 0.06 0.00 0.01 0.01
ta_100_5_03 6018 0.01 0.05 0.00 0.00 0.01
ta_100_5_04 5832 0.00 0.05 0.00 0.01 0.02
ta_100_5_05 6055 0.02 0.06 0.00 0.00 0.01
ta_100_5_06 5914 0.00 0.05 0.00 0.01 0.02
ta_100_5_07 6073 0.00 0.05 0.00 0.00 0.01
ta_100_5_08 5981 0.00 0.06 0.00 0.00 0.01
ta_100_5_09 6210 0.00 0.06 0.00 0.01 0.01
ta_100_5_10 6226 0.00 0.05 0.00 0.01 0.01
ta_100_10_01 7190 0.02 0.02 0.00 0.00 0.01
ta_100_10_02 6890 0.03 0.04 0.00 0.01 0.01
ta_100_10_03 7073 0.01 0.03 0.00 0.00 0.01
ta_100_10_04 7282 0.06 0.02 0.00 0.01 0.02
ta_100_10_05 6956 0.03 0.03 0.00 0.01 0.02
ta_100_10_06 6811 0.03 0.03 0.00 0.00 0.01
ta_100_10_07 6933 0.01 0.03 0.00 0.01 0.01
ta_100_10_08 6934 0.01 0.02 0.00 0.02 0.02
ta_100_10_09 7223 0.02 0.02 0.00 0.00 0.01
ta_100_10_10 7054 0.04 0.03 0.00 0.01 0.02
ta_100_20_01 8000 0.04 0.01 0.00 0.01 0.01
ta_100_20_02 8021 0.03 0.02 0.00 0.00 0.01
ta_100_20_03 8014 0.03 0.01 0.00 0.01 0.01
ta_100_20_04 8023 0.02 0.01 0.00 0.01 0.01
ta_100_20_05 8004 0.04 0.01 0.00 0.01 0.01
ta_100_20_06 8079 0.03 0.02 0.00 0.00 0.01
ta_100_20_07 8152 0.05 0.02 0.00 0.01 0.01
ta_100_20_08 8209 0.04 0.02 0.00 0.00 0.01
ta_100_20_09 8116 0.02 0.01 0.00 0.00 0.01
ta_100_20_10 8160 0.04 0.01 0.00 0.01 0.01

average 0.02 0.03 0.00 0.01 0.01

164 B. Jarboui et al.

Table 5. Results of H-EDA for 200 and 500 jobs instances

instances
Best

known
RON TS+M H-EDA

 Δmin Δavg Δmax
ta_200_10_01 13718 0.03 0.04 0.00 0.01 0.02
ta_200_10_02 13618 0.04 0.04 0.00 0.01 0.02
ta_200_10_03 13779 0.06 0.04 0.00 0.00 0.01
ta_200_10_04 13718 0.06 0.04 0.00 0.01 0.01
ta_200_10_05 13763 0.04 0.05 0.00 0.00 0.01
ta_200_10_06 13472 0.04 0.05 0.00 0.01 0.01
ta_200_10_07 13869 0.06 0.03 0.00 0.01 0.01
ta_200_10_08 13848 0.04 0.04 0.00 0.01 0.01
ta_200_10_09 13580 0.04 0.04 0.00 0.01 0.02
ta_200_10_10 13712 0.05 0.02 0.00 0.01 0.01
ta_200_20_01 15122 0.03 0.01 0.00 0.01 0.02
ta_200_20_02 15379 0.03 0.03 0.00 0.01 0.01
ta_200_20_03 15528 0.04 0.03 0.00 0.00 0.01
ta_200_20_04 15331 0.05 0.02 0.00 0.01 0.02
ta_200_20_05 15295 0.05 0.01 0.00 0.00 0.01
ta_200_20_06 15387 0.04 0.01 0.00 0.01 0.01
ta_200_20_07 15370 0.04 0.02 0.00 0.01 0.01
ta_200_20_08 15386 0.05 0.01 0.00 0.01 0.01
ta_200_20_09 15279 0.04 0.02 0.00 0.01 0.02
ta_200_20_10 15375 0.05 0.04 0.00 0.01 0.01

average 0.04 0.03 0.00 0.01 0.01

ta_500_20_01 37530 0.03 0.02 0.00 0.01 0.01
ta_500_20_02 37942 0.03 0.01 0.00 0.00 0.01
ta_500_20_03 37637 0.03 0.01 0.00 0.00 0.00
ta_500_20_04 37888 0.03 0.02 0.00 0.00 0.01
ta_500_20_05 37622 0.04 0.02 0.00 0.00 0.01
ta_500_20_06 37950 0.02 0.01 0.00 0.00 0.01
ta_500_20_07 37561 0.03 0.01 0.00 0.01 0.01
ta_500_20_08 37750 0.03 0.01 0.00 0.00 0.01
ta_500_20_09 37521 0.03 0.01 0.00 0.00 0.01
ta_500_20_10 37869 0.03 0.02 0.00 0.00 0.00

average 0.03 0.02 0.00 0.00 0.01

 An Estimation of Distribution Algorithm for Minimizing the Makespan 165

Table 6. Computational times

instances EDA GA TS+M H-EDA

 min average max min average max min average max

20*05 0.24 0.87 1.43 0.00 0.02 0.08 2.70 0.03 0.28 0.60
20*10 0.21 0.93 1.57 0.00 0.02 0.08 4.60 0.10 0.67 1.24
20*20 0.32 0.95 1.74 0.01 0.05 0.17 7.60 0.13 1.37 2.43
50*05 2.54 4.14 4.99 0.08 0.16 0.27 6.20 0.19 0.85 1.55
50*10 2.34 4.35 5.30 0.11 0.26 0.46 10.80 0.45 1.74 2.95
50*20 2.89 4.61 5.76 0.22 0.51 0.92 19.30 0.53 3.14 5.98
100*05 6.51 9.50 10.94 0.48 0.57 0.61 12.40 0.77 1.97 3.28
100*10 8.11 10.22 11.59 0.81 1.03 1.12 22.10 1.49 3.90 6.44
100*20 6.34 10.26 12.41 1.47 1.88 2.04 39.40 3.00 8.20 12.88
200*10 17.76 22.26 24.38 1.99 2.15 2.22 44.30 9.54 12.40 13.34
200*20 18.39 24.18 26.77 3.74 4.05 4.23 79.40 18.10 24.22 26.67
500*20 48.20 70.65 82.86 10.30 10.71 11.78 209.00 66.67 66.67 66.67

average 9.49 13.58 15.81 1.60 1.78 2.00 38.15 8.42 10.45 12.00

7 Conclusion

In this chapter, we have proposed a hybrid EDA algorithm to minimize the makespan
in the blocking flowshop scheduling problem. The probabilistic model built for our
EDA depends on both the order of the jobs in the sequence and the similar blocks of
jobs presented in the set of selected parents. A local search procedure is added to the
EDA as an improvement phase, after creating a new individual. The computational
results show that our proposed EDA, without hybridization, performs better than a
GA previously developed for the same problem in terms of solution quality. However
the GA outperforms our algorithm when 1000 generations are set as stopping criterion
for both algorithms.

Also, by comparing the hybrid algorithm against competing approaches available
in the literature, it’s seen that our algorithm is better than these approaches, both in
terms of solution’s quality and computational times and it seems able to improve best
known solutions.

References

Abadi, I.N.K., Hall, N.G., Sriskandarajah, C.: Minimizing cycle time in a blocking flowshop.
Operations Research 48, 177–180 (2000)

Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford
(1996)

Baluja, S.: Population-based incremental learning: a method for integrating genetic search
based function optimization and competitive learning, Technical Report, Carnegie Mellon
Report, CMU-CS: 94-163 (1994)

166 B. Jarboui et al.

Baluja, S., Davies, S.: Using optimal dependency trees for combinatorial optimization: Learn-
ing the structure of search space. Technical Report No. CMU-CS-97-107, Carnegie Mellon
University, Pittsburgh, Pennsylvania (1997)

Caraffa, V., Ianes, S., Bagchi, T.P., Sriskandarajah, C.: Minimizing makespan in a blocking
flowshop using genetic algorithms. International Journal of Production Economics 70, 101–
115 (2001)

Companys, R., Mateo, M.: Different behaviour of a double branch-and-bound algorithm on
Fm|prmu|Cmax and Fm|block|Cmax problems. Computers and Operations Research 34,
938–953 (2007)

DeBonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding optima by estimating probability densi-
ties. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Process-
ing Systems, vol. 9 (1997)

Fogel, D.B.: Evolutionary Computation. In: Toward a New Philosophy of Machine Intelli-
gence. IEEE Press, Piscataway (1995)

Grabowski, J., Pempera, J.: Sequencing of jobs in some production system. European Journal
of Operational Research 125, 535–550 (2000)

Grabowski, J., Pempera, J.: The permutation flow shop problem with blocking. A tabu search
approach. OMEGA The International Journal of Management Science 35, 302–311 (2007)

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathemat-
ics 5, 287–326 (1979)

Hall, N.G., Sriskandarajah, C.: A survey of machine scheduling problems with blocking and
no-wait in process. Operations Research 44, 510–525 (1996)

Harik, G., Lobo, F.G., Golberg, D.E.: The compact genetic algorithm. In: Proceedings of the
IEEE Conference on Evolutionary Computation, pp. 523–528 (1998)

Li, H., Zhang, Q., Tsang, E., Ford, J.A.: Hybrid Estimation of Distribution Algorithm for
Multi-objective Knapsack Problem. In: The 4th European Conference on Evolutionary
Computation in Combinatorial Optimization, Coimbra, Portugal, 5-7 April (2004)

Larrañaga, P., Etxeberria, R., Lozano, J.A., Pena, J.M.: Combinatorial Optimization by learning
and simulation of Bayesian networks. In: Proceedings of the Sixteenth Conference on Un-
certainty in Artificial Intelligence, Stanford, pp. 343–352 (2000)

Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. In: A New Tool for Evolu-
tionary Computation. Kluwer Academic Publishers, Dordrecht (2002)

Leistein, R.: Flowshop sequencing with limited buffer storage. International Journal of Produc-
tion Research 28, 2085–2100 (1990)

Levner, E.M.: Optimal Planning of Parts Machining on a Number of Machines. Automation
and Remote Control 12, 1972–1978 (1969)

Lozano, J., Larraanaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary Computation:
Advances in the Estimation of Distribution Algorithms. Springer, Heidelberg (2006)

Lozano, J.A., Mendiburu, A.: EDAs applied to the job shop scheduling problem. In: Lozano,
J.A., Larraanaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computa-
tion: Advances in the Estimation of Distribution Algorithms, pp. 231–240. Springer, Hei-
delberg (2002)

McCormick, S.T., Pinedo, M.L., Shenker, S., Wolf, B.: Sequencing in an assembly line with
blocking to minimize cycle time. Operations Research 37, 925–935 (1989)

Mühlenbein, H.: The equation for response to selection and its use for prediction. Evolut. Com-
put. 5, 303–346 (1998)

 An Estimation of Distribution Algorithm for Minimizing the Makespan 167

Mühlenbein, H., Mahnig, T.: The Factorized Distribution Algorithm for additively decomposed
functions. In: Proceedings of the 1999 Congress on Evolutionary Computation, pp. 752–
759. IEEE press, Los Alamitos (1999)

Mühlenbein, H., Paaß, G.: From Recombination of Genes to the Estimation of Distributions I.
Binary Parameters. PPSN, 178–187 (1996)

Nawaz, M., Enscore Jr., E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flowshop
sequencing problem. OMEGA The International Journal of Management Science 11, 91–95
(1983)

Paul, T.K., Iba, H.: Linear and Combinatorial Optimizations by estimation of Distribution Al-
gorithms. In: 9th MPS Symposium on Evolutionary Computation, IPSJ, Japan (2002)

Pelikan, M., Mühlenbein, H.: The bivariate marginal distribution algorithm. In: Roy, R., Furu-
hashi, T., Chandhory, P.K. (eds.) Advances in Soft Computing-Engineering Design and
Manufacturing, pp. 521–535. Springer, Heidelberg (1999)

Pelikan, M., Goldberg, D.E., Cantpaz, E.: Linkage Problem, Distribution Estimation and
Bayesian Networks. Evolutionary Computation 8(3), 311–340 (2000)

Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers and Operations Re-
search 22, 5–13 (1995)

Ronconi, D.P.: A note on constructive heuristics for the flowshop problem with blocking. In-
ternational Journal of Production Economics 87, 39–48 (2004)

Ronconi, D.P.: A branch-and-bound algorithm to minimize the makespan in a flowshop prob-
lem with blocking. Annals of Operations Research 138, 53–65 (2005)

Ronconi, D.P., Armentano, V.A.: Lower bounding schemes for flowshops with blocking in-
process. Journal of the Operational Research Society 52, 1289–1297 (2001)

Salhi, A., Rodriguez, J.A.V., Zhang, Q.: An Estimation of Distribution Algorithm with Guided
Mutation for a Complex Flow Shop Scheduling Problem GECCO 2007, London, England,
United Kingdom, July 7–11 (2007)

Suhami, I., Mah, R.S.H.: An Implicit Enumeration Scheme for the Flowshop Problem with No
Intermediate Storage. Computers and Chemical Engineering 5, 83–91 (1981)

Syswerda, G.: Simulated crossover in genetic algorithms. In: Foundations of Genetic Algo-
rithms, vol. 2, pp. 239–255. Morgan Kaufmann, San Francisco (1993)

Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Re-
search 64, 278–285 (1993)

Zhang, Q., Sun, J., Tsang, E.P.K., Ford, J.: Estimation of Distribution Algorithm with 2-opt
Local Search for the Quadratic Assignment Problem. to be appeared in a book on Estimation
of Distribution Algorithm. In: Lozano, J., Larraanaga, P., Inza, I., Bengoetxea, E. (eds.) To-
wards a New Evolutionary Computation: Advances in the Estimation of Distribution Algo-
rithms, pp. 281–291. Springer, Heidelberg (2006)

Zhang, Q., Zhou, A., Jin, Y.: RM-MEDA: A Regularity Model Based Multiobjective Estima-
tion of Distribution Algorithm. IEEE Trans. Evolutionary Computation 12, 41–63 (2008)

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 169–189.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

A Scatter Search Method for Multiobjective Fuzzy
Permutation Flow Shop Scheduling Problem:
A Real World Application

Orhan Engin1, Cengiz Kahraman2, Mustafa Kerim Yilmaz3

1 Department of Industrial Engineering, Selçuk University, Konya, Turkey
 orhanengin@yahoo.com
2 Department of Industrial Engineering, İstanbul Technical University, İstanbul, Turkey
 kahramanc@itu.edu.tr
3 Department of Industrial Engineering, Selçuk University, Konya, Turkey
 m_kerim@hotmail.com

Summary. In this chapter, a scatter search (SS) method is proposed to solve the multiobjective
permutation fuzzy flow shop scheduling problem. The objectives are minimizing the average
tardiness and the number of tardy jobs. The developed scatter search method is tested on real-
world data collected at an engine piston manufacturing company. Using the proposed SS algo-
rithm, the best set of parameters is used to obtain the optimal or near optimal solutions of mul-
tiobjective fuzzy flow shop scheduling problem in the shortest time. These parameters are de-
termined by full factorial design of experiments (DOE). The feasibility and effectiveness of the
proposed scatter search method is demonstrated by comparing it with the hybrid genetic algo-
rithm (HGA).

1 Introduction

Metaheuristic search techniques have been applied with success to several optimiza-
tion problems like scheduling problems. In the last few decades, several effective
metaheuristic search techniques have been proposed for solving these hard combina-
torial optimization problems. Typical examples of such metaheuristic search tech-
niques are Genetic Algorithms (Goldberg 1989), Simulated Annealing (Kirkpatrick et
al. 1983), Tabu Search (Glover and Laguna 1997), Ant Colony Optimization (Dorigo
and Gambardella 1997), Artificial Immune System (Forrest et al. 1994; Dasgupta and
Forrest 1996; De Castro and Von Zuben 1999), and Scatter Search (Glover 1977).

In the recent years, the SS has been successfully applied to several scheduling
problems in the literature. Sevaux and Thomin (2002) proposed a SS algorithm for
solving one machine scheduling problem. The proposed approach was compared with
Genetic Algorithm on several sets of instances in OR-LIB. Dell’Amico et al. (2004)
introduced greedy heuristic, local search and a SS approach for the P//Cmax parallel
processors scheduling problem with makespan criteria. Maenhout and Vanhoucke
(2006) presented a SS algorithm for the nurse scheduling problem with the total pref-
erence cost of the nurses and the total penalty cost from violations of the soft con-
straints. Nowicki and Smutnicki (2006) proposed a new algorithm for flow shop

170 O. Engin, C. Kahraman, and M.K. Yilmaz

scheduling problems that uses some elements of the SS, the path relinking technique
and some properties on neighborhoods. Later, Noorul et al. (2007) proposed a new SS
algorithm for general flow shop scheduling problem. The algorithm was compared
with the Tabu search approach on the benchmark problems in the literature. Rahimi-
Vahed et al. (2008) designed a multi-objective SS method for bi-criteria no-wait flow
shop scheduling problem. The propose algorithm was compared with a multi-
objective Genetic Algorithm.

Scatter search is an evolutionary method and it may be called a population-based
algorithm. The recent researches have shown that SS has a great potential for solving
hard combinatorial optimization problems such as scheduling problems. In this study,
a scatter search method is generated for the multiobjective fuzzy permutation flow
shop scheduling problem.

To the best of our knowledge, there is no scatter search method applied to multiob-
jective fuzzy permutation flow shop scheduling problem in the literature. This is the
first attempt for a real world application for multiobjective fuzzy permutation flow
shop scheduling. Also this is the first attempt to use those two approaches: the possibil-
ity measure introduced by Dubois and Prade (1988) and the area of intersection intro-
duced by Sakawa and Kubota (2000) for multiobjective fuzzy flow shop scheduling
problem.

The rest of the chapter is organized as follows. Section 2 presents the formulation of
the multiobjective fuzzy permutation flow shop scheduling problem. Sections 3 and 4
are devoted to the scatter search and hybrid genetic algorithm methods. Section 5 de-
scribes the performance of the SS on real-world data and Section 6 presents the main
conclusion and suggestions for future research.

2 The Multiobjective Fuzzy Permutation Flow Shop Scheduling
Problem

In a static permutation flow shop, the processing time for each job and due dates are
usually assumed to be known exactly, but in many real world applications, processing
times and due dates vary dynamically due to human factors or operating faults. In the
literature, fuzzy sets are used to model the uncertain processing times and due dates
for the flow shop scheduling problems. The recent research in terms of fuzzy permu-
tation flow shop scheduling problem are given as follows.

Yao and Lin (2002) constructed a fuzzy flow shop sequencing model based on sta-
tistical data, which uses level (1-α, 1-β) interval-valued fuzzy numbers to present the
unknown job processing time. Temiz and Erol (2004) modified the branch and bound
algorithm of Ignall and Schrage (1965) and rewrote for three-machine flow shop
problem with fuzzy processing time. Niu and Gu (2006) proposed a genetic-based
particle swarm optimization for no idle permutation flow shops with fuzzy processing
time. Zhu et al. (2006) studied fuzzy flow shop scheduling problem with distinct due
window. Fuzzy time is denoted using triangular fuzzy numbers. Petrovic and Song
(2006) generated a new optimization algorithm based on Johnson’s (1954) algorithm

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 171

to two machine flow shop problem with uncertain processing times. Nezhad and As-
sadi (2008) developed a method to approximate maximum operator in the form of a
triangular fuzzy number, applied in flow shop scheduling and they modified Camp-
bell Dudek and Smith’s (1970) algorithm by using this maximum operator number.
To the best of our knowledge, there isn’t any study in the literature about solving the
multiobjective fuzzy permutation flow shop scheduling problem by metaheuristics
methods. This will be the first attempt for the solution of the multiobjective fuzzy
permutation flow shop scheduling problem.

The multiobjective fuzzy permutation flow shop scheduling problem can be formu-
lated as follows:

First of all, some assumptions are made for multiobjective fuzzy permutation flow
shop scheduling problem. These assumptions are; (1) The number of jobs and ma-
chines are known and fixed during the schedule; (2) All processing times and due
dates are fuzzy positive integers numbers; (3) Each machine can carry out at most one
job at the same time; (4) The jobs must be carried out in a non preemptive way; (5)
The processing times contain the set up times for every job at every operation and (6)
For carrying out these jobs all machines are continuously available.

Where n and m are represent the number of jobs to be scheduled and the number of

machines, respectively; ijt~ and jd
~

 represent the fuzzy processing times of job i on

machine j, and the fuzzy due date of job j, respectively; and jT
~

 and jC
~

 represent the

fuzzy tardiness of job j and the fuzzy completion time of job j, respectively.

Fuzzy processing times ijt~ are modeled by triangular membership functions and

represented by a triplet), , (321
ijijij ttt , where 1

ijt and 3
ijt are lower and upper bounds of

the processing time and 2
ijt is the most possible processing time. The membership

function of a triangular fuzzy processing time is shown in Fig 1. The due date jd
~

 of

each job is modeled by a trapezoidal fuzzy set and represented by a doublet ()21, jj dd ,

where its fuzzy membership function is shown in Fig 2.

t2
i,j, t3

i,j, t

1

t1
i,j,

μt

Fig. 1. Fuzzy processing time

172 O. Engin, C. Kahraman, and M.K. Yilmaz

d1j d2j

1

dμ

d

Fig. 2. Fuzzy due date

The following two objectives (Fayad and Petrovic 2003) are considered to mini-
mize in this study.

(1) to minimize the average tardiness CAT:

{ } njdCTT
n

C jjj

n

j
jAT ,.......,1

~

~
, 0 max;

1

1

=−== ∑
=

(1)

(2) to minimize the number of tardy jobs CNT:

∑
=

=>==
n

j
jjjjNT uotherwiseTifuuC

1

0,0 1

(2)

3 Scatter Search Method

Scatter search method was first introduced in Glover (1977) as a heuristic for integer
programming (Marti et al. 2006). SS is an evolutionary method that has been suc-
cessfully applied to combinatorial optimization problems. SS uses a reference set to
combine its solutions and construct others. SS generates a reference set from a popu-
lation of solutions. Then the solutions in this reference set are combined to get starting
solutions to run an improvement procedure, whose result may indicate an updating of
the reference set and even an updating of the population of solutions (Herrera et al.
2006). The schematic of the proposed SS method is presented Fig 3.

In the proposed SS method, the initial population is generated based on a memetic
algorithm (Bajestani et al. 2009). The steps of the used memetic algorithm are given
as follows:

Step 1. Generate the initial population randomly.
Step 2. Apply two-point crossover procedure to couple of chromosomes in the ini-

tial population.
Step 3. Apply the neighborhood based mutation procedure to all chromosomes in

the population.

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 173

Fig. 3. Flow Chart of the proposed SS method

Step 4. Sort the chromosomes in ascending order depending on the fitness function
value.

Step 5. Select chromosomes as many as initial population sizes.

The proposed SS method consists of five methods (Silva et al. 2006). These are

• Diversification-generation method,
• Improvement method,
• Reference set update method,
• Subset generation method and
• Solution combination method.

Diversification- generation method generates a collection of diverse trial solutions,
using an arbitrary trial solution (or seed solution) as an input (Russel and Chiang 2006).

Encoding

Reference Set

Subset
Generation

Solution
Space

Termination
Condition

Meet

End

Crossover

Order
Crossover

Initial Population

Memetic
Algorithm

Yes

No

Diversification Set

Inversion
Mutation

Solution

Evaluating
Fitness Value

Solution
Combination

Solution

Evaluating
Fitness Value

Update
Diversification Set

174 O. Engin, C. Kahraman, and M.K. Yilmaz

Improvement method transforms a trial solution into one or more enhanced trial so-
lutions (Neither the input nor the output solutions are required to be feasible, though
the output solutions will usually be expected to be so. If no improvement occurs in the
input trial solution, the “enhanced” solution is considered to be the same as the input
solution) (Marti et al. 2006).

Reference set update method builds and maintains a reference set consisting of the b
“best” solutions (where the value of b is typically small, b< 20), organized to provide ef-
ficient accessing by the other parts of the method. Solutions gain membership degrees to
the reference set according to their quality or their diversity (Marti et al. 2006).

Subset generation method operates on the reference set to produce a subset of its
solutions as a basis for creating combined solutions (Hung and Song 2001).

Solution combination method transforms a given subset of solutions produced by
the subset generation method into one or more combined solution vectors (Hung et al.
2002).

4 Hybrid Genetic Algorithms

Genetic Algorithm (GA) was invented by John Holland (Goldberg 1989). GA is one
of the best known metaheuristic methods for solving a flow shop scheduling problem
(Reeves 1995). GA uses a collection of solutions called population. Each individual
in the population is called a chromosome (a string of symbols) and a chromosome
represents a solution to the problem (Kahraman et al. 2008).

The role of local search in the context of genetic algorithms has been receiving se-
rious consideration and many successful applications are strongly in favor of such a
hybrid approach (Cheng et al. 1999). The hybridization can be done in a variety of
ways including (Cheng et al. 1999):

1. Incorporate heuristics into initialization to generate well-adapted initial

population. In this way, a hybrid genetic algorithm with elitism can guaran-
tee to do no worse than the conventional heuristic does.

2. Incorporate heuristics into evaluation function to decode chromosomes to
schedules.

3. Incorporate local search heuristic as an add-on extra to the basic loop of ge-
netic algorithm, working together with mutation and crossover operators, to
perform quick and localized optimization in order to improve offspring be-
fore returning it to be evaluated.

The feasibility and effectiveness of the proposed scatter search method is demon-
strated by comparing it with HGA. The structure of the used HGA is given in Fig 4.

There are many studies on genetic algorithms for solving the multiobjective flow
shop scheduling problems in the literature. Some of them are given as follows:

Pasupathy et al. (2006) proposed a Pareto genetic algorithm for the problem of per-
mutation flow shop scheduling with the objectives of minimizing the makespan and to-
tal flow time of jobs. Chang et al. (2007) developed a sub-population genetic algorithm
with mining gene structures for multiobjective flow shop scheduling problems.

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 175

Fig. 4. The flow diagram of the used hybrid genetic algorithm (HGA)

The used HGA is based on a permutation representation of the n jobs. The details
of our implementation for the HGA are given as follows.

This study adopts the job based encoding method. In this coding, a chromosome
represents a job schedule.

The proposed algorithm utilizes a modified elite group technique (Chung et al.
2009). An elitism technique preserves the best chromosome from the current genera-
tion to the next to improve the local search (Chung et al. 2009). The elite group tries
to maintain both diversity and quality of solutions. It works as follows. A parent pool,
a pool of chromosomes generated from the parent pool by the crossover operation and
a pool of mutations generated by the mutation operators are merged to form a com-
bined pool (Choi at al. 2003). Then the chromosomes in the combined pool are sorted
according to the fitness values and grouped in three clusters. For instance, top 50%,
next 40% and the last 10% of the chromosomes in the combined pool form three
groups (Choi at al. 2003). In the HGA, the Chung et al. (2009)’s modified elite group
technique is used. In the modified elite group, the best two chromosomes are pre-
served in the next generation without changes in its genes. The population size is
kept constant through the generations. A heuristic procedure has been used to obtain
initial population. This procedure is divided into simple steps:

 1. Calculate the total fuzzy processing times of all jobs
 2. Jobs are sorted in descending order of the total processing times.

The remaining chromosomes are randomly generated.

Reproduction

Modified Elite
Group
Technique

Solution
Space

E
nc

od
in

g

Termination
Condition

Meet

End

Crossover

Order
Crossover

Mutation

Inversion
Mutation

Evaluation

Offspring

Solution

Fitness
Computation

Initial Population

Apply the heuristic procedure
Randomly generated

Yes

No

176 O. Engin, C. Kahraman, and M.K. Yilmaz

We assessed the performance of HGA by comparing it with the Engin (2001)’s
simple genetic algorithm. The used HGA found a better solution from the simple ge-
netic algorithm. HGA parameters are determined by full factorial design of experi-
ments as in Table 1.

Table 1. HGA parameters

GA Parameter Value

Initial population 50

Selection operator Modified elite group tecnique

Superior %50 25

Middle %15 6 Group Proportion %

Inferior %35 14

Crossover operator Order Crossover

Mutation operator Inversion mutation

Probability of crossover 0.20

Probability of mutation 0.50

Termination condition 50

The selection is made by fitness values in the modified elite group technique.

Order Crossover
Select a substring from one string at random,

Produce a new string by copying the substring into the position corresponding to
those in the string,

Delete all of the symbols from the second string. The resulting sequence contains
the symbols the new string needs,

Place the symbols into unfixed positions in the new string from left to right accord-
ing to the order of the sequence to produce an offspring.

Inversion mutation
The inversion mutation can be seen from Fig 5.

Fig. 5. The illustration of the Inversion mutation operators

 Inversion

451 3 2 6

321 4 5 6

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 177

4.1 Scatter Search Method vs. Genetic Algorithms

Both Scatter search and Genetic algorithm are evolutionary method and the main fea-
tures are population-based. In contrast to genetic algorithms, scatter search is founded
on the premise that systematic designs and methods for creating new solutions afford
significant benefits beyond those derived from resource to randomization. It uses
strategies for search diversification and intensification that have proved effective in a
variety of optimization problems (Marti et al. 2006).

In Genetic algorithms, parents are chosen following a random sampling schema.
By contrast, in SS, the selection of parents in made using a deterministic method
called subset generation method (Herrera et al. 2006).

In GA, two solutions are randomly sampled from a fairly large population and
combined to generate a new offspring (Chakraborty et al. 1996), SS selects two or
more elements from a smaller population set in a systematic way to be combined new
solution generation (Glover et al. 2003).

SS also allows one to incorporate special forms of adaptive memory programming
usually associated with the Tabu search metaheuristic along with mechanisms for ex-
ploring that memory. This makes SS very attractive for the design of a heuristic
search method (Djan- Sampson and Sahin 2004).

The SS and GA can also be compared according to intensification and diversifica-
tion as in Table 2 (Sevaux and Thomin 2002).

Table 2. Comparison of SS with GA according to intensification and diversification

Metahuristic methods Intensification Diversification

SS

Inner Loop

Crossover

Local Search

Diverse Replacement

GA

Selection

Crossover

Replacement

Mutation

5 Performance of the SS on Real-World Data

5.1 An Engine Piston Manufacturing Process

The developed SS method is tested on the real-world data collected at an engine pis-
ton manufacturing firm in Konya industry area in Turkey. The engine pistons are
shown in Fig 6.

Piston is one of the most important moving components in the engine. It provides
the necessary vacuuming (sucking stroke) process required for filing the fuel-air mix-
ture into the motor rotation and compression (compression stroke) process to form the
necessary pressure to combust the mixture instantly by utilizing the inert power of the
crankshaft (Kaya and Engin 2007). The engine pistons are processed on the machines

178 O. Engin, C. Kahraman, and M.K. Yilmaz

Fig. 6. Picture of piston

which are equipped with the computer controlled machinery using the latest technol-
ogy. They are processed by 6 different operations. These operations are explained
roughly as shown in Fig 7.

Fig. 7. Operations of engine piston

1 Turning

2 Processing of
Piston Ring

3 Drilling

4 Processing of
Pin

5 Turning

6 Final Control

7 Packaging

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 179

5.2 The Multiobjective Value

The multiobjective value aggregates the Satisfaction Index (SI) of two objectives. The
satisfaction indexes are calculated taking into consideration the completion times of
jobs. The question arises how to compare a fuzzy completion time of a job with its
fuzzy due date, i.e. how to calculate the likelihood that a job is tardy. In this study,
two approaches are used;

The approach based on the possibility measure (PM) introduced by Dubois et al.
(1988) and the approach based on the area of intersection measure (AIM) introduced
by Sakawa and Kubota (2000).

1. The possibility measure
The possibility measure approach was used by Itoh and Ishii (1999). The possibility

measure)
~

(~ jC
d

j
π of a fuzzy event, jC

~
 on a fuzzy set jd

~
 is defined as follows (Itoh

and Ishii 1999).

{ } njttd
jjj dCjC

,...,1)(),(minsup)
~

(~~~ == μμπ

(3)

It is used to measure the satisfaction grade of a fuzzy completion time)
~

(jT CSG

of job j :

)
~

()
~

(~ jCjT dCSG
j

π=

(4)

Where)(~ t
jC

μ and)(~ t
jd

μ are the membership functions of fuzzy sets jC
~

 and jd
~

respectively (Fayad and Petrovic 2003). The possibility measure of the fuzzy due

date jd
~

is illustrated in Fig 8.

)~(~ jC d

j
π

t

1

0

jC
~

jd
~

Fig. 8. The possibility measure)
~

(~ jC
d

j
π of the fuzzy due date jd

~

2. Area of intersection measures approach
For the fuzzy completion for each job expressed as a triangular membership func-

tions, jC
~

, as an index showing the portion of jC
~

that meets the fuzzy due date jd
~

180 O. Engin, C. Kahraman, and M.K. Yilmaz

(Sakawa and Kubota 2000). The area of intersection measures the portion of jC
~

, that

is completed by the due date jd
~

. It is shown in Fig 9. The satisfaction grade of a

fuzzy completion time of job j is defined as follows (Fayad and Petrovic 2003).

)
~

(
)

~~
(

)
~

(
j

jj
jT Carea

dCarea
CSG

∩= (5)

jC
~

t

1

0

jd
~

)~(jT CSG

Fig. 9. Satisfaction grade of completion time using area of intersection

The objectives given in (3) and (4) are transformed into the objectives to maximize
their corresponding satisfaction grades as follow (Fayad and Petrovic 2003):

1. Satisfaction grade of Average Tardiness

∑
=

=
n

j
jTAT CSG

n
S

1

)
~

(
1

(6)

2. Satisfaction grade of number of tardy jobs: A parameter λ is introduced such that a

job j , j=1,…,n is considered to be tardy if .10,)
~

(≤≤≤ λλjT CSG After

calculating the number of tardy jobs n tardy, the satisfaction grade SNT is given as
(Fayad and Petrovic 2003):

()

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

′′>

′′<<′′−′′

=

=

nnTardyif

nnTardyifnnTardyn

nTardyif

S NT

0

0/

01

(7)

n ′′ =15 % of the total number of jobs.
In the study, three different aggregation operators are investigated. These are given

(Fayad and Petrovic 2003):

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 181

1. Average of the satisfaction grades:

2

)(
1

NTAT SS
F

+
=

(8)

2. Minimum of the satisfaction grades:

),min(2 NTAT SSF =

(9)

3. Average weighted sum of the satisfaction grades:

()3 1 21 / 2 AT NTF w S w S= +

(10)

Where []0,1 , 1,2,kw k∈ = are normalized weights randomly chosen used in the GA

and changed in every iteration in order to explore different areas of the search space
(Fayad and Petrovic 2003; Murata et al. 1996).

5.3 Experiments

The proposed SS procedure is given below;

Set initial values:
Number of job;
Number of operation;
Fuzzy processing time;
Fuzzy due date;
Order quantity;

Set the SS value:
Initial population size (PopSize);
Reference Set size(Ref Set Size);
Sub set size (Sub Set Size);
Stopping Criterion 1;
Stopping Criterion 2;
Stopping Criterion 3;

begin
repeat

Create initial population based on a memetic algorithm (PopSize)
Repeat

Generate Reference Set (Ref Set Size);
Repeat

Select Subset (Sub Set Size);
Combine Solutions;
Improve Solutions;

Until (Stopping Criterion 1);
Update Reference Set;

Until (Stopping Criterion 2);
Until (Stopping Criterion 3);
End.

Fig. 10. The proposed SS procedure

182 O. Engin, C. Kahraman, and M.K. Yilmaz

The proposed SS algorithms are tested on real-world data collected at an engine
piston manufacturing firm over monthly periods along six months. The load of each
month is given in Table 3.

Table 3. The load of each month

Month Number of jobs
1 15
2 13
3 25
4 19
5 17
6 21

The fuzzy processing time of each operation is estimated according to the types of
machines in use. While some machines are semi-automated and can be operated at
different speeds, others are staff-operated and therefore the processing times are staff
dependent (Fayad and Petrovic 2003).

Using the proposed SS algorithm, the best set of parameters is used to obtain the
optimal or near optimal solutions of multiobjective fuzzy flow shop scheduling prob-
lem in the shortest time. These parameters are determined as follows:

In this study, full factorial DOE has been used. The application involves five parame-
ters (factors) with different possible values each. These parameters are given in Table 4.

Table 4. The parameters proposed by SS for multiobjective fuzzy permutation flow shop
scheduling problem

Parameter Range

Initial population size 10, 20, 30, 40, 50

Reference Set size(Ref Set Size) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9

Sub set size 2, 4, 6, 8, 10

Stopping Criterion 1 25, 75, 125, 175, 225, 250

Stopping Criterion 2 25, 75, 125, 175, 225, 250

The best parameter set for the proposed SS is given in Table 5.

Table 5. The best parameter set for the proposed SS algorithm

Parameter Value

Initial population size 40

Reference Set size(Ref Set Size) 0.5

Sub set size 2

Stopping Criterion 1 75

Stopping Criterion 2 125

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 183

In the study, the stopping criterion 3 is selected to be 25 (iteration number) as a
constant.

Also in the study, two values are tested forλ : λ = 0.4 and 0.7 (Fayad and Petrovic

2003). The experimental result shows, the lower value of λ (λ = 0.4) find the better
solution for the three aggregation operators. In the study we used the lower value of
λ (λ = 0.4).

The algorithm was implemented in Borland Delphi and the computational experi-
ments were performed on a Pentium 4 with 3 GHz processor and 512 MB memory.

Multiobjective fuzzy permutation flow shop scheduling problems are formulated
by two objectives. These are to minimize the average tardiness and to minimize the
number of tardy jobs. In the study the fitness value of the proposed SS aggregates the
satisfaction index of these two objectives. To compare the fuzzy completion time of a
job with its fuzzy due date, two approaches are used. These are PM introduced by
Dubuois and Prade (1998) and AIM introduced by Sakawa and Kubota (2000). In this
research, three different aggregation operators are investigated. These are the average
of the satisfaction grades F1, the minimum of the satisfaction grades F2 and the aver-
age weighted sum of the satisfaction grades F3.

The multiobjective fuzzy permutataion flow shop scheduling problems are solved
by the proposed SS and HGA. These three aggregation operators’ averages, standard
deviations, and maximum values are presented in Tables 6.- 11. The improvement
rate is calculated as

improvement rate =
SS HGA

HGA

−

(11)

Table 6. First month’s problem: the average and best values of satisfaction grades for SS and
HGA

HGA Proposed SS
algorithm

Improvement
Rate Fitness value

AIM PM AIM PM AIM PM

Average 0.3893 1.0000 0.3818 1.0000
HGA
Better

0.00

Std. Dev. 0.0159 0.0000 0.0407 0.0000 1.56 -
F1 - Average of the
satisfaction grades

Max 0.4000 1.0000 0.4889 1.0000 0.22 0.00

Average 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Std. Dev. 0.0000 0.0000 0.0000 0.0000 - - F2-Minimum of the
satisfaction grades

Max 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Average 0.3256 0.4926 0.4974 0.4615 0.53
HGA
Better

Std. Dev. 0.1877 0.1886 0.1974 0.2156 0.05 0.14

F3- Average
weighted sum of the
satisfaction grades

Max 0.7320 0.7641 0.7809 0.8503 0.07 0.11

184 O. Engin, C. Kahraman, and M.K. Yilmaz

Table 7. Second month’s problem: the average and best values of satisfaction grades for SS
and HGA

HGA Proposed SS
algorithm

Improvement
Rate Fitness value

AIM PM AIM PM AIM PM

Average 0.3846 1.0000 0.3246 1.0000 0.18 0.00

Std. Dev. 0.0000 0.0000 0.0370 0.0000 - - F1 - Average of the
satisfaction grades

Max 0.3846 1.0000 0.3846 1.0000 0.40 0.00

Average 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Std. Dev. 0.0000 0.0000 0.0000 0.0000 - - F2-Minimum of the
satisfaction grades

Max 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Average 0.3645 0.5331 0.3511 0.5309
HGA
Better

0.00

Std. Dev. 0.1338 0.1916 0.2068 0.2401 0.55 0.25
F3- Average
weighted sum of the
satisfaction grades

Max 0.5403 0.9487 0.8014 0.8765 0.48
HGA
Better

Table 8. Third month’s problem: the average and best values of satisfaction grades for SS and
HGA

HGA Proposed SS
algorithm

Improvement
Rate Fitness value

AIM PM AIM PM AIM PM

Average 0.4344 1.0000 0.4552 1.0000 0.05 0.00

Std. Dev. 0.0398 0.0000 0.0601 0.0000 0.51 - F1 - Average of the
satisfaction grades

Max 0.5400 1.0000 0.5400 1.0000 0.00 0.00

Average 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Std. Dev. 0.0000 0.0000 0.0000 0.0000 - - F2-Minimum of the
satisfaction grades

Max 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Average 0.4568 0.4705 0.4717 0.4848 0.03 0.03

Std. Dev. 0.1812 0.2710 0.2090 0.1660 0.15
HGA
Better

F3- Average
weighted sum of the
satisfaction grades

Max 0.8003 0.9461 0.8634 0.8348 0.08
HGA
Better

The improvement rates of the proposed SS with respect to HGA for each aggrega-

tion operator are presented in Tables 6- 11.
For the average of the satisfaction grades F1; the proposed SS method found a bet-

ter PM average value for all the six months problems and found a better AIM average
value for the five months problems. HGA found a better AIM average value for only
the one month problems.

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 185

Table 9. Fourth month’s problem: the average and best values of satisfaction grades for SS and
HGA

HGA Proposed SS
algorithm

Improvement
Rate Fitness value

AIM PM AIM PM AIM PM

Average 0.4126 1.0000 0.4193 1.0000 0.02 0.00

Std. Dev. 0.0125 0.0000 0.0547 0.0000 3.37 - F1 - Average of the
satisfaction grades

Max 0.4211 1.0000 0.5965 1.0000 0.42 0.00

Average 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Std. Dev. 0.0000 0.0000 0.0000 0.0000 - - F2-Minimum of the
satisfaction grades

Max 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Average 0.3065 0.5501 0.3943 0.5102 0.29
HGA
Better

Std. Dev. 0.1517 0.2060 0.1449 0.2344
HGA
Better

0.14

F3- Average
weighted sum of the
satisfaction grades

Max 0.5310 0.8443 0.6930 0.9008 0.31 0.07

Table 10. Fifth month’s problem: the average and best values of satisfaction grades for SS and
HGA

HGA Proposed SS
algorithm

Improvement
Rate Fitness value

AIM PM AIM PM AIM PM

Average 0.4118 1.0000 0.4267 1.0000 0.04 0.00

Std. Dev. 0.0000 0.0000 0.0559 0.0000
HGA
Better

- F1 - Average of the
satisfaction grades

Max 0.4118 1.0000 0.5490 1.0000 0.33 0.00

Average 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Std. Dev. 0.0000 0.0000 0.0000 0.0000 - - F2-Minimum of the
satisfaction grades

Max 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Average 0.4531 0.5411 0.4139 0.5554
HGA
Better

0.03

Std. Dev. 0.2634 0.1662 0.1975 0.2161
HGA
Better

0.30
F3- Average
weighted sum of the
satisfaction grades

Max 0.9234 0.7943 0.8179 0.9434
HGA
Better

0.19

For the minimum of the satisfaction grades F2; the proposed SS method and the

used HGA found the same average value of PM and AIM.
For the average weighted sum of the satisfaction grades F3; the proposed SS

method found a better PM average value for the three months problems and found a

186 O. Engin, C. Kahraman, and M.K. Yilmaz

Table 11. Sixth month’s problem: the average and best values of satisfaction grades for SS and
HGA

HGA Proposed SS
algorithm

Improvement
Rate Fitness value

AIM PM AIM PM AIM PM

Average 0.4238 1.0000 0.4616 1.0000 0.09 0.00

Std. Dev. 0.0238 0.0000 0.0817 0.0000 2.43 - F1 - Average of the
satisfaction grades

Max 0.4524 1.0000 0.6349 1.0000 0.40 0.00

Average 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Std. Dev. 0.0000 0.0000 0.0000 0.0000 - - F2-Minimum of the
satisfaction grades

Max 1.0000 1.0000 1.0000 1.0000 0.00 0.00

Average 0.3925 0.5459 0.4519 0.5056 0.15
HGA
Better

Std. Dev. 0.1908 0.2428 0.2044 0.2137 0.07
HGA
Better

F3- Average
weighted sum of the
satisfaction grades

Max 0.7478 0.9187 0.8104 0.8820 0.08
HGA
Better

better AIM average value for the four months problems. HGA found a better PM av-
erage value for the three months problems and found a better AIM average value for
only the two months problems.

As it is seen in Tables 6- 11, the proposed SS found the better solutions for the two
aggregation operators. These are the average of the satisfaction grades and the aver-
age weighted sum of the satisfaction grades.

6 Conclusion and Directions for Future Research

The SS methodology is very flexible since each of its elements can be implemented in
a variety of ways and degrees of sophistication (Marti et al. 2006). In this study, we
applied scatter search method to multiobjective permutation fuzzy flow shop schedul-
ing problem. The considered problem is a well known NP-hard problem. Two objec-
tives which are average tardiness and the number of tardy jobs are minimized. The
multiobjective approach aggregates the satisfaction index of two objectives. For cal-
culating the satisfaction index, two approaches, which are possibility measure and
area of intersection measure, are used. The proposed SS method is tested on real-
world data collected at an engine piston manufacturing company. The result of the
proposed SS method is compared with the HGA solutions. The proposed SS method
outperformed HGA. The results show that the proposed SS method is a good problem
solving technique for fuzzy multiobjective flow shop scheduling problem. For further
research, the proposed SS method can be applied to other multiobjective scheduling
problems.

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 187

List of Abbreviations

SS Scatter Search
DOE Design of Experiments
CDS Campbell Dudek and Smith

ijt~ Fuzzy Processing Times

jd
~

 Fuzzy Due Date

jT
~

 Fuzzy Tardiness

jC
~

 Fuzzy Completion Time

CNT Number of Tardy Jobs
CAT Average Tardiness
b Best Solution
GA Genetic Algorithm
HGA Hybrid Genetic Algorithm
SI Satisfaction Index
PM Possibility Measure
AIM Area of Intersection Measure
SGT Satisfaction Grade of Fuzzy Completion Time
SAT Satisfaction Grade of Average Tardiness
SNT Satisfaction Grade
n ′′ 15 % of the Total Number of Jobs
F1 Average of the Satisfaction Grades
F2 Minimum of the Satisfaction Grades
F3 Average Weighted Sum of the Satisfaction Grades
PopSize Population Size
Ref Set Size Reference Set Size

References

Bajestani, M.A., Rabbani, M., Rahimi-Vahed, A.R.: A multi-objective scatter search for a dy-
namic cell formation problem. Computers & operations research 36, 777–794 (2009)

Campbell, H.G., Dudek, R.A., Smith, M.L.: An heuristic algorithm for the n-job m-machine
sequencing problem. Management science 16(B), 630–637 (1970)

Chakraborty, U.K., Deb, K., Chakraborty, M.: Analysis of selection algorithms: A Markov
chain approach. Evolutionary Computation 4, 133–167 (1996)

Chang, P.C., Chen, S.H., Liu, C.H.: Sub-population genetic algorithm with mining gene struc-
tures for multiobjective flowshop scheduling problems. Expert systems with applications 33,
762–771 (2007)

Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job shop scheduling problems using
genetic algorithms Part II hybrid genetic search strategies. Computers & Industrial engineer-
ing 36, 343–364 (1999)

Choi, I.C., Kim, S.I., Kim, H.S.: A genetic algorithm with a mixed region search for the asym-
metric traveling salesman problem. Computers &operations research 30, 773–786 (2003)

188 O. Engin, C. Kahraman, and M.K. Yilmaz

Chung, J.W., Oh, S.M., Choi, I.C.: A hybrid genetic algorithm for train sequencing in the Ko-
rean railway. Omega the international journal of management science 37, 555–565 (2009)

Dasgupta, D., Forrest, S.: Novelty detection in time series data using ideas from immunology.
In: Proceedings of the ISCA 1996, Reno. Nevada. June 19-21 (1996)

De Castro, L.N., Von Zuben, F.J.: Artificial immune systems. Part 1. Basic theory and applica-
tions. Technical Report. TR-DCA 01/99 (1999)

Dell’Amico, M., Iori, M., Martello, S.: Heuristic algorithms and scatter search for cardinality
constrained P//Cmax problem. Journal of Heuristic 10(2), 169–204 (2004)

Djan-Sampson, P.O., Sahin, F.: Structural learning of Bayesian networks from complete data
using the scatter search documents. In: IEEE International Conference on Systems Man and
Cybernetics, pp. 3619–3624 (2004)

Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning approach to the
traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66
(1997)

Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of uncer-
tainty, New York (1988)

Engin, O.: To increase the performance of flow shop scheduling problems solving with genetic
algorithms: a parameters optimization. PhD. Thesis. Istanbul Technical University. Institute
of Science and Technology. Istanbul. Turkey (2001)

Fayad, C., Petrovic, S.: A fuzzy genetic algorithm for real- World job shop scheduling. Univer-
sity of Nottingham (2003), http://www.cs.nott.ac.uk/~cxf~sxp

Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In:
Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 200–212.
IEEE Computer Society Press, Los Alamitos (1994)

Glover, F., Laguna, M., Marti, R.: Scatter search. In: Advances in Evolutionary Computation:
Theory and Applications, pp. 519–537. Springer, New York (2003)

Glover, F.: Heuristics for integer programming using surrogate constraints. Decision Sci-
ences 8, 156–166 (1977)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
Goldberg, D.E.: Genetic Algorithms in Search. In: Optimization and Machine Learning. Ad-

dision Wesley, London (1989)
Herrera, F., Lozano, M., Molina, D.: Continuous Scatter Search: An analysis of the integration

of some combination methods and improvement strategies. European Journal of Operational
Research 169, 450–476 (2006)

Hung, W.N.N., Song, X.: BDD Variable ordering by scatter search. IEEE, 368–373 (2001)
Hung, W.N.N., Song, X., Aboulhamid, E.M., Driscoll, M.: BDD Minimization by scatter

search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 21(8), 974–979 (2002)

Ignall, E., Schrage, L.: Applicant of the branch and bound technique to some flow shop sched-
uling problems. Operations research 13, 401–412 (1965)

Itoh, T., Ishii, H.: Fuzzy due date scheduling problem with fuzzy processing time. International
transaction in operations research 6, 639–647 (1999)

Johnson, S.M.: Optimal two and three stage production schedules with setup times included.
Naval Research Logistics Quarterly 1, 61–68 (1954)

Kahraman, C., Engin, O., Kaya, İ., Yılmaz, M.K.: An application of effective genetic algo-
rithms for solving hybrid flow shop scheduling problems. International Journal of Computa-
tional Intelligence Systems 1(2), 134–147 (2008)

 A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop 189

Kaya, I., Engin, O.: A New Approach to Define Sample Size at Atributes Control Chart in Mul-
tistage Processes: an Application in Engine Piston Manufacturing Process. Journal of Mate-
rials Processing Technology 183, 38–48 (2007)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Sci-
ence 220(4598), 671–680 (1983)

Maenhout, B., Vanhoucke, M.: New computational results for the nurse scheduling problem: A
scatter search algorithm. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906,
pp. 159–170. Springer, Heidelberg (2006)

Marti, R., Laguna, M., Glover, F.G.: Principles of scatter search. European Journal of Opera-
tional Research 169, 359–372 (2006)

Murata, T., Ishibuchi, H., Tanaka, H.: Multiobjective genetic algorithm and its applications to
flowshop scheduling. Computers Industrial engineering 30(4), 957–968 (1996)

Nezhad, S.S., Assadi, R.G.: Preference ratio based maximum operator approximation and its
application in fuzzy flow shop scheduling. Applied soft computing 8, 759–766 (2008)

Niu, O., Gu, X.S.: An improved genetic-based particle swarm optimization for no idle permuta-
tion flow shops with fuzzy processing time. In: Yang, Q., Webb, G. (eds.) PRICAI 2006.
LNCS (LNAI), vol. 4099, pp. 757–766. Springer, Heidelberg (2006)

Noorul, H.A., Saravanan, M., Vivekrajc, A.R.: A scatter search approach for general flow shop
scheduling problem. Int. J. Adv. Manuf. Technol. 31, 731–736 (2007)

Nowicki, E., Smutnicki, C.: Some Aspects of Scatter Search in the Flow-Shop Problem. Euro-
pean Journal of Operational Research 169, 654–666 (2006)

Pasupathy, T., Rajendran, C., Suresh, R.K.: A multi- objective genetic algorithm for scheduling
in flow shops to minimize the makespan and total flow time of jobs. Int. J. Adv. Manuf.
Technol. 27, 804–815 (2006)

Petrovic, S., Song, X.: A new approach to two machine flow shop problem with uncertain
processing times. Optimization and Engineering 7(3), 329–342 (2006)

Rahimi-Vahed, A.R., Javadi, B., Rabbani, M., Tavakkoli-Moghaddam, R.: A multi-objective
scatter search for a bi-criteria no-wait flow shop scheduling problem. Engineering Optimiza-
tion 40(4), 331–346 (2008)

Reeves, C.R.: Genetic algorithm for flow shop sequencing. Computers & operations re-
search 15, 5–23 (1995)

Russell, R.A., Chiang, W.C.: Scatter Search for the Vehicle Routing Problem with Time Win-
dows. European Journal of Operational Research 169, 606–622 (2006)

Sakawa, M., Kubota, R.: Fuzzy programming for multiobjective job shop scheduling with
fuzzy processing time and fuzzy duedate through genetic algorithms. European journal of
operational research 120, 393–407 (2000)

Sevaux, M., Thomin, P.: Scatter Search and Genetic Algorithm: a one machine scheduling
problem comparison. In: The sixteenth triennial conference of international federation of
operational research societies. IFORS, Edinburgh. UK. juillet (2002)

Silva, C.G.D., Climaco, J., Figueira, J.: A Scatter Search Method for Bi-criteria {0.1}-
Knapsack Problems. European Journal of Operational Research 169, 373–391 (2006)

Temiz, I., Erol, S.: Fuzzy branch and bound algorithm for flow shop scheduling. Journal of in-
telligent manufacturing 15, 449–454 (2004)

Yao, J.S., Lin, F.T.: Constructing a fuzzy flow shop sequencing model based on statistical data.
International journal of approximate reasoning 29, 215–234 (2002)

Zhu, J., Du, G., Wang, L.: Artificial immune algorithm for fuzzy flow shop scheduling prob-
lem. Dynamics of continuous discrete and impulse systems-series B- applications & algo-
rithms 13, 383–386 (2006)

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 191–228.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Genetic Algorithm for Job Shop Scheduling under
Uncertainty

Deming Lei

School of Automation, Wuhan University of Technology, Wuhan City,
Hubei Province, P.R. China
deminglei11@163.com

Summary. This chapter first presents job shop scheduling problems (JSSP) with fuzzy process-
ing time and fuzzy trapezoid or doublet due-date. An efficient random key genetic algorithm
(RKGA) is suggested, in which a random key representation and a new decoding strategy are
proposed and two-point or discrete crossover are used. Performance analyses on random key
representation are done and RKGA is compared with other algorithm. Computations results
validate the effectiveness of random key representation and the promising advantage of RKGA
on fuzzy scheduling.

This chapter then presents flexible job shop scheduling problem (fJSSP) with fuzzy process-
ing time. An efficient decomposition-integration genetic algorithm (DIGA) is developed, which
uses two-string representation, an effective decoding method and a main population. In each
generation, the main population is decomposed into two sub-populations for sub-problems of
fJSSP, sub-populations evolve independently and a new main population is obtained by storing
the best half of the population formed with two evolved sub-populations and their copies.
DIGA is tested and compared with another algorithm. Computational results show good per-
formance of DIGA.

Job shop scheduling problem with stochastic processing time is finally considered. The Gif-
fler-Thompson (GT) procedure is extended in the stochastic context and some operations on the
stochastic processing time are defined. A genetic algorithm (GA) is presented to minimize the
maximum completion time, in which a permutation-based representation method and a modi-
fied crossover are used. The proposed algorithm is tested on a set of benchmark problems and
compared with a hybrid method. Computational results demonstrate the effectiveness of the
proposed algorithm.

1 Introduction

This chapter is made up of six sections. The introduction is done in Section 1. The
second section summarizes the literature on JSSP under uncertainty. The third section
is about random key scheduling algorithm for fuzzy job shop scheduling, in which a
random key representation method and a direct decoding procedure are proposed. The
minimum agreement index and the maximum fuzzy completion time are regarded

192 D. Lei

respectively as an objective. The forth section presents flexible job shop scheduling
problem with fuzzy processing time and an efficient decomposition-integration ge-
netic algorithm is proposed, in which the main population is decomposed into two
sub-populations that evolve independently and are combined for a new main popula-
tion. The objective is to minimize the maximum fuzzy completion time. JSSP with
stochastic processing time is considered in the fifth section. The extended GT proce-
dure and some operations on stochastic processing time are first suggested to build a
complete schedule. An efficient GA is then proposed, in which a permutation-based
representation is utilized. The objective is the makespan itself and not the expected
makespan. In the final section, some conclusions are drawn and new trends of job
shop scheduling with uncertainty are discussed.

2 Literature Review

Manufacturing systems are often subject to some uncertain events which may disturb
their working process [1]: machine failure, operator unavailability, out-of-stock con-
dition, changes in availability date and the latest completion time. It is realistic to
consider a system in an uncertain context; however, the research on job shop schedul-
ing under uncertainty is still in infancy.

2.1 Single Objective Scheduling: Fuzzy Case

In general, the various factors of job shop scheduling are treated as crisp value; how-
ever, this assumption is not realistic in many cases. In order to reflect the real-world
situations, it may be more appropriate to consider fuzzy processing time due to man-
made factors and fuzzy due-date tolerating a certain amount of delay in due-date.

In the past decade, some results have been obtained for fuzzy job shop scheduling
problem (FJSSP). Kuroda and Wang [2] discussed the static JSSP and dynamic JSSP
with fuzzy information. A branch-and-bound algorithm is used to solve the static
JSSP and the methods for dynamic JSSP are also considered. Sakawa and Mori [3]
presented an efficient GA by incorporating the concept of similarity among individu-
als and matrix representation method. Song et al. [4] presented a combined strategy of
GA and ant colony optimization. They also designed a new neighborhood search
method and an improved tabu search to improve the local search ability of the hybrid
algorithm. Niu et al. [5] redefined a particle swarm optimization (PSO), combined
PSO with genetic operators and applied the combined PSO to job shop scheduling
with fuzzy processing time.

2.2 Single Objective Scheduling: Stochastic Case

Stochastic job shop scheduling problem (SJSSP) is an important aspect of manufac-
turing systems in stochastic context. It is the extended version of JSSP and presents
some difficulties for its nature. (1) The objective evaluation is very time-consuming,
especially, when multiple objectives are optimized simultaneously, the sorting of ob-
jective vectors is very expensive in time. (2) Many approaches used in the determinis-
tic case cannot be directly extended to the stochastic context. The optimal solution ob-
tained without taking into account random events may present no interest in a

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 193

stochastic context. Some concepts and methods are required to be defined or designed
again. For instance, some coding and decoding methods of JSSP cannot be applied to
represent the solution of SJSSP again.

There are many stochastic scheduling results which establish the rules to determine
the sequence of parts to minimize an expected objective function on single machine
[6,7]. Not many results have been obtained for the stochastic scheduling of more than
two machines [8], as the problems are considerably harder. Few results have been ob-
tained for SJSSP. Luh [9] presented an effective approach for JSSP considering un-
certain arrival times, processing time, due-date and part priority. A solution method-
ology based on a combined Lagrangian relaxation and the stochastic dynamic
programming is developed to obtain the dual solutions. Ginzburg [10] considered
three sets of costs in JSSP with stochastic processing time in normal, exponential and
uniform distributions and treated the problem as the identification of the earliest start
time in order to minimize the average cost of storage and tardiness from the delivery
time. Tavakkoli-Moghaddam [11] proposed a hybrid method based on neural network
and simulated annealing (SA) for SJSSP. The method uses a neural network approach
to generate an initial feasible solution and then a SA to improve the quality of the ini-
tial solution. Lei et al. [12] provided a stochastic order-based approach to compute the
stochastic objective and suggested an efficient GA for SJSSP.

2.3 Multi-Objective Scheduling: Uncertain Case

Not many results have been obtained for uncertain scheduling problems involving
multiple objectives. Sakawa and Kubota [13] considered FJSSP and presented a GA
incorporating the concept of similarity among individuals by using Gantt charts. The
objective is to maximize the minimum agreement index and the average agreement
index and to minimize the maximum fuzzy completion time. Li et al.[14] proposed a
GA for FJSSP with alternative machines by adopting two-chromosome presentation
and the extended version of GT Procedure (Giffler and Thompson [15]).

Lei [16] addressed the fuzzy problem with objectives of the minimum agreement
index, the maximum fuzzy completion time and the mean fuzzy completion time. He
presented an efficient Pareto archive particle swarm optimization, in which the global
best position selection is combined with the crowding measure-based archive mainte-
nance. Xing et al.[17] presented a multi-objective genetic algorithm for fuzzy sched-
uling problem with objectives of the minimum agreement index and the average
agreement index. Ghrayeb [18] presented a bi-criteria genetic algorithm to minimize
the integral value and the uncertainty of the fuzzy makespan.

Javadi et al. [19] developed a fuzzy multi-objective linear programming model for
multi-objective no-wait flow shop scheduling in a fuzzy environment. The proposed
model attempts to simultaneously minimize the weighted mean completion time and
the weighted mean earliness. Lei and Xiong [20] addressed the problem of stochastic
job shop scheduling, in which the processing time is modeled by a random variable.
They first presented a permutation-based representation method and then designed an
efficient multi-objective evolutionary algorithm to minimize the expected makespan
and the expected total tardiness.

194 D. Lei

3 Fuzzy Job Shop Scheduling

3.1 Problem Description

n m× FJSSP can be described as follows: given n jobs ()1 2iJ i , , ,n= " , each

composed of several operations ijo that must be processed on machines

()1 2jM j , , ,m= " . The processing time of operation ijo is represented as triangular

fuzzy number (TFN) ()1 2 3, ,ij ij ij ijp a a a=� . For job iJ , doublet due-date ()1 2,i id d and

trapezoid due-date ()1 21 2, , ,i i i i id e e d d= are respectively considered. Other constraints

of JSSP are still suitable to FJSSP. For instance, it is assumed that only one operation
can be processed on each machine at a time and each operation cannot be commenced
if the precedent operation is still being processed.

In the deterministic context, tardiness or earliness are used to describe the grad of
the satisfaction of the customer for delivery. The agreement index can be regarded as
the extended version of the above objective in the fuzzy case. The agreement in-
dex iAI of job iJ is defined as follows.

() ()i i i iAI area C d area C= ∩ (1)

Where the fuzzy completion time of job iJ is expressed as TFN iC .

For trapezoid due-date ()1 21 2, , ,i i i i id e e d d= , if the completion time of job iJ belongs

to the interval 12 ,i ie d⎡ ⎤⎣ ⎦ , the grad of satisfaction is equal to 1. In other cases, the grad of

the satisfaction diminishes with the increase of the tardiness or earliness. Fig. 1 de-
scribes the fuzzy processing time and fuzzy due-date.

Two objectives are considered respectively.

1 2
min i

i , n
AI min AI

=
=

"
 (2)

1 2
max i

i , , n
C max C

=
=

"
. (3)

where maxC is the maximum fuzzy completion time and minAI is the minimum agree-

ment index.

3.2 Operations on Fuzzy Processing Time

In fuzzy context, some operations of fuzzy number are required to be redefined to
build a schedule. These operations involve addition operation and max operation of
two fuzzy numbers as well as the ranking methods of fuzzy numbers. Addition opera-
tion is used to calculate the fuzzy completion time of operation. Max operation is to
determine the fuzzy beginning time of operation and the ranking method is to com-
pare the maximum fuzzy completion time.

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 195

Fig. 1. Fuzzy processing time, fuzzy due-date and agreement index

For two TFNs ()1 2 3s s ,s ,s=� and ()1 2 3t t ,t ,t=� , the addition of them is shown by

the following formula:

()1 1 2 2 3 3s t s t ,s t ,s t+ = + + +�� (4)

The following criteria are adopted to rank ()1 2 3s s ,s ,s=� and ()1 2 3t t ,t ,t=� .

Criterion 1: If () () ()1 2 3 1 2 3
1 1

2 2

4 4

s s s t t t
c s c t

+ + + += > < =�� , then ()s t> < �� ;

Criterion 2: If () ()1 1c s c t= �� , then ()2 2c s s=� is compared with ()2 2c t t=� to rank them;

Criterion 3: If they have the identical 1c and 2c , the difference of spread ()3 3 1c s s s= −�

is chosen as a third criterion.

For ()1 2 3s s ,s ,s=� and ()1 2 3t t ,t ,t=� , membership function ()s t zμ ∨ �� of s t∨ �� is de-

fined as follows.

() () ()()ss t t
z x y

z sup min x , yμ μ μ∨
= ∨

=� ��� (5)

In this chapter, the max of two TFNs s� and t� is approximated with the following
criterion:

if s t> �� ，then s t s∨ =�� �；else s t t∨ =� ��

The criterion ()1 1 2 2 3 3s t s t ,s t ,s t∨ ≈ ∨ ∨ ∨�� is first used by Sakawa and Mori [3]

and named Sakawa criterion for simplicity. Sakawa criterion has been extensively ap-
plied to build a complete scheduling of the fuzzy problem. Fig. 2 shows the real max
of two fuzzy numbers and two criteria for the approximate max. Compared with sa-
kawa criterion, the new criterion has the following features:

196 D. Lei

(1) For s� and t� , the approximate max of them is either s� or t� ;

(2) Only three pairs of special points ()i is ,t are compared in Sakawa criterion and

three criteria to rank them are used in the new criterion. The approximate max
obtained by the new criterion approaches the real max better than that of Sa-
kawa criterion.

s t∨ ��

s� t� s� t�s� t�

Fig. 2. Comparison between real max and approximate max

3.3 Random Key Genetic Algorithm

Based on random key representation, a new decoding procedure, elite strategy, binary
tournament selection, two-point crossover (TPX) or discrete crossover (DX) and swap
mutation, RKGA is designed. Compared with the GA with the operation-based repre-
sentation, RKGA has the following features: the chromosome is a real string; how-
ever, RKGA can obtain an operation-based integer string finally. The implementation
of RKGA is very simple. It is easy to apply TPX or DX and the illegal individual
never occurs in the search process.

The framework of RKGA is described as follows.

(1) Randomly generate an initial population P with N individuals.
(2) Perform binary tournament selection on P .
(3) Perform TPX or DX and swap mutation on population P .
(4) If the termination condition is met, stop the search; otherwise, go to step (2).

Table 1. Example of 4 jobs 2 machines FJSSP

Operations
Job

Processing time Processing sequence Actual processing time

1 1, 2, 3 3, 4, 5 1M 2M 2 4

2 2, 3, 4 2, 4, 6 2M 1M 3 4

3 2, 4, 5 3, 5, 7 1M 2M 4 5

4 1, 3, 4 2, 3, 5 2M 1M 4 3

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 197

3.3.1 Random Key Representation
The choice of representation or encoding affects the performance of GA; see, for ex-
ample, Rothlauf[21], Chakraborty and Janikow[22]. Random key representation is
first proposed by Bean [23], which encodes a solution of JSSP with random numbers.
For n m× JSSP, each gene consists of two parts: an integer in set{ }1,2, ,m" and a

fraction generated randomly from ()0,1 . The integer part of the random key is inter-

preted as the machine assignment for job and the decimal part is used to construct the
operation sequence on each machine.

The above representation method is seldom considered for job sequences violating
the precedence constraints and the requirement of the special genetic operators.

In this chapter, we present a new random key representation, which encodes a

schedule of n m× FJSSP as a real string ()1 2 n mnp , p , , p , , p" " with mn× random

numbers in the same interval [],a b .

To obtain a feasible schedule, the following decoding procedure is adopted.

(1) Divide the interval [],a b into a group of sub-intervals

[) [) []1 2 1 1, , , , , , ,i i l la a a a a a+ +" " , Classify all genes of the chromosome

into l groups and make the genes of each group in the same subinterval;

where 1 2 1l la a a a a b+= < < < =" ;

(2) Let 1, 0t h= = , start with the first group, choose the gene from small to big

and assign the chosen gene a new value of t and let 1h h= + , if h m= ,
then 1t t= + and 0h = ; repeat the above procedure until each gene is as-
signed a new value and a integer string is obtained;

(3) Translate the integer sting into a list of ordered operations;
(4) The first operation of the list is arranged first, and then the second operation

and so on; each operation is allocated in the best available processing time
for the required machine of the operation. The procedure is repeated until a
schedule is obtained. The procedure is identical to the one proposed by
Cheng et al. [24] except the processing time is fuzzy.

In the deterministic context, two strategies can be used to translate individual to

schedule of JSSP. The first strategy is to obtain a schedule in terms of the ordered op-
eration list or job permutation et al. The second is to build a schedule with GT proce-
dure; however, only the second strategy using the extended GT procedure is adopted
in the fuzzy case. The first decoding strategy is applied in this chapter.

Suppose a chromosome of the 4 2× example in Table 1 is (0.1, 1.3, 2.5, 2.7, 3.9,
1.1, 4.5, 0.8) and ip is in []0,5 . The interval is first divided into five subintervals and

then genes are separated into five groups; the integer string (1 2 3 3 4 2 4 1) is ob-
tained after step 2 and the chromosome is finally converted into a ordered operation
list ()11 21 31 32 41 22 42 12, , , , , , ,o o o o o o o o in step 3. Fig.3 (a) describes the operation se-

quence on each machine. The chart can be regarded as the modified version of Gantt
chart in fuzzy context and called fuzzy Gantt chart. The TFN above the line is the
fuzzy completion time of operation and the TFN under the line is fuzzy beginning

198 D. Lei

time of operation. When the actual processing time of operations are decided and all
sequences of operations keep invariant, the actual schedule is obtained. Fig.3 (b)
shows the Gantt chart based on the actual processing time in Table 1. The schedule
produced in the above procedure is always feasible.

Compared with the Bean’s representation, the gene of the new representation
also consists of the integer part and the decimal part, however, the random key of the
new representation has different meaning, the chromosome of the new representation
can be converted into the list of the ordered operation, the list never violates the
precedence constraints and no special genetic operators are necessary for the new rep-
resentation-based GA.

()1, 2,3

()1, 2,3

()3,6,8

()3, 6,8

()5,10,14

()5,10,14

()7,13,19

11o

11o 31o

31o

22o

22o

42o

42o

1M

2M

21o

21o

41o

41o

32o

32o

12o

12o

()2,3, 4

()2,3, 4

()3,6,8

()3,6,8

()6,11,15

()6,11,15

()9,15,20

11o 31o 22o
42o

1M

2M

21o 41o 32o 12o

2 6 10 14

3 7 12 16

 (a) (b)

Fig. 3. Fuzzy Gantt chart and Gantt chart

3.3.2 Fitness, Elitism and Genetic Operators
In this chapter, we make fitness function of an individual be equal to its objective
function. The classical elite strategy is used, in which the optimal solution produced
by RKGA is stored as an elite individual, moreover, the elite individual is always
added into population before reproduction.

Roulette wheel reproduction and breeding pool reproduction cannot be applied for
the maximum fuzzy completion time, so tournament selection is used. Tournament se-
lection, introduced by Brindle [25] and analyzed by Chakraborty et al. [26], is per-
formed in the following way: first two individuals are randomly selected from the
population, and then an individual is chosen if the individual has smaller fitness than
the other individual. Finally, the selected individuals go back to the population and
can be chosen again.

TPX and DX are frequently used in the real-coded GA. TPX is shown below: first
randomly select two cut-off points and then exchange genes between the chosen
points. DX is done in the following way: produce the random number s following the

uniform distribution on []0,1 , if 0.5s < , select the gene of one parent; otherwise, se-

lect the gene of another parent; repeat the above step until an offspring is obtained.
Mutation is just used to produce small perturbations on chromosomes in order to

maintain the diversity of population. The swap mutation is adopted and described as
follows: randomly choose two genes and then exchange them.

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 199

3.4 Computational Experiments

In this section, performance analyses on random key representation are first done and
then RKGA is compared with the GA proposed by Sakawa and Mori [3]. We call the
latter SMGA. Ten benchmark problems are used. Problem 1, 2, 3, 5, 6 and 7 are de-
signed by Sakawa and Mori [3] and problem 4 and 8 by Sakawa and Kubota [13].
Problem 1,2,3 and 4 are 6 6× FJSSP and problem 5,6,7,8 are 10 10× FJSSP.
Two15 10× problems 9 and 10 are designed.

3.4.1 Performance Analyses on Random Key Representation
By comparing RKGA with the GA with the operation-based representation (OPGA),
the performance analyses on random key are done. OPGA has the same parameter
settings and the flow with RKGA. Binary tournament selection and swap mutation
like RKGA are also adopted. Generalized order crossover (GOX) and precedence pre-
servative crossover (PPX) are respectively considered in OPGA.

GOX is proposed by Bierwirth [27]. First randomly select a substring A of the first
parent, determine the position of the first element of A on the second parent and re-
move the substring A from the second parent. By inserting A into the position of its
first element, the offspring is obtained.

PPX is suggested by Bierwirth et al.[28]. A string of equal length as the chromo-
some is filled at random with the elements of set {1, 2}. This string defines the order
in which the genes are successively drawn from parent 1 and 2. The offspring is ini-
tially empty. A gene which occurs leftmost in two parents is selected. The chosen
gene is appended to the offspring and deleted from two parents. This step is repeated
until a complete offspring is obtained.

Two variants of RKGA are produced, which RKGA1 denotes RKGA with TPX
and RKGA2 is RKGA with DX. OPGA also has two variants. OPGA1 represents
OPGA with GOX and OPGA2 is OPGA with PPX. The parameters of four algorithms
are as follows: crossover probability of 0.8, mutation probability of 0.1, population
scale of 100, the maximum generation of 200 is chosen for 6 6× problems and 300
for10 10× FJSSP and 500 for other instances.

Four algorithms are implemented by using Microsoft Visual C++ 7.0 and run on
Pentium 2.0G PC. All algorithms randomly run 20 times with respect to each instance
and the computational results are recoded in Table 2, in which avg. indicates the aver-
age value of the best solutions found in all runs and opt. denotes the best solutions. In
each data grid, there are three kinds of data related to the first objective using doublet
and trapezoid and the second respectively. The computational times of each algorithm
are shown in Table 3. Problem 5, 6, 7 and 8 have the same number of job and ma-
chine, the search process of each algorithm for these problems nearly spend the same
duration. So Table 3 only describes the average value of the computational times. The
values in the parentheses are the average computational times about the first objective
using the trapezoid due-date.

When the doublet due-date is considered, two variants of RKGA respectively ob-
tain the maximum value of the first objective of 2 and 4 problems. OPGA1 and
OPGA2 cannot approximate the best solutions of any instances. With respect to the

200 D. Lei

Table 2. Computational results of four algorithms

RKGA1 RKGA2 Problem

avg. opt. avg. opt.

0.5320 0.6943 0.6875 0.8024

0.4910 0.5602 0.5515 0.5909

5

95.8,131.5,163.1 96,129,160 95.1,130.9,162.2 96,129,160

0.7873 0.9000 0.8539 0.900

0.6382 0.7394 0.6733 0.7397

6

94,128.4,164.2 95,125,164 93,126.2,163.6 89,123,158

0.2628 0.6032 0.4393 0.6061

0.3580 0.4801 0.4542 0.5854

7

85,117.3,147.9 85,116,143 84.6,115.9,148.6 85,116,143

0.9010 0.9687 0.9113 0.9688

0.8640 0.9675 0.9315 0.9675

8

28.7,47.9,65.6 27,47,64 28.4,48,64.1 28,47,62

OPGA1 OPGA2 Problem

avg. opt. avg. opt.

0.6146 0.6943 0.2897 0.5050

0.5141 0.5784 0.3272 0.4762

5

94.9,130.8,162 96,129,160 96.9,135,164.4 95,133,161

0.8320 0.8690 0.6255 0.7951

0.6610 0.7258 0.5764 0.6926

6

94.1,125.9,164.9 95,125,164 96,128.8,165.9 95,125,164

0.3772 0.5055 0.1887 0.2561

0.3609 0.4915 0.2216 0.3164

7

85.3,115.4,147.5 85,116,143 86.1,118,147.8 85,116,143

0.9065 0.9512 0.8880 0.9675

0.8760 0.9394 0.8943 0.9686

8

28.4,47.8,64.3 28,47,62 29.1,48.2,64.3 26,47,64

Table 3. Computational times of four algorithms

 RKGA1
t/s

 RKGA2
t/s

OPGA1
t/s

 OPGA2
t/s

minAI
maxC

minAI
maxC

minAI
maxC

minAI
maxC

7.53(6.84) 7.45 7.40(6.98) 7.60 7.01(7.15) 6.99 8.01(7.68) 7.60

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 201

Table 4. Computational results of two algorithms on the first objective

RKGA SMGA
Problem

avg. opt. avg. opt.

0.867418 0.868072 0.826914 0.868072
1

0.557809 0.609420 0.531258 0.609420

0.972718 0.984321 0.951325 0.984321
2

0.747367 0.770032 0.732537 0.770032

0.923943 0.933824 0.923943 0.933824
3

0.674154 0.700000 0.600433 0.700000

0.692308 0.692308 0.692308 0.692308
4

0.692308 0.692308 0.692308 0.692308

0.687534 0.802372 0.290757 0.495251
5

0.551560 0.590909 0.330201 0.476190

0.853892 0.90000 0.615423 0.795152
6

0.673270 0.739734 0.563191 0.692553

0.439251 0.606061 0.176851 0.256061
7

0.454249 0.585366 0.231725 0.326532

0.911335 0.968750 0.889673 0.941176
8

0.931485 0.96748 0.864826 0.96748

0.883247 0.953747 0.637628 0.761536
9

0.693155 0.780091 0.496435 0.601665

0.737256 0.842843 0.512367 0.584548
10

0.752662 0.792570 0.505022 0.634521

average value of the first objective, it can be concluded that RKGA2 obtains better re-
sults than two variants of OPGA for four instances. The corresponding results of
RKGA1 are also better than those of OPGA2.

When the trapezoid due-date is considered, RKGA2 produces the best results of 3
instances, OPGA2 approximate the best solution of one problem and both RKGA1
and OPGA1 cannot obtain the maximum objective value for any instances; however,
for problem 5, 6 and 7, the maximum value of the first objective generated by OPGA2
is less than that of RKGA1, RKGA2 and OPGA1. With respect to the average results,
RKGA2 performs better than other algorithms for four instances and OPGA2 is infe-
rior to any other algorithms.

With respect to the second objective, RKGA2 and OPGA1 obtain the similar aver-
age maximum completion time for four10 10× instances and these average results are
smaller than the corresponding results of RKGA1and OPGA2. On the other hand,
RKGA2 finds the best solution of 4 instances, especially for problem 6; the best solu-
tion is only generated by this algorithm. Both RKGA1 and OPGA1 converge to the

202 D. Lei

Table 5. Computational results of two algorithms on the second objective

prob-
lem

RKGA SMGA

 avg. opt. avg. opt.
1 56,80,103 56,80,103 56,80,103 56,80,103
2 52.2,71,87.6 51,70,86 52.6,71.5,88.5 51,70,86
3 50,65,84 50,65,84 50,65,84 50,65,84
4 28.9,36,43.1 29,36,43 28.2,36.1,44.4 29,36,43
5 95.1,130.9,162.2 96,129,160 96.8,134.9,164.7 95,133,161
6 93,126.2,163.6 89,123,158 96.5,129.7,168.3 93,129,168
7 84.6,115.9,148.6 85,116,143 86.1,118,147.8 88,115,146
8 28.4,48,64.1 28,47,62 29.1,48.3,64.5 28,47,66
9 144.7,211.2,274.7 142,207,271 149.1,216.1,279.6 146,212,272
10 122.7,176.2,227.3 118,170,223 125.9,180.2,231.7 121,176,231

best solutions of 2 problems and OPGA2 only approximates the best solution of one
instance. Table 3 shows that the computational times of RKGA1 and RKGA2 are
close to or smaller than those of OPGA1 and OPGA2. Thus, it can be concluded that
two RKGAs have better performance than or similar performance with the GAs with
the operation-based representation when spending the nearly equal times. This con-
clusion proves that the new representation is effective.

3.4.2 Results and Discussions
RKGA is tested on ten instances and compared with SMGA. We adopt the parameter
settings proposed by Sakawa and Mori [3] except the number of objective function
evaluation. The parameters and DX described in section 4.1 are used. The newly de-
fined max operation is used in two algorithms. Table 4 shows the computational re-
sults of RKGA and SMGA on the first objective. Table 5 depicts the comparison be-
tween two algorithms on the second objective.

From Table 4 and 5, it can be concluded that RKGA performs better than SMGA for
all instances. For four simple problems, two algorithms have similar performance. For
other instances, the results generated by SMGA are notably worse than those of RKGA.

Two different representations and two decoding strategies are respectively used in
two algorithms. The new solutions produced by RKGA are always feasible, the com-
bination of random key representation and DX makes RKGA excel in fuzzy schedul-
ing. On the other hand, SMGA cannot guarantee the feasibility of new solutions and
its low performance mainly results from its restricted optimization ability caused by
the shortcoming of matrix representation.

4 Flexible Job Shop Scheduling with Fuzzy Processing Time

4.1 Problem Description

fJSSP is composed of n jobs ()1 2iJ i , , ,n= "

and m machines ()1 2kM k , , ,m= " .

Each job consists of several operations. Each operation can be processed on more
than one machine. There are several constraints on jobs and machines, such as:

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 203

Each machine can process at most one operation at a time,
No jobs may be processed on more than one machine at a time,
Operation cannot be interrupted,
Setup times and remove times are included in the processing times.

In this chapter, fJSSP with fuzzy processing time is considered. The processing

time of the jth operation of iJ on machine kM is represented as

TFN ()1 2 3, ,ijk ijk ijk ijkp a a a=� .

The problem is to assign each operation to an appropriate machine (machine as-
signment problem), and to sequence the operations on the machines (operation se-
quence problem) in order to optimize the maximum fuzzy completion time.

1 2

max i
i , , n

C max C
=

=
"

 (6)

where maxC is the maximum fuzzy completion time and iC is the fuzzy completion time

of job iJ .

Table 6. Example of 4 jobs 2 machines fJSSP with fuzzy processing time

Job 1M 2M Job 1M 2M

1J 11o 1, 2, 3 3, 4, 5 3J 31o 3, 4, 6 2, 4, 5

12o 2, 3, 4 2, 4, 6 32o 1, 3, 4 3, 5, 8

2J 21o 2, 4, 5 3, 5, 7 4J 41o 1, 2, 4 4, 5, 7

22o 1, 3, 4 2, 3, 5 42o 2, 3, 5 4, 6, 9

Table 6 shows an example, in which rows correspond to operations and columns

correspond to machines. The entries of the input table are the processing times. In this
example, we have total flexibility. In a partial flexibility scenario, an empty entry in
the table means that a machine cannot execute the corresponding operation, i.e., it
does not belong to the subset of compatible machines for that operation.

4.2 Decomposition-Integration Genetic Algorithm

Two methods are often used to solve fJSSP. The first is the separation method, in
which two sub-problems of fJSSP are considered in turn. The second is the integra-
tion method, which integrate operation sequence problem and machine assignment
problem together. In this section, we present a different approach with population de-
composition and integration.

204 D. Lei

The overall structure of DIGA can be described as follows.

(1) Randomly generate initial main population AB and evaluate its individual,
(2) Decompose population AB into sub-populations A and B , make the ith indi-

vidual of two sub-populations have the same fitness as that of AB ,
1 2i , , ,N= " ;

(3) Generate populations 1A and 1B as the copy of A and B respectively;

(4) Perform binary tournament selection, crossover and mutation on popula-
tion A ;

(5) Perform binary tournament selection, crossover and mutation on popula-
tion B ;

(6) Construct a new population AB based on two evolved sub-populations and
their copies, calculate the fitness of its individuals and delete the worst half
of the population.

(7) If the termination condition is met, stop the search; otherwise, go to step (2).

In step 2, the main population is decomposed into A and B in the following way:
for individual i of AB , its sequencing string becomes the ith individual of A , its as-
signing string is the ith individual of B . 1 2i , , ,N= " , N is population size.

In step 6, AB with 2N individuals is obtained: for 1 2i , , ,N= " , the ith individual

of AB is made up of that of A and 1B ; for 1 2i N , , N= + " , the ith individual of AB is

the integration of that of 1A and B .

DIGA is unique in two respects.

(1) It calculates the fitness of individuals in the main population with 2N indi-
viduals;

(2) The main population itself doesn’t evolve; however, it is updated twice in
each generation. The update is first done by the independent evolution of
two sub-populations and then executed by storing the best half of the popu-
lation based on two sub-populations and their copies.

In next three subsections, the different steps of DIGA are described in detail.

4.2.1 Two-String Representation
A two-string representation is used to decode a schedule of fJSSP with two integer

strings ()
11 2 h hp , p , , p , , p" " and ()

111 12 1 nh nhq ,q , ,q , ,q" " ,
1

n

i
i

h h
=

=∑ . The first string

is used for job sequencing, in which 1 occurs 1h times, 2 occurs 2h times and so on. The

second is for machine assigning. Each gene 1ij ijq ,u⎡ ⎤∈ ⎣ ⎦ corresponds to the jth opera-

tion ijo of job iJ and iju indicates the maximum number of machines on which the opera-

tion ijo can be processed. If ijq is equal to l , the operation ijo is processed on the lth

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 205

machine of the total iju machines. Fig.4 describes a chromosome of the example shown

in Table 6.
To obtain a feasible schedule, the following decoding procedure is adopted:

(1) Translate the first string into a list of the ordered operations and assign a
machine for each operation according to the second string;

(2) The first operation of the operation list is arranged first, and the second
operation and so on. Each operation is allocated in the best available proc-
essing time for the required machine of the operation. The procedure is re-
peated until a schedule is obtained. The procedure is identical to the one
proposed by Cheng et al.[25] except the processing time is fuzzy.

11o 12o 21o 22o 31o 32o 41o 42o

1 2 1 2 1 2 2 1

Job sequencing

Machine assigning

1 2 3 3 4 2 4 1

Fig. 4. An illustration of the two-string representation

The max operation and the decoding strategy for job sequencing string shown in
section 3 are adopted in this section. For the chromosome in Fig. 4, the sequencing
string (1 2 3 3 4 2 4 1) is converted into a list of the ordered opera-
tions ()11 21 31 32 41 22 42 12, , , , , , ,o o o o o o o o , the second string is (1 2 1 2 1 2 2 1). Fig. 5

shows fuzzy Gantt chart of the final schedule.

41o

41o

22o

22o

32o

32o

12o

12o

11o

11o

21o

21o

31o

31o

42o

42o

1M

2M

()3 6 8, , ()6 10 14, , ()8 13 19, ,

()6 10 14, ,()3 6 8, ,

()1 2 3, ,

()1 2 3, ,

()3 6 8, ,

()4 5 7, , ()5 9 13, ,

()6 10 14, ,

()9 15 22, ,

()9 15 22, ,

()1119 28, ,

Fig. 5. Fuzzy Gantt chart

206 D. Lei

 Parent 1 2 4 3 1 2 3 1 3 1 2 4 4

 Parent 2 3 2 4 1 4 2 3 4

Offspring 1 3 2

1 2 1 3

1 2 3 1 4 1 4 2 3 4

 GOX

 Parent 1 2 4 3 1 2 3 1 3 1 2 4 4

 Parent 2 3 2 4 1

1 2 1 3 4 2 3 4

Offspring 1 3 2 4 1 4 2 3 4

 GPX

 Parent 1 2 4 3 1 2 3 1 3 1 2

1 2 3 1

 4 4

 Parent 2 3 2 1 4 2 1 1 3 4 2 3 4

 String 1 2 2 1 1 2 1 2 1 1 2 2

Offspring 1 2 3 1

 4 2 1 3 1 4 2 3 4

 GPPX
Fig. 6. Example of three crossovers of DIGA

4.2.2 Crossover, Mutation and Termination Condition
We consider TPX for population B and three crossovers for population A respectively.
The first crossover is generalized order crossover (GOX) and has been shown in 3.4.1.

The second is generalized position crossover (GPX) (Mattfeld [29]). GPX is simi-
lar to GOX. The main difference between them is that the insertion of a sub-string in
the second parent is done according to its position in the first parent for GPX.

The third is a generalization of precedence preservative crossover (GPPX). A
string is filled at random with h elements of set {1, 2}. This string defines the order
in which the genes are successively drawn from parent 1 and 2. The offspring is ini-
tially empty. When a gene θ is selected, it is appended to the offspring. If the
geneθ comes from parent 1(2), then the same gene in parent 2(1) is deleted. This step
is repeated until the chromosome of two parents are empty and an offspring is ob-
tained. Fig. 6 describes an illustration of the crossovers of DIGA.

The swap operator acts as the mutation. When the predetermined number of gen-
erations is met, DIGA terminates its search.

4.3 Computational Results

fJSSP with fuzzy processing time is seldom considered and the numerical examples
are hard to found. In this section, we first provide three numerical examples, which
are 10 jobs 10 machines fJSSP. The total number of operations of instances 1 and 2 is
40 and the corresponding number of instances 3 is 50. We then test the impact of
three crossovers GOX, GPX and GPPX on the performance of DIGA for the high
complexity of job sequencing problem. Finally, we compare our results with those ob-
tained by other algorithms.

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 207

4.3.1 Results of DIGA
Three variants of DIGA are considered. DIGA1 is defined as DIGA with GOX,
DIGA2 denotes DIGA using GPPX and DIGA3 represents DIGA with GPX. These
algorithms have the same flow and parameters except crossover operators. Two-point
crossover is applied to the population B . We set the same parameters for the evolu-
tion of two sub-populations: crossover probability of 0.8, mutation probability of 0.1,
population size of 100 and the maximum generation of 500. All algorithms randomly
run 20 times with respect to each instance and the computational results are shown in
Table 7. Figure 6, 7 and 8 shows the results in form of fuzzy Gantt chart.

Table 7. Computational results of DIGA

 DIGA 1 DIGA 2 DIGA 3 Inst-
ance avg. opt. avg. opt. avg. opt.

1 26.30,37,
47.79

21,33,
43

23.90,35.56,
46.64

23,32,
45

23.89,35.41,
47.61

22,33,
44

2 38.00,51.43,
65.22

34,48,
63

36.71,51.34,
66.11

32,47,
57

36.54,51.13,
66.04

37,47,
58

3 40.19,56.43,
73.14

35,53,
68

40.14,55.53,
72.82

36,51,
65

38.90,55.49,
72.00

36,50,
69

63
o

32
o

31
o

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

10
M

9
M

11
o

32
o

101
o

42
o

42
o

41
o

82
o

82
o

83
o

83
o

14
o

14
o

71
o

81
o

81
o

103
o

103
o

102
o

102
o

62
o

62
o

61
o

51
o

52
o

52
o

21
o

91
o

12
o

12
o

92
o

92
o

93
o

93
o

34
o

34
o

84
o

84
o

23
o

23
o

104
o

104
o

73
o

73
o

44
o

44
o

22
o

22
o

33
o

33
o

72
o

72
o

13
o

13
o

53
o

53
o

43
o

43
o

24
o

52
o

52
o

94
o

94
o

64
o

74
o

11
o

101
o

24
o

74
o

63
o

64
o

71
o

21
o

51
o

61
o31

o

41
o91
o

(
)

5
8

10
,

,

(
)

5
8

10
,

,

(
)

8
13

17
,

,

(
)

11
17

22
,

,

(
)

11
17

22
,

,

(
)

9
14

17
,

,

(
)

9
14

17
,

,

(
)

11
17

22
,

,

(
)

16
25

32
,

,

(
)

16
25

32
,

,
(

)
21

33
43

,
,

(
)

18
25

31
,

,

(
)

18
25

31
,

,
(

)
21

30
40

,
,

(
)

5
7

9
,

,

(
)

5
7

9
,

,

(
)

4
6

8
,

,

(
)

4
6

8
,

,
(

)
8

13
18

,
,

(
)

5
7

9
,

,

(
)

5
6

9
,

,

(
)

11
14

18
,

,

(
)

9
14

18
,

,

(
)

10
14

20
,

,

(
)

17
22

30
,

,

(
)

19
24

29
,

,

(
)

19
24

29
,

,

(
)

18
23

31
,

,
(

)
10

14
20

,
,

(
)

16
23

31
,

, (
)

16
25

32
,

,

(
)

21
32

42
,

,

(
)

25
32

38
,

,

(
)

8
14

18
,

,

(
)

10
14

20
,

,

(
)

10
14

20
,

,

(
)

3
6

8
,

,

(
)

3
6

8
,

,

(
)

5
6

9
,

,

(
)

16
23

32
,

,

(
)

10
14

20
,

,

(
)

15
22

31
,

,

(
)

15
22

31
,

,

(
)

10
15

21
,

,

(
)

19
29

41
,

,
(

)
3

5
8

,
,(

)
4

6
8

,
,

(
)

4
5

6
,

,(
)

5
7

9
,

,

(
)

11
14

18
,

,

(
)

11
14

18
,

,

(
)

18
23

31
,

,

(
)

18
23

31
,

,

(
)

21
31

42
,

,

(
)

24
32

42
,

,

(
)

24
32

40
,

,

(
)

18
25

31
,

,

(
)

9
14

18
,

,

(
)

9
14

18
,

,

(
)

15
22

27
,

,

(
)

4
7

9
,

,

(
)

4
7

9
,

,

(
)

5
7

9
,

,

(
)

5
8

11
,

,

(
)

10
15

21
,

,

(
)

10
15

21
,

,

(
)

14
20

28
,

,

(
)

17
25

35
,

,
(

)
14

20
28

,
,

(
)

17
25

35
,

,
(

)
21

32
45

,
,

Fig. 7. Fuzzy Gantt chart of a solution of instance 1

208 D. Lei

41
o

52
o

52
o

53
o

53
o

63
o

63
o

44
o

44
o

71
o

31
o

31
o

82
o

82
o

73
o

73
o

84
o

84
o

64
o

64
o

91
o

92
o

92
o

71
o

71
o43
o

51
o

62
o

62
o

1
3

o

13
o

74
o

74
o

101
o

32
o

32
o

83
o

84
o

94
o

94
o

11
o

22
o

22
o

33
o

33
o

54
o

54
o

12
o

12
o

43
o

61
o

42
o

42
o93

o

93
o

21
o

102
o

103
o

102
o

103
o24
o

24
o

104
o

104
o

81
o

23
o

23
o

34
o

34
o

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

1
0

M

9
M

14
o

14
o

41
o

71
o

91
o

51
o101
o

11
o

61
o

21
o

81
o

(
)

9
12

16
,

,

(
)

9
12

16
,

,

(
)

15
20

25
,

,

(
)

15
20

25
,

,
(

)
20

26
33

,
,

(
)

20
26

33
,

,

(
)

20
26

3
2

,
,

(
)

20
26

32
,

,
(

)
7

9
11

,
,

(
)

7
9

11
,

,

(
)

11
14

17
,

,

(
)

11
14

17
,

,
(

)
24

31
49

,
,

(
)

27
36

45
,

,(
)

28
3

8
47

,
,

(
)

2
6

3
4

42
,

,

(
)

30
39

49
,

,

(
)

30
39

49
,

,

(
)

31
42

54
,

,

(
)

32
42

54
,

,

(
)

28
38

47
,

,
(

)
1

9
25

30
,

,

(
)

1
9

25
30

,
,

(
)

12
17

20
,

,

(
)

12
17

20
,

,

(
)

4
7

9
,

,

(
)

4
7

9
,

,

(
)

6
9

12
,

,

(
)

7
9

12
,

,

(
)

7
10

13
,

,

(
)

1
1

14
17

,
,

(
)

16
22

29
,

,

(
)

1
4

23
30

,
,(

)
20

26
32

,
,

(
)

26
34

4
2

,
,

(
)

26
34

4
2

,
,

(
)

22
34

4
3

,
,

(
)

22
34

4
3

,
,

(
)

29
44

57
,

,

(
)

1
9

24
30

,
,

(
)

34
44

55
,

,

(
)

32
44

55
,

,
(

)
25

33
43

,
,

(
)

22
34

4
3

,
,

(
)

1
9

24
30

,
,

(
)

14
18

2
3

,
,

(
)

5
8

11
,

,

(
)

5
8

11
,

,

(
)

1
4

23
30

,
,

(
)

1
9

24
30

,
,

(
)

1
9

24
30

,
,

(
)

8
1

0
12

,
,

(
)

7
9

12
,

,

(
)

8
1

0
12

,
, (

)
9

12
16

,
,

(
)

25
33

43
,

,

(
)

14
20

25
,

,

(
)

14
20

25
,

,

(
)

19
29

37
,

,

(
)

19
29

37
,

,
(

)
25

39
50

,
,

(
)

25
39

50
,

,

(
)

22
27

33
,

,

(
)

14
18

2
3

,
,

(
)

8
12

17
,

,
(

)
33

45
60

,
,

(
)

29
46

5
9

,
,

(
)

32
47

57
,

,
(

)
25

32
43

,
,

(
)

22
34

4
3

,
,

(
)

7
10

13
,

,

Fig. 8. Fuzzy Gantt chart of a solution of instance 2

DIGA2 and DIGA3 obtain the similar average value for all instances and produce
better average results than DIGA1. DIGA2 reaches the best solutions of instances 2
and 3, DIGA1converges to the best solution of instance 1, while DIGA3 cannot obtain
the best results of any instances.

The most of representation methods are redundant and more than one chromosome
can correspond to one objective. GA must produce many different chromosomes to
approximate the optimal schedule of the problem. Compared with GOX, GPX and
GPPX has stronger ability to produce the new chromosomes with the different struc-
ture from the old ones, meanwhile, some genes of the old individual is still remained
in the new one. DIGA2 and DIGA3 may keep the good balance between exploration
and exploitation; as a result, they perform better than DIGA1.

4.3.2 Comparative Results
We compare DIGA with the algorithm proposed by Pezzella et al. [30], which are la-
beled as PEGA. We adopt all parameters shown in [30] except population size of 100

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 209

and maximum generation of 1000. Binary tournament for selection and three dis-
patching rules for initial population are still used in PEGA. We make use of the pa-
rameters in section 3.1 and GPPX for DIGA. Two algorithms randomly run 20 times
on each instance. The corresponding computational results are listed in Table 8.

Table 8. Computational results of DIGA and PEGA

 Instance 1 Instance 2 Instance 3 Algor-
ithm avg. opt. avg. opt. avg. opt.

DIGA 23.90,35.56,
46.64

23,32,
45

36.71,51.34,
66.11

32,47,
57

40.14,55.53,
72.82

36,51,
65

PEGA 25.00,35.67,
47.78

23,34,
44

37.51,51.75,
66.75

34,45,
60

40.62,56.43,
73.29

38,51,
66

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

10
M

9
M

51
o

71
o

61
o

32
o 31

o

72
o

72
o

52
o

52
o

103
o

103
o

94
o

94
o

34
o

34
o

81
o

92
o

92
o

93
o

93
o

14
o

14
o

54
o

54
o

51
o

82
o

82
o

83
o

83
o

73
o

73
o

74
o

74
o

11
o

62
o

62
o

52
o

52
o53
o

53
o

91
o

42
o

42
o

33
o

33
o24

o

24
o

93
o

93
o

71
o12
o

12
o

42
o

42
o

43
o

43
o

61
o

43
o

43
o

63
o

63
o103

o

103
o

21
o

21
o

22
o

22
o

73
o

73
o

83
o

83
o104
o

104
o

102
o

41
o

41
o

101
o

101
o

102
o

23
o

23
o

63
o

63
o

64
o

64
o

32
o

13
o

13
o

23
o

23
o

24
o

24
o

84
o

84
o

31
o

81
o

51
o

11
o

91
o

(
)

8
11

14
,

,

(
)

7
9

12
,

,
(

)
12

16
21

,
,

(
)

12
16

21
,

,

(
)

15
20

27
,

,

(
)

15
20

27
,

,

(
)

6
9

12
,

,

(
)

6
9

12
,

,

(
)

6
9

12
,

,

(
)

5
8

12
,

,

(
)

15
19

25
,

,

(
)

15
19

25
,

,

(
)

8
10

13
,

,

(
)

8
10

13
,

,
(

)
11

15
21

,
,

(
)

15
20

27
,

,

(
)

24
32

43
,

,

(
)

24
32

43
,

,

(
)

11
17

22
,

,

(
)

11
17

22
,

,

(
)

6
9

12
,

,

(
)

6
9

12
,

,

(
)

22
29

38
,

,

(
)

22
29

38
,

,
(

)
26

34
45

,
,

(
)

26
34

45
,

,

(
)

32
43

56
,

,

(
)

32
43

56
,

,
(

)
37

49
63

,
,

(
)

17
26

34
,

,(
)

22
29

36
,

,

(
)

27
37

46
,

,(
)

27
39

52
,

,

(
)

27
39

52
,

,

(
)

23
29

38
,

,
(

)
35

50
66

,
,

(
)

32
45

61
,

,

(
)

31
43

57
,

,

(
)

31
43

57
,

,

(
)

8
12

17
,

,

(
)

8
11

14
,

,

(
)

8
11

14
,

,

(
)

17
22

28
,

,

(
)

17
22

28
,

,

(
)

14
18

20
,

,

(
)

21
29

34
,

,

(
)

21
29

34
,

,

(
)

28
37

45
,

,

(
)

28
37

45
,

,

(
)

38
50

62
,

,

(
)

38
50

65
,

,

44
o

44
o

(
)

31
41

52
,

,

(
)

31
41

52
,

,

(
)

23
31

39
,

,

(
)

23
31

39
,

,

(
)

21
29

39
,

,

(
)

21
29

39
,

,

(
)

14
20

28
,

,

(
)

14
20

28
,

,
(

)
8

12
17

,
,

(
)

9
10

12
,

,
(

)
26

38
51

,
,

(
)

23
32

42
,

,

(
)

23
32

42
,

,

(
)

29
41

53
,

,

(
)

29
41

53
,

,

(
)

12
18

24
,

,

(
)

12
18

24
,

,

(
)

5
7

10
,

,

(
)

5
7

10
,

,

(
)

5
7

10
,

,

(
)

8
10

11
,

,

(
)

8
10

11
,

,

(
)

8
10

11
,

,
(

)
14

18
20

,
, (

)
16

20
24

,
,

(
)

16
20

24
,

,(
)

17
22

28
,

,

(
)

22
29

36
,

,

(
)

22
29

36
,

,

(
)

21
29

39
,

,
(

)
29

39
53

,
,

(
)

29
39

53
,

,

(
)

28
37

45
,

,

(
)

31
42

53
,

,

(
)

31
42

53
,

,

(
)

38
50

63
,

,

(
)

37
49

66
,

,

(
)

36
51

65
,

,

Fig. 9. Fuzzy Gantt chart of a solution of instance 3

210 D. Lei

It can be concluded that DIGA performs better than PEGA. The best solutions of
DIGA are always better than those of PEGA. Like DIGA, PEGA generates new popu-
lation by using different crossover and mutation on two parts of each individual; how-
ever, two parts of some individuals may be changed simultaneously and population is
only renewed one time in a generation of PEGA. Compared with PEGA, DIGA up-
dates only one string of individuals in the main population and renews the main popu-
lation twice. DIGA maintains good balance between exploration and exploitation; as a
result, DIGA has better performance than PEGA.

5 Job Shop Scheduling with Stochastic Processing Time

5.1 Problem Formulation

JSSP is composed of n jobs ()1 2iJ i , , ,n= " and m machines ()1 2jM j , , ,m= " .

Each job consists of several operations and each operation ijo is processed during a

fixed duration. There are several constraints on jobs and machines, such as:

Each machine can process at most one operation at a time,
No jobs may be processed on more than one machine at a time,
Operation cannot be interrupted,
Operations of a given job have to be processed in a given order,
Setup times and remove times are included in the processing times.

In this section, JSSP with stochastic processing time is considered, in which the

processing time of each operation is modeled by an independent random variable with
a given probability distribution. In general, processing time is indicated by using the
normal, exponential or uniform distribution. We suppose that processing time follows
normal distribution. Other constraints of JSSP are still valid in the stochastic context.

In the deterministic context, makespan is the most frequently considered objective
and many efficient heuristics and meta-heuristics such as GA [31], tabu search [32]
and particle swarm optimization [33] have been proposed to minimize makespan. In
the stochastic context, the expected makespan is often regarded as the objective
[6,7,8].

In this section, makespan itself is still regarded as the objective of the problem.

1 2

max i
i , , n

C max C
=

=
"

� � (7)

Where iC� is the stochastic completion time of job iJ .

5.2 Active Schedule Generating Algorithm

For JSSP and SJSSP, we can expect that an optimal schedule is within the set of ac-
tive schedules since inclusion of idle time is not preferable. The GT procedure can be
extended from the deterministic context to the stochastic case. In this section, some
operations on processing time are first defined and then the extended GT procedure is
proposed.

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 211

5.2.1 Operations on Stochastic Processing Time
In the stochastic context, the max operation and ranking operation of random vari-
ables are required to be defined again to decide the earliest beginning time and the
completion time of jobs on each machine.

The ranking of random variables is based on stochastic dominance theory. Many
kinds of stochastic dominance including expectation dominance and almost sure
dominance et al. have been defined; some of them such as expectation dominance and
almost sure dominance can be easily implemented on computer. In this chapter, al-
most sure dominance is considered.

Definition 1. 1X and 2X are random variables. 1X almost surely dominates 2X if

()1 2 1P X X =. .

For random variable ()2
1 1 1X N ,μ σ∼ and ()2

2 2 2X N ,μ σ∼ , 2 1σ σ>

The following procedure is used to rank 1X and 2X :

(1) Set 1 1 13a μ σ= − , 2 1 13a μ σ= + , 1 2 23b μ σ= − , 2 2 23b μ σ= + ;

(2) 1 2X X> if 1 2a μ. or (1 2μ μ> , 2 2a b.) { }2 1 2 1max ,μ μ σ σ α− −.

2 1X X> if (2 1μ μ> , 1 1b a.) or 2 2a μ- ; if X cannot be determined, the fol-

lowing criterion is used;

(3) 0s = ,first produce L pairs of random numbers 1 2s ,s and for each pair of

1 2s ,s , if 1 2s s> , 1s s= + ; then s s L← ,

finally 2 1X X< if 0 9s .. , or 1 2X X< if 0 1s .- .

The max of these variables is calculated as follows:

(1) If 1X and 2X meet the special conditions shown the second step of the max

procedure, then directly determine 1X X= or 2X X= ; else go to (2);

(2) 0s = , first produce L pairs of random numbers 1 2s ,s and for each pair

of 1 2s ,s ,if 1 2s s> , 1s s= + ; then s s L← ,

finally if ()0 1 0 9s . , .∉ , 1X X= if ()0 9s .. or 2X X= if ()0 1s .- ;

else if ()2
1 2 10 5X N . ,μ σ σ+∼ ()0 6s .> or ()2

2 2 20 5X N . ,μ σ σ+∼

()0 4s .< ; else ()2
2 2 2X N ,μ σ σ+∼

where ()30L . and ()9α .are a constant. 1s and 2s respectively follow 1X and 2X .

With respect to the ranking procedure, we conduct the following explanations: (1)

the consideration of those special cases is to save computation time; (2) If 1X is

212 D. Lei

smaller than 2X , it can be proved that the actual value of 1X is smaller than that

of 2X at a high probability, which is close to 0.9.

Random variable X obtained in the max procedure is very close to the real max

of 1 2X ,X (()1 2max X ,X) for the following equation:

()() () () ()1 2 1 2P max X ,X z P X z P X z P X z= ≈- - - - (8)

All random variables are always independent in SJSSP, as a result, the completion
time of jobs are or nearly are normal distribution variables even if the processing time
of operation is not normal distribution variable in terms of central limit theorem.
Thus, the above two procedures can also be applied to JSSP with processing time fol-
lowing other probability distribution.

5.2.2 The Extended GT Procedure
The GT procedure is well-known as the algorithm for generating active schedules. In
the stochastic context, the GT procedure is defined in the following way:

(1) Let 1=t , ΦtPS = , determine tS ;

(2) Calculate (){ }min ij ij tEC min EC o o S= ∈ , record the corresponding ma-

chine *j
M and part

i
J ∗ ;

(3) Define (){ } { }*t t minij ij i j
c o S EB o EC o∗ ∗ ∗= ∈ < ∪ , choose * tuj

o c∈ ，

{ }1 *t t uj
PS PS o∪+ = ，delete *uj

o from tS and add the next operation of

job uJ into tS and form 1tS + ;

(4) 1+= tt , go to (2) until a complete scheduling plan is obtained.

where Φ is an empty set, tS is a set of operations which can be scheduled in

the t th­ iteration and tPS is a set of operations which have been scheduled in

the t th­ iteration. ()ijEC o and ()ijEB o respectively indicate the earliest completion

time and the earliest beginning time of operation ijo . tc is the conflict set which con-

sist of all operations competing for the same machine.

{ }\t i j
c o ∗ ∗ may be empty for the random feature of ()ijEC o and ()ijEB o . To avoid

this case, the conflict set must include operation
i j

o ∗ ∗ .

5.3 Genetic Algorithm for SJSSP

Representation is the key to solve scheduling problem using GA. There are a number
of representation methods such as job-based representation and priority rule based

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 213

representation in the deterministic context. However, some of them cannot be or are
hard to be used in the stochastic context. The main obstacle is the decoding process.
In this section, based on permutation-based coding and decoding, a GA is suggested.

The framework of the GA is described as follows.

(1) Randomly generate an initial population P .
(2) Perform binary tournament selection on P .
(3) Perform crossover and mutation on population P .
(4) If the termination condition is met, stop the search; otherwise, go to step (2).

5.3.1 Representation Method
A permutation-based representation method is considered. For mn× JSSP with the

stochastic processing time, a chromosome ()11 21 1n mnp , p , , p , , p" " is composed

of m permutations, each for one machine. Each gene ijp corresponds to the opera-

tion ijo of part iJ processed on machine jM . Take 4 2× JSSP as an instance, a chro-

mosome may be (2, 3, 1, 4, 4, 2, 3, 1), in which the genes of the first permutation (2,

3, 1, 4) corresponds to 11o , 21o , 31o , 41o and the genes of the second permutation

to 12o , 22o , 32o , 42o .

The chromosome ()11 21 1n mnp , p , , p , , p" " is decoded using the extended GT pro-

cedure. When several genes compete for a machine, the one with the minimum

value { }* * tuj ij ij
p min p o c∗= ∈ is preferably chosen from the conflict set.

The above representation can be regarded as the modified version of preference-list
representation [34] in the stochastic context. The main difference between them lies in
the decoding procedure: to build a schedule, the gene occurring leftmost in a prefer-
ence list is always preferably chosen, while the gene with minimum value in a permu-
tation is given the highest priority.

5.3.2 Fitness, Elitism and Genetic Operators
Like section 3 and 4, fitness function of an individual is equal to its objective func-
tion. The classical elite strategy and tournament selection shown in section 3 are also
adopted.

Because each individual consists of several permutations, a two-phase crossover is
developed to adapt the special structure of chromosome. β permutations are first ran-

domly chosen in the first phase, and then crossover operator is performed on each
chosen permutation. By modifying precedence preservative crossover (PPX) [28], we
obtain a new crossover operator called MPPX.

PPX is performed in the following way: for each permutation, a string is filled at
random with n elements of set {1, 2} and the remaining procedure is identical with
the one shown in 3.4.1.

When the leftmost geneθ of parent 2 is appended to the offspring, the same geneθ of
parent 1 is deleted and the leftmost gene 1θ of parent 1 is inserted to the position of the

214 D. Lei

geneθ . This is the main difference between PPX and MPPX. Fig.1 shows the differ-
ence of these crossovers.

Two-phase mutation is also used. A permutation is randomly chosen and then an
operator is performed on the chosen permutation. The swap operator and insertion op-
erator are considered. When the predetermined number of generations is met, the
search is terminated.

5.4 Computational Results

In this section, the proposed GA is first compared with other GAs using different
crossover and mutation and then it is compared with the hybrid method developed by
[13]. 24 benchmark problems are used. These problems are the extension of ORB1-
10, ABZ5-6, FT10, FT20, LA11-20 et al. The processing times of these deterministic
problems are the mean value of the stochastic processing time. The corresponding
standard variances are taken randomly from the uniform distribution in [2, 11]. To
simplify, these extended problems are still called ORB1-10, ABZ5-6, FT10, TF20,
LA11-20.

5.4.1 Performance Analyses on the GA
Four crossover operators of PPX, MPPX, partially mapping crossover (PMX) [35]
and order crossover (OX) [36] and two mutations of insertion and swap are consid-
ered to test the effectiveness of the modified crossover.

We construct seven GAs having the same flow and the same parameters as the
proposed GA except crossover and mutation. To simplify, we label these algorithms
with their crossover and mutation. For eight GAs, population scale of 100, crossover
probability of 0.9 and mutation probability of 0.1 are used. For each problem, all al-
gorithms randomly run 20 times and the search terminates when the number of objec-
tive function evaluation reaches to 30000. Table 9 shows the best solution of each
problem obtained by all algorithms. A combination of crossover and mutation repre-
sents a GA. Each group of data consist of two parts: the first part is the mean value
and the second part is the standard variance.

From table 9, it can be concluded that the GA with MPPX performs better than the
GA with any other crossovers. The GA with MPPX generates the minimum makespan
of 11 problems, while the GA with PMX only converges to the best results of 6 prob-
lems. The combination of MPPX and swap is also better than any other combinations.
The proposed GA approximates to the best solution of 8 problems. Thus, it is reason-
able and effective to select MPPX and swap in the proposed GA.

5.4.2 Results and Discussion
Tavakkoli-Moghaddam et al. [11] proposed a hybrid method, in which an initial fea-
sible solution is generated by a neural network approach and then the initial solution
is improved by SA. The hybrid method adopts the following parameter settings: the
initial temperature 0 1 0T .= , cooling rate is 0.05. In each temperature, the number of

the movements is 150. The proposed GA uses the parameters shown in sub-section
5.1. Both algorithms have the same stopping criterion shown in section 5.1 and ran-
domly run 20 times on each instance. Table 10 shows the computational results ob-
tained by two algorithms.

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 215

Table 9. Computational results of eight variants

Problem Mutation PPX PMX OX MPPX
insertion 1159.31,

33.898
1128.80,
31.730

1209.06,
34.332

1132.13,
30.084

ORB6
swap 1157.93,

34.146
1115.07,
31.084

1168.14,
33.681

1106.40,
30.749

insertion 976.76,
31.674

969.56,
28.371

1010.67,
31.450

971.00,
29.904

ORB5
swap 986.99,

30.047
974.10,
29.803

1013.13,
29.007

944.52,
28.303

insertion 1104.00,
30.862

1088.00,
30.815

1155.63,
33.337

1092.00,
33.066

ORB4
swap 1113.79,

30.627
1088.15,
28.605

1161.92,
30.353

1087.00,
28.936

insertion 1191.66,
31.597

1119.22,
34.726

1204.00,
33.039

1137.35,
33.605

ORB3
swap 1172.98,

31.496
1099.47,
34.732

1176.91,
36.971

1080.51,
27.162

insertion 1007.20,
30.155

968.00,
29.751

1001.87,
26.898

964.94,
21.522

ORB2
swap 979.20,

25.762
952.31,
21.716

986.48,
30.546

947.18,
30.031

insertion 1200.09,
33.856

1160.06,
31.961

1220.00,
33.598

1172.00,
30.679

ORB1
swap 1202.51,

33.723
1143.99,
32.776

1236.73,
33.721

1129.17,
33.173

insertion 1343.00,
30.580

1244.00,
36.595

1346.64,
36.504

1256.08,
33.709

FT20
swap 1313.31,

38.796
1244.00,
33.880

1326.00,
34.187

1242.46,
33.386

insertion 923.00,
25.802

905.00,
26.360

954.78,
25.818

912.00,
26.119

LA19
swap 938.14,

28.535
929.22,
30.975

963.02,
30.283

897.14,
27.469

insertion 902.00,
30.468

926.78,
30.396

957.69,
28.586

915.28,
27.998

LA18
swap 916.09,

26.979
902.99,
25.037

950.50,
29.060

923.28,
29.329

216 D. Lei

Table 9. (continued)

insertion 877.55,
21.083

812.00,
25.341

855.43,
26.167

813.14,
26.532

LA17
swap 853.175,

25.654
816.75,
26.656

849.00,
27.252

834.39,
24.346

insertion 1002.51,
27.495

1008.00,
27.450

1039.86,
29.434

1008.00,
27.495

LA16
swap 1029.00,

24.963
1012.00,
27.495

1021.60,
30.212

1022.00,
28.799

insertion 1260.19,
33.875

1238.00,
30.191

1287.00,
34.718

1222.00,
30.120

LA11
swap 1230.00,

31.694
1222.00,
30.120

1268.13,
30.138

1229.87,
32.503

insertion 1047.00,
29.769

1039.00,
29.041

1080.30,
32.130

1039.00,
29.041

LA12
swap 1059.08,

26.815
1039.82,
31.554

1106.33,
28.892

1040.48,
30.558

insertion 1187.58,
33.894

1178.00,
32.380

1218.65,
31.346

1161.00,
30.227

LA13
swap 1215.77,

28.652
1152.00,
27.808

1202.34,
31.804

1150.00,
27.344

Table 10. The comparison between two methods

GA Hybrid method

Average Best solution Average Best solution

ORB4
1092.11,
30.933

1087.00,
28.936

1164.09,
32.643

1155.63,
33.341

ORB5
954.28,
29.301

944.52,
28.300

1000.45,
28.366

982.22,
26.875

ORB6
1119.87,
31.984

1106.40,
30.750

1160.01,
32.025

1143.55,
33.103

ORB7
454.32,
28.468

444.975,
27.536

467.35,
29.998

458.925,
29.835

ORB8
1002.84,
33.056

995.06,
29.278

1033.67,
32.468

1026.74,
30.642

ORB9
1021.44,
31.133

980.87,
29.322

1053.37,
31.455

1037.00,
30.265

ORB10
1041.32,
31.356

999.062,
31.469

1053.45,
30.789

1031.7,
28.977

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 217

Table 10. (continued)

LA20
975.92,
29.871

957.02,
29.051

1006.22,
29.447

995.64,
24.971

LA19
914.35,
29.467

897.14,
27.471

975.28,
30.477

965.08,
28.305

LA15
1014.20,
27.485

997.95,
26.129

1038.05,
29.384

1026.46,
29.958

LA14
1296.18,
31.257

1292.00,
31.467

1300.25,
31.280

1294.00,
30.245

ABZ5
1334.98,
30.568

1315.77,
26.442

1360.87,
31.235

1348.67,
30.958

ABZ6
1014.20,
27.485

997.95,
26.129

1038.05,
29.384

1026.46,
29.957

FT10
1035.56,
27.813

1019.00,
29.958

1048.80,
30.608

1030.00,
30.145

From Table 10, it can be concluded that the proposed GA significantly outperform

the hybrid method. The GA performs better than the hybrid method on 14 problems.
For LA14, the hybrid method produces the similar solutions with the proposed GA;
for other problem, the expected makespan of the hybrid method is always bigger than
the corresponding value of the proposed GA. The proposed GA has promising advan-
tage in SJSSP. The low performance of the hybrid method results from the limited
optimization ability of SA, in which only one movement is used to produce neighbor-
hood solutions.

6 Conclusions

The GA-based scheduling algorithm frequently uses the integer string to represent the
solution of FJSSP. This chapter presents a random key genetic algorithm, which is
based on random key representation, a new decoding procedure, elite strategy, binary
tournament selection, TPX or DX and swap mutation. RKGA is tested and compared
with SMGA and computational results show the good performance of RKGA.

Local search is often combined with the scheduling algorithms to intensity the op-
timization ability of the latter. RKGA also can be directly merged with local search
such as 2-opt and 3-opt. We will consider the merging of the RKGA and local search,
apply RKGA to other production scheduling problems such as flexible job shop
scheduling in the near future.

Many meta-heuristics have been applied to FJSSP and fJSSP; however, these algo-
rithms are seldom used to solve fJSSP in the fuzzy context. The main contribution of
this chapter is to provide an effective path to the problem by GA. fJSSP with other
fuzzy constraints should be investigated in the near future.

The application of meta-heuristics to stochastic job shop is seldom investigated
in previous research. In this chapter, we proposed an effective approach to solve
the problem with stochastic processing time. We will focus on the application of

218 D. Lei

meta-heuristics to JSSP with other stochastic elements such as random breakdown in
the near future.

With respect to multi-objective scheduling, most of the published papers consid-
ered the deterministic problem. Few papers addressed fuzzy scheduling problem and
stochastic scheduling problem. Since most of the real-life scheduling problems in-
volve uncertainty and multiple objectives, future researches on multi-objective sched-
uling with fuzzy or stochastic processing conditions are desirable and attractive.

Acknowledgments. This chapter is supported by China Hubei Provincial Science and
Technology Department under grant Science Foundation Project (2007ABA332).

Appendix

Table A1. Trapezoid due-date

problem Job1 Job2 Job3 Job4 Job5 Job6
 1 (94,100,

112,121)
(65,76,
82,91)

(30,40,
49,60)

(78,85,
97,102)

(65,77,
83,89)

(35,44,
54,59)

 2 (65,70,
81,89)

(50,58,
69,80)

(65,72,
84,92)

(35,43,
51,60)

(72,80,
90,96)

(58,65,
75,78)

 3 (25,33,
43,50)

(75,86,
96,102)

(74,83,
93,103)

(58,65,
71,75)

(33,42,
49,54)

(42,52,
62,70)

 4 (18,25,
30,40)

(18,27,
35,40)

(13,15,
20,28)

(19,26,
32,40)

(15,25,
30,35)

(23,30,
40,45)

Table A2. Trapezoid due-date of problem 5,6,7 and 8

 Job1 Job2 Job3 Job4 Job5 Job6 Job7 Job8 Job9 Job10
5 (115,

169,
184,
195)

(115,
123,
134,
145)

(90,
100,
110,
120)

(90,
102,
105,
115)

(110,
121,
136,
146)

(150,
167,
174,
185)

(110,
120,
130,
140)

(150,
163,
176,
185)

(70,
79,
94,
105)

(150,
160,
163,
170)

6 (120,
130,
151,
156)

(120,
130,
154,
157)

(90,
100,
106,
117)

(100,
115,
123,
138)

(70,
80,
85,
88)

(70,
80,
86,
94)

(100,
110,
120,
135)

(118,
130,
149,
158)

(92,
108,
117,
124)

(110,
121,
142,
148)

7 (100,
108,
124,
128)

(60,
72,
81,
95)

(70,
83,
92,
99)

(70,
83,
91,
103)

(90,
101,
109,
115)

(85,
92,
102,
107)

(96,
108,
118,
128)

(145,
159,
170,
178)

(55,
66,
75,
86)

(78,
86,
94,
107)

8 (24,
34,
45,
60)

(30,
40,
50,
60)

(35,
45,
50,
65)

(30,
40,
50,
65)

(30,
40,
50,
65)

(25,
35,
45,
60)

(25,
36,
45,
60)

(30,
41,
50,
60)

(25,
36,
45,
60)

(30,
40,
50,
60)

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 219

Table A3. Problem 9

 processing time and processing sequences
{2,4,7}3 {9,13,16}4 {5,8,11}6 {8,11,15}10 {10,15,20}5 Job1
{7,11,14}7 {9,14,17}1 {7,11,15}9 {10,14,17}2 {6,9,12}8
{8,11,15}4 {7,10,12}3 {4,6,8}1 {11,15,20}2 {12,17,21}10

Job2 {9,11,15}9 {8,12,16}7 {5,6,9}6 {8,10,13}5 {7,11,15}8
{7,9,12}2 {6,7,9}1 {9,13,17}4 {10,15,20}5 {5,8,12}7 Job3 {11,17,19}10 {8,12,16}9 {7,9,13}6 {8,13,17}3 {9,14,18}8
{10,14,18}5 {11,15,21}3 {9,13,17}9 {8,12,16}6 {7,11,12}4

Job4 {11,15,19}8 {10,14,18}2 {8,13,17}7 {9,14,18}10 {3,5,8}1
{7,10,13}9 {7,11,15}10 {8,12,15}3 {9,13,16}5 {10,14,17}4 Job5 {9,12,16}1 {10,15,17}8 {10,13,15}7 {11,14,17}2 {9,12,16}6
{11,15,21}9 {9,15,18}8 {8,12,16}7 {10,13,16}10 {7,11,14}3

Job6 {9,13,17}2 {8,12,15}6 {10,14,17}5 {8,12,18}1 {12,17,20}4
{6,9,12}5 {7,10,13}6 {8,11,15}10 {9,12,16}4 {7,11,14}1 Job7 {8,10,14}9 {10,14,16}7 {7,11,15}8 {7,10,11}3 {5,8,11}2
{9,12,16}6 {7,10,13}5 {8,11,14}3 {6,9,13}7 {4,7,9}2 Job8 {9,13,17}8 {8,10,13}1 {7,8,11}4 {8,9,12}10 {6,8,10}9
{5,8,11}2 {7,12,14}6 {8,10,13}1 {6,7,8}4 {4,5,8}3 Job9
{7,9,11}8 {8,11,13}9 {9,10,14}7 {7,9,12}10 {6,8,12}5
{4,5,8}3 {7,10,12}6 {8,12,16}7 {5,8,11}10 {3,5,8}2 Job10
{4,7,9}4 {6,9,12}9 {7,10,12}1 {5,7,9}8 {10,14,17}5
{7,8,11}2 {8,9,12}5 {3,5,8}1 {5,7,10}3 {6,9,11}10 Job11 {8,10,13}9 {7,10,11}6 {4,5,7}4 {7,11,12}8 {9,13,17}7
{6,8,11}6 {4,7,10}10 {5,6,9}1 {6,9,12}5 {5,8,10}7 Job12 {3,5,9}4 {4,6,9}3 {5,8,12}2 {6,9,12}9 {4,7,10}8
{3,5,9}6 {7,10,12}10 {5,7,9}9 {6,9,11}8 {4,6,9}5 Job13 {8,10,13}7 {9,11,15}4 {7,11,13}1 {5,8,9}2 {7,8,10}3
{5,8,11}2 {5,7,8}9 {4,5,8}1 {7,11,14}3 {6,9,12}10

Job14
{5,9,10}4 {4,5,6}6 {8,11,14}7 {6,9,13}5 {5,8,11}8
{8,11,15}5 {7,10,12}4 {6,9,10}7 {5,9,10}6 {7,9,12}3 Job15
{8,10,13}9 {4,6,9}2 {4,7,10}10 {6,7,11}8 {3,5,8}1

Table A4. Problem 10

 processing time and processing sequences
{5,7,8}10 {9,10,13}6 {4,5,8}5 {7,8,11}3 {8,9,11}8

Job1
{5,8,9}4 {6,7,10}2 {4,6,9}1 {8,11,14}9 {4,7,9}7
{3,5,8}4 {6,8,10}3 {7,10,12}5 {4,5,8}2 {2,4,6}10

Job2
{5,8,11}1 {6,9,12}7 {4,5,7}6 {3,4,6}8 {6,8,11}9
{6,9,10}9 {3,5,7}8 {2,4,6}3 {4,6,8}1 {5,7,9}10

Job3
{7,10,11}6 {5,6,9}7 {4,5,8}4 {1,3,5}2 {7,11,13}5
{7,11,14}4 {8,12,16}3 {6,9,11}7 {5,8,10}5 {9,13,17}8

Job4
{10,14,18}9 {4,7,9}6 {8,10,13}10 {3,5,7}1 {6,8,10}2

220 D. Lei

Table A4. (continued)

{5,6,8} 5 {7,9,10}7 {8,11,16}2 {3,4,5}3 {10,14,18}8
Job5

{7,10,13}1 {7,11,14}9 {6,8,9}6 {7,8,10}4 {2,3,6}10
{8,12,16}7 {6,9,12}1 {7,10,12}5 {5,8,11}4 {4,6,9}8

Job6
{3,5,8}9 {6,9,12}2 {4,5,8}6 {8,12,16}3 {9,13,19}10
{10,14,17}4 {9,13,15}10 {11,15,19}7 {7,11,14}6 {9,14,18}1

Job7
{6,10,11}9 {7,11,12}5 {12,18,21}3 {8,10,13}8 {10,12,14}2
{7,11,14}5 {3,5,8}2 {6,9,12}9 {4,6,9}1 {10,14,18}8

Job8
{5,8,11}7 {6,7,9}6 {4,7,10}4 {4,5,8}10 {9,13,17}3
{13,17,22}10 {11,14,17}2 {9,11,16}5 {7,10,12}4 {6,9,13}9

Job9
{7,11,14}3 {5,7,10}7 {8,12,16}1 {11,17,21}8 {1,2,3}6
{8,12,15}4 {7,10,13}3 {9,12,16}7 {10,13,15}10 {8,10,13}8

Job10
{7,9,11}1 {6,8,10}5 {7,8,10}6 {6,7,10}2 {5,6,8}9
{7,11,14}2 {9,13,17}5 {6,9,12}1 {8,10,14}3 {10,14,17}10

Job11
{8,11,15}7 {5,8,11}8 {8,12,16}9 {6,9,12}6 {4,6,9}4
{4,6,9}2 {5,7,10}4 {6,8,11}1 {5,9,12}3 {4,7,10}10

Job12
{9,10,14}8 {7,9,12}9 {10,14,17}5 {7,9,11}7 {5,6,9}6
{3,5,8}6 {5,7,9}4 {6,8,10}7 {5,8,11}2 {4,6,9}1

Job13
{3,4,6}8 {8,10,13}9 {4,6,8}10 {6,8,10}3 {8,10,13}5
{2,3,5}2 {4,5,8}1 {6,7,10}8 {5,6,9}5 {3,6,9}4

Job14
{7,10,11}6 {6,9,12}10 {4,8,9}9 {5,6,8}7 {7,8,9}3
{5,8,11}5 {7,10,11}9 {6,8,9}3 {5,7,8}4 {4,6,7}2

Job15
{8,12,16}7 {5,8,12}8 {9,13,17}10 {4,5,7}6 {3,6,9}1

Table A5. Fuzzy due-date of problem 9 and 10

Problem 9 Problem 10
part doublet Trapezoid doublet Trapezoid
Job1 217,251 171,208,217,251 152,179 92,110,152,179
Job2 223,258 164,194,223,258 127,157 81,101,127,157
Job3 233,269 180,217,233,269 120,147 76,98,120,147
Job4 250,288 194,234,250,288 181,225 115,146,181,225
Job5 247,278 183,219,247,278 161,193 99,121,161,193
Job6 264,302 204,246,264,302 173,221 113,142,173,221
Job7 211,242 159,191,211,242 233,283 144,183,233,283
Job8 200,231 143,168,200,231 164,207 106,133,164,207
Job9 183,210 128,150,183,210 212,263 134,166,212,263
Job10 173,200 132,160,173,200 184,217 111,133,184,217
Job11 176,201 125,148,176,201 198,249 127,159,198,249
Job12 152,183 119,144,152,183 167,205 105,128,167,205
Job13 171,196 124,148,171,196 139,169 87,107,139,169
Job14 162,187 124,151,162,187 129,155 80,99,129,155
Job15 168,195 125,150,168,195 153,189 97,124,153,189

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 221

Table A6. Fuzzy processing time of fJSSP instance 1*

J1 1 (5,8,11) (4,7,9) (10,13,17) (4,6,8) (6,9,11)(5,7,10) (6,9,12)(4,6,9) (8,10,13)(5,8,11)

2 (6,9,12) (4,7,10) (3,6,9)(3,5,8) (6,7,9)(5,6,8) (9,13,16) (7,10,12) (4,7,10)(5,7,10)

3 (9,11,14)(3,5,7)(5,7,10)(3,5,7)(4,7,9)(5,8,10)(5,7,10)(11,15,18)(8,10,13)(6,8,10)

 4 (5,8,11)(9,12,15)(8,11,15)(6,9,11)(7,10,13)(13,15,18)(15,19,22)(7,9,13)(9,13,17)

(7,9,13)

J21 (10,14,17)(4,7,10)(4,8,11)(5,6,9)(6,9,11)(5,8,11)(5,8,10)(7,10,12)(7,9,11)(5,8,10)

2 (9,11,15)(5,8,9)(6,9,10)(7,10,12)(5,7,9)(5,8,11)(7,9,12)(5,7,9)(8,11,13)(9,12,15)

3 (5,8,9)(4,7,9)(6,8,11)(7,8,10)(7,9,11)(4,8,10)(5,7,10)(6,8,12)(7,8,10)(8,9,10)

4 (7,8,10)(9,11,14)(8,10,13)(11,14,17)(13,17,20)(7,10,12)(8,11,12)(6,9,11)(5,8,12)

(6,10,13)

J31 (3,4,5)(4,5,6)(2,3,6)(6,7,9)(7,8,10)(7,9,10)(4,5,7)(4,5,6)(5,7,8)(6,8,9)

2 (3,5,6)(7,9,12)(6,9,11)(7,8,11)(8,10,13)(5,6,8)(7,10,13)(7,9,12)(6,9,11)(5,9,12)

3 (10,14,17)(5,7,10)(10,13,17)(9,13,17)(8,11,15)(6,9,12)(5,8,11)(6,9,12)(10,12,14)

(7,9,13)

 4 (4,7,10)(3,5,9)(5,9,12)(6,8,12)(9,11,14)(5,9,12)(6,10,13)(19,24,28)(5,8,10)(7,10,12)

J41 (3,5,6)(4,7,10)(5,8,10)(5,7,10)(6,9,11)(7,9,11)(4,7,10)(3,5,8)(4,7,9)(10,11,13)

2 (3,4,5)(4,7,8)(7,9,12)(5,8,10)(6,8,11)(3,5,8)(4,7,8)(5,8,9)(11,13,16)(5,7,9)

3 (2,4,6)(7,9,12)(4,5,7)(5,8,10)(3,5,8)(4,5,7)(9,12,15)(7,9,13)(6,8,11)(8,11,15)

4 (5,8,11)(9,12,14)(8,11,13)(6,9,12)(5,8,11)(7,10,13)(6,9,11)(5,8,11)(7,9,12)(5,7,10)

J51 (3,6,8)(4,5,7)(8,9,11)(7,10,14)(4,6,9)(3,6,8)(5,8,10)(9,12,14)(5,6,8)(7,9,13)

2 (1,3,4)(5,6,8)(7,9,10)(3,5,8)(5,8,10)(5,7,9)(7,9,12)(8,10,13)(4,6,9)(5,6,8)

3 (8,11,14)(7,10,12)(6,7,8)(5,8,12)(4,7,10)(6,9,11)(8,11,15)(6,9,13)(6,8,9)(5,8,12)

4 (8,10,13)(7,9,12)(8,10,12)(6,9,12)(11,14,18)(5,8,10)(4,7,10)(6,8,11)(8,10,13)(5,8,9)

J6 1 (8,9,10)(5,9,12)(2,3,5)(7,9,10)(8,11,15)(4,6,9)(3,5,8)(7,8,10)(8,9,10)(4,5,7)

2 (6,9,12)(7,10,12)(8,11,13)(5,7,10)(8,11,13)(9,12,14)(6,8,10)(5,7,9)(5,7,9)(5,8,9)

3 (2,3,4)(4,7,8)(5,8,10)(3,5,6)(4,7,8)(6,9,11)(7,10,12)(5,8,10)(6,8,11)(4,5,7)

4 (3,4,5)(10,13,17)(6,8,11)(7,10,13)(4,7,8)(5,8,10)(3,6,8)(3,4,5)(10,14,17)(3,5,7)

J7 1 (2,4,6)(3,5,8)(4,6,8)(8,10,13)(4,6,9)(3,5,8)(7,8,10)(6,8,11)(1,2,4)(5,6,7)

2 (9,11,14)(6,8,9)(7,9,10)(8,12,15)(9,13,17)(5,9,13)(6,8,12)(5,8,11)(7,9,10)(7,10,12)

3 (5,8,10)(4,7,8)(10,12,15)(6,9,11)(6,9,11)(5,7,11)(6,9,12)(7,10,13)(6,8,10)(15,19,23)

4 (4,7,10)(5,8,10)(6,9,12)(4,7,9)(5,8,11)(4,7,9)(9,12,16)(8,11,15)(5,7,10)(4,7,10)

222 D. Lei

Table A6. (continued)

J8 1 (9,12,15)6,8,11)(4,7,10)(5,8,11)(10,13,15)(9,13,16)(8,11,15)(5,8,10)(6,8,11)(4,7,10)

2 (5,6,8)(2,3,5)(3,5,8)(6,8,11)(7,10,13)(4,7,8)(8,11,14)(6,9,13)(3,5,8)(15,19,24)

3 (5,8,10)(9,13,16)(7,10,14)(6,10,13)(7,10,12)(8,11,14)(8,11,14)(7,9,13)(10,13,15)

(7,9,12)

4 (3,4,5)(8,11,13)(5,7,10)(7,9,11)(8,9,11)(5,7,10)(10,12,15)(3,5,6)(5,6,8)(5,8,10)

J9 1 (7,9,11)(10,14,17)(9,12,16)(8,10,12)(7,9,11)(8,11,14)(10,13,16)(8,11,15)(7,10,14)

(5,7,9)

2 (4,6,7)(5,8,9)(7,8,10)(4,7,9)(35,39,44)(4,7,9)(7,10,13)(8,11,14)(7,9,13)(10,12,14)

3 (8,10,13)(7,8,9)(6,8,11)(9,12,14)(5,6,8)(7,9,12)(8,11,15)(6,8,11)(6,8,9)(7,10,12)

4 (2,4,5)(7,10,13)(8,10,12)(6,9,12)(3,5,8)(6,8,11)(6,7,9)(13,17,20)(6,7,9)(2,4,5)

J101 (3,4,6)(5,7,9)(5,7,9)(8,12,15)(7,10,12)(7,9,12)(6,9,12)(7,8,10)(19,23,26)(4,5,8)

2 (9,12,17)(6,8,10)(5,8,11)(4,7,9)(5,8,11)(6,9,12)(7,10,13)(6,7,9)(4,5,6)(10,13,17)

3 (6,8,9)(7,8,10)(8,10,11)(9,11,12)(10,13,15)(6,8,9)(11,15,18)(10,15,19)(7,8,10)

(9,12,14)

4 (10,14,17)(5,8,10)(9,12,13)(6,8,9)(7,9,10)(5,6,8)(8,11,13)(5,6,8)(7,8,11)(9,10,12)

Table A7. Fuzzy processing time of fJSSP instance 2

J11
(7,10,14)(6,9,11)(10,13,17)(7,9,12)(8,11,15)(5,8,11)(8,11,15)(9,12,16)(9,12,16)
(8,12,16)

2
(16,20,25)(14,19,23)(13,17,21)(12,15,19)(16,19,23)(15,16,19)(9,15,19)(10,15,19)
(14,18,22)(14,18,22)

3
(10,16,17)(8,10,13)(10,12,16)(8,11,13)(9,12,14)(10,13,15)(9,12,14)(15,20,23)
(13,15,18)(10,13,15)

 4
(8,12,15)(13,16,19)(12,15,19)(10,13,14)(11,14,17)(16,19,23)(18,22,26)(10,13,14)
(12,17,21)(11,13,17)

J21 (11,15,18)(5,8,10)(5,9,13)(6,7,10)(7,10,12)(6,9,12)(6,9,12)(8,11,13)(8,10,12)(6,9,11)

2 (10,12,14)(5,8,9)(5,9,10)(7,10,13)(5,7,9)(6,8,11)(7,10,13)(5,7,9)(8,11,14)(8,12,14)

3
(8,9,10)(10,13,14)(10,12,15)(11,13,16)(10,11,13)(8,12,15)(8,11,13)(6,9,12)(6,8,12)
(8,9,10)

4
(6,9,11)(9,11,14)(8,10,13)(11,14,17)(7,10,12)(8,11,12)(13,17,20)(5,8,12)(6,10,13)
(7,8,10)

J31 (6,7,9)(4,5,6)(6,9,12)(7,8,10)(6,7,9)(8,10,13)(5,7,10)(9,11,13)(9,12,14)(4,5,6)

2 (9,12,15)(6,8,12)(8,10,13)(7,8,11)(8,10,13)(5,6,8)(7,10,13)(5,9,12)(6,9,11)(5,9,12)

3 (5,6,8)(8,10,13)(10,14,19)(7,11,14)(6,8,11)(6,9,13)(9,13,17)(8,10,13)(7,11,14)(6,9,12)

4
(10,14,18)(11,15,20)(14,19,24)(13,17,20)(9,15,21)(9,14,18)(10,14,18)(15,19,26)
(23,28,33)(8,12,17)

J4 1
(9,12,16)(9,13,17)(11,15,20)(8,13,19)(12,17,24)(10,15,19)(10,15,19)(13,16,20)
(10,16,21)(12,16,23)

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 223

Table A7. (continued)

2
(11,15,20)(10,13,17)(13,18,23)(11,17,23)(11,16,23)(13,18,24)(11,15,20)(10,12,16)
(11,17,24)(14, 19,23)

3
(15,21,26)(10,11,17)(9,13,17)(12,18,23)(10,11,17)(11,16,20)(13,17,21)(11,15,20)
(13,19,24)(10,15,19)

4 (3,4,5)(6,7,10)(8,9,11)(9,11,14)(5,8,11)(8,11,16)(7,10,15)(8,12,16)(6,7,10)(9,12,16)

J5 1
(8,11,15)(7,10,12)(7,9,11)(6,9,12)(10,13,17)(7,10,12)(9,11,15)(7,9,12)(11,14,18)
(5,8,11)

2
(6,8,9)(12,15,19)(7,10,13)(6,10,12)(7,9,12)(10,13,18)(7,11,15)(6,10,12)(8,11,15)
(8,12,17)

3 (5,6,8)(6,9,11)(9,10,13)(7,9,10)(5,8,11)(11,14,18)(8,10,13)(9,12,16)(7,8,10)(7,8,10)

4 (4,7,9)(9,10,13)(5,8,12)(7,10,14)(6,8,11)(7,9,12)(6,8,11)(9,10,12)(5,9,12)(6,8,11)

J6 1
(10,13,17)(6,8,9)(7,9,11)(8,10,13)(8,10,13)(8,11,15)(6,10,13)(7,9,12)(9,11,13)
(7,9,11)

2
(10,14,19)(11,15,20)(12,16,22)(9,13,17)(8,13,17)(10,13,18)(11,15,21)(12,19,25)
(8,13,17)(10,14,17)

3
(7,10,12)(12,17,23)(12,19,25)(10,15,20)(9,16,27)(11,15,19)(13,18,24)(11,16,23)
(10,15,20)(10,15,19)

4 (3,4,5)(2,3,5)(7,8,10)(5,8,10)(3,5,8)(6,8,10)(7,10,11)(6,8,10)(4,7,9)(11,14,18)

J7 1
(8,11,13)(7,9,11)(9,13,17)(10,13,17)(10,14,19)(7,10,13)(9,13,17)(8,12,16)(9,11,15)
(8,10,14)

2
(6,9,11)(10,13,18)(7,8,10)(8,9,11)(8,9,11)(11,14,18)(10,13,16)(7,10,13)(10,12,14)
(7,9,12)

3 (5,6,8)(4,5,7)(6,8,11)(8,10,13)(7,10,12)(5,8,10)(8,10,12)(9,11,15)(5,8,10)(11,15,20)

4
(11,14,18)(10,13,17)(8,12,17)(7,10,14)(9,14,20)(8,12,17)(10,15,21)(9,14,19)
(10,14,19)(8,10,13)

J8 1
(7,10,12)(8,11,15)(9,14,18)(10,15,19)(11,14,18)(9,15,21)(8,12,17)(7,10,12)
(9,13,18)(8,12,17)

2
(10,14,19)(9,12,15)(12,17,21)(13,18,23)(10,13,18)(11,15,20)(11,16,19)(11,16,19)
(10,13,18)(12,16,21)

3
(4,6,8)(8,11,15)(7,11,14)(8,10,13)(6,8,10)(12,17,23)(7,10,12)(10,13,17)(9,14,18)
(6,8,10)

4 (7,8,10)(4,5,7)(3,5,8)(7,9,11)(6,8,10)(5,7,9)(6,8,11)(7,10,12)(7,10,12)(8,10,13)

J9 1 (5,8,10)(10,13,18)(4,7,9)(8,10,13)(6,9,12)(5,7,10)(9,12,16)(7,9,13)(6,8,12)(5,7,10)

2 (2,3,5)(4,6,7)(8,10,11)(7,9,10)(5,6,8)(6,7,9)(9,12,14)(8,11,13)(4,6,7)(5,7,10)

3
(10,14,17)(6,9,11)(7,11,14)(5,9,12)(5,8,11)(8,10,14)(12,16,20)(6,8,11)(7,10,13)
(10,13,15)

4
(9,11,15)(8,11,14)(7,10,12)(10,13,17)(8,10,13)(11,16,21)(7,9,11)(13,17,22)
(10,14,17)(8,9,12)

J101
(5,8,11)(7,9,13)(6,9,11)(10,13,17)(7,10,13)(8,11,15)(9,12,16)(9,14,17)(10,14,18)
(7,11,14)

2
(13,17,22)(7,10,12)(8,10,13)(6,10,13)(6,9,11)(9,13,16)(7,9,10)(8,11,15)(7,10,12)
(9,13,17)

3
(5,8,10)(11,15,19)(7,9,11)(6,8,11)(8,10,13)(9,11,15)(7,9,11)(12,17,21)(5,9,12)
(10,13,17)

4 (3,5,8)(4,5,7)(9,10,13)(5,8,10)(6,8,12)(7,9,12)(8,11,14)(10,15,19)(4,7,9)(11,16,20)

224 D. Lei

Table A8. Fuzzy processing time of fJSSP instance 3

J11 (3,4,6)(7,9,12)(5,7,10)(8,10,13)(9,11,14)(5,8,11)(10,14,18)(6,9,12)(7,9,10)(8,11,15)

2 (5,7,9)(8,10,13)(7,8,10)(6,8,9)(8,10,11)(9,11,14)(6,7,10)(5,7,10)(7,9,10)(10,14,18)

3 (7,9,11)(8,10,13)(7,8,11)(6,8,9)(5,7,8)(11,14,17)(5,8,11)(7,9,12)(6,8,11)(5,7,8)

4 (8,10,13)(5,8,10)(9,13,17)(6,8,11)(6,9,12)(7,10,13)(5,9,12)(6,9,12)(12,17,21)(8,12,16)

J21 (3,4,5)(6,8,9)(9,10,13)(5,7,8)(6,9,11)(7,10,12)(10,13,15)(5,7,10)(10,13,17)(6,9,12)

2 (10,13,17)(8,11,14)(7,10,12)(6,9,11)(6,9,11)(9,12,16)(8,11,15)(7,11,14)(6,10,13)

(15,19,24)

3 (4,5,7)(8,10,13)(6,8,10)(5,8,9)(6,9,11)(6,8,9)(7,10,12)(11,14,18)(6,9,12)(9,11,14)

4 (6,9,11)(5,7,8)(4,6,7)(3,5,8)(6,8,9)(7,10,12)(8,10,13)(5,8,10)(6,9,11)(7,9,12)

5 (5,6,7)(9,10,14)(8,10,13)(7,9,10)(4,5,7)(6,8,10)(5,8,10)(6,8,9)(9,11,15)(3,5,8)

6 (8,11,15)(7,10,13)(6,9,11)(5,8,10)(7,9,12)(6,8,11)(8,10,13)(10,13,17)(5,9,13)(7,8,10)

J31 (7,9,12)(6,7,9)(4,6,9)(8,11,14)(9,13,15)(5,7,10)(6,9,12)(7,8,11)(9,11,13)(5,6,7)

2 (5,7,9)(7,9,12)(4,7,9)(8,9,12)(7,8,10)(6,9,10)(5,6,8)(3,5,8)(8,10,11)(6,8,9)

3 (10,14,18)(9,13,17)(12,16,21)(8,11,15)(7,11,14)(15,19,24)(11,15,19)(16,23,28)

(9,12,16)(8,11,14)

4 (6,9,11)(5,8,10)(8,9,11)(7,10,13)(9,11,15)(10,13,17)(11,14,17)(8,10,13)(11,15,19)

(6,10,12)

J41 (8,11,14)(7,9,12)(6,8,11)(5,8,11)(9,11,15)(7, 10,13)(6,10,13)(9,12,15)(5,7,10)(11,16,20

2 (4,5,7)(3,4,6)(5,8,10)(4,6,9)(2,3,5)(7,9,11)(8,9,12)(5,7,10)(8,10,11)(7,8,9)

3 (8,10,14)(9,12,16)(10,14,18)(7,10,13)(6,9,12)(5,8,10)(6,8,11)(7,11,14)(8,9,10)(6,9,12)

4 (6,8,10)(5,7,9)(7,10,12)(8,10,13)(9,11,15)(6,9,11)(11,15,18)(10,13,18)(7,9,12)(5,8,11)

5 (13,17,21)(8,11,14)(7,11,14)(9,12,15)(10,14,18)(8,10,13)(7,10,13)(14,18,23)(8,11,15)

(9,11,15)

6 (7,10,12)(6,8,11)(5,8,10)(8,10,13)(9,12,17)(7,9,13)(11,15,19)(8,11,15)(6,9,12)

(13,17,20)

J51 (9,12,16)(7,10,13)(6,9,12)(8,11,14)(7,9,10)(8,10,11)(13,15,16)(10,13,15)(9,12,16)

(8,10,11)

2 (3,4,6)(7,8,10)(8,10,11)(9,11,15)(5,7,8)(6,8,10)(7,10,12)(5,8,10)(9,12,14)(10,13,18)

3 (7,9,12)(6,9,11)(8,11,15)(9,12,16)(9,13,17)(10,14,16)(7,10,13)(8,10,13)(11,15,19)

(6,9,11)

4 (6,9,11)(5,8,11)(4,8,11)(7,11,14)(8,11,15)(7,9,12)(9,12,16)(10,14,18)(7,10,13)(8,11,14)

5 (2,4,6)(1,2,4)(4,6,8)(7,8,9)(8,10,12)(5,8,10)(3,5,8)(4,6,9)(7,9,11)(6,9,11)

J61 (7,10,13)(5,8,11)(8,10,13)(6,8,11)(7,9,11)(8,11,14)(9,10,12)(6,8,10)(7,10,13)(10,13,16)

2 (6,8,9)(5,6,7)(4,6,8)(3,5,8)(8,10,13)(4,5,6)(6,8,10)(7,9,11)(5,8,9)(6,9,11)

3 (9,11,14)(10,14,18)(8,11,15)(7,10,13)(8,10,13)(9,12,15)(7,9,11)(6,9,12)(10,15,20)

(8,11,15)

4 (4,7,9)(5,8,10)(6,9,12)(7,10,12)(8,11,15)(9,10,13)(6,8,11)(10,14,17)(8,10,14)(5,7,10)

5 (8,10,13)(7,9,11)(7,10,13)(8,11,15)(6,9,12)(5,7,9)(6,8,10)(10,13,15)(8,10,13)(11,14,17)

J71 (6,8,9)(7,10,12)(8,11,13)(9,13,17)(5,8,11)(8,11,14)(7,9,12)(6,9,13)(5,9,12)(6,10,13)

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 225

Table A8. (continued)

2 (4,5,7)(5,6,7)(6,7,9)(7,9,11)(8,10,11)(9,11,13)(7,10,12)(5,7,10)(4,6,8)(8, 11,13)

3 (8,11,14)(7,8,10)(9,11,12)(10,13,14)(6,9,10)(7,9,10)(8,10,13)(11,14,18)(6,10,13)

(13,17,21)

4 (11,13,17)(5,8,11)(4,7,10)(6,8,11)(7,10,12)(8,10,13)(9,11,14)(10,14,17)(8,11,15)

(6,9,11)

5 (13,17,21)(7,10,13)(8,11,14)(9,11,13)(10,14,17)(14,19,22)(6,9,12)(5,8,12)(7,11,14)

(8,11,15)

J81 (6,8,11)(5,8,12)(7,11,15)(8,10,13)(9,12,16)(10,14,18)(8,11,15)(6,9,12)(7,10,13)(8,9,11)

2 (15,19,24)(11,15,19)(9,10,13)(12,15,18)(8,12,17)(7,11,14)(17,21,26)(8,11,15)

(10,14,17)(9,12,14)

3 (7,10,12)(6,9,11)(8,10,13)(9,12,14)(7,11,14)(10,13,17)(7,10,12)(11,15,19)(9,11,13)

(8,10,13)

4 (8,10,13)(10,14,17)(6,9,12)(5,8,12)(7,10,13)(5,8,12)(12,15,19)(6,9,11)(7,11,14)

(9,12,15)

5 (5,6,7)(6,8,11)(7,10,12)(5,8,12)(9,11,14)(10,14,18)(6,9,12)(7,11,14)(8,11,15)(5,7,10)

J9 1 (10,14,17)(9,12,15)(8,11,15)(7,11,14)(6,9,12)(7,10,13)(12,16,20)(13,18,23)(7,9,13)

(8,10,13)

2 (7,9,11)(5,8,10)(7,10,13)(9,12,16)(6,9,12)(8,11,14)(10,14,16)(9,13,17)(6,10,13)

(7,9,13)

3 (9,13,17)(6,9,12)(10,14,18)(8,11,15)(7,10,13)(6,9,11)(12,17,21)(8,10,13)(9,11,14)

(11,14,17)

4 (4,5,7)(5,7,9)(6,8,9)(7,9,10)(8,10,13)(4,7,9)(5,6,8)(2,3,5)(6,9,11)(7,10,12)

5 (8,10,13)(9,11,14)(7,9,11)(6,9,13)(10,13,17)(5,7,10)(8,11,15)(9,12,16)(6,9,12)

(7,10,12)

J101 (3,5,8)(7,9,11)(4,5,7)(5,8,11)(6,9,12)(8,10,13)(6,8,11)(10,14,17)(7,11,14)(8,10,11)

2 (8,11,15)(9,13,17)(7,11,14)(6,10,13)(5,9,12)(7,10,13)(6,9,13)(10,14,17)(8,10,13)

(15,19,24)

3 (7,9,11)(13,17,22)(7,9,13)(8,10,13)(9,11,14)(8,11,15)(5,8,12)(6,9,13)(10,12,15)

(7,10,12)

4 (6,9,12)(5,8,10)(8,10,13)(9,11,15)(7,9,12)(8,11,13)(5,9,12)(7,11,14)(10,14,17)

(11,15,19)

5 (4,5,7)(7,8,9)(6,8,10)(3,5,8)(4,6,9)(5,7,10)(6,9,12)(7,10,12)(5,8,11)(8,10,13)
* In the first column of Tables 1, 2 and 3, numerals such as 1,2,3, 4 in the first column indicate
the serial number of operations.

226 D. Lei

Table A9. The standard variance of the stochastic processing time

2.01126, 7.07227, 3.73974, 9.27866, 7.26508,
6.31886, 5.15262, 10.0637, 9.40556, 8.71944,
3.56697, 9.73049, 8.39451, 6.62181, 4.73595,
2.13486, 2.82263, 5.28007, 3.32582, 3.49309,
10.8967, 6.01123, 3.07175, 2.04202, 2.0802,
5.40092, 6.78497, 7.14066, 7.41588, 7.46449,
3.49611, 7.96741, 6.0571, 5.1691, 2.51335,
7.46916, 9.04987, 9.22346, 6.67895, 4.71755,
9.88375, 8.54009, 10.6031, 10.3315, 6.85418,
3.28104, 6.15873, 4.11795, 9.76016, 3.88641,
9.01691, 9.59288, 10.9712, 10.9973, 7.50349,
5.53194, 4.39592, 4.67553, 9.5613, 2.21369,
5.38279, 2.83361, 8.09485, 2.50594, 2.0791,
10.2691, 4.48299, 4.45607, 7.29118, 8.22065,
9.5385, 8.53844, 6.36445, 3.84823, 8.69362,
6.21613, 6.12165, 10.5424, 8.69994, 2.97452,
7.39143, 5.46712, 8.61507, 7.4807, 7.15165,
5.25205, 3.36399, 4.02594, 5.82638, 9.22593,
6.65395, 10.9099, 8.76394, 5.11005, 3.52083,
7.91577, 6.42708, 2.57186, 8.29783, 6.54326,

For 10 10× JSSP with stochastic processing time, the first ten real num-
bers are standard variance of the processing time of the operation

11 12 110o ,o , ,o" and the second ten real numbers correspond to operation

21 22 210o ,o , ,o" and so on. For 20 5× JSSP, the first five real numbers

correspond to operation 11 12 15o ,o , ,o" , the second five numbers corre-

spond to operation 21 22 25o ,o , ,o" and so on.

References

[1] Rodammer, F.A., Preston, W.K.: A recent survey of production scheduling. IEEE Trans.
Sys. Man Cyber. 188, 41–51 (1988)

[2] Kuroda, M., Wang, Z.: Fuzzy job shop scheduling. Int. J. Prod. Eco. 44, 45–51 (1996)
[3] Sakawa, M., Mori, T.: An efficient genetic algorithm for job shop scheduling problems

with fuzzy processing time and fuzzy due date. Comput. Indus. Eng. 36, 325–341 (1999)
[4] Song, X.Y., Zhu, Y.L., Yin, C.W., Li, F.M.: Study on the combination of genetic algo-

rithms and ant colony algorithms for solving fuzzy job shop scheduling problems. In:
Proceedings of IMACS multi-conferences on computational engineering in systems ap-
plications, Beijing, pp. 1904–1909 (2006)

[5] Niu, Q., Jiao, B., Gu, X.S.: Particle swarm optimization combined with genetic operators
for job shop scheduling problem with fuzzy processing time. Appl. Math.Comp. (in
press)

[6] De, P., Ghosh, J.B., Wells, C.E.: On the minimization of the weighted number of tardy
job with random processing times and deadline. Comp. Oper. Res. 18, 457–463 (1991)

[7] Soroush, H.M.: Optimal sequence in stochastic single machine shops. Comp. Oper.
Res. 23, 705–721 (1996)

 Genetic Algorithm for Job Shop Scheduling under Uncertainty 227

[8] Gourgand, M., Grangeon, N., Norre, S.: A contribution to the stochastic flow shop sched-
uling problem. Eur. J. Oper. Res. 151, 415–433 (2003)

[9] Luh, P.B., Cheng, D., Thakur, L.S.: An effective approach for job shop scheduling with
uncertain processing requirements. IEEE Trans. Rob. Automat. 15, 328–339 (1999)

[10] Ginzburg, D.G., Gonik, A.: Optimal job-shop scheduling with random operations and
cost objectives. Int. J. Pro. Eco. 76, 147–157 (2002)

[11] Tavakkoli-Moghaddam, R., Jolai, F., Vaziri, F., Ahmed, P.K., Azaron, A.: A hybrid
method for solving stochastic job shop scheduling problem. App. Math. Comput. 170,
185–206 (2005)

[12] Lei, D.M., Xiong, H.J.: Job shop scheduling with stochastic processing time through ge-
netic algorithm. In: Proceedings of International Conference on Machine Learning and
Cybernetics, Kunming, China, pp. 941–946 (2008)

[13] Sakawa, M., Kubota, R.: Fuzzy programming for multi-objective job shop scheduling
with fuzzy processing time and fuzzy due date through genetic algorithm. Euro. J. Oper.
Res. 120, 393–407 (2000)

[14] Li, F.-M., Zhu, Y.-L., Yin, C.-W., Song, X.-Y.: Fuzzy programming for multi-objective
fuzzy job shop scheduling with alternative machines through genetic algorithms. In:
Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 992–1004.
Springer, Heidelberg (2005)

[15] Giffler, B., Thompson, G.L.: Algorithm for solving production scheduling problems.
Oper. Res. 8, 487–503 (1960)

[16] Lei, D.M.: Pareto archive particle swarm optimization for multi-objective fuzzy job shop
scheduling problems. Int. J. Adv. Manuf. Technol. 37, 157–165 (2008)

[17] Xing, Y.J., Wang, Z.Q., Sun, J., Meng, J.J.: A multi-objective fuzzy genetic algorithm for
job-shop scheduling problems. In: 2006 International Conference on Computational Intel-
ligence and Security, pp. 398–401 (2006)

[18] Ghrayeb, O.A.: A bi-criteria optimization: minimizing the integral value and spread of
the fuzzy makespan of job shop scheduling problems. Appl. Soft. Comput. 2, 197–210
(2003)

[19] Javadi, B., Saidi-Mehrabad, M., Haji, A., et al.: No-wait flow shop scheduling using
fuzzy multi-objective linear programming. Journal of the Franklin Institute (in press)

[20] Lei, D.M., Xiong, H.J.: An efficient evolutionary algorithm for multi-objective stochastic
job shop scheduling. In: Sixth International Conference on Machine Learning and Cyber-
netics, pp. 19–22 (2007)

[21] Brindle, A.: Genetic Algorithms for Function Optimization, Doctoral dissertation, Univ.
of Alberta, Canada (1981)

[22] Chakraborty, U.K., Deb, K., Chakraborty, M.: Analysis of selection algorithms: A
Markov chain approach. Evolutionary Computation 4(2), 133–167 (1996)

[23] Bean, J.: Genetic algorithms and random keys for sequencing and optimization. ORSA J.
Comput. 6, 154–160 (1994)

[24] Cheng, R.W., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems
using genetic algorithms: I. Representation. Compu. Indus. Eng. 30(4), 983–997 (1996)

[25] Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn.
Springer, Heidelberg (2006)

[26] Chakraborty, U.K., Janikow, C.: An analysis of Gray versus binary encoding in genetic
search. Information Sciences 156(3-4), 253–269 (2003)

[27] Bierwirth, C.: A generalized permutation approach for job shop scheduling with genetic
algorithms. OR Spectrum, Special issue: Applied Local Search 17, 87–92 (1995)

228 D. Lei

[28] Bierwirth, C., Mattfeld, D., Kopfer, H.: On permutation representations for scheduling
problems. In: Voigt, H.M. (ed.) Proceedings of Parallel Problem Solving from Nature IV,
pp. 310–318. Springer, Berlin (1996)

[29] Mattfeld, D.C.: Evolutionary search and the job shop. In: Investigations on genetic algo-
rithms and production scheduling.Springer, Berlin (1995)

[30] Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop
scheduling problem. Comp. Oper. Res. 35(10), 3202–3212 (2008)

[31] Park, B.J., Choi, H.R., Kim, H.S.: A hybrid genetic algorithm for job shop scheduling
problems. Comp. Ind. Eng. 45, 597–613 (2003)

[32] Zhang, C.Y., Li, P.G., Guan, Z.L., Rao, Y.Q.: A tabu search algorithm with a new
neighbor structure for the job shop scheduling problem. Comp. Oper. Res. 34, 3229–3242
(2007)

[33] Sha, D.Y., Hsu, C.Y.: A hybrid particle swarm optimization for job shop scheduling
problem. Comp. Ind. Eng. 51, 791–808 (2006)

[34] Goldberg, D., Lingle, R.: Alleles, loci and the traveling salesman problem. In: Proceed-
ings of the First International Conference on Genetic Algorithms, pp. 154–159 (1985)

[35] Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the ninth
International Joint Conference on Artificial Intelligence, pp. 162–164 (1985)

[36] Davis, L.: Job shop scheduling with genetic algorithms. In: Proceedings of the First Inter-
national Conference on Genetic Algorithms, pp. 136–140 (1985)

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 229–259.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Giffler and Thompson Procedure Based Genetic
Algorithms for Scheduling Job Shops

S.G. Ponnambalam1, N. Jawahar2, and B.S. Girish2

1 School of Engineering,
 Monash University,
 Malaysia
 sgponnambalam@eng.monash.edu.my
2 Department of Mechanical Engineering,
 Thiagarajar College of Engineering,
 Madurai, India, 625015
 jawahartce@yahoo.co.uk, girishbs31@yahoo.co.in

Summary. This chapter addresses two well known job shop problems, namely the classical job
shop scheduling problem (JSP) and the flexible job shop scheduling problem (FJSP). Both of
them belong to the category of the toughest NP-hard problems. Genetic algorithm (GA) based
heuristics that have adopted Giffler and Thompson (GT) procedure, an efficient active feasible
schedule generation methodology for JSP, are discussed to solve the following job shop schedul-
ing (JSS) models: JSP for single-objective criterion (minimization of makespan time), JSP for
multi-objective criterion (minimization of weighted sum of makespan time, total tardiness and
total idle time of all machine) and FJSP for makespan time criterion. The chromosome represen-
tation of the GAs proposed for the JSPs is the combination of priority dispatching rules ‘pdrs’
(independent pdrs one each for one machine), which on decoding provides an active feasible
schedule using GT procedure. The chromosome representation of the GA for FJSP consists of
two strings of size equal to the total number of operations: one string for machine assignment
that reduces the FJSP to a fixed route JSP and the other string is a permutation representation of
priority numbers each corresponding to an operation that is used for resolving the conflict that
arises while generating actives feasible schedules with GT procedure. The performance tests and
validations of the proposed GAs are discussed along with future research directions.

1 Introduction

Scheduling involves the allocation of resources over a period of time to perform a col-
lection of tasks (Baker 1974). It is a decision making process that exists in most
manufacturing and production systems, transportation and distribution settings and in
most information-processing environments (Pinedo 2005). Scheduling in the context
of manufacturing systems refers to the determination of the sequence in which jobs
are to be processed over the production stages, followed by the determination of the
start-time and finish-time of processing of jobs (Conway et al. 1967). An effective
schedule provides the basis for utilizing the plant effectively and attaining the strate-
gic objectives of the firm as reflected in the production plan.

230 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

The most common manufacturing system worldwide is the job shop. Job shops are
associated with the production of small volumes/large variety products and operate in a
make-to-order environment (Groover 2003). Hoitomt et al. (1993) mentions that ap-
proximately 50 to 75 % of all manufactured components fall into this category of low
volume/high variety and due to the market trends this percentage is likely to increase.
Even though flexible manufacturing systems are today’s keywords that frequently ap-
pear in many research agendas, scheduling of job shops still receive ample attention
from both researchers and practitioners due to the reason that job shop scheduling
problems exist in many forms in most of the advanced manufacturing systems (Ku-
tanoglu and Sabuncuoglu 1999). Besides, analysis of job shop scheduling problems
provides important insights into the solution of the scheduling problems encountered in
more realistic and complicated systems (Pinedo 2005). In this context, this chapter fo-
cuses on scheduling job shops which is an important task for manufacturing industry in
terms of improving machine utilization or reducing lead time or adhering to due dates.

1.1 Job Shop Scheduling Problems

The classical job shop scheduling problem (JSP) is the most popular scheduling
model in practice (French 1982, Brucker 1995, Pinedo 1995). It has attracted many
researchers due to its wide applicability and inherent difficulty (Jain and Meeran
1999). The formulation of the JSP is based on the assumption that for each part type
or production order (job) there is only one processing plan, which prescribes the se-
quence of operations and the machine on which each operation has to be performed.
The n x m classical JSP involves n jobs and m machines. Each job is to be processed
on each machine in a predefined sequence and each machine processing only one job
at a time. It is also well known that JSP is NP-hard (Garey et al. 1976).

In practice, the shop-floor setup in a job shop typically consists of multiple copies
of the most critical machines so that bottlenecks due to long operations or busy ma-
chines can be reduced (Ho et al. 2007). Therefore, an operation may be performed on
more than one machine. Job shops also consists of multipurpose machines such as
numerically controlled (NC) machines that are loaded with tool magazines and are
capable of performing several different types of operations (Vaikartarakis and Cai
2003). Due to the overlapping capabilities of these machines, a given operation can be
performed by more than one machine. However, in real life it has been a practice that
machining operations are assigned to a certain machine tool during the process plan-
ning stage and the assignment of machine tools over time to different operations is
performed during the scheduling stage. Recently, researchers considered the integra-
tion of process planning with scheduling by allowing alternative machine tool rout-
ings for operations at the scheduling stage (Hankins et al. 1984, Chryssoulouris and
Chan 1985, Wilhelm and Shin 1985).

Unlike the JSP, the research on jobs shop scheduling associated with multiple rout-
ings is rather very limited even though it has more practical applications and advan-
tages than the JSP. Two different scheduling models of job shop associated with mul-
tiple routings are addressed in the literature. The first model is referred as job shop
scheduling with alternative machine tool routings, which was first addressed by Iwata
et al. (1978). The same model was later addressed by Brandimarte (1993) as flexible
job shop scheduling problem (FJSP). The second model is usually referred as job

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 231

shop scheduling with multi-purpose machines (MPM-JSP), which was first addressed
by Brucker and Schlie (1990). Dauzere-Peres and Paulli (1997) addressed the MPM-
JSP as multiprocessor job shop scheduling problem (MJS). The difference between
the two models (FJSP and MPM-JSP/MJS) is that, in the first model the processing
time for each operation on its alternative routes differs with machine features,
whereas in the second model the processing time is same for all the alternative ma-
chines of a particular operation. Since the FJSP can be represented as a generalized
model of MPM-JSP/MJS, therefore, many recently published research articles refer
both the models as FJSP. However, the introduction of alternative routing option adds
an additional decision of machine allocation during scheduling that increases the
complexity of the problem. Therefore, scheduling job shops that are associated with
multiple routings are much more complex than the JSP.

1.2 Modeling and Solution Approaches for Scheduling Problems

A large number of approaches to the modeling and solution for job shop scheduling
problems have been reported in the OR literature, with varying degrees of success.
These approaches revolve around a series of technological advances that have oc-
curred over that last four decades. These include optimization approaches such as
mathematical programming, enumerative techniques, etc. and approximation ap-
proaches such as dispatching rules, artificial intelligence (AI) techniques, local search
methods and metaheuristics (Brucker 1995).

Optimization algorithms provide optimal or near-optimal results if the problems to
be solved are not too large and are restricted to low-dimensional over-simplified prob-
lems. With the growing uncertainty and complexity in manufacturing environment,
most scheduling problems have been proven to be NP-hard, that is, the computational
time requirements grow exponentially as a function of the problem size. This de-
grades the performance of conventional optimization techniques and hence optimiza-
tion approaches are ruled out in practice. The approximation algorithms are capable of
guaranteeing the solution to be within a fixed percentage of the actual optimum and
are considered urgent and useful tools for solving discrete optimization problems. The
performance of heuristics is satisfactory as long as the operating characteristics and
objectives of the system remain the same. Heuristics yield good solutions, but are ro-
bust to the system. Local search based heuristics are known to produce excellent re-
sults in short run times, but they are susceptible of getting stuck in local entrapments.

Evolutionary programming, which belongs to the random search process, is re-
garded better than simulation in the sense that it guarantees near optimal solutions in
actual cases. Also, by changing the evolution parameter of the genetic search process,
the solutions can be obtained for other suitable objectives and can be made more
flexible. These are useful to address the dynamic situations. The above discussion in-
dicates that heuristics, local search algorithms, evolutionary search algorithms are
useful tools for scheduling job shops.

1.3 Genetic Algorithm Based Heuristics for Scheduling: A Literature Review

In recent years, genetic algorithm (GA) is much used in job shop scheduling applica-
tions. The following work indicates the applications of GA in JSP and FJSP. Kopfer

232 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

and Mattfield (1997) proposed a hybrid GA for the JSP and showed that the results
are encouraging. Schultz and Mertens (1997) compared the GA with an expert system
approach and priority rules. They indicated that the GA generally produces satisfac-
tory schedules, and its performance depends on run time (i.e. population size and
number of generations). Biegel and Davern (1990) showed the method of applying
genetic concepts to scheduling problems. An elementary n-task, one-processor prob-
lem is provided to demonstrate the GA methodology for the job shop scheduling
problem. Dorndorf and Pesch (1993) proposed a GA based on the idea of using a
chain of priority rules which fits the needs of a particular problem. Within the GA
each gene represents a priority rule from the set of priority rules. While decoding a
chromosome, to generate a feasible schedule, the ith rule is applied for scheduling the
ith conflict in the schedule generation procedure. In their GA process, they employed a
Giffler and Thompson algorithm (Giffler and Thompson 1960) to generate an active
feasible schedule and used the makespan time of the schedule as the fitness parame-
ter. Jawahar et al. (1998) proposed a GA for scheduling flexible manufacturing sys-
tems. The proposed GA evolves a priority dispatching rule for each machine to
resolve the conflicts that arise while generating active feasible schedules using Giffler
and Thompson schedule generation procedure. Ponnambalam et al. (2001) proposed a
multiobjective GA (MOGA) for the job shop scheduling problem for minimization of
weighted sum of makespan, total tardiness of all jobs and total idle time of all ma-
chines. They used the chromosome representation proposed by Jawahar et al. (1998)
in their proposed MOGA and showed the effectiveness of their approach by testing
with various benchmark instances from literature.

Mesghouni et al. (1998) were the first to model GA for FJSP. They proposed a
chromosomal representation known as parallel job representation in which a chromo-
some is represented by a matrix where each row consists of a set of ordered operations
of each job. Due to the complexity of decoding the representation, their algorithm in-
curs significant computational cost. Hussain and Joshi (1998) proposed a two pass GA
to solve job shop problem with alternative routing with the objective of minimizing the
sum of squared weighted due date deviation for every job. The first pass picks the al-
ternatives using a genetic algorithm and the second pass provides the order and start
time of jobs on the selected alternatives by solving a non-linear program. Chen et al.
(1999) proposed a GA that uses an A-B string representation to solve FJSP for mini-
mum makespan time criterion. A string contains a list of all operations of all jobs and
the machines selected for the corresponding operations while B string contains a list of
operations that are processed on each machine. Moon and Lee (2000) developed a
mixed integer linear programming (MILP) model and proposed a genetic algorithm
(GA) for the job shop scheduling problem with alternative routings. The objective they
considered is to minimize the mean flow time. The chromosome representation in their
proposed GA consists of two strings, one for machine assignment and the other for
schedule generation. Ho and Tay (2004) proposed a GA based tool, namely GENACE,
for solving the FJSP for minimum makespan time criterion. The chromosome repre-
sentation consists of two components, one component for machine selection and the
other for operation sequence. Their methodology first generates an initial population
using composite dispatching rules. A cultural evolution is then applied to preserve
knowledge of schemata and resource allocations learned over each generation. The
knowledge or belief spaces in turn influence mutation and selection of individuals.

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 233

Ho et al. (2007) proposed an architecture for learning and evolving of flexible job shop
schedules for minimum makespan criterion called learnable genetic architecture
(LEGA), a generalization of their previous approach GENACE (Ho and Tay 2004).
The population generator module generates a set of feasible schedules equal to the
population size using composite dispatching rules and then encodes it into chromo-
somes of initial population for subsequent evolution in the EA module. During genetic
evolution, the SL module modifies the offspring schedules to improve solution quality
and to preserve feasibility based on a memory of conserved schemas resolved from
sampled schedules sent dynamically from EA module. Tay and Ho (2008) proposed a
genetic programming (GP) based approach for evolving effective composite dispatch-
ing rules for solving the multi-objective FJSP. The objective they considered is to
minimize the weighted sum of makespan time, mean flow time and mean tardiness.
They proposed a GP framework in which an individual is composed of terminals (like
job release dates, due date, processing time, current time, remaining time, etc.) and al-
gebraic functions. Their GP solves a specific problem by carefully selecting the termi-
nals and functions and generating a composite dispatching rule that satisfies the
requirements of that particular problem. They generated five composite dispatching
rules using a large training set and compared the results with other popular rules like
FIFO, SPT, etc. The coding schemes adopted in the most of the above GAs for FJSP
requires repair mechanisms to maintain solution feasibility. Most of the GAs proposed
for FJSP, therefore, have chances of missing the best optimal solution even under ex-
tensive searches for larger size problems. Girish and Jawahar (2008) proposed a GA
for the FJSP for minimum makespan time criterion. The chromosome representation of
their proposed GA consists of two strings: one string for machine assignment and the
other string for sequencing the operations on the assigned machines using Giffler and
Thompson schedule generation procedure (Giffler and Thompson 1960). The chromo-
somal representation of their proposed GA does not require a repair mechanism and is
capable to rummage through the entire search space.

In this chapter, genetic algorithm based heuristics that adopt Giffler and Thompson
schedule generation procedure, which is a proven method to generate active feasible
schedules for JSP, are presented to evolve optimal or near optimal schedules to the
well known JSP and FJSP formulations. The rest of the chapter is organized as fol-
lows: section 2 describes the job shop scheduling models considered in this chapter;
the description with numerical illustration and performance analysis of the proposed
GAs for the single-objective JSP, multi-objective JSP and single-objective FJSP are
presented in sections 3, 4 and 5, respectively; section 6 concludes with directions for
future research.

2 Description of Job Shop Scheduling Models

2.1 Model 1: Scheduling Job Shop for Makespan Time Criterion

2.1.1 Environment
• There are n jobs to be processed in one or more of m machines.
• Each job i require Ji precedence-constrained operations to be performed.
• Each operation Oij can be processed only on one machine and its processing time

is tij.

234 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

2.1.2 Assumptions
• Jobs are independent and no priorities are assigned to any job type.
• Each machine can process only one job at a time.
• The revisit of jobs for another operation to a same machine is not allowed.
• Job pre-emption or cancellation is not allowed.
• Set up and inspection times are included in the processing time.
• All jobs are simultaneously available at time zero.
• After a job is processed on a machine it is transported to the next machine immedi-

ately and the transportation time is negligible or included in the operation time.
• Breakdowns are not considered.

2.1.3 Objective
The objective is to complete all operations at the earliest possible time, which is
known as minimum makespan time. This objective would distribute the workload
evenly among all processing stations or work centers and all the processing stations
would be freed at the makespan time for planning another set of jobs of next planning
horizon.

2.1.4 Problem Formulation
The mathematical formulation for the problem under discussion with the objective of
minimizing makespan time is presented below:

Objective:

)]...,,(Max[Minimize
2211 nJnJJ CCC (1)

Subject to:

jitSC ijijij ,0 ∀=−− (2)

kjikij

jijijiijji

NONOjiji

tYHCC

∈∈∀

≥−+−

''

''''''

,:)','(),,(

,)1(
 (3)

kjikij

ijjijijiij

NONOjiji

tYHCC

∈∈∀

≥+−

''

''''

,:)','(),,(

,)(
 (4)

jiSij ,,0 ∀≥ (5)

1,...,1,,01 −=∀≥−+ iijij JjiCS (6)

⎩
⎨
⎧

=
 otherwise,0

 precedesoperationif,1 ''
''

jiij
jiji

OO
Y (7)

where, Sij and Cij are the start time and completion time of job i, H is a very large posi-
tive integer, Nk is the set of operations {Oij} that can be loaded on machine k and Yiji’j’
is a decision variable that generates a sequence between the operations Oij and Oi’j’.

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 235

The constraint set (2) imposes that the difference between the completion time and
the starting time of an operation is equal to its processing time. This constraint satis-
fies the assumption that once an operation has started, it cannot be pre-empted until
its completion. Constraint sets (3) and (4) ensure that no two operations can be proc-
essed simultaneously on the same machine. The disjunctive constraint (3) becomes
inactive when Yiji’j’=0 and the disjunctive constraint (4) becomes inactive when
Yiji’j’=1. Constraint set (5) ensures that the start time of an operation is always posi-
tive. Constraint set (6) represents the precedence relationship among various opera-
tions of a job.

2.2 Model 2: Scheduling Job Shop for Multiobjective Criteria

The problem environment and assumptions for this model are the same as that of the
job shop scheduling model described in section 2.1. Each job in this model is addi-
tionally subjected to job deadlines (due date) that are assumed between 1 to 5 times
that of its total processing time. Besides, the objective is to minimize the weighted
sum of makespan time, total tardiness and total idle time of machines and is given
below.

Minimize w1×{ max [CiJi]}+ w2×∑
=

−
n

i
iiJi dC

1

],0max[+ w3×∑
=

m

k
kI

1

 (8)

Where,

Makespan = max [CiJi], (9)

Total tardiness=∑
=

−
n

i
iiJi dC

1

],0max[, (10)

Total idle time=∑
=

m

k
kI

1

, (11)

CiJi is the completion time of job i, di is the due-date of job i and Ik is the Idle time of
machine k. The constraints for this model are the same as single-objective job shop
problem described in section 2.1.4.

2.3 Model 3: Scheduling Flexible Job Shop for Makespan Time Criterion

2.3.1 Environment
• There are m machines in the system and n jobs to be processed.
• Each job i require Ji precedence-constrained operations to be performed.
• Each operation Oij can be processed on a number of alternative (non-identical) ma-

chines and the processing time tijk differs with machine features. This addresses the
multiple routings for jobs. An alternative routing could be used if one machine tool
is temporarily overloaded while another is idle. The alternative routing is useful
where capacity problem arises.

236 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

• The objective is to complete all operations at the earliest possible time, which is
known as minimum makespan time.

2.3.2 Assumptions
• Jobs are independent and no priorities are assigned to any job type.
• Job pre-emption or cancellation is not allowed.
• Set up and inspection times are included in the processing time.
• All jobs are simultaneously available at time zero.
• After a job is processed on a machine it is transported to the next machine immedi-

ately and the transportation time is negligible or included in the operation time.
• Breakdowns are not considered.

2.3.3 Problem Formulation
The mathematical formulation for the problem under discussion with the objective of
minimizing makespan time is presented below:

Objective:

)]...,,(Max[Minimize
2211 nJnJJ CCC (12)

Subject to:

jiXtSC
kNOijk

ijkijkijij ,0).(
}:{

∀=−− ∑
∈

 (13)

kjikij

kjikjiijkkjijiijji

NONOjijik

tXHXHYHCC

∈∈∀

≥−+−+−+−

''

''''''''

,:)','(),,(,

,)1()1()1(
 (14)

kjikij

ijkkjiijkkjijijiij

NONOjijik

tXHXHYHCC

∈∈∀

≥−+−++−

''

''''''

,:)','(),,(,

,)1()1()(
 (15)

jiSij ,,0 ∀≥ (16)

1,...,1,,01 −=∀≥−+ iijij JjiCS (17)

jiX
kNOijk

ijk ,,1
:
∑
∈

∀= (18)

⎩
⎨
⎧

=
otherwise,0

machinetoassignedisoperationif,1 kO
X ij

ijk (19)

⎩
⎨
⎧

=
 otherwise,0

 machineonprecedesoperationif,1 ''
''

kOO
Y jiij

kjiji (20)

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 237

where, Sij and Cij is the start time and completion time of job i, H is a very large posi-
tive integer, Nk is the set of operations {Oij} that can be loaded on machine k, Xijk is a
decision variable for machine selection for operation Oij and Yiji’j’k is a decision vari-
able that generates a sequence between the operations Oij and Oi’j’ for loading on ma-
chine k. The constraint set (13) imposes that the difference between the completion
time and the starting time of an operation is equal to its processing time on the ma-
chine to which it is assigned. This constraint satisfies the assumption that once an op-
eration has started, it cannot be pre-empted until its completion. Constraint set (14)
and (15) ensures that no two operations can be processed simultaneously on the same
machine. This disjunctive constraint (14) becomes inactive when Yiji’j’k=0 and the dis-
junctive constraint (15) becomes inactive when Yiji’j’k=1. Constraint set (16) ensures
that the start time of an operation is always positive. Constraint set (17) represents the
precedence relationship among various operations of a job. Constraint set (18) im-
poses that an operation can only be assigned to one machine.

3 GA for Single Objective JSP

3.1 Description of the Proposed GA

The different modules of the GA that is proposed to evolve optimal schedule to the
job shop problem for minimum makespan time criterion is outlined as flow chart
given in fig. 1.

Fig. 1. Procedure of the proposed GA for JSP

Data input module: The following data pertaining to the problem are given as input:
number of jobs (n), number of machines in the shop (m), number of operations Ji of
each job i (∀i), the machine number Kij corresponding to the operation j of job i along
with its processing time tij (∀i, ∀j) and the job due date di.

Data Input Module

Initial Population Generation Module

Evaluation Module

Termination
Check Module

New Population Generation Module

Output Module

238 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

Initial population generation module: The genetic search process starts with a ran-
domly generated set of chromosomes called the initial population. The size of the
population (pop_size) depends on the solution space. Each gene (g) in a chromosome
of the proposed GA represents a priority dispatching rule (pdr) code (0, 1, 2 and 3),
one each for one machine. The description of the pdr codes is given in the table 1.
Floating-point encoding has been used to identify the pdr code. The chromosome c,
the length of which is equal to the number of machines in the system, represents a
machine-wise-pdr set and is representative of a feasible solution. The position of the
gene in a chromosome indicates the machine number and the pdr code in that position
identifies the pdr for conflict resolution by that machine.

Table 1. Priority dispatching rules and the respective codes

Priority dispatching rule Symbol pdr code
Shortest total processing time (min. of tij) SPT 0
Longest total processing time (max. Of tij) LPT l

Earliest due time (min. of di) EDT 2
Minimum Slack time (min. of (di- tij-t)) MINSLK 3

The possible number of combinations of machine-wise-pdr sets is 4m where m is

the number of machines in the system. Hence, the population size is related to the
number of machines in the system and has been assumed to be equal to the number of
machines in the system. The machine-wise-pdr set of a chromosome is applied in the
Giffler and Thompson (GT) procedure to give a feasible schedule. This produces a
timetable with the start and end of the processing period, and the makespan time. The
fitness parameter (fit(c)) is the makespan time. It is found through the schedule gener-
ated using the machine-wise-pdr set and is represented by the chromosome c.

fit(c) = makespan time corresponding to chromosome c. (21)

Each chromosome in the current population is updated as the global best chromo-
some, if its fitness value is less than or equal to the global best solution.

Termination Check Module: A specified number of generations (no_iter) are used
to terminate the GA. On satisfactory termination, the output module prints the global
best solution.

New population generation module: Roulette wheel selection procedure (Michale-
wicz 1996, Chakraborthy et al. 1996) is adopted to select chromosomes for the next
generation. The process of selecting the chromosomes has the following steps:

1. Conversion of the fitness parameter value to a new fitness value (new_fit(c)), a pa-

rameter suitable for minimization objective.

F

cfit
cfitnew

)(
1)(_ −= (22)

where F is a sum of the fitness parameter of all chromosomes

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 239

∑
=

=
sizepop

c

cfitF
_

1

)((23)

2. Conversion of new fitness parameter to an expected frequency of selection (p(c)).

∑
=

=
sizepop

c

cfitnew

cfitnew
cp

_

1

)(_

)(_
)((24)

3. Calculation of the cumulative probability of survival (cp(c))

∑
=

=

=
cc

c

cpccp
1

)()((25)

A random selection procedure, which is explained below, generates the next popu-
lation of the same size. A random number rand() between 0 and 1 is obtained and a
chromosome c is selected which satisfies the following condition:

)(())1(ccprandccp ≤<− (26)

This selection process is repeated a number of times equal to the population size.
The method used here is more reliable in that it guarantees that the most fit individu-
als will be selected, and that the actual number of times each is selected will be its ex-
pected frequency ±1. This procedure enables the fittest chromosome to have multiple
copies and the worst to die off.

The next step is to carry out the crossover operation, which is a reproduction
method. This involves two steps:

1. Selection of chromosome for crossover.
2. Crossover operation.

The probability of crossover (p_cross) is the one vital parameter that needs attention
at this juncture. The value for p_cross has been assumed to be 0.3, so that at least 30%
of the chromosomes selected for the new population will undergo the crossover opera-
tion and produce offspring. The procedure for this selection is as follows. Random
numbers between 0 and 1 are generated for all chromosomes and those chromosomes
that obtain a random number less than the p_cross value are the chromosomes selected
for crossover. If the number of selected chromosomes is odd, then the above procedure
is repeated until one more chromosome gets selected and the number of selected chro-
mosomes becomes even. The genetic literature addresses many crossover operators
(Michalewicz 1996). Notable among them are: partially mapped crossover, ordinal
mapped crossover and edge crossover. They use either single-point crossover or two-
point crossover. This program uses the edge crossover method because of its simplicity
in operation and because the chromosome is short. This splits the parent chromosomes
into two parts with a random number generated with the range 1…(m- 1) and inter-
changes the genes from that crossover position.

The purpose of mutation is to introduce new genetic material or to recreate good
genes that were lost by chance through a poor selection of mates. To do this effectively,

240 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

the effect of mutation must be a major one. At the same time, the valuable gene pool
must be protected from wanton destruction. Thus, the probability of mutation would be
small (Masters 1993). On the above grounds, the value of the probability of mutation
(p_mut) has been assumed to be 0.05. The repetition of the whole process (iteration) of
evaluation, selection, reproduction and mutation depends on the size of the problem.
The number of iterations is related to the number of jobs n to be scheduled, and has
been fixed as 4 × n, subject to a maximum of 100.

Output Module: This module prints the schedule corresponding to the global best so-
lution for minimum makespan criterion.

3.2 Numerical Illustration of the Proposed GA

The input job data of 10 jobs that requires processing on 6 machines is given in table 2.
For each machine [1...j...m] generate an integer random number [0...3] and put as a

string. The position number represents the machine number and the number in that
position is the pdr code to be followed by that machine. Similarly generate m strings.
Each string represents one chromosome and table 3 gives the entire population.

Table 2. Data for the illustration problem

Job
i

No. of
operations

Ji

Machine No. (Processing time)
Kij (tij)

Due
time

dij=1 j=2 j=3 j=4 j=5 j=6

1 5 2(24) 1(16) 3(20) 5(10) 6(10) -- 280
2 4 3(35) 2(30) 1(40) 6(15) -- -- 360
3 6 2(20) 1(25) 3(15) 4(10) 5(5) 6(5) 160
4 6 1(25) 3(35) 2(45) 5(15) 6(20) 4(10) 750
5 5 2(30) 1(20) 3(40) 4(10) 6(10) -- 660
6 6 2(20) 1(20) 3(30) 6(15) 4(10) 5(5) 450
7 4 3(15) 1(15) 4(20) 6(10) -- -- 240
8 4 1(40) 2(10) 6(15) 5(25) -- -- 270
9 3 2(12) 4(23) 6(15) -- -- -- 100

10 4 3(35) 2(45) 5(30) 4(10) -- -- 360

Table 3. Initial population of the pdr codes

Chromosome
No.

c

Machine No.
k

1 2 3 4 5 6

1 1 1 3 1 2 0
2 3 1 1 1 3 2
3 1 0 1 0 1 1
4 0 1 3 0 3 2
5 1 0 3 2 1 3
6 2 1 0 2 0 1

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 241

The makespan time of the schedules obtained using machine-wise-pdr set of all the
chromosomes (c = 1 to pop_size) is given in table 4.

Table 4. Fitness value of the initial population

Chromosome No. c 1 2 3 4 5 6
Makespan time fit(c) 425 489 309 353 346 384

The best schedule corresponds to chromosome c = 3 and the makespan time is 309.
Total value of the evaluation function of the population

∑
=

=
sizepop

c

cfitF
_

1

)(= 2306.

The probabilities of selection of chromosomes and their respective cumulative
probabilities, which have been calculated using the parameter new_fit(c), are given in
table 5. The random numbers generated and chromosomes selected for the next gen-
eration are given in table 6.

Table 5. Probability of selection of chromosomes

c 1 2 3 4 5 6

p(c) 0.1631 0.1576 0.1732 0.1694 0.1700 0.1667
cp(c) 0.1631 0.3207 0.4939 0.6633 0.8333 1.0000

Table 6. Population to represent next generation

New chromosome
c'

1’ 2’ 3’ 4’ 5’ 6’

rand() 0.6309 0.2538 0.1627 0.8413 0.7572 0.4409
Old chromosome

c
4 2 1 6 5 3

Table 7. Chromosomes selected for crossover

rand() 0.4409 0.3507 0.0079 0.4224 0.5220 0.7023

rand() less than p_cross no no yes no no no
Selected -- -- 3’(1) -- -- --

The chromosomes selected with a p_cross of 0.3 for crossover from the new set

are shown in table 7. Since only one chromosome is selected (i.e. 3': 1 1 3 1 2 0), a
null chromosome O' (0 0 0 0 0 0) is added to make the number of chromosomes se-
lected even, and they become the parents (3" and O") and undergo crossover. The

242 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

parents, and their respective offspring (3'" and O'"), produced with a crossover point
3, are given in table 8. The crossed Y" replaces the 3' and becomes 3” in the new
population. No element has been selected for mutation. The new population obtained
after crossover and mutation is given in table 9.

Table 8. Parents and offspring

Chromosome 3”(3’) 1 1 3 1 2 0 Parents
Null chromosome O”(O’) 0 0 0 0 0 0
Crossed chromosome 3”’ 1 1 0 0 0 0 Offspring
Crossed chromosome O”’ 0 0 3 1 2 0

Table 9. New population

c’ k=1 k=2 k=3 k=4 k=5 k=6
1’(4) 0 1 3 0 3 2
2’(2) 3 1 1 1 3 2
3’(3”) 1 1 0 0 0 0
4’(6) 2 1 0 2 0 1
5’(5) 1 0 3 2 1 3
6’(3) 1 0 1 0 1 1

Repeat the steps of generation and evaluation of the new population for no_iter

iterations.

Best makespan time : 299
Solution at (it_no) : 18th iteration
Optimal machine-wise-pdr : 1-2-2-0-1-1
Schedule : Table 10

3.3 Performance Analysis of the Proposed GA

Varied comments on the feasibility of the application of the proposed methodology to
this scheduling problem are discussed in this section. The problems considered address
a typical range of problems for short-term planning. Many data sets have been experi-
mented with, and the results obtained compared with the extended B-B technique pro-
posed by Jawahar et al (1996) and the direct application of pdrs. The makespan time of
the schedules and the computational time of a sample of twenty problems (randomly
generated) obtained with all the methodologies are given in table 11.

The extended B-B methodology takes much more time and the computational
complexity is also high. The direct application of pdrs for resolving conflict does not
guarantee optimal or near optimal solutions and no generalization is possible. The
computational time is less than for the other methods; but the weakness of this
method is that most of the time it provides poor solutions.

The application of a genetic algorithm (with classical genetic operators) to this
problem is useful as the values of the objective function are optimal, or very close to

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 243

the optimal. The values obtained are comparable to the best solution obtainable with
the extended B-B technique. Also a near optimal solution can be obtained with rea-
sonable computational time.

Table 10. Schedule for the illustration problem

Job
i

Operation
j

Machine
Kij(k)

Start
time

Sij

Completion
 time

Cij
1 1 2 50 74
1 2 1 90 106
1 3 3 106 126
1 4 5 149 159
1 5 6 159 169
2 1 3 50 75
2 2 2 119 149
2 3 1 149 189
2 4 6 189 204
3 1 2 12 32
3 2 1 65 90
3 3 3 90 105
3 4 4 105 115
3 5 5 159 164
3 6 6 169 174
4 1 1 40 65
4 2 3 126 161
4 3 2 199 244
4 4 5 244 259
4 5 6 259 279
4 6 4 289 299
5 1 2 169 199
5 2 1 209 229
5 3 3 239 279
5 4 4 279 289
5 5 6 289 299
6 1 2 149 169
6 2 1 189 209
6 3 3 209 239
6 4 6 239 254
6 5 4 254 264
6 6 5 264 269
7 1 3 0 15
7 2 l 106 12l
7 3 4 159 179
7 4 6 204 214
8 1 1 0 40
8 2 2 40 50
8 3 6 50 65
8 4 5 65 90
9 1 2 0 12
9 2 4 12 35
9 3 6 35 50

10 1 3 15 50
10 2 2 74 119
10 3 5 119 149
10 4 4 149 159

244 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

Table 11. Makespan time of schedules generated with different methods

Problem
No.#

n=10
m=6

Makespan time of schedules generated with Machine-
wise-pdr
evolved
through

GA

Direct application of pdr TIEs resolved in Branch and
Bound method with pdr (Ja-

wahar et al. 1996)
SPT LPT MINSLK EDT SPT LPT MINSLK EDT

1 361 524 353 332 291** 316 276* 298 299

2 280 270 255 285 300 230* 255 295 255**

3 195 210 235 225 160** 172 155* 165 185

4 295 365 372 368 275 295 245* 275 270**

5 300 350 325 315 280* 335 285** 295 295

6 219 265 243 212 218 217 205** 209 203*

7 270 200 185 210 200 180* 195 195 I85**

8 260 345 290 285 230* 230* 230* 230* 235**

9 430 455 535 515 380** 490 380 370* 395

10 300 270 275 240** 244 280 230* 250 240**

11 248 272 263 253 244 237 225** 292 196*

12 287 274 230 256 268 221** 259 292 200*

13 231 222 293 220 188* 197 244 192 191**

14 218 279 236 338 191* 204 240 240 194**

15 231 277 268 215 204 152* 264 239 196**

16 210 236 243 234 19l 232 185* 201 190**

17 303 314 323 330 367 225* 244** -- 249

18 294 287 318 286 272** 296 -- 300 239*

19 294 303 360 340 256 340 244* 279 245**

20 292 300 331 359 378 276* 522 269 279**

Average

computational

time (s)

0.0782 0.0921 0.0642 0.1093 45.2345 54.2340 46.3245 53.2341 3.7834

 # data set of the example problems are given in the Jawahar et al. (1998)
 *indicates the best solution;
 **indicates the second best solution.

4 Multiobjective GA for JSP

4.1 Description of the Proposed GA

The different modules of the multiobjective GA (MOGA) that is proposed to evolve
schedule to the job shop problem for minimization of weighted sum of makespan
time, total tardiness of all jobs and total idle time of all machines is same as given in
fig. 1.

The description of the different modules of the proposed MOGA is as follows:

Data input module: The data as described in the input module of proposed GA for
single objective JSP (section 3.1) is given as input for this module.

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 245

Initial population generation module: The genetic search process starts with a ran-
domly generated set of chromosomes (machine-wise-pdr sets) called the initial popu-
lation. The size of the population (pop_size) depends on the solution space. The
chromosome representation of the MOGA is the same as that of the GA for single ob-
jective JSP described in section 3.1. The possible number of combinations of ma-
chine-wise–pdr sets in MOGA is 7m, where m is the number of machines and 7 pdrs.
Hence, the population size is related to the number of machines in the system and has
been assumed to be equal to the number of machines in the shop. The description of
the pdr codes used in MOGA is given in the table 12.

Table 12. Value of gene and their corresponding pdr

Value representing the
gene

Corresponding pdr

0 SPT–Shortest processing time
1 LPT–Longest processing time
2 EDT–Earliest due date
3 MINSLK–Least slack
4 SPO–Smallest ratio of slack per operation
5 JSR–job slack ratio
6 CR–Smallest critical ratio

The machine-wise–pdr set is used to generate schedule using GT procedure and

from that the makespan, total tardiness and the total idle time of all the machines are
calculated. The fitness parameter fit(c) is the weighed sum of makespan, total tardi-
ness and the total idle time of machines.

Fit(c) ={w1 fit1(c) + w2 fit2(c) + w3 fit3(c) } (27)

The randomly generated weights are arranged in such a way that w1 > w2 > w3 and
fit1 > fit2 > fit3 to avoid entrapment in local minima. This may happen when assign-
ing a very high weight to an objective, whose value is nearer to zero, and very low
weights to the other two objectives whose value being comparatively higher. This in
turn leads this weighed sum to be an optimal solution, which is actually not an opti-
mum one. The weights w1, w2 and w3 are assigned randomly by generating three ran-
dom numbers. In general, the value of each weight can be randomly determined. For a
multi-objective optimization problem with n objective function (n≥2), a random real
number can be assigned to each weight as follows (Muarata et al. 1996).

∑
=

=
n

j
j

i
i

rand

rand
w

1

 (28)

where, randi and randj are non-negative random integers (or non-negative random
real numbers). From the above equation it can be seen that n random real numbers are
generated for the weights wis to calculate the weighed sum in equation (27) when
evaluating the chromosomes. Since only three objectives are considered here, it is

246 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

enough to generate three random numbers to find the three weights w1, w2 and w3. The
weights assigned to the multiple objective functions are not constant. If we use the
weighed sum in equation (27) with the constant weight wis, the search direction in ge-
netic algorithms is also constant. The idea is to realize various search directions.

The termination criterion module and new population generation module for the
proposed MOGA are the same as that of the GA for single-objective GA for JSP de-
scribed in section 3.1. The parameter set for the proposed MOGA is given in table 13.

Table 13. MOGA parameters

Initial population Randomly generated
Population size Equal to the number of machines

Length of the chromosome Equal to no. of machines
Crossover operator Edge crossover (single point)
Mutation operator Random

Crossover probability 0.3
Mutation probability 0.01
Selection procedure Rowlette wheel method
Fitness parameters

Weighed sum of makespan, total tardiness, and total

machine idle time
Assignment of weights Random
Termination condition

When no. of iterations is equal

to 100

4.2 Numerical Illustration for the Proposed MOGA

The working of proposed MOGA is explained by considering a problem instance ft06.
The input data for the example problem is given in table 14.

Table 14. Data for the illustration problem (Problem ID: ft06, size 6 x 6)

Machine No. (Processing time)
Kij (Tij)

Job

i

No. of
operations

Ji j=1 j=2 j=3 j=4 j=5 j=6

Due
time

di

1 6 3 (1) 1 (3) 2 (6) 4 (7) 6 (3) 5 (6) 52
2 6 2 (8) 3 (5) 5 (10) 6 (10) 1 (10) 4 (4) 94
3 6 3 (5) 4 (4) 6 (8) 1 (9) 2 (1) 5 (7) 68
4 6 2 (5) 1 (5) 3 (5) 4 (3) 5 (8) 6 (9) 70
5 6 3 (9) 2 (3) 5 (5) 6 (4) 1 (3) 4 (1) 25
6 6 2 (3) 4 (3) 6 (9) 1 (10) 5 (4) 3 (1) 45

For each machine [1...j...m] generate an integer random number [0…6] and put as
one string. The position represents the machine number and the number in that position
is the pdr code to be followed by that machine. Similarly, generate m number of strings.
Each string represents one chromosome and table 15 gives the entire population.

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 247

Table 15. Initial population of the pdr codes

Machine No.
k

Chromosome

No.
c

1 2 3 4 5 6

1 2 1 2 5 5 3
2 5 4 0 3 1 3
3 0 4 3 2 4 2
4 5 3 2 0 0 5
5 0 3 5 3 1 0
6 4 5 5 4 3 3

The weighed sum of makespan, total tardiness and total machine idle time of the
schedules obtained using machine-wise pdr set of all the chromosomes is given in
table 16.

Table 16. Fitness value of the initial population

c Makespan
Total

machine
idle time

Total
tardiness

w1 w2 w3 Fit(c)*

1 105 433 181 0.4908 0.4422 0.0669 299**
2 98 391 61 0.8200 0.1779 0.0020 338
3 96 379 32 0.4172 0.3504 0.2324 199
4 98 391 84 0.5013 0.4812 0.0175 244
5 85 313 66 0.7541 0.2410 0.0050 256
6 101 409 31 0.7338 0.1588 0.1074 319

*fit(c)= fit1*w1 + fit2*w2 + fit3*w3
**fit(c1)= 433 * 0.4908 + 181 * 0.4422 + 105 * 0.0669 = 299.

The process of termination check and new population generation (includes selec-

tion, crossover and mutation) is performed with the initial population given in table
15 in the same way as illustrated in section 3.2. Results obtained with MOGA for the
example problem (ft06) is given below:

Best fitness value: 137
Solution at: Second iteration
Optimal machine-wise-pdr: 1-2-5-2-4-5
Schedule given in: job-wise schedule in table 17
makespan: 76
Total Tardiness: 31
Total Idle Time: 259
Fitness value: 137

248 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

Table 17. Schedule for the example problem

Job
i

Operation
j

Machine
Kij(k)

Start
time
Sij

Completion
time
Cij

Job com-
pletion

time
CiJi

Due
time

di

Tardiness Earliness

1 1 3 32 33 58 52 6 0
1 2 1 33 36
1 3 2 36 42
1 4 4 42 49
1 5 6 49 52
1 6 5 52 58
2 1 2 0 8 76 94 0 18
2 2 3 27 32
2 3 5 37 47
2 4 6 52 62
2 5 1 62 72
2 6 4 72 76
3 1 3 22 27 73 68 5 0
3 2 4 27 31
3 3 6 34 42
3 4 1 44 53
3 5 2 53 54
3 6 5 66 73
4 1 2 25 30 75 70 5 0
4 2 1 39 44
4 3 3 44 49
4 4 4 49 52
4 5 5 58 66
4 6 6 66 75
5 1 3 13 22 40 25 15 0
5 2 2 22 25
5 3 5 25 30
5 4 6 30 34
5 5 1 36 39
5 6 4 39 40
6 1 2 8 11 38 45 0 7
6 2 4 11 14
6 3 6 14 23
6 4 1 23 33
6 5 5 33 37
6 6 3 37 38

4.3 Performance Analysis of the Proposed MOGA

Twenty-eight problems available in the open literature are used for the evaluation of
the three objectives. The first 23 benchmark problems available in the OR library are
available at internet site http://mscmga.ms.ic.ac.uk/ and the next five proposed by
Jawahar et al. (1998) are used for the evaluation purpose. The consolidated results of
28 problems are tabulated in table 18.

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 249

Table 18. Consolidated results

Problem
No.

Problem
ID

instance

Problem
size

Makespan Total
machine
idle time

Total
tardiness

Weighted
sum of

objectives
1 abz5 10 × 10 1587 1948 8097 4218
2 abz6 10 × 10 1369 1882 7744 4052
3 ft10 10 × 10 1496 3459 9851 5461
4 la16 10 × 10 1452 1127 9169 4378
5 la17 10 × 10 1172 1779 7044 3429
6 la19 10 × 10 1251 1581 7164 3372
7 la20 10 × 10 1419 1451 8745 4122
8 orb01 10 × 10 1704 3052 11631 5530
9 orb02 10 × 10 1284 1565 7585 3631

10 orb03 10 × 10 1643 4140 11138 6168
11 orb04 10 × 10 1543 4951 9802 5548
12 orb05 10 × 10 1323 2195 8322 4026
13 orb06 10 × 10 1645 2601 10836 5098
14 orb07 10 × 10 583 699 3423 1862
15 orb08 10 × 10 1340 3498 8840 4621
16 orb09 10 × 10 1462 2029 9439 4539
17 orb10 10 × 10 1382 1806 8271 3850
18 la01 10 × 5 1256 3324 3431 2863
19 la02 10 × 5 1066 2081 2687 2167
20 la03 10 × 5 821 1926 1722 1492
21 la04 10 × 5 861 3194 1798 2034
22 la05 10 × 5 893 1716 2182 1752
23 ft06 6 × 6 76 31 259 137
24 ex01 10 × 6 330 140 1030 530
25 ex02 10 × 6 230 625 625 542
26 ex03 10 × 6 185 130 598 315
27 ex04 10 × 6 305 532 1028 623
28 ex05 10 × 6 380 335 1495 750

5 GA for FJSP

5.1 Description of the Proposed GA

The different modules of the proposed GA that is proposed to evolve simultaneously
the optimal route choice and schedule to the flexible job shop problem is same as
given in fig. 1.

The description of the different modules is as follows:

Data Input Module: The following data pertaining to the problem are given as input:
number of jobs (n), number of machines in the shop (m), number of operations Ji of each
job i (∀i), number of alternative machines (routes) Rij for operation j of job i (∀i, ∀j), the

250 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

machine number Kijr corresponding to the route r of operation j of job i along with its
processing time Tijr (∀i, ∀j, ∀r).

Initial Population Generation Module: A set of chromosomes equal to the size of
the population (pop_size) is randomly generated in this module. Each chromosome
comprises of two parts. The genes of the first part of each chromosome represent the
route choices for the operations of all jobs. This is divided into number of sets of
genes equal to the number of jobs n; one set for one job such that 1st set corresponds
to the 1st job, 2nd set corresponds to the 2nd job and so on. A gene of any set is the rep-
resentation of route choice of an operation. So the number of genes in a set that corre-
sponds to the job i becomes Ji and the total number of genes of 1st part is equal to the

total number of operations of all the jobs (i.e.∑
=

n

i
iJ

1

). The second part of the chromo-

some with as many number of genes equal to total number of operations, represents
the priority of one operation over the other for loading on the machines. The sequence
priority of the 1st operation of job i is represented at the 1st position of Ji number of
genes allotted for job i, 2nd operations’ sequence priority at 2nd position and so on.

Evaluation Module: An active feasible schedule with Giffler and Thompson (1960)
procedure for each chromosome is found by reducing the alternate route choice prob-
lem to a fixed route problem using the first part of the chromosome and resolving the
conflicts with the priorities in the second part of the chromosome in the reduced fixed
route job shop problem. Giffler and Thompson method is used for generating active
feasible schedules for the job shop problem. The procedure ensures that no subse-
quent left shifting is possible since as soon as a job completes its processing on one
machine it becomes a contender for processing on the next machine as determined by
the technological order restriction. If there are two or more contenders for the same
machine, a conflict will occur which is resolved by choosing only one of the contend-
ers to be processed next on the machine. The sequence priority string is used for re-
solving the conflicts that arise between the jobs during the schedule generation.

The makespan time of the schedules corresponding to the chromosome c thus be-
comes the objective function or fitness value (fit (c)) of it. In order to suit the prob-
ability of survival, the fit(c) is modified with negative exponential function as:

new_fit(c) = e-xfit(c) (29)

Each chromosome in the current population is updated as the global best chromo-
some, if its fitness value is less than or equal to the global best solution.

Termination Check Module: A specified number of generations (no_iter) are used
to terminate the GA. On satisfactory termination, the output module prints the global
best solution.

New Population Generation Module: A new population, size equal to pop_ size, is
selected from the previous population based on the concept of probability of survival.
Roulette wheel selection method has been adopted for generation of new population.
The chromosomes for crossover are selected from the new population based on the
probability of crossover (p_cross=0.6). Edge crossover is the crossover operator used

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 251

for both route choice and schedule generation strings. Crossover is followed by muta-
tion in which each gene of all the chromosomes is mutated with a probability of muta-
tion (p_mut=0.05). Swap operator is used for mutating the route choice and schedule
generation strings.

Output Module: This module prints the global best solution of the optimal route
choices of all operations along with its schedule for minimum makespan criterion.

5.2 Numerical Illustration for the Proposed GA

Table 19 provides the process data of 3 jobs - 5 machines problem that is used for il-
lustrating the proposed GA.

Table 19. Process data of the illustrative problem

Machine No. with Processing time
Kijr (Tijr)

corresponding to each route r
Job
 i

Operation
 j

Number of
route choices

Rij r =1 r =2
1 2 2 (3) 3 (7)
2 2 1 (4) 4 (2)

1

3 2 1 (1) 2 (2)
1 2 2 (5) 5 (2)
2 2 2 (3) 3 (6)

2

3 2 1 (3) 5 (7)
1 2 2 (4) 3 (5)
2 2 1 (2) 4 (3)

3

3 2 1 (2) 3 (3)

The above data is given as input in the input module. An initial population of size,

pop_size=10 is randomly generated. Table 20 shows the information for the first
chromosome of the initial population which is used to generate schedule for the op-
erations and to determine the makespan time.

Table 20. Information of Genes corresponding to chromosome c=1

 Chromosome c=1
Gene
No.

g1 g2 g3 g4 g5 g6 g7 g8 g9 Route
choice

String 1 2 1 2 1 1 1 1 1
String 9 4 2 6 1 3 7 5 8 Sequence

priority Gene
No.

g10 g11 g12 g13 g14 g15 g16 g17 g18

Corresponds to Opera-
tion j of job i (i,j)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

252 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

Table 21 shows the phenotype values of process data and priority number for all
operations corresponding to the decoded information shown in table 20.

Table 22 illustrates the Giffler and Thompson schedule generation procedure for
the information given in table 21. Any conflict if arises during the schedule genera-
tion, is resolved using the priority number from the sequence priority string. The op-
eration with the higher priority number precedes the other conflicting operations. The
makespan time for the above schedule is 13 and this becomes the evaluation of fitness
parameter for the chromosome “121211111 942613758”.

Table 21. Phenotype information of chromosome c=1

Table 22. Active feasible schedule generation

Steps of schedule generation s Machine
No.

k

Job
 i 1 2 3 4 5 6 7 8 9

1 6*
2 13 13*

1

3 9 10 10*
1 3 3
2 5 6 6 6 10 10

2

3 4 4 7 7 7
1
2

3

3
1 5
2

4

3
1
2 2

5

3
Datum Time 2 3 5 6 6 9 10 10 13**

Conflict - I - - II - - III
*Flow time of jobs
**Makespan time

Job
i

Operation
j

Route Selected
r

Machine No.
Kijr

Processing time
 Tijr

Priority
Number

1 1 2 3 9
2 2 4 2 4

1

3 1 1 1 2
1 2 5 2 6
2 1 2 3 1

2

3 1 1 3 3
1 1 2 4 7 3
2 1 1 2 5

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 253

In
iti

al
 P

op
ul

at
io

n
G

en
er

at
io

n
M

od
ul

e
E

va
lu

at
io

n
M

od
ul

e
It

er
at

io
n

1:

N
ew

 P
op

ul
at

io
n

G
en

er
at

io
n

M
od

ul
e

c
R

an
do

m
 g

en
er

a-
tio

n
of

In

it
ia

l P
op

ul
a-

ti
on

(p

op
_s

iz
e=

10
)

Fi
tn

es
s

fi
t(

c)

Se
le

ct
io

n

(R
ou

le
tte

 w
he

el
 m

et
ho

d)

C
ro

ss
ov

er

 (
p_

cr
os

s=
0.

6)

M
ut

at
io

n

(p
_m

ut
 =

0.
05

)

E
va

lu
at

io
n

M
od

ul
e

p(
c)

cp

(c
)

=

∑
p(

c)

R
an

do
m

N

um
be

r

ra
nd

()

C
hr

om
os

om
e

c
Se

le
ct

ed

th
at

 s
at

is
fi

es

cp
(c

-1
)
≤

ra
nd

()

<
 c

p(
c)

O
rd

er
 o

f
ch

ro
m

os
om

es

Se
le

ct
ed

(c

ut
 p

oi
nt

)#

C
hr

om
os

om
es

A

ft
er

 C
ro

ss
ov

er

(E
dg

e
C

ro
ss

ov
er

op

er
at

or
)

C
hr

om
os

om
es

af

te
r

M
ut

at
io

n
 (

sw
ap

 o
pe

ra
to

r)

N
ew

 P
op

ul
at

io
n

Fi
tn

es
s

fi
t(

c)

1
12

12
11

11
1

94

26
13

75
8

13
*

0.
12

6
0.

12
6

0.
73

4
22

12
11

12
1

35

42
86

79
1

x
22

12
11

12
1

35

42
86

79
1

22
12

11
12

1
35

42
86

79
1

13
*

2
22

22
22

12
1

49

51
62

78
3

19

0.
09

3
0.

22
0

0.
05

3
12

12
11

11
1

94

26
13

75
8

x
12

12
11

11
1

94

26
13

75
8

12
12

11
11

1

94
26

13
75

8
13

3
21

21
21

22
2

84

57
62

39
1

24

0.
07

2
0.

29
3

0.
99

9
21

22
21

12
1

24

61
58

39
7

1
- (

3)

21
22

21
12

1

24

61
58

39
7

21
2 1

21
12

1
24

61
58

39
7

18

4
12

11
22

22
2

45

37
18

92
6

24

0.
07

2
0.

36
6

0.
41

8
11

12
12

11
1

16

98
23

45
7

6
- (

3)

11
12

11
12

1

53

42
86

79
1

11
12

11
1 1

1
53

62
84

79
1

17

5
11

12
12

11
1

16

98
23

45
7

15

0.
11

4
0.

48
0

0.
93

8
21

22
21

12
1

24

61
58

39
7

2
- (

3)

21
22

21
12

1

24
61

58
39

7
21

22
21

12
1

24
61

58
39

7
21

6
12

11
21

22
1

21

69
74

85
3

14

0.
12

0
0.

60
1

0.
90

0
22

21
21

11
1

18

37
25

96
4

3
- (

5)

22
21

12
11

1

18

69
23

45
7

22
11

21
22

1
58

69
13

42
7

19

7
21

21
22

11
1

47

85
39

21
6

20
0.

08
9

0.
69

0
0.

78
8

22
12

11
12

1

35
42

86
79

1
x

22
12

11
12

1
35

42
86

79
1

22
12

11
12

1
35

42
86

79
1

13

8
22

12
11

12
1

35

42
86

79
1

13

0.
12

6
0.

81
6

0.
12

7
22

22
22

12
1

49

51
62

78
3

x
22

22
22

12
1

49

51
62

78
3

22
22

22
12

1
49

51
62

78
3

19

9
22

21
21

11
1

18

37
25

96
4

18

0.
09

8
0.

91
5

0.
46

7
11

12
12

11
1

16

98
23

45
7

4
- (

5)

11
12

21
11

1

13

78
25

96
4

12
11

21
11

1
13

78
25

96
4

16

10

21
22

21
12

1

24
61

58
39

7
21

0.

08
4

1.
00

0
0.

72
8

22
12

11
12

1

35
42

86
79

1
5

- (
3)

22

12
12

11
1

61
98

23
45

7
22

12
12

11
1

61

98
23

45
7

14

*G
en

er
at

io
n

be
st

 s
ol

ut
io

n

x

-
N

ot
 s

el
ec

te
d

fo
r

cr
os

so
ve

r

-

Pa
re

nt
al

 s
et

s
fo

r
cr

os
so

ve
r

=
{(

3,
 5

),
 (

6,
 9

),
 (

10
, 4

)}

T
ab

le
 2

3.
 I

ll
us

tr
at

io
n

of
 d

if
fe

re
nt

 s
ta

ge
s

of
 n

ew
 p

op
ul

at
io

n
ge

ne
ra

tio
n

254 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

Table 23 illustrates the new population generation mechanism. The parameters
used for the generation of new population are as follows:

Probability of survival p(c) of chromosome c: p(c) = e-xfit(c) / ∑ e-xfit(c)
Constant x value : 0.05

The cumulative probabilities of survival cp(c) of all chromosomes are then found out

using the equation ∑
=

=
=

cc
p(c)cp(c)

c 1

.

The chromosomes selected for the new generation is shown in the table 23. The se-
lected chromosomes then undergo crossover and mutation. The following are the pa-
rameters used for crossover and mutation:

Probability of crossover (p_cross) : 0.6
Crossover operator : Edge Crossover
Probability of Mutation (p_mut) : 0.05
Mutation Operator : Swap operator

The best solution of this generation corresponds to the chromosome c=1, which re-

places the global best if it is better than the previously stored global best solution. The
process of evaluation and new population generation is repeated for 100 generations,
which is the termination criterion for this problem. The best solution evolved is given
in table 24.

Table 24. Optimal Solution (121211221 912348675).

Job
i

Operation
j

Machine
Allotted

Start Time Finish Time
Flow Time

of Job
Makespan

Time
1 2 0 3
2 4 3 5

1

3 1 5 6

6

1 5 0 2
2 2 3 6

2

3 1 6 9

9

1 3 0 5
2 4 5 8

3

3 1 9 10

10

10

5.3 Performance Analysis of the Proposed GA

The performance of the proposed GA is evaluated by comparing its solutions with the
best known solutions (BKS) for a set of benchmark instances from literature. The first
set of benchmark instances are from Thomalla (2001), in which all the problems are
flexible job shop instances with total flexibility, i.e., all the operations in each of the
problem instances can be performed on all the machines. The second set of bench-
mark instances are from Brandimarte (1993), in which all the problems are flexible

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 255

job shop instances with partial flexibility. The results of the proposed GA are evolved
with the programs coded in C language.

The termination criterion used for GA is the total number of iterations which is
equal to 100 times the total number of operations of all jobs. The crossover probabil-
ity and mutation probability considered for the analysis is 0.6 and 0.05, respectively.
The parameter values for the proposed GA are obtained by fine tuning through trials.
The three proposed algorithms are run 5 times for each problem and the best solution
obtained has been taken for comparison. Table 25 shows the results of the proposed
GA that are obtained with Pentium-IV 2.4 GHz processor.

Table 25. Result obtained by GA for the set of data from literature

Makespan time

Reference
Problem
Name

Problem
Size

n × m
Lower

Bound*
BKS* GA

EX1 3×3 -- 117 117
EX2 4×3 -- 109 109

Thomalla
(2001)

EX3 6×10 -- 316 348
MK01 10×6 36 40 40
MK02 10×6 24 26 29
MK03 15×8 204 204 204
MK04 15×8 48 60 71
MK05 15×4 168 173 188
MK06 10×15 33 58 81
MK07 20×5 133 144 152
MK08 20×10 523 523 523
MK09 20×10 299 307 378

Brandimarte
(1993)

MK10 20×15 165 198 265
*reported in Mastrolilli and Gamberdella(2000)

The comparison between the proposed GA and the best known solution (BKS) in

the literature for the above benchmark problems reveals that proposed GA is compe-
tent with the existing methodologies. For five problems the solution obtained with GA
is the same as the BKS. For the remaining problems the solution obtained with GA is
closer to the BKS. For the last two problems (MK09 and MK10) the solution obtained
with the proposed GA is considerably poor. To improve the performance, the various
parameters and operators considered in the GA could be varied and fine tuned so that
the above limitation could be overcome. Local search methods such as tabu search,
simulated annealing, bottleneck shifting procedure, etc. could be incorporated to en-
hance the performance of the proposed GA.

6 Conclusion

In this chapter, genetic algorithm based heuristics are presented for the two well
known job shop scheduling models, the JSP and the FJSP. The genetic algorithms

256 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

adopt the Giffler and Thompson (GT) schedule generation procedure for active feasi-
ble schedule generation. The proposed GAs for the JSP derives optimal machine-
wise-pdr set that is used for generating active feasible schedules with GT algorithm.
The performance of the proposed GAs for JSP is analyzed for both single objective
and multiple objective criteria and the results obtained reveals that the optimal ma-
chine-wise-pdr obtained with the proposed GA is efficient in providing optimal solu-
tions for the JSP in reasonable computational time. The chromosome encoding
scheme used in the proposed GA for FJSP makes it capable to rummage through the
entire solution space and provide all possible instances that an enumerative search can
and therefore is capable of finding the optimal or near-optimal solutions under exten-
sive searches. The performance of the proposed GA for FJSP is analyzed with various
benchmark instances for makespan time criterion which reveals that the proposed GA
is competent with the existing approaches. The performance of the proposed GA for
FJSP can be improved by incorporating local search methods, such as simulated an-
nealing algorithm, tabu search, etc. The proposed GAs can be extended to solve more
complex job shop models like the assembly job shop problem.

Nomenclature

c,c’,c”,c”’ Index for chromosome (c = 1,…, pop_size)
Cij Completion time of operation Oij
cp(c) Cumulative probability of survival of chromosome c
di Due date of job i
fit(c) Fitness value of chromosome c
FJSP Flexible job shop scheduling problem
GA Genetic Algorithm
GT Giffler and Thompson schedule generation procedure
gbest Global best solution
H A very large positive integer
i,i’ Index for job (i = 1,…, n)
j, j’ Index for operations on job (j = 1,…, Ji)
Ji Number of operations required to complete job i
JSP Classical job shop scheduling problem
k Index for machine (k = 1,…, m)
Kij Machine number for operation Oij in JSP
Kijr Machine number for operation Oij in its route r in FJSP
m Number of machines in the shop
new_fit(c) Modified fitness value of chromosome c
n Number of jobs
Nk Set of operations {Oij} that can be loaded on machine k
no_iter Number of iterations
Oij Operation j of job i
p(c) Probability of survival of chromosome c
p_cross Probability of crossover
p_mut Probability of mutation
pop_size Population size

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 257

r Index for route choice (r = 1,…, Rij) in FJSP
rand(), randi Random number between 0 and 0.999
Rij Number of alternate routes for operation Oij in FJSP
Sij Start time of operation Oij
tij Processing time of operation Oij in JSP
tijk Processing time of operation Oij on machine k in FJSP
Tijr Processing time of operation Oij in its route r in FJSP
tn Iteration identifier (tn = 1, …, no_iter)
wi Weight assigned to the objective function i
x Scaling parameter
Xijk Decision variable for machine selection for operation Oij in FJSP
Yiji’j’ Decision variable for generating a sequence between the operations

Oij and Oi’j’ in JSP
Yiji’j’k Decision variable for generating a sequence between the operations

Oij and Oi’j’ for loading on machine k in FJSP

References

1. Baker, K.R.: Introduction to Sequencing and Scheduling. Wiley, New York (1974)
2. Biegel, J.E., Davern, J.J.: Genetic algorithms and job shop scheduling. Computers and In-

dustrial Engineering 19(1-4), 81–90 (1990)
3. Bierwirth, C., Mattfeld, D.C.: Production scheduling and rescheduling with genetic algo-

rithms. Evolutionary computation 7, 1–17 (1999)
4. Blackstone, J.H., Phillips, D.T., Hogg, G.L.: A state of the art survey of dispatching rules

for manufacturing job shop operations. International Journal of Production Research 20,
27–45 (1982)

5. Blazewicz, J., Ecker, K., Schmidt, G., Wegalrz, J.: Scheduling in computer and manufac-
turing systems. Springer, Heidelberg (1993)

6. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu Search. Annals of
Operations research 41, 157–183 (1993)

7. Brucker, P.: Scheduling algorithms. Springer, Heidelberg (1995)
8. Brucker, P., Schlie, R.: Job shop scheduling with multi-purpose machines. Computing 45,

369–375 (1990)
9. Chakraborthy, U.K., Deb, K., Chakraborthy, M.: Analysis of selection algorithms: A

Markov chain approach. Evolutionary computation 4(2), 133–167 (1996)
10. Chen, H., Ihlow, J., Lehmann, C.: A genetic algorithm for flexible job-shop scheduling. In:

Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp.
1120–1125 (1999)

11. Choi, I.C., Choi, D.S.: A local search algorithm for job shop scheduling problems with al-
ternative operations and sequence-dependent setups. Computers and Industrial Engineer-
ing 42, 43–58 (2002)

12. Chryssolouris, G., Chan, S.: An integrated approach to process planning and scheduling.
Annals of CIRP 34, 413–417 (1985)

13. Conway, R.W., Maxwell, W.L., Miller, L.M.: Theory of Scheduling. Addison-Wesley,
Reading (1967)

14. Dauzere-Peres, S., Paulli, J.: An integrated approach for modeling and solving the general
multiprocessor job-shop scheduling problem with tabu search. Annals of Operations Re-
search 70, 281–306 (1997)

258 S.G. Ponnambalam, N. Jawahar, and B.S. Girish

15. Dorndorf, U., Pesche, E.: Combining genetic and local search for solving the job shop
scheduling problem. In: Proceedings of APMOD 1993, Budapest, vol. 1, pp. 142–149
(1993)

16. Dorndorf, U., Pesche, E.: Evolution based learning in a job shop environment. Computers
and Operations Research 22, 25–40 (1995)

17. French, S.: Sequencing and Scheduling: An introduction to the mathematics of Job-Shop.
Ellis Horwood Limited, Chichester (1982)

18. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research 1, 117–129 (1976)

19. Giffler, B., Thompson, G.L.: Algorithms for solving production scheduling problems. Op-
erations Research 8, 487–503 (1960)

20. Girish, B.S., Jawahar, N.: Scheduling job shops associated with multiple routings with ge-
netic and ant colony heuristics. International journal of production research (2008) (in
print) (available online) DOI:10.1080/00207540701824845

21. Groover, M.P.: Automation, production systems, and computer integrated manufacturing.
Prentice Hall of India Pvt. Ltd, New Delhi (2003)

22. Hankins, S.L., Wysk, R.A., Fox, K.R.: Using a CATS database for alternative machine
loading. Journal of Manufacturing Systems 3, 115–120 (1984)

23. Ho, N.B., Tay, J.C.: GENACE: An Efficient Cultural Algorithm for Solving the Flexible
Job-Shop Problem. In: Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 1, pp. 1759–1766 (2004)

24. Ho, N.B., Tay, J.C.: Evolving dispatching rules for solving the flexible job-shop problem.
In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp.
2848–2855 (2005)

25. Ho, N.B., Tay, J.C., Lai, E.M.K.: An effective architecture for learning and evolving flexi-
ble job-shop schedules. European Journal of Operational Research 179, 316–333 (2007)

26. Hoitomt, D.J., Luh, P.B., Pattipati, K.R.: A practical approach to job shop scheduling
problems. IEEE transactions on Robotics and Automation 9(1), 1–13 (1993)

27. Hussain, M.F., Joshi, S.B.: A Genetic Algorithm for Job Shop Scheduling problems with
Alternate Routing. In: Proceedings of IEEE International conference on systems, man and
cybernetics, vol. 3, pp. 2225–2230 (1998)

28. Hutchison, J.: Current and future issues concerning FMS scheduling. International journal
of management sciences 19(6), 529–537 (1991)

29. Iwata, K., Murotsu, Y., Oba, F., Uemura, T.: Optimization of selection of machine tools,
loading sequence of parts and machining conditions in job-shop type machining systems.
Annals of the CIRP 27, 447–451 (1978)

30. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and future. Euro-
pean Journal of Operational Research 113(2), 390–434 (1999)

31. Jawahar, N., Aravindan, P., Ponnambalam, S.G., Arvindkarthikeyan, A.: Branch bound
technique in combination with priority dispatching rules for scheduling FMS. In: Proceed-
ings of the International Conference on CAD/CAM, Automation, Robotics and Factories
of the future (INCARF 1996), New Delhi, vol. 1, pp. 143–150 (1996)

32. Jawahar, N., Aravindan, P., Ponnambalam, S.G.: A Genetic Algorithm for Scheduling
flexible manufacturing systems. International journal of Advanced Manufacturing Tech-
nology 14, 588–607 (1998)

33. King, J.R.: Production Planning and control. Pergamon press, Oxford (1975)
34. Kim, Y.K., Park, K., Ko, J.: A symbiotic evolutionary algorithm for the integration of

process planning and job shop scheduling. Computers and operations research 30, 1151–
1171 (2003)

 Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops 259

35. Kopfer, H., Mattfield, D.C.: A hybrid search algorithm for the job shop problem. In: Pro-
ceedings of the First International Conference on Operations and Quantitative Manage-
ment, vol. 2, pp. 498–505 (1997)

36. Kutanoglu, E., Sabuncuoglu, I.: An analysis of heuristics in a dynamic job shop with
weighted tardiness objectives. International Journal of Production Research 37(1), 165–
187 (1999)

37. Masters, T.: Practical Neural Network Recipes in C++. Academic Press, USA (1993)
38. Mastrolilli, M., Gamberdella, L.M.: Effective neighbourhood for the flexible job shop

problem. Journal of Scheduling 3(1), 3–20 (2000)
39. Mesghouni, K., Hammadi, S., Borne, P.: Evolution programs for job shop scheduling. In:

Proceedings of the IEEE international conference on computational cybernetics and simu-
lation, vol. 1, pp. 720–725 (1998)

40. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn.
Springer, Heidelberg (1996)

41. Moon, J., Lee, J.: Genetic Algorithm Application to the Job Shop Scheduling problem with
Alternative Routing. Technical report-Brain Korea 21 logistics Team, Pusan National Uni-
versity (2000)

42. Muarata, T., Ishibuchi, H., Tanaka, H.: Multiobjective genetic algorithm and its applica-
tions to flow shop scheduling. Computers Industrial Engineering 30(4), 957–968 (1996)

43. Pinedo, M.L.: Scheduling theory: theory algorithms and systems. Englewoodcliffs, New
Jersey (1995)

44. Pinedo, M.L.: Planning and scheduling in manufacturing and services. Springer, New
York (2005)

45. Ponnambalam, S.G., Ramkumar, V., Jawahar, N.: A multiobjective genetic algorithm for
job shop scheduling. Production Planning and control 12(8), 764–774 (2001)

46. Schultz, J., Mertens, P.: A comparison between an expert system, a GA and priority for
production scheduling. In: Proceedings of the First International Conference on Operations
and Quantitative Management, vol. 2, pp. 505–513 (1997)

47. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for solving
multi-objective flexible job-shop problems. Computers and Industrial Engineering 54,
453–473 (2008)

48. Tay, J.C., Wibowo, D.: An Effective Chromosome Representation for Evolving Flexible
Job Shop Schedules. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 210–
221. Springer, Heidelberg (2004)

49. Thomalla, C.S.: Job shop scheduling with alternative process plans. International Journal
of Production Economics 74(1-3), 125–134 (2001)

50. Vairaktarakis, G.L., Cai, X.: The value of processing flexibility in multipurpose machines.
IIE transactions 35, 763–774 (2003)

51. Wilhelm, W., Shin, H.: Effectiveness of alternative operations in a flexible manufacturing
system. International Journal of Production Research 23, 65–79 (1985)

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 261–300.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Scheduling Practice and Recent Developments in Flow
Shop and Job Shop Scheduling

Betul Yagmahan1 and Mehmet Mutlu Yenisey2

1 Uludag University, School of Engineering and Architecture
 Department of Industrial Engineering
 Gorukle Campus, 16059 Bursa Turkey
 betul@uludag.edu.tr
2 Istanbul Technical University, School of Management
 Department of Industrial Engineering
 34367 Macka, Istanbul Turkey
 yenisey@itu.edu.tr

Summary. Each plant and/or service provider performs several tasks to satisfy customer de-
mand. Every task consumes several resources in order to be completed. Scheduling deals with
the allocation of limited resources to tasks over time. Because the resources used in manufac-
turing activities are very limited, scheduling becomes a very important concept in managerial
decision-making. This importance draws the attention of both practitioners and academicians to
scheduling.

Scheduling problems usually lie in the NP-hard problem class. Difficulty especially in-
creases as the number of jobs or machines involved increases. As the problem size increases,
exact solution techniques become insufficient. This chapter provides an overview of recent de-
velopments in computational intelligence approaches to flow shop and job shop scheduling.

1 Scheduling Theory and Problems

Sequencing and scheduling are important research and application pitches in both
manufacturing and service systems. It is always important to meet customer-demanded
shipping dates for customer satisfaction. Furthermore, better schedules in terms of the
performance measure(s) used as objective will improve the system’s performance.
Hence, a manufacturer or a service provider can maintain lower costs in order to
strengthen his power against the intense competition in today’s global environment.

The terms “sequencing” and “scheduling” are usually used interchangeably. How-
ever, distinguishing them is useful. Convey et al. (1967) claim that whenever there is
a choice as to the order in which a number of tasks can be performed, there will be a
sequencing problem. Baker (1974) discusses the sequencing problem as a specialized
scheduling problem in which the ordering of jobs completely determines a schedule.
Pinedo (2002) defines a sequence as usually corresponding to a permutation of n jobs
or the order in which jobs are to be processed on a given machine. It is clear that, con-
sidering the above arguments, if the studied problem is only to order the task, then the
problem falls into the category of sequencing problems.

262 B. Yagmahan and M.M. Yenisey

The term of “scheduling” has two meanings in the literature. The first definition re-
lates to function while the second definition relates to theory. In the scheduling func-
tion, managers seek the answers to these questions: What product or service is pro-
duced? What will be the production scale? Which resources will be used? The
planning function of an enterprise finds the answers to these questions. Several mod-
els can be used to find the answers required. The oldest – and probably the best
known – model is the Gantt chart. The Gantt chart consists of horizontal bars, which
represent jobs. The lengths of bars show the duration of jobs. The bars are arranged
by the resources they use.

Scheduling Theory mainly focuses on the mathematics, models, and solution tech-
niques for the scheduling function. All models and solution techniques for scheduling
aim to find the answers to these two questions: Which resources will be allocated to
perform each task? When will each task be performed? The first question involves al-
location decisions while the second question pertains to sequencing problems.

Morton and Pentico (1993) define scheduling more broadly. They claim that
scheduling is the process of organizing, choosing, and timing resources to perform all
the activities required to meet customer demand. From their viewpoint, scheduling is
strategic.

All definitions that made for scheduling lead us to one result. Scheduling is one of
the most important decision-making processes in the management of enterprises as it
forms an important basis for planning activities. Moreover, it has a wide area of ap-
plication, covering project planning, shop management, timetabling, routing of trans-
portation vehicles, etc.

French (1982) classifies the scheduling problem into four categories based on the
dichotomies of static vs. dynamic and deterministic vs. stochastic, which are founded
on the job-arrival discipline and uncertainty, respectively.

In scheduling problems, the objective function is defined in terms of several per-
formance measures. These measures can be flow time, makespan, earliness, lateness,
tardiness, number of tardy jobs, etc. It is necessary to define preliminaries of schedul-
ing before discussing the details.

The following parameters are the bases for computation and are given:

Processing time (it) : Length of time required for job i to be completed

Ready time (ir) : Time point at which job i is ready to be processed

Due date (id) : Time point at which job i should be completed no later

than

The following parameter is found after the complete schedule was determined:

Completion time (iC) : Time point at which job i is completed

The following parameters are basic quantitative measures, based on completion
time, used to evaluate the schedule:

Flow time (iF) : Length of time job i spends in the system

Lateness (iL) : Length of time that the completion of job i exceeds its

due date

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 263

These parameters are calculated as follows:

iii rCF −= (1.1)

iii dCL −= (1.2)

Lateness may be negative, zero, or positive. Non-negative values show good per-

formance of the schedule. However, negative values stand for bad performance.
Negative lateness points out earliness for that job. Usually, there is no reward for
early jobs, but late jobs incur several costs. Therefore, tardiness is defined for abso-
lute late jobs as follows:

{ }ii LT ,0max= (1.3)

Similarly earliness can be defined:

{ }ii LE −= ,0max (1.4)

Schedules are evaluated using several performance measures. These measures are

usually based on completion times. Assume that we have n jobs scheduled. The most
common measures can be defined as follows:

Mean flow time:
n

F

F

n

i
i∑

== 1 . (1.5)

Mean tardiness:
n

T

T

n

i
i∑

== 1 . (1.6)

Maximum flow time: { }i
ni

FF
≤≤

=
1

max max . (1.7)

Maximum lateness: { }i
ni

LL
≤≤

=
1

max max . (1.8)

Maximum tardiness: { }i
ni

TT
≤≤

=
1

max max . (1.9)

Makespan: { }i
ni

CC
≤≤

=
1

max max . (1.10)

Number of tardy jobs: ()∑
=

=
n

i
iT TN δ , where

()
⎩
⎨
⎧

=
>=

otherwise ,0)(

0 if ,1

x

xx

δ
δ

. (1.11)

264 B. Yagmahan and M.M. Yenisey

Performance measures can be divided into two categories: measures based on
completion times and measures based on due dates. The mean flow time, mean com-
pletion time, maximum flow time, and makespan are in the first category while mean
lateness, maximum lateness, mean tardiness, maximum tardiness, and number of
tardy jobs fall into the second category. Moreover, jobs can be weighted according to
their importance and these weights can be added into the measures.

Although some problems generally deal with only one objective, problems that aim
to achieve more than one objective are also gaining increasing interest and impor-
tance. T’kindt and Billaut (2002) discuss multicriteria scheduling problems in detail.

Brucker and Knust (2006) present models and algorithms for complex scheduling
problems. They discuss both project and machine scheduling and summarize the well
known exact solution and heuristic methods.

2 Scheduling Problem Types

Scheduling has a very wide area of application. Almost every service provider and
manufacturer experiences a kind of scheduling problem. For example, airports have
landing and take-off sequencing problems; airline operators have timetabling and
routing problems; a university must decide on class and exam schedules; a manufac-
turer experiences several shop problems in order to meet customer demand. The vari-
ety of these problems leads both researchers and practitioners to study a wide range of
scheduling problems and solution techniques. In this section, we summarize the tax-
onomy of scheduling problems.

2.1 Project Scheduling

Project Scheduling mainly deals with the sequencing of activities subject to prece-
dence constraints and allocation of resources to these activities in a project. Pinedo
(2005) claims that the project scheduling problem is similar to parallel machine prob-
lem that has an infinite number of machines. The objective is to minimize the
makespan. In another words, project scheduling and planning are the longest path
problems in terms of Graph Theory.

The well known methods used in project scheduling are CPM (Critical Path
Method) and PERT (Program Evaluation and Review Technique). CPM is used for
projects with deterministic activity durations while PERT is used for projects with
probabilistic activities.

2.2 Single Machine Scheduling

Although the Single Machine Scheduling Problem is the simplest formulation in
scheduling, it constitutes the foundation of Scheduling Theory. All other problems
arise from the single machine scheduling formulation. Therefore, it plays a crucial
role in both theory and application.

Basically, the single machine scheduling problem is concerned with the sequencing
of multiple jobs on a single machine. Examples of single machine problems are the
running of processes on one CPU computer or landing and take-off scheduling in a
one-runway airport. The characteristics of jobs are process time, ready time, and due

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 265

date. The objectives can be related to throughput measures, like total flow time, mean
flow time, weighted flow time, or waiting times, or to measures related to the due
date, like total tardiness, weighted tardiness, or number of tardy jobs. It is clear that
makespan is independent to the schedule in a single machine environment.

The primary rules for solving single machine scheduling problems are SPT (Short-
est Processing Time), WSPT (Weighted Shortest Processing Time), EDD (Earliest
Due Date), and MST (Minimum Slack Time). Additionally, several techniques, like
Hodgson’s Algorithm, Wilkerson-Irwin Algorithm, Dynamic Programming Ap-
proach, or Branch-and-Bound Approach, can be used to solve these problems.

2.3 Parallel Machines Scheduling

The generalization of the single machine scheduling problem leads us to multiple ma-
chine problems. If we are to extend single machine scheduling, the first problem area
is the Parallel Machine Scheduling Problem.

Assigning customers to bank teller windows in a bank or computing on a multi-
processor computer are examples of parallel scheduling problems.

Regarding multi-machine problems, the performance measure of makespan be-
comes meaningful and objective. Other performance measures for parallel machine
problems, besides makespan, are mean flow time, weighted mean flow time, maxi-
mum lateness, and number of tardy jobs.

Brucker (2004) categorizes parallel machine problems into three classes according
to machine types.

• Identical machines: All machines have the same specifications. Thus,
there is no difference in the processing of jobs among machines.

• Uniform machines: The machines have different speeds (js). In this

problem category, each job has a processing requirement (ip). The proc-

essing of job i on machine j requires ji sp time units. If js is set equal

to 1 for all machines, then a parallel identical machines problem presents
itself.

• Unrelated machines: Each job has different processing times on different
machines. This model is the generalization of the uniform parallel ma-
chine problem.

Another important point is that jobs may be independent or have precedence

constraints.
Baker (1974) constructs an integer programming formulation for problems of par-

allel identical processors with independent jobs, as given below:

Minimize y (2.1)

 Subject to:

∑
=

≥−
n

i
iji xty

1

0 , mj ≤≤1 (2.2)

266 B. Yagmahan and M.M. Yenisey

∑
=

=
m

j
ijx

1

1 , ni ≤≤1 (2.3)

0≥ijx , and integer

In this formulation, y stands for makespan, ijx is decision variable which is equal

to 1 if job i is assigned to machine j and it represents the processing time of job i.

2.4 Shop Scheduling

So far, jobs have been part of a single operation, and we have been interested in one
resource. Even in the case of the parallel machine problem, we have actually dealt
with a single resource of similar machines.

Brucker (2004) defines general shop scheduling as being composed of problems
having n jobs (i=1,…,n), and m machines (M1,…,Mm). However, each job i consists of
a set of operations Oij (j=1,…,ni). The processing times of these operations are tij and
each operation must be processed on a machine μij∈{M1,…,Mm}. Moreover, there
may be precedence relationships among the operations. Furthermore, each job can be
processed only by one machine at a time while a machine can process only one job at
a time. The objective is to find out a feasible schedule that minimizes a performance
measure. This performance measure usually a function of completion time. Addition-
ally, the defined problem may aim to satisfy more than one objective.

The shop scheduling problem is divided into several categories according to proc-
essing of the shop, flow of jobs on the shop-floor, and routing of production. The fol-
lowing sections discuss the types of shop scheduling problems and the differences
among them.

2.4.1 Flow Shop Scheduling
The flow shop scheduling problem will be discussed in Section 3 in detail. However,
it will be useful to give a brief introduction and basic derivation of flow shop schedul-
ing in order to achieve consistency throughout this chapter.

As explained above, there are m machines and each job has m operations in a shop
environment. The main characteristic of a flow shop is that the flow of work is unidi-
rectional. Machines have a natural order in the flow shop according to work progress.
Hence, the machines can be numbered 1,2,…,m and the operations of a job i have cor-
responding numbers (i,1), (i,2),…,(i,m). If all jobs require one operation on each ma-
chine, then it is called a pure flow shop. Jobs require fewer than m operations in the
general flow shop.

A number of variants can be defined for the flow shop, like in a skip-shop or a re-
entrant flow shop. Jobs may skip some machines in a skip-shop while some machines
may be visited more than once in a re-entrant flow shop.

The objective of the flow shop scheduling problem is to find a job order of πj (πj
={(i,1), (i,2),…,(i,m)|i=1,…,m} for each machine j in order to minimize a perform-
ance measure based on completion time, like makespan.

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 267

If the solution is limited to job sequences π1, π2,…,πm where π1=π2=…=πm , then
this is called a permutation flow shop.

2.4.2 Job Shop Scheduling
The job shop problem generalizes the flow shop problem. There are n jobs i=1,…,n
and m machines M1,…,Mm. Job i is made of a sequence of ni operations;

iinii OOO ,...,, 21 . The precedence constraints are defined between the operations of

each job like Oij → Oij+1 (j=1,…,ni-1). A processing time tij is associated with each op-
eration Oij to be processed on machine μij∈{M1,…,Mm}. The objective is to find a fea-
sible schedule that minimizes some performance measure depending on the comple-
tion time Ci of the last operation

iinO of each job. It is assumed that μij≠μij+1 for

j=1,…,ni-1 if otherwise not stated.
The main difference between a flow shop and a job shop is that the job shop does

not have a unidirectional work flow. Therefore, it is necessary to consider the ma-
chine number in the route of the jobs on the shop floor. For this purpose, the third
subscript indicator is used in order to express which operation of a job should be
processed on which machine.

Conway et al. (1967) give an integer programming formulation for the job shop
problem following Manne’s (1960) model. Moreover, they discuss the modification
of the objective according to several performance measures.

Baker (1974), Morton and Pentico (1993), Błażewicz et al. (2001), Pinedo (2002),
and Pinedo (2005) give a number of examples for the integer programming model
based on a disjunctive constraint formulation.

Disjunctive constraint formulation is based on graph theory. A directed graph is
developed to represent the routes of operations for each job. Two kinds of arcs are
used in this graph. The conjunctive arcs represent the routes while disjunctive arcs
stand for the operations of different jobs to be processed on the same machine. The
nodes correspond to the operations to be performed for particular jobs. Pinedo’s
(2005) formulation is given below for the reader’s information.

Minimize Cmax (2.4)

 Subject to

ijijhj tyy ≥− for all (i,j) → (h,j)∈A, (2.5)

ijij tyC ≥−max for all (i,j)∈N, (2.6)

ikikij tyy ≥− or ijijik tyy ≥− for all (i,k) and (i,j), i=1,…,m, (2.7)

0≥ijy for all (i,j)∈N, (2.8)

where yij denotes the starting time of operation (i,j), N is the set of all operations (i,j),
A stands for the set of precedence constraints (i,j) → (h,j) and Cmax represents the

268 B. Yagmahan and M.M. Yenisey

makespan. In this formulation, (i,j) and (h,j) denotes two consecutive operations of
job j. The first constraint set guarantees the precedence relationship between the op-
erations of each job while the third set of constraints ensures the order of the opera-
tions of different jobs to be processed on the same machine. These constraints are
called disjunctive constraints and are why this formulation is called disjunctive
programming.

2.4.3 Open Shop Scheduling
An open shop problem is a special case in which there is no precedence relationship
between the operations of jobs. In another words, it is a generalization of the flow
shop problem. In this problem, each job i consists of m operations Oij (j=1,…,m). The
operation Oij must be processed on machine Mj. The objective is to find job sequences
(orders of the operations of the same job) and machine sequences (orders of the op-
erations to be performed on the same machine).

2.5 Other Examples

The application of scheduling is not only limited to machine scheduling in manufactur-
ing systems in the manner of single or multiple processors. In practice, there are nu-
merous interesting applications to service systems. A few examples are (Pinedo 2005):

• Reservation systems in car-rental agencies
• Exam scheduling
• Classroom assignments
• Scheduling and timetabling for sports tournaments
• Scheduling network television programs
• Conference presentation scheduling
• Transportation scheduling and timetabling
• Workforce scheduling
• Computer resource scheduling

3 Solution Techniques in Scheduling

3.1 Basic Descriptions

Recently, flow shop production has been widely used in many industrial applications.
For this reason, the flow shop scheduling problem has become an attentively studied
problem over the last 50 years. The flow shop is characterized by a unidirectional flow
of work, i.e., all jobs have the same processing order through the machines. A flow
shop contains a natural machine order. Thus, it is possible to number the machines so
that if the ith operation of any job precedes the jth operation, then the machine required
by ith operation has a lower number than the machine required by the jth operation.
The machines in a flow shop are numbered as 1,2,...,m, and the operations of job i are
correspondingly numbered as (i,1),(i,2),...,(i,m). Figure 1 represents a pure flow shop.
In this system, all jobs require one operation on each machine. Figure 2 represents a
more general flow shop. In the second case, jobs may require fewer than m operations,

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 269

and their operations may not always require adjacent machines in the numbered order.
Additionally, the first and last operations may not always occur at machines 1 and m,
respectively.

Fig. 1. The pure flow shop

Fig. 2. The general flow shop

The flow shop scheduling problem has these main assumptions (Baker, 1974):

• A set of n multiple-operation jobs is available for processing at time zero.
• Setup times for the operations are sequence-independent and are included in

processing times.
• Jobs descriptions are known in advance.
• m different machines are continuously available.
• Individual operations are not preemptable.

Most of the literature on flow shop scheduling is limited to a special case of the
flow shop, the permutation flow shop, in which each machine processes jobs in the
same order. Thus, in a permutation flow shop, once the job sequence on the first ma-
chine is fixed, the sequences will be kept on all remaining machines. The resulting
schedule is called a permutation schedule (Błażewicz et al., 1996).

270 B. Yagmahan and M.M. Yenisey

3.2 Objectives

The flow shop scheduling problem consists of scheduling n jobs with the same order,
given processing times on m machines for a given objective. The objective of this
problem is mostly to minimize the total completion time, i.e., makespan.

The Gantt chart example for the four-job five-machine permutation flow shop
scheduling problem is given in Figure 3.

m 1

m 2

m 3

0

Makespan

π 1

π 1

π 1

π 2

π 2

π 2

π 3

π 3

π 3

π 4

π 4

π 4

Fig. 3. The Gantt chart for the flow shop scheduling problem

The n-job, m-machine flow shop scheduling problem of minimizing makespan
(n/m/P/Cmax) is described as follows:

t(i,j) : processing time for job i on machine j

 (i=1,2,...,n), (j=1,2,...,m)
n : total number of jobs to be scheduled
m : total number of machines in the process
{ nπππ ,,, 21 … } : permutation job set

The makespan can be formulated as follow:

Completion times C(πi, j):

C(π1, 1)= t(π1, 1), (3.1)

C(πi, 1)= C(πi-1, 1)+ t(πi, 1), i=2,...,n (3.2)

C(π1, j)= C(π1, j-1)+ t(π1, j), j=2,...,m (3.3)

C(πi, j)= max{C(πi-1, j), C(πi, j-1)} + t(πi, j)}, i=2,...,n; j=2,...,m (3.4)

Makespan is defined as:

),()(max mCC nππ = . (3.5)

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 271

Moreover, different objectives, such as total flow time (TFT), mean flow time
(F), maximum tardiness (Tmax), total tardiness (TT), and idletime (IT) can be consid-
ered as objectives in the flow shop scheduling problem.

These objectives are described as follows where)(id π is due date for job i:

∑
=

=
n

i
i mCTFT

1

),(π , (3.6)

∑
=

⋅=
n

i
i mCnF

1

),()/1(π , (3.7)

{ }{ }nidmCT ii ,,10),(),(maxmaxmax …=−= ππ , (3.8)

{ }∑
=

−=
n

i
ii dmCTT

1

0),(),(max ππ , (3.9)

{ }{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=−−+−= ∑
=

− mjjCjCjCIT
n

i
ii ,,20),,()1,(max)1,(

2
11 …πππ , (3.10)

3.3 Mathematical Model

A single objective model for the flow shop scheduling problem is given by following
formulations (Błażewicz et al., 1996 and 2001). The decision variables are:

⎩
⎨
⎧

=
otherwise0

npermutatio in theposition th the toassigned is job if1 ki
zik (3.11)

kjx : Idle time (waiting time) on machine j before the start of the job in position k

in the permutation of jobs

kjy : Idle time (waiting time) of the job in the k-th position in the permutation,

after finishing of processing on machine j, while waiting for machine j+1 to
become available

maxCMinimize (3.12)

s.t. 1
1

=∑
=

n

k
ikz , ni ,...,1= (3.13)

272 B. Yagmahan and M.M. Yenisey

1
1

=∑
=

n

i
ikz , nk ,...,1= (3.14)

∑∑
=

+++
=

+++ ++=++
n

i
rkikir

n

i
rkrkrkkiri xztyxyzt

1
1,1,1

1
,,1,11, ,

1,...,1 −= nk ; 1,...,1 −= mr (3.15)

max
11 1

Cxzt
n

k
km

n

k

n

i
ikmi =+∑∑∑

== =

, (3.16)

j

j

r

n

i
iri xzt 1

1

1 1
1 =∑∑

−

= =

, mj ,...,2= (3.17)

01 =jy , 1,...,1 −= mj (3.18)

Equations (3.13) and (3.14) assign jobs and permutation positions to each other.

Equation (3.15) provides Gantt chart accounting between all adjacent pairs of ma-
chines in the m-machine flow shop. Equation (3.16) determines the makespan. Equa-
tion (3.17) accounts for the machine idletime of the second and subsequent machines
while they wait for the arrival of the first job. Equation (3.18) ensures that the first job
in the permutation always pass immediately to each successive machine.

3.4 Complexity

The flow shop scheduling problem of minimizing makespan is a classical combinato-
rial optimization problem for the NP-hard problem class (Garey et al., 1976; Gonzalez
et al., 1978). Only a few particular cases are efficiently solvable (Błażewicz et al.,
1996 and 2001):

• The two machine flow shop case is simple. In the same way, the case of three

machines is a solvable problem in polynomial time under very restrictive re-
quirements on the processing times of the intermediate machine.

• The two machine flow shop scheduling of Johnson can be applied to a case with
three machines if the intermediate machine is not the bottleneck.

• The two machine flow shop can be solved using the graphical method.
• Johnson’s algorithm solves the preemptive two machine flow shop.
• If the definition of precedence constraints ji ππ < specifies that job i must com-

plete its processing on each machine before job j may start processing on that
machine, then the two machine flow shop problem with three or series-parallel
precedence constraints and makespan minimization is solvable in polynomial
time.

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 273

3.5 The Flow Shop Scheduling Solution Algorithms

Initial research concerning flow shop scheduling problem was done by Johnson
(1954). Johnson described an exact algorithm to minimize makespan for the n-jobs
two-machine flow shop scheduling problem. Later, algorithms, such as branch-and-
bound and beam search, that yield the exact solution for this problem were proposed.
The flow shop scheduling problem that includes many jobs and machines is a combi-
natorial optimization problem for the NP-hard problem category. Therefore, near op-
timum solution techniques are preferred. Several heuristic approaches for the flow
shop scheduling problem are developed. In recent years, metaheuristic approaches,
such as simulated annealing, tabu search, and genetic algorithms, have become very
desirable in solving combinatorial optimization problems because of their computa-
tional performance. The metaheuristic is a rather general algorithmic framework that
can be applied to different optimization problems with minor modifications. By con-
sidering recent studies on the flow shop scheduling problem, it is obvious that solu-
tion methods based on metaheuristic approaches are frequently proposed.

3.5.1 Exact Solution Methods

Johnson’s Rule
Consider the n-jobs two-machine flow shop problem of minimizing makespan. Each
job has the same order on both machines. Johnson’s rule is used for this type of gen-
eral two-machine scheduling problem. These measures must be optimized by job
sequence:

• Minimization of finishing time
• Minimization of average waiting time of jobs
• Minimization of average idle time of machines

Figure 4 represents Johnson’s rule for the two-machine flow shop problem of

minimizing makespan (Baker, 1974; Johnson, 1954).

Fig. 4. Johnson’s rule for the two-machine flow shop problem

tij : processing job i on machine j
Step1: Schedule the group of jobs U that are shorter on the first machine than

the second. { }21 ii ttiU <= as the first priority group. Schedule the

group of jobs V that are shorter on the second machine than the first.
{ }12 ii ttiV ≤= as the second priority group.

Step2: Schedule within U by Shortest Processing Time (SPT) on the first ma-
chine. Schedule within V by Longest Processing Time (LPT) on the
second machine.

Step3: An optimal sequence is the ordered U followed by the ordered V.

274 B. Yagmahan and M.M. Yenisey

Extension of Johnson’s Rule
For the case in which 3=m , exact results have not been obtained yet. However, ex-
act results are possible in certain cases by extending Johnson’s rule. This extension
can be applied to problems in which the second machine has uniformly shorter proc-
essing times than the first machine (or the third machine). If }{max}{min 21 iiii tt ≥ or

if }{max}{min 23 iiii tt ≥ , then the problem may be solved with Johnson’s rule as a

two-machine problem with defined times 211 iii ttT += and 322 iii ttT += .

Branch-and-Bound Algorithm (The Ignall-Schrage Algorithm)
The basic branch-and-bound procedure for the m-machine flow shop problem of
minimizing makespan was developed by Ignall and Schrage (1965). The problem is
constructed as a tree. Each node in the tree represents a partial solution. The first node
corresponds to the initial state in which no jobs are scheduled. From this node, there
are n branches corresponding to the possible n jobs that can be assigned to the first
position in the sequence. Each of these nodes has n-1 branches corresponding to the
n-1 jobs available to be placed in the second position, and so on. (Ignall and Schrage,
1965; Baker, 1974).

For each node on the tree, a lower bound for the makespan associated with any
completion of the corresponding partial sequence is obtained by considering the work
that remains unscheduled on each machine.

To illustrate the bounds for 3=m , let σ ′ denote the set of jobs that are not con-
tained in the partial sequence σ .

For a given beginning partial sequence σ and remainder set σ ′ :

1q : The latest completion time on machine 1 among jobs in σ .

2q : The latest completion time on machine 2 among jobs in σ .

3q : The latest completion time on machine 3 among jobs in σ .

The amount of processing time still required on the first machine is:

∑

′∈σi
it 1 . (3.19)

Moreover, there must be a particular job k that is the last job on machine 1. After it

is completed on machine 1, job k must be completed on machines 2 and 3, which
takes at least (32 kk tt +). The most favorable situation that could occur is:

• There is no idle time in assigning jobs on machine 1.
• There is no idle time in assigning any jobs of the operations of the last job k.
• Job k has the minimal sum (32 kk tt +) among the jobs in σ ′ .

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 275

Thus, one lower bound on the makespan is:

}{min 32111 ii
i

i
i tttqb +++=

′∈′∈
∑ σσ

. (3.20)

Similarly, a lower bound on machine 2 is:

}{min 3222 i
i

i
i ttqb

σσ
′∈′∈

++= ∑ . (3.21)

Finally, a lower bound on machine 3 is:

∑
′∈

+=
σi

itqb 333 . (3.22)

A lower bound at a node is:

},,max{ 321 bbbB = . (3.23)

3.5.2 Heuristic Solution Methods

Palmer’s Heuristic
For the m-machine flow shop problem of minimizing makespan, Palmer (1965) pro-
posed a slope index is to specify job priority:

immiiiii tmtmtmtmtms)1()3(...)5()3()1(1,321 −+−++−−−−−−= − (3.24)

Job priorities are determined so that jobs with processing times that tend to in-
crease from one machine to another should be given higher priority than jobs with
processing times that tend to decrease from one machine to another.

A permutation schedule is constructed using the job index with respect to decreas-
ing is . That is:

][]2[]1[... nsss ≥≥≥ (3.25)

CDS Heuristic
Campbell et al. (1970) proposed a heuristic that is the most accurate extension of
Johnson’s rule for the m-machine flow shop problem of minimizing makespan. CDS
creates several schedules from which a best schedule can be chosen. In this approach,
Johnson’s rule is applied to the sum of the first two and last two processing times.

276 B. Yagmahan and M.M. Yenisey

In general, at iteration k, the sum of times for job i on the first j machine Ti1 and the
sum for the last j machine Ti2 is calculated as follows:

∑
=

=
kj

iji tT
,1

1 . (3.26)

∑
=

+−=
kj

jmii tT
,1

1,2 . (3.27)

For each iteration, we apply Johnson’s rule and a job sequence and makespan kM

are obtained. Finally, the makespan is taken as }min{ kMM = .

Gupta’s Heuristic
Gupta (1972) proposed a priority rule in the form of Palmer’s heuristic so that it
would produce good schedules.

The priority index is for job i is defined as follows:

}{min 1,
11

+−≤≤
+

=
kiik

mk

i
i tt

e
s , (3.28)

where:

⎩
⎨
⎧

≥−
<

=
imi

imi
i tt

tt
e

1

1

if1

if1
 (3.29)

Then a permutation schedule is constructed using the job index with respect to de-

creasing is . That is:

][]2[]1[... nsss ≥≥≥ (3.30)

NEH Heuristic
The NEH heuristic was proposed by Nawaz et al (1983) to solve the m-machine flow
shop problem of minimizing makespan.

The heuristic is based on the assumption that a job with more processing time on
all machines will be given higher priority while a job with less processing time on all
machines will receive lower priority. Accordingly, the two jobs with highest process-
ing times are determined from the n-jobs problem. The best partial sequence for these

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 277

two jobs is found by considering the two possible partial schedules. The relative posi-
tions of these two jobs with respect to each other are fixed in the remaining steps of
the heuristic. Next, the job with the third highest processing time is determined and
three partial sequences are tested in which this job is placed at the beginning, middle,
and end of the partial sequence found before. The best partial sequence fixes the rela-
tive positions of these three jobs in the remaining steps of the heuristic. This proce-
dure is repeated until all jobs are fixed and scheduled.

3.6 Other Studies

In this section, we continue to present other studies concerning the flow shop schedul-
ing problem. All these reviews and evaluations are mainly focused on the most recent
heuristics and metaheuristics approaches. A summary of studies on minimizing
makespan in the flow shop scheduling problem in the literature is given in Table 1. A
summary of studies in the literature for the flow shop scheduling problem for objec-
tives other than makespan is given Table 2.

These methods and many other less known heuristics are well-reviewed in Frami-
nan et al. (2005a). Ruiz and Maroto (2005) give an updated and comprehensive re-
view of flow shop heuristics and metaheuristics. Another recent review is given by
Reza Hejazi and Saghafian (2005). The literature in which the flow shop scheduling
problem is modeled as a traveling salesman problem (TSP) is reviewed by Bagchi et
al. (2006). Gupta and Stafford (2006) provide the developments in flow shop schedul-
ing over the last 50 years.

Table 1. Flow Shop Scheduling Studies on Minimizing Makespan

Solution Approach References

Exact Solution Methods

(branch-and-bound, elimination methods, mixed
binary integer programming)

Johnson, 1954;

Ignall and Schrage, 1965;

McMahon and Burton, 1967;

Ashour, 1970;

Szwarc, 1973;

Baker, 1975;

Haouari and Ladhari, 2003;

Ladhari and Haouari, 2005;

Šeda, 2007;

Ziaee and Sadjadi, 2007

278 B. Yagmahan and M.M. Yenisey

Table 1. (continued)

Solution Approach References

Heuristic Page, 1961;

Palmer, 1965;

Smith and Dubek, 1967;

Gupta, 1971a;

Gupta, 1971b;

Campbell et al., 1970;

Dannenbring, 1977;

Stinson and Smith, 1982;

Nawaz et al., 1983;

Hundal and Rajgopal, 1988;

Widmer and Hertz, 1989;

Werner, 1993;

Moccellin, 1995;

Lai, 1996;

Lourenço, 1996;

Davoud Pour, 2001;

Nagano and Moccellin, 2002;

Agarwal et al., 2006;

Chakraborty and Laha, 2007;

Jin et al., 2007;

Laha and Chakraborty, 2007;

Ruiz and Stützle, 2007;

Dong et al., 2008;

Kalczynski and Kamburowski,
2008;

Vallada and Ruiz, 2008;

Rad et al. 2009.

Simulating annealing Osman and Potts, 1989;

Ogbu and Smith, 1991;

Ishibuchi et al., 1995;

Zegordi et al., 1995;

Low et al., 2004;

Nearchou, 2004a;

Nearchou, 2004b.

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 279

Table 1. (continued)

Solution Approach References

Tabu search Taillard, 1990;

Nowichi and Smutnicki, 1996;

Ben-Daya and Al-Fawzan, 1998;

Grabowski and Pempera, 2001;

Grabowski and Wodecki, 2004;

Solimanpur et al., 2004;

Ek io lu et al., 2008.

Genetic algorithm Chen et al., 1995;

Reeves, 1995;

Murata et al., 1996;

Cotta and Troya, 1998;

Reeves and Yamada, 1998;

Wang et al., 2003;

Wang and Zheng, 2003;

Iyer and Saxena, 2004;

Wang et al., 2004;

Ruiz et al. 2006;

Wang and Zhang, 2006;

Zhang et al., 2006;

Cheng and Chang, 2007;

Nagano et al., 2008.

Ant colony optimization Stützle, 1998a;

Rajendran and Ziegler, 2004;

Ying and Liao, 2004.

Particle swarm optimization Lian et al., 2006;

Liao et al., 2007;

Tasgetiren et al., 2007;

Jarboui et al., 2008;

Lian et al., 2008;

Zhang et al., (2008).

280 B. Yagmahan and M.M. Yenisey

Table 1. (continued)

Solution Approach References

Scatter Search Algorithm Nowichi and Smutnicki, 2006;

Haq et al., 2007;

Saravanan et al., 2008.

Differential evolution algorithm Tasgetiren et al., 2004;

Onwubolu and Davendra, 2006;

Pan et al, 2008;

Qian et al., 2008.

Artificial immune system Gao and Liu, 2007.

Greedy randomized adaptive search procedure
(GRASP)

Prabhaharan et al., 2006.

Iterated Local Search Stützle, 1998b.

Table 2. Single-objective Flow shop Scheduling Studies on Different Objectives

Objective Solution Approach References

Total flow time

Heuristic

Rajendran and Chaudhuri,
1991;

Rajendran, 1993;

Ho, 1995;

Wang et al., 1997;

Woo and Yim, 1998;

Liu and Reeves, 2001;

Allahverdi and Aldowaisan,
2002;

Tang and Liu, 2002;

Framinan and Leisten, 2003;

Framinan et al., 2005b;

Laha and Chakraborty, 2008;

Pan et al., 2008;

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 281

Table 2. (continued)

Branch-and-bound

Ahmadi and Bargchi, 1990.

Genetic local search algo-
rithm

Yamada and Reeves, 1998.

Ant colony optimization

Rajendran and Ziegler, 2004.

Total weighted flow
time

Heuristic

Rajendran and Ziegler, 1997.

Mean flow time Differential evolution

algorithm

Onwubolu and Davendra, 2006.

Heuristic Ow, 1985.

Genetic algorithm

Kim, 1995;

Onwubolu and Mutingi, 1999;

Yong and Sannomiya, 2001.

Tabu search Armentano and Ronconi, 1999.

Simulated annealing Hasija and Rajendran, 2004.

Total tardiness

Differential evolution algo-
rithm

Onwubolu and Davendra, 2006.

Mean tardiness Heuristic Kim, 1993.

Heuristic Gelders and Samdandam, 1978.

Weighted tardiness

Genetic algorithm Neppalli et al., 1994.

4 Selected Recent Literature on Flow Shop Scheduling

In this section, we concentrate on some implemented metaheuristics for flow shop
scheduling. This review will focus on the recent studies and developments on the flow
shop permutation problem using makespan as the measure of performance. There are
many algorithms that have been implemented in the flow shop scheduling problem,
like simulated annealing, tabu search, genetic algorithms, ant colony optimization,
particle swarm optimization, differential evolution, artificial immune systems, and

282 B. Yagmahan and M.M. Yenisey

explorative local search methods. Additionally, hybrid algorithms combining some of
these methods have been developed in many studies.

4.1 Simulated Annealing

The simulated annealing algorithm inspired by the Metropolis algorithm for statistical
mechanics has been successfully applied to many complex combinatorial optimization
problems. The fundamental idea comes from the field of metallurgy, in which a solid
is first melted and then is slowly chilled. The SA algorithm allows for movements that
result in a better solution than the current solution (uphill movements) in order to es-
cape local minima. The probability of making such a movement decreases during the
search. The SA algorithm is summarized in Figure 5. The algorithm begins by gener-
ating an initial solution x either randomly or heuristically and by initializing the so-

called temperature parameter. A candidate solution x′ is randomly generated from
the current solution x in each iteration and is compared to the two solutions. The

candidate solution is accepted as depending on objective functions)(),(xfxf ′ and

temperature T. If)()(xfxf <′ , then the SA algorithm accepts the candidate solu-

tion by replacing x with x′ . If)()(xfxf ≥′ , then the candidate solution is ac-

cepted with a probability that is a function of)(),(xfxf ′ and T. The temperature T

is decreased during the search process according to cooling schedule. The algorithm
runs until a stopping condition is met. Several stopping conditions used for the SA al-
gorithm, such as number of iterations, or zero or near-zero temperature (Pinedo, 2002;
Blum and Roli, 2003; Nearchou, 2004b).

Fig. 5. Simulated Annealing Algorithm

The simulated annealing algorithm for solving the flow shop scheduling problem
has been pointed out in the works of several researchers. First, Osman and Potts
(1989) and Ogbu and Smith (1991) have reported high-quality results using the basic
simulated annealing algorithm.

Step 1:
Generate an initial solution x
Select an initial temperature T0
T = T0

Step 2:
Generate candidate solution x′ from current solution x

if)()(xfxf <′ , then set x = x′
if)()(xfxf ≥′ , then set x = x′ with a certain probability

Step 3:
 Update T according to cooling schedule
 If stopping condition is met, then STOP; otherwise, go to Step 2.

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 283

Ishibushi et al. (1995) proposed two simulated annealing algorithms with a modi-
fied generation mechanism. Several neighbors of a current solution are evaluated and
the move to the best of these neighbors is examined using this mechanism.

Zegordi et al. (1995) presented a simulated annealing algorithm with problem-
specific information, which yielded a form of index in a “move desirability for jobs”
table.

Low et al. (2004) proposed a modified simulated annealing searching procedure
consisting of the ‘‘restarting solution mechanism’’ and some additional termination
conditions to assure the solution’s quality and efficiency.

Finally, Nearchou (2004a) presented a new hybrid simulated annealing algorithm
which integrated the basic structure of a simulated annealing algorithm with features
borrowed from the fields of genetic algorithms and local search techniques. The algo-
rithm works from a population of candidate schedules and generates new populations
of neighbor schedules by applying suitable small perturbation schemes. During the
annealing process, an iterated hill climbing procedure is stochastically applied to the
population of schedules in order to achieve a desertion from possible local minima
and to improve the algorithm’s performance. Nearchou (2004b) proposed another al-
gorithm, that is similar to the previous one, which combines the canonical characteris-
tics of simulated procedure with the features of genetic algorithm’s population of in-
dividuals.

4.2 Tabu Search

The Tabu Search algorithm was first proposed by Glover (1989, 1990). The TS algo-
rithm is dependent on the following parameters: initial solution, moves, neighbor-
hood, searching strategy, tabu list, aspiration criterion, and stopping criteria. The
basic idea of this method consists in starting from an initial solution and then moving
successively among neighborhood solutions. At each iteration, a move is made to the
best solution in the neighborhood of the current solution, which may not be an im-
proving solution. Tabus are used to prevent cycling when moving away from local
optima through non-improving moves. Tabus are stored in the tabu list. At every it-
eration of TS, a move will be assigned to the tabu list when the move is chosen to lead
the search from the current solution to its neighborhood solution. This move will then
not be chosen for a number of immediately succeeding iterations. The size of the tabu
list is bound by tabu list size. The size of the tabu list could be fixed or variable. A
candidate solution x′ is accepted if it is not on the tabu list or if an aspiration crite-
rion is satisfied. An aspiration criterion could allow a tabu move when the neighbor-
hood has an objective function value better than the best objective encountered so far.

If *x is a better solution, the objective function transforms)(xf into)(*xf . The

search is terminated when some stopping condition is satisfied. The structure of the
TS algorithm is shown in Figure 6 (Ben-Daya and Al-Fawzan, 1998; Gupta et al.,
1999; Pinedo, 2002; Glover and Kochenberger, 2003; Ekşioğlu et al., 2008).

Several TS algorithms have been proposed for the flow shop scheduling problem.
Taillard (1990) presented a tabu search technique that obtained better solutions than
the NEH. Later Nowichi and Smutnicki (1996) proposed a tabu search technique with

284 B. Yagmahan and M.M. Yenisey

a specific neighborhood definition employing block properties to reduce the neigh-
borhood structure.

Ben-Daya and Al-Fawzan (1998) proposed implementation of the tabu search ap-
proach that suggested simple techniques for generating neighborhoods of a given se-
quence and combined a scheme for intensification and diversification that had not
been considered before.

Grabowski and Pempera (2001) presented and discussed some new properties of
blocks in the flow shop problem. These properties allow reductions in the neighbor-
hood size in the tabu search and direction of the search trajectory into a promising re-
gion of the solution space.

Grabowski and Wodecki (2004) also presented and discussed some new properties
of the problem associated with the blocks. In order to decrease the computational ef-
fort of the search in tabu search, they proposed calculation of the lower bounds on the
makespans instead of computing makespans explicitly for the best solution.

Solimanpur et al. (2004) developed a neural network-based tabu search method to
solve the flow shop scheduling problem. This algorithm exploits a neuro-dynamical
structure to iteratively improve the initial permutation. The proposed algorithm is dif-
ferent from the other tabu search methods, as it reduces the tabu effect exponentially.

Recently, Ekşioğlu et al. (2008) investigated a tabu search procedure for the flow
shop scheduling problem with the makespan minimization criterion. It is different
from other tabu search procedures. The neighborhood of a solution is generated using
a combination of three different exchange mechanisms (adjacent exchange, random
exchange, and insertion). This resulted in a well-diversified search procedure.

Fig. 6. Tabu Search Algorithm

Step 1:
Generate an initial solution x

 *x = x
Initialize the tabu list

Step 2:
While set of candidate solutions X ′ is not complete

Generate candidate solution x′ from current solution x

Add x′ to X ′ if x′ is not on the tabu list T or satisfy the
aspiration criterion

Step 3:

Find the best candidate solution *x in X ′

if)()(*xfxf < , then set *x = x

Update the tabu list and aspiration conditions
Step 4:
 If stopping condition is met then stop; otherwise, go to Step 2.

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 285

4.3 Genetic Algorithm

The genetic algorithm is a population-based method that is based on the mechanics of
natural selection and natural genetics. The GA maintains a population of individuals

)(tP for generation t . Each individual represents a solution to the problem. These

solutions are encoded into chromosomes. Every individual in the population is evalu-
ated and assigned a fitness value. Then the population undergoes genetic operations to
form new individuals. During a number of iterations, this population evolves until
some stopping criterion is satisfied. Figure 7 shows the general framework of a ge-
netic algorithm. The selection operator picks from the population some individuals
according to the assigned fitness value in such a way that the fittest individuals have a
greater chance of being selected. The crossover operator creates new individuals by
combining the good properties of different individuals. The mutation operator creates
new individuals by making changes to a single individual (Gen and Cheng, 2000;
Ruiz et al., 2006).

Fig. 7. Genetic algorithm

The application of genetic algorithms to the flow shop scheduling problem has been
widely studied. Chen et al. (1995) developed one of the earliest genetic algorithms for
the flow shop scheduling problem with the makespan minimization criterion.

Reeves (1995) also described the concept of genetic algorithms and applied it solv-
ing the flow shop scheduling problem with makespan as a criterion.

Murata et al. (1996) examined the performance of genetic algorithms in order to
specify some genetic operators and parameters for the flow shop scheduling problem.
They then proposed two hybrid genetic algorithms to improve the performance of the
genetic algorithm. One is the genetic local search algorithm and the other is a genetic
simulated annealing algorithm. They also introduced some modifications of search
mechanisms in these hybrid genetic algorithms.

Step 1:
 t =0

Form the initial population)(tP

Step 2:
 ←′)(tP crossover()(tP)

 ←′′)(tP mutation()(tP′)

 Evaluate))((tP ′′

 ←+)1(tP Select()()(tPtP ∪′′)

1+= tt
Step 3:

If the stopping criteria are met (number of generation), then stop;
Otherwise, go to step 2.

286 B. Yagmahan and M.M. Yenisey

Cotta and Troya (1998) studied different representations for the flow shop schedul-
ing problem using forma analysis. They proposed some new operators that run on
these representations.

Reeves and Yamada (1998) re-considered the implementation of a genetic algo-
rithm for the flow shop scheduling problem using the representative neighborhood
and path re-linking.

Wang et al. (2003) presented a class of order-based genetic algorithms for the flow
shop scheduling problem. This algorithm borrows from the idea of ordinal optimiza-
tion to ensure the quality of the solution found with a reduced computation effort. It is
applied to evolutionary search mechanisms and learning capabilities of genetic algo-
rithms to effectively perform exploration and exploitation.

Wang and Zheng (2003) proposed an effective hybrid heuristic for the flow shop
scheduling problem. They incorporated the NEH heuristic into the random initializa-
tion of a genetic algorithm, used multicrossover operators acting on the divided sub-
populations, and replaced mutation by the simulated annealing metropolis sample
process with multiple neighbor state generators.

Iyer and Saxena (2004) improved the standard implementation of the genetic algo-
rithm by tailoring the various genetic algorithm operators to suit the structure of the
problem.

Wang et al. (2004) first formulated the determination of optimal genetic control pa-
rameters. Then the ordinal optimization and the optimal computing budget allocation
techniques are applied to determine the best genetic control parameters among all the
alternative parameter combinations.

Ruiz et al. (2006) proposed a robust genetic algorithm and a rapid hybrid imple-
mentation for solving the permutation flow shop scheduling problem. These algo-
rithms use new genetic operators, advanced techniques like hybridization with local
search, an efficient population initialization, and a new generational scheme.

Wang and Zhang (2006) presented a novel and systematic approach based on ordi-
nal optimization and optimal computing budget allocation techniques to determine the
optimal combinations of genetic operators for flow shop scheduling problems.

Zhang et al. (2006) proposed an adaptive genetic algorithm with multiple operators
for the flow shop scheduling problem. This adaptive genetic algorithm uses multiple
crossover and mutation operators in an adaptively hybrid sense, according to their
contribution to the search process.

Cheng and Chang (2007) used genetic algorithms to solve the flow shop schedul-
ing problem and adopted Taguchi’s experimental design to effectively obtain optimal
parameter design in the genetic algorithm.

Nagano et al. (2008) described the application of a constructive genetic algorithm
that includes a population of dynamic sizes composed of schemata and structures, and
the possibility of using heuristics in structure representation and in fitness function
definitions.

4.4 Ant Colony Optimization

Ant colony optimization (ACO) is proposed as a new metaheuristic approach for solv-
ing difficult combinatorial optimization problems in the literature. The main idea of
ACO metaheuristics is based on the behavior of real ants that use the pheromone trail

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 287

for communication and cooperation. The first example of the ACO algorithm is the
Ant System (AS) algorithm, proposed by Dorigo et al. (1991a, 1991b) for the Travel-
ing Salesman Problem (TSP). Studies then tried to improve its performance and, con-
sequently, various ACO algorithms were proposed. These extensions include Ant
Colony System (ACS), Ant-Q, the Max–Min Ant System (MMAS), and Rank Based
Ant System. The structure of ACO is given in Figure 8. At the initialization step,
pheromone trails, heuristic information, and parameters are initialized. Then, in the it-
erative step, until a complete solution is constructed, each ant repeatedly selects the
next solution component by applying a certain transition probability rule. Then, the
updating rule is applied to increase pheromones between components of the best solu-
tion up to the current iteration. Thus, all ants will focus on a better solution. Finally,
until reaching the stopping condition, the procedure is repeated (Dorigo and Stützle,
2004; Yagmahan and Yenisey, 2008).

Recently, attempts have been made to solve the flow shop scheduling problem by
using ACO algorithms. Stützle (1998a) developed the first ant colony optimization
algorithm that incorporated a new local search technique in MMAS.

Rajendran and Ziegler (2004) proposed the two ant-colony algorithms. The first al-
gorithm incorporates the summation rule and a new local search technique in the
max–min ant system. The second proposed ant-colony algorithm is based on a new
technique for local search (job-index-based local search).

Ying and Liao (2004) presented an ant colony system algorithm. They revised the
slope index of Palmer’s method as the heuristic desirability.

Fig. 8. Ant colony optimization algorithm

4.5 Particle Swarm Optimization

The particle swarm optimization algorithm is one of the latest population-based opti-
mization methods. It is based on sociological behavior associated with bird flocking
or fish schooling. PSO consists of a swarm of m particles, where each particle repre-
sents a solution to an optimization problem. Each particle moves at a position

{ }iniii xxxX ,,, 21 …= in the multi-dimensional search space with a certain velocity

{ }iniii vvvV ,,, 21 …= , where mi ,,2,1 …= . Each particle moves towards its best

previous position of the ith particle that gives the best objective function value

Step 1:
Pheromone trails, heuristic information, and parameters are initial-
ized

Step 2:
Construct a complete solution for each ant
Apply local search process
Update the pheromone trail

Step 3:
If the stopping condition is realized, then STOP; otherwise go to step 2.

288 B. Yagmahan and M.M. Yenisey

(lbest) denoted by { }iniii pppP ,,, 21 …= . On the other hand, each particle moves

towards the best particle in the whole swarm that gives the best objective function

value (gbest) denoted by { }ngggG ,,, 21 …= . Each particle moves according to

a function of its current position, velocity, lbest, and gbest in the search space along
the iterations. Each particle adjusts its velocity in order to update the position of each
particle. Velocity is added to the position coordinates of the particle.

The new velocity and particle position at t iteration are calculated using the fol-
lowing equations:

)()(11
22

11
11

1 −−−−− −+−+= t
ij

t
j

t
ij

t
ij

t
ij

t
ij xgrcxprcvv , (3.31)

t
ij

t
ij

t
ij vxx += −1 , (3.32)

where 1c is the cognition learning factor, 2c is the social learning factor, and 1r and

2r are random numbers uniformly distributed in [0, 1]. The general PSO algorithm is

summarized in Figure 9 (Tasgetiren et al., 2007; Jarboui et al., 2008).

Fig. 9. Particle swarm optimization algorithm

Currently, several papers have been published that solve the flow shop scheduling
problem based on a PSO algorithm. Lian et al. (2006) first proposed a similar particle
swarm optimization algorithm and applied it to the permutation flow shop scheduling

Step 1:
Randomly initialize particle positions and velocities
For each particle i:

Evaluate the objective function)(xf at current position iX

Step 2:
For each particle i:

 If)()(lbestfXf i < then iXlbest = and ii XP =

If)()(gbestfXf i < then iXgbest = and ii XG =

Step 3:
For each particle i:

Update velocity iV using equation (3.31)

Update position iX using equation (3.32)

Step 4:
If the stopping condition is realized, then STOP; otherwise go to

step 2.

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 289

problem of minimizing makespan. This algorithm investigates the effect of various
operators (crossovers) under the framework of the problem.

Liao et al. (2007) proposed the discrete version of particle swarm optimization for
the flow shop scheduling problem. In the algorithm, the particle is moved to the new
sequence by applying an efficient approach to the construction of a sequence. A new
neighborhood structure of particles is also designed.

Tasgetiren et al. (2007) presented a particle swarm optimization algorithm in order
to solve the permutation flow shop sequencing problem. A heuristic rule, called the
smallest position value, was developed in order to apply the continuous particle
swarm optimization algorithm to all classes of sequencing problems. In addition, they
applied a local search procedure based on variable neighborhood search in order to
obtain good quality solutions.

Jarboui et al. (2008) described a combinatorial particle swarm optimization. Fur-
thermore, they added an improvement phase based on the simulated annealing ap-
proach.

Lian et al. (2008) presented a novel particle swarm optimization algorithm and
successfully applied to the permutation flow shop scheduling problem to minimize
makespan. They described some novel particle swarm optimization operators (cross-
overs and mutations) and investigated its effectiveness under the framework of the
flow shop scheduling problem.

Recently, Zhang et al. (2008) proposed an improved particle swarm optimization
algorithm to solve the flow shop scheduling problem with the objective of minimizing
makespan. The particle swarm optimization algorithm effectively combined with ge-
netic operators. When a particle is going to stagnate, the shift mutation operator is
used to search its neighborhood.

4.6 Scatter Search Algorithm

Scatter search (SS) is a population-based optimization method that has been success-
fully applied to optimization problems. SS generates a trial set from using the seed so-
lutions corresponding to feasible solutions to the problem under consideration. An
improvement method is used to attempt to improve trial solutions and update the ref-
erence set. A reference set contains the best solutions found so far in terms of the ob-
jective function. A subset of solutions is produced by combining solutions in the ref-
erence set. These newly created subset solutions are improved and used to update the
reference set. This search is terminated when the stopping criteria are satisfied. The
SS algorithm is summarized in Figure 10 (Blum and Roli, 2003; Glover and Kochen-
berger, 2003; Saravanan et al., 2008).

Recently, the SS algorithm has been successfully applied to the flow-shop schedul-
ing problem. Nowichi and Smutnicki (2006) provided a new view on the solution
space and the search process. The new approximate algorithm uses some elements of
scatter search as well as the path re-linking technique. This algorithm also offered un-
precedented accuracy within a short computing time.

Haq et al. (2007) solved the flow shop scheduling problem using the generalized
template created for evolutionary scatter search algorithms and compared results with
a multilevel hybrid system based on scatter search, path re-linking, and tabu search.

290 B. Yagmahan and M.M. Yenisey

Saravanan et al. (2008) applied a novel metaheuristic approach called scatter
search for the flow shop scheduling problem. The algorithm compared the various ex-
isting metaheuristic and heuristic methods in the literature. The experiments verified
the effectiveness and efficiency of the SS algorithm over other metaheuristics.

Fig. 10. Scatter search algorithm

4.7 Differential Evolution Algorithm

Differential evolution (DE) is an evolutionary algorithm proposed by Price and Storn
(1995). DE can be classified as an evolutionary optimization algorithm. In a DE algo-
rithm, candidate solutions are represented by chromosomes based on floatingpoint
numbers. DE works as follows: First, all individuals are randomly initialized and evalu-
ated. At each generation, the mutation and crossover operators are applied to individuals
to generate a new population. In the mutation process, the weighted difference between
two randomly selected population members is added to a third member to generate a
mutated solution. Then, a crossover operator follows to combine the mutated solution
with the target solution to generate a trial solution. A selection operator is applied to
compare the fitness function value of both competing solutions, namely, target and trial
solutions to determine who can survive for the next generation. As long as the termina-
tion condition is not fulfilled, this process is executed. The basic algorithm of differen-
tial evolution is shown in Figure 11 (Pan et al., 2008; Qian et al., 2009).

First, Tasgetiren et al. (2004) reported the application of the differential evolution
algorithm to the flow shop scheduling problem with makespan criterion. The smallest
position value rule is used in differential evolution algorithms to convert a continuous
parameter vector to a job permutation.

Onwubolu and Davendra (2006) described a novel differential evolution algorithm.
The techniques for handling discrete variables are described as well as the techniques
needed to handle boundary constraints. Other objective functions considered in this
work include mean flow time and total tardiness.

Step 1:
Generate trial solutions from the seed solutions
Apply the improvement method to produce one or more enhanced
trial solutions
Update the reference set

Step 2:
Generate new subsets from the reference set
Combine these subsets to obtain one or more new trial solutions
Apply the improvement method to the trial solutions

Step3:
Update the reference set

Step 4:
If the stopping condition is realized, then STOP; otherwise go to step 2.

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 291

Fig. 11. Differential evolution algorithm

Pan et al. (2008) presented a new and novel discrete differential evolution algo-
rithm and the iterated greedy algorithm for the permutation flow shop scheduling
problem with the makespan criterion. Furthermore, they proposed a new and novel
referenced local search procedure hybridized with both algorithms to further improve
the solution quality.

Qian et al. (2008) proposed a hybrid algorithm combining the differential evolution
based search and local search. A largest-order-value rule is presented to convert the
continuous values of individuals in differential evolution to job permutations. After
the DE-based exploration, a simple but efficient local search is applied to emphasize
exploitation.

4.8 Artificial Immune System

The artificial immune system algorithm is an adaptive system, inspired by theoretical
immunology and observed immune functions, principles, and models, which is ap-
plied to solve problems.

The main aim of the immune system is to recognize disease-causing organisms,
called pathogens, to defend against invasion and to eliminate malfunctioning cells.
Pathogens are not directly recognized by the components of the immune system. An-
tigens are small portions of the pathogens molecules, which are recognized by the
immune system. There are two types of antigens: self and non-self. Non-self antigens
are disease-causing elements, whereas self antigens are harmless to the body. Two
major groups of immune cells are B-cells and T-cells. B-cells can recognize the anti-
gens free in solution, while T-cells require antigens to be presented by other assisting
cells. Both B-cells and T-cells contain the surface receptors capable of recognizing
antigens. Antigens are covered with molecules to be recognized by receptor mole-
cules. An antibody is the B-cell receptor molecule. When an antigen is recognized by
immune cell receptors, the immune system produces antibodies. Binding an antibody
to antigens is a signal to remove disease-causing organisms. There are several selec-
tion mechanisms used in AIS algorithms. Negative selection, clonal selection, and
immune network models are examples. Figure 12 depicts the negative selection prin-
ciple (de Castro and Timmis, 2002; de Castro, 2002).

Step 1:
Initialize population

Step 2:
Evaluate the objective values of all individuals, find the best individual

Step 3:
Mutation
Crossover
Selection
Update the best individual

Step 4:
If a stopping criterion is satisfied, then STOP; otherwise go to Step 3.

292 B. Yagmahan and M.M. Yenisey

The AIS algorithm has recently been applied to scheduling problems such as job-
shop and flow-shop. Gao and Liu (2007) presented a novel artificial immune system
algorithm for the flow shop scheduling problem with makespan criterion. The algo-
rithm was tested on flow shop problem benchmarks. Computational results show that
artificial immune system algorithms give good results.

Fig. 12. Artificial immune system algorithm

4.9 Explorative Local Search Methods

4.9.1 GRASP
The greedy randomized adaptive search procedure is an iterative process. Basically,
this metaheuristic consists of two phases: a construction phase and a local search
phase. In the construction phase, a feasible solution is iteratively constructed, one new
element at a time. In each iteration, all elements are ranked according to an adaptive
greedy heuristic criterion that gives them a score as a function of the benefit if in-
serted in the current partial solution. The candidate list, called a restricted candidate
list (RCL), is composed of the best α elements. One element is randomly selected
from a restricted candidate list. The heuristic values are updated during each iteration
of the construction phase to reflect the changes brought about by the selection of the
previous elements. Figure 13 describes the construction phase. In the second phase,
the solution is improved using a local search, which may be a basic local search algo-
rithm such as iterative improvement, or a more advanced technique such as SA or TS.
The best overall solution found is kept. The search finishes when a termination crite-
rion is verified. The GRASP algorithm is given in Figure 14 (Blum and Roli, 2003;
Glover and Kochenberger, 2003).

A few attempts have been made to solve flow shop scheduling problems using
GRASP. Prabhaharan et al. (2006) implemented a greedy randomized adaptive search
procedure to solve a flow shop scheduling problem. These computational experiments
indicate that the GRASP algorithm outperforms the traditional NEH algorithm.

Step 1:
Generate random candidate detectors (C)

Step 2:
While detectors set (M) not produced do

Compare the elements in C with the elements in self set P
If an element of P is recognized by an element of C, then
eliminate this element of C; else place this candidate detector
of C in M

 End while
Step 3:

Monitor a new set of self for any variation after M has been gener-
ated. This means that if any element of M matches an element of the
new self-set, then a non-self element was detected.

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 293

Fig. 13. Greedy randomized solution construction

Fig. 14. Greedy Randomized Adaptive Search algorithm

4.9.2 Iterated Local Search
Iterated local search is a very simple and powerful metaheuristic that consists of re-
peatedly applying a local search algorithm to modifications of previously visited local
optimal solutions. The algorithm starts with an initial solution and applies a local
search until a local optimum is found. Then, the algorithm perturbs the current solution
and a different local optimum is obtained by performing local search. Finally, accep-
tance criteria depending on the search history are used to decide from which solution
the search is continued in the next iteration. The ILS algorithm can be described using
the pseudo-code shown in Figure 15 (Stützle, 1998b; Glover and Kochenberger, 2003).

Fig. 15. Iterated local search algorithm

S= ∅
Determine candidate list length α
While solution is not complete do

Build RCLα
Select from RCLα an element x at random
S = S ∪{ x }
Update the greedy heuristic values

End while

While termination conditions not met do
Construct greedy randomized solution
Apply local search
Memorize best found solution

End while

Generate initial solution 0x .

*x =LocalSearch(0x).

repeat

x′=Perturbation(*x , history)

x ′′ =LocalSearch(x′).
*x =AcceptanceCriterion(x′ , x ′′ , history)

until termination condition met

294 B. Yagmahan and M.M. Yenisey

Stützle (1998b) applied an iterated local search algorithm to the permutation flow
shop scheduling problem. The iterated local search algorithm is based on a straight-
forward local search implementation. Computational results show that iterated local
search approach also performs well compared to other approaches proposed for the
flow shop scheduling problem.

5 Conclusion

In this chapter, scheduling problems are discussed and several examples of recent de-
velopments in the scheduling literature are given. Clearly, scheduling is a very impor-
tant and developing research area. It has very interesting uses in both theory and ap-
plication. Manufacturing with the lowest cost becomes very important in today’s
global competitive environment. All manufacturers, in both goods and services, seek
ways to lower costs. Moreover, they not only focus on costs but also production and
service speeds. Thus, scheduling theory and its applications are becoming crucial in
manufacturing.

However, scheduling is a complex and difficult problem. Conventional optimiza-
tion methods are insufficient for large problems in terms of solution time. Different
techniques have been developed in order to solve scheduling problems. These tech-
niques are generally based on heuristic approaches. However, although these tech-
niques provide solutions in an appropriate amount of time, they do not guarantee the
optimum result. They find the near-optimum solutions that are satisfactory for large
and complex problems. At the least, an acceptable solution can be obtained for prob-
lems that are technically unsolvable.

Scheduling has various areas which could be improved based upon recent litera-
ture. One such development area involves the objectives; recently, multi-objective
applications have become widespread. The second progressing area is development of
solution techniques. Researchers are working on both improving the performance of
existing algorithms and creating new techniques to solve scheduling problems. Some
researchers are attempting to combine several techniques in order to provide a better
algorithm..

Another important point is that recent studies mainly focus on metaheuristic algo-
rithms. When recent articles and papers discuss scientific meetings, it can be easily
claimed that the studies on metaheuristic algorithms have been rapidly increasing.
These metaheuristic algorithms are affected by events in nature and are inspired from
the behavior of animals like ants or swarms, biological entities like neurons or genes,
or some physical event like annealing.

References

Agarwal, A., Colak, S., Eryarsoy, E.: Improvement heuristic for the flow-shop scheduling prob-
lem: An adaptive-learning approach. Eur. J. Oper. Res. 169, 801–815 (2006)

Ahmadi, R., Bargchi, U.: Improved lower bound for minimizing the sum of flowtimes of n jobs
over m machines in a flow shop. Eur. J. Oper. Res. 44, 331–336 (1990)

Allahverdi, A., Aldowaisan, T.: New heuristics to minimize total completion time in m-
machine flowshops. Int. J. Prod. Econ. 7, 71–83 (2002)

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 295

Armentano, V.A., Ronconi, D.P.: Tabu search for total tardiness minimization in flowshop
scheduling problems. Comput. Oper. Res. 26(3), 219–235 (1999)

Ashour, S.: An experimental investigation and comparative evolution of flowshop sequencing
techniquess. Oper. Res. 18, 541–549 (1970)

Bagchi, T.P., Gupta, J.N.D., Sriskandarajah, C.: A review of TSP based approaches for flow-
shop scheduling. Eur. J. Oper. Res. 169, 816–854 (2006)

Baker, K.R.: Introduction to sequencing and scheduling. John Wiley & Sons Inc., New York
(1974)

Baker, K.R.: A comparative study of flowshop algorithms. Oper. Res. 23, 62–73 (1975)
Ben-Daya, M., Al-Fawzan, M.: A tabu search approach for the flow shop scheduling problem.

Eur. J. Oper. Res. 109(1), 88–95 (1998)
Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Węglarz, J.: Scheduling computer and

manufacturing processes. Springer, Berlin (1996)
Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Węglarz, J.: Scheduling computer and

manufacturing processes, 2nd edn. Springer, Berlin (2001)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual

comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
Brucker, P.: Scheduling algorithms, 4th edn. Springer, Berlin (2004)
Brucker, P., Knust, S.: Complex scheduling. Springer, Berlin (2006)
Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n job m machine se-

quencing problem. Manage. Sci. 16, 630–637 (1970)
Chakraborty, U.K., Laha, D.: An improved heuristic for permutation flowshop scheduling. Int.

J. Inf. Commun. T. 1(1), 89–97 (2007)
Chen, C.L., Vempati, V.S., Aljaber, N.: An application of genetic algorithms for flow shop

problems. Eur. J. Oper. Res. 80, 389–396 (1995)
Cheng, B.W., Chang, C.L.: A study on flowshop scheduling problem combining Taguchi ex-

perimental design and genetic algorithm. Expert. Syst. Appl. 32, 415–421 (2007)
Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of scheduling. Addison Wesley Publish-

ing Company, Massachusetts (1967)
Cotta, C., Troya, J.M.: Genetic forma recombination in permutation flowshop problems. Evol.

Comput. 6(1), 25–44 (1998)
Dannenbring, D.G.: An evaluation of flowshop sequencing heuristics. Manage. Sci. 23, 1174–

1182 (1977)
Davoud Pour, H.: A new heuristic for the n-job, m-machine flowshop problem. Prod. Plan.

Control. 12(7), 648–653 (2001)
De Castro, L.N.: Immune, swarm and evolutionary algorithms Part I: basic models. In: Pro-

ceedings of the ICONIP Conference (International Conference on Neural Information Proc-
essing), Singapura, pp. 1464–1468 (2002)

De Castro, L.N., Timmis, J.: Artificial immune systems: a novel paradigm to pattern recogni-
tion. In: Corchado, J.M., Alonso, L., Fyfe, C. (eds.) Artificial Neural Networks in Pattern
Recognition, pp. 67–84. University of Paisley, UK (2002)

De Castro, L.N., Timmis, J.I.: Artificial immune systems as a novel soft computing paradigm.
Soft. Comput. 7(7), 526–544 (2003)

Dong, X., Huang, H., Chen, P.: An improved NEH-based heuristic for the permutation flow-
shop problem. Comput. Oper. Res. 35, 3962–3968 (2008)

Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Re-
port, No. 91-016, Politecnico di Milano, Italy (1991a)

Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: An autocatalytic optimizing process.
Technical Report, No. 91-016 (Revised), Politec-nico di Milano, Italy (1991b)

296 B. Yagmahan and M.M. Yenisey

Dorigo, M., Stützle, T.: Ant colony optimization. MIT Press, Cambridge (2004)
Ekşioğlu, B., Ekşioğlu, S.D., Jain, P.: A tabu search algorithm for the flowshop scheduling

problem with changing neighborhoods. Comput. Ind. Eng. 54, 1–11 (2008)
Framinan, J.M., Leisten, R.: An efficient constructive heuristic for flowtime minimisation in

permutation flow shops. Omega 31(4), 311–317 (2003)
Framinan, J.M., Gupta, J.N.D., Leisten, R.: A review and classification of heuristics for permu-

tation flow-shop scheduling with makespan objective. J. Oper. Res. Soc. 55(12), 1243–1255
(2005a)

Framinan, J.M., Leisten, R., Ruiz-Usano, R.: Comparison of heuristics for flowtime minimisa-
tion in permutation flowshops. Comput. Oper. Res. 32(5), 1237–1254 (2005b)

French, S.: Sequencing and Scheduling: An introduction to the mathematics of the job-shop.
Ellis Horwood Ltd., Chichester (1982)

Gao, H., Liu, X.: Improved artificial immune algorithm and its applications on permutation
flow shop sequencing problems. Inform. Technol. J. 6(6), 929–933 (2007)

Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and job-shop scheduling.
Math. Oper. Res. 1(2), 117–129 (1976)

Gelders, L.F., Samdandam, N.: Four simple heuristics for scheduling a flowshop. Int. J. Prod.
Res. 16, 221–231 (1978)

Gen, M., Cheng, R.: Genetic algorithms and engineering optimization. John Wiley&Sons, USA
(2000)

Glover, F.: Tabu search: part I. ORSA. J. Comput. 1, 190–206 (1989)
Glover, F.: Tabu search: part II. ORSA. J. Comput. 2, 4–32 (1990)
Glover, F.W., Kochenberger, G.A.: Handbook of metaheuristics. Kluwer, Norwell (2003)
Gonzalez, T., Sahni, S.: Flowshop and jobshop schedules: Complexity and approximations.

Oper. Res. 26(1), 36–52 (1978)
Grabowski, J., Pempera, J.: New block properties for the permutation flow shop problem with

application in tabu search. J. Oper. Res. Soc. 52, 210–220 (2001)
Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for the permutation flowshop

problem with makespan criterion. Comput. Oper. Res. 31, 1891–1909 (2004)
Gupta, J.N.D.: An improved combinatorial algorithm for the flowshop problem. Oper. Res. 19,

1753–1758 (1971a)
Gupta, J.N.D.: A functional heuristic algorithm for the flowshop scheduling problem. Oper.

Res. Quart. 22, 39–48 (1971b)
Gupta, J.N.D.: Heuristic algorithms for multistage flow shop problem. AIIE T. 4, 11–18 (1972)
Gupta, J.N.D., Palanimuthy, N., Chen, C.L.: Designing a tabu search algorithm for the two-

stage flowshop problem with secondary criterion. Prod. Plan Control 10, 251–265 (1999)
Gupta, J.N.D., Stafford Jr., E.F.: Flowshop scheduling research after five decades. Eur. J. Oper.

Res. 169, 699–711 (2006)
Haq, A.N., Saravanan, M., Vivekraj, A.R., Prasad, T.: A scatter search approach for general

flowshop scheduling problem. Int. J. Adv. Manuf. Technol. 31, 731–736 (2007)
Haouari, M., Ladhari, T.: A branch-and-bound-based local search method for the flowshop

problem. J. Oper. Res. Soc. 54(10), 1076–1084 (2003)
Hasija, S., Rajendran, C.: Scheduling in flowshops to minimize total tardiness of jobs. Int. J.

Prod. Res. 42(11), 2289–2301 (2004)
Ho, J.C.: Flowshop sequencing with mean flowtime objective. Eur. J. Oper. Res. 81, 571–578

(1995)
Hundal, T.S., Rajgopal, J.: An extension of Palmer’s heuristic for flowshop scheduling prob-

lem. Int. J. Prod. Res. 26, 1119–1124 (1988)

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 297

Ignall, E., Schrage, L.: Application of the branch and bound technique to some flow shop
scheduling problems. Oper. Res. 13(3), 400–412 (1965)

Ishibuchi, H., Misaki, S., Tanaka, H.: Modified Simulated Annealing Algorithms for the Flow-
Shop Sequencing Problem. Eur. J. Oper. Res. 81(2), 388–398 (1995)

Iyer, S.K., Saxena, B.: Improved genetic algorithm for the permutation flowshop scheduling
problem. Comput. Oper. Res. 31(4), 593–606 (2004)

Jarboui, B., Ibrahim, S., Siarry, P., Rebai, A.: A combinatorial particle swarm optimization for
solving permutation flowshop problems. Comput. Ind. Eng. 54, 526–538 (2008)

Jin, F., Song, S., Wu, C.: An improved version of the NEH algorithm and its application to
large-scale flow-shop scheduling problems. IIE. Trans. 39, 229–234 (2007)

Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included.
Nav. Res. Logist. Q. 1(1), 61–68 (1954)

Kalczynski, P.J., Kamburowski, J.: An improved NEH heuristic to minimize makespan in per-
mutation flowshops. Comput. Oper. Res. 35, 3001–3008 (2008)

Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE international
conference on neural networks, pp. 1942–1948. Piscataway, New Jersey (1995)

Kim, Y.D.: Heuristics for flowshop scheduling problems minimizing mean tardiness. J. Oper.
Res. Soc. 44(1), 19–28 (1993)

Kim, Y.D.: Minimizing total tardiness in permutation flowshops. Eur. J. Oper. Res. 85, 541–
555 (1995)

Ladhari, T., Haouari, M.: A computational study of the permutation flowshop problem based
on a tight lower bound. Comput. Oper. Res. 32, 1831–1847 (2005)

Laha, D., Chakraborty, U.K.: An efficient stochastic hybrid heuristic for flowshop scheduling.
Eng. Appl. Artif. Intel. 20, 851–856 (2007)

Laha, D., Chakraborty, U.K.: An efficient heuristic approach to total flowtime minimization in
permutation flowshop scheduling. Int. J. Adv. Manuf. Technol. 38, 1018–1025 (2008)

Lai, T.C.: The note on heuristics of flowshop scheduling. Oper. Res. 44, 648–652 (1996)
Lian, Z., Gu, X., Jiao, B.: A similar particle swarm optimization algorithm for permutation

flowshop scheduling to minimize makespan. Appl. Math. Comput. 175, 773–785 (2006)
Lian, Z., Gu, X., Jiao, B.: A novel particle swarm optimization algorithm for permutation flow-

shop scheduling to minimize makespan. Chaos Soliton Fract. 35, 851–861 (2008)
Liao, C.J., Tseng, C.T., Luarn, P.: A discrete version of particle swarm optimization for flow-

shop scheduling problems. Comput. Oper. Res. 34, 3099–3111 (2007)
Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the P//∑Ci scheduling

problem. Eur. J. Oper. Res. 132, 439–452 (2001)
Lourenço, H.L.: Sevast’ janos’s algorithms for the flowshop scheduling problem. Eur. J. Oper.

Res. 91, 176–189 (1996)
Low, C., Yeh, J.Y., Huang, K.I.: A robust simulated annealing heuristic for flowshop schedul-

ing problems. Int. J. Adv. Manuf. Technol. 23, 762–767 (2004)
Manne, A.S.: On the jobshop scheduling problem. Oper. Res. 8(2), 219–223 (1960)
McMahon, G.B., Burton, B.: Flowshop scheduling with branch and bound method. Oper.

Res. 15, 473–481 (1967)
Moccellin, J.V.: A new heuristic method for the permutation flowshop scheduling problem. J.

Oper. Res. Soc. 46(7), 883–886 (1995)
Morton, T.E., Pentico, D.W.: Heuristic scheduling systems with applications to production sys-

tems and project management. John Wiley & Sons Inc., New York (1993)
Murata, T., Ishibuchi, H., Tanaka, H.: Genetic algorithms for flowshop scheduling problems.

Comput. Ind. Eng. 30(4), 1061–1071 (1996)

298 B. Yagmahan and M.M. Yenisey

Nagano, M.S., Moccellin, J.V.: A high quality solution constructive heuristic for flow shop se-
quencing. J. Oper. Res. Soc. 53(12), 1374–1379 (2002)

Nagano, M.S., Ruiz, R., Lorena, L.A.N.: A constructive genetic algorithm for permutation
flowshop scheduling. Comput. Ind. Eng. 55, 195–207 (2008)

Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine n-job flowshop
sequencing problem. Omega 11, 91–95 (1983)

Nearchou, A.C.: A novel metaheuristic approach for the flowshop scheduling problem. Eng.
Appl. Artif. Intel. 17, 289–300 (2004a)

Nearchou, A.C.: Flowshop sequencing using hybrid simulated annealing. J. Intell. Manuf. 15,
317–328 (2004b)

Neppalli, V.R., Chen, C.L., Aljaber, N.J.: An effective heuristic for the flowshop problem with
weighted tardiness. In: Proceedings of the 3rd Industrial Engineering Research Conference,
pp. 634–638 (1994)

Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flowshop prob-
lem. Eur. J. Oper. Res. 91, 160–175 (1996)

Nowicki, E., Smutnicki, C.: Some aspects of scatter search in the flowshop problem. Eur. J.
Oper. Res. 169, 654–666 (2006)

Ogbu, F.A., Smith, D.K.: Simulated annealing for the permutation flowshop problem.
Omega 19, 64–67 (1991)

Onwubolu, G.C., Mutingi, M.: Genetic algorithm for minimizing tardiness in flowshop sched-
uling. Prod. Plan Control 10(5), 462–471 (1999)

Onwubolu, G., Davendra, D.: Scheduling flowshops using differential evolution algorithm. Eur.
J. Oper. Res. 171, 674–692 (2006)

Osman, I.H., Potts, C.N.: Simulated annealing for permutation flowshop scheduling.
Omega 17(6), 551–557 (1989)

Ow, P.S.: Focused scheduling in proportionate flowshops. Manage. Sci. 31(7), 852–869 (1985)
Page, E.S.: An approach to the scheduling of jobs on machines. J. Roy. Stat. Soc. B.

Met. 23(2), 484–492 (1961)
Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum total time – a

quick method of obtaining near optimum. J. Oper. Res. Soc. 16, 101–107 (1965)
Pan, Q.K., Tasgetiren, M.F., Liang, Y.C.: A discrete differential evolution algorithm for the

permutation flowshop scheduling problem. Comput. Ind. Eng. (2008)
doi:10.1016/j.cie.2008.03.003

Pinedo, M.: Scheduling: Theory, algorithms, and systems, 2nd edn. Prentice-Hall Inc., New
Jersey (2002)

Pinedo, M.L.: Planning and scheduling in manufacturing and services. Springer Science +
Business Media, Inc., New York (2005)

Prabhaharan, G., Shahul Hamid Khan, B., Rakesh, L.: Implementation of grasp in flow shop
scheduling. Int. J. Adv. Manuf. Technol. 30, 1126–1131 (2006)

Qian, B., Wang, L., Hu, R., Wang, W.L., Huang, D.X., Wang, X.: A hybrid differential evolu-
tion method for permutation flow-shop scheduling. Int. J. Adv. Manuf. Technol. 38, 757–
777 (2008)

Qian, B., Wang, L., Huang, D.X., Wang, W.L., Wang, X.: An effective hybrid DE-based algo-
rithm for multi-objective flowshop scheduling with limited buffers. Comput. Oper. Res. 36,
209–233 (2009)

Rad, S., Ruiz, R., Boroojerdian, N.: New high performing heuristics for minimizing makespan
in permutation flowshops. Omega 37, 331–345 (2009)

Rajendran, C.: Heuristic algorithm for scheduling in a flowshop to minimize total flowtime. Int.
J. Prod. Econ. 29, 65–73 (1993)

Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling 299

Rajendran, C., Chaudhuri, D.: An efficient heuristic approach to the scheduling of jobs in flow-
shop. Eur. J. Oper. Res. 61(3), 318–325 (1991)

Rajendran, C., Ziegler, H.: An efficient heuristic for scheduling in a flowshop to minimize total
weighted flowtime of jobs. Eur. J. Oper. Res. 103, 129–138 (1997)

Rajendran, C., Ziegler, H.: Ant-colony algorithms for flowshop scheduling to minimize
makespan/total flowtime of jobs. Eur. J. Oper. Res. 155(2), 426–438 (2004)

Reeves, C.R.: A genetic algorithm for flow shop sequencing. Comput. Oper. Res. 22(1), 5–13
(1995)

Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking and the flow shop sequencing
problem. Evol. Comput. 6(1), 230–234 (1998)

Reza Hejazi, S., Saghafian, S.: Flowshop scheduling problems with makespan criterion: A re-
view. Int. J. Prod. Res. 43(14), 2895–2929 (2005)

Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuris-
tics. Eur. J. Oper. Res. 165, 479–494 (2005)

Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop schedul-
ing problem. Omega 34, 461–476 (2006)

Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flow-
shop scheduling problem. Eur. J. Oper. Res. 177, 2033–2049 (2007)

Saravanan, M., Haq, A.N., Vivekraj, A.R., Prasad, T.: Performance evaluation of the scatter
search method for permutation flowshop sequencing problems. Int. J. Adv. Manuf. Tech-
nol. 37, 1200–1208 (2008)

Šeda, M.: Mathematical models of flow shop and job shop scheduling problems. Int. J.
AM&CS 4(4), 241–246 (2007)

Smith, M.L., Dudek, R.A.: A general algorithm for solution of the n-job m-machine sequencing
problem of the flowshop. Oper. Res. 15, 71–82 (1967)

Solimanpur, M., Vrat, P., Shankar, R.: A neurotabu search heuristic for the flow shop schedul-
ing problem. Comput. Oper. Res. 31, 2151–2164 (2004)

Stinson, J.P., Smith, A.W.: A heuristic programming procedure for sequencing the static flow-
shop. Int. J. Prod. Res. 20, 753–764 (1982)

Storn, R., Price, K.: Differential evolution- A simple and efficient adaptive scheme for global
optimization over continuous spaces, Technical Report TR-95-012, ICSI (1995)

Stützle, T.: An ant approach to the flow shop problem. In: Proceedings of the 6th European
Congress on Intelligent Techniques and Soft Computing (EUFIT 1998), Verlag Mainz, Wis-
senschaftsverlag, Aachen, Germany, pp. 1560–1564 (1998a)

Stützle, T.: Applying iterated local search to the permutation flow shop problem. Technical Re-
port, AIDA-98-04, Darmstadt University of Technology, Computer Science Department, In-
tellectics Group (1998b)

Szwarc, W.: Optimal elimination methods in mxn flowshop scheduling problem. Oper. Res. 21,
1250–1259 (1973)

Taillard, E.: Some efficient heuristic methods for the flowshop sequencing problem. Eur. J.
Oper. Res. 47(1), 65–74 (1990)

Tang, L., Liu, J.: A modified genetic algorithm for the flow shop sequencing problem to mini-
mize mean flow time. J. Intell. Manuf. 13, 61–67 (2002)

Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: Differential evolution algorithm for
permutation flowshop sequencing problem with makespan criterion. In: Proceedings of the
4th International Symposium on Intelligent Manufacturing Systems (IMS 2004), Sakarya,
Turkey, pp. 442–452 (2004)

300 B. Yagmahan and M.M. Yenisey

Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: A particle swarm optimization algo-
rithm for makespan and total flowtime minimization in the permutation flowshop sequenc-
ing problem. Eur. J. Oper. Res. 177, 1930–1947 (2007)

T’kindt, V., Billaut, J.C.: Multicriteria scheduling: Theory, models and algorithms. Springer,
Berlin (2002)

Vallada, E., Ruiz, R.: Cooperative metaheuristics for the permutation flowshop scheduling
problem. Eur. J. Oper. Res. (2008) doi:10.1016/j.ejor.2007.11.049

Wang, C., Chu, C., Proth, J.M.: Heuristic approaches for n/m/F/∑Ci scheduling problem. Eur.
J. Oper. Res. 96, 636–644 (1997)

Wang, L., Zhang, L.: Determining optimal combination of genetic operators for flow shop
scheduling. Int. J. Adv. Manuf. Technol. 30, 302–308 (2006)

Wang, L., Zhang, L., Zheng, D.Z.: A class of order-based genetic algorithm for flow shop
scheduling. Int. J. Adv. Manuf. Technol. 22, 828–835 (2003)

Wang, L., Zhang, L., Zheng, D.Z.: The ordinal optimisation of genetic control parameters for
flow shop scheduling. Int. J. Adv. Manuf. Technol. 23, 812–819 (2004)

Wang, L., Zheng, D.Z.: An effective hybrid heuristic for flow shop scheduling. Int. J. Adv.
Manuf. Technol. 21(1), 38–44 (2003)

Werner, F.: On the heuristic solution of the permutation flow shop problem by path algorithms.
Comput. Oper. Res. 20(7), 707–722 (1993)

Widmer, M., Hertz, A.: A new heuristic method for the flowshop sequencing problem. Eur. J.
Oper. Res. 41, 186–193 (1989)

Woo, H.S., Yim, D.S.: A heuristic algorithm for mean total flowtime objective in flowshop
scheduling. Comput. Oper. Res. 25(3), 175–182 (1998)

Yagmahan, B., Yenisey, M.M.: Ant colony optimization for multi-objective flow shop schedul-
ing problem. Comput. Ind. Eng. 54(3), 411–420 (2008)

Yamada, T., Reeves, C.: Solving the Csum permutation flowshop scheduling problem by ge-
netic local search. In: Proceedings of the 1998 IEE International Conference on Evolution-
ary Computing, pp. 230–234 (1998)

Ying, K.C., Liao, C.J.: An ant colony system for permutation flowshop sequencing. Comput.
Oper. Res. 31(5), 791–801 (2004)

Yong, Z., Sannomiya, N.: An improvement genetic algorithm by search space reductions in
solving large-scale flowshop problems. Trans. IEE. Japan 121-C(6), 1010–1015 (2001)

Zegordi, S.H., Itoh, K., Enkawa, T.: Minimizing makespan for flow shop scheduling by com-
bining simulated with sequencing knowledge. Eur. J. Oper. Res. 85(3), 515–531 (1995)

Zhang, C., Sun, J., Zhu, X., Yang, Q.: An improved particle swarm optimization algorithm for
flowshop scheduling problem. Inform Process Lett. (2008) doi:10.1016/j.ipl.2008.05.010

Zhang, L., Wang, L., Zheng, D.Z.: An adaptive genetic algorithm with multiple operators for
flowshop scheduling. Int. J. Adv. Manuf. Technol. 27, 580–587 (2006)

Ziaee, M., Sadjadi, S.J.: Mixed binary integer programming formulations for the flow shop
scheduling problems. A case study: ISD projects scheduling. Appl. Math. Comput. 185,
218–228 (2007)

U.K. Chakraborty (Ed.): Comput. Intel. in Flow Shop and Job Shop Sched., SCI 230, pp. 301–340.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Metaheuristics for Common due Date Total Earliness and
Tardiness Single Machine Scheduling Problem

M. Fatih Tasgetiren1, Quan-Ke Pan2, P.N. Suganthan3, Yun-Chia Liang4,
and Tay Jin Chua5

1 Department of Operations Management and Business Statistics, Sultan Qaboos University,
 Muscat, Sultanate of Oman
 mfatih@squ.edu.om
2 College of Computer Science, Liaocheng University, Shandong Province, 252059, P.R.C
 qkpan@lcu.edu.cn
3 School of Electrical and Electronic Engineering, Nanyang Technological University,
 Singapore, 639798
 epnsugan@ntu.edu.sg
4 Department of Industrial Engineering and Management, Yuan Ze University,
 Taoyuan County, Taiwan, R.O.C
 ycliang@saturn.yzu.edu.tw
5 Singapore Institute of Manufacturing Technology, Singapore, 638075
 tjchua@SIMTech.a-star.edu.sg

Summary. In this chapter, metaheuristic algorithms, namely, a binary particle swarm optimiza-
tion, a discrete particle swarm optimization, and a discrete differential evolution algorithm, are
presented to solve the common due date total earliness and tardiness single machine scheduling
problem. Novel discrete versions of both particle swarm optimization and differential evolution
algorithms are developed to be applied to all types of combinatorial optimization problems in
the literature. The metaheuristic algorithms presented in this chapter employ a binary solution
representation, which is very common in the literature in terms of determining the early and
tardy job sets so as to implicitly tackle the problem. In addition, a constructive heuristic algo-
rithm, here we call it MHRM, is developed to solve the problem. Together with the MHRM
heuristic, a new binary swap mutation operator, here we call it BSWAP, is employed in the
metaheuristic algorithms. Furthermore, metaheuristic algorithms are hybridized with a simple
local search based on the BSWAP mutation operator to further improve the solution quality.
The proposed metaheuristic algorithms are tested on 280 benchmark instances ranging from 10
to 1000 jobs from the OR Library. The computational results show that the metaheuristic algo-
rithms with a simple local search generated either better or competitive results than those of all
the existing approaches in the literature.

1 Introduction

Among all types of scheduling objectives, earliness and tardiness penalties are con-
sidered the most common and important ones in the Just-in-Time (JIT) environment.
In a JIT production system, a job completing earlier than its due date incurs an earli-
ness penalty (inventory cost) whereas a job completing later leads to a tardiness pen-
alty (imposed by customers). If the optimal sequence cannot be constructed without

302 M. Fatih Tasgetiren et al.

considering the value of the due date, the common due date is called restrictive. In a
single machine scheduling problem with common due date, all jobs are available to be
processed at time zero. Each job j has a processing time jp and a common due date

d . Preemption is not allowed and the objective is to sequence jobs with a restrictive
common due date such that the sum of weighted earliness and tardiness penalties is
minimized. That is,

() ()∑
=

+=
n

j
jjjj TESf

1

βα (1)

When the job j completes its operation before the due date, its earliness is given by
()jj CdE −= ,0max , where Cj is the completion time of the job j. On the other hand,

if the job finishes its operation after the due date, its tardiness is calculated by
()dCT jj −= ,0max . Earliness and tardiness penalties are also given by jα and jβ ,

respectively. For convenience, ES denotes the set of jobs completed before or at the

due date whereas TS represents the set of jobs completed after the due date.
It is well-known that for the case of restrictive common due date with general pen-

alties, there exists an optimal schedule with the following properties:

1. No idle times are inserted between consecutive jobs [1]
2. The schedule is V-Shaped. In other words, jobs that are completed at or before the

due date are sequenced in non-increasing order of the ratio jjp α/ . On the other

hand, jobs whose processing starts at or after the due date are sequenced in non-
decreasing order of the ratio jjp β/ [2]. Note that there might be a straddling job,

which is started before the due date and completed after the due date [3].
3. There is an optimal schedule in which either the processing of the first job starts

at time zero or one job is completed at the due date [4].

The complexity of the restrictive common due-date problem is proved to be NP-
complete in the ordinary sense [5]. Therefore, only small-sized instances of the single
machine scheduling problem with a common due date may be solved to optimality
with reasonable computational time using exact algorithms. When the problem size
increases, the computational time of exact methods grows explosively. On the other
hand, heuristic algorithms require generally acceptable time and memory require-
ments to reach a near-optimal or optimal solution. In past decades, most research
focused on developing metaheuristic algorithms such as tabu search (TS) [6, 7, 8],
genetic algorithm (GA) [8, 9, 10], differential evolution (DE) [11], evolutionary strat-
egy (ES), simulated annealing (SA) and threshold accepting (TA) [12]. Hybridization
of heuristics is another trend of research track. For example, M’Hallah [13] proposed
a hybrid algorithm that combines GA, hill climbing (HC), dispatching rules, and SA,
and Hino et al. [8] proposed two hybrid methods HGT and HTG by combining TS,
GA, and an efficient constructive heuristic HRM. Lastly, some effective heuristics
are developed recently. Hendel & Sourd [14] employed neighborhood search based
on the adjacent pairwise interchange (API) method, and Lin et al. [15] proposed a
sequential exchange approach. In this study, following the HRM heuristic [8], we also

 Metaheuristics for Common due Date Total Earliness 303

present a modified version of the HRM heuristic, here we call it MHRM heuristic, by
taking into account of the drawbacks in the HRM heuristic.

PSO is one of the latest evolutionary metaheuristic methods, which receives grow-
ing interest from the researchers in the literature. It is based on the metaphor of social
interaction and communication such as bird flocking and fish schooling. PSO was
first introduced to optimize various continuous nonlinear functions by Eberhart &
Kennedy [16]. Distinctly different from other evolutionary-type methods such as GA
and ES, PSO algorithms maintain the members of the entire population through the
search procedure without considering the survival of fitness. In other words, selection
is not employed in PSO algorithms. In a PSO algorithm, each individual is called a
particle, and each particle moves around in the multi-dimensional search space with a
velocity constantly updated by the particle’s own experience, the experience of the
particle’s neighbors, or the experience of the whole swarm. That is, the search infor-
mation is socially shared among particles to direct the population towards the best
position in the search space. The comprehensive surveys of the PSO algorithms and
applications can be found in [17, 18].

As well known, the original PSO is designed for solving the real-valued optimiza-
tion problems. The PSO algorithm has already been extended to be applied to bi-
nary/discrete optimization problems. To cope with the binary variables, Kennedy and
Eberhart [19] designed the velocity as a probability to determine whether or not the
value of the positions ijx will be 0 or 1. They squashed the velocity ijv by using the

sigmoid function () ()()ijij vvs −+= exp11 while the velocity is calculated with the

traditional equation. If a random number within [0,1] is less than ()ijvs then ijx is set

to 1, otherwise it is set to 0. The binary version of PSO outperformed several versions
of GAs in all tested problems.

On the other hand, differential evolution (DE) is also one of the latest evolutionary
optimization methods proposed by Storn & Price [20]. Like other evolutionary-type
algorithms, DE is a population-based and stochastic global optimizer. In a DE algo-
rithm, candidate solutions are represented by chromosomes based on floating-point
numbers. In the mutation process of a DE algorithm, the weighted difference between
two population members is added to a third member to generate a mutated solution.
Then, a crossover operator follows to combine the mutated solution with the target
solution so as to generate a trial solution. Thereafter, a selection operator is applied to
compare the fitness function value of both competing solutions, namely, target and
trial solutions to determine who can survive for the next generation. Since DE was
first introduced to solve the Chebychev polynomial fitting problem by Storn & Price
[20, 21], it has been successfully applied to a variety of applications that can be found
in Corne et al. [22], Lampinen [23], Babu & Onwubolu [24], Price et al. [25], and
Chakraborty [26].

The applications of PSO and DE on combinatorial optimization problems are still
limited, but the past experiences of successfully applying PSO and DE algorithms to
combinatorial problems in the literature [27, 28, 29, 30, 31, 32, 33, 34, 35] have
shown the promising of PSO and DE on scheduling problems. Recently, the authors
have also introduced a new and novel discrete version of the differential evolution
algorithm in [36, 37], which is based on a discrete domain exploiting the basic

304 M. Fatih Tasgetiren et al.

features of its continuous counterpart. In this chapter, the discrete particle swarm
algorithm and the discrete differential algorithm are given in very much detail, espe-
cially for their pure performance with and without a local search. We also show that a
simple binary PSO of of Kennedy & Eberhart [19] can solve the problem on hand
very efficiently when embedded with a local search. Furthermore, the MHRM
heuristic is given in detail as to how it differs from its counterpart HRM heuristic with
examples. The performance of the newly proposed binary mutation operator,
BSWAP, is evaluated in detail too. Finally, a very detailed design of experiments is
conducted to determine the parameters of the metaheuristics proposed. To sum up,
this research presents discrete particle swarm optimization (DPSO) and discrete
differential evolution (DDE) algorithms in detail as well as the binary PSO algorithm,
here we denote it BPSO, of Kennedy and Eberhart [19] to solve the single machine
total earliness and tardiness penalties with a common due date (E/T) problem.

The remainder of the chapter is organized as follows. Section 2 introduces the dis-
crete particle swarm optimization together with the standard BPSO. The discrete
differential evolution, local search employed, and the MHRM heuristic are discussed
in Section 3. Section 4 presents the design of experiments for parameter setting, and
the computational results over benchmark problems are discussed in Section 5. Fi-
nally, Section 6 summarizes the concluding remarks.

2 Discrete Particle Swarm Optimization Algorithm

In the standard PSO algorithm, all particles have their position, velocity, and fitness
values. Particles fly through the n-dimensional space by learning from the historical
information emerged from the swarm population. For this reason, particles are in-
clined to fly towards better search area over the course of evolution. Let NP denote

the swarm size represented as []t
NP

ttt XXXX ,...,, 21= . Then each particle in the swarm

population has the following attributes: A current position represented as

[]t
in

t
i

t
i

t
i xxxX ,..,, 21= ; a current velocity represented as []t

in
t
i

t
i

t
i vvvV ,..,, 21= ; a current

personal best position represented as []t
in

t
i

t
i

t
i pppP ,...,, 21= ; and a current global best

position represented as []t
n

ttt gggG ,...,, 21= . Assuming that the function f is to be

minimized, the current velocity of the jth dimension of the ith particle is updated as
follows.

() ()11
22

11
11

11 −−−−−− −+−+= t
ij

t
j

t
ij

t
ij

t
ij

tt
ij xgrcxprcvwv (2)

where tw is the inertia weight which is a parameter to control the impact of the pre-
vious velocities on the current velocity; c1 and c2 are acceleration coefficients and r1
and r2 are uniform random numbers between [0,1]. The current position of the jth
dimension of the ith particle is updated using the previous position and current veloc-
ity of the particle as follows:

t
ij

t
ij

t
ij vxx += −1 (3)

 Metaheuristics for Common due Date Total Earliness 305

The personal best position of each particle is updated using

() ()
() ()⎩

⎨
⎧

<
≥

= −

−−

1

11

t
i

t
i

t
i

t
i

t
i

t
it

i
PfXfifX

PfXfifP
P (4)

Finally, the global best position found so far in the swarm population is obtained as

() () ()
⎪⎩

⎪
⎨
⎧

≤≤

<
=

−

−

NPielseG

GfPfifPf
G

t

tt
i

t
i

Pt t
i

1

minminarg

1

1

 (5)

Regarding the BPSO algorithm, we follow Kennedy and Eberhart [19]. In the
BPSO algorithm, the sigmoid function is used to force the real values between 0 and
1, and the velocities are restricted to the range of []max,min VV . Once velocities are

updated with the traditional equation (2), the sigmoid function is used to squash them
to be within [0,1] as follows:

() ()()ijij vvs −+= exp11 (6)

Finally particles are updated such that:

()
⎩
⎨
⎧ ≤

=
otherwise

vsrif
x ij

ij 0

1
 (7)

where r is a uniform random number within 0 and 1. If r is less than ()ijvs , then

position of the jth dimension of the ith particle is assigned to 1, otherwise it is as-
signed to 0.

Standard PSO equations cannot be used to generate discrete values since positions
are real-valued. Pan et al. [30, 31, 33] have presented a DPSO optimization algorithm
to tackle the discrete spaces, where particles are updated by using the temporary par-
ticles iλ and iδ as follows:

()
⎩
⎨
⎧ <

= −

−

otherwiseX

wrifXF
t
i

t
ikt

i 1

1

λ (8)

where w is the mutation probability, r is a random number between [0,1], and kF is

the mutation operator kF with the mutation strength k . A uniform random number r

is generated between 0 and 1. If r is less than the mutation probability w , then the

mutation operator is applied to the particle 1−t
iX at the previous generation t-1 in

order to produce the temporary particle by ()1−= t
ik

t
i XFλ , otherwise the temporary

particle is taken as 1−= t
i

t
i Xλ .

()
⎩
⎨
⎧ <

=
−−

Otherwise

crifPCR
t
i

t
i

t
it

i λ
λδ 1

11 ,
 (9)

306 M. Fatih Tasgetiren et al.

where 1c is the crossover probability, r is a random number between [0,1], and 1−t
iP

is the personal best solution at the generation t-1. CR represents the crossover opera-

tor with the probability of 1c . Note that t
iλ and 1−t

iP will be the first and second par-

ents for the crossover operator, respectively. It results either in ()1, −= t
i

t
i

t
i PCR λδ or in

t
i

t
i λδ = depending on the choice of a uniform random number.

()
⎩
⎨
⎧ <

= −

−−

Otherwise

crifGCR
X

t
i

tt
it

i 1
2

11 ,

δ
δ

 (10)

where 2c is the crossover probability, r is a random number between [0,1], 1−tG is

the global best solution at the generation t-1. Again, CR represents the crossover op-

erator with the probability of 2c . Note that t
iδ and 1−tG will be the first and second

parents for the crossover operator, respectively. It results either in ()1, −= tt
i

t
i GCRX δ

or in t
i

t
iX δ= depending on the choice of a uniform random number.

For the DPSO algorithm, the gbest (global neighborhood) model of Kennedy et al.
[17] was followed. The basic idea behind the DPSO algorithm is to exploit the fea-
tures of its continuous counterpart. Particles in the population are updated in such a
way that they are guided to gather some information from their personal best solutions
and the global best solution. Therefore, all population is ultimately directed towards
the global best and personal best solutions during the search space without any selec-
tion procedure.

3 Discrete Differential Evolution

Currently, there exist several mutation variations of DE. The DE/rand/1/bin scheme
of Storn & Price [20, 21] is presented below. The DE algorithm starts with initializing
the target population in the size of NP. Each individual has an n-dimentional vector
with parameter values determined randomly and uniformly between predefined search
range. To generate a mutant individual, DE mutates vectors from the target population
by adding the weighted difference between two randomly selected target population
members to a third member as follows:

()111 −−− −+= t
cj

t
bj

t
aj

t
ij xxFxv (11)

where a, b, and c are three randomly chosen individuals from the target population
such that ()()NPcba ,..,1∈≠≠ . 0>F is a mutation scale factor which affects the

differential variation between two individuals. Following the mutation phase, the
crossover operator is applied to obtain the trial individual such that:

⎪⎩

⎪
⎨
⎧ =≤

=
otherwisex

DjorCRrifv
u

t
ij

j
t

ij
t
ijt

ij (12)

 Metaheuristics for Common due Date Total Earliness 307

where the jD refers to a randomly chosen dimension ()nj ,..,1= , which is used to en-

sure that at least one parameter of each trial individual t
iju differs from its counterpart in

the previous generation 1−t
iju . CR is a user-defined crossover constant in the range [0,1],

and t
ijr is a uniform random number between 0 and 1. In other words, the trial individ-

ual is made up with some parameters of mutant individual, or at least one of the parame-
ters randomly selected, and some other parameters of the target individual.

To decide whether or not the trial individual t
iU should be a member of the target

population for the next generation, it is compared to its counterpart target individual
1−t

iX at the previous generation. The selection is based on the survival of the fitness

among the trial population and target population such that:

() ()
⎪⎩

⎪
⎨
⎧ ≤

=
−

−

otherwiseX

XfUfifU
X

t
i

t
i

t
i

t
it

i 1

1

 (13)

Again the standard DE equations cannot be used to generate discrete values since
positions are real-valued. Instead we propose a new and novel DDE algorithm whose
solutions are based on discrete/binary values and therefore can be applied to dis-
crete/binary combinatorial optimization problems. In the DDE algorithm for the E/T
problem, the target population is constructed based on the binary 0-1 values as repre-
sented by []NPi XXXX ,,,, 21= . For the mutant population can be obtained as follows:

the following equations can be used:

()
⎩
⎨
⎧ <

=
−

−

elseG

PmrifGF
V

t

t
kt

i 1

1

 (14)

where 1−tG is the best solution found so far in the population; Pm is the mutation
probability; and kF is the mutation operator with the mutation strength of k. A uni-

form random number r is generated between [0,1]. If r is less than Pm then the muta-

tion operator is applied to generate the mutant individual ()1−= t
k

t
i GFV , otherwise

the global best solution is kept as the mutant individual 1−= tt
i GV . Following the

mutation phase, the trial individual is obtained such that:

()
⎩
⎨
⎧ <

=
−

elseV

PcrifVXCR
U

t
i

t
i

t
it

i

,1

 (15)

where CR is the crossover operator, and Pc is the crossover probability. In other
words, if a uniform random number r is less than the crossover probability Pc , then

the crossover operator is applied to generate the trial individual ()t
i

t
i

t
i VXCRU ,1−= .

Otherwise the trial individual is chosen as t
i

t
i VU = . By doing so, the trial individual is

made up either from the outcome of mutation operator or from the crossover operator.
Finally, the selection is based on the survival of the fitness among the trial population
and target population such that:

308 M. Fatih Tasgetiren et al.

() ()
⎩
⎨
⎧ ≤

= −

−

otherwiseX

XfUfifU
X

t
i

t
i

t
i

t
it

i 1

1

 (16)

In the proposed DDE algorithm, the basic idea is to direct the population towards
the best solution so far in the population. In both algorithms, k represents the mutation
strength. The lower the value of mutation strength k is, the lower the possibility that
the algorithm would avoid getting stuck at the local minima. On the other hand, the
higher the value of mutation strength k is, the higher the possibility that the algorithm
would possess excessive randomness. So care must be taken in the choice of the value
of the mutation strength.

3.1 Solution Representation

As mentioned before, a binary solution representation is employed for the problem in

all algorithms. In the binary representation, t
ijx , the position or individual value of the

jth dimension of the ith particle or individual t
iX , denotes a job. If 0=t

ijx , the job j

is said to complete before or at the due date, which belongs to the early job set ES

whereas if 1=t
ijx , the job j is said to finish after the due date, which belongs to the

tardy job set TS . Binary solution representation is unique in terms of determining the

early job set ES and the tardy job set TS . An example of solution representation is
shown in Table 1. From Table 1, it is trivial to see that the jobs 1J , 4J and 6J belong

to the early job set ES ; and the jobs 2J , 3J and 5J belong to the tardy job set TS .

Table 1. Solution representation

j 1 2 3 4 5 6

ijx 0 1 1 0 1 0
ES 1J 4J 6J
TS 2J 3J 5J

3.2 Local Search

In this paper, we present a novel BSWAP mutation operator for all proposed meta-
heuristics as well as in the local search algorithm presented. The BSWAP operator
consists of two steps:

1. Generate two random integers, u and v, in the range []n,1 ;

2. if t
iv

t
iu xx = , then 2mod)1(+= t

iu
t
iu xx ;

else 2mod)1(+= t
iu

t
iu xx and 2mod)1(+= t

iv
t
iv xx .

The main feature of the BSWAP mutation operator is to provide a balance between
the early and tardy job sets in such a way that when a solution is determined by an

 Metaheuristics for Common due Date Total Earliness 309

early/tardy job set, the first part of the BSWAP mutation operator is possibly to find
two jobs from the same set and assigning one of them to the early/tardy jobs or vice
versa. On the other hand, if a solution is relatively balanced with the early and tardy
jobs, the BSWAP mutation operator is more likely to find two jobs, one belonging to
the early job set and the other belonging to the tardy job set, then swapping them from
the early to tardy job set or vice versa.

After applying the BPSO, DPSO and DDE operators, the early job set ES and the

tardy job set TS are determined from the binary representation. Then every fitness
calculation follows the second property of optimality conditions. In other words, the
V-Shaped schedule is constructed where jobs completed at or before the due dates are
sequenced in non-increasing order of the ratio jjp α/ whereas jobs whose processing

starts at or after the due date are sequenced in non-decreasing order of the ra-

tio jjp β/ . Note that the set TS might contain a straddling job. If there is a straddling

job, the first job in the early job set ES is started at time zero. After completing the

last job of the early job set ES , the straddling job and the jobs in the tardy job set TS
are sequenced. On the other hand, if there is no straddling job, the completion time of
the last job in the early job set ES is matched with the due date and the processing in

the tardy job set TS is followed immediately.
The local search in this study was based on the simple BSWAP neighborhood. It

should be noted that the following local search was applied to the global best solution,
tG , at each iteration t. The pseudo code of the local search is given in Figure.1.

Procedure LocalSearch(G)
s:=perturbation(G)
for i:=1 to loopsize do
 flag:=true;
 while (flag=true) do
 s1 :=BSWAP(s);
 if f(s1)≤ f(s) then
 s := s1;
 else
 flag:=false;
 endif
 endwhile
 endfor
 if f(s) ≤ f(G) then
 G:=s;
 else
 G:=G;
 endif
 return G
end

Fig. 1. Local Search Employed

310 M. Fatih Tasgetiren et al.

In the local search algorithm, s refers to the perturbed global best or the best so far

solution tG at each generation t. That is, the global best or best so far solution is per-

turbed by swapping two jobs randomly; one from the tardy set TS , and another from

the early set ES . Then the BSWAP operator was applied to the perturbed solution s.
The size of the local search was carefully set to ()6000,30min nloopsize = in order to

obtain comparable results fair enough to the existing approaches in terms of CPU time
requirements. For convenience, we denote all algorithms with the local search as
BPSOLS, DPSOLS and DDELS, respectively from now on throughout the chapter.

3.3 MHRM Heuristic

In a single-machine with n jobs, at most one job can be completed on the due date.

For this reason, there will be two sets of jobs: an early job set denoted by ES where

the jobs are completed before or at the due date and a tardy job set denoted by TS
where the jobs are completed after the due date. Consistent with the HRM heuristic
[8], the MHRM heuristic consists of: (i) determining these two sets, (ii) constructing a
sequence for each set, and (iii) setting the final schedule S as the concatenation of
both sequences. In order to ensure that S will satisfy properties (1) and (2), there will

be no idle time between consecutive jobs, and the sequences of ES and TS will be “\-
shaped” and “/-shaped”, respectively.

At each generation, the non-scheduled jobs with the maximum ratios jjp α/ and

jjp β/ are considered for inclusion in one of the two sets. According to the distance

between each job’s possible completion time and the due date, just one of the jobs is
included. Adjustments in the inserted idle time at the beginning of the sequence are
also considered. Finally, when all jobs are scheduled, an attempt to satisfy the prop-
erty (3) is made. Following notation consistent with Hino et al. [8] is employed:

P : set of jobs to be allocated
g : idle time inserted at the beginning of the schedule

ES : set of jobs completed before or at the due date
TS : set of jobs completed after the due date

S : schedule representation ()TE SSgS ,,=

e : candidate job for ES

t : candidate job for TS
eE : distance between the possible completion time of the job e and the due date
tT : distance between the possible completion time of the job t and the due date
Td : time window available for inserting a job in the set TS
Ed : time window available for inserting a job in the set ES

jp : processing time of job j

H : total processing time, ∑ == n
j jpH 1

 Metaheuristics for Common due Date Total Earliness 311

The computational flow of the MHRM heuristic is as follows:

Step 1: Let { }nP ,..,2,1= ; Φ== TE SS ,
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
×−= ∑

=

n

j jj

j

n
Hdg

1

1
,0max

βα
β

;

gdd E −= and dHgd T −+= .

Step 2: Set }/{maxarg jjpj pe α∈= and }/{maxarg jjpj pt β∈= (in case of a tie,

select the job with the longest jp).

Step 3: Set e
Ee pdE −= and Tt dT = .

If 0≤eE then go to step 5.

If 0≤− t
t pT then go to step 6.

Step 4: Choose the job to be inserted:

• If te TE > then }{eSS EE += , e
EE pdd −= and }{ePP −= .

• If te TE < then }{tSS TT += , t
TT pdd −= and }{tPP −= .

• If te TE = then

if te βα > then }{tSS TT += , t
TT pdd −= and }{tPP −= ;

 else }{eSS EE += , e

EE pdd −= and }{ePP −= .

Go to step 7.
Step 5: Adjustment of the idle time (end of the space before the due date):

• If 0<+ eEg then }{tSS TT += , t
TT pdd −= and }{tPP −=

If 0<Td then 0=g

• Else
EE SS =' , PSS TT ∪=' ,

jSj E pdg ∑ ∈= '' ,),,'(' '' TE SSgS = ;

}{'' eSS EE += , }{'' ePSS TT −∪= ,
jSj E pdg ∑ ∈−= '''' ,

),,''('' '''' TE SSgS = .

If)()(''' EE SfSf ≤ then

}{tSS TT += , 0=Ed , ggpdd t
TT −+−= ' , 'gg = and }{tPP −= .

Else }{eSS EE += , 0=Ed , ggdd TT −+= '' , ''gg =

and }{ePP −= .

Go to step 7.
Step 6: Adjustment of the idle time (end of the space after the due date):

• If tTg < then }{eSS EE += , e
EE pdd −= and }{ePP −=

• Else
TT SS =' , PSS EE ∪=' ,

jSj E pdg ∑ ∈−= '' ,),,'(' '' TE SSgS = ;

312 M. Fatih Tasgetiren et al.

}{'' tSS TT += , }{'' tPSS EE −∪= ,
jSj E pdg ∑ ∈−= '''' ,

),,''('' '''' TE SSgS = .

If)()(''' SfSf ≤ then

 }{eSS EE += , 0=Td , 'ggpdd e
EE −+−= , 'gg = , }{ePP −= ;

Else }{tSS TT += , 0=Td , ''ggdd EE −+= , ''gg = , }{tPP −= .

Step 7: If Φ≠P then go to step 2.
Step 8: If there is a straddling job (it must be the last job in TS), then

• EE SS =' , TT SS =' ,
jSj E pdg ∑ ∈−= '' ,),,'(' '' TE SSgS = .

Solve),,(''' TE SSgS =

• If)()'(SfSf < then 'gg = . 'SS =

Step 9: Stop.

As mentioned before, the MHRM heuristic is a modified version of HRM heuristic
presented in Hino et al. [8]. The main difference between HRM and MHRM heuris-
tics is due to the calculation of the inserted idle time in Step 1 such that

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
×−= ∑

=

n

j jj

j

n
Hdg

1

1
,0max

βα
β

 (17)

In Hino et al. [8], the inserted idle time is calculated by { }Hdg ×−= 5.0,0max .

Instead, in the MHRM heuristic, the inserted idle times are calculated based on the
ratio of ()()∑ + ijj βαβ / . By doing so, the inserted idle time completely depends on

the particular instance considered to be solved. It implies that if the total tardiness
penalty of a particular instance is greater than the total earliness penalty of that in-
stance (i.e., ∑ ∑> jj αβ), the inserted idle time would be larger for that particular

instance. Hence more jobs would be completed before the due date. In other words,
more jobs would be early. Since the total tardiness penalty is larger than the total
earliness penalty, i.e., ∑ ∑> jj αβ , the total penalty imposed on the fitness function

would be less than the one used in the HRM heuristic.
In addition, the following modification is also made in Step 3. As shown in Figure 2,

if the distance between the possible completion time of candidate job t and the due date
is less than or equal to zero, both the start time and the completion time of the job t are
before or at the due date, i.e., the job t is not a straddling job. In the MHRM algorithm,

0≤− t
t pT is employed instead of 0≤tT because 0≤− t

t pT implies that the job t

is a straddling job. In this case, the adjustment of the idle time for the end of the space
after the due date through Step 6 should be made. Accordingly, necessary modifications
are also made in Steps 5, 6, and 8.

In order to justify the quality of the MHRM heuristic, an example is given in Ap-
pendix A by constructing an instance of 10 jobs with earliness and tardiness penalties
as well as a common due date.

 Metaheuristics for Common due Date Total Earliness 313

a. End of the space after the due date in the HRM heuristic

b. End of the space after the due date in the MHRM heuristic

Fig. 2. Difference between HRM and MHRM Heuristics

4 Design of Experiments

In this section, we present the Design of Experiments (DOE) approach [38] for
parameter setting of the DPSO and DDE algorithms except for the BPSO algorithm
for which the parameter setting for it is well-known in the literature. For this reason,
we conduct the DOE for only the DPSO and DDE algorithms. we did not conduct the
DOE for the DPSOLS and DDELS algorithms because the parameters given for the
local search in Section 4 were quite effective based on our previous experience in Pan
et al. [30, 31]. To conduct the initial runs for the DOE, traditional two-cut crossover
and BSWAP mutation operators are used in both algorithms. In the DPSO and DDE
algorithms, the mutation strength was only one swap of jobs from the early and tardy
sets. Regarding the initial population, one of the solutions in the population is con-
structed with the MHRM heuristic, the rest is constructed randomly. In order to carry
out the experiments, we randomly generated the E/T instances following the
procedure in Biskup & Feldmann [3] where processing times are uniformly
distributed in the range of [1,20], and the earliness and tardiness penalties were gener-
ated in the range of [1,10] and [1,15], respectively. The number of jobs, n , is consid-
ered as 10, 20, 50, 100, 200, 500 and 1000 whereas the restrictive factor h for

determining the common due date, ⎣ ⎦∑ =×= n
j jphd 1 , is considered to be 0.2, 0.4, 0.6

314 M. Fatih Tasgetiren et al.

and 0.8. Four instances were generated for each combination of the number of jobs n
and the restrictive factor h, thus resulting in 112447 =×× problem instances as in
Biskup & Feldmann [3]. Note that these instances are different than those in Biskup &
Feldmann [3] since different seed numbers are used. However, they come from the
same distribution. 112 instances were run for 10 replications for each treatment by the
DPSO and DDE algorithms with a CPU time limit of n×2 milliseconds. Setting the
time limit with respect to the number of jobs provides the DPSO and DDE algorithms
with more computation times as the number of jobs increases. All the experiments for
the DOE are conducted on an Intel Pentium IV 3.0 GHz PC with 512 MB memory.
The response variable was the average percentage relative deviation for R=1120
replications for each treatment and averaged as follows:

()
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
=Δ

R

i REF

REFi
avg R

F

FF

1

/
100

 (18)

where iF , REFF , and R were the fitness function value generated by each of three

algorithms in each run, the reference fitness function value reported in Biskup &
Feldmann [3], and R=1120 was the number of replications.

There are four parameters in the DPSO algorithm: population size (A), mutation
probability of update equation (B = w), crossover probability (C = c1), and crossover

probability (D = c2). Each factor has two levels and a full factorial design of 1624 =
treatments is employed. On the other hand, There are three parameters in the DDE
algorithm: population size (A), mutation probability (B = Pm), crossover probability
(C = Pc), and mutation equation (D). All factors have two levels and a general

factorial design of 823 = treatments is employed. The details of the DOE analysis
are given in Appendix B and Appendix C, respectively. Final parameter settings after
the DOE analysis are given in Tables 2 and 3.

Table 2. Final Parameter setting for DPSO Algorithm

Factors Levels Description Value
A 1 NP=high level 30
B 1 w =high level 0.8
C -1

1c =low level 0.2

D 1
2c =high level 0.8

Table 3. Final Parameter Setting For DDE Algorithm

Factors Levels Description Value
A -1 NP=low level 10
B 1 Pm=high level 0.8
C 1 Pc=high level 0.8

 Metaheuristics for Common due Date Total Earliness 315

The parameter setting for the BPSO algorithm was well studied in the literature
[17]. The population size is taken as 30. Consistent with the literature, the initial

inertia weight is taken as 9.00 =w and decreased by 975.00 ×= ww . It was never
decreased below 0.4. Acceleration coefficients 1c and 2c are taken as 2.0,

respectively. Initial velocities are established uniformly within [-4,4]. The positions
are randomly assigned to binary values either 0 or 1 with an equal probability in the
initial population. Velocities after being updated by equation (2) are restricted to the
range []maxmin ,VV = []4,4− to avoid having floating point error.

5 Computational Results

All the metaheuristic algorithms were coded in Visual C++ and run on an Intel Pentium
IV 3.0 GHz PC with 512MB memory. Regarding the parameters of the DPSO and DDE
algorithms, they were determined through DOE explained in Section 4. All the meta-
heuristics were applied to the benchmark problems that Biskup & Feldmann [3] devel-
oped a total of 280 instances ranging from 10 to 1000 jobs and restricting the common
due date from 0.2 to 0.8 of sum of all processing times. These instances can be
downloaded at the OR-Library web site http://www.ms.ic.ac.uk/jeb/orlib/schinfo.html.
Ten runs (R=10) were carried out for each problem instance to report the statistics based
on the percentage relative deviations (Δ) from the upper bounds in Biskup & Feldmann
[3]. Again, avgΔ was computed as follows:

()
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
=Δ

R

i REF

REFi
avg R

F

FF

1

/
100

 (19)

where iF , REFF , and R were the fitness function value generated by each of the three

algorithms in each run, the reference upper bounds generated by Biskup & Feldmann
[3], and the total number of runs, i.e., the number of runs for each instance times the
number of instances for each problem category. In other words, 1001010 =×=R
runs are conducted for each combination of the number of jobs n and restrictive factor
h. Note that Biskup & Feldmann [3] provided the optimal solutions for 10=n prob-
lem instances. For this reason, we use the optimal solutions as upper bounds in our
runs. For convenience, minΔ , maxΔ , and stdΔ denote the minimum, maximum, and

standard deviation of percentage relative deviation in fitness function value over R
runs, respectively. For the computational effort consideration, tmin, tmax, tavg, and tstd

denote the minimum, maximum, average time and the standard deviation until termi-
nation of algorithms averaged over R runs in seconds. For the BPSO, DPSO, and
DDE algorithms, the maximum number of generations is fixed to 1000. However, the
maximum number of generations is fixed to 50 generations and the algorithms are
terminated if the global best solution is not improved in 10 consecutive generations
for the BPSOLS, DPSOLS, and DDELS algorithms.

The DOE presented in Section 4 was basically carried out for the parameter setting
of the DPSO and DDE algorithms. Since the BSWAP mutation operator is newly
presented and used in the update equations of the DPSO and DDE algorithms in this

316 M. Fatih Tasgetiren et al.

paper, its performance on the solution quality should be demonstrated. For this pur-
pose, another simple design of experiments was carried out. Factors have been chosen
as mutation and crossover operators with each having two levels. The design is shown

in Table 4 consisting of 422 = experiments for the DPSO and DDE algorithms. In
these experiments, the parameter values obtained during the DOE for the DPSO and
DDE algorithms in Section 4 are used. No local search is employed and as mentioned
before and our main goal was to see the impact of the BSWAP mutation operator on
the solution quality.

Table 4. DOE for DPSO and DDE

 Factors
Levels A: Mutation Operator B: Crossover Operator
-1 Single-Point Mutation One-Cut Crossover
1 BSWAP Mutation Two-Cut Crossover

Table 5. Comparison of Mutation and Crossover Operators

 DPSO (Δ)
Mutation/Crossover Min Max Avg Std
BSWAP/One-Cut -2.10 -1.96 -2.04 0.05
BSWAP/Two-Cut -2.11 -1.96 -2.05 0.05
Single-Point/One-Cut -2.09 -1.89 -2.01 0.08
Single-Point/Two-Cut -2.10 -1.86 -2.03 0.08
 DDE (Δ)
Mutation/Crossover Min Max Avg Std
BSWAP/One-Cut -2.14 -2.00 -2.10 0.05
BSWAP/Two-Cut -2.14 -2.01 -2.11 0.05
Single-Point/One-Cut -2.05 -1.73 -1.92 0.12
Single-Point/Two-Cut -2.07 -1.63 -1.91 0.16

Totally, 422 = experiments are run for 10 replications to get the response variable,

which is the percentage relative deviation from the upper bounds. The experimental
results are summarized in Table 5. From Table 5, it can be seen that the combination of
the BSWAP mutation with two-cut crossover operator generated better results than
those by other combinations. The impact of BSWAP mutation operator on the solution
quality together with two-cut crossover operator was obvious that the minimum rela-
tive percentage deviation from the upper bounds of Biskup & Feldmann [3] was im-
proved 2.11 percent and 2.14 percent by the DPSO and DDE algorithms, respectively.
For this reason, the BSWAP mutation operator and two-cut crossover operator are
employed in the BPSOLS, DPSOLS, and DDELS algorithms for the further runs.

Another contribution of this chapter is to present a novel MHRM construction heu-
ristic inspired from the drawbacks of the HRM heuristic presented in Hino et al. [8].
In Section 3.3, the details of the MHRM heuristic were given and the examples of
both constructive heuristics are also given in Appendix A. From two examples given,

 Metaheuristics for Common due Date Total Earliness 317

it was shown that the MHRM heuristic was superior to its counterpart HRM heuristic.
However, a single instance would not be enough to judge on its solution quality. In
order to see the performance of the MHRM heuristic on a wide range of problem
instances, the benchmark suite of Biskup & Feldmann [3] is solved by the MHRM
heuristic to be compared to its counterpart HRM heuristic. The computational results
of both heuristics are given in Table 6. Note that the results for the HRM heuristic
were adopted from Hino et al. [8]. From Table 6, it is clear that the MHRM heuristic
was superior to its counterpart HRM heuristic in terms of relative percent deviations
since the percentage relative deviation that the HRM heuristic presented in Hino et al.
[8] was 2.42 percent worst than the upper bounds on average whereas the MHRM
heuristic was able to improve the upper bounds by 0.65 percent on overall average.
Especially, significant improvements over the HRM heuristic are observed on the
problem instances having loose due date settings for h=0.6 and h=0.8.

Table 6. Computational Results for HRM and MHRM Heuristics (Δ)

h 10 20 50 100 200 500 1000 Mean

0.2 1.53 -3.97 -5.33 -6.02 -5.63 -6.32 -6.68 -4.5
0.4 8.68 0.46 -3.87 -4.42 -3.51 -3.46 -4.26 -1.48
0.6 19.27 9.78 7.59 4.69 3.71 2.53 3.23 7.26
0.8 22.97 13.52 8.1 4.7 3.71 2.53 3.23 8.39

HRM

Mean 13.11 5.17 1.62 -0.26 -0.43 -1.18 -1.12 2.42

h 10 20 50 100 200 500 1000 Mean

0.2 1 -3.57 -5.45 -6.02 -5.62 -6.32 -6.69 -4.67
0.4 5.91 -0.49 -4.03 -4.27 -3.52 -3.45 -4.27 -2.02
0.6 2.77 2.02 1.51 1.5 1.71 1.41 1.55 1.78
0.8 3.95 4.07 2.13 1.43 1.71 1.41 1.55 2.32

MHRM

Mean 3.41 0.51 -1.46 -1.84 -1.43 -1.74 -1.97 -0.65

Before getting into the detailed analysis of the metaheuristic algorithms against the

recent metaheuristics in the literature, we again point out that our analysis is based on
comparisons of our metaheuristics with and without a local search so as to make fair
comparisons with all the existing algorithms in the literature. For comparison purposes,
Avg I denotes the mean value for h=0.2, h=0.4, h=0.6, and h=0.8. Avg II denotes the
mean value for h=0.2, and h=0.4 whereas Avg III represents the mean value for h=0.6
and h=0.8. The reason is because of the fact that an algorithm performs relatively good
for a tight due date setting may not be so good for a loose due date setting.

In Table 7, an overall summary of the BPSO, DPSO and DDE algorithms is given
in terms of Avg I. It is obvious from Table 7 that the DDE algorithm was superior to
the BPSO and DPSO algorithms in terms of percentage relative deviations. Even its
average performance was equal or better than the best performance of the DPSO and
BPSO algorithms. In terms of CPU time requirements, the DPSO and DDE algo-
rithms had similar speeds whereas the BPSO algorithm was much slower than both of

318 M. Fatih Tasgetiren et al.

them, which might be because of working on a continuous domain and using the sig-
moid function to convert the velocity to binary values. Briefly, the DDE algorithm
with this rough comparison was a clear winner.

Table 7. Comparison of Results with respect to Avg I: Without Local Search

 Time to Termination
Alg.

minΔ maxΔ avgΔ stdΔ mint maxt avgt stdt

DDE -2.14 -2.01 -2.11 0.05 0.16 0.17 0.17 0.01
DPSO -2.11 -1.96 -2.05 0.05 0.16 0.17 0.16 0.01
BPSO -1.49 -1.42 -1.45 0.02 0.5 0.52 0.51 0.01

Table 8. Comparison of Results with respect to Avg I: With Local Search

 Time to Termination

Alg.
minΔ maxΔ avgΔ stdΔ mint maxt avgt stdt

DDELS -2.15 -2.14 -2.15 0.01 0.45 1.15 0.77 0.24

DPSOLS -2.15 -2.13 -2.15 0.01 0.42 1.11 0.72 0.24

BPSOLS -2.15 -2.14 -2.15 0 0.42 1.1 0.72 0.23

However, the inclusion of a simple local search in all the metaheuristic algorithms

led them to generate similar and improved results as seen in Table 8. All metaheuris-
tics were able to improve the upper bounds by 2.15 percent with a CPU time of no
more than 1.15 seconds at most on overall average since the maximum CPU time that
the DDELS algorithm consumed was 1.15 seconds. Furthermore, the best, average, and
the worst behavior of the BPSOLS, DPSOLS and DDELS algorithms were very close to
each other with very low standard deviations indicating the robustness of the meta-
heuristic algorithms presented.

Most recently, Hino et al. [8] developed a TS, GA and hybridization of both of
them denoted as HTG and HGT. In addition, Nearchou [11] proposed a differential
evolution approach (DEA) whereas a sequential exchange approach (SEA) is pre-
sented by Lin et al. [15]. It should be noted that Lin et al. [15] presented SEA1 and
SEA2 algorithms and the best solution between SEA1 and SEA2 was reported as SEA
in their paper. Since TS, GA, HTG, HGT, DEA, and SEA employed the same bench-
mark suite of Biskup & Feldmann [3] as we did in this chapter, we compare our re-
sults to those very recent approaches in the literature.

It should be noted that due to the stochastic nature of the metaheuristic algorithms,
their minimum, maximum, average, and standard deviation of 10 runs for each in-
stance should be given to evaluate their performance. However, except for Lin et al.
[15], which is a deterministic algorithm, in Hino et al. [8], and Nearchou [11], 10 runs
were conducted for each instance and the best out of 10 runs was picked up to be
averaged over 10 instances even though they had some random components in their
algorithms. It implies that no information was available at present about the average,
and worst case behavior as well as the robustness of their algorithms. It led us to make

 Metaheuristics for Common due Date Total Earliness 319

comparisons with respect to minimum percentage relative deviation of the metaheu-
ristic algorithms presented in this chapter. In addition, among the algorithms tested in
Feldmann & Biskup [3], the TAR algorithm was superior to other algorithms namely,
ES, SA, TA. However, recent approaches generated better results than the TAR algo-
rithm. For this reason, the TAR algorithm was excluded in our comparisons even
though they were the pioneering ones.

Table 9 presents the computational results of best performing algorithms for the
E/T problem in the literature together with the metaheuristic algorithms presented in

Table 9. Comparison of Results with respect to minΔ : Without Local Search

n h BPSO DPSO DDE TS GA HTG HGT SEA DEA
0.2 0.00 0.00 0.00 0.25 0.12 0.12 0.12 0.01 0.00
0.4 0.00 0.00 0.00 0.24 0.19 0.19 0.19 0.00 0.00
0.6 0.00 0.00 0.00 0.10 0.03 0.03 0.01 0.01 0.00

10

0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 -3.84 -3.84 -3.82 -3.84 -3.84 -3.84 -3.84 -3.79 -3.84
0.4 -1.63 -1.63 -1.63 -1.62 -1.62 -1.62 -1.62 -1.58 -1.63
0.6 -0.72 -0.72 -0.70 -0.71 -0.68 -0.71 -0.71 -0.64 -0.72

20

0.8 -0.41 -0.41 -0.41 -0.41 -0.28 -0.41 -0.41 -0.39 -0.41
0.2 -5.45 -5.66 -5.69 -5.70 -5.68 -5.70 -5.70 -5.58 -5.69
0.4 -4.04 -4.62 -4.65 -4.66 -4.60 -4.66 -4.66 -4.42 -4.66
0.6 0.93 -0.27 -0.27 -0.32 -0.31 -0.27 -0.31 -0.31 -0.32

50

0.8 1.23 -0.24 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24 -0.24
0.2 -6.02 -6.17 -6.18 -6.19 -6.17 -6.19 -6.19 -6.21 -6.17
0.4 -4.27 -4.85 -4.91 -4.93 -4.91 -4.93 -4.93 -4.85 -4.89
0.6 1.50 -0.14 -0.15 -0.01 -0.12 0.08 0.04 -0.15 -0.13

100

0.8 1.40 -0.17 -0.18 -0.15 -0.12 -0.08 -0.11 -0.18 -0.17
0.2 -5.62 -5.75 -5.77 -5.76 -5.74 -5.76 -5.76 -5.76 -5.77
0.4 -3.52 -3.66 -3.72 -3.74 -3.75 -3.75 -3.75 -3.73 -3.72
0.6 1.71 -0.14 -0.15 -0.01 -0.13 0.37 0.07 -0.15 0.23

200

0.8 1.71 -0.14 -0.15 -0.04 -0.14 0.26 0.07 -0.15 0.20
0.2 -6.32 -6.38 -6.41 -6.41 -6.41 -6.41 -6.41 -6.43 -6.43
0.4 -3.45 -3.48 -3.52 -3.57 -3.58 -3.58 -3.58 -3.57 -3.57
0.6 1.41 -0.06 -0.11 0.25 -0.11 0.73 0.15 -0.11 1.72

500

0.8 1.41 -0.06 -0.11 0.21 -0.11 0.73 0.13 -0.11 1.01
0.2 -6.69 -6.71 -6.73 -6.73 -6.75 -6.74 -6.74 -6.77 -6.72
0.4 -4.27 -4.28 -4.31 -4.39 -4.40 -4.39 -4.39 -4.40 -4.38
0.6 1.55 0.22 -0.06 1.01 -0.05 1.28 0.42 -0.06 1.29

1000

0.8 1.55 0.22 -0.06 1.13 -0.05 1.28 0.40 -0.06 2.79
 Avg I -1.49 -2.11 -2.14 -2.01 -2.12 -1.94 -2.06 -2.13 -1.87
Avg II -3.94 -4.07 -4.10 -4.08 -4.08 -4.09 -4.09 -4.08 -4.11
Avg III 0.95 -0.14 -0.19 0.06 -0.16 0.22 -0.03 -0.18 0.38

320 M. Fatih Tasgetiren et al.

this paper. Note that no local search is used in these results. As seen in Table 9, the
BPSO algorithm was the worst algorithm whereas the DDE, SEA, GA, DPSO, HGT,
TS, HTG algorithms were the best performing algorithms in terms of Avg. I. When
considering Avg. II, i.e., tight due date settings, DEA and DDE were the best with the
fact that other algorithms compared has also generated almost similar results except
for the BPSO algorithm. However, when considering Avg. III, i.e., loose due date
settings, the best performing ones were the DDE, SEA, and GA algorithms whereas
the worst ones were the BPSO, DEA, HTG, TS, respectively. Briefly, the best results
were obtained by the DDE, SEA, GA, and DPSO algorithms, respectively. So the
performance of the DDE algorithm without a local search was better than all the algo-
rithms compared.

As seen in Table 10, the inclusion of the local search in all the metaheuristic algo-
rithms led them to be the best performing algorithms in the literature. As seen in
Table 10, the BPSOLS, DPSOLS and DDELS algorithms generated better results than
those of all the existing approaches in the literature in terms of Avg. I, Avg. II and
Avg. III. Even their worst case performances in Tables 7 and 8 were better or equiva-
lent to all the existing approaches compared. It is interesting to compare the algo-
rithms in terms of Avg. I, Avg. II and Avg. III because when the due date becomes
loose, i.e., h=0.6 and h=0.8, the performance of some algorithms was deteriorated
except for the BPSOLS, DPSOLS and DDELS algorithms. For instance, the performance
of TS, HTG, HGT and DEA for h=0.6 and h=0.8 was deteriorated while they per-
formed relatively well for h=0.2 and h=0.4 instances. Especially, the DEA algorithm
performed one of the best for h=0.2 and h=0.4 instances whereas it failed for h=0.6
and h=0.8 instances. The best algorithms can be ranked with respect to Avg. I, Avg. II
and Avg. III as the BPSOLS, DPSOLS, DDELS, SEA, GA, HGT, TS, HTG and DEA
algorithms, respectively. However, the best results so far in the literature were pre-
sented by the BPSOLS, DPSOLS and DDELS algorithms, respectively, in this chapter.

Table 11 summarizes the CPU time requirements for all the algorithms compared.
It is difficult to compare the algorithms in terms of the CPU time requirements since
different machines were used. However, Table 11 provides some clues about the
speed of the algorithms compared. It is very obvious that the DEA algorithm was the
most time consuming one amongst them since its average CPU time performance was
1815.53 seconds. Even with some fair correction factors, it was clearly the most ex-
pensive one in terms of consuming CPU time. As seen in Table 11, the fastest algo-
rithms were BPSOLS, DPSOLS, DDELS and SEA since their average CPU times was
0.42, 0.45, 0.42 and 4.64 seconds, respectively. Owing to the fact that we used a ma-
chine approximately three times faster than the one used in SEA, a fair comparison
should be made. However, even with a correction factor of 3, 26.1342.0 =× seconds,

35.1345.0 =× seconds and 26.1342.0 =× seconds were still much less than 4.64
seconds that the SEA algorithm spent on average. For this reason, it can be concluded
that the fastest algorithm so far in the literature were also BPSOLS, DPSOLS and
DDELS together with the best percentage relative deviations reported so far in the
literature.

In order to statistically test the performance of the BPSO, DPSO and DDE algo-
rithms with and without the local search, a series of the paired t-test at the 95% signifi-
cance level was carried out after checking the normality assumption of the differences
in the algorithms [39]. In the paired t-test, we are interested in the differences in two

 Metaheuristics for Common due Date Total Earliness 321

Table 10. Comparison of Results with respect to minΔ : With Local Search

n h BPSO DPSO DDE TS GA HTG HGT SEA DE
0.2 0.00 0.00 0.00 0.25 0.12 0.12 0.12 0.01 0.00
0.4 0.00 0.00 0.00 0.24 0.19 0.19 0.19 0.00 0.00
0.6 0.00 0.00 0.00 0.10 0.03 0.03 0.01 0.01 0.00

10

0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.79 -3.84
0.4 -1.63 -1.63 -1.63 -1.62 -1.62 -1.62 -1.62 -1.58 -1.63
0.6 -0.72 -0.72 -0.72 -0.71 -0.68 -0.71 -0.71 -0.64 -0.72

20

0.8 -0.41 -0.41 -0.41 -0.41 -0.28 -0.41 -0.41 -0.39 -0.41
0.2 -5.69 -5.69 -5.70 -5.70 -5.68 -5.70 -5.70 -5.58 -5.69
0.4 -4.66 -4.66 -4.66 -4.66 -4.60 -4.66 -4.66 -4.42 -4.66
0.6 -0.34 -0.34 -0.34 -0.32 -0.31 -0.27 -0.31 -0.31 -0.32

50

0.8 -0.24 -0.24 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24 -0.24
0.2 -6.19 -6.19 -6.19 -6.19 -6.17 -6.19 -6.19 -6.21 -6.17
0.4 -4.94 -4.94 -4.94 -4.93 -4.91 -4.93 -4.93 -4.85 -4.89
0.6 -0.15 -0.15 -0.15 -0.01 -0.12 0.08 0.04 -0.15 -0.13

100

0.8 -0.18 -0.18 -0.18 -0.15 -0.12 -0.08 -0.11 -0.18 -0.17
0.2 -5.78 -5.77 -5.78 -5.76 -5.74 -5.76 -5.76 -5.76 -5.77
0.4 -3.75 -3.75 -3.75 -3.74 -3.75 -3.75 -3.75 -3.73 -3.72
0.6 -0.15 -0.15 -0.15 -0.01 -0.13 0.37 0.07 -0.15 0.23

200

0.8 -0.15 -0.15 -0.15 -0.04 -0.14 0.26 0.07 -0.15 0.20
0.2 -6.43 -6.42 -6.43 -6.41 -6.41 -6.41 -6.41 -6.43 -6.43
0.4 -3.57 -3.57 -3.57 -3.57 -3.58 -3.58 -3.58 -3.57 -3.57
0.6 -0.11 -0.11 -0.11 0.25 -0.11 0.73 0.15 -0.11 1.72

500

0.8 -0.11 -0.11 -0.11 0.21 -0.11 0.73 0.13 -0.11 1.01
0.2 -6.77 -6.76 -6.77 -6.73 -6.75 -6.74 -6.74 -6.77 -6.72
0.4 -4.39 -4.38 -4.39 -4.39 -4.40 -4.39 -4.39 -4.40 -4.38
0.6 -0.06 -0.06 -0.06 1.01 -0.05 1.28 0.42 -0.06 1.29

1000

0.8 -0.06 -0.06 -0.06 1.13 -0.05 1.28 0.40 -0.06 2.79
Avg I -2.15 -2.15 -2.15 -2.01 -2.12 -1.94 -2.06 -2.13 -1.87
Avg II -4.12 -4.11 -4.12 -4.08 -4.08 -4.09 -4.09 -4.08 -4.11
Avg III -0.19 -0.19 -0.19 0.06 -0.16 0.22 -0.03 -0.18 0.38

observations within the pairs. Let 21 μμμ −=D denote the true average difference

between the percentage relative deviations generated by two different algorithms, the
null hypothesis is given by 0: 210 =−= μμμDH saying that there is no difference

between the average percentage relative deviations generated by two algorithms com-
pared. On the other hand, the alternative hypothesis is given by 0: 211 ≠−= μμμDH

saying that there is a difference between the average percentage relative deviations

322 M. Fatih Tasgetiren et al.

Table 11. Comparison of CPU Times in Seconds

h/n 10 20 50 100 200 500 1000 Avg
SEA 0.00 0.00 0.01 0.05 0.25 3.65 28.77
 0.00 0.00 0.01 0.05 0.28 3.99 31.67 PIII
 0.00 0.00 0.01 0.05 0.23 3.35 27.09 1 GHz
 0.00 0.00 0.01 0.05 0.23 3.36 26.72
Avg 0.00 0.00 0.01 0.05 0.25 3.59 28.56 4.64
DEA 0.23 1.02 2.44 23.21 242.09 3941.17 8561.02
 0.21 1.13 3.01 24.61 230.09 3925.08 8609.22 PIV
 0.19 1.18 2.38 17.23 216.39 3950.76 8441.70 1.2GHz
 0.20 1.00 2.11 18.02 240.91 3912.82 8465.37
Avg 0.21 1.08 2.49 20.77 232.37 3932.46 8519.33 1815.53
DPSOLS 0.00 0.00 0.02 0.10 0.21 0.61 1.37
 0.00 0.00 0.02 0.10 0.26 0.66 1.68 PIV
 0.00 0.00 0.02 0.11 0.24 0.72 1.75 3 GHz
 0.00 0.00 0.02 0.11 0.24 0.73 1.75
Avg 0.00 0.00 0.02 0.11 0.24 0.68 1.64 0.38
DDELS 0.00 0.00 0.02 0.10 0.22 0.63 1.52
 0.00 0.00 0.03 0.11 0.25 0.84 2.03 PIV
 0.00 0.00 0.02 0.11 0.24 0.75 1.83 3 GHz
 0.00 0.00 0.02 0.11 0.24 0.76 1.83
Avg 0.00 0.00 0.02 0.11 0.24 0.75 1.80 0.42
BPSOLS 0.00 0.00 0.02 0.10 0.23 0.68 1.62
 0.00 0.00 0.03 0.11 0.25 0.73 2.12 PIV
 0.00 0.00 0.03 0.11 0.24 0.77 1.83 3 GHz
 0.00 0.00 0.03 0.11 0.24 0.77 1.83
Avg 0.00 0.00 0.03 0.11 0.24 0.74 1.85 0.42
GA PIV 1.7 GHz 0.21
HTG PIV 1.7 GHz 7.80
HGT PIV 1.7 GHz 7.80

generated by two algorithms compared. The paired t-test results based on the percent-
age relative deviations in Tables 9 and 10 are given in Table 12.

Table 12 indicates the poor performance of the BPSO algorithm against all the al-
gorithms compared since the null hypothesis was rejected on the behalf of the algo-
rithms compared. It means that the differences between them were meaningful at the
significance level of 0.95. An important indication of Table 12 is that the performance
of the DPSO, was equivalent to GA, SEA and DEA since the null hypothesis was
failed to be rejected implying that the differences between these algorithms were not
meaningful at the significance level of 0.95. However, the null hypothesis was re-
jected on the behalf of the DPSO algorithm against the TS, HTG, and HGT algo-
rithms indicating that the differences were meaningful at the significance level of
0.95. When considering the DDE algorithm versus the GA and SEA algorithms, the
null hypothesis was failed to be rejected indicating that differences were not meaning-
ful at the significant level of 0.95. In other words, they were equivalent. However, the

 Metaheuristics for Common due Date Total Earliness 323

null hypothesis was rejected on the behalf of the DDE algorithm when compared to
the TS, HTG, HGT, and DEA algorithms. It indicates that the differences were mean-
ingful at the significance level of 0.95. Briefly, BPSO algorithm was not competitive
to all the algorithms compared and the best performing algorithms were the DDE,
SEA, and DPSO, GA algorithms, respectively when considering no local search.

Table 12. Paired t-Test at Significance level of 0.95

0H t p 05.0<p 0H

BPSO=DPSO 4.52 0.00 Yes R
BPSO=DDE 4.61 0.00 Yes R
DPSO=DDE 2.59 0.02 Yes R
BPSO=TS 4.18 0.00 Yes R
BPSO=GA 4.45 0.00 Yes R
BPSO=HTG 4.19 0.00 Yes R
BPSO=HGT 4.63 0.00 Yes R
BPSO=SEA 4.50 0.00 Yes R
DPSO=TS -2.11 0.04 Yes R
DPSO=GA 0.89 0.38 No FR
DPSO=HTG -2.58 0.02 Yes R
DPSO=HGT -2.08 0.05 Yes R
DPSO=SEA 1.36 0.38 No FR
DPSO=DEA -2.01 0.05 No FR
DDE=TS -2.29 0.03 Yes R
DDE=GA -1.78 0.09 No FR
DDE=HTG -2.68 0.01 Yes R
DDE=HGT -2.78 0.01 Yes R
DDE=SEA -1.03 0.31 No FR
DDE=DEA -2.12 0.04 Yes R

Next we compare the local search version of our metaheuristics to the best perform-

ing algorithms in the literature. Table 13 gives the paired t-test results for the BPSOLS,
DDELS, and DPSOLS algorithms against the best performing ones in the literature. As
seen in Table 13, the null hypothesis was rejected on the behalf of the DDELS algo-
rithm against all the algorithms compared. In other words, the differences between the
DDELS and those of all the algorithms compared were meaningful at the significance
level of 0.95. We do not report the BPSOLS and DPSOLS since the null hypothesis was
rejected on the behalf of them too. From this statistical analysis, it can be concluded
that the DDELS, DPSOLS and BPSOLS algorithms were statistically proved to be the
best algorithms so far in the literature.

Finally, we wanted to evaluate the peak performance of the DDELS algorithm by
running 500 generations in order to see if there is still some room for future research-
ers to improve the results. The computational results for 500 generations are given in
Table 14. We were able to improve the results a little bit, which may be conjectured
that those solutions might be optimal ones. However, it would never be said so unless

324 M. Fatih Tasgetiren et al.

Table 13. Paired t-Test at Significance level of 0.95

0H t p 05.0<p 0H

BPSOLS=DPSOLS -2.12 0.043 Yes R
BPSOLS=DDELS 1.00 0.326 No FR
DPSOLS=DDELS 2.42 0.022 Yes R
DDELS =TS -2.6 0.015 Yes R
DDELS =GA -3.87 0.001 Yes R
DDELS =HTG -2.93 0.007 Yes R
DDELS =HGT -3.53 0.002 Yes R
DDELS =SEA -2.52 0.018 Yes R
DDELS =DEA -2.25 0.032 Yes R

Table 14. Peak Performance of DDELS Algorithm with 500 generations

Δ Time to Termination

n h minΔ maxΔ avgΔ stdΔ mint maxt avgt stdt

0.2 0.00 0.00 0.00 0.00 0.08 0.10 0.09 0.01
0.4 0.00 0.00 0.00 0.00 0.09 0.11 0.09 0.01
0.6 0.00 0.00 0.00 0.00 0.09 0.10 0.09 0.00

10

0.8 0.00 0.00 0.00 0.00 0.09 0.11 0.10 0.01
0.2 -3.84 -3.84 -3.84 0.00 0.26 0.34 0.28 0.02
0.4 -1.63 -1.63 -1.63 0.00 0.26 0.29 0.27 0.01
0.6 -0.72 -0.72 -0.72 0.00 0.26 0.29 0.27 0.01

20

0.8 -0.41 -0.41 -0.41 0.00 0.26 0.28 0.27 0.01
0.2 -5.70 -5.68 -5.69 0.01 1.26 1.32 1.28 0.02
0.4 -4.66 -4.66 -4.66 0.00 1.30 1.34 1.32 0.02
0.6 -0.34 -0.34 -0.34 0.00 1.37 1.41 1.39 0.02

50

0.8 -0.24 -0.24 -0.24 0.00 1.36 1.40 1.38 0.02
0.2 -6.19 -6.19 -6.19 0.00 4.34 4.36 4.35 0.01
0.4 -4.94 -4.94 -4.94 0.00 4.82 4.85 4.83 0.01
0.6 -0.15 -0.15 -0.15 0.00 5.15 5.18 5.17 0.01

100

0.8 -0.18 -0.18 -0.18 0.00 5.15 5.19 5.17 0.01
0.2 -5.78 -5.78 -5.78 0.00 8.73 8.79 8.76 0.02
0.4 -3.75 -3.75 -3.75 0.00 10.06 10.16 10.11 0.03
0.6 -0.15 -0.15 -0.15 0.00 10.85 10.91 10.87 0.02

200

0.8 -0.15 -0.15 -0.15 0.00 10.85 10.90 10.88 0.02
0.2 -6.43 -6.43 -6.43 0.00 23.15 23.35 23.25 0.06
0.4 -3.58 -3.57 -3.58 0.00 27.49 27.79 27.65 0.10
0.6 -0.11 -0.11 -0.11 0.00 29.38 29.47 29.42 0.03

500

0.8 -0.11 -0.11 -0.11 0.00 29.40 29.48 29.44 0.02
0.2 -6.77 -6.77 -6.77 0.00 48.58 49.23 48.88 0.20
0.4 -4.40 -4.39 -4.39 0.00 59.14 59.67 59.42 0.17
0.6 -0.06 -0.06 -0.06 0.00 61.87 62.06 61.96 0.06

1000

0.8 -0.06 -0.06 -0.06 0.00 61.85 62.04 61.94 0.07
Mean -2.16 -2.15 -2.15 0.00 14.55 14.66 14.61 0.04

 Metaheuristics for Common due Date Total Earliness 325

proved mathematically. It should be noted that we also run them for 1000 generations
too. However, we were unable to further improve the results. This is last to say that all
solution details would be available upon request.

6 Conclusions

PSO and DE are recent evolutionary optimization methods. It has been widely used in
a wide range of applications. Besides the standard versions, we presented a new and
novel discrete version of both promising algorithms, so called here DPSO and DDE,
in this paper together with the standard binary PSO. To the best of our knowledge,
these are the first reported applications of both DPSO and DDE algorithm to the sin-
gle-machine total earliness and tardiness penalties with a common due date problem
in the literature.

Unlike the standard PSO and DE, the DPSO and DDE algorithms are novel algo-
rithms, which are based on a discrete domain exploiting the basic features of its con-
tinuous counterpart. They employ a binary solution representation for the problem on
hand. It indicates that both algorithms can be applied to other binary/discrete combi-
natorial optimization problems with some modifications in the literature. Another
contribution of this chapter is to a presentation of a novel MHRM constructive heuris-
tic algorithm in such a way that the MHRM heuristic is given in detail as to how it
differs from its counterpart HRM heuristic with examples. We have also presented a
BSWAP mutation operator to be used for binary solution spaces. Furthermore, all the
metaheuristic algorithms are hybridized with a simple local search to further improve
the solution quality. Finally, a very detailed design of experiments is conducted to
determine the parameters of the metaheuristics proposed.

The proposed metaheuristic algorithms were applied to the benchmark problems in
Biskup and Feldmann [3]. The computational results statistically show that the pro-
posed algorithms with the local search have generated better results than all of the
existing approaches in the literature.

As a final note, it is obvious that the proposed algorithms can be easily extended to
solve the flowshop scheduling problems as well as other other discrete/combinatorial
optimization problems.

326 M. Fatih Tasgetiren et al.

Appendix A: MHRM Heuristic

Table A1. An Example Instance with A Common Due Date: d=103

Job 1 2 3 4 5 6 7 8 9 10

jp 6 19 20 16 11 11 5 11 10 20

jα 5 8 5 8 3 6 9 7 10 5

jβ 9 12 1 15 12 1 13 1 2 1

HRM Solution

Step1. Let 129=H , 103=d , { } 395.0,0max =−= Hdg , 64=−= gdd E ,

65=−+= dHgd T , Φ== FE SS , { }10,9,8,7,6,5,4,3,2,1=P .

Step 2. Set { } 3/maxarg == ∈ jjPj pe α and { } 3/maxarg == ∈ jjPj pt β .

Step 3. Set 44=−= e

Ee pdE and 65== Tt dT ; Since 0>eE and 0>tT , go to

step 4.
Step 4. Since te TE < , {} { }3=+= tSS TT , 45=−= t

TT pdd ,

{} { }10,9,8,7,6,5,4,2,1=−= tPP . Go to step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 10=e and 10=t .

Step 3. Set 44=eE and 45=tT ; Since 0>eE and 0>tT , go to step 4.

Step 4. Since te TE < , { }3,10=TS , 25=Td , { }9,8,7,6,5,4,2,1=P . Go to Step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 5=e , 8=t .

Step 3. Set 53=eE , and 25=tT ; Since 0>eE and 0>tT , go to step 4.

Step 4. Since te TE > , { } { }5=+= eSS EE , 53=−= e

EE pdd , and

{ } { }9,8,7,6,4,2,1=−= ePP . Go to step 7.

 Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 2=e , 8=t .

Step 3. Set 34=eE , and 25=tT ; Since 0>eE and 0>tT , go to step 4.

Step 4. Since te TE > , { }2,5=ES , 34=Ed , and { }9,8,7,6,4,1=P . Go to step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 4=e , 8=t .

Step 3. Set 18=eE , and 25=tT ; Since 0>eE and 0>tT , go to step 4.

Step 4. Since te TE < , { }3,10,8=TS , 14=Td , { }9,7,6,4,1=P . Go to Step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 4=e , 6=t .

 Metaheuristics for Common due Date Total Earliness 327

Step 3. Set 18=eE , and 14=tT ; Since 0>eE and 0>tT , go to step 4.

Step 4. Since te TE > , { }4,2,5=ES , 18=Ed , and { }9,7,6,1=P . Go to step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 6=e , 6=t .

Step 3. Set 7=eE , and 14=tT ; Since 0>eE and 0>tT , go to step 4.

Step 4. Since te TE < , { }3,10,8,6=TS , 3=Td , { }9,7,1=P . Go to Step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 1=e , 9=t .

Step 3. Set 12=eE , and 3=tT ; Since 0>eE and 0>tT , go to step 4.

Step 4. Since te TE > , { }1,4,2,5=ES , 12=Ed , and { }9,7=P . Go to step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 9=e , 9=t .

Step 3. Set 2=eE , and 3=tT ; Since 0>eE and 0>tT , go to step 4.

Step 4. Since te TE < , { }3,10,8,6,9=TS , 7−=Td , { }7=P . Go to Step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 7=e , 7=t .

Step 3. Set 7=eE , and 7−=tT ; Since 0≤tT , go to step 6.
Step 6. End of the space after the due date

• Set { }7,1,4,2,5
'

=∪= PSS EE , { }3,10,8,6,9
'

== TT SS ,

∑−= ∈
''

ESi ipdg , 4657103' =−=g .

()'''' ,, TE SSgS = ; then () 664' =Sf .

• Set () { } { }1,4,2,5
''

=−∪= tPSS EE , { } { }3,10,8,6,9,7
''

=+= tSS TT ,

∑−= ∈
''''

ESi ipdg , 5152103'' =−=g , ()'''''''' ,, TE SSgS = , then () 639' =Sf .

• Since () ()''' SfSf < , {} ()3,10,8,6,9,7=+= tSS TT , { }1,4,2,5=ES , 51'' =g , and

()φ=P .

• Since there is no straddling job, no g-test is required.
• The solution is ()TE SSgS ,,= where 51=g , { }1,4,2,5=ES , ()3,10,8,6,9,7=TS

and () 639' =Sf .

MHRM Solution

Step 1. Let 129=H , 103=d , 51
1

,0max
1

=
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
×−=

=

n

j
jj

j

n
Hdg

βα
β

,

52=−= gdd E , 77=−+= dHgd T , Φ== FE SS , { }10,9,8,7,6,5,4,3,2,1=P .

Step 2. Set { } 3/maxarg == ∈ jjPj pe α , { } 3/maxarg == ∈ jjPj pt β .

328 M. Fatih Tasgetiren et al.

Step 3. Set 32=−= e

Ee pdE , 77== Tt dT , 57=− t

t pT . Since 0>eE and

0>− t

t pT , go to step 4.

Step 4. Since te TE < , {} { }3=+= tSS TT , 57=−= t

TT pdd ,

{} { }10,9,8,7,6,5,4,2,1=−= tPP . Go to step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 10=e , 10=t .

Step 3. Set 32=−= e

Ee pdE , 57== Tt dT , 37=− t

t pT . Since 0>eE and

0>− t

t pT , go to step 4.

Step 4. Since te TE < , { }3,10=TS , 37=−= t

TT pdd , { }9,8,7,6,5,4,2,1=P . Go

to step 7.
Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 5=e , 8=t .

Step 3. Set 41=−= e

Ee pdE , 37== Tt dT , 26=− t

t pT . Since 0>eE and

0>− t

t pT , go to step 4.

Step 4. Since te TE > , { }5=ES , 41=−= e

EE pdd , { }9,8,7,6,4,2,1=P . Go to

step 7.
Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 2=e , 8=t .

Step 3. Set 22=−= e

Ee pdE , 37== Tt dT , 26=− t

t pT . Since 0>eE and

0>− t

t pT , go to step 4.

Step 4. Since te TE < , { }3,10,8=TS , 26=−= t

TT pdd , { }9,7,6,4,2,1=P . Go to

step 7.
Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 2=e , 6=t .

Step 3. Set 22=−= e

Ee pdE , 26== Tt dT , 15=− t

t pT . Since 0>eE and

0>− t

t pT , go to step 4.

Step 4. Since te TE < , { }3,10,8,6=TS , 15=−= t

TT pdd , { }9,7,4,2,1=P . Go to

step 7.
Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 2=e , 9=t .

Step 3. Set 22=−= e

Ee pdE , 15== Tt dT , 5=− t

t pT . Since 0>eE and

0>− t

t pT , go to step 4.

Step 4. Since te TE > , { }3,5=ES , 22=−= e

EE pdd , { }9,7,4,1=P . Go to step 7.

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 4=e , 9=t .

Step 3. Set 6=−= e

Ee pdE , 15== Tt dT , 5=− t

t pT . Since 0>eE and

0>− t

t pT , go to step 4.

 Metaheuristics for Common due Date Total Earliness 329

Step 4. Since te TE < , { }3,10,8,6,9=TS , 5=−= t

TT pdd , { }7,4,1=P . Go to

step 7.
Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 4=e , 4=t .

Step 3. Set 6=−= e

Ee pdE , 5== Tt dT , 11−=− t

t pT . Since 0≤− t

t pT , go

to step 6.
Step 6. End of the space after the due date.
Since tTg > ,

• { }7,1,4,2,5
'

=∪= PSS EE , { }3,10,8,6,9
'

== TT SS , ∑ =−= ∈
'' 46ESj jpdg ,

()'''' ,, TE SSgS = . Then () 664' =Sf .

• Set {} { }7,1,2,5
''

=−∪= tPSS EE , {} { }3,10,8,6,9,4
'

=+= tSS TT ,

∑ =−= ∈
'''' 62ESj jpdg , ()'''''''' ,, TE SSgS = . Then () 736'' =Sf .

Since () ()''' SfSf ≤ ,

• { } { }4,2,5=+= eSS EE , 0=Td , 'ggpdd e

EE −+−= ,

1146511622 =−+−=Ed , 46' == gg . { } { }7,1=−= ePP .

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 1=e , 1=t .

Step 3. Set 5=−= e

Ee pdE , 0== Tt dT , 6−=− t

t pT . Since 0≤− t

t pT , go to

step 6.
Step 6. End of the space after the due date.
Since tTg > ,

• { }7,1,4,2,5
'

=∪= PSS EE , { }3,10,8,6,9
'

== TT SS , ∑ =−= ∈
'' 46ESj jpdg ,

()'''' ,, TE SSgS = . Then () 664' =Sf .

• Set {} { }7,4,2,5
''

=−∪= tPSS EE , {} { }3,10,8,6,9,4,1
''

=+= tSS TT ,

∑ =−= ∈
'''' 52ESj jpdg , ()'''''''' ,, TE SSgS = . Then () 615'' =Sf .

• Since () ()''' SfSf > ,

{} { }3,10,8,6,9,1=+= tSS TT , 0=Td , ''ggdd EE −+= ,

5524611 =−+=Ed , 52'' == gg . {} { }7=−= tPP

Step 7. Since { }φ≠P , go to step 2.

Step 2. Set 7=e , 7=t .

Step 3. Set 0=−= e

Ee pdE , 0== Tt dT , 5−=− t

t pT . Since 0≤eE , go to

step 5.
Step 5. End of the space after the due date.
Since 0≥+ eEg ,

330 M. Fatih Tasgetiren et al.

• { }4,2,5
'

== EE SS , { }3,10,8,6,9,1,7
'

=∪= PSS TT , ∑ =−= ∈
'' 46ESj jpdg ,

()'''' ,, TE SSgS = . Then () 660' =Sf .

• { } { }7,4,2,5
''

=+= eSS EE , { } { }3,10,8,6,9,1
''

=−∪= ePSS TT ,

∑ =−= ∈
''' 52ESj jpdg , ()'''''''' ,, TE SSgS = . Then () 615'' =Sf .

Since () ()''' SfSf > ,

• { } { }7,4,2,5=+= eSS EE , 0=Ed , 0'' =−+= ggdd TT , 52'' == gg .

{ } { }φ=−= ePP ,

• Go to Step 7.
Step 7. Since { }φ=P , go to step 8.

Step 8. Since there is no straddling job. Solve ()TE SSgS ,,'' = with { }7,4,2,5=ES

and { }3,10,8,6,9,1,7=TS . () 615=Sf and

Appendix B: Design of Experiments for the DPSO Algorithm

There are four parameters in the DPSO algorithm: population size (A), mutation
probability of update equation (B = w), crossover probability (C = c1), and crossover
probability (D = c2). Each factor has two levels and a full factorial design of 1624 =
treatments is employed. Table B1 shows the factors and their levels whereas Table B2
illustrates DOE for the DPSO algorithm.

Table B1. Factors and Their levels for DPSO

 Factors
Level A B C D

Low (-1) 10 0.2 0.2 0.2
High (1) 30 0.8 0.8 0.8

After the response variable was determined for each treatment as given in Table B2,

the following statistical analysis were made to determine the level of parameters. In
order to screen and identfy the key factors influencing the response variable, the
Normal Probability Plot of Effects is used to compare the relative magnitude of the
effects. As well known, points in the normal probability plot of effects falling near the
fitted line usually indicate important effects. In other words, important effects are
larger and further from the fitted line whereas unimportant effects tend to be smaller
and centered around zero. To sum up, the Normal Probability Plot of Effects provides a
very good screening of important factors in the design.

As seen in the Normal Probability Plot of the Effects in Figure B1, the parameters
and their interactions having significant effects on the response variable can easily be
determined based on how far they are from the fitted line. For this reason, from

 Metaheuristics for Common due Date Total Earliness 331

Table B2. Full Factorial Design for DPSO Algorithm

A B C D R1 R2 .. R1120 Response
-1 1 1 1 0.04
1 -1 1 1 0.07
1 -1 1 -1 0.04
1 -1 -1 1 0.03
-1 1 -1 1 0.03
-1 -1 1 -1 0.03
-1 -1 -1 1 0.03
1 1 -1 -1 0.09
-1 -1 1 1 0.07
-1 -1 -1 -1 0.04
-1 1 -1 -1 0.07
1 1 1 -1 0.04
1 -1 -1 -1 0.04
1 1 -1 1 0.03
1 1 1 1 0.03
-1 1 1 -1 0.03

Effect

Pe
rc

en
t

0.030.020.010.00-0.01-0.02

99

95

90

80

70

60
50
40
30

20

10

5

1

F actor

D

Name
A A
B B
C C
D

Effect Type
Not Significant
SignificantCD

BD

BC

AD
D

Normal Probability Plot of the Effects
(Alpha = .05)

Fig. B1. Normal Probability Plot of the Effects for DPSO

Figure B1, it can be seen that the most significant factor was D, and the most
significant interactions were BC, BD, AD, and CD, respectively.

In order to justify the interpretation resulted from the Normal Probability Plot of
Effects, a statistical analysis is needed. The Generalized Linear Model (GLM) was
used to conduct the Analysis of Variance (ANOVA). To apply ANOVA, three main

332 M. Fatih Tasgetiren et al.

hypothesis should be checked: normality, homogenity, and independence of residuals.
The residuals from the experimental results were analyzed and all three hypothesis
could be accepted. The ANOVA results are given in Table B3. Table B3 justifies the
significancy of the factor D and the interactions BC, BD, AD and CD since the F
values were high enough and the p-values are less than 0.05.

Table B3. Analysis of Variance for DPSO

Source DF Seq SS Adj SS Adj MS F P
A 1 0.0000562 0.0000562 0.0000562 2.74 0.14
B 1 0.0000062 0.0000062 0.0000062 0.3 0.6
C 1 0.0000062 0.0000062 0.0000062 0.3 0.6
D 1 0.0001562 0.0001563 0.0001563 7.61 0.03
BC 1 0.0014063 0.0014063 0.0014063 68.48 0
BD 1 0.0014063 0.0014062 0.0014062 68.48 0
AD 1 0.0001562 0.0001562 0.0001562 7.61 0.03
CD 1 0.0022563 0.0022563 0.0022563 109.87 0
Error 7 0.0001437 0.0001437 0.0000205
Total 15 0.0055938

M
ea

n

1-1

0.0480

0.0465

0.0450

0.0435

0.0420

1-1

1-1

0.0480

0.0465

0.0450

0.0435

0.0420

1-1

A B

C D

Main Effects Plot (data means)

Fig. B2. Main Effects Plot for DPSO

In order to determine the level of each factor, the Main Effects Plot can be used. A
main Effect Plot shows the mean values of each level of a factor considered in the
design. A main effects happens if the mean response varies accross different levels of
a factor considered. It is generally used to asses the relative strength of the effects

 Metaheuristics for Common due Date Total Earliness 333

across different levels of a factor in the design.The Main Effect Plot is shown in
Figure B2. If only the main effects were to be considered, it would be suitable to run
all the factors at the following levels in Table B4.

Table B4. Parameter settings of DPSO from Main Effect Plot

Factors Levels Description Value
A -1 NP=low level 10
B -1 w =low level 0.2
C 1

1c =high level 0.8

D 1
2c =high level 0.8

However, it is always necessary to look into any interaction that is significant due to
the fact that main effects do not have much meaning when they are involved in signifi-
cant interactions. For this purpose, Interaction Plots can be used, which show the mean
values for each level of a factor with the level of a second factor held constant. An
interaction between factors happens if the change in the response from the low level to
the high level of one factor is not the same as the change in the response at the same
levels of a second factor considered. It indicates that the effect of one factor is depend-
ent on a second factor. For this reason, the effect of interactions should be analyzed on
deciding the levels of parameters. The BC interaction is illustrated in Figure B3 where
BC interaction does not give a clear picture about the level of the parameters since both
levels seem to have similar effect on the response variable.

BD interaction is given in Figure B4 where it can be seen that the best results are
obtained with both high levels of B and D. It suggests that the mutation probability w
and the crossover probability 2c should be 0.8 and 0.8, respectively.

CC

M
ea

n

1-1

0.055

0.050

0.045

0.040

0.035

B
-1
1

BC Interaction

Fig. B3. BC Interaction Plot for DPSO

334 M. Fatih Tasgetiren et al.

DD

M
ea

n

1-1

0.060

0.055

0.050

0.045

0.040

0.035

0.030

B
-1
1

BD Interaction

Fig. B4. BD Interaction Plot for DPSO

AD interaction is given in Figure B5 where the best results are obtained with both
high level of A and D justifying again the higher effect of D in Figure B4. For this
reason, the population size is taken as NP=30.

DD

M
ea

n

1-1

0.054

0.052

0.050

0.048

0.046

0.044

0.042

0.040

A
-1
1

AD Interaction

Fig. B5. AD Interaction Plot for DPSO

 Metaheuristics for Common due Date Total Earliness 335

DD

M
ea

n

1-1

0.060

0.055

0.050

0.045

0.040

0.035

0.030

C
-1
1

CD Interaction

Fig. B6. CD Interaction Plot for DPSO

Finally, the CD interaction is illustrated in Figure B6 where we conclude that the
best results are obtained with again a high level of D and a low level of C. For this
reason, crossover probabilities 1c and 2c were taken as 0.8 and 0.8, respectively. The

final parameter setting for the DPSO algorithm is given in Table B5.

Table B5. Final Parameter settings for DPSO Algorithm

Factors Levels Description Value
A 1 NP=high level 30
B 1 w =high level 0.8
C -1

1c =low level 0.2

D 1
2c =high level 0.8

Appendix C: Design of Experiments for the DDE Algorithm

There are three parameters in the DDE algorithm: population size (A), mutation
probability (B = Pm), crossover probability (C = Pc), and mutation equation (D). All
factors have two levels and a general factorial design of 823 = treatments is
employed. Table C1 shows the factors and their levels whereas Table C2 illustrates
DOE for the DDE algorithm.

336 M. Fatih Tasgetiren et al.

Table C1. Factors and Their levels for DDE

 Factors
Level A B C

Low (-1) 10 0.2 0.2
High (1) 30 0.8 0.8

Table C2. General Design for DDE Algorithm

A B C R1 R2 .. R1120 Response
-1 1 1 0.02

-1 -1 1 0.06

1 1 1 0.02

1 1 -1 0.05

1 -1 -1 0.08

-1 1 -1 0.03

-1 -1 -1 0.05

1 -1 1 0.06

Effect

Pe
rc

en
t

0.050.040.030.020.010.00-0.01-0.02-0.03-0.04

99

95

90

80

70

60
50
40
30

20

10

5

1

F actor Name
A A
B B
C C

Effect Type
Not Significant
Significant

Normal Probability Plot of the Effects
(Alpha = .05)

Fig. C1. Normal Probability Plot of the Effects for DDE

Again, once the response variable was determined for each treatment, a similar
statistical analysis was made to determine the level of parameters. From the Normal
Probability Plot of the Effects in Figure C1, it can be seen that no parameters and

 Metaheuristics for Common due Date Total Earliness 337

interaction were significant. Then the Generalized Linear Model (GLM) was used to
conduct the Analysis of Variance (ANOVA) once again. The residuals from the
experimental results were also analyzed and all three hypothesis could be accepted for
this design too. The ANOVA results are given in Table C3 where no factor had
significantly less than p=0.05. For this reason, it can be concluded that the Main
Effects Plot would be enough to judge on the level of parameters.

Table C3. Analysis of Variance for DDE

Source DF Seq SS Adj SS Adj MS F P
A 1 0.0003125 0.0003125 0.000312 25.00 0.13
B 1 0.0021125 0.0021125 0.0021125 169.00 0.05
C 1 0.0003125 0.0003125 0.0003125 25.00 0.13
AB 1 0.0000125 0.0000125 0.0000125 1.00 0.50
AC 1 0.0003125 0.0003125 0.0003125 25.00 0.13
BC 1 0.0001125 0.0001125 0.0001125 9.00 0.21
Error 1 0.0000125 0.0000125 0.0000125
Total 7 0.0031875

The Main Effects Plot is given in Figure C2. Following the Main Effects Plot, it
can easily be seen that best results are obtained with a low level of A, and both high
levels of B and C. For this reason, the level of parameters is determined as shown in
Table C4.

M
ea

n

1-1

0.06

0.05

0.04

0.03

1-1

1-1

0.06

0.05

0.04

0.03

A B

C

Main Effects Plot (data means)

Fig. C2. Main Effects Plot for DDE

338 M. Fatih Tasgetiren et al.

Table C4. Final Parameter Settings for DDE Algorithm

Factors Levels Description Value
A -1 NP=low level 10
B 1 Pm=high level 0.8
C 1 Pc=high level 0.8

References

1. Cheng, T.C.E., Kahlbacher, H.G.: A proof for the longest/job/first policy in one/machine
scheduling. Naval Research Logistics 38, 715–720 (1991)

2. Baker, K.R., Scudder, G.D.: On the assignment of optimal due dates. Journal of the Opera-
tional Research Society 40, 93–95 (1989)

3. Biskup, D., Feldmann, M.: Benchmarks for scheduling on a single machine against restric-
tive and unrestrictive common due dates. Computers & Operations Research 28, 787–801
(2001)

4. Hoogeveen, J.A., van de Velde, S.L.: Scheduling around a small common due date. Euro-
pean Journal of Operational Research 55, 237–242 (1991)

5. Hall, N.G., Kubiak, W., Sethi, S.P.: Earliness-tardiness scheduling problems II: weighted
deviation of completion times about a restrictive common due date. Operations Re-
search 39(5), 847–856 (1991)

6. James, R.J.W., Buchanan, J.T.: Using tabu search to solve the common due date
early/tardy machine scheduling problem. Computers & Operations Research 24, 199–208
(1997)

7. Wan, G., Yen, B.P.C.: Tabu search for single machine with distinct due windows and
weighted earliness/tardiness penalties. European Journal of Operational Research 142,
271–281 (2002)

8. Hino, C.M., Ronconi, D.P., Mendes, A.B.: Minimizing earliness and tardiness penalties in
a single-machine problem with a common due date. European Journal of Operational Re-
search 160, 190–201 (2005)

9. Lee, C.Y., Choi, J.Y.: A genetic algorithm for jobs sequencing with distinct due dates and
general early-tardy penalty weights. Computers & Operations Research 22, 857–869
(1995)

10. Lee, C.Y., Kim, S.J.: Parallel genetic algorithms for the earliness/tardiness job scheduling
problem with general penalty weights. Computers & Industrial Engineering 28, 231–243
(1995)

11. Nearchou, A.C.: A differential evolution approach for the common due date early/tardy job
scheduling problem. Computers & Operations Research 35, 1329–1343 (2008)

12. Feldmann, M., Biskup, D.: Single-machine scheduling for minimizing earliness and tardi-
ness penalties by metaheuristic approaches. Computers & Industrial Engineering 44, 307–
323 (2003)

13. M’Hallah, R.: Minimizing total earliness and tardiness on a single machine using a hybrid
heuristic. Computers & Operations Research 34, 3126–3142 (2007)

14. Hendel, Y., Sourd, F.: Efficient neighborhood search for the one-machine earliness-
tardiness scheduling problem. European Journal of Operational Research 173, 108–119
(2006)

 Metaheuristics for Common due Date Total Earliness 339

15. Lin, S.-W., Chou, S.-Y., Ying, K.-C.: A sequential exchange approach for minimizing
earliness-tardiness penalties of single-machine scheduling with a common due date. Euro-
pean Journal of Operational Research 177, 1294–1301 (2007)

16. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings
of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43
(1995)

17. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. San Mateo, Morgan Kaufmann
(2001)

18. Clerc, M.: Particle Swarm Optimization. ISTE Ltd., France (2006)
19. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In:

Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics
1997, Piscataway, NJ, pp. 4104–4109 (1997)

20. Storn, R., Price, K.: Differential evolution – a simple and efficient adaptive scheme for
global optimization over continuous spaces. ICSI, Technical Report TR-95-012 (1995)

21. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global op-
timization over continuous space. Journal of Global Optimization 11, 341–359 (1997)

22. Corne, D., Dorigo, M., Glover, F.: Part Two: Differential Evolution. In: New Ideas in Op-
timization, pp. 77–158. McGraw-Hill, New York (1999)

23. Lampinen, J.: A bibliography of differential evolution algorithm. Lappeenranta University
of Technology, Department of Information Technology, Laboratory of Information Proc-
essing, Technical Report (2001)

24. Babu, B.V., Onwubolu, G.C. (eds.): New Optimization Techniques in Engineering.
Springer, Heidelberg (2004)

25. Price, K., Storn, R., Lampinen, J.: Differential Evolution – A Practical Approach to Global
Optimization. Springer, Heidelberg (2006)

26. Chakraborty, U.K.: Advances in Differential Evolution. Springer, Berlin (2008)
27. Tasgetiren, M.F., Liang, Y.-C.: A binary particle swarm optimization algorithm for lot siz-

ing problem. Journal of Economic and Social Research 5(2), 1–20 (2003)
28. Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G.: Particle swarm optimization

and differential evolution for single machine total weighted tardiness problem. Interna-
tional Journal of Production Research 44(22), 4737–4754 (2006)

29. Tasgetiren, M.F., Sevkli, M., Liang, Y.-C., Yenisey, M.M.: Particle swarm optimization
and differential evolution algorithms for job shop scheduling problem. International Jour-
nal of Operations Research 3(2), 120–135 (2006)

30. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: A discrete particle swarm optimization algo-
rithm for single machine total earliness and tardiness problem with a common due date. In:
Proceedings of the World Congress on Evolutionary Computation, CEC 2006, Vancouver,
Canada, pp. 3281–3288 (2006)

31. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: Minimizing total earliness and tardiness penal-
ties with a common due date on a single machine using a discrete particle swarm optimiza-
tion algorithm. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R.,
Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 460–467. Springer, Heidelberg (2006)

32. Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G.: Particle swarm optimization
algorithm for makespan and total flowtime minimization in permutation flowshop se-
quencing problem. European Journal of Operational Research 177(3), 1930–1947 (2007)

33. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: A discrete particle swarm optimization algo-
rithm for the no-wait flowshop scheduling problem with makespan and total flowtime cri-
teria. Computers & Operations Research 35, 2807–2839 (2008)

340 M. Fatih Tasgetiren et al.

34. Al-Anzi, F.S., Allahverdi, A.: A self adaptive differential evolution heuristic for two-stage
assembly scheduling problem to minimize maximum lateness with setup times. European
Journal of Operational Research 182, 80–94 (2007)

35. Liao, C.-L., Tseng, C.-T., Luarn, P.: A discrete version of particle swarm optimization for
flowshop scheduling problems. Computers & Operations Research 34, 3099–3111 (2007)

36. Tasgetiren, M.F., Pan, Q.-K., Liang, Y.-C., Suganthan, P.N.: A discrete differential evolu-
tion algorithm for the total earliness and tardiness penalties with a common due date on a
single machine. In: Proceedings of the 2007 IEEE Symposium on Computational Intelli-
gence in Scheduling (CISched 2007), Hawaii, USA, pp. 271–278 (2007)

37. Tasgetiren, M.F., Pan, Q.-K., Liang, Y.-C., Suganthan, P.N.: A discrete differential evolu-
tion algorithm for the no-wait flowshop scheduling problem with total flowtime criterion.
In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Schedul-
ing (CISched 2007), Hawaii, USA, pp. 251–258 (2007)

38. Montgomery, D.C.: Design and Analysis of Experiments., 5th edn. John Wiley and Sons,
Chichester (2000)

39. Devore, J.L.: Probability and Statistics for Engineering and the Sciences, 5th edn., Dux-
bury, Thomson Learning (2000)

Author Index

Chua, Tay Jin 301

Eddaly, Mansour 151
Engin, Orhan 169

Fernández-Mart́ınez, Carlos 21

Girish, B.S. 229

Jarboui, Bassem 151
Jawahar, N. 229
Jin, Feng 1

Kahraman, Cengiz 169

Lei, Deming 191
Liang, Yun-Chia 301

Mokotoff, E. 101

Pan, Quan-Ke 301
Ponnambalam, S.G. 229

Rajendran, Chandrasekharan 53
Rebäı, Abdelwaheb 151
Ruiz, Rubén 21

Siarry, Patrick 151
Song, Shiji 1
Suganthan, P.N. 301

Tasgetiren, M. Fatih 301

Vallada, Eva 21

Wu, Cheng 1

Yagmahan, Betul 261
Yenisey, Mehmet Mutlu 261
Yilmaz, Mustafa Kerim 169

Ziegler, Hans 53

Index

ε -constraint 112
A posteriori method 111
A priori method 111
 ACO algorithm 58
Algorithm 151, 152, 153, 156, 157, 158,

159, 160, 161, 163, 166
Ant colony optimization 108, 115, 116, 283,

289, 290
Artificial immune system 294, 295
Average tardiness 169

B&B 152
BBSC 154, 155
Big valley phenomenon 8
Bi-objective space search 117

Block property 1, 6
Block 5
Blocking 151, 152, 153, 156, 160, 166
BMDA 155
BOA 155
Bottleneck function 109
Branch and bound 107, 113, 115, 275

CDS Heuristic 276
Ceramic tiles 101
CGA 154
Combinatorial 153, 155
COMIT 155
Completion time 57, 103, 263
Computational complexity 111
Constructive algorithm 107, 118
CPM (Critical Path Method) 33, 265

DDE 36, 41, 44
DDELS 36, 41
Dependencies 152, 154, 155
Design of Experiments 44
Deterministic 262, 265
Differential evolution algorithm 283, 293,

294
Diversification-generation 173
Due date 103, 105, 114, 262

earliness 262, 263
EAs 151
EBNA 155
ECGA 155
Efficient solution 110
Engine piston 178
Estimation of Distribution Algorithm

151, 152, 153
Evolutionary algorithms 108, 113
Evolutionary multi-objective optimization

114, 116
Exchange 120
Explorative local search methods 295

FDA 155
flow shop 21, 261, 267, 268, 269, 270,

271, 272, 273, 274, 275, 276,
277, 278, 284, 285, 286, 288,
289, 290, 291, 292, 293, 294,
295, 297

flow time 262, 263, 264, 265, 271, 282,
283, 293

flowshop scheduling 56

344 Index

flowshop 151, 152, 153, 156, 158, 160, 166
FRB3 33, 36, 40--42, 44
FRB4 39
FRB5 33, 36, 44

Fuzzy due date 172
Fuzzy processing time 172

GA 152, 153, 155, 161, 166
Gantt chart 262, 270, 271, 273
Genetic Algorithm 108, 169, 287
Goal programming 112
GRASP 295
Gupta’s Heuristic 277

HDPSO 36, 41, 43, 44, 47
heuristically efficient 58
heuristically non-dominated 58
Hierarchical method 111
Hybrid genetic algorithm 170
Hyperheuristic 113

Identical machines 266
Idle time 105
Idletime 271, 273

IG 33, 41, 47, 48
Improvement techniques 108, 115, 120
Insertion 120
Interactive method 111

Internal block 5
Iterated Greedy 33, 48
Iterated Local Search 296

job shop 261, 267
job 152, 156, 157, 158, 159, 160
job-index-based insertion scheme 96
job-index-based swap scheme 97
Johnson’s algorithm 273
Johnson’s rule 107
Just in time 105

KK 32, 33, 36, 40, 44

Lateness 262, 263, 264, 265
Learning 154, 155
Lexicographic method 111
LFDA 155
List scheduling 107, 119
Local dynamic programming 115
Local search neighborhoods 116

Local search 151, 159, 160, 161, 166
Lower bound 121

Machine 152, 157
Makespan distribution 10

Makespan 151, 152, 156, 157, 158, 160,
161, 166

Maximum completion time 103, 104
Maximum flow time 104
Max-ordering 112
Metaheuristics 107, 108
MIMIC 154, 155

Mixed Integer Programming 23
MOACA 64
Multi objective fuzzy permutation flow

shop 171
Multicriteria 264
Multicriterion decision making 101
multi-objective ant-colony algorithm 53
Multi-objective combinatorial optimization

102, 109, 114
Multi-objective flow shop scheduling

problem 114
Multi-objective genetic algorithms 114
Multi-objective linear programming 110
Multi-objective tabu search 114
Multiple-objective scheduling 114
Multiple-objective simulated annealing

117
Mutation 151, 153

Nearest Insertion Rule 28, 32
NEH 24, 31, 36, 37, 40, 41, 44
NEH algorithm 107, 118
NEH Heuristic 277

Neighborhood property 3
Neighborhood 4

Neighbourhood exploration heuristics
120

No free lunch 2
no idle time 22, 24, 25

no-idle PFSP 26, 30, 32, 33, 35, 37, 42
Non dominated vector 110
non-dominance 57
Non-dominated set 113
Non-dominated solution 110
Non-scalarizing method 112
Non-supported efficient solution 110
NP-hard 261, 273, 274

NRI 28, 32
number of tardy jobs 262, 264, 265

 Index 345

offspring, 151, 152, 153, 159, 160, 161
open shop, 268
optimization, 151, 153, 154, 155
order, 151, 152, 154, 155, 156, 158, 159, 160,

166

Palmer’s Heuristic 276
Parallel Machine 265
Pareto optimal solution 110
Particle swarm optimization 290, 291
PBIL 154, 155
Permutation flow shop scheduling algorithms

107
Permutation flow shop scheduling problem

103, 114, 116
permutation flow shop 270, 291
permutation flowshop 56
Permutation schedule 104
permutation schedule 56
PERT (Program Evaluation and Review

Technique) 265
PFSP 22, 30, 31, 40

pheromone trail 58
population 151, 152, 153, 155, 156, 157,

158, 159
Possibility measure 179
Potentially efficient solution set 117, 128
probabilistic model 152, 153, 154, 155, 158,

166
Processing time, 103

Processing time, 262
PTL crossover 41

Random insertion perturbation scheme 108
Ready time 262
Reference set update 173

Satisfaction index 179
Scalarization method 112
Scatter Search Algorithm 292
Scatter search 169
Scheduling 151, 152, 156, 158, 160,

166, 261
Seed solutions 118
Selection 151, 153, 158, 159
Sequencing 261
SGM 31, 32, 36, 38, 39, 44, 48
Simulated Annealing 108, 283
Simultaneous optimization 111
single machine 265

Solution space property 8
Static 262

Statistic analysis 7
Stochastic 262
Sum function 109
Supported efficient solution 110

Tabu search 108
Tardiness 103
Target-vector approach 112
Total completion time 104
Total flow time 115
total flowtime 57
Traveling Salesman Problem 28
TS 153, 162, 163, 164, 165, 166

UMDA 154, 155, 156
Uniform machines 266
Unrelated machines 266

Weighted sum 112

	Title Page
	Preface
	Contents
	Structural Property and Meta-heuristic for the Flow Shop Scheduling Problem
	Introduction
	Problem Definition
	Neighborhood Property
	Neighborhood
	Critical Path and Block
	Block Property
	Statistic Analysis on the Block Property

	Solution Space Property
	Big Valley Phenomenon
	Normality of the Makespan Distribution

	Case Study: Structural Property Based Tabu Search
	Reduce Neighborhood by Structural Property
	Algorithm Description and Computational Complexity
	Computational Results

	Conclusions and Directions of Future Research
	References

	Scheduling in Flowshops with No-Idle Machines
	Introduction
	Regular Flowshop Problem
	No-Idle Flowshop Variant

	Literature Review
	New Approaches, Discussion and Adaptation of Existing State-of-the-Art Methods
	Computational Evaluation
	Heuristic Results
	Metaheuristic Results
	Statistical Analysis of Results

	Conclusions and Future Research
	References

	A Multi-Objective Ant-Colony Algorithm for Permutation Flowshop Scheduling to Minimize the Makespan and Total Flowtime of Jobs
	Introduction
	Formulation of the Multi-Objective Static Permutation Flowshop Scheduling Problem under Study
	Description of the Proposed Multi-Objective Ant-Colony Algorithm
	General Structure of Ant-Colony Algorithms
	Details of the Proposed Multi-Objective Ant-Colony Algorithm (MOACA)
	Step-by-Step Procedure of the MOACA

	Performance Analysis of the MOACA
	Conclusions
	Appendix
	References

	Multi-objective Simulated Annealing for Permutation Flow Shop Problems
	Introduction
	Permutation Flow Shop Scheduling Problem
	Notation
	Definitions
	Criteria
	Assumptions

	Multi-objective Combinatorial Optimization Problem
	Formulation of a MOCO Problem
	Some Theoretical Concepts
	MultiCriteria Optimization Methods

	Multicriteria Scheduling Review
	Multicriteria Flow Shop Scheduling Problem Review

	Proposed Algorithms
	MOSA Scheme
	Set of Initial Solutions
	Improvement Techniques
	Updating Potential Efficient Set
	Simulated Annealing Parameters

	Evaluation of MOCO Approaches
	Metrics
	Computational Experiments

	Conclusions
	References

	An Estimation of Distribution Algorithm for Minimizing the Makespan in Blocking Flowshop Scheduling Problems
	Introduction
	Estimation of Distribution Algorithm (EDA)
	Basic EDA
	EDAs with No Dependencies
	EDAs with Two-Order Dependencies
	EDAs with Multiple Dependencies

	Some EDAs for Combinatorial Optimization Problems
	Problem Description
	Hybrid EDA for BFSP
	Solution Representation
	Initial Population
	Selection
	Construction of a Probabilistic Model and Creation of New Individuals
	Replacement
	Stopping Criterion
	Local Search

	Computational Results
	Comparison with GA
	Performance of H-EDA

	Conclusion
	References

	A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop Scheduling Problem: A Real World Application
	Introduction
	The Multiobjective Fuzzy Permutation Flow Shop Scheduling Problem
	Scatter Search Method
	Hybrid Genetic Algorithms
	Scatter Search Method vs. Genetic Algorithms

	Performance of the SS on Real-World Data
	An Engine Piston Manufacturing Process
	The Multiobjective Value
	Experiments

	Conclusion and Directions for Future Research
	References

	Genetic Algorithm for Job Shop Scheduling under Uncertainty
	Introduction
	Literature Review
	Single Objective Scheduling: Fuzzy Case
	Single Objective Scheduling: Stochastic Case
	Multi-Objective Scheduling: Uncertain Case

	Fuzzy Job Shop Scheduling
	Problem Description
	Operations on Fuzzy Processing Time
	Random Key Genetic Algorithm
	Computational Experiments

	Flexible Job Shop Scheduling with Fuzzy Processing Time
	Problem Description
	Decomposition-Integration Genetic Algorithm
	Computational Results

	Job Shop Scheduling with Stochastic Processing Time
	Problem Formulation
	Active Schedule Generating Algorithm
	Genetic Algorithm for SJSSP
	Computational Results

	Conclusions
	Appendix
	References

	Giffler and Thompson Procedure Based Genetic Algorithms for Scheduling Job Shops
	Introduction
	Job Shop Scheduling Problems
	Modeling and Solution Approaches for Scheduling Problems
	Genetic Algorithm Based Heuristics for Scheduling: A Literature Review

	Description of Job Shop Scheduling Models
	Model 1: Scheduling Job Shop for Makespan Time Criterion
	Model 2: Scheduling Job Shop for Multiobjective Criteria
	Model 3: Scheduling Flexible Job Shop for Makespan Time Criterion

	GA for Single Objective JSP
	Description of the Proposed GA
	Numerical Illustration of the Proposed GA
	Performance Analysis of the Proposed GA

	Multiobjective GA for JSP
	Description of the Proposed GA
	Numerical Illustration for the Proposed MOGA
	Performance Analysis of the Proposed MOGA

	GA for FJSP
	Description of the Proposed GA
	Numerical Illustration for the Proposed GA
	Performance Analysis of the Proposed GA

	Conclusion
	References

	Scheduling Practice and Recent Developments in Flow Shop and Job Shop Scheduling
	Scheduling Theory and Problems
	Scheduling Problem Types
	Project Scheduling
	Single Machine Scheduling
	Parallel Machines Scheduling
	Shop Scheduling
	Other Examples

	Solution Techniques in Scheduling
	Basic Descriptions
	Objectives
	Mathematical Model
	Complexity
	The Flow Shop Scheduling Solution Algorithms
	Other Studies

	Selected Recent Literature on Flow Shop Scheduling
	Simulated Annealing
	Tabu Search
	Genetic Algorithm
	Ant Colony Optimization
	Particle Swarm Optimization
	Scatter Search Algorithm
	Differential Evolution Algorithm
	Artificial Immune System
	Explorative Local Search Methods

	Conclusion
	References

	Metaheuristics for Common due Date Total Earliness and Tardiness Single Machine Scheduling Problem
	Introduction
	Discrete Particle Swarm Optimization Algorithm
	Discrete Differential Evolution
	Solution Representation
	Local Search
	MHRM Heuristic

	Design of Experiments
	Computational Results
	Conclusions
	Appendix A: MHRM Heuristic
	Appendix B: Design of Experiments for the DPSO Algorithm
	Appendix C: Design of Experiments for the DDE Algorithm
	References

	Author Index
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

