

Lecture Notes in Computer Science 5648
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Martin Gaedke Michael Grossniklaus
Oscar Díaz (Eds.)

Web Engineering

9th International Conference, ICWE 2009
San Sebastián, Spain, June 24-26, 2009
Proceedings

13

Volume Editors

Martin Gaedke
Chemnitz University of Technology
Faculty of Computer Science
Straße der Nationen 62, 09111 Chemnitz, Germany
E-mail: martin.gaedke@cs.tu-chemnitz.de

Michael Grossniklaus
Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
E-mail: grossniklaus@elet.polimi.it

Oscar Díaz
University of the Basque Country
Department of Computer Languages and Systems
Paseo de Manuel Lardizabal 1, 20018 San Sebastián, Spain
E-mail: oscar.diaz@ehu.es

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.5, H.4, K.6, D.2, C.2, H.3.5, H.5.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-02817-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02817-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12711277 06/3180 5 4 3 2 1 0

Preface

As of 2009, the discipline of Web engineering is a well-established and mature
field of research within the software engineering, database, information tech-
nology, and other related communities. By its very nature, Web engineering is,
therefore, a multidisciplinary field that is beginning to establish ties even out-
side the domain of computer science. As a discipline, Web engineering systemat-
ically applies the knowledge of Web science to the development and evolution of
Web-based applications and systems. This volume contains the proceedings of
the 9th International Conference on Web Engineering (ICWE 2009), which was
held in San Sebastián, Spain in June 2009. The ICWE conferences are among the
most essential events of the Web engineering community. This fact is manifested
both by the number of accomplished researchers that support the conference
series with their work and contributions as well as by the continuing patron-
age of several international organizations dedicated to promoting research and
scientific progress in the field of Web engineering.

ICWE 2009 followed conferences in Yorktown Heights, NY, USA; Como,
Italy; Palo Alto, CA, USA; Sydney, Australia; Munich, Germany; Oviedo, Spain;
Santa Fe, Argentina; and Cáceres, Spain. With San Sebastián as this year’s
venue, the conference series visits the country where it was originally launched
in 2001 for the third time.

This year’s call for papers attracted a total of 90 submissions from 33 coun-
tries spanning all continents of the world with a good coverage of all the different
aspects of Web engineering. Topics addressed by the contributions include areas
ranging from more traditional topics such as component-based Web engineer-
ing, model-driven Web engineering, navigation, search, Semantic Web, quality,
and testing to novel domains such as the Web 2.0, rich internet applications,
and mashups. All submitted papers were reviewed in detail by at least three
members of the Program Committee which was composed of experts in the field
of Web engineering from 23 countries. Based on their reviews, 22 submissions
were accepted as full papers (24%) and 15 as short papers (22%). The program
was completed by 8 posters and 10 demonstrations that were presented in dedi-
cated sessions at the conference. Finally, the conference was also host to keynotes
by James A. Hendler (Rensselaer Polytechnic Institute, USA), Jaideep Srivas-
tava (University of Minnesota, USA), and Juan Jose Hierro (Telefonica, Spain)
as well as an outstanding collection of four tutorials and four workshops.

We would like to express our gratitude to all the sponsors that supported
ICWE 2009 financially, namely, the Regional Council of Gipuzkoa, the Associ-
ation of Industries for Electronic and Information Technologies in the Basque
Country (GAIA), LKS Co., and the University of the Basque Country (Summer
Course Board). The conference would not have been possible without the en-
dorsement of the International World Wide Web Conference Committee (IW3C2)

VI Preface

and the International Society for Web Engineering (ISWE). In this context, we
would especially like to thank Bebo White and Geert-Jan Houben for their work
as our liaisons to these two organizations. We are also indebted to the various
Chairs (Josu Aramberri, Francisco Curbera, Florian Daniel, Peter Dolog, Jon
Iturrioz, Oscar Pastor, Mario Piattini, Gustavo Rossi, Takehiro Tokuda, and
Antonio Vallecillo) and to the local organizers who helped with their enthusi-
astic work to make ICWE 2009 a reality. Finally, a special thanks to all the
researchers who contributed their work and participated in the conference. Af-
ter all, as with any other conference, exchanging ideas and forging connections
is what it is all about.

May 2009 Martin Gaedke
Michael Grossniklaus

Oscar Dı́az

Organization

General Chair

Oscar Dı́az University of the Basque Country, Spain

Program Chairs

Martin Gaedke Chemnitz University of Technology, Germany
Michael Grossniklaus Politecnico di Milano, Italy

Program Committee

Silvia Abrahão Polytechnic University of Valencia, Spain
Virgilio Almedia Federal University of Minas Gerais, Brazil
Boualem Benatallah University of New South Wales, Australia
Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia
Judith Bishop University of Pretoria, South Africa
Marco Brambilla Politecnico di Milano, Italy
Chris Brooks University of San Francisco, USA
Jordi Cabot University of Toronto, Canada
Fabio Casati University of Trento, Italy
Sven Casteleyn Vrije Universiteit Brussel, Belgium
Dan Chiorean University Babes-Bolyai, Romania
Maria da Graça

Pimentel University of São Paulo, Brazil
Paul Dantzig IBM T.J. Watson Research Center, USA
Peter Dolog Aalborg University, Denmark
Schahram Dustdar Vienna University of Techonology, Austria
Flavius Frasincar Erasmus University of Rotterdam,

The Netherlands
Dragan Gasevic Simon Fraser University, Canada
Athula Ginige University of Western Sydney, Australia
Angela Eck Soong Goh Nanyang Technological University, Singapore
Jaime Gomez University of Alicante, Spain
Mei Hong Peking University, China
Geert-Jan Houben Delft University of Technology,

The Netherlands
Arun Iyengar IBM, USA
Stanislaw Jarzabek National University of Singapore, Singapore
Gerti Kappel Vienna University of Technology, Austria

VIII Organization

Nora Koch Ludwig-Maximilians-Universität München,
Germany

David Lowe University of Technology Sydney, Australia
Ioana Manolescu Inria Futurs, France
Maristella Matera Politecnico di Milano, Italy
Emilia Mendes University of Auckland, New Zealand
San Murugesan University of Southern Cross, Australia
Moira C. Norrie ETH Zurich, Switzerland
Luis Olsina National University of la Pampa, Argentina
Satoshi Oyama Kyoto Univerisity, Japan
Oscar Pastor Polytechnic University of Valencia, Spain
Vicente Pelechano Polytechnic University of Valencia, Spain
Claudia Pons National University of la Plata, Argentina
Birgit Pröll University of Linz, Austria
I.V. Ramakrishnan Stony Brook University, USA
Simos Retalis University of Crete, Greece
Gustavo Rossi National University of la Plata, Argentina
Klaus-Dieter Schewe Massey University, New Zealand
Daniel Schwabe Pontifical Catholic University of Rio de

Janeiro, Brazil
Weisong Shi Wayne University, USA
Katsumi Tanaka Kyoto University, Japan
Bernhard Thalheim Christian Albrechts University Kiel, Germany
Giovanni Toffetti

Carughi Università della Svizzera Italiana, Switzerland
Takehiro Tokuda Tokyo Institute of Technology, Japan
Riccardo Torlone Univesità di Roma, Italy
Jean Vanderdonckt Université Catholique de Louvain, Belgium
Petri Vuorimaa Helsinki University of Technology, Finland
Vincent Wade Trinity College Dublin, Ireland
Bebo White Stanford Linear Accelerator Center, USA
Marco Winckler Université Paul Sabatier, France
Bin Xu Tsinghua University, China

Posters Chair

Florian Daniel University of Trento, Italy

Posters Committee

Maria Bielikova Slovak University of Technology in Bratislava,
Slovakia

Alexander Birukou University of Trento, Italy
Alessandro Bozzon Politecnico di Milano, Italy
Sara Comai Politecnico di Milano, Italy
Vincenzo D’Andrea University of Trento, Italy

Organization IX

Federico Michele Facca STI Innsbruck, Austria
Michael Grossniklaus Politecnico di Milano, Italy
Nora Koch Ludwig-Maximilians-Universität München,

Germany
David Lowe University of Technology Sydney, Australia
Maristella Matera Politecnico di Milano, Italy
Moira C. Norrie ETH Zurich, Switzerland
Giovanni Toffetti

Carughi Universitá della Svizzera Italiana, Switzerland
Jin Yu Tiburon, USA

Demonstrations Chair

Antonio Vallecillo University of Malaga, Spain

Demonstrations Committee

Silvia Abrahão Polytechnic University of Valencia, Spain
Michel Chaudron Eindhoven University of Technology,

The Netherlands
Piero Fraternali Politecnico di Milano, Italy
Nora Koch Ludwig-Maximilians-Universität München,

Germany
David Lowe University of Technology Sydney, Australia
Alfonso Pierantonio Università de L’Aquila, Italy
Vicente Pelechano Polytechnic University of Valencia, Spain
Gustavo Rossi National University of la Plata, Argentina
Fernando

Sánchez-Figueroa University of Extremadura, Spain
Manuel Wimmer Vienna University of Techonology, Austria

Doctoral Consortium Chair

Gustavo Rossi National University of la Plata, Argentina

Doctoral Consortium Committee

Sven Casteleyn Vrije Universiteit Brussel, Belgium
Florian Daniel University of Trento, Italy
Damiano Distante Università Telematica Telma, Italy
Maŕı Escalona University of Seville, Spain
Fernando

Sánchez-Figueroa University of Extremadura, Spain
Joan Fons Polytechnic University of Valencia, Spain
Daniela Godoy ISISTAN Research Institute, Argentina

X Organization

Nora Koch Ludwig-Maximilians-Universität München,
Germany

Luis Olsina National University of la Pampa, Argentina
Gustavo Rossi National University of la Plata, Argentina
Wieland Schwinger Johannes Kepler University of Linz, Austria

Workshop Chairs

Peter Dolog Aalborg University, Denmark
Takehiro Tokuda Tokyo Institute of Technology, Japan

Tutorial Chair

Oscar Pastor Polytechnic University of Valencia, Spain

Publicity Chair

Mario Piattini University of Castilla-La Mancha, Spain

Industrial Chair

Francisco Curbera IBM Research, USA

ISWE Conference Steering Committee Liaison

Geert-Jan Houben Delft University of Technology,
The Netherlands

IW3C2 Liaison

Bebo White Stanford Linear Accelerator Center, USA

Local Organization Chairs

Jon Iturrioz University of the Basque Country, Spain
Josu Aramberri University of the Basque Country, Spain

Additional Referees

Ahmed, Faisal
Al-Naymat, Ghazi
Baez, Marcos
Barla, Michal

Bartalos, Peter
Beheshti, Seyed M. R.
Borodin, Yevgen
Brosch, Petra

Cachero, Cristina
Castillo, Claris
Covella, Guillermo
Ferreira, Renato

Organization XI

Garg, Supriya
Garrigós, Irene
Gu, Zhifeng
Guabtni, Adnene
Gómez, Cristina
Hidders, Jan
Huang, Gang
Insfran, Emilio
Islam, Asiful
Jatowt, Adam
Jiao, Wenpin
Kawai, Hideki
Kotsis, Gabriele
Kroiss, Christian
Le, Duy Ngan
Leonardi, Erwin
Leone, Stefania
Li, Fei
Li, Ge

Luo, Sen
Mahmud, Jalal
Meinecke, Johannes
Melia, Santiago
Molina, Hernan
Moro, Mirella
Noack, Rene
Oyama, Satoshi
Paraschiv, Sergiu
Parra, Cristhian
Pereira, Adriano
Prates, Raquel
Puzis, Yury
Ravi, Jayashree
Retschitzegger, Werner
Sakr, Sherif
Schall, Daniel
Seidl, Martina
Silva-Lepe, Ignacio

Simko, Marian
van der Sluijs, Kees
de Spindler, Alexandre
Subramanian, Revathi
Syukur, Evi
Tan, Puay Siew
Torres, Victoria
Valverde, Francisco
Van Woensel, William
Veloso, Adriano
Vu, Hung
Wang, Yasha
Wimmer, Manuel
Wu, Qinyi
Yan, Yixin
Zapletal, Marco
Zhang, Lu
Zhang, Yan
Zhao, Junfeng

Table of Contents

Accessibility and Usability

Fine-Grained Analysis of Web Tasks through Data Visualization 1
Gennaro Costagliola and Vittorio Fuccella

Exploring Automatic CSS Accessibility Evaluation 16
Amaia Aizpurua, Myriam Arrue, Markel Vigo, and Julio Abascal

Component-Based Web Engineering: Portals and
Mashups

A Component-Based Approach for Engineering Enterprise Mashups 30
Javier López, Fernando Bellas, Alberto Pan, and Paula Montoto

Turning Web Applications into Mashup Components: Issues, Models,
and Solutions . 45

Florian Daniel and Maristella Matera

Tagging-Aware Portlets . 61
Oscar Dı́az, Sandy Pérez, and Cristóbal Arellano

Data and Semantics

Trust and Reputation Mining in Professional Virtual Communities 76
Florian Skopik, Hong-Linh Truong, and Schahram Dustdar

A Structured Approach to Data Reverse Engineering of Web
Applications . 91

Roberto De Virgilio and Riccardo Torlone

Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation
for AMACONT . 106

Matthias Niederhausen, Kees van der Sluijs, Jan Hidders,
Erwin Leonardi, Geert-Jan Houben, and Klaus Meißner

Model-Driven Web Engineering

Model-Driven Web Engineering for the Automated Configuration of
Web Content Management Systems . 121

Jurriaan Souer, Thijs Kupers, Remko Helms, and Sjaak Brinkkemper

Bridging Test and Model-Driven Approaches in Web Engineering 136
Esteban Robles Luna, Julián Grigera, and Gustavo Rossi

XIV Table of Contents

A Requirement Analysis Approach for Using i* in Web Engineering 151
Irene Garrigós, Jose-Norberto Mazón, and Juan Trujillo

Navigation

Automating Navigation Sequences in AJAX Websites 166
Paula Montoto, Alberto Pan, Juan Raposo, Fernando Bellas, and
Javier López

Modelling and Verification of Web Navigation . 181
Zuohua Ding, Mingyue Jiang, Geguang Pu, and Jeff W. Sanders

Context-Driven Hypertext Specification . 189
Sara Comai, Davide Mazza, and Elisa Quintarelli

Process, Planning and Phases

Feature-Based Engineering of Compensations in Web Service
Environment . 197

Michael Schäfer and Peter Dolog

Product Line Development of Web Systems with Conventional Tools . . . 205
Miguel A. Laguna, Bruno González-Baixauli, and
Carmen Hernández

An Empirical Study on the Use of Web-COBRA and Web Objects to
Estimate Web Application Development Effort . 213

Sergio Di Martino, Filomena Ferrucci, and Carmine Gravino

Quality

An Extensible Monitoring Framework for Measuring and Evaluating
Tool Performance in a Service-Oriented Architecture 221

Christoph Becker, Hannes Kulovits, Michael Kraxner,
Riccardo Gottardi, and Andreas Rauber

A Quality Model for Mashup Components . 236
Cinzia Cappiello, Florian Daniel, and Maristella Matera

Towards the Discovery of Data Quality Attributes for Web Portals 251
Carmen Moraga, Ma Ángeles Moraga, Coral Calero, and
Ángélica Caro

Rich Internet Applications

Script InSight: Using Models to Explore JavaScript Code from the
Browser View . 260

Peng Li and Eric Wohlstadter

Table of Contents XV

A Conceptual Framework for User Input Evaluation in Rich Internet
Applications . 275

Matthias Book, Tobias Brückmann, Volker Gruhn, and Malte Hülder

Patterns for the Model-Based Development of RIAs 283
Nora Koch, Matthias Pigerl, Gefei Zhang, and Tatiana Morozova

Adapting the Presentation Layer in Rich Internet Applications 292
Irene Garrigós, Santiago Meliá, and Sven Casteleyn

Search

Web Site Metadata . 300
Erik Wilde and Anuradha Roy

Conceptual Modeling of Multimedia Search Applications Using Rich
Process Models . 315

Alessandro Bozzon, Marco Brambilla, and Piero Fraternali

Zero-Effort Search and Integration Model for Augmented Web
Applications . 330

Ryong Lee and Kazutoshi Sumiya

Testing

A Higher Order Generative Framework for Weaving Traceability Links
into a Code Generator for Web Application Testing 340

Piero Fraternali and Massimo Tisi

Exploring XML Perturbation Techniques for Web Services Testing 355
Paulo Silveira and Ana C.V. de Melo

Facilitating Controlled Tests of Website Design Changes: A Systematic
Approach . 370

Javier Cámara and Alfred Kobsa

Web Services, SOA and REST

SOAF – Design and Implementation of a Service-Enriched Social
Network . 379

Martin Treiber, Hong-Linh Truong, and Schahram Dustdar

RESTful Transactions Supported by the Isolation Theorems 394
Amir Razavi, Alexandros Marinos, Sotiris Moschoyiannis, and
Paul Krause

An Optimization Rule for ActiveXML Workflows . 410
Sattanathan Subramanian and Guttorm Sindre

XVI Table of Contents

Web 2.0

Personal News RSS Feeds Generation Using Existing News Feeds 419
Bin Liu, Hao Han, Tomoya Noro, and Takehiro Tokuda

A Tag Clustering Method to Deal with Syntactic Variations on
Collaborative Social Networks . 434

José Javier Astrain, Francisco Echarte, Alberto Córdoba, and
Jesús Villadangos

Relating RSS News/Items . 442
Fekade Getahun, Joe Tekli, Richard Chbeir, Marco Viviani, and
Kokou Yetongnon

A Layout-Independent Web News Article Contents Extraction Method
Based on Relevance Analysis . 453

Hao Han and Takehiro Tokuda

Posters

HyperAdapt: Enabling Aspects for XML . 461
Matthias Niederhausen, Sven Karol, Uwe Aßmann, and
Klaus Meißner

Developing an Enterprise Web Application in XQuery 465
Martin Kaufmann and Donald Kossmann

Enhancing WS-BPEL Dynamic Invariant Generation Using XML
Schema and XPath Information . 469

Manuel Palomo-Duarte, Antonio Garćıa-Domı́nguez, and
Inmaculada Medina-Bulo

CRUISe: Composition of Rich User Interface Services 473
Stefan Pietschmann, Martin Voigt, Andreas Rümpel, and
Klaus Meißner

An Online Platform for Semantic Validation of UML Models 477
Marco Brambilla and Christina Tziviskou

Efficient Building of Interactive Applications Guided by Requirements
Models . 481

Begoña Losada, Maite Urretavizcaya, and Isabel Fernández de Castro

WAB*: A Quantitative Metric Based on WAB . 485
Ana Belén Mart́ınez, Aquilino A. Juan, Daŕıo Álvarez, and
Ma del Carmen Suárez

A Web-Based Mashup Tool for Information Integration and Delivery to
Mobile Devices . 489

Prach Chaisatien and Takehiro Tokuda

Table of Contents XVII

Demonstrations

UWE4JSF: A Model-Driven Generation Approach for Web
Applications . 493

Christian Kroiss, Nora Koch, and Alexander Knapp

On Using Distributed Extended XQuery for Web Data Sources as
Services . 497

Muhammad Intizar Ali, Reinhard Pichler, Hong-Linh Truong, and
Schahram Dustdar

Automatic Generation of RIAs Using RUX-Tool and Webratio 501
Marino Linaje, Juan Carlos Preciado, Rober Morales-Chaparro,
Roberto Rodŕıguez-Echeverŕıa, and Fernando Sánchez-Figueroa

MagicUWE – A CASE Tool Plugin for Modeling Web Applications 505
Marianne Busch and Nora Koch

A Model-Based Approach Providing Context-Sensitive Television
Interaction . 509

Pieter Bellekens, Lora Aroyo, Geert-Jan Houben, and
Annelies Kaptein

Model-Driven Development of Audio-Visual Web Search Applications:
The PHAROS Demonstration . 513

Alessandro Bozzon, Marco Brambilla, and Piero Fraternali

beContent: A Model-Driven Platform for Designing and Maintaining
Web Applications . 518

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo,
Francesco Maccarrone, and Alfonso Pierantonio

InSCo-Gen: A MDD Tool for Web Rule-Based Applications 523
Joaqúın Cañadas, José Palma, and Samuel Túnez

A Tool to Support End-User Development of Web Applications Based
on a Use Case Model . 527

Buddhima De Silva, Athula Ginige, Simi Bajaj, Ashini Ekanayake,
Richa Shirodkar, and Markus Santa

MODiCo: A Multi-Ontology Web Service Discovery and Composition
System . 531

Duy Ngan Le, Bao Duy Tran, Puay Siew Tan,
Angela Eck Song Goh, and Eng Wah Lee

Author Index . 535

Fine-Grained Analysis of Web Tasks through
Data Visualization

Gennaro Costagliola and Vittorio Fuccella

Department of Mathematics and Informatics,
University of Salerno

{gencos,vfuccella}@unisa.it

Abstract. This paper presents an approach for monitoring several im-
portant aspects related to user behaviour during the execution of Web
tasks1. The approach includes the tracking of user interactions with the
Web site and exploits visual data mining to highlight important infor-
mation regarding Web application usage. In particular, our approach
intends to be a natural heir of the approaches based on clickstream vi-
sualization, by integrating them with the visualization of page-level data
and by improving them with the definition of ad-hoc zoom and filter
operations. Furthermore, we present a theoretical framework to formally
define our proposal. Lastly, in order to test the approach, a simple case-
study for a particular practical usability evaluation has been carried out.
To this aim, we built a prototypal system composed of a tracking tool,
responsible for tracking user interactions and a visualization tool for task
analysis.

1 Introduction

The analysis of user behaviour during Web navigation is a potentially fruitful
source of important information. In particular, it has been extensively used for
improving usability, but also to provide a better support to task users, i.e. by
improving Web browsers and navigation tools [1], and to discover behavioural
patterns in a given category of users [2].

The recent AJAX [3] technologies, provide us with detailed information re-
garding user behaviour, by allowing us to capture user interface events triggered
on the client-side of Web applications. For example, with AJAX we can easily
capture and record users’ behaviour on complex interaction systems, such as
Web forms, which are the primary medium for user input on the web [4].

Unfortunately, since interface events are not included in traditional server-
side logs, they have scarcely been considered in the analysis of on line tasks
for a long time, despite the richness of information regarding user behaviour
they convey. From server logs, we can only elicit the clickstream, which is the

1 This research has been partially supported by the grant “cofinanziamento per at-
trezzature scientifiche e di supporto, grandi e medie (2005)” from the University of
Salerno.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 G. Costagliola and V. Fuccella

recording of what a computer user clicks on while Web browsing. Past systems,
such as WebQuilt [5], in fact, relied on clickstream visualization, to graphically
show Web users behaviour on Web tasks.

The availability of information on the user interactions with the Web interfaces
should be effectively used for the previously mentioned purposes, in particular
for usability evaluation. In literature, some attempts to integrate web server logs
with client-side data for analysis purposes are present [6] [7], but, to our knowl-
edge, no complete and effective visualization methods for Web task analysis,
based on client-side data, have been proposed. In particular, usability analysis
still largely employs the think out loud protocol, which has several disadvantages:
to some extent, a user has to interrupt operations, when commenting; evaluators
are expected to have special knowledge; subjects do not necessarily comment [8].

In this paper we present an approach for monitoring several important aspects
related to user behaviour during the execution of Web tasks. The approach in-
cludes the tracking of user interactions with the Web site and exploits data
visualization to highlight important information regarding Web application us-
age. In particular, our approach intends to be a natural heir of the approaches
based on clickstream visualization: while for the existing approaches clickstream
visualization is the final result, in our system its graph chart is only the starting
point of a more comprehensive visual data mining process. To elaborate, it is
our approach’s first level of analysis. By applying a zoom in operation, we can
deepen the analysis to a second level chart, showing the page-level interactions
of the users. A filter operation is also defined. It allows the analyzer to visualize
only a selection of the currently visualized user sessions involved in the task.

In order to define in an unambigous way the charts and the operations of
filtering and zooming, the paper presents a theoretical framework. These opera-
tions, largely employed in visual data mining [9] are defined in the context of our
approach. Lastly, we give a first glance at the way our approach can be used for
detecting usability problems in Web pages. To this aim, we built a prototypal
system and used it in a real life example. The example shows how our approach,
by performing simple visual interactions, aids the analyst in detecting usability
problems in Web tasks.

The rest of the paper is organized as follows: Section 2 contains a brief survey
on works related to ours. The whole approach is presented in Section 3. The
theoretical framework is presented in Section 4, whereas, in Section 5, we dis-
cuss the results of a case-study application. Several final remarks and a brief
discussion on future work conclude the paper.

2 Related Work

Several approaches can be found in the literature that describe how to capture
and visualize user behaviour in Web tasks. Most of them only rely on server log
analysis. In recent years, there have been several attempts of integrating web
server logs with client-side data, but only a few of them have resulted in an
effective visual data mining method for user behaviour analysis.

Fine-Grained Analysis of Web Tasks through Data Visualization 3

Among the earliest methods there are those exploiting clickstream visualiza-
tion. WebQuilt (2001), [5] employs clickstream visualization for highlighting the
most used paths by the users to accomplish a given web task. A variant of the
above method, called DiskTree, transforms the clickstream graph in a 2D tree,
generally by simply running the Breadth First Search algorithm on it, and visu-
alizes it in a disk, such that the root is located in the centre and the last level
nodes on the circumference of the disk. Chi [10] used this approach for discov-
ering usability defects in Web sites. Chen et al. [11] have improved this method
by introducing operations and by describing a web graph algebra to manipulate
and combine web graphs.

Specific approaches for the analysis of e-commerce systems capturing and
visualizing user interface interactions are presented in [12,13,14]. In [12] it is
presented a case study based on ClickViz. This system integrates clickstream
data with user demographic information. The other two ones refine clickstream
data by selecting specific web merchandising events from the web server log,
such as: product impression, clickthrough, basket placement and purchase. In
[14] the analysis is oriented to the product evaluation, which is shown through
a starfield display [15], where it is possible to verify that user interest for the
product is in tune with its visibility in the site. In [13], instead, an interactive
parallel coordinate system is used to interpret and explore clickstream data,
checking, i.e., how many sessions lead to a purchase and how many abandoned
the site before.

Other approaches [16] [6] [8], focus on the use of mouse and gaze movements as
implicit interest indicators. In particular, the paths of the mouse and of the user
gaze are visualized in a video [8] or in a page screenshot [6] as lines overimposed
to the image visualized on the screen at that moment.In [8] the approach is
used in a usability study with 5 tasks where it is proved that the use of a
video improves the think out loud protocol that would miss 11.6% of the entire
user comments.

From a visualization point of view, our approach proposes a system similar
to those visualizing the clickstream, significantly improving previous approaches
with the appropriate integration of elements that visualize the additional client-
side tracking information. This study originates from our previous experience
on studying learners’ strategies to complete tests by tracking their interactions
with Web-based learning systems [17]. The current work is then a generalization
of the previous one from a specific domain (e-learning) to the general case of
web task analysis.

3 The Approach

In this section, we describe the approach for the analysis of user behaviour during
online tasks. In particular, we have devised a new symbolic data visualization
strategy, which is used within a KDD process to graphically highlight behavioral
patterns related to the users activity in online tasks. The main two steps of our
approach are data collection and data visualization.

4 G. Costagliola and V. Fuccella

3.1 Data Collection

The proposed approach aims to gather data concerning the users’ activities dur-
ing Web tasks. Gathering occurs by simply recording the interactions of the users
with the Web site interface during navigation.

The data collection can be realized in a laboratory,with selected users, or during
Web site usage, with real users. The case-study application results shown in section
5, refer to the first method only. The collected data carries information about the
user session, the sequence of the pages loaded in the browser (clickstream) and the
interactions of the users with the interactive elements contained in the pages, such
as links and form fields. In particular, the information about a specific web task
accomplished by several users is recorded in a log. During a session, the operations
realized by a user in a specific task produce the following data:

1. information about the browser session: sessionID, IP address, username, in-
formation about the user agent, sequence of visited pages;

2. information about the visit of single pages: url of the page and timestamp of
the loading and of the unloading events; the mouse movements and clicks,
scrolling; presence and duration of inactivity time intervals (no interactions)
during the page visit. Furthermore, the whole HTML code of the visited
pages and the referenced resources are recorded;

3. events generated by the user interaction with the widgets of a page: duration
of the interaction and sequence of events occurring in that interaction;

Given the hierarchical nature of the gathered data (session, page, page ele-
ments), we store data in XML format instead of storing it in plain text as in
the usual log files. In this way the input for the next step (data visualization) is
already partially elaborated.

3.2 Data Visualization

Data visualization is an important tool for Web task analysis. It has been widely
employed for clickstream analysis, so far. Nevertheless, clickstream only includes
high level information: it does not allow a deep analysis of user behaviour. In
our approach, the data gathered in step 1 are visualized through a suite of
charts showing the user actions during the web tasks at various levels of detail.
The charts are analyzed both top-down and bottom-up following the different
levels. The analysis from the higher level starts visualizing cumulative and most
significant data of the whole task, and proceeds to more detailed views through
zoom and filter operations applied by the analyzer through simple interactions
with the charts. The filter operation can also be applied to the detailed views
to expose particular user behaviours and, if needed, the analyzer can return to
higher level views to consider the context in which these behaviours occur.

Our approach includes the visualization of charts, showing cumulative infor-
mation of the sessions of the users participating to a given task, at two levels of
deepening.

The first level chart represents Clickstream through a direct graph. The
node set of the graph includes all the pages visited by at least one user while each

Fine-Grained Analysis of Web Tasks through Data Visualization 5

edge is a transition between two pages. In our approach, as shown in Figure 6(i),
to better associate the graph nodes to the visited pages, each node is represented
through a thumbnail of the associated page. The color of the nodes background
is forced to be in a gray scale (in order to represent the average time spent on
the page) even in the event of a different color indicated by the Web page style
settings. A direct edge is present between two nodes if at least one user has
visited the pages represented by the two nodes in succession.

In our approach, pages requested from the same URL can be associated to
different graph nodes. This happens since dinamically produced Web pages are
often different, even when obtained by requesting the same URL. Two pages are
regarded as different versions of the same page if their internal link structure is
different. Graph nodes are visually arranged in a matrix. Nodes corresponding
to different versions of the same page are shown in the same column, ordered
descendingly by the number of sessions passing through the node. Further opti-
mizations are performed in order to improve chart readability.

The second level chart is a deepening of the previous. It shows information
regarding a visit of a single page. The used visual metaphore is a graph, as before.
Nevertheless, this time the nodes represent the widgets (generally links and form
fields) at least one user has interacted with. The chart is shown in transparency
on the screenshot of the page, in order to highlight the widgets. A direct edge is
present between two nodes if at least one user has interacted with the widgets
represented by the two nodes in succession, that is, the user focus has directly
passed from the first to the second widget, with no inner focuses on a third widget.
At this level, previous and next pages are reported in the chart in two different
columns, on the left and on the right of the currently zoomed page.

The association between visual cues and usage metrics is the following:

– Node border thickness represents the number of sessions passing through
the node. A thicker border is for a node with a greater number of user
accesses.

– Node border color represents the average number of passages through the
node for each session (calculated only on the sessions which have at least
one passage through the node). The color is reported in red scale: a darker
red is for more passages.

– Node internal background color represents the average time spent on
the node (in case of multiple passages in the same sessions, their durations
are summed). The color is reported in gray scale: a darker gray is for a longer
time.

– Edge thickness represents the number of sessions performing the transition.
– Edge color represents the average number of passages through the edge for

each session (calculated only on the sessions which have at least one passage
through the edge). The color is reported in gray scale: a darker gray (tending
to black) is for more passages.

Since, compared to previous approaches, we increased the number of visual
cues, we also made an effort to use them “consistently”, thus guaranteeing a lower

6 G. Costagliola and V. Fuccella

cognitive load while interpreting the charts [18]. Firstly, the above association
is valid in both levels. Furthermore, other solutions have been adopted: cues
on nodes and edges are always associated to measures related to pages and
transitions, respectively; line thickness, line color and internal color are always
associated to number of sessions, average number of passages in a session and
time of a visit measures, respectively.

It is possible to go back and forth through the levels by applying zoom (in
and out) operations. Furthermore, filter operations can be applied in order to
construct the graph only by using a selection of the currently visualized user
sessions involved in the task. In particular, the subset of the sessions which
satisfy a selection condition: nodes and edges can be marked with inclusive or
exclusive ticks, indicating that the sessions underlying the selected nodes and
edges are included or excluded, respectively. Inclusive and exclusive ticks can be
interactively added on the graph. The inclusive filter is used to select only the
sessions passing through the marked elements, whilst the exclusive filter is used
to select all the sessions except those passing through the marked elements. An
inclusive filter can be applyed, i.e. to an outgoing edge on a node representing
an error page in first level chart, in order to understand how a set of users
recovered from the error. Conversely, an exclusive filter can be applied to a node
representing the submit button of a form in the second level chart, in order to
visualize only the form filling patterns of the users who abandoned the form
(users who never submit the form). A sample of application of such a filter is
shown in Figure 1.

Fig. 1. Sample of application of a filter. The submit button of the form has been
marked with an exclusive tick.

4 Theoretical Framework

In this section we provide a framework to formally define the operations of filter
and zoom in. In order todo soweneed to explicitelydefine thenotions of session and
page-session and, then, model the first and second level charts as labelled graphs.

4.1 The First Level Chart

Given a set of pages A, a session S on A is defined by a sequence of pages
(p0, p1, . . . , pn) in A, where p0 and pn are the entry and exit pages, respectively,
and the set of all the transitions (pi, pi+1) of successive pages in the sequence.

Fine-Grained Analysis of Web Tasks through Data Visualization 7

A first level chart for a set of sessions Σ is defined as a labelled direct graph
GΣ(V, E) where V is the union set of all the pages occurring in the sessions, i.e.,
V = ∪p, for each p ∈ S and for each S ∈ Σ, and E is the union set of all the
transitions occurring in the sessions, i.e., E = ∪(pi, pi+1), for each (pi, pi+1) ∈ S
and for each S ∈ Σ.

Each transition and page in the graph is labelled by a tuple. These tuples
generally represent the metrics to keep track of, such as the ones introduced in
subsection 3.2. In this section, for sake of simplicity we will only refer to the
label w of a transition t representing the number of sessions containing at least
one occurrence of the transition, i.e., wt = |{S ∈ Σ|t = (pi, pi+1) ∈ S}|.

For example, let us consider the set of pages A = {p, q, r, s, u} and the follow-
ing set of sessions on A:

{S1 = (p, q, s), S2 = (p, r, p, q, s), S3 = (p, r, p, q, s), S4 = (p, u, p, q, s)}
The resulting labelled graph is shown in Figure 2.

Fig. 2. A labeled direct graph modeling a first level chart

In the following we will use the term ‘element’ when referring to either a page
(node) or a transition (edge) in a labeled direct graph.

The session filter operations. To define filters on a set of sessions we start
by giving the notion of a filter based on a single element of the graph. We will
then use this primitive filter to provide a general definition of complex filters.

Given a set of sessions Σ and an element e in GΣ , we denote with Σe the set
of all the sessions in Σ including e.

If we consider the previous example, Σr is {S2 =(p, r, p, q, s), S3 =(p, r, p, q, s)}
and Σ(u,p) is {S4 = (p, u, p, q, s)}, leading, respectively, to Figures 3(i) and 3(ii).

Fig. 3. Labeled direct graphs modeling Σr, (i), and Σ(u,p), (ii)

8 G. Costagliola and V. Fuccella

We can then define the filter operations: given a set of sessions Σ, a filter on
Σ is defined by a set-theoretic expression on the set {Σe ∈ 2Σ| e is an element
in GΣ} using the operations of union, intersection and complementation.

In particular, given a set M of (marked) elements in GΣ , we can define, among
the others, the following four filters :

– union-inclusive filter : for the selection of all the sessions of Σ with at least
an element in M , (defined as uif(Σ, M) = ∪e∈M Σe);

– union-exclusive filter : for the selection of all the sessions of Σ except for those
with at least a marked element in M , (defined as uef(Σ, M) = Σ−∪e∈M Σe);

– intersection-inclusive filter : for the selection of all the sessions of Σ contain-
ing all the marked elements in M , (defined as iif(Σ, M) = ∩

e∈M
Σe);

– intersection-exclusive filter : for the selection of all the sessions of Σ except
for those containing all the marked elements in M , (defined as ief(Σ, M) =
Σ − ∩

e∈M
Σe).

Following the previous example, if we take M = {r, (u, p)}, as shown in Fig-
ure 4(i)), the application of the union-inclusive filter will filter out session S1
producing the graph in Figure 4(ii), while the union-exclusive filter will filter out
sessions S2, S3 and S4 producing the graph in Figure 4(iii). The intersection-
inclusive filter will filter out all the sessions while the intersection-exclusive filter
will produce no filtering at all.

Note that the the inclusive and exclusive filters introduced in subsection 3.2
are formally defined by the intersection-inclusive and intersection-exclusive def-
initions above but the approach can be extended to support any other filter.

The session zoom-in operation. In order to define the zoom-in operation
we first need to define the notion of page-session, i.e., the interactions of a user
with a particular page extracted from the clickstream. This is very similar to
the notion of session with the difference that we now deal with sequences of
page-widgets.

Given a page pi of a session S, a page-session Ppi is a sequence (w0 =
pi−1, w1, w2, . . . , wn−1, wn = pi+1), where each element wi is a widget inter-
nal to page pi. Pages pi−1 and pi+1 are the entry and the exit points of the

Fig. 4. Filter applications with M = {r, (u, p)} (i): union-inclusion (ii) and union-
exclusion (iii)

Fine-Grained Analysis of Web Tasks through Data Visualization 9

page-sessions, respectively. In the cases where pi−1 and pi+1 do not exist they
are substituted by a dummy entry point and a dummy exit point, respectively.
As with the definition of session, a page-session also includes all the transtions
(wi, wi+1).

We can now give the definition of zoom-in operation: given a set of sessions
Σ, and a page p of GΣ , the zoom-in operation zi(Σ, p) returns the the set of
page-sessions Π = {Pp|p ∈ S and S ∈ Σ}.

In other words a zoom-in operation extracts a page from the clickstream and
makes explicit the user interactions with the page internal elements.

The following definitions are given for sake of completeness but they can be
easily derived from the corresponding ones above.

4.2 The Second Level Chart

A second level chart for a set Π of page-sessions in p is formally described by
a labeled direct graph GΠ(V, E) where V is the union set of all the elements
occurring in the page-sessions, i.e., V = ∪

w∈P
w for each P ∈ Π . E is the union

set of all the transitions occurring in the page-sessions, i.e., E = ∪(wi, wi+1), for
each wi, wi+1 ∈ S and for each P ∈ Π .

Each transition t in the graph G is labelled by a weigth w representing the
number of page-sessions of Π containing at least one occurrence of the transition,
i.e., wt = |{P ∈ Π |t = (wi, wi+1) and (wi, wi+1) ∈ P}|.
The page-session filter operations. Given a set of page-sessions Π and an
element e of GΠ ,we denote with Πe the set of all the page-sessions in Π including
e. The filter operations on Π can be analougously defined as done above on Σ.

5 The Case-study Application

In order to demonstrate the effectiveness of the approach, we have evaluated the
usability of a simple Web task with respect to six students of the third year of
the Laurea degree in Computer Science at the University of Salerno. The goal
of this case-study is to gather preliminary data for a simple task and use our
protoype to visually analyze them in order to discover eventual usability faults
with respect to our sample. We chose a simple web task where few paths of few
pages could be followed. Furthermore, the good variety of paths to be followed
allowed us to reason on the cases of success, wrong input, and incomplete input.

Our users have been asked to perform an information seeking task on the Web
site of the Italian ministry of universities and research (MIUR). In Italy, aca-
demic staff is hired by concorsi (national competitions). A national, discipline-
related committee is responsible for choosing the winner candidate. The names
of the committee’s members are published through the Web site of the ministry.
The starting URL for the procedure to search them is

http://reclutamento.miur.it/seleziona/commissioni.html.
A typical search can be performed by providing information such as the year

of publication,the position and the discipline of the concorso and information

10 G. Costagliola and V. Fuccella

Fig. 5. The first form of the concorso committee search interface

about the organizing institution (university and/or faculty). All of the concorsi
published in an year are grouped by sessions; in a year, from two to four sessions
can be included. The search interface, shown in Figure 5, allows the seeker to
specify one or more of the above data through two forms including five HTML
select fields: sessione, ruolo (position) ateneo (university), facoltà and settore
disciplinare (discipline). The two forms have identical structure but refer to the
concorsi after and before the reform of the disciplines, respectively.

The statement of the task was the following: “search on the MIUR Web site
the members of the committee of the concorso for the position of Researcher,
discipline MAT/09 - Ricerca Operativa (Operative Research), published in 2007
at the University of Salerno, Faculty of Science”.

The System. In order to carry out the case-study, we built a prototypal system.
The system is composed of two main components: a tracking tool, responsible for
tracking user interactions and saving the recording in a log file, and a visualization
tool, responsible for aiding the analyzer to graphically inspect the log.

The tracking tool relies on the AJAX [3] technology in order to capture all
of the users interactions with the user interface (running in the Web browser).
It can be used as a framework to be instantiated in Web applications in or-
der to track system users. Alternatively, it can be used as an external tool for
tracking user behaviour on any Web site. The only requisite in the latter case,
is to opportunely configure the Web browser to overcome security limitations,
which do not allow the scripts to establish connections with external domains
(cross-domain scripting security). The visualization tool is an Integrated Analy-
sis Environment, in which a suite of interactive charts is combined with textual
information presented under the form of tables, to perform a cross-data analysis.

Tracking. The test has been carried out in a laboratory equipped with PCs run-
ning a version of Firefox 3.x Web browser, opportunely configured to allow the
interaction tracking. With an “authorization” by the webmaster of the analyzed
site to insert our scripts in the pages, this step would have not been necessary.
Relying on our approach, it was not necessary that the operator controlled the
users during the execution of the task. Thus, the users were completely au-
tonomous and performed the task at the same time. The operator was available

Fine-Grained Analysis of Web Tasks through Data Visualization 11

for answering possible users’ questions. The task only lasted a few minutes (ex-
cept the time necessary to configure the browser), and produced a log file sized
less than 100Mb.

Analysis. The produced log has been analyzed with the visualization tool. The
analysis begins with the visualization of the first level chart (see Figure 6(i)),
which summarizes in a single view all of the sessions of the six users who per-
formed the task. The users visited pages from the following three URLs (the
prefix http://reclutamento.miur.it/seleziona/ has been cut for brevity):

– A: commissioni.html : static Web page containing the search form.
– B: find commiss.pl : dynamic Web page containing the search results. Three

different versions of this page have been visited by the users.
– B1: page containing the expected search result, with a link to the com-
mittee’s page;
– B2: page with no results;
– B3: page containing an error message (mandatory data not specified) and
a back link to A.

– C: commiss names.pl : dynamic Web page containing task’s final results, that
is, the names of the committee’s members.

By observing the image, we immediately note that the internal color of node
A is darker than other nodes. This suggests that the average time spent on the
page with the form is significantly greater than the time spent in checking the
search results. Furthermore, nodes B2 and B3 have a lighter color (less time
spent) and a thinner border (less visits). The image summarizes the sessions of
our six users. In the following, we report in bold face their usernames (as chosen
by them) and the sequence of visited pages.

alessia A → B1 → C
gatto A → B2 → A → B1 → C
lella A → B1 → C
lulu A → B2 → A → B1 → C
mirco A → B3 → A → B1 → C
zanzibar A → B3 → A → B1 → C

The three nodes on top of the chart shown in Figure 6(i) are those belonging
to the main flow, that is, the users must visit the A → B1 → C path in order
to successfully accomplish the task. In the case of our test, all of the users did.
This can be argued by both inspecting the above sequences and observing the
chart. In particular, we note that the nodes corresponding to the pages A, B1
and C have the same border thickness. So do the edges connecting A with B1
and B1 with C. The presence in the chart of pages B1 and B2 is sign of an
expected behaviour from the users. The presence of page B3, which contains
an error message stating that the required sessione field has not been set, is,
instead, sign of a usability problem: the sessione field is not adequately marked
as required in page A. The only cue that differentiates it from the other fields is
a “(please) select!” message in the field. Not enough, we can argue, considering
that two users out of six left the field blank. Furthermore, the instructions for

12 G. Costagliola and V. Fuccella

Fig. 6. A selection of screenshots from the visualization tool interface. (i) The first level
chart; (ii) the second level chart obtained by zooming-in on page A; (iii) the same chart
after the application of an inclusive filter on the edge going from B3 to the zoomed
page.

Fine-Grained Analysis of Web Tasks through Data Visualization 13

filling the form in the upper part of the page state that it is required to “select
at least one field”, without specifying which one of them is required.

To have a more detailed insight into the situation, hopefully discovering other
usability issues with respect to our sample, we start performing a zoom operation
on page A, obtaining the chart shown in Figure 6(ii). The chart visualizes the 10
page-sessions reported in the following. Here, each field’s identifier is composed
of a form identifier (0 or 1) and the field name, separated with a dot. The START
element denotes the dummy entry point (see Section 4.1).

alessia START → 0.sessione → 0.ruolo → 0.settore → 0.sessione →
0.facolta → 0.ateneo → 0.cerca → B1

gatto START → 0.ruolo → 0.ateneo → 0.facolta → 0.settore →
0.sessione → 0.cerca → B2

gatto B2 → 0.sessione → 0.cerca → B1
lella START → 0.sessione → 0.ruolo → 0.ateneo → 0.facolta →

0.facolta → 0.settore → 0.cerca → B1
lulu START → 0.sessione → 0.ruolo → 0.ateneo → 0.facolta →

0.settore → 0.cerca → B2
lulu B2 → 0.sessione → 0.cerca → B1
mirco B3 → 0.sessione → 0.ruolo → 0.ateneo → 0.facolta → 0.settore

→ 0.sessione → 0.cerca → B1
mirco START → 0.sessione → 1.sessione → 0.settore → 0.sessione

→ 0.ruolo → 0.ateneo → 0.facolta → 0.cerca → B3
zanzibar START → 0.sessione → 0.ruolo → 0.facolta → 0.ateneo →

0.facolta → 0.settore → 0.cerca → B3
zanzibar B3 → 0.sessione → 0.ruolo → 0.ateneo → 0.facolta → 0.settore

→ 0.cerca → B1

The page-sessions visualized in the image are all those passing through page A.
Some sessions have more page-sessions satisfying this requirement, in particular
all the sessions passing through B2 and B3, since the users had to fill the form
again. To keep on analyzing the task, let’s apply some filters. In particular, let’s
see what happens by applying an inclusive filter on the edge (B3, 0.sessione).
By performing this action, we are only selecting the page-sessions that, coming
from the error page (B3), have brought again to the starting page (A, the one
with the form): A. The page-sessions are the following:

mirco B3 → 0.sessione → 0.ruolo → 0.ateneo → 0.facolta → 0.settore
→ 0.sessione → 0.cerca → B1

zanzibar B3 → 0.sessione → 0.ruolo → 0.ateneo → 0.facolta → 0.settore
→ 0.cerca → B1

In the resulting chart shown in Figure 6(iii), all of the form fields are highlited
(in red). This means that, coming from the error page, the form has been com-
pletely reset, forcing the user to re-enter all the input fields. In a well designed
interface, the values of the fields should have been kept. This is the second us-
ability problem detected with respect to our sample. By analyzing the code of
page B3, we realize that the link back to page A has been coded by the following
HTML element:

14 G. Costagliola and V. Fuccella

 Torna
indietro

In order to keep the form values, the back link should have been implemented
through a Javascript history.back() statement.

6 Conclusions

We have presented an approach for the analysis of Web tasks by means of Infor-
mation Visualization. The approach significantly improves previous ones based
on clickstream visualization. It enables several kinds of analysis in order to trig-
ger the analyzer’s attention on behavioral patterns of the users. In this way, the
analyzer is provided with a powerful tool that lets him/her review the whole
task. A theoretical framework has been defined in order to clearly define the
basic elements of the approach and the semantics of the classical visual data
mining operators such as filters and zoom with respect to our case. We have also
presented a case-study to show how our approach aids the analyst in detecting
usability problems in Web tasks.

We believe that much more patterns can be discovered than those highlited
in this paper and that the approach can be used with more general objectives
other than evaluating Web usability. Thus, we are planning to perform further
experiments, aimed at discovering and classifying new Web usage patterns and
at testing our approach in different case-studies. In particular, we are planning to
test our approach with a larger number of users, trying also to address problems
related to the visualization of large and dense graphs.

Furthermore, we would like to enrich the model with new visual representa-
tions to express further metrics not represented yet by the visual cues used in
the current charts. Finally, we are adding new features to the prototype and
testing it in order to obtain a stable and robust system.

References

1. Kellar, M.: An examination of user behaviour during web information tasks. PhD
thesis, Dalhousie University, Dalhousie Univ., Halifax, Canada (2007)

2. Sellen, A.J., Murphy, R., Shaw, K.L.: How knowledge workers use the web. In:
CHI 2002: Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 227–234. ACM, New York (2002)

3. Murray, G.: Asynchronous javascript technology and xml (ajax) with the java
platform (October 2006),
http://java.sun.com/developer/technicalArticles/J2EE/AJAX/

4. Thompson, S., Torabi, T.: A process improvement approach to improve web form
design and usability. In: DEXA 2007: Proceedings of the 18th International Con-
ference on Database and Expert Systems Applications, Washington, DC, USA, pp.
570–574. IEEE Computer Society, Los Alamitos (2007)

5. Hong, J.I., Heer, J., Waterson, S., Landay, J.A.: Webquilt: A proxy-based approach
to remote web usability testing. ACM Transactions on Information Systems 19,
263–285 (2001)

http://java.sun.com/developer/technicalArticles/J2EE/AJAX/

Fine-Grained Analysis of Web Tasks through Data Visualization 15

6. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move: user activity
tracking for website usability evaluation and implicit interaction. In: WWW 2006:
Proceedings of the 15th international conference on World Wide Web, pp. 203–212.
ACM, New York (2006)

7. Paganelli, L., Paternò, F.: Intelligent analysis of user interactions with web appli-
cations. In: IUI 2002: Proceedings of the 7th international conference on Intelligent
user interfaces, pp. 111–118. ACM, New York (2002)

8. Nakamichi, N., Sakai, M., Shima, K., Hu, J., ichi Matsumoto, K.: Webtracer: A
new web usability evaluation environment using gazing point information. Electron.
Commer. Rec. Appl. 6(1), 63–73 (2007)

9. Keim, D.A.: Information visualization and visual data mining. IEEE Transactions
on Visualization and Computer Graphics 8(1), 1–8 (2002)

10. Chi, E.H.: Improving web usability through visualization. IEEE Internet Comput-
ing 6(2), 64–71 (2002)

11. Chen, J., Sun, L., Zäıane, O.R., Goebel, R.: Visualizing and discovering web navi-
gational patterns. In: WebDB 2004: Proceedings of the 7th International Workshop
on the Web and Databases, pp. 13–18. ACM, New York (2004)

12. Brainard, J., Becker, B.: Case study: E-commerce clickstream visualization. In:
IEEE Proceedings of Information Visualization 2001 (INFOVIS 2001), pp. 153–
156. IEEE Computer Society, Los Alamitos (2001)

13. Cofino, T., Gomory, S., Lee, J., Podlaseck, M.: Method for graphically representing
clickstream data of a shopping session on a network with a parallel coordinate
system. U.S. Patent Office (2007), Patent number 7266510

14. Lee, J., Podlaseck, M.: Using a starfield visualization for analyzing product perfor-
mance of online stores. In: EC 2000: Proceedings of the 2nd ACM conference on
Electronic commerce, pp. 168–175. ACM, New York (2000)

15. Ahlberg, C., Shneiderman, B.: Visual information seeking: Tight coupling of dy-
namic query filters with starfield displays. In: ACM CHI Conference on Human
Factors in Computing Systems, pp. 313–317. ACM Press, New York (1994)

16. Mueller, F., Lockerd, A.: Cheese: tracking mouse movement activity on websites,
a tool for user modeling. In: CHI 2001: CHI 2001 extended abstracts on Human
factors in computing systems, pp. 279–280. ACM, New York (2001)

17. Costagliola, G., Fuccella, V., Giordano, M., Polese, G.: Monitoring online tests
through data visualization. IEEE Transactions on Knowledge and Data Engineer-
ing (2009 - to be printed)

18. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
A cognitive dimensions framework. Journal of Visual Languages and Computing 7,
131–174 (1996)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 16–29, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Exploring Automatic CSS Accessibility Evaluation

Amaia Aizpurua, Myriam Arrue, Markel Vigo, and Julio Abascal

Laboratory of Human-Computer Interaction for Special Needs, Informatika Fakultatea,
University of the Basque Country, Manuel Lardizabal 1, 20018 Donostia, Spain

amaia.aizpurua@ehu.es, myriam@si.ehu.es,
markel@si.ehu.es, julio@si.ehu.es

Abstract. Automatic evaluation tools are crucial for helping designers to
develop accessible web content. However, most of the existing automatic tools
are focused on evaluating the accessibility of (X)HTML code and do not
consider style sheets. CSS provides mechanisms for separating content from
display which is a requirement for accessible web documents. Although the use
of CSS has become essential, sometimes its powerful mechanisms and
functionalities may lead to a misuse. This paper presents an accessibility
evaluation framework for verifying the correct application of CSS techniques.
For this purpose, a flexible accessibility evaluation framework was selected and
adapted to incorporate CSS test cases defined in WCAG 2.0. As a result of a
detailed analysis, 6 different types of test cases were identified and a total
number of 92 test cases were accommodated into the framework. This process
has lead to obtain a flexible framework which performs more comprehensive
automatic evaluations.

1 Introduction

One of the most important issues for improving accessibility of web content is to
ensure that its structure is separated from the presentation. According to Paciello [1]
“by separating presentation from structure, specialized technologies used by people
with disabilities can easily interpret the structure and render it properly to users”.
Therefore, web designers should use appropriate mechanisms for this purpose. In this
sense, the World Wide Web Consortium (W3C)1 recommends using Cascading Style
Sheets (CSS)2.

In recent years, the use of CSS has significantly increased. Designers are supposed
to consider structure and presentation as two different aspects of web development by
properly structuring web documents using only (X)HTML mark-up and defining its
presentation in a separated CSS file. This process facilitates the development of web
documents which are more accessible, easier to maintain, possible to navigate with
screen readers, better indexed by search engine [2], etc. In addition, the use of CSS
has other advantages regarding accessibility [3]:

1 http://www.w3.org/
2 http://www.w3.org/Style/CSS/

 Exploring Automatic CSS Accessibility Evaluation 17

• Allows designers to control the spacing, alignment, positioning, etc. of
components without using (X)HTML structural elements for stylistic effects.

• Reduces required download time by preventing the use of images for positioning
content such as invisible images.

• Provides control over font size, color and style avoiding the use of images to
represent text.

• Allows users to override designers’ styles.
• Provides techniques for including orientation mechanisms such as numbers or

contextual clues, etc.

However, the use of CSS does not guarantee accessibility of web documents. For
instance, when the designer defines rigid styles may disturb with the ones defined in
users’ personal style sheets. Therefore, mechanisms for evaluating the use of CSS are
needed in order to ensure accessibility of web documents.

Web Content Accessibility Guidelines 1.0 (WCAG 1.0) [4] specify several CSS
techniques [5] which are necessary for developing accessible web documents. In
addition, the new version of this set of guidelines, WCAG 2.0 [6], defines evaluation
procedures for ensuring CSS techniques [7] are correctly used. Automatic tools able
to evaluate the correct use of these CSS techniques would be very useful as they are
an essential help for web developers. Ivory and Hearst [8] highlight some advantages
of using automatic tools:

• Evaluation process becomes less time demanding and consequently there is a
reduction in costs.

• The detected errors are more consistent.
• Possibility for predicting the effort needed in the process in terms of time and

economical costs.
• Spreads evaluation scope as it is possible to analyse diverse aspects of the

interface in less time.
• Facilitates the process to evaluators with little experience in usability and

accessibility evaluation.
• Facilitates comparing the adequacy of different user interface design alternatives.
• Facilitates incorporation of evaluation tasks during the development process.

Many automatic web accessibility evaluation tools exist though most of them focus
on (X)HTML mark-up evaluation. The existing automatic evaluation tools for CSS
are based on simple syntax verifications such as checking that relative units of
measurement are used. The main objective of this work is to extend the evaluation of
style aspects by adapting a flexible accessibility evaluation framework to incorporate
WCAG 2.0 CSS techniques. For this purpose, a thorough analysis of CSS techniques
has been done. It has been useful in order to detect similarities of these techniques
with respect of (X)HTML ones. The paper is structured as follows: section 2 is
devoted to the analysis of the CSS techniques evaluation coverage of existing
accessibility evaluation tools; section 3 describes the analysis process of CSS
techniques proposed in WCAG 2.0, in this process test cases are identified and
classified; section 4 presents the evaluation process of CSS performed by the adapted
evaluation framework; section 5 points out the limitations of current CSS evaluation
procedures and conclusions are drawn in section 6.

18 A. Aizpurua et al.

2 Related Work

There are numerous accessibility evaluation tools. Diverse ways for classifying them
can be found in the literature [8, 9, 10, 11]. For instance, they can be classified in two
groups, remote or local, based on the location they are executed, on the local
computer or on a server respectively. Other [12] studied the coverage of several
evaluation tools in all the stages of the development process: specification, design,
implementation and post-implementation.

However, the most relevant aspect of tools considered for this research work is
their coverage of CSS techniques when evaluating web accessibility. W3C-Web
Accessibility Initiative (WAI)3 maintains a complete list of available evaluation tools4
and it is possible to search for tools with specific characteristics, for instance their
coverage of CSS techniques. According to this list there are 18 tools which meet the
specified search criteria: they are free software and evaluate the accessibility of CSS
based on WCAG 1.0. Some of them are specific tools which are focused on CSS
evaluation while others are accessibility general tools which check some CSS
techniques in addition to (X)HTML techniques. Nevertheless, most of them only
incorporate a few aspects of CSS; for instance the W3C CSS Validation Service5 is a
specific tool which checks style sheets against the grammar, properties and values
defined in the corresponding CSS specification. The CSS Analyser6 tool by Juicy
Studio checks the validity of the given CSS as well as the color contrast and the use of
relative units. Hera7 is an online general accessibility tool based on techniques defined
in WCAG 1.0 and also checks some CSS related techniques from checkpoints such as
“3.2: Create documents that validate to published formal grammars”, “3.3: Use style
sheets to control layout and presentation” or “3.4: Use relative rather than absolute
units in markup language attribute values and style sheet property value”. The
evaluated aspects regarding CSS are basically related to checking the use of style
sheets in the evaluated web page, validating its syntax against the corresponding
formal grammar and verifying the use of relative units.

The aim of this research work is to extend the CSS techniques verified by
automatic tools incorporating them into general accessibility evaluation tools in order
to perform more comprehensive evaluations. There are several accessibility
evaluation tools which are interesting to incorporate new techniques as they do not
have to be recoded. They are based on flexible guidelines definition language which
provides mechanisms for specifying testing cases. AccessEnable [13] and Kwaresmi
[14, 15] are two examples. AccessEnable is a commercial tool which is not longer
supported, whereas the GDL guidelines definition language used by Kwaresmi has
been recently revised [16]. The locally executable version of TAW8 offers several
functionalities for defining personalized tests but they are limited to some regular
expressions not sufficiently complete for accommodating CSS techniques testing

3 http://www.w3.org/WAI/
4 http://www.w3.org/WAI/ER/tools/Overview
5 http://jigsaw.w3.org/css-validator/
6 http://juicystudio.com/services/csstest.php#csscheck
7 http://www.sidar.org/hera/
8 http://www.tawdis.net

 Exploring Automatic CSS Accessibility Evaluation 19

cases. More recently, Leporini et al. [17] have developed a new evaluation tool
MAGENTA which is based on Guidelines Abstraction Language, GAL. Abascal et al.
[18] proposed in 2004 the evaluation tool EvalAccess. Recently, the language for
guidelines definition used by the tool, UGL (Unified Guidelines Language), was
extended and revised in order to accommodate different types of sets of guidelines
[19]. This framework has been selected for this research work since its proved
flexibility. As far as the evaluation logic of evaluation tools is concerned, there is a
growing trend towards using XML technology. XML query languages are very
powerful due to their expressiveness and flexibility. Takata et al. [20] proposed a
pseudo-XQuery language for accessibility evaluation purposes and XPath/XQuery
sentences are defined to check WCAG guidelines in [21]. The use of this technology
makes the implementation of the evaluation logic easier and, as a result, many lines of
source code are saved.

3 Incorporating CSS into Accessibility Evaluation Process

The process described by Vanderdonckt in [22] has been taken as the basis of this
work. The principal steps of the process are the following:

• Gather, combine and compile accessibility guidelines from different sources in
order to develop a complete set of guidelines.

• Classify and order the obtained set of guidelines in one organizational
framework.

• Develop a computational representation of the set of guidelines so guidelines can
be specified and manipulated by software components.

As it can be observed, this process is focused on a complete analysis of sets of
guidelines in order to obtain a computational representation flexible enough to
accommodate different types of guidelines. In this case, different sets of guidelines
have been analysed in order to detect the CSS techniques defined. This process is not
simple as guidelines may have different formats, may contain different information
and may be described with different level of detail [23, 24]. However, it has been
simplified as the recently released WCAG 2.0 determines the exact evaluation
procedure for each CSS technique. Depending of their evaluation procedure CSS
techniques can be classified in three groups:

• Automatic tests: these problems should not require human judgment to check
their validity. Therefore, their evaluation can be completely automatic.

• Manual or semi-automatic tests: human judgment is necessary to check potential
problems associated to particular fragments of code implementing the page.

• Generic problems: human judgment is necessary to check potential problems that
cannot be associated to any code fragments.

EvalAccess framework can manage these three types of tests. However, the most
important types of tests are those that its evaluation can be totally or partially
automated.

As a result of the analysis, 22 CSS techniques have been detected. 13 of those can
be automatically or semi-automatically evaluated whereas 8 specify generic problems

20 A. Aizpurua et al.

independent of any CSS code fragment and require human judgment. In addition,
there is one CSS technique9 which has no available tests. For the automatic and semi-
automatic techniques a number of 92 test cases have been identified. Those test cases
can be classified in 6 different types shown in Table 1.

Table 1. The detected different types of test cases for CSS techniques in WCAG 2.0

Id. Test case name Description Example
1 Selector warning Using a selector may cause

accessibility problems and have to
be tested manually

WCAG 2.0 – C15 technique

A :focus

2 Property
warning

Using a property may cause
accessibility problems and have to
be tested manually

WCAG 2.0 – C25 technique

*{color, background-
color}

3 Determined
value

The value of a property has to be
one of some specifically defined

WCAG 2.0 – C13 technique

*{font-size: xx-small,
x-small, small, medium,
large, x-large, xx-
large, larger, smaller}

4 Determined Part
of Value

The value of a property must contain
a determined value

WCAG 2.0 – C12 technique

*{font-size: *%}

5 Value between

two values
The value of a property must be
between to values

WCAG 2.0 – C21 technique

P{line-height: 150% -
200%}

6 Avoid
determined part
of value

Avoid a determined value for a
property

WCAG 2.0 – C20 technique

DIV {width: cm, mm, in,
pt, pc, px }

The detected test cases can be easily represented by UGL, the guidelines

specification language used by EvalAccess. This ensures a straightforward process for
accommodating the new test cases into the evaluation framework simply by defining
each one and incorporating this definition in UGL to the repository of EvalAccess.
However, each test case type requires the specification of one XQuery template. The
evaluation engine of EvalAccess will match the UGL document of each test case with
the corresponding XQuery template. These templates will be completed with the
necessary information contained in the UGL document. These completed XQuery
templates will be those directly applicable evaluation queries which will be used by
the evaluation engine.

9 http://www.w3.org/TR/WCAG20-TECHS/css.html#C18

 Exploring Automatic CSS Accessibility Evaluation 21

Figure 1 shows the XQuery template corresponding to test case no. 6 completed with
the necessary information for the evaluation of the test case included as an example.

let $r:=//rule return(
if($r/selector='div') then
(let $p:= $r/declaration_block/declaration/property return(
if($p='width') then(
for $v in $s/descendant::value return(
if((contains($v/text(), 'cm') or contains($v/text(), 'mm') or
contains($v/text(), 'in') or contains($v/text(), 'pt') or
contains($v/text(), 'pc') or contains($v/text(), 'px'))) then
('warn')
else ())) else ())) else ())

Fig. 1. XQuery template for CSS test-case no. 6 “Avoid determined part of value”

Note that some details of the XQuery sentence related to the results are omitted in
order to enhance readability.

4 Evaluation Process of CSS Techniques

Figure 2 depicts the evaluation process of CSS techniques included in EvalAccess
framework. Each component block in Figure 2 is described below:

1. The CSS Code Retriever obtains the content of a style sheet from the WWW.
The obtained CSS code is then converted into XML. This pre-processing of
CSS code is necessary since EvalAccess framework is prepared to evaluate
(X)HTML code parsed into XML. For this purpose, a XML Schema for
parsing CSS code has been developed.

Fig. 2. Evaluation process included in EvalAccess for verifying CSS techniques

22 A. Aizpurua et al.

2. The necessary XQuery templates are matched and completed with the
information contained in UGL. This process leads to obtain all the XQuery
sentences to be applied in the evaluation process.

3. The code of the style sheet in XML format is evaluated against the XQuery
sentences. As a result, detailed evaluation report, which contains information
regarding errors, warnings, etc., is obtained. Since reports are formatted
according to a specific XML Schema, they can be also exploited by external
applications.

Figure 3 shows the defined XML Schema for representing the content of style
sheets. As it can be appreciated, style sheets consist of a set of style rules which
contains a selector and a declaration block. The last one will gather the attributes and
the corresponding values that are defined for the selector element.

Fig. 3. XML Schema developed for parsing CSS code into XML

4.1 Example of the Evaluation Process

This section presents a detailed description of each necessary step in the evaluation
process. For this purpose, a CSS code fragment has been selected as an example for
illustrating the developed evaluation process. Figure 4 shows the CSS code fragment.

div{
 width: 350px;
 margin: 1em 0 1em 0;
}
#tag p{
 text-align: justify;

font-size:10px;
 font-weight: bold;

background-color: #FFFFFF;
}

Fig. 4. An example of CSS code

As mentioned above, EvalAccess framework transforms the CSS code into XML
based on the developed XML Schema. The XML file corresponding to the example
CSS code (Figure 4) can be found in Figure 5.

 Exploring Automatic CSS Accessibility Evaluation 23

<?xml version="1.0"?>
<css xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file:///c:/schemaCSS.xsd">

<rule_set title="C:\style">
<rule>

 <selector>div</selector>
 <declaration_block>
 <declaration>
 <property>width</property>
 <value>350px</value>
 </declaration>

<declaration>
 <property>margin</property>
 <value>1em</value>

<value>0</value>
<value>1em</value>
<value>0</value>

 </declaration>
 </declaration_block>

</rule>
 <rule>

 <selector>#tag p</selector>
 <declaration_block>
 <declaration>
 <property>text-align</property>
 <value>justify</value>
 </declaration>
 <declaration>
 <property>font-size</property>
 <value>10px</value>
 </declaration>

<declaration>
 <property>font-weight</property>
 <value>bold</value>
 </declaration>

<declaration>
 <property>background-color</property>
 <value>#FFFFFF</value>
 </declaration>
 </declaration_block>
 </rule>

</rule_set>
</css>

Fig. 5. XML representation of the CSS code in Figure 4

As it can be observed, the CSS code is analysed in order to detect the selectors and
all the rules in terms of attributes and values applied to them. This information is
inserted in a XML file. This XML transformation facilitates the application of the
CSS test cases defined in the evaluation framework.

The 92 CSS test cases identified in WCAG 2.0 document are stored in UGL format
in a repository. In this way, incorporation of new test cases or new versions of
existing ones is quite straightforward.

Next figures, Figure 6, 7 and 8, show the UGL definition of different CSS test
cases applied in the evaluation process and the generated XQuery sentences based on

24 A. Aizpurua et al.

<techniques id="C12">
<type>CSS</type>
<title>Using percent for font sizes</title>
<description>The value of the property must contain a
determined part of value
</description>
<test_case>
<type>4</type>
<evaluation_type>auto</evaluation_type>
<evaluation_result>[error]</evaluation_result>
<element>

<label>#tag p</label>
<attribute>

<atb>[font-size]</atb>
<test_a>value</test_a>
<content analysis="=">[*%]</content>

</attribute>
</element>

</test_case>
</techniques>

for $d in //rule/declaration_block/declaration return
if($d/property = "font-size") then
return
 if(not(contains(($d/value), "%")))
 then ("error")
 else ()

Fig. 6. One test case for verifying WCAG 2.0 C12 CSS technique specified in UGL and the
corresponding XQuery sentence

appropriate XQuery templates directly applied to the XML file containing the CSS
code fragment.

Figure 6 contains the UGL specification of one test case for CSS technique C12
defined in WCAG 2.0. All the necessary information for completing the
corresponding XQuery template is included in this specification. UGL provides
mechanisms for determining the correspondence of one CSS test case with its XQuery
template (type attribute of the test_case element). In this case, the corresponding
XQuery template is the one defined for CSS test case type no.4 “Determined Part of
Value” (see Table 1).

Figure 7 shows the UGL file and the generated XQuery sentence for the evaluation
of one test case of WCAG 2.0 C19 CSS technique. The XQuery sentence is generated
by including the necessary data in the XQuery template corresponding to CSS test
case type no.3 “Determined value” (see Table 1).

Figure 8 shows UGL specification and XQuery sentence for verifying one of the
test cases of WCAG 2.0 C25 CSS technique. XQuery sentence is generated by
including the necessary data in the XQuery template corresponding to CSS test case
type no.2 “Property warning” (see Table 1). In this case, a warning will be created if
the XQuery sentence is proved to be true as the test case is of semi-automatic type.
This is defined in UGL by evaluation_result attribute of test_case element.

 Exploring Automatic CSS Accessibility Evaluation 25

<techniques id="C19">
<type>CSS</type>
<title>Specifying alignment either to the left OR right in
CSS</title>
<description>The value of the property has to be one of some
specifically defined</description>
<test_case>
<type>3</type>
<evaluation_type>auto</evaluation_type>
<evaluation_result>[error]</evaluation_result>
<element>
<label>#tag p</label>
<attribute>
<atb>[text-align]</atb>
<test_a>value</test_a>
<content analysis="=">[left]</content>
<content analysis="=">[right]</content>
</attribute>

</element>
</test_case>

</techniques>

for $d in //rule/declaration_block/declaration return
if($d/property = "text-align") then
return
 if($d/value!="left" and $d/value!="right")
 then ("error")

Fig. 7. One test case for verifying WCAG 2.0 C19 CSS technique specified in UGL and the
corresponding XQuery sentence. CSS test-case no. 3 “Determined value”

<techniques id="C25">
<type>CSS</type>
<title>Specifying borders and layout in CSS to delineate areas
of a Web page while not specifying text and text-background
colors</title>
<description>It is recommended to avoid using the
property</description>
<test_case>
<type>2</type>
<evaluation_type>semi</evaluation_type>
<evaluation_result>[warn]</evaluation_result>
<element>
<label>#tag p</label>
<attribute>
<atb> [background-color] </atb>
<test_a>warning</test_a>
</attribute>

</element>
</test_case>

</techniques>

for $d in //rule/declaration_block/declaration return
if($d/property = "background-color")
 then ("warn")

Fig. 8. One test case for verifying WCAG 2.0 C25 CSS technique specified in UGL and the
corresponding XQuery sentence

26 A. Aizpurua et al.

Table 2. Evaluation results of the example CSS code fragment based on the described three test
cases

Type Selector Attribute Description Technique Id CSS code
Error #tag p font-size The value of the

property must
contain a determined
part of value

C12 font-
size:10px

Error #tag p text-align The value of the
property has to be
one of some
specifically defined

C19 text-align:
justify

Warning #tag p background-color It is recommended to
avoid using the
property

C25 background-
color:
#FFFFFF

UGL specification of CSS test cases also provides useful information for creating

the evaluation results report as the description and title of the test case is also
available. The results obtained evaluating the example CSS code fragment according
to the described three test cases are described in Table 2.

5 Limitations of CSS Evaluation

The main advantage of using style sheets is that they allow the separation of content
from design, as recommended by the W3C. Separating markup and presentation is a
crucial part of universal design paradigm. This architectural principle is the key for
the evolution of the web in a wide range of aspects, such as accessibility, device
independence, ubiquity and so on. Currently, it would be very difficult to fulfill the
WCAG accessibility guidelines without using CSS.

However, CSS provides powerful mechanisms and functionalities which can lead
to a misuse. In this sense, some practices may lead to confuse specialized
technologies used by people with disabilities. For instance, the use of misusing
(X)HTML structural elements for its expected visual effects, such as the TABLE
element which is often used for stylistic purposes like positioning or alignment. On
the contrary, style sheets may be used to imitate proper (X)HTML Markup. Elements
such as headings, paragraphs and inline elements (STRONG, EM, etc) are sometimes
replaced with inappropriate tags which are styled to simply look like markup
elements. In order to avoid confusing specialized technologies, it is crucial to verify
that CSS techniques are applied appropriately.

Even though this paper describes a useful evaluation framework for CSS
techniques, there are several issues which have to be necessarily considered in order
to perform comprehensive evaluations. For example, the presented framework
evaluates the accessibility of a style sheet itself but it is more interesting to evaluate
the result of applying the styles on a specific web page. In addition there are some

 Exploring Automatic CSS Accessibility Evaluation 27

aspects of CSS which make more difficult to foresee the final display of a web page,
but they should be considered for ensuring accessibility of web documents:

• Inheritance10. CSS allows some properties applied to determined elements, to be
inherited from those specified for the parent elements. Although all CSS
properties cannot be inherited, the latter CSS specification introduced the inherit
property value. This value allows the property to be inherited from a parent
element in the document tree.

• Cascading11. Style sheets may belong to different agents: author, user and user-
agent. The cascade is the property which allows having multiple styles from
different sources merged together into one definitive style. It consists of a set of
rules to determine the interaction among conflicting styles from different origins.
Conflicts among styles happen when for the same element in a document a
determined property is assigned contradictory values by different style sheets.
Priority levels have been determined in order to solve these conflicts. They are
based on three main factors: weight and origin, specificity of selectors and order
of appearance. However, there are some mechanisms which can override the
established priorities such as !important style rules, @import statement.
Therefore, it is a complex task to foresee which style rules will be finally applied
to the document.

• Media selection12. Media Types allow specifying how documents will be
presented on different media, such as speech synthesizers, braille devices,
printers, etc. The design of a web page to be displayed on a normal desktop
screen may not be suitable for a printer, or a handheld device. There are several
media types but by default, style sheets apply to all media types. Different ways
can be used to make styles apply only to specific media types. The most
commonly used methods are the use of the media attribute of the link or style tag,
and the @media rule. Most of the styles are available to all media types, but some
CSS properties are only designed for certain media. For example, the font-size
style property does not make any sense in speech media. This means that the
rules of the style sheets must be applied depending on the selected media.

• Browser implementation differences13. Although most browsers support style
sheets, not all of them provide the same level of implementation14. Moreover,
there are implementation differences among versions of the same browser. There
are several mechanisms15 to solve the CSS related browser bugs. Nevertheless, if
those solutions are not applied and a design for a given web page is made for a
determined browser, the content of the page can be inaccessible for persons using
other browsers.

All these aspects should be considered in order to perform a more adaptive evaluation
but it requires gathering more information about final users’ environment, such as the

10 http://www.w3.org/TR/CSS21/cascade.html#inheritance
11 http://www.w3.org/TR/CSS21/cascade.html#cascade
12 http://www.w3.org/TR/CSS21/media.html
13 http://www.webreference.com/authoring/style/sheets/browser_support/
14 http://www.quirksmode.org/css/contents.html
15 http://websitetips.com/css/solutions/

28 A. Aizpurua et al.

browser model and version, access device used, existence of user defined style sheets,
etc. Otherwise, evaluating accessibility of CSS for all possible interaction schemas
becomes an excessively complex task.

6 Conclusions

In this paper we have presented a framework to evaluate accessibility of style sheets
according to the CSS techniques specified in WCAG 2.0. For this purpose, a detailed
analysis of CSS techniques has been performed. The framework itself has not been
developed from scratch since one flexible accessibility evaluation framework was
selected to accommodate the new CSS techniques. This allows extending the
efficiency of the framework so that more comprehensive accessibility evaluation can
be performed.

Unified Guidelines Language (UGL) is the basis of the framework. The use of this
language guarantees that new CSS techniques will be easily incorporated into the
framework. A total number of 92 CSS test cases have been defined in UGL and
incorporated to the framework for their automatic verification.

This work involves an important step towards considering the web design in the
accessibility evaluation process. However, the proposed framework only deals with
the evaluation of CSS files and it does not consider some significant aspects inherent
to the use of style sheets such as inheritance, cascading, differences in browser
implementation, etc.

Comprehensive accessibility evaluations involve considering more aspects than
only the CSS or the (X)HTML code. In this sense, it is necessary to predict the
resulting display of combining an (X)HTML file with the applicable style sheets in a
determined context of use (specific browser and version, access device, users’
preferences, etc.). Nevertheless, this is a complex task and future work will be
focused on trying to find better solutions in order to improve the accessibility
evaluation process.

References

1. Paciello, M.G.: Web Accessibility for People with Disabilities. CMP books (2000)
2. Pemberton, S.: Accessibility is for Everyone. ACM Interactions 10(6), 4–5 (2003)
3. Jacobs, I., Brewer, J. (eds.): Accessibility Features of CSS. W3C Note, (August 4, 1999),

 http://www.w3.org/TR/CSS-access
4. Chrisholm, W., Vanderheiden, G., Jacobs, I. (eds.): Web Content Accessibility Guidelines

1.0, W3C Recommendation (May 5, 1999), http://www.w3.org/TR/WCAG10/
5. Chisholm, W., Vanderheiden, G., Jacobs, I. (eds.): CSS Techniques for Web Content

Accessibility Guidelines 1.0, W3C Note (November 6, 2000),
 http://www.w3.org/TR/WCAG10-CSS-TECHS/

6. Caldwell, B., Cooper, M., Reid, L.G., Vanderheiden, G. (eds.): Web Content Accessibility
Guidelines (WCAG) 2.0, W3C Recommendation (December 11, 2008),

 http://www.w3.org/TR/WCAG20/
7. Caldwell, B., Cooper, M., Reid, L.G., Vanderheiden, G. (eds.): Techniques for WCAG 2.0.

CSS Techniques for WCAG 2.0, W3C Working Group Note (December 11, 2008),
 http://www.w3.org/TR/WCAG20-TECHS/css.html

 Exploring Automatic CSS Accessibility Evaluation 29

8. Ivory, M.Y., Hearst, M.A.: The state of art in automating usability evaluations of user
interfaces. ACM Computing Surveys 33(4), 470–516 (2001)

9. Ivory, M.Y., Mankoff, J., Le, A.: Using Automated Tools to Improve Web Site Usage by
Users with Diverse Abilities. Information Technology and Society 1(3), 195–236 (2003)

10. Brajnik, G.: Comparing accessibility evaluation tools: a method for tool effectiveness.
Universal Access in the Information Society 3(3-4), 252–263 (2004)

11. Abou-Zahra, S. (ed.): Selecting Web Accessibility Evaluation Tools (2006),
 http://www.w3.org/WAI/eval/selectingtools

12. Xiong, J., Farenc, C., Winckler, M.: Analyzing Tool Support for Inspecting Accessibility
Guidelines During the Development Process of Web Sites. In: Weske, M., Hacid, M.-S.,
Godart, C. (eds.) WISE Workshops 2007. LNCS, vol. 4832, pp. 470–480. Springer,
Heidelberg (2007)

13. Brinck, T., Hermann, D., Minnebo, B., Hakim, A.: AccessEnable: A Tool for Evaluating
Compliance with Accessibility Standards. In: Automatically Evaluating the Usability of
Web Sites, CHI Workshop (2002)

14. Beirekdar, A., Vanderdonckt, J., Noirhomme-Fraiture, M.: Kwaresmi - Knowledge-based
Web Automated Evaluation with REconfigurable guidelineS optimization. In: Forbrig, P.,
Limbourg, Q., Urban, B., Vanderdonckt, J. (eds.) DSV-IS 2002. LNCS, vol. 2545, pp.
362–376. Springer, Heidelberg (2002)

15. Beirekdar, A., Vanderdonckt, J., Noirhomme-Fraiture, M.: A Framework and a Language
for Usability Automatic Evaluation of Web Sites by Static Analysis of HTML Source
Code. In: Proceedings of 4th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI 2002, ch. 29, pp. 337–348. Kluwer, Dordrecht (2002)

16. Vanderdonckt, J., Bereikdar, A.: Automated Web Evaluation by Guideline Review.
Journal of Web Engineering. Rinton Press 4(2), 102–117 (2005)

17. Leporini, B., Paternò, F., Scorcia, A.: Flexible tool support for accessibility evaluation.
Interacting with Computers 18(5), 869–890 (2006)

18. Abascal, J., Arrue, M., Fajardo, I., Garay, N., Tomás, J.: Use of Guidelines to
automatically verify web accessibility. Universal Access in the Information Society 3(1),
71–79 (2004)

19. Arrue, M., Vigo, M., Abascal, J.: Including Heterogeneous Web Accessibililty Guidelines
in the Development Process. In: Gulliksen, J., et al. (eds.) EIS 2007, vol. 4940, pp. 620–
637. Springer, Heidelberg (2008)

20. Takata, Y., Nakamura, T., Seki, H.: Accessibility Verification of WWW Documents by an
Automatic Guideline Verification Tool. In: Proceedings of the 37th Hawaii International
Conference on System Sciences (2004)

21. Luque, V., Delgado, C., Gaedke, M., Nussbaumer, M.: WCAG Formalization with W3C
Techniques. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 615–
617. Springer, Heidelberg (2005)

22. Vanderdonckt, J.: Development milestones towards a tool for working with guidelines.
Interacting with Computers 12, 81–118 (1999)

23. Abascal, J., Nicolle, C.: Why Inclusive Design Guidelines? In: Abascal, J., Nicolle, C.
(eds.) Inclusive Design Guidelines for HCI, ch.1, pp. 3–13. Taylor & Francis, Abington
(2001)

24. Mariage, C., Vanderdonckt, J., Pribeanu, C.: State of the Art of Web Usability Guidelines.
In: Proctor, R., Vu, K. (eds.) The Handbook of Human Factors in Web Design, ch. 8,
pp. 688–700. Lawrence Erlbaum, Mahwah (2005)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 30 – 44, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Component-Based Approach for Engineering
Enterprise Mashups

Javier López1, Fernando Bellas1, Alberto Pan1, and Paula Montoto2

1 Information and Communications Technology Department, University of A Coruña
Facultad de Informática, Campus de Elviña, s/n, 15071, A Coruña, Spain

{jmato,fbellas,apan}@udc.es
2 Denodo Technologies, Inc.

Real 22, 3º, 15003, A Coruña, Spain
pmontoto@denodo.com

Abstract. Mashup applications combine pieces of functionality from several
existing, heterogeneous sources to provide new integrated functionality. This
paper presents the design of an enterprise-oriented mashup tool that fully
supports the construction of mashup applications. Our tool provides generic,
reusable components to engineer mashup applications. It includes components
for accessing heterogeneous sources, a component to combine data from
different sources and components for building the graphical interface. The user
builds graphically the mashup application by selecting, customizing, and
interconnecting components. Unlike other proposals we: (1) use the Data
Federation/Mediation pattern (instead of Pipes and Filters pattern) to express
the data combination logic, (2) follow the RESTful architectural style to
improve component reusability, and (3) reuse Java standard portal technology
to implement the graphical interface of the mashup application.

Keywords: Enterprise Mashups, Integration Patterns, Web Engineering.

1 Introduction

Mashup applications combine pieces of functionality from several existing,
heterogeneous sources to provide new integrated functionality. Many research works
and industrial tools have appeared during the last two years to ease the creation of
mashups. In particular, mashup tools enable ‘power users’, which do not have
programming skills, to build easily mashup applications to quickly respond to a
personal or business need.

There are two key aspects in building a mashup application: (1) accessing data
sources to obtain unified data and (2) building the graphical interface. Some tools are
strong in the first aspect (e.g. [23][13][19]), and only include minimum graphical
support to format the returned data. Other tools (e.g. [9][10][4]) support both aspects.
Tools also differ in the type of mashup application they are oriented to. Some of them
are hosted tools (e.g. [23][13]) that allow Internet users to build mashup applications
(‘consumer’ mashups). Other tools (e.g. [9][10]) are enterprise-oriented and allow the

 A Component-Based Approach for Engineering Enterprise Mashups 31

construction of ‘enterprise’ mashups. Consumer-oriented tools include support to
integrate a limited set of sources (typically, RSS/Atom feeds, and REST services) and
provide basic graphical capabilities. Enterprise-oriented tools need to take into
account many other types of sources, such as databases, SOAP services, and semi-
structured HTML web sources, or even to extract parts of web pages (web clipping).
Furthermore, the data combination logic and the requirements of the graphical
interface are often much more complex.

In this paper we present the design of an enterprise-oriented mashup tool that fully
supports the construction of mashup applications. Our tool provides generic, reusable
components to engineer mashup applications. It includes components for accessing a
great variety of sources (‘source adaptors’), a component to combine data from
different sources (‘data mashup’ component), and components for building the
graphical interface (‘widgets’). The user builds graphically the mashup application by
selecting, customizing, and interconnecting components. For example, a data mashup
component is connected to the source adaptors of the sources to be combined.

To the best of our knowledge, all existing tools use the Pipes and Filters pattern [8]
to express the data combination logic of the data sources making up the mashup
application. This pattern follows a ‘procedural’ approach that forces the user to
implement the combination logic in terms of a pipe. Depending on how the end-user
needs to query the data, more than one pipe may need to be implemented to optimally
execute the query. Unlike current tools, our data mashup component uses a
‘declarative’ approach based on the Data Federation pattern [22]. Combination logic
is graphically expressed as relational operations (such as joins, unions, projections,
selections, and aggregations) over the data sources to be combined. When the end-
user launches a query, the data mashup component can automatically compute all the
possible execution plans to solve it and let the optimizer choose one. Conceptually,
each execution plan can be seen as a pipe in the Pipes and Filters pattern.

Our architecture also makes emphasis in component reusability. Source adaptors
and data mashup components implement the same RESTful [5] interface. Apart from
the advantages intrinsic to the RESTful architectural style, this allows, for example,
reusing a data mashup component as a source component. It also makes possible the
construction of ‘template’ widgets that can analyze the meta-information (a WADL
specification [21]) of a component and provide specific functionality at run-time.

Finally, unlike other proposals, we reuse standard Java portal technology to
implement the graphical interface. In particular, widgets are implemented as portlets
[12][15]. At the graphical interface level, a mashup application is implemented as a
portal page composed of a number of widgets. Some of these widgets will be
connected to data mashup components. Reusing standard Java portal technology
allows aggregating heterogeneous widgets in a mashup application and using the
portal’s event bus to coordinate them.

The rest of the paper is structured as follows. Section 2 presents a running example
to illustrate our approach to building enterprise mashup applications. Section 3
provides an overview of the mashup tool architecture. Sections 4 and 5 discuss the
design of the architecture. Section 6 discusses related work. Finally, Section 7
presents conclusions and outlines future work.

32 J. López et al.

2 A Running Example

This section presents a running example1 to exemplify our approach to building
enterprise mashup applications. In the example, Martin, a Sales Manager from Acme,
Inc. needs to perform a typical task: discovering new potential customers. Acme, like
many other companies, uses an on-demand CRM to store data about its customers. In
particular, Acme uses salesforce.com (http://www.salesforce.com). Customer’s data
includes, apart from general company information, the satisfaction level with Acme
products and the name of a business contact in such a company.

Martin, like many other professionals, uses LinkedIn (http://www.linkedin.com) to
maintain information about their business contacts. LinkedIn is a business-oriented
social network that does not only allow maintaining information about personal
contacts but also to access contacts from other users. LinkedIn users may specify
public information, such as, personal information (name and title) and general
information about her/his company (name, industry, and address), and private
information (e.g. phone and email). Another LinkedIn user can see public information
of the contacts of any of her/his direct contacts.

To discover new ’leads’ (i.e. potential customers), Martin intends to use the
following strategy:

• Search current customers in salesforce.com. He may be interested in retrieving these
customers by different criteria, such as satisfaction level, industry, geographic
location, or even by the name of a business contact. For this example, we will
assume that Martin wishes to find customers by satisfaction level and/or business
contact name. For each customer he needs its satisfaction level and the name of the
business contact. These business contacts are among the Martin’s direct contacts in
LinkedIn. We will call ‘reference contacts’ to these business contacts.

• For each reference contact, search in LinkedIn her/his business contacts (the
‘leads’). Many of them will work in other companies and Martin intends to contact
them by using the reference contact. Martin may want to analyze all the leads or
only those fulfilling a set of criteria. For this example, we will assume that he may
want to restrict the returned leads to those working in a company of a given
industry.

• To perform a global analysis, Martin wants to classify all lead companies by
industry, using a pie chart summary.

• Finally, for each lead company, Martin wants to locate it in a map to plan a visit
(e.g. by using Google Maps) and obtain information about it (e.g. by using Yahoo!
Finance).

Since the number of customers in salesforce.com (and LinkedIn network) is large
and variable, Martin quickly realizes this task is large and tedious. Clearly, he needs
an application that fully automates the task. Martin is not a programmer. In
consequence, it is not feasible for him to build such an application. Even for a
programmer, building this application is not easy since it involves the access to five

1 We have implemented a running prototype of the architecture proposed in this paper and we

have used it to create the mashup illustrated in this section. The mashup can be accessed at
http://www.tic.udc.es/mashup-demo.

 A Component-Based Approach for Engineering Enterprise Mashups 33

applications with heterogeneous, complex interfaces. Martin could solve his need
using our mashup tool. This tool provides a set of generic, reusable components that
can be customized and assembled to engineer mashup applications.

The first aspect he needs to resolve consists in obtaining the data. For each lead,
Martin wishes to obtain:

• Data about the lead (name and title) and her/his company (name, industry, and
address). This information is provided by LinkedIn.

• Data about the reference customer: satisfaction level and reference contact. This
information is provided by salesforce.com.

Fig. 1. Assembly of components to get the data of potential new customer companies

Fig. 1 shows how Martin solves the first aspect. The mashup tool provides ‘source
adaptor’ components to access many kinds of sources. Source adaptors are non-visual
components that allow accessing a source by providing a uniform interface to other
components. Among others, the tool provides adaptors for data sources such as SOAP
and semi-structured HTML web sources. All these data source adaptors allow seeing
a data source as a web service that can be consulted through the uniform interface.
The first one inspects a WSDL specification and invokes the appropriate operations.
The second one uses web wrapper generation techniques to automate queries on a
semi-structured HTML web source.

Martin selects the SOAP salesforce.com adaptor and configures it to obtain the
data he needs. Then, he configures the semi-structured HTML web adaptor to
automatically login with Martin’s credentials in LinkedIn, fill in the search form with
a reference contact name, navigate to the pages containing the public information of
the leads and extract the target data.

To combine the data provided by salesforce.com and LinkedIn, Martin selects a
‘data mashup’ component and connects it to the previous two components. This
component combines the data provided by both components, conceptually performing

34 J. López et al.

a JOIN operation by reference contact name. The data mashup component is also a
non-visual component that allows seeing the resulting data as a web service that can
be consulted through the same interface as the data source components.

The second aspect Martin has to deal with consists in building the graphical
interface of the application. The interface consists in: (1) a form to query leads
according to Martin’s criteria, (2) a pie chart for classifying leads by industry, (3) a
map to locate lead companies, and (4) a web clipping of Yahoo! Finance to obtain the
information about them. The mashup tool provides generic visual components that
fulfill Martin’s requirements. He only needs to customize and to assembly them. We
name ‘widgets’ to these visual components. Fig. 2 shows the assembly of widgets
making up the graphical interface.

Fig. 2. Assembly of widgets in the example mashup

To provide the form for querying leads, Martin selects the ‘query widget’ and
connects it to the data mashup component. This widget can analyze the meta-
information provided by the data mashup component to find out its query capabilities
(e.g. query parameters) and the schema of the returned data. From this information, it
automatically generates an HTML form to allow querying the data mashup
component, showing the results in an HTML table. In the example, the form has the
following fields: satisfaction level, reference contact name, and industry.

To include the pie chart, Martin chooses the ‘pie chart widget’. This widget
generates a pie chart from a list of records using the values of one of the fields to
classify them. In this case, Martin specifies this widget to receive the list of records
displayed by the query widget and classify them by the industry field. How the pie
chart widget receives the list of records? One approach would consist in Martin to

Yahoo! Finance

Data
mashup

Web
clipping
adaptor

RecordSelected

RecordListing

[satisfaction_level=‘High’, , lead_name=’Richard Green’, , lead_company_name=’IBM’, ,
lead_company_address=’Menlo Park CA’,]

{[satisfaction_level=‘High’, , , , , lead_company_industry=’Computer Software’, ,],
[satisfaction_level=‘High’, , , , , lead_company_industry=’Banking’, ,],...}

Event Bus

 A Component-Based Approach for Engineering Enterprise Mashups 35

explicitly create a link between the query widget and the pie chart widget. However,
in the general case this could result in the user would have to create manually
a network of links between all widgets sending a given type of object and all
the widgets wishing to receive it. To overcome this problem, widgets communicate
each other by using an event-based model. An event has a logical name (e.g.
RecordListing) and data (e.g. the list of records). A widget subscribes to an event by
specifying its name. Each time a widget publishes an event, the mashup tool delivers
it to all subscribing widgets. In this case, the query widget generates the
RecordListing event when it obtains the results and the pie chart widget is prepared to
receive events containing a list of records. Martin personalizes the pie chart widget to
subscribe it to the RecordListing event. The query widget also allows selecting one of
the records in the result listing. Selecting a record causes the query widget to send the
RecordSelected event containing the selected record.

To locate lead companies on a map, Martin selects the ‘map widget’. This widget
receives an event containing a record that must include an address field. This widget
uses Google Maps to show the information contained in the record into a map. Martin
personalizes the widget to subscribe it to the RecordSelected event and to specify the
name of the field containing the address. This way, whenever the user selects a record
in the query widget, its information is automatically placed in the map.

Finally, to get the clipping of a given company from Yahoo! Finance, Martin
chooses the ‘web clipping widget’. This widget allows accessing a web page to
extract a block of markup. Since accessing a web page involves automatic navigation
(maybe traversing several forms and links), this widget must be connected to a ‘web
clipping source adaptor’. Like a ‘semi-structured HTML web adaptor’, this adaptor
performs automatic navigation. However, unlike that adaptor, a web clipping adaptor
does not extract data but a block of markup (without interpreting its meaning). In
consequence, Martin selects a web clipping adaptor and configures it to access
Yahoo! Finance. He also customizes the web clipping widget to use the web clipping
adaptor. Like the map widget, the web clipping widget is also prepared to receive an
event containing a record that must include a field for the company name. Martin
subscribes the web clipping widget to the RecordSelected event and specifies the
name of the field containing the company name.

3 Overview of the Mashup Tool Architecture

Fig. 3 shows the architecture of our mashup tool. The design of the architecture
breaks down the functionality in ‘layers’ and ‘common services’. Layers represent
main functional blocks and have the traditional meaning in software design. Common
services represent services that are useful for several layers.

The goal of the ‘Source Access Layer’ is to let the higher level layers access
heterogeneous sources by using a common interface. As justified in section 4, we use
a RESTful interface. Internally, this layer provides a ‘source adaptor’ component for
each possible type of source. Each adaptor maps the meta-model and access modes
used by the underlying source to the RESTful interface. Our current implementation
provides adaptors for accessing typical data sources, such as SOAP/REST web
services, relational databases, and semi-structured HTML web pages. It also includes

36 J. López et al.

a special adaptor, ‘web clipping source adaptor’, to extract a block of markup of a
HTML web source.

The ‘Data Mashup Layer’ allows defining ‘views’ combining one or several
sources, which are accessed through the Source Access Layer interface. A ‘view’ has
the same meaning as in databases. It is possible to define views as joins, unions,
projections, selections, and aggregations of sources. As justified in section 4, we have
chosen the Data Federation pattern to declaratively define the views. To this end, this
layer provides the ‘data mashup’ component. The user connects this component to the
source adaptors she/he needs. This layer (and in consequence the data mashup
component) exposes the same RESTful interface to the higher level layer as the
Source Access Layer. This allows reusing a data mashup component as a source
adaptor, enabling to connect it to other data mashup components.

Fig. 3. Mashup tool’s architecture

To support the construction of the graphical interface of the mashup application,
the ‘Widget Layer’ provides visual components, which we call ‘widgets’ (query
widget, pie chart widget, etc.). Some widgets are connected to data mashup
components (e.g. the query widget). As explained in section 5, we have decided to use
standard Java portal technology to implement this layer and the layer above it. In
particular, widgets are implemented as portlets [12][15].

The ‘Widget Assembly Layer’ allows assembling several widgets to create the
final, unified graphical interface of the mashup. Assembly capability implies
‘aggregation’ and ‘coordination’ of widgets. Aggregation refers to the capability of
adding heterogeneous widgets into a mashup application. Coordination refers to
enabling communication between widgets inside the mashup application.

Finally, our architecture distinguishes three services, namely ‘registry’,
‘collaboration’, and ‘security’ to facilitate the implementation of all layers. Our
current implementation includes support for registry and security services. Basic

 A Component-Based Approach for Engineering Enterprise Mashups 37

registry capabilities include registering and searching components (individual sources,
data mashups, widgets, and mashup applications). Additional registry capabilities
include component lifecycle management (e.g. versioning) and community feedback
(e.g. tagging, rating, etc.). The security service follows a role-based policy to specify
and control the actions that can be taken on components. Finally, collaboration refers
to the possibility of reusing knowledge automatically obtained by the tool in function
of previous user interactions. This knowledge may be used to automatically or semi-
automatically compose data mashups and widgets. We are currently working on
adding this service to our tool.

4 Design of the Source Access and Data Mashups Layers

4.1 Access to Web Sources

In the Source Access Layer, semi-structured web sources require special attention. By
semi-structured web sources, we refer to websites which do not provide any
programmatic interface to access their contents and/or services.

In this case, this layer needs to use either web wrapper generation techniques
[2][14] or web clipping techniques [1] to emulate a programmatic interface on top of
the existing website. Web wrappers extract data from the target website in structured
form. For instance, in our example, a web wrapper is used to automate the search for
the contacts of a given reference customer in LinkedIn, extracting the structured data
embedded in the HTML response pages. Our current implementation supports
graphical generation of wrappers using the techniques proposed in [14].

In turn, web clipping automates the process of extracting target markup fragments
from one or several pages in a website, providing reuse at the UI-interface level. In
our example, the web clipping widget introduced in section 2 uses the web clipping
adaptor provided by the Source Access Layer to obtain the desired Yahoo! Finance
information. The web clipping adaptor automates the process of querying Yahoo!
Finance (using the same automatic navigation techniques used for wrapper
generation) and return the HTML markup corresponding to the fragment of the page
containing the target information.

4.2 Interface Provided for the Source Access and Data Mashup Layers

Our approach reuses the RESTful architectural style [5] for the interface provided by
the Source Access Layer and Data Mashups Layer. A RESTful web service allows
accessing resources by using the standard HTTP methods GET, POST, PUT, and
DELETE. Each resource is uniquely identified by a global URI. A RESTful interface
presents several relevant advantages in the mashup environment:

• It supports both sources returning visual markup (such as HTML web sources used
for web clipping) and sources returning structured data.

• Each individual data item obtained from a source/data mashup can be modeled as a
resource accessible by a unique global URI. For instance, let us assume for the
sake of simplicity that the fields reference_contact_name and lead_name uniquely
identify an item returned by the data mashup of Fig. 1; then we could use a

38 J. López et al.

URI such as http://www.tic.udc.es/mashup_demo/leads?reference_contact_name=
John+Smith&lead_contact_name=Richard+Green to reference the lead contact
named Richard Green obtained through the reference contact named John Smith.

• These resources can be read, updated, inserted, or removed by respectively issuing
GET, POST, PUT, and DELETE HTTP requests on the URI of the resource. Of
course, some resources may not admit some operations or may require
authorization before executing them. Special URIs (e.g. http://www.tic.udc.es/
mashup_demo/leads?reference_contact_name=John+Smith) can be constructed
for executing queries by using the GET method.

• It promotes reuse at the resource granularity. Since each resource is identified by a
global URI, any data mashup can link to a resource from another one just by
including its URI. For example, let us suppose that, after creating the mashup
application of section 2, Martin creates another mashup application to support
tracking of the sales opportunities opened by using the first one. This second
application could be based on a new data mashup gathering information from
several sources and including in each opportunity a link to the original information
that provoked it. For instance, if an opportunity came from the lead Richard Green
of the reference contact John Smith, the new data mashup could include a link to
http://www.tic.udc.es/mashup_demo/leads?reference_contact_name=John+Smith&
lead_contact_name=Richard+Green in the returned information about the
opportunity. Notice also how using links lets the higher layer or the application
decide in an item-by item basis whether to pay the cost of obtaining the detail
information or not.

• Using the unified interface provided by HTTP methods, lets third-party providers
(proxies) transparently provide additional services (e.g. security, caching, etc.) to
the clients invoking the sources and/or the data mashups.

To allow clients and higher layers to know the capabilities of a source/data
mashup, we use the WADL language [21]. WADL2 allows describing the resources
offered by a RESTful web service, how they are connected, the data schema of the
information associated to them, the HTTP methods supported by each resource and
the parameters that can be used to invoke them.

4.3 Model Used for Expressing Data Combination Logic

The model used in the majority of mashups platforms to express data combination
logic is based on the Pipes and Filters pattern [8]. A ‘pipe’ is composed of a series of
interconnected components. Each component performs a specific operation such as
accessing to sources, filtering input records, and/or merging input feeds. A connection
from the component ‘A’ to the component ‘B’ denotes that the output from ‘A’ is the
input to ‘B’. Connections in such a model may be of several types and the most
common are serial, joins, and forks. Components begin their execution when they
have all their inputs available. This way, processing is propagated through the flow.
The most commonly mentioned advantage of using this approach is simplicity in

2 See http://www.tic.udc.es/mashup-demo/leads.wadl for the WADL specification of the data

mashup shown in Fig. 1.

 A Component-Based Approach for Engineering Enterprise Mashups 39

modeling these flows. It is assumed that pipes can be created by ‘power users’ which
do not necessarily have programming skills.

However, we advocate for the Data Federation pattern to express data combination
logic. This pattern has been extensively researched during the last decade to combine
heterogeneous data. In this approach, the data combination logic is expressed as a
‘view’. The view definition is written as a query (in SQL, for instance) over the data
source schemas. Combination is expressed as relational operations like joins, unions,
projections, selections, and aggregations. A graphical interface can allow users to
create the view by interconnecting components that represent basic combination
operations. This way, power users without programming skills can define views.

An important advantage of Data Federation pattern is its declarative nature. At run-
time, when the user launches a query, the system automatically computes all the
possible execution plans to solve it. The user can either manually choose the plan or
let the system optimizer make the choice. The query capabilities supported by each
source are also taken into account when generating the execution plans, so only the
plans allowed by the source are generated. For instance, the LinkedIn source used in
the example from section 2 requires a mandatory input parameter (the name of the
person we want their contacts to be retrieved); therefore, only the execution plans
satisfying that restriction will be generated for the data mashup in Fig. 1. To compute
query plans having query capabilities into account and to choose the most optimal
plan, we leverage on the techniques proposed in [17] and [7], respectively. Query
capabilities of the sources are discovered at run-time using their WADL descriptions.

In turn, the Pipes and Filters pattern uses a ‘procedural’ approach: the system
executes the pipe exactly as it was designed, following the flow path as defined. In
fact, a pipe can be seen as the explicit definition of a particular query execution plan.

Let us go back to the running example introduced into the section 2 to highlight the
differences between the Pipes and Filters pattern and the Data Federation pattern. Let
us consider two different use case examples for Martin:

• Example A: Get all the leads that can be obtained from the reference_contact_name
John Smith. In this case, the optimal way to solve it is by querying salesforce.com
and LinkedIn in parallel using John Smith as the input parameter and merging the
obtained records.

• Example B: Get all the leads that can be obtained from customers with high
satisfaction level. In this other case, the system would query salesforce.com for
contacts with a high satisfaction level. Then, for each customer retrieved, the
system should search LinkedIn by using the reference_contact_name as the input
parameter to obtain the data of the lead. The two sources need to be accessed
sequentially because the query does not provide us with a value to fill in the
mandatory input parameter of the LinkedIn data source.

Using the pipes and filter model, two different pipes would have to be created,
each of which would solve one of the cases. The resulting pipes are shown in Fig. 4.

In turn, using the Data Federation pattern and given the source adaptors for
salesforce.com and LinkedIn, the required data mashup can be modeled as a ‘view’
defined by a join operation between both data sources by the reference_contact_name
attribute.

40 J. López et al.

Fig. 4. Pipes and Filters approach

Fig. 5. Data Federation approach

Fig. 5 shows both the graphical representation of the data view created and its
internal definition written in the SQL-like language used in our implementation to
define views. Notice that in our implementation the user does not need to use SQL;
the views are created using graphical wizards. The SQL expression defines an inner
join between the views linkedin and salesforce (both exported by the Source Access
Layer). Both example use cases shown above can be resolved by querying the
‘Leads’ view with queries such as:

select * from leads where reference_contact_name = 'John Smith'
select * from leads where satisfaction_level = 'High'

Notice that the user does not need to write these concrete queries at data mashup
generation time. The data mashup component generates the WHERE clause
automatically at run-time when it is accessed by the GET method, adding a condition
for each parameter received in the request. Next, the data mashup component
computes all possible execution plans and chooses the best one [7].

5 Design of the Widget and Widget Assembly Layers

Instead of creating yet another widget technology, we have reused standard Java
portal technology [12][15] to implement individual widgets as portlets and mashup
applications as portal pages. Portlets are interactive, web mini-applications which can

 A Component-Based Approach for Engineering Enterprise Mashups 41

be aggregated into portal pages. Any standards-compliant portlet (widget), local or
remote to the portal, can be aggregated into a page. Portlets communicate each other
in a decoupled way through the portal’s event bus.

The meta-information provided by the WADL specifications of the data mashup
instances enables the construction of ‘template’ widgets. Unlike ‘specific’ widgets,
such as the pie chart or map widgets introduced in section 2, template widgets do not
implement specific business functionality. Instead, they acquire business value at run-
time. One such widget is the query widget mentioned in section 2. This widget
analyzes the WADL specification of the mashup component it is connected to. In
view mode, it discovers the query capabilities of a data mashup instance and
generates a form containing a field for each query parameter. The WADL
specification also specifies the schema (e.g. an XML Schema, RelaxNG, etc.) of the
returned data. The schema is used to display the results (a list of records) in an HTML
table. To connect an instance of the query widget to a particular data mashup, the user
selects the edit mode and specifies the URL of its WADL specification.

Fig. 6. MapWidget’s edit mode

Another important design aspect to make possible the construction of reusable
widgets consists in treating events in a generic way, so that can be consumed by any
interested widget. On the one hand, data contained in events must be modeled in a
generic way. Taking up the example of Section 2, the query widget generates a
RecordListing event when obtains the results. This event contains an array of Record.
Each Record is an array of RecordField, being a RecordField a data structure
containing the name and the value of an individual field in a record. The
RecordListing event can be consumed by any widget expecting to receive an event
containing an array of records, such as the pie chart widget. In the same way, when
the user selects a particular record in the query widget, an event containing the record
is generated, which can be consumed by any widget expecting to receive a record,
such as the map and web clipping widgets.

On the other hand, it is necessary to provide a mechanism to subscribe a widget to
an event and specify how to process it. To subscribe a widget to an event, it is
necessary to specify the name of the event by using the portal capabilities. The widget
can provide a wizard in the edit mode to specify how to process the event. For
example, the map widget in the edit mode (see Fig. 6) lets the user specify the name
of the field (in the record contained in the event) containing the address (needed to
obtain the map coordinates) and the names of the fields to display in the ‘balloon’.
This way, the consumer widget (the map widget, in this case) does not assume
particular names for the fields of the events it receives, improving its reusability.

42 J. López et al.

6 Related Work

In the commercial arena, tools like Yahoo! Pipes [23] and Microsoft PopFly [13] are
oriented to the construction of consumer mashups. They offer hosted tools that
provide a set of user-configurable modules to create pipes to process RSS/Atom feeds
and other types of REST web services. They also provide some support to show the
output of the pipe using pre-created template widgets such as maps or photo albums.
Therefore, the functionality they provide fits into the Data Mashup Layer and Widget
Layer of our architecture; they do not provide support neither for assembling several
widgets in a more complex mashup nor to access other kinds of data sources (such as
databases or semi-structured web sources). Other key differences with our proposal
include that they use the Pipes and Filters pattern to specify the data combination
logic and they do not provide a standard interface between layers. Besides, since these
tools are oriented to consumer mashups, the processing and displaying components
they offer are not designed for enterprise environments.

There also exist a number of commercial tools that are exclusively oriented to
enterprise data mashups. For instance, RSSBus [19] provides simple ESB (Enterprise
Service Bus) functionality based on the Pipes and Filters pattern to generate mashups
from a variety of enterprise sources such as REST web services, databases, content
servers or CRM tools. All those source formats are imported as RSS feeds, which is
the format that the platform natively uses. With respect to our proposal, on one hand,
they do not deal with user interface issues; on the other hand, they rely on the Pipes
and Filters pattern instead of the Data Federation pattern.

Like our proposal, JackBe [10] and IBM Mashup Center [9] provide functionality
for creating both ‘data mashups’ and ‘graphical user interfaces’. The architecture of
both tools is similar: they use the Pipes and Filters pattern for data combination,
support creating widgets from data combination components (similarly to our
‘template’ widgets), and allow assembling several widgets to build the graphical
interface of the mashup application. All the languages and interfaces used by these
tools are proprietary. Unlike these tools, we (1) opt for the Data Federation pattern
instead of Pipes and Filters pattern, (2) rely on RESTful interfaces between layers,
and (3) reuse standard portal technology.

Like our proposal, the Yahoo! Query Language (YQL) platform [24] allows
querying web sources by using an SQL-like language. However, this platform only
allows getting data from one individual web source. It is possible to query additional
web sources, but only in nested queries to filter the values of the main web source by
using the IN operator (like in SQL). In consequence, this platform could not be used
to implement the data mashup component of our architecture. Furthermore, its
approach is not truly declarative, since each YQL query has only one possible
execution plan.

In academia, [25][3] present a framework to assembly several independently
created widgets. The underlying model used is also event-based: widgets emit events
in response to user actions; the events have attached meta-information that can be
used to fill in the input parameters of the operations exposed by other widgets
subscribed to the event. [6] and [11] also present proposals for event-based widget
inter-communication. The first one is based on the OpenAJAX initiative [16], while
the second one uses proprietary mechanisms. Neither of these proposals addresses the

 A Component-Based Approach for Engineering Enterprise Mashups 43

problem of data combination (the Data Mashup Layer of our architecture). Their
proposals for widget inter-communication are conceptually similar to ours.

[20] proposes an approach for building mashups by example. Firstly, the user
provides examples for the system to be able to create wrappers and perform
transformations on the extracted data. Secondly, the system suggests the user to join
different wrappers by detecting overlaps in the values extracted by them. The
simplicity of use comes at the cost of powerfulness: the range of possible
transformations is limited and the only way available to combine the data is using
simple equijoin operations. In addition, the system only allows showing the results in
an HTML table, and does not provide any way to combine several widgets.

MARIO [18] combines ‘tagging’ and automatic composition techniques to allow
creating automatically pipes from a set of keywords (‘tags’) specified by the user.
Although using automatic composition techniques is a promising idea, MARIO is
limited to use RSS feeds as data sources and uses the Pipes and Filters pattern for data
combination. Furthermore, it does not address the graphical interface.

Mash Maker [5] is another system that allows creating mashups without needing to
have any technical knowledge. The system assumes that the user will create extractors
for web sources and widgets to manipulate and visualize data. As normal users
browse the web, Mash Maker suggests widgets that can be applied on the current page
based on the experience from previous users. With respect to our proposal, Mash
Maker uses a client-side approach heavily based on collaboration that fits better with
consumer mashups than with enterprise mashups. In addition, the available
components to extract, transform, and manipulate data are quite limited.

7 Conclusions and Future Work

In this paper we have presented the design of an enterprise-oriented, component-
based mashup tool that fully supports the construction of mashup applications. The
user builds graphically the mashup application by selecting, customizing, and
interconnecting components. With respect to other tools, our approach presents the
following advantages: (1) we use a declarative approach to express data combination
logic based on the Data Federation pattern; (2) we use a RESTful approach to define
the interface of source adaptors and data mashup components, which improves system
flexibility; and (3) we reuse standard portal technology to improve reusability and
interoperability at the graphical interface level.

We are now exploring automatic composition of data sources and the application
of collaborative filtering techniques to suggest additional data sources and widgets
during the mashup creation process.

References

1. Bellas, F., Paz, I., Pan, A., Diaz, O.: New Approaches to Portletization of Web Applications.
In: Handbook of Research on Web Information Systems Quality, 270–285 (2008) ISBN:
978-1-59904-847-5

2. Chang, C.-H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A Survey of Web Information
Extraction Systems. IEEE Transactions on Knowledge and Data Engineering 18(10),
1411–1428 (2006)

44 J. López et al.

3. Daniel, F., Matera, M.: Mashing Up Context-Aware Web Applications: A Component-
Based Development Approach. In: Proceedings of the 9th International Conference of Web
Information Systems Engineering, pp. 250–263 (2008)

4. Ennals, R.J., Brewer, E.A., Garofalakis, M.N., Shadle, M., Gandhi, P.: Intel Mash Maker:
Join the Web. SIGMOD Record 36(4), 27–33 (2007)

5. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture. ACM
Transactions on Internet Technology 2(2), 115–150 (2002)

6. Gurram, R., Mo, B., Gueldemeister, R.: A Web Based Mashup Platform for Enterprise 2.0.
In: Proceedings of the 1st International Workshop on Mashups, Enterprise Mashups and
LightWeight Composition on the Web (MEM & LCW), pp. 144–151 (2008)

7. Hidalgo, J., Pan, A., Alvarez, M., Guerrero, J.: Efficiently Updating Cost Repository
Values for Query Optimization on Web Data Sources in a Mediator/Wrapper Environment.
In: Etzion, O., Kuflik, T., Motro, A. (eds.) NGITS 2006. LNCS, vol. 4032, pp. 1–12.
Springer, Heidelberg (2006)

8. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, Reading (2003) ISBN: 032120068

9. IBM Mashup Center, http://www.ibm.com/software/info/mashup-center
10. JackBe, http://www.jackbe.com
11. Janiesch, C., Fleischmann, K., Dreiling, A.: Extending Services Delivery with

LightWeight Composition. In: Proceedings of the 1st International Workshop on Mashups,
Enterprise Mashups and LightWeight Composition on the Web (MEM & LCW), pp. 162–
171 (2008)

12. Java Community Process: Java Portlet Specification - Version 2.0,
 http://jcp.org/en/jsr/detail?id=286

13. Microsoft Popfly, http://www.popfly.com
14. Montoto, P., Pan, A., Raposo, J., Losada, J., Bellas, F., Carneiro, V.: A Workflow

Language for Web Automation. Journal of Universal Computer Science 14(11), 1838–
1856 (2008)

15. OASIS: Web Services for Remote Portlets Specification – Version 2.0,
 http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.html

16. OpenAjax, http://www.openajax.org
17. Pan, A., Alvarez, M., Raposo, J., Montoto, P., Molano, A., Viña, A.: A Model for

Advanced Query Capability Description in Mediator Systems. In: Proceedings of 4th
International Conference on Enterprise Information Systems, ICEIS, vol. I, pp. 140–147
(2002)

18. Riabov, A.V., Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A.: Wishful Search:
Interactive Composition of Data Mashups. In: Proceedings of the 17th International
Conference on World Wide Web, pp. 775–784 (2008)

19. RSS Bus, http://www.rssbus.com
20. Tuchinda, R., Szekely, P., Knoblock, C.: Building Mashups by Example. In: Proceedings

of the 13th international conference on Intelligent User Interfaces, pp. 139–148 (2008)
21. Web Application Description Language, https://wadl.dev.java.net
22. Wiederhold, G.: Mediators in the Architecture of Future Information Systems. IEEE

Computer 25(3), 38–49 (1992)
23. Yahoo! Pipes, http://pipes.yahoo.com/pipes
24. Yahoo! Query Language, http://developer.yahoo.com/yql
25. Yu, J., Benatallah, B., SaintPaul, R., Casati, F., Daniel, F., Matera, M.: A Framework for

Rapid Integration of Presentation Components. In: Proceedings of the 16th World Wide
Web Conference, pp. 923–932 (2007)

Turning Web Applications into Mashup
Components: Issues, Models, and Solutions

Florian Daniel1 and Maristella Matera2

1 University of Trento
Via Sommarive 14, 38100 Povo (TN), Italy

daniel@disi.unitn.it
2 Politecnico di Milano - DEI

Via Ponzio 34/5, 20133 Milano, Italy
matera@elet.polimi.it

Abstract. Sometimes it looks like development for Web 2.0 is com-
pletely detached from the “traditional” world of web engineering. It is
true that Web 2.0 introduced new and powerful instruments such as tags,
micro formats, RESTful services, and light-weight programming models,
which ease web development. However, it is also true that they didn’t
really substitute conventional practices such as component-based devel-
opment and conceptual modeling.

Traditional web engineering is still needed, especially when it comes
to developing components for mashups, i.e., components such as web
services or UI components that are meant to be combined, possibly by
web users who are not skilled programmers. We argue that mashup com-
ponents do not substantially differ from common web applications and
that, hence, they might benefit from traditional web engineering meth-
ods and instruments. As a bridge toward Web 2.0, in this paper we show
how, thanks to the adoption of suitable models and abstractions, generic
web applications can comfortably be turned into mashup components.

1 Introduction

Skilled web users who develop own applications online, so-called mashup ap-
plications, are a reality of today’s Web. Mashups are simple web applications
(most of the times even consisting of only one page) that result from the inte-
gration of content, presentation, and application functionality stemming from
disparate web sources [1], i.e., mashups result from the integration of compo-
nents available on the Web. Typically, a mashup application creates new value
out of the components it integrates, in that it combines them in a novel manner
thereby providing functionality that was not there before. For example, the hous-
ingmaps.com application allows one to view the location of housing offers from
the Craigslist in Google Maps, a truly value-adding feature for people searching
an accommodation in a place they are not yet familiar with.

While the value-adding combination of components is important for the suc-
cess of a mashup application, it is also true that a mashup application can only

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 45–60, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

46 F. Daniel and M. Matera

be as good as its constituent parts, the components. That is, without high-quality
components (e.g., UI components or web services) even the best idea won’t suc-
ceed: users easily get annoyed by low-quality contents, weak usability, or, simply,
useless applications.

In order to ease the task of developing mashups, a variety of mashup tools
such as Yahoo Pipes [2], Google Mashup Editor [3], Intel Mash Maker [4,5],
Microsoft Popfly [6] or IBM QEDWiki (now part of IBM Mashup Center [7]) have
emerged, and they indeed facilitate the mashing up of components via simple,
graphical or textual user interfaces, sets of predefined components, abstractions
of technicalities, and similar. Some of these tools (e.g., Popfly) also provide
the user with support for the creation of own components to be added into
the spectrum of predefined components. Newly created components are then
immediately available in the development environment, and users can mash them
up just like any other component of the platform.

If we however have a look at programmableweb.com, one of the most renowned
web sites of the mashup community, we can easily see (in the APIs section)
that the most popular components (APIs) are for instance Google Maps, Flickr,
YouTube, and the like. All names that guarantee best web engineering solutions
and high-quality content. User-made components do not even show up in the
main statistics, very likely due to the fact that most of them are rather toy
components or, however, components of low quality or utility.

We argue that successful components are among the most important ingredi-
ents in the development of mashups (besides a well-designed composition logic,
an aspect that we do not discuss in this paper). The development of components
should therefore follow sound principles and techniques, like the ones already
in use in web application engineering. In this paper, we show how generic web
applications, developed with any traditional practice and technology, can be
wrapped, componentized, and made available for the composition of mashups
(in form of so-called UI components [8]). The conceived solution especially tar-
gets mashup tools or platforms that provide mashup composers with mashup-
specific abstractions and development and runtime environments. We developed
the ideas of this paper in the context of mashArt, a platform for the hosted de-
velopment, execution, and analysis of lightweight compositions on the Web (our
evolution of [8]), but the ideas proposed are simple and generic enough to be
used straightforwardly in other mashup environments too.

1.1 Reference Development Scenario

Besides concerns such as IT security and privacy preservation, IT support for
compliance with generic laws, regulations, best practices or the like is more and
more attracting industry investments. In particular, business monitoring applica-
tions and violation root-cause analyses are gaining momentum. In this context, a
company’s compliance expert wants to mash up a business compliance manage-
ment (BCM) application that allows him to correlate company-internal policies
(representing rules and regulations the company is subject to) with business pro-
cess execution and compliance analysis data and, in case of violations, to easily

Turning Web Applications into Mashup Components 47

UI

Policy Browser

application
(web application)

develops

Policy

component

(UI component)

Visual editor or

manual composition

(mashup tool)
The Web

BCM application

(mashup)

IT specialist

(component developer)

Compliance expert

(mashup composer)

componentizes

publishes

discovers

mashes up uses

Compliance expert

(mashup user)

Services

Fig. 1. Mashup scenario: developing, componentizing, and mashing up a component

identify the root cause of the problem (e.g., a business process). In order to
populate the enterprise mashup system with the necessary components, the IT
specialist wants to develop the necessary components for the mashup platform.

The overall scenario is depicted in Figure 1, where we focus on the develop-
ment of the Policy component that will allow the compliance expert to browse
the company-internal policies. The IT specialist (component developer) develops
the Policy Browser application (web application) with his preferred development
tool and following his choice of methodology. Then he componentizes the ap-
plication (UI component) and publishes it on the Web (or only internally to
the company). The compliance expert (in the role of mashup composer) then
discovers the components he is interested in, mashes them up (with a mashup
tool), and runs the BCM application (in the role of mashup user).1

1.2 Research Challenges and Contributions

In this paper, we focus on the component developer in the above scenario and
specifically aim at assisting him in the development of the web application, its
componentization for mashups, and its publication. In this context, this paper
provides the following contributions, which are also the main research challenges
in developing reusable components for the Web:

– We define a UI component model and a description language that abstract
from implementation details and capture those features that characterize
mashup components that come with an own UI (unlike web services or
RSS/Atom feeds).

– We provide a simple micro format [9] for annotating generic, HTML-based
web applications with instructions on how to componentize the application
according to our UI component model.

– We provide for the componentization of applications by means of a generally
applicable wrapping logic, based on the interpretation of descriptors and
annotations.

1 We here assume that the compliance expert acts as both mashup composer and
mashup user, though in general these are conceptually distinct roles.

48 F. Daniel and M. Matera

– We show how componentized applications can be used as constituent el-
ements in generic compositions together with components, such as SOAP
and RESTful services, RSS/Atom feeds, and other UI components.

We next introduce the design principles that we think should drive the devel-
opment of mashup components (Section 2), and propose our component model
for mashup components (Section 3). In Section 4, we discuss how to componen-
tize web applications and introduce our component description language and
our micro format for component annotation. In the same section, we show how
annotated applications can be wrapped in practice and also provide some com-
ponent design guidelines. Finally, in Section 5 we discuss related works, and in
Section 6 we conclude the paper.

2 Mashup Components: Development Principles

From the development of our own mashup platform [8], we learned some prin-
ciples that good mashups and mashup components should follow in order to
succeed. Here we summarize the most important ones:

– Developers, not users: Developing good components is as tricky as develop-
ing good applications. Therefore, we stress the importance that component
developers be skilled web programmers, while users may assume the roles of
both mashup composer and mashup user (see Figure 1).

– Complexity inside components: Components may provide complex features,
but they should not expose that complexity to the composer or the user.
The interfaces the composers (APIs) and the users (UIs) need to deal with
should be as appropriate and simple as possible. The internal complexity of
components is up to the component developer.

– Design for integration: A component typically runs in an integrated fashion
in choreography with other components. Components that come with their
own UI (in this paper we concentrate on this kind of components) should
therefore be able to run inside a DIV, SPAN, or IFRAME HTML element
without impacting other components or the mashup application (e.g., due
to code collision problems).

– Stand-alone usability: A component’s executability and benefit should not
depend on whether the component is integrated into a mashup application or
not. Components should be executable even without any mashup platform
available. This increases the return on investment of the component and also
facilitates development (e.g., a component can be partly tested even without
being mashed up).

– Standard technologies : In order to guarantee maximum compatibility and
interoperability, a component should not rely on proprietary technologies.
Especially for the development of components, we advocate the use of stan-
dard technologies (mashup tools, on the other hand, may also use proprietary
technologies, as they typically do not aim at re-usability).

Turning Web Applications into Mashup Components 49

– Abstract interface descriptions : Similarly to WSDL for web services, com-
ponent interfaces and their features should be described abstractly and hide
their internal details from the composer and the user. Internally, components
may then be implemented via multiple technologies and protocols.

We regard these principles as particularly important for the development of
mashup components. The solutions proposed in the next sections aim at putting
them into practice.

3 A Model for Mashup Components

Mashups are typically characterized by the integration of a variety of differ-
ent components available on the Web. Among the most prominent component
technologies we find, for example, SOAP/WSDL and RESTful web services,
RSS/Atom feeds, and XML data sources. Most of these components rely on stan-
dard languages, technologies, or communication protocols. Yet, when it comes to
more complex UI components, i.e., mashup components that are standalone ap-
plications with their own data, application, and presentation layer, no commonly
accepted standard has emerged so far. We believe that a common high-level
model for UI components might boost the spreading of mashup applications.
Next we therefore present a component model that adequately captures the nec-
essary features.

In Figure 2(a) we show the UML class diagram of our mashArt model for UI
components. The main elements of the model are the user interface, events, and
operations. The three elements allow us to explain our idea of UI component:

– User interface/state: The user interface (UI) of the component is the com-
ponent’s graphical front-end that is rendered to the user. In this paper, we
focus on components with standard HTML interfaces rendered in a browser,
though technologies like Flash or Java Swing could be used as well. The

User

interface

Event

Operation

mashArt
component

0..N

0..N

0..N

Name

Name

Reference

0..N

output

mandatory input

Name

Binding

URL

Type
0..N

0..N

optional input

0..N

0..N

mandatory input

constant input

optional input

0..N
Constructor

0..N

constant input

Parameter

Name

Type

Value

<?xml version=“1.0” encoding=“utf-8” ?>
<mdl version=“0.1“>

<component name=“Policy” binding=“component/UI”
stateful=”yes” url=“http://mashart.org/
registry/234/PolicyBrowser/”>

<event name=“PolicySelected”>
<output name=“policy” type=“xsd:string” />

</event>

<operation name=“ShowPolicy” ref=“showPolicy”>
<input name=“policy” type=“xsd:string”></input>

</operation>
<operation name=“ShowProcess” ref=“showProcess”>
<input name=“proc” type=“xsd:string”></input>

</operation>

<constructor>
<input name=“NumVisible” type=“xsd:integer”>5</input>
<input name=“StartPolicy” type=“xsd:string” optional=”yes”></input>

</constructor>

</component>
</mdl>

(a) UML class diagram of the UI component model. (b) MDL descriptor of the Policy component.

1

1

Fig. 2. The mashArt UI component model with an example of component descriptor

50 F. Daniel and M. Matera

UI enables the user’s interaction with the component. In response to the
user’s actions, the component may change its state (e.g., by navigating to
another page of the application). For instance, our Policy component could
provide the user with the details of a given policy upon selection of the policy
from a list. The UI shown to the user can be interpreted as the state of the
interaction (e.g., before selection vs. after selection).

– Events : By interacting with the component, the user provides inputs that
are interpreted by the component. User actions are commonly based on low-
level events, such as mouse clicks, mouse moves, key strokes, and similar,
that depend on the input device used to interact with the UI (e.g., the mouse
or the keyboard). For the purpose of integration, however, UI components
should abstract from such low-level events and publish only “meaningful”
events to other components, i.e., events that provide information about the
semantics of the interaction (we call them component events). Each time a
user action, based on one or more low-level events, significantly changes the
state of a component, a respective component event should be generated. In
the case of the Policy component, the selection of a policy from the list should,
for example, launch a component event (e.g., PolicySelected) informing other
components about which policy has been selected.

– Operations : Not only the user should be able to change the internal state
of a component. If a mashup comprises multiple components, these must
typically be synchronized upon a user interaction with one of them, e.g., to
align displayed content. Synchronization of components is one of the main
features that characterize mashup applications (differently from traditional
portals, which aggregate multiple portlets without however providing for
their synchronization). Via operations, a UI component allows external ac-
tors (e.g., other components) to trigger state changes. That is, operations
allow the mashup application to propagate a user interaction from one com-
ponent to other components by mapping events to operations, thus providing
for the synchronization of component states. One particular operation, the
constructor, is in charge of setting up the component at startup.

The synchronization of components is event-based. Events generate outputs
(parameters), operations consume them. We propose to use parameters that are
simple name-value pairs, in line with the structure of the query string in standard
URLs. At the UI layer, synchronization does not require the transportation of
large amounts of data from one component to another (this is typically handled
by web services at the application or data layer). Component events with simple
synchronization information (e.g., the name or the identifier of a policy) suffice
to align the state of components that are able to understand the meaning of the
event and its parameters. Custom data types might also be specified.

4 Componentizing Web Applications

The above component model proposes the idea of “web application in the small”,
and abstracts the features of common web applications into the concepts of

Turning Web Applications into Mashup Components 51

AreaPolicy detailsAreaGoals

Rules

Rule

[Policy2Rule]

Policies

Policy

[Goal2Policy]

H

Goals

Goal Goal

Goal details

A

AreaProcessesByPolicy

Processes

Process

[Policy2Process]

Policy

Selected policy

Policy

OID

Name

Description

Process

OID

Name

Description

Rule

OID

Name

Expression

Goal

OID

Goal

1:N

1:1

1:N

1:1

1:N

0:N

(a) ER schema of
the Policy browser

(b) WebML hypertext schema of the Policy browser. The gray
annotation represents the logic of the Policy component to be developed.

AreaPoliciesByProcess

Policies

Policy

[Process2Policy]

Process

[Process.OID=OID] implied

[Process.Name=proc] implied

Process

OID

OID
OID OID

ShowPolicy(policy)

ShowProcess(proc)

PolicySelected(policy)

PolicySelected(policy)

OID

Policy

[Policy.OID=OID] implied

[Policy.Name=policy] implied

Policy details

OID OID

OID

OID

Fig. 3. WebML model of the Policy application to be componentized

state, events, and operations. In this section, we show how this abstraction can
be leveraged to componentize a web application in a way that reconciles the
application’s standalone operation and it’s use as mashup component. In par-
ticular, we propose three ingredients: (i) an abstract component descriptor in
the mashArt Description Language (MDL), (ii) a micro format (the mashArt
Event Annotation - MEA) for the annotation of the application with event in-
formation, and (iii) a generic wrapper structure able to support the runtime
componentization of the application according to (i) and (ii).

We show the different concepts at work in the componentization of the Policy
Browser application, which consists of a set of HTML pages. To easily describe
the structure and logic of the application and to effectively highlight the concepts
and constructs necessary for its componentization, in this paper we show the
model of the application expressed according to the WebML notation [10] .

Figure 3(a) illustrates the WebML data schema that specifies the organization
of the contents published by the Policy Browser application. Each policy consists
of one or more rules and can be related to one or more business processes. Policies
are classified according to the compliance goals regarding given legislations, laws,
best practices, and similar.

Figure 3(b) shows the structure of the hypertext interface that allows one to
browse the policies; the gray annotations represent the componentization logic,
which we explain later. The schema specifies the pages that compose the appli-
cation (the containers), the content units that publish content extracted from
the application data source (the boxes inside the containers), and the links that
enable both the user navigation (the arrows) and the transport of parameters
(the labels) needed for the computation of units and pages.

The navigation starts from the home page Goals (identified by the H label),
where the user sees a list of goals (Goals unit) and, for each selected goal (Goal

52 F. Daniel and M. Matera

details), a list of related policies (Policies unit). For each policy in the list, the
user can navigate to the page Policy details, which shows the data of the selected
policy (Policy details unit) and all the policy rules associated with it (Rules unit).
The user can also follow a link leading to the page ProcessesByPolicy, which shows
a short description of the selected policy (Selected policy) plus a summary of all
the processes (Processes) related with that policy. The selection of a process
leads the user to the page PoliciesByProcess, which shows the process details
(Process unit) and the description of all the policies (Policies unit) related with
that process. By selecting a policy, the user then reaches the Policy details page.

Such WebML hypertext schema describes the structure of the web application
as it is perceived by the human users of the application. Componentizing this
application instead means providing a programming interface (API), which can
be used by a mashup application to programmatically interact with it.

4.1 The Mashart Description Language (MDL)

In order to instantiate the component model described in Section 3, we use MDL,
an abstract and technology-agnostic description language for UI components,
which is similar to WSDL for web services. Given an application that we want
to componentize, MDL allows us to define a new component, to describe which
are the events and operations that characterize the component, and to define
data types and the constructor. There is no explicit language construct for the
state of the component, which therefore is handled internally by the component
in terms of the UI it manages. However, MDL allows us to describe state changes
in the form of events and operations. MDL is an extension of UISDL [8].

The gray annotations of the schema in Figure 3(b) highlight the events and op-
erations of the Policy component we would like to derive form the Policy Browser
application. We suppose that the selection of a policy from the Policies unit in
the Goals page corresponds to the event PolicySelected that carries the parameter
policy (i.e., the name of a policy). This event will be used to synchronize the state
of other components in the final BCM mashup (e.g., the process browser), so
that all components show related data. The two links departing from the Policies
index unit are both sources for this event: their navigation by a user implies the
selection of a policy and, hence, launches the event.

Our Policy component also exposes two operations. The operation ShowProcess
sets the name of the process to be shown to the value of the parameter proc. The
effect of this operation is the computation and rendering of the page PoliciesByPro-
cess with data about the selected process and its related policies. As represented
in Figure 3(b), this corresponds to a navigation to the page PoliciesByProcess,
with the name of the process defined by the value of the proc parameter. When
the operation ShowProcess is enacted, the “implied” (optional) selector2 “Pro-
cess.Name=proc” replaces the other implied selector “Process.OID=OID”, which

2 In WebML, each unit inside a page is characterized by an entity of the data schema
plus a selector. The selector is a parameterized condition identifying the entity in-
stances to be displayed. Each unit also has a default selector that works with OIDs.

Turning Web Applications into Mashup Components 53

is instead based on the process OID transported by the user-navigated link enter-
ing the page. The operation ShowPolicy sets the name of the policy to be shown.
Similarly to the previous operation, it enacts the computation and rendering of the
page Policy details with the data about the policy identified by the policy
parameter.

Figure 2(b) shows the MDL descriptor capturing this component logic. The
XML snipped defines a UI component (binding attribute) named Policy, which
is stateful and can be accessed via the URL in the url attribute. We do not need
any custom data types. The descriptor specifies the event PolicySelected with its
parameter policy and the two operations ShowProcess and ShowPolicy. Finally,
the constructor specifies two parameters that allow the mashup composer to set
up the number of policies visible at the same time and the start policy.

The descriptor in Figure 2(b) fully specifies the external behavior of our com-
ponent. Of particular importance to the integration of a component is the ref at-
tribute of operations: it tells us how to invoke operations. From the specification
in Figure 2(b), we know that the operation ShowProcess is invoked via the follow-
ing URL: http://mashart.org/registry/234/PolicyBrowser/ShowProcess?
proc=name. With the descriptor only, we are however not yet able to derive how
to intercept low-level events and how to translate them into component events.
As described in the next section, for this purpose we have introduced a novel
technique, the mashArt Event Annotation, for annotating the HTML of the
application pages.

4.2 The Mashart Event Annotation (MEA)

Operations are triggered from the outside when needed, events must be instead
raised in response to internal state changes. The generation of component events
is tightly coupled with user interactions, that is, with the actions performed by
the user during the component execution. A runtime mapping of low-level UI
events onto component events is needed, in order to filter out those low-level
events that raise component events, while discarding other low-level events.

We specify this mapping in the mashArt Event Annotation (MEA) micro
format, which allows us to associate component events with low-level events
by means of three simple annotations that can be added to HTML elements
in form of attributes. Candidate HTML elements are all those elements that
are able to generate low-level JavaScript (JS) events, such as click, mouse down,
etc.). Table 1 summarizes the purpose of the three attributes, and gives examples
about how they can be used to specify the PolicySelected event introduced above.

The event name attribute, if specified and nonempty, gives a name to the
component event that can be raised by the HTML element carrying the attribute.
There might be multiple HTML elements raising the same event, i.e., an event
with the same name (e.g., the policy might be selected by navigating a catalog
of policies or by selecting it from a list of “Recently violated policies”). It is the
responsibility of the developer to assure that a same event is used with the same
meaning throughout the whole application.

http://mashart.org/registry/234/PolicyBrowser/ShowProcess?proc=name
http://mashart.org/registry/234/PolicyBrowser/ShowProcess?proc=name

54 F. Daniel and M. Matera

Table 1. Annotation elements of the mashArt Event Annotation (MEA) micro format

Attribute Purpose and description

event name Defines a component event and binds it to an HTML element. For
instance, the markup
Privacy Policy specifies an HTML link that, if navigated, may
raise the PolicySelected event.

event binding Binds a component event to a JavaScript event. For example, we can ex-
plicitly bind the PolicySelected event to a click as follows: <A href=”...”
event name=”PolicySelected” event binding=”onClick”> Privacy Policy
. Events are identified through the name of their JavaScript event
handlers (e.g., onClick for a click). Multiple bindings can be specified
by separating the respective JS event handlers with commas.

event par Specifies event parameters. A single event parameter is specified
as follows: <A href=”...” event name=”PolicySelected” event binding
=”onClick” event par=”policy=PrivacyPolicy”> Privacy Policy .
Multiple parameter can be specified by separating them with & sym-
bols.

The event binding attribute allows the developer annotating the application
to specify which JS event actually triggers the component event. That is, the
event binding attribute specifies a binding of component events to native JS
events. If no binding is specified for a given component event, the JS click event
is used as default binding. This decision stems from the fact that in most cases
we can associate events (and operations) with teh selection of hypertext links
by means of mouse clicks.

Events may carry parameters that publish details about the specific event
instance that is being raised. For example, our PolicySelected event will typically
carry the name (or any other useful parameter) of the selected policy. If multiple
parameters are required, this can be easily specified inside the event par attribute
using the standard URL parameter convention: paramter1=value1¶meter2=
value2.... If an event can be raised by multiple HTML elements, it is the respon-
sibility of the developer to guarantee that each event consistently carries the
same parameters.

The generation of component events that do not derive from user interactions,
and instead are based on some component-internal logic (e.g., a timer or asyn-
chronous AJAX events), can be set up via hidden HTML elements. It is enough
to annotate the element as described above, and, when the component event needs
to be fired, to simulate the necessary low-level JS event on the hidden element.

It is important to note that the values for event parameters can be generated
dynamically by the application to be componentized the same way it generates
on-the-fly hyperlinks. It suffices to fill the value of the event par attribute. The
values of event name and event binding typically do not change during runtime,
though this might be done as well.

Turning Web Applications into Mashup Components 55

4.3 The Runtime Componentization Logic

Once we have the MDL descriptor of the application and the application is an-
notated accordingly, we are ready to componentize, i.e., wrap, the application.
The result of this process is typically a JavaScript object/function (other tech-
nologies, such as Flash or JavaFX, could be used as well) that provides program-
matic access to the application, i.e., an API. The API renders the component’s
UI, generates events, enacts operations, and allows for the “instantiation” of the
component inside an HTML DIV, SPAN, or IFRAME element (in the following we
focus on DIVs only). Given the MDL descriptor and suitable event annotations,
the wrapping logic is simple and generic, as illustrated in Figure 4.

opt

User HTML element Wrapper Execution framework

instantiate wrapper

(DIV id, MDL)

render element

Interact with element
launch JS event

get event name and binding

[event name not null and binding = JS event]

launch component event

get event parameters

event name and binding

event parameters

apply component CSS to DIV

alt

[else]

[source element = hyperlink and JS event = click]

get source element of event

load HTML into DIV

load new HTML into DIV

get href

href

In
te

rp
re

ta
ti
o
n
 o

f
lo

w
-l
e
v
e
l
e
v
e
n
ts

 i
n
to

 c
o
m

p
o
n
e
n
t

e
v
e
n
ts

S
ta

rt
u
p

Fig. 4. Sequence diagram illustrating the wrapping logic for annotated applications

We distinguish between a startup phase and an event interpretation phase.
During startup, the execution framework (either the mashup application or any
mashup platform) instantiates the wrapper by passing the identifier of the HTML
DIV element that will host the UI of the component along with the MDL de-
scriptor of the component. The wrapper loads the application into the DIV and
applies the component’s CSS rules.

The interpretation of events is triggered by the user or by the internal logic
of the component by generating a low-level JS event. Upon interception of such
an event, the wrapper identifies the source element of the event and tries to
access the event name and event binding attributes possibly annotated for the

56 F. Daniel and M. Matera

The original Policy browser
application run as
standalone application

The mashup application
integrating the Policy

browser as component

The mashArt editor

Fig. 5. The componentized Policy Browser application running in the BCM mashup

source element. If an event name can be retrieved and the binding of the event
corresponds to the low-level event that has been raised, the wrapper gets the
possible event parameters and launches the component event to the framework;
otherwise, no action is performed. In order to support navigations, if a hyperlink
element has been clicked, the wrapper loads the destination page into the DIV.

As discussed above, for the enactment of operations (state changes) the wrap-
per interprets the operations as application URLs that can be invoked. Therefore,
if an operation needs to be executed, the wrapper simply packs the possible in-
put parameters into the query string of the operation and performs the HTTP
request. The response of the operation is rendered inside the DIV element.

The implementation of the outlined wrapper logic in JavaScript implies an-
swering some technical questions. We here list the most important issues, along
with the solutions we have adopted: In order to enable users to browse an ap-
plication inside a DIV element, we intercept all JS events and check for page
loading events. If such events occur, we take over control, load the new page
via AJAX, and render it in the DIV. In order to intercept events, we set generic
event handlers for the events we are looking for in the DIV. From a captured
event we can derive the source element and its possible annotation. In order to
load a page from a remote web server (JavaScript’s sandbox mechanism does not
allow direct access), we run a proxy servlet on our own server, which accesses
the remote page on behalf of the wrapper, a common practice in AJAX applica-
tions. In order to handle CSS files when instantiating a component, we load the
component’s CSS file and associate its formatting instructions to the DIV that
hosts the component. In order to avoid the collision of JavaScript code among
components, the wrapper, and the mashup application, we pack each component
into an own object and instantiate it inside an isolated scope.

Figure 5 shows at the left hand side the Policy Browser application running in
a browser. After componentization of the application for our mashArt platform,
at the right hand side the figure shows the final result: the BCM mashup, which
uses the Policy component to synchronize other two components displaying com-
pliance violations and affected process models.

Turning Web Applications into Mashup Components 57

4.4 Component Development Guidelines

The above approach shows how to componentize a web application starting from
its HTML markup. In order for an application to support an easy and effective
componentization, it is good that application developers follow a few rules of
thumb when developing applications: The layout of the application should sup-
port graceful transformations, e.g., by discarding fixed-size tables or by providing
for the dynamic arrangement of layout elements (floating). The use of frames is
prohibited, if the developer aims at wide use of the final component. CSS style
rules should focus on the main characteristics of the application’s appearance
and foresee the cascaded integration of the component’s rules with the ones of
the mashup application. For instance, absolute positioning of elements is depre-
cated, and background colors, border colors, and similar should be inherited from
the component’s container. Finally, JavaScript code (e.g., for dynamic HTML
features) should be designed with integration in mind. For example, if HTML
elements are to be accessed, it is good to access them via their identifiers and
not via their element type, as, once integrated into a mashup application, other
elements of the same type will be used by other components as well.

Actually, these guidelines apply the same way to the development of generic
web applications. However, in the case of applications that are componentized,
their violation might even stronger degrade the usability of the final component.

5 Related Works

The current scenario in the development of mashup environments is mainly char-
acterized by two main challenges [11]: (i) the definition of mechanisms to solve
composition issues, such as the interoperability of heterogeneous components
or their dynamic configuration and composition, and (ii) the provision of easy-
to-use composition environments. All the most emergent mashup environments
[2,3,7,6,5] have proposed solutions in this direction. However, very often they
assume the existence of ready-to-use components, thus neglecting the ensemble
of issues related to the development of quality components.

Some works concentrate on the provision of domain-specific, ready-to-use
mashup components (see for example [12]) allowing developers to extend their
applications with otherwise complicated or costly services. Some other works
go in the direction of enabling the configuration of visualization widgets inside
very specific programming environments (see for example [13]). The resulting
contributions address the needs of very specific domains. In general, as can be
observed in the most widely used mashup tools, there is a lack of support for the
(easy) creation of components; more specifically, the componentization of web
applications, as proposed in this paper, is largely uncovered.

Very few environments provide facilities for the creation of mashup com-
ponents. For example, Microsoft Popfly [6] includes the so-called Popfly block
creator, an environment for the definition of components (blocks in the Popfly

58 F. Daniel and M. Matera

terminology). Besides describing the block logic (properties and exposed oper-
ations) in an XML-based format, the creation of a new block requires writing
ad hoc JavaScript code implementing the component logic. This could prevent
developers (especially those not acquainted with JavaScript) to build own blocks.

Based on a different paradigm, Intel MashMaker [4,5] also offers support for
component creation. Users are enabled to personalize arbitrary web sites, by
adding on the fly widgets that provide visualizations of data extracted from other
web sites. The approach is based on the concept of extractors, which, based on
XPath expressions formulated by developers, enable the extraction of structured
data from a web page, from RDF data, or from the HTML code. Once extractors
have been defined or selected from a shared repository (extractors can be shared
among multiple users), MashMaker is able to suggest several ways in which data
can be integrated in the currently visited page, for example in the form of linked
data (a preview of the source page is shown if a link to that page is included
in the current page), or by using visualization widgets (simple text, images,
dynamic maps, etc.). Visualization widgets can be selected from a shared server-
side repository; alternatively users can create their own widgets, by defining
web pages in (X)HTML and JavaScript. Each widget is then described through
an XML-based configuration file that specifies information about the widget,
including links to the HTML files providing for the widget’s visualization.

With respect to the Popfly solution, MashMaker proposes a more intuitive
paradigm (from the users’ perspective) for the creation of components. How-
ever, both environments ask the developer to become familiar with their propri-
etary environments and languages. Also, the adopted description languages are
based on models that work well only within their mashup platform. The solution
proposed in this paper tries to overcome these shortcomings.

6 Conclusion

In this paper, we have shown that the development of mashup components does
not mandatorily require mashup- or platform-specific implementations or com-
plex, low-level concepts web developers are not familiar with. In some cases, it
suffices to equip an HTML web application with an abstract component descrip-
tor (MDL) and a set of event annotations (MEA), in order to allow everyone to
wrap the application and use it as a component. The combined use of MDL and
MEA allows one to derive a proper API toward a full-fledged application, unlike
other approaches that rather focus on the extraction of data (e.g., MashMaker).

The wrapper logic described in this paper is very general and can be easily
implemented for a variety of mashup tools and platforms. In order to wrap an
unlimited number of applications, it is enough to implement the wrapper once.
Annotated applications can then be reused by multiple mashups, a feature that
adds value to the original applications. The benefit for component developers is
that they can use their preferred IDEs, web development tools, or programming
languages and only need to abstractly describe and annotate their applications.

Turning Web Applications into Mashup Components 59

The described technique intrinsically helps them to respect our principles for
good mashup components.

A point to be highlighted is that conceptual modeling methods can easily
be extended to allow component developers to annotate the conceptual models
instead of the HTML code of an application. MEA annotations and MDL de-
scriptors can then be generated from the models, along with the actual code of
the application. This elevates the componentization concerns to a higher level of
abstraction – the one provided by the adopted conceptual model – and further
speeds up component development. For instance, our first experiments show that
generating MDL and MEA from WebML schemas is feasible.

It is important to note that the proposed approach also works if no annotation
or description is provided at all. We can still wrap the application and integrate it
into a composite application, without however supporting events and operations.
Ad hoc events and operations can be managed by the mashup developer by
extending the generic wrapper with additional code adding the necessary logic
to the wrapped application from the outside.

As a next step, on the one hand we plan to develop an environment for the
creation of mashup components as described in this paper, so as to guide the
developer (or the skilled web user) in the description and annotation of existing
web applications. On the other hand, we need to investigate further how to
enable data passing of complex data structures (e.g., an XML file) and how to
solve interoperability problems that might arise when integrating UI components
with web services. We are however confident that the ideas introduced in this
paper will accommodate the necessary extensions.

References

1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding UI Integration: A
survey of problems, technologies. Internet Computing 12, 44–52 (2008)

2. Yahoo!: Pipes (2009), http://pipes.yahoo.com/pipes/
3. Google: Google Mashup Editor (2009), http://code.google.com/intl/it/gme/
4. Ennals, R., Garofalakis, M.N.: MashMaker: Mashups for the Masses. In: Chan,

C.Y., Ooi, B.C., Zhou, A. (eds.) SIGMOD Conference, pp. 1116–1118. ACM, New
York (2007)

5. Intel: MahMaker (2009), http://mashmaker.intel.com/web/
6. Microsoft: Popfly (2009), http://www.popfly.com/
7. IBM: Mashup Center (2009),

http://www-01.ibm.com/software/info/mashup-center/

8. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Frame-
work for Rapid Integration of Presentation Components. In: Proc. of WWW 2007,
pp. 923–932. ACM Press, New York (2007)

9. Microformats.org: Microformats (2009), http://microformats.org/about/
10. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing

Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc, San Francisco
(2002)

http://pipes.yahoo.com/pipes/
http://code.google.com/intl/it/gme/
http://mashmaker.intel.com/web/
http://www.popfly.com/
http://www-01.ibm.com/software/info/mashup-center/
http://microformats.org/about/

60 F. Daniel and M. Matera

11. Makela, E., Viljanen, K., Alm, O., Tuominen, J., Valkeapaa, O., Kauppinen, T.,
Kurki, J., Sinkkila, R., Kansala, T., Lindroos, R., Suominen, O., Ruotsalo, T.,
Hyvonen, E.: Enabling the Semantic Web with Ready-to-Use Mash-Up Compo-
nents. In: First Industrial Results of Semantic Technologies (2007)

12. Benslimane, D., Dustdar, S., Sheth, A.: Services Mashups: The New Generation of
Web Applications. IEEE Internet Computing 12, 13–15 (2008)

13. Tummarello, G., Morbidoni, C., Nucci, M., Panzarino, O.: Brainlets: “instant”
Semantic Web applications. In: Proc. of the 2nd Workshop on Scripting for the
Semantic Web (2006)

Tagging-Aware Portlets

Oscar Díaz, Sandy Pérez, and Cristóbal Arellano

ONEKIN Research Group, University of the Basque Country,
San Sebastián, Spain

{oscar.diaz,sandy.perez,cristobal-arellano}@ehu.es
http://www.onekin.org

Abstract. A corporate portal supports a community of users on cohesively
managing a shared set of resources. Such management should also include social
tagging, i.e. the practice of collaboratively creating and managing tags to annotate
and categorize content. This task involves to know both what to tag (hence, the
rendering of the resource content) and how to tag (i.e. the tagging functionality
itself). Traditionally both efforts are accomplished by the same application
(Flickr is a case in point). However, portals decouple these endeavours. Tagging
functionality is up to the portal, but content rendering can be outsourced to third-
party applications: the portlets. Portlets are Web applications that transparently
render their markup through a portal. The portal is a mere conduit for the portlet
markup, being unaware of what this markup conveys. This work addresses how
to make portlets tagging-aware, i.e. portlets that can be seamlessly plugged into
the portal tagging infrastructure. The main challenge rests on consistency at both
the back-end (i.e. use of a common structure for tagging data, e.g. a common
set of tags), and the front-end (i.e. tagging interactions to be achieved seamlessly
across the portal using similar rendering guidelines). Portlet events and RDFa
annotations are used to meet this requirement. A running example in WebSynergy
illustrates the feasibility of the approach.

Keywords: tagging, portlets, Web portals, RDFa, WSRP, Liferay.

1 Introduction

Corporate portals play a three-fold role. As a means by which to manage and access
content, portals play the role of content managers. As the mechanism to integrate
third party applications using portlets or gadgets, portals can be regarded as front-end
integrators. Finally, portals also offer a conduit for on-line communities. It is in this
third role where the importance of incorporating social networking facilities in current
portal engines emerges. Portals, to a bigger extent than other Web applications, have
the notion of community deeply rooted inside its nature. Specifically, corporate portals
are borne to support the employees within an organization. Therefore, it is just natural
to integrate social networking into these portals (hereafter referred to as just “portals”).
Among social networking activities, this paper focuses on social tagging.

Social tagging brings sociality into tagging. Attaching labels to resources is no longer
a secluded activity, but seeking or tagging resources is achieved based on previous
inputs from the community, and this activity, in turn, serves to build the community
itself by clustering users based on tag preferences.

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 61–75, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

62 O. Díaz, S. Pérez, and C. Arellano

Traditional tagging sites such as Delicious, Youtube or Flickr can be characterized as
being self-sufficient and self-centered. The former implies that all it is need for tagging
(i.e. the description of the resource, the tag and the user) is kept within the tagging site.
Delicious keeps the bookmark URL, the tags and the user community as assets of the
site. On the other hand, self-centeredness indicates that all Delicious care about is its
own resources, tags and users. No links exists with other tagging sites, even if they tag
the same resources (e.g. CiteULike).

This situation changes when moving to a portal setting. A hallmark of portals is
integration. Rather than providing its own services, a portal is also a conduit for external
applications. So offered applications are technically known as portlets [3]. Portlets can
be locally deployed or be provided remotely through third-party providers. For instance,
a portal can offer the possibility of blogging, purchasing a book, or arranging a trip, all
without leaving the portal. Some of these portlets can be built in house whereas others
can be externally provided by third parties (e.g. Amazon or Expedia). The portal mission
is to offer a common gateway that hides such distinct origins from the user. This has
important implications on the way tagging can be incorporated into portals, namely:

– portals are not self-sufficient. Taggers (i.e. the portal community) and tags are
portal assets. However, and unlike self-sufficient tagging sites, portals could not
hold the description of all tag-able resources. For instance, the description of the
books or hotels offered through the portal could be remotely kept by e.g. Amazon
and Expedia, respectively. This outsource of content description does not imply
that the external resources are not worth tagging. This leads to distinguish between
two actors: the resource provider, which keeps the content of the tag-able resources
(e.g. book description in the case of Amazon), and the resource consumer (i.e. the
portal), which holds the tagger community and the tags,

– portals are not self-centered. Traditional tagging sites are “tagging islands”: each
site keeps its own tagging data. Providing an integrated view of these heterogeneous
tagging silos is at the user expenses. By contrast, portals strive to glue together
heterogeneous applications. This effort implies offering a consistent set of tags no
matter the resource nor the portlet through which the tagging is achieved. That is,
our expectation is that employees would use a similar set of tags no matter the
portlet that holds the tagged resource.

Based on these observations, consistency is identified as a main requirement, i.e.
tagging should be seamlessly achieved across the portal, regardless of the type
(messages, books, hotels, etc), or origin (i.e. Amazon, Expedia, etc) of the resource. This
consistency is two-fold. “Back-end consistency” implies the use of a common structure
for tagging data, e.g. a common set of tags. On the other hand, “front-end consistency”
entails tagging interactions to be achieved seamlessly and cohesively across the portal
using similar rendering recourses and aesthetic guidelines.

To this end, we present a novel architecture to support tagging capabilities as a portal
commodity. This implies that portlets should be engineered to be plugged into this
commodity rather than building their own tagging functionality. In the same way, that
portlets adapt their rendering to the aesthetic guidelines of the hosting portal, tagging
through portlets should also cater for the peculiarities of the consumer portal. The
paper presents how these ideas have been borne out for the WebSynergy portal engine,

Tagging-Aware Portlets 63

using RDFa annotations and a publish/subscribe mechanism. The running example is
available for consultation at http://tagging.onekin.org/.

The rest of the paper is organized as follows. Section 2 reviews tagging in current
portal engines. Section 3 provides a brief on portlets. The different actors that interact
during tagging are introduced in Section 4. Back-end consistency and front-end
consistency are the topics of Sections 5 and 6, respectively. A revision and some
conclusions end the paper.

2 Tagging in Current Portal Engines

Motivation for bringing tagging at the working place admits a two-fold perspective.
From the company’s viewpoint, tagging is an affordable approach to account for
knowledge sharing and retention in the context of an organization, preventing leaking
critical data outside the company [4]. From an employee’s perspective, distinct
studies [10,2,7] conclude that individual motivations for tagging at the working
place, such as creating a personal repository or re-finding one’s own resources,
remained important. Additionally, tagging is also a means for professional promotion,
community construction and information dissemination. Indeed, tags can serve distinct
purposes: identifying what the resource is about (e.g. descriptive tags such as “ajax”),
identifying what it is (e.g. “book”); identifying who owns it (e.g. “peter”); refining
categories (e.g. “beginning”); identifying qualities (e.g. “interesting”), self reference
(e.g. “myfavorite”) or task organizing (“toRead”, “forDevelProject”) [5]. Some of
these purposes really turn fully useful in a working context. Tagging a resource
as “forDevelProject” makes social sense if there are other users that share the
same project. Insights suggest that “people need concepts and words in common in
order to engage in collective actions. Tagging services in general appear to offer a
means for achieving such common ground. Tagging services within a work-oriented
enterprise would seem to be a particularly promising setting for people to engage
in the co-construction of their common understandings” [8]. Tagging emerges as
a main opportunity not only for resource self-organization but also for community
construction.

Portal engine vendors are well-aware of this fact, and include tagging among their
offerings. Tagging can come in different flavours: (1) tagging as part of an external
application (i.e. a portlet) offered by the portal, (2) tagging as a portal functionality
offered as a separated service, and (3), tagging as a portal commodity which it is not
intended to work on its own but for other services to plug into. All three approaches can
co-exist in the same portal. The difference stems from who is the owner of the tagging
data, and what is the scope of tagging (see Table 1).

Tagging as part of an integrated application. This is the trivial case where the
application being integrated (e.g. an external portlet) offers tagging capabilities on its
own. Both tagged resources and tagging data are kept by the portlet. The only difference
with traditional tagging sites such as Flickr, is that now tagging is achieved through the
portal but not by the portal.

Tagging as a portal functionality. This is the approach currently supported by most
vendors. The portal is regarded as a content manager. The portal owns the resources,

http://tagging.onekin.org/

64 O. Díaz, S. Pérez, and C. Arellano

Table 1. Tagging through portals

Tagging as ... Tagging Data Owner Tagging Scope

...part of an external application application resources of the application
... portal functionality portal resources kept by the portal
... portal commodity portal resources offered through the portal

and provides functionality for tagging. Tagging is restricted to those resources within
the realm of the portal. Liferay illustrates this approach. Liferay allows users to tag
web content, documents, message board threads, wiki article, blog posts, etc. Users can
then capitalize on their tagging efforts through two Liferay applications (delivered as
portlets): the TagsAdmin portlet and the AssetPublisher portlet. The former permits tag
addition and organization into categories. The second portlet creates tag-based views
out of tag-based queries. Notice however, that all tag-able content should be within the
realm of the Liferay portal.

Tagging as a portal commodity. Rather than as content managers, portals are
now envisaged as integration platforms. As such, portals offer commodities for easing
the integration of heterogeneous applications (e.g. the Single Sign-On commodity is
a popular example1). Likewise, we advocate for tagging services to be offered as a
commodity. Portlets then plug into this commodity. This is, tagging services are up
to the portal but offered through the companion portlets. This insight, its grounds and
feasibility, make up the contribution of this work.

3 A Brief on Portlets

Traditional data-oriented Web Services facilitate the sharing of the business logic, but
suggest that Web service consumers should write a presentation layer on top of this
business logic. By contrast, presentation-oriented Web Services (a.k.a. portlets) do
deliver markup (a.k.a. fragments) rather than a data-based XML document. A fragment
is then a piece of XHTML or other markup language, compliant with certain rules that
permit a fragment to be aggregated with other portlets’ fragments to build up a complete
portal page. The aim is for full-fledged applications (not just functions) to provide both
business logic and presentation logic as a Web component, easily pluggable into distinct
Web applications (e.g. portals).

Portlets can be either local or remote to the hosting portal. This brings component-
based development to the portal realm where different teams can be in charge of
supporting a given functionality (supported as a portlet) that is later deployed locally
at the portal. However, where the notion of portlet gets its full potential is when
portlets are deployed remotely, provided by third parties. This scenario requires portlet
interoperability, and here is when the Web Services for Remote Portlets (WSRP)
specification [9] come into play. WSRP specifies a protocol and a set of interfaces that
allows portals to consume and publish portlets as Web Services.

1 This commodity enables a user to log in once at the portal, and gain access to the available
applications being offered through the portal without being prompted to log in again.

Tagging-Aware Portlets 65

Additionally, the Java Portlet Specification [6] follows a model of separating
concerns in different lifecycle methods, like processAction, processEvent, render. This
provides a clean separation of the action semantics from the rendering of the content.
During the process action, the portlet can change its state. Next, during the rendering
phase, the portlet generates the fragment. Since a portal page can contain several
portlets, a render() petition is forwarded to each of the participating portlets, each of
them returning a fragment. The portal builds a “quilt page” out of these fragments, and
renders it back to the user.

4 The Actors

Being content managers, portals can keep their own resources. Additionally, portals
are also integration platforms, making external resources available through portlets.
Figure 1 provides a snapshot of a portal page offering two portlets: LibraryPortlet
and AllWebJournalPortlet that render content on books and publications, respectively.
Both books and publications are kept outside the portal realm. The running example is
available at http://tagging.onekin.org/.

Notice that both portlets, regardless of their different providers, offer the same set of
tags. That is, tagging adapts to the hosting portal. This also implies that if the very same
portlet is offered through a different portal then, the rendered tag set will be distinct
since tags reflect the projects, roles and ways of working of the organization at hand.

This provides grounds for tagging to be supported as a portal commodity, and
introduces three actors in portal tagging, namely: portlets, which provide the tag-able
resources; the portal, which embodies the portal users as potential taggers; and the
tagging commodity, i.e. a portal component that provides tagging utilities. This paper
looks at two such tagging functionalities: tag assignment and tag-based querying.

However, the existence of three different actors should not jeopardize one of
the portal hallmarks: interaction consistency across the portal. Tagging should be
homogenously achieved throughout the portal, no matter where the resource resides
(i.e. which portlet renders it). Additionally, and on top of the portal mandate, the desire

Fig. 1. A portal page offering two portlets (i.e. LibraryPortlet and AllWebJournalPortlet)

http://tagging.onekin.org/

66 O. Díaz, S. Pérez, and C. Arellano

for tag consistency emerged as a major request among portal users, (e.g. “how will
others find my content if I don’t use the same tags over and over?”) as drawn from a
recent study [10].

This consistency is two-fold. “Back-end consistency” implies the use of a common
structure for tagging data, e.g. a common set of tags. On the other hand, “front-end
consistency” entails tagging interactions to be achieved seamlessly and cohesively
across the portal using similar rendering guidelines. Next sections delve into the details.

5 Back-End Consistency

Back-end consistency implies tagging data to be a portal asset rather than being
disseminated across different silos. Tagging data basically refers to tags, taggers and
tag-able resources. Both, taggers and tags, are naturally held by the portal. However, tag-
able resources can be outside the portal realm. Although tagging could become a portal
duty, some tag-able resources would still be provided by third-party portlets. Therefore,
a mechanism is needed for portlets to make the portal aware of their tag-able resources.

The main means for portlet-to-portal communication is the markup fragment that
the portlet delivers to the portal. Here, the portal is a mere conduit for portlet markups.
Portals limit themselves to provide a common skin and appropriate decorators to portlet

Fig. 2. The PartOnt (a) and the TagOnt (b) ontologies together with their Protégé rendering
counterparts (c).

Tagging-Aware Portlets 67

fragments, being unaware of what this markup conveys. We propose to annotate this
markup with tagging concerns using RDFa [1].

RDFa is a W3C standard that provides syntax for communicating structured data
through annotating the XHTML content. In our case, RDFa offers a means for the portlet
provider to communicate the portlet consumer the existence of tag-able resources. The
idea is to capitalize on the fragment layout to annotate tag-able resources.

Firstly, an ontology is defined which is later used to annotate the fragment. This
ontology should serve to indicate both what to tag and where to tag (see later). This
is the aim of PartOnt (Participatory Ontology), an ontology that aims at capturing
manners in which users engage in the participatory web. One of these ways is of
course, tagging. Rather than defining its own concepts, PartOnt capitalizes on existing
ontologies that already formalize some of these notions. Specifically, PartOnt benefits
from TagOnt, an ontology that captures tagging by describing resources, tags, taggers,
tagging time, etc [11]. Figure 2 shows these ontologies, both the RDF code and the
Protégé rendering counterpart.

These ontologies are then used to annotate the portlet markup. An example is shown in
Figure 3. The JSP script outputs a LibraryPortlet fragment. Book data (i.e. title, authors,
etc) are rendered as table rows (TR), where book keywords are iteratively enclosed within
SPAN elements. All of the table cells are wrapped within a table (<table>) which in turns
is wrapped in another table together with the book-cover image.

This markup is then annotated along the previous ontologies. Specifically, the
following structural HTML elements are annotated 2:

Fig. 3. JSP that delivers a fragment markup with annotations along the TagOnt and PartOnt
ontologies

68 O. Díaz, S. Pérez, and C. Arellano

– HTML element that embodies a tag-able resource. In our example, this corresponds
to the outer <table> element. This element now includes an “about” attribute
which denotes the existence of a tag-able resource. The identifiers of tag-
able resources are supported as Uniform Resource Identifiers (URIs). Following
Semantic Web practices, these URIs are created by concatenating a namespace with
a resource’s key,

– HTML element that conveys potential tags. In this case, we identify keywords
as playing such role. This implies to annotate the element with the
“tagont:Tag” annotation. These tags are provided for the portal’s convenience,
and they are expected to describe the resource content. It is up to the portal to
incorporate these tags as suggestions during tagging. These portlet-provided tags
should not be mistaken with those provided by the portal users.

These annotations permit the portlet consumer (i.e. the portal) to become aware of
resources and tags coming from external sources. This external data is incorporated into
the portal not when it is rendered but when it is tagged. When the first tag is added, the
portal check if the resource ID is already in the tagging repository (see later Figure 4).

Fig. 4. Interaction diagram: base requests vs. tagging requests

However, resource IDs and tags are not introduced in the tagging repository
right away. Rather, the tagging commodity should include a “cleaning module”

2 As far as this work is concerned, we ignore the resource content (i.e. we do not annotate e.g.
titles or authors of book resources). All the portal needs to know is that a tag-able resource is
being rendered. The details about the rendering itself are left to the portlet.

Tagging-Aware Portlets 69

to ascertain whether two tags/resources really stand for the same notion. For
instance, the same resource can be offered as a book in LibraryPortlet and as
a publication in AllWebJournalPortlet. Likewise, this resource can be tagged as
“ServiceOrientedArchitecture” in one place and “SOA” in the other. This cleaning
module will provide some heuristics to ascertain the equality of resources and tags
being offered in different forms by different resource providers. This effort is akin to
the view of the portal as an integration platform, and an argument in favour of tagging
being conducted through the portal rather than as a disperse activity performed at each
resource provider.

6 Front-End Consistency

Portals are a front-end technology. Much of their added value (and investment) rests
on how content is rendered and navigated. In this context, presentation consistency
is a must to hide the diverse sources that feed the portal. Tagging wise, consistency
mandates tagging interactions to be seamlessly and coherently achieved across the
portal. This would not be much of a problem if tagging were only up to the portal.
But, this paper highlights that portal tagging is a joint endeavour among the portal and
the companion portlets. Rendering wise, this coupling can be achieved at the portlet
place (through markup portions referred to as widgets) or at the portal place (using a
publish/subscribe approach with local portlets). Next subsections address each of these
approaches.

6.1 Front-End Consistency through Widgets

Seamlessness calls for tagging to be conducted at the place tag-able resources are
rendered (side-by-side rendering). This place is the portlet fragment. But portlets
should not deliver their own tagging functionality since a premise of this work is
that such functionality should be provided by the portal. But, portals are traditionally
mere proxies for the portlet markup. Tagging however, requires portals to take a more
active role. Besides skins and decorators, portals now become the purveyors of tagging
widgets to be injected into the portlet markup.

The question is how can the portal know where to inject these widgets? Annotations
are again used for this purpose. Specifically, the PartOnt ontology includes a Hook
class, with a subclass TaglistHook that denotes an extension point for adding markup to
update the tag list. This class annotates the HTML element that plays the “hook” role.
Figure 3 shows our sample fragment where this role is played by a <div> element. At
execution time, the portal locates the “hooks” and injects the tagging widget (see later).

Markup coming from the portlet should be seamlessly mixed together with markup
coming from the portal so that the user is unaware of the different origins. After
all, this is the rationale behind letting the portlet specify the tagging hooks: injecting
the extra markup in those places already foreseen by the portlet designer so that
the final rendering looks harmonious. However, the distinct markup origins become
apparent to the portal which needs to propagate the user interactions to the appropriate
target. Specifically, base requests (i.e. those with the portlet markup) are propagated

70 O. Díaz, S. Pérez, and C. Arellano

to the portlet provider, while tagging requests (i.e. those with the tagging widget) are
processed by the tagging commodity.

Figure 4 provides an overview of the whole process where these two types of
interactions are distinguished:

1. base request. According with the WSRP standard, user interactions with portlet
markup are propagated till reaching the appropriate portlet. In return, the portlet
delivers a markup, now annotated with tagging metadata,

2. content annotation processing. At the portal place, the tagging commodity
(specifically an RDFa parser) extracts both tag-able resources and tags conveyed
by the actual markup. This data is kept at the tagging repository.

3. hook annotation processing. If the markup also holds “TaglistHook” annotations,
the tagging commodity (specifically, a markup renderer) outputs the appropriate
widget to be injected at the hook place. The markup renderer can need to access
the tagging repository, e.g. to recover the tags currently associated with a given
resource.

4. markup rendering. The original markup has now become a tagging-aware fragment,
i.e. a fragment through which tagging can be conducted,

5. tagging request. Now, the user interacts with the tagging markup (e.g. requesting
the update of the tag set). This petition is directed to the tagging commodity which
checks the additions and removals being made to the tag set kept in the repository.
In return, the tagging commodity repaints the tagging markup.

As the previous example illustrates, the co-existence of markups from different origins
within the same portlet decorator brings an Ajax-like style to markup production. In
Figure 4, lines with solid triangular arrowheads denote synchronous communication
whereas open arrowheads stand for asynchronous communication. Specifically, the
tagging request is asynchronously processed.

6.2 Front-End Consistency through Local Portlets

Previous subsection illustrates the case of a tagging functionality (e.g. tag update) to
be achieved at the portlet place. However, other services can be directly provided by
the portal but in cooperation with the companion portlets. Tag-based querying is a case
in point.

Comprehensive querying implies the query to expand across resources, no matter
their origin. A query for resources being tagged as “forDevelProject” should deliver
books (hence, provided by the LibraryPortlet portlet), publications (hence, supplied
by the AllWebJournalPortlet portlet), post blogs (locally provided), etc being tagged
as used in this project. Such a query can be directly answered through the tagging
repository that will return the set of resource identifiers meeting the query condition.

However, portals are a front-end technology. Providing a list of identifiers is not a
sensible option when an end user is the addressee. Rather, it is the content of resource
what the user wants to see. We need then to de-reference these identifiers. Unfortunately,
the tagging repository can not “de-reference” those identifiers. The portal owns the
tagging data. But it is outside the portal realm to know the resource content as well as

Tagging-Aware Portlets 71

Fig. 5. Split query processing. Query specification goes through TagBarPortlet: the tag selected
by the user is highlighted. Query outcome is delegated to the portlets holding the resource content,
i.e. LibraryPortlet and AllWebJournalPortlet.

how this content is to be rendered. This is the duty of the resource providers, i.e. the
portlets. Therefore, the portal can not accomplish the whole query processing on its
own since this also involves content rendering.

Figure 5 illustrates this situation. First, a mean is needed for the user to express the
query. For the sake of this paper, a simple portlet has been built: TagBarPortlet. This
portlet consults the tagging repository, renders the tags available, and permits the users
to select one of theses tags. The selection has two consequences. First, the selected
tag is highlighted. Second, and more important, the companion portlets synchronize
their views with this selection, rendering those resources that were tagged with the
selected tag at this portal. This last point is important. The very same portlet can
be offered through different portals. Hence, the same resource (e.g. a book) can be
tagged at different places (i.e. through distinct portals). When synchronized with the
TagBarPortlet of portal P1, the portlet just delivers those resources being tagged through
portal P1.

This scenario again requires a means for portal-to-portlet communication. Previous
section relies on the rendering markup as the means of communication. This
was possible because the data flew from the portlet to the portal. However, now
identifiers/tags go the other way around: from the portal to the portlets. To this end,
we follow a publish/subscribe approach where data flows from the publisher (i.e. the
portal, better said, the portal representative, i.e. TagBarPortlet) to the subscriber (e.g.
LibraryPortlet and AllWebJournalPortlet). The availability of an event mechanism in
the Java Portlet Specification [6] comes to our advantage.

Portlet events are intended to allow portlets to react to actions or state changes
not directly related to an interaction of the user with the portlet. Portlets can be
both event producers and event consumers. Back to our sample case, the query-
specification portlet, i.e. TagBarPortlet, fires the appropriate event that is broadcasted
by the portal to the resource-provider portlets to make then aware of the tag

72 O. Díaz, S. Pérez, and C. Arellano

Fig. 6. portlet.xml configuration files for TagBarPortlet and LibraryPortlet. Both portlets know
about the tagSelected event

being selected. Publications and subscriptions are parts of the portlet definition and
hence, expressed in the configuration file portlet.xml. Figure 6 shows those files for
TagBarPortlet and LibraryPortlet. The former defines a published event, tagSelected,
whereas LibraryPortlet acknowledges the capacity to process tagSelected events.

Processing tagSelected occurrences imply rendering the content of the so-tagged
resources at the portlet place. For instance, LibraryPortlet should produce markup
for those books being tagged with the tag provided in the event payload. However,
LibraryPortlet holds the resource content but ignores how they have been tagged. This
tagging data is kept at the portal. Therefore, the portlet needs to get such data from
the tagging commodity. As a result, the tagging-commodity URL is included as part
of the event payload, so that the portlet can construct a REST petition asking which of
its resources are so-tagged at this portal. Therefore, the very same portlet can process
tagSelected occurrences coming from different portals and hence, whose payloads refer
to different URLs3. In this way, portlet interoperability is preserved.

Figure 7 provides the global view. First, the user selects “forDevelProject” as
the tag to be used as the filtering criteria. This request is handled by TagBarPortlet
that signals a tagSelected occurrence. The portal forwards this occurrence to their
subscribers: LibraryPortlet and AllWebJournalPortlet. Processing tagSelected involves
first, to query the TaggingEngine about the so-tagged resources. To this end, the
REST_API provides the getResourceByTag method. This method outputs a list of
resource identifiers for which the LibraryPortlet should locally retrieve the content and
produce the markup. This process is accomplished for all the resource-provider portlets.
This ends the state changing logic phase of the portlet lifecycle.

3 An alternative design would have been for TagBarPortlet to recover itself all resorce identifiers
that exhibit the selected tag, and include the whole set of identifiers as part of the event payload.
On reception, the portlet filters out its own resources. However, this solution does not scale up
for large resource sets. Additionally, the option of restricting the payload to just those resources
of the addressee portlet forces to have a dedicated event for each portlet.

Tagging-Aware Portlets 73

Fig. 7. Handling a tagSelected occurrence

The rendering phase builds up the portal page out of the portlet fragments. This
implies sending the render() request to each of the portlets of the page, assembling
the distinct markups obtained in return, and render the result back to the user. For our
sample case, the outcome is depicted in Figure 5.

7 Revision and Conclusions

This work argues for portal tagging to be a joint endeavour between resource providers
(i.e. portlets) and resource consumers (i.e. portals). Additionally, portlets are reckoned
to be interoperable, i.e. deliverable through different portals. These observations
advocate for tagging to be orthogonally supported as a crosscut on top of portlets,
i.e. a portal commodity. Driven by two main functionalities, tag update and tag-based
querying, this paper identifies main components of such a commodity:

– back-end components: a tagging engine, a tagging extractor (in our case, a RDFa
parser) and a cleaning module,

74 O. Díaz, S. Pérez, and C. Arellano

– front-end components: a query-specification portlet (e.g. TagBarPortlet) and a
tagging renderer that output tagging widgets.

This work explores the technical requirements of such solution, namely:

– from the portlet provider perspective, portlet fragments need to be annotated along
a basic tagging ontology,

– from the portlet consumer viewpoint (i.e. the portal), a tagging commodity should
be available,

– from the position of the container of remote portlets at the portal, the WSRP
implementation needs to be extended for the getMarkup method to cater for
injections of widget markup into the portlet fragment.

A tagging commodity has been implemented for the WebSynergy4 portal engine, a Sun’s
deliverable of the open-source Liferay5 engine, using TASTY as the tagging engine6.
This implementation evidences the feasibility of the approach, although real test cases
are needed to fully test scalability problems. The benefits include:

– portal ownership of tagging data,
– increases consistency in the set of tags used to annotate resources, regardless of the

resource owner,
– facilitates consistency among tagging activities, no matter the portal application

through which tagging is achieved,
– permits tagging to be customized based on the user profile kept by the portal. For

instance, the suggested set of tags can be based on the user profile, the projects he
participates in, etc.

As in other situations where applications need to cooperate, the main challenge rests
on agreeing in common terms and protocols. In our case, this mainly implies the
standardization of the tagging ontology, and the REST API.

Acknowledgements. This work is co-supported by the Spanish Ministry of
Education, and the European Social Fund under contract TIN2008-06507-C02-01/TIN
(MODELINE), and the Avanza I+D initiative of the Ministry of Industry, Tourism and
Commerce under contract TSI-020100-2008-415. Pérez enjoys a doctoral grant from
the Basque Government under the “Researchers Training Program”, and Arellano has a
doctoral grant from the Spanish Ministry of Science & Education.

References

1. Adida, B., Birbeck, M.: RDFa Primer. Technical report, W3C Working Group (2008),
http://www.w3.org/TR/xhtml-rdfa-primer/

2. Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media.
In: CHI 2007: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 971–980 (2007)

4 https://portal.dev.java.net/
5 http://www.liferay.com/
6 http://microapps.sourceforge.net/tasty/

http://www.w3.org/TR/xhtml-rdfa-primer/

Tagging-Aware Portlets 75

3. Díaz, O., Rodríguez, J.J.: Portlets as Web Components: an Introduction. Journal of Universal
Computer Science, 454–472 (2004)

4. DiMicco, J., Millen, D.R., Geyer, W., Dugan, C., Brownholtz, B., Muller, M.: Motivations
for social networking at work. In: CSCW 2008: Proceedings of the ACM 2008 Conference
on Computer Supported Cooperative Work, pp. 711–720 (2008)

5. Golder, S.A., Hubermann, B.A.: The Structure of Collaborative Tagging System. In: CoRR
(2005)

6. Java Community Process (JCP). JSR 286: Portlet Specification Version 2.0 (2008),
http://www.jcp.org/en/jsr/detail?id=286

7. Millen, D.R., Yang, M., Whittaker, S., Feinberg, J.: Social bookmarking and exploratory
search. In: ECSCW 2007: Proceedings of the Tenth European Conference on Computer
Supported Cooperative Work, pp. 21–40 (2007)

8. Muller, M.J.: Comparing tagging vocabularies among four enterprise tag-based services. In:
GROUP 2007: Proceedings of the 2007 International ACM Conference on Supporting Group
Work, pp. 341–350 (2007)

9. OASIS. Web Services for Remote Portlets (WSRP) Version 2.0 (2008),
http://www.oasis-open.org/committees/wsrp/

10. Thom-Santelli, J., Muller, M.J., Millen, D.R.: Social tagging roles: publishers, evangelists,
leaders. In: CHI 2008: Proceeding of the twenty-sixth annual SIGCHI Conference on Human
Factors in Computing Systems, pp. 1041–1044 (2008)

11. Knerr, T.: Tagging Ontology - Towards a Common Ontology for Folksonomies,
http://tagont.googlecode.com/files/TagOntPaper.pdf

http://www.jcp.org/en/jsr/detail?id=286
http://www.oasis-open.org/committees/wsrp/
http://tagont.googlecode.com/files/TagOntPaper.pdf

Trust and Reputation Mining in Professional
Virtual Communities�

Florian Skopik, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstr. 8/184-1, A-1040 Vienna, Austria

{skopik,truong,dustdar}@infosys.tuwien.ac.at

Abstract. Communication technologies, such as e-mail, instant messag-
ing, discussion forums, blogs, and newsgroups connect people together,
forming virtual communities. This concept is not only used for private
purposes, but is also attracting attention in professional environments,
allowing to consult a large group of experts. Due to the overwhelm-
ing size of such communities, various reputation mechanisms have been
proposed supporting members with information about people’s trust-
worthiness with respect to their contributions. However, most of today’s
approaches rely on manual and subjective feedback, suffering from unfair
ratings, discrimination, and feedback quality variations over time.

To this end, we propose a system which determines trust relationships
between community members automatically and objectively by mining
communication data. In contrast to other approaches which use these
data directly, e.g., by applying natural language processing on log files,
we follow a new approach to make contributions visible. We perform
structural analysis of discussions, examine interaction patterns between
members, and infer social roles expressing motivation, openness to dis-
cussions, and willingness to share data, and therefore trust.

1 Introduction

The concept of virtual (or online) communities is quite common today and fre-
quently used not only for private concerns, but also in professional working en-
vironments. Online platforms such as discussion forums, blogs, and newsgroups
are regularly utilized to get introduced into new things, to find solutions for
particular problems, or just to stay informed on what’s up in a certain domain.
Virtual communities are rapidly growing and emerging, and thus, lots of spam
and dispensable comments are posted in their forums or sent via e-mail, polluting
fruitful discussions. Several mechanisms have been proposed to handle this prob-
lem, such as collaborative filtering of comments and global reputation of users
based on feedback mechanisms. However, because these concepts rely on manual
and subjective human feedback, they suffer from several drawbacks [1], including

� This work is mainly supported by the European Union through the FP7-216256
project COIN.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 76–90, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Trust and Reputation Mining in Professional Virtual Communities 77

unfair ratings, low incentives for providing feedback, and quality variations of
ratings over time.

Collaborative Environments. Especially, where mentioned communication
technologies are regularly embedded to connect e-professionals together, such as
in professional virtual communities (PVCs), and where successful collaboration
is critical for business, we identified the need for more sophisticated reputation
methods. Moreover, in modern working environments, where virtual teams con-
sisting of members from different departments or even companies work together,
personally unknown to each other, various complex social factors affect the over-
all collaboration success. These factors can be expressed by one composite and
abstract concept: trust. Trusted relationships between colleagues are vital to the
whole collaboration and a prerequisite for successful work. A recent report about
the roles of trust in today’s business world [2] discovers that besides professional
skills expressed as experience, expertise and competence, soft skills, such as the
willingness to exchange information, motivation and communication skills, are at
least equally important. Such social skills can be discovered and evaluated in typ-
ical computer-supported discussions, common in online communities, including
threaded forum discussions, instant messaging chats, and e-mail conversation.

The Autonomic Cycle. Our overall motivation for trust determination is to
apply an autonomic management cycle [3] consisting of four phases (monitoring,
analyzing, planning, executing), which enable the adaptation of collaboration
environments and personalization of applications with respect to trust between
participants. In this cycle, the collaboration behavior, such as the communication
culture, the execution of tasks and the coordination of e-workers is monitored
by the system and their relationships are determined by analyzing logging data
and structural profiles. Depending on particular situations, different available
metrics are aggregated and interpreted as trust, which enables the maintenance
of a trust network. This trust network is utilized to plan further collaboration,
e.g., influences work partner selection or the assignment of tasks. After that,
when people perform the actual work, their collaboration is monitored by the
system, which closes the loop. In this paper we focus particularly the monitoring
phase and the analyzing phase.

Contributions. We show an approach for automatic inference of trust between
online discussion participants. To this end, we propose a system which collects
and merges data from various sources, define the notion of discussion trust, and
cover related concepts, including the definition of user roles and an interaction
network. The main contribution is the design of a mining algorithm, which we
evaluate with a real data set.

Paper Structure. The rest of the paper is organized as follows. In Sect. 2 we
consider related work. Sect. 3 is about harnessing trustworthy sources of data in
PVCs. We describe trust and roles in discussions in Sect. 4, a mining algorithm
using these concepts to calculate relationships based on observed communication
in Sect. 5, and network-based trust inference in Sect. 6. We prove our approach
with extensive experiments on real data in Sect. 7 and conclude in Sect. 8.

78 F. Skopik, H.-L. Truong, and S. Dustdar

2 Related Work

Welser et al. [4] provides interesting studies about social roles in online discus-
sion groups and participants’ behaviors. Furthermore, Nonnecke et al. [5] and
Meyer et al. [6] research the meaning of online communication and differences
between traditional face-to face and threaded discussions. McLure-Wasko and
Faraj [7] investigate the motivation for knowledge sharing in online platforms,
and Rheingold [8] comprehensively examines the concept of virtual communi-
ties. The article [2] in The Economist draws the importance of trust in business
communication, and shows that various factors which directly influence trust
between individuals are based on communication.

Until now various computational trust models have been developed, as sum-
marized by Massa in [9]. Though they are useful to deal with trust propagation,
aggregation and evaluation over time, it is mostly assumed that initial trust
relationships are manually determined by people. For example, the well-known
TrustRank model [10] for ranking web sites with respect to their trustworthiness,
needs a set of trusted web sites to be initially defined and is then able to inherit
trust to further linked pages automatically.

We interpret previous communications between people as interactions and
rank them according to their trustworthiness in the originating network. There
are several graph based ranking algorithms, including PageRank [11], HITS [12],
and Eigentrust [13]. However, in contrast to these algorithms, which operate
on top of an existing network, our approach tackles the challenges beneath,
i.e. creating the network based on discussion data. To this end, we develop
a mining algorithm to gather individual trust relationships based on observed
communications, considering detailed analysis of online discussion platforms such
as Gomez et al. [14] for Slashdot.

3 Trustworthy Sources of Data

Most common online communication platforms, such as vBulletin1, integrate
reputation systems which either rank users based on simple metrics, including
their posting count, or enable users to reward (’thank’) others directly. In con-
trast to this approach, we reward the vitality of relationships between users and
then derive the user gradings by aggregating relationship gradings. This enables
us to utilize global metrics calculated from all available data, such as the overall
discussion effort of a particular user with respect to the whole community, but
also local metrics considering data restricted to particular users only, such as the
discussion effort between two specific users. Utilizing local metrics is particularly
of interest when the amount of controversial users is high [15]. With our system
a user does not get one globally valid trust rank, but may be graded from each
individual’s view.

We developed a pluggable architecture (Fig. 1) - part of VieTE [16] - which
utilizes various communication data sources through standard protocols, such as
1 http://www.vbulletin.com

Trust and Reputation Mining in Professional Virtual Communities 79

Internet
Forums Blogs Instant

MessagingE-mail

Data Mapper

Data Filter and Refinement

Interaction Network Mining

Trust and Reputation
Mining Service

Discussion
Partner
Search

Personal
Trust Network
Visualization

Trust-enabled
Content
Filtering

Discussion
Participant
Evaluation

Trust-aware Application Support

PVC Supporting Services

Web
Crawler

Feed
Reader

WS
Client

E-Mail
Client ...

Trust Calculation

XQuery API

H
TT

P

R
S

S

S
O

A
P

IM
A

P

...

Q
ue

ry

Fig. 1. Architectural overview of the trust and reputation mining service

RSS feeds, SOAP, and e-mail. The obtained data is mapped to a generic commu-
nication schema, pre-processed and refined, and finally an interaction network,
modeling the relationships between users emerging from communication, is built.
Based on this network, trust between individuals and reputation from the com-
munity’s view can be inferred and queried through a dedicated interface. We
understand the inferred discussion trust to represent one dimension of general
trust in PVCs, applicable in a wide range of differently organized communities.
Other dimensions of trust may base on the fulfillment of service level agreements
or the reliability of task execution, which are out of scope of this paper.

4 Trust and Roles in Virtual Community Discussions

In discussions we can intuitively distinguish between information providers and
information consumers. Especially in online discussions we can easily track who
provides information, e.g., by posting a comment in a forum or writing an e-mail
to a group of people. In contrast to that, determining information consumers is
tricky. We can never be sure, that people read received e-mails or new comments
in a forum, even when they open forum entries in their browsers. However, if
somebody replies to a particular comment, then we can certainly assume, s/he
has read the message and found it worth for discussion. Thus the replier can be
identified as an information consumer, but as an information provider as well.

In our approach we track exactly this discussion behavior and define, that
whenever one replies to a comment of another one, an interaction between them
takes place. We process these interactions and build a notion of trust on top.

We apply Mui’s definition of trust [17], which states that trust is ”a subjec-
tive expectation an agent has about another’s future behavior based on the history

80 F. Skopik, H.-L. Truong, and S. Dustdar

of their encounters”. We extend this definition by the notion of context, which
means trust is established by considering past interactions in particular situations
as widely agreed [18,19,20]. In the area of online discussions, contextual informa-
tion is for instance the overall discussion topic or the type of forum being used.

Particularly, in discussions it may seem intuitive, that the more comments
somebody provides the more s/he can be trusted to be a good discussion partner.
On the other side lurkers [5], referring to people just watching discussions but
not actually participating, can be less trusted regarding their ’openness’. They
lack the willingness to exchange information, motivation or communication skills,
thus they are bad collaborators.

However, a simple comment count does not truly reflect if somebody’s state-
ments are real contributions and worth reading and discussing. Thus, we consider
threaded structures as well and analyze how comments are recognized by others.
To this end, we define the following novel social roles within discussion scenar-
ios: (i) Activator: The role of an Activator reflects, that the more replies a
discussion participant receives, the more one’s comments seem to to be worth
for discussion, thus one can be trusted to have the competencies and skills to
provide comments, interesting for a broad base of participants. (ii) Driver: The
role of a Driver reflects, the more somebody replies to comments, the more s/he
can be trusted to actively participate in a discussion, thus s/he represents a
’driver’ evident for a fruitful discussion. (iii) Affirmed Driver: An Affirmed
Driver is defined as a Driver whose contribution is affirmed. This is the case if
there is at least one reply to a driver’s comment.

According to these roles, discussion trust is a measure for the contribution to
discussions expressing the willingness to provide information and support, but
does not reflect that a particular participant offers a valid information or posts
the truth. For this purpose, at least natural language processing and analyzing
semantic meanings are required [21,22], which is out of scope of this paper.

5 Discussion Mining Approach

We developed a mining algorithm to determine the contribution of people in
discussions. However, in contrast to common approaches, we neither reward the
participants directly (e.g., their number of provided comments), nor we utilize
subjective feedback, but we mine interactions to reward particularly the rela-
tionships between each pair of discussion participants.

We make the following assumptions: (i) The notion of time can be neglected,
which means our algorithms do not determine how trust relations change over
time. We determine trust relations for one particular point in time, based on
short history data. Temporal evaluations, e.g. by applying moving averages,
temporal weighting functions or sliding windows, have to be set up on top of
our approach and is out of scope of this paper. (ii) We do not apply natural
language processing. Thus, we accept introducing noise and small errors by re-
warding users who post useless comments (i.e., spam). In the evaluation part
we show that this is no disadvantage if we rely on larger amounts of data. We

Trust and Reputation Mining in Professional Virtual Communities 81

further assume that in PVCs spam occurs less frequently than in open internet
forums.

5.1 Interaction Network Definition

We utilize a widely adopted graph model to reflect discussion relationships be-
tween users. However, we further incorporate context awareness in this model
to allow trust determination with respect to different situations on top of the
created interaction network.

This network is modeled as a directed multigraph G = 〈V, E〉 where each
vertex v, w ∈ V represents a user and the edges reflect relationships based on
previous interactions between them. A relationship eCtx

vw ∈ E, as defined in
(1), is described by various metrics such as the number of recent interactions,
their weights and communication scores, with respect to particular situations
described by context elements Ctx.

eCtx
vw = 〈v, w, Ctx, metrics[name, value]〉 . (1)

5.2 Discussion Mining Algorithm

We develop an algorithm which weighs the communication relations based on dis-
cussions between each pair of participants. For environments supporting threaded
discussion structures as common in online forums or newsgroups, we argue that
somebody who provides a comment in a discussion thread, is not only influenced
by the comment s/he directly replies, but to a certain extent also by other preced-
ing ones in the same chain of discussion. Thus, we interpret a thread to be simi-
lar to a group discussion and establish relationships between participants posting
in one chain. Figure 2(a) shows a structured discussion thread where every box
represents a comment provided by the annotated participant. For the highlighted
comment provided by x, arrows show exemplary which interactions between par-
ticipants take place. The comment provider x honors the attracting comments of w
and u, and rewards the driving contribution of u, v, and y. If only affirmed drivers
shall be rewarded, then the relation to y (dashed lines) is skipped, because nobody
has been attracted by its comment. The weights of interactions is calculated by the
interaction reward function fi(dt, c1, c2), where dt is the discussion tree, and the
interaction from the author of comment c1 to the author of c2 is rewarded. We
initially set fi(dt, c1, c2) = 1

dist(c1,c2) , where dist() determines the distance be-
tween two comments (direct replies have dist = 1). However, considering further
comment attributes, including time intervals between a comment and its replies
or the number of replies a single comment attracts, may improve the expressive-
ness according to trust. All interactions between two particular participants are
aggregated and directed weighted relations are created in the graph model shown
in Fig 2(b).

Algorithms 1. and 2. describe formally the mode of operation. According to (1)
each edge in the interaction model can have various metrics. Currently we apply
count, which is the amount of interactions between two participants based to their

82 F. Skopik, H.-L. Truong, and S. Dustdar

A topic

u

v

w

x

u

y

v

+1

+0.5

+1

+0.5

+0.33

(a) Discussion thread

u

v

w

y

x0.5

1.0+0.5

0.33

1.0

(b) Mapping for user x

Fig. 2. Mapping from a discussion thread to the interaction network model

discussion behavior, and strength which is the sum of the weights of all interac-
tions between them. We utilize the function incMetric(name, edge, value) to
increment the metric specified by name of the given edge by a certain value.

In Algorithm 1. relations from a comment’s provider to the providers of
preceding comments are established due to their activator role. Algorithm 2.
establishes relations to the providers of child comments due to driving behav-
ior. The function providerOf() returns the identity of a comment provider,
parentCommentOnLevel() determines the parent comment on the specified level
(level = dist(c1, c2)), and childCommentsOnLevel() provides child comments.

Algorithms 1. and 2. are applied for every comment and reward the provider’s
contribution to the overall discussion. This process can be further improved by
additionally rewarding common communication patterns as well. This means, if
v provides a comment replied by w, and v replies to w’s comment, then a real
bidirectional communication can be observed.

Algorithm 1. Function for rewarding the relations to the activators of a comment
Require: discussionThread, graphModel, comment, Ctx

commentProvider ← providerOf(comment)
for level = 1 to configMaxLevelUp do

parentComment ← parentCommentOnLevel(comment, level)
if � parentComment or providerOf(parentComment) = commentProvider then

break
end if
parentCommentProvider ← providerOf(parentComment)
if � edge(commentProvider, parentCommentProvider, Ctx) then

createEdge(commentProvider, parentCommentProvider, Ctx)
end if
incMetric(strength, edge(commentProvider, parentCommentProvider, Ctx), 1/level)
incMetric(count, edge(comentProvider, parentCommentProvider, Ctx), 1)

level ← level + 1
end for
return graphModel

Trust and Reputation Mining in Professional Virtual Communities 83

Algorithm 2. Function for rewarding the relations to the drivers of a comment
Require: discussionThread, graphModel, comment, Ctx

commentProvider ← providerOf(comment)
for level = 1 to configMaxLevelDown do

childComments ← childCommentsOnLevel(comment, level))
if � childComments then

break
end if
for all childComment ∈ childComments do

childCommentProvider ← providerOf(childComment)
if childCommentProvider = commentProvider then

break
end if
if � edge(commentProvider, childCommentProvider, Ctx) then

createEdge(commentProvider, childCommentProvider, Ctx)
end if
incMetric(strength, edge(commentProvider, childCommentProvider, Ctx), 1/level)

incMetric(count, edge(commentProvider, childCommentProvider, Ctx), 1)
end for
level ← level + 1

end for
return graphModel

6 Trust Network Model

6.1 Trust Inference

Similar to previous approaches [23,24] trust is determined on top of the created
interaction network, depending on the notions of confidence and reliability. We
define that the confidence of user v in user w with respect to context Ctx can
be derived from the previously described graph model by using a confidence
function cCtx

vw = fc(G, v, w, Ctx).
Reliability, expressing the certainty of v’s confidence in w with respect to

context Ctx, is determined by a reliability function rcCtx
vw

= fr(G, v, w, Ctx).
The value of rcCtx

vw
∈ [0, 1] is basically influenced by the number and type of

interactions which were used to calculate confidence, and expresses the reliability
of the confidence value between totally uncertain and fully affirmed.

With the confidence of v in w and its reliability we calculate trust τCtx
vw of v

in w according to (2).
τCtx
vw = cCtx

vw · rcCtx
vw

. (2)

6.2 Trust Aggregation and Reputation

Aggregation of trust, often referred to as reputation, refers to (i) the combination
of trust values of a group of users in one user to build a view of trust from a
community’s perspective, or (ii) the combination of trust values calculated for
different contexts between two users to get a notion of trust for a broader context
or (iii) the combination of (i) and (ii) to get a kind of general community trust
in one user.

84 F. Skopik, H.-L. Truong, and S. Dustdar

Equation (3) is applied to determine aggregated trust Ta of a group M = {vi}
of users in one particular user w with respect to a set of context elements Ctxs.
The weighting factor calculated by fa can be configured statically or obtained
dynamically depending on individual properties of M ’s elements, e.g., trust of
long-term users have a higher impact on reputation than those of newbies.

T Ctxs
aMw

=
∑

vi∈M

∑
Ctxj∈Ctxs τ

Ctxj
viw ·fa(vi,w,Ctxj)∑

vi∈M

∑
Ctxj∈Ctxs fa(vi,w,Ctxj)

. (3)

6.3 Contextual Description

We distinguish two different subtypes of contextual elements: (i) Provenance
Context describing the situation of interactions for which an edge is created,
e.g., the domain of the discussion topic, or the used forum, and (ii) Calculation
Context depicting the situation for which trust is calculated, e.g. for suggesting
a discussion partner in a particular domain. Furthermore, calculation context
may dynamically determine fi(), fc(), fr(), and fa(). The detailed design of the
context models depend on the available information determined by the environ-
ment and area of application. We show an exemplary configuration of the trust
network model in the evaluation part of this paper.

7 Evaluation

7.1 Preparing Evaluation Data

For the evaluation of our approach, we compare the output of the proposed
algorithm with real users’ opinions. Because our developed system is new and
currently not utilized by a wide range of users, we need a dataset which of-
fers structured discussions in various contexts and information about the real
contribution of users. We fetched an appropriate dataset with the required char-
acteristics from the famous Slashdot2 community.

Slashdot is a platform which offers the ability to discuss a wide variety of
topics classified in different subdomains. One nice feature is the moderation
system allowing experienced users to rate the postings of other users on a scale
between -1 and 5. We interpret this score as human feedback which provides
information about the quality of comments and thus, when considering all posts,
the average discussion quality of a person.

We developed a Web crawler to capture threaded discussions in the subdo-
mains Your Rights Online (yro) and Technology (tech) from January 2007 to
June 2008. We selected these two subdomains due to their diversity, expressing
different expertises of people discussing there. The subdomain in which a dis-
cussion takes place is reflected by the context of a discussion: ctx={yro | tech}.
Users may have established discussion relationships with respect to either yro,
or tech, or both.
2 http://slashdot.org

Trust and Reputation Mining in Professional Virtual Communities 85

We have to ensure to compensate all impacts which degrade the quality of the
data set and suitability for the tests. First, we remove all comments posted by
anonymous users, because there is no meaningful way to map this data to partic-
ular nodes of the interaction graph model. Second, if not changed from the default
settings, the Slashdot UI hides low scored comments automatically. Therefore,
there is no way to distinguish if a particular comment is not replied because it
is simply poor and not worth a discussion, or if it is not replied because it is hid-
den and thus never read. Hence, we remove low scored comments from the data
set. Third, we remove all posts which potentially haven’t been rated by others.

Initially the captured data set consists of 49.239 users and 669.221 comments
in the given time period. After applying all steps of reduction we map the dis-
cussions to the graph model, consisting of 24.824 nodes and 343.669 edges. In
the experiments we rank each user relatively to the others based on how much
their discussion skills can be trusted by the rest of the community. Because our
presented trust calculation method fully relies on the connectivity of a node
within the graph, we have to ensure that the filtering procedures do not distort
this property. Figure 3 shows the degree of connection for each node for the full
data set and for the reduced one. The distribution follows a common power law
function, and when applying the reduction steps, the characteristics of the user
distribution and their connectivity basically do not change.

7.2 Trust Network Model Configuration

By applying the presented mapping approach we are able to grade discussion
relationships between any two users v and w in the graph G with respect to the
subdomain, reflected by context ctx={yro | tech}.

Trust is determined by confidence and reliability as described in Sect. 6. To
this end we define fc(G, v, w, Ctx) = strength to be a function which simply
returns the discussion strength from v to w in a specific subdomain. We define
a notion of confidence from v in w to be fully reliable if there are at least maxia

interactions with respect to the same subdomain. If fr(G, v, w, Ctx) = count
maxia

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

degree

n
u

m
 n

o
d

es

(a) connection degree (full data)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

degree

n
u

m
 n

o
d

es

(b) connection degree (reduced data)

Fig. 3. Degree distribution

86 F. Skopik, H.-L. Truong, and S. Dustdar

is greater than 1 we set fr(G, v, w, Ctx) = 1. We configure maxia = 10 per
year, which is the same amount of posts as identified in [14] to be required to
calculate representative results. For trust aggregation we apply all single input
trust values having the same weight fa(v, w, Ctx) = 1.

For the sake of clarity we apply only the simple functions defined above, how-
ever, more complex functions can be set up, which consider similarities between
subdomains, the amount of interactions compared to well-known community
members or symmetry of trust relationships, just to name a few.

Furthermore, we set configMaxLevelUp = 3, configMaxLevelDown = 3
and reward bidirectional communication, i.e., post-reply-post patterns, with
bidiR = 1 extra point. By further increasing the number of levels for rewarding,
the values indicating discussion strength between the users will increase as well.
However, this does not highly influence the relative rankings of users.

7.3 Evaluation Approach

We evaluate our trust mining algorithm approach by comparing its results with
trust values derived from the feedback of real users. We introduce the following
terminology:

Link rank : The link rank of a user is calculated by our mining algo-
rithm considering the strength of connections to others based on their
nested comments within discussions. We interpret this measure as trust
and argue, that it directly reflects a user’s willingness to share informa-
tion and support others (driver role), and attitude to highly recognized
contributions (activator role).

Score rank : The score rank of a user is calculated by averaging his/her
posting scores, thus we utilize direct human feedback. We interpret the
score rank as trust and argue, that users may trust posters with high
average posting score more to deliver valuable contributions, than others.

Obviously both ranking methods rely on the same social properties, which
reflect the value of contribution a user provides to the community.

First of all, we clarify that our proposed scoring method does not only depend
on the number of posts and is completely different from simply giving reward
points for every posted comment such as in common Internet forums. Figure
4 depicts the number of posts within 18 month of the top1000 linked users.
However, there is a trend that frequently posting users are ranked higher, there
is obviously no strong correlation between the link rank and the number of posts.

7.4 Experiments

Calculating Global Reputation. In our first experiment we determine global
link ranks, built by aggregating the link strength values of all individual relations
within the network for each user over all contexts. Besides this, we determine the

Trust and Reputation Mining in Professional Virtual Communities 87

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

rank

n
u

m
 p

o
st

s

Fig. 4. Link rank compared to number
of posts for top1000 linked users

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

link rank

sc
o

re
 r

an
k

Fig. 5. Link rank compared to score rank
for each user

global score rank as well. This means we rank each user two times: once with our
algorithm based on discussion structures, and once based on humans’ feedback
score. For determining score ranks we degrade users’ average scores by the factor

postcount
numMinposts·numMonth , if they posted less than numMinposts posts a month to
make sure that rarely posting users are not scored too high. During experiments
we found out that numMinposts = 10 per month seems to be the value to reach
the highest value for the Pearson correlation coefficient (0.77) between the results
of both ranking methods for the given data set, as shown in Fig. 5.

We further calculate the Dice similarity coefficient depicted in (4), which is
defined as the amount of elements included in both of two sets, in our case
the sets of top scored users (TopXS) and top linked users (TopXL), where
X={10,25,50,100,1000} determining the size of the sets.

s =
2 · |TopXS ∩ TopXL|
|TopXS| + |TopXL| . (4)

Table 1 shows how many percent of the top linked users and top scored users
overlap after different time intervals. Obviously, the more data is used for trust
calculation the more the resulting top linked users get similar to the top scored
ones, which means we receive preciser results. After 18 month we finish with an
overlap between 45 and 60 percent, for the top10 to top50 and approximately
65 to 70 percent for larger groups. Furthermore, we compare the amount of
the top10 scored (Top10S) users who are also in the top25, top50, top100, and
top1000 (TopXL) of the top linked users. The top10 scored users are the users
scored best by others, and thus are most trusted to provide meaningful infor-
mation. Table 1 shows that after 4 month 90 to 100 percent of the top10 scored
users are included in the top50 linked users.

We conclude, that for the given data set we are able to find a similar set of
users, who are trusted to post high quality comments, when ranked either by the
average of posting scores (scoreRank) or by the discussion structure and reply
behavior (linkRank).

88 F. Skopik, H.-L. Truong, and S. Dustdar

Table 1. Overlap similarities (OSim) of top linked and top scored users in percent

OSim after month: 01 02 03 04 06 10 14 18

Top10|TopS10 in TopL10 10|10 30|30 30|30 30|30 40|40 50|50 60|60 50|50
Top25|TopS10 in TopL25 32|50 36|40 48|70 60|80 52|80 48|70 44|70 44|90
Top50|TopS10 in TopL50 28|50 34|60 40|80 50|90 54|100 58|90 62|100 60|100
Top100|TopS10 in TopL100 36|90 42|90 46|90 48|100 58|100 66|100 70|100 64|100
Top1000|TopS10 in TopL1000 61|100 61|100 66|100 64|100 64|100 66|100 68|100 70|100
number of users x1000 2.5 4.9 6.4 7.9 11 15 18 20

Enabling Context Dependent Trust Ranking. In a second experiment we
consider the discussion context. Discussions in the utilized dataset take place
either in subdomain yro or tech. We show that it is reasonable to calculate
trust for particular situations reflected by context. We use six month of data from
January 2008 to July 2008 because in this interval the amount of discussions and
user distribution in both subdomains are nearly the same, thus results cannot
be influenced by the number of posts. Then we rank each user two times with
our algorithm, once for discussions in yro and once for tech. We rank only users
with more than 10 posts, which we defined earlier as the absolute minimum for
being trustworthy. There are in sum 14793 different users, where 5939 are only
active in yro and 6288 in tech. Other users participate in discussions in both
subdomains and thus, are ranked two times.

In Fig. 6 we compare how users are ranked with respect to both subdomains.
There is an amount of approximately 40 users who are both, in the top100
wrt. yro and in the top100 wrt. tech, hence these people are highly trusted
independent from the subdomain. However, there are around 60 users in the
top100 of one subdomain but badly ranked in the other one, or not participating
in discussions in the other subdomain at all. They are located in Fig. 6 in the
top-left quadrant for yro and in the bottom-right for tech respectively.

We conclude that between the sets of top100 trusted users wrt. each subdo-
main there is less overlapping than diversity. These results show the usefulness
of considering contextual data.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

ranks in yro

ra
n

ks
 in

 t
ec

h

Fig. 6. Link ranks in different contexts Fig. 7. Trust network (color online)

Trust and Reputation Mining in Professional Virtual Communities 89

Determining Individual Trust. In contrast to reputation, which is mostly
defined to be determined by the aggregated opinion of others, trust relies on
personal experiences. As described in [14] in typical online communities there
exist several clusters of users, which are tightly interconnected, but sparsely
connected to other clusters.

Compared to most common reputation systems, which maintain only one
global rank for each user from a global point of view, we are able to consider
trust relations from an individual view as well. Hence, for a particular user there
remain three possibilities to determine which users can be trusted: (i) trust
users with highest reputation from a global view (with or without respect to
context), (ii) trust the users who are directly connected strongest by utilizing
local metrics (however, these users may have only an average global reputation)
or (iii) combine both possibilities.

In Figure 7 we removed all connections with strength ≤ 5, and all users who
are either not in the top50L users of yro (red), tech (blue), or both (magenta),
or not connected to anyone else. Therefore, the most trusted users and their
strongest connections remain. The size of the circles representing users depends
on their rank they received in either yro (red), tech (blue) or both (magenta),
and the thickness of the lines reflect the connection strength. Obviously the trust
graph splits into several only sparsely interconnected components. This justifies
applying local metrics and selecting partners to trust with respect to strong
personal relationships, instead of using global ranks only.

8 Conclusion and Future Work

In this paper we proposed a system for collecting communication data and per-
forming trust determination within virtual communities. We demonstrated how
our mining algorithm is able to determine trust relationships between users, af-
ter they contributed a while within the community. In the evaluation part we
showed, that taking these trust relationships into account, the algorithm is able
to find sets of trusted users, which are similar to sets of users top rated by hu-
mans. We further proved the usefulness of the concept of context awareness and
considering local trust relationships.

In the next steps we plan to extend our framework to utilize more data sources.
Especially in service-oriented collaborative working environments not only com-
munication data, but task execution, resource utilization, and Web service in-
vocation logs are further possible sources for better expressing the diversity of
trust. We prepare our approach to be used in a project in the sector of net-
worked enterprises to test it under real conditions and to enable research about
influences of diverse interaction metrics on trust.

Furthermore, we plan to implement mechanisms to detect malicious attacks,
such as artificially pushing a user’s reputation rank. The evolvement of trust
over time, currently neglected by our algorithm, may provide a valuable source
of information about the long-term reputation of discussion participants.

90 F. Skopik, H.-L. Truong, and S. Dustdar

References

1. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems 43(2), 618–644 (2007)

2. The Economist: The role of trust in business collaboration. An Economist Intelli-
gence Unit briefing paper sponsored by Cisco Systems (2008)

3. IBM: An architectural blueprint for autonomic computing. Whitepaper (2005)
4. Welser, H.T., Gleave, E., Fisher, D., Smith, M.: Visualizing the signatures of social

roles in online discussion groups. Journal of Social Structure 8 (2007)
5. Nonnecke, B., Preece, J., Andrews, D.: What lurkers and posters think of each

other. In: HICSS (2004)
6. Meyer, K.A.: Face-to-face versus threaded discussions: The role of time and higher-

order thinking. Journal for Asynchronous Learning Networks 7(3), 55–65 (2003)
7. McLure-Wasko, M., Faraj, S.: Why should i share? examining social capital and

knowledge contribution in electronic networks. MIS Quarterly 29(1), 35–57 (2005)
8. Rheingold, H.: The Virtual Community: Homesteading on the electronic frontier,

revised edition. The MIT Press, Cambridge (2000)
9. Massa, P.: A survey of trust use and modeling in real online systems (2007)

10. Gyngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank.
In: VLDB, pp. 576–587 (2004)

11. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford University (1998)

12. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5), 604–632 (1999)

13. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: WWW, pp. 640–651 (2003)

14. Gomez, V., Kaltenbrunner, A., Lopez, V.: Statistical analysis of the social network
and discussion threads in slashdot. In: WWW, pp. 645–654. ACM, New York (2008)

15. Massa, P., Avesani, P.: Controversial users demand local trust metrics: An exper-
imental study on epinions.com community. In: AAAI, pp. 121–126 (2005)

16. Skopik, F., Truong, H.L., Dustdar, S.: VieTE - enabling trust emergence in service-
oriented collaborative environments. In: WEBIST, pp. 471–478 (2009)

17. Mui, L.: Computational models of trust and reputation: Agents, evolutionary
games, and social networks. Ph.D thesis, Massachusetts Institute of Technology
(December 2002)

18. Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE Com-
munications Surveys and Tutorials 3(4) (2000)

19. Marsh, S.P.: Formalising trust as a computational concept. Ph.D thesis, University
of Stirling (April 1994)

20. McKnight, D.H., Chervany, N.L.: The meanings of trust. Technical report, Univer-
sity of Minnesota (1996)

21. Wanas, N.M., El-Saban, M., Ashour, H., Ammar, W.: Automatic scoring of online
discussion posts. In: WICOW, pp. 19–26. ACM, New York (2008)

22. Feng, D., Shaw, E., Kim, J., Hovy, E.H.: Learning to detect conversation focus of
threaded discussions. In: HLT-NAACL. The Association for Computational Lin-
guistics (2006)

23. Billhardt, H., Hermoso, R., Ossowski, S., Centeno, R.: Trust-based service provider
selection in open environments. In: SAC, pp. 1375–1380. ACM, New York (2007)

24. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputa-
tion model for open multi-agent systems. Autonomous Agents and Multi-Agent
Systems 13(2), 119–154 (2006)

A Structured Approach to Data Reverse
Engineering of Web Applications

Roberto De Virgilio and Riccardo Torlone

Università Roma Tre, Italy
{devirgilio,torlone}@dia.uniroma3.it

Abstract. The majority of documents on the Web are written in HTML,
constituting a huge amount of legacy data: all documents are formatted
for visual purposes only and with different styles due to diverse author-
ships and goals and this makes the process of retrieval and integration of
Web contents difficult to automate. We provide a contribution to the so-
lution of this problem by proposing a structured approach to data reverse
engineering of data-intensive Web sites. We focus on data content and on
the way in which such content is structured on the Web. We profitably use
a Web data model to describe abstract structural features of HTML pages
and propose a method for the segmentation of HTML documents in spe-
cial blocks grouping semantically related Web objects. We have developed
a tool based on this method that supports the identification of structure,
function, and meaning of data organized in Web object blocks. We demon-
strate with this tool the feasibility and effectiveness of our approach over
a set of real Web sites.

1 Introduction

With the growth of the Internet, Web applications have become the most impor-
tant means of electronic communication, especially for commercial enterprisers
of all kinds. Unfortunately, many Web applications are poorly documented (or
not documented at all) and poorly structured: this makes difficult the mainte-
nance and the evolution of such systems. This aspect, together with the growing
demand to reimplement and evolve legacy software systems by means of modern
Web technologies, has underscored the need for Reverse Engineering (RE) tools
and techniques for the Web. Chikofsky describes RE as “the process of analyzing
a subject system to identify the system’s components and their interrelationships
and create representations of the system in another form or at a higher level
of abstraction” [6]. The Data Reverse Engineering (DRE) emerged from the
more general problem of reverse engineering: while RE operates on each of the
three main aspects of an information system (data, process, and control), DRE
concentrates on data and on its organization. It can be defined as a collection
of methods and tools supporting the identification of structure, function, and
meaning of data in an software application. In particular, DRE aims at recov-
ering the semantics of the data, by retrieving data structures and constraints,
and relies on structured techniques to model, analyze, and understand existing

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 91–105, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

92 R. De Virgilio and R. Torlone

applications of all kinds. It is widely recognized that these techniques can greatly
assist for system maintenance, reengineering, extension, migration and integra-
tion and motivate the add-on of a framework supporting the complete process of
data reverse engineering of Web applications. In this scenario, several approaches
have been proposed to convert HTML Web pages into more or less structured
formats (e.g. XML or relational tables). Usually, these approaches leverage the
structural similarities of pages from large Web sites to automatically derive data
wrappers (see [12] for a survey). Most of them rely on hierarchy-based algorithms
that consider any two elements as belonging to the same item when their cor-
responding HTML tags are located under a common parent tag in the DOM
tree [8,16]. However, when the HTML structure of a Web page became more
complicated, an item with several elements can be extracted incorrectly: related
elements may be visually positioned closely but textually located under different
parent tags in the tree hierarchy. Moreover, the result of the reverse engineer-
ing process is a repository of data (e.g., a collection of relational tables) that
is poorly processable without user supervision mainly because they take into
account the semantics of data only to a limited extent.

In this framework, we propose a structure discovery technique that: (i) iden-
tifies blocks grouping semantically related objects occurring in Web pages, and
(ii) generates a logical schema of a Web site. The approach is based on a page
segmentation process that is inspired by a method to group elements of a Web
page in blocks according to a cognitive visual analysis [5]. Visual blocks detection
is followed by a pattern discovery technique that generates structural blocks that
are represented in a conceptual model, called Web Site Model (WSM) [9]. This
model generalizes various (data and object oriented) Web models and allows the
representation of the abstract features of HTML pages at content, navigation
and presentation levels. Content and presentation are linked to these blocks to
produce the final logical schema of the Web site.

An important aspect of our approach is that we face with a highly heteroge-
neous collection of HTML documents. Specifically, we start from the observation
that even if HTML documents are heterogeneous in terms of how topic specific
information is represented using HTML markups, usually the documents exhibit
certain domain-independent properties. In particular, an HTML document ba-
sically presents two types of elements: block elements and text elements. The
former involve the document structure (i.e. headings, ordered/unordered lists,
text containers, tables and so on), the latter refer to text inside block elements
(e.g., based on font markups). Together, these elements specify information at
different levels of abstraction. We distinguish several types of blocks due to their
functionality in the page: (i) visual or cognitive, (ii) structural and (iii) Web
object. Starting from the visual rendering of a Web page, it is straightforward
to divide the page in well-defined and well-identifiable sections according to
the cognitive perception of the user. In these visual blocks we identify a set of
patterns that represent structures aggregating information. Each pattern is a
collection of tags. For instance the pattern HTML-BODY-UL-LI identifies a struc-
tural block that organizes related information as a list. By grouping patterns, we

A Structured Approach to Data Reverse Engineering of Web Applications 93

identify several Web object blocks representing aggregations of information in the
page that give hints on the grouping of semantically related objects. Each Web
object block represents a particular hypertextual element that organizes and
presents a content with a specific layout. We have developed a tool, called Re-
verseWeb, implementing the above mentioned methods to semi-automatically
identify structure, function, and meaning of Web data organized in Web ob-
ject blocks. ReverseWeb has been used to perform experiments on publically
available Web sites.

The paper is structured as follows. In Section 2 we present some related works.
In Section 3 we introduce the page segmentation technique to individuate visual
and structural blocks. In Section 4 we illustrate how we can identify blocks and
produce a logical description of the Web site. In Section 5 we show an architecture
of the tool and a number of experimental results and finally, in Section 6, we
sketch concluding remarks and future works.

2 Related Work

The literature proposes many methods and tools to analyze Web page structures
and layout, with different goals.

UML based approaches. The majority of Web Application reverse engineering
methodologies and tools rely on the Unified Modeling Language (UML). UML-
based techniques provide a stable, familiar environment to model components
as well as the behavior of applications. Among them, Di Lucca et al. have devel-
oped the Web Application Reverse Engineering (WARE) tool [10], a very well
documented example to RE. The approach is based on the Goals, Models and
Tools (GMT) paradigm of Benedussi and makes use of the Conallen UML ex-
tensions to represent information as package diagrams (use-case diagrams for
functional information, class-diagrams for the structure, and sequence-diagrams
for the dynamic interaction with the Web Application). Chung and Lee [7] also
adopt the Conallen extensions. They represent the Web content in terms of a
component diagram and the Web application in terms of a package diagram.
In general, all of these approaches focus on the behavior and interaction with a
Web Application, rather than on its organization.

Ontology based approaches. The basic idea of these approaches is to model a
Web application by means of an schema. Among them, Benslimane et. al [3]
and Bouchiha et. al. [4] have proposed OntoWare, whose main objective is the
generation of an ontological, conceptual representation of the application. The
authors criticize other approaches to reverse engineering because they do not
provide adequate support to knowledge representation (a position also supported
by Du Bois [11]). The ontological approach provides a high level analysis of a
Web Application but usually depends on the specific domain of interest. In
most cases, data extraction can only be done after a user intervention aimed
at building the domain ontology by locating and naming Web information [2].

94 R. De Virgilio and R. Torlone

Usually, the ontology based approaches rely on a specific formalism to represent
the structures extracted from Web pages. Lixto [2] is a tool for the generation
of wrappers for HTML and XML documents. Patterns discovered Lixto are here
expressed in terms of a logic-based declarative language called Elog.

Source code based approaches. Ricca and Tonella have proposed ReWeb [13], a
tool for source code analysis of Web Applications. They use a graph model to rep-
resent a Web application and focus on reachability, flow and traversal analysis.
The outcome of the analysis is a set of popup windows illustrating the evolution
of the Web Application. Vanderdonckt et al. [15] have developed VAQUISTA,
a framework to reverse engineering the interface of Web applications. The aim
of this work is to facilitate the migration of Web Application between different
platforms. VAQUISTA performs a static analysis of HTML pages and trans-
lates them into a model describing the elements of the HTML page at different
levels of abstraction. Antoniol et. al. [1] use an RMM based methodology. The
authors apply an RE process to identify logical links which are then used to
build a Relationship Management Data Model (RMDM). From the RMDM an
Entity-Relationship model is then abstracted. This is the end point of the reverse
engineering process. In general, all of these solutions produce a logical description
of a specific aspect of a Web application (mainly related to the presentation).

3 Extraction of Page Structure

3.1 Overview

Our approach is related to recent techniques for extracting information from the
Web [12]. As for most of these proposals, we start from the observation that data
published in the pages of large sites usually (i) come from a back-end database
and (ii) are embedded within shared HTML templates. Therefore the extraction
process can rely on the inference of a description of the shared templates. Though
this approach is applicable on Web documents, it does not exploit the hypertext
structure of Web documents. Our work focuses on discovering this structure as
well. Some research efforts show that users always expect that certain functional
part of a Web page (e.g., navigational links, advertisement bar and so on) appears
at certain position of a page1. Additionally, there exist blocks of information that
involve frequent HTML elements and have a higher coherence. That it to say,
in Web pages there are many unique information features, which can be used to
help the extraction of blocks involving homogeneous information.

To this aim we define a Data Reverse Engineering (DRE) process composed
by the following steps:

– Page Segmentation: each Web page in a Web site is segmented in several
blocks according to the visual perception of a user. Each resulting visual
block of a Web page is isolated and through an analysis of the DOM asso-
ciated with blocks, a set of structural patterns are derived. Differently from

1 For more details see http://www.surl.org/

http://www.surl.org/

A Structured Approach to Data Reverse Engineering of Web Applications 95

other approaches, this step combines a computer vision approach (to under-
stand the perception of users) with a DOM structure extraction technique
(which conveys the intention of Web authors).

– Schema Discovery: the derived patterns of each Web page, grouped in visual
blocks, suggest the clustering of pages in the Web site. Each cluster repre-
sents aggregations of semantically related data and is represented by a set
of structural patterns. Usually, a wrapper is generated to automate the ex-
traction of patterns and to structure the Web content associated with them
according to a logical model (e.g, the relational model). Differently from
these solutions, in this step we make use of a conceptual model to represent
Web data at content, navigation and presentation levels. The patterns of
each cluster are mapped into constructs of this model. Finally, based on this
conceptual representation, a logical schema of the Web site is extracted.

In the rest of this section, we will describe in detail the page segmentation phase,
providing algorithms to compute the structural patterns. In the next section we
will illustrate the schema discovery technique.

3.2 Page Segmentation

We start by exploiting the semi-structured nature of Web documents described
in terms of their document object model (DOM) representation. Note that DOM
poorly reflects the actual semantic structure of a page. However the visual page
layout structuring is more suitable to suggest a semantic partitioning of a page.
Therefore, we make use of the VIPS approach (Vision-based Page Segmentation)
[5], taking advantage from DOM trees and visual cues. The main idea is that:
(i) semantically related contents are often grouped together, and (ii) the page
usually divides the content by using visual separators (such as images, lines, and
font sizes). VIPS exploits the DOM structure and the visual cues and extracts
information blocks according to the visual perception. The output of VIPS as-
sociates with each is Web page a partitioning tree structure over visual blocks
(VBs). The resulting VBs present a high degree of coherence, meaning that they
convey homogeneous information within the page. Then we assign an XML de-
scription to the tree: each VB is identified by the path from the root of the page
in its DOM representation (considering also the available styling information
of class or id referring to the associated Cascading Style Sheet or CSS) and
is characterized by the position in the page. For instance, Figure 1 shows the
resulting partitioning tree and XML description of the home page of Ebay2.

Let us consider the visual block VB2 1 of Figure 1: it organizes information
using an unordered list of items. Figure 2 shows an extract of DOM and CSS
properties for VB2 1. The next phase analyzes each identified VB and discovers
repeated patterns representing aggregations of information with a shared struc-
ture. More in detail, in each VB we label any path from the root of VB to a node
using an hash code. A preorder traversal generates a sequence V representing a
vector of hash codes, as shown in Figure 2.
2 http:\www.ebay.com

http:www.ebay.com

96 R. De Virgilio and R. Torlone

...

<HTML-BODY-DIV.page-DIV.header>

<position x=’0’ y=’0’ w=’100’ h=’20’/>

</HTML-BODY-DIV.page-DIV.header>

<HTML-BODY-DIV.page-DIV.content>

<position x=’0’ y=’20’ w=’100’ h=’80’/>

<DIV.firstColumn>

<position x=’0’ y=’0’ w=’15’ h=’300’/>

</DIV.firstColumn>

<DIV.secondColumn-DIV.colContent>

<position x=’15’ y=’0’ w=’80’ y=’300’/>

</DIV.secondColumn-DIV.colContent>

...

</HTML-BODY-DIV.page-DIV.content>

...

VB1

VB2_1

VB2_2_1

VB2_2_2

VB2_2_3

VB1

VB2_1

VB2_2_1

VB2_2_2

VB2_2_3

Page

VB1

VB2

VB2_1

VB2_2

VB2_2_1

VB2_2_2

VB2_2_3

Fig. 1. Visual Partitioning of a Web page

UL

LI

SPAN

23

DIV

DIV

DIV

HTML

BODY

DIV

text

LI

A

DIV

text

LI

A

DIV

text

--

24 24 24

25 25 25

26 2629

30 31 31

VB2_1

...
(29)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-SPAN
(30)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-SPAN-#text

(24)HTML-BODY-DIV-DIV-DIV-UL-LI
(25)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV
(26)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A
(31)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A-#text

(24)HTML-BODY-DIV-DIV-DIV-UL-LI
(25)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV
(26)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A
(31)HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A-#text
...

V = … 29 30 24 25 26 31 24 25 26 31 …

… 29 30 (24 25 26 31)x …

a {
padding: 0;
text-decoration: underline;
}

div {
color: rgb(255,102,0);
font-size: 11px;
font-style: bold;
}

Fig. 2. Pattern searching

Finally we group repeated paths that represent patterns to identify. To this aim
we use an algorithm, called path-mark that gets inspiration from the dictionary-
based compression algorithm LZW [14]. Algorithm 1. illustrates the pseudo-code
of path-mark.

The algorithm manages a queue Q and a sequence V , and returns a map M
where each group of hash codes has assigned the number of its occurrences in
V . We generate V , initialize Q and M (lines 4 − 5) and make use of a window
(win) to scan the subsequences to analyze (line 7). win varies from one to half
of the length of V . So we extract a candidate subsequence (actual) of win length
and insert it in Q (lines 9 − 11). We compare actual with the top subsequence
(previous) in Q, previously analyzed, and if they are equal we count the number
of consecutive occurrences (counter) of actual in the rest of V moving with a win
scale. At the end we assign counter to actual in M (lines 12−22). Otherwise we
extract another subsequence and iterate the algorithm from the line 8. Referring

A Structured Approach to Data Reverse Engineering of Web Applications 97

Algorithm 1. Path-Mark
1: Input: A visual block VB
2: Output: A Map of occurring patterns in VB, each one related to its occurrences
3: begin
4: V ← HASHPREORDER(V B) // V is a sequence
5: EMPTY (M), EMPTY (Q) // M is a map and Q a queue
6: seq length ← LENGTH(V)
7: for win from 1 to seq length

2 do
8: for index from 0 to seq length − win do
9: previous ← DEQUEUE(Q)

10: actual ← SUBSEQUENCE(V, index, index + win)
11: ENQUEUE(Q, actual)
12: if actual = previous then
13: counter ← counter + 1
14: internal ← index + win
15: while internal < seq length do
16: next ← SUBSEQUENCE(V, internal, internal + win)
17: if actual = next then counter ← counter + 1
18: elseINSERT (M, actual, counter)
19: end if
20: internal ← internal + win
21: end while
22: end if
23: end for
24: end for
25: return M
26: end

29 30 24 25 26 31 24 25 26 31 29 30 24 25 26 31 24 25 26 31 29 30 24 25 26 31 24 25 26 31

29
30
24
25

30
24
25
26

30
24
25
26

24
25
26
31

24
25
26
31

31
24
25
26

*

win = 4

enqueue dequeue enqueue dequeue enqueue dequeue

Fig. 3. An execution of Path-Mark

to the example of Figure 2, we show an execution of the algorithm in Figure 3
with win = 4.

Ouralgorithmreturns a grouping suchas: (. . . , 29, 30, (24, 25, 26, 31)x, . . .).This
means that (24, 25, 26, 31) is a repeated path HTML-BODY-DIV-DIV-DIV-UL-LI-DIV-A

that presents a pattern UL-LI-DIV-A, where HTML-BODY-DIV-DIV-DIV is the root of
the container VB2 1.

4 Schema Discovery

In the previous section we have presented a technique to segment a Web page
into structural blocks representing aggregations of semantically related data. The
following step consists of generating a logical schema matching the discovered
patterns making use of the Web Site Model described in [9].

To this purpose, we get inspiration from the idea of Crescenzi et al. [8]: a Web
page p can be considered as a couple {ID, V B}, where ID is an identifier and
V B is the set of visual blocks, resulting by the VIPS segmentation. Each V Bi is

98 R. De Virgilio and R. Torlone

Page1

VB1

VB2

VB2_1

VB2_2

VB2_2_1

VB2_2_2

VB2_2_3

UL-LI-DIV-SPAN
UL-LI-DIV-A

Page2

VB1

VB2
UL-LI-DIV-A

Page3

VB1

VB2
UL-LI-DIV-A

DIV-FORM

DIV-FORM

UL-LI-DIV-SPAN
UL-LI-DIV-A
DIV-FORM

DIV-FORM
UL-LI-DIV-A

UL-LI-DIV-SPAN
UL-LI-DIV-A

--- ---

Page2

Page3

Page1

C1

C2

UL-LI-DIV-A{Page2, Page3, …}

Fig. 4. From pages to clusters

a collection of patterns pt1, pt2, . . ., identified by the path-mark algorithm shown
in the previous section. So we define the page schema of a Web page p as the
union of all patterns occurring in each visual block. Then we call link collection
in a Web page p all node-to-link patterns together with all the URLs that share
that pattern. For instance consider the Web pages Page1, Page2 and Page3 in
left side of Figure 4. They are described in terms of a tree of visual blocks. Each
block is associated with a set of patterns, identified by Algorithm 1. Both Page2
and Page3 have a page schema described by the set {DIV-FORM, UL-LI-DIV-A}
and the link collection {UL-LI-DIV-A{url1, url2, . . .}}. Page1 is associated with
the link collection {UL-LI-DIV-A{Page2, Page3, . . .}}.

We can establish a partial ordering between page schemas by introducing
the notions of subsumption and distance. Given two page schemas ps1 and ps2,
we say that ps1 is subsumed by ps2, ps1 � ps2, if each pattern pt in ps1 also
occurs in ps2. The distance between two page schemas is defined as the normal-
ized cardinality of the symmetric set difference between the two schemas. Let
us consider again ps1 and ps2, then dist(ps1, ps2) = |(ps1−ps2)∪(ps2−ps1)|

|ps1∪ps2| . Note
that if ps1 = ps2 (that is, the schemas coincide), then dist(ps1, ps2) = 0. If
ps1 ∩ ps2 = ∅ (the schemas are disjoint), then dist(ps1, ps2) = 1. Based on the
notions of page schema, subsumption and distance we then define a notion of
cluster as a collection of page schemas: a cluster is a tree {NC , EC , rC} where (i)
NC is a set of nodes representing page schemas, (ii) EC is a set of edges (ni, nj)
such that ni � nj , and (iii) rC is the root. In a cluster, a page schemas psi is
parent of a page schema psj if psi �psj, therefore the root of a cluster represents
the most general page schema in the cluster. Each page schema is associated with
a set of Web pages that match with it. To maintain clusters we use a thresh-
old dt. Given a cluster C and a page schema ps and the set of associated pages, ps

A Structured Approach to Data Reverse Engineering of Web Applications 99

can be inserted in C if dist(ps, rC) is lower than the given threshold dt3. For
instance, in right side of Figure 4 there are the clustering of Page1, Page2 and
Page3. Now we can define also a notion of cluster link : given a cluster C1 and
one of its pattern node-to-link pt, consider the link collections of the Web pages
in C associated with pt. We say that there exists a cluster link L between C1
and the cluster C2 if there are links in the link collections associated to pt that
point to pages in C2.

A relevant step in schema discovery is the computation of a useful partition
of Web pages in clusters, such that pages in the same cluster are structurally
homogeneous. Whereupon a crawler navigates a Web site starting from the home
page and an agglomerative clustering algorithm groups pages into classes. We
have designed an algorithm that builds a set of clusters incrementally. Algorithm
2. shows the pseudo code.

Algorithm 2. Compute Clusters
Require: n: max size of selected links subset
Require: dt: distance threshold for candidate selection
1: Input: Starting Web page p0
2: Output: the set of Clusters CL
3: begin
4: EMPTY (CL), EMPTY (Q) // CL is a set and Q a queue
5: INSERT (p0, CL, dt)
6: Q ← LINKCOLLECTION(p0)
7: while Q is not empty do
8: lc ← DEQUEUE(Q)
9: W ← PAGES(lc, n)

10: H ← ∅
11: while W is not empty do
12: W − {p}
13: INSERT (p, CL, dt)
14: H ∪ LINKCOLLECTION(p)
15: end while
16: while H is not empty do
17: H − {lc′}
18: ENQUEUE(Q, lc′)
19: end while
20: end while
21: return CL
22: end

The input of the algorithm is the home page p0 of the Web site, which is the
first member of the first cluster in the set CL (line 5). The output is the set of
computed clusters CL. From p0 we extract its link collections, and push them
into a priority queue Q (line 6). Then, the algorithm iterates until the queue is
empty. At each iteration a link collection lc is extracted from Q (line 8), and
a subset W of the pages (n) pointed by its links is fetched (line 9)4. Then the
pages in W are grouped according to their schemas (lines 11-15). The function
INSERT (p, CL, dt) inserts a page p into a cluster of CL all the pages whose page
schema has a distance from the root rC lower than the threshold dt. Basically,
we extract the page schema ps of p, by using the path-mark algorithm, and select
3 On the basis of our experiments, we have set dt = 0.4.
4 We assume that is sufficient to follow a subset of the potentially large set of links to

determine the properties of the entire collection.

100 R. De Virgilio and R. Torlone

the cluster C in CL whose root has the minimum distance from ps (lower than
dt). If there is no cluster satisfying these properties, we add to CL a new cluster
having ps as root.

Starting from the root of C, we insert ps (and p) into C as follows: (i) if there
is no child n of the root rC of C such that n � ps, then (a) ps becomes the
child of rC , and (b) each child n of rC such that p � n becomes child of ps; (ii)
otherwise, we insert ps in the sub-tree of C having as root the child n of rC such
that (a) n � ps, and (b) the distance between ps and n is minimum. Once ps
has be inserted in C, we move each n′′ such that (i) ps � n′′ and (ii) n′′ is at the
same level of ps, as a child of ps.

Then, we extract the link collections of p and update the queue Q (lines
16-19). In this process we assume that the links that belong to the same link
collection lead to pages that are similar in structure or with minor differences
in their schemas. Then we assign a priority to link collections by visiting the
fewest possible pages: an higher priority is given to link collections that have
many instances of outgoing links from the cluster. This means that long lists in
a page are likely to point pages with similar content (this is particularly true
when they are generated by a program), and therefore the next set of pages will
provide an high support to discover another cluster.

The final step of the schema discovery process consists of representing each
cluster according to our Web Site Model (WSM) [9]. The idea is to identify a
set of container tags representing candidates to be mapped. In particular we
refer to HTML tags that bring to information content in a Web page such as
UL,TABLE,DIV,BODY,. . .. Each pattern rooted in a tag container will be translated
into a metacontainer using a particular navigational structure (Index, Guided
Tour or Entry). We fix a set of heuristics for each construct of our model. Re-
ferring to the example of Figure 2 we map the pattern UL-LI-DIV-A into an Inde
because we have a heuristic that maps a pattern UL-LI-#-A with an Index. Each
metacontainer is identified by the path from the root to the container tag in
the DOM and presents several properties representing the occurring patterns
into the block. Then, we organize the data content according to the information
content associated to each pattern, and the presentation according to the style
properties associated in the Cascading Style Sheet, organized then in WOTs.
The root of each cluster is the representative page schema to describe in WSM.
As a example, Figure 5 shows the Web object blocks associated with the root
of cluster C1 shown in Figure 4 and the corresponding implementation in a
relational DBMS.

5 Experimental Results

On the basis of the methodologies and techniques above described, we have
designed a tool for data reverse engineering of data intensive Web applications
called ReverseWeb. Figure 6 shows the architecture of the tool.

The main modules of the tool are¿ (i) a PreProcessor (PP) and (ii) a Se-
mantic Engine (SE). The PP module is responsible to communicate with the

A Structured Approach to Data Reverse Engineering of Web Applications 101

Fig. 5. An example of Web object blocks

Fig. 6. The Architecture of ReverseWeb

crawler, to process a Web page by using a cleaner (Tidy available at http://

tidy.sourceforge.net/) and a DOM traverser, and to produce a structural seg-
mentation of the page. This segmentation is supported by a Feature Provider
that selects in a repository the segmentation feature to apply (i.e. VIPS and
Path-Mark). This choice makes the segmentation step modular and extensible.
The resulting XML description (as shown in Section 3.2) is taken as input by the
SE module that is responsible to map discovered patterns to metaconstructs of
our Web Site Model. The Block Processor supports the Page Collector to pro-
duce and manage the clusters of pages. The resulting set of clusters are taken as
input by the MetaContainer Provider component that processes the representa-
tive page schemas, maps single pattern to a construct by using a repository of
Plugins, containing the different heuristics, and returns the final logical schema.

ReverseWeb has a Java implementation. The crawling is multi-threading
makes use of an internal browser. The GUI has been realized with the SWT
toolkit5), which has been designed to provide an efficient and portable access

5 http://www.eclipse.org/swt/

http://tidy.sourceforge.net/
http://tidy.sourceforge.net/
http://www.eclipse.org/swt/

102 R. De Virgilio and R. Torlone

Table 1. Experimental Results on 1000 pages

DIA EBAY BUY WORD NBA
R .total (sec) 1050,80 2209,39 4589,95 1045,51 1232,68
R .avg (sec) 1,05 2,30 7,57 1,06 1,25
Page dim 471 1108 2054 477 1827
BF dim 179 631 1047 171 804
DRE quality 0,38 0,57 0,51 0,36 0,44

to the user-interface facilities provided by the operating system on which it
is implemented, and the NetBeans Visual Graph Library6. All algorithms and
heuristics have been implemented in Java. The CSS steady state Library7 has
been used to parse the presentation properties of a page.8

Plenty of experiments have been done to evaluate the performance of our
framework using an Apple computer xServer, equipped with an Intel Core 2
Duo 1.86 Ghz processor, a 4 GB RAM, and a 500 GB HDD Serial ATA. These
experiments rely on crawling 1000 pages and producing the logical page schemas
of the following Web sites:

1. DIA, the Department of Informatics and Automation of Roma Tre University
(http://web.dia.uniroma3.it/), and WORD, the Dictionary translator Web
Site (http://www.wordreference.com);

2. BUY (http://www.buy.com) and EBAY (http://www.ebay.com), two famous
e-commerce Web sites;

3. NBA (http://www.nba.com), a well known basketball Web site.

We measured the average elapsed time to produce a logical schema and the
accuracy of the result. In the table 1, for each Web site we show (i) the real time
in seconds (R. total) to produce a logical schema, (ii) the average time in seconds
(R. avg) to reverse a Web page, (iii) the average page dimension (Page dim) in
terms of number of nodes in the DOM, (iv) the average amount of nodes in the
DOM of the Web page, involved in the Web object blocks (correctly computed)
of the final page schema (BF dim) and (v) the DRE quality. The DRE quality
measures the accuracy to determine a correct set of Web object blocks as fol-
lows. We have adopted the following performance measure: Pr = Pagedim−BFdim

Pagedim

where Pagedim is the retrieved portion of a Web site and BFdim is the relevant
portion. Basically, Pr is the fraction of the Web site portion retrieved that is not
relevant to the schema information need. In other words Pr is the fraction of the
Web site portion containing Web content that user will not query.

Then, we define the DRE quality results as: DREquality = 1−Pr. This coeffi-
cient measures the effectiveness of the resulting logical schema. It compares the
average amount of nodes involved in the final schema with the average number

6 http://graph.netbeans.org/
7 http://cssparser.sourceforge.net/
8 More details on ReverseWeb can be found at http://mais.dia.uniroma3.it/

ReverseWeb, where an alpha version of the tool is publically available.

http://web.dia.uniroma3.it/
http://www.wordreference.com
http://www.buy.com
http://www.ebay.com
http://www.nba.com
http://graph.netbeans.org/
http://cssparser.sourceforge.net/
http://mais.dia.uniroma3.it/ReverseWeb
http://mais.dia.uniroma3.it/ReverseWeb

A Structured Approach to Data Reverse Engineering of Web Applications 103

of nodes for page. More specifically, the percentage of DOM nodes in a page
involved in the final schema. This coefficient is in a range [0,1]. If DRE quality is
too close to zero, this means that the system was not able to identify significant
blocks. Conversely, if the DRE quality is too close to one, the system had diffi-
culties to prune unmeaningly blocks. We have experimentally determined that
the best values of DRE quality are in the range [0.2,0.6].

The table provides interesting information about the structure of the analyzed
Web sites. DIA, WORD and NBA present the lowest values of R. total. This is
a consequence of the regular structure and homogeneity of information blocks
in the pages. Moreover they present an optimal DRE quality. EBAY and BUY
have higher elapsed times, due to their irregular structure of pages, relevant
heterogeneity of published information and great amount of non informative
nodes (e.g. banner, spots, and so on), typical in e-commerce Web sites. These
results are supported also by diagrams: Figure 7 illustrates the number of Web
object blocks and the average elapsed time with respect to the increasing number
of DOM nodes in a Web page for the Web sites BUY and NBA. They underline
the effectiveness and the add-on of our framework. In Figure 7 is shown the trend
of the number of Web object blocks with respect to the increasing number of
page nodes. NBA presents an average of 5 blocks for page. This implies that the
Web site presents a regular (and complex) structure. The regularity of the site
is due to common structure of the published information (regarding basketball
teams) and this is close to the reality. This regularity is also supported by the
stable average of the elapsed time, shown in Figure 7. Conversely, BUY presents
a variable structure of pages with an increasing trend of Web object blocks and

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

av
er

ag
e

el
ap

se
d

tim
e

(s
ec

)

n° page nodes

http://www.nba.com

0

10

20

30

40

50

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

av
er

ag
e

el
ap

se
d

tim
e

(s
ec

)

n° page nodes

http://www.buy.com

0

1

2

3

4

5

6

7

8

9

10

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

n°
se

m
an

tic
 b

lo
ck

s

n° page nodes

http://www.nba.com

0

20

40

60

80

100

120

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

n°
se

m
an

tic
 b

lo
ck

s

n° page nodes

http://www.buy.com

Average Elapsed Time Number of Web Entity Blocks

Fig. 7. Average elapsed time and Number of Web object blocks

104 R. De Virgilio and R. Torlone

0

0,2

0,4

0,6

0,8

1

D
R

E
 q

ua
lit

y

n° page nodes

http://www.nba.com

0

0,2

0,4

0,6

0,8

1

D
R

E
 q

ua
lit

y

n° page nodes

http://www.buy.com

Fig. 8. DRE quality

elapsed times. This is due to the different structure of published information with
(i.e., very different products such as art, Hi-Tech and so on). The DRE quality is
very good in all Web sites. It presents the best values for DIA, WORD and NBA,
over which ReverseWeb worked linearly. In Figure 8 we present the trend of
DRE quality with respect to the increasing number of visited nodes. NBA starts
with high values, due to the initial computation of clusters. However, as the
number of visited nodes increases, the performance improves and converges to an
average of 0,44. BUY has an average of 0,51. In summary, plenty of experiments
have confirmed the effectiveness of our framework to detect the organization of
a Web site.

6 Conclusions and Future Work

In this paper we have addressed the issue to Data Reverse Engineering (DRE) of
data-intensive Web Applications. DRE evolved from the more generic reverse en-
gineering process, concentrating on the data of the application and on its organiza-
tion. We have presented an approach to the identification of structure, function,
and meaning of data in a Web site. The approach relies on a number of struc-
tured techniques (such as page segmentation) and model-based methods aimed
at building a conceptual representation of the existing applications. Moreover, we
have evaluated the effectiveness of our approach by implementing a tool, called
ReverseWeb, and facing several experiments on different Web sites.

There are several interesting future directions. We are currently trying to
improve the segmentation step, by introducing new features in the preprocessing
phase. We intend to introduce a notion of polymorphism to optimize the mapping
between patterns and Web object blocks. Finally we plan to refine the clustering
technique by introducing a distance notion between pages and exploiting this
information in the segmentation phase.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Web Site Reengineering
using RMM. In: Proc. of Int. Workshop on Web Site Evolution, Zurich, Switzerland
(2000)

A Structured Approach to Data Reverse Engineering of Web Applications 105

2. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. In: Proc. of the 27th Int. Conf. on Very Large Data Bases (VLDB 2007),
Roma, Italy (2001)

3. Benslimane, S.M., Benslimane, D., Malki, M., Amghar, Y., Hassane, H.S.: Acquir-
ing owl ontologies from data-intensive web sites. In: Proc. of Int. Conf. on Web
Engineering (ICWE 2006), Palo Alto, California, USA (2006)

4. Bouchiha, D., Malki, M., Benslimane, S.M.: Ontology based Web Application Re-
verse Engineering Approach. INFOCOMP Journal of Computer Science 6(1), 37–46
(2007)

5. Cai, D., Yu, S., Wen, J.R., Ma, W.Y.: Extracting Content Structure for Web Pages
based on Visual Representation. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.)
APWeb 2003. LNCS, vol. 2642, pp. 406–417. Springer, Heidelberg (2003)

6. Chikofsky, E.J., Cross, J.H.: Reverse Engineering and Design Recovery: A Taxon-
omy. IEEE Software 7(1), 13–17 (1990)

7. Chung, S., Lee, Y.S.: Reverse Software Engineering with UML for Web Site Main-
tenance. In: Proc. of the 1th Int. Conf. on Web Information Systems Engineering
(WISE 2000), Hong Kong, China (2000)

8. Crescenzi, V., Merialdo, P., Missier, P.: Clustering Web pages based on their struc-
ture. Data Knowl. Eng. 54(3), 279–299 (2005)

9. De Virgilio, R., Torlone, R.: A Meta-model Approach to the Management of Hy-
pertexts in Web Information Systems. In: ER Workshops (WISM 2008) (2008)

10. Di Lucca, G.A., Fasolino, A.R., Tramontana, P.: Reverse engineering Web appli-
cations: the WARE approach. Journal of Software Maintenance 16(1-2), 71–101
(2004)

11. Du Bois, B.: Towards a Reverse Engineering Ontology. In: Proc. of the 2th Int.
Workshop on Empirical Studies in Reverse Engineering (WESRE 2006), Benevento,
Italy (2006)

12. Laender, A., Ribeiro-Neto, B., Da Silva, A., Teixeira, J.S.: A brief survey of web
data extraction tools. ACM SIGMOD Record 31(2), 84–93 (2002)

13. Ricca, F., Tonella, P.: Understanding and Restructuring Web Sites with ReWeb.
IEEE Multimedia 8(2), 40–51 (2001)

14. Tao, T., Mukherjee, A.: LZW Based Compressed Pattern Matching. In: Proc. of
the 14th Data Compression Conf (DCC 2004), Snowbird, UT, USA (2004)

15. Vanderdonckt, J., Bouillon, L., Souchon, N.: Flexible reverse engineering of Web
Pages with VAQUISTA. In: Proc. of the 8th Working Conf. on Reverse Engineering
(WCRE 2001), Stuttgart, Germany (2001)

16. Wong, T.-L., Lam, W.: Adapting web information extraction knowledge via mining
site-invariant and site-dependent features. ACM Transactions on Internet Technol-
ogy 7(1), 6 (2007)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 106 – 120, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Harnessing the Power of Semantics-Based,
Aspect-Oriented Adaptation for AMACONT

Matthias Niederhausen1, Kees van der Sluijs2, Jan Hidders3,
Erwin Leonardi3, Geert-Jan Houben2,3, and Klaus Meißner1

1 Technische Universität Dresden, Chair of Multimedia Technology,
01062 Dresden, Germany

{matthias.niederhausen,kmeiss}@tu-dresden.de
2 Eindhoven University of Technology

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
k.a.m.sluijs@tue.nl

3 Delft University of Technology
P.O. Box 5031, NL-2600 GA Delft, The Netherlands

{a.j.h.hidders,e.leonardi,g.j.p.m.houben}@tudelft.nl

Abstract. Adaptivity in web applications raises several concerns. One demands
it to be decoupled from the actual application and at the same time wants to use
very domain-specific terms for dividing the audience into groups. Two current
trends, aspect-oriented programming and semantic web technologies, fit these
requirements like a glove. In this paper, we present the AMACONT web modeling
framework and use it as an example of how to extend such a framework to make
use of these powerful technologies. The underlying concepts, however, can be
applied to the modeling of adaptivity in general.

Keywords: adaptation, aspect-oriented programming, semantic data.

1 Introduction

The concerns that must be considered when developing a web application are
numerous and often change over time, by current trends on the Web or the availability
of new technologies. Two such concerns that have emerged in the last years are the
demand for adaptivity to the context (e.g., serving content that has been prepared for a
special audience), and the need to actually model this context exploiting rich,
semantics-based models. While an application designer typically addresses the
audience in a high-level and often domain-specific way (e.g., “premium customers”),
the existing frameworks do rarely offer facilities for easily improving and extending
this context model. Further, in most cases the web application as such does already
exist and its application and adaptation logic should be extended with these additional
concerns. This raises the question of how an existing web framework can be extended
to provide accordant support.

In this paper, we present AMACONT, a web modeling framework that has its roots
in a component-based document format. We show how we extended the existing

 Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation 107

AMACONT framework with two independent mechanisms – aspect-oriented adaptation
modeling and semantics-based adaptation – for addressing the concerns of adaptivity
and context modeling. We believe that aspect orientation is a useful technique to model
aspects of an application that stem from separate concerns and appear throughout the
whole application, such as privacy and security. We further argue that semantics-based
adaptation can help to bridge granularity differences, e.g., between some available,
detailed individual customer information and the “premium customer” classification –
the rules for this classification can be more flexibly encoded in an ontology. Also it
allows for easier and more flexible inclusion of additional knowledge from external
ontologies such as customer preferences or product information, a type of flexibility
still lacking in most existing web engineering methods. The approach that we take for
extending the previous component-based document transformer gives a general recipe
for extending web application development tools with aspect-orientation and semantic
context modeling.

2 A Document Format for Adaptive Web Applications

AMACONT aims at enabling web engineers to design web applications tailored to
users' varying needs, device capabilities and context data such as the users' location.
As such, it is comparable to other web application design methods like SHDM,
WebML, WSDM, UWE, OO-H, OOWS and Hera-S (for a survey on these web
modeling approaches, cf. [11]). These methods typically separate concerns in the
design process by distinguishing several distinct, but related models. A typical
distinction is made into the following phases: (1) the underlying data model of the
data that is to be presented, (2) the application model that describes the web
application logic and (3) the presentation model that describes the exact lay-out and
presentation of the web pages. Moreover, they all either allow the (semi-)automatic
generation of code from their models or can interpret and execute them directly.

AMACONT provides a document format and a runtime environment, allowing for
both static and dynamic adaptations of content, layout and structure. Furthermore,
mechanisms for modeling dynamically changing context information like users’
device capabilities, preferences and locations are provided in order to guarantee that
adaptation is based on up-to-date context models.

2.1 Document Format

Targeting reuse of content, AMACONT employs a component-based document format
to model adaptive web applications [5]. As Figure 1 shows, components in AMACONT
can be classified into three different layers, with an orthogonal fourth Hyperlink layer.

The most basic components stem from the bottom layer of Media Components.
Examples of such elements are text fragments, images, CSS stylesheets and videos.

Often there are fragments that are closely related and typically used in conjunction,
like an image with a textual caption. By defining such semantic groups on the Content
Unit layer of AMACONT, authors can structure their applications.

Finally, there is the Document Component layer. It allows to structure a web
application further by grouping Content Units into larger components and further into

108 M. Niederhausen et al.

Document
Components

Content Unit
Components

Online Newspaper

Media
Components

Hyperlinks

Hyperlink
AggregationPolitics

Article

Music

Charts

Stock Exchange

Text Image Video Style-
sheet

Media
…

Content Unit

Image with
textual

explanation

Content Unit

Image with
audio

explanation

Content Unit

…

Article

Fig. 1. The AMACONT Component Model

Fig. 2. The AmaArchitect Authoring Tool

 Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation 109

web pages. AMACONT allows arbitrarily complex subcomponents, so that authors have
the freedom to organize their page structure in any way they want. Note that web
pages in AMACONT can be either modeled by structuring one document accordingly or
by splitting the definition up into a number of documents, similar to HTML files.

Orthogonal to these three layers, the Hyperlink layer is spanned. Hyperlinks in
AMACONT can reference components from all three levels. Thereby, it is easy to
create a link starting from a composed page element. Links can target either an
AMACONT file or an arbitrary component – or any custom URL.

In order to allow authors to easily create AMACONT applications, an Eclipse-based
authoring tool, the AmaArchitect1 has been designed and is constantly being
improved. Figure 2 shows a screenshot of the tool, where in the middle, depending on
the currently edited component, a specialized editor is shown. In the picture, this is an
editor visualizing the document structure of the project’s index page. At the bottom,
we also have a quick XML overview of the currently selected component.

The next section explains how adaptivity can be defined on top of such a base
document model in AMACONT.

2.2 Basic Adaptivity

As many other prominent web engineering approaches, AMACONT allows authors to
specify adaptation by the means of alternative document fragments, called variants.

Variants can be defined for any components (or fragments thereof) on the four
component layers. To this end, an adaptation construct must be created, consisting of
two general parts: a variants container and a selection condition header. As its name
suggests, the variants container contains alternatives for a given fragment, whereas
the number of alternatives is not limited. Such a variant can also be empty, leading to
the fragment’s removal. The selection condition header specifies the contextual circ-
umstances for showing each variant. At runtime, these conditions are evaluated to
determine the variant to select. The details of this process are discussed in Section 2.3.

By using variants, authors can specify static adaptation, i.e., chose from variants
that are known at design time. However, it is often desirable to include data that is
only available at runtime or that changes over time, e.g., database contents. In this
case, the actual content must be queried anew every time someone sends a request. To
this end, AMACONT has been extended with a dynamic content engine that builds on
component templates. Component templates are structured just like regular AMACONT
components, allowing for a seamless integration of dynamic content. The difference,
however, is that in their body they can refer to previously defined data fields. These
data fields are typically defined in the component’s head, by the means of an SQL
query. It is possible to access the data fields of queries of all parent elements, which
allows for an arbitrary nesting of queries. Further, component templates can be
iterated: multiple copies of such a component are instantiated, each filled with
different concrete values. By combining these features, it is possible to create
dynamic linked lists (e.g., a list of all book authors together with all their books).

The next section explains the pipelined process of adapting and serving an
AMACONT document in response to an HTTP request.

1 The tool can be downloaded at http://www.hyperadapt.net/AmaArchitect/

110 M. Niederhausen et al.

2.3 Publication Process

For each user request, the respective AMACONT document which contains variants for
all defined adaptation is fetched from the component repository and transformed in
various steps, according to the current context. To the overall process there are three
central elements: document generation, context modeling and context acquisition.
Figure 3 shows an overview of the whole process, while the following subsections
deal with the details of each component.

Fig. 3. The AMACONT Publication Process

2.4 Context Acquisition

Whenever a request is sent to an AMACONT web application, this request per se
contains some context data on the client, e.g., preferred content language and used
browser. As this little context information can hardly serve for rich adaptation,
AMACONT deploys additional sensor components on the client, embedded as Java or
JavaScript fragments into delivered pages. Sensor components can determine simple
data like the available screen resolution or track more complex information like the
user’s interactions with the page, or his location.

2.5 Context Modeling

On the server, the gathered sensor information is processed by the context modeling
components. An important component within the context modeling is the user
modeling [6]. It provides user modeling strategies that require explicit feedback (e.g.,
filling out questionnaires) as well as an automatic modeling mechanism that allows an
implicit analysis of user interactions. Context modeling also comprises device
modeling components that process sensed device capabilities. In addition, AMACONT

 Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation 111

also provides location modeling mechanisms that can be used to develop and deploy
location-based services [7].

In order to be accessible by a broad range of web applications, AMACONT offers an
extensible context model. It stores data in different context profiles. Each profile relies
on CC/PP2, an RDF grammar for describing device capabilities and user preferences
in a standardized way. Context modeling and sensor components for user, device and
location profiles have already been implemented and are in detail presented in [7]. In
order to support the addition of further context modeling techniques, the framework
provides generic extension mechanisms for adding new sensor components and
context modelers.

2.6 Document Generation

Each requested document passes the publication pipeline where it is adapted
according to the context model. To this end, elements are removed from the document
containing all variants to eventually leave only the desired, adapted information. The
last step of the pipeline carries out the transformation to a specific output format, such
as XHTML or WML. The resulting document can then be delivered to the specific
target device where it is rendered accordingly. For a detailed description of the
adaptation pipeline, see [6].

3 Leveraging Aspect-Orientation for Modeling Adaptation

The variant-based adaptation concept in AMACONT presented in the previous section
allows for a maximum flexibility, but reduces the overall reusability in the web
application. As variants contain altered duplicates of the original component to cater
for the special needs of users or devices, there is lots of duplicate content in the web
application, which the author has to change consistently when making changes.
Additionally, in an adaptive web application variants are spread all over the
documents, missing some sort of connection that groups them by their goal (e.g.,
grouping all variants that cater for adaptation to the user’s device). In order to
maximize reusability and embrace the evolution of web applications, we extended
AMACONT with a second concept for modeling adaptation: aspect-orientation. We
argue that this allows us to separate the adaptation model from the rest of the
application while offering an intuitive grouping mechanism for adaptation fragments.

3.1 Fundamentals of Aspect-Oriented Adaptation

Aspect-oriented programming (AOP) has been designed for “classic” desktop
applications. The paradigm that AOP proposes is separation of concerns. Code that is
spread throughout an application (i.e., logging or access restriction) is outsourced into
isolated modules called aspects. These aspects are automatically merged with the
base application (i.e., the application without the orthogonal concerns) at a later time,
in a process called weaving.

2 Composite Capability/Preference Profiles, http://www.w3.org/Mobile/CCPP/

112 M. Niederhausen et al.

3.2 Aspect-Orientation in Other Web Application Models

The idea of aspect orientation can already be found in UWE, where specific types of
adaptation such as link hiding, link annotation and link generation were separated into
different aspects ([1]). Also the UML-based WebML was redesigned with aspect-
oriented features for the purpose of modeling ubiquitous web applications ([10]).
AMACONT mainly differs from these approaches in that we transfer the AOP concept
to the level of XML documents, allowing arbitrary transformations.

3.3 Aspect-Orientation in AMACONT

AMACONT employs traditional AOP concepts: the base is a regular web application,
that is, typically without adaptivity. On top of such existing web applications, authors
can instantiate adaptation concerns (Figure 4) that group adaptation on a requirement-
level. Typical examples of adaptation concerns are device independence, location
awareness, internationalization or role-based access.

Because concerns offer only a high level view, adaptation is further subdivided
into adaptation aspects. These are medium-sized adaptation fragments that allow
authors to impose an order on the weaving process, which is needed for a predictable
result, as the weaving order generally plays a decisive role in AOP (e.g., see [9]).

Finally, the smallest possible piece of adaptation is an advice. Advices describe
how to transform a given component within an AMACONT document. To this end,
they may instantiate adaptation patterns, i.e., reusable transformations that resemble
typical adaptation techniques like the ones identified by the hypermedia community
([3, 4]). The adaptation patterns available to the author differ, depending on the
adaptation concern he is working on. We already have implemented a number of
patterns, e.g., first sentence elision, image rescaling or layout change for instant use.
Still, authors are free to define their very own patterns to achieve any adaptation
effect they want. Advices also contain an adaptation precondition, similar to classic
variants, that specifies the circumstances under which to perform the transformation.
Finally, advices are connected to the web application via their pointcut. The pointcut,
expressed in XPath, is a reference to one or many AMACONT components. Therefore,
it is possible to easily apply one advice to an arbitrary number of components.

Fig. 4. Aspect Model of AMACONT Adaptation

 Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation 113

An adaptation model based on aspects can be stored either for every AMACONT
document or for the whole web application. The aspect weaver then has the task to
merge this model with the base application.

3.4 Aspect Weaving in AMACONT

For weaving aspects, AMACONT offers two general choices: weaving at design time
and weaving at run time.

Design time weaving offers one obvious advantage: Because it is a one-time
process of generating alternative variants, it creates only a neglectable overhead.
Then, at run time the server only needs to decide which (pre-made) variant to choose
for a user. However, the greatest disadvantage of design time weaving is the inability
to cover dynamic adaptation. For example, it is not possible to insert a user’s name
into the document, because that data is not known at design time.

In contrast, run time weaving shows opposite characteristics: Working with
dynamic data is no longer a problem, while the downside is that it requires weaving at
every request, thus reducing performance. But weaving at run time offers some more
advantages: depending on the server load, it becomes possible to “deactivate” costly
aspects temporarily. Moreover, it is possible to create alternative aspect
configurations that are chosen dynamically based on the context. For example,
authors could model three different levels of location awareness and base the
selection on whether the user is a paying customer.

With aspect-oriented adaptation, web engineers are able to nicely separate
adaptation from the rest of the web application. However, adaptation preconditions
still show a semantic gap. While the AMACONT context model can only supply
generic information on the user, his device and context, adaptation authors typically
think in terms of higher granularity, e.g., “all returning customers from around
Dresden”. In the next two sections, we present a new approach for bridging this gap.

4 Semantics-Based Adaptation

One of the important issues in improving and making adaptation more sophisticated is
to incorporate semantic web technology in AMACONT, allowing us to specify the
meaning of the data by using meta-data and ontologies, and define their relationship.
This enables applications to tie, exchange, and reuse data from different external data
sources, including the data resources on the Web. Consequently, this is useful to
reduce the knowledge load for adaptation conditions, as well as to simplify queries, or
even use knowledge that is not available at design time. The semantic web technology
also makes reasoning about the data by applications possible, allowing the semantic
gap between data to be bridged. Therefore, by exploiting the semantic web
technology, AMACONT is able to provide adaptation in a richer and more flexible way.
And even though some work has been done on utilizing external knowledge for
adaptation purposes (e.g., [8]), we do not know of another approach that applied
external knowledge to simplify adaptation.

In order to make the semantic information of data accessible to the applications,
they have to be represented in a machine-accessible format. W3C has released the

114 M. Niederhausen et al.

Resource Description Framework (RDF, cf. http://www.w3.org/RDF), a standard data
model for representing meta-data and describing the semantics of information in a
machine-accessible way. RDF defines statements about information resources in the
form of subject-predicate-object expressions called triples. As the subject of one
statement can be the object of another, a collection of statements forms a directed,
labeled graph. There are several syntaxes to represent RDF, like an XML
serialization, but obviously the interesting concept is the graph-based model that lies
behind it. RDF statements can be stored in RDF repositories like Jena (cf.
http://jena.sourceforge.net) or Sesame (cf. http://www.openrdf.org). For accessing
information stored in RDF repositories, there are several RDF query languages (e.g.,
SeRQL [2] and SPARQL (cf. http://www.w3.org/TR/rdf-sparql-query)).

In this project, we use SPARQL as the RDF query language that is a W3C
standard. As an example of a simple SPARQL query, consider the following:

PREFIX geo: <http://www.geography.org/schema.rdf>
SELECT ?capital ?country
WHERE { ?x geo:cityname ?capital ;
 geo:isCapitalOf ?y .
 ?y geo:countryname ?country ;
 geo:isInContinent geo:Africa . }

The PREFIX clause is used to define namespace prefixes. The namespace geo is

bound to the a URL that specifies geographical domain concepts. The SELECT clause
lists the variables for which bindings will be returned. Note that variable names are
always preceded with “?”. The WHERE clause provides the graph patterns to be
matched against the data graph. The “;” notation is used to list triples that start with
the same subject. So, the above query looks for a city object ?x with the name
?capital. Furthermore, ?x is the capital of country ?y, and ?y must have the name
?country and be in the continent of Africa. Finally, it returns all combinations of
?capital and ?country for which these triples exist.

We now look at how we use a semantics-based adaptation extension in AMACONT
to overcome granularity issues. Let us first look at the problem at hand, by looking at
an example. Suppose we want to select the language in which we present pages in our
application, based on where a user lives. In this way we could choose to give someone
who lives in Germany a German version of the page, and other users the English
version of the page. However, suppose we have a user model that contains the
following location information about a user (in abbreviated TURTLE3 syntax):

:userJohn :livesin :cityX

 a :city;
 :cityname “Dresden” .

In other words, we only know in this case that user “John” lives in a city called

“Dresden”. The question is now where we get the knowledge from to understand that
Dresden lies in Germany so that we should give user “John” the German version of
the page. One possible solution would be of course to extend the user model so that it

3 Cf. http://www.w3.org/TeamSubmission/turtle/

 Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation 115

also contains the information that user “John” also lives in the country of Germany,
and ask the user for this information. However, this would bother the user with
additional questions while we could already deduce the country from the city. Even
though it might still be possible to ask the user in this concrete example, one can
easily think of cases where this is not viable or even possible (e.g., if the information
is not known at design time). Another possibility would be to extend the adaptation
query with an enumeration of all German cities, which obviously is also not really
viable as it would be extremely laborious to write such queries and their performance
would suffer dramatically. We take another approach by exploiting the knowledge of
RDF and OWL ontologies (cf. http://www.w3.org/2001/sw) to solve our granularity
problem. Many of such ontologies are freely available on the Web and can be reused
for our purposes.

We consider an example in which we add multilinguality via aspect orientation.
Given that we have an application in default English with a set of text objects in
English, we added translations of those objects in German with a derived name
pattern de/%name%. We can now add the following aspect-oriented adaptation:

 <aspect id="ML1" concern="Internationalization">
 <advice>
 <pointcut>
 <condition>

 <aada:Sparql>
 SELECT ?country

 WHERE { $CurrentUser :livesin ?country
 a :country ;
 :name “Germany” . }

 </aada:Sparql>
 </condition>
 <target>
 <xpath>//AmaTextComponent</xpath>
 </target>
 </pointcut>
 <pattern id="ReplaceComponentByName">
 <parameter id="replacePattern">de/%name%</parameter>
 </pattern>
 </advice>
 </aspect>

This aspect oriented adaptation condition expresses that if the user is from Germany
(denoted by the SPARQL query to the user model), we want to replace all (English)
text elements by their German translation (with path de/%text%). If the user is not
from Germany we just present the default English text (and thus do not adapt
anything). Please note here that $CurrentUser is an AMACONT variable (denoted by
the $-sign) that is substituted at run time with the actual identifier for the current user.

We now have to deal with the fact that the {:livesin ?country} pattern is not
in our user model. Therefore, we first select an appropriate ontology that allows
making the semantic connection we need, in our case between a city and the country
it resides in. A good candidate for this case is the GeoNames Ontology4. This
ontology simply provides us with additional knowledge:

4 Cf. http://www.geonames.org/ontology/

116 M. Niederhausen et al.

geo:6551127 geo:Name “Dresden, Stadt” ;
 geo:inCountry geo:DE .

In plain English this means that we have an object with id “6551127”, which
apparently represents the city of Dresden and has a direct property which connects it
to Germany (“DE”) via the geo:inCountry property. This is a very fortunate simple
example, as every location within a country has this inCountry element. However, it
could also be necessary to follow more complex paths. If we need more information
about the country of Germany (e.g., its population), we would have to follow the
complete chain

Germany » Saxony » Regierungsbezirk Dresden » Kreisfreie Stadt Dresden »
Dresden, Stadt

to find the Germany URL, namely geo:2921044.

As we can via this ontology make the connection between Dresden and Germany,
we can conclude that the user lives in Dresden and therefore in Germany. In order to
achieve that, we of course need to do some configuration in AMACONT.

We first need to align the location name in our local ontology (e.g., “Dresden”)
with the location name in the geo ontology (e.g., “Dresden, Stadt”). If these concepts
are identical (for instance, by design), then no further configuration is needed in
AMACONT. Otherwise, we can make a manual alignment for every user, or a (semi-)
automatic alignment. The last can be configured by specifying two SPARQL queries.

We then first specify the following construct in our AMACONT configuration to
indicate an alignment step:

:align [sourceConceptQuery “query1 details” ;
 targetConceptQuery “query2 details” ;]

Now we fill in the query details. For the source concept we specify which concept in
the UM we want to connect with a target concept of our specialized ontology. In
simple cases we allow for simple declarations like for “query1” in this case:

?city a um:City

Here we specify that we want to select all concepts of type city of the UM vocabulary,
i.e., the only variable. For “query2”, the target concepts, we specify a (somewhat
simplified) SPARQL query of how to find the aligned city in the geo ontology. In this
query we can align the result by using it for query1, referring to it by the variable
$city. The “query2” could then look like this:

SELECT ?feature
WHERE {

 ?feature a geo:Feature ;
 geo:featureCode geo:P.PPL ;
 geo:name ?name ;
 geo:population ?population .

 FILTER (regex(?name, $city))
 }

ORDER BY DESC(?population)

 Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation 117

In this query we are looking for a “feature” (in GeoNames terminology) that has the
featureCode geo:P.PPL (code for city) and the name should contain the original city
name indicated by the AMACONT variable $city in the FILTER clause. Note that we
assume that the target location here contains the city name of the source as a substring
(i.e., this might be a limitation for more complex searches that cannot be expressed
like this). We also include “?population” in our search to solve ambiguity issues.
Suppose that there are more cities in the world that are called Dresden (actually six
such cities/towns exist in the USA), so we have to find a heuristic to determine the
most probable target concept. For our example, we use the heuristic that the most
populated city is the most probable one. We order the results by population and, in the
case of more than one result, we use the first result as the target concept.

We have now aligned concepts in our user model to concepts in our helping
ontology. After alignment we want to specify a reasoning rule that defines how
knowledge in the helping ontology extends the knowledge in our user model. In our
case, we define an entailment rule that specifies that if a user lives in a city, he also
lives in the country in which that city is located. This rule is basically of the form:

?X :livesin ?Y>
?X :livesin ?Z>

?Y rdf:type :city>
? Z rdf:type :country>

?Y geo:inCountry ?Z>

< ⎫
<⎧⎪< ⇒⎬ ⎨<⎩⎪< ⎭

This (syntactically simplified) inference rule specifies that if X lives in Y of type city,
then X also lives in the country in which Y is located. By applying this entailment
rule, we can deduce that John who lives in Dresden, also lives in Germany and thus
should get the German welcome page. With this configuration, AMACONT can now
effectively use the external ontology to solve granularity issues in our user model.

5 Implementation

Both the proposed aspect-oriented modeling approach and the semantics-based
adaptation have been implemented in AMACONT‘s publication pipeline, enabling
authors to make use of the new features.

For aspect orientation, we extended the document generation pipeline by adding
another transformation component before the adaptation transformer (Figure 5, green
parts have been added/extended). This way, we can weave adaptation aspects at
runtime, but still allow authors to use the more generic static variants, which are then
processed by the existing adaptation transformer.

The aspect weaver takes as input an AMACONT document together with an
adaptation description. It then tries to match the advice’s pointcuts as specified in the
adaptation description with the components in the input document. The following
code snippet shows an extract from the aspect-oriented adaptation definition, resizing
all images in the navigation bar if the user accesses the application with his PDA.

118 M. Niederhausen et al.

 <aspect id="RI1" concern="ResolutionIndependence">
 <advice>
 <pointcut>
 <condition>
 <adaptationclass>Device_PDA</adaptationclass>
 </condition>
 <target>
 <xpath>//*[@id=”nav”]/aco:AmaImageComponent</xpath>
 </target>
 </pointcut>
 <pattern id="ReduceImageSizeByTranscoding">
 <parameter id="ratio">0.5</parameter>
 </pattern>
 </advice>
 </aspect>

If a match is found, the advice’s transformation is executed, modifying the affected

components. Advices are executed one after another, depending on the order specified
by the author.

Fig. 5. The Extended AMACONT Document Generation Pipeline

In order to add the new semantic web capabilities, we have chosen to base our
implementation on the open-source RDF framework Sesame5. Sesame offers a good
level of abstraction on connecting to and querying of RDF storages, similar to
JDBC.

We have extended both the existing adaptation transformer and the new dynamic
weaver to not only support terms that rely on the local context model, but also to
process SPARQL statements. These statements are evaluated at runtime, replacing
AMACONT variables and finally querying the corresponding SPARQL endpoint.

Queries can be added to conditions of both variants and adaptation advices by
encapsulating them via the new Sparql element in an If term:

5 http://www.openrdf.org/

 Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation 119

 <aada:Sparql>
 SELECT ?conceptVisits
 WHERE { $CurrentUser :livesin ?country
 a :country ;
 :name “Germany” . }
 </aada:Sparql>

The SPARQL syntax itself is not touched, just extended with the notion of AMACONT
variables (denoted with a preceding $), which are replaced before running the query.

6 Conclusion and Future Work

In this paper we have presented methods for extending an existing web application
framework with orthogonal facilities for adding adaptivity and for extending the user
context modeling with semantics. To this end, we have applied aspect-oriented
techniques to the modeling of adaptivity on the one hand and concepts and
technologies from the semantic web for building and accessing a rich context on the
other hand. We have illustrated this in terms of AMACONT, but these techniques are
suitable for enhancing web application frameworks in general.

As a continuation of our work, we plan to further combine both worlds by allowing
authors to use semantic web techniques for specifying the content of a web
application. An example use case for this is displaying Wikipedia pages of local
sights. By using an ontology, sights within a greater area around the user’s location
(not only within the same city) can be recommended in a tourist guide. Aspect-
orientation can then be used to add adaptation on top of such content, providing
support for orthogonal adaptivity on all three application layers: content, structure and
presentation. Another point is evaluation of the system’s performance, especially
measuring scalability. In our implementation we found no performance issues given
that we use a relatively straightforward application and mid-sized ontology. However,
as Semantic Web reasoning applications typically run into scalability issues, we want
to explore the scalability limits of our approach. Finally, we plan to extend our
authoring tool, AmaArchitect, to provide authors with means for dealing with the new
semantic context. Authors could thus browse datasources and select from the concepts
and relations available there.

Acknowledgements. Part of this work is funded by the German Research Foundation
(DFG) within the project “HyperAdapt”.

References

[1] Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling adaptivity with aspects. In:
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 406–416. Springer,
Heidelberg (2005)

[2] Broekstra, J., Kampman, A.: An RDF Query and Transformation Language. Springer,
Heidelberg (2006)

[3] Brusilovsky, P.: Adaptive navigation support. In: Brusilovsky, P., Kobsa, A., Nejdl, W.
(eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 263–290. Springer, Heidelberg (2007)

120 M. Niederhausen et al.

[4] Bunt, A., Carenini, G., Conati, C.: Adaptive content presentation for the web. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp.
263–290. Springer, Heidelberg (2007)

[5] Fiala, Z., Hinz, M., Meißner, K., Wehner, F.: A component-based approach for adaptive
dynamic web documents. Journal of Web Engineering 2(1&2), 058–073 (2003)

[6] Hinz, M., Fiala, Z.: Amacont: A system architecture for adaptive multimedia web
applications. In: Workshop XML Technologien für das Semantic Web (XSW 2004),
Berliner XML Tage (October 2004)

[7] Hinz, M., Pietschmann, S., Fiala, Z.: A framework for context modeling in adaptive web
applications. IADIS International Journal of WWW/Internet 5(1) (June 2007)

[8] Krištofič, A., Bieliková, M.: Improving adaptation in web-based educational hypermedia
by means of knowledge discovery. In: HYPERTEXT 2005: Proceedings of the sixteenth
ACM conference on Hypertext and hypermedia, pp. 184–192. ACM, New York (2005)

[9] Nagy, I., Bergmans, L., Aksit, M.: Composing aspects at shared join points. In:
NODe/GSEM, pp. 19–38 (2005)

[10] Schauerhuber, A., Wimmer, M., Schwinger, W., Kapsammer, E., Retschitzegger, W.:
Aspect-oriented modeling of ubiquitous web applications: The aspectwebml approach. In:
Engineering of Computer-Based Systems, 2007. ECBS 2007, Tucson, Arizona. 14th
Annual IEEE Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, pp. 569–576. IEEE
Computer Society, Los Alamitos (2007)

[11] Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M., Pröll,
B., Cachero Castro, C., Casteleyn, S., De Troyer, O., Fraternali, P., Garrigos, I., Garzotto,
F., Ginige, A., Houben, G.J., Koch, N., Moreno, N., Pastor, O., Paolini, P., Pelechano
Ferragud, V., Rossi, G., Schwabe, D., Tisi, M., Vallecillo, A., van der Sluijs, K., Zhang,
G.: A survey on web modeling approaches for ubiquitous web applications. International
Journal of Web Information Systems 4(3), 234–305 (2008)

Model-Driven Web Engineering for the Automated
Configuration of Web Content Management Systems

Jurriaan Souer1, Thijs Kupers1, Remko Helms2, and Sjaak Brinkkemper2

1 GX, Wijchenseweg 111, Nijmegen, The Netherlands
{jurriaan.souer,thijs.kupers}@gxwebmanager.com

http://www.gxwebmanager.com
2 Department of Information and Computing Sciences,

Utrecht University, Utrecht, The Netherlands
{r.w.helms,s.brinkkemper}@cs.uu.nl

http://www.cs.uu.nl

Abstract. With the growing use of Web Content Management Systems for the
support of complex online business processes, traditional implementation solu-
tions proofed to be inefficient. Specifically the gap between business require-
ments and the realized Web application should be closed. This paper presents the
development of a modeling tool for the automated configuration of Web Content
Management Systems (WCM) which aims to reduce the complexity and increase
the transparency of implementations. It allows business users to configure the
business processes without technical support. We combine fragments of exist-
ing Web Engineering methods and specify an abstract and concrete syntax based
on a domain model and end user analysis. The resulting WebForm Diagram has
been implemented in a prototype and validated by subject matter experts. This re-
search is part of a project to develop the Web Engineering Method (WEM) which
provides an overall method towards a full coverage of the specification, design,
realization, implementation and maintenance of WCM-based Web applications.

1 Introduction

The World Wide Web has evolved towards a platform for sophisticated enterprise ap-
plications and complex business processes. In result, the effort of time specifying and
developing these Web applications reflects the complexity of these applications and
business processes. An industry solution to improve development time and stability is a
Web Content Management (WCM) system which is product software with out-of-the-
box functionalities and allow for specific customizations [26].

Customizing WCM systems to implement business processes is a difficult task. In
this context we developed the Web Engineering Method (WEM) as a method to man-
age and control web applications and web sites based on WCM systems [28]. WEM de-
scribes a complete development and implementation process of Web Engineering based
on WCM systems as defined by Kappel et al [8]: requirements analyses, design, imple-
mentation, testing, operation, and maintenance of high-quality Web applications [25].

The central problem we are addressing in this paper is that there is a gap between the
requirements analysis in WCM implementations (usually defined by business users or

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 121–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

122 J. Souer et al.

online marketers) and the realization of those requirements (usually done by technical
developers or software engineers). Therefore our leading research question is: ‘how to
automatically configure a WCM System based on requirements’. Note that we do not
try to create a WCM system, but configure an exsisting WCM for the development of
Web Applications. We focus on the configuration of business processes and defined
the following goals:(1) Develop an unambiguous form definition to model a business
process; (2) Automatically configure a WCM system based on the business process
model; and (3) Generate a business process model based on a configured WCM system.
This paper presents a new approach for an automated configuration of WCM systems
using a modeling tool. The contribution of this research consists of a Model Driven
Engineering (MDE) approach for the configuration of WCM software and a unique
concrete and abstract syntax to model WCM systems. Secondly, we implement the
MDE specification as a prototype and used it to model an actual project situation.

The rest of this paper is organized as follows: In Section 2 we introduce the Web-
Form Diagram which is the result of this research. Section 3 elaborates on the problem
area analysis which resulted in the WebForm Diagram including a domain model, a
user analysis and a comparison of existing web engineering methods. In section 4 we
formally specify the WebForm Diagram and describe the development of a prototype
which is evaluated in section 5. Finally conclusion and future work are discussed in
Section 6.

2 The WebForm Diagram

The WebForm Diagram is a visual language for the specification of online business
processes. It is developed to cover all online form variables within a web-based appli-
cation.

As an example of the realized WebForm Diagram we refer to Figure 1 that models
a user registration scenario from a real life case: it illustrates how a new user can en-
ter his account information, some personal information and after validation by e-mail
and text messaging he is allowed to enter the registered area. However, there are some
conditions which the system and user should meet and during the process some system
processes and database access are initialized. The purpose of this research is to allow
functional users to model such a form and automatically configure a WCMS to support
this process. We detail this form in the following sections.

2.1 Steps, Routers, Validation, and Handlers

In the WebForm Diagram, the screens of the form dialogue which are actually presented
on a Website are called steps and are visualized with rounded rectangles. A single step
can have multiple formfields such as text input, list item, checkbox, etc. A typical first
step of a user registration process has two formfields: desired username and password.
The form displayed in Figure 1, has 5 steps starting with ‘Account Info’. Individual
formfields are not displayed in this top level view of the WebForm Diagram. However,
the diagram allows users to detail steps.

Model-Driven Web Engineering for the Automated Configuration 123

Fig. 1. Example of a business process modeled with the WebForm Diagram

Steps are connected with routers which are visualized by arrows between steps.
After each step, a form is routed to another step. In the form in Figure 1, after the user
enters his username and password in the ‘Account info’ step the system will try to route
him to the step ‘Personal Information’.

The flow of the routers depends on certain conditions which are known as valida-
tions. These validations are visualized with a diamond. For example, the user can only
register when the registration service is set to ‘on’ which is the first validation after
step ‘Account Info’ in Figure 1. Otherwise he will be routed to the web page ‘Log-in
Impossible’.

Between steps, the WebForm Diagram can perform actions which we call handlers
and are visualized with a small square containing an icon inside representing the func-
tional behavior of the handler. A handler can for example access a database to check the
user id, send a confirmation e-mail or check the user credentials with an authorization
server by SOAP.

Hence a complete online business process is a logical flow of steps which are routed
in the correct way, with validated input fields and correct handling of the data.

2.2 Formalizing the WebForm Diagram

To develop our WebForm Diagram, we formally specified the syntax to define the logic.
The WebForm Diagram relies on the Model Driven Engineering paradigm [10]. MDE
is in accordance with the objectives of this research: configuration of a software sys-
tem based on a model [20]. MDE uses models as a primary artifact in the development
process and consists of a Domain Specific Modeling Language (DSML) and a trans-
formation mechanism [29] reflecting the structure, behavior or requirements of a given
domain and transforms the model into different implementations respectively.

124 J. Souer et al.

Fig. 2. Research Approach

A DSML is a graphical and executable specification language that is specialized to
model concepts within a given domain by means of notations and abstractions. To de-
velop our WebForm Diagram we therefore analyze the problem area with the following
three activities: (1) what needs to be modeled, using domain modeling [7];(2) what is
the expected outcome, with user analysis as defined by [4] resulting in a mental model,
a representation model and an implementation model; and (3) Comparing concepts of
existing models to identify key concepts which we could use in our model. Similar to
Situational Method-Engineering [2], [17], we selected method fragments from existing
modeling languages and assembled our new modeling language out of these fragments.

The DSML in this research consists of a comprehensive abstract syntax and an un-
derstandable concrete syntax with a graphical notation [6]. The concrete syntax resem-
bles the representation model of the end user and the abstract syntax represents the
objects which need to be configured in the WCM System. We developed the model as
a prototype based on the graphical notation of the concrete syntax which we resulted in
the WebForm Diagram. The prototype is developed in MetaEdit+ since it allows us to
build our own specific development environment. The definition can be exported into
an XML format and is converted into the WCMs compliant XML which by itself can be
imported into the WCM system. An overview of the approach is illustrated in Figure 2.

The evaluation consists of both a functional assessment in which we used the proto-
type tool to define a real project situation, and an expert validation in which we inter-
viewed end users.

Model-Driven Web Engineering for the Automated Configuration 125

3 Problem Area Analysis

This research has been carried out within GX, a software vendor of Web Content Man-
agement system. GX develops GX WebManager, a Web Content Management System
based on open standards such as OSGi as implemented in Apache Felix, Spring MVC
and the Java Content Repository by Apache JackRabbit.

3.1 Domain Model

We use a domain model to analyze the elements and their relationships. Domain Model-
ing helps identify the key concepts which need to be modeled as well as generalizations
which relates the entities on a higher abstraction level and is a meta-model of the ob-
jects of the modeling language. A relevant functional component within the WCMS – in
the context of this research – is the ‘Advanced Form Module’: a functional component
which allows editors to develop business processes based on advanced forms.

Using a domain model, we identified all the elements that need to be modeled by the
WebForm Diagram and is the foundation of the abstract syntax.

3.2 User Analysis

In the next step we identified the expected model by interviewing end-users using a
threefold model as proposed by Cooper [4]: Mental model providing the system, its
components and the way they interact from an End-user (or functional) perspective;
Implementation model reflecting the actual system implementation composing of all

Fig. 3. Excerpt of Domain Model

126 J. Souer et al.

components, their relationships and the way they interact; and Representation Model
representing the implementation to the end-users. One should try to create a represen-
tation model as close to the mental model as possible [5]. Within a modeling language,
the representation model consists of the graphical notation.

We interviewed six users (3 senior technical architects and 3 senior functional con-
sultants). All six users defined a form as a set of Steps on the one hand, and a Flow
defining the order of the steps on the other hand. They visualized it as a set of square
blocks (the steps) with arrows in between (representing the order of the steps, or ‘flow’).
After they defined the steps and the flow on a high level they started to specify the steps
in detail. In other words: the users expected at least 2 levels of abstraction: (1) high
level defining the steps and the flow between the steps, and (2) a more detailed level
specifying the contents of the step. Each step has multiple input fields from a certain
type (e.g. text field, password field, radio button, etc), buttons and information. Two
architects suggested adopting Business Process Modeling Language (BPMN) as a solu-
tion for the modeling language especially since WCM systems are often integrated into
other systems and BPMN is a well known standard for defining processes [23] and used
within Web Engineering [1]. When a router was conditional, a diamond was suggested
with multiple outbound lines. The users did not have any clear ideas how to cope with
database connections and handlers except for the idea of using an object to define that
there should be a handler on that specific place. With the user analysis we identified the
mental model of the end users.

3.3 Comparing Existing Models

In this section we describe a comparison and selection of web application modeling
approaches in order to fill a method base. We continue with our previously filled method
base which we gathered using Situational Method-Engineering [17] , consisting of the
following approaches: Object Oriented Hypermedia Design Model [21], WebML[3],
UML-based Web Engineering [11] and Object Oriented Web Solutions [15].

In [14] we compared existing methods with a comparison matrix. In this research ad-
ditional requirements were gathered which resulted in an adjusted comparison matrix.
We compare existing models based on the Cooperative Requirements Engineering With
Scenarios Framework (CREWS) [18] as it has been successfully used for classification
of software [19], [24]. The adapted CREWS framework classifies modeling methods by
four views: Content, Form, Purpose, and Customization process. Each view has a set of
associated facets, and each facet is characterized by a set of relevant attributes [24]. We
adapted the CREWS framework with similar views, adding a domain view as a separate
view. Each view has different aspects describing the properties of the modeling lan-
guage which we compared. Content view: analyzes which existing knowledge is being
used within the model; Form view: identifies the structure and the graphical notation
of the modeling language; and Domain view: compares the entities within the domain
with the modeling concepts of the modeling language. We detail the Content View. The
Content View analyzes to which extend knowledge is being used. It is analyzed on the
following three aspects: (1) Abstraction, (2) Context and (3) Argumentation.

Abstraction has one attribute reflecting the possibility of an approach to incorporate
different abstraction levels. There are three possible values for this attribute: Flexible

Model-Driven Web Engineering for the Automated Configuration 127

(multiple levels possible), Fixed (multiple levels possible, but when a level is chosen
it cannot be changed) or Unique (only one level). In our case, the preferred value is
‘Flexible’ since the user analysis asked for a multiple detailed abstraction.

Context consists of three operators: Internal (model the internal system), Interaction
(model the interaction between the system and its environment) and Contextual (model
the environment and its context). In our case, the preferred values are ‘Internal’ and
‘Interaction’ since the scope of this research is modeling the user interaction (business
processes) and the configuration of an internal system.

Argumentation consists of an ‘Argument’ which defines if the model allows for pro-
viding arguments. The preferred value in our case is ‘Argument’ set to TRUE since it
would allow end users to provide arguments for their decisions.

An example of the Content View table is displayed in Figure 1. Based on the Content
View we conclude that the Business Process Model (OOWS) and the Activity Diagram
(UWE) are the most suitable.

Table 1. Content View Table

Aspect Attribute OOHDM WebML UWE OOWS Preferred
User Interac-
tion Diagram

Coceptual
Class
Schema

Business
Process
Diagram

Activity Dia-
gram

Business
Process
Model

Abstraction Abstraction Unique Unique Flexible Flexible Flexible Flexible
Context Intern – TRUE TRUE TRUE TRUE TRUE

Interaction TRUE – – TRUE TRUE TRUE
Contextual – – – TRUE –

Argumentation Argument – TRUE – TRUE TRUE TRUE

Similar to the CREWS framework we made a Form view and a Domain view. We
concluded based on the Form View that – again – both the Activity Diagram (UWE)
and the Business Process Model (OOWS) are interesting because of their functional
perspective. In the Domain View, we compared the entities from the earlier defined
Domain Model with the concepts of the different approaches. Our modeling language
will be a construct of multiple modeling languages. Formally defined:

MM ⊆
(

n⋃
i=1

MMi

)
∪ MMnew

where MM1, MM2,. . . , MMn are the meta models of the analyzed modeling languages
and MM is the meta model of our new modeling language. MMnew reflects the elements
which are not covered by the selected meta models but which are necessary within our
new modeling language. The relationship between the entities of the Domain Model
and the meta model is defined by function map.

map : MM → D

Each entity within the Domain Model should be defined in the meta model. We
therefore define the following:

∀d ∈ D(∃m ∈ MM [map(m) = d])

128 J. Souer et al.

Based on the Domain View, the Conceptual Class Schema (OOHDM) seems useful,
although it lacks the diversity of entities which makes it hard for business users to use
it. The Activity Diagram (UWE) and the Business Process Model (OOWS) provide
good possibilities to define the flow of a form. However, they do not provide a way to
define the different elements within a form. The Business Process Diagram (WebML)
is somewhere in between: it provides the possibilities to define the different elements
within the form, but is not that sophisticated for defining the form flow.

Taken all three views in account, we conclude that the Activity Diagram (UWE) and
the Business Process Model (OOWS) are the closest to our target modeling language:
they provide a way to define the interaction between user and the system, have multiple
abstraction levels, a functional perspective and have a strong focus on defining the flow
of the form. However, they lack the possibility to define the different elements within
the form. The User Interaction Diagram (OOHDM) is more suitable in this particular
area because it represents the form elements in a compact and well-organized way.
Also the UML Class Diagram (being used by most of the Web Engineering methods)
can define different form elements. The Business Process Diagram from WebML has
other possibilities to model these forms, but has a less compact notation to define the
user interaction with the system.

We therefore selected the Business Process Model, the User Interaction Model and
the UML Class Diagram as the base models for our modeling language.

4 Specifying the WebForm Diagram

To allow end users to define models which precisely express their expectations of the
business process, and automatically translate models into the configuration of a WCM
system as defined by its architecture, we need to formally specify our model. Similar to
any other modeling language the WebForm Diagram consists of syntax and semantics.
The syntax defines the rules, constructs and its decomposition where the semantics
defines the meaning and interpretation of the constructs. The syntax and notation should
be separated when developing a graphical language [6]. We therefore use a concrete and
abstract syntax similar to the author in [4]. We elaborate on the concrete and abstract
syntax in the following sections.

4.1 Concrete Syntax

The graphical notation of the concrete syntax is the representation model of the Web-
Form Diagram. It should therefore match the mental model of the user which defined a
web form in concepts of steps, routers, formfields and dependencies. More formalized
we define form f in the following nonuple:

f = {N, S, FE, V, H, C, P, B, E}
Where form f consists of: N is the set of nodes, S the set of steps, FE the set of form
elements, V the set of validators, H the set of handlers, C the set of conditions, P the set
of web pages, B the set of blocks, and E the set of edges. We elaborate on one element

Model-Driven Web Engineering for the Automated Configuration 129

to illustrate how the elements are defined – it goes beyond the scope of this paper to
elaborate on each of these elements.

Form Element: A Form element is similar to a Data Entry (User Interaction Diagram)
or an Attribute (UML). It is a superclass of elements which are presented to a visitor in
a single step of the business process. The set of form elements FE can be defined as a
union of different formfields where INPUT is the set of input types, BUTTON the set
of buttons and INFO the set of information elements. Each step has zero or more form
fields in a specific order. The function fields provides a set of form elements for a given
step:

fields : S → Ś(FE)

where Ś(FE) is the set of all possible tuples of form elements. The function fields has
the following characteristics: each form element is linked to one single step. This can
be formalized in the following axiom:

∀f ∈ FE ∀s1, s2 ∈ S ∀i, j ∈ N

[occ(f, fields(s1), i) ∧ occ(f, fields(s2), j) ⇒ s1 = s2]

The function occ() determines if an element f exists on position i within the given
sequence and since form element can only exist once within a single step we add the
following characteristic:

∀f ∈ FE ∀s ∈ S ∀i, j ∈ N

[occ(f, fields(s), i) ∧ occ(f, fields(s), j) ⇒ i = j]

Similar to the definition of the formelement, we defined all the other elements of the
Form.

4.2 Abstract Syntax

Where the concrete syntax corresponds to the representation model, the abstract syntax
is a representation of the implementation model and is a formalization of the Domain
Model. There are similarities between the Abstract and the Concrete Syntax, such as
Steps, Validation rules, Handlers, parameters and pages. However, when validation
rules and handlers which are connected to a single step are configured within the WCM,
they are executed in a consecutive order. Edges are therefore transformed into one of
two different concepts: a sequential number or a router. The sequential number defines
the order of execution from the formvalidations, handlers and routers. An edge which
leads to a different step or page will be transformed into a router since it will route to a
new step or a page. The actual configuration of the router depends on the conditions of
the object. An examples is that a user will only be routed under certain preconditions.
Formalized, the WebForm Diagram f ’ is a septupel:

f ′ = {N ′, S′, FE′, V ′, H ′, R′, P ′}
Where form f ’ consists of: N’ is the set of nodes, S’ the set of steps, FE’ the set of form
elements, V’ the set of validators, H’ the set of handlers, R’ the set of router, and P’ the

130 J. Souer et al.

set of edges. Note that Conditions, Blocks and Edges as defined in the concrete syntax
are defined within this definition. An Edge for instance is translated into a Router in the
abstract syntax. Also in the Abstract Syntax, there are axioms defining the constraints.
Example: each router can only be attached to one single step.

∀r ∈ R′∀s1 s2 ∈ S′

[r ∈ routersS′(s1) ∧ r ∈ routersS′(s2) =⇒ s1 = s2]

4.3 WebForm Diagram Modeling Tool

We have defined the concrete and abstract syntax. We then developed a modeling tool
to implement the WebForm Diagram as a prototype. To build our prototype of the
WebForm Diagram we used MetaEdit+ [9]. This application is both proven in build-
ing a CASE tool as well as providing computer aided support for method engineer-
ing [27].

The integration of MetaEdit+ and the WCMS is facilitated by XML: the WebForm is
exported from MetaEdit+ as an XML file. This XML file however is MetaEdit+ specific
which we transform into an XML resembling the Concrete Syntax (GXML). We then
translate the Concrete Syntax (GXML) into the WCMS compliant XML (GXML’) us-
ing a conversion tool. Since it is a prototype, we have written the conversion in general-
purpose languages Java and XSLT. The GXML’ can be imported into the WCM system.
The transformation process works both ways: WCM form definitions can be exported
to XML and can be transformed and imported into back into MetaEdit+.

5 Evaluation

We evaluated the WebForm diagram from a functional assessment to see if business
users were able to develop a business process in a modeling tool to automatically con-
figure a WCMS, thereby closing the requirements gap and making the implementation
more transparent. The reduction in complexity is determined by interviewing experts
on the matter.

5.1 Case Validation

To test the application in a real life situation, we took a real case situation and im-
plemented a business process from an existing website using the WebForm Diagram.
The complete implementation has been tested both ways: i.c. Designing a WebForm
Diagram in MetaEdit+, XML transformation and importing it into the WCMS; and the
same process in the opposite order to visualize a defined WebForm in MetaEdit+. The
organization of the case is a large Dutch telecommunications provider which provides
telephone, internet and television services to individuals and organizations within the
Netherlands.

A WebForm Diagram is modeled by a business user, exported into the MetaEdit+
specific XML, transformed the exported XML and then imported into the WCMS. The
import went without any problems and the resulting form in the WCMS is displayed in

Model-Driven Web Engineering for the Automated Configuration 131

Fig. 4. WebForm Diagram converted into a WCMS Form Module

Figure 4. The form had the correct configuration of handlers and routers which could
also be tested by registering a new user using the newly configured form.

To gain transparency of a WCMS implementation, we also validated the process in
the opposite direction: creating a WebForm Diagram based on an existing form config-
uration in the WCMS. This process is slightly more difficult since not all aspects of the
existing form can be extracted into an XML. The form we use for this validation is a
user sign in form allowing users to access a secure page. This form consists of two steps:
Step 1 allows the user to enter his credentials (username/password) and submit them to
the web application. Although the form is not that complex, it is an often used business
process in online transactions. If the credentials are correct the user will be routed to
step 2, the secure page. If the credentials are not correct he will be routed back to the
sign in page and will get an error message. We exported this form and transformed it
back to the MetaEdit+ specific XML and imported it to present the WebForm Diagram
without any problems.

Based on the functional validation, some limitations concerning this implementation
where identified preventing it from putting it directly into practice. Within the WCM
system, there is an extensive library of existing handlers and routers. Still, in projects
new handlers and routers are sometimes developed for project specific purposes (e.g.
connect to a specific customer legacy system). These routers and handlers are not avail-
able by default in the WebForm Diagram. This resulted in a change in the WebForm
Diagram: a new placeholder handler during the modeling phase which needs to be con-
figured or developed within the WCM System afterwards. A second limitation we found
when we visualized a web form based on a predefined form definition: some routers
were conditional based on volatile information (e.g. user specific session information).

132 J. Souer et al.

This conditional information is not available in the router definition and can it was not
taken into consideration when we developed the WebForm Diagram.

5.2 Expert Validation

We validated the complexity of the WebForm Diagram by interviewing eight users: four
technical architects and four functional consultants. The aim of this validation is to find
out if the users find the WebForm Diagram useful and applicable in implementation
projects. The users were shown the WebForm Diagram as illustrated in Figure 1 with
additional abstraction layers to detail the form steps. They were provided with a list
of statements addressing usability, suitability, transparency (for example to use with
internal and external communication) and if they would use it in actual projects. The list
with statements had a 4-points scale resulting in respectively the following predicates:
Strongly disagree, Disagree, Agree, and Strongly Agree. The results were then gathered
and summarized.

The users find the Diagram clear, easy to read, and easy to use. They also think that
it would improve the transparency within projects. The architect and the consultants
are convinced that it would improve the requirements analysis and design with the end
customer. Using this model will improve the validity of the requirements since the cus-
tomer will probably understand such a diagram easier then the written descriptions. The
architect can also use the model to check whether all relevant information is available
for the implementation of a business process. However, they are not yet convinced that
the handlers and validators will help the design phase much. The general opinion is that
it depends much on how it is visualized in the modeling tool. They agree however that
this visualization should keep a balance of usable icons but not an overload of details.
Other icons in the diagram are quite abstract yet useful. They all agree that a WebForm
Diagram will improve the visibility of a form and that end users will gain insight. They
also state that they want to use the modeling tool if they have the proper tools support-
ing it. However, a remark is made concerning the fact that the current application as
developed in MetaEdit+ is not web based in contrast with the WCM system. It would
therefore require a rebuild in a web based environment to get it into production.

6 Related Work

In the field of Web Engineering, there are several research groups working on the de-
velopment of MDE products. We briefly elaborate on four relevant research groups.

One research which started early with MDE is the Object-Oriented Hypermedia De-
sign Method (OOHDM) as proposed by Schwabe and Rossi [21], [22]. OOHDM com-
prises of four steps: conceptual modeling, navigational design, abstract interface design
and implementation. These activities are performed in a mix of incremental, iterative
and prototype-like way. In OOHDM a clear separation is made between on the one
hand navigation and the other hand presentation. OOHDM has introduced powerful
navigational concepts for contexts, personalization and user interaction.

Koch et al. describe the UML-based Web Engineering (UWE) approach in [12].
UWE is an object-oriented, iterative and incremental approach for the development of

Model-Driven Web Engineering for the Automated Configuration 133

web applications. The development process of UWE consists of five phases: inception,
elaboration, construction, transition and maintenance. The approach focuses mainly on
customized and adaptive systems and also do not take content management and inte-
gration of external sources into account.

Pastor et al. describe different methods with the Object-Oriented Web-Solutions
Modeling approach. OOWS provides mechanisms to deal with the development of hy-
permedia information systems and e-commerce applications in web environments [16].
OOWS strongly focuses on the generation of the required Web Application and less
about managing the content and the application afterwards. OOWS extends OO-method
by means of a navigation model, a presentation model and a user categorization. OOWS
comprises of two main activities: system specification and solution development. Sim-
ilar to our framework: the OOWS approach is supported by a commercial tool called
OlivaNova.

Ceri et al. describe in [3] their Web Modeling Language (WebML), a notation for
specifying complex web sites at a conceptual level. In line with the definition of Web
Engineer, the WebML approach consists of seven phases: requirements specification,
data design, hypertext design, architecture design, implementation, testing and evalua-
tion and maintenance and evolution. The WebML method is supported by a commercial
Model Driven development environment called WebRatio that allows modeling and au-
tomatic generation of Web interface applications.

These models are used within our research. We compared these models based on the
Cooperative Requirements Engineering With Scenarios Framework (CREWS) [18].

7 Conclusion

The purpose of this research is to reduce complexity and increase the transparency of
the development of online business processes supported by Web Content Management
Systems. To achieve these goals, we defined modeling tool to automate the configura-
tion of Web Content Management Systems with a strong focus on defining the business
processes. Based on user analysis and domain modeling, we presented the WebForm
Diagram which utilizes fragments of established Web Engineering methods. The Web-
Form Diagram consists of an abstract and concrete syntax resembling the implementa-
tion model and the mental model respectively. We developed a prototype of the model
in MetaEdit+ and were able to automatically configure the WCMs. Several abstraction
layers in the WebForm Diagram supports the different process steps in the implemen-
tation project. We validated the WebForm Diagram by means of a prototype validation
and an expert evaluation. The results from both the prototype and user evaluation were
positive and promising. However, the validation presented some technical limitations
which need to be addressed. The most important limitation was the fact that the mod-
eling tool was not yet Web enabled. Another aspect to consider is the fact that we
use general-purpose languages such as Java and XLST in the prototype to transform
the different models while upcoming model-to-model transformations seem promising
[13]. We believe that we have made an improvement in an approach for WCMS-based
Web Engineering and that concepts of this research can be applied beyond the scope
of WCMS. Future research includes further development of the WEM Framework and
refinement of the modeling tool to support the automated configuration of WCMS.

134 J. Souer et al.

References

1. Brambilla, M., Preciado, J.C., Linaje, M., Sanchez-Figueroa, F.: Business process-based con-
ceptual design of rich internet applications. In: ICWE 2008: Proceedings of the 2008 Eighth
International Conference on Web Engineering, Washington, DC, USA, 2008, pp. 155–161.
IEEE Computer Society, Los Alamitos (2008)

2. Brinkkemper, S.: Method engineering: Engineering of information systems development
methods and tools. Journal of Information and Software Technology 38(4), 275–280 (1996)

3. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Matera, M.: Designing Data Intensive Web
Applications. Morgan Kaufmann, San Francisco (2003)

4. Cooper, A.: About Face 3: The Essentials of Interaction Design. Wiley, New York (2007)
5. Fein, R.M., Olson, G.M., Olson, J.S.: A mental model can help with learning to operate a

complex device. In: CHI 1993: INTERACT 1993 and CHI 1993 conference companion on
Human factors in computing systems, pp. 157–158. ACM, New York (1993)

6. O. M. Group. Unified modeling language: Infrastructure, version 2.0.(2005),
http://www.omg.org/docs/formal/05-07-05.pdf

7. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (foda) feasibility study. Technical report, Carnegie-Mellon University Software En-
gineering Institute (November 1990)

8. Kappel, G., Prll, B., Reich, S., Retschitzegger, W.: Web Engineering: The Discipline of Sys-
tematic Development of Web Applications. Wiley, New York (2006)

9. Kelly, S., Lyytinen, K., Rossi, M.: Metaedit+: A fully configurable multi-user and multi-tool
case and came environment. In: CAiSE 1996: Proceedings of the 8th International Con-
ference on Advances Information System Engineering, London, UK, pp. 1–21. Springer,
Heidelberg (1996)

10. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

11. Koch, N.: A comparative study of methods for hypermedia development. Technical Report
9905, Institut für Informatik der LMU (1999)

12. Koch, N., Kraus, A.: The expressive power of uml-based web engineering. In: Proceedings
of IWWOST 2002, pp. 105–119 (2002)

13. Koch, N., Meliá, S., Moreno, N., Pelechano, V., Sanchez, F., Vara, J.M.: Model-driven web
engineering. Upgrade-Novática Journal (English and Spanish), Council of European Profes-
sional Informatics Societies (CEPIS) IX(2), 40–45 (2008)

14. Luinenburg, L., Jansen, S., Souer, J., van de Weerd, I., Brinkkemper, S.: Designing web
content management systems using the method association approach. In: Proceedings of the
4th International Workshop on Model-Driven Web Engineering (MDWE 2008), pp. 106–120
(2008)

15. Pastor, O., Fons, J., Pelechano, V., Abrahao, S.: Conceptual modelling of web applications:
The oows approach. In: Mendes, E., Mosley, N. (eds.) Web Engineering: Theory and Practice
of Metrics and Measurement for Web Development (2006)

16. Pastor, Ó., Abrahão, S., Fons, J.: An object-oriented approach to automate web applica-
tions development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web 2001. LNCS,
vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

17. Ralyté, J., Brinkkemper, S., Henderson-Sellers, B.: Situational method engineering: Fun-
damentals and experiences. In: Proceedings of the IFIP WG 8.1 Working Conference,
vol. 38(4), pp. XII + 368 (2007)

18. Rolland, C., Achour, C.B., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N., Jarke, M.,
Haumer, P., Pohl, K., Dubois, E., Heymans, P.: A proposal for a scenario classification frame-
work. Requir. Eng. 3(1), 23–47 (1998)

http://www.omg.org/docs/formal/05-07-05.pdf

Model-Driven Web Engineering for the Automated Configuration 135

19. Rolland, C., Prakash, N.: Bridging the gap between organisational needs and erp functional-
ity. Requir. Eng. 5(3), 180–193 (2000)

20. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer 39(2), 25–
31 (2006)

21. Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Commun.
ACM 38(8), 45–46 (1995)

22. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic hypermedia application design with
oohdm. In: HYPERTEXT 1996: Proceedings of the the seventh ACM conference on Hyper-
text, pp. 116–128. ACM, New York (1996)

23. Smith, H.: Business process management–the third wave: business process modelling lan-
guage (bpml) and its pi-calculus foundations. Information & Software Technology 45(15),
1065–1069 (2003)

24. Soffer, P., Golany, B., Dori, D.: Erp modeling: a comprehensive approach. Inf. Syst. 28(6),
673–690 (2003)

25. Souer, J., Honders, P., Versendaal, J., Brinkkemper, S.: A framework for web content man-
agement system operation and maintenance. Journal of Digital Information Management
(JDIM), 324–331 (2008)

26. Souer, J., van de Weerd, I., Versendaal, J., Brinkkemper, S.: Situational requirements engi-
neering for the development of content management system-based web applications. Int. J.
Web Eng. Technol (IJWET) 3(4), 420–440 (2007)

27. Tolvanen, J.-P., Rossi, M.: Metaedit+: defining and using domain-specific modeling lan-
guages and code generators. In: OOPSLA 2003: Companion of the 18th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
pp. 92–93. ACM Press, New York (2003)

28. van de Weerd, I., Brinkkemper, S., Souer, J., Versendaal, J.: A situational implementation
method for web-based content management system-applications: method engineering and
validation in practice. Software Process: Improvement and Practice 11(5), 521–538 (2006)

29. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated bibliography.
SIGPLAN Not. 35(6), 26–36 (2000)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 136 – 150, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Bridging Test and Model-Driven Approaches
in Web Engineering

Esteban Robles Luna1,2, Julián Grigera1, and Gustavo Rossi1,2

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles,julian.grigera,gustavo}@lifia.info.unlp.edu.ar

2 Also at CONICET

Abstract. In the last years there has been a growing interest in agile methods
and their integration into the so called “unified” approaches. In the field of Web
Engineering, agile approaches such as test-driven development are appealing
because of the very nature of Web applications, while model-driven approaches
provide a less error-prone code derivation; however the integration of both
approaches is not easy. In this paper, we present a method-independent
approach to combine the agile, iterative and incremental style of test-driven
development with the more formal, transformation-based model-driven Web
engineering approaches. We focus not only in the development process but also
in the evolution of the application, and show how tests can be transformed
together with model refactoring. As a proof of concept we show an illustrative
example using WebRatio, the WebML design tool.

1 Introduction

Agile methods [7, 16] are particularly appealing for Web applications, given their
short development and life-cycle times, the need of small multidisciplinary
development teams, fast evolution, etc. In these methods applications are built
incrementally, usually with intense feedback of different stakeholders to validate
running prototypes.

Unfortunately most solid Model-Driven Web Engineering (MDWE) approaches,
even claiming to favor incremental and iterative development, use a more formal1 and
waterfall style of development. Web engineering methods like UWE [14], WebML
[6], OOWS [18], OO-H [9] or OOHDM [22] define a set of abstract models such as
content (called also data or application), navigation and presentation model, which
allow the generation of running applications by automatic (error free) model
transformations. This approach is attractive because it raises the abstraction level of
the construction process, allowing developers to focus on conceptual models instead
of code. The growing availability of techniques and tools in the universe of model-
driven development (e.g. transformation tools) adds synergy to the approach.

1 While Agile approaches might be also “formal” (see [7]), more popular ones tend to encourage

a handcrafted style.

 Bridging Test and Model-Driven Approaches in Web Engineering 137

Many agile methods seem to follow a different direction. For example Test-Driven
Development (TDD) uses small cycles to add behavior to the application [3]. The
cycle starts with a set of requirements expressed with use cases [11] or user stories
[13] that describe the application’s expected behavior informally. The developer
abstracts concepts and behavior, and writes a set of meaningful test cases which will
fail on their first run, prior to the implementation. Then, he writes the necessary code
to make the tests pass and run them again, until the whole test suite passes. The
process is iterative and continues by adding new requirements, creating new tests and
running them to check that they fail, then writing code to make them pass, and so on.
In these cycles the developer might have to refactor [8] the code when necessary.

This strategy gives a good starting point for the development process, because
developers specify the programs expected behavior first, making assertions about the
return values right before the development itself begins. The process follows the idea
of “Test first, by intention” [13], which is based on two key principles:

• Specify program's behavior (test first), and write code only when you have a test
that doesn't work.

• Write your code without thinking about how to do a thing, instead think about what
you have to do (intention).

Moreover, when using a static typed language like Java, the tests code may not
even compile, as the involved classes and methods still don't exist. Thus, writing the
tests first, guides us to create the classes and methods of the domain model. TDD
allows better communication among different stakeholders, as short cycles favor the
permanent evaluation of requirements and their realization in incremental prototypes.
TDD is also claimed to reduce the number of problems found on the implementation
stage [21] and therefore its use is growing fast in industrial settings [15].

In the Web Engineering area, efforts to integrate agile and model-driven
development styles are just beginning [2], and most methods lack clear heuristics of
how to improve the development life-cycle with the incorporation of these new ideas.

In this paper we present a novel, method-independent approach, to bridge the gap
between TDD and MDWE approaches. The overall process has the same structure as
TDD, but instead of writing code, we generate it from the well-known content,
navigational and presentation models using a MDWE tool. We also create automated
tests (that can be run without manual interaction) and deal with Web refactoring
interventions [17]. These navigational and presentation tests allow us to manage
evolution in a TDD fashion. Also, like in traditional TDD, we specify the
application’s behavior prior to its development in terms of tests, and use them to
specify the application models, as they express (and validate) the expected
functionality. We also relax some of the assumptions in TDD (based on its inherent
bottom-up approach), as they are not appropriated for highly interactive applications.
We illustrate our approach showing how to use these ideas in the context of the
WebML methodology, using the WebRatio [24] tool.

The main contributions of the paper are the following:

• We present a novel TDD-like process to improve Model-Driven Web Engineering.
• We propose the use of black box interaction tests as essential elements for

validating the application’s navigational and interface behavior.

138 E. Robles Luna, J. Grigera, and G. Rossi

• We present an approach for dealing with navigation and interface test evolution
during the refactoring process.

It should be noticed that our focus is in the development process and not in the
tests themselves. Rather, we see tests as tools for driving the web application’s
construction and evolution.

The structure of the paper is the follows: In Section 2 we review some related
work; In Section 3 we present our approach, and using a case study we explain how
we map requirements into test models, and how the cycle proceeds after generating
the application. We end the technical description of our approach by discussing, in
Section 4 and 5, refactoring issues, both in the application and in the test models.
Finally, we conclude and present some further work we are pursuing.

2 Related Work and Discussion

The advantages of using agile approaches in Web application development processes
have been early pointed out in [16]. The authors not only argue in favor of agile
approaches, but also propose a specific one (AWE) that, being independent of the
underlying Web engineering method, could in theory be used with any of them.
However, AWE is “just” a process; it does not indicate how software artifacts are
obtained or how the process is supposed to be integrated in a model-driven
development style.

Most Web Engineering methods such as WebML, UWE, OOHDM, OOWS or OO-
H, have already claimed to use incremental and iterative styles, though support for
specific agile approaches has not been reported yet in the literature.

In the broader field of software engineering, agile approaches have flourished,
though most of them are presented as being centered in coding, much more than in the
modeling and design activities. An interesting and controversial point of view in this
debate can be found in [19], in which the author proposes to use an extreme “non-
programming” approach, by only using models as development artifacts. In this arena,
Test-Driven Development has been presented as one of the realizations of Extreme
Programming [13], where tests are developed previously to code. In a recent paper
[12] however, the authors clearly indicate that TDD is also appropriated as a design
technique, and show examples in which TDD is used beyond “extreme” approaches.

The interest of using TDD in interactive applications is relatively new, given that
the artifacts elicited from tests are usually “far” from the interface realm, and also
because unit testing [4], which focuses on individual classes, is unsuitable for
complex GUIs. In [1], the authors present a technique for organizing both the code
and the development activities to produce fully tested GUI applications from
customer stories. Similarly, [20] proposes to use TDD as an approach to develop Web
applications, focusing on the development of the different parts of the MVC triad,
again emphasizing coding more than modeling.

 Also, in relation to our approach, as TDD makes a heavy use of requirements
models, it is important to say that most Web engineering approaches have either
automatic ways or explicit heuristics to derive content and navigation models from
requirements documents; particularly, in OOWS [18], the conceptual model can be
generated from requirements using model-to-model transformations; earlier in [5], the

 Bridging Test and Model-Driven Approaches in Web Engineering 139

authors have presented an attractive way to map use cases into navigation models in
the context of OO-H and UWE, giving much more relevance to the requirement
documents. The concept of Navigation Semantic Unit in [5] has inspired our idea of
Navigation Unit Testing (see Section 3).

In a different direction, though still related with our ideas, [10] show how to
systematically generate test cases from requirements, particularly from use cases.
These proposals however deal with tests as usual in non-agile processes, therefore
running them against a “final” application, instead of profiting from them during the
whole development process.

3 An Overview of Our Approach

In the TDD approach, new functionality is specified in terms of automated tests
derived from individual requirements, and then the code to make them pass is written.
A further step involves refactoring this code by removing duplication, for example.
Obviously TDD does not deny the need to perform a thorough testing process of the
final application; the tests in TDD are a perfect start to assess how the application
fulfills the client’s requirements beyond its correctness.

Our approach follows the same structure, but given the nature of Web applications
instead of focusing on unit testing, we emphasize the use of navigation and interaction
level tests, which we first run against user interface (UI) mockups using a black box
approach. We then replace the coding by a modeling step, generating the code using a
MDWE tool. We also add an intermediate step to adapt the tests, in order to trim the
differences between the mockups and the generated application prototype.

Even though we face application generation using MDWE tools, this stage of our
process differs slightly from the conventional model-driven approach, as we work at a
very fine granularity level: in the extreme case, we build models for one requirement
at a time, generating tested and running prototypes incrementally, leading each
requirement through a lightweight version of a full MDWE step. In this way, we
come closer to the TDD short-cycle style, while still profiting from the advantages of
working with models.

Briefly explained, our approach mixes TDD and MDWE techniques to make Web
development more agile. We first gather user requirements with use cases [11], User
Interaction Diagrams (UIDs) [22] and presentation mockups [25]. Then, we choose a
use case and derive an interaction test against the related presentation mockup, with
which we specify the navigation and UI interaction prior to the development. We next
get a running prototype of the application by creating models and generating code in a
short MDWE cycle, and check its correctness using the test. Should these tests fail,
we would go back to tweak the models, regenerate the application and run them back
again, repeating the process until they pass. As in TDD, the complete method is
repeated with all use cases, until a full-featured prototype is reached. Fig. 1 shows a
simplified view of our approach, confronting it with the “traditional” TDD.

While the application evolves, tests will also help to check that functionality is
preserved after applying navigation and presentation refactorings (i.e. usability
improvements that don’t alter the application behavior [17]).

140 E. Robles Luna, J. Grigera, and G. Rossi

Fig. 1. TDD life cycle comparison

In the following subsections we illustrate the approach with the development of
TDDStore, a simplified online bookstore, similar to Barnes&Noble. As we use
WebML and WebRatio, which support data-intensive applications, we focus mainly
on navigation and UI tests, also contemplating some business operations.

3.1 Capturing Requirements with Mockups and UIDs

Similarly to a MDWE approach, we begin gathering and modeling the set of
requirements. Particularly, we propose employing use cases, UIDs and mockups.
With these artifacts, the analyst can easily specify UI, navigation and business
requirements that the application must satisfy. For each use case, we specify the
corresponding UID that serves as a partial, high-level navigation model, and provides
abstract information about interface features. As an example of an interaction
diagram, we show in Fig. 2 the UID corresponding to the case when the user is
presented with a list of books, indicated with “…” in state 1, containing some
information about each book (¨title, author…”) , and selects a book from the list
(transition marked with 1) to see the full book details (state 2).

Fig. 2. UID for simple navigation

Using UI mockups, we agree with the client on broad aspects of the application
look and feel, prior to the development. This is a very convenient way for interacting
with stakeholders and gathering quick feedback from them. There are two additional
reasons to use UI mockups: we will perform UI and navigational tests against them,
and they will become the application’s final look and feel.

In Fig. 3.a we show an initial and simplified mockup of our application’s main page,
where all books are listed. Fig. 3.b shows a mockup for the book details page. In the

 Bridging Test and Model-Driven Approaches in Web Engineering 141

 (a) (b)

Fig. 3. a) Books list mockup; b) Book details mockup

next sub-section we show how to specify a test against this mockup to verify the UID
in Fig. 2. To make the example realistic, we also included some other features in the
mockup, though they will be tested in further iterations, when being involved in a use
case and UID.

3.2 Writing Tests

Mockups and UIDs help to understand the expected behavior of the application. UIDs
refine use cases to show how the user interacts with the application, and mockups
complement UIDs to give a sample of the application look and feel. However, these
useful tools fall short to provide by themselves an artifact capable of being run to
validate the application’s expected behavior. By incorporating interaction tests, we
provide a better way to validate the application.

Following the process we create a test for the mentioned use case, using as a basis
the UID in Fig. 2 and the mockup in Fig. 3. For the sake of clarity and concreteness
instead of an abstract test specification, we tie our description to a standard test tool
like Selenium [23], to specify the interactions between the user and the application
(other similar tools can be used for this task). These tests rely on the DOM structure
of the tested document, so they are agnostic of the process by which the application
has been generated, as well as the applied styles. The following test validates that the
UI shows the book list and the navigation between the book list and the book’s detail:

public class BookListTestCase extends SeleneseTestCase {
 public void testBookListToProdDetailNav() throws Exception {
(1) sel.open("file:///dev/bookstore/Mockups/books-list.html");
(2) assertEquals("all books", sel.getText("//div[@id='tb']/p[1]"));
(3) sel.click("link=The Digital Photography Book");
(4) sel.waitForPageToLoad("30000");
(5) sel.assertLocation("/bookDetail*");
(6) assertEquals("The Di...”, sel.getText("//div[@id='prod']/h2"));
(7) assertEquals("The ...", sel.getText("//div[@id='p-d']/p[1]"));
(8) assertEquals("+ Add to...", sel.getText("//div[@id='p-d']/a"));
 }
}

The test begins by opening the page (the mockup file) (1) and asserting that a

specific element has some content (2); in this way we can assert that we are in the
book list page. Then we specify to click on a specific link (3) and wait until the page

142 E. Robles Luna, J. Grigera, and G. Rossi

is loaded (4) and validate our location (5) thus validating our navigation. Then, we
assert that several html elements contain the specific text (6-8) which validates that
the UI has changed. When we try to run the test using the Selenium runner it fails
because we have not yet developed the running application. This scenario is the same
as in TDD where the test is expected to fail after it has been written.

These tests are similar to traditional unit tests but performed on small “navigation
units” arising from a single use case, so we call them navigation unit tests.

This kind of tests simulate user interactions (click on a link, fill a text box, etc.)
and add assertions about the elements of the page. Navigation unit tests are
independent of the MDWE tool used because they run using a web browser. We
found this type of tests suitable for testing most of the business, navigation and UI
logic as perceived by the user. However, in complex Web applications there are many
scenarios in which unit and integration tests [4] (the usual TDD type of tests) should
be used. One example is the integration between Web applications using Web
services. Another one are application’s behaviors performed “in the shadows” (e.g.
support for the shipping process in an e-store). In both cases, interaction tests are not
useful because the user might not be interacting with the application. We don’t
include these examples as illustrations as they are not novel in TDD. For these tests
our approach remains unchanged: specify a test (e.g. a unit test), check that it fails,
specify the corresponding models (e.g. using WebML units, UWE classes, etc.),
generate the application, etc.

At this point, we can start using our design artifacts (mockups and UIDs) to derive
the application, navigation and presentation models.

3.3 Deriving Design Models

Once requirements have been (at least partially) gathered, and the tests specified for a
particular use case, the next step is to generate a running application. As mentioned
before, here is where we differ from a pure TDD approach, as we chose to use a
MDWE tool, instead of writing code. Throughout the development of our proofs of
concept we have used the WebML’s MDD tool, WebRatio [24]. We will concentrate
on the navigational (hypertext) model for several reasons; first, it is the distinctive
model in Web applications; besides we want to emphasize the differences between
typical TDD and TDD in Web applications and show how navigation unit tests work.
Additionally, as said before, WebRatio’s (and WebML) content model is a data and
not an object-oriented model, thus some of the typical issues in TDD (originally
devised to work with classes and methods) do not apply exactly as they were
conceived, as we discuss below.

A first data model is derived using the UIDs as a starting point, identifying the
entities needed to satisfy the specified interactions, e.g. by using the heuristics
described in [22]. As Web Ratio supports the specification of ER models at this stage
of the development, the application behavior will be specified later, in the so-called
logic model. Following with our example, we need to build an application capable of
listing books, and exhibiting links to their corresponding details pages, so the book
and author entities come out immediately from the UID in Fig. 2. Then, we map the
navigation sequence in the UID to a WebML hypertext diagram, as shown in Fig. 4.

 Bridging Test and Model-Driven Approaches in Web Engineering 143

Fig. 4. WebML diagram for the UID

WebRatio is now ready to generate the application. Once we have a running
prototype, we can adapt the tests (this process is detailed in section 3.4) and run them
to check if the models (and therefore the application) conform with the requirements.

Finally, we need to adjust the application’s presentation. WebML does not define a
presentation model; instead presentation is considered like a document transformation
from a WebML specification of a page into a specific language page like JSP or
ASP.NET. In another methodology, the mockups and UIDs would be used to also
specify the presentation model. Since we already had developed mockups for our
current UID, this part of the process is straightforward: we only need to slice up the
mockup, and input it as an XHTML template into WebRatio. We can run the tests
again to ensure no interaction is corrupted while the template is being modified.

3.4 Test Adaptation

After building the models, we need to make sure the implementation generated from
them is valid according to the requirements specification. In particular, we want to
confirm that business, navigation and UI behavior are correct with respect to the tests
defined in section 3.2. However, if we try to run the tests as they are written, they will
fail because they still reference mockups files, and although the layout may be the
same, the location in terms of an XPath expression [26] may have changed.

On one hand, the generation may have renamed the URLs of each page. For
instance, if we chose to transform templates into JSP pages, URLs change their names
to end with “.jsp”. We can prevent this scenario by defining the name of the mockups
upfront, according to the technology. Another problem may arise if we use
components that generate HTML code in a different way than what we had expected.
We face this problem, for example, when we display a collection of objects using
WebRatio`s Table component. This could be also prevented by using a customized
template, in which we manually iterate over the collection of objects.

Although both scenarios could be prevented, we should consider the case in which
they are not. In that situation we must adapt the test to the current implementation.
Fortunately, the adaptation of tests is easy to perform manually, and its mechanics can
be automated in a straightforward way. As an example, we show how to adapt the test
of section 3.2 to be compliant to the current implementation.

public class BookListTestCase extends SeleneseTestCase {
 public void testBookListToProdDetailNav() throws Exception {
(1) sel.open("http://127.0.0.1:8180/TDDStore/page1.do");
(2) assertEquals("all…", sel.getText("//div[@id='page1FB']/p[1]"));
(3) sel.click("link=The Digital Photography Book");

144 E. Robles Luna, J. Grigera, and G. Rossi

(4) sel.waitForPageToLoad("30000");
(5) sel.assertLocation("/page2*");
(6) assertEquals("The ...", sel.getText("//div[@id='p2FB']/h2"));
(7) assertEquals("The D...", sel.getText("//div[@id='p2FB']/p[1]"));
(8) assertEquals("+ Add to...", sel.getText("//div[@id='p2FB']/a"));
 }
}

In the above test we first changed the URL to start the test by just finding the right
URL and changing it (1, 5). Then, as the layout of the list of products has changed
due to the derivation process of WebRatio, the XPath expressions we had used are no
longer valid as WebRatio has included a different DOM structure. This can be
changed for example by accessing the url with a tool such as the XPather plugin [27].
Just right click over the item, shown in XPather and then copy the XPath expression
to the test (2, 6-8). Next we can re-run the test, and verify it succeeds.

3.5 Towards a New Iteration

Having our iteration complete (i.e. all tests run correctly), we are ready to add new
functionality to the application. We will incorporate the possibility of adding a book
to a shopping cart, so we go through the same steps of the first example:

1. Model the new requirements, with use cases and UIDs.
2. Create a new mockup if necessary, or extend a previous one.
3. Write a new navigation unit test for the added functionality and run it against the

corresponding mockup.
4. Upgrade the model and generate the application, implementing the new

functionality to make the tests pass.
5. Adapt the new test, as previously shown in section 3.4
6. Run the new test and check that the new functionality has been correctly added. If

the test fails, then go back to step 3 until it passes.

In order to introduce the new add-to-cart functionality we need to illustrate the
interaction with a new UID (1) that slightly extends the one in Fig. 2 with a new
navigational transition with the product being added to the cart. We need to expand
the book details mockup by adding an "add to cart" link (2). Then we write the test in
the same way as we did previously on section 3.2.

public class BookListTestCase extends SeleneseTestCase {
 public void testAddBookToShoppingCart() throws Exception {
(1) sel.open("file:///dev/bookstore/Mockups/books-list.html");
(2) assertEquals("The D...", sel.getText("//div[@id='p-i']/h4/a"));
(3) sel.click("//div[@id='product-info']/a");
(4) sel.waitForPageToLoad("30000");
(5) assertEquals("The Dig...", sel.getText("/ul[@id='s-p']/li[1]"));
(6) sel.assertLocation("/cart*");
 }
}

The test above opens the book list (1) and asserts the name of the product. Then

clicks on the “add to cart” link of the product (3) and waits for the page to load (4). It
asserts that the selected book has been added to the cart by asserting that the book's
title is present in the shopping cart page (5) and that navigation has succeeded (6).

 Bridging Test and Model-Driven Approaches in Web Engineering 145

As we show in Fig. 5, an extended WebML hypertext diagram including the
AddToCart operation is derived from the new UID.

Fig. 5. Upgraded WebML diagram

We regenerate the application and run the whole test suite against the derived
application. Notice that the test suite will be composed of the previously adapted test,
and the new one after the corresponding adaptation.

4 Dealing with Application Evolution

Web applications tend to evolve constantly and in short periods of time; the evolution
is driven mainly by two reasons:

• New requirements: Generally, new requirements arise because of clients or users’
requests to enhance the application’s functionality. For example, the book store’s
owner may want to categorize books, which would require defining new model
elements (entities, page types, links, etc).

• Web refactorings: We might want to improve the application’s usability, by either
modifying the interface or the navigation facilities. This kind of model changes,
usually driven by non-functional requirements (usability, accessibility, etc), have
been called elsewhere Web model refactorings [17]. Web refactorings may
eventually occur in a TDD cycle, for example if the developer notices an
opportunity to improve the user experience.

Next, we analyze both cases and show how we deal with them during the test-
driven development process.

4.1 New Requirements

After the application has been deployed (or even during its development), the client
may want to add new functionality, such as organizing books in categories. New
requirements have to be described using the artifacts we have previously mentioned
(UIDs, mockups) and following the process we have summarized in Section 3.5:

1. Add the label that shows the category name of the book, to the mockup of books
list and books’ details.

2. Add the assertions to the adapted tests of the books list and books’ details pages,
with the XPath expression obtained from the mockups.

3. Run the tests and ensure they fail.

146 E. Robles Luna, J. Grigera, and G. Rossi

4. Enhance the domain, navigation and the UI models (entities, units and templates in
WebRatio) to show the category.

5. Generate the application.
6. Run the tests (adapt them if necessary). If they fail go back to step 4.

After finishing this cycle, we will have a new requirement added to the application
and a new test that validates the UI of the book list and book detail pages. Obviously,
we might want to navigate through categories but the process remains similar just by
adding some new use cases and UIDs before 2 and building the corresponding tests.

4.2 Web Refactorings

Web refactorings seek to improve application’s usability with small model changes. A
catalog of such refactorings has been presented in [17]. In order to illustrate the
process we selected a fairly simple one, Turn Information into Link, which consists in
converting a text string into a link leading to a page with information about the object
represented by the text. In our case, we will enhance the authors’ names on the book
details page and transform them into links, leading to a list of their books . Once
again, we will follow the steps of our approach as follows:

1. Refactor the book details mockup to show a link where each author name appears,
as shown in Fig. 6.

Fig. 6. Refactored book details mockup

2. Transform the UI test of the book detail page (3) by changing the XPath
expression. Previously it was an h2 element, but now it is a link, so we have to
change it to an a element. Also, add a test to validate the navigation from the book
detail to the author page (8-13).

public class BookDetailTestCase extends SeleneseTestCase {
 public void testBookDetailUI() throws Exception {
(1) sel.open("http://127.0.0.1:8180/TDDStore/page2.do?oid=2");
(2) assertEquals("The ...", sel.getText("//div[@id='p2FB']/h2[1]"));
(3) assertEquals("Sc...", sel.getText("//div[@id='prod-d']/a"));
(4) assertEquals("Book R...", sel.getText("//div[@id='p2FB2']/h3"));
(5) assertEquals("The ...", sel.getText("//div[@id='p2FB2']/p[1]"));
(6) assertEquals("$19.99", sel.getText("//div[@id='p2FB2']/p[2]"));
(7) assertEquals("+ Add t...", sel.getText("//div[@id='p2FB2']/a"));
 }
 public void testBookDetailNavigationToAuthor() throws Exception {
(8) sel.open("file:///dev/bookstore/Mockups/books-detail.html ");
(9) assertEquals("Scott Kelby", sel.getText("//div[@id='p-d']/a"));
(10) sel.click("//div[@id='p-d']/a");

 Bridging Test and Model-Driven Approaches in Web Engineering 147

(11) sel.waitForPageToLoad("30000");
(12) assertEquals("Books f...", sel.getText("//div[@id='p-l']/h2"));
(13) sel.assertLocation("/byAuthor*");
 }
}

3. Run the tests and ensure they fail.
4. Modify the corresponding WebML hypertext model and the corresponding

presentation
5. Derive the application.
6. Run the tests (adapt them if necessary). If they fail go to step 4.

At the end of this cycle we have a complete refactoring applied over the applica-
tion and tests transformed and added to the test suite. We next show how we can
automate this kind of tests transformations.

5 Towards Automated Test Evolution

During the development cycle, “old” tests should always succeed (except that some
already processed requirement has changed dramatically). However, Web refactorings
pose a new challenge for the developer: even not being originated by new
requirements, they can make navigation tests fail, as they might (slightly) change the
navigational and/or interface structure of the application. In other words, and as
shown in 4.2, tests must be adapted to be useful after a refactoring, i.e. to correctly
assess if it was safely performed. Fortunately, refactorings can be catalogued,
because, as well as design patterns, they record and convey good design practices.
Therefore, it is feasible to automate the process of test transformation. This
refactoring-driven transformation of tests must be performed after the mockup and
UIDs have been modified to show the new expected behavior. To transform a test we
need to follow these steps:

1. Select the test transformation associated with the refactoring of the catalogue to be
applied.

2. Configure the test transformation with UID's, mockups, location of tests and
specific parameters of the transformation (e.g. a specific element’s location).

3. Apply the test transformation.

There are many strategies to transform tests; we next explain one of them, as it
comprises defining a model for tests, which can be useful for other further tasks, such
as linking tests’ components to design model elements, for example to improve
traceability. To achieve automatic tests transformation, we first need to abstract the
concepts involved in a Web test. A Web test is a sequence of interactions and
assertions that aim to validate the application’s behavior. An interaction allows the
user to interact with the application. For example: click a link, click a button, type a
text on an input field, check a checkbox, etc. Assertions allow ensuring that a
predicate is valid in the current context. There are many possible assertions over a
Web page such as assertTitle, assertTextPresent, etc. A Web test could be then
abstracted using the simplified model shown in Fig. 7.

148 E. Robles Luna, J. Grigera, and G. Rossi

Fig. 7. Web Test Model

Individual tests can be abstracted, from their source code to an instance of the
model, in a straightforward way by using a parser. When tests are mapped onto a set
of objects, they can be easily manipulated. For instance, adding a title assertion to a
test is as simple as creating a new instance of the AssertTitle class and adding it to the
WebTest instance. Web test transformations are then designed and coded with
objects, and thus the algorithm that performs the transformation can be coded and
encapsulated in a class. Once the test transformation has been applied, we translate
objects back into the test text using a pretty printing algorithm. We omit here the
explanation of the parsing and pretty printing phases, as they are outside the scope of
the paper. As an example we show the algorithm of the Turn Information Into link
[17] test transformation that can be summarized in the following steps:

1. Request the location of the test.
2. Request the location of the text.
3. Change the location of the AssertText instance of the text. If no assertion is pointed

by the user, create a new instance of the AssertText class.
4. Create a new WebTest instance. Create an OpenUrl instance (pointing to the

mockup) and clone the AssertText instance of 3. Add both instances to the
WebTest.

5. Create a Click and Wait instances pointing to the location of the new link and add
it to the WebTest instance.

6. Request the expected location and a text that identifies the new location.
7. Create an AssertText and AssertLocation instances with the corresponding

requested values.

The result of applying the algorithm looks similar to the result shown in
section 4.2, but instead of testBookDetailNavigationToAuthor, the new test is
called testNavigationTextToLink1. Using this approach we can automate the
process of Web test transformation based on the catalogue of refactorings we
want to apply.

 Bridging Test and Model-Driven Approaches in Web Engineering 149

6 Concluding Remarks and Further Work

We have presented a novel approach to integrate test-driven development into model-
driven web engineering methods. Our approach can be used with any of the existing
methods, though to illustrate its feasibility we have used WebML and WebRatio as a
proof of concept. We have briefly explained the main steps of our approach and
showed some advanced aspects, such as tests transformations during the Web
refactoring stage. We have also shown that most activities related to tests evolution
can (and indeed should) be automated. To our knowledge, our proposal is the first to
bridge the gap between model-driven approaches and test-driven development, and
particularly in the Web engineering field. We retain the agile style of TDD that
focuses on short cycles, each one aimed at implementing a single requirement, to
validate the generated prototype. However, we work at a higher level of abstraction
(i.e. with models) leaving code generation to the support tool.

While TDD is usually, due to its strong relationship with coding, a handcrafted and
therefore error-prone activity, integration with model-driven approaches opens an
interesting space for improvement. We are now working on several directions: first
we are making field experiences to measure the impact of the integration on
development costs and quality aspects. While both TDD and model-driven
development improve software construction, we believe that our approach tends to
synergize the benefits more than just summing them up. From a more technical point
of view we are working in the integration of tools for TDD in different MDWE tools.
These tools include: Selenium and XPather for developing test cases, and Selenium
RC to make a one click away the generation and running of the whole test suite
(currently done manually). We are also planning to use an object-oriented approach
(like UWE), together with its associated tool to research deeper in the relationships
between typical unit testing in TDD (focused on object behaviors) and our navigation
unit testing, which focuses more on navigation and user interactions. Automatic
generation of tests from UIDs by using transformations or strategies like the one
described in [10], and improving traceability between tests and models are also
important items in our research agenda.

References

1. Alles, M., Crosby, D., Erickson, C., Harleton, B., Marsiglia, M., Pattison, G., Stienstra, C.:
Presenter First: Organizing Complex GUI Applications for Test-Driven Development. In:
AGILE 2006, pp. 276–288 (2006)

2. Ambler, S.W.: The object primer: agile modeling-driven development with UML 2.0.
Cambridge University Press, Cambridge (2004)

3. Beck, K.: Test Driven Development: By Example. Addison-Wesley Signature Series (2002)
4. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-

Wesley Longman Publishing Co., Inc., Amsterdam (1999)
5. Cachero, C., Koch, N.: Navigation Analysis and Navigation Design in OO-H and UWE.

Technical Report. Universidad de Alicante, Spain (April 2002),
 http://www.dlsi.ua.es/~ccachero/papers/ooh-uwe.pdf

6. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–
157 (2000)

150 E. Robles Luna, J. Grigera, and G. Rossi

7. Eleftherakis, G., Cowling, A.: An Agile Formal Development Methodology. In: SEEFM
2003 Proceedings 36 (1 de 12) (2003)

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the
Design of Existing Code. Addison-Wesley Professional, Reading (1999)

9. Gómez, J., Cachero, C.: OO-H Method: extending UML to model web interfaces. In: van
Bommel, P. (ed.) Information Modeling For internet Applications, pp. 144–173. IGI
Publishing, Hershey (2003)

10. Gutiérrez, J.J., Escalona, M.J., Mejías, M., Torres, J.: An approach to generate test cases from
use cases. In: Proceedings of the 6th international Conference on Web Engineering. ICWE
2006, Palo Alto, California, USA, July 11 - 14, vol. 263, pp. 113–114. ACM, New York (2006)

11. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. ACM
Press/Addison-Wesley (1992)

12. Janzen, D., Saiedian, H.: Does Test-Driven Development Really Improve Software Design
Quality? IEEE Software 25(2), 77–84 (2008)

13. Jeffries, R.E., Anderson, A., Hendrickson, C.: Extreme Programming Installed. Addison-
Wesley Longman Publishing Co., Inc., Amsterdam (2000)

14. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An
Approach Based On Standards. In: Web Engineering, Modelling and Implementing Web
Applications, pp. 157–191. Springer, Heidelberg (2008)

15. Maximilien, E.M., Williams, L.: Assessing test-driven development at IBM. In:
Proceedings of the 25th international Conference on Software Engineering, Portland,
Oregon, May 03 - 10, pp. 564–569. IEEE Computer Society, Los Alamitos (2003)

16. McDonald, A., Welland, R.: Agile Web Engineering (AWE) Process: Multidisciplinary
Stakeholders and Team Communication. In: Web Engineering, pp. 253–312. Springer, US
(2002)

17. Olsina, L., Garrido, A., Rossi, G., Distante, D., Canfora, G.: Web Application evaluation and
refactoring: A Quality-Oriented improvement approach. Journal of Web Engineering 7(4),
258–280 (2008)

18. Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web
Applications Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web
2001. LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

19. Pastor, O.: From Extreme Programming to Extreme Non-programming: Is It the Right
Time for Model Transformation Technologies? In: Bressan, S., Küng, J., Wagner, R. (eds.)
DEXA 2006. LNCS, vol. 4080, pp. 64–72. Springer, Heidelberg (2006)

20. Pipka, J.U.: Test-Driven Web Application Development in Java. In: Objects, Components,
Architectures, Services, and Applications for a Networked World, vol. 1, pp. 378–393.
Springer, US (2003)

21. Rasmussen, J.: Introducing XP into Greenfield Projects: lessons learned. IEEE
Softw. 20(3), 21–28 (2003)

22. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.
In: Web Engineering, Modelling and Implementing Web Applications, pp. 109–155.
Springer, Heidelberg (2008)

23. Selenium web application testing system, http://seleniumhq.org/
24. The WebRatio Tool Suite, http://www.Webratio.com
25. VanderVoord, M., Williams, G.: Feature-Driven Design Using TDD and Mocks. In:

Embedded Systems Conference Boston (October 2008)
26. XML Path Language (XPath), http://www.w3.org/TR/xpath
27. XPather - XPath Generator and Editor,

 https://addons.mozilla.org/en-US/firefox/addon/1192

A Requirement Analysis Approach for Using i*
in Web Engineering

Irene Garrigós, Jose-Norberto Mazón, and Juan Trujillo

Lucentia Research Group
Department of Software and Computing Systems – DLSI

University of Alicante, Spain
{igarrigos,jnmazon,jtrujillo}@dlsi.ua.es

Abstract. Web designers usually ignore how to model real user expec-
tations and goals, mainly due to the large and heterogeneous audience of
the Web. This fact leads to websites which are difficult to comprehend
by visitors and complex to maintain by designers. In order to amelio-
rate this scenario, an approach for using the i* modeling framework in
Web engineering has been developed in this paper. Furthermore, we also
present a traceability approach for obtaining different kind of design ar-
tifacts tailored to a specific Web modeling method. Finally, we include a
sample of our approach in order to show its applicability and we describe
a prototype tool as a proof of concept of our research.

1 Introduction

In the last decade, the number and complexity of websites and the amount
of information they offer is rapidly growing. In this context, introduction of
Web design methods and methodologies [1,2,3,4,5] have provided mechanisms to
develop complex Web applications in a systematic way. To better accommodate
the individual user, personalization of websites has been also introduced and
studied [6,7,8,9]. However, due to the idiosyncrasy of the audience, traditionally
methodologies for Web engineering have not taken into serious consideration the
requirement analysis phase. Actually, one of the main characteristics of Web
applications is that they typically serve large and heterogeneous audience, since
respectively i) everybody can access to the website and ii) each user has different
needs, goals and preferences. Interestingly, this is the opposite situation from the
traditional software development where the users are well known.

Therefore, current effort for requirement analysis in Web engineering is rather
focused on the system and the needs of the users are figured out by the designer.
This scenario leads us to websites that do not assure real user requirements and
goals, thus producing user disorientation and comprehension problems. There
may appear development and maintenance problems for designers, since costly,
time-consuming and rather non-realistic mechanisms (e.g. surveys among vis-
itors) should be developed to improve the already implemented website, thus
increasing the initial project budget.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 151–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

152 I. Garrigós, J.-N. Mazón and J. Trujillo

To solve these drawbacks, in this paper, a complementary viewpoint should
be adopted: modeling which are the expectations, intentions and goals of the
users when they are browsing the site and determining how they can affect the
definition of a suitable Web design. The main benefit of our point of view is
that the designer will be able to make decisions from the very beginning of the
development phase. These decisions could affect the structure of the envisioned
website in order to satisfy needs, goals, interests and preferences of each user or
user type. To this aim, we propose to use the i* modeling framework [10,11], one
of the most valuable approaches for analyzing stakeholders’ goals and how the
intended system would meet them. This framework is also very useful for reason-
ing about how stakeholders’ goals contribute to the selection of different design
alternatives. However, although i* provides mechanisms to model stakeholders
and relationships between them, it should be adapted for Web engineering, since
the Web domain has special requirements that are not taken into account in tra-
ditional requirement analysis approaches. These requirements are related to the
three main features of Web applications [12]: navigational structure, user inter-
face and personalization capability.

Bearing these considerations in mind, in this paper, we present an approach
for specifying requirements in the context of a Web engineering method [8] im-
proving the development of Web applications by using i* models. Also we provide
the designer with a set of guidelines to define these models. Moreover, the main
conceptual models are derived from this requirements specification using QVT
(Query/View/Transformation) rules [13]. In this way, designers will not have to
create these models from scratch but obtaining a first tentative model that en-
sures user requirements and then they only have to refine these models, saving
time and development effort.

The remainder of this paper is structured as follows: our approach for require-
ment analysis in Web engineering and how to trace these requirements to the
Web design is presented in Sect. 2. Section 3 describes an example of applying
our approach. Section 4 describes related work. Finally, in Sect. 5, we present
our conclusions and sketch some future work.

2 Modeling Requirements in Web Engineering

In this section, we present a proposal which provides a way of specifying require-
ments using i* in the context of A-OOH(Adaptive Object Oriented Hypermedia
method) [8]. A-OOH is the extension of the OO-H modeling method [2], which
includes the definition of adaptation strategies. This approach has also been
extended with UML-profiles so all the conceptual models are UML-compliant
(see Sect. 2.1). We use A-OOH for demonstration purposes but the proposal
could be applied to any Web modeling method. Traceability from the specified
requirements to the different conceptual models is also studied (see Sect. 2.2).
Designers will have to focus on specifying the requirements and will just have to
refine the generated conceptual models in order to adjust them.

A Requirement Analysis Approach for Using i* in Web Engineering 153

2.1 Specification of Requirements

The development of Web applications involves different kind of stakeholders with
different needs and goals. Interestingly, these stakeholders depend on each other
to achieve their goals, perform several tasks or obtain some resource, e.g. the
Web administrator relies on new clients for obtaining data in order to create new
accounts. In the requirements engineering community, goal-oriented techniques,
such as the i* framework [10,11], are used in order to explicitly analyze and model
these relationships among multiple stakeholders (actors in the i* notation). The
i* modeling framework has been proven useful for representing (i) intentions
of the stakeholders, i.e. their motivations and goals, (ii) dependencies between
stakeholders to achieve their goals, and (ii) the (positive or negative) effects of
these goals on each other in order to be able to select alternative designs for the
system, thus maximizing goals’ fulfilment.

Next, we briefly describe an excerpt of the i* framework which is relevant for
the present work. For a further explanation, we refer the reader to [10,11]. The
i* framework consists of two models: the strategic dependency (SD) model to
describe the dependency relationships (represented as) among various actors
in an organizational context, and the strategic rationale (SR) model, used to
describe actor interests and concerns and how they might be addressed. The SR
model (represented as) provides a detailed way of modeling internal intentional
elements and relationships of each actor (). Intentional elements are goals
(), tasks (), resources () and softgoals (). Intentional relationships
are means-end links () representing alternative ways for fulfilling goals; task-
decomposition links () representing the necessary elements for a task to be
performed; or contribution links (

help

hurt) in order to model how an intentional
element contributes to the satisfaction or fulfillment of a softgoal. A sample
application of the i* modeling framework is shown in Fig. 1, which represents
the SR model of our case study (see Sect. 3) for the client stakeholder. The main
goal of the client is to “buy books”. In order to do this, the client should “choose
a book to buy” and “provide his/her own data”. The task “choose a book to buy”
should be decomposed in several subtasks: “consult books”, “search for a specific
book”, “consult recommended books”. These tasks can have positive or negative
effects on some important softgoals. For example, while “consult books” helps
to satisfy the softgoal “obtain more complete information”, it hurts the softgoal
“reduce selection time”. Moreover, “consult books” can be further decomposed
according to the way in which the book data is consulted.

Although i* provides good mechanisms to model actors and relationships be-
tween them, it needs to be adapted to the Web engineering domain to reflect spe-
cial Web requirements that are not taken into account in traditional requirement
analysis approaches, thus being able to assure the traceability to Web design.
Web functional requirements are related to three main features of Web applica-
tions [12] (besides of the non-functional requirements): navigational structure,
user interface and personalization capability. Furthermore, the required data
structures of the website should be specified as well as the required (internal)

154 I. Garrigós, J.-N. Mazón and J. Trujillo

CLIENT

CONSULT
BOOKS

CONSULT
BOOKS BY

TITLE

CONSULT
BOOKS BY
CATEGORY

CONSULT
RECOMMENDED

BOOKS

GOOD
BROWSING

EXPERIENCE
CONSULT

BOOKS BY
AUTHOR

SEARCH
SPECIFIC

BOOK

BUY
BOOKS

CHOOSE
BOOK

TO BUY

PROVIDE
CLIENT
DATA

REDUCE
SELECTION

TIME

OBTAIN MORE
COMPLETE INFO

help

help help

help

hurt

hurt

hurt

Fig. 1. Modeling the client in an SR model

functionality provided by the system. Therefore, in this paper, we use the tax-
onomy of Web requirements presented in [12]:

Content Requirements. With this type of requirements the content that the
website presents to its users is defined. Some examples might be: “book
information” or “product categories”. Other kind of requirements may need
to be related with one or more content requirements.

Service Requirements. This type of requirement refers to the internal func-
tionality the system should provide to its users. For instance: “register a new
client”, “add product”, etc.

Navigational Requirements. A Web system must also define the naviga-
tional paths available for the existing users. Some examples are: “consult
products by category”, “consult shopping cart”, etc.

Layout Requirements. Requirements can also define the visual interface for
the users. For instance: “present a different style for teenagers”, etc.

Personalization Requirements. We also consider personalization require-
ments in this approach. The designer can specify the desired personalization
actions to be performed in the final website (e.g. “show recommendations
based on interest”, “adapt font for visual impaired users”, etc.)

Non-Functional Requirements. In our approach the designer can also model
non-functional requirements. These kind of requirements are related to qual-
ity criteria that the intended Web system should achieve and that can be
affected by other requirements. Some examples can be “good user experi-
ence”, “attract more users”, “efficiency”, etc.

Once this classification has been adopted, the i* framework needs to be
adapted. As the considered Web engineering approach (A-OOH) is UML-com-
pliant, we have used the extension mechanisms of UML to (i) define a profile
for using i* within UML; and (ii) extend this profile in order to adapt i* to
specific Web domain terminology. Therefore, new stereotypes have been added

A Requirement Analysis Approach for Using i* in Web Engineering 155

<<stereotype>>

Task
<<stereotype>>

Personalization

<<stereotype>>

Layout

<<stereotype>>

Navigational

<<stereotype>>

Service

<<metaclass>>

Class

<<metaclass>>

AssociationClass

<<stereotype>>

IActor

<<stereotype>>

Belief
<<stereotype>>

IElement

<<stereotype>>

Argumentable

<<stereotype>>

Goal
<<stereotype>>

Resource
<<stereotype>>

Task
<<stereotype>>

Softgoal

<<stereotype>>

IRelationship

<<stereotype>>

Contribution
<<stereotype>>

Correlation
<<stereotype>>

Decomposition
<<stereotype>>

MeansEnds
<<stereotype>>

IDependency

<<metaclass>>

Association

<<stereotype>>

i* profile
<<stereotype>>

i* profile for web

<<stereotype>>

Resource

<<metaclass>>

Package

<<stereotype>>

SD

<<stereotype>>

SR

<<stereotype>>

Content

Fig. 2. Overview of the UML profiles for i* modeling in the Web domain

according to the different kind of Web requirements (see Fig. 2): Navigational,
Service, Personalization and Layout stereotypes extend the Task stereotype and
Content stereotype extends the Resource stereotype. It is worth noting that non-
functional requirements can be modeled by directly using the softgoal stereotype.

Finally, several guidelines should be provided in order to support the designer
in defining i* models for Web domain.

1. Determine the kind of users for the intended Web and model them as actors.
The website is also considered as an actor. Dependencies among these actors
must be modeled in an SD model.

2. Define actors’ intentions by using i* techniques in an SR model [14]: modeling
goals, softgoals, tasks and resources, and the relationships between them.

3. Annotate tasks as navigational, service, personalization or layout require-
ments. Also, annotate resources as content requirements. It is worth noting
that goals and softgoals should not be annotated.

2.2 Traceability to Web Design

Once the requirements have been defined they can be used to derive the con-
ceptual models for the website. Typically, Web design methods have three main
models to define a Web application: a Domain model, in which the structure
of the domain data is defined, a Navigation model, in which the structure and
behavior of the navigation view over the domain data is defined, and finally a
Presentation model, in which the layout of the generated hypermedia presenta-
tion is defined. To be able to model personalization at design time two additional
models are needed: a Personalization model, in which personalization strategies
are specified, and a User model, in which the structure of information needed
for personalization is described.

As aforementioned, the conceptual models of the A-OOH method are derived
from requirements. Once these models are derived the designer has only to refine

156 I. Garrigós, J.-N. Mazón and J. Trujillo

them, avoiding the task of having to create them from scratch. Due to space
constraints, in this work, the focus is on the Domain and Navigation models.
However, an skeleton of the Presentation, User and Personalization models could
also be generated from the requirements specification.

Since the i* framework does not well support traceability to other design arti-
facts by its own, domain-oriented mechanisms should be considered to perform
this task [15]. In our approach, the new stereotypes presented in the previous
subsection allow us to prepare models for this traceability phase. We have de-
tected several i* patterns [16] in order to define a set of QVT transformation
rules to map elements from the SR metamodel to their counterparts in the A-
OOH metamodel. They are applied with a certain order as shown in Fig. 3,
where the transformation workflow is summarized.

After analyzing and modeling the requirements of the website according to
the guidelines presented in the previous subsection, the Domain model (DM)
and Navigational model (NM) are generated from the specified requirements.
Before explaining each of the derivations, we briefly introduce the A-OOH DM
and NM so the reader can easily follow the derivation of them.

Deriving the Domain model. The A-OOH DM is expressed as a UML-
compliant class diagram. It encapsules the structure and functionality required
of the relevant concepts of the application and reflects the static part of the
system. The main modeling elements of a class diagram are the classes (with
their attributes and operations) and their relationships.

Table 1 summarizes how DM elements are mapped from the SR model. To
derive a preliminary version of the DM we take into account two types of require-
ments defined in Sect. 2 content and service requirements. We have detected sev-
eral patterns in the i* models and we have used these patterns to define several

Requirement

analysis

Content

requirement

Content2DomainClass

Navigational

pattern

detected

Service

pattern

detected

DM

skeleton

created

Navigational

pattern

detected

Service

pattern

detected

NM

skeleton

created

yes

no

yes

no

yes

no
yes

yes

yes yes

no

yes

no

no

no

Navigation2Relationship Service2Operation

Nav&Pers2NavClass

Navigation2TLink

Service2Service&SLink

Navigational

or

personalization

requirement

Fig. 3. Transformation Rules: Traceability to Web design

A Requirement Analysis Approach for Using i* in Web Engineering 157

Table 1. Derivation of the Domain model

i* element A-OOH element

Content Requirement Class
Service Pattern Operation
Navigational Pattern Association between classes

<<content>>

<<navigational>>

<<navigational>>

<<content>>
[0..1]

[0..*]

(a) Navigational pattern

<<content>>

<<service>>

(b) Service pattern

Fig. 4. Patterns

transformation rules in QVT. Specifically, three transformation rules are defined
in order to derive the DM from the SR model:

– Content2DomainClass By using this transformation rule, each content re-
quirement is detected and derived into one class of the DM.

– Navigation2Relationship Preliminar relations into classes are derived from
the relations among goals/tasks with attached resources by applying this
rule. To generate the associations in the DM we have to detect a naviga-
tional pattern in the SR model of the website stakeholder. In Fig. 4(a) we
can see that the navigational pattern consists of a navigational root require-
ment (i.e. task) which can contain one or more navigational requirements
attached. Each of the navigational requirement can have attached a resource
(i.e. content requirement). The classes mapped from the resources we find
in such pattern will have an association relation between them.

– Service2Operation This transformation rule detects a service pattern, i.e. a
service requirement with an attached content requirement in the SR model
(see Fig. 4(b)). In this case each service requirement is transformed into one
operation of the corresponding class (represented by the content require-
ment). In this QVT rule (shown in Fig. 5), a service pattern is detected and
transformed into the corresponding elements in the target model.

Once the DM skeleton has been obtained it is left to the designer to refine it,
who will also have to specify the most relevant attributes of the classes, identify
the cardinalities and define (if existing) the hierarchical relationships.

After the preliminar DM is created, a skeleton of the NM is also derived from
the specified requirements. This diagram enriches the DM with navigation and
interaction features. It is introduced next.

158 I. Garrigós, J.-N. Mazón and J. Trujillo

AOOHi*

C E

Content2DomainClass c,dc();

when

Service2Operation

: Class

name=n_s

<<domain>>

s : Service

c: Content: Class

: Property

: Property

opposite

: Operation

name=n_s

dc : Class

<<domain>>

ownedOperation

Fig. 5. QVT transformation rule for the service pattern

Deriving the Navigational model. The A-OOH Navigational model is com-
posed of Navigational Nodes, and their relationships indicating the navigation
paths the user can follow in the final website (Navigational Links).

There are three types of Nodes: (a) Navigational Classes (which are view of
the domain classes), (b) Navigational Targets (which group the model elements
which collaborate in the fulfilment of every navigation requirement of the user)
and (c) Collections (which are (possible) hierarchical structures defined in Nav-
igational Classes or Navigational Targets. The most common collection type is
the C-collection (Classifier collection) that acts as an abstraction mechanism for
the concept of menu grouping Navigational Links). Navigational Links (NL) de-
fine the navigational paths that the user can follow through the system. A-OOH
defines two main types of links: Transversal links (which are defined between
two navigational nodes) and Service Links(in this case navigation is performed
to activate an operation which modifies the business logic and moreover implies
the navigation to a node showing information when the execution of the service
is finished).

To derive the NM we take into account the content requirements, service
requirements and the navigation and personalization requirements. We also take
into consideration the patterns detected (see Fig. 4) in order to develop several
QVT transformation rules. In Tab. 2 we can see a summary showing how the
different requirements are derived into elements of the NM. In the right part of
Fig. 3 we can see the different transformation rules that are to be performed in
order to derive a preliminar Navigation model. In this case we also define three
transformation rules:

– Nav&Pers2NavClass: By using this rule, a “home” navigational class is
added to the model, which is a C-collection representing a Menu grouping
navigational links. From each navigational and personalization requirement
with an associated content requirement a navigational class (NC) is derived.
From the “home” NC a transversal link is added to each of the generated
NCs.

– Navigation2TLink: This rule checks the navigational pattern, if it is detected,
then a transversal link is added from the NC that represents the root navi-
gational requirement to each of the NCs representing the associated naviga-
tional requirements.

A Requirement Analysis Approach for Using i* in Web Engineering 159

Table 2. Derivation of the Navigation model

i* element A-OOH element

Navigation and Personalization Requirements Navigational Class
Navigation Pattern Transversal Links
Service pattern Operation + Service Link with

a target Navigational Class

– Service2Service&SLink: Finally, the service pattern is checked by applying
this transformation rule. If a service pattern is found, then an operation
to the class representing the resource is added and service link is created
from each of the operations, with a target navigational class which shows
the termination of the service execution.

Finally, the derived NM could be refined by the designer in order to specify
complementary elements for the desired navigation paths.

3 Sample Application of Our Approach

In this section, we provide an example of our approach based on a company that
sells books on-line. In this case study, a company would like to manage book
sales via an online bookstore, thus attracting as many clients as possible. Also
there is an administrator of the Web to manage clients.

3.1 Requirements Specification

Three actors are detected that depend on each other, namely “Client”, “Ad-
ministrator”, and “Online Bookstore”. A client depends on the online bookstore
in order to “choose a book to buy”. The administrator needs to use the online
bookstore to “manage clients”, while the “client data” is provided by the client.
These dependencies are modeled by an SD model (see Fig. 6). Once the actors
have been modeled in an SD model, their intentions are specified in SR models.

The SR model for the client actor was previously explained in Sect. 2.1. The
SR model of the online bookstore is shown in Fig. 6. The main goal of this actor
is to “manage book sales”. To fulfill this goal the SR model specifies that two
tasks should be performed: “books should be sold online” and “clients should be
managed”. We can see in the SR model that the first of the tasks affects positively
the softgoal “attract more users”. Moreover, to complete this task four subtasks
should be obtained: “provide book info” (which is a navigational requirement),
“provide recommended books” (which is a personalization requirement), “search
engine for books”, and “provide a shopping cart”. We can observe that some
of these tasks affect positively or negatively to the non-functional requirement
“easy to maintain”: “Provide book information” is easy to maintain, unlike “pro-
vide recommended books” and ”use a search engine for books“. The navigational
requirement “provide book information” can be decomposed into several naviga-
tional requirements according to the criteria used to sort the data. These data

160 I. Garrigós, J.-N. Mazón and J. Trujillo

ONLINE
BOOKSTORE

BOOKS
BE SOLD
ONLINE

ATTRACT
MORE USERS

BOOK

CATEGORY

AUTHOR

CLIENTS BE
MANAGED

NEW
CLIENT

MODIFY
CLIENT

DELETE
CLIENT

CLIENT

EASY TO
MAINTAIN

PROVIDE
BOOK INFO

PROVIDE
BOOKS BY
AUTHOR

PROVIDE
BOOKS BY
CATEGORY

PROVIDE
RECOMMENDED

BOOKS

PROVIDE
BOOKS BY

TITLE

SEARCH
BOOK BY

ISBN

SEARCH
BOOK BY

TITLE

SEARCH
ENGINE FOR

BOOKS

ADD
BOOK

TO CART

VIEW
CART

CONTENT

PROVIDE
A SHOPPING

CART

BOOK
SALES BE
MANAGED

CART

help

help

hurt

hurt

<<navigational>>

<<navigational>>
<<navigational>>

<<personalization>>

<<navigational>><<service>><<service>>
<<service>>

<<service>>

<<service>>

<<service>>

<<content>>

<<content>>

<<content>>
<<content>>

<<content>>

ADMINMANAGE
CLIENTS

CLIENT
DATA

CHOOSE
BOOK TO

BUY

CLIENT

<<navigational>>

Fig. 6. Modeling the online bookstore in an SR model and the SD model

is specified by means of content requirements: “book”, “author” and “category”.
The personalization requirement “provide recommended books” is related to the
content requirement “book” because it needs the book information to be ful-
filled. The task “search engine for books” is decomposed into a couple of service
requirements: “search book by title” and “search book by ISBN”, which are also
related to the content requirement “book”. In the same way, the task “provide a
shopping cart” is decomposed into two service requirements: “add book to cart”
and “view cart content”. These service requirements are related to the content
requirement “cart”. Finally, the task “clients be managed” is decomposed into
three service requirements: “new client”, “modify client” and “delete client”,
which are related to the content requirement “client”.

3.2 Traceability to Domain and Navigational Models

In Fig. 7 we can see the derived Domain model from the specified requirements.
As explained in Sect. 2.2 to derive the Domain model we take into account the
content and service requirements as well as the existence of service or naviga-
tional patterns. In this case we can see that five domain classes are created by
applying the Content2DomainClass transformation rule: one class is generated

A Requirement Analysis Approach for Using i* in Web Engineering 161

for each content requirement specified in the SR model. Moreover, we detect
three service patterns (see Fig. 4(b)), so operations are added to the classes
client, cart and book by executing the Service2Operation rule. Finally we detect
that the Provide Book Info requirement follows the navigational pattern as we
can see in Fig. 4(a). In this case the rule Navigation2Relationship adds asso-
ciations among all the resources found in this pattern. The generated Domain
model is shown in Fig. 7.

Fig. 7. Traceability to Domain model

In the case of the Navigational model, the rule Nav&Pers2NavClass is per-
formed adding a home page with a collection of links (i.e. menu). Afterwards,
one NC is created for each navigational and personalization requirement with an
attached resource, in this case we have five NC created from navigational and

Fig. 8. Traceability to Navigation model

162 I. Garrigós, J.-N. Mazón and J. Trujillo

personalization requirements. From the menu, a transversal link to each of the
created NCs is added (L1 to L4).

The next step is checking the navigational and service patterns. In this exam-
ple, we find a navigational pattern (see Fig.4(a)) applying the Navigation2TLink
it implies creating a transversal link from the NCs created by the associated nav-
igational requirements, to the NC that is represented by the root navigational
requirement. In this case two links are added: L5 and L6.

Finally, as we are referring to the website stakeholder, we find three service
patterns from which the operations of the NCs books and cart are added and
the service links L7, L8 and L9 are created with an associated target NC by
applying the Service2Service&SLink.

3.3 Implementation Framework

The presented approach has been implemented by using the Eclipse development
platform [17]. Eclipse is a framework which can be extended by means of plugins
in order to add more features and new functionalities. A plugin that supports
both of the defined profiles has been developed. This new plugin implements
several graphical and textual editors (Fig. 9 shows an overview of the tool). The
palette for drawing the different elements of i* can be seen on the right-hand
side of this figure. A sample SR model is shown in the center of the figure.
Traceability rules are also being defined and tested in our prototype.

4 Related Work

Few approaches have focused on defining an explicit requirement analysis stage
to model the user. We can stress the following:

Fig. 9. Screenshot of our prototype

A Requirement Analysis Approach for Using i* in Web Engineering 163

NDT[12] considers a complete taxonomy for the specification of Web require-
ments. It allows to specify requirements by means of use cases diagrams and
templates. It uses a different template for each requirement type they consider,
so requirements and objectives are described in a structured way. UWE [7] also
describes a taxonomy for requirements related to the Web. It proposes extended
use cases, scenarios and glosaries for specifying requirements. WebML [5] also
proposes the use of use case diagrams combined with activity diagrams and
semi-structured textual description. WSDM [3] is an audience driven approach
in which they do a classification of the requirements and the audience. These
classes are represented with a diagram in which they are related. Then they are
modeled into detail in a Task model using concurrent task trees. OOHDM [18]
capture the requirements in use case diagrams. They propose the use of UIDs
(user interaction diagrams) for defining the requirements deriving them from the
Use cases. OOWS [19] focuses on the specification of tasks. They extend the ac-
tivity diagrams with the concept of interaction point to describe the interaction
of the user with the system.

Furthermore traceability from the requirements to conceptual models is an
important issue to bridge the gap between requirements and Web design. There
are two approaches to the author’s knowledge that support this in some way:
OOWS provides automatic generation of (only) navigation models from the tasks
description by means of graph transformation rules. NDT [20] defines a require-
ment metamodel and allows to transform the requirements model into a content
and a navigational model by means of QVT rules. Our approach of traceability
resembles NDT since we have also adopted QVT in order to obtain design arti-
facts from Web requirements, but we have kept the benefits of the i* framework
by means of the defined profiles and patterns.

However, some of these approaches present the following drawbacks: (i) they
do not take into consideration a complete taxonomy of requirements which is
suitable in Web applications, or (ii) they consider non-functional requirements in
an isolated manner, or (iii) they mainly focus on design aspects of the intended
Web system without paying enough attention to Web requirements. Further-
more, none of them perform the analysis of the users’ needs. Requirements are
figured out by the designer, it may be needed to re-design the website after do-
ing usability and satisfaction tests to the users. Modeling users allow us ensuring
that the Web application satisfies real user needs and goals and the user is not
overwhelmed with functionalities that he does not need or expect and he does
not miss functionalities that were not implemented.

To the best of our knowledge, the only approaches that use goal oriented
techniques have been presented in [21,22]. They propose a complete taxonomy
of requirements for the Web and use the i* notation to represent them. Un-
fortunately, they do not benefit from every i* feature, since they only use a
metamodel that has some of its concepts, e.g. means-end, decomposition or con-
tribution links from i* are not specified in the approach presented in [21].

164 I. Garrigós, J.-N. Mazón and J. Trujillo

5 Conclusions and Future Work

Websites require special techniques for requirement analysis in order to reflect,
from early stages of the development, specific needs, goals, interests and prefer-
ences of each user or user type. However, Web engineering field does not pay the
attention needed to this issue. We have presented a goal oriented approach on
the basis of the i* framework to specify Web requirements. It allows the designer
to make decisions from the very beginning of the development phase that would
affect the structure of the envision website in order to satisfy users.

Moreover, the following guidelines are provided to the designer to properly
define i* models for the Web domain: (i) discovering the intentional actors (i.e.
Web users and the Web application) and their dependencies in an SD model,
(ii) discovering their intentional elements, thus defining SR models for each one,
and (iii) annotating intentional elements with Web concepts. We can use this
model to check the current website or to make the appropriate decision to build
a new one. Moreover, we have defined a set of transformation rules in order to
assure the traceability from requirements to the conceptual models. Although
this approach is presented in the context of the A-OOH modeling method it can
be applied to any Web modeling approach.

Our short-term future work consists of completing the transformation rules
in order to obtain the rest of the A-OOH models (i.e. presentation and person-
alization models).

Acknowledgements. This work has been partially supported by the ESPIA
project (TIN2007-67078) from the Spanish Ministry of Education and Science,
and by the QUASIMODO project (PAC08-0157-0668) from the Castilla-La Man-
cha Ministry of Education and Science (Spain). Jose-Norberto Mazón is funded
by the Spanish Ministry of Education and Science under a FPU grant (AP2005-
1360).

References

1. Casteleyn, S., Woensel, W.V., Houben, G.J.: A semantics-based aspect-oriented
approach to adaptation in web engineering. In: Hypertext, pp. 189–198 (2007)

2. Cachero, C., Gómez, J.: Advanced conceptual modeling of web applications: Em-
bedding operation interfaces in navigation design. In: JISBD, pp. 235–248 (2002)

3. Casteleyn, S., Garrigós, I., Troyer, O.D.: Automatic runtime validation and cor-
rection of the navigational design of web sites. In: Zhang, Y., Tanaka, K., Yu, J.X.,
Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 453–463. Springer,
Heidelberg (2005)

4. Koch, N.: Software engineering for adaptive hypermedia systems: Reference model,
modeling techniques and development process. Softwaretechnik- Trends 21(1)
(2001)

5. Ceri, S., Manolescu, I.: Constructing and integrating data-centric web applications:
Methods, tools, and techniques. In: VLDB, p. 1151 (2003)

6. Rossi, G., Schwabe, D., Guimarães, R.: Designing personalized web applications.
In: WWW, pp. 275–284 (2001)

A Requirement Analysis Approach for Using i* in Web Engineering 165

7. Koch, N.: Reference model, modeling techniques and development process software
engineering for adaptive hypermedia systems. KI 16(3), 40–41 (2002)

8. Garrigós, I.: A-OOH: Extending Web Application Design with Dynamic Personal-
ization. Ph.D thesis, University of Alicante, Spain (2008)

9. Daniel, F., Matera, M., Morandi, A., Mortari, M., Pozzi, G.: Active rules for run-
time adaptivity management. In: AEWSE (2007)

10. Yu, E.: Modelling Strategic Relationships for Process Reenginering. Ph.D thesis,
University of Toronto, Canada (1995)

11. Yu, E.: Towards modeling and reasoning support for early-phase requirements en-
gineering. In: RE, pp. 226–235 (1997)

12. Cuaresma, M.J.E., Koch, N.: Requirements engineering for web applications - a
comparative study. J. Web Eng. 2(3), 193–212 (2004)

13. QVT Language: http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
14. i* wiki: http://istar.rwth-aachen.de
15. Estrada, H., Rebollar, A.M., Pastor, O., Mylopoulos, J.: An empirical evaluation of

the * framework in a model-based software generation environment. In: Dubois, E.,
Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 513–527. Springer, Heidelberg
(2006)

16. Strohmaier, M., Horkoff, J., Yu, E.S.K., Aranda, J., Easterbrook, S.M.: Can pat-
terns improve i* modeling? two exploratory studies. In: Paech, B., Rolland, C.
(eds.) REFSQ 2008. LNCS, vol. 5025, pp. 153–167. Springer, Heidelberg (2008)

17. Eclipse: http://www.eclipse.org/
18. Schwabe, D., Rossi, G.: An object oriented approach to web-based applications

design. TAPOS 4(4), 207–225 (1998)
19. Valderas, P., Pelechano, V., Pastor, O.: A transformational approach to produce

web application prototypes from a web requirements model. Int. J. Web Eng.
Technol. 3(1), 4–42 (2007)

20. Koch, N., Zhang, G., Cuaresma, M.J.E.: Model transformations from requirements
to web system design. In: ICWE, pp. 281–288 (2006)

21. Bolchini, D., Paolini, P.: Goal-driven requirements analysis for hypermedia-
intensive web applications. Requir. Eng. 9(2), 85–103 (2004)

22. Molina, F.M., Pardillo, J., Álvarez, J.A.T.: Modelling web-based systems require-
ments using wrm. In: WISE Workshops, pp. 122–131 (2008)

http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://istar.rwth-aachen.de
http://www.eclipse.org/

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 166 – 180, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Automating Navigation Sequences in AJAX Websites

Paula Montoto, Alberto Pan, Juan Raposo, Fernando Bellas, and Javier López

Department of Information and Communication Technologies, University of A Coruña
Facultad de Informática, Campus de Elviña s/n 15071 A Coruña, Spain

{pmontoto,apan,jrs,fbellas,jmato}@udc.es

Abstract. Web automation applications are widely used for different purposes
such as B2B integration, automated testing of web applications or technology
and business watch. One crucial part in web automation applications is to allow
easily generating and reproducing navigation sequences. Previous proposals in
the literature assumed a navigation model today turned obsolete by the new
breed of AJAX-based websites. Although some open-source and commercial
tools have also addressed the problem, they show significant limitations either
in usability or their ability to deal with complex websites. In this paper, we
propose a set of new techniques to deal with this problem. Our main
contributions are a new method for recording navigation sequences supporting a
wider range of events, and a novel method to detect when the effects caused by
a user action have finished. We have evaluated our approach with more than
100 web applications, obtaining very good results.

Keywords: Web automation, web integration, web wrappers.

1 Introduction

Web automation applications are widely used for different purposes such as B2B
integration, web mashups, automated testing of web applications or business watch.
One crucial part in web automation applications is to allow easily generating and
reproducing navigation sequences. We can distinguish two stages in this process:

− Generation phase. In this stage, the user specifies the navigation sequence to
reproduce. The most common approach, cf. [1,9,11], is using the ‘recorder’
metaphor: the user performs one example of the navigation sequence using a
modified web browser, and the tool generates a specification which can be run by the
execution component. The generation environment also allows specifying the input
parameters to the navigation sequence.

− Execution phase. In this stage, the sequence generated in the previous stage and the
input parameters are provided as input to an automatic navigation component
which is able to reproduce the sequence. The automatic navigation component can
be developed by using the APIs of popular browsers (e.g. [9]). Other systems like
[1] use simplified custom browsers specially built for the task.

Most existing previous proposals for automatic web navigation systems (e.g.
[1,9,11]) assume a navigation model which is now obsolete to a big extent: on one

 Automating Navigation Sequences in AJAX Websites 167

hand, the user actions that could be recorded were very restrictive (mainly clicking on
elements and filling in form fields) and, on the other hand, it was assumed that almost
every user action caused a request to the server for a new page.

Nevertheless, this is not enough for dealing with modern AJAX-based websites,
which try to replicate the behavior of desktop applications. These sites can respond to
a much wider set of user actions (mouse over, keyboard strokes, drag and drop…) and
they can respond to those actions executing scripting code that manipulates the page
at will (for instance, by creating new graphical interface elements on the fly). In
addition, AJAX technology allows requesting information from the server and
repainting only certain parts of the page in response.

In this paper, we propose a set of new techniques to build an automatic web
navigation system able to deal with all this complexity. In the generation phase, we
also use the ‘recorder’ metaphor, but substantially modified to support recording a
wider range of events; we also present new methods for identifying the elements
participating in a navigation sequence in a change-resilient manner.

In the execution phase, we use the APIs of commercial web browsers to implement
the automatic web navigation components (the techniques proposed for the recording
phase have been implemented using Microsoft Internet Explorer (MSIE) and the
execution phase has been implemented using both MSIE and Firefox); we take this
option because the approach of creating a custom browser supporting technologies
such as scripting code and AJAX requests is effort-intensive and very vulnerable to
small implementation differences that can make a web page to behave differently
when accessed with the custom browser. In the execution phase, we also introduce a
method to detect when the effects caused by a user action have finished. This is
needed because one navigation step may require the effects of the previous ones to be
completed before being executed.

2 Models

In this section we describe the models we use to characterize the components used for
automated browsing. The main model we rely on is DOM Level 3 Events Model [3].
This model describes how browsers respond to user-performed actions on an HTML
page currently loaded in the browser. Although the degree of implementation of this
standard by real browsers is variable, the key assumptions our techniques rely on are
verified in the most popular browsers (MSIE and Firefox). Therefore, section 2.1
summarizes the main characteristics of this standard that are relevant to our
objectives. Secondly, section 2.2 states additional assumptions about the execution
model employed by the browser in what regards to scripting code, including the kind
of asynchronous calls required by AJAX requests. These assumptions are also
verified by current major browsers.

2.1 DOM Level 3 Events Model

In the DOM Level 3 Events Model, a page is modelled as a tree. Each node in the tree
can receive events produced (directly or indirectly) by the user actions. Event types
exist for actions such as clicking on an element (click), moving the mouse cursor over
it (mouseover) or specifying the value of a form field (change), to name a few. Each

168 P. Montoto et al.

node can register a set of event listeners for each event type. A listener executes
arbitrary code (typically written in a script language such as Javascript). Listeners
have the entire page tree accessible and can perform actions such as modifying
existing nodes, removing them, creating new ones or even launching new events.

The event processing lifecycle can be summarized as follows: The event is
dispatched following a path from the root of the tree to the target node. It can be
handled locally at the target node or at any target's ancestors in the tree. The event
dispatching (also called event propagation) occurs in three phases and in the
following order: capture (the event is dispatched to the target’s ancestors from the
root of the tree to the direct parent of the target node), target (the event is dispatched
to the target node) and bubbling (the event is dispatched to the target's ancestors from
the direct parent of the target node to the root of the tree). The listeners in a node can
register to either the capture or the bubbling phase. In the target phase, the events
registered for the capture phase are executed before the events executed for the
bubbling phase. This lifecycle is a compromise between the approaches historically
used in major browsers (Microsoft IE using bubbling and Netscape using capture).

The order of execution between the listeners associated to an event type in the
same node is registration order. The event model is re-entrant, meaning that the
execution of a listener can generate new events. Those new events will be processed
synchronously; that is, if li, li+1 are two listeners registered to a certain event type in a
given node in consecutive order, then all events caused by li execution will be
processed (and, therefore, their associated listeners executed) before li+1 is executed.

Fig. 1. Listeners Execution Example

Example 1: Fig. 1 shows an excerpt of a DOM tree and the listeners registered to the
event types e1 and e2. The listeners in each node for each event type are listed in
registration order (the listeners registered for the capture phase appear as lcxyz and the
ones registered for the bubbling phase appear as lbxyz). The figure also shows what
listeners and in which order would be executed in the case of receiving the event-type
e1 over the node n3, assuming that the listener on the capture phase lc313 causes the
event-type e2 to be executed over the node n4.

DOM Level 3 Events Model provides an API for programmatically registering new
listeners and generating new events. Nevertheless, it does not provide an introspection
API to obtain the listeners registered for an event type in a certain node. As we will
see in section 3.1, this will have implications in the recording process in our system.

 n1

n2

n3

n4

e1 {lc311, lc312, lc313} {lb311, lb312}

e1 {lc211} {lb211}

e1 {lc111, lc112} {lb111}

e2 {lc421, lc422} {lb421, lb422}

 function lc313() {
 n4.fireEvent("e2")
 }

{lc111, lc112, lc211, lc311, lc312, lc313, {lc421, lc422, lb421, lb422}, lb311, lb312 lb211, lb111}

 Automating Navigation Sequences in AJAX Websites 169

2.2 Asynchronous Functions and Scripts Execution Model

In this section we describe the model we use to represent how the browser executes
the scripting code of the listeners associated to an event. This model is verified by the
major commercial browsers.

The script engine used by the browser executes scripts sequentially in single-thread
mode. The scripts are added to an execution queue in invocation order; the script
engine works by sequentially executing the scripts in the order specified by the queue.

When an event is triggered, the browser obtains the listeners that will be triggered
by the event and invokes its associated scripts, causing them to be added to the
execution queue. Once all the scripts have been added, execution begins and the
listeners are executed sequentially.

The complexity of this model is slightly increased because the code of a listener
can execute asynchronous functions. An asynchronous function executes an action in
a non-blocking form. The action will run on the background and a callback function
provided as parameter in the asynchronous function invocation will be called when
the action finishes.

The most popular type of asynchronous call is the so-called AJAX requests. An
AJAX request is implemented by a script function (i.e. in Javascript, a commonly
used one is XMLHTTPRequest) that launches an HTTP request in the background.
When the server response is received, the callback function is invoked to process it.

Other popular asynchronous calls establish timers and the callback function is
invoked when the timer expires. In this group, we find the Javascript functions
setTimeout(ms) (executes the callback function after ms milliseconds) and
setInterval(ms) (executes the callback function every ms milliseconds). Both have
associated cancellation functions: clearTimeout(id) and clearInterval(id).

It is important to notice that, from the described execution model, it is inferred the
following property:

Property 1: The callback functions of the asynchronous calls launched by the listeners
of an event will never be executed until all other scripts associated to that event have
finished.

The explanation for this property is direct from the above points: all the listeners
associated to an event are added to the execution queue first, and those listeners are
the ones invoking the asynchronous functions; therefore, the callback functions will
always be positioned after them in the execution queue even if the background action
executed by the asynchronous call is instantaneous.

3 Description of the Solution

In this section we describe the proposed techniques for automated web navigation.
First, we deal with the generation phase: section 3.1 describes the process used to
record a navigation sequence in our approach. Section 3.2 deals with the problem of
identifying the target DOM node of a user action: this problem consists in generating
a path to the node that can be used later at the execution phase to locate it in the page
and section 3.3 deals with the execution phase.

170 P. Montoto et al.

3.1 Recording User Events

The generation phase has the goal of recording a sequence of actions performed by
the user to allow reproducing them later during the execution phase.

A user action (e.g. a click on a button) causes a list of events to be issued to the
target node, triggering the invocation of the listeners registered for them in the node
and its ancestors, according to the execution model described in the previous section.
Notice that each user action usually generates several events. For instance, the events
generated when the user clicks on a button include, among others, the mouseover
event besides of the click event, since in order to click on an element it is previously
required to place the mouse over it. Recording a user action consists in detecting
which events are issued, and in locating the target node of those events.

In previous proposals, cf. [1,6,9], the user can record a navigation sequence by
performing it in the browser in the same way as any other navigation. The method
used to detect the user actions in these systems is typically as follows: the recording
tool registers its own listeners for the most common events involved in navigations
(mainly clicks and the events involved in filling in form fields) in anchors and form-
related tags. This way, when a user action produces one of the monitored event-types
e on one of the monitored nodes n, the listener for e in n is invoked, implicitly
identifying the information to be recorded.

Nevertheless, the modern AJAX-based websites can respond to a much wider set
of user actions (e.g. placing the mouse over an element, producing keyboard strokes,
drag and drop…); in addition, virtually any HTML element, and not only traditional
navigation-related elements, can respond to user actions: tables, images, texts, etc.

Extending the mentioned recording process to support AJAX-based sites would
involve registering listeners for every event in every node of the DOM tree (or,
alternatively, registering listeners for every event in the root node of the page, since
the events execution model ensures that all events reach to the root). Registering
listeners for every event has the important drawback that it would “flood” the system
by recording unnecessary events (e.g. simply moving the mouse over the page would
generate hundreds of mouseover and mouseout events); recall that, as mentioned in
section 2, it is not possible to introspect what events a node has registered a listener
for; therefore, it is not possible to use the approach of registering a listener for an
event-type e only in the nodes that already have other listeners for e.

Therefore, we need a new method for recording user actions. Our proposal is
letting the user explicitly specify each action by placing the mouse over the target
element, clicking on the right mouse button, and choosing the desired action in the
contextual menu (see Fig. 2). If the desired action involves providing input data into
an input element or a selection list, then a pop-up window opens allowing the user to
specify the desired value (see Fig. 2). Although in this method the navigation
recording process is different from normal browsing, it is still fast and intuitive: the
user simply changes the left mouse button for the right mouse button and fills in the
value of certain form fields in a pop-up window instead of in the field itself.

This way, we do not need to add any new listener: we know the target element by
capturing the coordinates where the mouse pointer is placed when the action is
specified, and using browser APIs to know what node the coordinates correspond to.
The events recorded are implicitly identified by the selected action.

 Automating Navigation Sequences in AJAX Websites 171

Fig. 2. Recording Method

Our prototype implementation includes actions such as click, mouseover,
mouseout, selectOption (selecting values on a selection list), setText (providing input
data into an element), drag and drop. Since each user action actually generates more
than one event, each action has associated the list of events that it causes: for instance,
the click action includes, among others, the events mouseover, click and mouseout; the
setText action includes events such as keydown and keyup (issued every time a key is
pressed) and change (issued when an element content changes).

This new method has a problem we need to deal with. By the mere process of
explicitly specifying an action, the user may produce changes in the page before we
want them to take place. For instance, suppose the user wishes to specify an action on
a node that has a listener registered for the mouseover event; the listener opens a pop-
up menu when the mouse is placed over the element. Since the process of specifying
the action involves placing the mouse over the element; the page will change its state
(i.e. the pop-up menu will open) before the user can specify the desired action. This is
a problem because the process of generating a path to identify the target element at
the execution phase (described in detail in section 3.2) cannot start until the action has
been specified. But, since the DOM tree of the page has already changed, the process
would be considering the DOM tree after the effects of the action have taken place
(the element may even no longer exist because the listeners could remove it!).

We solve this problem by deactivating the reception of user events in the page
during the recording process. This way, we can be sure that no event alters the state of
the page before the action is specified. Once the user has specified an action, we use
the browser APIs to generate on the target element the list of events associated to the
action; this way, the effects of the specified action take place in the same way as if the
user would have performed the action, and the recording process can continue.

Another important issue we need to deal with is ensuring that a user does not
specify a new action until the effects caused by the previous one have completely
finished. This is needed to ensure that the process for generating a path to identify at
the execution phase the target element of the new action has into account all the
changes in the DOM tree that the previous action provokes. Detecting the end of the
effects of an action is far from a trivial problem; since it is one of the crucial issues at
the execution phase, we will describe how to do it in section 3.3.

172 P. Montoto et al.

3.2 Identifying Elements

During the generation phase, the system records a list of user actions, each one
performed on a certain node of the DOM tree of the page. Therefore, we need to
generate an expression to uniquely identify the node involved in each action, so the
user action can be automatically reproduced at the execution phase.

An important consideration is that the generated expression should be resilient to
small changes in the page (such as the apparition in the page of new advertisement
banners, new data records in dynamically generated sections or new options in a
menu), so it is still valid at the execution stage.

To uniquely identify a node in the DOM tree we can use an XPath [15] expression.
XPath expressions allow identifying a node in a DOM tree by considering
information such as the text associated to the node, the value of its attributes and its
ancestors. For our purposes, we need to ensure that the generated expression on one
hand identifies a single node, and on the other hand it is not too specific to be affected
by the formerly mentioned small changes. Therefore, our proposal tries to generate
the less specific XPath expression possible that still uniquely identifies the target
node. The algorithm we use for this purpose is presented in section 3.2.1.

In addition, the generated expressions should not be sensible to the use of session
identifiers, to ensure that they will still work in any later session. Section 3.2.2
presents a mechanism to remove session identifiers from the generated expressions.

3.2.1 Algorithm for Identifying Target Elements
This section describes the algorithm for generating the expression to identify the
target element of a user action.

As it has already been said, the algorithm tries to generate the less specific XPath
expression possible that still uniquely identifies the target node. More precisely, the
algorithm first tries to identify the element according to its associated text (if it is a
leaf node) and the value of its attributes. If this is not enough to uniquely identify the
node, its ancestors (and the value of their attributes) will be recursively used. The
algorithm to generate the expression for a node n consists of the following steps:

1. Initialize X{n} (the variable that will contain the generated expression) to the
empty string. Initialize the variable ni to the target node n.

2. Let m be the number of attributes of ni, Tni be the tag associated to ni and tni
be its associated text. Try to find a minimum set of r attributes {ani1,…,anir}r<=m,
of ni such that the following expression (‘+’ represents the concatenation of two
strings):

“//” + Tni [@ani1=vni1 and… and @anir=vnir and @text()=tni] + X{n}+”/”
uniquely identify n. (NOTE:The fragment and text()=tni of the expression would
only be added if ni is a leaf node, since only leaf nodes have associated text).
3. If the set is found then

3.1) return the expression from step 1.
else

3.2) Let {ani1,…,anim} be the set of all attributes of ni. Set X{n} = “/”+Tni
[@ani1=vni1 and… and @anim=vnim and @text()=tni] + X{n}; that is, we
add conditions by all the attributes of ni to the expression.

 Automating Navigation Sequences in AJAX Websites 173

4. If ni is not the root of the DOM tree then
4.1) Set ni=parent(ni) and go to step 1

 else
4.2) Obtain the relative position j of n in the page with respect to all the

nodes verifying the current expression X{n}. Return “/”+ X{n}+ [j] + “/”.

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2",
class= "c2"}

text() = "More Info"
attrbs = {class="c1"}

First Iteration:
X{n} = /DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Second Iteration:
X{n} = /A[@href="#"]/DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Third Iteration:
X{e} = /TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info“]
(/X{n}/ identifies the grayed element)

Result:
//TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info"]/

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2",
class= "c2"}

text() = "More Info"
attrbs = {class="c1"}

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2",
class= "c2"}

text() = "More Info"
attrbs = {class="c1"}

First Iteration:
X{n} = /DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Second Iteration:
X{n} = /A[@href="#"]/DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Third Iteration:
X{e} = /TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info“]
(/X{n}/ identifies the grayed element)

Result:
//TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info"]/

Fig. 3. Algorithm for Identifying Target Elements Example

Fig. 3 shows an example sub-tree and the X{n} value in each iteration of the
algorithm to generate the XPath expression to identify the grayed DIV node.

Now, we provide further detail about some of the steps. The step 1 of the algorithm
tries to identify the minimum set of attributes of the currently considered node ni, that
allow completing the identification of n. To do this, we add attributes one by one until
either n is uniquely identified or all the attributes of ni, have been added. To decide
the order in which we add the attributes, we have defined an order for the attributes of
each HTML tag based on its estimated selectivity (that is, how much they contribute
to narrow the selection). For instance, we consider the id and name attributes highly
selective for all HTML tags and the href attribute highly selective for the A tag, while
we consider the class attribute as of low selectivity.

Step 3.2 considers the case when the algorithm reaches the root, and the generated
expression still does not uniquely identify n. In that case, the algorithm adds to the
XPath expression the relative position in the page of n with respect to the rest of
elements identified by the expression.

3.2.2 Removing Session IDs
Many websites use session identifiers in URL attributes to track user sessions. In
these sites, the values of attributes containing URLs may vary in each session. Since
our method to identify target elements at the execution phase relies on attribute
values, this causes a problem for our approach.

Our prototype implementation recognizes the main standard formats for including
session identifiers in URLs. Unfortunately, many websites do not use any standard,
but include the session identifier using arbitrary query parameters.

Therefore, we propose an algorithm to generalize the value of attributes containing
URLs. The algorithm is based on two observations: 1) a query parameter acting as
session identifier must take the same value in all the URLs of the page in which it
appears; 2) if a query parameter takes the same value in all URLs with the same host

174 P. Montoto et al.

//A[matches(@href,"listById?id=1&order=[^&=]+&sid=[^&=]+")]/

DIV

A

A

DIV

{href="listById?id=1&order=T&sid=ac456s"}

{href="listById?id=3&order=T&sid=ac456s"}

A

{href="listAll?order=F&sid=ac456s"}

//A[matches(@href,"listById?id=1&order=[^&=]+&sid=[^&=]+")]/

DIV

A

A

DIV

{href="listById?id=1&order=T&sid=ac456s"}

{href="listById?id=3&order=T&sid=ac456s"}

A

{href="listAll?order=F&sid=ac456s"}

Fig. 4. Removing Session IDs Example

and query parts, then it is irrelevant for the purpose of identifying an element in the
DOM tree by the value of its attributes.

The basic idea of the algorithm derives directly from the above observations: find
all the query parameters that take the same value in all the URLs in which they appear
and ignore their values for identification purposes. Although some of the identified
query parameters may not be session identifiers, according to observation 2 it is safe
to ignore their values anyway.

Fig 4 shows a simple example of the algorithm where n is the grayed node in the
figure. The query parameters named order and sid take the same value in all the
URLs with the same path (in the example the page does not contain other URLs with
the same path). Therefore, they are considered irrelevant for node identification
purposes. (NOTE: matches() is XPath function for applying regular expressions).

3.3 Execution Phase

The generation phase generates a program capturing the navigation sequence recorded
by the user. The execution phase runs the program in the automatic navigation
component.

A first consideration is that we opt to use the APIs of commercial web browsers to
implement the automatic web navigation components instead of building a simplified
custom-browser. The main reason for taking this option is that web 2.0 sites make an
intensive use of scripting languages and support a complex event model. Creating a
custom browser supporting those technologies in the same way as commercial
browsers is very effort-intensive and, in addition, is extremely vulnerable to small
implementation differences that can make a web page to behave differently when
accessed with the custom browser than when accessed with a “real” browser. Our
techniques for the execution phase have been implemented in both MSIE and Firefox.

To reproduce an action in the navigation sequence, there are three steps involved:

1. Locating the target node in the DOM tree of the page.
2. Generating the recorded event (or list of events) on the identified node.
3. Wait for the effects of the events to finish. This is needed because the following

action can need the effects of the previous ones to be completed (e.g. the action
n+1 can generate an event on a node created in the action n).

 Automating Navigation Sequences in AJAX Websites 175

The implementation of 1) and 2) is quite straightforward using browser APIs and
given the output of the recording process. Step 1) uses the XPath expression produced
by the process described in section 3.2, and step 2) uses the events recorded in the
process described in section 3.1.

In turn, step 3) is difficult because browser APIs do not provide any way of
detecting when the effects on the page of issuing a particular event have finished.
These effects can include dynamically creating or removing elements in the DOM
tree, maybe also having into account the response to one or several AJAX requests to
the server. Previous works have addressed this problem by establishing a timer after
the execution of an event before continuing execution. This solution has the usual
drawbacks associated to a fixed timeout in a network environment: if the specified
timeout is short, then when the response to an asynchronous AJAX request is slower
than usual (or even if the machine is very heavily loaded), the sequence may fail. If,
in turn, we use a higher timeout valid even in those circumstances, then we are
introducing an unnecessary delay when the server is responding normally.

The remaining of this section explains the method we propose to detect when the
effects caused directly or indirectly by a certain event have finished. This way, the
system waits the exact time required. The correctness of the method derives from the
assumptions stated in section 2, which are verified by the major commercial browsers.

The method we use to detect when the effects of an event-type e generated on a
node n have finished consists of the following steps:

1. We register a new listener l to capture the event e in n. The code of the listener l
invokes an asynchronous function specifying the callback function cf. What
asynchronous function is actually invoked in l is mainly irrelevant; for instance, in
Javascript, we can simply invoke setTimeout(cf,0). Notice that as consequence of
property 1 in section 2, it is guaranteed that cf will be executed after all the
listeners triggered by the execution of e have finished. Therefore, if the listeners
had not made any other asynchronous call, then the control arriving to cf would
indicate that the effects of e had finished and the navigation sequence execution
could continue. Nevertheless, since the listeners can actually execute other
asynchronous calls, this is not enough.

2. To be notified of every asynchronous call executed by the listeners triggered by e,
we redefine those asynchronous functions providing our own implementation of
them (for instance, in Javascript we need to redefine setTimeout, setInterval and
the functions used to execute AJAX requests such as XMLHTTPRequest). The
template of our implementation of each function is shown in Fig 5. The function
maintains a counter that is increased every time the function is invoked (the
counter is maintained as a global variable initialized to zero for every emitted
event). After increasing the counter, the function calls the former standard
implementation of the asynchronous function provided by the browser but
substituting the received callback function by a modified one (the new_cf function
created in Figure 5). This new callback function invokes the original callback
function and then decreases the counter. This way, the counter always takes the
value of the number of currently active calls.

3. When the callback function cf from step 1 is executed, it polls the counters
associated to the asynchronous functions. When they are all 0, we know the
asynchronous calls have finished and execution can proceed.

176 P. Montoto et al.

4. There may be some cases where the effects of e actually never finish. This is for
instance the case when the setInterval function is used. This function executes the
callback function at specified time intervals and, therefore, its effects last
indefinitely unless the function clearInterval is used. In the generation-phase, if the
setInterval calls are not cleared after a certain timeout, the system notifies it to the
user so she/he can specify the desired action, which can be to wait a fixed time or
wait for a certain number of intervals to complete.

Fig. 5. Asynchronous Function Redefinition

In addition of the possible effects of an event in the current page, the event can also
make the browser (or a frame inside the page) navigate to a new page. When the new
page/frame is loaded (this can be detected using browser APIs), the load event is
generated; this event has as target the body element of the page. Before continuing the
execution of the navigation sequence, we need to wait until the end of the effects of
the load event have finished, using the same technique used for the rest of events.

4 Evaluation

To evaluate the validity of our approach, we tested the implementation of our
techniques with a wide range of AJAX-based web applications. We performed two
kinds of experiments:

1. We selected a set of 75 real websites making extensive use of scripting code and
AJAX technology. We used the prototype to record and reproduce one navigation
sequence on each site. The navigation sequences automated the main purpose of
the site. For instance, in electronic shops we automated the process of searching
products; in webmail sites we automated the process required to access e-mails.

2. Some of the main APIs for generating AJAX-based applications such as Yahoo!
User Interface Library (YUI) [16] and Google Web Toolkit (GWT) [4] include a
set of example websites. At the time of testing, GWT included 5 web applications
and YUI included 300 examples. We recorded and executed 12 navigation
sequences in the web applications from GWT ensuring that every interface element
from the applications was used at least once. In the case of YUI, we recorded 40
sequences in selected examples (choosing the more complex examples). This
second group of tests is useful because many real websites use those toolkits.

old_asyncFunction = standardAsyncFunction;
new_asyncFunction = new function(param1,param2,…,paramn,cf) {
 counter++; //counter is a global variable
 new_cf = new function() {
 result = cf();
 counter--;
 if (counter==0) {
 notifyEndAsyncFunctions();
 }
 return result;
 };
 old_asyncFunction(param1,param2,…,paramn,new_cf);
 };
standardAsyncFunction = new_asyncFunction;

 Automating Navigation Sequences in AJAX Websites 177

Table 1. Experimental Results

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.elcorteingles.es vols.opodo.fr mail.yahoo.com

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.elcorteingles.es vols.opodo.fr mail.yahoo.com

The techniques proposed for the recording phase have been implemented using
MSIE and the execution phase has been implemented using both MSIE and Firefox.
In each group of experiments, we recorded the navigation sequences on MSIE and
executed them using both MSIE and Firefox. The execution on MSIE allows us to
measure the effectiveness of our techniques in both the recording and execution
phases. We execute the sequences in Firefox to check that the algorithm presented in
section 3.3 is valid in both browsers. Since MSIE and Firefox usually build different
DOM trees for the same pages, in some cases the XPath expression generated by the
recording in MSIE were manually modified to fit the DOM tree in Firefox. Notice
that this is not a limitation of our approach: it only highlights the issue that the
browser used for the recording and execution phase should be the same.

The results of the evaluation were encouraging (see Table 1). In the first set of
experiments (real websites), 74 of 75 sequences were recorded and executed fine.

In the case of news.yahoo.com, the XPath expression generated to identify an
element used an URL with a query parameter which changed every time the page was
reloaded. This parameter is not a session identifier since it changes its value during
the same session. If the recorded XPath expression is modified manually to ignore the
value of this parameter, then the sequence works correctly. To solve problems like
this, we could include redundant localization information; this way, if an element
cannot be identified using the “minimal” expression, then we can still use the other
information to search the nearest match in the page ([1] uses a similar idea that could
be extended to deal with these cases, although they do not use other necessary
information, such as hierarchical information). Another option is allowing the user to
provide several examples of the same sequence for detecting those parameters.

The second group of tests was completely successful in GWT applications, while
in the YUI case only one sequence could not be recorded. The problem was that the

178 P. Montoto et al.

blur event was not being generated with the setText action. Once this was corrected,
the sequence could be recorded.

5 Related Work

WebVCR [1] and WebMacros [11] were pioneer systems for web navigation
sequences automation using the “recorder metaphor”. Both systems were only able to
record a reduced set of events (clicks and filling in form fields) on a reduced set of
elements (anchors and form-related elements). In the execution phase they relied on
HTTP clients that lacked the ability to execute scripting code or to support AJAX
requests. Furthermore, the techniques they used for identifying the target elements of
user actions were based on the text associated to the elements and the value of some
specific pre-configured attributes (e.g. href for A tags and src for FORM tags).

Wargo [9] introduced using a commercial browser as execution component, thus
supporting websites using scripting languages and guaranteeing that the websites will
behave in the execution phase in the same way as when a human user accesses it.
Nevertheless, it still showed the remaining previously mentioned problems.

Instead of using the “recorder” metaphor, in SmartBookmarks [6] the macros are
generated retroactively; when the user reaches a page and bookmarks it, the system
tries to automatically find the starting point of the macro. In order to do this,
SmartBookmarks permanently monitors the user actions. As it was explained in
section 3.1, recording user actions in the browser as the user navigates forces to either
restrict the set of monitored events or suffering from an “event-flooding” problem.
SmartBookmarks only supports the events click, load and change. Another drawback
is that it relies on timeouts to determine when to continue executing the sequence.
HtmlUnit [5] is an open-source tool for web applications unit testing. HtmlUnit does
not provide a recording tool; instead, the user needs to manually create the navigation
sequences using Java coding. In addition HtmlUnit uses its own custom browser
instead of relying on conventional browsers. Although their browser has support for
many Javascript and AJAX functionalities, this is vulnerable to small implementation
differences that can make a web page to behave differently when accessed with the
custom browser.

Selenium [13] is a suite of tools to automate web applications testing. Selenium
uses the recorder metaphor through a toolbar installed in Firefox. It is only able to
record a reduced set of events. To identify elements, Selenium uses a system based on
the text or generates an XPath expression that does not try to be resilient to small
changes. Another drawback is that Selenium does not detect properly the end of the
effects caused by a user action in the recording process.

Sahi [12] is another open-source tool for automated testing of web applications.
Sahi includes a navigation recording system and it allows the sequences to be
executed in commercial browsers. To use Sahi, the user configures its navigator to use
a proxy. Every time the browser requests a new page, the proxy retrieves it, adds
listeners for monitoring user actions, and returns the modified page. Using a proxy
makes the recording system independent of the web browser used. Nevertheless,
using a proxy does not allow using approaches where the user explicitly indicates the
actions to record; therefore, as discussed previously, it forces to choose between

 Automating Navigation Sequences in AJAX Websites 179

either monitoring only a reduced set of events or suffering from “event flooding”.
Sahi only supports recording events such as click and change. Other events such as
mouseover can be used at the execution phase if the user manually codes the
navigation scripts. Another drawback is that they do not detect the end of the effects
caused by a user action, using timeouts instead.

In the commercial software arena, QEngine [10] is a load and functional testing
tool for web applications. QEngine also uses the recorder metaphor through a toolbar
installed in MSIE (also used as execution component). In addition of the most typical
events supported by the previously mentioned systems, QEngine also supports a form
of explicitly specifying mouseover events on certain elements, consisting in placing
the mouse over the target element for more than a certain timeout (avoiding this way
the “flooding” problem). Nevertheless, they do not capture other events such as
mouseout or mousemove. To identify elements, they use a simple system based on the
text, attributes and relative position of the element. While this may be enough for
application-testing purposes where changes are controlled, it is not enough to deal
with autonomous web sources. In addition, as previous systems, QEngine does not
detect the end of the effects of an action. iOpus [7] is another web automation tool
that uses the recorder metaphor. Their drawbacks with respect to our proposal are
almost identical to those mentioned for QEngine.

Kapow [8] is yet another web automation tool oriented to the creation of mashups
and web integration applications. Kapow uses its own custom browser. Therefore, in
our evaluation it showed to be vulnerable to the formerly mentioned drawback: small
implementation differences can make a web page to behave differently. For instance,
from the set of 12 sequences from Google Web Toolkit we used in our tests, the
Kapow browser could only successfully reproduce 1 of them. To identify the target
elements, Kapow generates an XPath expression that tries to be resilient to small
changes, although the details of the algorithm they use have not been published.

With respect to the algorithm to identify target elements, [2,14] have also
addressed the problem of generating change-resilient XPath expressions. In those
approaches, the user provides several example pages identifying the target element;
and the system generalizes the expression by examining the differences between
them. In our case, that would force the user to record the navigation sequence several
times. We believe that process would be much more cumbersome to the user.

6 Conclusions

We have presented a set of new techniques to record and execute web navigation
sequences in AJAX-based websites. Previous proposals show important limitations in
the range of user actions that they can record and execute, the methods they use for
identifying the target elements of user actions and/or how they wait for the effects of a
user action to finish. Our techniques have been successfully implemented using both
MSIE and Firefox. Our main contributions are a new method for recording navigation
sequences able to scale to a wider range of events and a novel method to detect when
the effects caused by a user action (including the effects of scripting code and AJAX
requests) have finished, without needing to use inefficient timeouts. We have also
evaluated our approach with more than 100 web applications, obtaining a high degree
of effectiveness.

180 P. Montoto et al.

References

1. Anupam, V., Freire, J., Kumar, B., Lieuwen, D.: Automating web navigation with the
WebVCR. In: Proceedings of WWW 2000, pp. 503–517 (2000)

2. Davulcu, H., Yang, G., Kifer, M., Ramakrishnan, I.V.: Computational Aspects of Resilient
Data Extraction from Semistructured Sources. In: Proc. of ACM Symposium on Principles
of Database Systems (PODS), pp. 136–144 (2000)

3. Document Object Model (DOM) Level 3 Events Specification,
 http://www.w3.org/TR/DOM-Level-3-Events/

4. Google Web Toolkit, http://code.google.com/webtoolkit/
5. HtmlUnit, http://htmlunit.sourceforge.net/
6. Hupp, D., Miller, R.C.: Smart Bookmarks: automatic retroactive macro recording on the

web. In: Proc. of ACM Symposium on User Interface Software and Technology (UIST
2007) (2007)

7. iOpus, http://www.iopus.com
8. Kapow, http://www.openkapow.com
9. Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, A.: Semi automatic wrapper-generation

for commercial web sources. In: Proc. of IFIP WG8.1 Working Conference on
Engineering Information Systems in the Internet Context 2002, pp. 265–283 (2002)

10. QEngine, http://www.adventnet.com/products/qengine/index.html
11. Safonov, A., Konstan, J., Carlis, J.: Beyond Hard-to-Reach Pages: Interactive, Parametric

Web Macros. In: Proc. of the 7th Conference on Human Factors & the Web (2001)
12. Sahi, http://sahi.co.in/w/
13. Selenium, http://seleniumhq.org/
14. Lingam, S., Elbaum S.: Supporting End-Users in the Creation of Dependable Web Clips.

In: Proc. of WWW 2007, pp. 953–962 (2007)
15. XML Path Language (XPath), http://www.w3.org/TR/xpath
16. Yahoo! User Interface Library (YUI), http://developer.yahoo.com/yui

Modelling and Verification of Web Navigation �

Zuohua Ding1, Mingyue Jiang1, Geguang Pu2, and Jeff W. Sanders3

1 Center of Math Computing and Software Engineering, Zhejiang Sci-Tech University
Hangzhou, Zhejiang, 310018, P.R. China

zouhuading@hotmail.com, jiang my@126.com
2 Software Engineering Institute, East China Normal University

Shanghai, 200062, P.R. China
ggpu@sei.ecnu.edu.cn

3 International Institute for Software Technology
Unite Nations University, P.O. Box 3058, Macao

jeff@iist.unu.edu

Abstract. Web navigation model provides a dynamic view for web mod-
elling. It is useful for clarifying requirements and specifying implemen-
tation behaviors of systems from design intensions. In this paper, we
propose a formal model to describe web navigation of user behaviors,
where link activities play an important role. Several issues have been con-
sidered in our model, such as web browser effects, adaptive navigation,
frame communication etc. After the link activity model is established,
we use model checker SPIN to check whether there exist problems such
as such as broken links, dead ends, missed reply pages, reachability of
pages etc. This method can help us to analyze user behaviors, meanwhile
it provides us a way to expose design faults in web systems.

Keywords: Web Modelling, Link Analysis, Requirement Engineering,
Model Checking.

1 Introduction

Recently, various web modelling approaches are proposed to model web appli-
cations. There are two main different concerns for conceptual modelling of web
applications: information modelling and navigation modelling. Information mod-
elling describes the contents of web applications and it is considered as from
static point of view such as [1]. Navigation modelling pictures the navigation ca-
pabilities, i.e., the paths on which users can traverse to explore the information
required, and it is considered as from dynamic point of view. Examples can be
found in [9]. We regard these two approaches are complement to each other.
This paper is concerned with navigation modelling of web applications.

As the work [6] indicated, navigation models are useful for clarifying require-
ments and specifying implementation behaviors of systems. There are a few web
navigation models proposed [1,9,11,2,5,3], such as the models based on extended
� Zuohua Ding is supported by NNSFC (No.90818013). Geguang Pu is partially sup-

ported by NNSFC (No.60603033) and Qimingxing Project (No. 07QA14020).

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 181–188, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

182 Z. Ding et al.

UML notation [8], Statecharts [6], navigation map [4] [10], etc. While taking
the advantages of these models, we still need to consider some issues which may
not be considered by the existing navigation modelling or in the information
modelling in the web design phase:

• Web browser effects. In addition to the navigation provided by hyperlinks,
web browsers can provide additional navigation functions that is out of con-
trol of the web pages, such as scrolling, back button, forward buttons and a
history list. Static design model cannot include these navigation information.

• Adaptive navigation. In this situation, the next page also depends on the
user’s mode, for example whether he is a customer or an administrator, or
depends on what pages the user has visited previously.

• Frame communication. For example, synchronization between continuous
and static documents (i.e., scenes and pages). Since in principle pages are
not ordered, their ordering comes as a result of scene ordering and scene-page
relationships.

Generally speaking, the navigation of a web application is the possible se-
quences of web pages a user can visit. To handle the above issues, we present
a formal dynamic behavior model for specifying the behavior of the navigation
by link point activities. Through our approach, the navigation model is defined
rigorously. The developer of the web application can better understand the appli-
cation requirements and the implementation behavior with this proposed model
and thus can develop web applications in a rigorous way.

2 A Formal Navigation Model

In the navigation, users navigate from a web page to the other by clicking on a
hyperlink. A hyperlink can be in the form of text strings, graphcs or video, acti-
vated explicitly by users, using a mouse click for example. Hyperlinks can also be
included in client side program/scripts (such as Javascripts, VBScript, Java and
ActiveX), to be invoked automatically by the browser on some predefined events.
Examples of these events include timeout, mouse movements and window focus.

The place where the user clicks the hyperlink is called link point. Here we give
a formal definition for link point.

Definition 1 (Link Point). A link point lp is a tuple defined as follows:

(currentLink, nextLink, linkState,

variable set, action name, duration time)

where

- currentLink(cl) is a string indicating the URL that the current page is located.
- nextLink(nl) is a string indicating the URL that the next page is located.
- linkState(ls) indicates that the link is statically or dynamically defined, en-

abled or disabled.

Modelling and Verification of Web Navigation 183

- variable set(vs) indicates that after clicking the hyperlink, these variables in-
formation will be brought to the next page, such as login user data.

- action name(an) denotes the action name with this link, which is mostly spec-
ified by web designers.

- duration time(dt) denotes the interaction time between web servers and users
after the link is clicked, which is actually a performance property decided by
the deployment environment.

Based on the states of link point, we can classify the link points as Type I, Type
II and Type III. Type I link point must have new user input data which will be
passed to the next page. For example, when a user clicks login button, he needs
to input login name and password. Login button is the link point and some user
id will be generated (maybe login name) for the next page. Another example is
the search button. Key words are the values for the search button. Key words
will be passed to the next page. Type II link point does not need any user input,
but it will bring user information to the next page implicitly. For example, after
a user logins to an online shopping web site, user id will be passed from one
page to another page when the current user surfs for products. Type III link
point only breaks down the user session. For instance, if a user clicks a logout
link, the session built up earlier is closed and the user data is removed. Type I
link point is denoted by lp•, Type II link point is denoted by lp◦, and Type III
link point is denoted as lp×.

2.1 Syntax

To specify the behaviors of users, we attempt to design an activity calculus to
describe the web navigation behaviors performed by users. Because link point
clicking reflects the intended behaviors of users, we design this activity calculus
based on link points. It is easy to see that the sequence of link points is the same
as the navigation path. The syntax of the activity calculus is defined as follows.

NE ::= p • (Type I)
| p ◦ (Type II)
| p × (Type III)
| skip (Skip)
| Bp (back action)
| Fp (forward action)
| Rp (refresh action)
| NE ; NE (Sequence)
| NE � �NE (nondeterminism)
| NE � b � NE (Conditional)
| b ∗ NE (Loop)
| NE ‖ NE (Parallel)

Without confusion, we use the same notations p •, p ◦ and p × for both link
points and link activities here. Activity skip does nothing but terminates. Bp is

184 Z. Ding et al.

back operation which will clear all the user inputs on the page p. Fp is forward
operation which will not generate any user data, or bring any data to page p.
Rp is refresh operation which may change some link state from disable one to
enabled one on the page p.

Action NE � �NE means that the user can randomly choose the link points.
Action NE ‖ NE denotes two link points may be performed in parallel. Note
that b ∗ NE denotes loop activity, where b represents the boolean expressions,
which depends on the variable values of link points or the history of variable
values. Loop activity can specify the repeated actions performed by users.

2.2 Operational Semantics

The operational semantics of the link activities is presented in this subsection.
We use the classical Labelled Transition System (LTS) to define an operational
semantics, and the small-step operational semantics is adopted as well. The
transition label a can be the link activity or the internal action τ .

The configuration of the transition system is designed as 〈NE, E , ST, LR, CL〉,
where NE is the link activity; E is the global activity trace in which each element
is a link activity, and for instance, trace < a, b, c > denotes that the user first
performs link a and link b sequently, and then performs links c afterwards. The
trace can help the user keep the visiting history list; ST represents the global
state of link activities, which is a function of link variables; LR records the set of
relations among link activities, which will be increased gradually based on the
link activities performed by users; and CL stands for the current link activities.

Trace E has two types: one is for security and is bounded, denoted as Es;
the other is for doing things, and is unbounded, denoted as Et. We use E�a

to represent the resulted trace after adding activity a to the end of E , E \ a

to represent the resulted trace after removing the top sequence composed by
activity a in E , and a ∈ E to represent that the activity a is contained in the
trace E .

The transitions of Type I and Type II activities are the following. The activating
of Type II link will add the activity ◦ to the queue E , while the activating of
Type I link will add the activity • to the global queue E .

〈p◦, E , ST, LR, CL〉 ◦−→ 〈skip, E�◦, ST, LR ∪ (CL, p◦), p◦〉

〈p•, E , ST, LR, CL〉 •−→ 〈skip, E�•, ud(ST), LR ∪ (CL, p•), p•〉
where predicate ud updates the global state based on link variables.

If Type III activity is performed, then the top sequence of activities • will be
removed from the global trace. For example, in the queue, from the top we have
• • ◦ ◦ ◦ . . ., then •• will be removed.

〈p×, E , ST, LR, CL〉 τ−→ 〈skip, E \ •, ze(ST), LR ∪ (CL, p×), p×〉

Modelling and Verification of Web Navigation 185

where symbol E \ a represents the resulted trace after removing the top sequence
of activity a in E ; and predicate ze sets the link variables to null.

The parallel expression has two cases. In the first case, if one part of the
parallel structure moves to a new state, then the whole parallel structure will
move to a corresponding state.

〈NE1, E , ST, LR, CL〉 a−→ 〈NE′
1, E ′, ST ′, LR′, CL′〉

〈NE1 ‖ NE2, E , ST, LR, CL〉 a−→ 〈NE′
1 ‖ NE2, E ′, ST ′, LR′, CL′〉

〈NE2, E , ST, LR, CL〉 a−→ 〈NE′
2, E ′, ST ′, LR′, CL′〉

〈NE1 ‖ NE2, E , ST, LR, CL〉 a−→ 〈NE1 ‖ NE′
2, E ′, ST ′, LR′, CL′〉

The second case is that if both parts in parallel structure terminate, then the
whole parallel structure terminates as well.

〈skip ‖ skip, E , ST, LR, CL〉 τ−→ 〈skip, E , ST, LR, CL〉
The following rules are for operations B,F and R:

〈Bp, E , ST, LR, CL〉 B−→ 〈skip, E�bpair, ST ′, LR, bpair〉
where element bpair is the most recent link point which, as the first element,
forms a pair with CL in relation set LR. ST ′ = ST ⊕ (p.{variable = null}).

〈Fp, E , ST, LR, CL〉 F−→ 〈skip, E�fpair, ST ′, LR, fpair〉
where element fpair is the most recent point link which, as the second element,
forms a pair with CL in relation set LR. ST ′ = ST ⊕ (p.{variable = null}).

〈Rp, E , ST, LR, CL〉 R−→ 〈skip, E�CL, ST ′, LR, CL〉
where ST ′ = ST ⊕ (p.linkState = enable).

The first expression means that if clicking back button, then (only) the user
input on the last page will be removed. The second expression means that if
clicking the forward button, then the user input (including null) will be forwarded
to the next page. The third expression means to reset the link to the enable state,
meanwhile automatically to set the duration time to the default.

3 SPIN Checking Navigation Model

In this section we discuss the use of the SPIN model checker [7] to check the
navigation behaviors specified by our formal model. The input language of SPIN
is called Promela, a modelling language for finite-state concurrent processes.
SPIN model checker verifies (or falsifies, by generating counter- examples) LTL
properties of Promela specifications using an exhaustive state space search.

186 Z. Ding et al.

We have defined some rules to translate our navigation model to Promela
description. Due to the limited space, we only give some examples to illustrate
our method.

- Conditional Choice NE1 � b � NE2. Let NE1 and NE2 be two links, then

if
:: b->atomic{NE1.nextlink=’x’;...};
:: else->atomic{NE2.nextlink=’y’;...};

fi

- Nondeterministic Choice NE1 � �NE2. Let NE1 and NE2 be two links,
then

if
//atomic1
:: exp1->atomic{NE1.nextlink=’x’;...};
//atomic2
:: exp2->atomic{NE2.nextlink=’y’;...};

fi

Based on the transformation rules defined above, we have developed a proto-
type to support the automatic verification of web navigation. Some verification
properties have been defined and can be automatically verified by SPIN. The
properties that pass (are never violated) will return true, and for those that fail
will give counterexample(s).

1) Dead end. For each page, we check the number of links:

assert(linkNumber!=0 || backState==true);

Once the linknumber is 0 and the backState is false, then we reach a dead end.
2) Broken link. We will define a global array to record all the pages being

visited. After the navigation ends, if there still exist some pages not being visited,
then we have broken links in this model.

3) Navigation not complete. We define the following sentence to check if Es and
Et1 still have some •:

assert(empty(Es) && empty(Et1));

4) Reachability. We define a global variable with initial value 0. Once a link
is clicked, the variable value increases 1. Thus the link number of a page can be
obtained from this global variable.

5) Not removed data. We define the following sentence to check the variable
values on the page to see if the values are null:

assert(var!=’0’);

We have used SPIN to check two navigation models from Amazon and Elsevier
Web systems. For the first example, we check if there exist not removed user data
for the Back operation and not complete navigation for the one time navigation.
For the first one, we add the following statements:

Modelling and Verification of Web Navigation 187

Fig. 1. SPIN checking Amazon

Back(var); Assert(var==’0’);

For the second one, we check wether the following property is obeyed:

assert(empty(Es) && empty(Et1));

The simulation result is shown in Figure 1. The execution stops at the statement
assert(empty(Es)&& empty(Et1)), which indicates that this assert statement is
violated, and thus we have not complete navigation. We do not have not removed
user data. The verification result is as the following:

pan: assertion violated ((q_len(Es)==0)
&&(q_len(Et1)==0)) (at depth 161)

pan: wrote pan_in.trail

The result shows that at least one of the two channels Es and Et1 is not empty
since either q len(Es)! = 0) or q len(Et1)! = 0) or both. Thus the navigation is not
complete.

For the example of Elsevier submission system, we check the not complete
navigation property by adding the following statements:

assert(empty(Es) && empty(Et1));

The execution will stop at the statement assert(empty(Es)&&empty(Et1));. This
implies that we have not complete navigation. The verification result is as the
following:

pan: assertion violated ((q_len(Es)==0)
&&(q_len(Et1)==0)) (at depth 72)

pan: wrote pan_in.trail

The result shows that at least one of the two channels Es and Et1 is not
empty. Thus the navigation is not complete.

188 Z. Ding et al.

4 Conclusion

We have proposed a formal model to specify web navigation precisely. The imple-
mentation semantics of the formal model is also presented. Based on the seman-
tics of this model, we may simulate the user behaviors, and more importantly,
we can find whether the user behaviors conform to the intentions of the system
designers. To support the automatic checking of navigation model, we employ
SPIN to check our navigation model and several properties can be checked. As
the future work, we may study the click-action flow and use data mining skill to
retrieve the natural language descriptions for these actions from log file, so that
we can check the application-specific properties of the web navigation model.
We will also continue to make our checking tool more scalable for web designers.

References

1. Alfaro, L.: Model Checking the World Wide Web. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 337–349. Springer, Heidelberg (2001)

2. Baumeister, H., Knapp, A., Koch, N., Zang, G.: Modelling Adaptivity with As-
pects. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 406–416.
Springer, Heidelberg (2005)

3. Ceri, S., Daniel, F., Demaldé, V., Facca, F.M.: An Approach to User-Behavior-
Aware Web Applications. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS,
vol. 3579, pp. 417–428. Springer, Heidelberg (2005)

4. Conallen, J.: Building Web Applications with UML. Addison-Wesley, Reading
(2002)

5. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven Web
applications. Journal of Computer and System Sciences 73, 442–474 (2007)

6. Han, M., Hofmeister, C.: Modeling and Verification of Adaptive Navigation in Web
Applications. In: ICWE 2006, Palo Alto, California, USA, July 11-14, pp. 329–336
(2006)

7. Holzmann, G.J.: Basic Spin Manual (1980),
http://cm.bell-labs.com/netlib/spin/whatispin.html

8. Koch, N., Baumeister, H., Hennicker, R., Mandel, L.: Extending UML to Model
Navigation and Presentation in Web Applications. In: Workshop on Modelling Web
Applications in UML, UML 2000, New York, UK (October 2000)

9. Ricca, F., Tonella, P.: Analysis and Testing of Web Applications. In: Proc. of 23rd
Int. Conference on Software Engineering, Toronto, Ontario, Canada, May 2001,
pp. 25–34 (2001)

10. Rational Software, Pearl Circle Online Auction Reference Application Software
Architecture Document, Issue 0.2, Rational Software (2001)

11. Winckler, M., Palanque, P.: Statewebcharts: A Formal Description Technique Dedi-
cated To Navigation Modelling of Web Applications. In: Jorge, J.A., Jardim Nunes,
N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 61–76. Springer,
Heidelberg (2003)

http://cm.bell-labs.com/netlib/spin/whatispin.html

Context-Driven Hypertext Specification

Sara Comai, Davide Mazza, and Elisa Quintarelli

Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

{comai,mazza,quintare}@elet.polimi.it

Abstract. The aim of the paper is the introduction of a compositional method-
ology for specifying context-driven hypertexts, that is the possibility to filter the
available -usually too rich- knowledge and personalize the hypertext specification
according to the notion of context. We use a methodology and a context model,
recently proposed in the database literature, to tailor data on the basis of some
predefined aspects on the user, the environment, and the possible scenarios, and
we adapt them to specify also the hypertext schemata of the target application.
The applicability of the work is shown on a running example and the advantages
w.r.t. well known approaches for designing Web applications are highlighted.

1 Introduction

Current Web sites show a great amount of data to users. In order to show only the infor-
mation that is really of interest and reduce the confusion produced by meaningless data,
users have usually access to a filtered subset of the overall data. Filtering often depends
on the particular context in which the user operates. For example, when using mobile
devices the information to retrieve and to visualize is smaller in terms of the quantity of
data sent at each request with respect to the data usually provided to the client during
desktop navigation. The notion of context also depends upon the characteristics of the
user, i.e., his profile, or on the basis of predefined access rights. More in general, we
can state that the information about a target application domain can be seen by the user
from different points of view.

In this paper we introduce the notion of context to define the views on the available
data that can be delivered to the user in that particular context. Then, according to the
characteristics of the user or to the situation in which he operates (i.e., considering the
current context), the appropriate view of data is provided.

We propose a general approach, where the context becomes the element driving the
specification of the Web application:

– context-driven views are defined over the data; in particular, different context per-
spectives can be considered separately, each associated with a particular subset of
the entire dataset.

– The hypertext is configured with respect to a (set of) contextual aspect(s). Given
a context configuration involving different contextual aspects, the actual view over
the data is obtained as a combination of the views defined for the involved aspects.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 189–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

190 S. Comai, D. Mazza, and E. Quintarelli

The paper is organized as follows: Section 2 presents a case study that will be used
throughout the paper; Section 3 describes the context model and explains how the
context-driven views can be specified; Section 4 exemplifies the use of contexts within
an hypertext model. Section 5 compares the proposed approach with related work. Fi-
nally, in Section 6 conclusions are drawn.

2 Running Example

The scenario considered in this work is the internship service offered by a university:
companies propose internships for students; professors supervise the internships and
assign them to students. A Web site collects information about the internships proposed
by the companies. A predefined professor (called operator) selects the appropriate in-
ternships for his faculty and approves them. Students can choose and book internships
from the list of the available ones. In this scenario, the internships and the related in-
formation that can be seen by an operator depend on their status. For example, when
the operator wants to analyze the proposed internships (s)he could be interested in their
content and duration, while for assigned internships (s)he could be rather interested in
the details, such as the name of the assigned student; for concluded internships also the
evaluation becomes important.

The application Web site relies on a central relational database, whose schema is
partially shown in Figure 1.

STUDENT(stud id, lastname, firstname, birthdate, faculty)
PROFESSOR(prof id, lastname, firstname, position, faculty)
COMPANY(VATcode, name, address, city, phone, fax, website)
INTERNSHIP(id, title, company, duration, location, visible, student, note, tutor, evaluation, faculty)
DOC(internship,student,date,document, document type)
EXAM(course,student, date, mark)

Fig. 1. Relational schema of the running example

3 The CDT Context Model and the Contextual Views

In order to determine the contextual data associated with each context, in a scenario
where different database users, situations, and other elements (called dimensions) de-
termine the relevant portions of data, we use the methodology proposed in [2], which is
based on three components: a context model, a set of partial views and an operator for
combining the former ones to derive the final view(s) associated with each context.

The context model used to represent all the possible contexts for a given scenario is
the Context Dimension Tree (CDT). A tree-based structure represents the dimensions
used to tailor the available data (represented by black filled circles) and their values
(represented by white filled circles).

The children of the root node represent the main dimensions used to filter the data; for
each of these nodes a subtree is created, increasing the detail-level adopted to tailor data.
The CDT of our application scenario, gathering contents about internships, students,

Context-Driven Hypertext Specification 191

student
professor

company

user situation time

context

interest-topic

s
tu

d
e

n
t_

id

c
o

m
p

a
n

y
_

id
internship students companies

s_id

status duration

c
o

u
rs

e

val

a
v
a

ila
b

le

a
p

p
ro

v
e

d

current_year

ra
n

g
e

_
v
a

r

region city

r_
id

c
_

id

tutor
operator

tu
to

r_
id

o
p

e
ra

to
r_

id

period

a
s
s
ig

n
e

d

c_id
location

e
v
a

lu
a

ti
o

n

w
e

b

s
m

a
rt

_
p

h
o

n
e

interface

role

fa
c
_

id

fa
c
_

id

Fig. 2. The CDT for the internships in a university scenario

companies, and professors is reported in Figure 2. The dimensions used to filter the
information are user, interest-topic, situation, time, and interface.

Possible values for the user dimension are student, professor, company; in each
session, and hence for each possible context, the application may be accessed only
by one of these roles. The user dimension is represented with a black circle; its pos-
sible values are represented as white siblings and are mutually exclusive. The same
criterion applies to the other dimensions. For the interest-topic dimension the follow-
ing mutually exclusive values can be introduced: internship, students, companies.
Moreover, when considering the internship node, there are several aspects that can be
identified for further refining the selection of interesting data: status, duration, location;
these aspects, which are graphically represented as sibling black nodes, are not mutu-
ally exclusive, since they provide different characterizations of the same concept. Thus,
a concept may be characterized by several aspects (i.e. sub-dimensions), and each as-
pect may be constituted by different concepts. In the CDT there are also attribute nodes,
which are leaves, graphically represented as rectangles; attributes are used to select data
according to a specific run-time generated value, e.g., to identify a specific student.

In order to identify a portion of data to be tailored from the entire data set, to be
made available to the user on the basis of his current context, a tuple composed by
one or more nodes for (a subset of) the dimensions is selected, choosing a single white
sibling and any number of black siblings. The tuple is called context. An example of
context defined on the CDT reported in Figure 2 is:

〈 role : operator($operator id,$fac id),status : assigned 〉 (1)

The context is related to an operator professor who wants to analyze assigned in-
ternships proposed in his faculty, in order to visualize students and tutors.

Given the possible and meaningful contexts, the designer can then associate them
with the relevant portions of the information domain. This step can be performed in
a compositional way: (1) for each single concept of the CDT the designer specifies a
partial view on the global schema, i.e., the portion of schema that is relevant for that
concept; (2) given a context (composed of a set of concepts), its view is obtained by
means of an algorithm that automatically combines the partial views of its elements.

192 S. Comai, D. Mazza, and E. Quintarelli

Context Element Partial View
role : operator($operator id, {σ f aculty=$ f ac id STUDENT, PROFESSOR, COMPANY,
$fac id) σ f aculty=$ f ac id INTERNSHIP}
status : assigned {STUDENT �stud id=student INTERNSHIP,

PROFESSOR �pro f id=tutor INTERNSHIP,
COMPANY �VAT code=company INTERNSHIP,
σstudent!=NULL∧tutor!=NULL(INTERNSHIP),
DOC �internship=id (σstudent!=NULL∧tutor!=NULL(INTERNSHIP)),
EXAM � (σstudent!=NULL∧tutor!=NULL(INTERNSHIP))}

status : available {STUDENT, PROFESSOR,
COMPANY �VAT code=company INTERNSHIP,
σvisible=FALSE(INTERNSHIP)}

Fig. 3. Partial views associated with context elements

Figure 3 shows some partial views, expressed as sets of relational algebra expres-
sions, and relation names, of some elements, including the one defined by (1). As an
example, we can see that the partial view of the role operator contains the students of
the faculty of the considered operator (identified at run-time by the value of two param-
eters related to his personal identifier and the faculty name), the information about the
professors and the companies, and the internships proposed for his faculty.

The combination of the partial views into the final view of a specific context can be
performed automatically by means of the so-called Double Intersection operator [2],
defined as follows.

The Double Intersection operator �, between two sets of relational algebra expres-
sions A and B (i.e. two partial views), applies the classical intersection operator ∩ to
pairs of expressions eA and eB, belonging to A and B , respectively, each one of the form
ΠAtti σcondi(R), or ΠAtti σcondi(R�Si). In order to reduce them to a common schema, the
intersection is performed on their projection over the intersection of their schemata.

Considering our running example, the view assigned to the context (1) is obtained
by applying the Double Intersection operator to the two partial views in Figure 3 corre-
sponding to the operator role and assigned status elements, and is:

{ σ f aculty=$ f ac id STUDENT �stud id=student INTERNSHIP,
PROFESSOR �pro f id=tutor INTERNSHIP,
COMPANY �VAT code=company INTERNSHIP,
σstudent!=NULL∧ f aculty=$ f ac id∧tutor!=NULL(INTERNSHIP)}

4 Context-Driven Hypertext

In a Web application, the hypertext can exploit the approach described in the previous
section to show the data that are relevant in a specific context. In the following, we will
exemplify the approach on the WebML [4] model.

Context-Driven Hypertext Specification 193

Fig. 4. The operator site view with context configurations

The specification of the hypertext can be extended with context configurations, to
associate the whole hypertext -or a fragment thereof- with the context dimensions in
which it operates. Considering the WebML concepts, the configuration may apply to
any level of its hierarchical structure: to a site view, to an area, to a single page or
nested sub-page. At each level, the context tuple is obtained as a combination of the
context configurations specified at the current level and at all its super-levels; such a
combination can be automatically computed by combining the partial views of the con-
text dimensions specified in the combined configuration. In this way, the specification
of the retrieval of data performed by the units/components of the page can be simplified
and specified on top of the context view.

Figure 4 shows a fragment of the site view of the operator, associated with different
configurations. Configurations are graphically indicated by the keyword CONFIG. In
this example, a configuration is specified for the whole site view: the site view can see
only the data associated with the operator dimension, and in particular, related to the
specific current operator user, which is indicated by the session variable $current user1,
and to his faculty (variable $fac id): this means that all the data shown in the site view
are constrained on the operator, according to the partial view of the operator role in
Fig. 3. In particular, the site view can display data retrieved only from the Student,
Professor, Company, and Internship relations; only the internships and the students be-
longing to the same faculty of the operator can be queried.

The operator site view contains different areas, each one configured with respect to
other context dimensions, like, for example, the status of the internship, which can be
available, or assigned. Each area inherits also the configurations of its higher-level

1 For the specification and management of session variables in WebML the reader may refer
to [4].

194 S. Comai, D. Mazza, and E. Quintarelli

containers, in the example the configuration that applies at the whole site view. The data
view that can be queried and displayed in each area is the one obtained as a combination
of the partial views of the elements of the configuration. For example, the configuration
CONFIG: < status : assigned > on the area Assigned, combined with the role opera-
tor configuration, constrains the area to query and display only the internships already
assigned to students and related to the faculty of the operator, the companies related to
those internships, all the students belonging to the same faculty of the operator, and all
the professors, according to the partial views described in Fig. 3.

The content of each page can be specified taking into account that some constraints
have already been defined through the context configurations. For example, consider
the Available Internships page: in this page the operator can see the list of all the in-
ternships entered by companies in the system (represented by the Internships index
unit), possibly filtering them by the company name (the filtering is represented by the
Search entry unit). Then, from the index, the operator may select a particular internship
to see its details (Internship details data unit) and decide for its approval, by clicking
on the outgoing link Approve internship that will record the approval (for the sake of
simplicity, only a fragment of the whole hypertext is reported).

The designer needs to specify only the information that is associated with the filter-
ing and the selection operations, while the actual content of each single content unit
will depend on the configuration. For example, the index unit Internships specifies
only the selectors corresponding to the search facility; its query expressed in relational
algebra is:

Πtitle,company,location,tutorσcompany=$companyINTERNSHIP

This query is combined with the partial views related to the role : operator and
status : available, by applying the Double Intersection explained in Section 3. The
final view for the Internships index unit will be

Πtitle,company,location,tutorσcompany=$company∧ f aculty=$ f ac id∧visible= f alse INTERNSHIP

The same hypertext fragment specified inside the Assigned Internships page, which
is associated with the configuration status : assigned, will produce a different con-
tent: the query expressing the filtering in this case will be combined with the partial
views related to the role : operator and status : assigned, producing the final
view:

Πtitle,company,location,tutor

σcompany=$company∧ f aculty=$ f ac id∧studente!=NULL∧tutor!=NULL INTERNSHIP

The same applies to the page Students with an assigned internship, which allows one
to search and display the list of students ”to whom an internship has been assigned”. In
this case, the base query of the Students index unit

Πlastname, f irstname,birthdateσlastname=$lastnameSTUDENT

will be combined with the corresponding partial views role : operator and
status : assigned producing the following final view:

Context-Driven Hypertext Specification 195

Πlastname, f irstname,birthdate

σlastname=$lastnameSTUDENT �stud id=student INTERNSHIP

Notice that the hypertext specification results simplified: all the predicates induced
by the context are factorized in the configuration and the hypertext specifies only the
desired structure to access the information (typically, using patterns) and the predicates
that do not depend on the context (like, e.g., the predicates associated with the search
functionalities).

5 Related Work

In this paper we have shown how data and hypertext views can be combined by means of
configurations of specific context dimensions and operators that combine the different
dimensions. In literature, several works define context models and the mechanisms to
use them.

In the database field, the use of context over the data has been introduced in [1,2,7,9]:
these systems focus on a data-tailoring-oriented perspective and aim at the reduction of
the size of the retrieved data by means of contextual preferences. The tailoring process
personalizes the retrieved data, thus enhancing the precision of the tailored information,
according to the user information needs. In our paper the focus is instead on the reuse
of the same hypertext view, tailored to different kinds of users and/or to different points
of views. For a survey on the use of context in the database field see [1].

Also in the Web field, several context-aware systems have been proposed in litera-
ture. In most of the works the context is associated with the possibility of adapting the
application, from different perspectives: adapting the content to be shown, the naviga-
tional paths the user has to follow, or the presentation features (see [8] for a complete
survey). Looking at the first perspective, also adaptive and context-aware systems tailor
the data to show in a particular context and therefore present some commonalities with
our proposal.

Considering the most recent context-aware systems [3, 5], they extend the person-
alization mechanism also to other contexts, such as, for example, the devices used to
access the application (e.g., mobile devices), thus offering a more generalized mecha-
nism like in the present approach. However, such systems focus on the acquisition of
context data, on their update and on their monitoring, and define reactive behaviors that
support adaptivity and can be seen as complementary to our approach.

The proposal presented in [6] also deals with the selection of the content to be pre-
sented to the user in a particular context. The approach is based on the definition of
multi-variant objects, i.e., the same objects can have different versions (e.g., one ver-
sion for each language in a multi-lingual Web application, one version of each target
user group, a free and a non-free version of the data, and so on). The context informa-
tion is then used to identify the right variant to be shown to the user. Although similar,
our proposal determines the context characteristics, but instead of choosing a particular
variant, we compose the final view starting from partial initial views. Moreover, we do
not apply it at run-time, but our focus is on using the context at design-time to tailor
data in the hypertext specification.

196 S. Comai, D. Mazza, and E. Quintarelli

6 Conclusions

In this paper we have proposed a methodology for the specification of hypertexts, where
the possible context dimensions and values play an important role in the definition of
the portions of data that can be delivered to the user. In particular, we have introduced a
context data model, as a mean to identify all the possible contexts and the corresponding
partial data views. The hypertext specification can exploit such contexts to configure
and constrain its content with respect to the corresponding data views.

As future work we plan to integrate the proposed methodology into a prototype,
where the partial data views can be specified graphically, and the hypertext model visu-
alizes the (combined) data view that results from the configuration.

References

1. Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-oriented survey of
context models. In: SIGMOD Record (2008) (to appear)

2. Bolchini, C., Quintarelli, E., Rossato, R.: Relational data tailoring through view composition.
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801,
pp. 149–164. Springer, Heidelberg (2007)

3. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven development of context-aware web
applications. ACM Trans. Internet Techn. 7(1) (2007)

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco (2002)

5. De Virgilio, R.D., Torlone, R.: A framework for the management of context data in adaptive
web information systems. In: ICWE 2008 Eighth International Conference on Web Engineer-
ing, pp. 261–272 (2008)

6. Grossniklaus, M., Norrie, M.C.: Using object variants to support context-aware interactions.
In: AEWSE (2007)

7. Kaenampornpan, M., O’Neill, E.: An integrated context model: Bringing activity to context.
In: Proc. Workshop on Advanced Context Modelling, Reasoning and Management (2004)

8. Schwinger, W., Retschitzegger, W., Schauerhuber, A., et al: International Journal of Web In-
formation Systems 4(3), 234–305 (2008)

9. Yang, S.J.H., Huang, A., Chen, R., Tseng, S.-S., Shen, Y.-S.: Context model and context ac-
quisition for ubiquitous content access in ulearning environments. In: IEEE Int. Conf. Sensor
Networks, Ubiquitous, and Trustworthy Computing, vol. 2, pp. 78–83 (2006)

Feature-Based Engineering of Compensations in
Web Service Environment

Michael Schäfer1 and Peter Dolog2

1 L3S Research Center, University of Hannover,
Appelstr. 9a, D-30167 Hannover, Germany

Michael.K.Schaefer@gmx.de
2 IWIS — Intelligent Web and Information Systems,
Aalborg University, Department of Computer Science,

Selma Lagerloefs Vej 300, DK-9220 Aalborg East, Denmark
dolog@cs.aau.dk

Abstract. In this paper, we introduce a product line approach for devel-
oping Web services with extended compensation capabilities. We adopt
a feature modelling approach in order to describe variable and common
compensation properties of Web service variants, as well as service con-
sumer application requirements and constraints regarding compensation.
The feature models are being used in order to configure the compensation
operations that are applied. In this way, we ensure that the compensation
actions are limited to the prescribed ones, and the infrastructure which
uses them can be adapted easily in case environment conditions change.

Keywords: Software Product Lines, Feature Model, Web Services, Com-
pensations, Business Activities, Transactions.

1 Introduction

Web service environments are being used to connect clients and service providers
and to establish and maintain conversations between them. Businesses adapt and
change their business processes and operations, and they perform transactions
with different clients at different times. Their services are accessed by third par-
ties in a concurrent way. Concurrent access to services and changes regarding
business processes imply that service providers should provide different variants
of their services to satisfy the varying needs of different clients and to enable
forward recovery for business transactions by replacement with another suitable
variant if certain conditions are met. Also, clients/service consumers should be
able to cover criteria in requirements and constraints assuming that the opera-
tions can change and can be replaced by other operations if a failure occurs or
certain conditions are met.

We propose a feature based method for engineering compensations in Web
service environments. We adopt a method and a modelling technique based on
feature models described previously in UML [4]. The infrastructure which uti-
lizes the models is based on our compensation environment described in [10].

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 197–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 M. Schäfer and P. Dolog

The infrastructure uses the XML schema used also within the eclipse plugin for
feature oriented domain analysis [1] to provide the technical means for runtime
decisions about compensations. The paper provides an evidence on how to a
software product line method can be adapted for a novel application area which
addresses real complex situations in business to business interactions. It also
provides an evidence that the variability descriptions can be utilized by a mid-
dleware for the decisions about compensations, where the descriptions specify
a client’s requirements and constraints regarding compensation handling on the
one hand, as well as the offered compensation capabilities of a service provider
on the other hand.

The remainder or the paper is structured as follows. A feature modeling based
method for web service compensation engineering is discussed in Section 2. Sec-
tion 3 discusses service provider capabilities conceptual and feature modelling.
Section 4 discusses client requirements conceptual and feature modelling, algo-
rithm which ranks providers according to a matching score between capability
and compensation model and requirements model, as well as resulting restriction
model which serves as a contract between the client and the provider. Section 5
discusses it in the context of related work. Section 6 concludes the paper with a
summary and proposal for further work.

2 Feature Based Development for Compensations

Software product line methodologies [8] employ a common process pattern. Do-
main Engineering is a process in which the commonality and variability of the
product line are defined and realized. Application Engineering is a process sub-
sequent to the domain engineering in which the applications of the product line
are built by reusing domain artifacts and exploiting the product line’s variability.

The domain engineering activities in Web service environments are realized
by different independent service providers. The application engineering activities
are realized by different parties as well, employing service selection mechanisms
and matchmaking to fit particular business activities when utilizing Web services
from different providers. Some of the variable features of the Web services can be
considered at runtime. Therefore, the software product line engineering process
can be tailored to the Web service environment with extended compensation
capabilities as follows. Service provider tasks are (capabilities and compensations
engineering):

– Service Domain Analysis — is a domain engineering process where variabil-
ities and commonalities between service variants are designed to support
compensations based on failures or based on different constraints and re-
quirements;

– Service Domain Design and Implementation — different service features are
mapped onto an implementation and an architecture for service provisioning
where some of the features need not to be exposed to the public and some
of the variabilities may be left to runtime adaptation.

Feature-Based Engineering of Compensations in Web Service Environment 199

Client/service consumer tasks are (Requirements and Restrictions):

– Business Application Analysis and Design — is an application engineering
task which may be performed by a party external to the service provider
and involves the definition of requirements for and constraints on the Web
service compensations;

– Retrieving the Abstract Web Services — is an application engineering task
in which a designer looks for and retrieves Web services which are required
to perform business to business conversations;

– Defining Client Side Compensations — is an application engineering task
in which a designer defines a variability for compensations which will be
exploited at runtime if more Web services with similar capabilities have
been found, or an alternative Web service has been defined by an application
developer;

– Implementing Client Side Compensations and Functionalities — is an ap-
plication engineering task in which the additional compensations are imple-
mented at the client side, as well as additional operations for which there
was no Web service found are realized by an application developer.

As a means for analysis and design we adopt a feature modelling approach and
a methodology from [3]. Feature models are configuration views on concepts from
conceptual models. The conceptual model describes the main concepts of a do-
main and linguistic relationships between them. Web service capabilities or client
requirements main concepts are therefore placed into the application domain con-
ceptual model and the compensation concepts are placed into the environment
conceptual model. The functionality feature model as well as the compensation
feature model describe the configuration views. Subsequently, the functionality
and compensation models are merged to describe the offered capabilities by a
service provider, or requested functionalities and restrictions regarding compen-
sations by a service consumer. Different algorithms can then be employed by
different middlewares and abstract service to match feature models of a client
and service provider, and to trigger forward recovery by utilizing compensation
actions agreed on by the consumer and the provider.

3 Capabilities and Compensations of Service Providers

Capability Conceptual and Feature Model. The capabilities conceptual model de-
scribes the concepts from a service application domain and relationships between
them. In our case for example, the capabilities conceptual model contain concepts
related to payroll processing such as salary, salary transfer, tax, tax rates, em-
ployee, and so on. The UML class diagram is used to model such conceptual model.

The capability feature model specifies the capabilities of an abstract service.
This model can be provided in the public description of the service and can
be used in the client’s search process for services that fulfill his requirements.
The functionality feature model describes the features of the abstract service
that constitute the offered operations that can directly be used in the business
process, e.g. the booking of a flight. It can be defined as a normal feature model.

200 M. Schäfer and P. Dolog

<< Concept> >
Compensation

<< OptionalFeature> >
ExternalCompensation

Handling

<< MandatoryFeature >>
InternalCompensation

Handling

<< OptionalFeature> >
AdditionalRequest

<< OptionalFeature> >
AdditionalService

<< MandatoryFeature >>
ServiceAbort

<< OptionalFeature> >
Repetition

<< OptionalFeature> >
Replacement

<< VariationPoint >>
{Kind= AND}

<< MandatoryFeature >>
RequestSequence

Change

<< VariationPoint >>
{Kind= OR}

<< OptionalFeature> >
AllRequest
Repetition

<< MandatoryFeature >>
LastRequest
Repetition

<< MandatoryFeature >>
ResultResending

<< OptionalFeature> >
SessionRestart

<< OptionalFeature> >
AdditionalActions

<< MandatoryFeature >>
NoCompensation

<< OptionalFeature> >
Forwarding

<< OptionalFeature> >
PartialRequest
Repetition

Fig. 1. The compensation feature model

Compensations Conceptual and Feature Model. In order to describe the available
compensation types, a conceptual model is created, which constitutes the basis
for the feature models in the extended transaction environment. The result is
the compensation concept model, usually modeled by a class diagram. The basic
concept used in such a model is the Compensation, which defines the required
compensatory operations for a specific situation in a CompensationPlan. Each
plan consists of one or more single CompensationActions.

The compensation feature model describes the configuration aspect of the
mandatory and optional features of the compensation concept, and is depicted in
Figure 1. It will be used in the next step to define service-specific feature models.

The two main features of this model are the InternalCompensationHandling
and the ExternalCompensationHandling features. They structure the available
compensation types as features according to their application: Repetition and
Replacement are only available for internal compensation purposes, while Ses-
sionRestart, Forwarding and AdditionalActions are only available for external
compensation operations. The exception to this separation is NoCompensation,
which is the only common compensation feature. Only two of these features are
mandatory, the NoCompensation and the InternalCompensationHandling fea-
ture. This is due to the fact that the default compensation action is inactivity:
If no rule or compensation capabilities exist, then the service has to fail without
any other operations. Accordingly, the ability to perform external compensations
is only optional.

The Repetition feature contains the subfeatures LastRequestRepetition
(mandatory) and PartialRequestRepetition (optional). LastRequestRepetition is
mandatory, because even if partial request resending is applied, it will be neces-
sary to resend the last request. Likewise, the Replacement feature requires that
after the replacement of a concrete service has been performed at least the last
request will be resent. Both, the resending of a part of the requests or all requests,

Feature-Based Engineering of Compensations in Web Service Environment 201

requires that it is possible to resend new results to the client. Therefore, the
ResultResending feature is mandatory.

The SessionRestart feature has as an optional subfeature the invocation of
an additional service (AdditionalService), and requires via an AND variation
point the ServiceAbort, RequestSequenceChange, and AllRequestRepetition sub-
features. The capability to abort the service, to change the request log, and
to resend all requests is needed in order to perform the session restart, and
therefore these three features have to be included. Within an externally trig-
gered compensation, it is possible to invoke additional services and to create
and send additional requests to the concrete service. That is why AdditionalAc-
tions includes the AdditionalService and AdditionalRequest subfeatures. They
are connected via an OR variation point, as the AdditionalActions feature needs
at least one of these two features.

Merging Capabilities and Compensations. The service provider provides at the
end only one model to one client. The model is merged from capabilities and
compensation feature model. The capability feature model can be extended with
a special attribute: A costs attribute can be added to each feature. The provider
can thus define how much the execution of a specific feature will cost.

4 Requirements and Restrictions of Client Application

Requirements Feature Model. The client creates a requirement description in
order to be able to initiate a search for a suitable abstract service. The specifi-
cation is being done in the same way as the definition of the capability feature
model described in the previous section: A common model is being created that
includes the required functionality and compensation features. This model is
called the requirement feature model. However, although the basic process of
creating the requirement feature model is the same, the interpretation of the
mandatory/optional properties differs. A mandatory feature has to be provided
by the service and is thus critical for the comparison process, while an optional
feature can be provided by the service, and is seen as a bonus in the evaluation
of the available services.

Model Comparison Algorithm. In the client’s search process, each abstract ser-
vice’s capability feature model will be compared to the client’s requirement
feature model. We define a comparison algorithm which makes it possible to
automatically assess the available services and to decide which ones meet the
requirements. Our algorithm is a variant of graph matching algorithm on at-
tributed graph [9]. The feature models are attributed graphs where each node is
a feature with an attribute stating whether a feature is mandatory or optional.
We make use of these attributes in comparing requested capability graph (fea-
ture model) with provided capability graph (feature model). The two models are
the input for the algorithm, which iteratively compares them and calculates a
numerical compatibility score. The basic algorithm of comparing the two models
functions as follows:

202 M. Schäfer and P. Dolog

– Using the requirement feature model as a basis, the features are compared
stepwise. In this process, it is necessary that the same features are found in
the same places, as the same feature structure is expected.

– Each mandatory feature from the requirement model has to be found in
the capability feature model as well. A mandatory feature that is found in
the capability feature model will not change the compatibility score. If the
capability model is missing a mandatory feature, the comparison fails and
a negative score is returned to indicate that the service does not fulfill the
minimum requirements.

– Each optional feature of the requirement model can be part of the capability
model, but does not have to. However, each optional feature that can be
found in the capability model counts as a bonus added to the compatibility
score. This accounts for the fact that an abstract service that provides more
than the absolutely required features is better, as it can more easily be used
in different applications and environments.

– Additional features in the abstract service’s capability model like the spec-
ification of additional services used in the compensation process have to be
defined in the correct place, i.e. as a subfeature of the AdditionalService fea-
ture. Any other additional features will lead to a failure of the comparison.

The compatibility score that is returned by the comparison algorithm de-
scribes the degree to which the abstract service fulfills the requirements specified
by the client. The requirement model’s mandatory features do not increase the
compatibility score if they are found in the capability model, because they con-
stitute the minimum requirements. Therefore, an abstract service that provides
only the mandatory features has a compatibility score of 0, although it meets
the client’s requirements. Each optional feature provided by the service increases
the score by a predefined value. The default value for this is 1, so an abstract
service that offers all mandatory features and 5 optional ones has a score of 5.
The higher the compatibility score of an abstract service is, the better it meets
the requirements of the client. Using this simple score, it is possible to compare
different abstract services and their offered capabilities.

Restriction Feature Model. After the client has found and decided upon the
necessary abstract services that offer the required functional and compensation
features, a contract will be exchanged or negotiated with each service. A vi-
tal part of this contract is the specification which compensation features the
abstract service is allowed to use for the purpose of processing internal and ex-
ternal compensations. While it is of course possible to apply this restriction by
simply searching for abstract services that are able to perform only the allowed
compensation actions, such an approach significantly reduces the available ser-
vices. Moreover, it is quite possible that a client wants to use the same abstract
service in multiple applications, each application having its own rules regarding
the compensatory actions that are permitted. Therefore, it is beneficial to use
a restriction feature model that can be part of the contract, and to which the
abstract service dynamically adapts its compensation operations.

Feature-Based Engineering of Compensations in Web Service Environment 203

When the abstract service wants to invoke a specific compensation action, it
will first consult the contract’s restriction feature model. If the compensation
action is part of the model, then the abstract service is allowed to use it. This
way, the service can dynamically adapt to the requirements of each single client.
It is possible to use an optional attribute in the restriction feature model in order
to further restrict the execution of compensatory actions by the abstract service.
The client can add a maxCosts attribute to the InternalCompensationHandling
and ExternalCompensationHandling features, which specifies the maximum costs
that may be spent by the abstract service for internal and external compensation
handling, respectively. Using this approach, it is possible to define a ”budget”
for internal or external compensation handling.

Feature Model Specification for Middleware. The FeaturePlugin [1] for Eclipse
has been applied to create the compensation feature model to be able to obtain an
XML version of the feature models to be used by our transactional environment.
This feature model is used as a basis for the specification of capability and
requirement feature models, by changing the mandatory/optional features, or
by deleting parts of the model. A restriction feature model can be created in a
convenient way as a configuration of the predefined compensation feature model.
While doing so, the plug-in monitors the constraints and thus guarantees that
the resulting restriction feature model is valid with respect to the properties of
the features as well as the feature group cardinalities.

5 Related Work

A product line approach for composite service-oriented systems has been envi-
sioned in [2]. Our approach contributed to the issues of service selection, excep-
tion handling and quality factors identified in that paper in the context of service
compensations. A pattern based variability has been employed for development
of composite service-oriented systems in [7]. Our approach is based on feature
models for variability description. The compensation mechanisms, engineering
methodology and infrastructure can be used as a supplement to the method
presented in [7]. [5] studies product lines in the context of adaptive composite
service oriented systems. Our approach can be used as a supplement to pro-
vide compensations in such environment to support forward error recovery. [11]
defines an atomicity-equivalent process algebra to define public views over busi-
ness processes involved in B2B conversations. Views are used to check whether
the processes are still in an atomicity sphere; i.e. the process is guaranteed to
terminate with semantics all or nothing. Our approach allows for other seman-
tics to satisfy clients at least partially though we need to study the properties
of termination further. [6] deals with graph matching for feature composition
from partial feature models as well. In our approach we do not compose feature
models, we try to find out which service fits the client requested capability.

204 M. Schäfer and P. Dolog

6 Conclusion and Future Work

We have described a software product line approach to be used for Web service
transactions in order to control the use of compensatory actions. The compensa-
tion feature model has been introduced that structures the compensation types
and activities. This model has subsequently been used in order to define the
feature models for service capabilities, requirements, and restrictions.

It is necessary to run additional experiments with different scenarios, and to
further analyze the usability of feature models. It is interesting to study the use
of ontologies in the models. The extensions of the model comparison algorithm
should also be studied.

References

1. Antkiewicz, M., Czarnecki, K.: Featureplugin: Feature modeling plug-in for eclipse.
In: OOPSLA 2004 Eclipse Technology eXchange (ETX) Workshop (2004)

2. Capilla, R., Topaloglu, N.Y.: Product lines for supporting the composition and
evolution of service oriented applications. In: Eighth Intl. Workshop on Principles
of Software Evolution in conjunction with ESEC/FSE 2005 (2005)

3. Dolog, P., Nejdl, W.: Using UML-based feature models and UML collabora-
tion diagrams to information modelling for web-based applications. In: Baar, T.,
Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp.
425–439. Springer, Heidelberg (2004)

4. Dolog, P.: Engineering Adaptive Web Applications: A Domain Engineering Frame-
work. VDM Verlag Dr. Müller (2008), http://www.vdm-publishing.com/

5. Hallstein, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques to build
adaptive systems. In: SPLC 2006. 10th Intl. Software Product Line Conf. (2006)

6. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition
in product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

7. Jiang, J., Ruokonen, A., Systä, T.: Pattern-based variability management in web
service development. In: ECOWS 2005. Third European Conf. on Web Services
(2005)

8. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering.
Springer, Heidelberg (2000)

9. Rozenberg, G.: A Handbook of Graph Grammars and Computing by Graph Trans-
formation: Application Languages and Tools. World Scientific Publishing Com-
pany, Singapore (1997)

10. Schäfer, M., Dolog, P., Nejdl, W.: Environment for flexible advanced compensations
of web service transactions. ACM Transactions on Web 2(2) (April 2008)

11. Ye, C., Cheung, S.C., Chan., W.K.: Publishing and composition of atomicity-
equivalent services for b2b collaboration. In: ICSE 2006: Proceedings of the 28th
Intl. Conf. on Software Engineering. ACM, New York (2006)

http://www.vdm-publishing.com/

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 205 – 212, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Product Line Development of Web Systems with
Conventional Tools*

Miguel A. Laguna, Bruno González-Baixauli, and Carmen Hernández

Department of Computer Science, University of Valladolid,
Campus M. Delibes, 47011 Valladolid, Spain

{mlaguna,bbaixauli,chernan}@infor.uva.es

Abstract. Development of software product lines is a challenge for small
organizations. Although the use of feature models is necessary to manage
variability, we propose to use conventional tools for the rest of development
activities. Traceability between the features and the UML architectural models
is achieved by means of the package merge mechanism of UML 2. A similar
strategy is applied at the implementation level, using packages of partial
classes. The combination of these techniques and conventional IDE tools make
the developments of product lines easier as it removes the need for specialized
tools and personnel. This article reports a successful experience with these
techniques in the domain of web applications.

Keywords: Software Product Lines, Feature Model, Variability, Traceability.

1 Introduction

Software product lines (SPL) are a proven reuse approach in industrial environments,
based on the idea that each product of the SPL can be built from a common set of
assets [3]. However, this approach is complex and requires a great effort by the
companies that take it on [5]. The research we carry out aims to simplify the change
from a conventional development process into one that benefits from the product line
advantages in small and medium enterprises (SME).

As specific SPL development techniques, we must pay special attention to the
variability and traceability aspects at each abstraction level. We need models that
represent the product line and a mechanism to obtain the configuration of features that
represent the best combination of variants for a specific application. There is wide
agreement about using feature diagrams in some of their multiple versions like FODA
[10] or FORM [9] to fulfill those requirements. A feature diagram is a tree, where the
root node is the concept. The edges are used to decompose this concept into more
detailed features by several types of decompositions.

Additionally, we must connect the optional features with the related variation
points of the architectural models that implement the product line through traceability
links. This explicit connection allows the automatic instantiation of the domain
framework in each specific application, selecting or not the optional parts with respect
to the particular functional and non-functional user requirements. However, this

* This work has been founded by the Junta de Castilla y León (VA-018A07 project).

206 M.A. Laguna, B. González-Baixauli, and C. Hernández

traceability is not easily managed for several reasons [13]. An optional feature can be
related to several elements in a UML model and vice versa. On the other hand, the
same basic modeling mechanisms of variability (the specialization in class diagrams
or the <<extend>> relationship in use cases) are used to express two variability levels:
the design of the product line architecture and the design of a specific application that
also has variations (for example two valid and alternative payment forms within a
sales system). The solution to this problem has been achieved by modifying or
adapting the UML structural and behavioral models, moving from the standard. The
works of Gomaa [8] and Clauß [4] are examples of this approach, using stereotypes.
Another solution proposed by Czarnecki in [6], consists of annotating the UML
models with presence conditions, so that each optional feature is reflected in one or
several parts of a diagram. All these solutions involve UML modifications. One of our
initial restrictions was to maintain unchanged the UML meta-model, in order to use
conventional CASE tools to model the product line. Other obligations were to locate
at one point on the model all the variations associated to each optional feature or to
separate the SPL variability from the variability of the specific applications.

In a previous work [11], we proposed the UML 2 package merge mechanism to
represent the SPL architectural variations. This mechanism permits a clear traceability
between feature and UML models to be established, associating a package to each
optional feature, so that all the necessary changes in the model remain located.
Therefore, the architectural model (including structural –class diagrams-, behavioral -
use cases-, and dynamic –interaction diagram- models) is built starting from a Base
package that gathers the common SPL aspects. Then, each variability point detected
in the feature model originates a package, connected through a <<merge>>
relationship with its parent package. These packages will be combined or not, when
each product is derived, according to the selected feature configuration.

To support the approach, we have developed a Feature Modeling Tool (FMT1) and
integrated it into Visual Studio, using the Microsoft DSL tools. The aim was to
introduce product line as one of the project types provided by the development
platform. Figure 1 shows the feature explorer view and the configuration tool (Figure
4 in Section 3 depicts a general view). The interface and underlining meta-model of
FMT is similar to the fmp plug-in [1] and compatible with it, allowing the direct
import of fmp models. The advantages of FMT are direct integration into the Visual
Studio IDE and the possibility of visual representation and manipulation of features
and mutex/require constraints. As additional benefits, the package structure of the
product line and the configuration files can be directly generated.

To test the proposal in realistic situations, this article reports the practical
experience with these techniques in the development of an e-commerce product line,
as a representative example of web systems. A distinctive characteristic is the use of
conventional CASE and IDE tools. In particular, we have used .NET and MS Visual
Studio as development platform, with the FMT tool incorporated into the platform.
Personnel involved vary from granted postgraduate students to undergraduates
working on their term projects, but they are not specialists in SPL development.
Sections 2 and 3 of this article are devoted to the description of the case study
analysis and design and Section 4 concludes the article and outlines future work.

1 http://www.giro.infor.uva.es/FeatureTool.html

 Product Line Development of Web Systems with Conventional Tools 207

2 Case Study: e-Commerce

The starting point has been the feature model proposed by Lau in [12], where a
complete domain analysis using feature models is accomplished. However, the SPL is
not implemented, providing us with a starting point to contrast the technique, since
the packages that we must implement are imposed by an external independent study.
The aim was not to implement hundreds of packages, but to reach a result with
enough variability to show that it is possible to develop a functional product line in
the web systems domain using a conventional development platform. Figure 1 (left)
shows the initially selected features. Some of them are mandatory, as Catalog,
Product Information and Categories. Others can be incorporated or not to the final
product as Shipping and Billing Address or Multilevel Categories.

Fig. 1. FMT details of the e-Commerce product line: features tree-view and configuration tool

208 M.A. Laguna, B. González-Baixauli, and C. Hernández

At this moment, the common part of the product line and a dozen packages have
been developed. Therefore, we can already generate hundreds of e-commerce systems,
from a minimal combination (that is, the simplest purchase process) to a typical portal
with registered users, shopping cart, credit card secure payment, catalogs with multiple
categories, search criteria, etc. The developed packages form a basic product family,
but it continues growing with the successive packages in development.

3 Product Line Design and Implementation

The design has respected the basic ideas of the architecture proposed by Lau in [12],
but organizing them in packages. The basic model of the product line is shown in
Figure 2. This structure is automatically generated (in XMI format) from the Feature
Modeling Tool using the transformation defined in [11] and now incorporated into the
tool. The number of included features (near 40) is noticeably greater than the number
of generated packages, as the design elements linked with mandatory features are
included in existing packages. Most packages are optional and mutually independent.
However, more complex situations have also appear: for instance, the Electronic and
Physical Product packages correspond to an OR (1..2) structure in the feature model.
This implies that at least one product type must be chosen. Another special situation is
that the Physical Product package always requires the Shipping Address package to
enable the effective shipment of the physical items. These restrictions are
contemplated during the feature configuration process and automatically reflected in
the valid packages combinations.

Registration

Credit Card Information

Shipping Address

<<merge>>

<<merge>>

Quick Checkout Profile

<<merge>>

Billing Address

<<merge>>

Base

<<merge>>

DirectDownload

CategoriesMultilevel

Search<<merge>>

<<merge>>

<<merge>>

Electronic Product Physical Product

ShoppingCart

<<merge>>

<<merge>>

Fig. 2. Packages of the electronic commerce product line

We have achieved the complete development of the Base and eleven optional
packages. Some of them are the following:

• CategoryMultilevel Package (supports multi-level categories in the catalog)
• Search Package (implements multiple criteria searches)

 Product Line Development of Web Systems with Conventional Tools 209

• DirectDownload Package (an electronic product can be directly downloaded)
• ShoppingCart Package (visualizes the detail of the products added to the cart

at any time)
• ElectronicProduct and PhysicalProduct Packages (at least one must be

included to enable the purchase process)

Other packages enable registration facilities, including a simplified payment
process, when the user facilitates its payment preferences.

To trace the relationships between the different levels, this package organization is
used throughout the development cycle of the product line: features, requirements
(use cases and domain models), design (classes and interaction diagrams), and finally
implementation. To extend traceability to the implementation, we use the concept of
partial class of some languages. For example, C# permits to organize a project in
packages with partial classes and, later, when two or more packages that contain
classes with the same name are selected, the compilation process combines them in a
unique class. The approach reproduces the same strategy used in requirements and
design levels at the implementation level. Consequently, once the packages have been
implemented, to derive a concrete application, we must uniquely indicate the selected
packages corresponding to the feature configuration to the compiler. Thus, the goal of
one-to-one traceability from features to code is achieved. The actual implementation
of the e-commerce PL has been done using the .NET/ ASP as platform, C# as
language, and Microsoft Visual Studio (including FMT) as IDE tool. In addition to
domain classes, the implementation details must also solve two main problems: the
user interface and data persistence. In the case of persistence, a pragmatic solution has
been adopted, using a database that contains all the possible tables and columns. We
continue working on the right solution: the ad hoc generation of the database schema
as a part of the automated product configuration process. Consequently, the methods
that handle access to the database use partial data structures, so that some columns of
the database tables remain unused.

As for the user interface problem, we have used a combination of templates,
cascade style definition files, and dynamic containers. In ASP.NET, it is possible to
create master pages that (combined with .css files) serve as templates to the web
system. Since we are not developping a closed application, each concrete product in
the SPL will possibly have a different main page from the view point of final users.
The variability mechanism of the template is achieved by using dynamic containers
(ContentPlaceHolder) that will be filled in a dynamic way as specified in the code of
each concrete application. As shown in Figure 3, each template is built from several
pieces. The most interesting parts are on the left, where the different menus are, and
the central part, corresponding to the specific content of the page. In both cases, a
dynamic editable container has been used. To fill the containers, the methods of the
associated C# classes (code behind in .NET terminology) add the needed dynamic
controls, as well as their particular behavior. At the time of the configuration of each
final product of the SPL, the compiler must recognize the necessary packages and the
corresponding dynamic controls. To achieve this, a set of XML based configuration
files are used to indicate paths, packages, etc. In addition to the default configuration
files provided by the platform, other specific files have been added to each package.
Thus, each page builds itself in a systematic way, using a name convention and the
information about the necessary controls.

210 M.A. Laguna, B. González-Baixauli, and C. Hernández

Fig. 3. Design view of a template with two dynamic containers

Fig. 4. Configuration process of the e-commerce product line with the detail of the selected
(yellow) packages in the solutions explorer (right)

Figure 4 shows the way the packages are organized and configured. The available
packages and their relationships are managed inside the IDE platform. In fact, the
selection process is done using the FMT configuration tool (left part of Figure 4) and

 Product Line Development of Web Systems with Conventional Tools 211

this selection is automatically reflected in the Visual Studio solution explorer
(packages of the right part of Figure 4). Once selected and validated, the project
configuration is set and the compiler generates the final specific product that can be
deployed and installed in minutes in the production server.

The results include the generation of several hundreds of variants, simply
configuring and recompiling the SPL project into a concrete product. All the products
include the basic purchase process, but specific products can include: Registered
users, electronic or physical products, search facilities, credit or PayPal secure
payment methods, etc. The details of how to install and to configure a product can be
consulted in [7]. In Figure 5, two examples of final products with different degrees of
complexity can be appreciated. To summarize, a realistic e-commerce product line
has been developed, using a seamless approach, based on UML package merging and
partial classes. At the same time, the necessary implementation techniques to handle
variability at code level have been established. In general, the experience with
graduate students has been satisfactory as they have reached the objectives with a
reasonable effort (three to four months, four students working part time).

Fig. 5. Two variants of the electronic commerce product line as seen in a web browser

4 Conclusions

In this work the feasibility of a product line development approach in the web
applications domain has been shown. The use of package merge and partial class
mechanisms enables the automated generation of each product from the features
configuration. Furthermore, the use of conventional CASE and IDE tools can simplify
the adoption of this paradigm, avoiding the necessity of specific tools and techniques
as in previous alternatives. The approach has been successfully applied to the design
and implementation of an e-Commerce product line, based on a previous feature

212 M.A. Laguna, B. González-Baixauli, and C. Hernández

analysis published in the literature. As a part of this work, a Feature Modeling Tool
have been developed and incorporated into the Visual Studio IDE. This direct
integration allows generating automatically (through XMI standard files) the UML
package model structure and configuring the final products from the Feature
Modeling Tool. Therefore, the configuration process is more transparent and
straightforward for the application engineers.

Some commercial tools, such as Big-Lever Gears (www.biglever.com) or
pure::variants (www.pure-systems.com) offer similar functionalities. Batory et al.
have developed AHEAD, a set of java based tools that implements the Feature
Oriented Programming paradigm [2]. Though these solutions are valid, the learning
of new modeling or implementation techniques and the need of specialized CASE and
IDE tools represent barriers for the adoption of the product line approach in many
organizations; we therefore believe that the solution presented here improves the
abovementioned proposals.

Current work includes the development of other product lines (in particular in the
domain of non-lucrative associations), and the enrichment of the e-commerce case
study. In this case, the objective is to evaluate the scalability of the proposal as the
optional features increase.

References

1. Antkiewicz, M., Czarnecki, K.: Feature modeling plugin for Eclipse. In: OOPSLA 2004
Eclipse technology exchange workshop (2004)

2. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE TSE
(June 2004)

3. Bosch, J.: Design & Use of Software Architectures. Adopting and Evolving a Product-Line
Approach. Addison-Wesley, Reading (2000)

4. Clauß, M.: Generic modeling using Uml extensions for variability. In: Workshop on
Domain Specific Visual Languages at OOPSLA (2001)

5. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering. Addison-Wesley, Reading (2001)

6. Czarnecki, K., Antkiewicz, M.: Mapping Features to models: a template approach based
on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005)

7. García Gil, C., Izquierdo, Á., Juan, C.: Desarrollo de una Línea de Producto Software de
comercio electrónico. PFC (2008), http://giro.infor.uva.es

8. Gomaa, H.: Object Oriented Analysis and Modeling for Families of Systems with UML.
In: ICSR6, pp. 89–99 (2000)

9. Kang, K., Kim, S., Lee, J., Kim, K.: FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures. Annals of Software Eng. 5, 143–168 (1998)

10. Kang, K.C., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21 (1990)

11. Laguna, M.A., González-Baixauli, B., Marqués, J.M.: Seamless Development of Software
Product Lines: Feature Models to UML Traceability. In: GPCE 2007 (2007)

12. Lau, S.: Domain Analysis of E-Commerce Systems Using Feature-Based Model
Templates., MSc Thesis, ECE Department, University of Waterloo, Canada (2006)

13. Sochos, P., Philippow, I., Riebish, M.: Feature-oriented development of software product
lines: mapping feature models to the architecture. In: Weske, M., Liggesmeyer, P. (eds.)
NODe 2004. LNCS, vol. 3263, pp. 138–152. Springer, Heidelberg (2004)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 213 – 220, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Empirical Study on the Use of
Web-COBRA and Web Objects to

Estimate Web Application Development Effort

Sergio Di Martino1, Filomena Ferrucci2, and Carmine Gravino2

1 University of Napoli “Federico II” Via Cinthia, I-80126 Napoli, Italy
dimartino@na.infn.it

2 University of Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
{fferrucci,gravino}@unisa.it

Abstract. We have performed a replication of a previous study in order to
further assess the effectiveness of Web-COBRA method, with the Web Objects
measure, in predicting Web application development effort. The results of the
empirical analysis confirm the interesting results of the previous study.

Keywords: Effort estimation method, Web-COBRA, Web applications.

1 Introduction

In the field of Web Engineering many techniques have been proposed to predict the
effort required for the development of an application, and among them Web-COBRA
is of particular interest, thanks to its ability to combine experts knowledge with a
formal estimation model [21]. Web-COBRA is an adaptation of COBRA [4] and the
key issue of these two methods is to exploit experts’ knowledge, gathered in a
controlled way, for identifying the main factors that can influence the development
cost for a specific software company/domain, and this information is used to “adjust”
the estimations coming from a model that exploits a size measure as cost driver.

To date, the effectiveness of Web-COBRA has been assessed only in one previous
study, which exploited a dataset of 12 Web applications, sized using Web Objects, a
measure proposed by Reifer specifically for Web applications [20]. Web Objects add
four new Web-related components to the five function types of the Function Point
Analysis method [10], namely Multimedia Files, Web Building Blocks, Scripts, and
Links. The analysis performed in [21] provided interesting results and encouraged us
to further analyze the effectiveness of Web-COBRA in combination with Web
Objects. In particular, we have replicated that study in a different context, by
considering a dataset of 15 bigger Web applications developed by an Italian software
company.

The remainder of the paper is organized as follows. In Section 2 we report on the
empirical analysis we performed together with a discussion of the gathered results.
Section 3 contains a description of related work, while Section 4 concludes the paper
giving final remarks and suggestions on future work.

214 S. Di Martino, F. Ferrucci, and C. Gravino

2 Empirical Study

We start by describing the dataset employed in the empirical study and the differences
with respect the dataset used in the previous analysis. Then, we report on the
empirical analysis and discuss the results.

2.1 Dataset Description

The empirical study we present in this paper is based on a dataset coming from a
medium-sized software company operating in Italy, whose core business is the
development of enterprise information systems, mainly for local and central
government. The company has about fifty employees and a turnover of about 5M €€ . It
is certified ISO 9001:2000, and it is also a certified partner of Microsoft and Oracle.

Data used in the study are related to a set of 15 Web applications, including e-
government, e-banking, Web portals, and Intranet applications. They have been
developed by exploiting different Web-oriented technologies, such as J2EE,
ASP.NET, etc... Oracle has been the most commonly adopted DBMS, but also SQL
Server, Access and MySQL have been employed in some applications.

Table 1 provides some descriptive statistics about the considered dataset, taking
into account the size (in terms of Web Objects), the actual effort (in terms of person-
hours), and the peak staff (in terms of people involved in the project). Moreover, it
also reports the statistics of the dataset considered by Ruhe et al. for the first
assessment of Web-COBRA [21]. They used 12 Web applications, such as B2B,
intranet or financial, developed between 1998 and 2002 by a small Australian
software development company, with about twenty employees. The most of these
projects were new developments, even if there were also enhancements, and re-
development projects.

Table 1. Descriptive statistics of effort (in terms of person/hours), and size (in terms of Web
Objects), and peak staff

Min Max Median Mean Std. Dev.
Current study

Web Objects 465 2,258 611 1,474.87 543.42
Effort 1176 3,712 1389 2,677.87 827.12
Peak Staff 6 7 6 6.2 0.4

Ruhe et al.’s study
Web Objects 67 792 Un-Know 284 227
Effort 267 2,504 Un-Know 883 710
Peak Staff 2 6 Un-Know 3 1.5

The 15 Web applications considered in our replication are of the same kind, but

they are more recent, being developed between 2003 and 2006. Other differences are
related to the size of the applications and the size of the team. Indeed, in mean, the
applications considered in this replication are 5.2 times bigger than the ones of Ruhe
et al., in terms of Web Objects. Moreover, the development teams considered in this
replication are in mean 2 times bigger than the ones of Ruhe et al.

 An Empirical Study on the Use of Web-COBRA and Web Objects 215

2.2 The Empirical Analysis

In order to apply the Web-COBRA method, we first identified and quantified the cost
factors and then we collected data from Web application involved in our case study.

Regarding the identification and quantification of cost factors, a large number of
cost drivers may affect the development cost of software applications. To select the set
of the cost drivers that result significant for the considered domain [4], [21], we
drafted an initial list, basing on a review of the literature on Web effort/cost estimation,
including the cost factors identified in [21]. This preliminary list was submitted to five
experts of the software company involved in our empirical study. Then a Delphi
method [14] was adopted until they agreed on the final set of cost drivers. They were
asked to comment, basing on their experience, on the clarity of the factors (to avoid
that different project managers could interpret them in different ways), on their
completeness (to avoid that some key factors might not be considered), and on
relevance for the Web application development domain, working also to reduce as
much as possible redundancies and overlaps. A final list of 10 cost drivers was
devised. They are reported in Table 2. It is worth noting that this list includes four cost
factors employed by Ruhe et al. in [21]: Novelty of Requirements, Importance of
Software Reliability, Novelty of Technology, and Developer’s Technical Capabilities.
Then, the experts were asked to quantify the cost factors, specifying their minimal,
most likely, and maximal inducted overhead (see Table 2). Again, a Delphi method
was used to obtain a single representative triple for each cost factor.

Table 2. Identified cost factors and their influence

Cost factor Minimal Most likely Maximal

Novelty of Requirements (CF1) 10% 35% 70%

Importance of Software Portability (CF2) 7% 25% 60%

Importance of Software Reliability (CF3) 5% 20% 60%

Importance of Software Usability (CF4) 7% 30% 65%

Importance of Software Efficiency and Performance (CF5) 7% 20% 50%

Novelty of Technologies (CF6) 5% 25% 65%

Integration/Interaction with legacy systems (CF7) 20% 35% 70%

Temporal Overlap with other projects (CF8) 10% 35% 60%

Productivity of the adopted technological platform (CF9) 15% 45% 65%

Developer’s Technical Capabilities (CF10) 10% 35% 65%

In the second step, the relationship between the cost overhead and the development

cost was modeled by using the Ordinary Least Squares Regression (OLSR) and
employing past data of the company. The information on the cost overhead for each
project p was obtained by the sum of all the triangular distributions of cost factors of
p, given their minimal, most likely, and maximal values indicated by project
managers. In particular, for each cost factor, the project manager specified its
influence on the Web application by means of a value in the range 0..3, where 0
means that no influence was due to that factor, and 3 represents the highest impact.
The descriptive statistics of the cost factors are shown in Table 3.

216 S. Di Martino, F. Ferrucci, and C. Gravino

Table 3. Descriptive Statistics of cost factors

 Min. Max. Mean Median Std. Dev.
CF1 0 2 0.933 1 0.700
CF2 0 1 0.333 0 0.488
CF3 0 3 0.533 0 0.915
CF4 0 3 1.067 1 1.033
CF5 0 1 0.133 0 0.352
CF6 0 3 0.867 0 1.125
CF7 0 3 1.400 1 0.828
CF8 1 3 1.800 2 0.676
CF9 1 3 1.800 2 0.775
CF10 1 1 1.000 1 0

The information on Effort, Size (expressed in terms of Web Objects), and

co_overhead was then exploited to build an estimation model and validate it. Observe
that Web-COBRA assumes that the relationship between effort and size is linear [21].
We performed the required statistical tests to verify this linearity in our dataset.
Moreover, the size of a Web application was modeled as an uncertain variable, which
underlies a triangular distribution, and an uncertainty of 5% was considered in [21].
Then, we applied a leave-1-out cross validation, by performing 15 steps, where at
each step the original dataset was partitioned into a training set of 14 Web
applications and a validation set consisting of the remaining application. The training
set was used to determine the estimation model and the validation set to assess the
obtained estimates. Moreover, we ran a Monte Carlo simulation (considering 1000
iterations) that allowed us to use the relationship between cost overhead and effort
together with the causal model in order to obtain a probability distribution of the
effort for the new project [21]. Then, the mean value of the distribution was used as
the estimated effort value.

To evaluate the accuracy of the obtained estimations, we employed some widely
used summary measures, namely MMRE, MdMRE, and Pred(0.25) [6], together with
boxplots of absolute residuals [13]. Table 4 contains the results we obtained, which
highly fit the acceptable thresholds defined in [6] since MMRE (and MdMRE) values
are less than 0.25 and Pred(0.25) value is greater than 0.75. This means that the mean
error of the estimates we obtained is less than 25%, and that at least 75% of the
estimated values fall within 25% of their actual values.

Table 4. Descriptive accuracy evaluation

 MMRE MdMRE Pred(0.25)
Web-COBRA with Web Objects 0.14 0.11 0.87

MeanEFH 0.34 0.27 0.47

MedianEFH 0.33 0.24 0.60

As suggested by Mendes and Kitchenham [18], we also compared MMRE,

MdMRE, and Pred(0.25) with the mean of effort (i.e., MeanEFH) and the median of
effort (i.e., MedianEFH) across all the dataset of past projects, as estimated value. The

 An Empirical Study on the Use of Web-COBRA and Web Objects 217

aim is to have a benchmark to assess whether the estimates obtained with Web-
COBRA are significantly better than the trivial estimates based on the mean or
median effort of all the previous projects. Indeed, if the estimates obtained with mean
or median effort are similar to those obtained with the employed method then for the
software company it could be more useful to simply use the mean or the median effort
of the past developed applications rather than dealing with complex estimation
techniques [18]. The results in Table 4 reveal that the values of MMRE and
Pred(0.25) for MeanEFH and MedianEFH do not match the acceptance thresholds
suggested in [6]. The boxplots of absolute residuals depicted in Figure 1 confirm that
the estimations achieved by using Web-COBRA with Web Objects are better than
those obtained using MeanEFH and MedianEFH. Indeed, the box length and the tails
of the boxplot for Web-COBRA are smaller than those of boxplots for MeanEFH and
MedianEFH. Furthermore, the median of boxplot for Web-COBRA is more close to
zero than the other two boxplots.

Fig. 1. The boxplots of absolute residuals

As suggested in [13], we also tested the statistical significance of the results
obtained from the proposed models by using paired absolute residuals. To this end,
we performed both the T-Test and the Wilcoxon test to verify the following null
hypothesis: “the two considered population have identical distributions”. The analysis
revealed that the absolute residuals obtained using Web-COBRA and Web Objects
were significantly better than those obtained using MeanEFH and MedianEFH.

To have an indication of the practical/managerial significance of these results we
analyzed the effect size, which has many advantages over the use of tests of statistical
significance alone since “whereas p-values reveal whether a finding is statistically
significant, effect size indicates practical significance” [11]. Employing the Wilcoxon
test and the T-test, the effect sizes was determined by using the formula: r = Z-score /
sqrt(N), where N is the number of observations. The statistics on effect size revealed
that all results statistically significant were also practical significant according to the

218 S. Di Martino, F. Ferrucci, and C. Gravino

widely used Cohen's benchmarks [5]. Indeed, medium effect sizes were highlighted
(i.e., 50 < r <0.80).

2.3 Comparison with the Previous Case Study

As for comparison with the previous empirical study, in Table 5 we have reported the
values of the summary statistics on the prediction accuracy obtained in the previous
research on Web-COBRA [21]. We can observe that the MMRE and Pred(0.25)
values we obtained are slightly better than those of [21]. Thus, the analysis reported in
the present paper has confirmed the results of [21] showing the effectiveness of Web-
COBRA in combination with Web Objects to estimate Web application development
effort. Moreover, our results extend the ones in [21], showing the scalability of the
method. Indeed, as discussed in Section 2.1 the Web applications used in our
empirical study have larger sizes than the Web applications used in [21]. Thus, our
results suggest that Web-COBRA and Web Objects turn out to be good for estimating
larger Web applications, too.

Table 5. Comparison with the results of [21]

 MMRE MdMRE Pred(0.25)
Our result 0.14 0.11 0.87

Ruhe et al. result 0.17 0.15 0.75

3 Related Work

Besides Web-COBRA method and Web Objects measure, other approaches were
proposed in the literature for estimating Web applications development effort.

The COSMIC method [7] has been applied to Web applications by some
researchers in the last years [9], [15], who exploited as estimation technique the
OLSR. In particular, Mendes et al. applied the COSMIC approach to Web sites, i.e.,
without server-side elaborations [15]. Using data about 37 Web systems developed by
academic students, they constructed an effort estimation model by applying OLSR.
However, this model did not provide good estimations and replications of the study
were highly recommended by Mendes et al. to find possible biases in the application
of the method. Subsequently, the observation that dynamic Web applications are
characterized by data movements (from a Web server to the client browser) suggested
to apply the principles of the COSMIC method to size this type of Web applications
[9]. An empirical study based on the use of 44 Web applications developed by
academic students, was performed to assess the COSMIC approach [9]. The effort
estimation model obtained by employing the OLSR provided encouraging results.

Some authors investigated the usefulness of size measures specific for Web
applications such as number of Web pages, media elements, internal links, etc. [1],
[3], [8], [15], [16], [17]. Several studies were conducted to investigate and compare
the effectiveness of these measures in combination with estimation techniques like
Linear and Stepwise Regression, Case-Based Reasoning, Regression Tree, and
Bayesian Networks [2], [3], [8], [16], [17], [19]. In particular, in [16] a dataset of 37

 An Empirical Study on the Use of Web-COBRA and Web Objects 219

Web systems developed by academic students was exploited and the empirical results
suggested that Stepwise Regression provided statistically significant superior
predictions than the other techniques when using length size measures, such as
number of Web pages, number of new media. By employing the same dataset, in [17]
the Regression Tree gave worse results than Stepwise Regression and Case-Based
Reasoning, and the authors highlighted that the models obtained with Linear and
Stepwise Regression generally gave statistically significant better results than Case-
Based Reasoning and Regression Tree. On the contrary, a study exploiting a dataset
containing data on 15 Web software applications developed by a single Web company
(the ones also employed in the empirical study presented in this paper) revealed that
none of the employed techniques (i.e., Stepwise Regression, Regression Tree, and
Case-Based Reasoning) was statistically significantly superior than others [8].
Recently, Mendes and Mosley investigated the use of Bayesian Networks for Web
effort estimation using the Web applications of the Tukutuku database [19]. In
particular, they employed two training sets, each with 130 Web applications, to
construct the models while their accuracy was measured using two test sets, each
containing data on 65 Web applications. The analysis revealed that Manual Stepwise
Regression provided significantly better estimations than any of the models obtained
by using Bayesian Networks and is the only approach that provided significantly
better results than the median effort based model.

Baresi and Morasca proposed a different approach defining several measures on
the basis of attributes obtained from design artifacts [3]. They reported on a case
study, and two replications, conducted with students of an advanced university class,
that highlighted the impact of some attributes, obtained from artifacts designed with
W2000, on the total effort required for designing Web applications. It is worth noting
that, in our empirical study, Web applications were not automatically obtained from
design documents, thus our focus was on the effort to develop Web applications.

Abrahão and Pastor proposed the OOmFPWeb method [1] which maps the
Function Points concepts into the primitives used in the conceptual modeling phase of
OOWS, a method for producing software for the Web. In a recent work, an initial
validation of the proposed size measure was described [2].

4 Conclusions

In this paper we have investigated the use of Web-COBRA proposed in [21] for
estimating Web application development effort. In particular, we have replicated a
previous case study [21], by applying Web-COBRA in combination with the Web
Objects measure and exploiting data from 15 industrial Web applications developed
by an Italian software company. The empirical analysis has not only confirmed the
effectiveness of Web-COBRA and Web Objects in estimating development effort, but
has also shown their ability to scale, dealing with bigger applications.

In the future, we intend to further assess Web-COBRA by considering a different
contest. Moreover, we plan to apply Web-COBRA using COSMIC as size measure
[7]. Indeed, Web-COBRA’s authors suggested to employ COSMIC or Web Objects,
however in [21] only Web Objects approach was used.

220 S. Di Martino, F. Ferrucci, and C. Gravino

References

[1] Abrahão, S.M., Pastor, O.: Measuring the functional size of Web applications.
International Journal of Web Engineering and Technology 1(1), 5–16 (2003)

[2] Abrahão, S.M., Pastor, O., Poels, G.: Evaluating a Functional Size Measurement Method
for Web Applications: An Empirical Analysis. In: Proceedings of International Software
Metrics Symposium (METRICS 2004), pp. 358–369 (2004)

[3] Baresi, L., Morasca, S.: Three Empirical Studies on Estimating the Design Effort of Web
Applications. Transaction On Software Engineering and Methodology 16(4) (2007)

[4] Briand, L., El Emam, K., Bomarius, F.: COBRA: A Hybrid Method for Software Cost
Estimation, Benchmarking, and Risk Assessment. In: Proceedings of the International
Conference on Software Engineering (ICSE 1998), pp. 390–399 (1998)

[5] Cohen, J.: Statistical Power Analysis for the Behavioral Science. Lawrence Erlbaum
Hillsdale, New Jersey (1988)

[6] Conte, D., Dunsmore, H.E., Shen, V.Y.: Software engineering metrics and models. The
Benjamin/Cummings Publishing Company, Inc. (1986)

[7] COSMIC. Web site (2007), http://www.cosmicon.com
[8] Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., Vitiello, G.: Effort

estimation modeling techniques: a case study for Web applications. In: Proceedings of
International Conference on Web Engineering (ICWE 2006), pp. 9–16 (2006)

[9] Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., Vitiello, G.: A
COSMIC-FFP: Approach to Predict Web Application Development Effort. Journal of
Web Engineering 5(2), 93–120 (2006)

[10] IFPUG, Function point counting practices manual, release 4.2.1 (2004)
[11] Kampenes, V., Dybå, T., Hannay, J.E., Sjøberg, D.I.K.: A Systematic Review of Effect

Size in Software Engineering Experiments. Information and Software Technology 4(11-
12), 1073–1086 (2007)

[12] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M.: Case Studies for Method and Tool
Evaluation. IEEE Software 12(4), 52–62 (1995)

[13] Kitchenham, B.A., Pickard, L.M., MacDonell, S.G., Shepperd, M.J.: What accuracy
statistics really measure. IEE Proceedings – Software 148(3), 81–85 (2001)

[14] Linstone, H.A., Turoff, M.: The Delphi Method: Techniques and Applications. Addison-
Wesley Publishing Co. Inc. (1975)

[15] Mendes, E., Counsell, S., Mosley, N.: Comparison of Web Size Measures for Predicting
Web Design and Authoring Effort. IEE Proceedings-Software 149(3), 86–92 (2002)

[16] Mendes, E., Counsell, S., Mosley, N., Triggs, C., Watson, I.: A Comparative Study of
Cost Estimation Models for Web Hypermedia Applications. Empirical Software
Engineering 8(2), 163–196 (2003)

[17] Mendes, E., Counsell, S., Mosley, N., Triggs, C., Watson, I.: A Comparison of Development
Effort Estimation Techniques for Web Hypermedia Applications. In: Proceedings of
International Software Metrics Symposium (METRICS 2002), pp. 131–140 (2002)

[18] Mendes, E., Kitchenham, B.: Further Comparison of Cross-company and Within-
company Effort Estimation Models for Web Applications. In: Proceedings of
International Software Metrics Symposium (METRICS 2004), pp. 348–357 (2004)

[19] Mendes, E., Mosley, N.: Bayesian Network Models for Web Effort Prediction: A
Comparative Study. IEEE Transactions on Software Engineering (August 1, 2008),

 http://doi.ieeecomputersociety.org/10.1109/TSE.2008.64
[20] Reifer, D.: Web-Development: Estimating Quick-Time-to-Market Software. IEEE

Software 17(8), 57–64 (2000)
[21] Ruhe, M., Jeffery, R., Wieczorek, I.: Cost estimation for Web applications. In:

Proceedings of the International Conference on Software Engineering (ICSE 2003), pp.
285–294 (2003)

An Extensible Monitoring Framework for
Measuring and Evaluating Tool Performance in

a Service-Oriented Architecture

Christoph Becker, Hannes Kulovits, Michael Kraxner, Riccardo Gottardi, and
Andreas Rauber

Vienna University of Technology, Vienna, Austria
http://www.ifs.tuwien.ac.at/dp

Abstract. The lack of QoS attributes and their values is still one of
the fundamental drawbacks of web service technology. Most approaches
for modelling and monitoring QoS and web service performance focus
either on client-side measurement and feedback of QoS attributes, or on
ranking and discovery, developing extensions of the standard web service
discovery models. However, in many cases, provider-side measurement
can be of great additional value to aid the evaluation and selection of
services and underlying implementations.

We present a generic architecture and reference implementation for
non-invasive provider-side instrumentation of data-processing tools ex-
posed as QoS-aware web services, where real-time quality information is
obtained through an extensible monitoring framework. In this architec-
ture, dynamically configurable execution engines measure QoS attributes
and instrument the corresponding web services on the provider side. We
demonstrate the application of this framework to the task of performance
monitoring of a variety of applications on different platforms, thus enrich-
ing the services with real-time QoS information, which is accumulated
in an experience base.

1 Introduction

Service-oriented computing as means of arranging autonomous application com-
ponents into loosely coupled networked services has become one of the primary
computing paradigms of our decade. Web services as the leading technology in
this field are widely used in increasingly distributed systems. Their flexibility and
agility enable the integration of heteregoneous systems across platforms through
interoperable standards. However, the thus-created networks of dependencies
also exhibit challenging problems of interdependency management. Some of the
issues arising are service discovery and selection, the question of service quality
and trustworthiness of service providers, and the problem of measuring quality-
of-service (QoS) attributes and using them as means for guiding the selection of
the optimal service for consumption at a given time and situation.

Measuring quality attributes of web services is inherently difficult due to the
very virtues of service-oriented architectures: The late binding and flexible in-
tegration ideals ask for very loose coupling, which often implies that little is

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 221–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ifs.tuwien.ac.at/dp

222 C. Becker et al.

known about the actual quality of services and even less about the confidence
that can be put into published service metadata, particularly QoS information.
Ongoing monitoring of these quality attributes is a key enabler of service-level
agreements and a prerequisite for building confidence and trust in services.

Different aspects of performance measurement and benchmarking of web ser-
vices have been analysed. However, most approaches do not provide concrete
ways of measuring performance of services in a specific architecture. Detailed
performance measurement of web services is particularly important for obtain-
ing quality attributes that can be used for service selection and composition, and
for discovering bottlenecks to enable optimization of composite service processes.

The total, round-trip-time performance of a web service is composed by a num-
ber of factors such as network latency and web service protocol layers. Measuring
only the round-trip performance gives rather coarse-grained measurements and
does not provide hints on optimization options. On the other hand, network
latencies are hard to quantify, and the run-time execution characteristics of the
software that is exposed as a service are an important component of the overall
performance.

Similar to web service quality criteria and service selection, these run-time
execution characteristics of a software tool are also an important criterion for
the general scenario of Commercial-off-the-Shelf (COTS) component selection.
Our motivating application scenario are the component selection procedures in
digital preservation planning. In this domain, a decision has to be taken as to
which tools and services to include for accomplishing the task of keeping spe-
cific digital objects alive for future access, either by converting them to different
representations or by rendering them in compatible environments, or by a combi-
nation of both. The often-involved institutional responsibility for the curation of
digital content implies that a carefully designed selection procedure is necessary
that enables transparent and trustworthy decision making.

We have been working on a COTS selection methodology relying on empir-
ical evaluation in a controlled experimentation setting [2]. The corresponding
distributed architecture, which supports and automates the selection process,
relies on web services exposing the key components to be selected, which are
discovered in corresponding registries [1].

This COTS selection scenario shows many similarities to the general web ser-
vice selection problem, but the service instances that are measured are used
mainly for experimentation; once a decision is taken to use a specific tool, based
on the experimental evaluation through the web service, it might be even pos-
sible to transfer either the data to the code or vice versa, to achieve optimum
performance for truly large-scale operations on millions of objects.

The implications are that

1. Monitoring the round-trip time of service consumption at the client does not
yield sufficient details of the runtime characteristics;

2. Provider-side runtime characteristics such as the memory load produced by
executing a specific function on the server are of high interest;

An Extensible Monitoring Framework for Measuring Tool Performance 223

3. Client-side monitoring is less valuable as some of the main parameters de-
termining it, such as the network connection to the service, are negotiatable
and up to configuration and production deployment.

While client-side measurement is certainly a valuable tool and necessary to
take into account the complete aspects of web service execution, it is not able
to get down to the details and potential bottlenecks that might be negotiable or
changeable, and thus benefits greatly from additional server-side instrumenta-
tion. Moreover, for large-scale library systems containing millions of objects that
require treatment, measuring the performance of tools in detail can be crucial.

In this paper, we present a generic and extensible architecture and framework
for non-invasive provider-side service instrumentation that enables the auto-
mated monitoring of different categories of applications exposed as web services
and provides integrated QoS information. We present a reference implementa-
tion for measuring the performance of data processing tools and instrumenting
the corresponding web services on the provider side. We further demonstrate the
performance monitoring of a variety of applications ranging from native C++ ap-
plications and Linux-based systems to Java applications and client-server tools,
and discuss the results from our experiments.

The rest of this paper is structured as follows. The next section outlines related
work in the areas of web service QoS modelling, performance measurement, and
distributed digital preservation services. Section 3 describes the overall architec-
tural design and the monitoring engines, while Section 4 analyses the results of
practical applications of the implemented framework. Section 5 discusses impli-
cations and sets further directions.

2 Related Work

The initially rather slow takeup of web service technology has been repeatedly
attributed to the difficulties in evaluating the quality of services and the corre-
sponding lack of confidence in the fulfillment of nun-functional requirements. The
lack of QoS attributes and their values is still one of the fundamental drawbacks
of web service technology [21,20].

Web service selection and composition heavily relies on QoS computation [18,6].
A considerable amount of work has been dedicated towards modelling QoS at-
tributes and web service performance, and to ranking and selection algorithms.
A second group of work is covering infrastructures for achieving trustworthiness,
usually by extending existing description models for web services and introduc-
ing certification roles to the web service discovery models. Tian describes a QoS
schema for web services and a corresponding implementation of a description and
selection infrastructure. In this framework, clients specify their QoS requirements
to a broker, who tests them agains descriptions published by service providers
and interacts with a UDDI registry [25]. Industry-wise, IBM’s Web Service Level
Agreement (WSLA) framework targets defining and monitoring SLAs [14].

Liu presents a ranking algorithm for QoS-attribute based service selection [16].
The authors describe the three general criteria of execution duration (round-trip

224 C. Becker et al.

time), execution price, and reputation, and allow for domain-specific QoS crite-
ria. Service quality information is collected through accumulating feedback of the
requesters who deposit their QoS experience. Ran proposes a service discovery
model including QoS as constraints for service selection, relying on third-party
QoS certification [21]. Maximilien proposes an ontology for modelling QoS and an
architecture where agents stand between providers and consumers and aggregate
QoS experience on behalf of the consumers [17]. Erradi presents a middleware
solution for monitoring composite web service performance and other quality
criteria at the message level [7].

Most of these approaches assume that QoS information is known and can be
verified by the third-party certification instance. While this works well for static
quality attributes, variable and dynamically changing attributes are hard to
compute and subject to change. Platzer discusses four principal strategies for the
continuous monitoring of web service quality [20]: provider-side instrumentation,
SOAP intermediaries, probing, and sniffing. They further separate performance
into eight components such as network latency, processing and wrapping time
on the server, and round-trip time. While they state the need for measuring
all of these components, they focus on round-trip time and present a provider-
independent bootstrapping framework for measuring performance-related QoS
on the client-side [22,20].

Wickramage et. al. analyse the factors that contribute to the total round
trip time (RTT) of a web service request and arrive at 15 components that
should ideally be measured separately to optimize bottlenecks. They focus on
web service frameworks and propose a benchmark for this layer [26]. Her et. al.
discuss metrics for modelling web service performance [11]. Head presents a
benchmark for SOAP communication in grid web services [10]. Large-scale client-
side performance measurement tests of a distributed learning environment are
described in [23], while Song presents a dedicated tool for client-side performance
testing of specific web services [24].

There is a large body of work on quality attributes in the COTS component
selection domain [5,4]. Franch describes hierachical quality models for COTS
selection based on the ISO/IEC 9126 quality model [13] in [9].

Different categories of criteria need to be measured to automate the COTS
selection procedure in digital preservation [2].

– The quality of results of preservation action components is a highly complex
domain-specific quality aspect. Quantifying the information loss introduced
by transforming the representation of digital content constitutes one of the
central areas of research in digital preservation [3].

– On a more generic level, the direct and indirect costs are considered.
– For large-scale digital repositories, process-related criteria such as opera-

tional aspects associated with a specific tool are important. To these criteria
pertain also the performance and scalability of a tool, as they can have signif-
icant impact on the operational procedures and feasibility of implementing
a specific solution in a repository system.

An Extensible Monitoring Framework for Measuring Tool Performance 225

In the preservation planning environment described in [1], planning decisions
are taken following a systematic workflow supported by a Web-based application
which serves as the frontend to a distributed architecture of preservation services.

To support the processes involved in digital preservation, current initiatives
are increasingly relying on distributed service oriented architectures to handle
the core tasks in a preservation system [12,8,1].

This paper builds on the work described above and takes two specific steps
further. We present a generic architecture and reference implementation for non-
invasively measuring the performance of data processing tools and instrument-
ing the corresponding web services on the provider side. We demonstrate the
performance monitoring of a variety of applications ranging from native C++
applications on Linux-based systems to Java applications and client-server tools,
and discuss results from our experiments.

3 A Generic Architecture for Performance Monitoring

3.1 Measuring QoS in Web Services

As described in [20], there are four principle methods of QoS measurement from
the technical perspective.

– Provider-side instrumentation has the advantage of access to a known im-
plemementation. Dynamic attributes can be computed invasively within the
code or non-invasively by a monitoring device.

– SOAP Intermediaries are intermediate parties through which the traffic is
routed so that they can collect QoS-related criteria.

– Probing is a related technique where a service is invoked regularly by an
independent party which computes QoS attributes. This roughly corresponds
to the certification concept described in the previous section.

– Sniffing monitors the traffic on the client side and thus produces consumer-
specific data.

Different levels of granularity can be defined for performance-related QoS;
some authors distinguish up to 15 components [26].

In this work, we focus on measuring the processing time of the actual service
execution on the provider-side and describe a non-invasive monitoring frame-
work. In this framework, the invoked service code is transparently wrapped by a
flexible combination of dynamically configured monitoring engines that are each
able of measuring specific properties of the monitored piece of software. While
these properties are not in any way restricted to be performance-related, the
work described here primarily focuses on measuring runtime performance and
content-specific quality criteria.

3.2 Monitoring Framework

Figure 1 shows a simplified abstraction of the core elements of the monitoring
design. A Registry contains a number of Engines, which each specify which

226 C. Becker et al.

Fig. 1. Core elements of the monitoring framework

aspects of a service they are able to measure in their MeasurableProperties.
These properties have associated Scales which specify value types and con-
straints and produce approprate Value objects that are used to capture the
Measurements associated with each property. The right most side of the digram
shows the core scales and values which form the basis of their class hierarchies.

Each Engine is deployed on a specific Environment that exhibits a cer-
tain performance. This performance is captured in a benchmark score, where
a Benchmark is a specific configuration of services and benchmark Data for a
certain domain, aggregating specific measurements over these data to produce a
representative score for an environment. The benchmark scores of the engines’
environments are provided to the clients as part of the service execution meta-
data and can be used to normalise performance data of software across different
service providers.

A registry further contains Services, which are, for monitoring purposes, not
invoked directly, but run inside a monitoring engine. This monitoring execution
produces a body of Experience for each service, which is accumulated through
each successive call to a service and used to aggregate QoS information over
time. It thus enables continuous monitoring of service quality. Bootstrapping
these aggregate QoS data happens through the benchmark scoring, which can
be configured specifically for each domain.

CompositeEngines are a flexible form of aggregating measurements obtained
in different monitoring environments. This type of engine dispatches the service
execution dynamically to several engines to collect information. This is especially
useful in cases where measuring code in real-time actually changes the behaviour
of that code. For example, measuring the memory load of Java code in a profiler
usually results in a much slower performance, so that simultaneous measurement
of memory load and execution speed leads to skewed results. Separating the
measurements into different calls leads to correct results.

The bottom of the diagram illustrates some of the currently deployed perfor-
mance monitoring engines.

1. The ElapsedTimeEngine is a simple default implementation measuring
elapsed (wall-clock) time.

An Extensible Monitoring Framework for Measuring Tool Performance 227

Fig. 2. Exemplary interaction between the core monitoring components

2. The TopEngine is based on the Unix tool top1 and used for measuring the
memory load of wrapped applications installed on the server.

3. The TimeEngine uses the Unix call time2 to measure the CPU time used by
a process.

4. Monitoring the performance of Java tools is accomplished by a combina-
tion of the HProfEngine and JIPEngine, which use the HPROF 3 and JIP4

profiling libraries, for measuring memory usage and timing characteristics,
respectively.

5. In contrast to these performance-oriented engines, the XCLEngine, which is
currently under development, is measuring a very different QoS aspect. It
quantifies the quality of file conversion by measuring the loss of informa-
tion involved in file format conversion. To accomplish this, it relies on the
eXtensible Characterisation Languages (XCL) which provide an abstract in-
formation model for digital content which is independent of the underlying
file format [3], and compares different XCL documents for degrees of equality.

Additional engines and composite engine configurations can be added dynam-
ically at any time. Notice that while the employed engines 1-4 in the current
implementation focus on performance measurement, in principle any category of
dynamic QoS criteria can be monitored and benchmarked.

Figure 2 illustrates an exemplary simplified flow of interactions between ser-
vice requesters, the registry, the engines, and the monitored tools, in the case
of a composite engine measuring the execution of a tool through the Unix tools
time and top. The composite engine collects and consolidates the data; both

1 http://unixhelp.ed.ac.uk/CGI/man-cgi?top
2 http://unixhelp.ed.ac.uk/CGI/man-cgi?time
3 http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
4 http://jiprof.sourceforge.net/

http://unixhelp.ed.ac.uk/CGI/man-cgi?top
http://unixhelp.ed.ac.uk/CGI/man-cgi?time
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://jiprof.sourceforge.net/

228 C. Becker et al.

the engine and the client can contribute to the accumulated experience of the
registry. This allows the client to add round-trip information, which can be used
to deduct network latencies, or quality measurements computed on the result of
the consumed service.

3.3 Performance Measurement

Measuring run-time characteristics of tools on different platforms has always
been difficult due to the many peculiarities presented by each tool and environ-
ment. The most effective way of obtaining exact data on the behaviour of code
is instrumenting it before[19] or after compilation [15]. However, as flexibility
and non-intrusiveness are essential requirements in our application context, and
access to the source code itself is often not even possible, we use non-invasive
monitoring by standard tools for a range of platforms. This provides reliable and
repeatable measurements that are exact enough for our purposes, while not ne-
cessitating access to the code itself. In particular, we currently use a combination
of the following tools for performance monitoring.

– Time. The unix tool time is the most commonly used tool for measuring
actual processing time of applications, i.e. CPU time consumed by a process
and its system calls. However, while the timing is very precise, the major
drawback is that memory information is not available on all platforms. De-
pending on the implementation of the wait3() command, installed memory
information is reported zero on many environments5.

– Top. This standard Unix program is primarily aimed at continuos moni-
toring of system resources. While the timing information obtained is not
as exact as the time command, top measures both CPU and memory us-
age of processes. We gather detailed information on a particular process by
starting top in batch mode and continually logging process information of
all running processes to a file. After the process to be monitored has fin-
ished asynchronously (or timed out), we parse the output for performance
information of the monitored process.

In principle, the following process information provided by top can be
useful in this context.
• Maximum and average virtual memory used by a process;
• Maximum and average resident memory used;
• The used percentage of available physical memory used; and
• The cumulative CPU time the process and its dead children have used.

Furthermore, the overall CPU state of the system, i.e. the accumulated pro-
cessing load of the machine, can be useful for detailed performance analysis
and outlier detection.

As many processes actually start child processes, these have to be monitored as
well to obtain correct and relevant information. For example, when using convert
from ImageMagick, in some cases the costly work is not directly performed by the
5 http://unixhelp.ed.ac.uk/CGI/man-cgi?time

http://unixhelp.ed.ac.uk/CGI/man-cgi?time

An Extensible Monitoring Framework for Measuring Tool Performance 229

convert-process but by one of its child processes, such as GhostScript. Therefore
we gather all process information and aggregate it.

A large number of tools and libraries are available for profiling Java code.6

The following two open-source profilers are currently deployed in our system.

– The HProf profiler is the standard Java heap and CPU profiling library.
While it is able to obtain almost any level of detailed information wanted,
its usage often incurs a heavy performance overhead. This overhead implies
that measuring both memory usage and CPU information in one run can
produce very misleading timing information.

– In contrast to HProf, the Java Interactive Profiler (JIP) incurs a low over-
head and is thus used for measuring the timing of Java tools.

Depending on the platform of each tool, different measures need to be used;
the monitoring framework allows for a flexible and adaptive configuration to
accomodate these dynamic factors. Section 4.1 discusses the relation between
the monitoring tools and which aspects of performance information we gener-
ally use from each of them. Where more than one technique needs to be used
for obtaining all of the desired measurements, the composite engine described
above transparently forks the actual execution of the tool to be monitored and
aggregates the performance measurements.

4 Results and Discussion

We run a series of experiments in the context of a digital preservation scenario
comparing a number of file conversion tools for different types of content, all
wrapped as web services, on benchmark content. In this setting, candidate ser-
vices are evaluated in a distributed SOA to select the best-performing tool. The
experiments’ purpose is to evaluate different aspects of both the tools and the
engines themselves:

1. Comparing performance measurement techniques. To analyse the unavoid-
able variations in the measurements obtained with different monitoring tools,
and to validate the consistency of measurents, we compare the results that
different monitoring engines yield when applied to the same tools and data.

2. Image conversion tools. The ultimate purpose of the system in our applica-
tion context is the comparative evaluation of candidate components. Thus
we compare the performance of image file conversion tools on benchmark
content.

3. Accumulating average experience on tool behaviour. An essential aspect of
our framework is the accumulation of QoS data about each service. We
analyse average throughput and memory usage of different tools and how
the accumulated averages converge to a stable value.

6 http://java-source.net/open-source/profilers

http://java-source.net/open-source/profilers

230 C. Becker et al.

4. Tradeoffs between different quality criteria. Often, a trade-off decision has to
be made between different quality criteria, such as compression speed versus
compression rate. We run a series of tests with continually varying settings
on a sound conversion software and describe the resulting trade-off curves.

Table 1 shows the experiment setups and their input file size distribution.
Each server has a slightly different, but standard x86 architecture, hardware
configuration and several conversion tools installed. Experiment results in this
section are given for a Linux machine running Ubuntu Linux 8.04.2 on a 3 GHz
Intel Core 2 Duo processor with 3GB memory. Each experiment was repeated
on all other applicable servers to verify the consistency of the results obtained.

4.1 Measurement Techniques

The first set of experiments compares the exactness and appropriateness of mea-
surements obtained using different techniques and compares these values to check
for consistency of measurements. We monitor a Java conversion tool using all
available engines on a Linux machine. Figure 3 shows measured values for a
random subset of the total files to visually illustrate the variations between the
engines. On the left side, the processing time measured by top, time, and the
JIP profiler are generally very consistent across different runs, with an empirical
correlation coefficient of 0.997 and 0.979, respectively. Running HProf on the
same files consistently produces much longer execution times due to the pro-
cessing overhead incurred by profiling the memory usage. The right side depicts

Table 1. Experiments

Experiment Files File sizes Total input
volume

Tool Engines

1 110 JPEG
images

Mean: 5,10 MB
Median: 5,12 MB
Std dev: 2,2 MB
Min: 0,28 MB
Max: 10,07MB

534 MB ImageMagick
conversion to PNG

Top, Time

2 110 JPEG
images

Mean: 5,10 MB
Median: 5,12 MB
Std dev: 2,2 MB
Min: 0,28 MB
Max: 10,07MB

534 MB Java ImageIO
conversion to PNG

HProf, JIP

3 110 JPEG
images

Mean: 5,10 MB
Median: 5,12 MB
Std dev: 2,2 MB
Min: 0,28 MB
Max: 10,07MB

534 MB Java ImageIO
conversion to PNG

Time, Top

4 312 JPEG
images

Mean: 1,19 MB
Median: 1,08 MB
Std dev: 0,68 MB
Min: 0,18 MB
Max: 4,32MB

365MB ImageMagick
conversion to PNG

Time, Top

5 312 JPEG
images

Mean: 1,19 MB
Median: 1,08 MB
Std dev: 0,68 MB
Min: 0,18 MB
Max: 4,32MB

365MB Java ImageIO
conversion to PNG

HProf, JIP

6 56 WAV files Mean: 49,6 MB
Median: 51,4 MB
Std dev: 12,4 MB
Min: 30,8 MB
Max: 79,8 MB

2747MB FLAC
unverified conversion to FLAC,
9 different quality/speed settings

Top, time

7 56 WAV files Mean: 49,6 MB
Median: 51,4 MB
Std dev: 12,4 MB
Min: 30,8 MB
Max: 79,8 MB

2747MB FLAC
verified conversion to FLAC,
9 different quality/speed settings

Top, time

An Extensible Monitoring Framework for Measuring Tool Performance 231

(a) Monitoring time (b) Monitoring memory

Fig. 3. Comparison of the measurements obtained by different techniques

different memory measurements for the same experiment. The virtual memory
assigned to a Java tool depends mostly on the settings used to execute the JVM
and thus is not very meaningful. While the resident memory measured by Top
includes the VM and denotes the amount of physical memory actually used dur-
ing execution, HProf provides figures for memory used and allocated within the
VM. Which of these measurements are of interest in a specific component selec-
tion scenario depends on the integration pattern. For Java systems, the actual

Fig. 4. Runtime behaviour of two conversion services

232 C. Becker et al.

memory within the machine will be relevant, whereas in other cases, the virtual
machine overhead has to be taken into account as well.

When a tool is deployed as a service, a standard benchmark score is calcu-
lated for the server with the included sample data; furthermore, the monitoring
engines report the average system load during service execution. This enables
normalisation and comparison of a tool across server instances.

4.2 Tool Performance

Figure 4 shows the processing time of two conversion tools offered by the same
service provider on 312 image files. Simple linear regression shows the general
trend of the performance relation, revealing that the Java tool is significantly
faster. (However, it has to be noted that the conversion quality offered by
ImageMagick is certainly higher, and the decision in our component selection
scenario depends on a large number of factors. We use an approach based on
multi-attribute utility theory for service selection.)

4.3 Accumulated Experience

An important aspect of any QoS management system is the accumulation and
dissemination of experience on service quality. The described framework auto-
matically tracks and accumulates all numeric measurements and provides aggre-
gated averages with every service response. Figure 5 shows how processing time
and memory usage per MB quickly converge to a stable value during the initial
bootstrapping sequence of service calls on benchmark content.

4.4 Trade-off between QoS Criteria

In service and component selection situations, often a trade-off decision has to
be made between conflicting quality attributes, such as cost versus speed or

(a) Processing time per MB (b) Memory usage per MB

Fig. 5. Accumulated average performance data

An Extensible Monitoring Framework for Measuring Tool Performance 233

(a) Compression vs. time (b) Compression rate vs. memory

Fig. 6. QoS trade-off between compression rate and performance

cost versus quality. When using the tool Free Lossless Audio Codec (FLAC)7,
several configurations are available for choosing between processing speed and
achieved compression rate. In a scenario with massive amounts of audio data,
compression rate can still imply a significant cost reduction and is thus a valuable
tweak. However, this has to be balanced against the processing cost. Additionally,
the option to verify the encoding process by on-the-fly decoding and comparing
the output to the original input provides integrated quality assurance and thus
increased confidence at the cost of increased memory usage and lower speed.

Figure 6 projects compression rate achieved with nine different settings
against used time and used memory. Each data point represents the average
achieved rate and resource usage over the sample set from Table 1. It is apparent
that the highest settings achieve very little additional compression while using
excessive amounts of time. In terms of memory, there is a consistent overhead
incurred by the verification, but it does not appear problematic. Thus, in many
cases, a medium compression/speed setting along with integrated verification
will be a sensible choice.

5 Discussion and Conclusion

We have described an extensible monitoring framework for enriching web services
with QoS information. Quality measurements are transparently obtained through
a flexible architecture of non-invasive monitoring engines. We demonstrated the
performance monitoring of different categories of applications wrapped as web ser-
vices and discussed different techniques and the results they yield.

While the resulting provider-side instrumentation of services with quality in-
formation is not intended to replace existing QoS schemas, middleware solutions
and requester-feedback mechanisms, it is a valuable complementary addition
that enhances the level of QoS information available and allows verification of
7 http://flac.sourceforge.net/

234 C. Becker et al.

detailed performance-related quality criteria. In our application scenario of com-
ponent selection in digital preservation, detailed performance and quality infor-
mation on tools wrapped as web services are of particular value. Moreover, this
provider-side measurement allows service requesters to optimize access patterns
and enables service providers to introduce dynamic fine-granular policing such
as performance-dependant costing.

Part of our current work is the extension to quality assurance engines which
compare the output of file conversion tools for digital preservation purposes using
the XCL languages [3], and the introduction of flexible benchmark configurations
that support the selection of specifically tailored benchmarks, e.g. to calculate
scores for data with certain characteristics.

Acknowledgements

Part of this work was supported by the European Union in the 6th Framework
Program, IST, through the PLANETS project, contract 033789.

References

1. Becker, C., Ferreira, M., Kraxner, M., Rauber, A., Baptista, A.A., Ramalho,
J.C.: Distributed preservation services: Integrating planning and actions. In:
Christensen-Dalsgaard, B., Castelli, D., Ammitzbøll Jurik, B., Lippincott, J. (eds.)
ECDL 2008. LNCS, vol. 5173, pp. 25–36. Springer, Heidelberg (2008)

2. Becker, C., Rauber, A.: Requirements modelling and evaluation for digital preser-
vation: A COTS selection method based on controlled experimentation. In: Proc.
24th ACM Symposium on Applied Computing (SAC 2009), Honolulu, Hawaii,
USA. ACM Press, New York (2009)

3. Becker, C., Rauber, A., Heydegger, V., Schnasse, J., Thaller, M.: A generic XML
language for characterising objects to support digital preservation. In: Proc. 23rd
ACM Symposium on Applied Computing (SAC 2008), Fortaleza, Brazil, vol. 1, pp.
402–406. ACM Press, New York (2008)

4. Carvallo, J.P., Franch, X., Quer, C.: Determining criteria for selecting software
components: Lessons learned. IEEE Software 24(3), 84–94 (2007)

5. Cechich, A., Piattini, M., Vallecillo, A. (eds.): Component-Based Software Quality.
Springer, Heidelberg (2003)

6. Dustdar, S., Schreiner, W.: A survey on web services composition. International
Journal of Web and Grid Services 1, 1–30 (2005)

7. Erradi, A., Maheshwari, P., Tosic, V.: Ws-policy based monitoring of composite
web services. In: ECOWS 2007: Proceedings of the Fifth European Conference on
Web Services, Washington, DC, USA, pp. 99–108. IEEE Computer Society, Los
Alamitos (2007)

8. Ferreira, M., Baptista, A.A., Ramalho, J.C.: An intelligent decision support system
for digital preservation. International Journal on Digital Libraries 6(4), 295–304
(2007)

9. Franch, X., Carvallo, J.P.: Using quality models in software package selection. IEEE
Software 20(1), 34–41 (2003)

An Extensible Monitoring Framework for Measuring Tool Performance 235

10. Head, M.R., Govindaraju, M., Slominski, A., Liu, P., Abu-Ghazaleh, N., van En-
gelen, R., Chiu, K., Lewis, M.J.: A benchmark suite for soap-based communication
in grid web services. In: Proceedings of the ACM/IEEE SC 2005 Conference Su-
percomputing, 2005, p. 19 (November 2005)

11. Her, J.S., Choi, S.W., Oh, S.H., Kim, S.D.: A framework for measuring performance
in service-oriented architecture. In: International Conference on Next Generation
Web Services Practices, pp. 55–60. IEEE Computer Society, Los Alamitos (2007)

12. Hunter, J., Choudhury, S.: PANIC - an integrated approach to the preservation
of complex digital objects using semantic web services. International Journal on
Digital Libraries: Special Issue on Complex Digital Objects 6(2), 174–183 (2006)

13. ISO: Software Engineering – Product Quality – Part 1: Quality Model (ISO/IEC
9126-1). International Standards Organization (2001)

14. Keller, A., Ludwig, H.: WSLA framework: Specifying and monitoring service level
agreements for web services. Journal of Network and Systems Management 11(1),
57–81 (2003)

15. Larus, J.R., Ball, T.: Rewriting executable files to measure program behavior.
Software: Practice and Experience 24(2), 197–218 (1994)

16. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web
service selection. In: WWW Alt. 2004: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pp. 66–73. ACM, New
York (2004)

17. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selec-
tion. In: ICSOC 2004: Proceedings of the 2nd international conference on Service
oriented computing, pp. 212–221. ACM, New York (2004)

18. Menascé, D.A.: Qos issues in web services. IEEE Internet Computing 6(6), 72–75
(2002)

19. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007)

20. Platzer, C., Rosenberg, F., Dustdar, S.: Enhancing Web Service Discovery and
Monitoring with Quality of Service Information. In: Securing Web Services: Prac-
tical Usage of Standards and Specifications, Idea Publishing Inc. (2007)

21. Ran, S.: A model for web services discovery with qos. SIGecom Exch. 4(1), 1–10
(2003)

22. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and depend-
ability attributes of web services. In: International Conference on Web Services
(ICWS 2006), pp. 205–212 (2006)

23. Saddik, A.E.: Performance measurements of web services-based applications. IEEE
Transactions on Instrumentation and Measurement 55(5), 1599–1605 (2006)

24. Song, H.G., Lee, K.: Performance Analysis and Estimation Tool of Web Services. In:
Business Process Management, sPAC (Web Services Performance Analysis Center).
LNCS, vol. 3649, pp. 109–119. Springer, Heidelberg (2005)

25. Tian, M., Gramm, A., Ritter, H., Schiller, J.: Efficient selection and moni-
toring of qos-aware web services with the ws-qos framework. In: Proceedings.
IEEE/WIC/ACM International Conference on Web Intelligence, WI 2004, pp. 152–
158 (September 2004)

26. Wickramage, N., Weerawarana, S.: A benchmark for web service frameworks. In:
2005 IEEE International Conference on Services Computing, July 2005, vol. 1, pp.
233–240 (2005)

A Quality Model for Mashup Components

Cinzia Cappiello1, Florian Daniel2, and Maristella Matera1

1 DEI - Politecnico di Milano
Via Ponzio 34/5, 20133 Milano, Italy
{cappiell,matera}@elet.polimi.it

2 University of Trento
Via Sommarive 14, 38100 Povo (TN), Italy

daniel@disi.unitn.it

Abstract. Through web mashups, web designers with even little pro-
gramming skills have the opportunity to develop advanced applications
by leveraging components accessible over the Web and offered by a multi-
tude of service providers. So far, however, component selection has been
merely based on functional requirements only, without considering the
quality of the components and that of the final mashup. The quality in
this context results from different factors, such as the software API, the
contents, and the user interface.

In the literature, quality criteria for the different aspects have been
proposed and analyzed, but the adaptability and dynamicity that char-
acterize the mashup ecosystem require a separate and focused analysis.
In this paper, we analyze the quality properties of mashup components
(APIs), the building blocks of any mashup application, and define a qual-
ity model, which we claim represents a valuable instrument in the hands
of both component developers and mashup composers.

1 Introduction

Modern Web 2.0 applications are characterized by a high user involvement: users
are supported in the creation of contents and annotations, but also in the “com-
position” of applications starting from contents and functions that are provided
by third parties. This last phenomenon is known as Web mashups, and is gaining
popularity even under users with only little programming skills.

Mashups integrate heterogeneous components available on the Web, such as
RSS/Atom feeds, Web services, content wrapped from third party web sites, or
programmable APIs (e.g., Google Maps). Components may have a proper user
interface that can be reused to build the interface of the composite application,
they may provide computing support, or they may just act as plain data sources.
Several mashup tools currently support the easy mashup of components, by of-
fering visual environments where users can select pre-defined components and
combine them by specifying models that abstract from technology and imple-
mentation details.

The success of a mashup is certainly influenced by the added value that the
final combination of components is able to provide. However, it is self-evident

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 236–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Quality Model for Mashup Components 237

that the quality of the final combination is strongly influenced by the quality of
each single component, especially if we consider the current nature of mashups:
single pages where, apart from the choreography logics, the overall functionality
and application behavior directly derive from the single components.

If we look at components as standalone modules, then we can say that their
quality is determined by the attributes that traditionally characterize software
quality. A selection and/or specialization of such attributes is however needed to
capture the peculiarities deriving from the components’ intended use, i.e., their
combination within mashups. This factor leads us to consider components as
black boxes exposing their programmatic interfaces (APIs) to the audience of
mashup developers.

We strongly believe that, as for any other software product, the component-
internal quality is a relevant issue, and as such it must be taken into account
during component development. Nevertheless, we argue that, as also confirmed
by an experimental analysis conducted on the huge set of APIs published in
the programmableweb.com repository (http://www.programmableweb.com), for
the purpose of mashup composition some external features strongly affect the
component success and diffusion.

In the light of the previous observations, in this paper we discuss the quality
of mashups based on a component-driven approach. We recognize the validity of
consolidated models and metrics for the component-internal quality. Our novel
contribution is a further quality perspective, which is especially oriented toward
the production of successful components. More specifically, we look at mashup
components and their APIs in an isolated fashion and identify those individual
features (e.g., the documentation, the ease of use of the API, the content provided
through the API, and so on) that are likely to contribute to the success of
a component. The challenge lies in the identification of those dimensions that
really affect the adoption of an API.

The paper is organized as follows. In the next section, we provide the necessary
context of the paper, i.e., we describe the typical mashup scenario. In Section 3
we introduce the ISO standard for software quality, one of the starting points of
our work, and we also discuss some related works. In Section 4 we look at the
mashup scenario from a quality perspective and provide our own quality model
for mashup components. In Section 5 we report on our first experiments, and in
Section 5 we conclude the paper with a final discussion and an outlook over our
future work.

2 The Mashup Development Scenario

In order to clarify the roles and artifacts we will be referring to in this paper, in
Figure 1 we illustrate the typical mashup scenario that spans from the produc-
tion of single mashup components to the integration of components into a final
mashup application. We explicitly highlight the involved actors and some of the
development challenges.

The Component Developer who wants to create a new component has to
cope with two complementary concerns, i.e., functional and non functional

http://www.programmableweb.com

238 C. Cappiello, F. Daniel, and M. Matera

develops

Mashup
component

Mashup tool or
manual compositionThe Web

Mashup
application

Component developer Mashup composer

publishes discovers
and selects

mashes up uses

Mashup user

Description

Data sources

Technologies ...
Layouts

Styles

Architectures

Protocols
Languages

Formats

chooses writes

Fig. 1. The scenario for mashup API development

requirements. In this paper we concentrate on the non functional aspects and
trust that the developer correctly implements all necessary functionalities.

From a non functional perspective, building a component implies taking de-
cisions regarding the architectural style (e.g., SOAP service vs. RESTful service
vs. UI component), the programming language (e.g., client side vs. server side
technologies), the data formatting logic (e.g., XML vs. JSON), and so on. In ad-
dition to the functional features, all these aspects affect the “appeal” of the com-
ponent from the point of view of the mashup composer that wants to include the
component into a mashup application. The component developer should there-
fore aim at maximizing, among others, the components’s interoperability, ease
of use, attractiveness, and so on. Hence, based on the above considerations, the
developer builds the component, provides a description or a documentation for
its use (at least, ideally), and then publishes the components and its description
on the Web (if any).

The mashup composer integrates the component into a mashup application.
He typically browses the Web in search for components that suit his mashup
idea, both in terms of functionality and quality provided. That is, the composer
discovers components and selects the “good” ones. In doing this, he may take
into account not only his own needs (e.g., a simple programming API and simple
data formats for easy integration), but typically he also tries to guess the needs
and the expectation of the final mashup user. Of course, a composer only selects
components that will also be appealing to the users of the final mashup.

Developing good mashup components is therefore a challenging task, that re-
quires the component developer to take into account the expectations of both
the potential mashup composers and the potential mashup users. We say “po-
tential”, as it is typically not easy to fully predict who the real consumers of a
component will be, once it is published on the Web. The challenge we focus on
in this paper is therefore to understand how to assess the quality of a mashup
component and, therefore, how to develop high-quality components.

In the rest of the paper, we assume that a mashup component is the logical
entity that a component developer provides to the mashup composer. Physi-
cally, the component is accessed via proper APIs, i.e., programming interfaces
that are characterized for instance by a programming language, a data format,

A Quality Model for Mashup Components 239

and a communication protocol. A single component might come with multiple
APIs. For instance, a component might be used via both a RESTful API or a
SOAP/WSDL API.

3 Rationale and Background

A quality model consists of a selection of quality characteristics that are relevant
for a given class of software applications and/or for a given assessment process.
Quality models are drivers of quality assessment: assessment methods relying on
well-defined quality models have the merit of establishing systematic frameworks
in which the different quality dimensions are identified, precisely decomposed
into quantifiable attributes, and then properly measured [1].

A relevant contribution to the definition of quality models comes from a fam-
ily of ISO/IEC standards that focus on the quality of software systems and on
its assessment. The standard ISO 8402-86 [2] defines quality as the “totality of
features and characteristics of a software product that relate to its ability to
satisfy stated or implied needs”. As reported in Table 1, more concretely the
standard ISO/IEC 9126-1 [3] defines quality as the combination of six charac-
teristics that represent the attributes of a software product by which its quality
can be described and evaluated. For each characteristic, the standard also speci-
fies a set of finer-grained sub-characteristics with a granularity that fits well the
principal need underlying the standard definition, i.e., quantifying the quality of
software by means of metrics.

The standard ISO/IEC 9126-1 also distinguishes among different perspectives:

– Internal Quality is based on a white box model that considers the intrinsic
properties of the software functionality, independently of the usage environ-
ment and the user interaction, and is measured directly on the source code
and its control flow.

– External Quality is based on a black box model and is related to the behavior
of the software product in a given running environment.

– Quality in use refers to the capability of a system to enable specified users
to achieve specified goals with effectiveness, productivity, safety, and satis-
faction in specified contexts of use.

Based on the above framework, several works have proposed quality models
for traditional Web applications (see for example [4,5,6]). Few proposals also con-
centrate on modern Web 2.0 applications. For example, in [7], the authors extend
the ISO 9126-1 standard, and discuss the internal quality, external quality, and
quality in use of Web 2.0 applications. The authors also recognize the existence
of some additional factors related to the quality of contents. This dimension
is indeed central in Web 2.0, due to the increasing amount of user-authored
information.

There is a lack of proposals for the quality of mashups. In a sense, this is
because the quality of mashups can be mainly characterized by the external
quality-in-use perspective, which is exhaustively covered by the huge research

240 C. Cappiello, F. Daniel, and M. Matera

Table 1. Definition of quality characteristics in the ISO/IEC 9126 standard [3]

Characteristics Definition Sub-characteristics

Functionality A set of attributes that bear on the exis-
tence of a set of functions and their spec-
ified properties. The functions are those
that satisfy stated or implied needs.

Suitability, Accu-
racy, Interoperability,
Compliance, Security.

Reliability A set of attributes that bear on the capa-
bility of software to maintain its level of
performance under stated conditions for
a stated period of time.

Maturity, Fault Toler-
ance, Recoverability.

Usability A set of attributes that bear on the ef-
fort needed for use, and on the individual
assessment of such use, by a stated or im-
plied set of users.

Understandability,
Learnability, Oper-
ability.

Efficiency A set of attributes that bear on the rela-
tionship between the level of performance
of the software and the amount of re-
sources used, under stated conditions.

Time Behaviour, Re-
source Behaviour.

Maintainability A set of attributes that bear on the effort
needed to make specified modifications.

Analysability,
Changeability, Stabil-
ity, Testability.

Portability A set of attributes that bear on the abil-
ity of software to be transferred from one
environment to another.

Adaptability, Instal-
labilty, Conformance,
Replaceability.

on Web application usability. We however believe that beyond quality in use,
other issues that are strictly related to the quality of the individual components
must be considered.

Similarly to the other works described above, our model is derived from the
quality attributes defined by the ISO standard. We however add a specific per-
spective, which allows us to concentrate on the external quality of components,
i.e., on the set of properties that affect the component’s quality as perceived by
the mashup composer (not necessarily the final mashup user). It is worth noting
that other works focused on API quality in the more general SOA (Service-
Oriented Architecture) domain, by specifically addressing the set of external
factors that increase the ease of use of an API (the so-called API usability)
[8,9,10], such as the quality of API documentation [10]. Our approach capital-
izes on these contributions but tries to go beyond, since it considers a broader
set of external quality factors – not only usability –, all having impact on the
success of mashup components.

4 A Reference Quality Model

By definition, the publication of mashup components through APIs hides their
internal complexity and, therefore, also their internal details. After a component

A Quality Model for Mashup Components 241

Component
quality

API quality Data quality Presentation
quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability API Usability Presentation
Usability

Accessibility
Maturity Learnability

Operability

Availability

Reputation

API
operability

Data
operability

Security
operability

Fig. 2. The quality model for mashup components

has been deployed, external quality factors are the ones that drive the evaluation
of the component’s suitability for integration into a mashup application. This is
also confirmed by a preliminary analysis that we have performed on the huge set
of data available on programmableweb.com, a Web site that publishes data about
APIs (e.g., links to the URLs for API download, descriptions, comments, user
ratings, how-tos, etc.) and their use within mashups. We wrapped the data avail-
able on the site,1 and analyzed them to identify possible correlations between
observable API properties (e.g., the programming language, the number of sup-
ported protocols, the availability of documentation, etc.) and the component’s
usage in mashups. We discovered that the availability of how-to items (links to
Web pages supplying information on how to install and use the component) has
the strongest correlation with the diffusion of the component. This result, which
is not surprising if we consider that Web 2.0 mashup composers typically prefer
easy-to-combine components over complex components, led us to concentrate
more specifically on the component-external quality.

Provided that the component-internal quality must be taken into account and
must be assessed in accordance with the principles and methods traditionally
adopted for software quality, in the rest of this section we concentrate on the
external quality of components and illustrate our reference quality model. Fig-
ure 2 gives an overview of the addressed quality attributes, which we organize

1 For more details on the wrapper and the analysis of the downloaded data the reader
is referred to [11].

242 C. Cappiello, F. Daniel, and M. Matera

along three main dimensions, namely API quality, Data quality and Presenta-
tion quality, which recall the traditional “presentation-logic-data” organization
of Web products. In the rest o this section we will discuss them, by highlighting
the features that characterize the quality of mashup components and introducing
fine-grained attributes and, where possible, assessment metrics.

4.1 API Quality

An important ingredient of the external quality of a mashup component is the
set of software characteristics that can be evaluated directly on the component
API. In this section, we consider three attributes that traditionally characterize
the quality of software, functionality, reliability, and usability, revisited for the
analysis of component APIs.

Functionality. Functionality can be refined by considering the interoperability,
the compliance, and the security level of a component.

Interoperability is one of the most important attributes that affect the qual-
ity of a mashup component. In fact, the diffusion of a component depends on
its capability to be used in different and heterogeneous environments. The in-
teroperability of a component can be assessed by inspecting its API, since it
particularly depends on the technologies used at the application and data lay-
ers. At the application layer, a mashup component can be provided through
several APIs developed by using different technologies, such as different proto-
cols or languages. The higher the number of the offered APIs for a given mashup
component, the higher its interoperability. At the data layer, interoperability
is affected by the number of data formats accepted for information exchange.
Thus, the interoperability of a mashup component can be defined as:

Interoperabilitycomp = |Pcomp| + |Lcomp| + |DFcomp|
where Pcomp ⊂ P , Lcomp ⊂ L, and DFcomp ⊂ DF are the subsets of proto-
cols, languages, and data formats used by the specific component. P , L, and
DF are the sets of possible protocols, languages, and data formats that can
be used for the development of mashup components. The analysis of the in-
formation contained in programmableweb.com allowed us to identify these sets.
Table 2, for instance, summarizes the most prominent technologies found on
programmableweb.com; the data are based on the descriptions provided by the
component developers.

Table 2. Most used technologies in mashup component development

Protocols REST, SOAP
Languages Javascript, PHP
Data Formats Atom, RSS, Gdata, JSON, XML,

Parameter-Value

A Quality Model for Mashup Components 243

Some data formats are also standard (e.g., Atom, RSS, GData) and this in-
creases the interoperability level and gives also the possibility to assess the com-
pliance dimension as follows:

Compliancecomp = std(DFcomp) : DFcomp → [0; 1]

where std(DFcomp) produces 1 when at least one of the data formats supported
by the component is a standard data format, and 0 if none of the supported data
formats is standard.

The security of a component is related to the protection mechanism that is
used to rule the access to the offered functionalities. We distinguish between two
aspects: SSL support and authentication mechanisms. A component might pro-
vide access to its features with or without SSL support. That is, the component
might allow for encrypted communications, which improves security, or not. As
for the authentication mechanism, we distinguish between no authentication,
API key, developer key, and user account. If the component requires mashup
composers to use an API key, this means that the composer typically needs to
use an access key that is specific to the mashup application the component will
be running in. The key can usually be generated on the component provider’s
web site (for instance, Google Maps adopts this technique). A developer key, in-
stead, requires the mashup composer to be registered personally as developer on
the web site of the component provider (eBay for instance uses this techniques),
while a user account requires the mashup composer to also be a registered user
of the component provider (e.g., this is necessary to integrate PayPal features
into mashups). In Figure 3 we show a graphical representation of the security
metric, along with two examples.

Formally, it is possible to define the security metric as

SECcomp = SSLcomp + AUTcomp

where SSLcomp is a boolean value that indicates the use of SSL inside the com-
ponent, while AUTcomp is a number between 1 and 4 that indicates the type of
authentication method according to some complexity values, as defined in Fig-
ure 3. The score of the security metric is calculated on the basis of the actual
requirements the mashup composer poses to the component. For instance, if a
composer at most wants to use a developer key with SSL support, a compo-
nent that imposes the use of a user account does not add any value. Instead,
a component that only provides an API key or no SSL support does not meet
the requirements. According to this, we assign the value that corresponds to the
composer’s expectation if the component meets or exceeds the expectation, and
lower values to components that do not meet the expectations (see highlighted
values in Figure 3).

Reliability. The black-box approach does not allow one to evaluate the level of
performance of a component under stated conditions for a stated period of time.
Reliability can be evaluated in terms of maturity, by considering the available

244 C. Cappiello, F. Daniel, and M. Matera

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1
Security requirement = Developer key over SSL

Security requirement = No auth no SSL

44321

11111

Fig. 3. Security mechanisms adopted by mashup components

statistics of usage of the component together with the frequency of its changes
and updates:

Maturitycomp = max(1 − CurrentDatecomp − LastUseDatecomp

CurrentDatecomp−CreationDatecomp

|Vcomp|
; 0)

where Vcomp is the set of versions available for a specific mashup component.

API Usability. Within the API quality dimensions, usability refers to the ease
of use of the API.2 API usability can be measured in terms of: understandability,
learnability, and operability. Given our black box approach, learnability and un-
derstandability can be evaluated by considering the component documentation.
Particularly relevant in the mashup scenario is the support offered to mashup
composers by means of examples, API groups, blogs, or forums, and any other
kind of documentation. The availability of each type of support contributes to
increase these quality attributes.

Operability also affects the ease of use of a component. It depends on the
complexity of the technologies used at the application and data layers, and of the
adopted security mechanisms. The operability of technologies at the application
level can be evaluated by considering the diffusion and the interaction overhead of
both protocols and languages used in the API development. In fact, the diffusion
of a protocol or a language enables the diffusion of a common knowledge that
supports its use. In the same way, the operability of a component is higher when
the interaction with the available API is easier. For example, the adoption of a
protocol is more complex than the direct invocation of an object method, since
dedicated standards and protocols might have to be used for the data exchange.
In Figure 4(a) we show a method to estimate the operability of the most common
technologies generally adopted at the application level.

Similarly, operability at the data layer can be evaluated by analyzing the data
formats offered by the component along two aspects: the need for a parsing,
meaning that further transformations are needed before the component can be
integrated in the final mashup, and the use of a standard format. Figure 4(b)
describes a method to assess the operability of the most common data formats.

2 We will discuss presentation usability later in this section.

A Quality Model for Mashup Components 245

Interaction
overhead

DiffusionAPI operability
3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability
3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

PHP/Perl/ASP/
JSP

component

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Fig. 4. Operability of the technologies used at the application and data level

The security operability and the actual level of security are instead inversely
proportional. The higher the level of security, the lower the security operability.
This is due to the consideration that operating a restrictive security solution is
more demanding than less restrictive security solutions. Figure 5 represents the
different degrees of security operability that can be identified by considering the
security mechanisms typically adoptable in a mashup component.

In general, once the above technologies have been classified using the described
criteria, it is possible to define clusters and characterize them with an operabil-
ity level. As shown in Figure 4, technologies in the same cluster are associated
with the same operability value. For example, in our analysis described in Fig-
ure 4, we use the following function family: OP (Tcomp) : Tcomp → OPV, where
Tcomp = {Pcomp, Lcomp, DFcomp, SECcomp} includes the technologies used by a
mashup component at the application and data layers and the adopted security
mechanisms, and OPV ⊂ N is the set of operability values defined for each tech-
nology. Since a component can be offered by using different APIs and thus more
application and data technologies have to be evaluated, the overall operability
measure can be defined as:

OPcomp =max(OP (Pcomp∪Lcomp))+max(OP (DFcomp))+max(OP (SECcomp))

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

5

Fig. 5. Operability of the security mechanisms

246 C. Cappiello, F. Daniel, and M. Matera

The first term considers the technologies characterizing the application layer
of the component; the second refers to the data layer; and the last term refers
to the security mechanism implemented by the component. For each addend,
we only consider the maximum operability value, as we think this characterizes
best the overall operability of the component.

4.2 Data Quality

Data quality refers to the suitability of the data provided by the components
through their APIs (both the information supplied to the final mashup users and
the data exchanged between APIs for their choreography within the mashups).
It mainly refers to data accuracy, completeness, and timeliness. Accuracy and
completeness assess data along their correctness and numerical extension [12][13],
while timeliness evaluates the validity of data along time [14]. In this context, it
is also important to consider data availability because of data usage restrictions
often applied by mashup component developers (e.g., some components limit the
number of allowed requests per day).

Accuracy. It is defined as the degree with which data are consistent with the
part of the real world that they have to represent. More formally, accuracy is
defined as a correctness measure typically expressed in terms of proximity of
a value v returned by the mashup component to a value v’ considered as cor-
rect [12]. The evaluation of the accuracy dimension can be difficult if reference
values are not available. In this case, digital sources can be compared, and accu-
racy problems are often revealed by inconsistencies among values stored in the
different sources.

Completeness. It is defined as the degree with which a given data collection
produced by the component includes all the expected data values. The assess-
ment of the completeness can be performed by considering the ratio between the
amount of data received and the amount of data expected:

Completeness = 1 −
(

Number of Missing values

Total number of values

)

Timeliness. Represents the degree with which data are updated. It expresses
how current (up-to-date) exchanged data are for the users that use them. Data
can be indeed useless because they are late for a specific task. A measure of
timeliness is defined in [14] as:

T imeliness = max
(

0, 1 − currency

volatility

)s

where the exponent s controls the sensitivity of timeliness to the currency-
volatility ratio. The value of the exponent is, indeed, related to the context
(task-dependent), and it absorbs the subjectivity introduced with the judgment
of who analyzes data.

A Quality Model for Mashup Components 247

With this definition, the value of timeliness ranges between 0 and 1, and ex-
presses the temporal validity of data that users access. The validity is calculated
by using the ratio between currency and volatility. Currency provides the “age”
of data considering the creation time or the last update, while volatility is a
static dimension that expresses the average period of validity of data in a spe-
cific context [14]. Temporal valid data are those data that are not “expired”
when users read them.

Availability. In the SOA domain, a general assumption is to increase as much
as possible the level of availability. A common practice in the definition of usage
licenses for mashup components is to introduce some form of limitations. For
example Google maps allows each IP up to 50,000 geocode requests per day.
If, from the user perspective, this can be considered a restriction, it can be a
necessary action to prevent service abuses leading to service availability pitfalls.
A trade off solution must be carefully designed, so as to maximize possible quality
advantages, without reducing the component’s attractiveness.

4.3 Presentation Quality

Presentation quality refers to all those attributes that characterize the user ex-
perience and therefore relate to the user interface aspects that the mashup users
go through when they access and use the final mashup application. It especially
applies to UI components, i.e., those components that, differently form pure web
services, are also provided with a presentation layer.

For this dimension, we focus on three quality attributes, i.e., usability, acces-
sibility, and reputation.

Presentation usability. In some cases, mashup components are provided with
a presentation layer, i.e., a user interface (UI) where some widgets provide a visu-
alization for the component produced data and also allow some form of interac-
tion. Despite the simplicity of such UIs, usability of the presentation mechanisms
must be taken into account. All the usability attributes and metrics already de-
fined for Web UIs can be taken into account [15,4,16]. Particular emphasis must
be devoted to factors such as the understandability and learnabilty, i.e., the pro-
vision of easy-to-understand presentations for data and easy-to-learn interaction
mechanisms, and the compliance with standard interaction mechanisms. The at-
tractiveness of presentations also needs to be addressed. With this respect, RIA
interfaces can provide suitable solutions.

Accessibility. All the features supporting the access by any class of users and
technology must be addressed. The component UI should be therefore designed
by taking into account well-know accessibility criteria, such as those defined by
the W3C Web Accessibility Initiative (WAI) [17]. Just to mention few, different
APIs enabling different presentation modalities should be provided for the same
components, so that its contents and functions can be rendered on devices with
different capabilities. Multimedia contents should be augmented with textual de-
scriptions, so that they can be presented even through alternative browsing tech-
nologies, such as screen readers assisting impaired users. Finally, components and

248 C. Cappiello, F. Daniel, and M. Matera

the resulting mashups should be accessible through different types of hardware
devices, from voice-based devices to small-size or black and white screens.

Reputation. Reputation is the degree with which a component is perceived as
reliable. In the Web, most of the user actions are driven by reputation: users
simply access and trust the information provided by reliable institutions and/or
authors. In the mashup scenario, this trend is observable as well. Our analysis of
the programmableweb.com data revealed that the most diffused components are
those distributed by well-known, and therefore credible, providers (e.g., Google).
Therefore, in the quality evaluation of a mashup component the credibility of
the organization/person that publishes and advertises it cannot be neglected.

Form the component developer perspective, it is also important to achieve a
reasonable level of reputation. Certainly, reputation is positively affected by the
component documentation, especially if it is available in different formats and dis-
tributed through different channels (including blogs, forums, wikies, etc.), by the
compliance of presentation mechanisms with the most diffused standards, and in
general by the attitude to maximize all the quality attributes previously discussed,
to meet the user (both mashup composer and mashup user) expectations.

5 Discussion

The current mashup ecosystem is characterized by a strong growth, by a strong
focus on technologies, by few really value-adding mashups, and by a generally low
quality of both components and mashups. The ecosystem is still in its infancy,
yet the trend toward so-called “enterprise mashups” (as, for example, those
supported by companies like IBM or JackBe), which go beyond 1-page Web user
mashups, is real. Understanding which factors determine or influence the quality
of mashups and – of particular interest to this paper – of mashup components
represents a first step toward valuable mashups.

As illustrated in the scenario at the beginning of this paper, developing good,
i.e., high-quality, mashup components is not a trivial task. Besides the pure func-
tional features of a component, there are many design decisions (e.g., regarding
programming languages, communication protocols, data formats, and the like)
that need to be taken and that influence the quality and the success of a com-
ponent. Developing a mashup component requires the component developer to
take into account at least two different stakeholders, i.e., the mashup composer,
who might want to include the component into his mashup, and the mashup
user, who will use the component in the mashup. This is peculiar, and differenti-
ates mashup component development from traditional development: developers
of conventional APIs (e.g., Web services or object libraries) typically only need
to take into account the need of developers who will use their API, as the APIs
do not expose an interface that is directly operated by users; developers of Web
applications, instead, rather need to take into account the users of their appli-
cation, as a Web application is typically not accessed also via an API. Mashup
component development, instead, must take into account the expectations of
both and, hence, design decisions are harder.

A Quality Model for Mashup Components 249

In this paper, we looked at component development from an external per-
spective, that is, from the perspective of the mashup composer or the mashup
user, and we characterized the observable properties of components in terms of
a component-specific quality model. The model is based on both our own ex-
perience with the development of components and mashups, and experimental
evidence gathered by analyzing data from programmableweb.com. For the actual
assessment of the quality properties, we provided – where possible – metrics.

We claim that the defined model and metrics contain valuable knowledge that
(i) creates an awareness of the problem of today’s general low-quality in mashups
and mashup components, (ii) assists the mashup composer in selecting compo-
nents that effectively suit his mashup needs (focusing not only on hard functional
requirements), and (iii) provides the component developer with guidelines about
how to take into account the needs of both the mashup composer and the mashup
user. The described model can indeed be used by the component developer as a
methodology for the selection of appropriate languages, protocols, data formats,
etc., compatibly with the functional requirements of the component and updated
(if necessary) according to the pace of the Web 2.0.

As a next step, the model will be validated by applying it to a significant
number of mashup components. We would like to “rank” mashup components
(e.g., by looking at the mashups and components in programmableweb.com), in
order to assess correlations among their quality properties, possibly also tak-
ing into account their use within mashups. We are also planning some formal
experiments to validate our metrics against inspection-based evaluations by a
pool of expert developers. We will also extend the model to cover the quality of
mashups, which we believe is tightly related with the quality of the components
they integrate.

References

1. Fenton, N.E., Pfleeger, S.L.: Software metrics: a rigorous and practical approach.
PWS Publishing, Boston (1997)

2. ISO: ISO 8402:1994. Quality Management and Quality Assurance - Vocabulary
(1986)

3. ISO/IEC: ISO/IEC 9126-1 Software Engineering. Product Quality - Part 1: Quality
model (2001)

4. Calero, C., Ruiz, J., Piattini, M.: A Web Metrics Survey Using WQM. In: Koch,
N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp. 147–160.
Springer, Heidelberg (2004)

5. Malak, G., Badri, L., Badri, M., Sahraoui, H.A.: Towards a Multidimensional
Model for Web-Based Applications Quality Assessment. In: Bauknecht, K., Bich-
ler, M., Pröll, B. (eds.) EC-Web 2004. LNCS, vol. 3182, pp. 316–327. Springer,
Heidelberg (2004)

6. Olsina, L., Covella, G., Rossi, G.: Web Quality. In: Web Engineering, pp. 109–142.
Springer, Heidelberg (2005)

7. Olsina, L., Sassano, R., Mich, L.: Specifying Quality Requirements for the Web 2.0
Applications. In: Proc. of IWWOST 2008, pp. 56–62 (2008)

250 C. Cappiello, F. Daniel, and M. Matera

8. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming
systems. In: VL/HCC, pp. 199–206. IEEE Computer Society, Los Alamitos (2004)

9. Ellis, B., Stylos, J., Myers, B.A.: The Factory Pattern in API Design: A Usability
Evaluation. In: ICSE, pp. 302–312. IEEE Computer Society, Los Alamitos (2007)

10. Jeong, S.Y., Xie, Y., Beaton, J., Myers, B., Stylos, J., Ehret, R., Karstens, J.,
Efeoglu, A., Busse, D.K.: Improving Documentation for eSOA APIs through User
Studies. In: Proc. of the Second International Symposium on End User Develop-
ment (IS-EUD 2009), Siegen, Germany, March 2–4 (2009)

11. Cappiello, C.: Analyzing the Success of Mashup Components. Technical report,
Politecnico di Milano (2009)

12. Redman, T.: Data Quality for the Information Age. Artech House (1996)
13. Wang, R., Strong, D.: Beyond Accuracy: What Data Quality Means to Data Con-

sumers. Journal of Management Information Systems 12 (1996)
14. Ballou, D., Wang, R., Pazer, H., Tayi, G.: Modeling Information Manufacturing

Systems to Determine Information Product Quality. Management Science 44 (1998)
15. Nielsen, J.: Web Usability. New Riders, Indianapolis (2000)
16. Matera, M., Rizzo, F., Carughi, G.T.: Web Usability: Principles and Evaluation

Methods. In: Web Engineering, pp. 109–142. Springer, Heidelberg (2005)
17. Consortium, W.: Wai guidelines and techniques. Technical report (2007),

http://www.w3.org/WAI/guid-tech.html

http://www.w3.org/WAI/guid-tech.html

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 251 – 259, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards the Discovery of
Data Quality Attributes for Web Portals*

Carmen Moraga1, Mª Ángeles Moraga1, Coral Calero1, and Ángélica Caro2

1 Alarcos Research Group – Institite of Information Technologies & Systems,
Dept. Information Technologies & Systems – Escuela Superior de Informática,

University of Castilla-La Mancha, Spain
Carmen.Moraga@alu.uclm.es,

{MariaAngeles.Moraga,Coral.Calero}@uclm.es
2 Department of Computer Science and Information Technologies,

University of Bio Bio, Chillán, Chile
mcaro@ubiobio.cl

Abstract. The Internet has become in a place for the exchange and publication
of data. Nowadays, Web portals serve as an important means to access
information. In this context, the concepts of quality in general and of data
quality in particular are highly relevant. The objective of this paper is to carry
out a systematic literature review (SLR) in order to discover the state-of-the art
in data quality for Web portals, and to evaluate the evolution of data quality
since 2006, when another SLR was carried out, and in which a PDQM (Portal
Data Quality Model) was defined. As a result, 39 attributes have been
considered relevant for the assessment of data quality in Web portals.

Keywords: Data/Information quality, Web portals, data quality attributes.

1 Introduction

One of the aims of many web portals is to select, organize and distribute content
(information or other services and products) in order to satisfy their users/customers
[1]. However, unnecessary, out of date or erroneous data are also included. Data
quality is an actual factor in competitiveness.

Bearing in mind the importance of data quality, the main goal of this paper is to
discover the state-of-the-art in Web portal data quality through a systematic literature
review (SLR). This SLR is based on a previous SLR [2], which covered the years
1996 to 2005, and in which 33 attributes considered to be relevant for Web portal data
quality were chosen. These attributes were then used to define a quality model for the
assessment of Web portal data quality, namely PDQM (Portal Data Quality Model),
in [3]. The SLR which is presented here covers 2006 to the end of 2008. The
objective of this SLR is to establish the evolution of Web portal data quality

* This work is part of the projects: INCOME (PET2006-0682-01) from Ministerio de Educación

and IVISCUS (PAC08-0024-5991) from the Consejería de Educación y Ciencia (JCCM) and
DQNet (TIN2008-04951-E) supported by the Spanish Ministerio of Educación y Ciencia.

252 C. Moraga et al.

attributes. As a result, it will be possible to evaluate whether the PDQM attributes are
still valid and to identify new relevant attributes.

This paper is organized as follows. In Section 2, the SLR process, including the
planning and conduction phases, is presented. The main results obtained from the
SLR are reported in Section 3. Finally, our conclusions and future works are outlined
in Section 4.

2 Review Process

This section details the activities performed in each of the two main phases of the
procedure for performing an SLR, as proposed by [4]: “Planning the review” and
“Conducting the review”.

a) Planning the review: The most important pre-review activities are identified by
the research questions(s) that the systematic review will address, and by producing a
review protocol (i.e. plan) which defines the basic review procedures. In this phase,
the following steps have been carried out:

1. Identification of the need for a review: The SLR has been planned in an attempt
to identify the most important attributes related to Web data quality. Therefore, the
main goal of our SLR is to discover the state-of-the-art in data quality for the Web
since 2006.
2. Specifying the research questions. The following research questions (see Table 1)
guided the design of the review process.

Table 1. Research Questions

Research Questions Main Motivation
RQ1: “Which Web data quality attributes are
addressed by researchers?”

To identify the Web data quality attributes which have
been researched in the Web context

RQ2: “From which point of view is the Web data
quality analyzed?”

To discover whether the Web data quality is from the
manager´s, programmer´s or consumer´s/user´s
perspective

RQ3: “In what context is the Web data quality
evaluated?”

To identify whether the work is focused on the Web in
general, a Web site or a Web portal

RQ4: “Is a quality model defined?” To evaluate whether a set of attributes and the
relationships between them have been defined

RQ5:“Do any measures for Web data quality exist?” To discover whether measures are defined
RQ6: “Does a tool which supports the proposed
approach exist?”

To determine whether a tool that assesses Web data
quality exists.

3. Developing a review protocol. The development of the review protocol is the most
relevant activity of the review process, since it establishes the basis of the search.

Source selection. The planned list of sources with which to carry out the SLR review
was: 1.- Digital libraries; 2.- Grey literature comprises some papers considered to be
relevant by experts which were not included in the aforementioned digital sources,
and 3.- The manual revision of the Conference Proceeding of WISE (Web
Information Systems Engineering) and ICWE (International Conference on Web
Engineering) of 2006 and 2007.

Search string. The following strings were defined: 1) “data quality” AND web; 2)
“information quality” AND web; 3) ("data quality" and web) and ("information quality");

 Towards the Discovery of Data Quality Attributes for Web Portals 253

4) web and ("information quality" or "data quality"); 5) ("data quality" and web) AND
(aspect OR dimension OR characteristic OR factor OR criterion OR criteria OR attribute
OR model); 6) ("information quality" and web) AND (aspect OR dimension OR
characteristic OR factor OR criterion OR criteria OR attribute OR model). The results
obtained by using search strings 3, 4, 5 and 6, are very similar in the majority of cases.
This signifies that the terms “Data Quality” and “Information Quality” are used
interchangeably in literature.

Inclusion and Exclusion criteria. The inclusion criteria defined for this review were
papers that present approaches or proposals that: a)were written in English, b)were
published after 2005, c)identified a set of data quality characteristics, attributes or
measures. And the following were defined as exclusion criteria: a) the work is previous
to 2006, b) the paper is not within the scope of data quality in the Web, c) the paper
does not propose a data quality attribute, or is not relevant, d) it does not contain the
terms ‘data quality’ or ‘information quality’ either in the title or in the abstract e)
studies are only available in the form of abstracts or Powerpoint presentations, f)
duplicate studies, g) quality is not a part of the contributions of the paper.

b) Conducting the review: Once the protocol has been agreed, the review can begin.
In this phase, the following steps have been made:

1. Selection of primary studies. The search process was completed on 31/12/2008 in
the digital libraries previously mentioned, and 4105 papers were found. Many of the
papers were eliminated owing to the fact that the use of different search strings in the
digital libraries had caused them to be duplicated. Once these papers had been
discarded, 1332 papers remained. These papers were then analyzed. This was done by
first analysing the title and the abstract, and a total of 173 papers were selected. The
full texts were then read, and once the inclusion and exclusion criteria had been
applied, 69 papers were obtained.

2. Data extraction and monitoring. Once the primary studies had been chosen, the
extraction of the relevant information for this SLR was stored in a data extraction
form which was structured as follows: a) Data of the paper, including the search
engine, title, year, type of publication and authors; b) Data of the classification,
considering the following dimensions: quality attributes, point of view, context,
application domain, quality model, measure and tool.

3 Results

This section provides an in depth presentation of the “Reporting the review” phase.
For the purpose of our analysis, the papers were classified in order to answer the
research questions listed in Table 1.

Our classification will hereafter be used in this section to present the answers to
each research question.

RQ1: “Which Web data quality attributes are addressed by researchers?”
A total of 130 attributes were initially obtained. Bearing in mind that our objective is
to select the set of most relevant attributes, the attributes which did not contain
descriptions were first discarded. 20 attributes were thus eliminated. Next, we

254 C. Moraga et al.

analyzed the attributes specific to Web Site or Web that could be applicable for Web
portals. 63 attributes were defined for data quality in the Web or in a Web site.
However, after studying their applicability to the Web portal context only 22
attributes were selected. We then analyzed the definition of the attributes and detected
that there were different names which were related to the same concept.

A total of 39 attributes related to data quality attributes were eventually selected
(see Table 2).

Table 2. Attributes by origin

Attributes not
obtained in our
SLR (for authors
other than those
of [2])

Attributes obtained in our SLR also included in [2] New
attributes
obtained in
our SLR and
not in [2]

Customer Support Accessibility Consistent Representation Reliability Effectiveness
Documentation Accuracy Currency Reputation Efficiency
Duplicates Amount of data Ease of operation Security Readability
Expiration Applicability Interactivity Specialization Usability
Flexibility Attractiveness Interpretability Timeliness Usefulness
Response Time Availability Novelty Understandability Verifiability
Traceability Believability Objectivity Validity
 Completeness Organization Value-added
 Concise Representation Relevancy

As was previously stated, in [2] the best attributes for Web portals were selected,
but this selection was made in 2005. Therefore, we wish to make a comparison
between the PDQM attributes and the attributes detected in our SLR. The main
findings of this comparison are shown in Table 2. Note that there is a set of attributes
which was only selected in [2]. These attributes are presented in the first column. The
second column shows the attributes which were chosen both in this paper and in
PDQM. Finally, the last column presents 6 attributes which have been added in this
paper as a result of the SLR.

Table 3 presents the data quality attributes. The table shows the selected papers.
The attributes which appear in the papers under the same name have been marked
with an “X”, and those which have a different name but explain the same concept
have been marked with a “□”. References are detailed in Appendix Table I.

RQ2: “From what point of view is the Web data quality analyzed?”
In this paper, we consider that data quality can be analyzed from three points of view:
manager, programmer and consumer. Fig 1 summarizes the number of papers for each
point of view.

We can deduce that the majority of the papers are related to the consumer or user.
This signifies that researchers are more concerned about the quality of the data with
which the consumer is provided. We can therefore affirm that it is necessary to make
an effort to study the data quality from the other perspectives, since all the
perspectives are obviously related.

RQ3: “In which context the Web data quality is evaluated?”
As was previously stated, in order to attain a wide knowledge of data quality
attributes the following contexts were included: Web portal, Web site and the Web in
general. However, each attribute has been reviewed, and only those which are of
interest in the context of Web portal data quality have been selected. Fig 2 illustrates
the classification of papers according to their context. It must be stressed that Web
sites are studied more frequently than Web portals.

 Towards the Discovery of Data Quality Attributes for Web Portals 255

Table 3. Quality attributes investigated in the context of SPL

A
cc

es
si

bi
li
ty

A
cc

ur
ac

y

A
m

ou
nt

 o
f

da
ta

A
pp

li
ca

bi
li
ty

A
tt

ra
ct

iv
en

es
s

A
va

il
ab

il
ity

B
el

ie
va

bi
li
ty

C
om

pl
et

en
es

s

C
on

ci
se

 R
ep

re
se

nt
at

io
n

C
on

si
st

en
t R

ep
re

se
nt

at
io

n

C
ur

re
nc

y

C
us

to
m

er
 S

up
po

rt

D
oc

um
en

ta
tio

n

D
up

li
ca

te
s

E
as

e
of

 o
pe

ra
ti
on

E
ff

ec
ti
ve

ne
ss

E
ff

ic
ie

nc
y

E
xp

ir
at

io
n

Fl
ex

ib
il
ity

In
te

ra
ct

iv
it
y

In
te

rp
re

ta
bi

li
ty

N
ov

el
ty

O
bj

ec
ti
vi

ty

O
rg

an
iz

at
io

n

R
ea

da
bi

lit
y

R
el

ev
an

cy

R
el

ia
bi

li
ty

R
ep

ut
at

io
n

R
es

po
ns

e
T

im
e

Se
cu

ri
ty

Sp
ec

ia
liz

at
io

n

T
im

el
in

es
s

T
ra

ce
ab

il
it
y

U
nd

er
st

an
da

bi
lit

y

U
sa

bi
li
ty

U
se

fu
ln

es
s

V
al

id
it
y

V
al

ue
-a

dd
ed

V
er

if
ia

bi
li
ty

R
ef

er
en

ce
s

X X X □ □ X X R1
X X X X X R2
 X □ X X R3
 □ □ R4
 X X X □ X X X X □ □ □ X X R5
 X □ X R6
 X X R7
 X

□
 R8

 X X X □ R9
 X □ X X R10
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X R11
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X R12
 X X □ X X X R13
X X X X

□
 □ X □ X X R14

 X □ □ R15
 X

□
 □ □ R16

 X X X X X
□

 R17

 X □ X X X □ R18
X X □ □ X

□
 R19

 X □ X X □ R20
 X X X X R21
 □ X X R22
 □ R23
 X X X X X X X R24
 X □ □ X R25
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X R26
 □ □ X X X X X R27
 X X X X □ □ X X X X X R28
 X X □ X R29
 X X R30
X □ X X X X X X X X □ X X X R31
 X □ X □ X R32
 X □ X X X X R33
X □ □ X X X X □ X X □ X

□
X X X

□
X X R34

 X X □ R35
 X □ X X X R36
 □ X X X X R37
 X X X R38
 X X X R39
 X

□
 R40

 X X X R41
 □ □ □ □ □ R42
 X X X □ X X X R43
 X □ X X X R44
 □ X X X X R45
 X X X R46
X X □ X X □ X X □ X □ R47
 X X □ X X X R48
 X X X R49
 X □ X X

□
□ X

□
 X □ X X X R50

 X □ X X
□

 R51

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X R52
X X X □ □ X X X

□
X X R53

X X □ X □ X □ X X R54
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X R55
 X X

□
X X X X □ X R56

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X R57
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X R58
 X X X X X X R59
X X X X □ X X X X X X X X X X X X X X X □ X X R60
X X □ X □ X X □ X R61
 X X □ □ R62
 X X □ □ R63
 X X

□
 X X □ X □ □ X R64

 X □ □ □ X
□

 X R65

 □ R66
 X □ X X R67
X □ X □ □ X X X X R68
 X X X X R69

RQ4: “Is a quality model defined?”
With regard to whether a quality model is proposed, as Fig 3 shows, 60% of the
works defined a quality model. This means that there is a tendency towards covering

256 C. Moraga et al.

all the aspects related to quality, and that the works are not limited to the simple
definition of attributes.

RQ5: “Do measures for Web data quality exist?”
Only 22% of the papers do not include measures, as is shown in Fig 4. Therefore,
unlike the situation of some years ago, researchers have now realized the importance
of measurement and almost all the proposals define measures with which to assess the
data quality level. We believe that this is a very positive aspect, since without
measures it is obviously not possible to evaluate quality.

RQ6: “Does a tool with which to support the proposed approach exist?”
The proposal was considered to contain a tool when the authors affirmed that a new
tool had been created or when one or several existing tools could support their
proposal. Only 8 of the 69 selected papers provided a support tool, which represents
12% of the total.

In conclusion, we can state that although the majority of the proposals define
measures (as was mentioned in the previous section), their assessment it not
automated. This reveals the difficulty of automating the proposed measures. Hence, as
a future work it will be necessary to work on the automation of measure assessment.

 Point of view

2 2

65

0

10

20

30

40

50

60

70

Manager Programmer Consumer

Fig. 1. Papers according to whose point of
view they are directed towards

 Context

16

52

1

0 10 20 30 40 50 60

Web portal

Web site

Web

Fig. 2. Papers according to their context

Fig. 3. Proposals with a quality model

Fig. 4. Proposals which define measures

4 Conclusions and Future Works

In this paper, a systematic literature review has been carried out in order to obtain the
portal data quality attributes that have been proposed in literature.

 Quality model

28
41

 Without quality model
 With Quality model

 Measures

15

54

Without measures
With measures

 Towards the Discovery of Data Quality Attributes for Web Portals 257

Moreover, the realization of this SLR has led us to certain conclusions. Firstly, the
majority of the papers study Web data quality from the consumer’s perspective, and
more effort should therefore be made to study this from the other perspectives.
Secondly, it should be noted that Web sites are studied more frequently than Web
portals. Thirdly, more than half the proposals define a quality model. This means that
there is a tendency towards covering all the aspects related to quality and that the
works are not limited to the simple definition of attributes. Fourthly, it is also of
interest to stress that researchers have realized the importance of measurement, and
that almost all the proposals define measures with which to assess the data quality
level.

Without measures it is obviously not possible to evaluate quality. However, these
measures are not easy to calculate automatically since only 12% of the proposals have
developed a tool for their assessment.

Finally, in comparison with the previous work [2], we conclude that a greater
number of papers related to data quality attributes were selected, and a greater number
of attributes were identified. We have therefore included all the attributes of [2] and
have added other attributes detected in this SLR which we consider to be relevant to
our study.

In the future we shall compare both the data quality attributes obtained and
SQUARE [5]. Since some PDQM attributes are now obsolete and are included in this
work, it is necessary to review and analyze the possibility of discarding them. In order
to do this, we shall first study the data quality attributes of SQUARE [5], and shall
then analyze both the attributes obtained in this SLR and the PDQM attributes, which
will eventually be compared in order to select the most relevant attributes.

References

1. Domingues, M.A., Soares, C., Jorge, A.M.: A Web-Based System to Monitor the Quality of
Meta-Data in Web Portals. In: IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IATW 2006), pp. 188–191 (2006)

2. Caro, A., Calero, C., Caballero, I., Piattini, M.: A proposal for a set of attributes relevant for
Web portal data quality. Software Quality Journal 16, 513–542 (2008)

3. Caro, A., Calero, C., Caballero, I., Piattini, M.: Defining a data quality model for web
portals. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006.
LNCS, vol. 4255, pp. 363–374. Springer, Heidelberg (2006)

4. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE-2007-01, School of Computer Science and
Mathematics, Keely University (2007)

5. [ISO/IEC-FDIS-25012]: Software engineering - Software product Quality Requirements
and Evaluation (SQuaRE) - Data quality model (2008)

258 C. Moraga et al.

Appendix

Table I. References of the SLR

ACM
R1: Nichols, D.M., Chan, C., Bainbridge, D., McKay, D., Twidale, M.B.: A lightweight metadata quality tool. In: JCDL '08:Proceedings of the 8th ACM/IEEE-CS joint

conference on Digital libraries. (2008)
R2: Gelman, I., A.Barletta, A.L.: A "quick and dirty" website data quality indicator, (2008)
R3: Scaffidi, C., Myers, B., Shaw, M.: Topes: reusable abstractions for validating data. In: ICSE '08: Proceedings of the 30th international conference on Software

engineering. (2008)
R4: Caro, A., Calero, C., Caballero, I., Piattini, M.: Defining a quality model for portal data. In: ICWE '06: Proceedings of the 6th international conference on Web

engineering. (2006)
R5: Costa, C.J., Nhampossa, J.L., Aparicio, M.: Wiki content evaluation framework. In: SIGDOC '08: Proceedings of the 26th annual ACM international conference on

Design of communication. (2008)
R6: Kitter, A.R.E. K.: Harnessing the wisdom of crowds in wikipedia: quality through coordination. In: CSCW '08: Proceedings of the ACM 2008 conference on Computer

supported cooperative work. (2008)
R7: Wilkinson, D.M., Huberman, B.A.: Cooperation and quality in wikipedia. In: WikiSym '07: Proceedings of the 2007 international symposium on Wikis. (2007)
R8: McKnight, D.H.Kacmar, C.J.: Factors and effects of information credibility. In: ICEC '07: Proceedings of the ninth international conference on Electronic commerce.

(2007)
R9: Rodgers, W., Negash, S.: The effects of web-based technologies on knowledge transfer. Communications of the ACM. 50, 117-122 (2007)
R10: Belanger, F., Fan, W., Schaupp, L.C., Krishen, A., Everhart, J., Poteet, D.Nakamoto, K.: Web site success metrics: addressing the duality of goals. Communications of

the ACM. 49 (2006)
IEEE

R11: Caro, A., Calero, C., Enriquez de Salamanca, J., Piattini, M.: Refinement of a Tool to Assess the Data Quality in Web Portals. In: Seventh International Conference on
Quality Software (QSIC 2007). (2007)

R12: Caro, A., Calero, C., Mendes, E., Piattini, M.: A Probabilistic Approach to Web Portal’s Data Quality Evaluation. In: 6th International Conference on the Quality of
Information and Communications Technology (QUATIC 2007). (2007)

R13: Vorochek, O., Biletskiy, Y.: Toward Assessing Data Quality of Ontology Matching on the Web. In: Fifth Annual Conference on Communication Networks and
Services Research (CNSR '07). (2007)

R14: Domingues, M.A., Soares, C., Jorge, A.M.: A Web-Based System to Monitor the Quality of Meta-Data in Web Portals. In: 2006 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology - Workshops. (2006)

R15: Yin, X., Han, J.Yu, P.S.: Truth Discovery with Multiple Conflicting Information Providers on the Web. IEEE Transactions on Knowledge and Data Engineering. 20,
796-808 (2008)

R16: Prat, N., Madnick, S.: Measuring Data Believability: A Provenance Approach. In: Proceedings of the 41st Annual Hawaii International Conference on System
Sciences (HICSS 2008). (2008)

R17: Hadaya, P.,, Ethier, J.: Online Purchasing of Simple Retail Goods: The Impact of e-Service Quality as Provided by Electronic Commerce Functionalities. In:
Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008). (2008)

R18: Tate, M., Evermann, J., Hope, B., Barnes, S.: Perceived Service Quality in a University Web Portal: Revising the E-Qual Instrument. In: 40th Annual Hawaii
International Conference on System Sciences (HICSS'07). (2007)

R19: Prestipino, M., Aschoff, F.-R., Schwabe, G.: How up-to-date are Online Tourism Communities? An Empirical Evaluation of Commercial and Non-commercial
Information Quality. In: 40th Annual Hawaii International Conference on System Sciences (HICSS'07). (2007)

R20: Rabjohn, N., Cheung, C.M.K.Lee, M.K.O.: Examining the Perceived Credibility of Online Opinions: Information Adoption in the Online Environment. In:
Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008). (2008)

R21: Lin, H., Fan, W., Wallace, L., Zhang, Z.: An Empirical Study of Web-Based Knowledge Community Success. In: 40th Annual Hawaii International Conference on
System Sciences (HICSS'07). (2007)

R22: Schaupp, L.C., Fan, W., Belanger, F.: Determining Success for Different Website Goals. In: Proceedings of the 39th Annual Hawaii International Conference on
System Sciences (HICSS'06) Track 6. (2006)

R23: McKnight, H., Kacmar, C.: Factors of Information Credibility for an Internet Advice Site. In: Proceedings of the 39th Annual Hawaii International Conference on
System Sciences (HICSS'06) Track 6. (2006)

R24: Franch, X., Quer, C., Canton, J.A., Salietti, R.: Experience Report on the Construction of Quality Models for Some Content Management Software Domains. In:
Seventh International Conference on Composition-Based Software Systems (ICCBSS 2008). (2008)

OTHER
R25: Mich, L.: Subjectivity in Web site quality evaluation: the contribution of Soft Computing. In: Workshops of 7th International Conference on Web Engineering. (2007)
R26: Caro, A., Calero, C., Sahraoui, H.A., Piattini, M.: A Bayesian Network to represent a data quality model. International Journal Information Quality. 1, 272-294 (2007)

SCIENCE DIRECT
R27: Lee, J., Park, D.-H., Han, I.: The effect of negative online consumer reviews on product attitude: An information processing view. Electronic Commerce Research and

Applications. 7, 341-352 (2008)
R28: Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy framework. Web Semantics: Science, Services and Agents on the World Wide

Web. 7, 1-10 (2009)
R29: Prybutok, V.R., Zhang, X., Ryan, S.D.: Evaluating leadership, IT quality, and net benefits in an e-government environment. Information & Management. 45, 143-152

(2008)
R30: Gonçalves, M.A., Moreira, B.L., Fox, E.A., Watson, L.T.: “What is a good digital library?” – A quality model for digital libraries. Information Processing &

Management. 43, 1416-1437 (2007)
R31: Herrera-Viedma, E., Peis, E., Morales-del-Castillo, J.M., Alonso, S., Anaya, K.: A fuzzy linguistic model to evaluate the quality of Web sites that store XML

documents. International Journal of Approximate Reasoning. 46, 226-253 (2007)
R32: Chung, W., Bonillas, A., Lai, G., Xi, W., Chen, H.: Supporting non-English Web searching: An experiment on the Spanish business and the Arabic medical

intelligence portals. Decision Support Systems. 42, 1697-1714 (2006)
R33: Barnes, S.J., Vidgen, R.T.: Data triangulation and web quality metrics: A case study in e-government. Information & Management. 43, 767-777 (2006)
R34: Chung, W.: Studying information seeking on the non-English Web: An experiment on a Spanish business Web portal. International Journal of Human-Computer

Studies. 64, 811-829 (2006)
R35: Chen, C.-C., Wu, C.-S., Wu, R.C.-F.: e-Service enhancement priority matrix: The case of an IC foundry company. Information & Management. 43, 572-586 (2006)
R36: Grigoroudis, E., Litos, C., Moustakis, V.A., Politis, Y., Tsironis, L.: The assessment of user-perceived web quality: Application of a satisfaction benchmarking

approach. European Journal of Operational Research. 187, 1346-1357 (2008)
R37: Tsakonas, G., Papatheodorou, C.: Exploring usefulness and usability in the evaluation of open access digital libraries. Information Processing & Management. 44,

1234-1250 (2008)
R38: Kim, D.J., Steinfield, C., Lai, Y.-J.: Revisiting the role of web assurance seals in business-to-consumer electronic commerce. Decision Support Systems. 44, 1000-

1015 (2008)
R39: Kim, D.J., Ferrin, D.L., Rao, H.R.: A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents.

Decision Support Systems. 44, 544-564 (2008)
R40: Robins, D., Holmes, J.: Aesthetics and credibility in web site design. Information Processing & Management. 44, 386-399 (2008)
R41: Wang, Y., Liu, Z.: Automatic detecting indicators for quality of health information on the Web. International Journal of Medical Informatics. 76, 575-582 (2007)
R42: Wang, Y.-S., Wang, H.-Y., Shee, D.Y.: Measuring e-learning systems success in an organizational context: Scale development and validation. Computers in Human

Behavior. 23, 1792-1808 (2007)
R43: Yen, B., P.J-H., H., Wang, M.: Toward an analytical approach for effective Web site design: A framework for modeling, evaluation and enhancement. Electronic

Commerce Research and Applications. 6, 159-170 (2007)
R44: Ahn, T., Ryu, S.I., H.: The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management. 44, 263-275 (2007)
R45: Song, J., Jones, D., Gudigantala, N.: The effects of incorporating compensatory choice strategies in Web-based consumer decision support systems. Decision Support

Systems. 43, 359-374 (2007)
R46: Lee, Y, .Kozar, K.A.: Investigating the effect of website quality on e-business success: An analytic hierarchy process (AHP) approach. Decision Support Systems. 42,

1383-1401 (2006)
R47: Kang, Y.-S., Kim, Y.J.: Do visitors' interest level and perceived quantity of web page content matter in shaping the attitude toward a web site? Decision Support

Systems. 42, 1187-1202 (2006)
R48: Sillence, E., Briggs, P., Harris, P., Fishwick, L.: A framework for understanding trust factors in web-based health advice. International Journal of Human-Computer

Studies. 64, 697-713 (2006)

 Towards the Discovery of Data Quality Attributes for Web Portals 259

Table I. (continued)

R49: Éthier, J., Hadaya, P., Talbot, J., Cadieux, J.: B2C web site quality and emotions during online shopping episodes: An empirical study. Information & Management.
43, 627-639 (2006)

R50: De Wulf, K., Schillewaert, N., Muylle, S., Rangarajan, D.: The role of pleasure in web site success. Information & Management. 43, 434-446 (2006)
R51: Zviran, M., Glezer, C., Avni, I.: User satisfaction from commercial web sites: The effect of design and use. Information & Management. 43, 157-178 (2006)

SCOPUS
R52: Calero, C., Caro, A., Piattini, M.: An applicable data quality model for web portal data consumers. World Wide Web. 11, 465-484 (2008)
R53: Cheung, C.M.K., Lee, M.K.O.: The structure of web-based information systems satisfaction: Testing of competing models. Journal of the American Society for

Information Science and Technology. 59, 1617-1630 (2008)
R54: Stvilia, B., Twidale, M.B., Smith, L.C., Gasser, L.: Information quality work organization in Wikipedia. Journal of the American Society for Information Science and

Technology. 59, 983-1001 (2008)
R55: Caro, A., Calero, C., Caballero, I., Piattini, M.: A proposal for a set of attributes relevant for Web portal data quality. Software Quality Journal. 16, 513-542 (2008)
R56: Kelton, K., Fleischmann, K.R., Wallace, W.A.: Trust in digital information. Journal of the American Society for Information Science and Technology. 59, 363-374

(2008)
R57: Caro, A., Calero, C., Piattini, M.: Development process of the operational version of PDQM. Lecture Notes in Computer Science. LNCS 4831, 436-448 (2007)
R58: Caro, A., Calero, C., Caballero, I., Piattini, M.: Defining a data quality model for web portals. 7th International Conference on Web Information System Engineering

(WISE 2006) Lecture Notes in Computer Science. Vol. 4255, 363-374 (2006)
R59: Moraga, A., Calero, C., Piattini, M.: Comparing different quality models for portals. Online Information Review. 30, 555-568 (2006)
R60: Caro, A., Calero, C., Caballero, I., Piattini, M.: A first approach to a data quality model for web portals. Lecture Notes in Computer Science. LNCS 3982, 984-993

(2006)
R61: Ehmann, K., Large, A., Beheshti, J.: Collaboration in context: Comparing article evolution among subject disciplines in Wikipedia. First Monday. 13 (2008)
R62: Verbert, K., Ochoa, X., Duval, E.: The ALOCOM framework: Towards scalable content reuse. Journal of Digital Information. 9 (2008)
R63: Verbert, K., Duval, E.: Evaluating the ALOCOM approach for scalable content repurposing. Lecture Notes in Computer Science. LNCS 4443, 325-336 (2007)
R64: Metzger, M.J.: Making sense of credibility on the web: Models for evaluating online information and recommendations for future research. Journal of the American

Society for Information Science and Technology. 58, 2078-2091 (2007)
R65: Dondio, P., Barrett, S.: Computational trust in web content quality: A comparative evaluation on the Wikipedia project. Informatica. 31, 151-160 (2007)
R66: Hong, T.: The influence of structural and message features on web site credibility. Journal of the American Society for Information Science and Technology. 57, 114-

127 (2006)
WILEY

R67: Herrera-Viedma, E., Pasi, G., Lopez-Herrera, A.G., Porcel, C.: Evaluating the information quality of Web sites: A methodology based on fuzzy computing with words.
Journal of the American Society for Information Science and Technology. 57, 538-549 (2006)

R68: Katerattanakul, P., Siau, K.: Factors affecting the information quality of personal Web portfolios. Journal of the American Society for Information Science and
Technology. 59, 63-76 (2008)

R69: Chiu, C.-M., Chiu, C.-S., Chang, H.-C.: Examining the integrated influence of fairness and quality on learners' satisfaction and Web-based learning continuance
intention. Information Systems Journal. 17, 271-287 (2007)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 260 – 274, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Script InSight: Using Models to Explore JavaScript Code
from the Browser View

Peng Li and Eric Wohlstadter

University of British Columbia
{lipeng,wohlstad}@cs.ubc.ca

Abstract. As Web programming standards and browser infrastructures have
matured, the implementation of UIs for many Web sites has seen a parallel
increase in complexity. In order to deal with this problem, we are researching
ways to bridge the gap between the browser view of a UI and its JavaScript
implementation. To achieve this we propose a novel JavaScript reverse-
engineering approach and a prototype tool called Script InSight. This approach
helps to relate the semantically meaningful elements in the browser to the
lower-level JavaScript syntax, by leveraging context available during the script
execution. The approach uses run-time tracing to build a dynamic, context-
sensitive, control-flow model that provides feedback to developers as a
summary of tracing information. To demonstrate the applicability of the
approach we present a study of an existing open-source Web 2.0 application
called the Java Pet Store and metrics taken from several popular online sites.

Keywords: Reverse-Engineering, Software Maintenance, Rich Internet
Applications, JavaScript.

1 Introduction

The user interface (UI) is a key aspect of most Web sites. As Web browser
programming standards such as JavaScript and the W3C Document Object Model
(DOM) have matured, the implementation of UIs for many sites has seen a parallel
increase in complexity. These rich Web applications have the advantage of providing a
seamless and interactive experience for end-users. However, these applications also
require more development effort to build and maintain than older Web UI. As the Web
has become more interactive and complex, we are researching a more interactive,
model-based approach for Web application reverse-engineering and debugging.

Most existing work on modeling of UI-intensive Web applications focuses on
development but not specifically maintenance and debugging. For example, [1]
introduces a framework for the integration of presentation components in mashup
applications. Trigueros et al. present a model driven approach, the RUX-Model, for
the design of rich Internet applications [2]. Valderas et al. introduce an approach to
support the coordinated work between Web UI designers and analysts during the
development of a Web application [3]. In [15], Rossi et al. use a model-driven
approach to transform conventional Web applications into rich Internet applications

 Script InSight: Using Models to Explore JavaScript Code from the Browser View 261

by applying refactoring at the model level. Meliá et al. propose a model-driven
development methodology which extends a traditional Web modeling methodology
for use with the Google Web Toolkit [16]. Some research in software maintenance
and reverse-engineering has been used for testing of Ajax applications [14], but not
specifically for interactive debugging, as we focus on in this paper.

As with any complex software development task, creating a user interface requires
an iterative cycle of design and implementation. Starting with an initial design, an
interface would first be prototyped and then refined over several cycles into a final
product. At each stage, some design decisions may need to be reconsidered and the
implementation adjusted accordingly. The UI might even evolve after the release of
an application in order to fix bugs or add new features.

After each cycle, developers can determine the quality of the current application by
executing the implementation and evaluating the UI appearance and functionality in a
Web browser. If they notice anything wrong with the browser view of the UI, they
would need to map the problem back to some part of the implementation, to enact the
appropriate change.

Unfortunately, reversing engineering a rich interactive Web page and mapping the
appearance or behavior of some element in the Web page to the corresponding
implementation can be quite difficult. This is because today’s Web UI are stateful and
reactive. Their appearance and behavior vary over time based on mutations of state
made from JavaScript. This problem is exacerbated by the fact that a developer
working on the UI might not have written the original code for all parts of the Web
site. In that case, they may need to dig through unfamiliar code to try and reverse-
engineer the source. This process is especially difficult since code for some systems
on the Web is poorly documented. As described by Hassan et al. [4], “Currently,
[code] inquiries can only be answered by scanning the source code for answers using
tools such as grep, consulting documentation, or asking senior developers.”

In order to deal with this problem, we are researching an interactive approach to
bridge the gap between the browser view of a UI and the JavaScript piece of the
implementation. This is motivated by the fact that the browser view is usually easy to
understand and semantically meaningful, unlike the implementation code. We want to
help developers use the live UI as an entry-point into the lower-level implementation
details.

To achieve this, we propose a novel JavaScript tracing approach. To a first
approximation, when a change is made by a script statement to a visual DOM
attribute (e.g. color, height, etc...), we record a link between the effected browser
element and the code responsible. The intuition is that a developer can now easily
navigate through the code by hyperlinking directly from browser elements. However,
a basic implementation of this approach is vulnerable to two problems.

First, mapping semantically meaningful events, such as the mutation of a visual
attribute directly to a location in the source code (e.g. a statement) may not be helpful,
because that one statement might be reused for several different purposes in the
execution of the script. For example, informing a developer that an attribute was
changed in a “setter” method for that attribute provides little useful information. The
“setter” method could be called many times in the execution of a script, in different
contexts, for a variety of different purposes.

262 P. Li and E. Wohlstadter

For this reason we are researching the use of context-sensitivity to help provide a
mapping. A context-sensitive approach captures not only the execution of individual
statements, but also the state of the call stack, which can help distinguish between
multiple executions of the same statement.

Second, the visual behavior of a Web page (e.g. the way widgets are animated) is
often achieved by a set of coordinated DOM attribute mutations. For example, a
button’s appearance may change to reflect the button is active when a panel is closed,
and change again to reflect it is inactive when the panel is open. The changes to the
button appearance and panel appearance have a causal relationship. If a developer
wants to change the widget animation they may need to make coordinated changes to
several DOM nodes. For this reason we are researching the use of a custom control-
flow model, the DOM mutation graph (DMG), that developers can use to leverage
their understanding of these causal relationships, seen in the browser view, in
mapping from the browser view to script source code.

To demonstrate our approach of using this DMG to explore script code, we present
a study of an existing open-source Web 2.0 application called the Java Pet Store [9]
and metrics taken from several popular online sites. We show how this model is used
to understand animation effects in the application which require coordinated changes
to several page elements. The metrics taken from other pages provide evidence
supporting the need for context-sensitivity in Web application reverse-engineering.

The rest of the paper is organized as following: Section 2 presents a motivating
example and an overview of our approach, Section 3 presents technical details,
Section 4 presents metrics from online sites, Section 5 presents a further detailed
example, and in Section 6 we give related work and we conclude in Section 7.

2 Motivating Example and Approach Overview

In order to motivate our approach, we use a case-study of an existing open-source
Web application called Java Petstore 2.0 (henceforth, JPS). This online pet store
offers the end-user several interactive widgets to control the application, as shown in
Figure 1. Here we see the “Catalog Browser” page from which the end-user can
browse prospective pets. This one page alone makes use of 1232 lines of JavaScript
code spread across 3 files.

Running down the left-side of the page is an accordion bar. This widget is a
stylized tree-view for browsing categories of pets and their respective sub-categories
(e.g. the specific kinds of cats). The table rows for the categories interactively expand/
deflate to reveal/hide sub-categories when the mouse cursor is positioned/removed
from a category name. This “accordion” animation requires JavaScript programming
to mutate the DOM in an event loop. In Figure 1, the “Cats” row is expanded and the
other categories remain deflated.

Consider the perspective of a front-end developer who would like to make changes
to this Web page. They have to remember or understand how the 1232 lines of code is
mapped to elements of the page and their behavior.

In the original JPS, each accordion row is expanded and deflated at a constant
speed. Here we consider a change task where a front-end developer wants to change
the animation to accelerate at a decreasing/increasing rate when a row is expanding/
deflating. During the task the developer is confronted with three problems.

 Script InSight: Using Models to Explore JavaScript Code from the Browser View 263

Fig. 1. A snapshot for the “Catalog Browser” from the Java Pet Store. Label (A) is an expanded
accordion row, “Cats”. The labels (B) and (C) will be described later, in Section 4.

First, they would need to determine which DOM nodes and which attributes of
those nodes are responsible for the animation. This could be difficult because the
implementation details could vary. For example, the animation might involve any
combination of style attributes such as height, top, clip, etc...

Second, suppose a developer figures out that height is the key to change the
animation. However, when they search through the code, there are two assignment
statements to the height of some node in the JavaScript implementation. One of them
is shown in Figure 2 and another one turns out not to be relevant. By looking at each
statement individually, it is not always clear if the statement is relevant to the task at
hand. They may also have to search the code to understand the calling context of each
height setting statement. In other words, the function calls which lead to the
statement’s execution.

Fig. 2. The function setHeight on its own lacks the calling context which is needed to
properly associate the function with the accordion bar animation

Third, suppose the developer determines the function as shown in Figure 2
contains the assignment statement they are interested in. In order to create the new
acceleration/deceleration effect, they would want to change the argument value that
was passed to a function call to setHeight, but not the definition of the
setHeight code itself. But now, when a developer searches setHeight in the
code, they find two places where the setHeight function is called, as shown in
Figure 3. Each one is relevant for the change task, but for different reasons.

Row.prototype.setHeight = function(nH) {
this.h = nH;
this.div.style.height = nH + "px";

}

264 P. Li and E. Wohlstadter

Fig. 3. Two function calls related to the accordion bar animation. The developer will need
information to disambiguate the purpose of each function call. Some code is elided for
illustration purposes.

Fig. 4. The abstract behavior of an accordion row presented as a DMG. The two traces of the
height values (overlayed on the model with block arrows, in the figure simply for illustration)
show the information displayed to a developer when selecting one of the two nodes in the
model.

After some investigation, they may find that the first one (line 149) is involved

with expanding an accordion row and the second (line 157) is involved with the
deflating.

Using our proposed approach, a developer could have chosen to see a model of the
accordion row’s execution. The model generated by our tool is shown in Fig. 4. In the
model, each node represents a statement that mutated some visual DOM attribute and
the calling context in which that statement execution. Notice that the model contains
two nodes, although we are only concerned with one source code statement (the
height setting statement in Fig. 2). From the model a developer could determine that
the animation was created by alternating, repeated executions of the context
represented by height0, followed by repeated executions of the context represented
by height1.

By selecting each node in our tool, the developer can perform two functions. First,
the developer can view a trace of the values which were set in each context. From the
trace, it is clear which one is responsible for expanding and which one is responsible
for deflating. Having the information in mind, the developer can hyperlink to the

147. if(...) {
148. nHeight = nHeight + INCREMENT;
149. divs[nExpandIndex].setHeight(nHeight);
150. if(...) {
151. if(...) {
152. ...
153. }
154. else {
155. oHeight = oHeight - INCREMENT;
156. }
157. divs[oExpandIndex].setHeight(oHeight);
158. }
159. }

 Script InSight: Using Models to Explore JavaScript Code from the Browser View 265

corresponding source for the one they are interested in. In the model, height0 links
to the executions of Fig.2, which were made from line 149 in Fig 3; height1 links to
the following repeated executions of Fig. 2, which were made from line 157 in Fig. 3.

Now, the developer can find the correct locations to change argument values for
each call to implement the desired acceleration/deceleration change. In the remainder
of the paper we describe more precisely the details regarding using a DMG for
exploring JavaScript code using Script InSight.

3 Implementation Details

Our prototype is implemented as a JavaScript front-end, to execute within a standard
Web browser, and a separate HTTP proxy executable. A developer using our tool will
install and point their browser to the HTTP proxy which provides instrumentation of
existing JavaScript code. First, we describe our prototype tool from a developer’s
perspective to provide an overview of the lower-level details involved in our run-time
tracing infrastructure, which is described in Section 3.1. The DMG model
presentation for UI execution history is presented in Section 3.2.

Using Script InSight, developers can switch the Web browser between normal
execution mode and inspection mode. In script inspection mode, a developer can
select an element in the browser view. For example, the developer might select a
particular image or table row they are interested in. Next, a list of the event handlers
that have affected that node during execution are displayed. When the developer
selects one of the handlers, a DMG of its previously recorded behavior is displayed.

By selecting a node in the DMG, the developer is hyperlinked to the file for the
associated JavaScript statement in a special text editor, as shown in Figure 5. In the
editor, the cursor position is set for the line number of the statement for convenience.
This text editor includes a drop-down menu for the developer to navigate the calling
context for a given statement execution. This allows the developer to jump up and
down the call stack that was captured precisely for that instance of statement
execution in the trace history.

3.1 Tracing JavaScript Execution

Run-time tracing is implemented as a set of JavaScript functions which are called by
tracing code injected into existing scripts. Scripts are intercepted and manipulated by
a client-side HTTP proxy. We use the open-source Rhino [10] JavaScript compiler
framework to convert scripts into an abstract syntax tree (AST) which is then
transformed to add the tracing code. In the remainder of this section we describe the
details of this tracing procedure.

During program execution, our tool monitors a subset of the JavaScript statements
executed. We refer to these statements as DOM mutators. A DOM mutator is a
JavaScript statement which mutates the state of the DOM. This can be either by
directly setting an attribute of a node (e.g. node.id = ‘submit’) or through any
one of the functions in the W3C DOM standard (e.g. node.appendChild(..)).

266 P. Li and E. Wohlstadter

Fig. 5. Selecting a function call location from the calling context. The (?) entry references an
anonymous JavaScript event handler function. A mutation of the style.height attribute for
some DOM node was made in the function setHeight which is shown at the top of call
stack. This mutation corresponds to the height0 node from Fig. 4. The stack contents serve
to distinguish this execution of setHeight from those corresponding to node height1.

For example, in JPS, the height attribute of some nodes is mutated dynamically.
Our tool records this fact so that a developer concerned with an animation concerning
the height can quickly locate the corresponding implementation.

In many cases, dynamic information is needed to distinguish the calling context in
which some statement executed. For this reason, our tool captures the calling context
of each DOM mutator execution instance. The DOM Mutator Context is an ordered
list containing the location of all JavaScript function calls active at the moment of
execution for some DOM mutator. This context captures the path of function calls
from some event handler invoked by the browser, to the statement.

Consider an example from eBay where JavaScript library code is used to build
“widgets”. These widgets are an aggregation of DOM nodes which are encapsulated
behind a high-level widget interface.

Suppose a developer is interested in a particular instance of an eBay drop-down
menu. They might wish to modify the parameters that were used in the construction of
the menu. Using our tool they could click on some part of the menu to be hyper-linked
to the DOM mutator where that part of the menu was created. However, since these
nodes were created as an internal part of the widget library, the developer would not
want to actually change the library code but rather find where it was called from for this
menu instance. This could be achieved using the captured context modeled in the DMG.

3.2 DOM Mutation Graph

Many Web 2.0 and Ajax style sites use JavaScript to control dynamic UI effects and
animations. We want to help developers navigate directly to the code responsible for
controlling this part of the UI. In this case, it could be hard for a user to determine

 Script InSight: Using Models to Explore JavaScript Code from the Browser View 267

precisely the moment when the UI transitioned between states which are responsible
for creating the effect or animation.

To help developers review mutations in an animation which occur over the span of
some time, we need to consider the history of DOM mutations related to each DOM
node attribute. Our tracing infrastructure captures a complete trace of all DOM mutator
contexts, including the value (e.g. 10, ‘red’,’http://..’) which is assigned by the mutator
for each context. However, it is well known that dynamic traces can sometimes
overwhelm a user with a large magnitude of data, making the information not valuable.

To abstract large execution traces for developers, we designed a mechanism to
represent JavaScript execution as a variation of a traditional control-flow model, the
DOM mutation graph. Each DMG is an abstract representation of the execution
history for a specific instance of a JavaScript event handler (e.g. onclick,
onhover). This execution history captures all mutations made during the activation
of the handler (i.e. while the handler is on the call stack).

We use this partitioning of trace information because each particular event-handler
is commonly responsible for creating one particular animation or dynamic effect on
the page. Scoping the generation of models to align with event-handlers, allows a
developer to focus on a particular animation or effect, and the way it may affect
multiple attributes of multiple DOM nodes, in a coordinated fashion.

Our model is similar to traditional control-flow models, such as a control-flow
graph or call-graph, in that each node represents some implementation level artifact.
However, we consider only the set of statements which affect the visual appearance of
the UI and distinguish those statements based on dynamic context information. These
statements serve as a bridge between the browser view and the implementation. This
is because a developer can plainly observe their effect from the live UI.

In the model, each node corresponds to a mutator context, abstracting over all the
particular values which may have been assigned in that context. The trace of concrete
mutations, including the attribute values assigned, can be retrieved by interrogating
each node (as illustrated in Fig. 4). Edges in the model correspond to the sequencing
of statement execution. A directed edge is created from node, u, to node, v, if there is
a trace entry for u followed by a trace entry for v. This allows the model1 to become a
bridge between the flow of changes that a developer can see directly in the browser,
and the implementation which is causing those changes.

Using the DMG as a bridge is effective because the implementation-level statements
which can cause visual changes to the UI in standards-compliant Web applications are
limited to a standard set of HTML/CSS attributes and DOM operations. Thus we are able
to capture, and focus on, just these attributes and operations. If implementation code was
non-standardized or able to directly draw to the browser window using pixel-level
operations, such a mapping would be much more difficult or even impossible to create.

4 JavaScript Metrics

In order to better understand if our approach is truly motivated by the complexity of
today’s JavaScript implementations for several existing Web applications, we gathered

1 To generate the visual appearance of the model, we use a GraphViz-based extension for

Firefox.

268 P. Li and E. Wohlstadter

Table 1. (# of Files) lists the number of JavaScript files downloaded for each page and (Total
Lines) is the sum of their file line counts (in some cases the code is obfuscated so we cannot
give an accurate estimate of non-commented lines of code). (Context) lists the average number
of distinct contexts which a mutator statement was executed in (standard deviation in
parentheses) / and the total number of DOM mutator statements executed for the page after the
slash. (Memory) is the original memory used by Firefox for page execution / with the memory
used for our instrumented page after the slash.

Web
Page

of
Files

Total
Lines

Context
(see caption)

Memory
(MB)

Petstore 3 1,232 2.2 (1.6) /118 36 / 38
eBay 4 19,682 1.5 (.84) /43 40 / 44
Facebook 7 37,310 1.7 (1.3) /485 68 / 72
Yahoo 1 10,218 2.3 (1.4) /164 42 / 43
Amazon 4 5,903 2.0 (.95) /91 45 / 46
Priceline 9 11,667 3.5 (1.8) /73 38 / 40

metrics from JPS and several popular Web sites. These measurements were taken using
Mozilla Firefox 3.0.3 for Microsoft Windows.

Table 1 shows four columns of metrics for each page. The second column, number
of files, counts the JavaScript files which were referenced by the page. The total lines,
column three, is the sum of the files sizes (in terms of lines) for those files.

The column labeled Context describes information about the DOM mutator
statements which were executed. The first number lists the average number of distinct
calling contexts in which a statement executed. For example, considering the Petstore,
each assignment statement to a DOM attribute was executed in 2.2 different contexts
on average. The second number shows the standard deviation. The third number lists
the total number of DOM mutator statements executed for the page.

The final column lists the memory usage of Firefox with a page loaded, after
having its UI exercised; first without our tool in use and second with our tool being
used. Memory consumption is discussed further in Section 4.2.

For JPS we use the Catalog Browser which has already been described in detail.
The eBay page is a simple list of results for searching auctions related to “iPods”.
The FaceBook page is the default “Profile” page for a new Facebook user. For Yahoo,
Amazon, and Priceline, we used the default homepages.

We took the metrics by triggering a measurement function injected into the code.
Since these metrics measure properties of the JavaScript execution, we needed to
exercise the UI of the page before taking measurements. We did this by simply
manually manipulating any part of the UI which did not cause the page to be changed
(hence losing the script state for the page).

4.1 Discussion

By looking at the results for the Context metrics, we see for which pages our calling
context capture could be useful. Here we see that these pages either: frequently
execute mutators in more than one context and/or execute some mutators in many
different contexts.

 Script InSight: Using Models to Explore JavaScript Code from the Browser View 269

In general, we see that it was common for a mutator of a DOM node to be used in
more than one context. At first this could seem unintuitive because even most
interactive Web pages tend to have a large amount of static content. However, this
makes sense since we are only including mutations made in the JavaScript code and
not any HTML attributes which are set in the static HTML or HTML generated by the
server. If some attribute was going to be set only one time and never mutated, it
would make sense that the developer chose to generate the value on the server. Thus
for JavaScript execution, the reuse of code from different contexts appears to be
prominent for these pages.

Developers working on a particular Web page without the help of a model, will
need to create a mental map which connects an element of the Web page to a
particular location in code. This would currently be done in an ad-hoc fashion. Two
possible examples are as follows.

First, a developer could scan the code to identify relevant code. From the # of files
and total LOC in Table 1, we believe that this approach is not scalable. There is
simply too much code to consider across the files.

Second, a developer could associate an identifier such as a JavaScript function
name or file with each element of the Web page. For example, they might use a
particular file for all “information pane” functions. In this way, when they want to
work on some code related to a particular element, they could use a text-based search
to find the relevant code. However this one-to-one mapping does not appear scalable
in light of the Context metrics from Table 1, because a distinct page element may be
associated with code reused by several elements or for different purposes. Next, in
Section 5 we turn to an example in our JPS case-study to demonstrate how our
approach could be leveraged to deal with these problems.

4.2 Performance Considerations

Since our tool collects a history trace of DOM mutations, we wanted to determine
how much memory overhead was used for the example Web pages in Table 1. These
measurements are listed in last column. Here we see that the amount of memory used
was never more than 4MB. Since we only exercised the parts of the UI that were
obvious to us, it is possible we had missed some button, menu, or other widget that
was not clearly marked. Still, since the amount of memory used was small relative to
that in today’s desktop machines, we did not consider this to be a large issue.

Certainly the memory used will depend on the code for the page itself. For
example, looking back at Fig. 4, we see that the history for expanding and deflating
one accordion bar, one time, required 16 trace entries. If JPS was programmed
differently, this number could certainly increase but we believe that JPS and the
example pages in Table 1 are a fair representation of UI programming practices for
many of today’s Web applications.

We have used our tool extensively in the exploration of JPS and also as part of
collecting the measurements for Table 1. Using the tool we did not notice any
perceptible slow down caused by the run-time tracing while interacting with the page.

270 P. Li and E. Wohlstadter

5 Catalog Browser Example

In order for us to be able to describe some details of our study in depth, we choose to
focus on the “Information Pane” (B) and “Collapse Button” (C) on the Catalog
Browser page of JPS in Fig. 1.

In this section, we will first introduce the behavior of this information pane and
collapse button at a high level. Then, we will give a more low level description from
the developer’s perspective. Finally, we describe the model that is generated by using
our approach to bridge these two different perspectives. A developer can use this
model as linked from the browser view, to quickly get into the script programming
details.

The information pane (B) describes the detail information for a selected pet (e.g.
name, description and rating). This widget is mapped to a div element in the DOM.
In Fig 1., the information pane appears raised, partially obscuring a pet image. When
the pane is lowered, it appears to slide behind the scrollbar (positioned beneath it).
This animation is performed by mutating clip, height, and top attributes in
coordination.

The collapse button (C) controls the raising and lowering of the information pane.
It is an img element in the DOM. There are two places in JavaScript which set the
src attribute. The collapse button’s icon is changed to a down arrow when the
information pane becomes fully raised and changed to an up arrow when the
information pane becomes fully lowered.

Table 2 summarizes the three mutated attributes of the information pane and one
attribute of the collapse button. Each attribute is mutated in two contexts, which
correspond to each of the nodes in Fig. 6. The figure encapsulates changes made to
multiple attributes of multiple DOM nodes, to show the flow of execution which was
monitored.

Table 2. The various contexts in which attributes of the information pane and collapse button
are mutated. The trace information of value changes associated which each context are shown
in the second column (some are elided for illustration). Note that as is common, the coordinate
for top is measured as the pixel distance from the top of the screen, hence it is decreasing. The
clip value actually includes four coordinates but only one changes in this example so the others
are elided.

DOM Mutator Context Trace Values

height0 [75px…177px]

top0 [452px…350px]

clip0 [75px…177px]

src0 up-to-down.gif

height1 [177px…75px]

top1 [350px…452px]

clip1 [177px…75px]

src1 down-to-up.gif

 Script InSight: Using Models to Explore JavaScript Code from the Browser View 271

From Fig. 6, we can see that the two sets of nodes related to the information pane
(at the top and bottom of the figure) are separated by the nodes related to the button
icon, which reflects the raising and lowering of the information pane. For each set of
information pane attributes, the mutation of the three different attributes, height,
top, clip have been executed continuously in an event-loop, shown by the
recursive edges out of clip0 and clip1.

By examining the trace of values captured for different DMG nodes we can
observe the changes which occur to create the raising and lowering effect. For
example, by looking at the entry in Table 2 for height0. Here we see the height
increases. Without examining the source code, we can already tell that this context is
responsible for raising the information pane.

After discerning this information, then by an understanding of the information pane
and collapse button behavior from the browser view, and examining the topology of
the flow relationships between the DMG nodes, we can plainly determine that src0
is the context responsible for setting the image of the down arrow; top0 and clip0
must then be responsible for part of the information pane raising effect; so then,
height1, top1, and clip1 must be responsible for the lowering effect; and
finally we can surmise that src1 changes the down arrow to up arrow. Now, we can
link to the code associated with any of the DMG nodes we are interested in for
performing any changes during maintenance or debugging.

Fig. 6. The flow of the information pane and collapse button presented as a DMG; each node
corresponds to the entries from Table 2

6 Related Work

JavaScript Programming Tools
Due to the popularity of Ajax based applications, there is an increasing demand for
JavaScript programming tools. One representative tool for developing Ajax
applications is the Firebug [13] extension for the Mozilla Firefox browser. Using

272 P. Li and E. Wohlstadter

Firebug, a developer can simply click on a rendered element in the browser and be
hyperlinked to an expanded tree-view of the corresponding DOM element. Now, a
developer can inspect the low-level attributes of that specific DOM object and also
understand its context relative to its ancestor and children objects.

Although this practice is useful, Firebug still does not provide any help for the
developer to understand the connection between a DOM node and the JavaScript
which acts on the DOM. Essentially, our research addresses this mapping between the
DOM and JavaScript which is not addressed in existing practice.

GUI Maintenance
In [11], McMaster et al. present how to use calling context information collected
during a GUI program’s execution to solve the GUI test suite reduction problem (i.e.
finding a minimal satisfactory test set). Their research considers two GUI test cases to
be equivalent if they generate the same set of call stacks after execution. This new
call-stack coverage criterion can be used to address the challenges for GUI-intensive
applications, which are difficult to be handled by some other criteria such as
statement or branch coverage. Similar with their research, we also use calling context
to distinguish two artifacts. However, our research is used to resolve the ambiguity of
the different UI changes instead of GUI test cases, for example, accordion row
expanding and deflation.

In [17], Michail introduced a tool to provide GUI-guided browsing of source. Their
objective was to allow developers to find where in the code a feature was
implemented, based on how code was related to the GUI. For example, to find “spell
checking” code, they could locate the code which executed when the spell checking
menu was selected. Similar to our approach, they use a GUI as an entry-point into the
lower-level implementation details. However, they user the GUI to understand its
relation to other program features and not the GUI implementation itself.

Model-Based Approaches
Several projects looked into the possibility of recovering a high-level architecture for
a Web application from its implementation [4, 12]. In [4], Hassan and Holt describe a
set of semi-automated tools that parse the source code and binaries of Web
applications and extract relations between the different components to create a model.
Their model helps Web developers to understand the high level architecture of
traditional HTML and server-side template based Web applications.

Using a finite state machine model to present GUI behavior has been studied in [7].
Their paper describes a Java toolkit called SwingStates which is used to assist in the
development of GUIs for non-expert developers. The novel part of their research is
that they use finite-state machines to describe the behavior of interactive UI systems.
However, their research is concerned about how to create a user interface instead of
reversing engineering from an existing UI.

In [8], Shehady and Siewiorek introduced how to use a Variable Finite State
Machine (VFSM) interface model to present the behavior of the user interface. Each
node in the VFSM is the state of the GUI, and an edge represents the possible events
that can be triggered in that state. This model is useful for determining the flow of
user-triggered events which change the state of the GUI. In contrast, our model is

 Script InSight: Using Models to Explore JavaScript Code from the Browser View 273

useful for mapping the live DOM nodes which make up the GUI to implementation-
level statements.

Ali et al. introduces a tool called CrawlJax in [14]. Their research uses a dynamic
approach to crawl Ajax based applications by triggering the event handlers in the
code. After crawling, a state-flow graph is constructed. In this graph, each node
represents the snapshot of the DOM tree for a Web UI after some event handler is
triggered; each edge in the state-flow graph represents the clickable elements that
transform one state to another state. This state-flow graph can be used to provide
automated testing of Ajax applications. Similar to the research in the previous
paragraph, their research is not concerned with providing a mapping for a
programmer to the implementation level details of the UI.

7 Conclusion

In this paper we have studied the problem of JavaScript implementation complexity
for interactive Web UI. These details of the UI are easy to understand from the
perspective of the Web browser view but can be hard to map to the related code. We
proposed an approach which leverages execution history and calling context so that
developers can explore the code from the browser view. The DMG model was
introduced to present the obtained history and context information to developers for a
better understanding of the behavior of the UI. We presented some script complexity
metrics for popular Web sites to further motivate the need for our interactive script
development approach. We found that many of the sites that we measured included
significant complexity based on the number of calling contexts for a given statement.
To demonstrate how the DMG could help, we presented examples from the open-
source Java Pet Store Ajax application.

References

1. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A framework for
rapid integration of presentation components. In: Proc. of the International Conference on
the World-Wide Web (2007)

2. Trigueros, M.L., Preciado, J.C., Sánchez-Figueroa, F.: A Method for Model Based Design
of Rich Internet Application Interactive User Interfaces. In: Proc. of the International
Conference on Web Engineering, pp. 226–241 (2007)

3. Valderas, P., Pelechano, V., Pastor, O.: Introducing Graphic Designers in a Web
Development Process. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 395–408. Springer, Heidelberg (2007)

4. Hassan, A., Holt, R.: Architecture recovery of web applications. In: Proc. of the
International Conference on Software Engineering (2002)

5. Dojo JavaScript Toolkit, http://dojotoolkit.org/
6. jQuery JavaScript Library, http://jquery.com/
7. Appert, C., Beaudouin-Lafon, M.: SwingStates: adding state machines to Java and the

Swing toolkit. Softw. Pract. Exper. 38(11), 1149–1182 (2008)
8. Shehady, R.K., Siewiorek, D.P.: A Methodology to Automate User Interface Testing

Using Variable Finite State Machines. In: Proc. of the International Symposium on Fault-
Tolerant Computing, pp. 80–88 (1997)

274 P. Li and E. Wohlstadter

9. Java Pet Store, Sun Microsystems,
 http://java.sun.com/developer/releases/petstore/

10. Rhino JavaScript compiler framework. Mozilla,
 http://www.mozilla.org/rhino/

11. McMaster, S., Memon, A.M.: Call Stack Coverage for GUI Test-Suite Reduction. In: Proc
of the International Symposium on Software Reliability Engineering, pp. 33–44 (2006)

12. Ricca, F., Tonella, P.: Analysis and Testing of Web Applications. In: Proc. of the
International Conference on Software Engineering, pp. 25–34 (2001)

13. FireBug, http://getfirebug.com/
14. Mesbah, A., Bozdag, E., Deursen, A.V.: Crawling AJAX by Inferring User Interface State

Changes. In: Proc. of the International Conference on Web Engineering, pp. 122–134
(2008)

15. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A.: Refactoring to Rich Internet
Applications. A Model-Driven Approach. In: Proc. of the International Conference on
Web Engineering, pp. 1–12 (2008)

16. Meliá, S., Gómez, J., Pérez, S., Díaz, O.: A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In: Proc. of the International Conference on
Web Engineering, pp. 13–23 (2008)

17. Michail, A.: Browsing and searching source code of applications written using a GUI
framework. In: Proc. of the International Conference on Software Engineering (2002)

A Conceptual Framework for User Input
Evaluation in Rich Internet Applications

Matthias Book, Tobias Brückmann, Volker Gruhn, and Malte Hülder

Applied Telematics/e-Business Group, University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany

{book,brueckmann,gruhn,huelder}@ebus.informatik.uni-leipzig.de

Abstract. The more complex an application’s user interface is, the more
important is the need to guide users filling out the forms—typically by
highlighting invalid input, showing/hiding or enabling/disabling particu-
lar fields according to business rules. In Rich Internet Applications, these
reactions are expected to occur virtually immediately. We discuss aspects
to be considered for consistent reactions to user input, and describe how
evaluation rules can be formulated for model-driven development.1

1 Introduction

The user interfaces (UIs) of web-based information systems tend to mirror the
complexity of their underlying business processes: In areas as diverse as e.g. mar-
ket research, insurance claims or reinsurance underwriting, users need to enter
a lot of structured data that must obey a variety of domain-specific constraints.

To support users in working efficiently with complex forms, UIs typically react
to input with local changes in individual UI widgets (text fields, list boxes etc.)
such as making the user aware of invalid input by highlighting affected widgets,
decreasing visual complexity by hiding unnecessary widgets, or guiding users
by enabling or disabling input in particular widgets. Rich Internet Applications
(RIAs) enable instantaneous input evaluation and interface updates, and can
thus provide immediate feedback and guidance to users.

In this paper, we discuss the aspects that influence a UI’s reaction to user input
(Sect. 2), and present a behavior model that includes dependencies between
UI reactions such as handling incomplete input, prioritizing validation issues,
and considering visibility in validation (Sect. 3). For use in practice, we briefly
describe our Cepheus framework that automatically generates evaluation logic
following this model based on rules specified by domain experts, eliminating the
need for manual implementation (Sect. 4). We conclude with an overview of
related work (Sect. 5) and a summary of our contributions (Sect. 6).

1 This work was supported by a technology support grant from the European Regional
Development Fund (ERDF) and funds of the Free State of Saxony. The Applied
Telematics/e-Business Group is endowed by Deutsche Telekom AG.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 275–282, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

276 M. Book et al.

2 Specification of Input Evaluation

2.1 Interface and Data Model

A web application’s interface model is characterized foremost by the UI widgets
displayed on its pages. Often, multiple widgets will jointly describe a particular
semantic entity from the business domain (e.g. a group of radio buttons for 1-of-
n selection, or a group of text fields for entering elements of a postal address).
To model such relationships, we allow widgets to be contained in hierarchically
nested containers that also govern the layout of the interface’s pages.

To store the entered content, all widgets must be bound to variables in
the application’s data model. While widgets can only produce string input (as
this is the serialized format universally used to exchange data between web
application components), the data model’s variables have certain types (e.g.
Boolean, integer, floating-point, text, date etc.).

2.2 Evaluation Aspects and Rules

To formulate rules governing the evaluation of the information in the interface
and data model, several orthogonal aspects have to be considered: Evaluation
rules can serve different purposes—in this paper, we will focus on deciding
validity, visibility, and availability of widgets, which are usually closely tied to
UI reactions such as highlighting violating widgets, hiding invisible widgets,
and disabling (e.g. “graying out”) unavailable widgets, respectively.2

At the core of each evaluation rule must be an expression that describes
the actual evaluation of certain values in order to arrive at a decision for one
of the above purposes. While such an expression may consist of nested terms
performing comparisons, arithmetic, boolean or string operations on literals or
variables from the data model, it must ultimately resolve to a boolean value
indicating the outcome of the decision.

Regardless of its purpose, any evaluation rule must relate to certain subjects
on which the respective reaction shall be effected. For increased flexibility, we
allow that subjects can not only be individual widgets, but also groups of widgets
contained directly or transitively in a particular container. Note that the subject
widgets do not necessarily need to correspond to the expression’s input variables.

For the purpose of input validation, we must consider several additional char-
acteristics. First, we can distinguish several levels of validation that depend on
each other: The most basic level is checking for the existence of any input in
a required field. Next, the technical check concerns whether a particular input
string can be converted to the associated variable’s type. Finally, performing
any domain-specific validation of the input is only sensible if the previous two
validation levels were satisfied.
2 We can also conceive other purposes of user input evaluation, such as deciding on

navigation options. However, we will focus on the above-mentioned purposes here
since their reactions are more interrelated with each other, and they pose more
interesting challenges in RIAs as they may impact a page’s Document Object Model
immediately, as opposed to navigation choices.

A Conceptual Framework for User Input Evaluation 277

Our experience shows that in practice, it may be inconvenient or even impos-
sible for the user to satisfy all validation rules immediately—rather, we identified
four common triggers upon which different sets of validation rules can be sensi-
bly checked and enforced: Validation may occur upon a widget’s “blurring” (i.e.
losing focus) when the cursor is moved to another widget; upon leaving a page
in order to jump to the next or previous page in the dialog; upon saving the
data entered so far as a draft version, in order to prevent data loss or continue
working on the dialog at a later time; and finally upon committing all entered
data in order to complete a task in a business process. By staging the validation
through associating rules with appropriate triggers, developers can strike a bal-
ance between business requirements and usability considerations, ensuring data
integrity while maintaining users’ flexibility in working with the application.

In a similar vein, experience shows that typically not all rule violations are
equally serious: Depending on the business semantics of a rule, developers may
choose to associate a certain severity to it. We distinguish informative, warning
and error rules in our evaluation specification, in order to tailor the interface’s
reactions to different severities, as we will see in the following section.

When formulating input evaluation rules, developers need to specify all of the
above aspects (expression, subjects, level, trigger and severity) for the purpose of
validation. In visibility and availability rules, only the expression and subjects
must be specified, as their evaluation is always triggered immediately upon a
widget’s blurring, and we cannot distinguish different levels and severities.

3 Behavior of Input Evaluation

Having introduced the elements of input evaluation rules that developers need to
specify at design-time, we will now discuss how these static specifications govern
the dynamic behavior of an application at run-time, and how different rules affect
each other. Anytime an evaluation is triggered, we need to (1) update the data
model with the contents of those widgets that are technically valid; (2) validate
the data model according to domain rules, and update the list of known issues;
and (3) update the UI to reflect visibility, availability and issues of widgets.

In the following subsections, we will describe these steps in more detail. In
this process, three data structures will be dynamically updated at run-time: The
contents currently entered into the widgets of the interface model, the values
currently stored in the variables of the data model, and the identified issues, i.e.
the subset of all validation rules that are currently violated by any given input.

3.1 Data Model Update

Any time an evaluation is triggered (i.e. upon leaving a field or a page, or before
saving or committing the dialog’s data), we first need to update the data model
according to the contents entered into the widgets affected by the trigger. The
evaluation logic needs to implement the following algorithm for this purpose:

278 M. Book et al.

IF a widget is visible AND contains input THEN
IF the input has the expected type THEN

store the input in the variable associated with the widget
ELSE leave the associated variable’s current value unchanged

ELSE render the associated variable undefined

This way, we ensure that input is only included in the data model if its type is ac-
tually suitable for storage there; that incorrect input cannot overwrite previously
stored data; and that any absence of input is reflected in the data model.

3.2 Data Model Validation

In the previous step, we have ensured that only technically sound input (i.e.
input of the proper type) is accepted into the application’s data model. Now, we
still need to check if that data complies with the existence and domain-specific
rules, and potentially signal any validation issues.

Existence Validation. When checking existence validation rules, we must not
just check for the presence of content in a widget, but also take into account
whether that widget is actually visible: We define that an existence rule is satis-
fied iff the respective widget contains input or is invisible. By taking the visibility
into account when checking required fields, we eliminate the need for the devel-
oper to explicitly specify this connection in every rule, as it would be nonsensical
to require input in a field we have hidden.

Domain-Specific Validation. When checking domain-specific properties, we
need to arrive at a validation result in a way that takes both business rules and
usability factors into account: In complex forms, subjects to which the validation
pertains may be invisible, or variables on which the validation depends may
still be undefined as the user makes his way through the form. We therefore
define that a domain-specific validation rule is satisfied iff its expression evaluates
to true or all its subjects are invisible. In evaluating the rule’s expression, we
should strive to arrive at a meaningful result even if some of the input variables
are still undefined. In our model, any non-Boolean term that encounters an
undefined parameter will therefore return an “undefined” result. In a Boolean
OR term, meanwhile, we consider undefined parameters as false values, and in a
Boolean AND term, as true values, in order to let the result depend only on the
other operand, thereby neutralizing the undefined part of the expression. This
way, a term that returns an undefined result due to missing input parameters
has no effect, so any empty widgets are not validated until they are filled—
a behavior that we would intuitively expect from a dialog that is not yet filled
completely. (Of course, an empty widget declared as required input would already
be reported as invalid by the existence rules discussed before.)

Issue Tracking. To react to all validation issues consistently, regardless of when
they occurred, we keep track of all rule violations in a central set. Anytime an
evaluation is triggered, we perform the following two updates on this set:

A Conceptual Framework for User Input Evaluation 279

1. add rules just found to be violated upon this triggering occasion
2. remove rules found to satisfied

By considering the triggering occasion when adding, but not when removing
issues, we ensure that rule violations are not admonished until the time deemed
appropriate by the developer, but that they are removed immediately when
the violation is remedied. We found this behavior more intuitive for users than
maintaining an old error message until the next trigger occasion, even when the
user had already fixed the problem.

3.3 User Interface Reaction

Finally, our behavior model must define how the UI reacts to the various condi-
tions that arise from validation results, visibility and availability of widgets:

IssueNotifications. We found it intuitive to signal validation issues in two ways:
At the top of each page, the UI displays a concise list of human-readable expla-
nations for all violations that were identified on the current and other pages. In
case a particular set of subjects violates several rules, we display only the most se-
vere issue to reduce clutter. To further aid the user in identifying invalid input, we
highlight the respective widgets in a color corresponding to the severity (e.g. red
for errors, orange for warnings, blue for information). Two relationships influence
this coloring scheme: Firstly, if the subject of a rule is not an individual widget,
but a container, the issue is assumed to apply to all directly and transitively con-
tained widgets, which are all colored accordingly. Secondly, if a subject is affected
by several issues (through several rules or inclusion in an affected container), it
will be colored according to the most severe issue applying to it.

Visibility. In formulating the evaluation algorithms earlier, we have already
relied on an indication of whether a particular subject is currently visible, but
still need to define precisely how that decision is made: For any given subject (i.e.
widget or container), we define that it is visible iff all visibility rules applying
directly to it are satisfied, and if the container that it is contained in is visible.
Note that this condition implies transitive dependency on the visibility of all
containers in a subject’s nesting hierarchy, allowing developers to conveniently
hide or show whole groups of semantically related widgets if necessary.

Availability. Whether a widget is “grayed out” or editable is determined by
availability rules that are specified and evaluated analogously to visibility rules.
While visibility affects the data model, availability is a pure interface reaction
that does not affect how data is validated or stored. The navigation buttons
found on each page (typically, for navigating forward and backward in a dialog
wizard, saving a draft of the current data, or committing it for further processing)
are a special case insofar as they are implicitly associated with availability rules
that do not need to be specified by developers: While a page contains validation
errors triggered by leaving a field, the “previous page” and “next page” buttons
are unavailable; while errors triggered by leaving a page are present, the “save

280 M. Book et al.

draft” button is unavailable; and during the presence of errors triggered by trying
to save a draft, the “commit” button is unavailable, to prevent entering, storing
or committing invalid input.

4 Implementation

The input evaluation logic described in the previous section was implemented in
our Cepheus framework that generates presentation, validation and persistence
logic from models created by domain experts in a visual editor. As Fig. 1 shows,
views (based on the ICEfaces framework [1]) and evaluation rules are derived
from the specifications at deploy-time. At run-time, the views will trigger val-
idation, visibility and availability checks based on the specified rules and the
values entered into the data model, and update the presentation accordingly by
highlighting, showing, hiding or graying out the GUI widgets.

Issues

Rules

Data ModelSpecifi-
cation Expression Resolver

Validation AvailabilityVisibility

Views
generated from

generated from uses

use

use

subset of

updates

uses

Fig. 1. Architectural overview of input evaluation in Cepheus

The screenshot in Fig. 2 illustrates an example system’s behavior, where the
visibility of the last three questions depends on the answer to the first question,
and the allowed expenses have been limited to a certain amount that is exceeded
here. Any changes in the input fields that affect the visibility or validation rules
are immediately reflected in the user interface.

At this time, we have only anecdotal data about the time and effort savings
that can be gained when using the Cepheus editor and framework instead of
manual implementation. Initial experiences from employing a Cepheus prototype
in an industry project from the market research sector (which is characterized
by the need for frequent roll-outs of new web-based questionnaires) back our
expectations that enabling domain experts to specify user interface layout and
validation directly can reduce the time to market, since no transfer of domain
knowledge to application programmers is required. Regarding performance im-
plications, we do not expect a significant impact since all necessary rule-checking
code is generated at deploy-time, so no expensive parsing occurs at run-time.

5 Related Work

Virtually all approaches for modeling and developing web applications provide
means for realizing some form of input validation. To name just a few, in

A Conceptual Framework for User Input Evaluation 281

Fig. 2. Screenshot excerpt from a Cepheus-based application

WebML [2], validity predicates are properties of entry units in the hypertext
model, using an expression language that supports comparisons of input fields
with constants or other field contents. UWE [3] enables designers to specify when
and where fields should be validated in its process flow and process structure
models, but leaves the actual implementation of these rules to the developer.
OO-H [4] provides means for validating the type of input fields; its “visible” and
“hidden” attributes however have slightly different semantics from our approach.

Recently, these approaches have also been extended to support the modeling
of RIAs: Comai and Toffetti Carughi [5] discussed how to extend WebML to
capture more fine-grained user interaction with page elements; Meliá et al. [6]
introduced corresponding structural and behavioral models in OOH4RIA; and
Preciado et al. [7] combined UWE with the RUX-Method, an approach that fo-
cuses especially on the spatial, temporal and interaction aspects of Rich Internet
Applications [8]. However, the validation models do not seem to have changed
in the extension of these approaches’ scopes.

Looking at representatives of popular web application frameworks, Struts pro-
vides a number of built-in validators for simple type and range checking, and
allows the formulation of more flexible expressions in the validator.xml file
[9]. In Spring, developers can provide custom validation classes implementing
the Validator interface [10]. The Seam framework [11] relies on constraints de-
fined in the data model using the Hibernate Validator. Common AJAX frame-
works such as ICEfaces [12] or RichFaces [13] typically provide means for adding
validation rules at different points in the request lifecycle as well.

While all approaches provide hooks for validation rules, their actual formula-
tion is typically so technical that it requires a developer’s rather than a domain
expert’s skills. In particular, any interdependencies between rules (e.g. visibility
vs. validation, or the handling of different issue severities), are not supported by
these models and frameworks themselves, but must be implemented explicitly.

6 Conclusion

In this paper, we identified several aspects that have to be considered in the eval-
uation of user input in RIAs for the purpose of technical and domain-specific
input validation, widget visibility and availability. We have shown how these
aspects are entwined with each other, and how they are incorporated in the
Cepheus framework that generates user input evaluation logic automatically,

282 M. Book et al.

based on specifications that can be visually modeled by domain experts without
the need for programmer assistance. We expect this approach to reduce imple-
mentation and maintenance efforts for RIAs considerably, and are striving to
obtain more practical evidence to support this hypothesis.

References

1. ICEsoft Technologies, Inc.: ICEFaces, http://www.icefaces.org
2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling

language for designing Web sites. Computer Networks 33, 137–157 (2000)
3. Koch, N., Kraus, A.: The expressive power of UML-based web engineering. In:

IWWOST 2002: Proc. 2nd Intl. Workshop on Web-oriented Software Technology,
pp. 105–119 (2002), http://www.dsic.upv.es/~west/iwwost02/papers/koch.pdf

4. Gómez, J., Cachero, C., Pastor, O.: Conceptual modeling of device-independent
web applications. IEEE Multimedia 8(2), 26–39 (2001)

5. Comai, S., Carughi, G.T.: A behavioral model for Rich Internet Applications. In:
Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp.
364–369. Springer, Heidelberg (2007)

6. Meliá, S., Gómez, J., Pérez, S., Dı́az, O.: A model-driven development for GWT-
based Rich Internet Applications with OOH4RIA. In: ICWE 2008: Proc. 8th Intl.
Conf. on Web Engineering, pp. 13–23. IEEE Computer Society Press, Los Alamitos
(2008)

7. Preciado, J.C., Linaje, M., Morales-Chaparro, R., et al.: Designing Rich Inter-
net Applications combining UWE and RUX-Method. In: ICWE 2008: Proc. 8th
Intl. Conf. on Web Engineering, pp. 148–154. IEEE Computer Society Press, Los
Alamitos (2008)

8. Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.: A method for model based design
of Rich Internet Application interactive user interfaces. In: Baresi, L., Fraternali,
P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 226–241. Springer,
Heidelberg (2007)

9. Apache Software Foundation: Struts Validator Guide,
http://struts.apache.org/1.2.4/userGuide/dev_validator.html

10. SpringSource: Validation, Data-binding, the BeanWrapper, and PropertyEditors,
http://static.springframework.org/spring/docs/2.0.x/reference/
validation.html

11. Red Hat Middleware, LLC: JSF form validation in Seam,
http://docs.jboss.org/seam/1.1GA/reference/en/html/validation.html

12. ICEsoft Technologies, Inc.: How to Use Validators,
http://facestutorials.icefaces.org/tutorial/validators-tutorial.html

13. Red Hat Middleware, LLC: rich:ajaxValidator,
http://www.jboss.org/file-access/default/members/jbossrichfaces/
freezone/docs/devguide/en/html/ajaxValidator.html

http://www.icefaces.org
http://www.dsic.upv.es/~west/iwwost02/papers/koch.pdf
http://struts.apache.org/1.2.4/userGuide/dev_validator.html
http://static.springframework.org/spring/docs/2.0.x/reference/validation.html
http://static.springframework.org/spring/docs/2.0.x/reference/validation.html
http://docs.jboss.org/seam/1.1GA/reference/en/html/validation.html
http://facestutorials.icefaces.org/tutorial/validators-tutorial.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/html/ajaxValidator.html
http://www.jboss.org/file-access/default/members/jbossrichfaces/freezone/docs/devguide/en/html/ajaxValidator.html

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 283 – 291, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Patterns for the Model-Based Development of RIAs*

Nora Koch1,2, Matthias Pigerl3, Gefei Zhang1, and Tatiana Morozova1

1 Ludwig-Maximilians-Universität München, Germany
2 Cirquent GmbH, Germany

3 S.CO LifeScience GmbH, Germany

Abstract. Rich Internet Applications (RIAs) are highly interactive web
applications that resemble desktop applications. Modeling RIAs hence requires
techniques for web modeling enriched by model elements for powerful user
interactions and client-server communications. Many existing approaches
provide the required modeling features, but they are still failing short in
designer-friendliness and effectiveness. We present a pattern approach for the
model-based engineering of RIAs that (1) reduces design efforts maintaining
expressiveness of the models, and (2) contributes to model-driven development
of RIAs. Our RIA patterns can be easily embedded in existing web modeling
methods, which is illustrated with the UML-based Web Engineering.

1 Introduction

Rich Internet Applications (RIAs) are web applications augmented with desktop
features and mechanisms of advanced communications. The rich look and feel, better
responsiveness, performance, and accessibility enthuse both users and software
providers. RIAs improve user interaction facilities like drag&drop, multimedia
presentations and avoid unnecessary page reloading. Data handling and operations
executed on the client side minimize server requests.

RIAs use the power of client and server and can be implemented using different
techniques, such as Asynchronous Javascript with XML (AJAX) for which a set of
frameworks have been developed (Flex, Ruby on Rails, etc.). Frameworks are quite
helpful for programming, but the development of software requires also support for
other phases like design and testing. In particular, model-driven development requires
building models during the design and using models as sources of transformations to
generate other models or running code. In this paper we focus on modeling RIAs.

Different modeling approaches for RIAs were developed as extensions of existing
methods during the last few years (see Sect. 5). The extensions proposed so far
consist of creating new model elements for the new RIA features, such as the
validation of an input field value as soon as the user moves the mouse out of it.
However, they do not alleviate the designer’s work, i.e. provide the appropriate model
elements of frequent use in the domain with precisely defined semantics.

* This research has been partially supported by the projects MAEWA II (WI841/7-2) of the

DFG, Germany, and the EC 6th Framework project SENSORIA (IST 016004).

284 N. Koch et al.

Patterns have proved valuable for efficient RIA programming [7]. We propose to
apply patterns at a higher abstraction level, i.e. modeling, to achieve the objectives of
minimizing the design efforts and maximizing the expressiveness of the models used
in the development of RIAs. Our focus is on the use of state machines for the
representation of the patterns – a widely used modeling technique. The models of the
RIA patterns we specify can be embedded in almost all existing methodologies. In
this sense, it is a general approach for all UML conform methods. The use of these
RIA patterns only requires the definition of extension points in the methodology, and
afterwards the specification of how to integrate the patterns, which makes our patterns
easily reusable. In this paper and for demonstration purposes only, we use the UML-
based Web Engineering (UWE) [4] as the hosting language.

This paper is organized as follows: Section 2 describes the industrial case study
S.CORE used to validate the approach. Section 3 presents RIA patterns. Section 4
describes the integration of RIA patterns in the development using existing web
modeling methods; the procedure is illustrated by UWE. In Section 5 we discuss
some related work. Section 6 concludes and provides some ideas for future work.

2 Real World Case Study: S.CORE System

Our approach was validated in a real case study: the S.CORE application of the
company S.CO LifeScience [11]. S.CORE is a web-based image analysis system.
Since the complete service of image analysis is offered totally through the web, no
software needs to be downloaded. S.CORE offers standard analysis modules such as
cell counting, as well as customized solutions tailored to the customers’ need for
enumerating, measuring and statistical quantification of images. S.CORE is mainly
used in the lifescience area.

Fig. 1. Image analysis by S.CORE system

The image analysis process supported by S.CORE is shown in Fig. 1. It consists of
the following steps: (1) The customer obtains and prepares the digital images of his
samples with the appropriate technical tools in his laboratory. (2) With the help of
S.CORE, which has a web-based human-machine interface, configured to the specific
requirements of the customer, he can upload the images and specifications for
performing the desired analysis type in the processing center of S.CO LifeScience. (3)
The images are loaded automatically into the Analyzer of S.CORE, where the desired

 Patterns for the Model-Based Development of RIAs 285

data is extracted from the image and made available on the server. (4+5) The
customer can download the results (including the processed image).

Within a collaboration between the Ludwig-Maximilians-Universität München and
S.CO LifeScience, the S.CORE system was augmented with Web 2.0 features. This
improved the user-friendliness of S.CORE. In particular, input fields supported by
auto-completion, the progress of the upload and download functions visualized,
images to be analyzed presented as a gallery of images, the result page should show
the current status of analysis results. These Web 2.0 features challenged the design of
the system with UWE.

3 RIA Patterns

Best practices for the implementation of RIAs include the use of RIA patterns. A RIA
pattern is a general reusable solution to a commonly occurring problem in RIA
design. It describes the interaction, operation and presentation of a RIA widget [12].
The interaction is the trigger of the RIA pattern, i.e. every pattern starts with a user
event or a system event, e.g. mouseover, onfocus, keyboard stroke or time event. A
variety of operations can be triggered by the interaction, such as validate, search and
refresh. Finally, the result of the operation implies an update of the user interface.

Bill Scott emphasizes that patterns are great for forming a design vocabulary [12].
However, we stress that these patterns if appropriately generalized and modeled, are
more powerful as they could be integrated in the models already built for other
concerns of a web application, e.g. presentation and process. This means that the
models of the RIA patterns are solutions that could be reused in the development of
RIAs. Reuse can be performed manually or in an automated development process,
such as model-driven development by model-to-model transformations.

Our pattern-based approach for implementing RIAs then consists in the use of the
models of RIA widgets and the embedding of these models of RIAS into the other
existing models. Therefore the designer needs (1) models of the patterns describing
the RIA features, (2) an event language for the representation of user and system
events, (3) model elements to be integrated in the existing web application models,
such as the presentation model to indicate which pattern should be applied in which
case. Our pattern approach compared to other RIA modeling techniques concern only
the abstract presentation. Concrete presentation issues, like multimedia, animation,
etc., are handled in the concrete presentation model, for further details see [5]. The
separation of abstract and concrete presentation is essential to an MDD process since
the abstract presentation model can be easily reused for other platforms [10].

An event language is defined, which includes constructs such as mouseover,
onblur, onfocus, onclick, etc. A RIA pattern catalog is created which contains RIA
patterns for modern web applications used in S.CORE reference projects [9]. Note
this catalog is not exhaustive. It is an open document, which will grow up in the way
RIA patterns become more familiar. We illustrate our approach presenting in the
following two patterns of the catalog [9].

Auto-Completion. A S.CORE user has to deal with a lot of forms and input fields,
There are forms for analysis parameter, search masks or user registration. Similarly to
forms of other web applications, some input fields ask for redundant data or data

286 N. Koch et al.

which could be identified after entering the first characters. Unnecessary work would
be burdened to the user if he had to fill in every input field. Therefore the application
should fill in redundant input fields automatically. Here some examples to concretize
the scenario: When a user starts entering the image name, the system should find the
analysis name automatically if this image only exists in one analysis (Fig. 3).
Obviously all data captured by application logics could only be suggestions in order
to allow a better usability. The user is still the last instance for checking the
correctness of the suggested data. Therefore he should be able to overwrite every
auto-completed input field.

Problem. How could the user of a RIA get an immediate suggestion for values in an
input field, after he has entered some initial data or has filled in other related fields?

Motivation. Assistance by filling in input fields and forms. (1) People make mistakes
when they type. (2) Typing in data is a tedious work. (3) Typing speed remains a
bottleneck; faster user input is aimed by reducing the number of keystrokes.

Fig. 2. RIA Pattern auto-completion (UML state diagram)

Solution. Suggest words or phrases that are likely to complete what the user is typing.
As soon as the user moves to another input element or even as soon as the user inputs
a character, the RIA in the background will try to query databases and find relations
to already entered data. If such data could be found and the user has not yet completed
it himself, a completed value for the input field is suggested to user. Fig. 2 shows the
general pattern for auto-completion: on source (e.g. analysis name) losing focus
(onblur), the RIA goes into the state Update to get the relevant data (image name),
and then to update the corresponding content of itself. Note that the user can
overwrite the suggested value as the widget remains in the WaitForInput state.

Examples. (1) Online banking. (2) Sixt car rental system (www.sixt.com).

Periodic/Dynamic Refresh. An S.CORE user can upload several microscope images
for image analyses in order to extract statistical data from the uploaded images. Thus
inside S.CORE there is a status page where the user can monitor the status and check
the approximate finishing time of every analysis process. During the analysis the
process runs through different states and also the approximation of the finishing time
could change due to unpredictable analysis process events or other analysis with a
higher priority being started. The status page should always provide correct and up-to-
date information without a permanent reload of the whole page, i.e., change the list of
analysis that are currently running, the remaining time for finishing the analysis and
the options selected according to the state and type of analysis (Fig. 3).

 Patterns for the Model-Based Development of RIAs 287

Fig. 3. S.CORE: Analysis status page

Problem. How could the data embedded in a status page stay permanently updated
without reloading the whole page?

Motivation. The status of the page has to be updated dynamically and permanently.

Solution. Periodically a request has to be executed to check if there is new data
available. If so, this data has to be processed and the connected data element at the
page updated or a new data element created.

Examples. (1) Flight status at Munich airport pages (www.munich-airport.de). (2)
Goals during a soccer game at Spiegel online (www.spiegel.de).

Fig. 4. RIA Pattern periodic refresh (UML state diagram)

4 Embedding RIA Patterns in Existing Web Methods

RIA patterns can be embedded in almost all existing methodologies to achieve
considerable reduction of modeling and programming efforts. Our approach requires:
(1) definition of extension points in the methodology for including references to RIA
functionalities, (2) use of the state machines of the RIA patterns defined in Sect. 3, (3)
definition of transformation rules that automatically integrate the behavior defined in
the state machines into the models or code of the web application (for model-driven
approaches only). Hence, a web developer using our approach only needs to indicate
for which user interface (UI) objects of the web application a specific RIA pattern
should be applied. He does not need to model the behavior of these UI objects as it is
already specified by the state machines. He will afterwards use the state machines,
integrating them in the models of the web application. If an automated generation
process is followed, e.g. a model-driven approach, the developer will use a set of

288 N. Koch et al.

model transformation rules that automatically add the corresponding behavior defined
by the RIA pattern. This procedure and the advantages for the developer are made
even clearer by the examples given in the next paragraphs. The use of state machines
for the specification of the RIA patterns – a widely used modeling technique – makes
the approach easily embeddable. In this paper and for demonstration purposes only,
we use UWE as the hosting language, which is extended by RIA patterns.

UML-based Web Engineering. UWE [4] is a method for systematic and model-
driven development of web applications. UWE follows the principle of “separation of
concerns” by modeling the content, the navigation structure, the business processes,
and the abstract and concrete presentation of a web application separately. The model-
driven approach implemented by UWE is based on model transformations [1] that
generate platform specific models from platform independent models and running
programs based on these models [5]. UWE’s outstanding feature is its reliance on
standards: the modeling language is defined as a UML profile using the extension
mechanisms provided by the UML. Model transformations are defined in ATL [5]
and generate in the last step of the development process a JSF-based web application.

RIA Patterns in the Design with UWE. The objective of an extension covering a
new concern is to augment the expressive power of the modeling language. The
inherit risk is that successive extensions may end up with a powerful but not anymore
intuitive language. Therefore, one of the main goals of UWE is minimalism and
conciseness: web engineers should have to provide as much information as necessary
for the generation of code, and as little as possible in order to keep diagrams readable.

Fig. 5. Extended metamodel of the UWE Presentation Layer

In this sense, our RIA patterns are ideal constructs that provide a specification of the
RIA behavior. The specification is given by a UML state diagram as shown in Sect. 3
for auto-completion and periodic refresh. The web engineer does not need to model
this behavior each time to define such a RIA feature. It only remains to specify

 Patterns for the Model-Based Development of RIAs 289

for which UWE elements the auto-completion, the live validation, the period-refresh,
etc. apply. This annotation is performed by tags added to existing model elements. A
tag at model level implies the definition of a meta-attribute at metamodel level. Fig. 5
shows the metamodel for the presentation package of UWE, providing an overview of
all meta-attributes defined so far in the UWE extension for RIAs. It shows how we
embed RIA patterns in UWE.

The extension comprises: (1) the liveSearchCondition meta-attribute for uiElement,
i.e. for all model elements that inherit form uiElement, (2) the meta-attributes
drag&drop, collapse and carrousel for all presentationGroups, (3) live-Report for value-
Elements, (4) meta-attributes liveValidation and autoCompletion for inputElements,
(5) meta-attributes periodicRefresh and gallery for outputElements. In addition a new
composition association was added to meta-class Selection providing the facility of an
object to be on the one side multiple selectable and on the other side comprise a set of
objects which are single selectable. Fig. 6 shows auto-completion of the image search
and periodic refresh of the analysis status page.

Fig. 6. S.CORE presentation model of analysis status page (excerpt)

5 Related Work

The need of an engineering support for RIA development has been recently addressed
by several methods. New model-driven methods for designing RIAs are proposed by
e.g. [2]. This method employs interaction spaces, tasks models and state machines.
Disadvantage is that in case of reengineering web applications requires modeling
from scratch. Several existing method have been extended for modeling RIAs.
Toffetti et al. [13] focus on client or server side actions in data-intensive and
collaborative RIAs describing events explicitly in WebML. In [14] issues related to
behavior, single-page paradigm and content composition are treated extending
OOHDM. UWE-R [6] is a light-weighted extension of UWE for RIAs, covering
navigation, process and presentation aspects. In contrast to our work, UWE-R uses
stereotypes for many of the extensions instead of meta-attributes. OOH4RIA [8]
extends the OOH method introducing new model elements and applying to them new

290 N. Koch et al.

transformations. These extensions do not focus on reuse and integration of RIA
features in applications automatically.

Another type of approach combines modeling of a web application with an exiting
method, such as in [10] where UWE is complemented with the RUX method for the
UI design. The approach consists of the transformation of UWE presentation model to
a RUX abstract interface model (AIM), which is afterwards enriched with typical RIA
user interface actions. In this approach RIA features are introduced into models at a
lower level of abstraction than in the current approach. Moreover, RIA requirements
and code library based on best practices are also available, like [12].

6 Conclusions and Future Work

We have presented patterns in the form of UML state machines for modeling RIAs.
Our approach is general as it can be used on top of virtually every UML conform
language. Future work based on our patterns includes an extension of the modeling
tool for UWE, MagicUWE (uwe.pst.ifi.lmu.de/toolMagicUWE.html), to support the
notation and the integration of the RIA patterns. Furthermore, we plan to extend our
work on validating web design models by model checking [3] to cover our patterns,
too. The implementation of our real world case study S.CORE was performed by
manual translation of the RIA patterns to code. We also plan to implement model-
driven code generation out of our patterns using the JSF framework [5].

References

[1] ATLAS Transformation Language & Tool,
 http://www.eclipse.org/m2m/atl/doc/

[2] Dolog, P., Stage, J.: Designing Interaction Spaces for Rich Internet Applications with
UML. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607,
pp. 358–363. Springer, Heidelberg (2007)

[3] Knapp, A., Zhang, G.: Model Transformations for Integrating and Validating Web
Application Models. In: Proc. MOD 2006, LNI P-82, pp. 115–128, GI (2006)

[4] Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based Web Engineering: An
Approach based on Standards. In: Web Engineering: Modelling and Implementing Web
Applications, HCI (12), ch. 7, vol. 12, pp. 157–191. Springer, Heidelberg (2008)

[5] Kroiss, C.: Model-based Generation of Web Applications with UWE Diploma thesis (in
German). LMU (2008)

[6] Machado, L., Filho, O., Ribeiro, J.: UWER: uma extensão de metodologia em Engenharia
Web para Rich Internet Applications. II Simpósio de Informática da PUCRS, RS. Hifen
Magazine 32(62), 205–212 (2008)

[7] Mahemoff, M.: Ajax Design Patterns. O’Reilly, Sebastopol (2006)
[8] Meliá, S., Gómez, J., Pérez, S., Díaz, O.: A Model-Driven Development for GWT-based

RichInternet Applications with OOH4RIA. In: Proc. of ICWE 2008, pp. 13–23. IEEE,
New York (2008)

[9] Morozova, T.: Modeling and Generating Web 2.0 Applications. Diploma thesis (in
German). LMU (2008)

 Patterns for the Model-Based Development of RIAs 291

[10] Preciado, J.C., Linaje, M., Morales, R., Sánchez-Figueroa, F., Zhang, G., Kroiss, C.,
Koch, N.: Designing Rich Internet Applications Combining UWE and RUX-Method. In:
Proc. of ICWE 2008, pp. 148–154. IEEE, New York (2008)

[11] S.CO LifeScience, http://www.sco-lifescience.de/ (Last visited 17.04.2009)
[12] Scott, B.: RIA Patterns. Best Practices for Common Patterns of Rich Interaction,

 http://www.uxmatters.com/mt/archives/2007/03/
 (Last visited 10-02-2009)

[13] Toffetti, G., Comai, S., Bozzon, A., Fraternali, P.: Modeling Distributed Events in Data-
Intensive Rich Internet Applications. In: Proc. of ICWE 2007. LNCS, vol. 4607, pp. 593–
602. Springer, Heidelberg (2007)

[14] Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich
Internet Applications. In: Proc. of LA-Web 2007, pp. 144–153. IEEE, Los Alamitos
(2007)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 292–299, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Adapting the Presentation Layer in
Rich Internet Applications

Irene Garrigós1, Santiago Meliá 1, and Sven Casteleyn2

1 Universidad de Alicante, Campus de San Vicente del Raspeig,
Apartado 99 03080 Alicante, Spain

{igarrigos,santi}@dlsi.ua.es
2 Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2,

1050 Brussel, Belgium
Sven.Casteleyn@vub.ac.be

Abstract. Rich Internet Applications offer Web surfers a richer user
experience, mainly due to better responsiveness and enhanced user interface
capabilities. In recent years, existing design methodologies targeting traditional
Web 1.0 applications were extended to also support RIAs. These extensions do
not yet cover all design concerns typically encountered in state-of-the-art Web
applications. One yet unsupported aspect is the personalization of content and
presentation to the specific user and his/her context, exploiting the extra
capabilities offered by RIAs. This article addresses this hiatus and presents an
extension of the OOH4RIA approach to include presentation personalization
support, focusing on Rich Internet Applications.

1 Introduction

Rich Internet Applications are an answer to the growing demand for Web applications
offering better responsiveness and an extended UI experience. They keep the middle
between the traditionally sober (HTML-based) Web applications and the interface,
interaction and functionality capabilities of traditional desktop applications.

When designing and implementing Rich Internet Applications, several new
requirements and concerns come into play [1, 13], complicating the task of a Web
engineer. The Web engineering community is well-aware of these difficult challenges,
extending the design methodologies that target traditional Web 1.0 applications to also
support RIAs [2, 5, 9, 12]. However, due to their relative recentness, these extensions
do not yet cover all design concerns usually encountered in state-of-the-art Web
applications. One yet unsupported aspect is the personalization of content and
presentation to the specific user and his/her context, specifically for RIAs. UIs of RIAs
are typically dependent on the context device rendering them and vulnerable to the
limitations they impose: limited screen size, more difficult interaction and poorer
multimedia support. In this paper, we aim to overcome some of these problems by
personalizing the UI depending on the specificities of the device (i.e. the device
context). This device context personalization must consider two important aspects: (1)
an interface re-organization to fit the UI layout to the device dimensions, and (2) the

 Adapting the Presentation Layer in Rich Internet Applications 293

transformation of some origin widgets into specific widgets that work more efficiently
in the target device.

With this goal in mind, we present an extension to an existing RIA design method
called OOH4RIA [5, 8], to support personalization of the RIA user interface for
different devices. OOH4RIA defines a model-driven development process based on a
set of models and transformations allowing to easily introduce new concerns to the
RIA development process. We thus adapt the OOH4RIA process by (1) introducing
new personalization models (such a User Model and personalization rules), (2)
defining transformations that reduce the effort to redefine new presentation models
for each device . These extensions process allows us to obtain different device-aware
versions of the same RIA project.

The remainder of this paper is organized as follows. Section 2 discusses how
personalization gets differenced in RIA from traditional Web applications and
outlines related approaches. Section 3 presents the extensions done in OOH4RIA to
integrate personalization. Section 4 presents the main contribution of the paper: the
personalization of the RIA user interface to different contexts. Finally, Section 5
provides conclusions and future research lines.

2 Personalization: From Traditional Web Applications to RIAs

Personalization has been intensively studied in traditional Web application methods.
Typically, content, navigation and presentation are personalized to tailor to the
specific user based on his/her preferences, characteristics, context and browsing
behavior. Traditional Web applications limit the possibilities to track the user
browsing to the requests performed to the server. RIAs provide new client-side
capacities, new presentation features and different communication flows between the
server and client side. These differences with respect to traditional Web applications
must be taken into account in RIAs design, as well as in the specification of
personalization strategies.

RIA applications provide richer and more interactive user interfaces, similar to
desktop applications. They offer multimedia native support (i.e. no plug-ins are
needed to show video and audio) and support animations. As a consequence, from a
personalization point of view, the layout and look-and-feel of the application can be
personalized but also the system’s reaction to user interaction has to be specified
accordingly. Recently, existing Web design methodologies were extended to also
support RIAs. The most relevant ones are (1) OOHDM [12] which provides the use of
ADVcharts to model widget interaction. (2) WebML which extends its conceptual
modeling primitives for RIA’s [2] and provides support for distributed event-driven
RIA’s and specific interaction patterns typically occurring in RIAs. (3) RUX [9], a
method independent presentation framework for RIAs tackling presentational
specificities of RIAs. RUX has been applied to WebML and UWE, lending its
presentational capabilities to these approaches and (4) OOH4RIA which we will
extend and use as a RIA method in this article.

To the best knowledge of the authors, there is only one approach [11] that provides
personalization support specifically targeting Rich Internet Applications. This approach
is not in the context of Web engineering and performs on-the-fly adaptation over AJAX

294 I. Garrigós, S. Meliá, and S. Casteleyn

pages. The authors combine ontologies to annotate RIAs and adaptation rules which are
derived from semantic Web usage mining techniques. This approach however, does not
contemplate the personalization of the presentation features, which is exactly the focus
of this paper. We thus present a personalization approach founded in a Web application
method, and specifically focus on the RIA-specific elements of the presentation layer.

In the next section, we explain how to integrate personalization in the OOH4RIA
development process.

3 Integrating Personalization in the OOH4RIA Development
Process

OOH4RIA [5] is a model-driven approach whose main target is to cover all the
phases of the Rich Internet Application (RIA) lifecycle development for a GWT-
based application [4]. This paper presents an extension of the OOH4RIA development
process, focusing on the models and artifacts that allow us to introduce the
personalization concern into OOH4RIA. The personalization extended OOH4RIA
process starts specifying the OOH Domain Model in order to represent the domain
entities and the relationships between them. This model is the starting point of the
main subprocesses: (1) the definition of the RIA server side where a model-to-text
transformation generates the business logic and persistence from the domain and
navigational entities, (2) the RIA user interface, defining the OOH Navigation Model
which represents the navigation through the domain concepts and establishes the
visualization constraints. Starting from the Navigation Model, the different
screenshots, which represent spatial distributions of the widgets rendered in a given
moment, of the Presentation Model are defined. A detailed overview of OOH4RIA
can be found in [5].

The personalization extension introduced by this work begins defining the OOH
User Model where the Domain, Navigation and Presentation models are taken as
input. The User Model represents the dynamic data structures where the information
about the user is stored. This information is used to personalize the website containing
information about the user preferences and widget mappings of different contexts.
The actual personalization is defined over the Presentation Model for different
devices. To do that: we have used the marking technique defined by the MDA guide
[6] to introduce information about the spatial arrangement of the layout widgets,
which are to be reorganized in the target Presentation Model. This marked
Presentation Model, together with the User Model, are the inputs to obtain one or
more presentation models according to the devices defined by the User Model. For
this aim, a set of transformation rules was defined.

On the other hand, the User Model together with the Navigation, Presentation and
Orchestration models are the input that permits to define Personalization Rules,
specifying runtime personalization strategies based on user preferences, goals and
context. To define these rules we use the PRML language [3], which was defined in
the context of OOH to extend it with personalization support. However, due to space
constraints, we do not elaborate these rules in this paper; instead, we focus solely on
presentation personalization targeting different devices.

 Adapting the Presentation Layer in Rich Internet Applications 295

The last step consists of defining the model-to-text transformations that will grant
us the personalized RIA implementation. The GWT Server Side transformation
generates the server code from the OOH Domain and the Navigation models, while
the GWT client side transformation generates the client side code using a specific
GWT framework. These model-to-text transformations are written in the MOFScript
language which follows the OMG ModelToText RFP for the representation of model-
to-text transformations.

4 Device Context Adaptation of the Presentation Model

In this work, we are focused on the device context personalization of the Presentation
layer of a RIA, and for this purpose, we must reorganize the layout widgets in the user
interface depending on the screen size, and some widgets may need to be transformed
into others that better fit the new device screen dimensions.

In OOH4RIA, the layout of the RIA is represented by the Presentation Model, so
the adaptation of its elements should be done in order to cope with these issues. As
explained, the OOH4RIA Presentation Model is based on the GWT framework, which
is composed of widgets and panels (i.e. layout widgets) where the widgets are placed.
For personalization purposes, the designer has to specify how these panels and
widgets are transformed and/or reorganized for the target application (i.e. specific
device). For instance, one screenshot element specified in the original Presentation
Model may be split into different screenshots in a mobile screen device. As already
explained, we reduce the effort to redefine new presentation models for each device,
including these transformations in the OOH4RIA development process.

The OOH4RIA device context adaptation is made up of following steps:

• Marking the Presentation Model in order to determine the spatial arrangement
of the panels in the target Presentation Model

• Define the User Model with the purpose of specifying the target device(s) and
to provide specific information on how to transform certain widget types in
order to influence the set of transformation rules to be performed.

a) Marking the Presentation Model
The first step the designer has to do is to mark the Presentation Model in order to
mark how the elements will be reorganized. Depending on these markings a set of
transformation rules will be executed for modifying the spatial arrangement of the
elements. Other rules have to be explicitly selected by the designer or are selected
depending on the data stored in the User Model (this will be further developed in the
ongoing section).

To allow the designer marking the elements, the metamodel of the Presentation
Model is extended: each of the panels has a new attribute called Location which
indicates whether the panel will be placed in a new screenshot or it will be shown in
an existing one. The location attribute can have different values:

• inherits: this is the default value for all the panels. The panels are nested, all the
nested panels will be placed in the same screenshot that their upper panel unless
the designer specifies a different value.

296 I. Garrigós, S. Meliá, and S. Casteleyn

• new: in this case the designer specifies that the panel will be placed in a separate
screenshot.

• none: this value would be assigned when the designer wants to exclude the panel,
so it will not be visible (and all what is in it) from the target application.

• all: the designer would assign this value when he wants to include this panel in
all the screens of the target application.

• containerID: the designer may also want to show the panel within of another
concrete panel of the website.

CreatingPresModelForEachDevice

CreatingIdenticalScreenShot

CreatingScreenShotFromRootPanel

[Device.height >=ScreenShot.height
and

Device.width >= ScreenShot.width]

[else]

[self.widgets->Exist
(oclIsTypeOf(Panel)) = true]

CheckingContainedPanels

B
[else]

B

CreatingNewScreenShot

RemovingContainedPanel

PlacingPanelintoExistingScreenshot

A

PlacingPanelIntoAllScreenShots

[location = new] [location = all]
[location = none]

[location = containerID
or

Location =inherits]

A B

[self.widgets->Exist
(oclIsTypeof(Panel)) = true] [else]

CreatingNewWidget CopyingSameWidget

[Device.mappingWidget-
>Exist(origin =

widget.name) = true]

B

[self.widgets->isEmpty()) =
false]

[else]

[else]

Fig. 1. Rule Map of the ObtainSpecificDevicePres QVT Transformation

Depending on the markings done in the Presentation Model different transformation
rules are to be performed. They allow to convert a generic Presentation Model into a
specific device Presentation Model. Fig. 1 presents an activity diagram that establishes
the execution workflow of the transformation rules defined for this purpose. The
execution starts with the root rule called CreatingPresModelForEachDevice which
creates the Presentation Model element for each Device defined in the User Model.
When the dimensions (height and width) of the device are larger than the definition, the
transformation invokes the CreatingIdenticalScreenShot rule which creates Screenshots
identical to the destination model. On the contrary, if the device dimensions are smaller,
then the CreatingScreenShotFromRoolPanel rule establishes a Screenshot from the
container panel with the dimensions adjusted to the device.

 Adapting the Presentation Layer in Rich Internet Applications 297

Here begins the reorganization of the containers or panels where the transformation
checks whether the root panel contains in turn inside panels. If this is the case, the
CheckingContainedPanels rule is executed and it decides the destination of the panel
according to the value of the location attribute. (1) If location is equals to new then the
panels requires a new Screenshot, thus executing the CreatingNewScreenshot rule. (2)
If the location is equal to the ID of a pre-existing panel or is equal to intherits then a
new Screenshot will be created within it. (3) However, if we want to eliminate the
panel (location equal to none), we execute RemovingContainedPanel rule. (4) Finally,
if we want the panel to appear in all the Screenshots (location equal to All), the
PlacingPanelScreenshot rule is executed.

b) Specifying the User Model
In the User Model, information regarding the user characteristics, interest, preferences
or context is stored. In this case we store information regarding the device context of
the user.

Fig. 2. The User Model of GWT Mail application

In Fig. 2 we can see the User Model needed for defining a sample mobile-aware
RIA. In order to deal with the personalization at widget level, the personalization
designer must introduce the WidgetMapping concept into the User Model which
proposes the widget conversion to another widget, giving it similar functionality in
the target device. Thus, by defining the User Model, the designer provides
information that influences which set of rules is to be executed.

Let’s recover the Pres2DevicePres transformation at point B where the
transformation of simple widgets starts. Here, the transformation checks if there is a
WidgetMapping into the User Model for the current Widget, if this is the case, the
CreatingNewWidget (Fig. 3) rule is executed converting a Widget into another one.
However, when there is not a WidgetMapping defined, the original Widget is copied
into the target Presentation Model.

Figure 3 presents the CreatingNewWidget rule which converts a Widget into
another one gathering the information from the WidgetMapping defined by the User
Model. Firstly, this rule checks that the source Widget is not a panel in the When
sentence. From here, the rule creates a new widget that maintains the same name,
position and isDisable properties. However, the rule introduces the personalization

298 I. Garrigós, S. Meliá, and S. Casteleyn

Fig. 3. Example of Pres2Device: CreatingNewWidget QVT Transformation Rule

information from the User Model (see Fig. 2), where the WidgetMapping defines a
new Widget by means of the typeTarget attribute, and establishes the new location of
the widget with the posX and posy, and the new dimension with height and width
attributes. Finally, the rule checks if the Widget contains other nested Widgets in the
Where clause of the QVT rule, in this case, this rule is invoked recursively in order to
transform the contained widgets.

5 Conclusions and Future Work

In this paper, we presented, in the context of the existing Web design method
supporting Rich Internet Applications OOH4RIA, a personalization approach
specifically targeting the enhanced presentational capabilities of RIA’s. We
elaborated on the models and artifacts needed to support personalization in the overall
RIA design process. Our approach consists of two steps. During the first step, the
personalization designer marks in the Presentation Model which elements will be
subject for transformation and what will be their target designation. The second step
consists of rule selection. This is done partly automatically, for general rules, based
on the information specified in the User Model.and partly manually, for specific rules
that will personalize the interface at runtime for each specific user which is out of the
scope of the present paper.

Currently, we are developing the OOH4RIA tool which is based on the Eclipse
Graphical Modelling framework (GMF). This tool is being completed with the
specified personalization transformations presented in this work. Furthermore, we are
working on defining the transformation rules that should be performed over the
Orchestration Model to complement the work described here.

 Adapting the Presentation Layer in Rich Internet Applications 299

Acknowledgements

We would like to thank our colleague Sandy Pérez for his pointers on implementation
issues and his comments on the work presented.

This work has been co-supported by the ESPIA project (TIN2007-67078) from the
Spanish Ministry of Education and Science and the DEMETER (GVPRE/2008/063)
project from the Valencia Ministry of Enterprise, University and Science (Spain).

References

1. Bozzon, A., Comai, S., Fraternali, P., Carughi, G.T.: Conceptual Modeling and Code
Generation for Rich Internet Applications. In: 6th International Conference on Web
Engineering (2006)

2. Comai, S., Carughi, G.T.: A Behavioral Model for Rich Internet Applications. In: Baresi,
L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 364–369.
Springer, Heidelberg (2007)

3. Garrigós, I. A-OOH.: Extending Web Application Design with Dynamic Personalization,
Phd thesis, University of Alicante (2008)

4. Google. Google Web Toolkit (GWT), http://code.google.com/webtoolkit
5. Meliá, S., Gómez, J., Pérez, S., Diaz, O.: A Model-Driven Development for GWT-Based

Rich Internet Applications with OOH4RIA. In: Eighth International Conference of Web
Engineering, Yorktown Heights, USA (2008)

6. Object Management Group (OMG). MDA Guide (version 1.0.1) (June 2003),
 http://www.omg.org/docs/omg/03-06-01.pdf

7. Object Management Group (OMG). Software Process Engineering Metamodel (version
1.1) (January 2005), http://www.omg.org/docs/formal/05-01-06.pdf

8. Pérez, S., Díaz, O., Meliá, S., Gómez, J.: Facing Interaction-Rich RIAs. In: The
Orchestration Model Eighth International Conference of Web Engineering, Yorktown
Heights, USA (2008)

9. Preciado, J.C., Linaje, M., Comai, S., Sánchez- Figueroa, F.: Designing Rich Internet
Applications with Web Engineering Methodologies. In: 6th International Conference on
Web Engineering (2006)

10. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A.: Refactoring to Rich Internet
Applications. A Model Driven Approach. In: Proceedings of the Eighth International
Conference of Web Engineering, ICWE (2008)

11. Schmidt, K., Stojanovic, L., Stojanovic, N., Thomas, S.: On Enriching Ajax with
Semantics: The Web Personalization Use Case. In: Franconi, E., Kifer, M., May, W. (eds.)
ESWC 2007. LNCS, vol. 4519, pp. 686–700. Springer, Heidelberg (2007)

12. Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich Internet
Applications. In: 5th Latin American Web Congress (2007)

13. Wright, J.M., Dietrich, J.B.: Requirements for Rich Internet Application Design
Methodologies. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.)
WISE 2008. LNCS, vol. 5175, pp. 106–119. Springer, Heidelberg (2008)

Web Site Metadata

Erik Wilde and Anuradha Roy

School of Information
UC Berkeley

Abstract. Understanding the availability of site metadata on the Web
is a foundation for any system or application that wants to work with
the pages published by Web sites, and also wants to understand a Web
site’s structure. There is little information available about how much
information Web sites make available about themselves, and this paper
presents data addressing this question. Based on this analysis of available
Web site metadata, it is easier for Web-oriented applications to be based
on statistical analysis rather than assumptions when relying on Web site
metadata. Our study of robots.txt files and sitemaps can be used as a
starting point for Web-oriented applications wishing to work with Web
site metadata.

1 Introduction

This paper presents first results from a project which ultimately aims at pro-
viding accessible Web site navigation for Web sites [1]. One of the important
intermediary steps is to understand how much metadata about Web sites is
made available on the Web today, and how much navigational information can
be extracted from that metadata. Our long-term goal is to establish a standard
way for Web sites to expose their navigational structure, but since this is a
long-term goal with a long adoption process, our mid-term goal is establish a
third-party service that provides navigational metadata about a site as a service
to users interested in that information. A typical scenario would be blind users;
they typically have difficulties to navigate Web sites, because most usability and
accessibility methods focus on Web pages rather than Web sites. Following the
extended principle of Web engineering as blending into the Web rather building
Web front-ends [2], our approach is to first understand the current state of Web
site metadata on the Web, before designing our service and data format. This
paper describes our analysis of the current state of Web site metadata available
on the Web.

Most information resources on the Web are Web sites, informally defined as
a set of Web pages made available by some information provider. While the
concept of a Web site is only loosely defined, it is often associated with all
Web pages available under one DNS domain name (this could be generalized
to all Web pages using the same URI prefix, but for the purpose of this paper,
we look at domain-based sites only). For information gathering, Web sites are
usually accessed by Web crawlers [3] which systematically retrieve Web pages, in

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 300–314, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Web Site Metadata 301

most cases to drive later stages of indexing them for eventually driving a search
engine. To allow Web sites some level of control over crawlers, the informal
robots.txt format [4] — sometimes also referred to as the Robots Exclusion
Protocol (REP) — is the established way of how a Web site can control crawlers.
This format can only be used on a per-domain basis, and specifies rules for all
pages under that domain.

The robots.txt format is a simple way of how a site can publish metadata
about itself; in that case with the sole purpose of controlling crawler access to the
site (most often by limiting access to certain parts of a site). This assumes that
crawlers get information about available URIs from other sources; in most cases
this happens by following links on already crawled pages. On the other hand,
sites often want to be crawled so that their contents are available through search
engines, and the sitemaps format allows sites to publish lists of URIs which they
want to advertise to crawlers. Sitemaps can be made available to crawlers in dif-
ferent ways; they can be directly advertised through user interfaces or an HTTP
ping interface to individual crawlers, or they can be specified in the robots.txt
file. While the name “sitemap” implies a certain structure to the URIs contained
in that information, this information, in fact, is not a map. Despite its name,
the sitemaps format only supports the publication of unstructured lists of URIs.

Sitemap information can be useful for exposing the Deep Web [5,6], for exam-
ple, those pages that are accessible only through HTML forms. Because search
engine crawlers typically discover pages by following links, large portions of the
Web can be hidden from crawlers, and thus might never be indexed, and there-
fore never show up in search results. Hence, without sitemap information, search
engine crawlers might not be able to find these pages. Since sitemap informa-
tion may be incomplete and/or inaccurate, search engines have to rely on other
techniques to completely crawl the deep Web.

The current Web site metadata already allows crawlers to get information
about a site’s structure, they can do so by using a Web site’s URIs as they
are listed in the robots.txt and sitemaps files, and if they are associated with
a search engine, they can also use click data to learn about a site’s popular
pages. In that case, site metadata combined with the click data can be used for
approximating a site’s navigation structure. Figure 1 shows an example for such
an algorithmically computed site map.

Site metadata on the one hand greatly improves the interaction of humans
with a site, because many tasks on a site require accessing more than one page
on the site. On the other hand, even though explicit navigation often is pro-
vided through Web page design, IR techniques can be used to algorithmically
infer site metadata for tasks other than direct user interaction with a Web site.
Google’s search results, for example, occasionally include a small “site map”
(called “sitelinks”) for highly ranked search results (Figure 1 shows an exam-
ple). This demonstrates the fact that site metadata can have useful applications
beyond crawling, and since most Web sites use content management systems to
publish their site anyway, exposing site metadata in a richer format than just
sitemaps in many cases could be easily implemented by Web sites.

302 E. Wilde and A. Roy

Fig. 1. Algorithmically Computed Site Map

This paper first presents a brief overview of how Web site metadata is managed
from a Web engineering perspective (Section 2). We then describe the crawling
process for robots.txt files and the results from that process (Sections 3 and 4).
We continue by describing the crawling process for sitemaps files and the results
from that process (Sections 5 and 6). We conclude the paper by describing related
and future work (Sections 7 and 8).

2 Web Site Metadata on the Web

The Robots Exclusion Protocol (REP) or robots.txt format was never published
as a formal document, the only “official” reference is an Internet draft [4] and
various Web sites. The robots.txt has a well-defined discovery method: if a Web
site is publishing such a file, it must be available at the URI path /robots.txt on
that site. The file format itself is very simple; it started out as a way to “protect”
certain parts of a Web site (defined by URI prefix) to be excluded from crawler
access. And because it is possible that access should only be limited for certain
crawlers, these exclusion rules can be made specific for certain user agents (which
in case of robots.txt are not really user agents, but search engine crawlers).

The informal specification of the robots.txt file format only defines the three
fields User-Agent, Disallow, and Allow. However, the specification does al-
low other fields as well, as long as they are based on the same basic syntax.
Some other fields that are used are Noindex, Crawl-Delay, Request-Rate, and
Visit-Time fields, which are defined by specific crawlers, and apparently Web
site administrators seem to believe these fields are (at least potentially) inter-
preted by crawlers. Section 4 contains a more complete list of the fields in our
sample of robots.txt files, as well as other statistics about that data set.

One additional field that can occur in a robots.txt file is Sitemap, which
points to the URI of a sitemaps file as defined in the sitemaps protocol. While dis-
covery through robots.txt is one possible way for a site to publish a sitemap,
the protocol also defines the ability to submit a sitemap file to a search en-
gine through a submission interface, or by HTTP ping. In these latter cases, the

Web Site Metadata 303

sitemap file is only known to the search engine it has been submitted to, as there
is no well-defined discovery method for it.

Sitemaps can use XML (using a simple schema), plain text, or feed formats
(RSS 2.0 and Atom [7]) as their syntax, and it is allowed to compress them on
the server side using gzip (HTTP transfer encoding works regardless of that, but
sitemaps can be served as compressed documents). There are size limitations
limiting a sitemap file to no more than 50’000 URIs and no more than 10MB
in size. Furthermore, there are size limitations limiting an index file to no more
than 1’000 URIs and no more than 10MB in size. For compressed files, these size
limits apply to the uncompressed files.

Despite of their name, sitemaps are not really maps, because they do not con-
tain any structure. Sitemaps are simply lists of links a site wants to be crawled,
and in addition to the URI, the XML format supports parameters to set last
modification data, change frequency, and priority for each URI. It is up to a
crawler to decide how to use sitemap information, but it is likely that most
search engine crawlers will take their data into consideration when computing
their crawling process.

3 Crawling for Robots.txt

Our starting point is Alexa’s dataset of the most popular 100’000 domains. This
dataset has some bias, based on the way this dataset is collected. Even though
the exact method of how the dataset is collected is not published, we chose to
accept the bias, because our research does not depend on the exact ranking of
popular domains, but instead just depends on a reasonably large set of popular
domains. Based on this dataset, our crawling process requests robots.txt files
from all domains.

Using a simple two-step process (trying http://domain.com/robots.txt
and http://www.domain.com/robots.txt for all domain names), our crawl of
100’000 domains for robots.txt files yields 44’832 files (i.e., 44.8% of the do-
mains make robots.txt files available); more detailed statistics about these files
can be found in Section 4. Various error conditions can be encountered when re-
questing the files. We do not fully implement error recovery (such as trying to
fix corrupted robots.txt files and retrying failed connection attempts), because
error conditions are only encountered in a small fraction of cases. This means
that our crawl yields slightly fewer robots.txt files than it could with a more
robust crawling mechanism, but that is an acceptable compromise allowing a
less complex crawler implementation.

4 Robots.txt Data Analysis

The robots.txt files crawled as described in Section 3 are mainly intended as a
starting point to find sitemap information, as described in Section 5. However,
because the available literature does not present a lot of data about large-scale

304 E. Wilde and A. Roy

1000

10000

tx
t

Fi
le

s

1

10

100

1 10 100 1000 10000 100000 1000000

Number of Lines

N
um

be
ro

f
ro
bo

ts
.
t

Fig. 2. Distribution of robots.txt Size

collections of robots.txt files, we first present some statistics about the dataset
obtained in the first step of our study.

Figure 2 shows the distribution of the size of robots.txt files (in lines) over
the number of robots.txt files. It is a heavy-tail distribution with the average
size being 29.8 lines (σ = 293.4) with a median of 7 lines. Since there is a fair
number of rather large robots.txt files in our dataset, we want to understand
the reasons for these sizes. robots.txt files can become large for two reasons:
because they contain individual configurations for a large number of user agents,
or because they contain a lot of instructions for one user agent (or a combination
of these two reasons). We therefore looked at how many individual configuration
sections for specific user agents the robots.txt files contain.

Figure 3 shows the result of this analysis. Again, it is a heavy-tail distribution
with an average of 6 sections (σ = 29.5) and a median of 2. However, in this
case there is a noticeable peak in the long tail, with the center at robots.txt
files having 120 user agent configuration sections.

10000

100000

tx
t

Fi
le

s

1

10

100

1000

1 10 100 1000 10000

N
um

be
ro

f
ro
bo
ts
.t

Number of User Agent Sections

Fig. 3. User-Agent Sections per robots.txt File

Web Site Metadata 305

Table 1. Popular Fields in robots.txt Files

Field Name #Files #Fields Fields/File

1. User-Agent 42’578 225’428 5.29
2. Disallow 39’928 947’892 23.74
3. Sitemap 6’765 10’979 1.62
4. Allow 3’832 23’177 6.05
5. Crawl-Delay 2’987 4’537 1.52
6. Noindex 905 2’151 2.38
7. Host 728 758 1.04
8. Request-Rate 121 127 1.05
9. Visit-Time 89 102 1.15

10. ACAP-Crawler 71 234 3.30

Our assumption is that this peak has its origin in some widely used and
reused template that originally had 120 configuration sections, and then was
adapted for various sites by adding or removing some of these sections. There is
a variety of templates and generators for robots.txt files available on the Web,
so assuming that one of these gained popularity is a reasonable explanation of
the peak around 120 configuration sections.

To better understand how current robots.txt files are using fields to steer
crawlers, we looked at the overall usage of fields. As stated in Section 2, only the
three fields User-Agent, Disallow, and Allow are defined by the robots.txt
file format, but some other fields also have gained some acceptance. Table 1
contains a list of the ten most popular fields we found (sorted by the number of
files containing this field, based on the dataset of 44’832 files), also listing how
many occurrences were found in total, and the average number of occurrences
per file based on the number of files in which this field was used.

The three standard robots.txt fields are among the most frequently used
ones, and the popularity of fields drops significantly after the top five. The
Sitemap field points to a sitemap and is what we use for the second step of
our crawling process (described in Section 5). Most of the other fields we found
are fields only supported by particular crawlers, so if they do appear in an
appropriate User-Agent section, they can control that particular crawler. One
exception to these crawler-specific fields are ACAP-prefixed fields, which are part
of the Automated Content Access Protocol (ACAP). ACAP is an initiative of
content providers to extend the robots.txt format so that it is possible to
express more specific policies about the crawled content, mostly about access
and usage permissions for copyright-protected content.

The idea of robots.txtmost often is to restrict crawlers from certain pages and
paths on a site. This can make sense because of pages that are frequently updated,
because of pages that contain content that should not be indexed (e.g., because
of copyright issues), or because of crawlers that interact with the server in unfor-
tunate ways when retrieving pages. This means that while some configurations in
robots.txt files are global (i.e., apply to all crawlers), there are also some which
are for specific crawlers only. We looked at the User-Agent fields in our dataset

306 E. Wilde and A. Roy

Table 2. Popular User-Agents in robots.txt Files

User Agent Occurrences

1. * 46’645 20.70%
2. Mediapartners-Google 3’825 1.70%
3. wget 3’787 1.68%
4. WebZIP 3’014 1.34%
5. Mozilla 2’696 1.20%
6. GoogleBot 2’694 1.20%
7. Microsoft URL Control 2’647 1.17%
8. WebBandit 2’271 1.01%
9. lwp-trivial 2’227 0.99%

10. MIIxpc 2’180 0.97%

100000

Fi
el

ds

1000

10000

r-
Ag

en
t

F

100

be
r

of
Us
er

1

10

N
um

b

Distinct User-Agent Field Values

Fig. 4. Distribution of User-Agent Field Values

and counted the various strings listed there, trying to adjust for minor variations
such as capitalization, whitespace, or version numbers.

Table 2 lists the top ten User-Agent field values we found in our dataset
(the total number of all fields was 225’304, the distribution of those fields across
robots.txt files is shown in Figure 4). * is the catch-all value which is used
to define rules applying to all crawlers; it is by far the most popular value.
Mediapartners-Google is the crawler for sites participating in Google’s AdSense
program, and is the most frequently listed named crawler. wget and WebZIP are
two similar “crawlers” which usually do not really crawl the Web, but instead
are used to download the contents of a site; they are often used to download site
contents for offline browsing or post-processing.

Many crawlers do not reveal their identity and use fake User-Agent field
values to cloak themselves as browsers. The Mozilla User-Agent value is the
most frequently used one and thus is listed in many robots.txt files; but if a
crawler is misbehaving in the sense that it does not properly reveal its identity,
it is unlikely that it will be sufficiently well-behaving to respect robots.txt

Web Site Metadata 307

configurations. GoogleBot is Google’s search engine crawler (it is using a different
identity than the AdSense crawler mentioned earlier). Microsoft URL Control
is a default identity used within various Microsoft Web tools, and developers can
either change that when they develop software using these tools, or leave it at
its default value. WebBandit is a tool similar to wget and WebZIP, in most cases
not used as a crawler, but for targeted downloads of Web content. lwp-trivial
is the default name used by the Perl module LWP::Simple. MIIxpc is a crawler
about which there is no public information available, but apparently it is active
enough to be listed in many robots.txt files.

Figure 4 shows the distribution of occurrences of User-Agent fields. The hor-
izontal axis linearly lists all 4’483 distinct User-Agent fields we found (Table 2
lists the top ten) sorted by the number of occurrences. It can be seen that more
than half of the User-Agent values only occur once. The tableau in the distri-
bution at about 1’000 occurrences (as magnified in the figure) is something that
we believe to be caused by robots.txt files being created using templates or
generators, which usually just present a list of predefined User-Agent values,
and therefore the values available there will show up in many template-based or
generated files.

5 Crawling for Sitemaps

Starting from the robots.txt files obtained as described in Section 3, the next
step to get more complete Web site metadata is to crawl for the second Web site
metadata format, the sitemaps format. The likelihood of a Web site providing
sitemaps is substantially lower than that of it providing a robots.txt file, but
on the other hand, the information found in sitemaps typically is more valuable,
because it is much more specific in listing a Web site’s actual page URIs, whereas
robots.txt files typically only specify a small number of URI prefixes.

While we depend on sitemaps being available through robots.txt files, this
only provides access to a subset of available sitemap information. Web sites can
also directly make sitemaps available to crawlers by uploading them or pinging
crawlers to download a sitemap. However, these two methods depend on the
Web site explicitly cooperating with the crawler, and therefore is not available
to crawlers which have to depend on publicly available information.

Figure 5 shows an overview of the complete crawling process as it starts
with the domain dataset and eventually creates a dataset of Web page URIs
from those domains. In the starting dataset of 44’832 robots.txt files, 6’268
files (14%) contained Sitemap fields, for a total of 10’029 fields (it is legal for
robots.txt files to reference more than one sitemap file; we found one pointing
to 530 sitemap files).

Figure 6 shows the distribution of robots.txt files according to how many
references to sitemaps they contained (robots.txt files with no references are
not shown in this figure). The vast majority of robots.txt files (5’710 or 91%)
specify only one sitemap reference, but there also is a considerable number of
robots.txt files pointing to more than one sitemap file.

308 E. Wilde and A. Roy

Domain List

 1. yahoo.com
 2. youtube.com
 3. google.com
 4. live.com
 5. facebook.com
 6. myspace.com
 7. msn.com
 8. hi5.com
 9. megaclick.com
10. wikipedia.org
11. blogger.com
12. skyrock.com
13. google.fr
14. rapidshare.com
15. orkut.com.br
16. fotolog.net
...

robots.txt Sitemap Information URI Collection

robots.txt
w/ sitemap

ro
bo
ts
.t
xt

w/o
sit

em
ap

robots.txt w/ sitemap

robots.txt
w/ sitemap index

robots.txt
w/o sitemap

sitemap
(XML, XML.gzip,

plain text, RSS)

sitemap index

n
o
r
o
b
o
t
s
.
t
x
t

no site metadata

5
5
.1

%
6.3%

38.6
%

http://www.garnek.pl/szunaj/1192093/holandia-2007-rockanje
http://www.amazon.com/Labeling-Glenn-Hudak/dp/0415230861
http://www.nexternal.com/alfaintl/Product3106
http://backyardgardener.com/gp/Gardening_Products/Outdoor_Living/BBQ_
http://www.eautoworks.com/vehicles/Acura/Integra/1997.php
http://www.shop-apotheke.com/elektrolyt_inf__lsg__139_a22a0d88r9r_pd.
http://www.soitu.es/soitu/2008/04/21/info/1208812694_837554.html
http://extratorrent.com/download_info/793396/%26Epsilon%3B%26lambda%3
http://www.amazon.ca/Sufi-Message-Hazrat-Inayat-Khan/dp/8120807561
http://eventful.com/rockport_me/events/sketchbooks-/E0-001-016604812-
http://www.dailymail.co.uk/health/article-104897/Ive-got-improved-mem
http://www.quia.com/quiz/778472.html
http://www.amazon.co.jp/Barrito-Latino-Vol-4-Various-Artists/dp/B0000
http://www.liverpooldailypost.co.uk/liverpool-life-features/the-beatl
http://www.pricecheck.co.za/offers/1825705/2004+Peugeot+206+GTi+99+KW
http://osdir.com/ml/audio.mpc.user/2003/index.html
http://www.nzherald.co.nz/entertainment/news/article.cfm?c_id=1501119
http://www2.loot.co.za/shop/product.jsp?lsn=0806351454
http://www.lne.es/secciones/noticia.jsp?pRef=2008090200_42_671491__As
http://www.amazon.co.uk/Wire-2-Dominic-West/dp/B000A529ZE
http://www.gazettelive.co.uk/news/the-environment/green-bits/2007/03/
http://www.thaivisa.com/forum/Anusarn-t80120.html
http://www.beatport.com/index.php?url=en-US/urlset/content/track/cata
http://www.pricecheck.co.za/products/1809457/SUCCESSFUL+POULTRY+MANAG
http://www.amazon.ca/Strange-Encounters/dp/0752535978
http://www.textbookx.com/detail-book-9785552545049.html
http://www.standvirtual.com/index.php?op=search&aktion=find&x
http://www.smsdate.com/index.php?country=41&state=14
http://www.simpy.com/user/alenka/tag/administers
http://www.vatera.hu/ps3_sony_sixaxis_joy_vezetek_nelkuli_eredeti_son
http://www.chroniclelive.co.uk/north-east-news/have-your-say/readers-
http://www.ricardo.ch/accdb/viewitem.asp?AuctionNr=548499626
http://gizmodo.com/5032204/iphone-arm-frees-hand-for-debauchery-or-do
http://backyardgardener.com/gp/Gardening_Products/Outdoor_Living/BBQ_
http://www.pc-infopratique.com/d-link-dwl-g510-dwl-g510-80211g-502960

Fig. 5. Overview of the Crawling Process

10000

t
Fi

le
s

100

1000

ob
ot
s.
tx

t

10

um
be

r
of
ro

1

1 10 100 1000

Number of Sitemap Fields

N
u

Number of Sitemap Fields

Fig. 6. Sitemap Fields per robots.txt File

The first task when crawling for sitemaps is to navigate sitemap indices and
sitemap files, so that all sitemap information for a given site can be retrieved. The
sitemaps specification is silent on whether index files may point to index files, but
since it is not specifically disallowed, it is probably allowed, and there are sites
that make use of that assumption. As one example of sitemap information crawled
from one company, Table 3 shows the number of sitemaps/sitemap indices for var-
ious amazon domains. It also shows the total number of URIs contained in these
sitemaps.

Table 3. Sitemap Information about amazon Domains

Domain #Sitemaps #URIs

amazon.com 4’945 119’346’271
amazon.ca 2’980 96’476’534
amazon.co.jp 2’933 54’487’651
amazon.co.uk 3’177 44’668’202
amazon.fr 378 15’571’351

Web Site Metadata 309

Amazon is a good example for the Deep Web motivation described in Sec-
tion 1. Amazon has a large number of products available through its Web site,
but most pages are dynamically generated and not statically linked from any-
where. Thus, to make all of these pages available to crawlers, all of these product
pages must be listed in sitemaps.

6 Sitemaps Data Analysis

A somewhat surprising discovery is that some big sites do not have any sitemap
information. ebay and yahoo are two examples. Contrast ebay to amazon, which
has by far the largest number of page URIs in its sitemaps. Furthermore, many
big sites are only marginally present: Our crawler discovered only 147 URIs for
microsoft. The reason for this is that Microsoft specifies sitemaps for only a
small fraction of its site.

To better understand the usage of sitemap files, it is interesting to look at
how many sitemap files an average domain has, and what the distribution is of

1000

10000

Si
te

m
ap

s

1

10

100

1 10 100 1000 10000

N
um

be
ro

fS

Rank (Number of Sitemaps)

Fig. 7. Distribution of Sitemaps Across Domains

Table 4. Top 10 Domains for #Sitemaps/Domain

Domain #Sitemaps

1. pricecheck.co.za 5’006
2. ricardo.ch 5’000
3. amazon.com 4’945
4. mailonsunday.co.uk 3’395
5. amazon.co.uk 3’177
6. amazon.de 3’108
7. amazon.ca 2’980
8. amazon.co.jp 2’933
9. alacrastore.com 1’644

10. motofakty.pl 1’505

310 E. Wilde and A. Roy

1 00E 06

1.00E+07

1.00E+08

1.00E+09

Is

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1 10 100 1000 10000

N
um

be
ro

fU
RI

Number of Sitemap Files

Fig. 8. Number of URIs vs. Sitemap Files

the number of sitemap files for those domains using sitemaps. Figure 7 shows
this distribution. The horizontal axis shows the rank of a domain in terms of the
number of sitemap files this domain uses. The vertical axis shows the number
of sitemap files for that domain. Of the 5’303 domains included in that figure,
the majority (3’880 or 73.2%) use just one sitemap file; but there is a heavy-
tail distribution of domains using more than just one sitemap file. Furthermore,
there is a small number of outliers which use an exceptionally high number of
sitemap files.

Table 4 shows the top ten domains in terms of number of sitemaps.1 While
amazon, ricardo (an auction site), and pricecheck are somewhat expected,
somewhat surprising is the presence of the news site mailonsunday, which seems
to have one sitemap file per calendar day. Each file lists the articles that were
published on that day. This example contrasts the variance in sitemap organi-
zation: amazon uses a large number of sitemap files because of its sheer size;
mailonsunday uses a large number of files in order to better organize its URIs
in sitemaps.

To better understand how sitemap files are used on average, it is interesting
to analyze the usage of sitemap files for managing large sets of URIs. Figure 8
plots the number of URIs in sitemaps versus the number of sitemap files used for
storing these URIs. In theory, there should be no data point above the 50’000
URI mark on the 1 sitemap file line, because of the 50’000 URI per sitemap file
limit specified by the sitemaps format.

There is much diversity in how sites beyond 100’000 URIs divide their URIs
into sitemap files. For example, pt.anuncioo.com has a sitemap file with more
than 200’000 URIs.2 On the other extreme, ricardo.ch divides its 549’637 URIs
1 The top ten are the easily recognizable outliers visible in Figure 7.
2 Which is a violation of the sitemaps format that specifies a maximum of 50’000 URIs

per file.

Web Site Metadata 311

into 4’911 files. Really large sites tend to use uniformly large (usually close to the
maximum size of 50’000 URIs) sitemap files. Some of the outliers in the bottom
right part of the figure are most likely caused by domains where we did have a
substantial amount of sitemap files, but downloading the actual files (and then
counting the URIs) failed due to timeouts.

7 Related Work

Regarding the analysis of robots.txt files, there is early work based on a rather
small sample [8] (164 sites), and a specific analysis of corporate Web sites [9],
also using a small sample (60 sites), and manual analysis of the results. This
early work has been limited by much lower adoption of robots.txt files, and
by the scale of the studies.

More recently, a study of initially only 8’000 sites [10,11] has been extended
in the BotSeer project and now covers 13.2 million sites [12]. Their finding (in
the initial 8’000 site study) of a 38.5% adoption rate of robots.txt files is a
little bit smaller than our average of 45.1%, which might be explained by the
study’s date (October 2006), and also by the fact that the study did not start
with the most popular domains, which probably have a higher adoption rate.
At the time of writing, the BotSeer Web page reports 2’264’820 robots.txt
files from 13’257’110 Web sites, which translates to a 17% adoption rate; this
considerably lower number may be explained by the fact that the large set of
Web sites necessarily contains many rather small sites, which in many cases
do not configure robots.txt files. In addition to crawling for robots.txt files,
BotSeer is able to look at the dynamic behavior of crawler by setting up honeypot
sites. These sites use robots.txt files and act as regular Web sites. BotSeer
then logs how ethically crawlers act, i.e. how much of the restrictions defined in
robots.txt they actually respect. This study of crawler behavior is something
that is outside of our scope.

The Web Modeling Language (WebML) [13] is an approach to capture the
structure of a Web site in a declarative way; it thus would be an ideal starting
point for publishing information about site’s structure (we do not know how
far WebML provides support for this functionality, though). More generally, al-
most all Content Management Systems (CMS) have metadata about a site’s
content and structure and many support exposing this as robots.txt and/or
sitemaps. As a popular example, the Drupal CMS supports a module for pub-
lishing sitemaps (initially named Google Sitemap, the module has been renamed
to XML Sitemap).

We believe that once the users of richer Web site metadata are there (in the
form of crawlers or browsers), it will be easily possible for many Web sites to
automatically make that information available. A study by Danielson [14] has
shown that a more structured overview of a Web site can help significantly in
many tasks when interacting with a Web site; however, most approaches for Web
site navigation only look at it as a per-site task, rather than looking at it as a
fundamental way of how to interact with Web-based information.

312 E. Wilde and A. Roy

To our knowledge, there is no related work in the overlap of the two areas de-
scribed above, which is our eventual target area: The overlap of crawler-oriented
site metadata often investigated in IR-oriented research, and the HCI-oriented
question of how to make site metadata available to support navigational tasks on
Web sites. Some prior work about looking at the Web graph in general [15] does
discuss some questions relevant for our approach, though (specifically, the “URL
split” technique presented in that paper). Surprisingly, even the otherwise de-
tailed Web Content Accessibility Guidelines (WCAG) [16] say little about how to
implement Web site navigation in an accessible may, they are mostly concerned
with looking at individual Web pages.

8 Future Work

The work presented in this paper is the first stage of a research project that
aims at making metadata about Web site structure available on the Web, as a
service that can be provided by a site itself, or by a third party. We believe that
this metadata should be available so that it can be used by clients, for example
to enhance Web site accessibility. Our approach [1] is twofold:

1. Data Mining: Based on the sitemap URIs, it is possible to construct a nav-
igational sitemap of a Web site. We intend to employ approaches based on
clustering of URI prefixes. This approach assumes that a site’s URI struc-
ture reflects the site’s navigational structure, and the important question is
to find out how appropriate this assumption is, and whether it is possible to
reliably detect whether the assumption is true for a given Web site or not.

2. Data Format: Based on the sitemaps format, we propose a format that can
be used by Web sites to expose their navigational structure, if they want
to do so. This site metadata can then be picked up by browsers and other
clients, and typically will be more reliable than reverse-engineered data.

The next step beyond this is to set up an experimental service that provides
access to data-mined navigational metadata, and to make that data available in
a browser. A browser could use the two possible data sources mentioned above,
first looking for authoritative navigational metadata provided by the site itself,
and then accessing a third-party service inquiring about data-mined navigational
metadata. This approach supports a transition strategy to a Web where sites
can make their navigational metadata available, but if they don’t do it, there
still is a fallback provided by a third party.

9 Conclusions

This paper presents detailed analyses of the current availability of Web site
metadata. The analyses are based on a starting set of the 100’000 most popular
domains, and use data these sites make available through their robots.txt files
and sitemaps. The analyses show that there is a wealth of Web site metadata

Web Site Metadata 313

available, even though currently its sole purpose is to control and steer Web
crawlers. Based on these analyses, we conclude that it is a promising research
path to take a closer look at the properties of the available Web site metadata,
and our future work proposes to do that with the specific goal of extracting
navigational metadata (i.e., metadata intended to improve navigational access
to Web sites).

A more detailed presentation of the results can be found in a technical re-
port [17], which is an extended version of the results presented here. We would
like to thank Alexa for providing us with their dataset of the most popular
100’000 domains.

References

1. Wilde, E.: Site Metadata on the Web. In: Proceedings of the Second Workshop on
Human-Computer Interaction and Information Retrieval, Redmond, Washington
(October 2008)

2. Wilde, E., Gaedke, M.: Web Engineering Revisited. In: Proceedings of the 2008
British Computer Society (BCS) Conference on Visions of Computer Science, Lon-
don, UK (September 2008)

3. Pant, G., Srinivasan, P., Menczer, F.: Crawling the Web. In: Levene, M., Poulo-
vassilis, A. (eds.) Web Dynamics: Adapting to Change in Content, Size, Topology
and Use, pp. 153–178. Springer, Berlin (2004)

4. Koster, M.: A Method for Web Robots Control. Internet Draft draft-koster-robots-
00 (December 1996)

5. He, B., Patel, M., Zhang, Z., Chang, K.C.C.: Accessing the Deep Web. Communi-
cations of the ACM 50(5), 94–101 (2007)

6. Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., Halevy, A.: Google’s
Deep Web Crawl. In: Proceedings of the 34th International Conference on Very
Large Data Bases, Auckland, New Zealand, pp. 1241–1252. ACM Press, New York
(2008)

7. Nottingham, M., Sayre, R.: The Atom Syndication Format. Internet RFC 4287
(December 2005)

8. Cobsena, G., Abdessalem, T., Hinnach, Y.: WebWatching UK Web Communities:
Final Report For The WebWatch Project. Technical Report British Library Re-
search and Innovation Report 146, British Library Research and Innovation Centre
(July 1999)

9. Drott, M.C.: Indexing Aids at Corporate Websites: The Use of Robots.txt and
META Tags. Information Processing and Management 38(2), 209–219 (2002)

10. Sun, Y., Zhuang, Z., Councill, I.G., Giles, C.L.: Determining Bias to Search En-
gines from Robots.txt. In: Proceedings of the 2007 IEEE/WIC/ACM International
Conference on Web Intelligence, Silicon Valley, California, November 2007, pp.
149–155 (2007)

11. Sun, Y., Zhuang, Z., Giles, C.L.: A Large-Scale Study of Robots.txt. In: Poster
Proceedings of the 16th InternationalWorld WideWeb Conference, Bank, Alberta,
pp. 1123–1124. ACM Press, New York (2007)

12. Sun, Y., Councill, I.G., Giles, C.L.: BotSeer: An Automated Information System for
AnalyzingWeb Robots. In: Schwabe, D., Curbera, F., Dantzig, P. (eds.) Proceedings
of the 8th International Conference on Web Engineering, Yorktown Heights, NY
(July 2008)

314 E. Wilde and A. Roy

13. Ceri, S., Fraternali, P., Matera, M.: Conceptual Modeling of Data-Intensive Web
Applications. IEEE Internet Computing 6(4), 20–30 (2002)

14. Danielson, D.R.: Web Navigation and the Behavioral Effects of Constantly Visible
Site Maps. Interacting with Computers 14(5), 601–618 (2002)

15. Raghavan, S., Garcia-Molina, H.: Representing Web Graphs. In: Dayal, U., Ra-
mamritham, K., Vijayaraman, T.M. (eds.) Proceedings of the 19th International
Conference on Data Engineering, Bangalore, India, pp. 405–416. IEEE Computer
Society Press, Los Alamitos (2003)

16. Caldwell, B., Cooper, M., Reid, L.G., Vanderheiden, G.: Web Content Accessibility
Guidelines 2.0. World Wide Web Consortium, Recommendation REC-WCAG20-
20081211 (December 2008)

17. Wilde, E., Roy, A.: Web Site Metadata. Technical Report UCB ISchool Report
2009-028, School of Information, UC Berkeley, Berkeley, California (February 2009)

Conceptual Modeling of Multimedia Search
Applications Using Rich Process Models

Alessandro Bozzon, Marco Brambilla, and Piero Fraternali

Politecnico di Milano,
Piazza Leonardo Da Vinci, 32 - 20133 Milano, Italy

{alessandro.bozzon,marco.brambilla,piero.fraternali}@polimi.it

Abstract. With the advent of the Web, search has become the promi-
nent paradigm for information seeking, both across the online space and
within enterprises. Search frameworks and components can be used to
build search-based applications in the most diverse vertical fields. This
paper explores Model Driven Development and model transformations
as a paradigm for developing search-based applications, considered as
process- and content-intensive applications. A rich process model, ob-
tained by extending BPMN, is proposed as the starting point of devel-
opment, followed by a set of semi-automatic model transformations that
lead from the conceptualization of requirements to the running code.

1 Introduction

With the diffusion of the Web, search has become the predominant paradigm for
addressing the information needs of users. Nowadays search is not only confined
to the online information space, but has assumed a fundamental role also in
enterprise application integration, as a practical means to grant unified access
to the vast collections of structured, semi-structured, and unstructured contents
that constitute the core of modern businesses. This brings about the notion of
Search-Based Application (SBA), i.e., an application in which searching consti-
tutes the predominant user interface paradigm.

Unlike monolithic search engines, SBAs are mostly tailor-made evolving so-
lutions, because the nature of the searched information and of the user needs
vary considerably across different business sectors [13] and in time. The main
factors of SBA complexity and variability stem from: content, which can span
distributed database, document, and audiovisual materials; content processing,
which involves crawling, transcoding, analysis, annotation, and indexing 1; and
querying, which must support multiple paradigms like keyword search, content-
based similarity search (query by image, by sketching, by humming, etc), query
refinement and enrichment based on the profile of the user and of her community.

The thesis of this paper is that SBA development demands for the same evolu-
tion in methods and tools that has characterized in the recent past the progress
1 Annotations are the metadata extracted by analyzing the content: e.g., frequent

terms for documents, or features for images, audio, and video.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 315–329, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

316 A. Bozzon, M. Brambilla and P. Fraternali

of Web Engineering [8] for “classical” Web applications. We claim that SBAs
demand for novel approaches and tools, which combine the benefits of process-
driven and data-driven design methodologies, while adding new solutions to
specific needs of SBAs. SBAs are undergoing a growth towards complex, tailor-
made, personalized, multichannel, and adaptive applications, while retaining a
specific flavor, due to the prevailing role of search: they must integrate a com-
plex front-end (for query submission and result presentation) with a complex
back-end (content provisioning, annotation, indexing, and distributed query ex-
ecution). Both aspects involve a lot of search-specific aspects, that cannot be
treated by usual approaches: the query and the result list are subject to a spe-
cific life-cycle: they must be obtained, reformulated, integrated or enriched, and
stored. The same is true for content, which must be provisioned, transcoded,
analyzed, annotated, and indexed. These processes vary based on requirements,
which may evolve over time or change depending on the business sector.

The approach proposed in this paper is based on the paradigm of Model
Driven Development (MDD), where models are the core artifacts of the ap-
plication life-cycle and model transformations progressively refine models to
achieve an executable version of the system. The core contribution of the paper
is twofold: 1) the set of models that can represent the core elements of a SBA; 2)
a set of model transformations from the initial model to the executable system.

To cope with the process-intensive nature of the main SBAs’ interactions (i.e.,
content analysis, query management, etc.), we advocate the use of a Rich Pro-
cess Model [20], obtained by extending BPMN with search-specific primitives, as
the starting point of both the front-end and the back-end SBA specification. In
the terminology of MDA, the Rich Process Model can be seen as a Computation
Independent Model (CIM), which specifies SBA requirements. Such Rich Pro-
cess Model can be semi-automatically transformed into an Application Model,
encoded using WebML [3], a Platform Independent Model (PIM) that exploits
SOA and Web interfaces as a technical space to design data-intensive Web appli-
cations. Finally, Java 2 application code can be generated as a Platform Specific
Model (PSM), through an extended version of an existing tool [19]2.

To our knowledge, the proposed approach is the first that addresses the Model
Driven Development of SBAs through semi-automatic model transformations.
General-purpose Web Engineering methodologies have been applied to data-
intensive [12,3,16] and process-intensive applications [1,15,18,10]. However, none
of these approaches has focused on the specific requirements of SBAs nor imple-
mented the model transformations needed for turning a rich process model into
an application.

The paper is organized as follows: Section 2 summarizes the main charac-
teristics of SBAs; Section 3 overviews the SBA models and transformations;
Sections 4 and 5 respectively detail the domain model and the process model;
Section 6 discusses the CIM to PIM model transformation; Section 7 presents the

2 A detailed discussion about the chosen modeling and deployment technologies is out
of the scope of this paper. The reader may refer to [3,20] for further details.

Conceptual Modeling of Multimedia Search Applications 317

application model; Section 8 reports on implementation experience; Section 9
reviews the related works; and finally Section 10 concludes.

2 Search-Based Applications

Figure 1 shows the multi-tier reference architecture of a SBA. The Presentation
Tier deals with the rendition of the user interface whereby users can formulate
their information need as a query to the system. This level must allow multiple
ways of expressing queries: e.g., by means of keywords or by the submission of
examples of content similar to the desired ones. The Frontend Business Logic
Tier is responsible of: 1) receiving the query from the Presentation Tier, pre-
processing it, and submitting it for execution to the back-end tier; 2) receiving
the result list, postprocessing it and forwarding it to the Presentation Tier for
rendition. Examples of query preprocessing are: linguistic or semantic treatment
of keywords (e.g., stemming, language identification), query personalization with
user’s preferences. Examples of result post-processing include: filtering based on
access rights, enrichment with external non-indexed information (e.g., content
previews), etc. The Backend Business Logic Tier manages content acquisition,
feature extraction, encoding of features as content annotations, and indexing of
such annotations in one or more search engines. It also orchestrates the execution
of the query, by brokering it across one or more search engines.

As shown in Figure 1, the SBA architecture supports two major flows of ac-
tivities, which are the main subject of SBA design: 1) The Query and Result
Presentation (QUIRP) process, which encompasses query preprocessing, query
execution, and results post-processing; 2) The Content Provision and Annota-
tion (CPA) process, which gets content from its original location and makes
it available to the search engines, together with the appropriate annotations.
The rest of the paper will show how to formalize such processes and their sup-
porting data, together with the model transformation to progressively obtain an
executable application embodying the desired QUIRP and CPA flows.

‘

Presentation
Tier

Frontend
Business Logic

Backend
Business Logic

Query user interface

Query management Result presentation

? !

Search engine1 Search engineN...

Data

Storage

Data

Analysis
Indexing

CPA process
QUIRP process

New

Content

Query Result

Fig. 1. Architecture and Processes of a SBA

318 A. Bozzon, M. Brambilla and P. Fraternali

3 Models and Transformations

Figure 2 outlines the models and transformations involved in SBA design. Ini-
tially, requirements are conceptualized in 1) a Domain Model, which formalizes,
using any object-oriented notation (e.g., UML), the essential objects managed by
the SBA and their relationships, and 2) a Process Model describing the QUIRP
and CPA workflows in terms of activities, precedences, and data flows. We de-
scribe process models by means of BPMN diagrams [20], coherently with the
BPDM metamodel 3, which has been extended with activity and parameter typ-
ing. Domain objects support the QUIRP process, the CPA process, and process
enactment. The link between the domain and process models is established by
the type of objects that flow between activities, and by classifying each activity
based on its behaviour.

The Domain Model and Process Model are subject to a first (CIM to PIM)
transformation, which produces the Application Model and Process Metadata.
The Application Model expresses the design of the SBA application as a set of
coordinated services that implement the QUIRP and CPA processes, possibly
augmented with hypertext interface to support human-directed activities. We
encode the application model in WebML [3], which allows the seamless specifi-
cation of hypertexts and services. The Process Metadata, instead, represents a
logical view of the constraints between activities, useful for encapsulating the
process control logic in the Application Model. Explicit process metadata sim-
plify the Application Model, because process advancement control logic can be
encapsulated in one dedicated operation, which exploits process metadata. The
generated Application Model can be refined manually by the designer, to add
domain-dependent information on the execution of activities.

The manually refined Application Model is the input of a second (PIM to
PSM) transformation, which produces the code of the application for a spe-
cific technological platform. The Implementation Model (PSM) includes all the
needed software artifacts (i.e., running code, database schema and instances,
XML configuration files, and so on). The PSM we produce is in the Java2 tech-
nical space, based on the MVC framework and relational technology. The PIM
to PSM transformation is completely automated thanks to an extension added
to the commercial tool WebRatio [19].

These transformations extend the model-driven design of Web applications
from business process specification proposed in [1].

Domain Model
(CIM)

Process Model
(CIM)

Process Metadata
(PIM)

Application Model
(PIM)

Running
Search-based

Application
(PSM)(CIM to PIM) (PIM to PSM)

ATL
Transf.

Java
Transf.

Fig. 2. Model to model transformations from CIM to PIM to PSM

3 http://www.omg.org/spec/BPDM/1.0/

Conceptual Modeling of Multimedia Search Applications 319

4 Domain Model

The domain model formalizes data and metadata supporting the QUIRP and CPA
processes, and comprises the sub-models shown in Figure 3. For the sake of illus-
tration, from now on we assume a SBA case study dealing with multi-modal audio-
visual search, supported through three paradigms: matching keyword over content
annotation, similarity to an audio sample, and similarity to a person’s face.

The main SBA domain sub-models (Figure 3) are: 1) the Content Model,
which defines the Content Items of interest for the search, associated to Anno-
tations and other collateral resources (e.g., transcoded version of audio/video);
2) the Query Model, which specifies the admitted types of Query (e.g., face sim-
ilarity, audio similarity); 3) the Result Model, which defines the structure of the
ResultSet ; 4) the Index Model, which represents the information that is stored
in the Index of the managed search engines; 5) the Tracking Model, which de-
scribes the ActivityInstances executed during the enactment of a specific case of
the QUIRP and CPA processes (processCase); 6) the User Model, which reflects
the User profile and roles (Groups).

Index

name

IndexField

name
type
storingPolicy

0..*
IndexDocument

originalContentIDs

0..*

F
ill

in
g

0..*

0..*

0..*

Indexation

ProcessInstance

status
name
StartTimeStamp
EndTimeStamp
processID

ActivityInstance

StartTimeStamp
EndTimeStamp
status
activityType

0..*

0..*

1..1

1..*

d
o
c
A

c
ti
v
it
y
S

o
u
rc

e

indexActivityTarget 0..*

0..*

contentItem

url
title
description

Textual
Annotation

value
confidence

Face

1..1
Speaker

1..1

Merged 1..1

AudioTranscode

url

VideoTranscode

url

1..*

1..*

1..1

1..1

0..*

0..*

0..*

audioTrans

videoTrans

faceAnn

speakerAnn

finalAnn

ResultItem

rankingScore

ResultSet

name
timestamp
resultNumber

ResultField

name
type
value

UsageGroup
0..*

User

username
password
regDate
gender
language

UserProfile

profileName
location
terminal

0..*
1..1

Profiling

0..*
Usage

Membership

Actor

name
description

0..*

1..1

1..*

1..1

0..*

0..*

Field
Composition

ResultItem
Composition

Data Source

Data Source

0..*

0..* 0..*

0..*

QueryActivity
ResultActivity

Group

groupID
groupName
description

AccessGroup

Access
Membership 0..*

0..*

1..*

0..*

Query
name
timestamp
keyword
ranking
totalResult
resultPage
currentPage
userGropus

Audio
Similarity

contentURL
featureVector

Annotation
FilterQuery

annotationName
annotationValue

Face
SimilarityQuery
contentURL
featureVector

0..*

0..*

0..*

fa
c
e
te

d
Q

u
e
ry

a
u
d
io

Q
u
e
ry

fa
c
e
Q

u
e
ry

1..*

1..1

0..*

0..*

Query Model User Model Content Model

Tracking Model

Index Model

Result Model
0..*

executes

Fig. 3. Example of Domain model for an audiovisual SBA

5 Process Model

The Process Model exploits the BPMN notation [20], extended with SBA-specific
information to enable a more precise model transformation towards PIM and
PSM models. The classification of activities based on their semantics and the
precise typing of data flows permit the generation of PIMs that are very close
to a complete solution usable for generating the code of the application.

Figure 4 shows the graphical notation of the extended BPMN activity. An
activity is associated with a Type (1), which denotes the kind of processing
performed (e.g., Data Analysis), and possibly a set of refined SubTypes (2) (e.g.,
Music Genre Analysis). The activity performs the processing implied by all the
associated subtypes, combined in a domain-dependent way. An activity has a
(possibly empty) set of input parameters (3) and output parameters (4). The
actual values of input parameters can be assigned from one or more input objects,

320 A. Bozzon, M. Brambilla and P. Fraternali

Activity Name

Activity SubType

<< entity >>

par_1: attribute1
par_2: rel1.attribute1

Activity
Type

<< entity >>

attribute1: par_3
rel1.attribute1: par_4

6 7

par_5 > 20 5

1 par_3

par_2

par_4par_1
par_5 43

2

Fig. 4. Extended activity notation

associated to incoming links; the output parameters can take values from some
objects produced or modified by the activity. The output flow of an activity can
be associated to a guard condition (5), which is an OCL Boolean expression
over the values of the output parameters. The target activity of the guarded
link can be executed only if the activity source of the link has completed and
the condition evaluates to true. Input and output objects (6) (7) correspond to
instances of the classes specified in the Domain Model.

Activities in the CPA process can have one of the following types: Retrieval,
Transformation, Analysis, Aggregation, Indexation, and Storage. For the sake of
conciseness, from now on we will only discuss the QUIRP process4.

Activities in the QUIRP process can have one of the following types:

– Query specification (QS): denotes the submission of a query;
– Query management (QM): denotes the manipulation of the query, e.g., for

separating parts to be assigned to different search engines;
– Search (S): denotes the actual execution of the query by a search engine;
– Result Aggregation (RA): the activity merges two or more result sets pro-

vided by different search engines;
– Result Enrichment (RSE): the activity personalizes the results based on

social knowledge and user preferences, inferred from previous searches by
the same users or other users connected to her;

– Result Presentation (RP): the activity formats results according to the need
of the presentation tier.

Such a categorization do not claim for completeness, but it stems from the
authors’ experience in the field. Nonetheless, new activity types can be added
at will, without affecting the validity nor the generality of our approach.

Figure 5 shows an example of QUIRP process where the query can be spec-
ified according to three different modalities: by keyword, by audio recognition
of the speaker, and by face recognition of the appearing characters. These op-
tions are specified as SubTypes to be performed within the Query Specification
activity. The Query Management activity reshapes the query and assigns each
part to the respective Search Activity. Results are then aggregated, enriched
and personalized, and finally presented to the user, that can possibly decide to

4 An extended version comprising also discussion and examples of CPA process can be
found at http://home.dei.polimi.it/bozzon/ICWE2009/SBAMDD ICWE2009.pdf

Conceptual Modeling of Multimedia Search Applications 321

<<Query>>

queryID: qOut
userID : uOut

qmIN : queryID
uqmIN : userID
enUser : userID

+

Query
Management

QM

qmOut
qmIN

uqmIN

Face
Keyword

Audio

Keyword
Search

S

Keyword

kqIN kResOut

<<Query>>

queryID: qmOut
kqIN : keyword

fqIN : faceQuery.queryID
aqIN : audioQuery.queryID

Result
Aggregation

RA

+

KResIN
mResOut

Result Presentation
Query Refinement

RPpRes
query
user

Audio
Face

Keyword

Query
Specification

QS
qOut
uOut

Keyword
Audio

<<ResultSet>>

textRes: kResOut
faceRes : fResOut
audRes : aResOut
kResIN : tResID
fResIN: fResID

aResIN : aResID

<<ResultSet>>

mResID : mResOut
mResIN : mResID

pRes: mResID

<<Query>>

queryID: qOut
userID : uOut

qmIN : queryID
uqmIN : userID
enUser : userID

Result Social
Enrichment

RSE
mResIN
enUser enResOut

Face Search

S

Face

fqIN fResOut

Audio Search

S

Audio

aqIN aResOut

is
N

ot
N

ul
l

(k
Q

ue
ry

)
is

N
ot

N
ul

l
(a

Q
ue

ry
)

isNotNull
(fQuery)

kQuery
fQuery
aQuery

fResIN
aResIN

Fig. 5. Process models example: the QUIRP process

refine the query, thus triggering again the Query Management, for addressing
the refinement parts of the query.

6 CIM-PIM Model Transformations

The transformation from CIMs to PIMs consists of two sub-transformations:

– BPM to Process Metadata: the business process specifications are trans-
formed to instances of a relational representation of the Process Metamodel
shown in Figure 6, for enabling runtime control of activity precedence con-
straints;

– BPM to Application Model: the business process is transformed to a coarse
Application Model, which can be subsequently refined by the designer.

6.1 Process Metadata generation from BPMN

The transformation from BPMN to the relational representation of Process
Metadata adheres to the following guidelines:

– each BPMN process is transformed to a Process instance;
– each BPMN activity is transformed to a Activity Type instance;
– each BPMN flow arrow is transformed to a nextActivity/previousActivity

relation;
– each guard condition is transformed to a Condition instance, whose OCL

expression is the expression of the original guard condition;
– each gateway is transformed to a Condition instance (in conjunction with

the possibly existing guard conditions on the incoming and outgoing arrows).

The conditions generated for the gateway elements are defined according to
the BPMN semantics:

– AND-splits allow a single thread to split into two or more parallel threads,
which proceed autonomously. The condition over the workflow structure is
the TRUE expression, because as soon as the preceding activity is finished,
all the branches can start independently.

322 A. Bozzon, M. Brambilla and P. Fraternali

Process

name

Activity

name
description

1..*
Condition

OCLExpression

0..*

0..*

1..1

1..1 prevActivity

nextActivity

Fig. 6. Metadata describing activity precedence constraints

– XOR-splits represent a decision point among several mutually exclusive
branches. Its condition will define that one of the alternatives can start iff
all the others haven’t started yet.

– OR-splits represent a decision for executing one or more branches. The con-
dition is the TRUE expression, because one or more branches can start
independently.

– AND-joins specify that an activity can start iff all the incoming branches are
completed. The associated condition will allow execution of the next activity
iff all the previous ones are completed.

– XOR-joins specify that the execution of a following activity can start as
soon as one activity among the incoming branches has been terminated.
The condition will check this situation to allow the execution of the next
activity.

– OR-joins specify that the execution of the following activity can start as soon
as all the started incoming branches have been terminated. The condition
will check this situation.

Process Metadata generation has been formalized as an ATL transformation
from the BPDM metamodel to the Process Model of Figure 65

6.2 WebML Model Generation from BPMN

The transformation from Process Models to WebML coarse models of services
and hypertext interfaces considers modeling dimensions like actor type (human
or automatic), process distribution, managed data objects, and exception han-
dling. The application models produced by the transformation still need manual
refinement, to add domain-specific elements that cannot be expressed even in the
enriched BPMN notation. However, by exploiting information about the activity
type/subtype, a first-cut application model can be generated.

WebML Workflow Primitives. A WebML application model can be either an
hypertext model or a service model. An hypertext model, called site view, is a set
of navigable pages comprising static or dynamic content elements. Pages, content
elements, and executable operations are connected in a graph structure by links,
which allow navigation and operation execution. A service model, called service
view, denotes the orchestration of multiple service executions; it is expressed as a
graph of operations denoting the receipt of a message, the sending of a message,
and the execution of a piece of business logic.
5 A sample ATL fragment that calculates the condition of a XOR split can be found

at home.dei.polimi.it/bozzon/ICWE2009/SBAMDD ICWE2009.pdf

Conceptual Modeling of Multimedia Search Applications 323

Both site views and service views can be subjected to the constraints of a pro-
cess model, by exploiting ad hoc operations that denote the starting and closing
of an activity (Start and End units), the storage and retrieval of parameter
values (Assign and Retrieve units), and the computation of the next enabled
activities given the current state of the workflow (Next unit). These units are
discussed in the paper [1], except for the Next unit, which has been defined in
this work.

A specific component (Next unit) encapsulates the process control logic: it
exploits the information stored in the Process Metadata and in the Tracking
Domain Model to calculate the current process status and the enabled transi-
tions. Given the activityID of the ActivityInstance just terminated, the current
caseID (process instance), and the conditionParameters (the values required by
the conditions to be evaluated), the Next unit queries the Process Metadata to
find all the process constraints and enables the execution of the proper activi-
ties. If the activities are automatic, they are immediately started. If they involve
human interaction, the corresponding hypertext are enabled.

Process Transformation. The Process transformation from BPMN to
WebML consists of three main rules: the Process transformation rule, addressing
the whole process; the Activity transformation rule, managing starting, closing,
and parameters of each activity; and the Business logics transformation rule, ad-
dressing the internal logic of the activities, based on the activity type/subtype.

The outcome of the Process transformation rule is a WebML model that
comprises: 1) the process initiation and termination logic, generated from the
Start Process and End Process BPMN events; 2) a site view or service view for
each BPMN pool; 3) a set of hypertext pages or a graph of services for each
BPMN activity.

The WebML model for process initiation (process termination) is defined
based on the type of BPMN start (end) event; it creates (consumes) data objects,
supplied by the process initiator in order to run the case (returned as a result
of process termination). If the start (end) event is a BPMN message events,
we assume the process to be exposed as a Web service, with an invocation (re-
sponse) interface comprising a parameter for every consumed (produced) data
object. Otherwise, the transformation produces an hypertext page for inputting
the objects needed for initiating the process (for accessing the objects resulting
from process termination).

The Activity transformation rule is based on the BPMN activity specification,
taking into account aspects like the actor enacting the activity (e.g., a user or the
system), pre- and post-condition specification, as well as exception management.
For each BPMN activity, a set of WebML primitives is generated, as shown in
Figure 7. The WebML model is embodied within a siteview named as the BPMN
pool containing the activity, and is composed of seven blocks:

– Inception, evaluating the set of pre-conditions for the activity through a
Switch unit. If the condition holds, then the execution can proceed.

– Initiation, devoted to starting the activity. It comprises a Start Activity unit
and, for each consumed data object, a Retrieve unit properly configured for

324 A. Bozzon, M. Brambilla and P. Fraternali

SiteView

Custom
PreCondition

[PreconditionTestValue]

Test PreCondition

Precondition
TestValue

[True]

Custom
PostCondition

[PostConditionTestValue]

Test PostCondition
PostCondition

TestValue

[T
ru

e]

Act.A
[activityID = aID][caseID = cID]

Evaluate Act. A
Termination

aID, cID

cID
cID

aID
cID

Execute Act.A

Form
Act.A

SUBMIT

E1

[activityID = aID][caseID = cID]
<inPAR1...inPARN>

Retrieve E1 Data
Object

A

E2

[activityID = aID][caseID = cID]
<outPAR1...outPARN>

Assign E2

A
OK

A
ctivity

In
cep

tio
n

A
ctivity

In
itiatio

n
A
ctivity

E
xecu

tio
n

A
ctivity

E
valu

atio
n

A
ctivity

Term
in
atio

n
A
ctivity

D
ecisio

n

E1
[ID = e1ID]

Extract E1

[?]
OK

aID,cID,e1ID
OK

OK

OK

aID
cID

OK

aID
, cID

, e2ID

OK

aID, cID

aID
, cID

OK

OK

Act.A
[activityID = aID]

[caseID = cID]

End Act. A

Act.A
[caseID = cID]

Start Act.A

Act.A
[activityID = aID]

[caseID = cID]

End Act. A

ProcessName

End Process

Custom
Exception
Handling

O
K

OK

O
K

OK

Activity
Exception

[False]

[False]

aID,cID

aID,cID

aI
D

,c
ID

aID,cID

Fig. 7. Skeleton of the result of the BPMN-WebML activity transformation

extracting the needed parameters and a Selector unit retrieving the work
items;

– Execution, depending on the business logic enforced by the specific activity.
If no Activity type and subtype are specified at the BPMN level, it is possible
to generate only a functionally void set of WebML units, which the designer
will later substitute with the needed ones. Otherwise, the Business logics
transformation rule is in charge of producing a more refined model;

– Evaluation, evaluating the set of post-conditions for the activity, similarly
to pre-conditions.

– Termination, closing the activity. For each created data object, an Assign
unit is defined, followed by an End Activity unit.

– Decision, defining the advancement of the process, through the Next unit.
– Exception, handling exceptional events, by means of compensation activities

or by interrupting the process. In our transformation, exceptions are checked
during pre- and post-condition evaluation.

Conceptual Modeling of Multimedia Search Applications 325

The Business logic transformation rule is in charge of generating the execution
part of the activity. The generated WebML fragment depends on the type of
actor, on the distribution of actors, and on the type and operations:

– For user-enacted activities, activity execution consists of a user-browsable
hypertext, while for automatic activities it consists of a service view.

– Process activities assigned to distributed actors require a communication
modeled in BPMN by means of message events. Our transformation assumes
Inter-actor communication to be based on Web Services.

– For each Activty Type, a specific WebML hypertext pattern is defined as gen-
eral purpose implementation. Moreover, if one or more Subtypes are specified,
the pattern is composed by one or more subpatterns, each describing the cor-
responding operation. For instance, an Activity of type QuerySpecification
will be transformed to a submission page for the search criteria. If the type is
detailed by the AudioSearch and TextSearch operations, the input interface
in the hypertext will be generated accordingly.

The whole approach is specified by an ATL transformation organized into the
three above specified rules: a Process transformation rule generates the process
level actions and then invokes the generic Activity rule that manages untyped
activities (by generating an activity skeleton as shown in Figure 7). A set of
type-specific Activity rules inherit from the general transformation and refine
it according to the Activity Type. These rules also consider the SubType and
generate the appropriate hypertext elements, according to a composition logics
specific for each Activity Type. A skeleton of the generic Activity transformation
is available in the extended version of this paper 6.

7 Application Model

The result of the CIM to PIM transformation consists of a coarse Web application
model, which needs to be manually refined by the designer. The generated model
complies with the already existing WebML metamodel[2], extended with the new
SBA primitives. This section exemplifies the refined WebML application models
of two representative QUIRP process activities derived from the BPMN example
of Figure 5.

Figure 8(a) depicts the WebML model for the Query Specification activity,
which involves the user interaction and therefore is generated as a WebML hy-
pertext. The Query Specification unit (1) sets the activity status to Active. The
Search Page contains a form for each query modality defined as Activity Sub-
Type in the process model. In our example, the Keyword (3) and Audio Content
file upload (2) forms are created starting from the activity subtypes “Keyword”
and “Audio”. By navigating the Submit link (L1), the user submits his search
criteria and triggers the the definition of the new Query instance (4) and of
the associated Audio Similarity term (5,6). The Assign Query unit (7) assigns

6 home.dei.polimi.it/bozzon/ICWE2009/SBAMDD ICWE2009.pdf

326 A. Bozzon, M. Brambilla and P. Fraternali

Query Management Component

Query Specification Area

keyword

L1

QueryAudioSimilarity
<contentURL: URL>

Create Audio
Similarity

OK OK

URL

qID, sIDsqID cID, aID

OK OKOK

cID, aID

qID

OK

cID, aID

QuerySpecification

[cID = caseID]
[aID = activityID]

Query
Specification

1

Search Page

Keyword

keyword

Audio Content

URL

32

Query
<keyword: keyword>

CreateQuery

4 5

audioQuery
<queryID: qID><audioSimilarityID: sIDs>

Connect
Audio
Query

6

Query

[activityID = aID][caseID = cID]
<qOUT = qID><uOUT = USERID>

Assign
Query

A
7

QuerySpecification

[activityID = aID][caseID = cID]

Query
Specification

8

QuerySpecification
[activityID = aID][caseID = cID]

Query
Specification

9

OK

cID, aID

QueryManagement

[caseID]

Start
Query

Management OK OK

keyword, cID
aID, uID, qID

Query
[queryID = qID]

GetQuery

[?]
OK OK OK

cID, aID

OK OK

cID, aID,
qID, fqID[]

cID, aID, qID
fqID[]

cID, aID
qID

cID, aID
qID

cID, aID
aqID[], qID

OKOK

cID, aID
qID, uID

aqID[]

Query

[activityID = aID][caseID = cID]
<qID = qmIN><uID = uqmIN>

Retrieve
Query

A
1

2

[userID = uID]
[textualQuery = keyword]

Gen. Personalized
Keyword Query

Text
3

QueryAudioSimilarity
[audioQuery]

GetAudio
Criteria

[?]
4

[audioTerms = aqID[]]

Gen. Audio
Queries

Audio

5

QueryFaceSimilarity
[faceQuery]

GetFace
Criteria

[?]
6

[faceTerms = fqID[]]

Generate Face
Queries

Face
7

Query

[activityID = aID]
[caseID = cID]

<qmOUT = qID>
<kQuery = keyword>

<fQuery = fqID>
<aQuery = aqID>

Assign
Query

A
8

QueryManagement

[activityID = aID][caseID = cID]

End
Query

Management

9

GenerateSearchEngineQuery
[activityID = aID]

[caseID = cID]

Evaluate
Termination

10

cID, aID, qID
fqID[]

(a) - Query Specification Activity

(b) - Query Management Activity

Fig. 8. WebML models of (a)Query specification and (b)Query management activities

the created query and parameters to the next activities. Finally, the activity
ends (8,9).

Figure 8(b) depicts the Query Management activity which creates the actual
query terms to be submitted to the different search engines. After retrieving
Query and User (1), the Get Query (2) and Gen. Personalized Keyword Query
(3) units address the query keyword terms, by respectively extracting them from
the current Query instance (2) and generating the textual search engine’s query
(3), where also user personalization is applied. Then, the QueryAudioSimilarity
(4,5) and QueryFaceSimilarity (6,7) query terms are processed, where the low-
level features are calculated and translated in the respective search engines query
languages. Finally, the Assign Query unit (8) sets the values to be provided as
output parameters, the current activity is closed (9), and the Next unit (10) trig-
gers the next activities. For the QUIRP process of Figure 5, the Next unit must
evaluate an OR gateway, which means that the activities (i.e., Keyword Search,
Face Search and Audio Search) for which a query term is defined are triggered.

8 Implementation and Experience

This section reports our experiences in the extension of WebRatio 57, a CASE
tool supporting WebML design and code generation of industrial Web applica-
tions. The extension regarded all three major component of the WebRatio suite:
the modeling editor GUI, the code generator, and the runtime environment.

The modeling GUI has been extended by: 1) creating an online workflow ed-
itor implementing the SBA-specific extensions of BPMN 8; 2) adding the SBA-
specific units to the WebRatio design environment. The code generator has been
extended in two directions: 1) the CIM to PIM transformation has been imple-
mented within the toolsuite, to allow seamless transformation of BPMN models
to WebML and to the Process Metadata. 2) the PIM to PSM transformation
has been enriched by the Process Metadata transformation towards platform
7 http://www.webratio.com.
8 http://home.dei.polimi.it/mbrambil/SBAwfEditor.htm

Conceptual Modeling of Multimedia Search Applications 327

specific database tuples and by extending the existing j2EE code generator to
cover the new WebML primitives. The runtime counterpart of the new primi-
tives has been created too. Since at runtime search applications have to be very
efficient, attention must be paid to the implementation issues. SBA applications
must exploit ad-hoc optimizations which reduce (or ignore) separation of con-
cerns between architectural modules or execution steps. This issue is partially
addressed by our work through the activity subtype concept: if two or more sub-
types are declared for one activity, their combination is built by considering as
many optimizations as possible. On the opposite, at the moment no generation
of optimized combination of separate activities is implemented.

To validate the approach, we have applied it in the context of PHAROS[4]
(Platform for searcHing of Audiovisual Resources across Online Spaces), an EU
Integrated Project, whose peculiarity consists in being an open framework for
developing audiovisual search solutions. Every functionality of the architecture is
conceived to be pluggable, according to the SOA paradigm. Our contribution has
been twofold: we fostered the adoption of a MDD approach for the specification
of the PHAROS platform and we applied our design method for the development
of both QUIRP and CPA prototype components that have been plugged into
the Pharos platform. Tangible results can be found in the project’s Website 9.

9 Related Work

Even if several methodologies and tools exist for Model Driven Development of
general-purpose and vertical applications, very few works explored the construc-
tion of search-based applications using models and model transformations. Some
proposals [21] [5] offer frameworks based on design patterns for meta-search en-
gines or vertical search engines. The idea is to associate the main components of
a search engine (e.g., crawlers, text-filters) with reference UML design patterns,
to be used in application design. However, the dynamic behavior of SBAs is not
captured and no model transformation or code generation capability is provided.
Ferreira at al. [6] introduce IRML, Information Retrieval Modeling Language, a
formalism based on the UML extension mechanisms, that include a library of
modules and code generation based on XML transformations. However, there is
no formalization of the composition of IRML modules.

With respect to the above-mentioned works, the approach in this paper goes
a step forward: it not only proposes a (data- and process-centric) model of the
application requirements, but also formalizes a model-to-model transformation
yielding a PIM amenable to be refined by the application designer and to be
automatically transformed into running code.

SBA development could be considered as a special case of process- and data-
centric application design. Several MDD methods have explored the integration
of business process and Web application modeling. The Process Modeling lan-
guage (PML) [14], for instance, is an early proposal for the automatic generation
of simple Web-based applications exploiting process specifications. Koch et al.
9 http://www.pharos-audiovisual-search.eu/

328 A. Bozzon, M. Brambilla and P. Fraternali

[10] approaches the integration of process and navigation modeling in the context
of UWE and OO-H. The convergence between the two models focuses on the re-
quirement analysis phase, where standard UML constructs are used. The design
of the application model, instead, is separated. In our work, both approaches
are considered: like in UWE, we preserve the process model as an additional do-
main model; as in OO-H, we provide semi-automatic generation of navigational
skeletons directly from the process model.

The approach proposed by Torres and Pelechano [17] leverages BPM and
OOWS [7] to model process-centric applications; model-to-model transforma-
tions are used to generate the Navigational Model from the BPM definition and
model-to-text transformations can produce a WS-BPEL process definition. In
contrast, our work enriches the representation of the business process with data-
centric features and with typed activities, so to encode in the BPMN model more
knowledge exploitable in the automatic generation of application models.

Liew at al. [11] presents a set of transformations for automatically generating
a set of UML artifacts from BPM. Jonkers et al. [9] presents a more pragmatic
implementation of Model-Driven Architecture (MDA) in order to provide semi-
automatic generation of enterprise applications starting from business process
models, by extending some existing BPM and MDA tools.

With respect to the literature on business process integration within general-
purpose Web Engineering methods, our work differs in its specific focus on SBAs,
highlighting the core processes behind these solutions and demonstrating appli-
cability of how data-centric and process-centric MDD methods.

10 Conclusions

In this paper we have shown how to exploit MDD methods and tools to support
the development of search based Web applications. We proposed a top-down
design approach that combines the benefits of (extended) business process design
with the advantages of a domain specific language for the Web. We formalized a
set of domain-specific BPMN extensions and a set of MDA transformations, thus
covering the requirements of SBAs. Future research includes the definition of: a
more complete CIM to PIM transformation; the transformation rules of a wider
set of Activity Types/Subtypes; and algebraic representation of SBA processes,
in order to define a verification framework of search-specific properties.

Acknowledgments. This work is partially supported by the Pharos project
funded by the EU within the VII FP. We wish to thank all the partners of the
project for the fruitful collaboration.

References

1. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web
applications. ACM TOSEM 15(4), 360–409 (October 2006)

2. Brambilla, M., Fraternali, P., Tisi, M.: A metamodel transformation framework for
the migration of WebML models to MDA. In: CEUR-WS.org, (ed.) MDWE 2008,
CEUR Proceedings, vol. 389, pp. 91–105 (2008)

Conceptual Modeling of Multimedia Search Applications 329

3. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc, San Francisco
(2002)

4. Debald, S., Nejdl, W., Nucci, F., Paiu, R., Plu, M.: Pharos platform for search of
audiovisual resources across online spaces. In: CEUR-WS.org. (ed.) SAMT 2006
December 2006, pp. 57–58 (2006)

5. Dorn, J., Naz, T.: Structuring meta-search research by design patterns. In: ICSTC
2008 (March 2008)

6. Ferreira, J., Silva, A., Delgado, J.: A model-based approach to information retrieval
systems development. In: Cheng, A. (ed.) Software Engineering and Application
(November 2006)

7. Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of web applications
from web enhanced conceptual schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-
W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer,
Heidelberg (2003)

8. Ginige, A., Murugesan, S.: Guest editors’ introduction: Web engineering - an in-
troduction. IEEE MultiMedia 8(1), 14–18 (2001)

9. Jonkers, H., Steen, M.W.A., Heerink, L., Leeuwen, D.V., Telematica Instituut:
Bridging BPM and MDE: On the Integration of BiZZdesigner and OptimalJ. In:
Eclipse Summit Europe 2007 (October 2007)

10. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in
web application models. Journal of Web Engineering 3(1), 22–49 (2004)

11. Liew, P., Kontogiannis, K., Tong, T.: A framework for business model driven de-
velopment. In: STEP 2004, Washington, DC, USA, pp. 47–56. IEEE, Los Alamitos
(2004)

12. Merialdo, P., Atzeni, P., Mecca, G.: Design and development of data-intensive web
sites: The araneus approach. ACM Trans. Internet Techn. 3(1), 49–92 (2003)

13. Moulton, L.: Enterprise Search Markets and Applications. Capitalizing on Emerg-
ing Demand. Gilbane Group, Report & Studies edition (June 2008)

14. Noll, J., Scacchi, W.: Specifying process-oriented hypertext for organizational com-
puting. J. Netw. Comput. Appl. 24(1), 39–61 (2001)

15. Schmid, H.A., Rossi, G.: Modeling and designing processes in e-commerce appli-
cations. IEEE Internet Computing 8(1), 19–27 (2004)

16. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic hypermedia application design
with OOHDM. In: Hypertext, pp. 116–128. ACM, New York (1996)

17. Torres, V., Pelechano, V.: Building business process driven web applications. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
322–337. Springer, Heidelberg (2006)

18. Troyer, O.D., Casteleyn, S.: Modeling complex processes for web applications using
wsdm. In: IWWOST 2003 (July 2003)

19. Web Models S.r.l. WebRatio (2008)
20. White, S.: Introduction to BPMN. OGM - BPM Initiative (2004)
21. Zhang, J., Qu, W., Du, L., Sun, Y.: A framework for domain-specific search engine:

Design pattern perspective. In: IEEE Conf. on Systems, Man and Cybernetics,
vol. 4(3881) (October 2003)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 330 – 339, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Zero-Effort Search and Integration Model for
Augmented Web Applications

Ryong Lee and Kazutoshi Sumiya

School of Human Science and Environment, University of Hyogo,
Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
{leeryong,sumiya}@shse.u-hyogo.ac.jp

Abstract. Due to the rapid advancements of mobile web access environments,
there are constantly increasing requirements for web searches of real-world
spaces. Nevertheless, search methods available for mobile devices are not much
different from those currently available in indoor computing environments.
Quite often, it is inconvenient to manipulate such small devices in outdoor
environments. In this paper, we propose a zero-effort search model composed
of zero-query search and zero-synthesis integration. With zero-query search,
there is almost no need for users to express their queries explicitly with
cumbersome manipulations. In order to reduce the user’s efforts to generate
search queries with the least amount of interaction, users’ intentions are
analyzed from sensing information and map databases. Applying zero-synthesis
integration, users can browse an interpolated form, requiring less effort to
understand. To realize this convenience, media contents will be displayed in an
overlaid form over the real world image. With this proposed intuitive platform
model, many various web search and browsing applications will be easily
realizable in all the stages from design to actual implementation.

Keywords: Zero-Query Search, Augmented Web Space.

1 Introduction

With the advancement of mobile computing environments, today’s smartphones or
cell-phones are already web-accessible from anywhere. It is universally possible to
get information on the spot through mobile web browsers. However, there are still
many difficulties in searching for and integrating various kinds of information from
mobile devices in outdoor environments. Even though connectivity to the Web is
available with mobile devices, there is still work involved in the physical and mental
processes of searching, arranging, and matching the information with real-world
objects on a small screen with keypads.

For example, in order to find a restaurant in an unfamiliar downtown area, a few
words need to be inputted into a cell-phone to begin the process of investigating the
town’s information from the Web, using an embedded browser. If the phone is
equipped with an apparatus to estimate the physical location of the target, the search
guides the user directly to a page including a map showing restaurants near the
desired location. Once one of the restaurants is chosen, the best route to the restaurant

 Zero-Effort Search and Integration Model for Augmented Web Applications 331

needs to be determined. With the help of a map showing the user’s current position,
the user is able to navigate toward his goal. This is the type of short mission that is
often experienced in everyday life in urban areas.

In order to reduce the physical and mental efforts of mobile web searches, we are
developing an Augmented Web Search System based on Augmented-Reality (AR)
technology. AR systems [1] have so far been introduced in see-through devices, such
as the head-mounted display [3], or other camera-embedded mobile gadgets [7, 8, 9].
These devices can concurrently display real and virtual worlds in a mixed form;
virtually created graphics or information are superimposed over outer-world images
corresponding to real-world objects or spaces on a see-through screen. Those
combined worlds are called mixed reality or augmented reality. Such augmentation
from virtual existence to the real world can provide many innovative applications
from personal activity assistance by wearable computing systems to front-glass based
automobile navigation systems [2, 6]. Recently, certain smartphones, such as iPhone
[9] and G-Phone [8], have shown one of their possible usages as an AR system.
However, AR systems are still in their infancy. Most of the work done has been in
relatively closed platforms under different system requirements to visualize graphic
contents in order to achieve various purposes in augmented worlds.

We think that these emerging systems are candidates for the next generation of web
browsing systems. Future web browsers do not necessarily need to show web contents
pages as they currently do. Rather the contents should be displayed adaptively to suit a
given user environment. In mobile systems, it would be better to show the web search
results in a mixed form with real-world images that have been drawn in most AR
systems. It is a new challenge for browser developers to show page contents and real-
world space together. In such cases, if a new kind of media format is not available, it is
necessary to fragment the page contents, for an enhanced or more natural display of
photos or real-time videos. AR developers need to consider the interoperability issue
that web browser developers have been pursuing for the last decade.

In order to extend AR functionality onto current web browsers and to make it
possible to share content interoperability between heterogeneous AR systems, we are
developing an open and interoperable browsing platform for augmented media that
can be easily shared and browsed on any augmented system. Before discussing this
common media share platform, the common specifications for AR systems should be
considered. For constructing media for AR worlds, in Güven et. al [4], a structured
document has been proposed, but there is no concrete or standardized format or
system for general web search purposes. However, from most research and the
fundamental philosophy of the first work by Azuma et al. [1], the common criteria
required would at least be that the platform should combine the real and virtual world
and be interactive in real-time. In other words, the media should be strongly related to
a real-world space, and occasionally it should be able to react to the user’s controls on
the spot. Based on this simple policy, a media space where every user has a mobile
device to search and browse augmented media can be imagined, assuming that current
web spaces are specified as the media and a web browser can display both worlds
concurrently, as in an AR system. In this paper, this type of media is denoted as
Augmented Web Media, the browser as the Augmented Web Browser, and the share
environment as the Augmented Web Space as shown in Fig. 1.

332 R. Lee and K. Sumiya

Fig. 1. Concept of Augmented Web Space

With the augmented browser, the search work described above can be greatly
improved by reducing unnecessary effort by the user. First, it can be supported by
sensing devices and map databases. For example, in order to know a current location,
GPS-based latitude and longitude data must be available and used to determine the
place name using map databases. Furthermore, if the name of a building in a distant
location is required, simply pointing to the geographic object would suffice (the
direction data is usable by digital compass and the system searches for the visible
object using the map and returns the object name.) In a strict sense, it is not a perfect
zero-query. However, this kind of human interaction can reduce efforts to generate
queries. It is much easier to just point to target objects than to manipulate the small
keypads. The user’s effort and time are nearly reduced to zero. For this reason, such a
query generation function is called zero-query search model or platform. Although the
use of keypads is still required to express users’ queries precisely, the targeted goal is
to support the query generation by making the most of available context information
about the users and their surrounding environments.

The zero-query search model consists of three major components: (1) user motion
recognition, (2) environment sensing, and (3) query resolution. In this paper, the main
focus is on the ‘pointing’ action from various human gestures and motions.
Especially, the authors investigate which geographic objects are pointed at, and how
they can be represented as the next step in high-level queries. We also describe the
methodology used to extract visible geographic objects using a digital map rather than
simply selecting the nearest geographic objects, which is the most-used method by
current location-based systems. Furthermore, with an overlaid display on real-time
videos with attached contents, users can understand the captured objects better, with
less matching efforts, compared to current browsing methods in normal web
browsers. Hence, this function is called zero-synthesis integration support. In order to
exactly display searched results or contents from the Web on the screen, the
corresponding region on the displayed image should be known. The support of these
two zero-effort functions would accelerate application development work for
augmented web applications, and would enable performance on a high abstract level
for all designs and implements.

 Zero-Effort Search and Integration Model for Augmented Web Applications 333

In the remainder of this paper, Section 2 introduces emerging augmented web
application scenarios and describes a layer-based media integration platform to
integrate the web browser and AR systems. Section 3 describes the zero-query search
platform using spatial sensing devices and map databases with user-intention
reasoning. Section 4 explains the zero-synthesis integration platform for mapping
searched results to correspondent regions on displayed images. Lastly, Section 5
concludes the paper with future work.

2 Augmented Web Applications

The advantage to using the Web as a fundamental platform for AR systems is
twofold: first, the current open Web platform can be held and its contents managed on
the Web servers; second, anyone can participate in the contents service. In other
word, there is no restriction to creating and publishing augmented contents. In this
section, we describe emerging scenarios by an augmented web browser based on an
open media platform for media sharing in real-world space. The assumed media has
various types: it can be multimedia, as in photo, audio, or video files; or it can be for
applications such as navigation or games with interactive 3D characters. Each media
is managed and accessed by a unit of layer. In this study, it is called augmented layer.
As in the concept of layers used for map data management, augmented layers can be
overlaid to concurrently show a multiple number of layers. For example, a layer
showing blogs about a shop can be displayed with another advertisement layer. It is
possible to make every augmented layer over a structured file and stored in a uniquely
identified location on the Web.

2.1 Layer-Based Augmented Media

Unlike the current web browsers, augmented web browsers need to display web
contents over real-time video images. Thus, in order to harmonize both images on a
screen, it is necessary to superimpose web contents over a video image, as shown in
Fig. 2. This means that the web page cannot be displayed in the author’s intended
original form. Furthermore, just listing search results in rows is not an effective way
to display them. To solve these tangled requirements, we propose a layer-based media
that is extracted from searched pages and is able to display the information, together
with other results.

The layer-based media we present is quite different from the HTML-based
document that is the basic unit for current web browsers. The media included in the
layer is somewhat atomic rather than a document. It can be only a photo or audio; but
sometimes it also consists of a complex document having these primitive media,
which can be drawn on real-world video images. Compared to recent web browsers, it
seems that layer-based media shows multiple HTML documents on one screen. This
augmentation might reduce the backward or forward operations or the efforts to
compare or integrate multiple numbers of contents together. The alignment and
accordance of the layers should be considered. For major media formats, the
following layer usage scenarios are possible:

334 R. Lee and K. Sumiya

Fig. 2. Layer-based Media for Augmented Web Browsing

• Photo Layer: A virtual advertising poster can be attached to a geographical object.

While it is accessible only though an augmented media player, these new kinds of
media can be beneficial to both advertisers and potential customers. Advertisers can
easily and frequently update their content, whereas customers have access to the
most recent information.

• Audio Layer: A voice can be recorded in a physical space. In [5], they introduce an
interesting scenario, using voice guides to warn people of poisonous plant hazards
in an unfamiliar forest area.

• Blog Layer: With primitive media formats, complex formats, such as blogs, are
possible on augmented web space. A blog page, including the primitive media and
an opinion article, can be attached to a geographic object. For example, users may
find an appraisal on the front door of a shop, attached by another prior visitor.

• Game Layer: Interactive applications, such as games, are also realizable in real-
world space [10]. For interactivity, operational codes and stable connections are
required for synchronization. It would surely require to recognize human behaviors
and to give feedback to have people indulge in the best reality in the mixed world.

These are only a few examples of the wide range of possibilities in media

applications. As described above, media searched from the Web are able to be
concurrently displayed using the layer concept. It surely provides better understanding
with less effort, especially for users who have little time to search the Web while
engaged in outdoor activities.

3 Zero-Query Search Platform

As described in Section 1, various human gestures and motions are regarded as a
query for our augmented web browser, especially, ‘pointing.’ For each pointing
action, it is necessary to find what geographic objects can be pointed at with the help
of sensing devices and a map database.

 Zero-Effort Search and Integration Model for Augmented Web Applications 335

Objects Identification

Env. Sensing Map Database

User Motion
Point, Zoom-in/out, Tilt-up/down, etc.

GPS, Compass, Gyro, etc. Vector-map, etc.

Nearest Object Search,
Visible Object Search, etc.

Objects Identification

Env. Sensing Map Database

User Motion
Point, Zoom-in/out, Tilt-up/down, etc.

GPS, Compass, Gyro, etc. Vector-map, etc.

Nearest Object Search,
Visible Object Search, etc.

Fig. 3. Zero-Query Generation Platform

The zero-query search platform that we designed and actually implemented is
composed of four critical components in three layers, as shown in Fig. 3. In the figure,
users’ motions previously registered in ‘User Motion’ are activated by monitoring critical
changes of sensing data. For example, if a ‘pointing’ action is registered, the ‘Env.
Sensing’ component starts to monitor ‘direction,’ actually azimuth, to determine which
direction the augmented browser device is facing (here, a two-dimensional direction is
considered, ignoring tilting or rolling of the device.). As the direction is received in real
time, the positioning sensor is also activated to determine the current location.

These two sensed data are now converted to an explicit pointed region in real
space. Furthermore, the ‘Object Identification’ layer translates the region query into
actual geographic object names with the support of ‘Map Database,’ for the purpose
of searching for the relevant information from the conventional web search sites.

In this section, the process performed by ‘Object Identification’ is explained; that
is, how the user intention is established from the pointing motion with the sensing
data and map database. For practical use of the query generation function, it should be
performed in real time. In other words, if a user changes his direction, the system
needs to detect it as soon as possible to respond in real time.

3.1 Reasoning User Intention from Pointing Action

In order to understand the difference between using location only and using location
and direction in AR systems, a representative example is shown. To simplify the
discussion, let us assume that we want to automatically tag photographs in the context
of location. In order to specify spatial information in a photograph, additional sensors
are necessary, since camera devices generally take photographs only in the visual
domain.

To accomplish this, integration with GPS has been the approach in many
applications; however, this primitive integration is very restricted in its representation of
geographic areas of photographs. For example, as shown in the upper-right section of
Fig. 4, a photograph is taken from Kobe Harbor-Land Park in Japan; fortunately, the
camera used here was embedded with GPS and could acquire the exact location
coordinates. Hence, it was a simple task to orient the photo to the corresponding
location point on the map and the user was able to share the photograph with others over
the Web through a photo-sharing site, such as Google Earth or Flickr. The appearance
of the Oriental Hotel in the background of the photo may provide a good resource for a
tourist who wants to visit the hotel later; however, a photograph indexed only by the

336 R. Lee and K. Sumiya

Fig. 4. Photo Tagging based on (1) Location-only and (2) Location and Direction

photo-taking position could not be easily found by simple word-based or map-based
photo searching. The major problem is that the photograph was not properly tagged to
represent the architecture appearing in the background. If such geographic objects in the
content of a photograph are ‘taggable,’ there is a good possibility that object can be
searched and the usability of photographs over the Web improved.

In the above example, the greatest limitation in identifying the building is in the
difference between the photo-taking location and the location of the hotel. In order to
solve the mismatch problem by location-only sensing, we need to apply additional
direction information from the photo-taking location to target objects. Direction is
usually available using compass and gyro sensors; in 2D real-space, it corresponds to
azimuth, and in 3D, it has three attributes—roll, tilt, and yaw. If the photo-taking
location and the direction toward the target object are known, it is possible to guess
what geographic objects were captured by the camera with a digital map.
Furthermore, if other spatial sensing data are available, identification of geographic
objects within the camera view range becomes easier, although it would require some
additional computational efforts.

4 Augmented Web Browser: Zero-Synthesis Integration

In this section, we describe the later parts of presenting searched results, which
augmented browser displays all the searched contents on the real-time video images
of the background. To accomplish this, the Zero-Synthesis Integration Model was
designed, as shown in Fig. 5. With the zero-query search platform, we could extract
the visible object names and their visible angles inside of the camera view angles
could be extracted as the set of {<name, (SA,EA)>*} (SA: starting angle, EA: ending
angle, managed by the ‘Object Mapping Mgt.’ component). Based on real-time

 Zero-Effort Search and Integration Model for Augmented Web Applications 337

calculation, we calculated which part of the displayed images was correspondent to
each pair of the set by the ‘Drawing Object Mgt’ component with the results of
{<name, drawing_ rectangular region>*}. It is then possible to superimpose the
searched results over the correspondent part using the ‘Content Display’ component.
Furthermore, each part on the screen is allocated to a user operation, so that selecting
or touching it makes it possible to go for further detailed information (by the ‘User
Interaction Mgt.’ component). In practice, these requirements would be a general
interface for construction of augmented web applications. The superiority of current
web browsers can be adopted for navigating other pages by following links, with the
support of user interaction.

Drawing Object Mgt.

Object Mapping Mgt. Real-Time Video

Contents Display

{<name, (SA, EA)>*} Images, Zoom factor

User Interaction Mgt.

{<name, drawing_rect>*}

{<media_object, drawing_rect>*}

touch, selection, etc.

Drawing Object Mgt.

Object Mapping Mgt. Real-Time Video

Contents Display

{<name, (SA, EA)>*} Images, Zoom factor

User Interaction Mgt.

{<name, drawing_rect>*}

{<media_object, drawing_rect>*}

touch, selection, etc.

Fig. 5. Zero-synthesis Integration Platform

4.1 Mapping to Display Region

To draw searched results onto the correspondent position of the real-time video image
plane, the system uses the angular rate of each object compared to the whole-view angle

Fig. 6. Mapping geographic object names to the image plane

N

dy

dx

dy

dx

azimuth Post-office

Hotel

Post-office
Hotel

Post-Offce

Hotel
1

2

GO = (, P_SA, P_EA)

GO = (, H_SA, H_EA)

∠ ∠
∠ ∠

P_SA∠
P_EA∠H_EA∠

H_SA∠
P_SA∠
P_EA∠

H_EA∠

H_SA∠

Image plane

2D Map plane

Z

X

Y

Real-World Coordinate

Image Coordinate

Image Coordinate

camera

distantnear

P
o
st-o
ffice

H
o
te
l

MAP SPACEMAP SPACE VIDEO IMAGEVIDEO IMAGE

REAL-WORLD SPACEREAL-WORLD SPACE

338 R. Lee and K. Sumiya

of the camera to draw position in x_way, and the distance from the view_point to the
nearest point of each object to draw position in y_way as follows and shown in Fig. 6:

_

_ ()
_ _ _ _

_
i

x way

visual angle object
drawing position width of image plane

view angle
= ×

__ _ _ _y way

distance_to_object
drawing position height of image plane

distance_of_query_range
= ×

In order to investigate practical problems and deliver new emerging application
scenarios, we are developing a new type of web browser. The only action required by
the user is to select a layer and to point to a geographic object. Then, it is able to
calculate what spatial area is being targeted with the Zero-Query Search Component.
In the browser, this mapping should be computed continuously to respond to the
user’s movements by changing the direction with Zero-Synthesis Integration.

5 Conclusion and Future Work

In this paper, we introduced the development of a future web browser for outdoor
activities, where inputting a query and arranging search results are still an
encumbrance. In an absolute sense, it is impossible to predict users’ general query
intentions. However, there are still many contexts in which unnecessary users’ efforts
can be reduced by the use of users’ profiles and surrounding environmental sensing
data. In the present study, our contribution is two-fold: First, we have tried to reason
the user-pointing action with position and direction sensing on the map and we have
discovered what users want to direct with a visible object search. Such identified
geographic object names are used for web search queries. Second, synthesizing web
search results with real objects often required when we find paths in urban areas is
removed by visualizing searched results directly onto the real video images. In future
work, we will study a conversion method from the current web contents to the media
drawn in our browser, and also study the accordance between conflicting layers
having heterogeneous types of media.

Acknowledgments. This research was supported in part by Grant-in-Aid for
Scientific Research from the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

1. Azuma, R.T.: A Survey of Augmented Reality. Presence: Teleoperators and Virtual
Environments 6(4), 355–385 (1997)

2. Barfield, W., Caudell, T. (eds.): Fundamentals of Wearable Computers and Augmented
Reality. Lawrence Erlbaum, Mahwah (2001)

3. Feiner, S., MacIntyre, B.T., Holler, A., Webster: A Touring Machine: Prototyping 3D
Mobile Augmented Reality Systems for Exploring the Urban Environment. In: Proc. Int.
Symp. on Wearable Computers, pp. 74–81 (1997)

 Zero-Effort Search and Integration Model for Augmented Web Applications 339

4. Güven, S., Feiner, S.: Authoring 3D Hypermedia for Wearable Augmented and Virtual
Reality. In: Proceedings of the 7th IEEE international Symposium on Wearable
Computers. ISWC, October 21 - 23, p. 118. IEEE Computer Society, Los Alamitos (2003)

5. HP MSCAPE: http://www.hpl.hp.com/mediascapes/
6. Hu, Z., Uchimura, K., Lu, H.: Fusion of Realities for Vehicle Navigation. In: Int.

Symposium on Computer Vision, Object Tracking and Recognition, Beijing (2004)
7. Kähäri, M., Murphy, D.J.: MARA - Sensor Based Augmented Reality System for Mobile

Imaging. In: ISMAR 2006 (October 2006)
8. Mobilizy: http://www.mobilizy.com/wikitude.php
9. Sekai Camera: http://tonchidot.com/index_info.html

10. Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P., Morris, M., Piekarski, W.:
ARQuake: An Outdoor/Indoor Augmented Reality First Person Application. In: 4th
International Symposium on Wearable Computers, Atlanta, October 2000, pp. 139–146
(2000)

A Higher Order Generative Framework for
Weaving Traceability Links into a Code
Generator for Web Application Testing

Piero Fraternali and Massimo Tisi

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano, Italy

{piero.fraternali,massimo.tisi}@polimi.it

Abstract. Model Driven Engineering is extending its reach beyond the
generation of code from Platform Independent Models (PIMs), to all
the phases of the software life-cycle. This paper presents an approach to
exploit PIMs to ease regression testing, whereby developers can record
and replay testing sessions and investigate testing failures on the ap-
plication model, thanks to traceability links automatically inserted in
the generated code. The core of the approach is a modified version of the
model transformation for code generation, obtained by applying a Higher
Order Transformation (HOT), that is a transformation that takes in in-
put a transformation (the original code generator) and produces another
transformation (the augmented code generator). The HOT weaves into
the code generator additional rules producing traceability clues that help
developers link any error to the model features likely to cause it.

1 Introduction

Model Driven Engineering advocates the use of models as the primary artifact of
the software life-cycle. Models incorporate the knowledge about the application
at hand, independently of the technological platform of delivery. The knowledge
embodied in the model is primarily used for forward engineering, that is, the
progressive refinement towards the final implementation code. However, models
have a range of application that goes beyond code generation [31]. They can be
used as documentation, to estimate the size and effort of application development
[4][5], and even as a support to testing [9,7,23,26,28].

In the domain of testing, the use of models mostly concentrates on automat-
ing the production and execution of test cases, while other activities, like model-
based selective regression testing and behavioral result evaluation are less sup-
ported [24]. When testing and debugging an application, developers are used to
think in terms of the functionality at the source code level, and want to trace any
testing failure directly to the source code elements that are most likely to have
caused it. In an MDE environment, the link between the occurrence of a testing
failure and the source code is not there; developers specify the application at a
high level, and the detailed source code is produced by a model transformation.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 340–354, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Higher Order Generative Framework for Weaving Traceability Links 341

When a regression test fails, developers should be able to link the failure not to
the platform-dependent, low-level code, but to the PIM that they have specified.

This paper presents a framework for addressing the problem of letting Model
Driven Engineers manage the testing of their application without exiting the
level of abstraction of MDE. The main contributions of the proposed framework
consist of:

– An Higher-Order-Transformation (HOT), whereby the model to text trans-
formation that produces the source code of the application from its PIM is
modified, so that model traceability clues are automatically weaved into the
generated code.

– A Navigation Recorder, whereby the developer can implement a test session
as a navigation script. The recorder not only registers the navigation steps
of the user, but also encodes correctness assertions automatically, exploiting
the model traceability clues weaved into the generated code.

– A Test Session Player, embedded within the same IDE used by the developer
for editing the PIM and generating the code, which allows one to modify the
model and generate the code, play any previously recorded regression test
session, and trace failures back to the PIM elements that have caused them.

The rest of the paper is organized as follows: Section 2 introduces the motiva-
tions of this work and presents a case study used throughout the paper; Section
3 illustrates the use of Higher Order Transformations for enabling the produc-
tion of model traceability clues in a model-to-code transformation; Section 4
presents a browser’s extension for recording testing sessions, enabling the auto-
matic production of correctness assertions, and a plug-in extension of a MDE
development tool, allowing the seamless integration of change management, code
generation and regression testing. Section 5 briefly discusses the implementation
work; Section 6 compares our contribution to the related work; Section 7 draws
the conclusions.

2 Motivation and Case Study

Regression testing is the activity aimed at detecting software regressions, defined
as those situations in which a program functionality that was previously working
ceases to do so, as a consequence of a change in the software.

Regression testing is particularly relevant in modern Web development
methodologies for several reasons: 1) Web applications are often delivered in
short times and are subject to continuous evolution; 2) the enabling technolo-
gies are still in motion, which introduces further source of uncontrolled changes;
3) rapid prototyping in the early phase of development is often used, to help the
stake-holders compare alternative functionalities.

In Web applications, testing sessions can be encoded as scripts that simulate
the user’s navigation. Such scripts operate on the platform-dependent realiza-
tion of the application and reproduce the interaction-evaluation loop typical of
Web browsing: the user inputs or selects values using the interface and assesses

342 P. Fraternali and M. Tisi

the response computed by the system; if this is correct, she proceeds in the
interaction.

Navigation can be recorded using a state-of-the-practice Record & Play tool.
Several such tools exist (e.g. Selenium [29] and TestGen4Web [30]), which imple-
ment an event-handler that listens to the events occurring inside the browser and
then generate a test script (usually in XML format) that contains one or more
assertions to be verified after each navigation step. An example of interaction
that could be recorded as a test script is:

1. Go to the Google home page
2. Verify that the page title is “Google”
3. Fill the input form with the string “WebTest”
4. Press the “I’m Feeling Lucky” button
5. Assert that the string “WebTest” must appear in the returned page

Specifying an assertion requires an extension of the browser. The test scripts
generated by the navigation recorder can then be executed, using one of sev-
eral Web test environments available, e.g., Canoo WebTest [12], Cactus [32],
HTMLUnit [19] and JWebUnit [21], which replay the test session and verify the
assertions, highlighting failures.

The problem of this approach is that the evaluation of the testing session
breaks the MDE abstraction level, because the testing sessions are defined in
terms of the platform-specific realization of the application, and not at the level
of the platform-independent models produced by the designers. This semantic
mismatch hampers the task of linking failures back to the model elements that
are likely to cause them. Furthermore, the testing sessions based on the real-
ization of the system may depend on technological details and not only on the
application functions: for example, an assertion on the page content may be sen-
sible to the specific markup used for rendering the application look & feel. After a
change of the presentation, such an assertion would fail, even if the functionality
and content of the page are still valid.

The present work aims at supporting the definition and evaluation of test
sessions in a MDE context, by:

– providing a (possibly automatic) way to preserve the elements of the con-
ceptual model in the definition of the platform-dependent testing session;

– allowing the user to translate the use cases into navigation sessions without
worrying about the presence of the models in the background;

– supporting the execution of regression testing from the replay of navigation
sequences, with the possibility for the modeler to inspect the failures and
trace their possible causes to the model elements.

The proposed approach is illustrated with respect to an exemplary MDE
methodology, based on a Domain Specific Language targeted to Web
application development, called WebML [13]. We use WebML to model a sim-
plified Web application, derive testing sessions, generate the code with model-
to-implementation traceability links, and perform regression testing with the
support of the application model. As a case study, we consider a Product Cata-
log Web application, for publishing and managing content about furniture. The

A Higher Order Generative Framework for Weaving Traceability Links 343

Fig. 1. Data model of the Product Catalog Application

home page contains the product and offer of the day, with a link to access their
details, and a form for logging in. From the home page, several other pages are
reachable, which allow one to browse the content of the catalog.

Figure 1 shows the data model of the case study, using the simplified E-R
notation of WebML; the Product, Combination, and Store constitute the core
entities of the data schema; products are clustered in Categories and associated
with Images and a Technical Record.

A Web application is specified on top of a data model by means of one or more
site views, comprising pages, possibly clustered into areas, and containing vari-
ous kinds of data publishing components (content units in the WebML jargon)
connected by links.

Figure 2 shows a fragment of the site view for publishing the content of the
Product Catalog application. The Home page contains two data publishing com-
ponents (data units), which display selected attributes of a product and of a
combination object, and one entry unit, which denotes a data entry form. The
units have outgoing links, which enable navigation and parameter passing. For
example, the ProductOfTheDay data unit has an outgoing link that permits the
user to reach the Product Page, where all the details of the product displayed
in the home page are shown. The Product page contains further content units,
connected to the Product details data unit by transport links (represented as
dashed arrows), which only allow parameter passing and are not rendered as
navigable anchors.

The WebML PIMs can be automatically translated into a running application,
by means of the WebRatio tool suite [3]. The WebRatio code generator produces
all the implementation artifacts for the Java2EE deployment platform, exploiting
the popular MVC2 Struts presentation framework and the Hibernate persistence
layer. In particular, the View components can utilize any rendition platform

344 P. Fraternali and M. Tisi

Fig. 2. Site view of the Product Catalog Application

(e.g., HTML, FLASH, Ajax), because the code generator is designed to be ex-
tensible: the generative rules producing the components of the View adopt a
template-based style and thus can incorporate examples of layout for the var-
ious WebML elements (pages and content units) coded in arbitrary rendition
languages.

In the case study, a testing session is expressed at high level using the concepts
that appear in the application model. In the subsequent Sections, we will use
the following example:

1. Go to the Home Page of the Product Catalog

2. Check that the ProductOfTheDay data unit displays the ‘Aladdin’ item

3. Navigate the outgoing link of the ProductOfTheDay unit

Despite its simplicity, the above test can reveal several bugs. Step 1 checks that
the Home page is correctly generated and that the communication between the
client and the Web server works properly. Step 2 verifies that the item extracted
from the database is correct. Step 3 tests the navigation from the Home Page
to another Web page, verifying that the link in the Home Page exists and has
proper parameters and that that the destination page is computed properly.

With an implementation-oriented approach, an equivalent case must be en-
coded manually, by navigating the generated HTML pages and asserting condi-
tions on the HTML content (e.g. images, input forms, strings, etc.). Furthermore,
the resulting script depends on the graphical layout. For example, step (3) re-
quires evaluating an XPath expression over the page markup: the evaluation
of some XPath expressions may change if the page layout is updated (even if
functionality does not change).

A Higher Order Generative Framework for Weaving Traceability Links 345

3 HOT for Weaving Traceability Links into the Code
Generation Transformation

One way of circumventing the semantic gap between the application model and
the implementation subjected to regression testing is enhancing the implemen-
tation with traceability clues, which have no functional meaning but can help
linking the occurrence of a failure to the model elements more likely to bear
responsibility.

In the context of MDE, this task can be achieved by a Higher Order Trans-
formation, that is, a transformation that acts on the transformation used for
generating the code.

Figure 3 pictorially illustrates the HOT framework: the code generation pro-
cess can be seen as a model-to-model transformation (T1 in Figure 3) that maps
an input model at level M1 (the WebML model of the application) into a an
executable model (the Java2EE code). T1 is normally a lossy transformation:
since its purpose is to produce the code to be actually executed, no extra in-
formation is added to the output model and the links between the input and
output artifacts are lost.

Adding traceability to the generative framework of Figure 3 requires preserv-
ing the relationship between the elements of the input model and the elements
of the output model derived from them. Traceability links can be stored: 1) in
the input model; 2) in the output model; 3) in a separate ad-hoc model.

In this paper, we have opted for the second solution, but in our case the trans-
formation T2, which produces an output model comprising the needed traceabil-
ity links, is dynamically generated from T1. In this way, T1 can still be used to
produce the concise and efficient code needed for application execution, but the
traceability links needed for regression testing can be obtained by using T2.

With this solution, the major problem is to ensure the consistency between
T2 and T1, so that the code produced for testing is exactly equivalent to the
production code, modulo the presence of traceability links.

This result can be attained by deriving T2 automatically from T1 by means
of a HOT, as depicted in Figure 4.

The input of the HOT is the M2M transformation that produces the imple-
mentation code. This transformation can be seen as a model, represented by the

W e b M L
m o d e l

W e b M L
M e ta - M o d e l

W e b
A p p lic a t io n

(J a v a 2 E E c o d e)

J a v a 2 E E
M e ta - M o d e l

c o n fo r m s - to T 1 : M 2 M
T R A N S F O R M A T IO N

M e ta -
M e ta -M o d e l

(E c o re)

c o n fo r m s - to c o n fo r m s - to

L E V E L M 1

L E V E L M 2

L E V E L M 3

T 2 : M 2 M
T R A N S F O R M A T IO N

(J a v a 2 E E c o d e +
t r a c e a b il i ty l in k s)

H O T

Fig. 3. Using HOT to weave traceability links into the code generator transformation

346 P. Fraternali and M. Tisi

T 1 : C o d e
g e n e ra t io n

M 2 T
t ra n s fo rm a t io n

G r o o v y
m e ta m o d e l

G ro o v y
m e ta m o d e l

H O T T 2 : C o d e
g e n e ra t io n M 2 T
t ra n s fo rm a t io n

w ith t r a c e a b il it y
ru le s

M e ta m e ta m o d e l
(E c o re)

Fig. 4. Input and Output Models of the HOT

chosen transformation language (Groovy, in our case study). The output is an-
other transformation, derived by extending the input model with extra elements
(additional code generation rules and templates) for producing the traceability
links in the implementation code.

Figure 5 shows the internal structure of the input model of the HOT (i.e., the
original Groovy code generation transformation).

The transformation is organized into three sub-transformations.
The Layout Transformation generates a set of JSP pages (one for each page

of the WebML model) and miscellaneous elements required by the target plat-
form: Struts configuration (i.e. the controller in the Struts MVC architecture),
localization bundles, and form validators.

The Business Logic Transformation generates a set of XML files (logic de-
scriptors) describing the run-time behavior of the elements of the source model,
mainly pages, links, and units. In addition, this transformation produces sec-
ondary artifacts, such as the access/authentication logic.

The Persistence Transformation produces the standard Hibernate artifacts:
Java Beans and configuration mapping (one for each entity of the source model)
as well as the overall database configuration.

The sub-transformations are based on Groovy. Being the output a set of struc-
tured XML and JSP/HTML files, the Groovy generators use a template-based

WebML
model

- Page/Link/Unit Logic
- Access and
authentication logic

T1: M2M
TRANSFORMATION

- Java Beans (*.java)
- Configuration (*.hbm)
- Mapping (*.cfg)
- HQL Queries

- JSP pages
- Struts Configuration
- Localization bundles
- Validation

T1.1: Layout

T1.3: Persistence

T1.2: Business logic

Fig. 5. Structure of T1 transformation

A Higher Order Generative Framework for Weaving Traceability Links 347

approach: each sub-transformation comprises templates similar to the expected
output (e.g., XML or HTML) enriched with scriptlets for looking-up the needed
elements of the source model.

The HOT must apply to the relevant original transformation rules and pro-
duce extended rules such that: 1) they generate the same output elements as the
original rules; 2) they add the needed traceability links to the output.

The design of the HOT requires deciding where to store the traceability links
in the output model (the Java2EE code) and what information to use for the
trace links. In the present version of the HOT, the following design decisions
have been taken:

– The traceability link information amounts to the id, name and published
values of the content units appearing within the pages of the WebML model,
and to the id, name and parameters of navigable links.

– Such traceability links are stored into the View elements of the output model,
so that they can be easily added to the recording of the user’s navigation.

The above-mentioned design choices entail that the HOT takes only the layout
sub-transformation in input, because this is the only one that produces the
View elements. The traceability links are stored within presentation-neutral,
transparent elements (e.g., HTML DIV elements) added to the View artifacts of
the output model (namely, the JSP pages).

An example can help illustrate the modified behavior of T2 with respect to
T1.

The ProductOfTheDay data unit of Figure 2 can be represented by the fol-
lowing fragment of the input model1:

<DataUnit id="dau16" name="Product of the day">
<Selector id="dau16sel">
<AttributesCondition attributes="att23"

name="highlight"/>
</Selector>

</DataUnit>

Transformation T1 (for an XHTML implementation of the View) maps the
data unit into JSP code that produces the following mark-up fragment, for a
specific product named “Aladdin”:

<table>
<tr> <td>Aladdin</td> </tr>
<tr> <td>1500</td> </tr>
<tr> <td></td> </tr>

</table>

Transformation T2, derived from T1, maps the data unit into JSP code that
produces a mark-up fragment enhanced with traceability links:

<div id="testUnit id:dau16 name:Product of the day">
<table>
<tr> <td><div id="testAttribute id:att10 name:name

type:string unitName:Product of the day">
Aladdin

</div></td> </tr>

1 WebML has both a visual notation and an XML syntax, and is also equipped with
a MOF metamodel; for simplicity, in the example, we use the XML syntax.

348 P. Fraternali and M. Tisi

<tr> <td><div id="testAttribute id:att11 name:price
type:float unitName:Product of the day">
1500

</div></td> </tr>
<tr> <td><div id="testAttribute id:att12 name:thumbnail

type:blob unitName:Product of the day">

</div></td> </tr>
</table>

</div>

The trace clues, inserted in rendition-neutral DIV elements, link the output
model (e.g., an XHTML table cell containing the string ‘Aladdin”) to the input
model (e.g., the name attribute published by the ProductOfTheDay data unit).

To show how the HOT is implemented in a generic way, we illustrate the
creation of the traceability link for a content unit. The HOT locates the following
instruction in T1:

<%printRaw(executeTemplate(templateFile.absolutePath,
["params" : unitLayout.parameters,

"templateType" : "unit"])) %>

The instruction is an explicit call to the Groovy transformation rules for the
unit content. It will be translated by the HOT to a new version in T2 that
contains an additional DIV element:

<div id="testUnit_id:<%=unitId%>_name:<%=unitName%>_">
<%printRaw(executeTemplate(templateFile.absolutePath,

["params" : unitLayout.parameters,
"templateType" : "unit"])) %>

</div>

This translation is achieved by the following HOT rule:

rule UnitLink {
from
matched : GroovyMM!Scriptlet (
matched.statements->recursiveExists(p |
p.oclIsKindOf(GroovyMM!MethodInvocation) and s.name=’printRaw’ and
s.arguments->exists(e | e.oclIsKindOf(’GroovyMM!MethodInvocation’) and

e.name=’executeTemplate’ and
e.arguments->at(2).oclIsKindOf(’GroovyMM!Map’) and
e.arguments->at(2).elements->exists(t |

t.key=’templateType’ and
t.value.oclIsKindOf(’GroovyMM!String’) and t.value.value=’unit’)

to
div : GroovyMM!Tag (

name <- ’div’, attributes <- Sequence{id}, children <- Sequence{c}),
id : GroovyMM!TagAttribute (

name <- ’id’, value <-’testUnit_id:<%=unitId%>_name:<%=unitName%>_’
)
c : GroovyMM!Scriptlet (

statements <- matched.statements
)

}

The HOT rule matches any Groovy scriptlet that prints the result of an exe-
cuteTemplate call to a unit template, i.e. a call with a parameter templateType
= ’unit’. The output pattern of the rule is a Tag named div containing a TagAt-
tribute named id representing an encoding of the traceability link. The matched
scriptlet is finally copied as a child of this Tag.

A Higher Order Generative Framework for Weaving Traceability Links 349

4 Test Session Recording and Execution

The modified T2 transformation produces traceability links in the generated
code, so that the resulting application can be exploited to record model-aware
testing sessions.

For recording the test sessions, a Test Session Recorder has been designed,
by extending the TestGen4Web Firefox add-on [30], so to recognize the trace
links in the page rendition and save them in the final test script automatically,
without any user’s intervention.

As an example, consider the testing session of Section 2. Once the recording
is stopped, the navigation is saved in an XML file compliant with the syntax of
Canoo WebTest, shown below:

/*step 1*/
<testInfo type="trace" info="page1"/>
<echo message="Go to the URL: http://www.acme.com"/>
<wrInvoke url="http://www.acme.com"/>

/*step 2*/
<verifyXPath text=".*Aladdin.*"

xpath="//div[@id=’testUnit_id:dau16
name:Product of the day’]

//div[@id=’testAttribute_id:att10
_name:name_type:string
unitName:Product of the day’]"/>

/*step 3*/
<testInfo type="input" info="Aladdin"/>
<testInfo type="trace" info="ln30"/>
<wrClicklink fieldIndex="0"

label="More.." exactmatch="true"
description="Click the link labeled More.."/>

The test script contains, besides the usual Canoo tags, additional information
coming from the trace links.

Each step is annotated by the ID of the model element involved (e.g, as in
<testInfo type="trace" info="page1">). Assertion steps, e.g., step (2), are ex-
pressed by means of XPath expressions that do not depend on the graphical
layout, but only on the identifiers of the model elements. If the code is regener-
ated with a different style or layout, the assertion remains valid.

Trace links are also enhanced with dynamic information about the objects
appearing in the navigated page. For instance, step (3) shows the case of the
navigation of a link, where the <testInfo type="input" info="Aladdin"> anno-
tation stores the name of the object that is associated with the navigated link
as a parameter. In this way, session recording can take advantage of the dy-
namic information coming from the objects of the data model, and blend it with
the information on the user’s interactions with the page widgets (e.g, single or
multiple selections from indexes, selections from combo boxes, and so on).

The final element of the proposed regression testing environment is the Re-
gression Testing Plug-in, a component of the WebRatio tool suite that allow
modelers to perform regression testing from within the same tool they use for
design and code generation.

350 P. Fraternali and M. Tisi

The Regression Testing Plug-in executes the recorded scrips using the Canoo
WebTest platform and collects the outcome of the execution, linking each step
to the model elements it refers to.

The plug-in exploits the information stored inside the test script by the Navi-
gation Recorder to reflect the user’s navigation onto the WebML model, thanks
to the identifier of the elements; the plug-in can replay a session visually and
can overlay the dynamic information on the navigated objects over the model
elements, as shown in Figure 6.

Fig. 6. Visual replay of the testing session with dynamic information overlaid on the
WebML model

The replay of a testing session from within the WebRatio IDE is achieved by
a client/server connection between the WebRatio Regression Testing Plugin and
the Canoo test environment.

The WebRatio plug-in acts as a server and starts the test environment as a
client. The client, in turn, opens a new socket to communicate with the server
sending to it the testing session trace. Once the test execution ends, the server
collects all the identifiers of the WebML elements that have been reached during
the test execution together with the information on the outcome of each step.
The WebRatio plug-in presents the regression test results in a tabular pane (see
Figure 7), where each row displays the identifiers of the WebML elements, their
input and a description in natural language of the current step.

Using the provided visualizations, developers can monitor the regression steps
and correlate them to the involved elements of the WebML model. In the case
of a test failure, the plug-in also catches the exceptions launched from the test

Fig. 7. Tabular representation of a test: success (top) and failure (bottom)

A Higher Order Generative Framework for Weaving Traceability Links 351

environment, and reports the cause of the errors in the debugging pane (as shown
in the bottom part of Figure 7).

5 Implementation

The HOT has been implemented using the ATL language and the AmmA [10]
framework. To integrate the Groovy language in the transformation framework,
a Groovy metamodel has been developed extending the JavaAbstractSyntax
metamodel provided by the MoDisco project [1].

The Test Session Recorder has been implemented extending the Firefox Test-
Gen4Web add-on, using XUL and Javascript. In particular, the Javascript mod-
ule that generates the output has been modified to produce XML files compliant
with Canoo WebTest. Furthermore, its code has been refactored to manage every
type of assertions in a separate sub-module.

The WebRatio Regression Testing Plug-in has been implemented by means of:
1) a a Java component that runs the Canoo WebTest environment, taking the test
script as input, and elaborates the information received from the test execution;
2) an Eclipse view that visualizes the execution outcome. The communication
between the test execution platform and WebRatio is regulated using auxiliary
Groovy tags inserted in the test script by the Test Session Recorder.

6 Related Work

The task of optimizing the regression testing phase has been addressed in liter-
ature especially from the point of view of selective regression testing [27], i.e. of
optimizing the regression test set removing superfluous tests. The importance
of model-based specifications, for generating and selecting test cases, is already
recognized [15]. The HOT framework presented in this paper, as a general ap-
proach to embed high-level information in low level code, can be naturally used
to address these concerns. In this paper we presented also an original application
of the method that facilitates the manual development of regression test cases.

Our application makes use of traceability links to connect the generated im-
plementation with model-based specifications. The concept of traceability links
has been widely investigated in literature. A first classification of traceability
has been made between traceability in the small and traceability in the large
[8]. The former is intended to handle the trace information between model ele-
ments, i.e. information about how different elements of source and target models
are linked together; the latter traces information between models in the whole,
in order to have information about relationships between distinct models. In
some approaches the traceability mechanism is implicitly embedded in the tool’s
algorithms [11],[25], while other approaches represent traceability relationships
explicitly, e.g., [18]. In this latter case, the location where the links are stored,
can be the source and/or target model, or separate (e.g, by means of a GUIDE
in each model element and traceability information separate from the source

352 P. Fraternali and M. Tisi

and target models). Our approach realizes traceability in the small representing
explicitly the traceability links in the target model.

Transformation frameworks can address traceability during the design of
transformations [14], either by providing dedicated support for traceability (e.g.,
Tefkat [22], QVT [2]), or by encoding traceability as any other link between the
input and output models (e.g., VIATRA [33], GreAT [6]). Traceability links may
be encoded manually in the transformation rules (e.g., [22]), or inserted automat-
ically (e.g., [2]). The HOT-based approach that we propose can be used to add
traceability support to languages like groovy, that do not provide any built-in
support to automatic or manual traceability links.

With respect to hard-coding the traceability mechanism when developing the
transformation, our use of a HOT favors reusability and extension, because the
feature to be weaved into the transformation is managed separately.

A general traceability system using HOTs is already implemented in [20],
where the HOT adds to each original transformation rule the production of a
traceability link in an external ad-hoc traceability model (conforming to a small
traceability metamodel). In other analogous solutions, such as [17], the trace-
ability links are represented by an ad-hoc extension of a standard metamodel
for modeling correspondences, the Atlas Weaving Metamodel [16]. Our approach
differs from these in merging traceability links within the target metamodel, i.e.
the generated implementation code. We showed how this technique is useful in
the Web domain to derive model-based test cases from hypertext navigations.

Finally Aspect Oriented Development can be considered as a particular case
of HOT. Using a generic transformation language for defining the HOT, our
approach has a higher expressing power and flexibility, allowing the definition of
complex HOT rules.

7 Conclusions

In this paper we have presented a framework for supporting regression testing in
MDE environment. The framework supports the phases of: 1) recording a test-
ing session with a conventional Record & Play tool; 2) replaying the recorded
session from within the same IDE that is used for application modeling and
code generation; 3) tracing the failures of a test session to the model elements
most related to them. The core of the approach is the connection between the
conceptual model, which the developer uses to specify and build the applica-
tion, and the generated code, which is exploited to record and play the testing
session. Such a connection is established by traceability links between the in-
put model and the generated code, automatically inserted by a modified version
of the code generator. This modified version is itself produced automatically,
by exploiting the powerful paradigm of Higher Order Transformation (HOT),
which are transformations that operate on other transformation. The resulting
framework enables MDE developers to perform regression testing in an effective
way, without breaking the level of abstraction entailed by the use of models as
the principal artifact of design.

A Higher Order Generative Framework for Weaving Traceability Links 353

The ongoing and future work will focus on: 1) Extending the HOT to obtain a
code generator capable of producing application code instrumented for the step-
by-step debugging of the sequences of operations, which are now executed as black
boxes; 2) Structuring the HOT in a modular way, so that it is possible to weave dif-
ferent orthogonal aspects in the code generator, e.g., the insertion of performance
verification code or of security code (e.g. alternative URL encoding and encryption
policies). 3) Supporting selective regression testing [24]: when a change is made,
the collaborative work function of WebRatio can be used to identify the list of
differences between the original and modified model and to select a minimal set
of sessions to execute. From an analysis of differences, it could also be possible to
launch the extended code generator and session recorder to automatically synthe-
size the sessions needed for covering the new parts of the model.

Acknowledgment. We wish to thank Alessandro Baffa for the implementation
work and the WebRatio Team for the evaluation of the testing framework.

References

1. MoDisco home page, http://www.eclipse.org/gmt/modisco/
2. QVT 1.0., http://www.omg.org/spec/QVT/1.0/
3. WebRatio, http://www.webratio.com
4. Abrahao, S., Pastor, O.: Measuring the functional size of web applications. Int. J.

Web Eng. Technol. 1(1), 5–16 (2003)
5. Abrahão, S.M., Mendes, E., Gómez, J., Insfrán, E.: A model-driven measurement

procedure for sizing web applications: Design, automation and validation. In: MoD-
ELS, pp. 467–481 (2007)

6. Agrawal, A., Karsai, G., Shi, F.: Graph transformations on domain-specific models.
Technical report, ISIS (November 2003)

7. Baerisch, S.: Model-driven test-case construction. In: ESEC-FSE Companion 2007:
6th Joint Meeting on European SE Conf. and the ACM SIGSOFT Symp. on the
Foundations of SE, pp. 587–590. ACM, New York (2007)

8. Barbero, M., Del Fabro, M.D., Bézivin, J.: Traceability and provenance issues in
global model management. In: 3rd ECMDA-Traceability Workshop (2007)

9. Baresi, L., Fraternali, P., Tisi, M., Morasca, S.: Towards model-driven testing of a
web application generator. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS,
vol. 3579, pp. 75–86. Springer, Heidelberg (2005)

10. Bézivin, J., Jouault, F., Touzet, D.: An introduction to the ATLAS model man-
agement architecture. Research Report LINA(05-01) (2005)

11. Briand, L., Labiche, Y., Soccar, G.: Automating impact analysis and regression
test selection based on uml designs. In: IEEE International Conference on Software
Maintenance, p. 252 (2002)

12. Canoo. Canoo Web Test (2008), http://webtest.canoo.com
13. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing

Data-Intensive Web Applications. Morgan Kaufmann, USA (2002)
14. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:

OOPSLA 2003 Workshop on Generative Techniques in the Context of MDA (2003)
15. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from

Model-Based specifications. In: Larsen, P.G., Woodcock, J.C.P. (eds.) FME 1993.
LNCS, vol. 670, pp. 268–284. Springer, Heidelberg (1993)

http://www.eclipse.org/gmt/modisco/
http://www.omg.org/spec/QVT/1.0/
http://www.webratio.com
http://webtest.canoo.com

354 P. Fraternali and M. Tisi

16. Del Fabro, M.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: Amw: a generic
model weaver. In: 1ére Journée sur l’Ingénierie Dirigée par les Modèles (IDM 2005)
(2005)

17. GMT Project. Amw use case - traceability (February 2008),
http://www.eclipse.org/gmt/amw/usecases/traceability

18. Hartman, A., Nagin, K.: The AGEDIS tools for model based testing. SIGSOFT
Softw. Eng. Notes 29(4), 129–132 (2004)

19. HTMLUnit Team. HTMLUnit (2008), http://htmlunit.sourceforge.net/
20. Jouault, F.: Loosely coupled traceability for atl. In: European Conference on Model

Driven Architecture (ECMDA), workshop on traceability (2005)
21. JWebUnit Team. JWebUnit (2008), http://jwebunit.sourceforge.net/
22. Lawley, M., Steel, J.: Practical declarative model transformation with tefkat. In:

Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer, Heidel-
berg (2006)

23. Li, N., Ma, Q.-q., Wu, J., Jin, M.-z., Liu, C.: A framework of model-driven web
application testing. In: COMPSAC 2006, Washington, DC, USA, pp. 157–162.
IEEE Computer Society, Los Alamitos (2006)

24. Naslavsky, L., Richardson, D.J.: Using traceability to support model-based regres-
sion testing. In: ASE 2007, pp. 567–570. ACM, New York (2007)

25. Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.: Automatic test generation: A
use case driven approach. IEEE Transactions on SE 32(3), 155, 140 (2006)

26. Pretschner, A.: Model-based testing in practice. In: Fitzgerald, J.S., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 537–541. Springer, Heidelberg
(2005)

27. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE
Transactions on Software Engineering 22(8), 529–551 (1996)

28. Saad, M.A., Kamenzky, N., Schiller, J.: Visual scatterUnit: A visual model-driven
testing framework of wireless sensor networks applications. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
751–765. Springer, Heidelberg (2008)

29. Selenium Project. Seleniumhq (2008), http://seleniumhq.org/
30. Vinay Srini. Testgen4web (2008),

http://developer.spikesource.com/blogs/vsrini/2008/06/

testgen4web update 10 1.html

31. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley & Sons, Chichester (2006)

32. The Apache Jakarta Project. Cactus (2008), http://jakarta.apache.org/cactus
33. Varró, D., Varró, G., Pataricza, A.: Designing the automatic transformation of

visual languages. Sci. Comput. Program. 44(2), 205–227 (2002)

http://www.eclipse.org/gmt/amw/usecases/traceability
http://htmlunit.sourceforge.net/
http://jwebunit.sourceforge.net/
http://seleniumhq.org/
http://developer.spikesource.com/blogs/vsrini/2008/06/testgen4web_update_10_1.html
http://developer.spikesource.com/blogs/vsrini/2008/06/testgen4web_update_10_1.html
http://jakarta.apache.org/cactus

Exploring XML Perturbation Techniques for
Web Services Testing

Paulo Silveira and Ana C. V. de Melo

University of São Paulo
Department of Computer Science

São Paulo, Brazil
{silveira,acvm}@ime.usp.br

Abstract. This paper presents testing techniques to automatically gen-
erate a set of test cases and data for web services. These techniques
extend the ones based on Data Perturbation presented by Offutt and
Xu, to which are added mutation operators, boundary values consider-
ing XML Schema facets, testing cases using relationship defined in the
message schema, UDDI integration and an internal database to collect
and use values previously captured from messages. Together with these
techniques, a tool (GenAutoWS) was developed for proof of concepts.

1 Introduction

Most organizations today rely on information systems as part of their business
process. The need to exchange data between different applications requires these
applications to be more flexible and interoperable. Web Services emerged to
support such requirements: services can communicate with each other by passing
data from one service to another or by coordinating an activity between two or
more services. Web services and SOA (Service-Oriented Architecture), which has
been strongly implemented with Web services, have then received substantial
attention from academy and industry.

The massive use of SOA and Web services in heterogeneous systems requires a
high quality of development standards. Automated test tools, in particular, can
help improving such quality. However, systems built on the top of Web services
differ from traditional systems and testing techniques and tools applied to the
latter cannot be directly applied to former.

Due to the particular features and the widespread use of Web services in
industrial software, testing Web services has recently received more attention
[11]. In [6], Huang et al. pointed out two major approaches to address the Web
services testing problem: automatic testing and model checking. New techniques
have been proposed undergoing these approaches since then.

Tsai et al. [11] proposed a hierarchical testing framework to generate test
scenarios based on WSDL (Web Service Description Language) specifications,
together with some WSDL improvements. Huang et al. [6] presented a model
checking process for OWL-S (Web Ontology Language for Web Services) in which

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 355–369, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

356 P. Silveira and A.C.V. de Melo

the model checker BLAST [2] is extended to cope with concurrency in OWL-S.
Some OWL-S extensions were also proposed. Song et al. [10] described a testing
framework, named Coyote, that consists of a test master and a test engine. The
test master allows the tester specifying test scenarios and cases, performing a
set of analysis such as services dependency, completeness and consistency. The
test engine interacts with Web services providing traces information.

Regarding the test automation approach, Offutt and Xu [8] presented a Web
Services testing technique based on data perturbation. Existing XML (Extensible
Markup Language) messages are modified based on message grammars rules
and data perturbation on values and interactions. The set of these modified
messages are then used as test suites. Concerned with the automation approach,
the present work extends the data perturbation testing technique by Offutt and
Xu by adding mutation operators, boundary values considering XML Schema
facets, testing cases using relationship defined in the WSDL, UDDI (Universal
Description, Discovery and Integration) integration, internal database to collect
and use values previously captured from messages. As proof of concept, a tool
was developed, GenAutoWS , embedding the previous and the new techniques
presented here.

The forthcoming sections present: some fundamental concepts on Web services
and SOA; an existing technique to test Web services; the new testing techniques
based on data perturbation; some experimental results regarding the new tech-
niques; and, finally, some concluding remarks on the presented techniques.

2 Web Services and SOA Preliminaries

SOA (Service-Oriented Architecture) is essentially an architectural style to allow
a collection of loosely coupled software agents interacting with each other[5]. The
most common way of implementing such an architecture is by the use of Web
Services.

There are today many definitions for Web Services. According to W3C [15],
Web Services are software systems designed to support machine-to-machine inter-
action over a network via well-defined interfaces. A Web service is specified in a
standard way by a service descriptor using a service description language, WSDL
(Web Service Description Language [14]), for example. Each service descriptor
must contain all the information needed to make the service interaction possible,
including message format, transportation protocol and binding information.

Web services can interact with other systems in the way described by the
service descriptors, using SOAP (Simple Object Access Protocol) to receive and
send information. SOAP exchanges XML-based messages over another applica-
tion layer protocol, normally HTTP (Hypertext Transfer Protocol) or MIME
(Multipurpose Internet Mail Extensions). Those messages can differ in style, the
two most common messages types are RPC (Remote Procedure Call) and Doc-
ument. The RPC messages wrap program methods into the message, allowing
them to be remotely invoked. The body contains a single element and all param-
eters are sub-elements. By contrast, in the Document style, the message content

Exploring XML Perturbation Techniques 357

is placed directly into the body element, making Document-based Web services
loosely coupled and document driven. A simple example of a Web Service mes-
sage, using Document style, for a Movie Rental Store is shown in Listing 1.1. In
this example, the driving license identifies the customer and the message contains
a list of movies, each one with an id, price and media type.

Listing 1.1. XML document - Movie Rental Store
...

<id>
<drivingLicense>S1234 -123456 -12</ drivingLicense>
</id>
<moviesList>

<movie>
<id>12</id>
<media>DVD</media >
<price>3.25</price >

</movie>
<movie>

<id>130</id>
<media>DVD</media >
<price>3.25</price >

</movie>
</moviesList>

...

SOAP depends on XML standards, such as XML Schema and XML Names-
paces. XML Schemas are used to describe messages exchanged by Web services.
As such, Schemas define content, structure and semantics of XML documents
that can be shared between applications. Restrictions on XML elements are
called facets. Listing 1.2 shows an XML schema for the Listing 1.1. In this
XML schema, we can see constraints on the elements: drivingLicense, media
and price, it also uses the order indicator choice in the element ID and the oc-
currence indicator minOccurs and maxOccurs restricting the number of movies
in this Web service call.

Listing 1.2. Schema for Movie Rental Store

<?xml version ="1.0" encoding ="UTF -8"?>
<xs:schema xmlns:xs ="http://www.w3.org/2001/ XMLSchema"

elementFormDefault="qualified">
<xs:element name="movieRental">

<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:element name="ID">
<xs:complexType>

<xs:choice>
<xs:element name="drivingLicense">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[A-Z][0 -9]{4}-[0 -9]{6} -[0 -9]{2}"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="memberNumber" type="xs:decimal"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="moviesList">

<xs:complexType>
<xs:sequence>

358 P. Silveira and A.C.V. de Melo

<xs:element name="movie" minOccurs="1" maxOccurs="5">
<xs:complexType>

<xs:sequence>
<xs:element name="id" type="xs:int"/>
<xs:element name="media">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="BLURAY"/>
<xs:enumeration value="DVD"/>
<xs:enumeration value="VHS"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="price">
<xs:simpleType>
<xs:restriction base="xs:decimal">

<xs:fractionDigits value="2"/>
</xs:restriction>
...

</xs:schema>

The Universal Description, Discovery and Integration (UDDI) [12] specifica-
tion is used to catalog the Web Services. The implementation of this specification
is called UDDI registry, representing data and metadata about Web Services.
UDDI registry includes a set of Web Services to allow service to be published
and found.

Web services are rather used in a very distributed and heterogenous contexts
and require dynamic integration. Their applications interact in three different
ways: publishing, the service provider makes a service interface available to
other services; finding, other services (requesters) must be able to discover the
service interface; binding, address the ability to connect and invoke services.
Many of these features make Web services differ from traditional and web ap-
plications and the testing must be performed accordingly. Web services must
be tested considering also communication aspects [8,11]: discovering Web ser-
vices, the data format exchanged, and the request/response mechanisms. Testing
SOAP messages addresses request/response mechanism and data format aspects
of Web services. WSDL is used to expose interfaces as services available on the
Internet. Testing WSDL files can be used to generate test plans to validate ser-
vices. Testing UDDI registries provides the capabilities of publishing, finding
and binding of SOA, giving the way software is integrated.

3 A Web Services Testing Technique Based on Data
Perturbation

Data perturbation testing technique consists of changing (perturbing) existing
data to create new test sets. For Web Services, Offutt and Xu [8] presented
a data perturbation technique based on data value and interaction perturba-
tions. Data value perturbation modifies values using data type information,
following the boundary value testing approach [1]. For this, a set of rules for
XML data types, corresponding to the primitive types in most programming
languages, were created. Table 1 shows the data types with the corresponding

Exploring XML Perturbation Techniques 359

Table 1. Data value perturbation

Data Type Boundary Values
String Maximum length, minimum length, upper case, lower case
Numeric Maximum value, minimum value, zero
Boolean true, false

data value perturbations to be applied. Then, for each test data, new ones are
created based on the boundary values.

For interaction perturbation, messages are modified according to their
types: RPC or data communications. For RPC messages, testing is focused on
data uses and mutation operators. The traditional mutation operators were re-
defined for Web Services[8], as shown in Table 2.

Table 2. Data type operators

Divide (n) Change value n to 1 ÷ n, where n is double data type
Multiply (n) Change value n to n × n
Negative (n) Change value n to −n
Absolute (n) Change value n to |n|
Exchange (n1, n2) Substitute value n1 for n2 and vice-versa, where n1 and n2 have the same type.
Unauthorized (str) Change string value str to str’ OR ’1’ = ’1

For data communications (document-based messages), testing focus on re-
lationships and constraints (defined by facets in XML Schemas). To precisely
define these, XML Schema are defined using RTG (Regular Tree Grammar), a
formal model for XML schemas.

Definition 1. A regular tree grammar is a 6-tuple < E, D, N, A, P, ns >, where:

1. E is a finite set of element types
2. D is a finite set of data types
3. N is a finite set of non-terminals
4. A is a finite set of attribute types
5. P is a finite set of production rules with two forms:

– n → a < d >, where n is non-terminal in N; a is either an attribute type
in A or an element type in E, and d is a data type in D;

– n → e < r >, where n is non-terminal in N; e is an element in E, and
r is a regular expression comprised of non-terminals.

6. ns is the starting non-terminal, ns ∈ N

Based on the maxOccurs attribute of XML schemas (a relationship defined as
XML facet - see Listing 1.2, for example), the parent-child associations are ac-
quired and a regular expression for the relationship is created1. For these rela-
tionships, some testing strategies were defined[8]:
1 In the regular expressions, operators ‘?’, ‘+’, and ‘*’ denote zero-or-one, at least

one, and any number of element occurrences, respectively. These operators reflect
cardinality constraints in an XML Schema.

360 P. Silveira and A.C.V. de Melo

– Given a relationship n → e < r >, if there is an expression α? in r, there
will be two test cases: an α and an empty instance.

– Given a relationship n → e < r >, if there is an expression α+ in r, there
will be two test cases: an α and a number of α instances.

– Given a relationship n → e < r >, if there is an expression α*α in r, there
will be two test cases. One contains α*α and the other contains α∗−1, where
α*α duplicates one element instance and α∗−1 deletes one element instance.

Besides that strategy based on relationships, in [16], a method to generate
tests for XML-based communication by modification and further instantiation
of XML schemas was presented. Schemas are modified based on predefined per-
turbation operators. The goal is to perturb XML Schemas to create invalid XML
messages. With this aim, seven perturbation operators for XML Schema were
defined; some are applied to nodes and others to sub-trees. For nodes, the opera-
tors are: insert and delete a new node between two other nodes, insert and delete
a new node with a data type under an existing node. The sub-tree operators are:
insert and delete a sub-tree below a node and change an edge between two nodes
using an edge with different constraints. Almeida and Vergilio [4] extended that
work with six new mutation operators for SOAP messages, together with a tool
to generate modified messages. Table 3 shows the operators defined by them.

Table 3. Mutation operators - SOAP

Operator name Brief description
Null(n) Set to null the value assigned to a node n in the SOAP message.
Incomplete(n) Delete a node n and its child nodes from the SOAP message.
Inversion (n) Inverts the order of nodes within node n in the given SOAP message.
ValueInversion (n) Inverts the order of the values assigned to the child nodes of node n in

the given XML message.
Mod Len (n) Modifies the length of the value assigned to node n in the given XML

message.
Space (n) Set to ‘ ’ the value assigned to node n.

4 A New Technique on Test Cases Generation for Web
Services

This section presents a new testing technique based on [8] and [4]. The extensions
to the previous works aim to increase the test coverage, creating new messages
with information not explored by original works, mainly from XML Schemas:

1. boundary analysis is enlarged with values immediately above and below the
data type domain, as defined by Pressman[9] and Myers[7];

2. XML facets are also considered in boundary analysis;
3. new relationship rules are added to data communication perturbation, in-

cluding choice and all, and the occurrence indicator minOccurs ; and
4. four new mutation operators are defined for RPC messages.

Either for data value and interaction perturbation, invalid cases are also con-
sidered. This means that the Web Service should return an error when test suites

Exploring XML Perturbation Techniques 361

corresponding to these test cases are executed. For example, if the valid set of
values for a given element is 1, 2 and 3 and the message generated has the value
4, this test case will be classified as invalid. This property intends to help in the
oracle test.

4.1 Extending Data Value Perturbation

Web services using literal messages can be defined by XML Schema and the
legal values for each simple type can be constrained using XML Schema Facets.
There are twelve different Facets. Offutt and Xu [8] has considered only the
maximum and minimum values and the totaldigits Facets under valid values.
We improved the test of these facets by adding test cases for invalid values
(when executed, these messages should receive an error message). Apart from
these, all other XML Schema Facets were considered to create new messages.
We use these Facets to assist in the data value perturbation. Here, the facets
and the corresponding test cases are presented.

Pattern: Defines the valid content for a data type, specified by a regular ex-
pression. We use pattern values to generated valid and invalid messages. For
the drivingLicense type definition showed in Listing 1.2, the new messages in
Table 4 corresponds to the test suites generated for the Pattern test cases:

Table 4. Test suites for pattern in Listing 1.2

<drivingLicense>Z9999-999999-99< /drivingLicense> Valid
<drivingLicense>A0000-000000-00< /drivingLicense> Valid
<drivingLicense>9ZZZZ-ZZZZZZ-ZZ< /drivingLicense> Invalid

A regular expression quantifier specifies how often that preceding character
or group is allowed to occur. A predefined number should be used to create test
cases to messages that has the quantifier ‘*’ or ‘+’.

Enumeration: Constrains the valid values of a data type to a specified set. A
message is generated for each value in the given enumeration set. An invalid mes-
sage is also generated with a value out of this set. For the media type definition
presented in Listing 1.2, the technique generates the messages showed in Table 5:

Table 5. Test Suites for enumeration

<media>DVD< /media> Valid
<media>VHS< /media> Valid
<media>ZZZZZZZZ< /media> Invalid

FractionDigits: Specifies the maximum number of digits allowed in the frac-
tional part of numbers. The value must be equal or greater than zero. Three
messages are generated: one with the maximum number of digits, the second
with one digit and an invalid message with oversized fractional digits.

362 P. Silveira and A.C.V. de Melo

Length: Specifies the number of character or list items are allowed. A valid
message and an invalid message are generated. The invalid message has an extra
character than the maximum allowed.

TotalDigits: Defines the maximum number of values are allowed by restricting
it to numbers expressible as i × 10−n, where i and n are integers such that
|i| < 10totalDigits and 0 ≤ n ≤ totalDigits. Example: using totalDigits = 4, the
value of 55.51 is valid, it can be expressed as 5551 × 10−2, i = 5551 and n = 2.
A valid message is generated using the maximum number of digits allowed and
an invalid message is created using a value over this maximum value. An extra
message is generated with fractional digits if the facet FractionDigits is also
specified for this element.

WhiteSpace: Specifies how spaces, line feeds, tabs, and carriage returns will be
handled. Depending on whitespace value (preserve, replace, collapse) messages
are generated including line feeds, tabs and carriage returns.

For all other data type facets (maxInclusive, minInclusive, maxExclusive,
minExclusive, maxLength, minLength), data value perturbation defined by Of-
futt and Xu is applied to generate the test cases.

Test cases generated using XML Schema facets will test boundaries values
not only based in the data type but also in constrains defined for the element.
The more accurate an element is specified, the more effective is the quality of
the messages generated. Also, the extensions for data value perturbation based
on values immediately above and below the data type domain tests messages for
invalid domains.

4.2 Extending Relationship Strategies for Data Communication
Perturbation

In Document-based Web services, service consumer and provider interact using
complete documents. These documents are typically XML files, defined in a com-
mon way, agreed upon schema. Data communications aim at testing Document-
based Web service. DCP (Data Communication Perturbation) focus on testing
relationship and constraints in this kind of messages. As with [8], here mes-
sages are defined using RTG (Regular Tree Grammar) - Definition 1, and the
relationships and constraints are the finite set of production rules P in the RTG.

Definition 2. Given an XML schema < E, D, N, A, P, ns >, a relationship
is a production rule in P : n → e < r >, where n is a non-terminal in N , e
is an element in E, and r is a regular expression made up of non-terminals.

Offutt and Xu used the occurrence indicator maxOccurs to specify referential
relationships between parent and child elements. Here, this idea is extended
with the use of the occurrence indicator minOccurs, and the order indicators:
all and choice, and the element any. Table 6 describes each of the XML Schema
indicator used and the corresponding regular expression.

Exploring XML Perturbation Techniques 363

Table 6. Regular expressions used to represent relationship in the RTG representation

XML Schema indicator regexp description
minOccurs, maxOccurs {x,y} at least x and not more than y times
choice | one child element or another can occur
all {x1, .., xn} the child elements can appear in any order but each must

occur only once.
any element . element not specified in the XML Schema

Apart from the three testing strategies established by Offutt and Xu (Section
3), the following testing strategies are added:

– Given a relationship n → e < r >, if there is an expression α+ in r, there
will be one extra test case that contains no instances of α. This test case
expect to receive an error when executed.

– Given a relationship n → e < r >, if there is an expression α∗ in r, there
will be two extra test cases. One deleting all instances of α, and the other
one containing k instances of α, where k is a predefined number representing
unbounded.

– Given a relationship n → e < r >, if there is an expression containing ‘.’ in r,
there will be one test case. It contains one instance of β, where β represents
any element.

– Given a relationship n → e < r >, if there is an expression α{x, y} in r,
there will be two test cases. One contains x instances of α and the other
contains y instances of α. If y has the value unbounded, y will have the value
of k, where k is a predefined number.

– Given a relationship n → e < r >, if there is an expression {x1, .., xn}
in r, there will be two test cases. One contains a random permutation of
{x1, .., xn}, and the other one contains {x1, .., xn−1}.

– Given a relationship n → e < r >, if there is an expression x1|..|xn in r,
there will be n + 1 different test cases. The first n tests case contains xi

where i is an integer and 1 ≤ i ≤ n. The other test cases will contains all n
elements, this last expects to receive an error when executed.

The RTG for the XML Schema showed in the Listing 1.2 contains two rela-
tionships:

nid → ID < ndrivingLicense|nmemberNumber >
nmovieList → movie < (nmovieId, nmedia, nprice){1, 5} >

Four test cases for both relationships are shown in Listings 1.3, 1.4, 1.5, 1.6.

Listing 1.3. Test data for choice -2nd element

...
<id>

<memberNumber>1234</memberNumber>
</id>
...

364 P. Silveira and A.C.V. de Melo

Listing 1.4. Test data for all choice elements- An error is expected for this message

...
<id>

<drivingLicense>S1234 -123456 -12</ drivingLicense>
<memberNumber>1234</memberNumber>

</id>
...

Listing 1.5. Test suites for the maximum number allowed for sequence’s relationship

...
<id>

<memberNumber>S1234 -123456 -12</ memberNumber>
</id>
<moviesList>

<movie>
<id>12</id>
<media>DVD</media>
<price>3.25</price >

</movie>
<movie>

<id>130</id>
<media>DVD</media>
<price>3.25</price >

</movie>
<movie>

<id>12</id>
<media>DVD</media>
<price>3.25</price >

</movie>
<movie>

<id>12</id>
<media>DVD</media>
<price>3.25</price >

</movie>
<movie>

<id>12</id>
<media>DVD</media>
<price>3.25</price >

</movie>
</moviesList>
...

Listing 1.6. Test suites for the minimum number allowed for sequence’s relationship

...
<id>

<memberNumber>S1234 -123456 -12</ memberNumber>
</id>
<moviesList>

<movie>
<id>12</id>
<media>DVD</media>
<price>3.25</price >

</movie>
</moviesList>
...

4.3 Operator Perturbation

Operator Perturbation relies on the idea of RPC Communication Perturbation[8]
and SOAP Perturbation Operators [4]. In [8], mutation operators were only

Exploring XML Perturbation Techniques 365

applied to RPC style Web services. In the present work, all mutation operators,
presented in Table 2 and 3, are implemented for RPC Web services and, besides
that, all of them are redefined and implemented for Document based Web ser-
vices. Apart from those already defined operators, the following new mutation
operators are defined:

Code Injection: Code injection is a technique to introduce some code into
a program. The goal normally is to take advantage of some assumption, such
as: quotation marks or semi-colons would never appear, only alphanumeric will
be entered, use of array index from input, and so on. The following mutation
operator were included:

DynamicEvaluation(n) - This mutation operator explores the situation
when part of input is used into an eval function, Listing 1.7 shows an example
of code.

Listing 1.7. Code using function eval

$var = "";
eval("\$var=\ $inputValue;");
$var = "";

Test case: Add the value: 0 ; system(\“/bin/echo error message\”); to the
node n.

FileInjection(n) - This operator is used to demonstrate errors when an
input parameter is used as file name.

Test case: Add a file path as element value.

Numeric Value SQL Injection: To protect against SQL injection, many
programmers are escaping or removing quotes, but this does not completely
remove the risk in certain programming languages. Consider the following query:

SELECT fields FROM table WHERE id == $id;
The variable $id was assumed to be a numeric value and it would expose all

users if someone tries: id = 0 OR 1=1.
Test case: Add the value = 0 OR 1=1 to the element value.

Null: XML Schema introduces a mechanism for signaling that an element’s
content is missing or “null”[13]. This operator only applies for literal messages.
Listing 1.8 has an extract of XML Schema that specify nullable and a XML that
has a null element.

Test Case: Remove the element value and add the attribute xsi:null=“true”
to the element.

Listing 1.8. Null example

XML Schema:
<element name="middleName" type="string" nullable ="true"/>

XML Document :
<middleName xsi:null="true"/>

366 P. Silveira and A.C.V. de Melo

The following mutation operator was included:

Null(n)
Test case: Add the attribute xsi:null=“true” to the node n, and delete its

contents.

5 Empirical Results

Using the testing techniques presented in this paper, we built a tool, GenAu-
toWS. It can be used by both Web services subscribers and providers. For the
former, the test suites are generated based on the service interfaces to certify
particular uses of services. Service providers can also be benefited by the use of
GenAutoWS as a development tool in which messages are automatically gener-
ated based on the presented techniques.

Test cases automatically generated by the tool can be included in a test suite.
These test suites can actually be executed by the tool which is responsible for
sending messages to the Web services and response messages can be checked by
the tester. Messages perturbed to create new test cases are automatically saved
in an internal database. GenAutoWS has a feature, namely “internal data -
perturbation”, used to create new messages by swapping values with previously
saved values.

Regarding connectivity GenAutoWS supports UDDI. Bloomberg [3] showed
many issues of testing Web services including testing publishing, finding and
binding capabilities of SOA. GenAutoWS allows UDDI registry inquiries, the
WSDL returned is used to create test case messages automatically. The seed
message uses values from the internal database or values default based on the
element datatype.

GenAutoWS was submitted as a first proof-of-concept to generate test cases
for five Web services from two different systems of a financial institution. The
first three Web services (WS1, WS2 and W3) belong to an enterprise email
application and the other two Web services (WS4 and WS5) are used to verify
credit information.

The Web services used in this proof-of-concepts are specified using WSDL
and they communicate using SOAP over HTTP. The first four Web services
are document/literal and WS5 is RPC/encoded. Both systems were developed
in Java. Although they are now used in a production environment, pre-release
versions of these systems were used for test. During the tests, the faults found
were classified as low, medium and high accordingly to the critical level.

Using the techniques of boundary value [8] and all XML Schema Facets pre-
sented in Section 4.1, we generated 162 different tests. Table 7 summarizes the
result for this approach. The majority of the observed faults were classified as
low level, example: no error message or message incomplete.

The relationship strategies for DCP, shown in Section 4.2, generated 49 tests,
the results are presented in Table 8. No tests were generated for WS5 using this
technique, since it was not specified by XML Schema.
1 Some faults were found for more than one test cases.

Exploring XML Perturbation Techniques 367

Table 7. Tests - Data Value Perturbation

Number of tests 162
Generated using the new techniques 99
Generated using the previous techniques 63

Total number of faults 32
Medium and high level faults 7
Tests that detect faults 1 62

From new techniques 48
From previous techniques 14

Table 8. Tests - Data Communic. Perturbation

Number of tests 49
Generated using the new techniques 40
Generated using the previous techniques 9

Total number of faults 12
Medium and high level faults 4
Tests that detect faults 1 20

From new techniques 16
From previous techniques 4

Table 9. Tests - Mutation Operators

Number of tests 164
Generated using the new techniques 48
Generated using the previous techniques 116

Total number of faults 16
Medium and high level faults 4
Tests that detect faults 1 44

From new techniques 10
From previous techniques 34

The mutation operators presented in [8,4] and the four new operators proposed
in Section 4.3 generated 164 tests. The results are summarized in the Table 9.

Certain faults were detected by multiple tests and were common among the
different techniques. The new techniques presented in the present paper gener-
ated more test cases/data than the original approach for the DVP and DCP tests.
These new tests could reveal faults not detectable by the original techniques. The
new testing strategies defined for DCP took advantage of relationships described
in XML Schema not considered before. For instance, the order indicators choice
and all. The generation of test cases/data that should cause errors in the appli-
cation allowed us to validate errors messages returned by the service, either for
incorrect or inexistent messages.

The use of other XML Schema constrains (facets) in the DVP technique per-
mitted to create more accurate data within the element domain. For example,
for the string element that contain pattern: [A-Z]{2,3}-[0-9]{2,3}, a part from
the string maximum length from the previous techniques, two new ones were
created: ZZZ-999 and ZZZZ-9999. The latter is an invalid message and should
receive an error when executed.

368 P. Silveira and A.C.V. de Melo

6 Conclusion

This paper proposed extensions to testing techniques based on Data Perturba-
tion for Web Services together with a tool to generate the test suites based on the
previous and new techniques. For that, new mutation operators, boundary val-
ues considering all WSDL facets, testing cases using relationship defined in the
WSDL, UDDI integration, internal database to collect and use values previously
captured from messages were proposed.

The testing tool GenAutoWS was built using these extensions and a first
proof-of-concepts using five Web services from a financial institution was carried
out. In this proof-of-concepts, DVP tests were shown more efficient compared to
the other techniques, founding at least twice the number of faults. Such a result
is similar to the one got by Offutt and Xu [8] in their proof-of-concepts.

The test cases added to DVP and DCP previous techniques could generate
more messages and reveal more faults than their counterparts in the original
approach. The new rules inserted to DCP and the improvements for DCP were
able to generate many messages for WS1, WS2 and WS3. These Web Services
had many constrains specified using XML Schema facets and XML Schema order
indicators testing technique could exploit these features. Although the mutation
operators presented in the section 4.3 have a limited scope in the case studies
preformed so far, they can produce better results if applied to systems in which
security issues are more relevant.

Web Services testing presented here can be applied to existing Web Services
without modifying or rewriting any piece of code, or adopting a specific frame-
work. The quality of test cases/data generated, however, depends on how well
the Web Services are specified, since the WSDL and schema files are used to
generate the messages.

The techniques for data perturbation based on rules for XML Schema can be
easily adapted to different kinds of applications that exchange messages in XML
format. One possible work is to explore the generation of test cases for REST
(Representational State Transfer) with information specified in a WADL (Web
Application Description Language) file, a message descriptor for REST Services,
using the same techniques presented here.

Acknowledgements. This project has been co-funded by the National Council for
Scientific and TechnologicalDevelopment (CNPq - Brazil) - Process:551038/2007-
1, the State of São Paulo Research Foundation (FAPESP) and the Ministry of
Education Research Agency (CAPES- Brazil) - Process:0671-08-8.

References

1. Beizer, B.: Software Testing Techniques, 2nd edn. International Thomson Com-
puter Press (1990)

2. UC Berkeley. Blast (berkeley lazy abstraction software verification tool) model
checker, http://embedded.eecs.berkeley.edu/blast/

http://embedded.eecs.berkeley.edu/blast/

Exploring XML Perturbation Techniques 369

3. Bloomberg, J.: Testing web services today and tomorrow. The Rational Edge E-
zine for the Rational Community (2002)

4. de Almeida Jr., L.F., Vergilio, S.R.: Exploring perturbation based testing for web
services. In: ICWS 2006: Proceedings of the IEEE International Conference on
Web Services (ICWS 2006), Washington, DC, USA, pp. 717–726. IEEE Computer
Society, Los Alamitos (2006)

5. Harrison, A., Taylor, I.J.: Wspeer - an interface to web service hosting and invo-
cation. In: IPDPS 2005: Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2005) - Workshop 4, Washington, DC,
USA, p. 175. IEEE Computer Society, Los Alamitos (2005)

6. Huang, H., Tsai, W., Paul, R., Chen, Y.: Automated model checking and test-
ing for composite web services. In: ISORC 2005: Proceedings of the Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2005), Washington, DC, USA, pp. 300–307. IEEE Computer Society, Los
Alamitos (2005)

7. Myers, G.J.: The Art of Software Testing, 2nd edn. Wiley, New York (2004)
8. Offutt, J., Xu, W.: Generating test cases for web services using data perturbation.

SIGSOFT Softw. Eng. Notes 29(5), 1–10 (2004)
9. Pressman, S.R.: Software Engineering: A Practitioner’s Approach, 6th edn.

McGraw-Hill, New York (2004)
10. Tsai, W.T., Paul, R., Song, W., Cao, Z.: Coyote: An xml-based framework for web

services testing (2002)
11. Tsai, W.T., Paul, R., Yu, L., Saimi, A., Cao, Z.: Scenario-based web service testing

with distributed agents (2003)
12. OASIS UDDI. UDDI Specification, http://www.uddi.org/specification.html

(last access, 2005)
13. W3C. Xml schema part 1: Structures,

http://www.w3.org/TR/2000/CR-xmlschema-1-20001024/
14. W3C. Web services description language (WSDL) version 2 part 1: Core language,

http://www.w3.org/TR/wsdl20/ (last access, 2006)
15. W3C. Web services glossary (last access, July 2007)
16. Xu, W., Offutt, J., Luo, J.: Testing web services by xml perturbation. In: ISSRE

2005: Proceedings of the 16th IEEE International Symposium on Software Relia-
bility Engineering, Washington, DC, USA, pp. 257–266. IEEE Computer Society,
Los Alamitos (2005)

http://www.uddi.org/specification.html
http://www.w3.org/TR/2000/CR-xmlschema-1-20001024/
http://www.w3.org/TR/wsdl20/

Facilitating Controlled Tests of Website Design
Changes: A Systematic Approach

Javier Cámara1 and Alfred Kobsa2

1 Department of Computer Science, University of Málaga
Campus de Teatinos, 29071. Málaga, Spain

jcamara@lcc.uma.es
2 Dept. of Informatics, University of California, Irvine

Bren School of Information and Computer Sciences. Irvine, CA 92697, USA
kobsa@uci.edu

Abstract. Controlled online experiments in which envisaged changes to a web
site are first tested live with a small subset of site visitors have proven to predict
the effects of these changes quite accurately. However, these experiments often
require expensive infrastructure and are costly in terms of development effort.
This paper advocates a systematic approach to the design and implementation of
such experiments in order to overcome the aforementioned drawbacks by making
use of Aspect-Oriented Software Development and Software Product Lines.

1 Introduction

During the past few years, e-commerce on the Internet has experienced a remarkable
growth. For online vendors like Amazon, Expedia and many others, creating a user
interface that maximizes sales is thereby crucially important. Different studies [9,8] re-
vealed that small changes at the user interface can cause surprisingly large differences
in the amount of purchases made, and experience has shown that it is very difficult for
interface designers and marketing experts to foresee how users react to small changes
in websites. The behavioral difference that users exhibit at web pages with minimal
differences in structure or content quite often deviates considerably from all plausible
predictions that designers had initially made [18,23,21]. For this reason, several tech-
niques have been developed by industry that use actual user behavior to measure the
benefits of design modifications [14]. These techniques for controlled online experi-
ments on the web can help to anticipate users’ reactions without putting a company’s
revenue at risk. This is achieved by implementing and studying the effects of modifi-
cations on a tiny subset of users rather than testing new ideas directly on the complete
user base.

Although the theoretical foundations and practical lessons learned from such exper-
iments have been well described [13], there is little systematic support to their design
and implementation. In this work, we advocate a systematic approach to the design
and implementation of such experiments based on Software Product Lines [5] and As-
pect Oriented Software Development (AOSD) [10]. Section 2 overviews the different
techniques involved in online tests and points out their shortcomings. Section 3 de-
scribes our approach, briefly introducing software product lines and AOSD. Section 4

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 370–378, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Facilitating Controlled Tests of Website Design Changes 371

introduces a prototype tool that we developed to test the feasibility of our approach.
Section 5 compares our proposal with related work, and Section 6 presents some con-
clusions and perspectives.

2 Controlled Online Tests on the Web: An Overview

The underlying idea behind controlled online tests of a web interface is to create one or
more different versions of it by incorporating new or modified features, and to test each
version by presenting it to a randomly selected subset of users in order to analyze their
reactions. User response is measured along an overall evaluation criterion (OEC) or
fitness function, which indicates the performance of the different versions or variants.
A simple yet common OEC in e-commerce is the conversion rate, that is, the percentage
of site visits that result in a purchase. OECs may however also be very elaborate, and
consider different factors of user behavior.

Controlled online experiments can be classified into two major categories, depend-
ing on the number of variables involved: (i) A/B, A/B/C, ..., A/../N Split Testing. These
tests compare one or more variations of a single site element or factor, such as a pro-
motional offer. Site developers can quickly see which variation of the factor yields the
highest conversion rates. In the simplest case (A/B test), the original version of the in-
terface is served to 50% of the users (A or Control Group), and the modified version
is served to the other 50% (B or Treatment Group). A/B tests are simple, but not very
informative. For instance, consider Figure 1, which depicts the original version and a
variant of a checkout example taken from [9]1. This variant has been obtained by mod-
ifying 9 different factors. While an A/B test tells us which of two alternatives is better,

Fig. 1. Checkout screen: variants A (original, left) and B (modified, right)2

1 Eisenberg reports that Interface A resulted in 90% fewer purchases, probably because potential
buyers who had no promotion code were put off by the fact that others could get lower prices.

2 c© 2007 ACM, Inc. Included by permission.

372 J. Cámara and A. Kobsa

it does not yield reliable information on how combinations of the different factors influ-
ence the performance of the variant. (ii) Multivariate Testing. A multivariate test can
be viewed as a combination of many A/B tests, whereby all factors are systematically
varied. This extends the effectiveness of online tests by allowing the impact of inter-
actions between factors to be measured. A multivariate test can, e.g., reveal that two
interface elements yield an unexpectedly high conversion rate only when they occur
together, or that an element that has a positive effect on conversion loses this effect in
the presence of other elements.

The execution of a test can be logically separated into two steps, namely (a) the as-
signment of users to the test, and to one of the subgroups for each of the interfaces
to be tested, and (b) the subsequent selection and presentation of this interface to the
user. Specifically, three implementation methods are currently used: (i) Traffic Split-
ting. Different implementations (variants) are manually created and placed on different
servers. Then, user traffic is diverted to the assigned variant using a proxy. This ap-
proach is expensive, and both website and the code for the measurement of the OEC
have to be replicated across (virtual) servers. Moreover, creating each variant for the
test manually is impossible in most multivariate tests. (ii) Server-side Selection. The
logic that produces the different variants for users is embedded in the code of the site.
In particular, branching logic has to be added to produce the different interfaces. Code
becomes complex and unmanageable if different tests are run concurrently. However,
if these problems are solved, server-side selection is a powerful alternative which has
the potential to automate variant generation. (iii) Client-side Selection. Assignment
and generation of variants is achieved through dynamic modification of each requested
page at the client side using JavaScript. The drawbacks of this approach are similar to
the ones in server-side selection, but in addition, the features subject to experimentation
are far more limited (e.g., only superficial modifications are possible, JavaScript must
be enabled in the client browser, etc.).

3 Systematic Online Test Design and Implementation

To overcome the various limitations described in the previous section, we advocate a
systematic approach to the development of online experiments. For this purpose, we rely
on two different foundations: (i) software product lines provide the means to properly
model the variability inherent in the design of the experiments, and (ii) aspect-oriented
software development (AOSD) helps to reduce the effort and cost of implementing the
variants of the test by capturing variation factors on aspects.

3.1 Test Design Using Software Product Lines

Software Product Line models describe all requirements or features in the potential
variants of a system. In this work, we use a feature-based model similar to the models
employed by FODA [11] or FORM [12]. This model takes the form of a lattice of
parent-child relationships which is typically quite large. Single systems or variants are
then built by selecting a set of features from the model.

Product line models allow the definion of directly reusable (DR) features which are
common to all possible variants, and three types of discriminants or variation points,

Facilitating Controlled Tests of Website Design Changes 373

F1(MA) The cart component must include a checkout screen.

– F1.1(SA) There must be an additional ”Continue Shopping” button present.

• F1.1.1(DR) The button is placed on top of the screen.

• F1.1.2(DR) The button is placed at the bottom of the screen.

– F1.2(O) There must be an ”Update” button placed under the quantity box.

– F1.3(SA) There must be a ”Total” present.

• F1.3.1(DR) Text and amount of the ”Total” appear in different boxes.

• F1.3.2(DR) Text and amount of the ”Total” appear in the same box.

– F1.4(O) The screen must provide discount options to the user.

• F1.4.1(DR) There is a ”Discount” box present, with amount in a box next to it on top of the ”Total” box.

• F1.4.2(DR) There is an ”Enter Coupon Code” input box present on top of ”Shipping Method”.

• F1.4.3(DR) There must be a ”Recalculate” button left of ”Continue Shopping.”

Fig. 2. Feature model fragment corresponding to the checkout screen in Figure 1

namely: (i) Single adaptors (SA): a set of mutually exclusive features; (ii) Multiple
adaptors (MA): a list of alternatives not mutually exclusive (at least one must be se-
lected); and (iii) Options (O): a single optional feature.

To define the different interface variants in an online test, we specify common in-
terface features as DR in the feature model. Varying elements are modeled using dis-
criminants. Different combinations of interface features result in different variants. A
fragment of such a feature model for our example is given in Figure 2. Variants can
be manually created by the test designer through the selection of the desired interface
features in the feature model, or automatically by generating all the possible combina-
tions of feature selections. Automatic generation is especially interesting in the case of
multivariate testing. However, not all combinations of feature selections are valid. For
instance, a single feature selection cannot include both F1.3.1 and F1.3.2 (single adap-
tor). Likewise, if F1.4 is selected, it is mandatory to include F1.4.1-F1.4.3 in the selec-
tion. These restrictions are introduced by the discriminants used in the feature model.
If restrictions are not satisfied, the variant is not valid and should not be presented to
users. Feature models can be translated into a logical expression by using features as
atomic propositions and discriminants as logical connectors. By instantiating all the
feature variables in the expression to true if selected, and false if unselected, we can
generate the set of possible variants and then test their validity [17]. A valid variant is
one for which the logical expression of the complete feature model evaluates to true.

3.2 Implementing Tests with Aspects

Aspect-Oriented Software Development (AOSD) is based on the idea that systems are
better programmed by separately specifying their different concerns (areas of interest),
using aspects and a description of their relations with the rest of the system. Those
specifications are then automatically woven (or composed) into a working system.

With conventional programming techniques, programmers have to explicitly call
methods available in other component interfaces in order to access their functional-
ity, whereas the AOSD approach offers implicit invocation mechanisms achieved by
means of join points. These are regions in the dynamic control flow of an application

374 J. Cámara and A. Kobsa

(method calls or executions, field setting, etc.) which can be intercepted by an aspect-
oriented program by using pointcuts (predicates which allow the quantification of join
points) to match with them. When a join point is matched, the program runs code im-
plementing new behavior (advices) typically before, after, instead of, or around (before
and after) the matched join point. To illustrate our approach, we use PHP [20] and
phpAspect [3], which provides AspectJ3 -like syntax and abstractions. However, our
proposal is easily adaptable to other platforms.

Cart
Shippingmethod
Subtotal
addItem()
removeItem()
printDiscountBox()
printTotalBox()

General

printHeader()
printBanner()
printMenuTop()
printMenuBottom()

Item
Id
name
price

User
name
email
username
password

tax
total
printCouponCodeBox()
printShippingMethodBox()
printCheckoutTable()
doCheckout()

1 1* 1

1 1

Fig. 3. Classes involved in the shopping cart example

We introduce a simplified implementation of the shopping cart in Section 1 to illus-
trate our approach: a ’shopping cart’ class (Cart) allows for the addition and removal
of different items. This class contains a number of methods that render the different
elements in the cart at the interface, such as printTotalBox or printDiscountBox.
These are private methods called from within the public method printCheckout-

Table, used to render the main body of our checkout screen. A user’s checkout is com-
pleted when doCheckout is invoked. The General class contains auxiliary functions,
such as representing common elements of the site (e.g., headers, footers and menus).

Variant implementation. The alternatives used so far for variant implementation have
important disadvantages (discussed in Section 2). These include the need to produce
different versions of the system code either by replicating and modifying it across sev-
eral servers, or using branching logic on the server or client sides.

Using aspects instead of the traditional approaches offers the advantage that the orig-
inal source code does not need to be modified, since aspects can be applied as needed,
resulting in different variants. In our approach, each feature described in the product
line is associated to one or more aspects which modify the original system in a partic-
ular way. Hence, when a set of features is selected, the appropriate variant is obtained
by weaving with the base code (i.e., the original system’s code) the set of aspects asso-
ciated to the selected features in the variant.

To illustrate how these variations are achieved, consider for instance the features
labeled F1.3.1 and F1.3.2 in Figure 2. These two features are mutually exclusive and
state that in the total box of the checkout screen, text and amount should appear in dif-
ferent boxes rather than the same box, respectively. In the original implementation (Fig-
ure 1.A), text and amount appeared in different boxes, hence there is no need to modify
the behavior if F1.3.1 is selected. When F1.3.2 is selected though, we merely have to re-
place the method that renders the total box. This is achieved by adding the aspect in Fig-
ure 4.A, which defines a pointcut intercepting the execution of Cart.printTotalBox
and applies an around-type advice.

3 AspectJ [7] is the de-facto standard in aspect-oriented programming languages.

Facilitating Controlled Tests of Website Design Changes 375

aspect replaceTotalBox{
pointcut render:exec(Cart::printTotalBox(*));
around(): render{

/* Alternative rendering code */
}

}

aspect itemDiscount{
private Item::$discount;
public function Item::getDiscountedPrice() {

return ($this->price - $this->discount) ;
}

}

aspect accountPurchase{
private $dbtest;
pointcut commitTrans:exec(Cart::doCheckout(*));
function Cart::accountPurchase(DBManager $db){

$db->insert($this->getUserName(), $this->total);
}
around($this): commitTrans{

if (proceed()){ $this->accountPurchase($thisAspect->dbtest); }
}

}

A

B

C

Fig. 4. Aspects: (A) rendering code replacement; (B) item discount inter-type declarations; and
(C) data collection

This approach to the generation of variants results in better code reusability (espe-
cially in multivariate testing) as well as reduced costs and efforts, since developers do
not have to replicate nor generate complete variant implementations. Moreover, this ap-
proach is safer and cleaner, because the system logic does not have to be temporally (nor
manually) modified, with the risks this represents in terms of security and reliability.

Experimenting with variants may also require the modification of data structures
or method additions to some classes. Consider for instance a test in which developers
want to monitor how customers react to discounts on products in a catalog. Assume
that discounts can be different for each product and that the site has not initially been
designed to include any information on discounts, i.e. this information needs to be in-
troduced somewhere in the code. To solve this problem we can use inter-type decla-
rations. Aspects can declare members (fields, methods, etc.) owned by other classes.
These are called inter-type members. The aspect on Figure 4.B, introduces an addi-
tional discount field in our Item class, and also a getDiscountedPrice method
used when the discounted price of an item is to be retrieved.

Data Collection and User Interaction. The code in charge of measuring and collecting
data for the experiment can also be written as aspects in a concise manner. Consider a
new experiment with our checkout example in which we want to calculate how much
customers spend on average when they visit our site. To this end, we need to add up the
amount of money spent on each purchase. One way to implement this functionality is
again inter-type declarations.

When the aspect in Figure 4.C intercepts the method Cart.doCheckout that com-
pletes a purchase, the associated advice inserts the sales amount into a database that
collects the results from the experiment (but only if the execution of the intercepted
method succeeds, which is represented by proceed in the advice). It is worth noting
that while the database reference belongs to the aspect, the method used to insert the
data belongs to the Cart class.

4 Tool Support

The approach for online experiments on websites that we presented in this article has
been implemented in a prototype tool, called WebLoom. It includes a graphical user

376 J. Cámara and A. Kobsa

System Logic

Aspect Code for Variants 1..n

Designer

1.a. Specify Feature Model

WebLoom

1.b. Add Feature Code

1.c Define Variants 1..n
(by Selecting Features)

2. Aspect Code Generation 3. Aspect Weaving

1.d Define OECs

1. Design

Data Collection Aspect Code

Weaver

Test
Implementation

Fig. 5. Operation of WebLoom

interface to build and visualize feature models. Moreover, the user can attach aspect
code to features. The tool also supports both automatic and manual variant generation,
and is able to deploy code which lays out all the necessary infrastructure to perform the
designed test on a particular website.

In Figure 5 we can observe the way in which our prototype tool works. The user
enters a description of the potential modifications to be performed on the website in
order to produce the different variants under WebLoom’s guidance. This results in a
basic feature model structure which is then enriched with code associated to the afore-
mentioned modifications (aspects). Once the feature model is complete, the user can
select features to generate any number of variants, which are automatically checked for
validity before being stored. Alternatively, the user can ask the tool to generate all the
valid variants for the current feature model. Once all necessary input has been received,
the tool gathers the code for each particular variant to be tested in the experiment by
collecting all the aspects associated with the features that were selected for the variant.
It then invokes the weaver to produce the actual variant code for the designed test by
weaving the original system code with the aspect code produced by the tool.

5 Related Work

Feature models and AOSD have already been applied in the construction of Web appli-
cations in order to achieve significant productivity gains [22,19]. However, these pro-
posals only exploit one of these alternatives and do not pursue a combined approach.

Regarding the combined use of both approaches, Lee et al. [15] and Loughran
and Rashid [16] present some guidelines on how feature-oriented analysis and aspects
can be combined. Other approaches such as [24] aim at implementing variability, and
the management and tracing of requirements to implementation by integrating model-
driven and aspect-oriented software development. The AMPLE project [1] takes this
approach along the software lifecycle, aiming at traceability during product line evo-
lution. Although both combination approaches and our own proposal employ software
product lines and aspects, the earlier approaches are concerned with the general process
of system construction by identifying and reusing aspect-oriented components, whereas
our approach deals with the creation of different versions of a Web application with a
limited lifespan to test user behavioral response. Hence, our framework is intended to
generate lightweight aspects which are used as a convenient means for the transient
modification of parts of the system. In this sense, it is worth noticing that aspects are

Facilitating Controlled Tests of Website Design Changes 377

only involved as a means to generate system variants, but not necessarily present in the
original system implementation.

To the extent of our knowledge, no research has so far been reported on treating
online test design and implementation in a systematic manner. A number of consulting
firms already specialized on analyzing companies’ web presence [4,2]. These firms
offer ad-hoc studies of web retail sites with the goal of achieving higher conversion
rates. Some of them use proprietary technology usually focused on the statistical aspects
of the experiments, requiring significant code refactoring for test implementation.

6 Concluding Remarks

We believe that the benefits of our approach are especially valuable for the problem do-
main that we address. On one hand, testing is performed on a regular basis for websites
to continuously improve their conversion rates. On the other hand, a high percentage of
the tested modifications are discarded since they do not improve the site’s performance.
Therefore, a lot of effort is lost in the process. We believe that WebLoom will save de-
velopers time and effort, reducing the amount of work they have to put into the design
and implementation of online tests.

A more detailed description of our work can be found in [6]. Regarding future work,
we aim at enhancing our basic prototype with additional WYSIWYG extensions for its
graphical user interface. Specifically, developers should be enabled to immediately see
the effects that code modifications and feature selections will have on the appearance
of their web site.

References

1. Ample project, http://www.ample-project.net/
2. Optimost, http://www.optimost.com/
3. phpAspect: Aspect oriented programming for PHP, http://phpaspect.org/
4. Vertster, http://www.vertster.com/
5. Software product lines: practices and patterns. Addison-Wesley Longman Publishing Co.,

Boston (2001)
6. Cámara, J., Kobsa, A.: Facilitating Controlled Tests of Website Design Changes using Aspect

Oriented Programming and Software Product Lines. Transactions on Large Scale Data and
Knowledge Centered Systems 1(1) (2009)

7. Colyer, A., Clement, A., Harley, G., Webster, M.: Eclipse AspectJ: Aspect-Oriented Pro-
gramming with AspectJ and the Eclipse AspectJ Development Tools. Pearson Education,
London (2005)

8. Eisenberg, B.: How to decrease sales by 90 percent,
http://www.clickz.com/1588161

9. Eisenberg, B.: How to increase conversion rate 1,000 percent,
http://www.clickz.com/showPage.html?page=1756031

10. Filman, R.E., Elrad, T., Clarke, S., Aksit, M. (eds.): Aspect-Oriented Software Development.
Addison Wesley, Reading (2004)

11. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain analysis
(FODA) feasibility study. TR. CMU/SEI-90-TR-21, SEI (1990)

12. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Ann. Software Eng. 5 (1998)

http://www.ample-project.net/
http://www.optimost.com/
http://phpaspect.org/
http://www.vertster.com/
http://www.clickz.com/1588161
http://www.clickz.com/showPage.html?page=1756031

378 J. Cámara and A. Kobsa

13. Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experiments on the
web: listen to your customers not to the hippo. In: Proc. of KDD 2007. ACM, New York
(2007)

14. Kohavi, R., Round, M.: Front Line Internet Analytics at Amazon.com (2004),
http://ai.stanford.edu/˜ronnyk/emetricsAmazon.pdf

15. Lee, K., Kang, K.C., Kim, M., Park, S.: Combining feature-oriented analysis and aspect-
oriented programming for product line asset development. In: Proc. of SPLC 2006. IEEE,
Los Alamitos (2006)

16. Loughran, N., Rashid, A.: Framed aspects: Supporting variability and configurability for
AOP. In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp.
127–140. Springer, Heidelberg (2004)

17. Mannion, M., Cámara, J.: Theorem proving for product line model verification. In: van der
Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 211–224. Springer, Heidelberg (2004)

18. McGlaughlin, F., Alt, B., Usborne, N.: The power of small changes tested -change.html
(2006),
http://www.marketingexperiments.com/
improving-website-conversion/power-small

19. Pettersson, U., Jarzabek, S.: Industrial experience with building a web portal product line
using a lightweight, reactive approach. In: Proc. of ESEC/SIGSOFT FSE. ACM, New York
(2005)

20. PHP: Hypertext preprocessor, http://www.php.net/
21. Roy, S.: 10 factors to test that could increase the conversion rate of your landing pages (2007),

http://www.wilsonweb.com/conversion/
sumantra-landing-pages.htm

22. Trujillo, S., Batory, D.S., Dı́az, O.: Feature oriented model driven development: A case study
for portlets. In: ICSE, pp. 44–53. IEEE, Los Alamitos (2007)

23. Usborne, N.: Design choices can cripple a website (2005),
http://alistapart.com/articles/designcancripple

24. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and model-driven
software development. In: Proc. of SPLC 2007. IEEE, Los Alamitos (2007)

http://ai.stanford.edu/~ronnyk/emetricsAmazon.pdf
http://www.marketingexperiments.com/improving-website-conversion/power-small
http://www.marketingexperiments.com/improving-website-conversion/power-small
http://www.php.net/
http://www.wilsonweb.com/conversion/sumantra-landing-pages.htm
http://www.wilsonweb.com/conversion/sumantra-landing-pages.htm
http://alistapart.com/articles/designcancripple

SOAF – Design and Implementation of a
Service-Enriched Social Network�

Martin Treiber, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Institute of Information Systems
Vienna University of Technology

{treiber,truong,dustdar}@infosys.tuwien.ac.at

Abstract. In this paper, we propose the integration of services into social net-
works (SOAF - Service of a Friend) to leverage the creation of the Internet of
Services vision. We show how to integrate services and humans into a common
network structure and discuss design and implementation issues. In particular, we
discuss the required extensions to existing social network vocabulary with regard
to services. We illustrate a scenario where this network structures can be applied
in the context of service discovery and highlight the benefit of a service-enriched
social network structure.

1 Introduction

The Internet of services [1] vision focuses on the extension of the existing Internet with
regard to services. In a future Internet of services, information is not static any more,
but dynamically provided by all kind of software services. This development was driven
by the so-called Web 2.0 phenomena, which included the broad adoption of social net-
works like facebook 1, xing 2 or twitter3. Indeed, as Kleinberg observed in his work [2],
social and technical networks converge. In these networks, user generated content, like
folksonomies [3], provides a vast source of information that is able to classify arbitrary
content (e.g., del.icio.us 4). In this area, the Friend of a Friend project (FOAF) [4] aims
at providing information about relationships between humans in social network struc-
tures. FOAF describes relationship structures with RDF [5], thus defining the technical
foundation to access information of social networks in a machine readable form.

Viewed from a business perspective, these developments have a profound impact on
the way businesses are conducted. In his Wired article, Howe shows how the idea of
crowdsourcing [6] can be applied to businesses. With regard to (Web) services, which
already provided by companies, and the integration of humans into common networks,
companies can benefit from these emerging network structures. However, with exist-
ing service-oriented infrastructures, this endeavor proves to be difficult to achieve. In

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

1 http://www.facebook.com
2 http://www.xing.com
3 http://www.twitter.com
4 http://delicious.com

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 379–393, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.facebook.com
http://www.xing.com
http://www.twitter.com
http://delicious.com

380 M. Treiber, H.-L. Truong, and S. Dustdar

fact, SOA (service-oriented architecture) focuses on stable processes that are defined
and executed in workflow systems. The gap between SOA and Web 2.0 is widened by
the emerging end user driven creation of applications (mashups [7] and situational ap-
plications [8,9]) which are playing an important part on the Internet now and become
increasingly important for businesses.

One of the main reasons is that there is little support to integrate humans and services
into networks to benefit from social connections within such network structures. There
exist approaches that support the integration of human activities [10,11] into business
processes. These approaches assume that there is already a workflow and that there is
repository that can be used to select the required services for a given workflow. The
associated service discovery process is well studied in literature [12]. However, with
the failure of centralized registries [13] and no Web service standard for the discovery
of Web services, the discovery process is fragmented and cumbersome. This leads to a
situation in which Web service related information is distributed among several isolated
company registries, if this is the case at all. Especially smaller companies hesitate to use
registries, because of the overhead involved in maintaining dedicated registries. In such
cases, Web services are often published simply by mailing customers the necessary
information about the endpoint of a Web service or maintaining simple catalogues with
unstructured information of available Web services on company owned web pages.

This practice hinders the creation of Web service marketplaces [14] where one can
discover Web services and learn from the experience of others by using a particular Web
service. When investigating the process of Web service discovery, one finds that the hu-
man factor is dominant in (semi-) automated approaches [15]. Furthermore, structured
meta information in form of ontologies [16] suffers from the same limitations concern-
ing availability as centralized registries. Even with available semantic information, the
process of discovering Web services requires human activities, since different semantic
service descriptions can be provided by different ontologies. These ontologies require
mappings which cannot be fully automated due to ambiguities or even contradictions
within their content [17].

In the context of Web service discovery, we can learn lessons from humans and how
they look for solutions of problems. Humans exploit local information and use links to
other persons to ask for pointers or for information when needed. In short, humans ask
their friends whether they had a similar problem and how the problem was solved. In
our work, we aim to make use of human relations together with service information.
We link software services and humans in a common network structure. We refer to this
approach as Service of a Friend (SOAF) and follow the spirit of FOAF. We believe that
the integration of humans and services into networks fosters the creation of Web service
ecosystems [18]. Our approach bears several challenges that we are going to address
in this paper. First of all, we need a representation of the links between services and
humans. Secondly, dynamic changes must be represented in our network, since there
are relations that exist only over a certain time (e.g., projects may require collaboration
for several months). And finally, we need to consider that past relations provide useful
information for potential future use (e.g., a service that was useful for certain tasks in
the past may be again useful for new tasks of different users).

SOAF – Design and Implementation of a Service-Enriched Social Network 381

P

S

P

SO Person ServiceOrganization

knows

knows

uses

S

uses

O

provides

provides

P

P
knows

knows

knows

Fig. 1. Overview of SOAF network structure

The rest of the paper is organized as follows. We discuss our approach in Section 2.
We provide an analysis and discussion of our findings in Section 3. Afterwards, we
introduce our prototype architecture in Section 4. We conclude our paper with related
work in Section 5 and an outlook for future research directions in Section 6.

2 Linking Web Services

Due to distributed nature of services and the lack of centralized repositories to search for
services, we require meta information that provides information about the connections
(links) between services in service networks (see Figure 1). These network structures
originate for instance from organizational structures of companies or social networks
which model social connections between humans. Thus, links and their associated in-
formation are very critical for the traversal of networks efficiently and to facilitate the
discovery of distributed services. Therefore, we include meta information into links to
make the traversal more efficient. Furthermore, as the linkage between elements of net-
works is constantly changing, we consider dynamic aspects of the relations between
services, organizations and humans as well. These are not static and may change over
time. For instance, a person might move from one organization to another or the service
provision might depend on the duration of a project (e.g., event notification services).
Our approach takes these considerations into account and we discuss our concept in
detail in the following sub-sections.

2.1 Extending FOAF

The integration of services and humans in a common information network requires the
integration of existing social network structures and service related information. Our
idea is to augment FOAF network structures with service related information and to
link services and humans in the same network. In particular, we extend the relation
mechanisms of FOAF to model relations between services and persons. In SOAF 5 we

5 http://www.infosys.tuwien.ac.at/staff/treiber/soaf/index.rdf

http://www.infosys.tuwien.ac.at/staff/treiber/soaf/index.rdf

382 M. Treiber, H.-L. Truong, and S. Dustdar

extend the FOAF concepts with a (i) Service concept to represent services, a (ii) uses
relation which denotes the use of a service by a person or other services (iii) and a
provides relation that specifies the relation between service provider and service. With
these extensions, we can establish relations between persons, services and organization-
s/groups. We summarize the relations in Table 1.

Table 1. Relations between SOAF entities

Relation Description

Service uses service Denotes direct service invocation by other services. For instance, in
service compositions, a service might call another service directly

Service knows service Denotes that two services are related within a certain context (e.g.,
workflows, compositions or mashups) without any direct invocation
of each other

Person uses service Denotes the service use of a person
Person knows service Denotes mutual knowledge of a service and a person without usage
Person provides service Denotes the service provision by a person, e.g., a human provided

service
Organization provides
service

Defines the relation between organizations and their provided ser-
vices

2.2 Dynamic SOAF

As discussed before, we model three basic relations between entities in a SOAF network
(i) knows, (ii) uses and (iii) provides. The latter two imply automatically knows, since
it is required to know a service before it can be offered or consumed. Knows, uses
and provides are pairwise related through a simple subset relation: uses is a subset of
knows, since it is required to know a service before a service can be used. Besides,
persons/organizations might know more services than they actually use. The provides
relation is also a subset of the knows relation, since a provider knows obviously the
services that are provided and knows/uses additional services.

Viewed from a time based perspective, elements of the knows/uses/provides sets are
subject to changes. For instance, a service might move from the knows set to the uses
set and vice versa. Consequently, we allow to have multiple links to a single service
from a person at any point in time. For instance, as soon as a service is used by a
person, a uses relation is created. If the service is not used anymore (e.g., the service was
used for registration purposes or the access has been revoked due to company changes,
etc.) the uses relation is not valid any more and its internal state and timestamp are set
accordingly. Thus the service moves to the knows set.

Notice that the knows relation is static: once a person knows another person/service,
the relation remains - it is not removed anymore. However, with services we have to
pay attention to the fact that a service does simply not exist any more. In these cases,
the knows relation points to an inactive services that have been used in the past.

An aspect that needs explicitly to be considered is the type of service usage. We
identified several types of service usage that we include in our model. We use this kind

SOAF – Design and Implementation of a Service-Enriched Social Network 383

of information to generate accurate historical information. In particular we consider the
usage frequency of a service and classify the usage as summarized in Table 2.

Table 2. Service usage in SOAF

Usage Description

Once The service is only used once and then never again during the lifetime of
the service (e.g.,a registration/unregistration service is used to subscribe
to a mailinglist, a polling service might exist only before a certain event
takes place, etc.).

Continuously with
pre-defined time to
live

The service is used for a certain activity during a pre defined time and is
removed afterwards (e.g., a service that provides state information about
persons in a project).

Continuously The service is used continuously without limitations concerning the time
of use and frequency.

Complementary to the use of services is their provision. Service provision changes
also over the time, but is generally less dynamic than the uses relation. In particular we
consider three distinct service provision scenarios that are supported by our model (see
Table 3).

Table 3. Service provision in SOAF

Usage Description

Continuously with
pre-defined time to
live

The service is provided for a certain activity during a pre defined time
and is removed afterwards (e.g., a service that provides state information
about persons in a project).

Continuously The service is provided continuously without limitations concerning the
time of use and frequency. This includes the case when a service is used
only once for registration purposes, but nevertheless is required by dif-
ferent customers to register and thus must be available continuously.

Deprecated The service is still available but not actively maintained,

Of central importance for the representation of the network dynamics is the connec-
tion between entities in the SOAF network. We include additional meta information in
the linkage of SOAF entities that is important for management purposes (e.g., creation
and deprecation) (see Table 4).

Table 4. SOAF Connection attributes

Attribute Description

Creation Date, on which the connection between the entities was established
Removal Date on which the connection was removed
Active Flag that indicates if a connection is currently active
Type Defines the type of connection, either uses, provides or knows

384 M. Treiber, H.-L. Truong, and S. Dustdar

2.3 Managing SOAF Service Networks

The management of dynamic aspects of distributed networks is complex task. The first
challenge is to identify a resource in a network in a unique manner. In our approach, we
follow the concept of ”inverse functional properties” from OWL [19]. We use a func-
tional property that defines the URI of a person, an organization or a service. Services
include a functional property that points to the endpoint of the service as well.

Since we do not intend to define a centralized authority that manages available in-
formation, we have to rely on all network members to manage their links and to keep
the links updated. Still, there is no guarantee that this process works without disrup-
tion, since this process relies partially on the intervention of humans. However, since
links between entities in the SOAF network imply a certain degree reciprocal agreement
(knows relation, uses relation) we support this by including Atom feed based [20] no-
tification mechanisms. This is an extension to our previous work on service evolution
management (SEMF) [21] that is able to manage distributed information of services
that change during their life-cycle. Like SEMF, SOAF supports a set of events that can
be subscribed to and that can be accessed as Atom feeds (see Table 5).

Table 5. SOAF events

Event Description

Registration This event describes the creation of a new SOAF entity in the SOAF network. This
event is generated upon the creation of a service, a person or an organization

Change This event describes changes of SOAF entities
Removal This event is generated upon the removal of a SOAF entity
Connection This events is generated if a new connection between two SOAF entities is estab-

lished

Service Publication, Service Removal. Service publication in SOAF is done locally. A
service provider updates its SOAF description with new services that are offered. Since
we do not have a central entity that is used for service registration, we do not require
service providers to actively contact a registry and provide information. Other SOAF
network members that are registered for service publication events receive correspond-
ing notifications, i.e., a registration event that contains service related information. If
a network member is interested in this newly registered service, the network member
contacts the service after having received the registration event and asks for the service
profile. The protocol is shown in Figure 2.

The removal of existing service is closely related to the publication process. To re-
move a service the provider deletes the service information from its local SOAF de-
scription. The propagation of the update follows the same pattern as the publication with
regard to the propagation of changes. Upon service removal, the provider obtains a list
of all service users. Then, the provider checks its subscribed SOAF network members
and informs all service users and the subscribed network members about the service
removal with a removal event (see Figure 3).

SOAF – Design and Implementation of a Service-Enriched Social Network 385

SOAF Person SOAF Service

 SOAF service
publication request

SOAF Service profile
add SOAF
Person profile

SOAF Person

add SOAF
Service profile

check service
requests

[Service match]
SOAF Service profile

service request
remove

add SOAF
Person profile

 SOAF knows request

SOAF Service profile

Fig. 2. SOAF publication information protocol

SOAF Person SOAF Service

 SOAF remove request

Service user list
check service
user list

SOAF Person

remove SOAF
Service profile

check local
subscriptions

[Service match]
SOAF remove request

remove SOAF
Service profile

Fig. 3. SOAF removal protocol

It it worth noticing that from a conceptual point of view, SOAF does not limit this ap-
proach to humans. Since we envision services as part of the network, and thus providing
well formed information, we can extend the notification to services as well.

2.4 Extending the FOAF Datamodel

In this section, we discuss the extensions of the FOAF data model with regard to SOAF
concepts. Notice that the mapping is not limited to FOAF in particular, other represen-
tations of SOAF concepts are also possible. An alternative could be the use of XML

386 M. Treiber, H.-L. Truong, and S. Dustdar

structures that are linked with XLink constructs [22]. However, since FOAF has gained
considerable adoption [23] [24] we have decided to integrate our prototype data model
into the FOAF data model. SOAF requires new concepts to be added to the main FOAF
data model with regard to the needs of services. We include a (i) Service class to repre-
sent services that inherits from Agent, a (ii) uses relation which is similar to the knows
relation, but provides additional information, (iii) a provides relation that defines the
connection between service providers (which may be organizations, persons, teams, vir-
tual teams), and (iv) a dedicated Connection class (which also inherits from Agent) that
encapsulates the connection between services, persons and organizations (see Figure 4).

Agent

Person

Connection

Provider Service

knows/usesknows/provides

Fig. 4. An implementation moel of the SOAF network structure

SOAF Service Class. We model service related information in the SOAF service class.
In our prototype data model, we provide a basic set of information that defines the
capabilities service. The SOAF service class offers information about the endpoint of
the service, the interface description, version information, etc. (see Listing 1.1).

<s o a f : S e r v i c e>
<f o a f : n a m e>SOAFer</ f o a f : n a m e>
<s o a f : e n d p o i n t> . . .</ s o a f : e n d p o i n t>
<s o a f : d e s c r i p t i o n>SOAF S e r v i c e P r o f i l e s G e n e r a t o r</ s o a f : d e s c r i p t i o n>
<s o a f : i n t e r f a c e r d f : r e s o u r c e ="..." />
<s o a f : a c t i v e>t r u e</ s o a f : a c t i v e>
<s o a f : v e r s i o n>1 . 0</ s o a f : v e r s i o n>

</ s o a f : S e r v i c e>

Listing 1.1. SOAF service class example snippet

SOAF Connection Class. The introduction of the connection class addresses the major
shortcoming of FOAF with regard to connections between persons and services. In our
data model, we need to attach additional attributes to a connection like creation date,
state of the connection, etc. FOAF uses the knows relation to connect persons and this
relation does not support additional attributes to further refine the type of connection.

SOAF – Design and Implementation of a Service-Enriched Social Network 387

Thus, we modeled connection class as a subclass of the agent class. This allows us to
seamlessly integrate SOAF connections using the knows relation as bridge to FOAF.
The connection class acts as a container for the connection between persons and ser-
vices (see Listing 1.2).

<f o a f : k n o w s>
<s o a f : C o n n e c t i o n>

<s o a f : e s t a b l i s h e d>J a n u a r y 23 rd 2009</ s o a f : e s t a b l i s h e d>
<s o a f : a c t i v e>t r u e</ s o a f : a c t i v e>
<s o a f : c o n n e c t i o n t y p e>Cont inuous</ s o a f : c o n n e c t i o n t y p e>
<s o a f : u s e s>

<s o a f : S e r v i c e>
<f o a f : n a m e>SOAFer</ f o a f : n a m e>
. . .

</ s o a f : S e r v i c e>
</ s o a f : u s e s>

</ s o a f : C o n n e c t i o n>
<s o a f : C o n n e c t i o n>

<s o a f : e s t a b l i s h e d>December 1 s t 2008</ s o a f : e s t a b l i s h e d>
<s o a f : d i s c o n t i n u e d>December 21 s t 2008</ s o a f : d i s c o n t i n u e d>
<s o a f : a c t i v e>f a l s e</ s o a f : a c t i v e>
<s o a f : c o n n e c t i o n t y p e>Cont inuous</ s o a f : c o n n e c t i o n t y p e>
<s o a f : u s e s>

<s o a f : S e r v i c e>
<f o a f : n a m e>SOAFReporter</ f o a f : n a m e>
. . .

</ s o a f : S e r v i c e>
</ s o a f : u s e s>

</ s o a f : C o n n e c t i o n>
</ f o a f : k n o w s>

Listing 1.2. SOAF connection class example snippet

SOAF Uses Relation. The uses relation is encapsulated in the SOAF connection class
and denotes the service usage of persons, providers and services (see Listing 1.3 for an
example of the uses relation).

<f o a f : k n o w s>
<s o a f : C o n n e c t i o n>

<s o a f : e s t a b l i s h e d>J a n u a r y 23 rd 2009</ s o a f : e s t a b l i s h e d>
<s o a f : a c t i v e>t r u e</ s o a f : a c t i v e>
<s o a f : c o n n e c t i o n t y p e>Cont inuous</ s o a f : c o n n e c t i o n t y p e>
<s o a f : u s e s>

<s o a f : S e r v i c e> . . .</ s o a f : S e r v i c e>
</ s o a f : u s e s>

</ s o a f : C o n n e c t i o n>
</ f o a f : k n o w s>

Listing 1.3. SOAF uses example snippet

SOAF Provides Relation. Like the uses relation, the provides relation is encapsu-
lated in the connection class. The provides relation describes connections between
providers and their services where every connection models the provision of a service
(see Listing 1.4).

388 M. Treiber, H.-L. Truong, and S. Dustdar

<f o a f : k n o w s>
<s o a f : C o n n e c t i o n>

<s o a f : e s t a b l i s h e d>J a n u a r y 23 rd 2009</ s o a f : e s t a b l i s h e d>
<s o a f : a c t i v e>t r u e</ s o a f : a c t i v e>
<s o a f : d e p r e c a t i o n d a t e>J u l y 23 rd 2009</ s o a f : d e p r e c a t i o n d a t e >
<s o a f : c o n n e c t i o n t y p e>Cont inuous</ s o a f : c o n n e c t i o n t y p e>
<s o a f : p r o v i d e s>

<s o a f : S e r v i c e> . . . </ s o a f : S e r v i c e>
</ s o a f : p r o v i d e s>

</ s o a f : C o n n e c t i o n>
</ f o a f : k n o w s>

Listing 1.4. SOAF provides example snippet

3 Discussion

One of the major benefits of the SOAF network is that we are able to create a dynamic
ecosystem of services from a bottom up approach. In particular, since we integrate
humans and services alike, we can track relations between different stakeholders of
Web services [25]. For instance, a service developer might integrate different services
into a new service by wiring the respective service invocations in the code of the service.
By storing such information into SOAF networks, we provide information about service
dependencies and input for creating dependency graphs of services.

Another important aspect is to consider historical information in SOAF which are
particular interest for service mashups. These are created for a certain purpose, and
this kind of information is reflected by connections of different services and persons
that used this particular service mashup. Depending on the amount of meta information
provided, we provide the ability to search in SOAF networks for examples of mashups
that solved particular problems. These examples can be viewed as best practices and
thus serve as blueprint for the creation of other mashups.

Related to historical information is the aspect of network evolution. With the data
provided by SOAF, we can observe the development of network connections (uses,
knows, provides relation) and study the general dynamics of the service network. For
instance, we can establish the number of services that oined the network during a cer-
tain period of time or how many services where removed, etc. Another example is the
creation of metrics that define the attractiveness of services for other members of the
SOAF network, based on the data SOAF provides.

As ”side-effect” in SOAF, we can observe emerging clusters of well connected ser-
vices and persons. This allows us to foster communities in a bottom up manner from
existing connections between services and persons. In contrast to existing Web service
community approaches, we follow the social aspect more closely and do not pre-define
the community functionality. We are aware that a social approach brings a certain degree
of fuzziness. Furthermore, it is difficult to obtain the overall functionality of communi-
ties, since some services might overlap in their functionality. Especially when limited
information is available (e.g., WSDL descriptions), a clear description in terms of over-
all community functionality might not be feasible. However, even with fuzzy informa-
tion, we are able to define a set of core functions that are used within a community since
through the community structure we know which services have the highest connection
and usage rates.

SOAF – Design and Implementation of a Service-Enriched Social Network 389

SOAF also supports social based service discovery which is the translation of human
search activities into a service discovery process. To illustrate our approach, consider
the following example. Company A needs a service that is able to provide information
of public holidays in european countries, for a project meeting planning purposes. Tra-
ditionally, an employee of company A would search a public registry or search engine
6 for a service that is able to fulfill this requirements. If no corresponding service can
be found, the search is repeated after a while in order to find a service and eventually a
service may be found (we assume, that such a service exists in reality and is published
during the time the employee searches for it).

When we transform the discovery example from above to a social network oriented
approach, person A would ask another person B (colleague from work or friend) if s/he
knows a holiday information service. If this is not the case, then person A could ask
person B if person B either knows another person that in turn could be asked or if s/he
hears from such a service to inform person A about the service. This approach is also
known as epidemic protocol [26]. The discovery process we envision in SOAF mimics
the process that we described above. First of all, we assume that SOAF provides a link
between person A and person B. Furthermore, Person B has connections to services
and persons s/he knows and/or uses. By following our example, person A browses all
services that person B knows and learns that none of the services known by B is able
to provide the required functionality. In this case, person A registers to a feed person
B provides in order to get a notification if person B finds a service or if person B is
linked with a service of the required functionality. Simultaneously, person A can do the
same with other persons in the network and thus distribute the discovery among other
network participants by following links.

4 Prototype

We base our prototype on the distributed architecture of previous work [21] and extends
it with the required functionality to model SOAF networks. Our prototype uses a XML
database 7 to persist SOAF related information, which we organize internally in sev-
eral different collections (see Table 6). We use XQuery expressions to generate SOAF
profiles from the persisted data 8.

Our prototype provides the basic functionality (implemented as REST-based Web
services) to manage SOAF data. In order to provide access to events, our prototype
generates Atom feeds from SOAF data. We organize the events in three separate feeds
as shown in Figure 4. For analytical purposes and to co-relate events, we foresee links
between different entries of the feeds.

5 Related Work

From a technical perspective, our approach have similarities with the Web Service In-
trospection Language [27]. Like WSIL, SOAF also provides a container to store Web

6 seekda.com, strikeiron.com, xmethods.net
7 eXist XML Database http://www.exist-db.org/index.html
8 For an example see http://www.infosys.tuwien.ac.at/staff/treiber/
soaf/MartinTreiber.soaf

http://www.exist-db.org/index.html
http://www.infosys.tuwien.ac.at/staff/treiber/soaf/MartinTreiber.soaf
http://www.infosys.tuwien.ac.at/staff/treiber/soaf/MartinTreiber.soaf

390 M. Treiber, H.-L. Truong, and S. Dustdar

Table 6. SOAF collections in the XML Database backend

Collection Description

Service Stores service related information (e.g., endpoint, link to interface description, etc.)
Person Stores all person relevant data (e.g., name, surname, etc.)
Connection Stores connection information (e.g., knows, uses, provides, etc.)
Organization Contains information about organizations (e.g., name, address, etc.)

SOAF

Service Interface

KnowsProfile

Request Feed Reply Feed Change Feed

SOAF
profile

Ack

Connection

XML
DB

XQuery
Atom Feed

API

SOAF
Browser

SOAF API

generates

reads/writes

User

reads reads

uses

reads

SOAF Management GUI

add/remove Service
add/remove Connection

register Event
request Service

generates

reads

uses

reads

Fig. 5. SOAF prototype framework overview

service related data and supports the linking of services with each other. In contrast to
WSIL, SOAF extends the service linkage towards social networks that is not provided
by WSIL itself and integrates humans and services into a common network.

Semantic Web service communities as introduced by [28] aim at creating communi-
ties of Web services. However, the aforementioned approach focuses on issues like ser-
vice replaceability and how semantic descriptions of communities can be created. We
consider our approach at the other end of the spectrum, since SOAF follows a bottom
up approach and doesn’t require ontologies to define the available service functionality.
Moreover, we explicitly consider humans and services as fundamental part of a network
and integrate social structures into of service networks.

The work of Basole and Rouse [29] is related to our work in general. Value Net-
works [30] are of interest when business aspects are studied, i.e., the value that can be
generated by such networks. This is of particular interest when we use our approach to
structure available information of humans and services for further analysis with regard
to businesses.

SOAF – Design and Implementation of a Service-Enriched Social Network 391

Mandelli [31] studies self-organizational aspects that are of importance for our work,
since we consider SOAF as environment where we can investigate emergent structures.
What distinguishes our approach is the technical focus of our work since we aim to
augment existing social networks with service descriptions that we consider this as
foundation for the integration of services in a future Internet of Services [32].

Throughout our work, we utilize concepts that originate from connector oriented
architectures [33]. In particular, we borrow the concept of connectors to model connec-
tions between services and humans in SOAF networks. Furthermore, we also consider
dynamic aspects of connections between entities in SOAF networks. With respect to
changes, we refer to software evolution which has been studied on software architec-
ture level [34] and evolution languages have been proposed to model software architec-
ture changes. While conceptually similar, our focus lies on the basic support for change
mechanisms.

6 Future Work

In this paper, we have presented SOAF (Service of a Friend), which integrates humans
and services into a common network structure. We have showed how to model hu-
mans and services by extending FOAF and providing a common data model. In future
work, we are going to analyze scalability issues in our proposed SOAF network struc-
ture. Since we consider humans in the loop we require a simulation model to estimate
the human impact in such networks (e.g., during searching). Closely related are human
provided services [35] which we are going to investigate in the context of SOAF. In par-
ticular we are going to study dynamic aspects like quality of service of human provided
services and how to address these issues in SOAF.

Furthermore, we are going to investigate how to generate larger networks from ex-
isting data. In order to obtain simulation data, we are going to crawl social networks
and to address the important question how to bootstrap SOAF networks from this data.
With simulations of larger SOAF networks we are going to study evolutionary aspects
of social service networks. Of particular interest is the study of concepts like service
fitness in simulations of SOAF networks and the impact analysis of fitness changes in
such networks.

References

1. Ruggaber, R.: Internet of services sap research vision. In: WETICE 2007: Proceedings of
the 16th IEEE International Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprises, Washington, DC, USA, p. 3. IEEE Computer Society, Los Alamitos
(2007)

2. Kleinberg, J.: The convergence of social and technological networks. Commun. ACM 51,
66–72 (2008)

3. Voss, J.: Tagging, folksonomy & co - renaissance of manual indexing? CoRR abs/cs/0701072
(2007)

4. Brickley, D., Miller, L.: Foaf vocabulary specification 0.91 (November 2007)
5. W3C: Resource Description Framework (RDF) (2000)

392 M. Treiber, H.-L. Truong, and S. Dustdar

6. Howe, J.: The rise of crowdsourcing (June 2006), http://www.wired.com/wired/
archive/14.06/crowds.html

7. Maximilien, E., Wilkinson, H., Desai, N., Tai, S.: A domain-specific language for web apis
and services mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007.
LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

8. Saphir, J.: Situational applications - cost-effective software solutions for immedi-
ate business challenges (2008), http://knol.google.com/k/jonathan-sapir/
situational-applications/

9. Shirky, C.: Situated software (2004)
10. Endpoints, A., Systems, A., Systems, B., Corporation, I., Oracle, SAP: Ws-bpel extension

for people (bpel4people), version 1.0 (June 2007)
11. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in web-scale

collaborations. IEEE Internet Computing 12, 62–68 (2008)
12. Garofalakis, J.D., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.K.: Contemporary web service

discovery mechanisms. J. Web Eng. 5(3), 265–290 (2006)
13. Microsoft: Uddi shutdown (2006)
14. van den Heuvel, W.J., Yang, J., Papazoglou, M.: Service representation, discovery, and com-

position for e-marketplaces. Cooperative Information Systems, 70–284 (2001)
15. Benatallah, B., Hacid, M.S., Leger, A., Rey, C., Toumani, F.: On automating web services

discovery. The VLDB Journal 14(1), 84–96 (2005)
16. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing.

In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge
Representation, Deventer, The Netherlands. Kluwer Academic Publishers, Dordrecht (1993)

17. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD Rec. 35(3), 34–41
(2006)

18. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Professional 8(5), 31–37
(2006)

19. W3C: OWL Web Ontology Language Overview (2004) W3C Recommendation (February
10, 2004)

20. IETF: The Atom Syndication Format (2005), http://tools.ietf.org/html/
rfc4287

21. Treiber, M., Truong, H.L., Dustdar, S.: Semf - service evolution management framework.
In: Treiber, M., Truong, H.L., Dustdar, S. (eds.) 34th Euromicro Conference on Software
Engineering and Advanced Applications. SEAA 2008, pp. 329–336 (2008)

22. W3C: Xml linking language (xlink) version 1.1 (March 2008)
23. Ding, L., Zhou, L., Finin, T., Joshi, A.: How the semantic web is being used: An analysis of

foaf documents, p. 113c (January 2005)
24. Golbeck, J., Rothstein, M.: Linking social networks on the web with foaf: A semantic web

case study. In: Fox, D., Gomes, C.P. (eds.) AAAI, pp. 1138–1143. AAAI Press, Menlo Park
(2008)

25. Canfora, G., Penta, M.D.: Testing services and service-centric systems: Challenges and op-
portunities. IT Professional 8(2), 10–17 (2006)

26. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,
D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: PODC 1987:
Proceedings of the sixth annual ACM Symposium on Principles of distributed computing,
pp. 1–12. ACM, New York (1987)

27. IBM, Microsoft: Web services inspection language (ws-inspection) 1.0 (November 2001)
28. Medjahed, B., Bouguettaya, A.: A Dynamic Foundational Architecture for Semantic Web

Services. Distributed and Parallel Databases 17, 179–206 (2005)

http://www.wired.com/wired/archive/14.06/crowds.html
http://www.wired.com/wired/archive/14.06/crowds.html
http://knol.google.com/k/jonathan-sapir/situational-applications/
http://knol.google.com/k/jonathan-sapir/situational-applications/
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287

SOAF – Design and Implementation of a Service-Enriched Social Network 393

29. Basole, R.C., Rouse, W.B.: Complexity of service value networks: conceptualization and
empirical investigation. IBM Syst. J. 47(1), 53–70 (2008)

30. Allee, V.: Reconfiguring the value network. Journal of Business Strategy 21(4) (August 2000)
31. Mandelli, A.: Self-organization and new hierarchies in complex evolutionary value networks.

IGI Publishing, Hershey (2004)
32. Schroth, C., Janner, T.: Web 2.0 and soa: Converging concepts enabling the internet of ser-

vices. IT Professional 9(3), 36–41 (2007)
33. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline.

Prentice-Hall, Inc., Upper Saddle River (1996)
34. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution.

In: ICSE 1998: Proceedings of the 20th international conference on Software engineering,
Washington, DC, USA, pp. 177–186. IEEE Computer Society, Los Alamitos (1998)

35. Schall, D., Truong, H.L., Dustdar, S.: The human-provided services framework. In:
CEC/EEE, pp. 149–156 (2008)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 394–409, 2009.
© Springer-Verlag Berlin Heidelberg 2009

RESTful Transactions Supported by the Isolation
Theorems*

Amir Razavi, Alexandros Marinos, Sotiris Moschoyiannis, and Paul Krause

Department of Computing, FEPS, University of Surrey,
Guildford, Surrey, GU2 7XH, UK

{a.razavi,a.marinos,s.moschoyiannis,p.krause}@surrey.ac.uk

Abstract. With REST becoming the dominant architectural paradigm for web
services in distributed systems, more and more use cases are applied to it,
including use cases that require transactional guarantees. We propose a RESTful
transaction model that satisfies both the constraints of transactions and those of
the REST architectural style. We then apply the isolation theorems to prove the
robustness of its properties on a formal level.

Keywords: REST, Transactions, Isolation Theorems, Locking.

1 Introduction

Representational State Transfer (REST) is a distributed computing architectural style
first defined in 1999 by Roy Fielding [7] as an abstraction of the architectural style
that had emerged in the World Wide Web. REST focuses on resources identified by
names, a fixed number of methods with known semantics to manipulate those
resources, hypermedia as a means of traversing the resources and statelessness in the
interactions between client and server. REST has gained traction in addressing many
common use cases for distributed systems [4],[13]. As is common with disruptive
technologies, REST over HTTP is evolving to compete with WS-* in increasingly
advanced scenarios. While REST has made great progress, the WS-* stack is
currently the only standardized way to perform arbitrary transactions. A RESTful API
has to resort to custom solutions of variable quality in order to address this issue. This
paper aims to define a RESTful transaction model that is designed to operate over
HTTP. We then apply the Isolation Theorem to prove the correctness of the model.

In terms of RESTful transactions, various approaches have been proposed. The
traditional approach is to simply design a new resource that can be used to trigger the
desired transaction on the server side. For example, when transferring funds between
bank accounts, this approach proposes creating a ‘transfer’ resource to which new
‘transfers’ can be POSTed. While this approach can be very simple to implement at
design time, it ties users to the ability of the developers to predict usage at design time.
Furthermore, in scenarios where a large or even infinite variation of transactions and
transaction types may take place, it is not reasonable to expect all the corresponding

* This work was supported by the EU-FP6 funded project OPAALS Contract No 034824.

 RESTful Transactions Supported by the Isolation Theorems 395

resources to have been designed beforehand. Other approaches [14] suggest extending
REST to include mutex locks which would require extending HTTP as well. The
alternative to these approaches [18] is to introduce locks on resources by modelling
them as resources themselves. While this approach looks much more capable, the
details of its implementation and its extension into transactions have neither been
fleshed out nor proven. The general term ‘Transaction’ has been introduced by Gray
[1] and is defined by the four properties contained in the ACID acronym. These
properties guarantee that a system is maintained in a consistent state, even as
transactions are executed within it concurrently. This includes situations where one or
more transactions fail to commit. When dealing with a sequence of transactions (one
transaction executed at a time), each transaction starts with the consistent state that its
predecessor ended with. If all the transactions are short, the data are centralised in a
main memory, and all data are accessed through a single thread, there is no need for
concurrency. The transactions can simply be run in sequence. Real-world interactive
systems however, often require execution of several concurrent transactions. Use cases
such as distributed environments or dynamic allocation of resources to external
developers illustrate this.

While transactions are concerned with the constraints of maintaining the ACID
properties, REST adheres to its own set of constraints. These are primarily expressed
by the uniform interface constraint, but supported by the following four constraints:
Resource Identification; Resource manipulation through representations; Self-
descriptive messages; Hypermedia as the engine of application state. Our efforts are
directed at creating a truly RESTful transaction model that satisfies both the
constraints of REST while possessing the ACID properties. This paper is structured as
follows. Section 2 examines classic transactional challenges that appear in distributed
systems. Section 3 introduces Isolation theorems, which includes theorems that show
the correctness of a transactional system by applying the necessary constraints.
Section 4 applies the transaction model in a RESTful framework. In section 5 the
proof of correctness of constraints is applied, by using classical isolation theorems.

2 Concurrency Challenges in RESTful HTTP

The classic view of isolation considers the transaction in terms of inputs and outputs
[10],[6]. This means that transactions have read (input) and write (output) operations.
Write operations are described as operations that affect the state of resources. On the
other hand, REST prescribes a uniform interface for accessing resources. One
challenge is therefore to map the traditional input/output perspective with the
RESTful approach to the uniform interface. Since our model operates over the HTTP
protocol, we must examine its four fundamental operations. GET is the standard
retrieve operation. Its execution must be safe; it should have no side-effects. It should
also be idempotent; duplicate messages should have no adverse effects. POST is
understood as an operation to create a new resource on a server where the target URI
is not known. The representation of the resource is sent via POST to the collection
that will contain the resource. The server determines its appropriate location and the
resulting URI is returned to the client. In this model, we approach POST purely as a
creation operation and use it in the mechanics of the model to handle creation of

396 A. Razavi et al.

resources such as transactions, locks, and others. However, transactions that include
POST operations are outside the scope of our model. PUT can be used for updating
resources, by simply instructing the server to apply a new representation as a
replacement of the previous one. It can also be used to create a new resource, when a
representation is PUT at a URI that was previously unused. In the proposed model,
PUT operations on pre-existing resources are the main operations that a transaction
can execute, with only the Update aspect within scope. DELETE is used to remove
the resource representation at the target URI. While they are used as part of the
mechanics of the model, transactions which include DELETE operations are out of
scope of the proposed model. From the above discussion it can be extracted that our
model is concerned with transactions that are sequences of GET operations or PUT
operations, specifically when used for updating resources. While other uses of the
above verbs are of interest, this limited scope makes robust theoretical consistency
proofs feasible. The limitation to GET and PUT applies only to the target resources,
those that will remain after the transaction has committed. For interactions with the
transactional resources, those that are created to enable the execution of the
transaction, the full range of HTTP operations is utilised. As GET operations do not
change the state of resources, when the initial state of a resource is consistent,
concurrent GET requests to the same resource, cannot cause inconsistency. On the
contrary, PUT operations of different transactions on the same resource, change the
state of the resource and may violate consistency or isolation. The basic assumption is
that a transaction knows what it is doing in terms of its internal data manipulation,
meanwhile if it runs in isolation (without any concurrent transactions), it will
manipulate its own resource state correctly. Therefore, sequential PUTs within the
same transaction are not problematic [10], [2]. At the same time however, overlap
between PUTs of one transaction and GET action of another, can violate isolation and
cause inconsistency. Additionally, PUT-related interactions between different
concurrent transactions on the same resource can also cause a problem. If we consider
GETs operations as inputs of transactions and PUTs operations as output operations
of them, this can be expressed as:

for all (1)

By letting be the set of resources accessed via GET by transaction (its inputs),
and be the set of resources altered via PUT by transaction (its outputs). Based on
EQ.1, in the set of transactions , when their outputs are disjoint from one another’s
inputs and outputs, they can run in parallel with no concurrency anomalies. Clearly by
applying EQ.1 any transaction scheduler can work. Conventionally for applying EQ.1
each transaction should declare its Input-Output set, then a scheduler is able to compare
the new transaction’s need to all running transactions and in case of a conflict, initiation
of the new transaction would be delayed until the conflicting transactions complete.
This approach is called ‘Static allocation’. The computing complexity of analysing the
inputs and outputs before running transactions causes a bottleneck on scalability. The
approach has been abandoned in more modern transactional environments [2], [9]. The
‘Dynamic allocation’ scheme has been introduced as the substituting approach. Under
the prism of dynamic allocations, we can view transactions as sequence of operations on
resources. A particular resource is subject to one operation at a time. Each operation of a
transaction is either a GET or a PUT. Resources go through a sequence of versions as

 RESTful Transactions Supported by the Isolation Theorems 397

Fig. 1. Different Dependencies

they are updated by PUT operations. GETs do not change the resource version. If a
transaction GETs a resource, the transaction depends on that resource version. If the
transaction PUTs a resource, the resulting resource version depends on that transaction.
When a transaction aborts and goes through the undo logic, all its PUT operations must
be undone. These cause the resources to get new versions, as the undo looks like an
ordinary new update. In the RESTful model we apply the shadow-based updating,
which saves the complexity in terms of aborting the lock. This can be seen in the
existence and behaviour of the conditional resource representation in section 4.

Theoretically a dependency graph can be read as a time sequence. The main
conclusion of applying the ACID properties is that any dependency graph without
cycles implies an isolated execution of transactions. General danger of violating
isolation is related to the various dependency cycles. Similar to conventional
transactions, REST cycle dependencies are categorised to three generic forms: When
two (or more) transactions access the same resource, they may produce two (or more)
different versions of that resource (lost update), or simply they may work with the
out-of-date version of the resource (dirty GET and unrepeatable GET). More details
can be found at the classic references such as [10] or our previous work [21].

3 Isolation Theorems

Isolation theorems include several theorems, which shows the correctness of a
transactional system by applying few constraints [10]. The constraints will be
explained in sections and after applying them in a RESTful framework, we explain
the proof of correctness of constraints, by using classical isolation theorems in section
5. In order to present a theoretical aspect of our model, we define a formal vocabulary
that is larger than the standard HTTP operations. We call these formal terms
operations. The correspondence with HTTP operations is made explicit in section 4.3
and figure x. More importantly, for avoiding violating consistent access, in term of
GET and PUT resources, the SLOCK and XLOCK should be applied on the resources
(before GET or PUT) and these locks should be released when the dependency on the
resources expires. Therefore, the model should support the major actions of GET,
PUT, XLOCK, SLOCK, UNLOCK on the resources, as well as generic actions
BEGIN, COMMIT, ROLLBACK. GET and PUT have the usual meaning: GET
returns the named resource’s value to the program, while PUT alters the named
resource’s state. A transaction is any sequence of actions starting with a BEGIN
action, ending with a COMMIT or ROLLBACK action, and containing any other
BEGIN, COMMIT, or ROLLBACK actions. Figure 2 demonstrates an example in
term of a conceptual transactional access to resources R1 and R2.

398 A. Razavi et al.

Fig. 2. Transaction life cycle

Transactions are characterized symbolically by a sequence such as
. This means that the ith step of transaction t preformed action on

resource .To simplify the transaction model, BEGIN, COMMIT, and ROLLBACK
are defined in terms of other actions, so that only GET, PUT, LOCK, and UNLOCK
actions remain. A simple transaction is composed of GET, PUT, XLOCK, SLOCK,
and UNLOCK actions. Every transaction, T, can be translated into an equivalent
simple transaction as follows [10]:

(1) Discard the BEGIN action.
(2) If the transaction ends with a COMMIT action, replace that action with the

following sequence of UNLOCKS:

<UNLOCK A | if SLOCK A or XLOCK A appears in T for any
resource A>.

(3) If the transaction ends with a ROLLBACK statement, replace that action
with the following sequence of PUTs and then UNLOCKs:

<PUT A | if PUT A appears in T for any resource A> ||<UNLOCK A |
if SLOCK A or XLOCK A appears in T for any resource A>.

The idea here is that the COMMIT action simply releases Locks, while the
ROLLBACK action must first undo all changes to the resources the transaction wrote
(PUT) and then issue the resources the transaction wrote (PUT) and then issue the
unlock statements. If the transaction has no LOCK statements, then neither COMMIT
nor ROLLBACK will issue any UNLOCK statements, as that would risk violating
isolation. A transaction is said to be well-formed if all its GET, PUT, and UNLOCK
actions are covered by locks, and if each lock action is eventually followed by a
corresponding UNLOCK action [2], [9]. A transaction is defined as two-phase if all
its LOCK actions precede all its UNLOCK actions. A two-phase transaction T has a
growing phase, T[1], …,T[j], during which it acquires locks, and a shrinking phase,
T[j+1], …,T[n], during which it releases locks [10]. The simplified Figure 3 (focusing
on the formal locks), has been shown in Figure 3 and the concept of well-formed and
two phase is indicated.

Fig. 3. Two-phase and Well-formed locking

 RESTful Transactions Supported by the Isolation Theorems 399

Fig. 4. Different types of histories

First, a history is any sequence-preserving merge of the actions of a set of
transactions into a single sequence for the set of transactions and is denoted

. Each step of the history is an action a by transaction t
on resource r. A history for the set of transactions is a sequence, each containing
transaction as a subsequence and containing nothing else. A history lists the order
in which actions were successfully completed. Serial histories are One-transaction-at-
a-time histories. In serial histories as no concurrency-induced, there is not any
inconsistency and no problem with viewing dirty data by other transactions. As it is
expected, a history should not complete a lock action on a resource when that
resource is locked by another transaction. But if two or more transactions want to just
read (GET) the content of a resource, they do not change the resource version (state).
This may not cause any conflict or access to dirty data (data/resource which has been
PUT by another transaction) but the transaction has not committed and may change
the version of the resource again (2.2). The table 2 shows the lock compatibility. The
locking compatibility rules constrain the set of allowed histories.

Legal history: Histories that obey the locking constraints are called legal. In Figure 4,
three histories are shown, where History 1 and 2 are legal and History 3 is not. History 1
is a serial history. It is obviously legal, as each transaction will be run in sequence and
no locks will conflict. History 2 is a non-serial legal history. There are no incompatible
locks between T1 and T2 as T2 applies an XLOCK on resource B only when T1 has
performed an UNLOCK. Finally, history 3 is a non-serial and not legal history, as
resource B has an XLOCK by T1 but T2 applies an XLOCK on the same resource,
which is illegal according to Table 1. As a consequence, we can see that T1 then
performs a PUT based on its earlier GET and overwrites T2’s PUT, which is the case of
‘Lost Updates’ as discussed in 2.

4 Locks in RESTful HTTP

Having defined the formal language we will use to prove the robustness of our model
as well as discussed history well-formedness and legality, we now translate this
abstract language into HTTP operations. To handle HTTP concurrency challenges, we
introduce the concept of locks. This is done in a way that does not affect the always
available and backwards compatible nature of the web. For an API to be characterized
as RESTful according to the hypermedia constraint, it must allow a client to interact

400 A. Razavi et al.

<lockable>
 <link rel=”lock_collection” href=”http://example.org/resource/locks/” />
 <link rel=”transaction_collection” href=”http://example.org/transactions/” />
</lockable>

Fig. 5. (R) XML Fragment

with the service solely by being given a single URI and understanding of the relevant
media types. This enforces loose-coupling and elimination of assumptions.

Ideally, any resource that can be served by an HTTP server should be a Lockable
Resource (R) regardless of media type. This however would require the HTTP
protocol to carry the metadata for the locking mechanism. Since we wish to preserve
the HTTP protocol, we can use either prescribe that the resource links to lock
collection and the transaction collection, or create custom HTTP headers that contain
them. An example of the first approach can be seen in Figure 5. What is important is
that the client has access to these resources while not obstructing normal use of the
lockable resource.

Lock Resource (R-L): The lock resource is represented by a dedicated media type
and should contain the elements in Table 1.

Table 1. Elements of R-L

ResourceURI: a link back to the resource that this lock affects.
TransactionURI: a link to the transaction that controls the lock.
Type: “S” or “X” depending on the type of the lock.
PrevLockURI: a link to the previous lock in the lock sequence.
Timestamp: Server’s timestamp when the lock was granted.
Duration: Indicates the interval that the lock has been granted for.
ConditionalRepresentationURI: A link to the representation of the resource that
will come into effect once the lock is committed.
InitialRepresentationURI: A link to the initial state of the lock resource.

The type element can take one of two values, X or S, corresponding to the
available lock types. X stands for XLOCK: eXclussive Lock, and S stands for
SLOCK: Shared Lock. To place a new lock, the server must authenticate the user as
the owner of the transaction that the lock references. The time period of effectiveness
that is granted to a lock is dependent on the maximum length of time that the server is
prepared to grant a guarantee to the client. Once the duration of the lock expires, the
lock is aborted. To avoid violating 2PL, once a lock of a transaction expires, all other
locks of the same transaction expire. The result of the GET operation does not change
until a lock of type X is committed. In this sense, the locks and transactions are
transparent to the GET which on commit reacts as if a simple PUT or DELETE was
applied. This was a specific design objective. Direct PUT and DELETE operations
return a ‘405 Method Not Allowed’ HTTP response for the duration of a lock's effect.
GET requests should still return successfully. This behaviour maintains backwards
compatibility, with the understanding that if a client requires further guarantees on the
future state of the resource, the client should seek to place a lock. In all other cases,
the semantics of GET are unaffected, as a GET on a resource does not guarantee that
the state will remain unchanged for any period of time.

 RESTful Transactions Supported by the Isolation Theorems 401

Table 2. Legal lock sequences

Mode of Preceding Lock

M
od

e
O

f N
ew

Lo

ck

Share Exclusive

Share Yes No
Exclusive No No

Resource Lock Collection (R-Lc): The R-Lc contains locks in sequences that follow
the compatibility rules stated in Table 2, rendering the transaction well-formed. The
lock collection is represented as an Atom Feed [13]. Since ATOM does not support
sequencing entries, we use the ‘PrevLockURI’ element of the lock resource to create
a linked list of locks that can be represented as an ATOM Feed. The client can
retrieve the lock collection via GET to determine if the resource is locked. An empty
feed indicates an unlocked resource. New locks can be submitted to the resource
collection via the POST method.

4.1 Two Phase Locking and Recoverability

Clarifying the scope of each transaction and determining whether it is in a GROWTH or
SHRINK phase is necessary. In this part we introduce the required resources. The
Transaction (T) resource is represented by a dedicated media type and should contain a
TransactionCollectionURI, an OwnerURI and a TransactionLockCollectionURI. These
3 elements identify the collections of information vital to the execution of a transaction.
The owner of the transaction can GET the transaction resource as a means of locating
these collections. The Transaction Collection (Tc) is a resource where new
transactions are submitted via the POST operation which creates a new transaction and
returns the URI for its representation. The resource itself cannot be accessed via GET as
the clients that need to know the location of a specific resource are informed at the time
of POSTing. The Transaction Lock Collection (T-Lc) contains links to the locks that
belong to a specific transaction, formatted as an Atom feed. Clients cannot abort single
locks directly but must do so through the T-Lc which aborts all the locks of a
transaction, leaving the transaction void and is equivalent to aborting the transaction.

Table 3. Available Operations for T-Lc

GET Returns the collection of locks relevant to a transaction
DELETE Aborts all the locks of the relevant transaction. This can only

be performed by an owner of the transaction.

4.2 Recoverability

Based on the Rollback Theorem, a transaction that unlocks an exclusive lock and then
performs a ‘Rollback’ is not well-formed and can potentially cause a wormhole unless
the transaction is degenerated. As the theorem is well-known, we refer the interested
reader to [9] for the actual proof. The important point of the theorem is that we have to
degenerate the transaction to effect rollback. For this purpose, our model does not store
potential updates on the actual resources but works on the shadow of the locked data,

402 A. Razavi et al.

called a conditional resource representation. The Initial Resource Representation
(R-L-IR) is of identical media type as the locked resource and stores the initial state.
The initial representation is archived together with the lock to represent the change
caused by the commit of the lock and enable rollback. The Conditional Resource
Representation (R-L-CR) is of identical media type as the locked resource and is
essentially the state that will be applied to the resource once the XLOCK is committed.

Table 4. Available Operations for R-L-CR

GET Returns the representation that will be committed if the relevant
XLOCK is committed.

PUT Creates a new conditional state that will replace the current state of
the locked resource once the linking XLOCK is committed.

DELETE Deletes the conditional state. If the XLOCK is committed, there
will be no write action performed.

4.3 Model Overview

Having defined all the resource types, it is easy to see that an interconnected network
arises (Figure 6). It can be observed that having a URI for R is enough to locate all
other resources in the network. The connection from Tc to T is perforated as there is
no GET ability for the Tc resource, for security reasons. The URI of a given T is only
returned as a response to the initial POST operation on Tc performed by the
transaction’s owner. Table 5 summarizes the relevant resource types of our model.

Fig. 6. Resource Hypermedia connections

Table 5. Transaction model resource types

Lockable Resource (R) A resource that locks can be applied to.
Resource Lock Collection (R-Lc) The collection of locks that apply to a particular resource.
Lock Resource (R-L) The representation of a specific lock.
Conditional Resource Representation (R-L-CR) The potential representation of a locked resource.
Conditional Resource Representation (R-L-IR) The initial representation of a locked resource.
Transaction Collection (Tc) The collection of transactions on the server.
Transaction Resource (T) The representation of a specific transaction.
Transaction Lock Collection (T-Lc) The collection of locks connected to a specific transaction.

4.4 RESTful Transaction Examples

To illustrate the operation of the transaction model, table 6 shows a scenario where
two transactions from clients A and B interact with resources, R1 and R2. Table 7
shows what happens if a third client tries to XLOCK a resource that is already locked.

 RESTful Transactions Supported by the Isolation Theorems 403

Table 6. Concurrent transactions

Client Operation Resource Response Description
A GET R2 200 OK GETting R2 to extract location of TC and R2-LC
A POST <new transaction> TC 201 CREATED {Location: T1} Creating a new transaction
A POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC
B GET R1 200 OK GETting R1 to extract location of TC and R1-LC
B POST <new transaction> TC 201 CREATED {Location: T2} Creating a new transaction
B POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an XLOCK to R1-LC
A GET R1 200 OK GETting R1 to extract location of R1-LC
A POST <LOCK {type:S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an XLOCK to R1-LC
B GET R1 200 OK GETting the locked representation of R1
A GET R1 200 OK GETting the locked representation of R1
A GET R2 200 OK GETting the locked representation of R2
A GET R2-L1 200 OK GETting R1 to extract location of R2-C
A PUT <new representation> R2-C 201 CREATED ating a conditional Representation of R2
A DELETE T1 200 OK Commiting R2-C to R2 and Unlocking R1 and R2
B GET R2 200 OK GETting R2 to extract location of R2-LC
B POST <LOCK {type:X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC
B GET R2 200 OK GETting the locked representation of R2
B PUT <new representation> R2-C 201 CREATED Creating a conditional Representation of R2
B PUT <new representation> R2-C 200 OK Updating the conditional Representation of R2
B DELETE T2 200 OK Commiting R2-C to R2 and Unlocking R1 and R2

Table 7. Attempting to lock an already locked resource

Client Operation Resource Response Description

C POST <LOCK {type:X}> R2-LC 403 Forbidden POSTing an XLOCK to R2-LC while R2 is locked

5 Applying the Isolation Theorems to REST

As our approach follows two-phase and well-formed locking, in this section, we use
the classical isolation theorems [2], [9], [10] to show its correctness. Since the formal
model introduced in section 3 is fully compatible with Isolation theorems, we apply it
in classical proof of isolation theorems. For doing so, we can start from the main
property of our model; all transactions are well-formed and two-phase. Based on the
Locking Theorem, if all transactions are well-formed and two-phase, then any legal
history will be isolated and based on Wormhole Theorem, A history is isolated if, and
only if, it has no wormhole transactions. By adopting these two theorems, we show
our approach, does not have any wormhole. We start by formulating the wormhole in
the RESTful formal approach, then presenting the wormhole theorem and finally
evoking the Locking theorem in our RESTful formal presentation (see Figure 7).

Fig. 7. Mapping Actions to Operations

5.1 Dependency and Wormholes

First we try to have a definition of a clear legal history; transaction t has resource r locked
in SHARED mode at step k of history H, if for some action ,
and if there is no action in the subhistory ,

404 A. Razavi et al.

similarly transaction t has resource r locked in EXCLUSIVE mode at step k is defined
analogously. Then we say history h is legal if there is no step of H at which two
distinct transactions have the same resource locked in incompatible mode. In a simple
way, we can say any data which has been PUT by the transaction is dirty data until is
unlocked. Therefore when we analyse the system behaviour by using the history, easily
we can say at each step of history, which resource value have been committed and which
are dirty. We can analyse this by using dependency graph. One transaction instance T is
said to depend on another transaction T’ in a history H if T GET (reads) or PUT (writes)
data-resources previously PUT (written) by T’ in the history H, or if T PUT (writes) a
resource previously GET (read) by T’. We can formalise different dependencies (Fig 1)
by Dependency Graph; a directed graph where nodes are ‘transactions’, Arcs are
‘transactions dependencies’ and label is ‘resource versions’. The version of an resource r
at step k of a history is an integer and is denoted V(r,k). In the beginning each resource
has version zero (V(r,0)=0). At step k of history H, resource r has a version equal to the
number of writes of that resource before this step. Formally this means:

(The outer vertical bars represent the set cardinality function.)
Each history, H, for a set of transactions defines a ternary dependency relation

DEP(H), defined as; Let T1 and T2 be any two distinct transactions, let r be any
resource, and let i, j be any two steps of H with . Suppose step involves
action a1 of T1 on resource r, step involves a2 of T2 on r, and suppose there is
no PUT of r by any transaction between these steps (there is no in

). Then DEP(H) is defined as:

 if a1 is a PUT and a2 is a PUT
 a1 is a PUT and a2 is a GET
 a1 is a GET and a2 is a PUT.

PUT PUT, PUT GET and GET PUT dependencies.
The dependency relation for a history defines a directed dependency graph, where

Transactions are the nodes of the graph, and resource versions label the edges. If
, then the graph has an edge from node T to node T’ labelled

by . Two histories are equivalent, if they have the same dependency relation.
The dependency of history defines a time order of the transactions. Conventionally

this ordering is signified by , (or simply by), and it is the transitive
closure of . It is the smallest relation satisfying the equation:

for some resource version r, or

(for some transactions , and some
resource r). Off the record, if there is a path in the dependency graph from
transaction T to transaction . The ordering defines the set of all transactions
that run before or after T;

BEFORE

AFTER

 RESTful Transactions Supported by the Isolation Theorems 405

If T runs fully isolated (ex: it is the only transaction, or it GET and PUT resources
not accessed by any other transactions), then its BEFORE and AFTER sets are empty
(it can be scheduled in any way). When a transaction is both after and before the other
distinct transaction, it is called wormhole transaction (here):

BEFORE AFTER

Serial histories do not have wormholes as all the actions of one transaction precede
the actions of another; the first cannot depend on the outputs of the second.

Wormholes Theorem: Based on wormhole theorem, a history is isolated if, and only
if, it has no wormhole transactions. On the other hand, the isolated histories have the
unique property of having no wormholes. It proves a history that is not isolated has at
least one wormhole; . In graphical term, if the dependency graph
has a cycle in it, then the history is not equivalent to any serial history because some
transaction is both before and after another transaction. (History 3 Fig 4). A wormhole
in a particular history is a transaction pair in which T ran before ran before T. A
history is said to be isolated if it is equivalent to a serial history. As the first part of
the proof of the concept, the classical testimony of Wormhole theorem has been
recalled [9],[10]; Isolated history has not any wormholes. This proof is by
contradiction; Suppose H is an isolated history of the execution of the set of
transactions . By definition, then, H is equivalent to some serial
execution history, SH, for that same set of transactions. Without loss of generality,
assume that the transactions are numbered so that . Suppose, for
the sake of contradiction, H has a wormhole; that is there some sequence of
transactions such that each is BEFORE the other (i.e.,),
and the last is BEFORE the first (i.e.,). Let be the minimum
transaction index such that is in this wormhole, and let be its predecessor in the
wormhole (i.e.,). By the minimality of , comes completely AFTER
in the execution history SH, so that is impossible (recall that SH is a
serial history). But since H and SH are equivalent, ; therefore,

 is also impossible. This contradiction proves that if H is isolated, it has
no wormholes.

A history without wormhole is isolated: Our adopted proof (like the classic
Wormhole theorem [10]) is by induction on the number of transactions, , that
appears in the history, H. The induction hypothesis is that any transaction history H
having no wormholes is isolated (equivalent to some serial history, SH, for that set of
transactions). If , then any history is serial history, since only zero or one
transaction appears in the history. In addition, any serial history is an isolated history.
The basis of the induction, then, is trivially true. Suppose the induction hypothesis is
true for transactions, and consider some history H of transactions that has no
wormholes. Pick any transaction , then pick any other transaction , such that

, and continue this construction as long as possible, building the sequence
. Either is infinite, or it is not. If is infinite, then some transaction

 must appear in it twice. This, in turn, implies that ; thus, is a
wormhole of H. But since H has no wormholes, cannot be infinite. The last
transaction in -call it - has the property , since the sequence

406 A. Razavi et al.

cannot be continued past . Consider the history, .
is the history H with all the formal actions (RESTful operations) of transaction
removed. By the choice of ,

DEP DEP (2)

 has no wormholes (since H has no wormholes, and). The
induction hypothesis, then, applies to . Hence, is isolated and has an equivalent
serial history for some numbering of the other transactions.

The serial history is equivalent to H. To
prove this, it must be shown that . By construction,

DEP DEP DEP DEP (3)

By definition, . Using this to substitute equation EQ. 2 into
equation EQ. 3 gives:

DEP DEP DEP DEP

(4)

Thus, the identity is established, and the induction step is
proven. The wormhole theorem is the basic result from which all the others follow. It
essentially says “cycles are bad”. Wormhole is just another name for cycle. The
wormhole theorem can be stated in many different ways. One typical statement is
called the Serializability Theorem: A history H is isolated (also called a serializable
schedule or a consistent schedule) if, and only if, implies a partial order of the
transactions. (Alternatively: if and only if it defines an acyclic graph, or implies a
partially ordered set [6]).

Locking Theorem: If all transactions are well-formed and two-phase, then any legal
history will be isolated. As our RESTful framework, use the ‘DELETE’ operation
(section 4), for unlocking resources (Shrinking phase), we can adopt the conventional
proof [9] as bellow;

This proof is by contradiction. Suppose H is a legal history of the execution of the
set of transactions, each of which is well-formed & 2-phase. For each transaction, T,
define SHRINK(T) to be the index of the first unlock step of in history H ; formally:

).

Since each transaction T is non-null and well-formed, it must contain an UNLOCK
step. Thus SHRINK is well defined for each transaction. First we need to prove:

Lemma: if .
Suppose , then suppose there is a resource r and steps of history H,

such that , ; either action a or action a’ is a PUT (this
assertion comes directly from the definition of). Suppose that the action a of T
is a PUT. Since T is well-formed, then, step is covered by T doing an XLOCK on r.

 RESTful Transactions Supported by the Isolation Theorems 407

Similarly, step j must be covered by T’ doing an SLOCK or XLOCK on r. H is a legal
schedule, and these locks would conflict, so there must be a k1 and k2, such that:

 and and

Either or

Because T and T’ are two-phase, all their LOCK actions must precede their first
UNLOCK, action; thus, . This proves the
lemma for the case. The argument for the case is almost identical.
The SLOCK of T will be incompatible with the XLOCK of T’; hence, there must be an
intervening followed by a action in H. Therefore, if

, then . Proving both these cases establishes the
lemma. Having proved the lemma, the proof of the theorem goes as follows; Assume,
for the sake of contradiction, that H is not isolated. Then, from the wormhole Theorem,
there must be a sequence of transactions , such that each is before the
other (i.e.,), and the last is before the first (i.e.,). Using the
lemma, this in turn means that

. But since is a contradiction, H cannot have
any wormholes.

Locking Theorem (Converse): One may argue about the necessity of well-formed
and two-phase history, which our approach warily follows. For proving the necessity
of these properties, we use the converse locking theorem [9], [10]; if a transaction is
not well-formed or not two-phase, then it is possible to write another transaction such
that the resulting pair has a legal but not isolated history (unless the transaction is
degenerate). When the classical proof [10], relies on actions on objects (read and
write), we modelled the actions in term of RESTful classic operations (GET and
PUT) and adopt the proof; first not well-formed history; Suppose that transaction

 is not well-formed and not degenerated. Then for some ,
 is a GET or PUT action that is not covered by a lock. The GET case is proved

here; the PUT case is similar. Let . Define the transaction,

That is, is a double update to resource r. By inspection, is two-phase and well-
formed. Consider the history;

That is, H is the history that places the first update of just before the uncovered
GET and the second update just after the uncovered GET. H is a legal history, since
no conflicting locks are granted on resource r at any point of the history. In addition,
for some , and must be in the DEP(H); hence,

. Thus T is a wormhole in the history H. Invoking the wormhole
theorem, H is not an isolated history. Intuitively, T will see resource r while it is being
updated by . This is a concurrency anomaly. Now it is possible to show, if a history
is not two-phase it can be legal but not isolated; Suppose that transaction

 is not two-phase and not degenerate. Then for some ,
 and or .

408 A. Razavi et al.

Define the transaction

.

That is updates resource r1 and r2. By inspection, is two-phase and well-formed.
Consider the history:

This says that H is the history that places just after the UNLOCK of r1 by T. H
is a legal history, since no conflicting locks are granted on resource r1 at any point in
the history. In addition, since T is not degenerate, it must GET or PUT resource r1
before the unlock at step j and must GET or PUT resource r2 after the lock at step k.
From this and must be in the DEP(H). Hence

, and T is a wormhole in the history H. Invoking the Wormhole Theorem,
H is not isolated history. Intuitively, T sees resource r1 before it is updated by and
sees resource r2 after it is been updated by ; thus T is before and after . This is a
concurrency anomaly.

6 Conclusions and Further Work

By adopting conventional isolation theorem, we have provided a RESTful locking
framework for business transactions which avoids inconsistency when dealing with a
highly concurrent environment. While our detailed discussion shows the most
important consistency issues are addressed, recoverability has been out of the scope of
this paper. A recoverability extension on the RESTful transaction can be found in our
paper at [22]. Meanwhile, long-running transactions and deadlock detection are the
other issues which shall be considered as future work of this framework.

References

1. Astrahan, M.M., et al.: A history and evaluation of System R. Communications of the
ACM 24, 632–646 (1981)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in
database systems. Addison-Wesley Longman Publishing, Boston (1987)

3. Cabrera, L.F., et al.: Web Services Atomic Transaction (WS-AtomicTransaction). Version
1.0, IBM developerWorks (2005)

4. Castro, P., Nori, A.A.: A Programming Model for Data on the Web. Data Engineering,
2008. In: IEEE 24th International Conference on Data Engineering. ICDE 2008, pp. 1556–
1559 (2008)

5. Crockford, D.: JSON: The fat-free alternative to XML. In: Proc. of XML 2006 (2006)
6. Date, C.J.: An Introduction to Database Systems, 5th edn. Addison-Wesley, Reading

(1996)
7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures.

University of California, Irvine (2000)

 RESTful Transactions Supported by the Isolation Theorems 409

8. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext Transfer
Protocol–HTTP/1.1. RFC 2616, The Internet Engineering Task Force (1999)

9. Gray, J.: Benchmark Handbook: For Database and Transaction Processing Systems.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

10. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco (1993)

11. Greenberg, S., Marwood, D.: Real time groupware as a distributed system: concurrency
control and its effect on the interface. In: Proceedings of the 1994 ACM conference on
Computer supported cooperative work, pp. 207–217 (1994)

12. Hadley, M., Sandoz, P.: JSR 311: Java api for RESTful web services. Technical report,
Java Community Process, Sun Microsystems (2007)

13. Hoffman, P., Bray, T.: Atom Publishing Format and Protocol (atompub). In: IETF (2006)
14. Khare, R., Taylor, R.N.: Extending the Representational State Transfer (REST)

Architectural Style for Decentralized Systems. In: Proc. of the 26th International Conf. on
Software Engineering, vol. 23, pp. 428–437 (2004)

15. McGuffin, L.J., Olson, G.M.: ShrEdit: A Shared Electronic Work Space. University of
Michigan, Cognitive Science and Machine Intelligence Laboratory (1992)

16. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
Science/Engineering/Math (2003)

17. Razavi, A., Moschoyiannis, S., Krause, P.: Concurrency Control and Recovery Management
in Open e-Business Transactions. In: Proc. WoTUG (CPA 2007), pp. 267–285 (2007)

18. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc., Sebastopol (2007)
19. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,

algorithms, and achievements. In: Proc. of the 1998 ACM conference on Computer
supported cooperative work, pp. 59–68 (1998)

20. Vinoski, S.: WS-nonexistent standards. IEEE Internet Computing 8, 94–96 (2004)
21. Marinos, A., Razavi, A., Moschoyiannis, S., Krause, P.: RETRO: A Consistent and

Recoverable RESTful Transaction Model. In: IEEE 7th International Conference on Web
Services (ICWS 2009), Los Angeles, CA, USA (2009) (in the process to be published)

An Optimization Rule for ActiveXML Workflows

Sattanathan Subramanian and Guttorm Sindre

Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
{sat,guttors}@idi.ntnu.no

Abstract. Web services are used as the de facto standard to develop
the modern business applications that require collaboration and coordi-
nation among the business partners. ActiveXML (AXML) is viewed as a
data-oriented workflow language for specifying the Web service calls and
their interactions. The present workflow engines execute the workflow
specifications strictly without attempting to optimize the Web service
calls. This paper proposes an optimization approach as a rule called
SCG, to improve the performance of workflows in the context of AXML.
The SCG groups the Web service calls of AXML documents, and reuses
the existing results of other equivalent Web service calls.

Keywords: ActiveXML, Optimization, Web service, Workflow.

1 Introduction and Related Work

Workflow systems have been in research [11, 13] as well as industry [1] for many
years to support the collaboration among the business processes. The workflows
are often implemented as Web services to cross the boundaries of networks, archi-
tectures, platforms, and organizations [7, 8]. A Web service (service, hereafter)
based workflow typically contains a number of service calls to perform its tasks.
Due to the control flow nature of workflow systems [14], the service calls are
strictly invoked in an order given in the workflow specification without attempt-
ing any optimizations, even when less expensive workflows could be devised that
obtain the same results. Hence, the execution of many such workflows consumes
more time and resources (e.g., bandwidth) than necessary, a clear weakness of the
state-of-the-art. Emphasizing dataflow instead of control flow could help to relax
the execution of workflows. The Active XML (AXML) [3] platform facilitates the
data-oriented workflows, where the dataflow is considered as the processing key.
An AXML document is an XML document with the embedded service calls to
the Web services, executed in a peer-to-peer architecture (www.activexml.net).
The present optimization framework of AXML called OptimAX [4, 5, 6] has the
rules to delegate and instantiate the service calls among the peers, to compose
and decompose the simple queries that are available directly, and to eliminate
the redundant computation. This paper extends the OptimAX framework by
proposing a new rule called SCG to optimize the number of service calls in the

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 410–418, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.activexml.net

An Optimization Rule for ActiveXML Workflows 411

AXML documents. Our optimization approach is leveraged from the continuous
query optimization [10] of database systems to the AXML by correlating the
continuous queries as service calls, which groups the service calls of one with
another based on their data source (i.e., Web service) and reuses the existing
results received from other equivalent service calls. This improves the execution
complexity of the peer that executes the service calls of an AXML document, of
the Web service that provides the actual service, and of the database connected
behind the Web service. The framework proposed in [13] optimizes a BPEL
based workflow into a single SQL activity. Whereas, we specifically intend to
optimize the service calls of workflow in the same form. This widens the scope
of optimization across the workflows and minimizes the changes required in the
execution environment. Lazy query evaluation [2] evaluates the user queries and
detects the relevant service calls in an AXML document that can bring data.
The SCG is intended to be applied after detecting such relevant service calls
from the AXML document.

We consider a four-tier architecture for the purpose of this paper, i.e., the
clients to request workflow applications, AXML peer to execute the respective
AXML document, and Web services to process the service requests of AXML
peer and deliver back the results after accessing its databases. Finally, the AXML
peer delivers the results to the respective clients. This paper considers the service
calls that carry queries (e.g., SQL) of selection and projection, and one-stage
execution of AXML documents, i.e., the new service call sci which is returned
from the activation of another service call sci−1 is omitted.

The paper is organized as follows: Section 2 shows a motivating example.
Section 3 illustrates the idea of SCG through some examples of relational algebra
and shows its algebraic execution. Section 4 concludes the paper.

2 Motivating Example

Consider that there is a FlightEnquiry AXML document (shown in the Fig. 1),
which is meant for comparing the prices and availability of flights as per the
travel requirements of the user. The input of FlightEnquiry is travelDetails
like starting point, destination, date, etc, and output is flightDetails like

flightDetails FlightEnquiry(travelDetails)

flightDetails EnquireLufthansa(travelDetails)

flightDetails EnquireAirFrance(travelDetails)

flightDetails EnquireAlItalia (travelDetails)

flightDetails EnquireFinnAir(travelDetails)

flightDetails EnquireKLM(travelDetails)

Fig. 1. FlightEnquiry Workflow

412 S. Subramanian and G. Sindre

price, availability, etc. FlightEnquiry has five independent service calls target-
ing five different flight Web services. Those are, EnquireLufthansa, EnquireAir-
France, EnquireKLM, EnquireFinnAir, and EnquireAlItalia. All these service
calls carry the same input and output of FlightEnquiry, i.e., travelDetails
as input and flightDetails as output. FlightEnquiry is potentially accessi-
ble for many users in the Internet through some graphical interfaces. So, many
(thousands of) FlightEnquiry requests can reach the AXML peer simultaneously.
In such situations, the AXML peer and the respective Web services are heavily
loaded since all the service calls of the AXML document are processed separately.
We understand that the load balancing [9] techniques provide a single domain
name from multiple servers by consolidating many HTTP requests of various
clients as a single TCP socket to the back-end servers. But, this cannot consol-
idate the service calls and their associated queries to optimize the execution in
the AXML peer, Web services, and databases. Similarly, web caching techniques
are useful if the queries associated with the service calls are unique, however, the
queries tend to be different in real due to the personalization of users over the
web content [12]. For the purpose of discussion, we consider that an AXML peer
receives one thousand FlightEnquiry requests simultaneously. These one thou-
sand requests internally require five thousand service calls, i.e., one thousand to
EnquireLufthansa, one thousand to EnquireAirFrance, etc. The AXML peer and
the servers of Web services like EnquireLufthansa are heavily loaded in this case.
We also consider that the EnquireLufthansa service is implemented on top of a
LufthansaDB database which has the details of flights, availability, price, etc.
So, one thousand EnquireLufthansa requests additionally produce one thousand
data requests to the LufthansaDB. Assuming that the workflow requests arrive
at sufficiently close moments in time and their answers can be forcedly syn-
chronized with no perceived disadvantage to the user, the execution complexity
of one thousand instances of FlightEnquiry can be reduced if the service calls
targeting the same service are grouped as “one”, i.e., only one service call to
EnquireLufthansa to obtain the required results of one-thousand service calls.
Similarly for EnquireAirFrance, EnquireKLM, EnquireFinnAir, and EnquireAl-
Italia. This implicitly optimizes the data requests to the respective databases
from the Web services in the same way.

3 Service Calls Grouping

3.1 Idea Illustration

This paper groups many independent service calls of AXML document that
target the same Web service into one service call. The state-of-the-art way of
executing service calls of AXML documents is shown in Fig. 2(a), i.e., inde-
pendent service calls (sc1, sc2, ..., scn; hereafter we refer this list as sc1..n) are
activated and its results are received individually although those calls target the
same Web service. Also, it can be noticed that each Web service request opens
an additional database request as shown in Fig. 2(a). The proposed optimization
is shown in Fig. 2(b), where all the independent service calls are grouped as one

An Optimization Rule for ActiveXML Workflows 413

sc1 sc2 scn

Web service

sc1 sc2 scn

Web service

sc

(a) Before Grouping (a) After Grouping

Data Base Data Base

AXML Document

AXML Document

Fig. 2. Idea of Grouping Service calls

service call (i.e., sc), and similarly to the database access from the Web service.
The sc carries all the data constraints of sc1..n. The activation of sc receives the
results required for sc1..n, which are accessed and filtered by sc1..n according to
their individual data constraint.

The service calls are grouped by encoding their input parameters as XML
trees. The input parameter has a condition and a finite set of output attribute
names for which the values are expected from the Web service. Fig. 3(a) shows
the generalized encoded tree format of the service call’s input parameter. In that,
the conditional attribute names and its values are located in the leaf position, the
relational operator is located as the parent of conditional attribute name and its
value, the logical operator is located as the parent of relational operator, and the
output attribute names are located as the parent of logical operator (or relational
operator). The output attribute names are always located in the top level of the
encoded tree, and the relational operator can be the immediate child of output
attribute name when there is no logical operator in the condition. Fig. 3(b) shows
the encoded tree form of the following service call’s input parameter:

Πws.weather(σws.country=“France” and ws.city=“Paris”(WeatherService ws)).

For the sake of simplicity, we use the relational algebra to represent the in-
put parameters of service call including the service name. Also, we use generic

Fig. 3. Encoded Input Parameter of a Service Call

414 S. Subramanian and G. Sindre

examples in this section to illustrate all possible cases of grouping service calls.
In the above example, ws.country = “France” and ws.city = “Paris” is the
condition and ws.weather is the output attribute name.

Two (or more) independent service calls are grouped using any of the following
two cases,

Gr1 : same input parameters and target. The input parameters of service
calls are exactly same including the targeted Web service. For example,

sca = Πss.stockRate(σss.stockName=“Dell”(StockService ss)).
scb = Πss.stockRate(σss.stockName=“Dell”(StockService ss)).

The sca and scb have the same condition (i.e., ss.stockName = “Dell”),
output attribute name (i.e., ss.stockRate), and target (i.e., StockService).
So, here sca or scb can be considered as the input parameter of grouped
service call.

Gr2 : related input parameters but same target. The input parameters
of service calls are different from each other, but the targeted service is
same for both. The difference can be in the condition or output attribute
name or both. Between the conditions, the difference can be in relational
or logical operator or both, or conditional attribute name or its value or
both, or both. For example,

scc = Πss.stockRate(σss.stockName=“Y ahoo”(StockService ss)).

The conditional attribute value differs between sca (or scb) and scc, i.e.,
sca has “Dell” as the value for stockName, whereas, scc has “Y ahoo” as
the value for stockName. So, the sca and scc are grouped as,

sc = Πss.stockRate(σss.stockName=“Dell” or “Y ahoo”(StockService ss)).

The sc joins the conditions of sca and scc as ss.stockName = “Dell” or
“Y ahoo”, and the output parameter name, i.e., stockRate. Now, we con-
sider another input parameter of a new service call,

scd = Πss.stockRate,ss.noOfAvailableStocks(σss.stockName=“Y ahoo”
(StockService ss)).

Here, the output attribute name differs between sc and scd, i.e., sc has
ss.stockRate, whereas, scd has ss.stockRate and ss.noOfAvailableStocks.
It can be observed that the condition of sc is the superset of scd’s condition.
So, sc and scd are grouped as,

sc = Πss.stockRate,ss.noOfAvailableStocks(σss.stockName=‘Dell′ or ‘Y ahoo′

(StockService ss)).
Now sc has two output attribute names (i.e., ss.stockRate and
ss.noOfAvailableStocks) to get the required results of sca, scb, scc and
scd.

The conditional attribute names of respective input parameters (i.e., sca, scb,
scc and scd) are added as the output attribute names of sc if it is not available

An Optimization Rule for ActiveXML Workflows 415

already, i.e., ss.stockName is added as a new output parameter name. The
updated sc is,

sc = Πss.stockRate,ss.noOfAvailableStocks,ss.stockName

(σss.stockName=“Dell” or “Y ahoo”(StockService ss)).

This is done for filtering the service results after the activation of a grouped
service call. The intended results of sca, scb, scc and scd are filtered from the
service results (say, R) of sc after its activation. This filtering is done based on
the input parameter of the respective service call. In our example,

sca, scb = ΠstockRate(σstockName=‘Dell′ (R))
scc = ΠstockRate(σstockName=‘Y ahoo′(R))
scd = ΠstockRate,noOfAvailableStocks(σstockName=‘Y ahoo′(R))

3.2 Rule for AXML

Consider that there are n independent service calls sc1..n in the AXML document
d located at the peer p, targeting the Web service ws located at the peer p1, with
the input parameters t1, t2, ..., tn (hereafter, we refer this list as t1..n) respectively.
For this, the SCG rule is,

eval@p(�x0@p〈sc1@p1(t1)〉, �x1@p〈sc2@p1(t2)〉, ..., �xn@p〈scn@p1(tn)〉)
→ �x0@p〈filter@p(�y0@p, t1)〉, �x1@p〈filter@p(�y0@p, t2)〉,

..., �xn@p〈filter@p(�y0@p, tn)〉, �y0@p〈eval@p(sc@p1(t))〉

where, eval is an operation that evaluates the service calls of d, sc is the grouped
service call which is grouped from sc1..n, t is the input parameter which is
grouped from t1..n, filter is a newly proposed operation available in the peer p
to filter the service results of sc. The optimization is the the first stage of eval,
which creates sc and replaces sc1..n with filters. The inputs of the filter oper-
ation are the service results of sc (in our case, it is available at �y0@p) and the
input parameter of respective service call which needs the partial results from
sc. The pictorial view of this optimization rule is shown in Fig. 4, where the
bidirectional arrow line indicates the Web service request and response.

The detailed step-by-step algebraic execution of the SCG is follows,

eval@p(�x0@p〈sc1@p1(t1)〉, �x1@p〈sc2@p1(t2)〉, ..., �xn@p〈scn@p1(tn)〉)
Next, the grouped service call sc@p1 is created at �yo@p with the input parameter
t which is created by grouping the input parameters t1..n of sc1..n. The service
calls sc1..n are replaced with filter operations. Every filter operation takes the
service results that are produced by sc and the respective input parameter of
service call sc1 or sc2 or ... or scn.

→ �x0@p〈filter@p(�y0@p, t1)〉, �x1@p〈filter@p(�y0@p, t2)〉,
..., �xn@p〈filter@p(�y0@p, tn)〉, �y0@p〈eval@p(sc@p1(t))〉

416 S. Subramanian and G. Sindre

ws@p1

(a) Before optimization (b) After optimization

sc1@p1(t1) sc2@p1(t2) scn@p1(tn) filter(#y0, t1) sc@p1(t)
#y0

d@p d'@p

ws@p1

filter(#y0, t2) filter(#y0, tn)

Fig. 4. The SCG Rule

Next, the sc@p1 is evaluated at p. This results in send and receive operations
from (new)@p1 to �y0@p. Note that the send and receive are the predefined
services locally available in the peer, used to move the streams of XML data from
one peer to another [6]. The send service has two parameters: what (represents
the data to be sent from one site to another), and where (represents a node
id). There are no parameters for receive. The symbol ◦ indicates the start of an
operation, and • indicates the end of an operation.

→ �x0@p〈filter@p(�y0@p, t1)〉, �x1@p〈filter@p(�y0@p, t2)〉,
..., �xn@p〈filter@p(�y0@p, tn)〉, �y0@p〈◦receive@p()〉 &
(new)@p1 : eval@p1(send@p1(�y0@p, sc@p1(t)))

Next, the receive operation ends its operation.

→ �x0@p〈filter@p(�y0@p, t1)〉, �x1@p〈filter@p(�y0@p, t2)〉,
..., �xn@p〈filter@p(�y0@p, tn)〉, �y0@p〈•receive@p()〉

Next, the filter operations start filtering the result available at �y0@p based on
the respective input parameter t1 or t2 or ... or tn.

→ �x0@p〈◦filter@p(�y0@p, t1)〉, �x1@p〈◦filter@p(�y0@p, t2)〉,
..., �xn@p〈◦filter@p(�y0@p, tn)〉, �y0@p

Finally, the filter ends its operation.

→ �x0@p〈•filter@p(�y0@p, t1)〉, �x1@p〈•filter@p(�y0@p, t2)〉,
..., �xn@p〈•filter@p(�y0@p, tn)〉

4 Conclusion and Future Work

This paper has provided an optimization approach for the execution of AXML
documents. The proposed SCG rule groups Web service calls that carry selec-
tion and/or projection queries. Our optimization approach relates one service
call with another based on its target i.e., Web service, and reuses the existing
results that are received from other equivalent service calls. This improves the
performance of the workflow server and the Web service including the database

An Optimization Rule for ActiveXML Workflows 417

server that provides the data to Web service. The algebraic executions are shown
to illustrate the service calls grouping in the framework of AXML.

Presently, the SCG is limited to the independent service calls. So, this has to be
extended to accommodate the update queries (e.g., insert, delete, modify) that
are dependent of one with another. The nested transactions of database systems
can be correlated to the service calls in order to maintain the ACID properties
while grouping. The open questions related to the performance of SCG are: (i)
what is the execution improvement of an AXML document in a real application?,
(ii) what extent the workload of Web service and its associated database server is
reduced?, (iii) what is the efficient threshold time of the workflow server to wait
and accumulate the workflow requests for applying SCG in a wider range?, (v)
how many service calls can be grouped together in order to match the capacity
of a server?, and (vi) how far the SCG is efficient than the classical web caching
techniques especially when the queries are identical?

Acknowledgements

This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme. First author would like to thank Serge Abiteboul and
Ioana Manolescu of INRIA for their initial ideas and suggestions.

References

[1] Aalst, W.M.P.: Trends in business process analysis - from verification to process
mining. In: The proceedings of International Conference on Enterprise Information
Systems (ICEIS), Madeira, Portugal (2007)

[2] Abiteboul, S., Benjelloun, O., Cautis, B., Manolescu, I., Milo, T., Preda, N.: Lazy
query evaluation for Active XML. In: The proceedings of ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD), Paris, France (2004)

[3] Abiteboul, S., Benjelloun, O., Milo, T.: The Active XML project: an overview.
The VLDB Journal 17(5) (2008)

[4] Abiteboul, S., Manolescu, I., Taropa, E.: A Framework for Distributed XML
Data Management. In: The proceedings of International Conference on Extending
Database Technology (EDBT), Munich, Germany (2006)

[5] Abiteboul, S., Manolescu, I., Zoupanos, S.: OptimAX: optimizing distributed con-
tinuous queries. In: The Proceedings of International Conference on Bases de Don-
nees Avancees (BDA), Marseille, France (2007) (A French Conference)

[6] Abiteboul, S., Manolescu, I., Zoupanos, S.: OptimAX: Optimizing Distributed
ActiveXML Applications. In: the Proceedings of Eighth International Conference
on Web Engineering (ICWE), New York, USA (2008)

[7] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1. Standard proposed by
BEA Systems. IBM Corporation, and Microsoft Corporation (2003)

[8] Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv Environment for Web
Services Composition. IEEE Internet Computing 7(1) (January/February 2003)

418 S. Subramanian and G. Sindre

[9] Bourke, T.: Server load balancing. O’Reilly & Associates, Inc., Sebastopol (2001)
[10] Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous

query system for Internet databases. In: The Proceedings of ACM International
Conference on Management of data (SIGMOD), Dallas, Texas, United States
(2000)

[11] Hull, R., Su, J.: The Vortex Approach to Integration and Coordination of Work-
flows (A position paper). In: The Proceedings of International Joint Conference on
Work Activities Coordination and Collaboration (WACC), San Francisco (1999)

[12] Sivasubramanian, S., Pierre, G., Steen, M., Gustavo, G.: Analysis of Caching
and Replication Strategies for Web Applications. IEEE Internet Computing 11(1)
(January 2007)

[13] Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft,
T.: An Approach to Optimize Data Processing in Business Processes. In: Pro-
ceedings of International Conference on Very Large Data Bases (VLDB), Vienna,
Austria (2007)

[14] Wang, J., Kumar, A.: A Framework for Document-Driven Workflow Systems. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 285–301. Springer, Heidelberg (2005)

Personal News RSS Feeds Generation Using
Existing News Feeds

Bin Liu, Hao Han, Tomoya Noro, and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{ryuu,han,noro,tokuda}@tt.cs.titech.ac.jp

Abstract. Nowadays more and more news sites publish news stories
using news RSS feeds for easier access and subscription on the Web.
Generally, news stories are grouped by several categories and each cat-
egory corresponds to one news RSS feed. However there are no uniform
standards for categorization. Each news site has its own way of catego-
rization for grouping news stories. These dissimilar categorization can
not always satisfy every individual user, and generally the provided cat-
egories are not detailed enough for personal using.

In this paper, we proposed a method for users to create customizable
personal news RSS feeds using existing ones. We implemented a news
directory system(NDS) which can retrieve news stories by RSS feeds
and classify them. Using this system, we can recategorize news stories
from original RSS feeds, or subdivide one RSS feed to a more detailed
level. With the classification information for each news article, we offer
customizable personal news RSS feeds to subscribers.

1 Introduction

At present, there are lots of news sites on the Web. Many of them offer news RSS
feeds1 for easier access and subscription. News RSS (Really Simple Syndication)
feed is an XML-based format document for sharing and publishing frequently
updated Web news. By subscribing to some news RSS feeds using a RSS reader,
we can get alerts about publications of new issues. Generally news sites divide
news articles to numbers of categories and publish news RSS feeds corresponding
with these categories one-to-one.

Unfortunately, there are no uniform standards for categorization, news sites
determine how to categorize news articles by themselves. For example, CNN.com2

provides news RSS feeds by fields such as Science, Sports, Business and so on,
while allAfrica.com3 offers news RSS feeds grouped by countries or regions. As we
can see, there are some difference of categorization between various sites. If users
happen to find just what they want in the given categories, the categorization is

1 http://cyber.law.harvard.edu/rss/rss.html
2 http://www.cnn.com/
3 http://allafrica.com

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 419–433, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

420 B. Liu et al.

contributing. While if users can not find any appropriate categories close to what
they want, the categorization does not make any sense. For instance, if users want
to subscribe to news about diseases from allAfrica.com, they have to subscribe to
all of the news RSS feeds from this site and discriminate the news about diseases
one by one by themselves. So the original categorization of each site can not always
satisfy every individual user. Further, usually categories used in news sites are not
subdivided. They are not detailed enough for personal using. This make users have
to handpick what they really need from the news gotten from RSS feeds.

Some RSS reader tools can let subscribers integrate RSS feeds, however what
these tools could do is only to make a union from selected feeds by users, they
do not make any analysis about the contents in feeds. News alert can also filter
useful news stories for users, while users have to imagine all the presumable
expressions for keywords and connect them together with OR during the initial
setting of alerts. It is acceptable when the keywords are technical terms, but we
could know what we omit when the keywords are general words. Further, simple
string matching is used in news alerts, they will give a hit when ice hockey occurs
while user wants stories of hockey.

In this paper, we propose a method for recategorizing the articles published
from existing news RSS feeds, and using these subdivided news articles, we
provide personal news RSS feeds for users. Personal news RSS feeds can be con-
figured for individual demands like Fig.1. Users can recategorize or subdivide the
news articles gotten from existing news RSS feeds according to their individual

Fig. 1. Overview of personal news RSS feeds

Personal News RSS Feeds Generation 421

needs. We implemented a news directory system which gives preconditions for re-
categorization and subdivision. It retrieves news articles using information from
existing news RSS feeds and subdivides news articles into categories automati-
cally. We gave each category used in this system a definition, and constructed
automata with these definitions to categorize news articles with high speed. Each
definition includes several related expressions (synonyms and abbreviations) of
the corresponding category. So users need not make an association of all the
expressions of their interested topics. We also avoid miss hits like hockey and ice
hockey using limitation in categories’ definitions.

The organization of the rest of this paper is as follows. Section 2 gives an
overview of our news directory system. Section 3 presents the mechanism of au-
tomatic retrieval and subdivision of news articles, the basis of our work. While
section 4 shows directions about how to get personal news RSS feeds using exist-
ing ones. Experimental results demonstrating the effectiveness of our approach
are in Section 5. Section 6 discusses related work. Finally conclusions and direc-
tions for future work can be found in Section 7.

2 Overview of NDS

News directory system can be divided into two subsystems as Fig.2. One is for
news retrieval, the other is for classification. System for news retrieval detects
news titles and news body from original pages using the information of news
titles and URLs. And the system for classification categorizes news stories with
automata constructed from definitions of categories. We can get the results of
categorization by scanning news stories only one time. We will give introduction
about these two subsystems respectively in following section.

Fig. 2. Structure of News Directory System

422 B. Liu et al.

3 News Directory System

3.1 Automatic News Collection

In this section, we give a brief introduction about the process of automatic
news collection. Detailed explanation can be found in paper [11]. As a general
approach, pattern matching is used in extraction from web pages. Considering
it need corresponding patterns for various web site, extensibility is low when we
get new web sites. We collect news articles by extracting news titles and body
from news pages using information in original news RSS feeds.

The initials “RSS” are used to refer to the following formats:

– Really Simple Syndication (RSS 2.0)
– RDF Site Summary (RSS 1.0 and RSS 0.90)
– Rich Site Summary (RSS 0.91)

Although there are a number of different formats of RSS, all of them include
the URL and title information in <link> and <title> respectively. These two in-
formation fields are the minimum necessary parts of each news item in a RSS feed.
We detect these information and extract news articles from original news pages.
The phase of the news article extraction consists of the following two parts.

Detection of News Title. The process detects position of the news title in
the original news pages. Since the title shown in news feeds is not always same
as the real title in original news pages, we have to try to extract news titles from
original news pages once again. And because of the difference between titles in
RSS feeds and original news pages, exact match is not appropriate for news titles
detection. Instead, for each node n in the news pages (an HTML document4),
we calculate similarity score with the news title in RSS feeds.

If the score is higher than a predetermined threshold, the string covered by
the node n is judged as a news title. If there is no node whose score is higher
than the threshold, no string is judged as the news title. On the other hand, if
there are more than one node with higher score than the threshold, all of the
strings covered by the nodes are judged as news titles.

Extraction of Body of News Articles. The process detects a part of the
news article body and extract the whole body. Since body of a news article is
usually preceded by its title, the process tries to find the news article body in
some “contents ranges” at first, and, if it cannot find out the body in the range, it
tries to find the body in a “reserve range”. “Contents range” and “reserve range”
are parts which might include the news article body. They are determined as
follows.

– If only one string is judged as a news title in the previous process, the
following part and the preceding part are a contents range and a reserve
range respectively (Fig.3(a)).

4 http://www.w3.org/TR/html401/

Personal News RSS Feeds Generation 423

<body>

</body>

<body>

</body>

<body>

</body>

Possible title

Possible title

Possible title

Contents range

Contents range

Reserve range

Contents range

Contents range

Reserve range

(a) One possible title (b) No possible title (c) More than one possible title

Fig. 3. Contents range and reserve range

– If no string is judged as a news title, the whole part of the news article page
is a contents range and no reserve range exists (Fig.3(b)).

– If more than one string are judged as news titles, for each of the strings
except the last string, range of between itself and the next string is a contents
range. The part preceded by the last string is also a contents range. The part
followed by the first string is a reserve range (Fig.3(c)).

At first, we specify a part of news article body. Then we calculate possibility
score of each leaf node with non-link text n in each of the contents ranges. If
there were some nodes with higher score than a predetermined threshold, we
consider the nodes with the highest score cover a part of the news article body.
Otherwise, we consider the nodes with the highest score in the reserve range
cover a part of the news article body. Since a news article body is usually a
continuous text, it can be extracted by taking leaf nodes around the specified
nodes. However, in some cases, some information which is not related to the
article, such as advertisement, is inserted in the article body. In order to avoid
taking such information, we also set limitations to filter them. Finally, we get a
list of nodes which cover the whole news article body. The whole body can be
extracted by getting the node value (i.e. text) from each node in the list.

3.2 Automatic News Classification

After the news articles extraction, we get the materials for news classification.
The next step is to give categories for classification and define them to construct
automata.

News Categories. At first we need categories for classification. In news direc-
tory systems we use one-level flat directory structures or multi-level tree direc-
tory structures. Typical examples of one-level flat directory structures may be
as follows.

– Classification of natural disasters such as typhoon and earthquake.
– Classification of human diseases such as diabetes and malaria.

424 B. Liu et al.

Fig. 4. Composition of a small classification tree

Fig. 5. category Disease

Fig. 6. category Countries/Regions

Typical examples of multi-level tree directory structures may be as follows.

– Classification of locations such as countries/regions on the earth and outside
of the earth.

– A small classification tree constructed from the large classification tree such
as WordNet5 [9] or Wikipedia6 structures.

An example of one-level flat directory structure is shown in Fig.5 and an
example of multi-level tree directory structure is shown in Fig.6. Users can also
build their original directory structures manually. Here we give methods to build
directory structures with existing resources.

5 http://wordnet.princeton.edu/
6 http://en.wikipedia.org/wiki/Main Page

Personal News RSS Feeds Generation 425

Method 1. We use open knowledge collection of classifications by humans, such
as Wikipedia and WordNet, to build an initial collection of instance names be-
longing to one category.

Method 2. Our method of building multi-level tree directory is as follows. We
need a small set of basic words. Such a set of basic words may be subject words in
New York Times Topics Index 7 or a subset of Longman defining vocabulary[13]
or a subset of Oxford defining vocabulary[3]. For a given set of basic words we
construct a small classification tree as follows.

1. We retrieve full paths of all basic words in the WordNet tree.
2. We construct the initial small tree using the full paths obtained in the step 1.
3. We construct the small tree by deleting all non-basic words having exactly

one child node from the initial small tree.

A process of construction of a multi-level tree directory is shown in Fig.4.

Automatic Placement. In order to realize the automatic placement, each cat-
egory need a definition. Our default definition of a news article A to be contained
in a category B is that the article A has an occurrence of the word B. In addition
to default definitions of single word occurrences, we use explicit definitions of a
news article in a category using the expressions defined by following extended
context-free syntax rules with repetition operator {} representing zero or more
times of repetitions.

expression → (term) {OR (term)}
term → factor {AND factor}

factor → (phrase)|(NOT phrase)
phrase → word {SPACE word}
word → character {character}

This expression allows us to define news articles having slightly more com-
plicated word occurrences. For example, we may write a definition for category
soccer using the following expression.

((football)AND(NOTamerican football))OR((soccer))

This expression means that an article A is to be contained in the category, if
A contains the word football but not american football or A contains the word
soccer. The same expression may be written briefly as follows.

1. football AND (NOT american football)
2. soccer

We collect phrases from dictionaries of synonyms and append the NOT limi-
tation according to the inclusion relations among the phrases we used. And then
7 http://topics.nytimes.com/top/reference/timestopics/

426 B. Liu et al.

f

a

s

Fig. 7. M1 Fig. 8. M2

give AND limitations where NOT appears to create terms. At last connect all
the terms for same meaning with OR limitation. Using the definitions, we make
keywords matching to realize automatic placement. Making simple comparison
between target string and source string costs much time. We realize this process
more efficiently by using finite-state automata, which allow us to get the results
of classification by scanning the news articles only one time.

The task of automatic placement consists of two phases using finite-state
automata. In the first phase, we construct an automaton with all the phrases
used in category definitions, it can help us to detect which phrases we used in
definitions appeared in the news story. And in the second phase, we construct
another automaton with all the limitations used in definitions, it can tell us
which definitions the new story satisfied. We call these two automata as M1 and
M2. For the sample expressions of category soccer, we can construct M1 and M2
shown in Fig.7 and Fig.8. About the details of M1 and M2, we introduced in
paper [17].

4 Personal News RSS Feeds Generation

After the news extraction and classification, we can use the results of news’
classification to help users generate their personal news RSS feeds. We explain
the process of personal news RSS feeds generation in this section.

At first, news sites or news feeds should be designated for contents extraction.
We offer users about 40 well-known news sites such as CNN, BBC 8 and so on,
and RSS feeds from these sites. While we do not mean to put restrictions on
users’ sites selection. Users can keep their favorite news sites or news feeds as
usual. If only the users favorite news sites publish RSS feeds, and they could
designate the URLs of RSS feeds. Then our system will also operate extraction
and classification.

Secondly, user can select the categorization or categories which they are inter-
ested in. We provide categorization such as countries/regions, human/
organizations, events/accidents, and so on. Each categorization has numbers of
categories which may have a tree structure. If users could not find a appropri-
ate categorization or categories. They can also input the keywords for filtering
8 http://www.bbc.co.uk

Personal News RSS Feeds Generation 427

certain topics. In this case, our system will create a personal automaton for
classification using the input keywords.

Personal news RSS feeds will be helpful in following two cases.

1. Replace the categorization of original RSS feeds.
If users wanted to read news articles grouped by countries or regions from a
news site which only provides news feeds in categories like Science, Sports,
Business and so on. Users can designate the URLs of original RSS feeds and
subscribe to the categorization of countries or regions. Contents would be
sent to users in several RSS feeds and each feed corresponds to a country or
region. User can also subscribe to news feeds of certain countries or regions
by designating certain categories in the categorization.

2. Subdivide the news of original RSS feeds.
User can subdivide the news in RSS feeds by operating categories. For ex-
ample, we can get a news feed which sends news articles about both whale
and Japan by making a intersection set of categories whale and Japan. The
order of intersection will result in different meaning. If we selected Japan
and then energy, we would get news articles grouped by kinds of energy, and
all the news articles also belong to category Japan. If we selected coal and
then Asia, we would get news articles grouped by countries or regions in
Asia, and all the news articles also belong to coal.

According to the usages mentioned above, personal news RSS feeds are gen-
erated by following steps.

1. Pick up sites and news RSS feeds from the lists we offered. If users’ favorite
sites or RSS feeds were not in our lists, users can also register the URLs of
the new RSS feeds into the system.

2. Select the categories or make intersection sets from the given categories.
3. New personal news RSS feeds are generated according to the results of user’s

choices. An unique URL is issued for the personal feed.

Once personal news feeds are generated successfully, users can register the
feeds’ URLs into their RSS reader tools. Our system will send along correspond-
ing news articles to users by the personal news feeds at fixed intervals.

5 Experimental Results

In this section we introduce our implementation in details. We also evaluate our
approach using the results of experiments.

5.1 Implementation

We implemented the parts of news articles extraction and classification. The
news sites from which we collect news articles are 40 sites from 21 countries or
regions and news RSS feeds from these sites are 624 in all. We run the extraction

428 B. Liu et al.

Table 1. Result of News Extraction

1000 news pages

successful extraction extraction failure

902
partially-extracted non-extracted

68 30

at fixed intervals and we can get about 1,500 latest news articles each time
averagely. We constructed a directory structure for our news directory system
using resources from Wikipedia and other existing resources. We also constructed
a small classification tree of 885 nodes with 624 basic words from Longman
defining vocabulary and 261 non-basic words from WordNet. Categories are given
in methods like Countries/Regions, Sports, Diseases and so on. The max value
of the depth in the directory structure is 5. The part of automatic classification
is also implemented. We used 2,328 terms in all for the definitions of the 825
categories and automata M1 and M2 are generated with 12,801 and 1,666 nodes
respectively.

5.2 Evaluation

Using the news directory system, we collect news articles and make them clas-
sified. We evaluate our approach and system in following sections.

Automatic News Collection. We selected 1,000 news articles from the re-
sults of extraction in random order and compared them with the original news
contents in each corresponding news page. Results is shown in Table 1. We found
970 articles were extracted successfully and most of the cases of failure are due
to multi-pages, that is, when the contents of a news article is too long to show in
one page, most sites will divide the contents into several parts and prepare one
Web page for each part. In this case, our approach just extracts the partial con-
tents on the first page. We can also find some advertisement, blog pages or video
news in the RSS feeds of some news Web sites, and news articles in some news
Web pages can not be viewed until users log into the news sites. Our approach
can not extract well from these Web pages.

Automatic News Classification. We manually evaluated the precision rate
and recall rate of our automatic classification method using country/
region classification of 500 news articles, the results are shown in Table 2. In these

Table 2. Result of Automatic Classification

500 articles

articles classified appropriately inappropriate articles

453
not classified misclassified

12 35

Personal News RSS Feeds Generation 429

Table 3. News count from feeds of sports

Name of feed news count Name of feed news count Name of feed news count

Sports 219 Golf 28 Archery 55
Athletics 7 Baseball 4 Basketball 1
Boxing 9 Cycling 4 Diving 1
Fencing 1 Gymnastics 1 Hockey 11
Rowing 1 Sailing 1 Swimming 10
Weightlifting 1

500 news articles, 453 articles are appropriately classified. 12 articles mention-
ing country/region names are not classified into any category of country/region,
because our definitions of corresponding categories did not contain the expres-
sions used in those articles. 35 articles not mentioning country/region names are
classified into countries/regions, because company names, event names, and news
source names may contain country/region names. Because we did not use seman-
tic analysis, system can not pick out multisense words yet at the present time.

Personal News RSS Feeds Generation. We supposed a user wanted to
subscribe news stories about sports from BBC. Because there is no RSS feed
corresponding to sports from BBC, user has to input all the keywords related to
sports to set up a news alert. Instead, when we customize a personal RSS feed
from all BBC feeds with category Sports, what we need to do is only to check
some checkboxes. We checked this personal feed from Jan, 2009 to Feb, 2009,
219 stories were sent to our RSS reader in 16 kinds of sports as Table 3, and
we made a search with keyword sport in news articles from BBC in this period,
there were only 19 hits. We also took same experiments at other sites.

6 Related Work

Our approach contains news extraction and automated classification. So we will
mention related work about these two topic respectively and give comparison
with other systems.

6.1 News Extraction

There are two opposite approaches to the recognition and extraction problem:

1. Static patterns
In this approach static patterns (extraction template) need to be defined
previously for every source indexed by the system. Each web site has its own
source structure of pages and the document location would be different, too.
So in the extraction phase the pages of every site are individually processed
filtering the documents.

The advantage of this kind of methods is the computational cost. On the
other hand, a lot of human intervention is needed. For every new source to

430 B. Liu et al.

be added to the system, users should analyze the internal HTML structure of
the documents and define a custom template. If some site changed something
in publication format or the document structure, the corresponding template
must be redefined. Thus the system maintenance becomes in a critical task.

2. Automated extraction
Most of the published works belong to this approach. These techniques aim
to avoid the human intervention and enable dynamically source adding to
the systems. There are mainly two ways to affront the automated solution:
– Adaptation of data extraction

Traditional techniques based on different clustering techniques as for
example tree edit distance [7,18], or use of equivalence classes [2]. The
concept over these approaches lie, is that news with common structures
will match in the same cluster or class, so after the clustering phase
a extraction template could be generated for each cluster.This implies
multiple reprocessing of the documents with prohibitive computational
cost. Thus this family of techniques is not applicable in real systems, it
is only useful in applications where the number of documents managed
is reduced and the frequency of content update is low.

– Domain specific approaches
Other approaches try to combine the previous knowledge in the area
of data extraction taking in account the singular characteristics of the
news domain. Some works try to exploit the structure of the articles
by semantic partitioning [16]. This approach is not still computational
efficient and the results of precision and recall claimed by the authors
can be improved. Other recent work [9] tries to use the tables present in
the documents after assume that the news are present in the larger cell.
Actually this assumption is false in most of the cases the news articles
are not contained by tables. Also the evaluation methodology used in
this work is very poor.

So in this context we present an automated extraction approach based on
the provided RSS feeds. With the information of news title and URL, we de-
tect news contents from the original pages. Our method is a tradeoff between
computational efficiency and result effectiveness.

6.2 Automated Classification

Automated classification is also a well studied problem. There are two main
approaches to realize automatic text classification.

1. Clustering Clustering [14] is a common technique to divide objects into sev-
eral groups (called clusters). Objects from the same cluster are more similar
to each other than objects from different clusters. Usually similarity is as-
sessed according to a distance measure. There were also some experiments
[4]taken to apply clustering to classify news articles. Well, this application
showed us which news groups (cluster) will occur after analysis. It is unsuit-
able when users know definitely what kind of news they want.

Personal News RSS Feeds Generation 431

2. Classification
Classification is distinguished from clustering by whether there are categories
given previously before processing. The following two kinds of approaches
are mainly applied to realize classification.
– Hand-Crafted Rules

Google alerts 9 takes this approach to filter information for users. It
needs users to give a set of keywords which they think are important to
set up. If the occurrences of these keywords were detected, system will
notify users.

The advantage of this approach is that rules can be created simply by
listing related words. By the same token, system could only detect the
words listed because of the exact matching [1]. In the same way, system
will tell us there is a hit when it detects ice hockey even we adopted
hockey. While, when there are numbers of categories, we have to define
them one by one, too. So we cannot use this approach directly.

– Machine learning
Machine learning has demonstrated good performance can be achieved
on spam/junk email. For example, SpamCop[12] (Pantel & Lin, 1998),
using a Naive Bayes approach achieved accuracy of 94%. Sahami [15]
applied a Bayesian approach and achieved precision of 97.1% on junk
and 87.7% on legitimate mail and recall of 94.3% on junk and 93.4%
on legitimate mail. Besides approach of Bayes, TF-IDF [5], K-Nearest
Neighbor [19] and SVM [6] are also common applied techniques. Well, us-
ing machine learning to classify news article, we need numbers of labeled
documents to create a model at first. Labeling must be done by a person,
this is a painfully time-consuming process and it is per se unpractical for
news categories which are changing momently. No one would like to be
ordered to gather numbers of samples when he (or she) plan to create a
new category.

In this context, we use the rule-based method and proposed automated method
to construct categories and rules (definitions). And we use limitation in definitions
to avoid miss matching like ice hockey and hockey.

6.3 Comparison

Comparing with Google Alerts, user do not need list all the expressions of a topic
they are interested in with our approach. Because we have considered most of
the possibilities of expressions about a category during the process of defining
categories already. So the necessary operations become more simple and the
recall rate of our approach is higher than that of Google Alerts. And another
thing, because simple string matching is used in Google Alerts, when keyword
A is contained by keyword B completely(such as hockey and ice hockey), there
may be some mistakes in the results if users input keyword A. In our approach,
we avoid this kind of mistake by using NOT relation in categories’ definitions.
9 http://www.google.com/alert

432 B. Liu et al.

NewsKnowledge.com10 provides a more friendly service. This site allows users
create personal news RSS feeds. Categories are subdivided and users can choose
their favorite categorization such as Health, Industries, and so on. Users can also
give keywords for filtering certain topics. However, the source of news feeds are
limited, so users can not designate their favorite news feeds or news sites. And
the subdivided categories are still in an insufficient degree.

7 Conclusion

In this paper, we have presented an approach for generating personal news RSS
feeds from existing news feeds using news extraction and automatic classifica-
tion. We also proposed methods to realize the news extraction and automatic
classification. We implemented the methods and confirmed the availabilities of
our approach.

As our future work, we will try the news articles extraction from multi-pages,
enrich the news sites and news feeds, the categories in news directory, and im-
prove the precision rate by resolving the problem of multisense words, too. We
also plan to develop a RSS reader tool which allow users view news feeds multi-
level structure, that is, users can view parts of the directory structure of our
news directory. Users can view the other items in the category which contains
the item they chose, this could be suggestive for users.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
CACM 18(6), 333–340 (1975)

2. Arasu, A., Garcia-Molina, H., University, S.: Extracting structured data from web
pages. In: Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pp. 337–348. ACM Press, New York (2003)

3. Hornby, A.S., Ashby, M.: Oxford Advanced Learner’s Dictionary of Current En-
glish. Oxford University Press, Oxford (2005)

4. Das, A., Datar, M., Garg, A.: Google News Personalization: Scalable Online Col-
laborative Filtering. In: Proceedings of the 16th international conference on World
Wide Web. ACM Press, New York (2007)

5. Boone, G.: Concept features in re:agent, an intelligent email agent. In: Second
International Conference on Autonomous Agents

6. Brutlag, J., Meek, C.: Challenges of the email domain for text classification. In:
Seventeenth International Conference on Machine Learning

7. Reis, D.C., Golgher, P.B., Silva, A.S., Laender, A.F.: Automatic web news extrac-
tion using tree edit distance. In: Proceedings of the 13th international conference
on World Wide Web, pp. 502–511. ACM Press, New York (2004)

8. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning 29, 103–137 (1997)

9. Zhang, D., Simoff, S.J.: Informing the curious negotiator: Automatic news extrac-
tion from the internet. In: Williams, G.J., Simoff, S.J. (eds.) Data Mining. LNCS,
vol. 3755, pp. 176–191. Springer, Heidelberg (2006)

10 http://www.newsknowledge.com/home.html/

Personal News RSS Feeds Generation 433

10. Gonzalo, J., Verdejo, F., Chugur, I., Cigarran, J.: Indexing with WordNet Synsets
Can Improve Text Retrieval. In: Proceedings of the COLING/ACL Workshop on
Usage of WordNet in Natural Language Processing Systems, Montreal (1998)

11. Han, H., Tokuda, T.: Web News Contents Extraction Using RSS Feeds. In: The
Proceeding of Annual Meeting of Japan Society for Software Science and Technol-
ogy (2007)

12. Pantel, P., Lin, D.: Spamcop: A spam classification & organization program. In:
Proceeding of AAAI 1998 Workshop on Learning for Text Categorization, pp. 95–
98 (1998)

13. Proctor, P.: Longman Dictionary of Contemporary English. Longman (2005)
14. Berkhin, P.: Survey of Clustering Data Mining Techniques Accrue Software (2002)
15. Sahami, M., Dumais, S., Heckerman, D., Horvits, E.: A bayesian approach to fil-

tering junk e-mail. In: AAAI 1998 Workshop on Learning for Text Categorization
(1998)

16. Vadrevu, S., Nagarajan, S., Gelgi, F., Davulcu, H.: Automated metadata and in-
stance extraction from news web sites. In: WI 2005: Proceedings of the The 2005
IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005), Wash-
ington, DC, USA, pp. 38–41. IEEE Computer Society, Los Alamitos (2005)

17. Noro, T., Liu, B., Van Hai, P., Tokuda, T.: Towards automatic construction of news
directory systems. In: The 17th European-Japanese Conference on Information
Modelling and Knowledge Bases, pp. 211–220 (2007)

18. Crescenzi, V., Mecca, G.: Automatic information extraction from large websites.
J. ACM 51(5), 731–779 (2004)

19. Yang, S., Jian, H., Ding, Z., Hongyuan, Z., Giles, C.: IKNN: Informative K-Nearest
Neighbor Pattern Classification. Practice of Knowledge Discovery in Databases,
248–264 (2007)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 434 – 441, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Tag Clustering Method to Deal with Syntactic
Variations on Collaborative Social Networks

José Javier Astrain, Francisco Echarte, Alberto Córdoba, and Jesús Villadangos

Dpt. de Ingeniería Matemática e Informática
Universidad Pública de Navarra

Campus de Arrosadía. 31006 Pamplona, Spain
josej.astrain@unavarra.es,

patxi@eslomas.com,{alberto.cordoba,jesusv}@unavarra.es

Abstract. Folksonomies have emerged as a common way of annotating and
categorizing content using a set of tags that are created and managed in a
collaborative way. Tags carry the semantic information within a folksonomy,
and provide thus the link to ontologies. The appeal of folksonomies comes from
the fact that they require a low effort for creation and maintenance since they
are community-generated. However they present important drawbacks
regarding their limited navigation and searching capabilities, in contrast with
other methods as taxonomies, thesauruses and ontologies. One of these
drawbacks is an effect of its flexibility for tagging, producing frequently
multiple syntactic variations of a same tag. Similarity measures allow the
correct identification of tag variations when tag lengths are greater than five
symbols. In this paper we propose the use of cosine relatedness measures in
order to cluster tags with lengths lower or equal than five symbols. We build a
discriminator based on the combination of a fuzzy similarity and a cosine
measures and we analyze the results obtained.

Keywords: Folksonomies, Fuzzy similarity, Tag Annotation, Tag Clustering.

1 Introduction

Folksonomies offer users an easy way to sort and organize resources by assigning text
tags at different resources, such as photos, web pages, documents, etc. User
annotations and categorization define collaboratively the semantics of the tags and
resources used, causing the emergence of their associated semantics (unstructured
knowledge). Folksonomies are based on the assignation of text tags to these
resources. Tag annotation allows defining collaboratively the meaning of the
annotated resources, and the used tags. Tags provide users new approaches for
information search and exploration. Some navigation tools as clouds of tags allow
users searching for certain tags and to locate resources tagged by other users. Though
folksonomies have a great success in current web, mainly due to their simplicity of
use, they also have important drawbacks. The fact of users creating tags and assigning
them freely to resources produces the inexistence of any structure among these tags.

 A Tag Clustering Method to Deal with Syntactic Variations 435

Users can introduce synonyms, syntactic tag variations or different granularity levels
[1] in the tagging process, lowering the quality of folksonomies and making more
difficult the exploration and retrieval of information [2,3].

Several works in the literature focus on solving some of the problems associated
with folksonomies. Folksonomy browsing is addressed in [4] presenting different
ways to display tag clouds; [5] analyze the co-occurrence of labels to improve the
quality of tag clouds. Tag clustering is addressed in [6,7]. An in-depth study of
semantic tag relatedness is addressed in [8]. The problem of exploring hierarchical
semantics from social annotations is studied in [7]; and [6] deals with the conversion
of a large corpus of tags into a navigable hierarchical taxonomy using a graph of
similarities. Other proposals such as [9] propose to improve the quality of
folksonomies supporting users in the task of resource annotation by suggesting tags.
Other works as [1,10] relate folksonomies with formal information classification
systems as ontologies [11] and personalized recommendation [12].

Most of the above proposals do not take into account that a relevant number of the
existing tags corresponds to syntactic variations (erroneous or not) of previously
existing tags. The performance of a pre-filtering of the tags before applying an
algorithm for tag clustering, as occurs in [13], allows minimizing the effects of
syntactic variations increasing the quality of tag clustering. In [13] Specia and Motta
create clusters of semantically related tags over a reduced experimental data set, using
a previous step in which Levenshtein similarity measure is used to reduce the number
of tags identifying syntactic variations. Then the folksonomy is changed replacing
each identified variation by a representative tag. Another way to represent these
variations is presented in [1, 14]. The use of pattern matching techniques designed to
automatically recognize syntactic variations of tags provides mechanisms to improve
the quality of folksonomies [15]. Approximate string matching techniques allow
dealing with the problem introduced by syntactic variations on folksonomies. The
problem consists on the comparison of an observed input string called α, maybe
containing errors, and a pattern string ω in order to transform α in ω [16]. Edit
operations (insertion, deletion and change of a symbol) allow recovering those errors
transforming α in ω. The number of edit operations needed to recover an input string
provides a distance measure between the input string and the pattern string. This
distance, known as edit distance, can be expressed in terms of similarity and distance
(dissimilarity) measures between strings. Imperfect pattern matching techniques
perform better when dealing with syntactic variations of tags as indicated in [17]. The
use of a fuzzy automaton with ε-moves (FAε), as described in [15], allows obtaining
correct tag clustering rates greater than 95% when considering large data sets.

The main contribution of this paper is the introduction of a discriminator that
combines a syntactic similarity measure based in a fuzzy automaton with ε-moves
(FAε), and a cosine relatedness measure. This combination improves significantly the
performance of the syntactic variations detection, even when considering short length
tags (lower or equal than three symbols).

The rest of the paper is organized as follows: section 2 describes the tag clustering
process; section 3 describes the experimental scenario and the results obtained; and
finally, conclusions and references end the paper.

436 J.J. Astrain et al.

2 Syntactic Variations Clustering

Folksonomies can be described following different approaches [6,8,17]. A
folksonomy F can be defined as a tuple: F=(U,R,T,fa:UxRxTx…xT), where U, R and
T are respectively the finite sets of users, resources and tags defined in the
folksonomy; and where the annotation relation fa relates a user, with a resource and
with the set of tags employed by the user to annotate the resource. In order to
represent the syntactic variations of tags, this definition must be extended. Then, a
folksonomy is defined as a tuple: F’=(U,R,T,T’,fa:UxRxTx…xT,fg:T’→Tx…xT). In
this model U, R and T keep their meaning and a new set with name T’ is used to
represent the clustering of T elements, being T’⊆T. This model allows clustering tag
variations included in T in a new set of tags T’. Relation fa keeps the same meaning,
relating a user with a resource and a set of tag variations used to annotate the resource
by the user. Function fg represents the relation between T’ groups of tags and T tags
variations.

A fuzzy finite state automaton with ε-moves FAε, is a sixtuple (Q,Σ,μ,με,σ,η) where
Q is a non-empty finite set of states; Σ is a non-empty finite set of input symbols
(input alphabet) where Σ+ is the set of all non-empty strings over Σ, and Σ* =
Σ+U{ε}; μ: QxQxΣ [0,1] is the state transition function; σ and η are fuzzy sets on
Q; and με is a reflexive binary fuzzy relation on Q representing the state transition
function by empty string. For q, p∈Q and x∈Σ, the value μ(q,p,x)∈ [0,1] represents
the degree to which the automaton in state q and with the input symbol x may enter to
state p. For q∈Q, σ (q) indicates the degree to which q is an initial state, and η(q)
indicates the degree to which q is a final state.

(1))()(:ˆ QxQ ℑ→∑ℑμ

(2))()(:ˆ QQ ℑ→ℑεμ is the fuzzy state transition function by empty string. Given a

fuzzy state TVV(Q)V εε μμ o=ℑ∈)(ˆ , , where T
εμ is the T-transitive closure of

εμ .

(3))()(: ** QxQ ℑ→∑ℑμ is the extended transition function for the fuzzy finite state

automaton with ε-moves. It is defined as follows:
 a))(V ,)(ˆ),(* QVVV T ℑ∈∀== εε μμεμ o

b) ∑∈∑∈ℑ∈∀== x and ,),(V ,])[),(())),,((ˆ(ˆ),(*T*** αμμαμαμμμαμ εε QxVxVxV oo

The language accepted by FAε, denoted L(FAε), is the fuzzy set on Σ* such that

() () Σ∈∀= ∈ αηασμαε ,)())(,(max)(FAL *
Qq qq o .

Two tags co-occur if both of them are used by a user to annotate a certain resource.
Given a folksonomy F=(U,R,T,fa:UxRxTx…xT), we can define a co-occurrence graph
as a weighted undirected graph whose set of vertices is the set T of tags. Two tags t1
and t2 are connected by an edge, if there exists at least one annotation with a fa
relation corresponding to user u, resource r, containing both tags. The weight of an
edge w(t1,t2) is determined by the number of co-ocurrences of the two tags connected
(t1 and t2). According to co-occurrences, each tag t can be encoded as a weights vector
vt∈RT where each position is associated to a tag t’ and whose value is determined by
the weight of the co-occurrences between both tags (t and t’): vt,t’ = w(t, t’) ∀ t ≠ t’ ∈
T, where vtt = 0. This encoding allows measuring the semantic similarity between to

 A Tag Clustering Method to Deal with Syntactic Variations 437

tags using the cosine measure. Given two tags t1 y t2 represented by v1,v2 ∈ RT, their
cosine similarity is defined as:

()
21

21
2121),(cos:,

vv

vv
vvttSimilarity

⋅
⋅== (1)

When comparing two tags encoded following their co-occurrences vectors, the
measure provided supplies values in the closed interval [0,1] representing the existing
angle between both vectors (v1 and v2). This measure is independent of the tag length,
and its value is 0 whenever both vectors are orthogonal and 1 when both vectors have
the same direction.

In [15] we proposed a method that allowed the classification of tags (containing
syntactic variations) based on a discriminator which computed similarity measures
among a candidate tag and a set of pattern tags contained in a dictionary. The main
drawback of similarity measures based on dictionary comparisons is their poor
performance when considering short length chains. The proposed fuzzy similarity
based on fuzzy automata with ε-moves FAε provides low recognition rates whenever
the tag lengths are lower or equal than three symbols. In a folksonomy, a syntactic
variation in a short length tag (e.g.: cut is transformed in cat) can imply a great impact
in the meaning represented by this tag. In order to deal with syntactic variation of tags
grant an adequate clustering, we propose the use of the cosine measure to increase the
reliability of the fuzzy similarity when dealing with short length tags. The main
problem is how to identify if a tag is a syntactic variation of a pre-existing tag or not.
The cosine measure allows identifying if a candidate tag is semantically similar to a
pattern tag. Cosine measure allows discriminating a great number of false positives
that fuzzy similarity measures can introduce when dealing with short length tags.

In such way, we propose to assist the discriminator with the cosine relatedness
similarity measure between tags. Figure 1 describes the process followed by a new
candidate tag that is introduced in the system for the first time. The discriminator
computes the fuzzy syntactic similarity and the cosine measure among the observed
tag and the set of existing tags stored in a dictionary. The occurrence of a new tag not
included in the dictionary implies a clustering process. If the discriminator identifies

Fig. 1. Syntactic tag variation discrimination, flow diagram

438 J.J. Astrain et al.

the tag as a syntactic variation of an existing tag, it assigns this new tag to the cluster
whose cluster-head is the pattern tag with the higher similarity value (pattern).
According to the tag length, the discriminator uses the fuzzy similarity or the fuzzy &
cosine similarities. Thresholds Th1, Th2 and Th3 represent the tag length threshold, the
fuzzy similarity threshold and the cosine threshold, respectively. Whenever the tag
length is greater than Th1, the discriminator uses the fuzzy similarity measure for the
tag clustering process. In other case, the cosine measure is also considered by the
discriminator in conjunction with the fuzzy similarity measure. If both, fuzzy and
cosine measures provided values greater than Th1 and Th2 respectively, then the
discriminator identifies the tag as a variation of a certain pattern tag, and performs the
tag clustering according to this result. When fuzzy and cosine measures do not agree
(values lower than thresholds) the discriminator includes the tag in the dictionary.

3 Experimental Results

In order to evaluate our proposal, we have collected data from the social web
del.icio.us during the first weak of the year 20091, collecting 2,296,300 annotations.
Each annotation consists on a tag assigned by a user to a resource, on a given date.
We have obtained the 1,000 tags more widely used among the set of annotations.
Although these tags only are the 0.64% of the total set of tags (a very small sample
size), they represent: (i) the 66.92% of the total set of annotations, (ii) the 78.24% of
the set of resources and (iii) the 87.85% of the total sets of users. We have analyzed
one by one the 1,000 tags (with fuzzy similarity and cosine measures) adding them to
the dictionary (initially empty) when the discriminator identifies them as new tags,
and clustering them when the discriminator identifies them as syntactic variations of
existing ones. A first experiment focuses on the selection of the adequate threshold
values for the hybrid method (fuzzy and cosine). A second experiment focuses on the
hybrid method (fuzzy similarity and cosine measures) validation. Figure 2 represents
the tag length distribution for the initial set and for the subset of 1,000 annotations
more frequently used, respectively. The rate of occurrences of small length tags
(lower or equal than five symbols) is near a 15% for the initial set of tags, and
increases to 35% when considering more frequently used subset.

The fuzzy similarity measure provides good clustering rates of tag including
syntactic variations [15]. Considering the related set of 1,000 annotations, the fuzzy
similarity measure provides a correct classified rate (OK) of 91.4% for a threshold
value of 0.0003. To improve this rate, mainly for short length tags, we analyze the
threshold values concerning the cosine measure. Figure 3 (left) shows the correct
clustering rate obtained for different threshold values. Better results are obtained for a
threshold of 0.7, obtaining a correct clustering rate of 95.5%. As Figure 2 (right)
shows, the hybrid method improves the results provided by the fuzzy similarity even
if the cosine threshold is not selected properly. The threshold considered by the
hybrid method (see Figure 4) determines the weight assigned by the hybrid method to
the fuzzy similarity according to the length of the tag considered. The goal of the
hybrid method is to improve the correct clustering rate provided by the fuzzy

1 http://www.eslomas.com/index.php/publicaciones/
 tagsvariationscombinedmethod

 A Tag Clustering Method to Deal with Syntactic Variations 439

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49Rest

Tag length

O
cc

u
rr

en
ce

s
(%

)

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tag length

O
cc

u
rr

en
ce

 r
at

e
(%

)

Fig. 2. Tag length distribution for the initial (left) and experimental (right) sets respectively

91,0%

91,5%

92,0%

92,5%

93,0%

93,5%

94,0%

94,5%

95,0%

95,5%

96,0%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Cosine threshold

C
o

rr
ec

t
cl

u
st

er
in

g
 -

O
K

-
(%

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Threshold

C
o

rr
ec

t
cl

u
st

er
in

g
 (
%

)

Hybrid method Cosine measure Fuzzy similarity

Fig. 3. Threshold selection for the cosine measure (left) and correct clustering rates (right)

91,0%

91,5%

92,0%

92,5%

93,0%

93,5%

94,0%

94,5%

95,0%

95,5%

96,0%

0 2 4 6 8 10 12 14 16 18 20

Tag length

C
o

rr
ec

t
cl

u
st

er
in

g
 (

%
)

Fig. 4. Hybrid method threshold referred to the tag lengths

similarity when dealing with short tag length. The 91.4% of recognition rate provided
by fuzzy similarity increases notably when dealing with tag lengths in the interval
[3,10]. Tags with lengths lower than three symbols still provide worse results. A
syntactic variation of a symbol often implies a semantic change.

In order to validate the hybrid method, we consider thresholds of 0.0003 and 0.7
for the fuzzy similarity and cosine measures, respectively. These values have been
obtained experimentally as described above. In the same way, the threshold value
fixed for the hybrid method is five, in order to improve the clustering of tags with
lengths of three, four and five symbols. Figure 5 shows the tag clustering results
obtained for the experimental subset of 1,000 annotations. Label OK represents the

440 J.J. Astrain et al.

0

20

40

60

80

100

120

140

160

N
u

m
b

er
 o

f
o

cc
u

rr
en

ce
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tag length

OK NOK

0

20

40

60

80

100

120

140

160

N
u

m
b

er
 o

f
o

cc
u

rr
en

ce
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Tag length

OK NOK

Fig. 5. Tag clustering results provided by the hybrid method for the experimental subset of
1,000 annotations

number of tags correctly grouped using the hybrid method (see Section 2). Label
NOK represents the number of misclassified tags. The correct clustering rate (OK) has
been obtained by comparing carefully one to one all tags. The reduced subset of tags
(a thousand) makes possible this comparison. Figure 5 (left) shows the results
obtained when only considering the fuzzy similarity measure, and (right) shows the
results obtained when considering the hybrid method. The hybrid method improves
notably the clustering rates when considering tag lengths between three and five.

4 Conclusions

In this work, we propose a hybrid method to cluster tags using a fuzzy similarity and a
cosine measures. The fuzzy similarity discovers syntactic variations of tags allowing
the clustering of tags. The cosine measure allows improving the clustering process
when dealing with short length tags. A syntactic variation in a short length tag often
implies a change in the meaning of the tag, and the cosine measure allows discovering
if that occurs. A high cosine similarity value in a short length tag indicates that this
tag is a syntactic variation of an existing one, while a low cosine value indicates that
this tag must be considered as a new tag. We tune the threshold values and analyze
the clustering rates obtaining that the hybrid method improves the tag clustering
process when considering tag lengths lower or equal than five symbols.

Acknowledgements

Research partially supported by the Spanish Research Council under research grants
TIN2006-14738-C02-02 and TIN2008-03687.

References

1. Echarte, F., Astrain, J.J., Córdoba, A., Villadangos, J.: Ontology of Folksonomy: A New
Modeling Method. In: Semantic Authoring, Annotation and Knowledge Markup, Whistler,
British Columbia, Canada (2007)

 A Tag Clustering Method to Deal with Syntactic Variations 441

2. Mathes, A.: Folksonomies - Cooperative Classification and Communication Throught
Shared Metadata. Computer Mediated Communication (2004)

3. Guy, M., Tonkin, E.: Folksonomies - Tidying up Tags? DLib Magazine 12(1) (2006)
4. Kaser, O., Lemire, D.: TagCloud Drawing: Algorithms for Cloud Visualization. In: Work.

Taggings and Metadata for Social Information Organization, Banff, Alberta, Canada
(2007)

5. Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual information
retrieval interfaces. In: International Conference on Multidisciplinary Information Sciences
and Technologies, Mérida, Spain (2006)

6. Heymann, P., García-Molina, H., Collaborative Creation of Communal Hierarchical,
Taxonomies in Social Tagging Systems. Stanford Info. Lab. Tech. Report 2006-10 (2006)

7. Zhou, M., Bao, S., Wu, X., Yu, Y.: An Unsupervised Model for Exploring Hierarchical
Semantics from Social Annotations. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 680–693.
Springer, Heidelberg (2007)

8. Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic Grounding of Tag Relatedness in
Social Bookmarking Systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631.
Springer, Heidelberg (2008)

9. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the Semantic Web: Collaborative Tag
Suggestions. In: Workshop on Collaborative Web tagging, Edinburgh, Scotland (2006)

10. Passant, A.: Using Ontologies to Strengthen Folksonomies and Enrich Information
Retrieval in Weblogs: Theoretical background and corporate use-case. In: International
Conference on Weblogs and Social Media, Boulder, USA (2007)

11. Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

12. Shepitsen, A., Gemmel, J., Mobasher, B., Burke, R.: Personalized Recommendation in
Social Tagging Systems Using Hierarchical Clustering. In: 2nd ACM Conference on
Recommender Systems, Lausanne, Switzerland, pp. 259–266 (2008)

13. Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer,
Heidelberg (2007)

14. Kim, H.L., Scerri, S., Breslin, J.G., Decker, S., Kim, H.G.: The State of the Art in Tag
Ontologies: A Semantic Model for Tagging and Folksonomies. In: 8th Int. Conference on
Dublin Core and Metadata Applications, Berlin, Germany, pp. 128–137 (2008)

15. Echarte, F., Astrain, J.J., Córdoba, A., Villadangos, J.: Improving Folksonomies Quality
by Syntactic Tag Variations Grouping. In: 24th Annual ACM Symposium on Applied
Computing, Honolulu, USA, vol. 2, pp. 2016–2020 (2009)

16. Navarro, G.: A Guided Tour to Approximate String Matching. ACM Computing
Surveys 33(1), 31–88 (2001)

17. Echarte, F., Astrain, J.J., Córdoba, A., Villadangos, J.: Pattern Matching Techniques to
Identify Syntactic Variations of Tags in Folksonomies. In: Lytras, M.D., Carroll, J.M.,
Damiani, E., Tennyson, R.D. (eds.) WSKS 2008. LNCS (LNAI), vol. 5288, pp. 557–564.
Springer, Heidelberg (2008)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 442 – 452, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Relating RSS News/Items

Fekade Getahun, Joe Tekli, Richard Chbeir, Marco Viviani, and Kokou Yetongnon

Laboratoire Electronique, Informatique et Image
(LE2I) – UMR-CNRS Université de Bourgogne – Sciences et Techniques
Mirande, Aile de l’Ingénieur, 9 av. Savary – 21078 Dijon Cedex, France

{fekade-getahun.taddesse,joe.tekli,rchbeir,marco.viviani,
kokou}@u-bourgogne.fr

Abstract. Merging related RSS news (coming from one or different sources) is
beneficial for end-users with different backgrounds (journalists, economists,
etc.), particularly those accessing similar information. In this paper, we provide
a practical approach to both: measure the relatedness, and identify relationships
between RSS elements. Our approach is based on the concepts of semantic
neighborhood and vector space model, and considers the content and structure
of RSS news items.

Keywords: RSS Relatedness, Similarity, Relationships, Neighbourhood.

1 Introduction

Really Simple Syndication (RSS) [16] is an XML-based family of web feed formats,
proposed to facilitate the aggregation of information from multiple web sources.
Merging related RSS news items would allow clients to efficiently access content
originating from different providers, rather than roaming a set of news providers and
often accessing related or identical news more than once (as existing RSS
aggregators1 do not provide facilities for identifying and handling such items).

In this work, we address semantic relatedness2 [2] between RSS elements/items
(labels and contents) and consecutively element semantic relationships with respect to
(w.r.t.) the meaning of terms and not only their syntactic properties. To motivate our
work, let us consider Figure 1 and Figure 2 showing a list of news extracted from
CNN and BBC’s RSS feeds. Identifying related news would enable the user to more
easily and efficiently acquire and/or merge information. XML news feeds (e.g., RSS
items) can be related in different manners:

• A news might be totally included in another news (inclusion).
Example 1. The title content of CNN1 “U.N. chief launches $613M Gaza aid
appeal” includes the title content of BBC1 “UN launches $613m appeal for Gaza”3
(cf. Figures 1 and 2).

1 Newsgator, google-reader, etc., allows search, filter or display news in RSS format.
2 Semantic relatedness is a more general concept than similarity. Dissimilar entities may also be

semantically related by lexical relations such as meronymy and antonymy.
3 After a pre-process of stop word removal, stemming, ignoring non textual values and

semantic analysis.

 Relating RSS News/Items 443

• Two news may refer to similar and related concepts (intersection).
Example 2. The description content of CNN2 “Ford Motor reported that its ongoing
losses soared ….” and description content of BBC2 “US carmaker Ford reports the
biggest full-year loss in its history” are related and very similar, they share some
words/expressions (‘Ford’, ‘report’, ‘loss’, ‘US’) and semantically related concepts
(‘fourth quarter’, ‘year’), (‘biggest’, ‘soar’), (‘reiterate’, ‘say’), (‘federal bailout’),
and (‘government loan’).

• News might be opposite but refer to the same issue (oppositeness).
Example 3. “The international youth forum cancel call for stop-war demonstration
due to security reason” (description of CNN3) and “International youth forum call
demonstration as part of stop the war” (description of BBC3) can be considered as
opposite because of the use of antonym expressions ‘call’ and ‘cancel call’.

<item><title>U.N. chief launches $613M Gaza aid appeal</title><description> United
Nations Secretary-General Ban Ki-moon on Thursday launched a humanitarian appeal to
provide emergency aid to the people of Gaza in the aftermath of Israel's military offensive in
the region.</description></item>

CNN1

<item><title>Ford reports $5.9 billion loss in the fourth-quarter </title><description>Ford
Motor reported that its ongoing losses soared in the fourth quarter, but the company
reiterated it still does not need the federal bailout already received by its two U.S.
rivals.</description> </item>

CNN2

<description>The international youth forum cancels the call for stop-war demonstration due
to security reason</description></item>

CNN3

Fig. 1. RSS news extracted from CNN

<item><title> UN launches $613m appeal for Gaza </title><description> The UN will
launch an appeal for $613m to help people affected by Israel's military offensive in Gaza, the
body's top official says </description></item>

BBC1

<item><title> Ford reports record yearly loss </title><description> US carmaker Ford reports
the biggest full-year loss in its history, but says it still does not need government
loans.</description></item>

BBC2

<item><title>Youth’s form call for demonstration</title><description> International youth
forum call demonstration as part of stop the war </description></item>

BBC3

Fig. 2. RSS news extracted from BBC

Identifying these relationships is beneficial while defining merging rules and
making merging decisions. For instance, (i) merging identical or including news
might be reduced to keeping the including news (keeping titlecnn1 in example 1), (ii)
merging intersecting news might refer to keeping the common parts and adding the
differences (titlecnn2 and titlebbc2) (iii) merging opposite news might be done by
keeping both news (i.e. merging CNN3 and BBC3). Hence, the main objective of this
study is to put forward a specialized XML relatedness measure, dedicated to the
comparison of RSS items, able to identify (i) RSS items that are related enough and
(ii) the relationship that can occur between two RSS news items (i.e., disjointness,
intersection, inclusion, antonomy and equality).

444 F. Getahun et al.

The remainder of this paper is organized as follows. In Section 2, we discuss
background and related works. Section 3 defines basic concepts to be used in our
measure. In Section 4, we detail how the relatedness and relationships between text
values are computed. Section 5 details our RSS relatedness and relationship measures.
Section 6 presents experimental result. Finally, Section 7 concludes this study and
draws some future research directions.

2 Related Work

Identifying correspondence or matching nodes in hieratically organized data such as
XML is a pre-condition in different scenarios such as merging [9]. A lot of research
has been done to determine XML document similarity, which we roughly categorize
into structure-based, content and hybrid approaches. Most structure-based similarity
approaches use tree edit distance [1]. Chawathe [3], Nireman and Jagadish [13]
consider the minimum number of edit operations: insert node (insert tree), delete node
(delete tree) and update node operations to transform one XML tree into another.
Also, the use of Fast Fourier Transform [4] has been proposed to compute similarity
between XML documents. With content based XML similarity measures [5],
similarity is computed based on element contents, disregarding (to a certain extent)
the document tags and structural information. Semantic similarity between concepts is
estimated either by the distance between nodes [18] or the content of the most specific
common ancestor of those nodes involved in the comparison [11] and is evaluated
according to some predefined knowledge base(s). In Information Retrieval (IR) [12],
the content of a document is commonly modeled with sets/bags words where each
word (and subsumed word(s)) is given a weight computed with Term Frequency (TF),
Document Frequency (DT), Inverse Document Frequency (IDF), and the combination
TF-IDF. In [7], the authors used a Vector Space having TF-IDF as a weight factor in
XML retrieval. More recently, there are hybrid approaches that attempted to address
XML comparison. In a recent work [17], the authors combine an IR semantic
similarity technique with a structural-based algorithm based on tree edit distance.
However, semantic similarity evaluation is limited only to tag names. In [8], xSim
computes the matching between XML documents as an average of the elements’
matching similarity value. Similarity between two elements is computed as the
average of textual content, element name and path (i.e. sequence of node names
starting from the root) similarity values without considering semantics.

The relationships between objects such as equality, inclusion, intersection,
disjointness, etc. have been used in different applications such as spatial data retrieval,
access control and text mining. In [10], Ho-Lam et al. stress on the importance of
considering relationships (equality, overlap, disjointness and containment or
inclusion) between data sources while merging XML documents, without however
addressing the issue. Ian Gracia et al. [5] used a correlation based approach (applied
only to content) to identify relationship among RSS news articles: redundant (equal
and inclusion), non-related (disjoint) and related (intersection) relationships. In paper
work, we identify equality, inclusion, disjoint, intersection and opposite relationships
in addition to measuring relatedness while considering tag name similarity.

 Relating RSS News/Items 445

3 Preliminaries

An RSS4 document is a well-formed XML document represented as a rooted ordered
labeled tree following the Document Object Model (DOM) [19]. Each node or
element of an RSS Tree is a pair having e = η,ς

where e.η is the element name and

e.η its content. The content of an element can be another element (complex element)
or a text value (simple element). Notice that, different versions of RSS items
consistently follow the same overall structure with minor additions and removals (e.g.
source is part of RSS 0.9x and guid in RSS 2.0).

3.1 Knowledge Base

A Knowledge Base [15] (thesauri, taxonomy and/or ontology) provides a framework
for organizing entities (words/expressions, generic concepts, web pages, etc.) into a
semantic space. In our study, it is used to assist relatedness and is formally defined as
KB = (C, E, R, f) where C is the set of concepts (synonym sets of words/expressions
as in WordNet [14]), E is the set of edges connecting the concepts, E C C⊆ × , R is the
set of semantic relations, { , , , , , }R = ≡ << >> Ωp f 5, f is a function designating the nature

of edges in E, REf →: .

We introduced two types of knowledge bases to assist simple element relatedness:
(i) value-based: to describe the textual content of RSS elements, and (ii) label-based:
to organize RSS labels. Note that one single knowledge base could have been used.
However, since XML document labels in general, and RSS labels in particular,
depend on the underlying document schema, an independent label-based knowledge
base, provided by the user/administrator, seems more appropriate than a more generic
one such as WordNet (treating generic textual content).

3.2 Neighborhood

In our approach, the neighborhood of a concept Ci underlines the set of concepts {Cj},
in the knowledge base, that are subsumed by Ci w.r.t. a given semantic relation. The
concept of neighborhood, introduced in [6], is exploited in identifying the
relationships between text (i.e., RSS element labels and/or textual contents) and
consequently RSS elements/items.

Definition 1 [Semantic Neighborhood]: The semantic neighborhood of a concept Ci
(()R

KB iN C) is defined as the set of concepts {Cj} (and consequently the set of

words/expressions subsumed by the concepts) in a given knowledge base KB, related
with Ci via the hyponymy (p) or meronymy (<<) semantic relations, directly or via
transitivity.

4 RSS refers to one of the following standards: Rich Site Summary (RSS 0.91, RSS 0.92), RDF

Site Summary (RSS 0.9 and 1.0), and Really Simple Syndication (RSS 2.0).
5 The symbols in R underline respectively the synonym (≡), hyponym (Is-A or p), hypernym

(Has-A or f), meronym (Part-Of or <<), holonym (Has-Part or >>) and Antonym (Ω)
relations, as defined in [6].

446 F. Getahun et al.

a. Two sample value KBs with multiple root concepts
extracted from WordNet

b. Sample RSS labels

Fig. 3. Sample value and label knowledge bases

Definition 2 [Global Semantic Neighborhood]: The global semantic neighborhood
of a concept Ci (()KB iN C) is the union of each semantic neighborhood w.r.t. all

synonymy (≡), hyponymy (p) and meronymy (<<) relations altogether.

Definition 3 [Antonym Neighborhood]: The antonym neighborhood of a concept Ci

(()iK B CN Ω) is defined as the set of concepts {Ci}, in a given knowledge base KB,

related with Ci via the antonymy relation (Ω), directly or transitively via
synonymy(≡), hyponymy (p) or hypernym (f).

4 Text Relatedness

4.1 Text Representation

A text is represented following the vector space model used in information retrieval
[12]. Each text ti is represented in an n-dimensional vector space such as: [〈C1, w1〉, …,
〈Cn, wn〉] where Ci is a concept set, wi is its weight and n is the number of distinct
concepts in both texts. The concept set of text t, denoted as CS, is a set of concepts
{C1, …, Cm}, where each Ci (obtained after several textual pre-processing operations
such as stop-words6 removal, stemming7, and mapping to knowledge base) represents
the meaning of a group of terms in {k1, …, kn}, where m is the total number of
concepts describing t. The weight of a concept Ci reflects its existence in vector Vi (1 if
it exists) or the maximum enclosure similarity it has with a concept Cj in Vj.

| () () |
(,)

| () |

KB i KB j

i j

KB j

N C N C
Enclosure_sim C C

N C

∩
= (1)

Enclosure_sim(Ci, Cj) takes into account the global semantic neighborhood of each
concept. It is asymmetric, allows the detection of the various kinds of relationships
between RSS items, and returns a value equal to 1 if Ci includes Cj.

6 Stop-words identify words/expressions which are filtered out (e.g., yet, an, but, the, …)
7 Stemming is the process for reducing inflected (or sometimes derived) words to their stem,

i.e., base.

Title

Category

PubDate Link, Guide,
Source

Description

Item

Emergency,
Pinch, Exigency

Ease, relief

Organization

Ban ki-moon,
Kofi Annan

Chief, top official,
Mediator

Difficulty

State

Crisis Aid, help

Administrative unit

Concept (Synonym Set)

Meronym/Holonym relations (following direction)
Antonymy ×

×

Hyponym/Hypernym relations (following direction)

Loan

Bailout

Government

Federal Secretariat
UN

 Relating RSS News/Items 447

Example 4. Consider the description element of RSS items CNN2 and BBC2 (Figures 1,
2). The partial corresponding vector representations V1 and V2 are shown in Figure 4.

 Ford report loss … Federal Bailout Big say government loan
V1 1 1 1 … 1 1 1 1 1 1
V2 1 1 1 … 0.67 0.86 1 1 1 1

Fig. 4. Vectors obtained when comparing title texts of RSS items CNN2 and BBC2

For each concept C in V1 and V2 its weight is 1 if it exists, otherwise it is updated with
the maximum semantic enclosure similarity value. For instance, following the WordNet
extract in Figure 3a, the concept ‘Government’ is included in the global semantic
neighborhood of ‘Federal’, i.e., ()KBgovernment N federal∈ . Hence, Enclosure_sim(federal,

government) = 1 but in V2, Enclosure_sim(government , federal) = 0.67. Likewise,
‘loan’ is included in the global semantic neighborhood of ‘bailout’ i.e.
Enclosure_sim(loan, bailout) = 1 and Enclosure_sim(bailout, loan) = 0.86.

4.2 Text Relatedness and Relations

Given two texts t1 and t2, the Textual Relatedness (TR) algorithm returns a pair
containing the semantic relatedness SemRel value and the relationship between the
texts being compared. The SemRel value is computed using a vector based similarity
method (e.g. cosine [12]) after building the corresponding text vector space. SemRel is
consequently exploited in identifying basic relations (i.e., disjointness, intersection
and equality) between texts. Our method for identifying basic relationships is based
on a fuzzy logic model using pre-defined/pre-computed similarity thresholds TDisjointness
and TEquality, as shown in Figure 5.

Fig. 5. Basic text relationships and corresponding thresholds

Thus, we identify the relationships between two texts t1 and t2 as follows:

• Relation(t1, t2) = Disjointness, i.e., 21 tt >< , if there is a minimum relatedness

between t1 and t2 i.e., SemRel(t1, t2) ≤ TDisjointness.
• Relation(t1, t2) = Intersection, i.e., 21 tt ∩ , if t1 and t2 share some semantic

relatedness, i.e., TDisjointness <SemRel(t1, t2) < TEquality.
• Relation(t1, t2) = Equality, i.e., 21 tt = , if t1 and t2 share a maximum amount of

relatedness, i.e., SemRel(t1, t2) ≥ TEquality.

More intricate relations such as inclusion and oppositeness are identified as follows.

• Relation(t1, t2) = Inclusion, i.e., 21 tt ⊃ , if the product of the weights of vector V1

(describing t1) is equal to 1, i.e., 1)(
1

=Π pV w . The weight product of V1 underlines

whether or not t1 encompasses all concepts in t2.

TDistjointness TEquality 1SemRel =

Distjointness Intersection Equality

0

448 F. Getahun et al.

• Relation(t1, t2) = Oppositeness, i.e.,
1 2t tΩ , if they intersect (21 tt ∩) having at

least one concept Ci of CS1 included in the antonym neighborhood of a concept Ck
in CS2 or vice-versa, and such as neither CS1 nor CS2 encompass themselves
concepts that are antonym to Ci and Ck respectively (we call this last condition
inner antonymy), considering the antonym neighborhood.
Example 5. Considering Example 2, (t1 of CNN2 and t2 of BBC2), and thresholds
TDisjointness = 0.1 and TEquality = 0.9, SemRel(t1, t2) = 0.86 and Relation(t1, t2) =
Intersection as no concept of t1 is included in antonymy neighborhood of concept
of t2 and vice-versa. Hence, TR(t1,t2) = <0.86, Intersection>.
Example 6. Considering Example 3, (t1 of CNN3 and t3 of BBC3), and thresholds
TDisjointness = 0.1 and TEquality = 0.9, SemRel(t1, t2) = 0.612 and t1∩t2 (intersection)
and as ‘Call’ and ‘Cancel call’ are related with antonymy. Relation(t1, t2) =
Oppositeness. Hence TR(t1,t3) = <0.86, Oppositeness>.

5 RSS Relatedness and Relations

Given two simple elements e1, and e2, the Element Relatedness (ER) algorithm returns
a pair quantifying the semantic relatedness SemRel value and Relation based on
corresponding TR label and content values. SemRel quantifies the relatedness value
between elements, as the weighted sum value of label and value relatedness such as:

(,)1 2SemRel e e w LB w VRLabel SemRel Value SemRel= × + × (2)

where wLabel + wValue = 1 and (wLabel, wValue) ≥ 0.
Relation exploits a rule-based method for combining label and value relationships

as follows:

• Elements e1 and e2 are disjoint if either their labels or values are disjoint.
• Element e1 includes e2, if e1.η includes e2.η and e1.ς includes e2.ς.
• Two elements e1 and e2 intersect if either their labels or values intersect.
• Two elements e1 and e2 are equal if both their labels and values are equal.
• Two elements e1 and e2 are opposite if both their contents are opposite. RSS label

oppositeness is not relevant in identifying element oppositeness, especially w.r.t.
RSS merging (cf. Example 3 and Figure 3b).

Given two RSS items I1 and I2, each made of a bunch of elements, the Item
Relatedness (IR) Algorithm returns a pair containing SemRel and Relation. The
SemRel is computed as the average of the relatedness values between corresponding
element sets I1 and I2 as:

(,)

|

SemRel e ei j
SemRel(i , i) = 1 2 | i | | i1 2×

 ,1 2e I e Ii j∀ ∈ ∀ ∈ (3)

The Relation between I1 and I2 is identified by combining sub-element relation-
ships using a rule-based method as follows:

 Relating RSS News/Items 449

• Items I1 and I2 are disjoint if all elements {ei} and {ej} are disjoint (elements are
disjoint if there is no relatedness whatsoever between them, i.e., SemRel(I1, I2) = 0).

• Item I1 includes I2, if all elements in {ei} include all those in {ej}.

• Two items I1 and I2 intersect if at least two of their elements intersect.

• Two items I1 and I2 are equal if all their elements in {ei} equal to all those in {ej}.

• Two items I1 and I2 are opposite if at least two of their respective elements are
opposite.

Example 7. Let us consider RSS items CNN2 and BBC2 (Figures 1 and 2).
Corresponding item relatedness is computed as follows. Notice that weight value
of wlabel = 0.5 and wvalue = 0.5 and Thresholds TDisjointness = 0.2 and TEquality = 0.8 are
used. Below, simple element relatedness values and relationship values are given.

ER titleBBC2 descriptionBBC2

titleCNN2 <0.864, Equal> <0.551, Intersect>
descriptionCNN2 <0.555, Intersect> <0.799, Intersect>

Using (c.f. 3) SemRel(CNN2, BBC2) = (0.864+ 0.551+ 0. 555+ 0.799) / 2 × 2 = 0.692,
where |I1| and |I2| are equal to 2. Relation(CNN2, BBC2) = Intersection since a number
of their elements intersect, i.e., Relation(titleCNN2, titleBBC2) = Relation(descriptionCNN2,
descriptionBBC2) = Intersection.

6 Experiments

To validate our approach, we have developed a C# prototype entitled R3 (RSS
Relatedness and Relationship) encompassing: (a) a KB component that stores value
and label knowledge bases (b) RSS input component that allow users to register
existing RSS feeds addresses and alos accepts parameters to be used in generating
synthetic news. We have conducted a set of experiments in order to conform (a) the
computational complexity and (b) the relevance of our relatedness measure. All the
experiments were carried out on Intel Core Centrino Duo Processor machine (with
processing speed of 1.73.0 GHz, 1GB of RAM).

6.1 Timing Analysis

Computational complexity of our item relatedness algorithm is polynomial and
depends on the number of concept sets in input texts t1 and t2 (i.e. n and m), and the
value knowledge base size (nc - number of concepts and d - depth). Figure 6.a shows
the timing result without considering knowledge base information while varying the
size of the input texts. Timing increases in a liner fashion w.r.t. the number of
concepts. Figure 6.b presents timing result considering fixed knowledge information
(100 concepts within a depth of 8). The time needed to compute the relatedness
between items increases drastically and in a quadratic fashion.

450 F. Getahun et al.

Fig. 6. Timing analysis text concept set in t1, t2 (n, m)

6.2 Relevance of Measure

In this set of tests, we used our relationship-aware8 level based single link clustering
algorithm (adapted from classical clustering approaches [7]; not detailed in this paper
due to space limitation). The single link clusters at a clustering level li (between 1 and
0) produces all items Ii with pair-wise similarity values greater than or equal to li.
Notice that clustering at level nearer to zero produces very big and less relevant
grouping hence should be avoided. We used the popular information retrieval metrics
precision (PR) and recall (R) [12] and an f-score value to check the quality of
discovered cluster.

Fig. 7. f-score on real data set Fig. 8. f-score on synthetic dataset

Two data sets were used to conduct our experiments:

• Real data set: we used 158 RSS news items extracted from CNN, BBC,
USAToday, L.A. Times and Reuters, clustered manually into 6 groups: US
Presidential elections 08, Middle-east, Mumbai-attacks, space-technology, oil, and
football. Figure 7 shows the f-score resulting graph. The average f-value computed
over the entire clustering level conforms that our semantic relatedness measure
provides relevant clustering results (clusters closer to the predefined ones,
particularly between levels 1 and 0.37) compared to xSim and TF-IDF.

8 Classical clustering algorithms, do not consider the relationship between items, so they may

produce clusters having highly related members with lots of intersections which are less
relevant during merging. As a result, items related with inclusion and having less relatedness
values will belong to different clusters.

a. Without semantic knowledgebase b. With fixed semantic (d=8,nc = 100)

 Relating RSS News/Items 451

• Synthetic data set: we generated 100 synthetic RSS news items using our own
random RSS item generator. The generated news belong to 10 disjoint clusters.
Each cluster has 10 members and 9 of them are related via the inclusion
relationship. Figure 8 shows the f-score graph corresponding to our clustering
experiments. Our relationship aware clustering algorithm groups all items related
with inclusion in the appropriate cluster (between clustering levels 1 and 0.4,
achieving a maximum f-score=1), whereas xSim and TF-IDF generate incomplete
clusters, disregarding the inclusion relationship.

7 Conclusions and Perspectives

In this paper, we have addressed the issue of measuring relatedness between RSS items.
We have studied and provided a technique for RSS item relatedness computation, taking
into account the different kinds of relationships that can occur among texts, elements
and items. We have developed a prototype validating the complexity and effectiveness
of our relatedness measure. Clustering experiments, conducted on both real and
synthetic data show that our measure generates more relevant clusters compared to xSim
and TF-IDF. In addition, we have shown the capability of our measure in identifying
relationships between items. Currently, we are working on RSS merging, developing
relation-aware merging rules. The next step would be extending our work to address
XML multimedia merging (SVG, MPEG-7, etc.).

References

[1] Bille, P.: A survey on tree edit distance and related problems. Theoretical CS 337(1-3),
217–239 (2005)

[2] Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic
relatedness. Computational Linguistics 32(1), 13–47 (2006)

[3] Chawathe, S.S.: Comparing hierarchical data in external memory. In: VLDB 1999, pp.
90–101. Morgan Kaufmann Publishers Inc., San Francisco (1999)

[4] Flesca, S., Manco, G., Masciari, E., Pontieri, L.: Fast detection of xml structural
similarity. IEEE Transactions on Knowledge and Data Engineering 17(2), 160–175
(2005)

[5] Garcia, I., Ng, Y.: Eliminating Redundant and Less-Informative RSS News Articles
Based on Word Similarity and a Fuzzy Equivalence Relation. In: ICTAI 2006, pp. 465–
473 (2006)

[6] Getahun, F., Tekli, J., Atnafu, S., Chbeir, R.: Towards efficient horizontal multimedia
database fragmentation using semantic-based predicates implication. In: SBBD 2007, pp.
68–82 (2007)

[7] Grabs, T., Schek, H.-J.: Generating Vector Spaces On-the-fly for Flexible XML
Retrieval. In: ACM SIGIR Workshop on XML and Information Retrieval 2002, pp. 4–13
(2002)

[8] Kade, A.M., Heuser, C.A.: Matching XML documents in highly dynamic applications.
In: ACM symposium on Document engineering 2008, pp. 191–198 (2008)

[9] La Fontaine, R.: Merging XML files: A new approach providing intelligent merge of
XML data sets. In: Proceedings of XML, Barcelona, Spain (May 2002)

452 F. Getahun et al.

[10] Lau, H., Ng, W.: A Unifying Framework for Merging and Evaluating XML Information.
In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 81–94.
Springer, Heidelberg (2005)

[11] Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of the 15th
International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann
Publishers, San Francisco (1989)

[12] McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York
(1983)

[13] Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In:
WebDB 2002, pp. 61–66 (2002)

[14] Princeton University Cognitive Science Laboratory. WordNet: a lexical database for the
English language, http://wordnet.princeton.edu/

[15] R. Richardson and A. F. Smeaton. Using WorldNet in a knowledge-based approach to
information retrieval. Technical Report CA-0395, Dublin, Ireland (1995)

[16] RSS Advisory Board. RSS 2.0 Specification, http://www.rssboard.org/
[17] Tekli, J., Chbeir, R., Yetongnon, K.: A hybrid approach for xml similarity. SOFSEM 07:

783-795
[18] Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd

annual meeting on Association for Computational Linguistics, Morristown, NJ, USA, pp.
133–138 (1994)

[19] WWW Consortium. The Document Object Model, http://www.w3.org/DOM

A Layout-Independent Web News Article
Contents Extraction Method Based on

Relevance Analysis

Hao Han and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{han,tokuda}@tt.cs.titech.ac.jp

Abstract. The traditional Web news article contents extraction meth-
ods are time-costly and need much maintenance because they analyze
the layout of news pages to generate the wrappers manually or auto-
matically. In this paper, we propose a relevance-based analysis method
to extract the news article contents from the news pages without the
analysis of news page layouts before extraction. This method is applica-
ble to the general news pages and we give the implementations of news
extraction from different kinds of news sources.

Keywords: News Extraction, Search Engine, RSS Feeds.

1 Introduction

Nowadays, the traditional newspapers have developed significant Web presences.
We can extract and analyze the Web news articles to acquire the desired infor-
mation. Wrappers are generated based on the analysis of layout of news pages
by many traditional extraction methods. However, different news sites use the
different news page layouts, and each news site uses more than one layout. It is
costly and inefficient to analyze the news page layout of each news site for news
contents extraction.

In this paper, we propose a novel Web news article contents extraction method,
which is independent of news page layout and does not need to analyze the news
page layouts before extraction. We calculate the relevance between the news title
and each sentence to detect the news paragraphs from the full text of the news
page.We give the implementations ofnews extraction from the general news pages,
news site databases, and news aggregation sites. By the experiments, we prove that
our method runs conveniently and accurately. The organization of the rest of this
paper is as follows. In the next section we give the motivation of our research and an
overview of the related work. We explain our Web news article contents extraction
method in detail in Section 3. In Section 4, we explain the implementation of our
method and give the evaluation. Finally, we conclude our method and give the
future work in Section 5.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 453–460, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

454 H. Han and T. Tokuda

2 Motivation and Related Work

A lot of approaches have been proposed for extracting the Web news article
contents. Reis et al. calculates the edit distance between two given trees for the
automatic Web news article contents extraction [1]. Fukumoto et al. focuses on
subject shift and presents a method for extracting key paragraphs from docu-
ments that discuss the same event [2]. However, if a news site uses too many
different layouts in the news pages, the learning procedure costs too much time
and the precision becomes low. Zheng et al. represents a news page as a visual
block tree and derives a composite visual feature set by extracting a series of
visual features, then generate the wrapper for a news site by machine learning
[3]. However, it uses manually labeled data for training and the extraction re-
sult may be inaccurate if the training set is not large enough. Webstemmer [4]
is a Web crawler and HTML layout analyzer that automatically extracts main
text of a news site without having banners, advertisements and navigation links
mixed up. All the analysis can be done in a fully automatic manner with little
human intervention. However, this method runs slowly at contents parsing and
extraction, and sometimes news titles are missing.

These methods are still not widely used, mostly because of the need for high
human intervention and maintenance, or the low quality of the extraction results.
They have to analyze the news pages from target news sites before extraction.
Moreover, if the target news sites update the layout of news pages frequently and
irregularly, or the target news pages come from a large number of different news
sites, it is difficult to realize the extraction by these methods. To address these
problems, we propose a layout-independent method to realize the Web news
article contents extraction. Compared with the developed work, our method is
applicable to the general news pages, and can extract the news articles contents
from all kinds of news pages conveniently.

3 News Article Contents Extraction

We can collect the news articles from news sites, RSS feeds, search engines,
aggregation sites and others. The collected news is shown as a link to news
page, which includes the news title and URL of news page usually. As shown in
Fig. 1, we use the collected URL to get the news page and use the collected news
title to find out the news article contents from news page. Firstly, we split the
news title to get the keyword list and use them to detect the position of news
title in the news page. Then, we recognize one paragraph of news article by using
the news title position and keyword list. Finally, we find all the paragraphs of
news article contents and extract them out of the full text of the news page. We
explain our algorithm step by step in this section.

3.1 Title Keywords Acquisition

The news title is a piece of important information for the recognition of the
news article contents from the full text of news page. If we locate the position

A Layout-Independent Web News Article Contents Extraction Method 455

Fig. 1. The outline of Web news article contents extraction

of the news title in the news page correctly, the position of news article contents
would be found easily because the contents are a list of paragraphs closely below
the title usually. In addition, for a news article, the contents describe the same
topic of news title in detail, and the words constituting the title would occur
in the news article contents frequently usually. We split the collected title into
single words to make a list of keywords as follows. Firstly, we split the news
title into a word list using whitespace as the delimiter. Then, we remove the
articles, prepositions and conjunctions. Finally, we remove the characters “’s”
or “’” from the words ending with “’s” or “’”. For example, we replace “Tom’s”
with “Tom”, and replace “parents’” with “parents”.

3.2 Full Text Analysis

An HTML document may be represented as a tree structure. A sentence in a
Web page is a visible character string, which is the value of a leaf node. It is
possible for each sentence to be the title or a paragraph. We use the following
steps to analyze the full text of a news page in order to find the most possible
title and paragraphs.

1. We split each sentence into a list of words using the keywords acquisition
method described in Section 3.1.

2. We set the words list size as an attribute WordNumber, and set the occur-
rence number of the keywords ignoring case considerations within the words
list as an attribute KeyNumber of the corresponding leaf node.

3. We count up the WordNumber of the sibling nodes and set the sum as an
attribute WordNumber of their parent node.

4. We count up the KeyNumber of the sibling nodes and set the sum as an
attribute KeyNumber of their parent node.

5. We repeat the Step 3 and Step 4 until we set the attribute WordNumber
and KeyNumber for <body> as shown in Fig. 2.

456 H. Han and T. Tokuda

Fig. 2. A full text analysis example Fig. 3. A news title detection example

3.3 News Title Detection

After the full text analysis, we need to find out the real news title in news page.
Usually, the real news title in a news page is same or similar to the collected
news title. We use the following formula to calculate the similarity between each
sentence of the news page and the collected news title.

Similarity =
KeyNumber2

WordNumber × T itleKeywordNumber

Where, KeyNumber and WordNumber are the attribute value of the corre-
sponding node of each sentence respectively, and T itleKeywordNumber is the
size of keyword list of the collected news title.

We think a sentence is a possible real news title in the news page if the value
of Similarity is more than a predetermined threshold, and a node whose value
is a possible news title would be a possible title node. Fig. 3 shows a news title
detection example where the size of title keyword list is 8. Assuming that the
predetermined threshold is set to 0.6, the node A is judged as the title node.

However, the collected news title is not always same or similar to the real
news title in the corresponding news page. In some news sites, we even can find
that the collected news title is different from the real news title totally, but same
to the other sentences in the news page. Moreover, some news titles are so short
and simple that we can find two or more same or similar sentences in news pages.
Therefore, there are five different situations about the possible news title and
the real title in a news page: 1. There is no possible news title. 2. There is just
one possible news title, and it is the real news title in the news page. 3. There
is just one possible news title, but it is not the real news title in the news page.
4. There are two or more possible news titles, and one of them is the real news
title in the news page. 5. There are two or more possible news titles, but none
of them is the real news title in the news page.

A Layout-Independent Web News Article Contents Extraction Method 457

3.4 News Paragraph Recognition and News Contents Extraction

Usually, the news article contents part is a list of paragraphs immediately below
the title. It becomes easier to find the paragraphs after the real news title is
found. However, we can not make certain whether the found possible news title
is the real news title in the news page as we describe in Section 3.3. The news
paragraph recognition can be classified as the following situations.

1. There is no possible news title and the news paragraphs exist between
<body> and </body> (Fig. 4(a)).

2. There is one possible news title and the news paragraphs exist between the
end tag of possible title node and </body>. If we can not find out the news
paragraphs in this range, we would find them in the reserve range which is
between <body> and the start tag of possible title node (Fig. 4(b)).

3. There are two or more possible news titles and the news paragraphs exist
between the end tag of each possible title node and the start tag of the next
possible title node or </body>. If we can not find out the news paragraphs
in these ranges, we find them in the reserve range which is between <body>
and the start tag of the first possible title node (Fig. 4(c)).

Although each sentence of each selective range, including the link text, has
the possibility to be one of the paragraphs, most of the paragraphs are non-link
texts. We give a possibility for each non-link sentence and select one with the
highest possibility as the final most possible paragraph if the highest possibility
is more than a predetermined threshold. If the highest possibility is less than this
predetermined threshold, we would find a sentence with the highest possibility
in the reserve range and then compare these two possibilities to select one with
the higher possibility as the final most possible paragraph. We use the following
formula to calculate the possibility of each non-link sentence.

Possibility = WordSum × (KeySum + 1)

Where, WordSum is the sum of the attributes WordNumber of each sentence’s
corresponding node and its related nodes in the same selective range. KeySum
is the sum of the attributes KeyNumber of each sentence’s corresponding node

Fig. 4. Contents range and reserve range

458 H. Han and T. Tokuda

Fig. 5. A paragraph recognition example Fig. 6. A full contents extraction example

and its related nodes in the same selective range. For Node A and Node B, Node
B is a related node of Node A if Node B satisfies the following conditions.

1. Node B and Node A are sibling nodes, or their parent nodes are sibling
nodes.

2. Node B or its parent node is of one of the following nodes: �text, ,
<a>, <p>, , , <dd>, <dt>, , <h1>, <h2>, <h3>,
<h4>, .

Fig. 5 shows a paragraph recognition example. Node B, C, D and E belong
to the contents range, and finally the node B is judged as the paragraph node
where the predetermined threshold is set to 100. After the paragraph recognition,
we get a paragraph of the news article contents. Usually, the full contents of a
news article are a list of continuous paragraphs. However, there is advertisement
information such as the image advertising among the paragraphs of a news article
in some news sites. We get a list of related nodes of paragraph node, and each
one represents a paragraph of the news article contents as shown in Fig. 6. We
get the node value from each node as a paragraph. The full contents of news
article are the extracted continuous node values.

4 Implementation and Evaluation

In this section, we give the implementation of our proposed news article contents
extraction method. After we analyzed a large number of news pages from many
news sites, we set the threshold as 0.6 in Section 3.3 and 100 in Section 3.4
respectively based on the statistical results. In the following experimental results,
we prove that the thresholds are suitable for the general news pages.

Experiment 1 We extract the news from RSS feeds of 38 popular news Web
sites periodically. Since May 2007, we have collected more than 1.8 million pieces
of news articles. Our experiments were run periodically using the randomly
collected news articles. Our experimental results are listed in Table 1. Here,
Success means that our extraction method extracts the news article contents

A Layout-Independent Web News Article Contents Extraction Method 459

Table 1. Experimental results of extraction accuracy rate (long period extraction)

Period Sum Success Failure Precision
May 2007 - Aug 2007 1000 970 30 97.0%
Sep 2007 - Jan 2008 500 491 9 98.2%
Feb 2008 - May 2008 500 485 15 97.0%
Jun 2008 - Sep 2008 500 488 12 97.6%

Total 2500 2434 66 97.4%

correctly, and Failure means that our extraction method extracts nothing or
partial paragraphs or other non-news parts such as advertisements and related
stories. Although the news sites update the layout of news pages irregularly,
our news article contents extraction method works well during each period and
the precision of extraction is over 97%. The experimental results prove that our
extraction algorithm is highly accurate during a long period.

Experiment 2 We extract and analyze the topic-based Web news articles from
news site databases to observe the difference in the various topics. We select the
countries and leaders as our test topics. There are 242 countries in the world
and most of them have the leaders. We use these country names and leader
names as our search keywords. We send these keywords to site-side news search
engines one by one, and collect 121,336 news titles and page URLs of matched
news published in the past 6 years (from January 1, 2003 to December 31, 2008)
from news database of CNN. Finally, we extract the news article contents from
these news pages. We select 250 news pages randomly and check them one by one
manually. The experimental result is listed in Table 2. We find that 2 news pages
can not be obtained (the server responds the message like “page not found”).
Among the rest 248 news pages, the news article contents of 240 news pages
are extracted correctly. In the 8 extraction failures, some parts of news article
contents are not extracted. We also do the similar experiments on the other news
sites. Although the news sites updated the layout of news pages many times in the
past 6 years irregularly, our extraction method works well from our experimental
result. The experimental results prove that our extraction method is suitable for
the extraction of topic-based news articles from news site databases.

Experiment 3 We collect the news from a large-scale news sources by collecting
the news titles and URLs of news pages from news aggregation sites. We collect
one week’s news about “Asia” from Google News as our experimental data. The
total results include 1,535 news articles extracted from many different news sites.
We select 500 news pages randomly and check them one by one manually. The
experimental result is listed in Table 3. Among the 500 news pages, the news

Table 2. Experimental result of extraction
accuracy rate (news site databases)

Sum Extracted Success Failure Precision
250 248 240 8 96.8%

Table 3. Experimental result of extraction
accuracy rate (news aggregation sites)

Sum Success Failure Precision
500 483 17 96.6%

460 H. Han and T. Tokuda

article contents of 483 news pages are extracted correctly. In the 17 extraction
failures, some parts of news article contents are not extracted or other non-news
parts are extracted. Although the news pages comes from the different news sites,
our news article contents extraction method works well and the experimental
result proves that our extraction method can extract the news article contents
from news aggregation sites accurately.

We give the implementation of our proposed news article contents extrac-
tion method and the experimental results prove that our extraction algorithm
is highly accurate. However, in some news pages, a paragraph, usually the out-
line of news article, shows in different style compared to other paragraphs. This
kind of paragraph looks like a non-news part such as an advertisement in text
format, and is omitted in the extraction. Moreover, some news article contents
are too short to recognize from the news pages. For example, a news flash about
baseball game result, which contains just a short paragraph of ten words, maybe
can not be extracted correctly. Compared with other developed methods, our
extraction method has different implementations including the extraction from
crawled news pages, news search engines and news aggregation sites. The ex-
traction system is constructed easily based on our method and does not need
any maintenance over the long period extraction. We do not need to analyze the
layout of news pages since our extraction algorithm is independent of the layout
of Web pages. It does not need to reconfigure extraction even though the news
sites update the layout of news pages, and keeps a high extraction precision.

5 Conclusion

In this paper, we have presented a relevance-based analysis method to realize the
news article contents extraction without the analyzing the layout of news pages.
Our algorithm is applicable to the general news pages, and can extract the news
article paragraphs accurately. Our experimental results show that our method
works well with a high accuracy rate in different kinds of implementations. As
future work, we will modify our algorithm to improve the accuracy rate even
further, and extend its implementations to more news related applications.

References

1. de Castro Reis, D., Golgher, P.B., da Silva, A.S., Laender, A.H.F.: Automatic Web
news extraction using tree edit distance. In: The Proceedings of the 13th Interna-
tional Conference on World Wide Web (2004)

2. Fukumoto, F., Suzuki, Y.: Detecting shifts in news stories for paragraph extraction.
In: The 19th International Conference on Computational Linguistics (2002)

3. Zheng, S., Song, R., Wen, J.R.: Template-independent news extraction based on
visual consistency. In: The Proceedings of the 22th AAAI Conference (2007)

4. Shinyama, Y.: Webstemmer (2007),
http://www.unixuser.org/~euske/python/webstemmer/

http://www.unixuser.org/~euske/python/webstemmer/

HyperAdapt: Enabling Aspects for XML

Matthias Niederhausen1, Sven Karol2, Uwe Aßmann2, and Klaus Meißner1

1 Technische Universität Dresden
Chair of Multimedia Technology

01062 Dresden, Germany
{matthias.niederhausen,kmeiss}@inf.tu-dresden.de

2 Technische Universität Dresden
Software Technology Group
01062 Dresden, Germany

{sven.karol,uwe.assmann}@tu-dresden.de

Abstract. Aspect orientation offers an intuitive way to specifiy adap-
tivity for web applications, but despite its advantages, the approach still
lacks acceptance. We argue that there are two main reasons for this:
First, aspects make implicit assumptions on the underlying system and
can thus produce invalid behavior if that system is changed. Second, the
lack of concepts for dealing with aspect interactions places a heavy bur-
den on the use of multiple aspects. In this paper we discuss how Hyper-
Adapt addresses these problems, paving the road towards a productive
use of aspect orientation in the domain of web applications.

1 Introduction

Developing adaptive hypermedia applications is a very challenging and demand-
ing task. In order to achieve a single adaptation goal (e.g., adapting to a special de-
vice), many different application parts have to be edited in a consistent way. This
process gets even more complicated if there are multiple different adaptation goals.
To deal with this complexity, we apply aspect-oriented programming (AOP) to
place adaptivity into separate modules – so-called adaptation aspects. The grow-
ing number of approaches that leverage aspect orientation to model adaptivity
[1,2,3] clearly demonstrates the attractiveness of this solution. In contrast to these
existing solutions, we apply aspects not on a model level, but on XML. However,
aspect orientation in this context still has several open issues:

1. Untyped Aspect Weaving. In hypermedia applications, aspects are usually
woven into XML documents. To guarantee validity of the resulting document,
weaving operations must support typed weaving.

2. Interaction of Aspects. Aspects may conflict if they address the same part
of a document. Since it is hard to keep an overview of such conflicts, it is
imperative to provide means for detecting and potentially resolving them.

3. Constrained Aspects. If a document contains protected parts that should
not be adapted, it can be helpful to impose further restrictions on docu-
ments or aspects beyond type-safety. Thus, techniques are needed to specify
constraints for documents and aspects.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 461–464, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

462 M. Niederhausen et al.

declares xml
fragment types

instance-of

extended schema,
including variation/
extension point types

instance-of

xml fragments

marshalling

composed
XML

fragment type hierarchy

composition
 execution

composed xml fragment

composition
operation

Fig. 1. Invasive composition of XML documents

In the remainder of this paper we explain how HyperAdapt tackles the above
issues. Sect. 2 introduces a type-safe aspect weaving approach. Sect. 3 investi-
gates how to detect aspect interactions, while Sect. 4 discusses aspect conflict
resolution and constraint-based weaving. Finally, Sect. 5 concludes the paper.

2 Safe Weaving of Web Adaptation Aspects

An appropriate composition technique for safe aspect weaving has to consider the
specific properties of XML. At runtime, XML documents are usually represented
as trees typed by XML schemas, which are comparatively similar to a context-
free grammar describing the abstract syntax of a language.

Invasive Software Composition (ISC) [4] is a powerful technique to create com-
position systems for tree-shaped components, called fragments in this context.
It has proven to be expressive enough to recreate several other component-based
concepts and ensures syntactic type-safe composition w.r.t. the component lan-
guage. ISC has made its way to several orthogonal domains. For instance, the
COMPOST1 system recreates aspect orientation and generics for Java 1.4 . Also,
Modular XCerpt provides the XCerpt query language with a module system [5].
To reduce implementation effort, recent research developed grammar-based ISC
[6], which allows to declaratively specify composition systems based on markup
and extension of context-free grammars. However, the approach has not yet
been applied to XML languages. Hence, to be applicable to XML documents,
we attune the approach in two ways:

First, we extend grammar-based ISC to support XML, such that every compo-
sition step composes fragments according to a given XML schema (see Figure 1).
Furthermore, we develop an approach to declare extension and variation points
(see filled symbols in Figure 1) in XML documents as well as complex com-
position operators and evaluate it by means of prototype composition systems.
Second, we use a weaving pipeline for composing aspects of general XML-based
languages. Each stage in this pipeline provides output parameters and requires
input parameters which can be typed according to a given schema. This allows
for modular type-safe definitions of composition steps even for different XML
dialects. Moreover, it provides a grounding for conflict resolution techniques and
constraints imposed on aspects as discussed in Sect. 4.

1 The compost system. http://www.the-compost-system.org

HyperAdapt: Enabling Aspects for XML 463

3 Investigation of Aspect Interactions

Typically, aspects resemble adaptation techniques, as identified by the adaptive
hypermedia community (e.g., [7,8]), and are applied to components in the web
application. Dependant on context parameters and runtime state of the web ap-
plication, aspects usually crosscut several XML documents. Thus, they are quite
similar to aspects in aspect-oriented programming [9], which are applied to a
pointcut. However, in contrast to general AOP, a clear separation between static
(e.g., some node in the document) and dynamic parts (e.g., the context) of a
pointcut exists. We argue that these and other special properties of adaptation
aspects can be used to better analyse aspect interactions. To this end, we classify
frequently used adaptation techniques by their potential for conflicts. For exam-
ple, an advice removing a fragment can have an impact on other advices with
overlapping pointcuts (subsequent advices cannot match the removed fragment
anymore), but this may also be desired by the author. In contrast, an advice re-
placing all text by a localised version and another one replacing certain images
by text have a closer interdependency, as the first should be executed only after
the second has taken effect.

In a next step, we plan to extend well-known adaptation techniques by a
description that offers semantic information on the technique. Starting from
the classification and the semantic description, we can then analyse adaptation
techniques and aspects to identify potential conflicts. There are multiple options
for doing so: First, conflicts are often found when two advices address the same
component, therefore we intend to check on these cases first. Second, we plan
to employ a conflict matrix that marks often-found interactions, such as the
example given above. Third, we can apply confluence tests to identify whether
the order of advices has an influence on the resulting document: if this is not
the case, we can be sure that there are no conflicts. And fourth, we can combine
static analysis based on type information derived from XML schema and analysis
of the semantic description to find conflicts before aspects are deployed.

4 Constraint-Based Adaptation

As discussed in Sect. 3, aspects cannot always be completely orthogonal. Often
enough, this is even desired by the author (e.g., internationalising a text and at
the same time removing it for unauthorised users). A correct resolution has to
bring the involved aspects into the right order. One way to do so is to extend
the conflict matrix and supply a proposed weaving order for two given aspects.
Another option is to define precedence for aspects, depending on the narrowness
of their pointcut. For example, if the author has defined a separate adaptation
for one particular document fragment, this should always have precedence over
a document-wide adaptation that also includes this joinpoint.

Beyond constraints defined by the aspect author, XML document authors
may impose constraints on parts of their document. For example, the author
may restrict the replacement of images at certain positions or he may require

464 M. Niederhausen et al.

inserted fragments to adhere to a certain structure (e.g., an altering list of text
and images). To provide a framework for definition of such constraints, we bor-
row concepts from contract-based programming [10]. Preconditions may contain
structural information on documents before an aspect is applied, postconditions
then describe the resulting structure. Thus, contracts can be used to narrow the
application of aspects to certain parts of a document.

5 Summary

In this work, we introduced the problem of aspect interactions in the domain of
XML documents. We further proposed strategies for dealing with such interac-
tions (e.g., confluence check) and an extension to AOP such that sophisticated
contracts between aspects and the application can be defined. With the help of
the suggested approach, aspect orientation unlocks its full potential for docu-
ments, allowing to cleanly separate adaptation from the rest of a web application.

As the next steps, we extend grammar based Invasive Software Composition to
support XML languages and create a prototype weaving pipeline. Additionally,
we will investigate adaptation techniques w.r.t. their conflict potential. These
initial steps will then give us important feedback on our design of a contract
model for aspects.

References

1. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling adaptivity with as-
pects. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 406–416.
Springer, Heidelberg (2005)

2. Schauerhuber, A., Wimmer, M., Schwinger, W., Kapsammer, E., Retschitzegger,
W.: Aspect-oriented modeling of ubiquitous web applications: The aspectwebml
approach. In: ECBS MBD 2007, Tucson, Arizona (2007)

3. Casteleyn, S., Van Woensel, W., Houben, G.-J.: A semantics-based aspect-oriented
approach to adaptation in web engineering. In: HT 2007: Proceedings of the eigh-
teenth conference on Hypertext and hypermedia, pp. 189–198. ACM, New York
(2007)

4. Aßmann, U.: Invasive Software Composition, 1st edn. Springer, Heidelberg (2003)
5. Aßmann, U., Berger, S., Bry, F., Furche, T., Henriksson, J., Johannes, J.: Modular

web Queries–From rules to stores (2007)
6. Henriksson, J.: A Lightweight Framework for Universal Fragment Composition.

Ph.D thesis, Technischen Universität Dresden (2008)
7. Bunt, A., Carenini, G., Conati, C.: Adaptive content presentation for the web. In:

Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321,
pp. 409–432. Springer, Heidelberg (2007)

8. Brusilovsky, P.: Adaptive navigation support. In: Brusilovsky, P., Kobsa, A., Nejdl,
W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 263–290. Springer, Heidelberg
(2007)

9. Kiczales, G., Mendhekar, A., Lamping, J., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-Oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

10. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 465 – 468, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Developing an Enterprise Web Application in XQuery

Martin Kaufmann and Donald Kossmann

ETH Zürich, Systems Group,
Universitätsstrasse 6, 8092 Zürich, Switzerland

{martinka,donaldk}@ethz.ch

Abstract. XQuery is a declarative programming language which can be used to
express queries and transformations of XML data. The goal of this paper is to
explore the expressive power of XQuery as a general-purpose programming
language. To this end, this paper describes how to build an entire enterprise web
application in XQuery. It is shown that it is actually possible and quite effective
to implement a web application entirely in XQuery and that there are several
advantages in doing so. The resulting code has proven to be very concise and
elegant. More importantly, the use of XQuery simplifies the overall application
architecture and improves flexibility.

Keywords: XQuery, XML, Enterprise Application, Web Application,
Programming.

1 Introduction

Today, enterprise web applications play an important role for e-business software and
data integration. Companies have demand for software which is well designed and
structured to allow short training periods for new developers. The software should be
easy to maintain by separation of concerns and extensible for future scaling.

In order to develop large-scale enterprise web applications, the state-of-the-art is to
use frameworks such as the Java Enterprise Edition (J2EE) or Microsoft’s .Net. These
frameworks take advantage of the vast experience of object-oriented software
development with programming languages like Java and C#. Using J2EE, for
instance, Java objects can be mapped to a relational database using an
object/relational persistence and query service like Hibernate. In the .Net framework
LINQ [5] can be used in order to embed SQL-style database access into the object-
oriented application code.

Yet, both J2EE and .Net suffer from the impedance mismatch between different
data models used at different application tiers and from repeated work for the same
tasks at different application tiers (e.g., error handling, etc.). The core of this problem
stems from the fact that all these frameworks actually make use of a mix of
technologies.

A result of this observation was the development of object-oriented database
systems. They mitigate the impedance mismatch by providing a unified data model
but introduce additional problems like verbose code for implementing complex
queries by means of the programming language (e.g. SODA API for DB4o [3]).

466 M. Kaufmann and D. Kossmann

This paper explores a new approach to develop enterprise web applications. The
key idea is to leverage the (unified) technology stack developed by the World Wide
Web Consortium (W3C). We argue that a unified technology stack can result in
simpler, more flexible, and more efficient application code. A central piece of this
new approach to build web applications is the use of the XQuery programming
language [9]. XQuery was initially designed to query and transform XML data. The
main contribution of this paper is to demonstrate that such a uniform technology stack
based entirely on W3C standards can be used in order to build and deploy large-scale
enterprise web applications.

The remainder of this paper is organized as follows: Section 2 describes a system
architecture of a web application written entirely in XQuery. Section 3 sketches the
implementation of our example application called PubZone [7], which is a web based
repository for scientific publications. Section 4 describes our experience in the
development of PubZone with XQuery. Section 5 discusses related work. Section 6
contains conclusions and avenues for future work.

2 Architecture

For this work, we adopt the traditional three-tier architecture for enterprise web
applications. As shown in Figure 1(a), this three-tier architecture is typically
implemented using different languages and data models at each tier. According to
Figure 1(b), we propose to use, as much as possible, one programming language and
one data model throughout the entire application stack.

Browser

Business
Logic

DatabaseSQL relational

object
oriented

XML

Java

XHTML Browser

Business
Logic

DatabaseXQuery XML

XML

XML

XQuery

XHTML

(a) state-of-the-art (b) proposed in this paper

Fig. 1. Three-tier Application Architecture

The advantage of this approach is that the architecture becomes more flexible,
more efficient, and simpler. The architecture of Figure 1(b) is more flexible because it
allows for moving code from one tier to another. Simplicity and efficiency is achieved
by applying the same programming language to all three application tiers.

 Developing an Enterprise Web Application in XQuery 467

3 Implementation

For the implementation and deployment of the PubZone application, we used the
Sausalito XQuery application server [8] which integrates an XML database system,
the Zorba XQuery engine [10], and the Apache Web Server into a single XQuery
application server. In a nutshell, the XQuery application server maps a URL to an
XQuery source file (called module) and an XQuery function. The return value of the
function is sent back to the client as a result.

According to best practices, we adopt the MVC pattern in order to separate
business logic from program control flow and presentation layer. The Controller
function is the entry point which is called by a defined URL. This function receives
an XML input generated from the HTTP request of the web client and carries out
checks on the input. If these tests succeed the business logic of the Model is called.
The result of the business logic is forwarded by the Controller to the View function
which renders the output. [Code 1] shows an example of a View function. The result
of the View is returned to the client by the Controller.

Code 1: Module of the View to add a new user

declare function def:inputForm () {
 let $text := <form method="post" action="/userNew/submit">
 Username: {form:text("uid", 25)} Group:
 <select name="groupId" size="1">{form:option("", "select...")}
 {for $group in groups:listAllGroups()
 return form:option($group/@id, $group/name)
 } </select><input type="submit" value="Save "/></form>
 return navigation:showPage("Add user", $text)
};

For a large enterprise web application it is important to identify reusable components.
This code can be implemented as separated XQuery modules that can be used by
many functions of the application.

4 Discussion

A considerable amount of time was required to develop standard libraries like
modules for pre-filled HTML form elements. When these reusable components had
been finished, the development of web applications turned out to be quite effective
and fast. Due to clean design and encapsulation of business logic in XQuery modules,
this software architecture is expected to scale up for large applications.

Our measurements in terms of runtime performance shows that the XQuery
implementation of our example application [7] in average currently is only about 35%
slower than the corresponding Java implementation [6]. This result is basically
caused by the fact that the XQuery application server [8] is still in a beta state. There
is no principal limitation which prevents an application written in XQuery from
reaching performance results achieved by state-of-the art technologies like J2EE.

468 M. Kaufmann and D. Kossmann

5 Related Work

There has been a great deal of work on XQuery already. XQuery has been
implemented by all major database vendors. Furthermore, XQuery is a popular tool
for various tasks in the middleware; for instance, BEA’s Enterprise Information Bus
is based on XQuery and BEA’s ALDSP server for enterprise information integration
is based on XQuery [1]. XQuery is also used for data stream processing such as RSS
streams [2], [4].

6 Conclusion

This paper reported on our experience to develop a complex and customizable
enterprise web application entirely using the XQuery programming language and
using related W3C recommendations (e.g., XML as a data format, XML Schema to
describe data types, and HTTP and REST for remote communication). Overall, the
conclusion is that the W3C family of standards is very well suited for this task and
has important advantages over the state-of-the-art (e.g., J2EE, .Net, or PHP). Most
importantly, using XQuery and W3C standards only ensures a uniform technology
stack and avoids the technology jungle of mixing different technologies and data
models. As a result, the application architecture becomes more flexible, simpler, and
potentially more efficient. Today, the biggest concern in adopting this approach is that
there are no mature application servers available, but we believe that the situation will
change soon in this regard.

Obviously, this work was only a first step in order to develop complex and large-
scale enterprise web applications entirely in XQuery with the help of W3C standards.
In the future, more experience with other applications is needed. One important
avenue for future work is to introduce a methodology to develop such applications
with XQuery.

References

1. BEA AquaLogic Data Services Platform,
 http://edocs.bea.com/aldsp/docs30/

2. Botan, I., Fischer, P., Florescu, D., et al.: Extending XQuery with Window Functions. In:
VLDB 2007, Vienna, Austria (2007)

3. Native Java &.NET Open Source Object Database, http://www.db4o.com/
4. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: FluXQuery: An Optimizing

XQuery Processor for Streaming XML Data. In: VLDB 2004 (2004)
5. LINQ Project,

 http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
6. Kaufmann, M., et al.: PubZone Java implementation, http://java.pubzone.org/
7. Kaufmann, M.: PubZone XQuery implementation, http://xquery.pubzone.org/
8. Sausalito, XQuery Application Server, http://sausalito.28msec.com/
9. Chamberlin, D., et al.: XQuery 1.1, W3C Working Draft,

 http://www.w3.org/TR/xquery-11/
10. The Zorba XQuery Processor, http://www.zorba-xquery.com/

Enhancing WS-BPEL Dynamic Invariant
Generation Using XML Schema and XPath

Information

Manuel Palomo-Duarte, Antonio Garćıa-Domı́nguez,
and Inmaculada Medina-Bulo

Universidad de Cádiz, Escuela Superior de Ingenieŕıa, c/Chile 1, CP 11003 Cádiz,
Spain

{manuel.palomo,antonio.garciadominguez,inmaculada.medina}@uca.es

Abstract. The dynamic and asynchronous nature of OASIS WS-BPEL
2.0 standard language for web service composition presents a challenge
for traditional white-box testing techniques. Takuan is a tool that can
help with this problem. It analyzes execution logs of a WS-BPEL process
in a real-world WS-BPEL engine to dynamically generate composition
invariants. Nevertheless, it suffered some performance issues when han-
dling a large number of variables with complex multidimensional con-
tent. We present two techniques implemented to automatically alleviate
these issues: dynamic analysis of XPath expressions to avoid inferring
nonsensical invariants, and discarding invariants enforced by the XML
Schema. We present practical results supporting our work and comment
the impact and applicability of these techniques beyond WS-BPEL itself.

Keywords: Web services, service composition, WS-BPEL, white-box
testing, dynamic invariant generation.

1 Introduction

The OASIS WS-BPEL (Web Service Business Process Execution Language) 2.0
standard allows programing in the large using web service compositions. How-
ever, it presents a challenge [1] for traditional white-box testing techniques, due
to the inclusion of WS-specific instructions not found in most programming lan-
guages (like those for fault and compensation handling).

Automatic invariant generation [2] has proved to be a successful technique to
assist in white-box testing of programs written in imperative languages. Let us
note that, throughout this work, invariant and likely invariant are understood
(as in most related works) in their broadest sense: properties which hold always
or in the specified test cases at a certain program point, respectively.

We have implemented Takuan [3], an open-source system which dynamically
generates likely invariants from actual WS-BPEL composition execution logs.
Its automatic workflow takes a WS-BPEL process definition and a test suite
specification and outputs a collection of invariants which hold at certain program
points in every test case.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 469–472, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

470 M. Palomo-Duarte et al.

This paper describes two techniques which aim to reduce Takuan’s resource
usage (increasing its scalability to larger compositions) as well as the number of
uninteresting invariants in its output. We first study their impact and applica-
bility on WS-BPEL and then point out other languages with similar issues.

2 Improving Invariant Generation with XPath

Takuan results were promising [3], but even for slightly complex WS-BPEL
compositions there was very high memory and CPU usage depending on the
options used. For example, analyzing 7 test cases in a meta-search composition
could take over 7 minutes and use over 800 MiB of RAM [4].

The reason was the large number of invariants comprising pairs and triples of
variables that had to be checked, many of them nonsensical. For example, the
age of an applicant to a loan and its amount can be both integers, but there is
no need to waste computational resources trying to relate them in an invariant.

We avoided it by labeling each variable with a so-called comparability index :
an integer which marks a set of variables as belonging to a specific semantic type,
such as a monetary sum or a vector size. This way Daikon (the dynamic invariant
generator internally used by Takuan) only infers invariants relating variables that
have the same index, avoiding the combinatorial explosion and will even discard
uninteresting program points and, optionally, unused variable fields.

We had to extend all steps of the Takuan framework to implement this func-
tionality. Discarding unused variable fields is suitable for any language in which
variables from outer scopes are directly used only in a few key program points
and control flow is highly structured.

3 Filtering Redundant Invariants

In our experience using Takuan [4], we have observed that a considerable number
of the invariants only repeat constraints which are already enforced by the XML
Schema declarations of the types used in the composition.

For instance, if XML Schema tells us that a variable has to be in the range [0, 1]
an invariant confirming it would only add noise in the resulting invariant list. In
fact, if that information relates to a WS-BPEL multidimensional variable that
is later mapped into n unidimensional Takuan variables by matrix flattening, we
will have avoided generating not one, but n invariants.

We implemented this technique extending Daikon itself, but keeping it as
language-independent as possible. Other languages have type systems that in-
clude similar information to some parts of XML Schema: statically sized arrays
and matrices in C/C++, fixed length strings in FORTRAN, or VARCHAR(N) fields
in SQL, for instance.

4 Results

We have studied the impact that each of these two techniques have in the analysis
of the meta-search engine composition discussed in [4] with the same test suite.

Enhancing WS-BPEL Dynamic Invariant Generation 471

Table 1. Input, output and performance metrics for each combination of techniques

Mapping a Techniquesb P. pointsc Variables Memoryd Timee Invariants

Slicing

None
64 17,404

656.74 409.98 30,399
X 646.57 400.15 21,793

C

48
14,148

561.63 416.72 27,089
CX 579.81 401.69 18,358

CF
1,398

25.25 72.96 2,135
CXF 24.54 75.03 1,559

Flattening

None
64 11,412

291.11 162.00 18,658
X 280.96 173.40 18,654

C

48
9,036

261.01 179.39 16,718
CX 264.54 163.90 16,714

CF
710

11.18 52.29 942
CXF 12.29 55.61 940

a See [4] for descriptions of these mappings.
b C: comparability indices, X: XML Schema invariant suppression, F: unused
variable filtering.

c Program points with no XPath expressions therein are removed during
comparability analysis.

d Maximum usage of the JVM heap by Daikon, measured in MiB.
e Time required by Takuan’s analysis step, including preprocessing, measured in
seconds.

We have used each of them separately and in combination. Table 1 shows the
computational resources (time and space) required for their analysis, and the
length of the invariant list produced by each combination.

The maximum memory used at some point by the preprocessor Perl scripts
remains approximately the same at 193MiB for every entry in the table. The test
environment consisted of a machine fitted with a dual-core Intel Core Duo T2250
CPU, with 1GiB of DDR2 533MHz RAM and a 80GB 5400rpm HDD. The base
system used was a standard GNU/Linux Ubuntu 8.04.1 distribution installation,
with its 2.6.24-19-generic default kernel. The active processes during the test
suite were mainly those created by the components of Takuan: the Sun 6.0 JRE
(with a maximum JVM heap size of 800 MiB), Apache Ant 1.7.0, Perl 5.8.8,
Daikon 4.3.4, ActiveBPEL 4.1 and BPELUnit 1.0. During its execution there
were no other processes consuming significant CPU time, memory space, or disk
throughput.

In our quantitative and qualitative analysis, we see that performing the com-
parability analysis while only filtering program points does not affect perfor-
mance as much as expected, but it does improve the quality of the invariants
inferred. Likewise, using the information encoded in the XML Schema only

472 M. Palomo-Duarte et al.

presents a minor performance improvement if any, but the number of invariants
produced is reduced in some cases over 35%.

In contrast, performance is drastically improved when unused variable fields
at each program point are filtered, reducing on average the number of variable
fields to be checked over 90% and the running time to a third.

5 Conclusions and Future Work

Takuan is an automated framework for dynamic invariant generation in WS-
BPEL compositions. In this paper we have shown two techniques which have
been recently implemented into Takuan to reduce computational costs and im-
prove the usefulness and conciseness of the list of invariants inferred. They can
be applied to other languages, as little about them is exclusive to WS-BPEL.

Our future work will be validating our findings so far with more complex WS-
BPEL process compositions. Once Takuan obtains a satisfying balance between
performance and invariant quality, we will focus on the relation between the
quality of the invariants generated and the test suite used.

Acknowledgments

This paper has been funded by the Department of Education and Science (Spain)
and FEDER funds under the National Program for Research, Development and
Innovation. Project SOAQSim (TIN2007-67843-C06-04).

References

1. Bucchiarone, A., Melgratti, H., Severoni, F.: Testing service composition. In: Pro-
ceedings of the 8th Argentine Symposium on Software Engineering (ASSE 2007)
(2007)

2. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on Soft-
ware Engineering 27(2), 99–123 (2001)

3. Palomo-Duarte, M., Garćıa-Domı́nguez, A., Medina-Bulo, I.: Takuan: A dynamic
invariant generation system for WS-BPEL compositions. In: ECOWS 2008: Pro-
ceedings of the 2008 Sixth European Conference on Web Services, Washington, DC,
USA, pp. 63–72. IEEE Computer Society, Los Alamitos (2008)

4. Palomo-Duarte, M., Garćıa-Domı́nguez, A., Medina-Bulo, I.: Improving Takuan to
analyze a meta-search engine WS-BPEL composition. In: SOSE 2008: Proceedings of
the 2008 IEEE International Symposium on Service-Oriented System Engineering,
Washington, DC, USA, pp. 109–114. IEEE Computer Society, Los Alamitos (2008)

CRUISe: Composition of
Rich User Interface Services

Stefan Pietschmann, Martin Voigt, Andreas Rümpel, and Klaus Meißner

Technische Universität Dresden
01062 Dresden, Germany

{Stefan.Pietschmann,Martin.Voigt,Andreas.Ruempel}@inf.tu-dresden.de,
Klaus.Meissner@inf.tu-dresden.de

Abstract. As reuse and technology-independence are key issues of both
software and web engineering, web services have gained momentum and
are heavily used in modern web-based applications. However, they are
only expedient for the business logic layer, while the Web lacks uniform
models for the encapsulation and reuse of UI components. Thus, web
UIs are usually hand-crafted and static, which complicates both devel-
opment as well as maintenance and upgrade. We address these issues
with a novel approach facilitating dynamic, service-oriented composition
of user interfaces for web applications. UI parts therein are provided
as reusable services and can therefore be selected, customized and ex-
changed dynamically with respect to a particular context.

1 Introduction and Motivation

In recent years the Internet has evolved to a stable application platform for a
large number or Software-as-a-Service (SaaS) solutions, featuring rich UIs and
interaction metaphors. This enables location- and time-independent access, but
has dramatically complicated application development, especially of the UI.

In the back end, modern web applications use web services – technology-
independent building blocks that facilitate reuse and exchange of business logic.
There also exist numerous frameworks and libraries that allow for the composi-
tion of web-based UIs from components, e. g., Portlets, JSF and WebParts, but
they all restrain to specific technologies or platforms with individual interfaces
and APIs. Once a choice has been made, it is naturally irrevocable. Future UI
changes and updates are costly as there is no uniform model for the technology-
independent development and cross-technology integration of web UIs.

Additionally, heterogeneous device, user and usage contexts are decisive fac-
tors for a web application UI. “Adaptive Hypermedia” research has addressed
this issue for years. Yet, the majority of approaches suffers from the “open cor-
pus” problem [1] – they only work with predefined structures and preindexed
or annotated documents – and usually don’t support Rich Internet Applications
(RIA). Despite all these facts, presentation integration, i. e. technology-agnostic
UI composition and reuse, has not undergone much research [2]. Thus, the devel-
opment and maintenance of context-aware RIAs is complicated and hence very
time- and money-consuming.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 473–476, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

474 S. Pietschmann et al.

To address the above-mentioned problems, we apply the service-oriented para-
digm to the presentation level of web applications. In CRUISe1, a user interface
is composed from services providing reusable, configurable components. This
greatly simplifies development and maintenance of web UIs. Furthermore, in
contrast to present integration concepts (cf. [3,4]), the dynamic, context-aware
selection, configuration and exchange of these services enables adaptation of
modern web applications at run time.

2 Dynamic, Service-Based Composition of Web UIs

A growing number of applications is built from services which provide data and
business logic via generic interfaces or APIs. We argue that future web-based
applications can be solely based on services that provide either data, business
logic or user interfaces. As current solutions do not support such a universal
paradigm, the requirements for their deployment and hosting herald the time
for a new architectural style, e. g., the “Thin Server Architecture” (TSA) [5].

Figure 1 gives an overview of our concept. Its central idea is the dynamic
composition of a web application UI from distributed services to exploit the
advantages of service-oriented architectures, like reusability, customizability and
technology-independence, at the presentation layer. We do this by encapsulating
generic, reusable web UI components as so-called User Interface Services that
are dynamically selected, configured and integrated into a homogeneous, web-
based UI. Conforming to the TSA style, the integration of all services is carried
out on the client. Thus, our concept is most suitable for mashup applications
aiming at the lightweight service orchestration on the presentation level.

2.1 User-Interface-as-a-Service

User Interface Services. (UIS) form an integral part of our concept. They
facilitate the distributed deployment and technology-independent provision of
generic, configurable UI building blocks. A trend towards such services for the
presentation layer can already be witnessed, prominent examples being Google’s
Maps or Visualization APIs that allow for the client-side binding and integration
of configurable and interactive UI components from a remote server. We gener-
alize such techniques and propose a concept, in which the whole web application
UI results from the integration and composition of UIS, or, more precisely, the
UI components provided by them.

Specific APIs and technologies are hidden behind a generic UIS interface,
which is used for their configuration and initialization and covers the typical
functionality exposed by certain class of UI component, e. g. a Map UIS. Fur-
thermore, it facilitates interoperability and run time exchangeability of UI parts.
Of course, this requires the definition of universal UIS interfaces beforehand. In

1 The CRUISe project is funded with means of the BMBF under promotional reference
number 01IS08034-C.

CRUISe: Composition of Rich User Interface Services 475

contrast to classic integration systems, we can rely on browser technologies (es-
pecially JavaScript) as “glue code” . Due to the openness and simplicity of this
approach, the majority of components and services available on the Web (based
on JavaScript, JavaFX, Flash, etc.) can be provided as UIS.

UIS metadata is stored in a UIS Registry and used to match application
requirements and context data with available UIS at run time to enable context-
aware web user interfaces.

Fig. 1. Architectural overview of the CRUISe infrastructure

2.2 Dynamic, Context-Aware UI Composition

To build a UI based on UIS, a developer declaratively specifies configuration,
composition and control flow between them. This Composition Description is
processed and transformed into an executable web application by the Application
Generator. It contains “placeholders” for UI parts provided by UIS with their
associated configuration parameters, and runs within the CRUISe Runtime.

When the application is initialized, the Runtime passes requirements and pa-
rameters specified for each placeholder to an external Integration Service (CIS).
This task can be carried out on the server, as well as on the client. The CIS
is responsible for finding those UIS in the UIS Registry that match the given
application requirements and context, ranking them by their accuracy of fit and
returning the integration code for the best match. In our application domain this
is typically a script which is embedded in the application and interpreted dyna-
mically on the client. Conflicts and redundancies between UIS and underlying
libraries are resolved by the Runtime, as well.

Once the integration process has finished, the Runtime controls the event
and data flow between UI parts as specified in the composition description. It
also serves as a homogeneous access layer that facilitates binding of backend
services to the UI services. Furthermore, it monitors context data on the client
(e. g., device capabilities and user interactions) and sends them to the Integration
Service for later use in the discovery and ranking phase. In the end, it also carries
out dynamic adaptations, like UIS reconfigurations and exchange.

476 S. Pietschmann et al.

3 Implementation

To verify our concepts we built an exemplary web application used to man-
age contacts and track their current locations. To this end, a number of UIS
were developed, encapsulating UI components of different technologies, includ-
ing JavaScript (Google Maps, Dojo Tables) and Flash (Flex Datagrid). In our
prototype, they are dynamically integrated on the server side by an Integration
Service based on Axis2. The client-side Runtime was realized as a JavaScript
component using the widget framework jMaki.

This prototype exemplifies the run time composition of a web UI including
data binding with the back end (contact data is provided by application services),
communication between UI parts as well as the technology-independence of UIS
used. It forms the basis for our current work towards the dynamic, context-
aware UI adaptation. Lessons learned include, that a client-side binding of the
Integration Service might be advantageous for pure TSA applications.

4 Conclusion

Our concept implies the dynamic, context-aware composition of web user in-
terfaces based on so-called User Interface Services. Those provide arbitrary UI
parts and are integrated and composed via a uniform configuration and commu-
nication interface. This facilitates reusability and technology-independence and
offers a great simplification of the development and maintenance of web applica-
tion UIs. Furthermore, it allows for context-aware rich web UIs by dynamically
selecting and configuring UIS depending on the user and usage context.

At the moment, we are evaluating our prototype against other integration
and mashup approaches to derive requirements for the composition description
and client-side service binding. We are further working on a classification and
a semantic description language for UIS to allow for semantic run time match-
ing between web and UI Services. Future work includes the development of an
authoring tool and more sophisticated, dynamic adaptation mechanisms.

References

1. Brusilovsky, P., Henze, N.: Open Corpus Adaptive Educational Hypermedia. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321,
pp. 671–696. Springer, Heidelberg (2007)

2. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UI Integration: A Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing 11(3), 59–66 (2007)

3. Liu, X., Hui, Y., Sun, W., Liang, H.: Towards Service Composition Based on
Mashup. In: IEEE Congress on Services, pp. 332–339 (2007)

4. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Frame-
work for Rapid Integration of Presentation Components. In: WWW 2007: Proc. of
the 16th Intl. Conf. on World Wide Web, pp. 923–932 (2007)

5. Prasad, G., Taneja, R., Todankar, V.: Life above the Service Tier (October 2007)

 M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 477 – 480, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Online Platform for
Semantic Validation of UML Models

Marco Brambilla1 and Christina Tziviskou2

1 Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
V. Ponzio 34/5, 20133 Milano, Italy
marco.brambilla@polimi.it

2 Università di Bergamo, Ingegneria dell’Informazione e Metodi Matematici,
V.le Marconi 5, 24044 Dalmine, Italy

christina.tziviskou@unibg.it

Abstract. The Web is becoming the development platform for applications,
thus making desktop IDE and CASE tools obsolete. We propose a first example
of online support to application designers, consisting in a tool for online
validation of UML models based on semantic formalization and reasoning. We
base our work on a formalization of the UML models and we exploit Web
engineering methods and techniques, applied to Semantic Web technologies, for
providing a set of components and patterns that allow management and
verification of UML diagrams.

Keywords: WebML, UML, conceptual modeling, Semantic Web, reasoner,
ontology, validation, class diagram, pattern, component.

1 Introduction

The Web is becoming the platform of choice for almost any kind of distributed, as
shown by the continuous spreading of online office suites offered as software as a
service (SAAS), leading to international web-based collaboration and virtual
teamwork. In the medium period the Web will become a platform for the development
of applications too: the Eclipse project has transformed the world-famous IDE to the
Web platform, and an IBM AlphaWorks project is ongoing to develop a Web
browser-based interaction with the Eclipse IDE, under the name EcliFox1.

We propose a first example of online support to application designers: a tool for
online validation of UML models based on semantic formalization and reasoning. It
allows for verification of properties and correctness of UML models. It is used at
development time by designers for verifying that the devised conceptual models do
not contain inconsistencies, and is also used at runtime once instances of the model
are changed, to verify that property correctness still hold for the overall application.

Our choice combines UML class and object diagrams. We formalize them with the
DL sROIQ [4], supporting nominals, role inclusion axioms, and transitivity.

1 http://www.alphaworks.ibm.com/tech/eclifox

478 M. Brambilla and C. Tziviskou

Reasoning tasks are carried out by Pellet [7], an open-source Java reasoning engine,
offering: incremental update of instances, knowledge base debugging, and optimiza-
tion reasoning techniques. We exploit Web engineering methods, applied to Semantic
Web technologies, for providing a set of components and patterns for managing UML
diagrams. We adopt WebML [2], a Domain Specific Model for Web application
design and development based on data and Semantic Web Services [1]. The WebML
specification of a Web application consists of a data schema, and a set of site views,
expressing the Web interfaces in terms of pages, which in turn contain units, the
atomic publishing primitives that extract contents from the data source. Links between
units define the navigation paths and carry data. Updating the underlying data and
performing other actions is specified through operation units.

The critical situations of UML models that we resolve with our platform are:
unsatisfiable classes, their instantiation would violate some constraints, inconsistent
models, contain contradictions among instances and their definitions, and inferred
elements, deducted from the modeled elements. These are not automatically identified
by traditional type checking tools, leading to possibly system inconsistencies.

Other works have addressed the implementation of automatic tools for UML
consistency checking ([3], [6], [8]). They either deal with different type of
inconsistencies or they do not provide the means for automatic corrections. In all
cases, their reasoning capabilities cannot be integrated automatically in applications.

2 Web Validation Platform

The proposed platform mediates between Pellet and the UML developer: it translates
UML models to logical axioms in the knowledge base and vice versa, and provides
semantic inferences while the developer is unaware of the DL-based mechanisms.
Fig. 1 depicts the platform architecture: the Platform Hypertexts (PHs) represent the
front-end application accessed by the user for exploring and managing UML models,
and the Platform Components (PCs), representing the back-end services for
interfacing the front-end with the Knowledge Base (KB).

The components are configurable software artifacts that allow the access and
manipulation of UML primitives within the developed application. These primitives
refer to a meta-conceptualization as defined by the UML metamodel in [5]: Class,

Fig. 1. General architecture of the Web Validation Platform

 An Online Platform for Semantic Validation of UML Models 479

WebML Notation Description

Class

Class
[Selector(Parameters)]

Parameters {Class} Name: Class unit

Input: parameters for the evaluation of class
name, disjoint class, defined property, typed
instance, and class unsatisfiability

Output: (set of) classes deducted

Fig. 2. WebML notation for the semantic Class component

Datatype, Property, Generalization, and Instance. A component is configured upon a
UML model. Its execution extracts or modifies UML elements. The Class Component
(Fig. 2) defines a set of extraction rules for retrieving UML classes. It explores the DL
axioms and deducts classes filtered by selection conditions based upon these axioms.

The components are reusable pieces of code that can be easily combined together
and integrated in the WebML specification of applications as predefined patterns to
provide a reusable definition of hypertextual solutions for knowledge management. In
Fig. 3, we exemplify the usage of “Class and its classification” WebML pattern: (i)
the Class Component configured with a Name selection condition retrieves the input
class, and (ii) the Class Hierarchy Component configured with a Super.Class
condition deducts its ancestor tree. By selecting a more generic class, the Inclusion
Explanations page is computed. If the inclusion is asserted in the KB, it is displayed
and the user may drop the assertion by navigating to the Remove Component.
Otherwise, the assertions causing the inclusion are presented.

Class Hierarchy

C l a s s
[Super.Class=class]

Class Hierarchy

Remove Class

C lassAx iom
[Name=class]

[Super.Class=super]

-

Class and its classification

C l a s s
[Super.Class=class]

Class Hierarchy

C l a s s
[Name=class]

Class
class

Get Class Explanations

Knowledge Base
[Class=class]

Explanations

I

OK

class

Inclusion Explanations

Knowledge Base
[Class=class]

[Super=super]

Explanations

I

supe r ,
class

class

Fig. 3. WebML Class Hierarchy hypertext

2.1 Wines UML Model Case Study

To exemplify the usage of the platform, we describe the user navigation upon a Wines
UML model, in order to recognize and resolve a class unsatisfiability: the Ice Wine
class cannot be instantiated since its instances should have two disjoint parents. The
situation becomes known to the developer by exploring the Class Hierarchy page.
There, the Ice Wine is presented as unsatisfiable (Fig. 4). By selecting it, the popup
window of the Get Class Explanations page appears with the asserted axioms causing
the unsatisfiability: Ice Wine has parents the Red Wine and the Dessert Wine, and the

480 M. Brambilla and C. Tziviskou

Fig. 4. Explanations pages for the unsatisfiable class Ice Wine

disjoint constraint between them, implies they cannot share instances. A classification
can be dropped by the designer invoking the “Class and its classification” pattern.

3 Conclusions and Future Work

In this paper we presented a Web platform that allows semantic validation of static
UML designs. It is an online tool to be used at development time and at runtime for
continuous verification and correctness checking on the application data status.

The resulting Web Platform has three levels of reuse: its Web interfaces can be
used for semantic validation of UML models; the patterns can be reused as abstract
specifications of exploration and management interfaces for UML models; and the
components can be integrated in existing WebML models for providing general
purpose reasoning upon the application data semantics.

Future works aim at implementing patterns that resolve the remaining situations in
UML models, enable keyword-based search augmenting the flexibility of the user
interface, and investigate the use of the components within general-purpose Web
applications, to enable them for Semantic Web or Linked Data scenarios.

References

[1] Brambilla, M., Ceri, S., Facca, F., Celino, I., Cerizza, D., Della Valle, E.: Model-Driven
Design and Development of Semantic Web Service Applications. ACM TOIT 8(1) (2007)

[2] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann, San Francisco (2002)

[3] Fillottrani, P., Franconi, E., Tessaris, S.: The new ICOM ontology editor. In: Int.l W.shop
on Description Logics (2006)

[4] Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: KR 2006, pp.
57–67 (2006)

[5] OMG UML, Unified Modeling Language: Superstructure version 2.1.1. ptc/2007-02-03.
OMG document (2007), http://www.omg.org/cgi-bin/doc?formal/07-02-03

[6] Simmonds, J., Bastarrica, C.M.: A tool for automatic UML model consistency checking.
In: International Conference on Automated Software Engineering, pp. 431–432 (2005)

[7] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

[8] Zapata, C.M., Gonzalez, G., Gelbukh, A.: A Rule-Based System for Accessing
Consistency Between UML models. In: MICAI Artificial Intelligence, pp. 215–224 (2007)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 481 – 484, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Efficient Building of Interactive Applications Guided by
Requirements Models

Begoña Losada, Maite Urretavizcaya, and Isabel Fernández de Castro

Dpt. of Computer Languages and Systems, University of the Basque Country
649 p.k.- 20018 Donostia-San Sebastián, Spain

{b.losada,maite.urretavizcaya,isabel.fernandez}@ehu.es

Abstract. The analysis of functional and non-functional requirements of an
interactive application not only encompasses the descriptive aspects of its
functionality and the user and system restrictions, it must also satisfy user
needs, such as usability, along with system needs, such as reliability. InterMod
is an interactive application-design methodology with agile characteristics
which proposes the use of incremental models to define requirements, configure
presentation and develop functionality. This poster is focused on the
requirements of the InterMod methodology for the efficient construction of
interactive applications. These models include user, system, task and dialog
models. An example created with a tool that follows these principles and
illustrates our approach to the dialog model is presented.

Keywords: Requirements analysis, methodology, user model, system model,
task model, dialog model.

1 Introduction

Techniques for programming functionality have traditionally taken precedence over
human-computer interaction techniques. Therefore, it is common for users to feel that
their needed functions are difficult to understand or unnatural.

The requirements capture stage identifies the capabilities that the software system
must have in order to meet user needs. In this phase, user participation is particularly
active. Thus, a language mutually understood by all people involved should be used in
order to allow accurate evaluation.

According to [1], user requirements and user interface design should drive the
overall development process. In addition, we believe that requirement gathering and
prototype stages help to organize and check information presented in the interface as
well as to plan, guide and verify the development process. In order to do this, user
characteristics and behaviour should be taken into account along with the physical
limitations of the device and the system’s reactions.

Below, we present a brief introduction to the InterMod methodology and the
models of detailed requirements. After that we provide an example of a dialog model.
Finally, we present our conclusions.

482 B. Losada, M. Urretavizcaya, and I. Fernández de Castro

2 The Requirements Models in the Intermod Methodology

The objective of the InterMod methodology [2] is to facilitate the design of quality
interactive applications. InterMod follows the Object Management Group’s Model
Driven Architecture proposal [3]. We propose interactive software development based
on user-centred models generated and evaluated during different phases. Two
noteworthy characteristics of InterMod are (a) its use of an Intermediate Language
Description, which allows information generated in different models to be stored, and
(b) its iterative nature, much like that of an agile process [4].

InterMod models make it possible to quickly produce incremental prototypes by
adapting the design according to the modifications prompted by both user and
software developer evaluations.

Figure 1 shows a diagram of InterMod’s model connections. The user interface
models have been separated from the functionality models. Despite this, the InterMod
process promotes the early integration of interface models with system functionality.

Fig. 1. InterMod models

When it comes to the requirements models, the user model, system model, task
model and dialog model are all marked. First of all, the user model, which recognizes
properties and limitations of the user, is created. The task model, which describes user
performance in completing each task, follows the user model. The system model deals
with the properties and limitations of the system. Finally, a dialog model is proposed
using information from the other three requirements models.

The dialog model, known as the action-reaction model, represents user actions and
system responses. The information in the dialog model affects the user interaction
process, particularly the established order of navigation.

The software prototypes that are obtained from the models and tested at different
times become the primary measure of progress. In addition, we suggest organizing
and dividing the entire project by means of the dialog model, which should include
the general overview of the navigation and the connections between user tasks and
system actions.

Although UML use cases [5] are the usual means of capturing software system
requirements, our proposed dialog model uses a task hierarchy that is not centred on
establishing the programme’s complete semantics. Our interest resides in identifying

 Efficient Building of Interactive Applications Guided by Requirements Models 483

the critical aspects of navigation during user-system interactions. In this way, the
interface and software analyses are facilitated through the use of early prototypes with
user actions and the critical system responses that alter the normal flow of navigation.

An example of a dialog model

A dialog model created with a tool which implements InterMod specifications by
means of XML descriptions can be seen in Figure 2. User actions are shown in square
boxes while system reactions are represented by ovals.

Fig. 2. An example of a dialog model

In this example, the task hierarchy of task “Propose Meeting Hours” is illustrated.
The established subtask order is: (a) “1.Login”, (b) “2.Schedule Appointment” and
“3.Confirm Appointment”. However, before progressing to (b), subtasks “1.1.Enter
Username” and “1.2.Enter Password” must be completed. In order to progress to the
next subtask, tasks 2.1, 2.2 and 2.3 must be carried out, and so on. The dialog model
includes different task orders depending on the characteristics of user actions. The
action-reaction model of the login task is explained step-by-step, as follows:

1. First, the user identifies herself (task 1).
2. Next, the user completes the next iterative task: “2.Schedule appointment”.
3. This task ends when the user confirms the action in subtask 2.3. At this point,

the system responds with a predetermined answer or message:
a. In this example, when the user has either too few or too many appointment hours

scheduled, the system does not execute the task that usually follows and instead
produces a change in interface navigation and in the logic application. A message
informs the user of the reason for the change.

b If the correct amount of hours is scheduled, the system executes task “3.Confirm
appointments”.

This model represents the semantics of the application through interface
navigation. When this model is created, verifications of usability and the automatic

484 B. Losada, M. Urretavizcaya, and I. Fernández de Castro

creation of prototypes are possible. This prototype facilitates user and programmer
communication. Like Constantine [6], we believe that close coordination between
user interface designers and programmers is essential. Therefore, we have
incorporated such communication in the requirements analysis.

3 Conclusions

InterMod is a methodology based on user-centred models with iterative development
cycles and the inclusion of phases for early integration of the user interface in the
development process. Additionally, the analysis process permits and facilitates the
division of the project into tasks. Using a requirements capture process such as
InterMod allows the development process of interactive applications to be agile and
reliable.

The requirements models in InterMod include a user model, a system model, a task
model and a dialog model. This allows end users and developers to guide, organize
and check development.

It is worth noting that this methodology involves developers in navigation design
and invites them to participate in dialog model descriptions. This allows for the
establishment of critical evaluation points at early stages for the subsequent
implementation process. The use of tools that follow the process described in the
methodology converts the capture of these requirements into the bridge that connects
end users and developers and allows this stage to be used as a guide and a verification
of the process.

Acknowledgments. This project has been partially supported by the Spanish Ministry
of Education and Science grant TIN2006-14968-C01; and by the University of the
Basque Country UPV-EHU, grant EHU06/111.

References

1. Mayhew, B.: The Usability Engineering Lifecycle. Morgan Kaufmann Publishers, San
Francisco (1999)

2. Losada, B., Urretavizcaya, M., Fernández de Castro, I.: The InterMod Methodology:
Integrating Software Engineering Processes in Interface Engineering. In: Macías, J.A.,
Granollers, T., Latorre, P. (eds.). New Trends on Human-Computer Interaction. Springer,
Heidelberg (2009)

3. Object Management Group. Model Driven architecture. Technical report (2003)
4. Larman, C.: Agile & Iterative Development. A manager’s Guide. Addison-Wesley/Pearson

Education, Boston (2004)
5. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.

Addison Wesley Longman Inc., Amsterdam (1999)
6. Constantine, L.L., Lockwood, L.A.D.: Usage-Centered Engineering for Web Applications.

IEEE Software Magazine 19(1), 42–50 (2002)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 485 – 488, 2009.
© Springer-Verlag Berlin Heidelberg 2009

WAB*: A Quantitative Metric Based on WAB

Ana Belén Martínez, Aquilino A. Juan, Darío Álvarez, and Mª del Carmen Suárez

University of Oviedo, Department of Computing,
Calvo Sotelo s/n 33007 Oviedo, Spain

{belenmp,aajuan,darioa,macamen}@uniovi.es

Abstract. Web accessibility metrics are crucial for the quantitative evaluation
of web sites. We present a new automatic metric called WAB, based on the
WAB metric with extensions inspired from the UWEM metric. The first results
are encouraging as we have obtained better precision when calculation the
accessibility level measured for a site.

Keywords: Accessibility, Metrics, Evaluation.

1 Introduction

We need quantitative evaluations of accessibility [1] to compare accessibility levels of
two sites (or for different versions of the same site). Quantitative evaluations are also
needed to analyze the evolution over time of accessibility with the changes done
during the life of the site (monitorization). For these measurements we can use
automatic metrics (no human judgment is involved to calculate an accessibility score)
such as WAB [2] or WAQM [1], or semi-automatic, such as Failure_Rate [3] or
UWEM [4].

We focused on two of these metrics: WAB and UWEM. The first one is popular in
accessibility studies [5] because it is fully automatic. We focused on the second
because it is being sponsored by the European Union as part of the Unified Web
Evaluation Methodology to evaluate accessibility (EIAO Project [6][7]). We
performed some studies using these metrics [8][9] using our own flexible tool called
Iris that performs the quantitative evaluation of web sites using different metrics. These
studies were able to discover deficiencies in each metric that we tried to solve. Such is
the goal of this work: to propose a new metric called WAB*, fully automated, which is
based on the WAB metric with some UWEN-like extensions, that retains the automatic
feature of WAB and improves the precision of the accessibility score using more
detailed checkpoints.

2 Related Work

The following is a brief summary of the features of the two metrics considered: WAB
and UWEM.

486 A.B. Martínez et al.

2.1 Web Accessibility Barrier (WAB)

WAB metric [10] yields a quantitative score that looks at 25 checkpoints based on
WCAG 1.0 (5 of Priority 1, 13 of Priority 2 and 7 of Priority 3). The number of
violations of the checkpoints is the basis for the score:

p

p v
v

v

v

N

W
N

n

scoreWAB
∑∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

=

With p = Total pages of a Website, v = Total violations of a Web page, nv =
Number of violations, Nv = Number of potential violations, Wv = Weight of violations
in inverse proportion to WCAG priority level, and Np = Total number of pages
checked.

WAB scores greater than 5.5 denote a web site with serious accessibility problems
[2]. A score of zero denotes that the Web site does not violate any Web accessibility
guideline and should not present any accessibility barrier to persons with disabilities.

2.2 Unified Web Evalution Methodology (UWEM)

The UWEM [11] describes a methodology for evaluating conformance of Web sites
with the WCAG 1.0 guidelines. Currently it is designed to be conformant with
WCAG 1.0 priority 1 and 2 checkpoints, and provides manual and automatic
evaluation. For automatic evaluation, it applies a set of checkpoints marked as “fully
automatable” by the methodology.

One of the outputs is a score computed using the following metric:

∑
∑

++++

++++
=

levelsiteont
stn

levelsiteont
stn

NNpNpNp

BBpBpBp

sF

21

21

...

...

)(

With F(s) = UWEM score for the site s, Bpi = Total number of "fail" results from
all tests within page pi and Npi = Total number applications of all tests within page pi.
Bearing in mind that some UWEM tests apply to the web site as a whole and not to
individual pages, Bst = Total number of "fail" results from all tests on site level, Nst=
Total number applications of all tests on site level.

The UWEM metric (Fs) value is a number between 0 and 1. A score of zero
denotes that the Web site should not present serious problems of accessibility.

3 WAB*

As mentioned before, the WAB metric evaluates 25 checkpoints from the 3 priority
levels. However, the tests performed to evaluate the checkpoints are sometimes vague
when specifying the way to determine the number of potential violations of each
checkpoint. This is owed mostly to the evolution of the technology used in the
construction of web sites. Table 1 shows some examples.

 WAB*: A Quantitative Metric Based on WAB 487

Table 1. Some of the most vague checkpoints in the WAB metric

CheckPoint Number of potential violations
Each frame should reference a HTML file Every <frame> does not include iframe
Each frame should have a title Every <frame> does not include <iframe>
Do not use the same link sentence when pointing
to different URLs

 Number of <a> does not include <area>

Use relative position and size instead of absolute Every <table>, <th>, <td>, <frame> does not
include <div> or <iframe>

On the other hand, the UWEM metric specifies priority 1 and 2 checkpoints of

greater precision than the ones used in WAB (as seen in Table 2) when identifying the
number of potential violations. However, the downside of this metric is that no
priority 3 checkpoint is used.

Table 2. Some important checkpoints of the WAB metric

CheckPoint Number of potential violations
Each frame should reference an HTML file Every <frame>, <iframe>
Each frame should have a title Every <frame>, <iframe>
Do not use the same link sentence when pointing
to different URLs

Every <a>,<area>

Use relative position and size instead of absolute Every<table>, <th>, <td>, <frame>, <iframe>,
<div>, <object>, <applet>, <frameset>

Valid formal CCS 1.0 or CSS 2.x schema Every CSS
Do not use CSS rules that produce blinking Every CSS

Taking into account these deficiencies, we have developed WAB* extension of the

WAB metric. A summary of the most important features follows:

1. WAB* considers all 3 priority levels (as WAB), and not only 2.
2. WAB* uses the same WAB metric (with the same weights).
3. WAB* has all WAB checkpoints but updated to eliminate deficiencies. For

example:
a. Not only frames, but iframes are tested.
b. Not only table, th, td, and frame are tested for relative size and

position, but also div, iframe, object, and applet.
4. Besides, WAB* includes eleven automatic checkpoints from the UWEM

metric.

The final result is a metric with 36 fully automatic, evaluable checkpoints. 6 are
priority 1, 23 are priority 2, and 7 are priority 3. The complete table is not included
for space reasons.

4 A Practical Case: Evaluating the Accessibility of the European
Banking Sector

We performed an accessibility study of the European Banking Section (some results
are published in [9]) using the Iris tool previously mentioned. Among other goals, we

488 A.B. Martínez et al.

evaluated the behaviour of the new WAB* metric with relation to WAB and UWEM.
We took the Dow Jones EUROSTOXX TMI Banks list and selected 51 banks
belonging to 11 countries. The tool allowed us to evaluate 30,600 pages (51 sites x
200 pages in each site in 3 different depth levels x 3 metrics). The conclusions drawn
from the study state that the new WAB* metric results are alongside WAB and
UWEM, but the scores are more detailed, and always higher than WAB, mostly
because of more exhaustive tests included.

5 Conclusions

We have introduced WAB*, a new fully-automatic metric. It is based on WAB but
has a much more severe accessibility evaluation, using also UWEM-inspired
checkpoints. It evaluates 36 checkpoints against WAB’s 25, and with more precision.
The first results from studies performed using the new metric show it provides more
precise markers for accessibility levels than the other two metrics.

References

1. Vigo, M., Arrue, M., Brajnik, G., Lomuscio, R., Abascal, J.: Quantitative Metrics for
Measuring Web Accessibility (W4A), pp. 99–107. ACM Press, New York (2007)

2. Hackett, S., Parmanto, B., Zeng, X.: Accessibility of Internet Websites through Time. In:
ACM SIGACCESS Accessibility and Computing, pp. 32–39 (2003)

3. Sullivan, T., Matson, R.: Barriers to Use: Usability and Content Accessibility on the
Web’s Most Popular Sites. In: Conference on Universal Usability, pp. 139–144. ACM
Press, New York (2000)

4. Wab Cluster. Unified Web Evaluation Methodology (UWEM),
 http://www.wabcluster.org/deliverables.html

5. Freire, A.P., Bittar, T.J., Fortes, R.P.: An Approach Based on Metrics for Monitoring Web
Accessibility in Brazilian Municipalities Web Sites. In: ACM Symposium on Applied
Computing, pp. 2421–2425 (2008)

6. European Internet Accessibility Observatory (EIAO), http://www.eiao.net/
7. Holmesland, M.S., Ulltveit-Moe, N., Balachandran, A., Goodwin, M.: A Proposed

Architecture for Large Scale Web Accessibility Assessment. In: Miesenberger, K., Klaus,
J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 234–241.
Springer, Heidelberg (2006)

8. De Andres, J., Lorca, P., Martínez, A.B.: Social Responsability versus Efficiency Gains:
Which are the Factors that Underlie in the Implementation of Web Accessibility by Listed
Firms? In: IASK E-Activity and Leading Technologies 2008 & InterTIC, pp. 49–58 (2008)

9. De Andrés, J., Lorca, P., Martínez, A.B.: Economic and Financial Factors for the Adoption
and Visibility Effects of Web Accessibility. The Case of European Banks. Journal of the
American Society for Information Science and Technology (accepted, 2009) (publication
pending)

10. Parmanto, B., Zeng, X.: Metric for Web Accessibility Evaluation. Journal of the American
Society for Information Science and Technology 56(13), 1394–1404 (2005)

11. Nietzio, A., Strobbe, C., Velleman, E.: TheUnified Web Evaluation Methodology (UWEM)
1.2 for WCAG 1.0. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.)
ICCHP 2008. LNCS, vol. 5105, pp. 394–401. Springer, Heidelberg (2008)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 489 – 492, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Web-Based Mashup Tool for Information Integration
and Delivery to Mobile Devices

Prach Chaisatien and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{prach,tokuda}@tt.cs.titech.ac.jp

Abstract. The immense popularity in mobile internet has driven part of classic
web information and services to transform and shrink themselves to match the
diversity of web-capable mobile devices. This paper will present a Web-based
mashup tool to work with range of Japanese domestic mobile handsets and their
variety of limited functionalities. Our purpose is to provide users an alternative
option to customize information to be displayed and to integrate available
services for their mobile phone. Three major working components, functionality
tester, service aggregator and output simulator will aid users in understanding the
capability of their mobile device and selecting corresponding functionalities.
Successfully simulated and simplified information services will be accessible via
user’s mobile phones with correct configurations.

Keywords: Mobile Devices, Web-based, Customization, Integration, Mashup.

1 Introduction

The popularity of mobile phones has begun to build up due to their capability of web
access. One of the great challenges for mobile developers is dealing with devices’
specification. A web page of application which works and displays correctly on one
mobile phone may not work or display correctly on another. Classic web information
and service may not be easily accessible on a mobile phone. In this paper, we are
proposing a web-based tool which can help users build a mashup mobile application
from specific information sources, select integratible web services and compile them
into his/her personal mobile web service. The primary objective is to aid the user in
creating a mobile phone mashup application which matches the user’s preferences.

2 Research Backgrounds and Related Works

While Japanese mobile technologies gain major success in the domestic market, rigid
rules for designing mobile web services need to be adhered. Even though in many
other countries, internet and mobile technology are converging, the current Japanese
mobile technology still has obvious drawbacks and compatibility problems. Various
case studies have been observed the i-Mode services outside Japan [1], [2]. The latest

490 P. Chaisatien and T. Tokuda

report shows that European mobile operators have begun to discontinue their i-Mode
services. The main reason behind the discontinuation is that i-Mode comes with a
fixed business model [3].

Consequently, Japanese mobile users are having no choice but to follow the
regulation from carrier-dependent services and profile-specific phones. This research
proposes an alternative option to deliver independency to combine internet
technology and the ability to create mashup applications from applicable services for
mobile phones. A system overview is shown in Fig. 1.

Fig. 1. System overview

1. Our assumption is that users know how to operate their mobile phone browser
to a certain level. In some cases, we still require minimal effort from users to run a
specification test or make some adjustments which will help the system run correctly
on their mobile phone.

2. Specification detection via the user agent string and HTTP headers will be
conducted after the mobile phone was registered and accessed the initial page in
FUNCTE. The system will automatically detect working functions from this process.
Some specifications may need to be tested if they are not available.

3. Users are facilitated by a narrowed choice of mashup modules from the
specification detection. All configurations will be passed to the main web mashup
engine called SERVAR and match the working services in association with mobile
phone’s carrier. Using a desktop browser, users can choose applicable services,
information and select compatible web application to create their mashup application.

4. After users finish adjusting their mobile service components, simulation of the
output page will be display on SIMULO. As soon as the user has completed his/her
tuning, the mobile web service page is ready to be published and accessed online.

Although several methods in detecting mobile phone specification have been
presented and used worldwide, there is still no central standard for Japanese domestic

 A Web-Based Mashup Tool for Information Integration and Delivery 491

mobile phones. The user agent profile (UAProf) [4] is a set of XML documents that
contains information about the agent type and device capabilities. On the other hand,
there is an open-source project intended for developers working with the WAP and
wireless protocol called WURFL [5]. In fact, it is a manually imported UAProf with
additional sources and fixes submitted by other developers. A mobile device web
service database called DetectRight [6] provides free and paid subscribers with APIs
and analyzer tools which can be integrated with a mobile communication server.

Technology for mobile customization is being developed alongside technology for
desktops. The combination of Yahoo pipes and iPhone [7] is suitably leveraging a
creation of mobile mashup application via a visual editor. Christian S. Jensen et al [8]
demonstrate an idea of user-generated content for mobile services by introducing the
STREAMSPIN which enable users to generate their own mobile services from
text/photo posting and geospatial information.

3 Mashup Example and Discussion

Retrieve Location Information. Similar to the technique applied by Google Map but
using the carrier’s geo-location web service as a substitute. Some backup service such
as DoCoMo Open i-Area, which makes use of radio tower triangulation, may not
provide as precise a location as the GPS-based one does. A virtual coordinate
rectangle will be used to search for nearby places of interest. Location information are
fetched from Wikipedia. The user can also display details of these locations by
clicking on the marked dots or switching to text display and links as in Fig. 2.

Fig. 2. Screenshots from mashup example. (1) Select a service from available location-based
services (2) Current coordinates (3) Display the map with marked dots (4) Links for details.

Discussion. In our mashup example, there are many untested components which are
still in development. We now review some of the limitations of the components used
in this evaluation.

1. In our example, we only use HTML. However, some mobile phones can display
extended HTML which would allow development of a better user interface.

2. Network latency of each web resource need to be tested and revised. The current
method reduces the amount of data received and transmitted. The connection time

492 P. Chaisatien and T. Tokuda

between the mobile phone and the server was very variable. This is because the server
has to wait for a response from the requested web service.

3. In providing a map image to the user, the zoom level is not adjustable. This
adjustment has to be made manually by the user to fit his/her display area.

4. Search result is limited to a short description. Our intention is not to provide the
user with an extra mobile search engine but to have it integrated for other uses.

4 Conclusion and Future Work

In order to converge mobility and mashup information, there are several approaches
which need to be considered. Most mobile applications are bound with devices’
specifications and with the web services they use. Mobile service carriers in Japan
tend to keep their services strictly exclusive. Therefore, we developed a web system
that addresses device configuration problem at first hand and provides users an option
to mash and use their application independently.

Technically, the current system is able to test mobile phone specifications or make
specification detection using the user agent string and HTTP headers. Integratible
services will be listed during the mashup application creation process. Specifications
which have been tested by users are stored on the server and are used as a resource for
further development. There are still some components currently under development
which include an output simulator, a look and feel configurator and feature
adjustability. We are planning to revise the APIs to improve their speed, size and
stability in practical use. Using the same ideas, we plan to extend our system to be
compatible with more handsets available worldwide.

A mobile phone does not just support text input. It would be interesting to use the
microphone and camera on the mobile phone, for example, to support speech
recognition or for scanning 2D barcodes. Better mashup applications could be created
for JavaScript-capable phones with accessible low level APIs such as those appeared
for the Android or iPhone platforms. Indeed, this study ultimately needs more flexible
access to lower level device APIs and higher level web APIs.

References

1. O’Brien K.J.: Forerunner of mobile Internet, i-mode is fading in Europe, International
Herald Tribune (2007),

 http://www.iht.com/articles/2007/07/17/business/imode.php
2. Suri, V.R., Sawhney, H.: The internet and its wireless extensions in Japan: the portentous

interface between chaos and order. Info. 10(3), 10–21 (2008)
3. Ishii, K.: Internet Use via Mobile Phone in Japan. Telecommunications Policy 28(1), 43–58

(2004)
4. UAProf profile repository,

 http://w3development.de/rdf/uaprof_repository/
5. WURFL, http://wurfl.sourceforge.net/
6. DetectRight, http://www.detectright.com/
7. Trevor, J.: Doing the Mobile Mash. Computer 41(2), 104–106 (2008)
8. Jensen, C.S., Vincente, C.R., Wind, R.: User-Generated Content: The Case for Mobile

Services. Computer 41(12), 116–118 (2008)

UWE4JSF: A Model-Driven Generation
Approach for Web Applications

Christian Kroiss1, Nora Koch1,2, and Alexander Knapp1

1 Ludwig-Maximilians-Universität München, Germany
2 Cirquent GmbH, Germany

{kroiss,kochn,knapp}@pst.ifi.lmu.de

Abstract. Model-driven engineering is a promising approach, but there
are still many hurdles to overcome. The tool UWE4JSF solves the hur-
dles for the model-driven development of web applications designed with
UWE. It builds upon a set of models and domain specific annotations –
in particular an abstract and a concrete presentation model. It is com-
pletely integrated in Eclipse, implemented as a set of plugins supporting
model transformations and fully automatic code generation.

1 Introduction

The aim of model-driven development (MDD) is to raise the level of abstraction
at which software is developed in order to save time and to reduce the amount
of redundant programming work. MDD approaches are based on models that
become first-class citizens in the development process, and on metamodels and
model transformations requiring appropriate tool support. UWE4JSF [2] is such
a CASE tool that was developed for the generation of web applications within
the scope of the UML-based Web Engineering approach (UWE)1.

UWE4JSF focuses on the automated generation of web applications, similarly
to UWEATL [1] – first MDD approach for UWE – but differs in several concep-
tual and implementation aspects. In particular, (1) UWE4JSF is integrated in
the Eclipse IDE using Eclipse-based transformation technologies. (2) It automat-
ically generates web applications for the JSF2 platform, a component-based tech-
nology which provides a flexible and powerful mechanism for the implementation
of user interfaces (UI) of arbitrary complexity by means of component libraries.
(3) UWE4JSF makes use of OGNL3 that is an open-source expression language
for Java. (4) The generation of the UI is based on a revisited version of the UWE
presentation metamodel and an additional concrete presentation model.

To summarize UWE4JSF provides a human-readable, debuggable and high-
performance approach that supports fully automated generation of web
applications.
1 UWE — http://www.pst.ifi.lmu.de/projekte/uwe
2 Java Server Faces — http://java.sun.com/javaee/javaserverfaces/
3 Object-Graph Navigation Language — http://www.opensymphony.com/ognl/

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 493–496, 2009.
© Springer-Verlag Berlin Heidelberg 2009

494 C. Kroiss, N. Koch, and A. Knapp

2 Extending UWE for Model Driven Development

UWE follows the principle of “separation of concerns” by modeling the content,
the navigation structure, the business processes, and the presentation of a web
application separately as shown in Fig. 1. UWE is mainly based on standards, like
UML and MDA4. The models are built using the UWE profile, which is a UML
extension defined using the extension mechanisms provided by UML. For exam-
ple, classes with a stereotype «navigationClass» represent navigable nodes for
information retrieval; associations stereotyped with «navigationLink» model
direct links. For more details the reader is referred to [2].

«elemConfig»

Presentation

Navigation Structure

Process

«user action»

Content

*

*

 {isHome}

 ?

Fig. 1. UWE model types: overview

To use an UWE model for automatic transformation and code generation, it
has to be augmented with explicit information that is not necessary if the model
is only used for communication or documentation purposes. For example, the
input data for navigation nodes has to be specified, together with the selection
rules that are executed when links are followed. Information like this is specified
by means of OGNL, combined with some UWE-specific functions. OGNL is
also used in the activities of the process model to specify guard expressions
and data handling actions. Unlike many other approaches, UWE also provides
a UML extension for the explicit modeling of the user interface. First of all, the
(abstract) presentation model is represented in UML using composite structure
diagrams containing stereotyped classes and properties as representations for UI
elements like text input fields or buttons. The resulting diagrams are very well
suited to illustrate the basic layout and functional structure of the UI.

The elements of the presentation model must be mapped to UI components
of the target platform. Many MDD approaches like WebML/Webratio5 use
template-based mechanisms for this purpose. However, in modern web applica-
tions, the selection of concrete UI components often strongly affects the usability,
e.g. a date could be entered in a text field or with a dynamic calendar component.
4 OMG — MDA Guide, http://www.omg.org/docs/omg/03-06-01.pdf
5 http://www.webml.com

UWE4JSF: A Model-Driven Generation Approach for Web Applications 495

Therefore, in UWE this mapping is regarded as an important part of the applica-
tion’s design and recorded in a dedicated UML-based model, called the concrete
presentation model. The basic idea is that platform specific UI components are
modeled as stereotyped UML classes and corresponding instance specifications
represent concrete component configurations. An example for a component that
requires configuration like this might be a rich table whose column headers can
be clicked to switch between different sorting criteria – the latter would be de-
fined using attributes of the component configuration. It is also possible to build
composite tree structures of component configurations, which might be used, for
example, to add labels or headers to input or output elements. The mapping
of abstract presentation model elements to element configurations can be estab-
lished in two ways: (1) by associating mapping rules to meta-classes in default
element configurations or (2) by linking individual elements of the abstract pre-
sentation model to element configurations with UML dependencies. In the sense
of the MDA, these individual mappings could be seen as markings that guide
the transformation process.

3 Tool Chain for Automatic Generation

The concepts described above were realized in the transformation and code gen-
eration tool UWE4JSF6. Its applicability has been demonstrated with several
example applications, e.g. a simplified MP3 web store. UWE4JSF is implemented
as a set of Eclipse plugins and supports automatic generation of JSF-based web
applications from UWE models as well as model validation using constraints
specified in the Object Constraint Language (OCL). UWE4JSF uses EMF7

for the storage of (meta-)models and for the exchange with third party UML
CASE tools, using a widely supported data format called EMF-UML. The model
transformations were realized using ATL8 for model-to-model (M2M) and JET9

for model-to-text (M2T) transformations. Both Eclipse-based technologies were
combined in a transformation chain that is illustrated in Fig. 2.

The process starts with a UML source model (with applied UWE profile) that
contains both the platform-independent model (PIM) and individual element
mappings of the concrete presentation model. A first model-to-model transfor-
mation converts it to an instance of the UWE metamodel which is then validated
using a set of OCL constraints. If the validation succeeds, a next transformation
generates a platform-specific model (PSM) by processing the UWE source model
together with an additional input model containing the default UI element con-
figurations of the concrete presentation model. This PSM is finally used as input
for a model-to-text transformation that generates the application’s source code
which consists of Java classes, page specifications and configuration files. These
generated artefacts build upon an intermediate platform, called the UWE4JSF
6 http://www.pst.ifi.lmu.de/projekte/uwe/uwe4jsf
7 Eclipse Modeling Framework — http://www.eclipse.org/modeling/emf
8 Atlas Transformation Language — http://www.eclipse.org/m2m/atl/
9 http://www.eclipse.org/modeling/m2t

496 C. Kroiss, N. Koch, and A. Knapp

UWE Metamodel

UML to UWE
(ATL)

UML Metamodel UWE Profile

UML Source Model

UWE to JSF
(ATL)

Default Presentation
Configuration

JSF-PSMPSM to Code
(JET)

JSF Metamodel

UWE4JSF Framework
non-generated
artefacts

generated
artefacts

transformationJSF

PIM Presentation Element
Mappings

*.java, *.jsp,
*.xml

Web Application

non-generated Java classes,
libraries, stylesheets, etc.

ERROR

UWE Source
Model

Validation

Fig. 2. UWE4JSF Generation Process

framework, that resides on top of JSF and is designed to reduce the complexity
of the generated code and the transformation rules. Finally, the application can
be augmented with non-generated Java classes to implement complex process
actions or persistence layer operations.

4 Conclusions and Future Work

We presented the MDD tool UWE4JSF that allows fully automatic generation
of JSF-based web applications from UWE models. The chosen platform provides
high extensibility and UWE’s concrete presentation model can be used to ex-
ploit the vast amount of available JSF component libraries that provide means
to create rich user interfaces. JSF also offers a flexible architecture for supporting
simultaneously multiple platforms like browsers technologies and mobile devices.
Future work includes efforts to incorporate mechanisms like pattern substitution
and to extending the validation engine. Last but not least, the MagicUWE10

project aims to create an elaborate integration of UWE/UWE4JSF into a pro-
fessional UML CASE tool.

References

1. Kraus, A., Knapp, A., Koch, N.: Model-Driven Generation of Web Applications in
UWE. In: MDWE2007 - 3rd International Workshop on Model-Driven Web Engi-
neering, July 2007. CEUR-WS, vol. 261, pp. 23–38 (2007)

2. Kroiss, C.: Model-based Generation of Web Applications with UWE (in German).
Diploma Thesis. Ludwig-Maximilians-Universität München, Germany (June 2008),
http://www.pst.ifi.lmu.de/projekte/uwe/publications/CKroissDA08.pdf

10 http://www.pst.ifi.lmu.de/projekte/uwe/toolMagicUWE.html

http://www.pst.ifi.lmu.de/projekte/uwe/publications/CKroissDA08.pdf

On Using Distributed Extended XQuery for Web Data
Sources as Services�

Muhammad Intizar Ali1, Reinhard Pichler1, Hong-Linh Truong2,
and Schahram Dustdar2

1 Database and Artificial Intelligence Group, Vienna University of Technology
{intizar,pichler}@dbai.tuwien.ac.at

2 Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac.at

Abstract. DeXIN (Distributed extended XQuery for data INtegration) integrates
multiple, heterogeneous, highly distributed and rapidly changing web data sources
in different formats, e.g. XML, RDF and relational data. DeXIN is a RESTful data
integration web service which integrates heterogeneous distributed data sources,
including data services (DaaS – data as a service). At the heart of DeXIN is an
XQuery extension that allows users/applications to execute a single query against
distributed, heterogeneous web data sources or data services. In this system demo,
we show how DeXIN can provide an optimized, distributed and parallel query
processing and data integration at the same time.

1 Introduction

In recent years, there has been an enormous boost in Semantic Web technologies and
Web services. Web applications thus have to deal with huge amounts of data which
are normally scattered over various data sources using various languages. Hence, these
applications are facing two major challenges, namely (i) how to integrate heterogeneous
data and (ii) how to deal with rapidly growing and continuously changing distributed
data sources.

The concept of providing data as a service (DaaS) [1] enables applications to expose
data sources as Web services that can be consumed by Web clients within a corpo-
rate network and across the internet. In this paper, we demonstrate DeXIN, a RESTful
Web Service for data integration of heterogeneous and distributed data sources. DeXIN
receives a user query in extended XQuery syntax as presented in [2], this extension
enables DeXIN to execute a single query in XQuery language, which can contain mul-
tiple sub-queries of SPARQL or SQL. Data sources supported by DeXIN can be Web
services or databases which provide a query interface based on Web services and XML
wrapping facility for results. Supporting Web services based on databases is impor-
tant as current database management systems increasingly provide REST/SOAP APIs
for querying hosted data. The integrated results of all the data sources are presented
in XML. Currently available heterogeneous data integration approaches normally work

� This work was supported by the Vienna Science and Technology Fund (WWTF), project
ICT08-032.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 497–500, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

498 M.I. Ali et al.

either (i) by transforming the data sources into common format [3,4] or (ii) by query
rewriting [5]. In contrast, DeXIN executes distributed parallel queries towards native
data sources, without fetching all the data sources into one centralized place or trans-
forming data sources. These features make DeXIN a powerful tool for data integration
in a highly distributed, peer to peer, heterogeneous and rapidly changing Web environ-
ment, providing the user with a uniform access to this data.

2 Overview of DeXIN

An architectural overview of DeXIN is depicted in Figure 1. The main task of DeXIN
is to provide an integrated access to different distributed, heterogeneous, autonomous
data sources. DeXIN provides a single entry point to access different data sources by
using our extension of XQuery [2]. The DeXIN service can be utilized by many web
applications which require an integrated access to heterogeneous web data sources. Dis-
tributed, parallel query execution and avoiding data transformation make it a strong tool
for data integration and optimized query execution in distributed and peer to peer net-
works. Normally, the user would have to query each of these data sources separately.
With the support of DeXIN, he/she has a single entry point to access all these data
sources. In total, the user thus issues a single query (in our extended XQuery language)
and receives a single result. All the tedious work of decomposition, connection estab-
lishment, document retrieval, query execution, etc. is done behind the scene by DeXIN.

XQuery
Processor

DeXIN

SPARQL
Processor

SQL
Processor

RDF Data
Store Internet

XQuery
SPARQL

SQL
http

XML/
RDF/
OWL

httpSPARQL
XQuery SQL

XML Data
Store RDBMS

E
xt.X

Q
uery

Fig. 1. Architectural overview of DeXIN framework

3 Distributed Extended Query for Data Integration

3.1 DeXIN: Data Integration Web Service

DeXIN is a RESTful data service which takes a single query in extended XQuery syn-
tax as input, decomposes the query into sub-queries, executes each sub-query indepen-
dently on its appropriate distributed data source at remote locations and outputs the
integrated results from all data sources in XML format. Consider an example of a web
application which needs to provide the integrated access to the distributed and hetero-
geneous Web data sources dynamically. Typical data integration approaches e.g. ware-
housing, mediation or ontology based, do not provide the desired results because they

On Using Distributed Extended XQuery for Web Data Sources as Services 499

Fig. 2. User Interface of DeXIN

require some prior knowledge about the data sources. DeXIN can ideally serve such ap-
plications because it provides integrated access to heterogeneous distributed web data
sources dynamically. Figure 2 shows the user interface of the DeXIN service. The user
can write a query in extended XQuery format and gets the accumulated results of all
the data sources. Currently, DeXIN supports two types of sub-queries inside XQuery
namely, (i) SPARQL for RDF, OWL and (ii) SQL for relational data.

3.2 Searching Available Data Services

Many service providers have started to expose their data as a service by implementing
the Resource Oriented Architecture (ROA). Some Database Management Systems also
provide access to their data using Query Language + REST/SOAP. DeXIN can commu-
nicate with Data Service directories to find out the appropriate data service. The user
can initiate a keyword search for the required data service, and all the available data
services are listed by DeXIN to help the user to select an appropriate data service.

3.3 Registration of Data Sources

The registration of data sources at DeXIN is not mandatory because DeXIN can interact
with any data service at runtime, but providing some metadata about data sources by
following the registration procedure makes querying simpler from the user’s perspec-
tive. Different Data Sources (e.g. RDF,XML,OWL or RDBMS) can register at DeXIN
to benefit from the integration facilities provided by DeXIN. Each data source must
provide a unique name, should have one of the DeXIN supported data types, querying
interface with connectivity facility and XML converter for query results. Data providers
can provide additional information about schema, user privileges, license and legal is-
sues to facilitate the users to interact with their data sources effectively. It is worth
mentioning here that utilizing the concept of Data as a Service greatly eases the pro-
cess of registration, because it uses the standard HTTP protocol to interact with the data
sources and XML for data transfer.

500 M.I. Ali et al.

3.4 Data Source Statistics and Schema Information

DeXIN stores some metadata and statistics about registered data sources, which are
helpful for the selection of the best available service from the user’s perspective. The
user can select any data service from the list of available data sources shown by DeXIN
(see top right of Figure2) and can see its statistics which are either stored in DeXIN or
retrieved by DeXIN after communicating with the Service Management System.

If the data service provider provides some schema information about data sources,
the user can click on ”Show Schema”, to see the schema information, which is helpful
for designing queries for that particular data source.

3.5 Query Execution

Once the user submits a query to DeXIN in extended XQuery format, DeXIN (i) decom-
poses the query into multiple sub-queries for distributed, heterogeneous data sources
(ii) connects with the data sources mentioned in the query (iii) dispatches queries to
their particular data source at remote locations (iv) displays integrated results of all the
sub-queries into XML format.

4 Conclusion

In this demo, we present DeXIN, a web based system to integrate data by executing dis-
tributed XQuery over Heterogeneous Data Sources. We demonstrate typical use cases
of heterogeneous data integration which show that DeXIN is a simple but powerful
tool to integrate rapidly changing heterogeneous data sources dynamically. DeXIN can
be utilized by many applications where the data sources are unknown at design time,
and it eases the integration process from the user’s perspective by not requiring prior
knowledge of data sources.

References

1. Zhu, F., Turner, M., Kotsiopoulos, I.A., Bennett, K.H., Russell, M., Budgen, D., Brereton, P.,
Keane, J., Layzell, P.J., Rigby, M., Xu, J.: Dynamic data integration using web services. In:
ICWS, pp. 262–269 (2004)

2. Ali, M.I., Pichler, R., Truong, H.-L., Dustdar, S.: DeXIN: An extensible framework for dis-
tributed XQuery over heterogeneous data sources. In: Proc. ICEIS 2009, pp. 172–183 (2009)

3. Gandon, F.: GRDDL Use Cases: Scenarios of extracting RDF data from XML documents.
W3C Proposed Recommendation (April 2007)

4. Groppe, S., Groppe, J., Linnemann, V., Kukulenz, D., Hoeller, N., Reinke, C.: Embedding
SPARQL into XQuery/XSLT. In: Proc. SAC 2008, pp. 2271–2278 (2008)

5. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling between the
XML and RDF Worlds - and Avoiding the XSLT Pilgrimage. In: Bechhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 432–447. Springer,
Heidelberg (2008)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 501 – 504, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Automatic Generation of RIAs Using RUX-Tool and
Webratio*

Marino Linaje1, Juan Carlos Preciado1, Rober Morales-Chaparro2,
Roberto Rodríguez-Echeverría, and Fernando Sánchez-Figueroa1

1 Quercus SEG, Escuela Politécnica, Universidad de Extremadura
Avda. de la Universidad S/N, Cáceres, Spain

mlinaje@unex.es
2 R&D Department, Homeria Open Solutions, S.L.

Vivero de Empresas
Avda. de la Universidad S/N, Cáceres, Spain

robermorales@homeria.com

Abstract. This work describes RUX-Tool, an MDD-based tool that gives
support to the modeling and automatic code generation of User Interfaces for
Rich Internet Applications (RIAs) with multidevice and multiplatform
capabilities. This tool is mainly thought to be used with other tools based on
Web methodologies such as it is the case of WebRatio that automatically
generates the content structure and the business logic.

Keywords: Rich Internet Applications, User Interfaces, CASE Tool.

1 Introduction

The future of the Web is being built using technologies such as Rich Internet
Applications (RIAs) [1] which, on the one hand, offer all the advantages of traditional
Web applications and, on the other hand, add the flexibility and user-friendliness of
desktop solutions. RIAs offer online and offline capabilities, sophisticated user
interfaces, augmented storage and processing capabilities at the client side, high levels
of user interaction, usability and personalization and they minimize bandwidth usage
through the separation of presentation from content at the client side.

Some of the most well-known technologies used for developing RIAs are AJAX
[5], Flash [5], Flex [5] and OpenLaszlo [5]. However, while RIA technologies are
reaching maturity and a growing number of Web 2.0 applications are being developed
based on them, there is a lack of comprehensive models and methodologies for the
systematic development of RIAs [5].

Many of the RIA features are related with User Interfaces. With no doubt, they are
the most appreciated features by users. The main contribution of this paper is
introducing a visual and intuitive tool for the design of RIA User Interfaces on top of
existing applications developed with a Web methodology. This tool, called RUX-Tool,

* Developed under Spanish Research Projects: TSI-020501-2008-47 and TIN2008-02985.

502 M. Linaje et al.

gives support to the automatic code generation for different devices (PC, Mobile, PDA,
etc) and different platforms (AJAX, Flex, OpenLaszlo).

RUX-Tool works together with WebRatio, the WebML CASE Tool. Once the
application has been developed using WebRatio, one can use RUX-Tool to obtain
from the WebRatio model the data structure and business logic information. Then, the
process of modeling the User Interface begins, as described below.

2 RUX-Tool

RUX-Tool is based on RUX-Method [4] (Figure 1). According to [3] the design of the
UI is divided into 4 levels: Concepts and Tasks, Abstract Interface, Concrete
Interface and Final Interface. In RUX-Method Concepts and Tasks are provided by
the underlying Web model and each level is composed by Interface Components
which are specified in the RUX Components Library.

Fig. 1. Design stages in RUX-Method

The development process in RUX-Method has four main stages: connection with
the previously defined underlying Web model, definition of the Abstract Interface,
definition of the Concrete Interface and specification of the Final Interface which
ends in code generation.

So, the first stage in RUX-Tool deals with the connection with the WebRatio model.
At this stage, the presentation elements and the relationships among them are
extracted, as well as the defined operations on the WebRatio model. On the basis of the
results offered by the Connection Rules (CR in Figure 1), RUX-Tool builds the
Abstract Interface, which is independent from the platform and the final display
device. Applying to the Abstract Interface the first set of Transformation Rules (TR1 in
Figure 1), the Concrete Interface, which allows the appearance, spatial arrangement,
temporal and interactive behavior, is obtained. Finally, from the Concrete Interface and
through the second set of Transformation Rules (TR2 in Figure 1), the Final Interface

 Automatic Generation of RIAs Using RUX-Tool and Webratio 503

Fig. 2. RUX-Tool architecture

is obtained. The Abstract and the Concrete Interface levels can be modified by the
modeler before performing the next stage.

RUX-Tool is not a desktop application. It is itself a RIA, so it is accessed from a
browser, and allows working on-line in a cooperative way.

The general architecture of the tool can be seen in Figure 2. RUX-Tool, as a typical
RIA, has two sides: client side and server side. The client side includes a graphic UI
for redesigning the different levels of User Interfaces once they have been
automatically obtained from their corresponding previous stage. The client side also
includes different wizards and dialogs to configure the tool, to import the WebRatio
project and to specify the chosen devices and platforms for the final code generation.

On the other hand, the server side is in charge of performing the required
transformations between interface levels and the connection with the underlying
WebRatio application. This implies the communication between client and server
sides to interchange the representation of the different interface levels. This is done by
means of XML.

The Component Library is also at the server side. It has a plug-in based
architecture favoring an easy management of components (deletion, insertion, etc).
Each component is implemented using a template based on Velocity Style Language.

3 RUX-Tool in the Market

Currently, RUX-Tool is being used with Webratio 5.1. It is being developed between
the University of Extremadura and Homeria Open Solutions, (spinoff of the same
university) as a consequence of a Spanish Research project from the Industry
Department.

RUX-Tool has being used in several projects such as a Virtual Campus, a Content
Management System or Virtual Shop Management System. Figure 3 shows a

504 M. Linaje et al.

Fig. 3. RUX-Tool

snapshot of the tool at the client side when designing a simple Web portal with a
shopping cart.

We refer to the reader to the RUX-project site (www.ruxproject.org) for more
details on RUX-Tool (video-demos, examples, etc).

References

1. Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi, G.: Conceptual Modeling and Code
Generation for Rich Internet Applications. In: International Conference on Web Engineering
ICWE, pp. 353–360. ACM, New York (2006)

2. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kauffmann, San Francisco (2002)

3. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: UsiXML: a
Language Supporting Multi-Path Development of User Interfaces. In: Bastide, R., Palanque,
P., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 207–228. Springer,
Heidelberg (2005)

4. Linaje, M., Preciado, J.C., Sanchez-Figueroa, F.: Engineering Rich Internet Application
User Interfaces over Legacy Web Models. IEEE Internet Computing 11(6), 53–59 (2007)

5. Preciado, J.C., Linaje, M., Sanchez, F., Comai, S.: Necessity of methodologies to model
Rich Internet Applications. In: IEEE Int. Symposium on Web Site Evolution, pp. 7–13
(2005)

MagicUWE – A CASE Tool Plugin for Modeling
Web Applications�

Marianne Busch1 and Nora Koch1,2

1 Ludwig-Maximilians-Universität München, Germany
2 Cirquent GmbH, Germany

busch@cip.ifi.lmu.de, kochn@pst.ifi.lmu.de

Abstract. Adequate tool support is a crucial factor of success for a
software development method or technique. In this paper, we present
the MagicUWE tool, that supports systematic design of web applica-
tions with the UML-based Web Engineering (UWE) approach. It pro-
vides assistance to the designer for the modeling activities using the
UWE profile and the semi-automatic generation of models. MagicUWE
is implemented as a plugin for the CASE tool MagicDraw. Focus of the
development of the plugin was the usability, adaptability and extensibil-
ity of the tool.

1 Introduction

The Unified Modeling Language (UML)1 provides a rich set of modeling elements
and diagram types to cover the specification needs of all kinds of software. In
particular, it offers an extension mechanism for the definition of domain spe-
cific modeling languages (so-called profiles). The UML-based Web Engineering
(UWE) profile is such an extension and therefore, all UML CASE tools can be
used to build UWE models. In order to provide an augmented assistance to the
UWE modeler, we implemented a plugin for the MagicDraw2 tool - called Mag-
icUWE [1] [2]. In contrast to our previous tool ArgoUWE [3], it is based on the
UML2 metamodel.

MagicUWE supports the UWE notation and the UWE development process,
i.e. it comprises (1) extensions of the toolbar for comfortable use of UWE ele-
ments including shortcuts for some of them, (2) a specific menu to create UWE
default packages and new diagrams for the different views of web applications
(content, navigation, presentation and processes), and to execute model transfor-
mations, (3) additional context menus not only for the containment tree but also
within navigation diagrams. MagicUWE is easy to install and easy to extend,
and the usability is mainly given by intuitive icons, different types of menus and
helpful hints.
� This work has been supported by the DFG Project MAEWA II, WI 841/7-2, and

the EU FET-GC2 IP project SENSORIA, IST-2005-016004.
1 OMG - Unified Modeling Language. http://www.omg.org/docs/formal/09-02-02.pdf
2 MagicDraw. http://www.magicdraw.com/

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 505–508, 2009.
© Springer-Verlag Berlin Heidelberg 2009

506 M. Busch and N. Koch

2 Modeling with MagicUWE

In order to get a general idea of MagicUWEs main functionalities, the extensions
of the toolbar, the menu and the context menus are introduced in this section.
The plugin3 can be downloaded from the UWE website4, where a tutorial to
UWE and a tabular reference of MagicUWE can be found.

Toolbar. MagicUWE allows selecting model elements for modeling web applica-
tions defined by stereotypes directly from the toolbar (see Fig. 1(a)) like naviga-
tion classes, and navigation links, index, and all kinds of presentation elements
as page, presentation group and presentation properties, input and output user
interface elements, etc. In particular, before drawing a presentation property, an
element has to be chosen, which should afterwards contain the new property.
The name of the new class and property can easily be typed into an input field
provided by the plugin, as shown in Fig. 1(b). Properties can be nested and are
graphically represented by nested class diagrams.

(a) Toolbar (b) Popup for naming class & property

Fig. 1. MagicUWE: Insertion of property from toolbar

An example of the simplification of such a common operation, is the compar-
ison to an insertion of an UWE property without MagicUWE. The user has to
include the UWE profile5 manually and one stereotype from the UWE profile
has to be added to a new class. The properties derived from this class, can be
drawn only in elements, that have the Suppress Structure value set to false
in the Symbol(s) Properties.

MagicUWE Menu. MagicDraw’s main menu provides the functionalities to
create the default UWE packages (which are also predefined in the MagicUWE
3 UWE - MagicUWE. http://www.pst.ifi.lmu.de/projekte/uwe/toolMagicUWE.html
4 UWE - UML-based Web Engineering. http://www.pst.ifi.lmu.de/projekte/uwe/
5 UWE - Metamodel and Profile.

http://www.pst.ifi.lmu.de/projekte/uwe/publicationsMetamodelAndProfile.html

MagicUWE – A CASE Tool Plugin for Modeling Web Applications 507

template) and to store new UWE diagrams in this hierarchy. On the one hand,
it is possible to create new empty diagrams like in all UML tools. On the other
hand, transformations are available in order to generate step by step drafts of
diagrams based on another view of the web application:

– Content-to-Navigation transformation: Creates a new «navigationClass»
class (in the navigation package) for each class in the content diagram, gives
the new class the same name, adds «navigationLink» associations, and
finally visualize them in a new navigation diagram.

– Navigation-to-Presentation transformation: Generates a new class for each
class of a navigation diagram using a presentation specific stereotype. In this
case, the «presentationClass» stereotype is added.

– Navigation-to-ProcessStructure transformation: Creates a new process struc-
ture diagram including a symbol of each class stereotyped «processClass»
that is part of a navigation diagram. This is not a complex task, but a con-
venient method to avoid repetitive tasks to be performed by the modeler.

– Navigation-to-ProcessFlow transformation: Prepares a new process flow (an
activity diagram) for each «processClass» of a navigation diagram. The
new diagrams are labeled like the classes (with the appendix “Workflow”).

Context Menu. If more than one diagram should be transformed, the con-
text menu of the containment tree is the most flexible solution, because several
diagrams can be selected as source for one kind of transformation. Two more
MagicUWE context menus are located over the classes and associations of nav-
igation diagrams, as can be seen in Fig. 2. The checked menu makes it possible
to switch the tagged values {isHome} and {isLandmark} to true or false.

Fig. 2. MagicUWE: Context menus of navigation diagrams

The insertion of access primitives like index and query, is a challenge for the
plugin, because it depends on the selected stereotype as well as on the number
of associations the user selected before. A concrete example is the insertion of
an index and a menu. An index is inserted, if an instance of a class should be
selected, i.e. one end of a single association between navigation classes has the
multiplicity ’*’, whereas a menu connects one main class with several classes. A
menu will be added with a composition between the menu and the main class.

508 M. Busch and N. Koch

3 Usability, Adaptability and Extensibility

The aim of MagicUWE is to make the design of web applications with UWE
and MagicDraw really easy, therefore an intuitive user interface is essential. In
order to support valid models, it is especially important to show advices, e.g. if
presentation elements are drawn into a navigation diagram. This check is based
on the type recognition of the current UWE diagram and compares predefined
substrings with the name of the diagrams parent package.

MagicUWE’s hint messages can be configured (or even disabled) separately for
all UWE diagram types (e.g. the standard for the package of navigation diagrams
is packNavigation=nav). Thus, adaptability is another main goal of MagicUWE.
It is possible to change the name of the included UWE profile, to determine the
shortcuts for the toolbar entries and to decide which presentation stereotypes
should be displayed in the toolbar as property or as class. Further characteristics
of usability are a convenient installer for MagicUWE and the integration of the
plugin in the GUI of MagicDraw. In particular, the modeler can also create all
UWE diagram types out of MagicDraw’s “New Diagram” context menu and not
only use the familiar toolbar with its last used functionality, but also quickly
select the required item, recognisable by its stereotype symbol.

In order to cope with new features of UWE and the next versions of Mag-
icDraw, MagicUWE is designed in a very modular way, the code is well docu-
mented and a complex build script is used to create and launch new versions of
the plugin automatically. Therefore, the tool is easily extensible and adaptable,
which is welcome in the continuous improvement process of the CASE tool.

4 Conclusions and Future Work

In this paper we presented MagicUWE – a CASE tool for designing and gener-
ating UWE models characterized by its usability. Implemented as a MagicDraw
plugin, MagicUWE is a highly modular and easy to extend software. In fact, the
development of MagicUWE is an ongoing project that currently focuses on the
extension of the tool with modeling elements for rich internet applications [4]
and on further validation mechanisms for model consistency.

References

1. Blagoev, P.: MagicDraw-Plugin for Modelling and Generating Web Applications.
Master’s thesis, Ludwig-Maximilians-Universität München (2007)

2. Busch, M.: Migration and Extension of the MagicDraw Plugin MagicUWE (Ger-
man). Project report, Ludwig-Maximilians-Universität München (2009)

3. Knapp, A., Koch, N., Zhang, G., Hassler, H.-M.: Modeling Business Processes in
Web Applications with ArgoUWE. In: Baar, T., Strohmeier, A., Moreira, A., Mellor,
S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 69–83. Springer, Heidelberg (2004)

4. Koch, N., Pigerl, M., Zhang, G., Morosova, T.: Patterns for the Model-based Devel-
opment of Rich Internet Applications. In: Gaedke, M., Grossniklaus, M., Díaz, O.
(eds.) ICWE 2009. LNCS, vol. 5648, pp. 283–291. Springer, Heidelberg (2009)

A Model-Based Approach Providing
Context-Sensitive Television Interaction

Pieter Bellekens1, Lora Aroyo2, Geert-Jan Houben3, and Annelies Kaptein4

1 Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands
p.a.e.bellekens@tue.nl

2 VU University Amsterdam, De Boelelaan 1081, Amsterdam, The Netherlands
l.m.aroyo@cs.vu.nl

3 Delft University of Technology, Mekelweg 4, Delft, The Netherlands
g.j.p.m.houben@tudelft.nl

4 Stoneroos Digital Television, Sumatralaan 45, Hilversum, The Netherlands
annelies.kaptein@stoneroos.nl

Abstract. With this demonstrator of iFanzy, a Personalized Electronic
Program Guide, we want to show how we approached the integration
problem between various devices and various heterogeneous data sources
in the television domain. Engineering applications in the world of televi-
sion introduces on one hand some new problems like interfacing with a
television set-top box combination via a remote control, and on the other
hand asks for new approaches to known challenges like dealing with cold
start issues. In this paper we discuss these problems and conclude with
some user tests both in progress as well as planned in the near future.

1 Introduction

For years, the television platform did not really witness structural or conceptual
changes. People watched their favorite programs and went to their computer if
they wanted more information, interaction or services. However, after the steep
technological rise of the Internet with concepts and approaches like the existing
Web 2.0 and the envisioned Web 3.01, the television domain has gained mo-
mentum as the new platform where these new engineering techniques can also
be applied. In this paper we present iFanzy, a Personalized Electronic Program
Guide (PEPG), where user modeling and smart metadata aggregation via Se-
mantic Web techniques [1] are introduced to provide an integrated ubiquitous
approach reinventing the television experience.

2 iFanzy

iFanzy is the first practical approach trying to facilitate a ubiquitous environ-
ment providing access to television content. To do so, the iFanzy framework
consists out of a set-top box application controlled by the remote control, an
1 http://dsiegel.blogs.com/thoughts/2007/05/defining web 30.html

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 509–512, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

510 P. Bellekens et al.

Fig. 1. The iFanzy Web interface

online Web application2 and a application running on a mobile (currently a pro-
totype running on the iPhone). Together these three platforms aim at helping the
user selecting his or her ideal television experience. Each of these applications is
specifically tailored to provide the functionality mostly expected from that par-
ticular platform. The Web application for example, is mainly built to provide
a wide overview of all channels via a PEPG (Personalized Electronic Program
Guide), enabling program ratings, setting favorites, reminders and alerts, etc.
In figure 1 we see a part of in the UI including some movie tips at the top (in-
cluding trailer) ranked by the user’s estimated interest in these movies, a small
overview of three channels in the lower left and a search cloud on the lower right.
Some programs in the channel list are colored in different shades of orange. The
intensity of the tone indicates how good this program fits with the profile of the
currently logged-in user, where a darker tone indicates a better match.

While the Web application benefits from the versatility of the computer, the
set-top box application solely depends on interaction via a remote control. This
leads to the fact that the set-top box interface is much more limited in the
available features and possibilities. Therefore, enabling exactly those features
mostly expected by the user on this platform is key. Moreover, since a person
watching television is usually much less proactive then when using a computer,
we need to enable the features he values most and make them function with as
few button presses as possible. In figure 2 we see the iFanzy interface of the set-
top box UI. Above the three most favorite channels (the order is personalized),
we see the 6 top recommendations for the current user with the option to see
more if necessary. Just like in the Web interface, programs get a tone of orange
indicating how well they fit the current user. At the bottom of the screen we
see the well known colored remote control buttons (red, green, yellow and blue)

2 http://www.ifanzy.nl/

A Model-Based Approach Providing Context-Sensitive Television Interaction 511

Fig. 2. The iFanzy set-top box interface

providing application shortcuts e.g. to see all program details, etc. Next to these,
a dedicated button allows the user to immediately start watching the program.

3 Engineering Techniques

Working with various clients providing one integrated service to the user asks
for a centralized approach to the engineering of the applications. This is among
others reflected in the model-based approach of the application development. Be-
hind the scenes, all three clients connect to the same server assuring their mutual
synchronization of data. Thereby guaranteeing that every action performed on
any of the platforms, has an immediate effect on all. However, the combination
of a domain which is very time-sensitive (e.g. timed broadcasts), the usage of
different clients and the user displaying different behavior at different times and
situations, leads to the fact that a good interpretation of contextual informa-
tion in iFanzy is vital. Knowing in which context or situation (with respect to
various factors like time, location, etc.) a statement was uttered is invaluable
for e.g. generating more appreciated recommendations. This approach is a much
more dynamic one than some other more static TV recommender systems [2].
Therefore, in iFanzy, all the information amassed from the user, is accompanied
by the user’s current context to be able to draw more fine-grained conclusions.

All user feedback like e.g. ratings, setting of favorites or watching content is
associated with a set of concepts like programs, genres, channels and various
involved people (e.g. actors, directors, etc.) which are all defined in our central
conceptual model. The conceptual model in iFanzy is based on the TV-Anytime
specification3 and is enriched with domain-specific ontologies as shown in [1].
Semantic Web techniques are applied to make the interconnections between these
vocabularies and the content, resulting in an RDF/OWL knowledge structure.
3 http://www.tv-anytime.org/

512 P. Bellekens et al.

A user model, which is defined to contain all user feedback, is a dynamic rep-
resentation of the user aggregated by our application by observing and learning
from the user behavior as well as explicit user knowledge. The user model acts
as a view over the conceptual model superimposing an extra layer containing all
aggregated user statements together with the correct associated context. These
user statements consists both out of explicit statements like ’the user rated pro-
gram P with value x’, as well as implicitly inferred statements like ’the user
has a liking for program P with value x’. These inferred liking statements are
generated by pattern detection algorithms which e.g. detect that a user watches
the same program every week over again.

Just like most systems depending on user data, iFanzy suffers from the so-
called cold start problem when it needs to generate recommendations for new
users in the system. To deal with this issue, we selected various external user
data sources like e.g. Hyves profiles (the most popular social network in the
Netherlands), MovieLens4 movie ratings and IMDb5 ratings. Afterwards, we
matched all retrieved concepts from these sources to our internal data graph. By
doing so, we could exploit the semantics of the concepts to initialize the profiles
of new users with the ratings gathered from these external sources.

4 Conclusions

In this paper we briefly introduced iFanzy, which is developed in close collabora-
tion with Stoneroos Interactive Television. To further legitimate our approaches
we are currently extensively testing the platform. A previous test already has
shown that the recommender produces results with an average MAE (Mean Ab-
solute Error) of 0.94 on a 5 star ratings scale. While there is definitely room for
improvement there, these first results were encouraging. As part of the future
work, next month we will start a user test of iFanzy on the set-top box running
at 5000 households in the Netherlands. Here we will focus on the integration
between the set-top box application and the Web interface.

References

1. Bellekens, P., Van der Sluijs, K., Van Woensel, W., Casteleyn, S., Houben, G.J.:
Achieving efficient access to large integrated sets of semantic data in web applica-
tions. In: ICWE 2008: Proceedings of the 2008 Eighth International Conference on
Web Engineering, Washington, DC, USA, pp. 52–64. IEEE Computer Society, Los
Alamitos (2008)

2. Das, D., ter Horst, H.: Recommender systems for tv. In: Recommender Systems
Workshop, Madisson, WI, pp. 35–36. AAAI Press, Menlo Park (1998)

4 http://www.grouplens.org/
5 http://www.imdb.com/

Model-Driven Development of Audio-Visual
Web Search Applications: The PHAROS

Demonstration

Alessandro Bozzon, Marco Brambilla, and Piero Fraternali

Politecnico di Milano, Piazza Leonardo Da Vinci, 32 - 20133 Milano, Italy
{alessandro.bozzon,marco.brambilla,piero.fraternali}@polimi.it

Abstract. PHAROS1 is an EU-founded project aimed at building a
platform for advanced audiovisual search applications. In this demo we
show the application of a Model-Driven Development (MDD) approach
to the PHAROS demonstrator, which consists of an audio-visual Web
search portal. The demo highlights the peculiar needs of search based
applications and describes how existing MDD approaches can help ful-
filling such needs, through visual modeling and automatic generation of
RIA code for the front-end and business processes for the back-end.

1 Introduction

Due to the tremendous growth in the amount of digital data on the Web,
search has become the default paradigm for interacting with contents. Multi-
media search portals, which are now the access channels of choice, typically
comprise two major flows of activities: 1) the Query and Result Presentation
(QRP) process, which encompasses query preprocessing, query execution, and
results post-processing, and 2) the Content Provisioning (CP) process, which
gets content from its original location, analyzes (or annotates) it, and makes it
available to the search engines for later search.

Depending on the targeted applicationdomain, the QRP and CP processes have
to be tailored to a wide spectrum of functional and non functional requirements,
that put at stake the advantages of current Web Engineering approaches [5] [7].

Some typical challenges are related to the complexity deriving from: (i) the
adopted query modality (e.g., keyword-based, similarity search, etc.), (ii) the
required user interaction patterns (e.g., searching, monitoring, and browsing
[2]), (iii) the presence of social interaction features (e.g., tagging), (iv) the need
for flexible and distributable composition of annotation technologies (imposed
by business or performance requirements), (v) highly competitive and quickly
changing marketing strategies typical of the Web environment, etc. The design,
development and integration of search engines systems therefore result in an
articulated, complex task, involving different knowledge and skills. This demon-
stration will show that such needs might be fulfilled by adopting and extending

1 http://www.pharos-audiovisual-search.eu

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 513–517, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

514 A. Bozzon, M. Brambilla, and P. Fraternali

Fig. 1. A high-level view of the PHAROS platform architecture

the methods and tools that Web engineering provides for conceptual modeling
of traditional Web applications.

2 Demonstration Scenario

Our work stems from the requirements gathered within PHAROS (Platform
for searcHing of Audiovisual Resources across Online Spaces) [4], an Integrated
Project funded by the European Union in the Sixth Framework Programme;
its goal is to. Figure 1 depicts a high level view of the PHAROS platform ar-
chitecture, comprising a set of components that interact according to the SOA
paradigm for performing the CP and QRP and execution flows.

In PHAROS, contents are represented both by manual metadata (e.g, title and
description) and annotations automatically generated by the PHAROS platform
during the CP process (e.g speech-to-text transcriptions, speaker’s gender or
name, music mood and rhythm, etc.). Annotations refer to temporal segments
of occurrence, which is exploited in the QRP process to enable navigation of
videos according to the temporal segment of occurrence for a given query match.
The PHAROS QRP process supports several combinations of user interaction
patterns and query modalities, like content-based queries based on music, images
and faces, browsing based on automatically generated annotations, search by
user-generated tags, etc.

This demonstration includes: (i) the description of the MDD approach adopted
for the design of the QRP process, based on the WebML notation, that allow
to produce rich web interfaces; (ii) the description of the MDD approach for the

Model-Driven Development of Audio-Visual Web Search Applications 515

(a) (b)

Fig. 2. (a) Hypertext model excerpt for the PHAROS QRP process; (b) Rendition
example of the generated QRP Web interface

design of the CP process, based on ad hoc workflow models for multimedia con-
tent provisioning; (iii) an in-depth tour of the generated Pharos demonstrator,
comprising several usage scenarios such as keyword- and content-based search,
similarity search, faceted search, social and personalized content management,
multi-modal and multi-channel user interfaces, provision of new contents, and up-
date on the CP process.

For conceptual modeling of the user interface level of the QRP we exploit the
Web Modeling Language (WebML) [6], a visual Domain Specific Language for
the specification of contents, business processes, hypertexts, web service interac-
tion [3], and visual presentation (including rich interface modeling[1]) of a Web
application, and WebRatio2, a MDE tool that provides WebML design and code
generation facilities.

The specification of the CP process is based on the BPMNnotation3 for business
process design. We support a subset of the complete BPMN semantics (coarsely,
the part that maps to BPEL), and we extend it with search-specific aspects.

3 The QRP Process

Starting from a high level specification of a query, the QRP process automatically
generates MPQF4 expressions for (i) keyword-based queries, (ii) annotation-
based queries and results’ filtering, (iii) user-specified tags, and (iv) similarity-
based search on audio, images and faces. Queries can be iteratively built as an
arbitrary combination of such options. Example of expressible queries are: a) find
all the videos related to tourism in Bavaria, b) find the videos talking about Al
Gore and where the speaker is Al Gore himself, c) find all the video containing
faces similar to the uploaded one.
2 WebRatio, http://www.webratio.com
3 Business Process Management Notation, http://www.bpmn.org
4 MPEG Query Format, http://www.mpqf.org

516 A. Bozzon, M. Brambilla, and P. Fraternali

The QRP process demo application offers two user interfaces: one for desktop
PC and one for mobile terminal. The application performs query building, query
execution on the PHAROS back-end, and rendering of the results. It also sup-
ports aspects like user-generated tags, queries storage, reuse and monitoring, in
order to receive notifications (SMS or email) when new contents matching the
given query are published.

Figure 2 shows an excerpt of the hypertext conceptual model designed for the
PHAROS showcase, and a sample rendition of the user interface.

4 The CP Process

To allow easy and effective definition of the CP process, the BPMN notation
is extended with search specific information to enable a more precise model
transformation towards the running code. Every BPMN activity is associated
with a type, describing the semantics of its behaviour, and a set of properties that
describe the execution details (e.g., the service to be invoked and the parameters
to be passed on). Examples of activity types : Retrieval (R), Transformation (T),
Analysis (ANA), and Indexing (IDX) of content. An activity has a (possibly
empty) set of input parameters and output parameters. The output flow of
an activity can be associated to a guard condition, which is an OCL Boolean
expression over the values of the output parameters. Figure 3 shows a simplified
example of CP Process specified according to our extended notation. The design
of the models is supported by a visual design tool and the CP process models
configure a simple workflow engine that processes new contents.

Retrieve
Video

R
vOut

Transcode
Audio
Video

T

vidOut
audOutvIN

Analyze
Faces

ANA
fANNvidIN

Index
Annotations

IDX
iANN

<<ContentItem>>

conID: vOut
vIN : contentID

<<ContentItem>>

videoTrans.conID: vidOut
vidIN : videoTrans.conID

<<ContentItem>>

ffaceAnn.annID: fAnn
iANN : faceAnn.annID

VIDEO Face

Fig. 3. Process model example for the Content Provisioning

References

1. Bozzon, A., et al.: Conceptual modeling and code generation for Rich Internet Ap-
plications. In: ICWE 2006, pp. 353–360 (2006)

2. Bates, M.: Toward an integrated model of information seeking and searching. The
New Review of Information Behaviour Research 3, 1–15 (2002)

3. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web ap-
plications. ACM TOSEM 15(4), 360–409 (2006)

Model-Driven Development of Audio-Visual Web Search Applications 517

4. Debald, S., Nejdl, W., Nucci, F., Paiu, R., Plu, M.: Pharos, platform for search of
audiovisual resources across online spaces. In: SAMT 2006 (2006)

5. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in web
application models. J. Web Eng. 3(1), 22–49 (2004)

6. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, San Francisco (2002)

7. Torres, V., Pelechano, V.: Building business process driven web applications. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
322–337. Springer, Heidelberg (2006)

beContent: A Model-Driven Platform for Designing and
Maintaining Web Applications�

Antonio Cicchetti1, Davide Di Ruscio2, Romina Eramo2, Francesco Maccarrone2,
and Alfonso Pierantonio2

1 School of Innovation, Design and Engineering
Mälardalen University,

SE-721 23, Västerås, Sweden
antonio.cicchetti@mdh.se

2 Dipartimento di Informatica
Università degli Studi dell’Aquila

Via Vetoio, Coppito I-67010, L’Aquila, Italy
{diruscio,romina.eramo,francesco.maccarrone,alfonso}@di.univaq.it

Abstract. Model Driven Engineering (MDE) is increasingly gaining acceptance
in the development of Web Applications as a mean to leverage abstraction and
render business logic resilient to technological changes. This paper describes the
beContent project with its modeling languages and tools, which aims at the auto-
mated generation of rich Web applications.

1 Introduction

The beContent project [1] aims at defining an infrastructure (see Figure 1) consisting
of a coordinated collection of languages and tools which permit to shorten systems’
life-cycle and ease maintainence tasks. The gluing element of the project is the be-
Content metamodel (BMM) which is based on a previous work of the authors [2]. The
metamodel defines the abstract syntax of the modeling languages: a diagrammatic and
a textual concrete syntax, called beContent modeling language (BML) and beContent
textual language (BTL), respectively, endowed with a round-tripping mechanism. In
other words, they can interchangeably be used for specifying a system and, for instance,
whenever a diagrammatic specification undergoes a modification the textual counterpart
is consistently updated and the other way round. This has been possible by using the
AMMA framework [3] and an additional component such as GMF [4]. The models can
be edited by means of a visual and textual editor realized as Eclipse plugins as described
in Sect. 3.

2 beContent Models

A beContent model consists mainly of the declarative and coordinated specification of
three different concerns:
� Partially supported by the European Communitys 7th Framework Programme (FP7/2007-

2013), grant agreement n◦ 214898.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 518–522, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Model-Driven Platform for Designing and Maintaining Web Applications 519

Fig. 1. The beContent infrastructure

– the data view is the description of the relational model of the data, in essence it
describes the metadata of the application;

– the content view describes the data sources and how the content is retrieved and
aggregated in pages; and finally

– the interaction view specifies how to manipulate the information entered in the
forms (e.g., a textual content can be edited by means of text fields, textareas, or
rich-text editors), the validation constraints, and additional information which may
affect the interaction between the user and the application.

An example of specification is given in Figure 2, where a simple description of news is
illustrated as a composition of three main model elements: the entity, the form, and the
content. In particular, the form is contained in a manager page which indicates that the
code for managing all the interactions (creation, update, and deletion) are encapsulated
in an individual page. Starting from models conforming to BMM model-to-code trans-
formations written in Acceleo [5] are capable of generating the whole corresponding
applications. The generated artifacts and the model transformations are illustrated in
the next section.

Fig. 2. Sample news model

520 A. Cicchetti et al.

3 The beContent Framework
The framework consists of a number of tools which have been implemented (or are
planned to be implemented) on Eclipse EMF [6] and are listed in table 1 together with
the specific EMF technology being used and their maturity status.

Table 1. Platform components and related technologies

Description Technology Status

BMM AMMA KM3 advanced
BML GMF advanced
BTL AMMA TCS incubation
J2EE/Liferay code generation Acceleo incubation
LAMP code generation Acceleo advanced
Model Repository EMF Teneo preliminary
Versioning + Co-evolution EMF Compare, AMMA ATL incubation
Workflow Metamodel AMMA KM3 preliminary

In particular, BMM has been defined by means of KM3, a metamodeling language
part of the AMMA framework. As aforementioned, models are edited by means of a
visual and textual editors: the former is an Eclipse plugin (realized with GMF) which
assists the designer in editing the diagrammatic descriptions; whereas the latter is de-
fined using TCS which uses text-to-model trace-links that are created during parsing to
allow hyperlinks and hovers for references within the text. Once created, the models can
be mapped onto several platforms (see Figure 1) by means of automated transformations

Fig. 3. Generated news interaction and content

A Model-Driven Platform for Designing and Maintaining Web Applications 521

which generate the corresponding assets. The model-to-code transformations have been
written by means of the Acceleo templating language, which provides enough flexibility
and model navigation functionalities. The platforms currently supported are the typical
LAMP and J2EE/Liferay portal platform, although the latter is still in a preliminary
stage of the development. As an example, consider the model in Figure 2, which can
be transformed by the LAMP model-to-code to obtain the functionalities depicted in
Figure 3. All the tools have been released under an open source license scheme and can
be freely downloaded at [1].

4 Additional Features

Additional aspects of the platform include an advanced user management which is re-
flected in the metamodel and mapped on the choosen target platform. Moreover, users
are allowed to interact one with another by means of processes which are described con-
forming to the workflow metamodel extension which is currently under development.
The topology of processes are given by means of a restriction of UML activity dia-
grams (in essence, it is limited to non parallel processes) which are mapped to specific
workflow engines integrated with the corresponding platforms.

Analogously to any other software artifacts, Web applications are subject to a heavy
evolutionary pressure. Therefore, we are currently designing and implementing a spe-
cific support to model repository, versioning, and co-evolution. In particular, as models
are considered first-class artefacts, they can also be compared to detect the changes
a model underwent during its life-cycle. This provides beContent with an evolution
support able to a) calculate by means of EMF Compare the differences between two
versions of the same model, b) represent the evolution as a model, and c) automatically
generate from this model a refactoring procedure which migrates the application and its
data (schema and contents) [7].

5 Conclusions and Future Work

This paper described a number of aspects of the beContent project. The approach has
been validated on the LAMP platform by producing the following sites

– http://www.abruzzo24ore.tv, a news portal whose features include multime-
dia and rich-text content, registered users, RSS feeds, and forums;

– http://www.di.univaq.it, the official site of the Computer Science Depart-
ment at the University of L’Aquila where the project has been initiated;

– http://www.univaq.it, the official site of the University of L’Aquila.

We also briefly illustrated a transformational approach to the co-evolution of applica-
tions, i.e., when certain aspects of a model changes then other components are requested
to be adapted to remain valid. Future works includes the implementation refinement/en-
hancement and how to map the beContent metamodel to well-known frameworks, such
as rails, django, and spring.

522 A. Cicchetti et al.

References

1. Pierantonio, A.: beContent (2006), http://www.becontent.org
2. Di Ruscio, D., Muccini, H., Pierantonio, A.: A Data Modeling Approach to Web Application

Synthesis. Int. Jour. of Web Engineering and Technology 1(3), 320–337 (2004)
3. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the Large and Modeling in

the Small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp.
33–46. Springer, Heidelberg (2005)

4. Eclipse project: GMF - Graphical Modeling Framework,
http://www.eclipse.org/gmf/

5. Obeo: Acceleo, http://www.acceleo.org
6. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling Framework.

Addison-Wesley, Reading (2003)
7. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-

driven engineering. In: 12th IEEE Intl. EDOC Conference, pp. 222–231 (2008)

http://www.becontent.org
http://www.eclipse.org/gmf/
http://www.acceleo.org

InSCo-Gen : A MDD Tool for Web Rule-Based
Applications

Joaqúın Cañadas1, José Palma2, and Samuel Túnez1

1 Dept. of Languages and Computation, University of Almeria, Spain
{jjcanada,stunez}@ual.es

2 Dept. of Information and Communications Engineering, University of Murcia, Spain
jtpalma@um.es

Abstract. Rules and ontologies are widely used in software development
since they provide semantic web applications with meaning and reasoning
features. This demonstration paper presents InSCo-Gen, a Model-Driven
Development (MDD) tool for Web rule-based applications, which con-
structs a functional Web architecture integrating a rule engine for reason-
ing tasks. Development process is based on conceptual models composed
of ontologies and production rules. These models are the source for the
MDD process, which automatically generates implementation of the Web
application.

Keywords: MDD, Web Engineering, Rule-based systems.

1 Introduction

In Semantic Web context, development of rule languages and inference engines
to provide Web information systems with reasoning capabilities is an important
research topic. Production rules (if-conditions-then-actions) play a leading role
in this aim, since they enable declarative representation of domain expert knowl-
edge and business logic. Rule engines deal with rule bases and execute several
inference methods for firing appropriate rules in order to deduct new information
and achieve results [1].

This demo presents InSCo-Gen, an MDD tool for building Web rule-based
applications. It supports the development process starting from the specification
of conceptual models in Conceptual Modeling Language (CML), the formalism
for knowledge representation defined by the CommonKADS methodology [2] for
knowledge-based system development. A model-driven approach is then applied
to produce the implementation of a functional Web architecture which integrates
a rule engine for reasoning tasks. The tool was developed for supporting InSCo
[3], a software development methodology that interweaves knowledge engineering
and software engineering approaches.

This paper is organized as follows: Section 2 introduces the model-driven
approach applied in InSCo-Gen. Next, the architecture of the Web rule-based
application generated is described in Section 3. Finally, the main conclusions
and future work are summarized.

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 523–526, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

524 J. Cañadas, J. Palma, and S. Túnez

2 The InSCo-Gen Model-Driven Approach

The InSCo-Gen model-driven approach is based on conceptual models created
in CML, a knowledge modeling language which entails simplified specification of
ontology and production rules. A CML conceptual model is basically composed
of two parts, domain schemas and knowledge bases. Domain concepts, binary
relationships, rule types and value types (enumerated literals) are modeled in a
domain schema. A knowledge base is composed of instances of concepts, instances
of relationships called tuples, and instances of rules.

The main difference with other conceptual modeling languages is the pos-
sibility of modeling production rules through rule types and rule instances. A
rule type describes the structure of a set of rules defining the concepts bound
to the rule antecedent and to the rule consequent. Rule types are particularized
into rule instances that represent specific, logical dependencies between concept
attribute values of rule antecedent and consequent.

Jess Rule
model Jess rule base

CML Model

Java and JSF
Web model

Java classes
JSF pages

Platform
Independent
Model

Platform
Specific
Models

Code

integration

Web Rule-based
application

M2M
Transformations

M2T
Transformations

Fig. 1. MDD schema for Web rule-based system generation

Figure 1 shows a simplified schema of the two MDD processes implemented
in InSCo-Gen. Two different results are found using a single CML model. On
one hand, a Jess [4] rule base is generated, a text file that contains the rules
converted to Jess syntax. On the other hand, a set of JavaBeans and JSP web
pages, making up a JavaServer Faces (JSF) [5] architecture that integrates the
Jess rule engine in a rich Web application.

Both MDD processes can be executed separately. Since the decision logic
of rule-based applications may change frequently, the tool enables independent
generation of a new rule base, which can be deployed in the Web application
server without having to modify anything else in the architecture.

InSCo-Gen was developed using MDD tools provided by the Eclipse Modeling
Project1. Models and metamodels are defined using EMF2 (Eclipse Modeling
Framework). Three metamodels are needed, the CML metamodel for conceptual
modeling, the Jess-Rule metamodel used for representing Jess platform-specific
models and the Java/JSF metamodel used by Web-based specific models.

1 http://www.eclipse.org/modeling/
2 http://www.eclipse.org/modeling/emf/

InSCo-Gen: A MDD Tool for Web Rule-Based Applications 525

Conceptual models based on the CML metamodel are created using the built-
in EMF reflective editor. To improve model editing, the reflective editor was
customized using Exeed (EXtended Emf EDitor) [6], a plugin which enables
default icons and labels to be modified by using the Exeed annotations in the
metamodel.

Two model-to-model (M2M) transformations are designed with ATL3 (Atlas
Transformation Language). The first one (bottom flow in Fig. 1) maps a CML
model to a Jess platform-specific model. The second one (top flow in Fig. 1)
transforms a CML model into a Java/JSF Web specific model.

The outputs of both ATL transformations are the respective inputs of two
model-to-text (M2T) transformations implemented in JET4 (Java Emitter Tem-
plates). As a result, InSCo-Gen automatically produces the application code. On
one hand, source text files with Jess rules and facts, and on the other hand, the
Web application components, the faces-config.xml and web.xml configuration
files, the Java Beans for model classes, and a Jess-Engine Bean which uses the
Jess Java API (Application Programming Interface) to integrate the rule en-
gine into the architecture. Moreover, a set of JSP/JSF web pages are generated
for the user interface. These pages are based on the RichFaces library [7], an
open source framework that adds AJAX (Asynchronous JavaScript And XML)
capability to JSF applications.

3 Architecture of Web Rule-Based Applications

Figure 2 shows the target architecture for Web rule-based applications generated
by InSCo-Gen.

Web Browser Apache Tomcat
Application Server

Jess rule engine

JavaEE Platform

JSF
+

RichFaces Jess facts

Jess
rule base

Fig. 2. Architecture of a Web rule-based application

The integrated rule engine manages the Jess rule base and the text file contain-
ing persistent instances of concepts, called facts. The Web application enables
the user to perform four basic predetermined functions, create new instances,
read the current list of instances, update and delete instances. That function-
ality makes the application generated a CRUD system (Create, Read, Update,
3 http://www.eclipse.org/m2m/atl/
4 http://www.eclipse.org/modeling/m2t/?project=jet

526 J. Cañadas, J. Palma, and S. Túnez

Delete). In general, current tools for automatic generation of CRUD systems per-
form those operations on relational databases. The contribution of our approach
is that CRUD operations are executed on the Jess rule engine working memory,
enabling the inference mechanism to fire appropriate rules when necessary. The
rule engine executes a forward-chaining inference mechanism to drive the rea-
soning process, firing the rules with conditions evaluated as true, and executing
their actions to deduct new values or modify existing ones.

The use of both rules and AJAX technology improves the creation and edi-
tion of instances in the Web application. Since Web forms are implemented with
AJAX RichFaces components, each single form value can be validated and sub-
mitted individually as it is entered. This facility entails the rule engine firing
suitable rules and deducting new information that drives the instance creation
or edition, for example, updating choice-field values.

4 Conclusion and Future Work

This demo presented InSCo-Gen5, a real example of MDD applied to rich Web
system development, incorporating a rule engine for reasoning tasks.

The tool is being evaluated within the development of a Web decision-support
system for pest control in agriculture, which makes recommendations to growers
and technicians about treatment for a specific pest or disease in grapes.

Our current work extends the tool with relational database facilities to pro-
vide a complete persistence layer. Also, a deliverable version of the tool as an
Eclipse plugin will be available soon. Future incorporation of other semantic
Web languages, such as OWL (Web Ontology Language) and SWRL (Semantic
Web Rule Language) is planned.

References

1. Brachman, R.J., Levesque, H.J.: Knowledge representation and reasoning. Morgan
Kaufmann, San Francisco (2004)

2. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de Velde,
W.V., Wielinga, B.: Knowledge Engineering and Management: The CommonKADS
Methodology. The MIT Press, Cambridge (2000)

3. del Águila, I.M., Cañadas, J., Palma, J., Túnez, S.: Towards a methodology for
hybrid systems software development. In: Proceedings of the Int. Conference on
Software Engineering and Knowledge Engineering (SEKE), pp. 188–193 (2006)

4. Sandia Lab.: Jess, http://herzberg.ca.sandia.gov/jess/
5. Geary, D., Horstmann, C.S.: Core JavaServer Faces, 2nd edn. Prentice Hall, Engle-

wood Cliffs (2007)
6. Kolovos, D.S.: Exeed: EXtended Emf EDitor - User Manual (2007),

http://www.eclipse.org/gmt/epsilon/doc/Exeed.pdf

7. JBoss: RichFaces (2007), http://www.jboss.org/jbossrichfaces/

5 This work is supported by two research projects, TIN2004-05694 funded by the
Spanish MEC, and P06-TIC-02411 funded by the Junta de Andalucia.

http://herzberg.ca.sandia.gov/jess/
http://www.eclipse.org/gmt/epsilon/doc/Exeed.pdf
http://www.jboss.org/jbossrichfaces/

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 527 – 530, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Tool to Support End-User Development of
Web Applications Based on a Use Case Model

Buddhima De Silva, Athula Ginige, Simi Bajaj, Ashini Ekanayake,
Richa Shirodkar, and Markus Santa

University of Western Sydney, Locked Bag 1797, Penrith South DC, 1719, NSW, Australia
bdesilva@scm.uws.edu.au, a.ginige@uws.edu.au

Abstract. Many Small to Medium Enterprises (SMEs) tend to gradually adopt
Web based business applications to enhance their business processes. To support
this gradual adoption we need a framework that supports iterative development.
Further processes that have been supported by web based business applications
can change and evolve requiring applications to be changed accordingly. One
way to facilitate these requirements is to empower SMEs to make changes to the
web application to accommodate the required changes while using that web
application. This paper presents a requirement specification tool and a Use Case
model of a Web based application which can be used to specify and create the
Web applications. This approach will bring the formalism to ad-hoc end-user
development by including requirement specification phase. In this approach an
application is viewed as a collection of packages. A package consists of related
set of use cases. A scope list is developed at the package level. This will assure
the required functionality of the application is completely specified. This will
also provide a framework to validate the requirements. We have developed this
tool in Component Based Development/ Deployment System (CBEADS). Now
we are in a process of testing it.

Keywords: Web application, Requirement specification, Use Case model.

1 Introduction

AeIMS research group at University of Western Sydney has been working with SMEs
in Western Sydney region to investigate how Information and Communication
Technologies (ICT) can be used to enhance their business processes to become
competitive in a global economy [1, 2]. In this research the challenge we had was to
find a way to develop web based business applications that can evolve with changing
business needs [3]. Also we had to develop these applications rapidly as well as in a
cost effective manner [4]. The development approach should also needs to reduce the
gap between what the users actually wanted and what is being implemented in terms
of functionality [5].

To address above mentioned issues it is very important to empower end users to
get involved in the original design of the application during design time and be able to

528 B. De Silva et al.

modify the application as a result of evolving requirements during the use time [6]. If
we are to empower end users to actively participate during design time and to be able
to modify the application during use time rather than developing a specific application
we need to provide a set of tools and a framework that they can use to develop and
change the application in response to changing needs. However, such tools need to
focus on analysis and design process as well as the construction process of an
application for the success of end-user development [7]. Therefore, the fundamental
challenges to end-user development have gradually shifted from basic syntactic
adjustment required to help during construction towards semantic challenges
including the need to convey an understanding of design and engineering principles
relevant to end-users [8]. We are developing a use case driven approach to face the
semantic challenge with the specification and the design of the requirements. All the
functional requirements are specified as use cases or functions. We have developed a
use case model and a form based tool to capture the different aspects of the use cases/
functions. These are discussed in section 2 and section 3. Using this captured
information most of the application can be auto generated.

2 Use Case Model of an Application

Fig.1. shows the high level model of an application used in the use case driven
approach. Application consists of one or many packages. A package groups a set of
related functions of an application. A package has a list of scopes. Scope list is a list
of processes that must be carried out to accomplish the goal. This defines what the
project will deliver and what it will not deliver and its boundary (organisational,
functional, technical, system or individual user) by specifying them for individual
processes. This helps to identify the use cases, actors, workflow, some of the data
objects and the relationships between the objects required in the functions. Use cases
are specified using user interfaces and user actions associated with the user interfaces.
We also define the business rules associated with a package which is used in the
implementation of use cases.

Fig. 1. High level model of an application

 A Tool to Support End-User Development 529

3 Requirement Specification Tool

Based on the above use case model we have developed a form based tool to specify
the Requirements. This tool also includes some guidelines and examples for the users
to specify the requirements of a Web based application. This tool is shown in fig. 2.
This tool provides form based interfaces to specify the packages with in an
application, scope list of a package, use cases/ functions, actors and objects. A form
based interface is also provided to specify the interfaces related to the use cases.
Using above information the application is semi-automatically generated. Table 1
shows how the captured information is mapped into the physical implementation.

Fig. 2. Requirement Specification tool

Table 1. Purpose and corresponding realization of the inputs

Form Input Purpose Correspondin
g RealisationForm Name Input

Application Name,
description,
acronym

Acronym is used for namespace
and folder name to store files for
the application.

Folder
structure for
the application

Scope Name and
description

Scope defines the list of processes
to be carried out in the system.

Function/
use case

name,
description

Function name used as the primary
navigation to the function.

Menu link

Actor Actor name,
description

Used to conceptualise the use
cases.

Objects and
Object
Relationshi
ps

Application,
Object Name,
Attributes,
relationships

Objects with the attributes are
created within the application
namespace. Data about
Relationship is used to create the
relationships.

Database,
Table and
Table columns
and Foreign
keys, Associa-
-tive tables.

User
Interface

Name,UI attri-
-butes, actions

UI for function is created with UI
elements and actions.

file

530 B. De Silva et al.

This tool is implemented in Component based E Application Development and
Deployment System (CBEADS) [3, 9]. Components and engines of CBEADS
framework are used to map the specification of the application into the
implementation. For example, this tool depends on CBEADS User Management
component for binding the users with the created application. Also SBO [10] (Smart
Business Objects) is used to map the objects and relationships to the data base tables.

4 Conclusion

We have developed a tool to specify the requirements of a Web based Business
Applications based on use case driven approach. This approach is well suited to
specify and create web based business applications for SMEs as it supports iterative
development. We are now in the process of evaluating the tool.

References

1. Ginige, A.: Collaborating to Win - Creating an Effective Virtual Organisation. In:
International Workshop on Business and Information, Taipei, Taiwan (2004)

2. Ginige, A.: From eTransformation to eCollaboration: Issues and Solutions. In: 2nd
International Conference on Information Management and Business (IMB 2006), Sydney,
Australia (2006)

3. Ginige, A.: New Paradigm for Developing Software for E-Business. In: Proceedings of the
IEEE 2001 Symposia on Human Centric Computing Languages and Environments (HCC
2001). IEEE Computer Society, Stresa (2001)

4. Ginige, A.: Re Engineering Software Development Process for eBusiness Application
Development. In: Software Engineering and Knowledge Engineering Conference -SEKE
2002, San Francisco Bay, USA (2002)

5. Epner, M.: Poor Project Management Number-One Problem of Outsourced E-Projects, in
Research Briefs, Cutter Consortium (2000)

6. Fischer, G., et al.: Meta Design: A Manifesto for End -User Development. Communications
of the ACM 47(9), 33–37 (2004)

7. Rosson, M.B., et al.: Design planning in end-user web development. In: IEEE Symposium
on Visual Languages and Human-Centric Computing, Couer d’Alene, Idaho (2007)

8. Repenning, A.: End-User Design. In: Workshop on End-User Software Engineering
(WEUSEIII), Dagstuhl Seminar Proceedings 07081 (2007)

9. Ginige, A., et al.: Smart Tools to support Meta-Design Paradigm for Developing Web
based Business Applications. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE
2007. LNCS, vol. 4607, pp. 521–525. Springer, Heidelberg (2007)

10. Liang, X., Ginige, A.: Smart Business Objects: A new Approach to Model Business
Objects for Web Applications. In: 1st International Conference on Software and Data
Technologies, Setubal, Portugal (2006)

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 531 – 534, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MODiCo: A Multi-Ontology Web Service
Discovery and Composition System

Duy Ngan Le1, Bao Duy Tran1, Puay Siew Tan2,
Angela Eck Song Goh1, and Eng Wah Lee2

1 Nanyang Technological University (NTU), Singapore
{leduyngan,TRAN0001,ASESGOH}@ntu.edu.sg

http://www.ntu.edu.sg
2 Singapore Institute of Manufacturing Technology (SIMTech), Singapore

{pstan,ewlee}@SIMTech.a-star.edu.sg
http://www.simtech.a-star.edu.sg

Abstract. Web services have been employed in a wide range of applications
and have become a key technology in developing business operations on the
Web. In order to leverage on the use of Web services, Web service discovery
and composition need to be fully supported. Several systems have been
proposed to meet this need. However, these systems usually support either
discovery or composition of Web services but not both. Moreover, these
systems assume the Web services are based on the same ontology. Existing
Web service discovery systems are not able to discover heterogeneous ontology
Web services. This paper introduces a Web service discovery and composition
system which supports Web services based on different OWL-S ontologies. The
discovery process is executed first in order to search for a single Web service
that satisfies a requester. If a single Web service cannot be found, multiple Web
services are composed to satisfy the request.

Keywords: OWL-S, Web service discovery, Web service composition.

1 Introduction

Semantic Web service [1], an enhancement of current Web services by employing
semantics to describe the service, has become an important technology in e-business
due to its strength in discovery and composition. Discovery is a process that locates
an individual advertised Web service that satisfies a requested Web service’s
requirement. With the same function, composition is a process that composes multiple
advertised Web services to satisfy the request. Hence, discovery and composition are
two very important tasks, as advertised Web services are useless if they cannot be
found.

Researchers have developed several discovery and composition techniques.
However, current discovery and composition systems have two major drawbacks: (i)
they usually support either discovery or composition but not both and (ii) they only
support Web services based on the same ontology. In the real world, a Web service

532 D.N. Le et al.

provider should be able to service the requester even though the ontologies of the
requester and provider are dissimilar. Moreover, the discovery and composition
operations should be conducted simultaneously.

A system that supports both discovery and composition of Web services based on
different ontologies is the motivation behind this work. This paper proposes a Multiple
Ontologies Web service Discovery and Composition system termed MODiCo. The
proposed system supports OWL-S1 recommended by W3C2 as it is currently the most
popular description language for semantic Web service. The rest of the paper is as
follows. Section 2 describes the system algorithm. Our proposed demonstration of the
MODiCo system is presented in section 3, followed by the conclusion.

2 MODiCo Algorithm

2.1 MODiCo Overall Architecture

MODiCo overall architecture is presented in figure 1. Providers advertise their Web
services by publishing them to MODiCo repository. A requester describes its
requirements via a request Web service in order to locate a suitable advertised Web
service. Whenever a request is sent to MODiCo, the discovery component is executed
first to match the requested Web service against individual advertised Web services in
its repository. If an advertised service is found, no composition is needed. Otherwise,
the composition component is executed to compose the advertised services to satisfy
the requirement.

Fig. 1. MODiCo overall architecture

2.2 Web Service Discovery

The core of the discovery algorithm [2] is a matching process which measures the
similarity between a requested and an advertised Web service. In turn, the Web
service similarity is calculated based on the similarities between input, output, and
operation of the two Web services, respectively.

1 Semantic Markup for Web Services: http://www.w3.org/Submission/OWL-S/
2 World Wide Web Consortium:www.w3.org

 MODiCo: A Multi-Ontology Web Service Discovery and Composition System 533

In the input matching, we determine how inputs of the advertised services are
satisfied by the inputs of the requested services. The input matching operates as
follows: for each input of the advertised service, the algorithm tries to find an input of
the requested service that has the highest similarity. Both output and operation
processing are carried out in the same manner as input. The final matching result is a
combination of the input, output, and operation matching. The best ‘matched
advertised service’, which has the highest similarity, is then compared with a threshold.
It must be greater than the threshold; otherwise, the discovery is unsuccessful.

Since input, output, and operation of a Web service are nothing more than
ontological concepts, matching these elements is eventually measuring similarity
between two concepts. By employing the method to measure concept similarity
described in [3], the system has an advantage, it considers the relationship as well as
context of the two ontologies. The concept similarity is measured based on four sub-
similarity components, namely syntactic, property, neighborhood, and context
similarity.

2.3 Web Service Composition

The composition algorithm [4] is a progressive AI-planning-like algorithm which
proceeds in a recursive depth-first manner. The algorithm composes the advertised
Web services by connecting their inputs and outputs based on their similarity. The
resultants are expressed in the form of directed multi-graphs of advertised Web
services and inter-connecting edges. Similar to the discovery algorithm, the similarity
between input and output of Web services is calculated based on the method
introduced in [3]. The ‘best solution’ is the one with the highest similarity between
matching connections. This similarity must exceed the threshold; otherwise, the
composition is unsuccessful.

Composition solutions are constructed recursively in a solution tree which is
constructed to facilitate tracking of alternative solutions of a progressive state space
search algorithm. The requested (desired) output is used as a starting point of the
solution tree. The matching algorithm described in [3] is employed to search for an
advertised service that best matches the requested output. A short listed advertised
service becomes a branch in the solution tree. Its input becomes the new “requested
output” and a recursive search for another advertised service begins. Branches are
added recursively to the solution tree until a pre- determined number of branches (i.e.
the maximum tree depth) is attained.

At every recursive call, the algorithm checks if the advertised services can be
connected to the required outputs based on the concept matching algorithm [3]. The
similarity of a solution is measured based on the similarity of each connection and its
length depth. The algorithm also keeps track the depth of recursion and alternative
solutions in the form of a search tree. The tree nodes track the evolution of various
solution branches.

3 MODiCo Demonstration

As there is no standard test data or benchmark available, we developed 100 Web
service profiles. Using these 100 profiles, we ran the test data for five times and each

534 D.N. Le et al.

time chose a profile as a requester, the remaining Web service profiles were treated as
providers. In this way, we obtained 500 matching Web service pairs. The “ground
truth” of Web service similarity is the expected value which has been derived
manually based on the knowledge related to the Web services given by the colleagues
in NTU. Error rate which is the differences between the MODiCo results compared
against the ground truth is measured. The average error rate of the 500 pairs is
0.030435.

Experiments of matching 500 Web service pairs were carried out and a series of
tests were conducted to validate the designed and developed MODiCo. However, in
order to preserve conciseness and succinctness in the demo, only a comprehensive test
scenario together with a detailed example will be presented, illustrated, and discussed
for each component.

With each component, we will first show the developed ontologies and Web
service derived from the ontologies. Prototype of MODiCo as well as prototypes of
discovery and composition components will be introduced. Thereafter, after running
the discovery and composition, the outcomes will be analyzed and discussed. For
example with the composition component, results were obtained in the form of a
composition graph and then compared with an ‘expected’ composition graph. These
scenarios and examples will illustrate how the algorithms work.

4 Conclusion

MODiCo is a prototype system for Web service discovery and composition which
supports services based on identical or different ontologies. The system searches for a
single advertised Web services matching the requester’s requirement. If this fails,
advertised Web services in its repository are composed instead based on an AI based
approach algorithm. Concept similarity computation which is the core of the proposed
system has four major components, namely, syntactic, properties, neighborhood, and
context similarity. Experiments confirm the validity of the system. In the demo, test
data, prototype of MODiCo, and the outcome will be presented.

References

1. Honglei, Z., Son, T.C.: Semantic Web Services. Intelligent Systems (IEEE) 16, 46–53
(2001)

2. Le, D.N., Goh, A.: Matching Semantic Web Services Using Different Ontologies. In: Lowe,
D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 302–307. Springer, Heidelberg
(2005)

3. Ngan, L.D., Hang, T.M., Goh, A.: Semantic Similarity between Concepts from Different
OWL Ontologies. In: 2006 IEEE International Conference on Industrial Informatics,
Singapore (2006)

4. Tran, B.D., Tan, P.S., Goh, A.E.S.: Composing OWL-S Web Services. In: IEEE International
Conference on Web Services (ICWS), Salt Lake City, Utah, USA (2007)

Author Index

Abascal, Julio 16
Aizpurua, Amaia 16
Ali, Muhammad Intizar 497
Álvarez, Daŕıo 485
Arellano, Cristóbal 61
Aroyo, Lora 509
Arrue, Myriam 16
Aßmann, Uwe 461
Astrain, José Javier 434

Bajaj, Simi 527
Becker, Christoph 221
Bellas, Fernando 30, 166
Bellekens, Pieter 509
Book, Matthias 275
Bozzon, Alessandro 315, 513
Brambilla, Marco 315, 477, 513
Brinkkemper, Sjaak 121
Brückmann, Tobias 275
Busch, Marianne 505

Calero, Coral 251
Cámara, Javier 370
Cañadas, Joaqúın 523
Cappiello, Cinzia 236
Caro, Ángélica 251
Casteleyn, Sven 292
Chaisatien, Prach 489
Chbeir, Richard 442
Cicchetti, Antonio 518
Comai, Sara 189
Córdoba, Alberto 434
Costagliola, Gennaro 1

Daniel, Florian 45, 236
De Silva, Buddhima 527
De Virgilio, Roberto 91
Di Martino, Sergio 213
Di Ruscio, Davide 518
Dı́az, Oscar 61
Ding, Zuohua 181
Dolog, Peter 197
Dustdar, Schahram 76, 379, 497

Echarte, Francisco 434
Ekanayake, Ashini 527
Eramo, Romina 518

Fernández de Castro, Isabel 481
Ferrucci, Filomena 213
Fraternali, Piero 315, 340, 513
Fuccella, Vittorio 1

Garćıa-Domı́nguez, Antonio 469
Garrigós, Irene 151, 292
Getahun, Fekade 442
Ginige, Athula 527
Goh, Angela Eck Song 531
González-Baixauli, Bruno 205
Gottardi, Riccardo 221
Gravino, Carmine 213
Grigera, Julián 136
Gruhn, Volker 275

Han, Hao 419, 453
Helms, Remko 121
Hernández, Carmen 205
Hidders, Jan 106
Houben, Geert-Jan 106, 509
Hülder, Malte 275

Jiang, Mingyue 181
Juan, Aquilino A. 485

Kaptein, Annelies 509
Karol, Sven 461
Kaufmann, Martin 465
Knapp, Alexander 493
Kobsa, Alfred 370
Koch, Nora 283, 493, 505
Kossmann, Donald 465
Krause, Paul 394
Kraxner, Michael 221
Kroiss, Christian 493
Kulovits, Hannes 221
Kupers, Thijs 121

Laguna, Miguel A. 205
Le, Duy Ngan 531

536 Author Index

Lee, Eng Wah 531
Lee, Ryong 330
Leonardi, Erwin 106
Li, Peng 260
Linaje, Marino 501
Liu, Bin 419
López, Javier 30, 166
Losada, Begoña 481

Maccarrone, Francesco 518
Marinos, Alexandros 394
Mart́ınez, Ana Belén 485
Matera, Maristella 45, 236
Mazón, Jose-Norberto 151
Mazza, Davide 189
Medina-Bulo, Inmaculada 469
Meißner, Klaus 106, 461, 473
Meliá, Santiago 292
de Melo, Ana C.V. 355
Montoto, Paula 30, 166
Moraga, Carmen 251
Moraga, Ma Ángeles 251
Morales-Chaparro, Rober 501
Morozova, Tatiana 283
Moschoyiannis, Sotiris 394

Niederhausen, Matthias 106, 461
Noro, Tomoya 419

Palma, José 523
Palomo-Duarte, Manuel 469
Pan, Alberto 30, 166
Pérez, Sandy 61
Pichler, Reinhard 497
Pierantonio, Alfonso 518
Pietschmann, Stefan 473
Pigerl, Matthias 283
Preciado, Juan Carlos 501
Pu, Geguang 181

Quintarelli, Elisa 189

Raposo, Juan 166
Rauber, Andreas 221
Razavi, Amir 394

Robles Luna, Esteban 136
Rodŕıguez-Echeverŕıa, Roberto 501
Rossi, Gustavo 136
Roy, Anuradha 300
Rümpel, Andreas 473

Sánchez-Figueroa, Fernando 501
Sanders, Jeff W. 181
Santa, Markus 527
Schäfer, Michael 197
Shirodkar, Richa 527
Silveira, Paulo 355
Sindre, Guttorm 410
Skopik, Florian 76
van der Sluijs, Kees 106
Souer, Jurriaan 121
Suárez, Ma del Carmen 485
Subramanian, Sattanathan 410
Sumiya, Kazutoshi 330

Tan, Puay Siew 531
Tekli, Joe 442
Tisi, Massimo 340
Tokuda, Takehiro 419, 453, 489
Torlone, Riccardo 91
Tran, Bao Duy 531
Treiber, Martin 379
Trujillo, Juan 151
Truong, Hong-Linh 76, 379, 497
Túnez, Samuel 523
Tziviskou, Christina 477

Urretavizcaya, Maite 481

Vigo, Markel 16
Villadangos, Jesús 434
Viviani, Marco 442
Voigt, Martin 473

Wilde, Erik 300
Wohlstadter, Eric 260

Yetongnon, Kokou 442

Zhang, Gefei 283

	Title Page
	Preface
	Organization
	Table of Contents
	Accessibility and Usability
	Fine-Grained Analysis of Web Tasks through Data Visualization
	Introduction
	Related Work
	The Approach
	Data Collection
	Data Visualization

	Theoretical Framework
	The First Level Chart
	The Second Level Chart

	The Case-study Application
	Conclusions
	References

	Exploring Automatic CSS Accessibility Evaluation
	Introduction
	Related Work
	Incorporating CSS into Accessibility Evaluation Process
	Evaluation Process of CSS Techniques
	Example of the Evaluation Process

	Limitations of CSS Evaluation
	Conclusions
	References

	Component-Based Web Engineering: Portals and Mashups
	A Component-Based Approach for Engineering Enterprise Mashups
	Introduction
	A Running Example
	Overview of the Mashup Tool Architecture
	Design of the Source Access and Data Mashups Layers
	Access to Web Sources
	Interface Provided for the Source Access and Data Mashup Layers
	Model Used for Expressing Data Combination Logic

	Design of the Widget and Widget Assembly Layers
	Related Work
	Conclusions and Future Work
	References

	Turning Web Applications into Mashup Components: Issues, Models, and Solutions
	Introduction
	Reference Development Scenario
	Research Challenges and Contributions

	Mashup Components: Development Principles
	A Model for Mashup Components
	Componentizing Web Applications
	The Mashart Description Language (MDL)
	The Mashart Event Annotation (MEA)
	The Runtime Componentization Logic
	Component Development Guidelines

	Related Works
	Conclusion
	References

	Tagging-Aware Portlets
	Introduction
	Tagging in Current Portal Engines
	A Brief on Portlets
	TheActors
	Back-End Consistency
	Front-End Consistency
	Front-End Consistency throughWidgets
	Front-End Consistency through Local Portlets

	Revision and Conclusions
	References

	Data and Semantics
	Trust and Reputation Mining in Professional Virtual Communities
	Introduction
	Related Work
	Trustworthy Sources of Data
	Trust and Roles in Virtual Community Discussions
	Discussion Mining Approach
	Interaction Network Definition
	Discussion Mining Algorithm

	TrustNetworkModel
	Trust Inference
	Trust Aggregation and Reputation
	Contextual Description

	Evaluation
	Preparing Evaluation Data
	Trust Network Model Configuration
	Evaluation Approach
	Experiments

	Conclusion and Future Work
	References

	A Structured Approach to Data Reverse Engineering of Web Applications
	Introduction
	Related Work
	Extraction of Page Structure
	Overview
	Page Segmentation

	SchemaDiscovery
	Experimental Results
	Conclusions and Future Work
	References

	Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation for AMACONT
	Introduction
	A Document Format for Adaptive Web Applications
	Document Format
	Basic Adaptivity
	Publication Process
	Context Acquisition
	Context Modeling
	Document Generation

	Leveraging Aspect-Orientation for Modeling Adaptation
	Fundamentals of Aspect-Oriented Adaptation
	Aspect-Orientation in Other Web Application Models
	Aspect-Orientation in AMACONT
	Aspect Weaving in AMACONT

	Semantics-Based Adaptation
	Implementation
	Conclusion and Future Work
	References

	Model-Driven Web Engineering
	Model-Driven Web Engineering for the Automated Configuration of Web Content Management Systems
	Introduction
	The WebForm Diagram
	Steps, Routers, Validation, and Handlers
	Formalizing theWebForm Diagram

	Problem Area Analysis
	Domain Model
	User Analysis
	Comparing Existing Models

	Specifying the WebForm Diagram
	Concrete Syntax
	Abstract Syntax
	WebForm Diagram Modeling Tool

	Evaluation
	Case Validation
	Expert Validation

	Related Work
	Conclusion
	References

	Bridging Test and Model-Driven Approaches in Web Engineering
	Introduction
	Related Work and Discussion
	An Overview of Our Approach
	Capturing Requirements with Mockups and UIDs
	Writing Tests
	Deriving Design Models
	Test Adaptation
	Towards a New Iteration

	Dealing with Application Evolution
	New Requirements
	Web Refactorings

	Towards Automated Test Evolution
	Concluding Remarks and Further Work
	References

	A Requirement Analysis Approach for Using i* in Web Engineering
	Introduction
	Modeling Requirements in Web Engineering
	Specification of Requirements
	Traceability to Web Design

	Sample Application of Our Approach
	Requirements Specification
	Traceability to Domain and Navigational Models
	Implementation Framework

	Related Work
	Conclusions and Future Work
	References

	Navigation
	Automating Navigation Sequences in AJAX Websites
	Introduction
	Models
	DOM Level 3 Events Model
	Asynchronous Functions and Scripts Execution Model

	Description of the Solution
	Recording User Events
	Identifying Elements
	Execution Phase

	Evaluation
	Related Work
	Conclusions
	References

	Modelling and Verification of Web Navigation
	Introduction
	A Formal Navigation Model
	Syntax
	Operational Semantics

	SPIN Checking Navigation Model
	Conclusion
	References

	Context-Driven Hypertext Specification
	Introduction
	Running Example
	The CDT Context Model and the Contextual Views
	Context-Driven Hypertext
	Related Work
	Conclusions
	References

	Process, Planning and Phases
	Feature-Based Engineering of Compensations in Web Service Environment
	Introduction
	Feature Based Development for Compensations
	Capabilities and Compensations of Service Providers
	Requirements and Restrictions of Client Application
	Related Work
	Conclusion and Future Work
	References

	Product Line Development of Web Systems with Conventional Tools
	Introduction
	Case Study: e-Commerce
	Product Line Design and Implementation
	Conclusions
	References

	An Empirical Study on the Use of Web-COBRA and Web Objects to Estimate Web Application Development Effort
	Introduction
	Empirical Study
	Dataset Description
	The Empirical Analysis
	Comparison with the Previous Case Study

	Related Work
	Conclusions
	References

	Quality
	An Extensible Monitoring Framework for Measuring and Evaluating Tool Performance in a Service-Oriented Architecture
	Introduction
	Related Work
	A Generic Architecture for Performance Monitoring
	Measuring QoS in Web Services
	Monitoring Framework
	Performance Measurement

	Results and Discussion
	Measurement Techniques
	Tool Performance
	Accumulated Experience
	Trade-off between QoS Criteria

	Discussion and Conclusion
	References

	A Quality Model for Mashup Components
	Introduction
	The Mashup Development Scenario
	Rationale and Background
	A Reference Quality Model
	API Quality
	Data Quality
	Presentation Quality

	Discussion
	References

	Towards the Discovery of Data Quality Attributes for Web Portals
	Introduction
	Review Process
	Results
	Conclusions and Future Works
	References

	Rich Internet Applications
	Script InSight: Using Models to Explore JavaScript Code from the Browser View
	Introduction
	Motivating Example and Approach Overview
	Implementation Details
	Tracing JavaScript Execution
	DOM Mutation Graph

	JavaScript Metrics
	Discussion
	Performance Considerations

	Catalog Browser Example
	Related Work
	Conclusion
	References

	A Conceptual Framework for User Input Evaluation in Rich Internet Applications
	Introduction
	Specification of Input Evaluation
	Interface and Data Model
	Evaluation Aspects and Rules

	Behavior of Input Evaluation
	Data Model Update
	Data Model Validation
	User Interface Reaction

	Implementation
	Related Work
	Conclusion
	References

	Patterns for the Model-Based Development of RIAs
	Introduction
	Real World Case Study: S.CORE System
	RIA Patterns
	Embedding RIA Patterns in Existing Web Methods
	Related Work
	Conclusions and Future Work
	References

	Adapting the Presentation Layer in Rich Internet Applications
	Introduction
	Personalization: From Traditional Web Applications to RIAs
	Integrating Personalization in the OOH4RIA Development Process
	Device Context Adaptation of the Presentation Model
	Conclusions and Future Work
	References

	Search
	Web Site Metadata
	Introduction
	Web Site Metadata on the Web
	Crawling for Robots.txt
	Robots.txt Data Analysis
	Crawling for Sitemaps
	Sitemaps Data Analysis
	Related Work
	Future Work
	Conclusions
	References

	Conceptual Modeling of Multimedia Search Applications Using Rich Process Models
	Introduction
	Search-Based Applications
	Models and Transformations
	Domain Model
	Process Model
	CIM-PIM Model Transformations
	Process Metadata generation from BPMN
	WebML Model Generation from BPMN

	Application Model
	Implementation and Experience
	Related Work
	Conclusions
	References

	Zero-Effort Search and Integration Model for Augmented Web Applications
	Introduction
	Augmented Web Applications
	Layer-Based Augmented Media

	Zero-Query Search Platform
	Reasoning User Intention from Pointing Action

	Augmented Web Browser: Zero-Synthesis Integration
	Mapping to Display Region

	Conclusion and Future Work
	References

	Testing
	A Higher Order Generative Framework for Weaving Traceability Links into a Code Generator for Web Application Testing
	Introduction
	Motivation and Case Study
	HOT for Weaving Traceability Links into the Code Generation Transformation
	Test Session Recording and Execution
	Implementation
	Related Work
	Conclusions
	References

	Exploring XML Perturbation Techniques for Web Services Testing
	Introduction
	Web Services and SOA Preliminaries
	A Web Services Testing Technique Based on Data Perturbation
	A New Technique on Test Cases Generation for Web Services
	Extending Data Value Perturbation
	Extending Relationship Strategies for Data Communication Perturbation
	Operator Perturbation

	Empirical Results
	Conclusion
	References

	Facilitating Controlled Tests ofWebsite Design Changes: A Systematic Approach
	Introduction
	Controlled Online Tests on the Web: An Overview
	Systematic Online Test Design and Implementation
	Test Design Using Software Product Lines
	Implementing Tests with Aspects

	Tool Support
	Related Work
	Concluding Remarks
	References

	Web Services, SOA and REST
	SOAF – Design and Implementation of a Service-Enriched Social Network
	Introduction
	Linking Web Services
	Extending FOAF
	Dynamic SOAF
	Managing SOAF Service Networks
	Extending the FOAF Datamodel

	Discussion
	Prototype
	Related Work
	Future Work
	References

	RESTful Transactions Supported by the Isolation Theorems
	Introduction
	Concurrency Challenges in RESTful HTTP
	Isolation Theorems
	Locks in RESTful HTTP
	Two Phase Locking and Recoverability
	Recoverability
	Model Overview
	RESTful Transaction Examples

	Applying the Isolation Theorems to REST
	Dependency and Wormholes

	Conclusions and Further Work
	References

	An Optimization Rule for ActiveXML Workflows
	Introduction and Related Work
	Motivating Example
	Service Calls Grouping
	Idea Illustration
	Rule for AXML

	Conclusion and Future Work
	References

	Web 2.0
	Personal News RSS Feeds Generation Using Existing News Feeds
	Introduction
	Overview of NDS
	News Directory System
	Automatic News Collection
	Automatic News Classification

	Personal News RSS Feeds Generation
	Experimental Results
	Implementation
	Evaluation

	Related Work
	News Extraction
	Automated Classification
	Comparison

	Conclusion
	References

	A Tag Clustering Method to Deal with Syntactic Variations on Collaborative Social Networks
	Introduction
	Syntactic Variations Clustering
	Experimental Results
	Conclusions
	References

	Relating RSS News/Items
	Introduction
	Related Work
	Preliminaries
	Knowledge Base
	Neighborhood

	Text Relatedness
	Text Representation
	Text Relatedness and Relations

	RSS Relatedness and Relations
	Experiments
	Timing Analysis
	Relevance of Measure

	Conclusions and Perspectives
	References

	A Layout-Independent Web News Article Contents Extraction Method Based on Relevance Analysis
	Introduction
	Motivation and Related Work
	News Article Contents Extraction
	Title Keywords Acquisition
	Full Text Analysis
	News Title Detection
	News Paragraph Recognition and News Contents Extraction

	Implementation and Evaluation
	Conclusion
	References

	Posters
	HyperAdapt: Enabling Aspects for XML
	Introduction
	Safe Weaving of Web Adaptation Aspects
	Investigation of Aspect Interactions
	Constraint-Based Adaptation
	Summary
	References

	Developing an Enterprise Web Application in XQuery
	Introduction
	Architecture
	Implementation
	Discussion
	Related Work
	Conclusion
	References

	Enhancing WS-BPEL Dynamic Invariant Generation Using XML Schema and XPath Information
	Introduction
	Improving Invariant Generation with XPath
	Filtering Redundant Invariants
	Results
	Conclusions and Future Work
	References

	CRUISe: Composition of Rich User Interface Services
	Introduction and Motivation
	Dynamic, Service-Based Composition of Web UIs
	User-Interface-as-a-Service
	Dynamic, Context-Aware UI Composition

	Implementation
	Conclusion
	References

	An Online Platform for Semantic Validation of UML Models
	Introduction
	Web Validation Platform
	Wines UML Model Case Study

	Conclusions and Future Work
	References

	Efficient Building of Interactive Applications Guided by Requirements Models
	Introduction
	The Requirements Models in the Intermod Methodology
	Conclusions
	References

	WAB*: A Quantitative Metric Based on WAB
	Introduction
	Related Work
	Web Accessibility Barrier (WAB)
	Unified Web Evalution Methodology (UWEM)

	WAB*
	A Practical Case: Evaluating the Accessibility of the European Banking Sector
	Conclusions
	References

	A Web-Based Mashup Tool for Information Integration and Delivery to Mobile Devices
	Introduction
	Research Backgrounds and Related Works
	Mashup Example and Discussion
	Conclusion and Future Work
	References

	Demonstrations
	UWE4JSF: A Model-Driven Generation Approach for Web Applications
	Introduction
	Extending UWE for Model Driven Development
	Tool Chain for Automatic Generation
	Conclusions and Future Work
	References

	On Using Distributed Extended XQuery forWeb Data Sources as Services
	Introduction
	Overview of DeXIN
	Distributed Extended Query for Data Integration
	DeXIN: Data IntegrationWeb Service
	Searching Available Data Services
	Registration of Data Sources
	Data Source Statistics and Schema Information
	Query Execution

	Conclusion
	References

	Automatic Generation of RIAs Using RUX-Tool andWebratio
	Introduction
	RUX-Tool
	RUX-Tool in the Market
	References

	MagicUWE – A CASE Tool Plugin for Modeling Web Applications
	Introduction
	Modeling with MagicUWE
	Usability, Adaptability and Extensibility
	Conclusions and Future Work
	References

	A Model-Based Approach Providing Context-Sensitive Television Interaction
	Introduction
	iFanzy
	Engineering Techniques
	Conclusions
	References

	Model-Driven Development of Audio-Visual Web Search Applications: The PHAROS Demonstration
	Introduction
	Demonstration Scenario
	The QRP Process
	The CP Process
	References

	beContent: A Model-Driven Platform for Designing and Maintaining Web Applications
	Introduction
	beContent Models
	The beContent Framework
	Additional Features
	Conclusions and Future Work
	References

	{\it InSCo-Gen}: A MDD Tool forWeb Rule-Based Applications
	Introduction
	The InSCo-Gen Model-Driven Approach
	Architecture of Web Rule-Based Applications
	Conclusion and Future Work
	References

	A Tool to Support End-User Development of Web Applications Based on a Use Case Model
	Introduction
	Use Case Model of an Application
	Requirement Specification Tool
	Conclusion
	References

	MODiCo: A Multi-Ontology Web Service Discovery and Composition System
	Introduction
	MODiCo Algorithm
	MODiCo Overall Architecture
	Web Service Discovery
	Web Service Composition

	MODiCo Demonstration
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

