
Chapter 5
Quantum Field Theory on Curved Backgrounds

Romeo Brunetti and Klaus Fredenhagen

5.1 Introduction

Quantum field theory is an extremely successful piece of theoretical physics. Based
on few general principles, it describes with an incredibly good precision large parts
of particle physics. But also in other fields, in particular in solid state physics,
it yields important applications. At present, the only problem which seems to go
beyond the general framework of quantum field theory is the incorporation of grav-
ity. Quantum field theory on curved backgrounds aims at a step toward solving this
problem by neglecting the back reaction of the quantum fields on the spacetime
metric.

Quantum field theory has a rich and rather complex structure. It appears in differ-
ent versions that are known to be essentially equivalent. Unfortunately, large parts
of the theory are available only at the level of formal perturbation theory, and a
comparison of the theory with experiments requires a truncation of the series which
is done with a certain arbitrariness.

Due to its rich structure, quantum field theory is intimately related to various
fields of mathematics and has often challenged the developments of new mathemat-
ical concepts.

In this chapter we will give an introduction to quantum field theory in a for-
mulation which admits a construction on generic spacetimes. Such a construction
is possible in the so-called algebraic approach to quantum field theory [1, 2]. The
more standard formulation as one may find it in typical text books (see, e.g., [3])
relies heavily on concepts like vacuum, particles, energy, and makes strong use of
the connection to statistical mechanics via the so-called Wick rotation. But these
concepts lose their meaning on generic Lorentzian spacetimes and are therefore
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restricted to a few examples with high symmetry. It was a major progress of recent
years that local versions of most of these concepts have been found. Their formula-
tion requires the algebraic framework of quantum physics and, on the more technical
side, the replacement of momentum space techniques by techniques from microlocal
analysis.

The plan of the chapter is as follows. After a general discussion of fundamental
physical concepts like states, observables, and subsystems we will describe a general
framework that can be used to define both classical and quantum field theories. It is
based on the locally covariant approach to quantum field theory [4] which uses the
language of categories to incorporate the principle of general covariance.

The first example of the general framework is the canonical formalism of clas-
sical field theory based on the so-called Peierls bracket by which the algebra of
functionals of classical field configurations is endowed with a Poisson structure.

We then present as a simple example in quantum field theory the free scalar
quantum field.

A less simple example is the algebra of Wick polynomials of the free field. Here,
for the first time, techniques from microlocal analysis enter. The construction relies
on a groundbreaking observation of Radzikowski [5]. Radzikowski found that the
so-called Hadamard condition on the two-point correlation function is equivalent to
a positivity condition on the wave front set, whose range of application was extended
and named “microlocal spectrum condition” few years later [6]. This insight not
only, for the first time, permitted the construction of nonlinear fields on generic
spacetimes but also paved the way for a purely algebraic construction, which before
was also unknown on Minkowski space.

Based on these results, one now can construct also interacting quantum field
theories in the sense of formal power series. The construction can be reduced to
the definition of time-ordered products of prospective Lagrangians. By the principle
of causality, the time-ordered products of n factors are determined by products (in
the sense of the algebra of Wick polynomials) of time-ordered products of less than
n factors outside of the thin diagonal Δn ⊂ Mn (considered as algebra-valued
distributions). The removal of ultraviolet divergences amounts in this framework to
the extension of distributions on Mn \ Δn to Mn . The possible extensions can be
discussed in terms of the so-called microlocal scaling degree which measures the
singularity of the distribution transversal to the submanifold Δn .

5.2 Systems and Subsystems

5.2.1 Observables and States

Experiments on a physical system may be schematically described as maps

experiment : (state, observable) �→ result. (5.1)

Here a state is understood as a prescription for the preparation of the system, and the
observable is an operation on the prepared system which yields a definite result. In
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classical physics, one assumes that an optimally prepared system (pure state) yields
for a given (ideal) observable always the same result (which may be recorded as
a real number). Thus observables can be identified with real-valued functions on
the set of pure states. The set of observables so gets the structure of an associative,
commutative algebra over R, and the pure states are reobtained as characters of the
algebra, i.e., homomorphisms into R.

In classical statistical mechanics one considers also incomplete preparation pre-
scriptions, e.g., one puts a number of particles into a box with a definite total energy,
but without fixing positions and momenta of the individual particles. Such a state
corresponds to a probability measure μ on the set of pure states, or, equivalently,
to a linear functional on the algebra of observables which is positive on positive
functions and assumes the value 1 on the unit observable. For the observable f the
state yields the probability distribution

(μ, f ) �→ f!μ , f!μ(I ) = μ( f −1(I )) (5.2)

on R. Pure states are the Dirac measures.
In quantum mechanics, the measurement results fluctuate even in optimally pre-

pared states. Pure states are represented by one-dimensional subspaces L of some
complex Hilbert space, and observables are identified with self-adjoint operators A.
The probability distribution of measured values is given by

μA,L(I ) = (Ψ, E A(I )Ψ ), (5.3)

where Ψ is any unit vector in L and E A(I ) is the spectral projection of A corre-
sponding to the interval I .

In quantum statistics, one admits a larger class of states, corresponding to incom-
plete preparation, which can be described by a density matrix, i.e., a positive trace
class operator ρ with trace 1; the probability distribution is given by

μA,ρ(I ) = TrρE A(I ), (5.4)

where the pure states correspond to the rank 1 density matrices.
In spite of the apparently rather different structures one can arrive at a unified

description. The set of observables is a real vector space with two products:

1. a commutative, but in general nonassociative product (the Jordan product),

A ◦ B = 1

4

(
(A + B)2 − (A − B)2

)
, (5.5)

arising from the freedom of relabeling measurement results;
2. an antisymmetric product

{A, B}, (5.6)
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which is known as the Poisson bracket in classical mechanics and is given by i
�

times the commutator [·, ·] in quantum mechanics. This product originates from
the fact that every observable H can induce a transformation of the system by
Hamilton’s (or Heisenberg’s) equation

d

dt
A(t) = {H, A(t)}. (5.7)

The two products satisfy the following conditions:

1. A �→ {B, A} is a derivation with respect to both products.
2. The associators of both products are related by

(A ◦ B) ◦ C − A ◦ (B ◦ C) = �
2

4
({{A, B},C} − {A, {B,C}}) . (5.8)

While the first condition is motivated by the interpretation of Hamilton’s equation as
an infinitesimal symmetry, there seems to be no physical motivation for the second
condition. But mathematically, it has a strong impact: in classical physics � = 0,
hence the Jordan product is associative; in quantum physics, the condition implies
that

AB := A ◦ B + �

2i
{A, B} (5.9)

is an associative product on the complexification A = AR ⊗ C, where the informa-
tion on the real subspace is encoded in the !-operation

(A ⊗ z)∗ = A ⊗ z. (5.10)

States are defined as linear functionals on the algebra which assume positive val-
ues on positive observables and are 1 on the unit observable. A priori, in the case
� �= 0 the positivity condition on the subspace AR of self-adjoint elements could be
weaker than the positivity requirement on the complexification A. Namely, on the
real subspace we call positive every square of a self-adjoint element, whereas on the
full algebra positive elements are absolute squares of the form

(A − i B)(A + i B) = A2 + B2 + �{A, B} , A, B self-adjoint . (5.11)

But under suitable completeness assumptions, in particular when A is a C*-algebra,
operators as above admit a self-adjoint square root; thus the positivity conditions
coincide in these cases. If one is in a more general situation, one has to require that
states satisfy the stronger positivity condition, in order to ensure the existence of the
GNS representation.
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5.2.2 Subsystems

A system may be identified with a unital C*-algebra A. Subsystems correspond to
sub-C*-algebras B with the same unit. A state of a system then induces a state on
the subsystem by restricting the linear functional ω on A to the subalgebra B. The
induced state may be mixed even if the original state was pure, see Remark 13 on
page 23.

One may also ask whether every state on the subalgebra B arises as a restriction
of a state on A. This is actually true, namely let ω be a state on B. According to
the Hahn–Banach theorem, ω has an extension to a linear functional ω̃ on A with
‖ω̃‖ = ‖ω‖. But ω̃(1) = ω(1) = ‖ω‖ = 1, hence ω̃ is a state.

Two subsystems B1 and B2 may be called independent whenever the algebras
B1 and B2 commute and

B1 ⊗ B2 �→ B1 B2 (5.12)

defines an isomorphism from the tensor product B1 ⊗B2 to the algebra generated
by B1 and B2.

Given states ωi on Bi , i = 1, 2, one may define a product state on B1 ⊗B2 by

(ω1 ⊗ ω2)(B1 ⊗ B2) = ω1(B1)ω(B2), (5.13)

see Section 5.5 on page 23 for a thorough discussion. Convex combinations of prod-
uct states are called separable. As was first observed by Bell, there exist nonsepa-
rable states if both algebras contain subalgebras isomorphic to M2(C). This is the
famous phenomenon of entanglement which shows that states in quantum physics
may exhibit correlations between independent systems which cannot be described
in terms of states of the individual systems. This is the reason, why the notion of
locality is much more evident on the level of observables than on the level of states.

5.2.3 Algebras of Unbounded Operators

In applications often the algebra of observables cannot be equipped with a norm.
The CCR algebra is a prominent example. In these cases one usually still has a
unital ∗-algebra, and states can be defined as positive normalized functionals. The
GNS construction remains possible, but does not lead to a representation by bounded
Hilbert space operators. In particular it is not guaranteed that self-adjoint elements
of the algebra are represented by self-adjoint Hilbert space operators. There is no
general theory available which yields a satisfactory physical interpretation in this
situation. One therefore should understand it as an intermediary step toward a for-
mulation in terms of C*-algebras.
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5.3 Locally Covariant Theories

5.3.1 Axioms of Locally Covariant Theories

Before constructing examples of classical and quantum field theories we want to
describe the minimal requirements that such theories should satisfy the follow-
ing [4]:

1. To each globally hyperbolic time-oriented spacetime M we associate a unital
∗-algebra A(M).

2. Let χ : M → N be an isometric embedding which preserves causal relations
in the sense that whenever χ (x) ∈ JN

+ (χ (y)) for some points x, y ∈ M then
x ∈ JM

+ (y). Then there is an injective homomorphism

αχ : A(M) → A(N ). (5.14)

3. Let χ : M → N and χ ′ : N → L be causality-preserving isometric embed-
dings. Then

αχ ′◦χ = αχ ′αχ . (5.15)

These axioms characterize a quantum field theory as a covariant functor A from
the category Man of globally hyperbolic time-oriented Lorentzian manifolds with
isometric causality-preserving mappings as morphisms to the category of unital ∗-
algebras Alg with injective homomorphisms as morphisms, where A acts on mor-
phisms by Aχ = αχ .

In addition we require

4. Let χi : Mi → N , i = 1, 2, be morphisms with causally disjoint images. Then
the images of A(M1) and A(M2) represent independent subsystems of A(N ) in
the sense of Sect. 5.2.2 (Einstein causality).

5. Let χ : M → N be a morphism such that its image contains a Cauchy surface
of N . Then αχ is an isomorphism (Time slice axiom).

Axiom 4 means that causally separated subsystems do not influence each other. It
is equivalent to a tensor structure of the functor A, namely Man is a tensor category
by the disjoint union, with the empty set as a unit object, Alg has the tensor product
of algebras as a tensor structure, with the set of complex numbers as a unit object.
We set A(∅) = C and A(N ⊗ M) = A(N ) ⊗ A(M). If ιi denotes the natural
embedding of spacetime Ni into the disjoint union N1 ⊗N2, then

αι1 (A1) = A1 ⊗ 1 , αι2 (A2) = 1⊗ A2 , Ai ∈ A(Ni ) , i = 1, 2. (5.16)

The crucial observation is now that a causality-preserving embedding χ of a disjoint
union N1 ⊗N2 maps the components N1,N2 into causally disjoint subregions χ ◦
ι1(N1), χ ◦ ι2(N2). Hence we obtain the following theorem
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Theorem 1. Let A be a tensor functor, i.e., for morphisms χi : Ni →Mi , i = 1, 2
we have

αχ1⊗χ2 = αχ1 ⊗ αχ2 . (5.17)

Then A satisfies Einstein causality. On the other hand, let A be defined only on
connected spacetimes and assume that it satisfies Einstein causality. Then it can be
uniquely extended to a tensor functor on spacetimes with finitely many connected
components.

Axiom 5 may be understood as a consequence of the existence of a dynamical
law which has the features of a hyperbolic differential equation with a well-posed
Cauchy problem. It relates to cobordisms of Lorentzian manifolds. Namely, we may
associate with a Cauchy surface Σ ⊂ M the inverse limit of algebras A(N ), Σ ⊂
N ⊂M. The inverse limit is constructed in the following way. We consider families
(AN ), indexed by spacetimes N with Σ ⊂ N ⊂M, which satisfy the condition

αN1N2 (AN2 ) = AN1 . (5.18)

where N1N2 denotes the embedding N2 ⊂ N1. Two such families are called
equivalent if they coincide for sufficiently small spacetimes. The algebra A(Σ) is
now defined as the algebra generated by these equivalence classes. By αMΣ (A) =
αMN (AN ) one defines a homomorphism from A(Σ) into A(M). The construction
described above can be done for every submanifold. We now use the time slice
axiom. Due to this axiom, the homomorphisms αN1N2 are invertible. As a con-
sequence, αMΣ is an isomorphism. Therefore, one obtains a time evolution as a
propagation between Cauchy surfaces, namely the propagation from Σ to another
Cauchy surface Σ ′ is described by the isomorphism

αΣ ′Σ = α−1
MΣ ′αMΣ. (5.19)

This solves a longstanding problem dating back to ideas of Schwinger who postu-
lated a generally covariant form of the Schrödinger equation. In its original form,
as a unitary map between Hilbert spaces it cannot be realized even for free fields
on Minkowski space. But in the sense of algebraic isomorphisms it always holds,
provided the time slice axiom is satisfied.

In perturbation theory one wants to change the dynamical law. During the con-
struction of the theory it turns out to be fruitful to relax the conditions so that the
time slice axiom does not hold (off-shell formalism). The new dynamical law then
defines an ideal of the algebra, such that the quotient again satisfies the time slice
axiom.

In algebraic quantum field theory, one considers a net of subalgebras labeled by
subregions of a given spacetime and requires that the net satisfies certain axioms,
the Haag–Kastler, axioms. The formalism above is a proper generalization in the
following sense. If we restrict our functor to the globally hyperbolic subregions
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N of a given globally hyperbolic spacetime M, we obtain a net of subalgebras
(αMN (A(N )) with the proper inclusions. Moreover, isometries of M immediately
induce further embeddings, such that the functoriality of A implies covariance under
symmetries. Clearly Axioms 4 and 5 correspond to the locality and the primitive
causality axioms of the Haag–Kastler framework.

5.3.2 Fields as Natural Transformations

In quantum field theory fields are defined as distributions with values in the alge-
bra of observables. They are required to transform covariantly under isometries of
spacetime. On a first sight, it seems that the latter requirement becomes empty on
generic spacetimes. Moreover, it seems to be difficult to compare fields which are
defined on different spacetimes. But it turns out that the locally covariant framework
offers the possibility for a new concept of fields. The idea is that fields have to be
defined simultaneously on all spacetimes in a coherent way, namely fields may be
defined as natural transformations between a functor, say D, that associates with
each spacetime M a space of test functions D(M) and the previous functor of a
specific locally covariant theory. Here Dχ for an embedding χ : N → M is the
pushforward χ∗ which is defined on functions with compact support by

χ∗ f (x) =
{

f (χ−1(x)) , x ∈ χ (N )
0 , else

, (5.20)

thus D is a covariant functor. A natural transformation Φ from D to A is a family
(ΦM)M∈Man of linear maps ΦM : D(M) → A(M) which satisfy the following
commutative diagram:

D(M) ΦM−−−−→ (M)

χ∗
⏐
⏐

⏐
⏐αχ

D(N ) ΦN−−−−→ (N )

.

The commutativity of the diagram means that the field Φ ≡ (ΦM)M∈Man has the
covariance property

αχ ◦ΦM = ΦN ◦ χ∗.

In case χ is an isometry of a given spacetime, this reduces to the standard covariance
condition for quantum fields.

The covariance condition immediately implies that the field, restricted to a small
neighborhood of a given point, can depend only on the metric within the same
neighborhood. Together with some more technical conditions, this was used in [7] to
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prove that fields can be uniquely fixed on all spacetimes by finitely many parameters.
This allows a comparison of states on different spacetimes in terms of expectation
values of locally covariant fields.

Also other structures in quantum field theory can be understood in terms of natu-
ral transformations. In particular one can relax the linearity condition. The naturality
requirement turns out to be the crucial condition which restricts the ambiguity of the
renormalization procedure.

5.4 Classical Field Theory

Before entering the somewhat involved problems of quantum field theory, we want
to demonstrate that many of the general structures are already present in classical
field theory. As discussed in Sect. 5.2, this amounts to the replacement of associative
complex algebras by real Poisson algebras.

5.4.1 Classical Observables

Let ϕ be a scalar field on a globally hyperbolic spacetime M. The space of smooth
field configurations is denoted by C(M) := C∞(M). C may be considered as
a contravariant functor by identifying Cχ for an embedding χ with the pullback
χ∗h = h ◦ χ . The basic observables are the evaluation functionals

ϕ(x)(h) = h(x), h ∈ C(M). (5.21)

More generally, we consider spaces of maps F : C(M) → C which transform
covariantly under embeddings, χ∗F(ϕ) = F(ϕ ◦ χ ). We associate with each map
F : C(M) → C a closed set supp(F) in analogy to the convention for distributions
by

supp(F) = {x ∈M|∀neighborhoods U of x ∃ϕ, h ∈ C(M), supph ⊂ U

such thatF(ϕ + h) �= F(ϕ)}. (5.22)

We require that these maps have compact support and are differentiable in the sense
that for every ϕ, h ∈ C(M) the function λ �→ F(ϕ+λh) is infinitely often differen-
tiable and the nth derivative at λ = 0 is for every ϕ a symmetric distribution F (n)(ϕ)
on Mn , such that

dn

dλn
F(ϕ + λh)|λ=0 = 〈F (n)(ϕ), h⊗n〉. (5.23)

Note that these distributions automatically have compact support with

suppF (n)(ϕ) ⊂ (suppF)n. (5.24)



138 R. Brunetti and K. Fredenhagen

Moreover, F (n), as a map on C(M)×C∞(Mn), is required to be continuous (see [8]
for an introduction to these mathematical notions).

In addition we have to impose conditions on the wave front sets of the functional
derivatives (see page 98 for the definition of wave front sets). Here we use different
options:

F0(M) = {F differentiable with compact support ,WF(F (n)(ϕ)) = ∅}. (5.25)

An example for such an observable is

F(ϕ) = 1

n!

∫
dvoln f (x1, . . . , xn)ϕ(x1) · · ·ϕ(xn),

with a symmetric test function f ∈ D(Mn), with the functional derivatives

〈F (k)(ϕ), h⊗k〉 = 1

k!

∫
dvoln f (x1, . . . , xn)h(x1) · · · h(xk)ϕ(xk+1) · · ·ϕ(xn).

(5.26)

This class unfortunately does not contain the most interesting observables, namely
the nonlinear local ones. We call a map F local, if it satisfies the following additivity
relation for ϕ,ψ, χ ∈ C(M) with suppϕ ∩ suppχ = ∅:

F(ϕ + ψ + χ ) = F(ϕ + ψ)− F(ψ)+ F(ψ + χ )). (5.27)

For differentiable maps F this condition immediately implies that all functional
derivatives F (n)(ϕ) have support on the thin diagonal

Δn := {(x1, . . . , xn) ∈Mn, x1 = · · · = xn}. (5.28)

In particular the wave front sets for n ≥ 2 cannot be empty for F (n) �= 0. The best
we can require is that their wave front sets are orthogonal to the tangent bundle of
the thin diagonal, considered as a subset of the tangent bundle of Mn . A simple
example is F = 1

2

∫
dvol f (x)ϕ(x)2 with a test function f ∈ D(M) where the

second functional derivative at the origin is

〈F (2)(0), h〉 =
∫

dvol f (x)h(x, x). (5.29)

The set of local functionals which are compactly supported, infinitely differen-
tiable, and have wave front sets orthogonal to the tangent bundle of the thin diagonal
is denoted by Floc(M). The set of local functionals contains in particular the possi-
ble interactions.

Examples for local functionals can be given in terms of functions on the jet
bundle,



5 Quantum Field Theory on Curved Backgrounds 139

F(ϕ) =
∫

dvol f ( jx (ϕ)), (5.30)

where jx (ϕ) = (x, ϕ(x),∇ϕ(x), . . . ). Actually, every F ∈ Floc is of this form [9]

Theorem 2. Let F ∈ Floc. Then there exists a function f on the jet bundle such that
(5.30) holds.

Proof. By the fundamental theorem of calculus we have

F(ϕ) = F(0)+
∫

dλ〈F (1)(λϕ), ϕ〉. (5.31)

By the assumption on the wave front set of F , the first derivative is a test function
x �→ F (1)(λϕ)(x) with compact support. We have to prove that the value of this
function at any point x depends only on the jet of ϕ at the point x . Let h be a test
function with vanishing derivatives at x . Again from the fundamental theorem of
calculus we get

F (1)(λ(ϕ + h))(x)− F (1)(λϕ)(x) =
∫

dμ〈F (2)(λ(ϕ + μh))(x), λh〉. (5.32)

But F (2)(λ(ϕ+μh)) is a distribution with support on the diagonal with wave front set
orthogonal to the tangent bundle of the diagonal, thus in a chart near x it is a finite
derivative of a δ distribution in the difference variables with smooth coefficients.
Hence the right-hand side of (5.32) vanishes.

The space Floc(M) is not closed under products. We therefore have to introduce
a larger set. We choose a set which will turn out to be closed not only under the
classical (pointwise) product but also under the other products we want to introduce,
namely the Poisson bracket and the associative product of quantum physics. More-
over it will contain the (renormalized) time-ordered products of local functionals
which are needed for the perturbative construction of interactions. These products
are defined in terms of functional derivatives multiplied by Green’s functions of
normal hyperbolic differential operators. One therefore has to choose functionals
whose derivatives have wave front sets which allow the multiplication by Green’s
functions. A convenient condition on the wave front sets is that they contain no
covector (x1, . . . , xn; k1, . . . , kn) where all ki are elements of the closed forward
light cone V+(xi ) over the base point xi ∈M or all of them belong to the respective
past light cones. Let V± = {(x, k) ∈ T ∗(M)|k ∈ V±(x)}. We then set

F(M) = {F differentiable with compact support,

WF(F (n)(ϕ)) ∩ ((V
n
+ ∪ V

n
−)) = ∅}. (5.33)

This set contains in particular the local functionals. The condition on the wave front
sets will turn out to be crucial in quantum field theory.
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5.4.2 Classical Dynamics

The dynamics of a classical field theory is usually given in terms of an action, e.g.,
S0(ϕ) = ∫

dvolL ◦ jx (ϕ), with

L = 1

2
g(dϕ, dϕ)− V (ϕ), (5.34)

where V is a smooth real function. But S0 is, for noncompact spacetimes M, not
defined for all ϕ ∈ C(M); we therefore multiply L by a test function f ∈ D(M)
which is identical to 1 in a given relatively compact open region N and obtain an
element L( f ) = ∫

dvol f (x)L ◦ jx (ϕ) ∈ Floc(M). We then take the functional
derivative of the modified action L( f ), restrict it to N , and obtain the field equation
(Euler–Lagrange equation), (which is independent of the choice of f )

0 = L(1)(ϕ) = ∂L
∂ϕ

−∇μ

∂L
∂∇μϕ

= −�ϕ − V ′(ϕ). (5.35)

Since N was arbitrary the field equation has the same form everywhere within M.
The field equation may be linearized around an arbitrary field configuration ϕ.

This amounts to the computation of the second derivative of the action. Again we
restrict ourselves to a relatively compact open subregion N and determine the sec-
ond derivative of L( f ), f ≡ 1 on N . The second derivative then may be understood
as a differential operator which in the example above takes the form

L(2)(ϕ)h(x) = (−�− V ′′(ϕ(x)))h(x). (5.36)

We will only consider classical actions S such that the second derivative is a nor-
mal hyperbolic differential operator and thus according to Theorem 4 on page 78
possesses unique retarded and advanced Green’s functions ΔR,A

S .

5.4.3 Classical Møller Operators

If the action is a quadratic function, the field equation is linear and may be solved in
terms of the Green functions. We now want to interpolate between different actions
S which differ by an element in F(M), in analogy to quantum mechanical scatter-
ing theory where isometries (the famous Møller operators) are constructed which
intertwine the interacting Hamiltonian, restricted to the scattering states, with the
free Hamiltonian. We interpret S(1) as a map from C(M) to E ′(M). We want to
construct maps rS1 S2 (the retarded Møller operators) from C(M) to itself with the
properties

S(1)
1 ◦ rS1 S2 = S(1)

2 ; (5.37)

rS1 S2 (ϕ)(x) = ϕ(x) , x �∈ J+(supp(S1 − S2)). (5.38)
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We set S1 = S + λF , S2 = S, and differentiate (5.37) with respect to λ. Let ϕλ =
rS+λF,S(ϕ). We obtain

〈(S + λF)(2)(ϕλ),
d

dλ
ϕλ ⊗ h〉 + 〈F (1)(ϕλ), h〉 = 0. (5.39)

Together with condition (5.38) this implies that the Møller operators satisfy the
differential equation

d

dλ
ϕλ = −ΔR

S+λF (ϕλ)F (1)(ϕλ). (5.40)

This equation has a unique solution in terms of a formal power series in λ. Moreover,
by the Nash–Moser theorem, one can show that solutions exist for small λ ([9], to
appear).

5.4.4 Peierls Bracket

The Møller operators can be used to endow the algebra of functionals with a Poisson
bracket. This was first proposed by Peierls [10], a complete proof was given much
later by Marolf [11] (see also [12]). One first defines the retarded product of two
functionals F and G by

RS(F,G) = d

dλ
G ◦ rS+λF,G |λ=0. (5.41)

From (5.40) we obtain the explicit formula in terms of the retarded Green function

RS(F,G) = −〈G(1),ΔR
S F (1)〉. (5.42)

The Peierls bracket is then a measure for the mutual influence of two possible inter-
actions

{F,G}S = RS(F,G)− RS(G, F) = 〈F (1),ΔSG(1)〉, (5.43)

with the commutator function ΔS = ΔR
S −ΔA

S .
In Peierls original formulation the functionals were restricted to solutions of the

Euler–Lagrange equations for S. It is then difficult to prove the Jacobi identity.
Peierls does not give a general proof and shows instead that his bracket coincides in
typical cases with the Poisson bracket in a Hamiltonian formulation.

In the off-shell formalism presented above the proof of the Jacobi identity is
straightforward. It relies on the formula for the functional derivative of the retarded
propagator

〈〈 f,ΔR
S g〉(1), h〉 = −〈S(3),ΔA

S f ⊗ΔR
S g ⊗ h〉, (5.44)
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which holds since the retarded propagator is an inverse of the operator associated
with S(2), the corresponding formula for the advanced propagator and the symmetry
of the third derivative of S as a trilinear functional.

In our off-shell formalism the Peierls bracket has the form

{F,G}S = 〈F (1),ΔSG(1)〉, (5.45)

with the commutator function ΔS = ΔR
S −ΔA

S .
The triple (F(M), S, {·, ·}S) is termed Poisson algebra over S.

Let now JS(M) be the ideal (with respect to the pointwise product) in F(M)
which vanishes on solutions of the field equation,

JS(M) = {F ∈ F(M)|F(ϕ) = 0 whenever S(1)(ϕ) ≡ 0}. (5.46)

We want to prove that JS(M) is also an ideal for the Poisson bracket.

Theorem 3. Let F ∈ JS(M) and G ∈ F(M). Then {F,G}S ∈ JS(M).

Proof. Let ϕ ∈ C(M) be a solution of the field equation, i.e., S(1)(ϕ)(x) = 0 ∀x ∈
M. We want to construct a one-parameter family of solutions ϕt ∈ ϕt ∈ C(M),
t ∈ R which satisfy the initial condition ϕ0 = ϕ, and the differential equation

d

dt
ϕt = ΔS(ϕt )G

(1)(ϕ). (5.47)

Provided such a solution exists, ϕt is a solution of the field equation since S(1)(ϕ0) =
S(1)(ϕ) = 0 and

d

dt
S(1)(ϕt ) = S(2)(ϕt )

d

dt
ϕt (5.48)

as d
dt ϕt is by construction a solution of the linearized field equation at ϕt . Then

F(ϕt ) = 0 ∀t and 0 = d
dt F(ϕt )|t=0 = {F,G}S(ϕ). It remains to show that the

differential equation (5.47) has a solution. This follows in the same way as the proof
of existence of local solutions for the Møller operators in (5.40).

The theorem allows to define the on-shell Poisson algebra by

FS(M) = F(M)/JS(M). (5.49)

5.4.5 Local Covariance for Classical Field Theory

We want to show that classical field theory is locally covariant provided the action
S is induced by a locally covariant field.
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Let F denote the functor which associates with every M ∈ Man the com-
mutative algebra of functionals F(M) defined before and to every morphism
χ : M→ N the transformation

Fχ (F)(ϕ) = F(ϕ ◦ χ ). (5.50)

Since χ preserves the metric and the time orientation, forward and backward light
cones in the cotangent bundles transform properly. Together with the covariance of
the wave front sets this implies that Fχ maps F(M) into F(N ).

Let now L be a natural transformation from D to F , i.e., for every M ∈ Man

we have a linear map LM : D(M) → F(M) which satisfies

LM( f )(ϕ ◦ χ ) = LN (χ∗ f )(ϕ). (5.51)

Typical examples are given in terms of smooth functions L of two real variables by
LM( f )(ϕ) = ∫

dvolM f (x)L(ϕ(x), gM(dϕ(x), dϕ(x))).

Theorem 4. LM( f ) is local, i.e., satisfies the additivity condition (5.27).

Proof. We first show that suppLN ( f ) ⊂ supp f . Let supph ∩ supp f = ∅ and let
supp f ⊂ N with N ∩ supph = ∅. Then from (5.51) we have

LM( f )(ϕ + h) = LN ( f )((ϕ + h)|N ) = LN ( f )(ϕ|N ), (5.52)

which proves the claim on the support of LM( f ). Let now ϕ,ψ, χ ∈ C(M) with
suppϕ ∩ suppχ = ∅. Due to linearity in f we may decompose LM( f ) into a sum of
terms, each of which has disjoint support either with ϕ or with χ . In both cases the
additivity is an immediate consequence of the support properties.

The functional derivatives of LM are defined as distributions on Mn which coincide
on N n for relatively compact open subregions N with the functional derivatives of
LM( f ) for test functions f which are identical to 1 on the subregion N . As before,
the first derivative defines the field equation L(1) and the second functional deriva-
tive is supposed to be a normal hyperbolic differential operator. We then can equip
F(M) with the Peierls bracket (5.45) and obtain a functor FL from Man to the
category Poi of Poisson algebras which satisfies Axioms 1–4 of locally covariant
quantum field theory, where the Poisson bracket on a tensor product is defined by

{F1 ⊗ F2,G1 ⊗ G2} = {F1,G1} ⊗ F2G2 + F1G1 ⊗ {F2,G2}. (5.53)

The field equation defines Poisson ideals JL(M) ⊂ FL(M) which transform under
embeddings as

FLχ JL(M) ⊂ JL(N ), (5.54)

since solutions ϕ on N always induce solutions ϕ ◦ χ on M. For nonlinear field
equation there may be, however, also solutions on M which are not of this form.
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We thus obtain another functor
(
F/J

)
L which describes the on-shell theory

where the field equation is satisfied. In this functor, however, the morphisms of
the category of Poisson algebras are homomorphisms which are not, in general,
injective.

It would be interesting to check whether this theory satisfies the time slice axiom
where, in view of the possible noninjectivity of homomorphisms, isomorphy is
replaced by surjectivity.

5.5 Quantum Field Theory

5.5.1 Interpretation of Locally Covariant QFT

We now turn to quantum field theory. A model of quantum field theory here is under-
stood as a functor from the category Man of globally hyperbolic spacetimes to the
category of unital *-algebras which satisfies the axioms of Sect. 5.3. Our formalism
differs from the formalism which may be found in standard text books for quantum
field theory in Minkowski space which is either based on a representation of fields
by operator-valued distribution on Fock space (canonical formulation) or on the path
integral. These formulations suffer from several unsolved mathematical problems;
the main reason, however, for our preference of the algebraic formulation of quan-
tum field theory is that the concepts on which the standard approach is based lose
their distinguished meaning on generic globally hyperbolic spacetimes. This can be
made mathematically precise in the language of category theory by the absence of
corresponding natural transformations. On a first sight, the path integral seems to be
better behaved since its naive formulation involves only the classical action and the
Lebesgue integral over the configuration space. The nonexistence of the Lebesgue
integral on infinite-dimensional vector spaces, however, requires a choice of the
Feynman propagator which is in conflict with the principle of local covariance.

On Minkowski space, the standard interpretation of the theory is based on the
notion of a vacuum state and of associated excitations which are interpreted as
particle states. Once a ground state is known, the interpretation of the theory in
terms of cross sections is completely fixed. This was shown long ago by Araki and
Haag [2] and is the basis for modern approaches to the infrared problem [13, 14].
A crucial ingredient in this analysis is the possibility to compare observables at
different positions by the use of translation symmetry.

One of the main concerns for the interpretation of the theory on curved space-
times is the absence of natural states. Here a natural state is defined as a family of
states ωM on A(M), M ∈ Man such that

ωN ◦ αχ = ωM , χ : M→ N . (5.55)

A natural state could be understood as an appropriate generalization of the concept
of a vacuum state. But one can show that such a state does not exist in typical cases.
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This marks the most dramatic point of departure from the traditional framework of
quantum field theory.

The best one can do is to associate with each spacetime M a natural folium of
states S0(M) ⊂ S(A(M)). A folium of states on a unital *-algebra is a convex set of
states which is closed under the operations ω �→ ωA, ωA(B) = ω(A∗B A)/ω(A∗A)
for elements A, B of the algebra with ω(A∗A) �= 0. A natural folium of states is a
contravariant functor S0 such that

S0χ (ω) = ω ◦ αχ , χ : M→ N , ω ∈ S0(N ). (5.56)

This structure allows to endow our algebras with a suitable topology, but it does
not suffice for an interpretation, since it does not allow to select single states within
one folium. But there is another structure which makes possible an interpretation
of the theory. These are the locally covariant fields, introduced before as natural
transformations. By definition they are defined on all spacetimes simultaneously, in
a coherent way. Hence states on different spacetimes can be compared in terms of
their values on locally covariant fields. This can be used, for instance, for a thermal
interpretation of states on spacetimes without a timelike Killing vector [15].

5.5.2 Free Scalar Field

The classical free scalar field satisfies the Klein–Gordon equation

(�+ m2 + ξ R)ϕ = 0, (5.57)

which is the Euler–Lagrange equation for the Lagrangian

L = 1

2
(g(dϕ, dϕ)− (m2 + ξ R)ϕ2). (5.58)

Here R is the Ricci scalar and m2, ξ ∈ R. The Klein–Gordon operator K = � +
m2 + ξ R possesses unique retarded and advanced propagators ΔR,A, since we are
on globally hyperbolic spacetimes (see Theorem 4 on page 78).

The corresponding functor defining the quantum theory is constructed in the
following way. For each M we consider the ∗-algebra generated by a family of
elements WM( f ), f ∈ DR(M) with the relations

WM( f )∗ = WM(− f ), (5.59)

WM( f )WM(g) = e−
i�
2 〈 f,Δg〉WM( f + g), (5.60)

WM(K f ) = WM(0). (5.61)

This algebra has a unit WM(0) ≡ 1 and a unique C*-norm, and its completion is
the Weyl algebra over the symplectic space D(M)/imK with the symplectic form
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〈 f,Δg〉. With αχ (WM( f )) = WN (χ∗ f ) one obtains a functor satisfying also the
Axioms 4 and 5. Moreover, W = (WM) is a (nonlinear) locally covariant field. It is,
however, difficult to find other locally covariant fields for this functor.

The free field itself is thought to be related to the Weyl algebra by the formula

WM( f ) = eiϕM( f ). (5.62)

This relation can be established in the so-called regular representations of the Weyl
algebra, in which the one-parameter groups WM(λ f ) are strongly continuous. But
one can also directly construct an algebra generated by the field itself. It is the unital
∗-algebra generated by the elements ϕM ( f ), f ∈ D(M) by the relations

f �→ ϕM ( f ) is linear, (5.63)

ϕM ( f )∗ =ϕM ( f ), (5.64)

[ϕM ( f ), ϕM (g)] =i�〈 f,Δg〉, (5.65)

ϕM(K f ) =0. (5.66)

Again one obtains a functor which satisfies Axioms 1–5. If we omit the condition
(5.66) (then the time slice axiom is no longer valid and one is on the off-shell for-
malism), the algebra may be identified with the space of functionals on the space of
field configurations C(M),

F(ϕ) =
∑

finite

∫
dvoln fn(x1, . . . , xn)ϕ(x1) · · ·ϕ(xn), (5.67)

where fn is a finite sum of products of test functions in one variable and where the
product is given by

(F ! G)(ϕ) =
∑

n

in
�

n

2nn!
〈F (n)(ϕ),Δ⊗nG(n)(ϕ)〉. (5.68)

Hence, as a vector space, it may be considered as a subspace of the space F0(M)
known from classical field theory. Moreover, the involution A �→ A∗ coincides with
complex conjugation. As a formal power series in �, the product can be extended to
all of F0(M), thus providing F0(M)[[�]] with the structure of a unital ∗-algebra.

The Poisson ideal of the classical theory which is generated by the field equation
turns out to coincide with the ideal with respect to the !-product.

Theorem 5. Let J0(M) be the set of all F ∈ F0(M)[[�]] with F(ϕ) = 0 whenever
Kϕ = 0. Then J0(M) is a !-ideal.

Proof. Let F ∈ J0(M), G ∈ F0(M), and Kϕ = 0. By the definition of the func-
tional derivative, the distribution F (n)(ϕ) vanishes on n-fold tensor products of solu-
tions, hence on Δ⊗nG(n)(φ). Thus F !G ∈ J0(M). This shows that J0(M) is a right
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ideal. But J0(M) is invariant under complex conjugation, so (G ! F)∗ = F∗ ! G∗,
and it is also a left ideal.

5.5.3 The Algebra of Wick Polynomials

In order to include pointwise products of fields, or more generally, local functionals
in the sense of Sect. 5.4.1 into the formalism we have to admit more singular coeffi-
cients in the expansion (5.67). But then the product may become ill-defined. As an
example consider the functionals

F(ϕ) =
∫

dvol f (x)ϕ(x)2, (5.69)

G(ϕ) =
∫

dvol g(x)ϕ(x)2, (5.70)

with test functions f and g. Insertion into the formula for the product yields

(F ∗ G)(ϕ)

=
∫

dvol2 f (x)g(y)
(
ϕ2(x)ϕ2(y)+ 4i�Δ(x, y)ϕ(x)ϕ(y)− 2�

2Δ(x, y)2
)

(5.71)

The problematic term is the square of the distribution Δ. Here the methods of
microlocal analysis enter, namely the wave front set of Δ is (Strohmaier,
Theorem 16)

WF(Δ) = {(x, y; k, k ′), x and y are connected by a null geodesicγ,

k‖g(γ̇ , ·),Uγ k + k ′ = 0,Uγ parallel transport along γ }. (5.72)

The product of Δ cannot be defined in terms of Hörmander’s criterion for the multi-
plication of distribution, since the sum of two vectors in the wave front set can yield
zero. The crucial fact is now that Δ can be split in the form

Δ = 1

2
Δ+ i H + 1

2
Δ− i H, (5.73)

where the “Hadamard function” H is symmetric and the wave front set of 1
2Δ+ i H

contains only the positive frequency part (Strohmaier, Definition 10)

WF

(
1

2
Δ+ i H

)
= {(x, y; k, k ′) ∈ WF(Δ), k ∈ V+}. (5.74)

On Minkowski space, Δ depends only on the difference x − y, and one may find H
in terms of the Fourier transform of Δ
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1

2
Δ+ i H = Δ+ , Δ̃+(k) =

{
Δ̃(k) , k ∈ V+

0 , else
. (5.75)

On a generic spacetime, the split (5.73) represents a microlocal version of the
decomposition into positive and negative energies (microlocal spectrum condition
[5]) which is fundamental for quantum field theory on Minkowski space.

If we replace in the definition of the product (5.68) Δ by Δ + 2i H , we obtain a
new product !H . On F0(M)[[�]] this product is equivalent to !, namely

F !H G = αH (α−1
H (F) ! α−1

H (G)), (5.76)

where

αH (F) =
∑ �

n

n!
〈H⊗n, F (2n)〉 (5.77)

is a linear isomorphism of F0(M)[[�]] with inverse α−1
H = α−H .

This product now yields well-defined expressions in (5.71); actually, it is well
defined on F(M)[[�]]. This is a consequence of Hörmander’s criterion for the mul-
tiplicability of distributions, namely by the microlocal spectrum condition (5.74) the
wave front set of (Δ+ 2i H )⊗n is contained in V

n
+ × V

n
−. Hence by the condition on

the wave front set of the nth derivatives of F,G ∈ F(M) the pointwise product of
the distribution F (n) ⊗G(n) with (Δ+ 2i H )⊗n exists and is a distribution with com-
pact support. Therefore the terms in the formal power series defining the ∗-product
are well defined. Moreover, they are again elements of F(M). This follows from
the fact that the derivatives of 〈F (n), (Δ + 2i H )⊗nG(n)〉 arise from contractions of
the pointwise products F (n+k) ⊗ G(n+l) with (Δ+ 2i H )⊗n in the joint variables.

If we restrict ourselves to polynomial functionals, i.e., those for which the func-
tional derivatives of sufficiently high orders vanish, we may set � = 1. Up to taking
the quotient by the ideal J0(M) of the field equation we obtain, on Minkowski
space, the algebra of Wick polynomials. We thus succeeded to define on generic
spacetimes an algebra containing all local field polynomials.

The annoying feature, however, is that the product depends on the choice of H .
Fortunately, the difference w between two Hadamard functions H and H ′ is smooth.

Theorem 6. Let H, H ′ be symmetric distributions in two variables satisfying con-
dition (5.74). Then w = H − H ′ is smooth.

Proof. Since w = (H − i
2Δ) − (H ′ − i

2Δ), the wave front set of w satisfies also
condition (5.74). Thus (x, y; k, k ′) ∈ WF(w) implies k ∈ V+(x). But w is symmet-
ric, hence then also k ′ ∈ V+(y). But −k ′ is the parallel transport of k along a null
geodesic from x to y. Since M is time oriented, this implies k = k ′ = 0. Since by
definition, the zero covectors are not in the wave front set, the wave front set of w is
empty, hence w is smooth.

The smoothness of w implies that the products ∗H and ∗H ′ are equivalent

F ∗H ′ G = αw(α−1
w (F) ∗H α−1

w (G)), (5.78)
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where αw is defined in analogy to (5.77), but is now, due to the smoothness of w, a
well-defined linear isomorphism of F(M)[[�]].

In order to eliminate the influence of H we replace our functionals by families
F = (FH ), labeled by Hadamard functions H and satisfying the coherence condi-
tion αw(FH ) = FH+w. The product of two such families is defined by

(F ! G)H = FH !H G H . (5.79)

We call this algebra the algebra of quantum observables and denote it by A(M).
The subspace of local elements A ∈ Aloc(M) is formed by families A = (AH ) with
AH ∈ Floc(M). Since αw leaves Floc(M) invariant, A ∈ Aloc(M) if AH ∈ Floc(M)
for some Hadamard function H .

F0(M)[[�]] equipped with the product (5.68) is embedded into A(M) by

F �→ (FH ) with FH = αH (F). (5.80)

One may equip F(M) with a suitable topology such that αw is a homeomorphism
and such that F0(M)[[�]] is sequentially dense in A(M) [16].

5.5.4 Interacting Models

In order to treat interactions we introduce a new product ·T on F0(M)[[�]], the time-
ordered product. It is a commutative product which coincides with the ∗-product if
the factors are time ordered:

F ·T G = F ! G if supp(F) � supp(G), (5.81)

where � means that there is a Cauchy surface such that the left-hand side and the
right-hand side are in the future and past of the surface, respectively. For the free
field, we find

ϕ( f ) ·T ϕ(g) = ϕ( f )ϕ(g)+ i�〈 f,ΔDg〉, (5.82)

with the “Dirac propagator” (see [17])

ΔD = 1

2
(ΔR +ΔA). (5.83)

The time-ordered product may be extended to all of F0(M)[[�]] by

(F ·T G)(ϕ) =
∑

n

in
�

n

n!
〈F (n), (ΔD)⊗nG(n)〉. (5.84)

In text books on quantum field theory, the time-ordered product is usually defined
for fields in the Fock space representation. But the Dirac propagator is not a solution
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of the homogeneous Klein–Gordon equation. Hence J0(M) is not an ideal with
respect to the time-ordered product. Instead from ΔD K = id one finds the relation

ϕ(K f ) ·T F = ϕ(K f )F + i�〈F (1),ΔD K f 〉 = ϕ(K f )F + i�〈F (1), f 〉. (5.85)

This relation is the prototype of the so-called Schwinger–Dyson equation by which
the field equation of interacting quantum fields can be formulated in terms of expec-
tation values of time-ordered products. Since the ideal generated by the field equa-
tion vanishes in the Fock space representation, time ordering on Fock space is not
well defined as a product of operators. On F0(M)[[�]], however, it is well defined
and is even equivalent to the pointwise (classical) product, namely we introduce the
“time-ordering operator”

T F(ϕ) =
∑

n

in
�

n

n!
〈(ΔD)⊗n, F (2n)(ϕ)〉. (5.86)

T is a linear isomorphism, with the inverse obtained by complex conjugation, and

F ·T G = T (T−1(F) · T−1(G)). (5.87)

In terms of T , explicit formulae for interacting fields can be given by the use of
the formal S-matrix which is just the exponential function computed via the time-
ordered product

S(F) = T exp(T−1(F)). (5.88)

In terms of S we can write down the analog of the Møller operators for quantum
field theory, via Bogoliubov’s formula

RV (F)
.= d

dλ
S(V )−1 ! S(V + λF)

∣
∣∣∣
λ=0

= S(V )−1 ! (S(V ) ·T F), (5.89)

where the inverse is built with respect to the !-product. RV is a linear map from
F0(M)[[�]] to itself and describes the transition from the free action to the action
with additional interaction term V . It satisfies two important conditions, retardation
and equation of motion. As far as the retardation property is concerned, one observes
that if supp(V ) � supp(F), the time-ordered product and the ∗-product coincide,
hence by associativity of the !-product RV (F) = F , so the observable F is not
influenced by an interaction which takes place in the future. We now show that the
interacting field f �→ RV (ϕ(K f )) satisfies the off-shell field equation

RV (ϕ(K f )) = ϕ(K f )+ i� RV (〈V (1), f 〉), (5.90)

where f ∈ D(M) and K is the Klein–Gordon operator. (In a more suggestive nota-
tion, the field equation above reads



5 Quantum Field Theory on Curved Backgrounds 151

KϕV (x) = Kϕ(x)+ i
( δV

δϕ(x)

)

V
, (5.91)

with the free field ϕ, the interacting field ϕV , and the interacting current i
(
δV
δϕ

)

V
.)

Proof. S is the time-ordered exponential, hence by the chain rule we obtain
〈S(V )(1), g〉 = S(V ) ·T 〈V (1), g〉. From (5.85)

RV (ϕ(K f )) = S(V )−1 ! (S(V ) ·T ϕ(K f ))

= S(V )−1 !
(

S(V ) · ϕ(K f )+ i� S(V ) ·T 〈V (1), f 〉
)
.

But S(V ) · ϕ(K f ) = S(V ) ∗ ϕ(K f ) since the higher order terms in � of the
∗-product vanish due to ΔK = 0. The statement now follows from associativity
of the ∗-product.

5.5.5 Renormalization

The remaining problem is the extension of the time-ordered product to local func-
tionals. Here the problem can only partially be solved by the transition to an equiv-
alent product

F ·TH G = αH (α−1
H (F) ·T α−1

H (G)). (5.92)

This transformation amounts to replacing the Dirac propagator by the Feynman-like
propagator ΔD+i H . Since ΔD+i H coincides on the complement of the support of
the advanced propagator ΔA with 1

2Δ + i H and on the complement of the support
of the retarded propagator ΔR with − 1

2Δ+ i H , its wave front set is

WF(ΔD + i H ) = {(x, y, k, k ′) ∈ WF(Δ), k ∈ V± if x ∈ J±(y)}
∪ {(x, x, k,−k), k �= 0}.

Thus contrary to the Dirac propagator, pointwise products of these propagators exist
outside of the diagonal. The problem which remains to be solved in renormalization
is therefore to extend a distribution which is defined on the complement of some
submanifold (the thin diagonal in our case) to the full manifold [18].

The construction can be much simplified by the fact that the time-ordered product
coincides with the product ! for time-ordered supports. For local functionals the
time-ordered product is therefore defined whenever the localizations are different,
namely let Li , i = 1, . . . , n be Lagrangians, i.e., natural transformations in the sense
of Sect. 5.4.5. Then the time-ordered product (L1 ⊗ · · · ⊗ Ln)T can be defined in
terms of an A(M)-valued distribution on Mn \ D where D is the subset where at
least two variables coincide. Indeed, on tensor products of test functions f1⊗· · ·⊗ fn

with supp fi � supp fi+1, i = 1, . . . , n − 1 the time-ordered product is given by
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(L1 ⊗ · · · ⊗ Ln)MT ( f1 ⊗ · · · ⊗ fn) = LM
1 ( f1) ! · · · ! LM

n ( fn). (5.93)

Moreover, the time-ordered product is required to be symmetric, hence it is well
defined on Mn \ D.

One now proceeds by induction. The time-ordered product with one factor is
the Lagrangian itself. Now assume that time-ordered products of less than n factors
have been constructed in the sense of A(M)-valued distributions (L1 ⊗ · · · ⊗Lk)MT
on Mk such that (L1 ⊗ · · · ⊗Lk)T is a natural transformation from D⊗k to A which
in particular satisfies the causality condition

(L1⊗· · ·⊗Lk)MT ( f ⊗ g) = (L1⊗· · ·⊗Ll)
M
T ( f ) ! (Ll+1⊗· · ·⊗Lk)MT (g) (5.94)

provided supp( f ) ⊂ Ml
1, supp(g) ⊂ Mk−l

2 , and M1,M2 are subregions of M
with M1 � M2.

We may now, on Mn\Δn , use a decomposition of unity (χI )I , indexed by the non-
empty proper subsets of {1, . . . , n}, with supports suppχI ⊂ UI = {(x1, . . . , xn) ∈
Mn|{xi , i ∈ I } � {x j , j �∈ I }}. Then we define

(L1 ⊗ · · · ⊗ Ln)MT =
∑

I

χI (L1 ⊗ · · · ⊗ Ln)MT,I , (5.95)

where (L1 ⊗ · · · ⊗ Ln)MT,I is determined on UI by

(L1 ⊗ · · · ⊗ Ln)MT,I ( f1 ⊗ · · · ⊗ fn) = (⊗i∈ILi )
M
T (⊗i∈I fi ) ∗ (⊗ j �∈IL j )

M
T (⊗ j �∈I fi ).

(5.96)

This definition does not depend on the choice of the decomposition of unity. This
follows from the fact that on intersections UI∩UJ the distributions (L1⊗· · ·⊗Ln)MT,I
and (L1 ⊗ · · · ⊗ Ln)MT,J coincide.

The crucial step now is the extension of these distributions to the full space Mn

such that the causality condition (5.94) is satisfied. This can be done [18], but the
process is, in general, not unique.

As a result we obtain a renormalized S-matrix S as a generating functional for
time-ordered products

S(LM( f )) =
∑ 1

n!
(Li1 ⊗ · · · ⊗ Lin )MT ( fi1 ⊗ · · · ⊗ fin ), (5.97)

with

LM( f ) =
∑

Li ( fi ). (5.98)

The crucial conditions that restrict the ambiguities in the extension process is now
that S satisfies the causality condition
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S(LM( f + g)) = S(LM( f )) ! S(LM(g)) (5.99)

as a consequence of (5.94) and the naturality condition

αχ S(LM( f )) = S(LN (χ∗ f )) (5.100)

as a consequence of the naturality conditions on the time-ordered products of
Lagrangians. These conditions imply the Main Theorem of Renormalization:

Theorem 7. Let Si be two extensions of the formal S-matrix to Aloc fulfilling the
causality and naturality conditions. Then there exists a uniquely determined natural
equivalence Z : Aloc[[�]] → Aloc[[�]] (a formal diffeomorphism on the space of
interactions) with Z (1) = id such that

S2 = S1 ◦ Z . (5.101)

The natural equivalences Z occurring in the theorem form a group, the renormaliza-
tion group in the sense of Stückelberg and Petermann. Typically, additional condi-
tions on S induce cocycles on the renormalization group and the cohomology classes
of these cocycles are the famous anomalies of quantum field theory.

We conclude that a Lagrangian alone does not specify a quantum field theoretical
model completely. One has in addition to fix a point of the orbit of the interaction
under the renormalization group. This amounts to a choice of suitable renormaliza-
tion conditions. An important class of interactions are the renormalizable interac-
tions. They have the property that the orbit under the renormalization group (after
imposing suitable conditions) is finite dimensional, such that the theory can be fixed
in terms of finitely many parameters.

The method of renormalization described above is termed causal perturbation
theory and was first rigorously performed by Epstein and Glaser on Minkowski
space [19], based on previous work of Stückelberg and Bogoliubov. Its extension
to curved spacetimes was undertaken by Brunetti and Fredenhagen [18], and the
implementation of the principle of local covariance and the reduction to finitely
many free parameters is due to Hollands and Wald [7, 20]. The extension of the
method to gauge theories was performed on Minkowski space by Dütsch, Scharf
et al. [21] and generalized to curved spacetimes by Hollands [22].

On Minkowski space, there exist other methods of renormalization, which are
known to be equivalent. One of these is the Bogoliubov–Parasiuk–Hepp–
Zimmermann method whose involved structure was recently made transparent in
terms of the Connes–Kreimer Hopf algebra [23]. Another one is the Wilson–
Polchinski method of renormalization group flow equations [16], where the time-
ordered product is regularized. The dependence of the theory under a variation of
the regularization delivers the so-called flow equation. In the sense of formal power
series, the flow equation can always be solved, and the removal of the regularization
amounts to asymptotic stability properties of the solutions. The attractive feature of
this method is that the concepts do not depend on the perturbative formulation. It
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is usually defined in terms of the path integral which seems to make a formulation
on curved spacetime difficult. But if interpreted not as an integral but as an integral
operator, it can actually be identified with the formal S-matrix of causal perturbation
theory.

Namely let TΛ be a regularized version of the time-ordering operator T obtained
by replacing the Feynman propagator ΔD+ i H by a sufficiently regular distribution
GΛ + i H . Then SΛ = TΛ ◦ exp ◦T−1

Λ is a well-defined generating functional for
regularized time-ordered products on A. Different regularizations may be compared
in terms of the effective action S−1

Λ1
◦SΛ2 which yields after application to V ∈ A(M)

a modified interaction VΛ1Λ2 which is interpreted as the “interaction at scale Λ1 after
integrating out the degrees of freedom beyond Λ2.” This interpretation refers to a
regularization by a momentum cutoff and has no immediate generalization to the
generic situation on curved space time. But in any case we know from causal per-
turbation theory [16] that given S there exist renormalization group transformations
ZΛ such that

S = lim SΛ ◦ ZΛ, (5.102)

if GΛ + i H converges to ΔD + i H in the appropriate sense (Hörmander’s topology
for distributions with prescribed wave front set). The renormalization transformation
ZΛ is the operation which adds the necessary counter terms to the interaction. If Λ
can be identified with a complex variable such that SΛ is meromorphic and Λ = 0
corresponds to the removal of the regularization, one can choose ZΛ such that it
removes the pole at Λ = 0 and obtains a distinguished choice for S. For instance,
in the case of dimensional regularization this defines the so-called minimal renor-
malization. But such a choice of S is not necessarily appropriate from the point
of view of physics. In particular it depends on the choice of the regularization. It
can, however, be used to fix a specific point on the orbit of interactions under the
renormalization group and thus allow an explicit formulation of renormalization
conditions.
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