
Exploiting Cycle Structures in Max-SAT

Chu Min Li1, Felip Manyà2, Nouredine Mohamedou1, and Jordi Planes3,�

1 MIS, Université de Picardie Jules Verne, 5 Rue du Moulin Neuf 80000 Amiens, France
2 IIIA-CSIC, Campus UAB, 08193 Bellaterra Spain

3 Computer Science Department, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain

Abstract. We investigate the role of cycles structures (i.e., subsets of clauses
of the form l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3) in the quality of the lower bound
(LB) of modern MaxSAT solvers. Given a cycle structure, we have two
options: (i) use the cycle structure just to detect inconsistent subformulas
in the underestimation component, and (ii) replace the cycle structure with
l̄1, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 by applying MaxSAT resolution and, at the
same time, change the behaviour of the underestimation component. We first
show that it is better to apply MaxSAT resolution to cycle structures occur-
ring in inconsistent subformulas detected using unit propagation or failed literal
detection. We then propose a heuristic that guides the application of MaxSAT res-
olution to cycle structures during failed literal detection, and evaluate this heuris-
tic by implementing it in MaxSatz, obtaining a new solver called MaxSatzc. Our
experiments on weighted MaxSAT and Partial MaxSAT instances indicate that
MaxSatzc substantially improves MaxSatz on many hard random, crafted and
industrial instances.

1 Introduction

The lower bound (LB) computation method implemented in branch and bound MaxSAT
solvers (e.g. [4,6,10,12,13]) is decisive for obtaining a competitive solver. The LB of
MaxSatz [10] and MiniMaxSat [4] —two of the best performing solvers in the 2008
MaxSAT Evaluation— has two components: (i) the underestimation component, which
detects disjoint inconsistent subformulas and takes the number of detected subformulas
as an underestimation of the LB, and (ii) the inference component, which applies in-
ference rules and, in the best case, makes explicit a contradiction by deriving an empty
clause which allows to increment the LB. Both components are applied at each node of
the search space, and cooperate rather than work independently.

A MaxSAT instance may contain different structures that influence the behavior
of the two components of the LB. In this paper we investigate the role of the so-
called cycles structures (i.e., subsets of clauses of the form l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3)1

in the quality of the LB. Given a cycle structure, we have two options: (i) use the cy-
cle structure just to detect inconsistent subformulas in the underestimation component

� Research partially supported by the Generalitat de Catalunya under grant 2005-SGR-00093,
and the Ministerio de Ciencia e Innovación research projects CONSOLIDER CSD2007-0022,
INGENIO 2010, TIN2006-15662-C02-02, and TIN2007-68005-C04-04.

1 l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 is equivalent to l1 → l2, l1 → l3, l̄2 ∨ l̄3.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 467–480, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

468 C.M. Li et al.

(note that a cycle structure implies a failed literal l1), and (ii) replace the cycle structure
with l̄1, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 by applying MaxSAT resolution [2,5], which amounts
to activate the inference component and, at the same time, change the behaviour of the
underestimation component. We first show that it is better to apply MaxSAT resolution
to cycle structures occurring in inconsistent subformulas detected using unit propaga-
tion or failed literal detection. We then propose a heuristic that guides the application
of MaxSAT resolution to cycle structures during failed literal detection, and evaluate
this heuristic by implementing it in MaxSatz, obtaining a new solver called MaxSatzc.
Our experimental investigation on weighted MaxSAT and Partial MaxSAT instances
shows that MaxSatzc substantially improves MaxSatz on many hard random, crafted
and industrial instances.

This paper extends the results of [7] to Weighted MaxSAT and Partial MaxSAT, and
includes experiments with random, crafted and industrial instances of the last MaxSAT
Evaluation (in [7], the results are only for unweighted MaxSAT, and experiments are
limited to Max-2SAT instances). The implementations in [7] were performed on top
of an optimized version of MaxSatz for unweighed MaxSAT that was first used in the
2007 MaxSAT Evaluation, but the implementations of this paper were performed on
top of an optimized version of MaxSatz for Weighted Partial MaxSAT that was used
in the 2008 MaxSAT Evaluation. This paper also contains two new lemmas (Lemma 1
and Lemma 2), a formal proof of Proposition 1, an example (Example 2) that shows that
applying MaxSAT resolution to cycle structures not contained in an inconsistent subfor-
mula may lead to worse LBs, and a deeper analysis of the experimental results. For the
sake of clarity, we explain our work for unweighted MaxSAT, but the implementation
and experiments include Weighted MaxSAT and Partial MaxSAT.

2 Preliminaries

We define CNF formulas as multisets of clauses because, in Max-SAT, duplicated clauses
cannot be collapsed into one clause, and define weighted CNF formulas as multisets of
weighted clauses. A weighted clause is a pair (Ci, wi), where Ci is a disjunction of
literals and wi, its weight, is a positive number. The weighted clauses (C, wi), (C, wj)
can be replaced with (C, wi + wj). A literal l in a (weighted) CNF formula φ is failed
if unit propagation derives a contradiction from φ ∧ l but not from φ. An empty clause
cannot be satisfied and is denoted by .

The (Unweighted) MaxSAT problem for a CNF formula φ is the problem of find-
ing a truth assignment that maximizes (minimizes) the number of satisfied (unsatisfied)
clauses.2 MaxSAT instances φ1 and φ2 are equivalent if φ1 and φ2 have the same number
of unsatisfied clauses for every complete assignment of φ1 and φ2. A MaxSAT inference
rule is sound if it transforms an instance into an equivalent instance.

The Weighted MaxSAT problem for a weighted CNF formula φ is the problem of
finding an assignment that minimizes the sum of weights of unsatisfied clauses. A Partial
MaxSAT instance is a CNF formula in which some clauses are relaxable or soft and the
rest are non-relaxable or hard. Solving a Partial MaxSAT instance amounts to find an
assignment that satisfies all the hard clauses and the maximum number of soft clauses.

2 In the sequel, we always refer to the minimization version of MaxSAT, also called MinUNSAT.

Exploiting Cycle Structures in Max-SAT 469

3 Related Work

3.1 Underestimation Component

The underestimation in LB UP [8] is the number of disjoint inconsistent subformulas that
can be detected with unit propagation. UP works as follows: it applies unit propagation
until a contradiction is derived. Then, UP identifies, by inspecting the implication graph
created by unit propagation, a subset of clauses from which a unit refutation can be
constructed, and tries to derive new contradictions from the remaining clauses. The order
in which unit clauses are propagated has a clear impact on the quality of the LB [9].
Recently, Darras et al. [3] and Han et al. [11] have developed two versions of UP in
which the computation of the LB is made more incremental.

UP can be enhanced with failed literal detection (UPFL) [9] : Given a MaxSAT
instance φ to which we have already applied UP, and a variable x, UPFL applies UP to
φ∧x and φ∧ x̄. If UP derives a contradiction from both φ∧x and φ∧ x̄, then the union
of the two inconsistent subformulas identified by UP respectively in φ∧ x and φ∧ x̄ is
an inconsistent subformula of φ, after excluding x and x̄. Since applying failed literal
detection to every variable is time consuming, it is only applied to the variables which
do not occur in unit clauses, and have at least two positive and two negative occurrences
in binary clauses. Once an inconsistent subformula γ is detected, γ is removed from φ,
the underestimation is increased by one, and UPFL continues in the modified φ.

In this paper, when we say an inconsistent subformula, we mean an inconsistent sub-
formula detected using unit propagation or failed literal detection.

Another approach for computing underestimations is based on first reducing the
MaxSAT instance one wants to solve to an instance of another problem, and then solving
a relaxation of the obtained instance. For example, Clone [12] and SR(w) [13] solve the
minimum cardinality problem of a deterministic decomposable negation normal form
(d-DNNF) compilation of a relaxation of the current MaxSAT instance.

3.2 Inference Component

An alternative to improve the quality of the LB consists in applying MaxSAT resolu-
tion. In practice, competitive solvers apply some refinements of the rule for efficiency
reasons. In contrast to SAT resolution, a MaxSAT inference rule replaces the clauses in
the premises with the clauses in the conclusion in order to preserve the number of un-
satisfied clauses. If the conclusion would be added to the premises as in SAT resolution,
the number of unsatisfied clauses might increase.

MaxSatz [10] incorporates the following rules (also called Rule 1, Rule 2, Rule 3,
Rule 4 in this paper) capturing special structures in a MaxSAT instance:

l1, l1 ∨ l2, l2 =⇒ , l1 ∨ l2 (1)

l1, l̄1 ∨ l2, l̄2 ∨ l3, · · · , l̄k ∨ lk+1, l̄k+1 =⇒ , l1 ∨ l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1

(2)

l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 =⇒ , l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 (3)

470 C.M. Li et al.

l1, l̄1 ∨ l2, l̄2 ∨ l3, · · · , l̄k ∨ lk+1,
l̄k+1 ∨ lk+2, l̄k+1 ∨ lk+3, l̄k+2 ∨ l̄k+3

=⇒ , l1 ∨ l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1,
lk+1 ∨ l̄k+2 ∨ l̄k+3, l̄k+1 ∨ lk+2 ∨ lk+3

(4)
Max-DPLL [6] incorporates several rules for weighted MaxSAT, including chain reso-
lution (which is equivalent to Rule 2 in the unweighted case) and cycle resolution. Cycle
resolution, which captures the cycle structure, is implemented for 3 variables:

l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 =⇒ l̄1, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 (5)

MiniMaxSat incorporates LB UP and, once a contradiction is found, it applies MaxSAT
resolution to the detected inconsistent subformula if the largest resolvent in the refutation
has arity less than 4; otherwise, it just increments the underestimation.

Max-DPLL applies MaxSAT resolution, via the cycle resolution inference rule, to
all the cycle structures occurring in a MaxSAT instance, and does not combine its ap-
plication with the underestimation component. MaxSatz and MiniMaxSat both select
cycle structures to which MaxSAT resolution can be applied. MaxSatz applies MaxSAT
resolution, via Rule 3 and Rule 4, just when unit propagation detects a contradiction
containing the cycle structure. MiniMaxSat applies MaxSAT resolution to cycles struc-
tures which are contained in an inconsistent subformula detected by UP provided that
the largest resolvent in the refutation of the subformula has arity less than 4.

4 Cycle Structures and Lower Bounds

Exploiting cycle structures has proved very useful in Max-DPLL, MaxSatz, and Mini-
MaxSat. In this section, we study why and when exploiting cycle structures is useful.

The operation of Rule 3 and Rule 4 of MaxSatz can be analyzed as follows. Given an
inconsistent subformula {l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3} detected using unit propagation,
Rule 3 applies MaxSAT resolution to transform the subformula into {l1, l̄1, l1 ∨ l̄2 ∨
l̄3, l̄1∨ l2∨ l3}, and then into { , l1∨ l̄2∨ l̄3, l̄1∨ l2∨ l3} (since {l1, l̄1} is equivalent to

). The benefit of the transformation is twofold: (i) the empty clause does not need to be
re-detected in the subtree rooted at the current node because it remains in the transformed
formula, and (ii) the transformed subformula includes two new ternary clauses, and such
liberated clauses may be used to detect further inconsistent subformulas, allowing to
compute better LBs. The case of Rule 4 is similar.

The next example illustrates the usefulness of applying MaxSAT resolution to cycle
structures in scenarios where there is no unit clause.

Example 1. Assume that a MaxSAT instance φ contains

x1 ∨ x2, x̄2 ∨ x3, x̄2 ∨ x4, x̄3 ∨ x̄4, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7

x8 ∨ x̄2, x8 ∨ x3, x8 ∨ x4, x̄8 ∨ x9, x̄8 ∨ x10, x̄8 ∨ x11, x̄9 ∨ x̄10 ∨ x̄11

Rule 3 and Rule 4 are not applied since there is no unit clause. Failed literal detection
on the variable x1 finds the inconsistent subformula in the first line. After removing this

Exploiting Cycle Structures in Max-SAT 471

subformula, it cannot detect further inconsistent subformulas. The underestimation is
only incremented by 1. However, if MaxSAT resolution is applied to

x̄2 ∨ x3, x̄2 ∨ x4, x̄3 ∨ x̄4

in the first line, these clauses are replaced with

x̄2, x2 ∨ x̄3 ∨ x̄4, x̄2 ∨ x3 ∨ x4

and then the underestimation component detects 2 inconsistent subformulas instead of 1.
The first with failed literal detection on the variable x1:

x1 ∨ x2, x̄2, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7

and the second with failed literal detection on the variable x8:

x8 ∨ x̄2, x8 ∨x3, x8 ∨x4, x̄8 ∨x9, x̄8 ∨x10, x̄8 ∨x11, x̄9 ∨ x̄10 ∨ x̄11, x2 ∨ x̄3 ∨ x̄4

Example 1, together with the analysis of Rule 3 and Rule 4, suggests that one should
apply MaxSAT resolution to cycle structures contained in an inconsistent subformula to
improve the quality of LBs. In fact, generally speaking, let φ be a MaxSAT instance and
l a literal of φ, we have

Lemma 1. Let l be a failed literal in φ (i.e., UP(φ∧ l) derives an empty clause), and let
Sl be the set of clauses used to derive the contradiction in UP(φ ∧ l). If Sl contains the
cycle structure l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3, then l1 was set to true in the unit propagation.

Proof. Except the empty clause, every clause in Sl becomes unit when it is used for
propagation, meaning that every clause in Sl is satisfied by at most one literal in the unit
propagation. If l1 was set to false in the propagation, then at least one of the three clauses
l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 would be satisfied by two literals and could not belong to Sl. So,
l1 was set to true in the unit propagation. �

Lemma 2. If l is a failed literal, and Sl contains the cycle structure l̄1∨l2, l̄1∨l3, l̄2∨l̄3,
then l1 was assigned a truth value before l2 and l3 in UP(φ ∧ l).

Proof. Except the empty clause, every clause in Sl was unit when it was satisfied in the
unit propagation. We assume that l2 was assigned a truth value before l1 and show that
this is impossible. If l2 was assigned true, clause l̄1∨ l2 would be satisfied without being
unit; if l2 was assigned false, then l3 would be assigned true before l2 was assigned false,
since otherwise clause l̄2∨ l̄3 would be satisfied before being unit. But in the latter case,
clause l̄1 ∨ l3 would be satisfied without being unit. �

Lemma 2 also means that if Sl contains a cycle structure, then the cycle structure must
be the last three binary clauses in the implication graph detecting Sl, which makes the
identification of the cycle structure in Sl fast and easy.

Proposition 1. Let l be a failed literal in φ (i.e., UP(φ∧l) derives an empty clause), and
let Sl be the set of clauses used to derive the contradiction in UP(φ ∧ l). If Sl contains
the cycle structure l̄1∨ l2, l̄1∨ l3, l̄2∨ l̄3, and S′

l is Sl after applying MaxSAT resolution
to the cycle structure, then S′

l – {l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3} is inconsistent.

472 C.M. Li et al.

Proof. By Lemma 1 and Lemma 2, l1 was assigned true in UP(φ ∧ l) independently
of the three clauses l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3, which are replaced with {l̄1, l1 ∨ l̄2 ∨ l̄3,
l̄1∨ l2∨ l3} in S′

l . So, unit propagation in S′
l – {l1∨ l̄2∨ l̄3, l̄1∨ l2∨ l3} derives an empty

clause from the unit clause l̄1. �
Proposition 1 means that, if both l and l̄ are failed literals, and Sl contains the cycle
structure l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3, we can apply MaxSAT resolution in φ (replacing these
three binary clauses with one unit clause l̄1 and two ternary clauses l1 ∨ l̄2 ∨ l̄3 and
l̄1 ∨ l2 ∨ l3) to obtain S′

l , and then transform the inconsistent subformula S′
l∪Sl̄ – {l,

l̄} into a smaller inconsistent subformula S′
l∪Sl̄ – {l, l̄, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3} of φ.

So, apart from incrementing the underestimation by 1, this transformation liberates two
ternary clauses from S′

l∪Sl̄ – {l, l̄} that can be used to derive other disjoint inconsistent
subformulas, allowing to obtain better LBs.

In Example 1, Sx̄1∪Sx1 – {x̄1, x1} is equal to

{x1 ∨ x2, x̄2 ∨ x3, x̄2 ∨ x4, x̄3 ∨ x̄4, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7}
which is transformed by applying MaxSAT resolution to the cycle structure x̄2∨x3, x̄2∨
x4, x̄3 ∨ x̄4 into a smaller inconsistent subformula

{x1 ∨ x2, x̄2, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7}
So, after incrementing the underestimation by 1, we have two additional ternary clauses
(x2 ∨ x̄3 ∨ x̄4 and x̄2 ∨ x3 ∨ x4) liberated from the cycle structure which can be used
to detect further inconsistent subformulas.

The benefit of applying MaxSAT resolution to a cycle structure not contained in an
inconsistent subformula is not so clear. The next example suggests that this application
may lead to a worse LB.

Example 2. Assume that a MaxSAT instance φ contains

x1 ∨ x̄2, x1 ∨ x̄3, x2 ∨ x3, x2 ∨ x6, x3 ∨ x̄6,
x̄1 ∨ x7, x̄1 ∨ x8, x̄7 ∨ x9, x̄8 ∨ x̄9,
x̄4, x4 ∨ x̄2, x̄3 ∨ x5, x̄5

Without activating the inference component, unit propagation detects an inconsistent
subformula

{x2 ∨ x3, x̄4, x4 ∨ x̄2, x̄3 ∨ x5, x̄5}
Then, after removing this subformula from φ, failed literal detection on x1 (i.e., unit
propagation in φ∧x̄1 and in φ∧x1 respectively) finds the second inconsistent subformula

{x1 ∨ x̄2, x1 ∨ x̄3, x2 ∨ x6, x3 ∨ x̄6, x̄1 ∨ x7, x̄1 ∨ x8, x̄7 ∨ x9, x̄8 ∨ x̄9}
Note that the first three clauses of φ form a cycle structure but do not belong to a same
inconsistent subformula detected using unit propagation or failed literal detection. If
MaxSAT resolution is applied to the cycle structure, φ becomes

x1, x̄1 ∨ x2 ∨ x3, x1 ∨ x̄2 ∨ x̄3, x2 ∨ x6, x3 ∨ x̄6,
x̄1 ∨ x7, x̄1 ∨ x8, x̄7 ∨ x9, x̄8 ∨ x̄9,
x̄4, x4 ∨ x̄2, x̄3 ∨ x5, x̄5.

Exploiting Cycle Structures in Max-SAT 473

Once unit propagation detects the inconsistent subformula

{x1, x̄1 ∨ x2 ∨ x3, x̄4, x4 ∨ x̄2, x̄3 ∨ x5, x̄5}
φ becomes (after removing the inconsistent subformula)

{x1 ∨ x̄2 ∨ x̄3, x2 ∨ x6, x3 ∨ x̄6, x̄1 ∨ x7, x̄1 ∨ x8, x̄7 ∨ x9, x̄8 ∨ x̄9}
and is consistent. So, only one inconsistent subformula is detected when MaxSAT
resolution is applied to the cycle structure, making the LB worse.

5 Heuristics for Applying MaxSAT Resolution in Cycle Structures

From the previous analysis, we observe that it is better to apply MaxSAT resolution
to cycle structures contained in an inconsistent subformula in order to transform the in-
consistent subformula and liberate two ternary clauses from the subformula. In practice,
when we identify a cycle structure at a node of the search tree, we distinguish three cases:

1. The cycle structure is contained in an inconsistent subformula.
2. The cycle structure is not contained in an inconsistent subformula at the current

node, but probably belongs to an inconsistent subformula in the subtree below the
current node.

3. The cycle structure is not contained in an inconsistent subformula at the current node
and probably will not belong to an inconsistent subformula in the subtree.

We define a heuristic that applies MaxSAT resolution in the first two cases. As we will
see, the benefit of applying MaxSAT resolution in the second case is twofold: two ternary
clauses are liberated in advance, and the probable inconsistent subformula containing the
cycle structure will be easier and faster to detect in the subtree with the application of
MaxSAT resolution. This heuristic is implemented in Algorithm 1., where occ2(l) is the
number of occurrences of literal l in the binary clauses of φ.

Between the two literals of a variable x that have reasonable probability to be failed
(since their satisfaction results in at least two new unit clauses), Algorithm 1. detects first
the literal l with more occurrences in binary clauses. Note that l has a smaller probability
of being failed than l̄ since its satisfaction produces fewer new unit clauses than the
satisfaction of l̄.

If l is a failed literal and Sl contains a cycle structure, the cycle structure is re-
placed to obtain S′

l before detecting l̄. If l̄ also is a failed literal, the inconsistent sub-
formula S′

l∪Sl̄ – {l, l̄} is transformed into a smaller inconsistent subformula to liberate
two ternary clauses. If l̄ is not a failed literal in the current node, failed literal detection
does not detect an inconsistent subformula containing the cycle structure of Sl, but Sl

is now smaller thanks to MaxSAT resolution because it becomes now S′
l – {l1 ∨ l̄2 ∨ l̄3,

l̄1 ∨ l2 ∨ l3} by Proposition 1, and it will be easier to re-detect in the subtree. Note that
l̄ has reasonable probability to be a failed literal in the subtree, i.e., the cycle structure
in the original Sl has reasonable probability to be contained in an inconsistent subfor-
mula in the subtree. As soon as l̄ fails in the subtree, Algorithm 1. will detect the smaller
inconsistent subformula Sl∪Sl̄ – {l, l̄} with smaller cost (recall Sl is now smaller).

474 C.M. Li et al.

Algorithm 1. flAndCycle(φ, x), combining MaxSAT resolution to cycle structures and
failed literal detection

Input: A MaxSAT instance φ, and a variable x such that occ2(x)≥ 2 and occ2(x̄)≥ 2
Output: φ in which MaxSAT resolution is possibly applied to a cycle structure, and an underes-

timation
begin1

if occ2(x)>occ2(x̄) then l←−x; else l←−x̄;2

underestimation ←− 0;
if UP(φ ∧ l) derives a contradiction then

if Sl contains a cycle structure, replace the cycle structure with one unit clause and two3

ternary clauses;
if UP(φ ∧ l̄) derives a contradiction then

if Sl̄ contains a cycle structure, replace the cycle structure with one unit clause and4

two ternary clauses;
underestimation ←− 1;

return new φ and underestimation5

end6

On the contrary, if l is not a failed literal, Algorithm 1. does not detect an inconsistent
subformula, l̄ is not detected and no inference is applied to Sl̄ even if l̄ is a failed literal,
avoiding the application of MaxSAT resolution to a cycle structure not contained in an
inconsistent subformula.

With the aim of evaluating the impact of Algorithm 1. in the performance of MaxSatz,
we define the following variants of solvers:

– MaxSatz: It is a Weighted Partial MaxSAT solver developed by J. Argelich, C.M. Li
and F. Manyà [1]. MaxSatz participated in the 2008 MaxSAT Evaluation, and in-
corporates all the MaxSatz inference rules, and failed literal detection, besides UP,
in the underestimation component. MaxSatz applies MaxSAT resolution to cycles
structures in a limited way using Rule 3 and Rule 4.

– MaxSatzc: It is a variant of MaxSatz in which failed literal detection is combined
with the heuristic application of MaxSAT resolution to cycle structures. For every
variable x such that occ2(x)≥ 2 and occ2(x̄)≥ 2, failed literal detection is replaced
with Algorithm 1.. For the rest of variables, it is applied as in MaxSatz.

– MaxSatzp
c : It is a variant of MaxSatzc in which MaxSAT resolution is applied to all

the cycle structures appearing at the root node, and is applied as in MaxSatzc to the
cycle structures appearing in the rest of nodes. In other words, MaxSAT resolution
is exhaustively applied to cycle structures as a preprocessing. Notice that this pre-
processing has no effect on problems not containing cycle structures in the input
formula (e.g., Max-3SAT). In this case, MaxSatzp

c is just MaxSatzc. Although all
cycle structures at the root node are replaced, new cycle structures can be created in
the rest of nodes. Cycle structures may appear because (i) non-binary clauses may
become binary clauses during the search, and (ii) Rule 1, Rule 2, Rule 3, and Rule 4
applied in UP, before failed literal detection, may transform binary clauses and add
ternary clauses.

Exploiting Cycle Structures in Max-SAT 475

– MaxSatzp: It is a variant of MaxSatz in which MaxSAT resolution is applied to all
the cycle structures appearing at the root node, and in the rest of nodes, it is just
MaxSatz.

– MaxSatzc∗ : It is a variant of MaxSatz in which MaxSAT resolution is applied ex-
haustively to all cycle structures at each node after applying UP and inference rules
(Rule 1, Rule 2, Rule 3, and Rule 4), and before applying failed literal detection.
The application is exhaustive because no subset of binary clauses matching a cycle
structure remains in the current instance.

MaxSatzc∗ is related to Max-DPLL when replacing every cycle structure with one
unit clause and two ternary clauses. MaxSatzc extends MaxSatz and MiniMaxSat in
that MaxSatzc additionally applies MaxSAT resolution to cycle structures contained in
an inconsistent subformula detected using failed literal detection. Moreover, differently
from MiniMaxSat, MaxSatzc replaces these cycle structures no matter if the refutation
has arity less than 4 or not.

Recall that a weighted clause (C, w1+w2) is equivalent to two weighted clauses (C,
w1) and (C, w2). The difference between MaxSatzc and MaxSatzc∗ should be bigger for
Weighted MaxSAT than for unweighted MaxSAT. For example, if a weighted formula
contains a cycle structure (l̄1∨ l2, 3), (l̄1∨ l3, 4), (l̄2∨ l̄3, 5), MaxSatzc∗ replaces entirely
this cycle structure with (l̄1, 3), (l1 ∨ l̄2 ∨ l̄3, 3), (l̄1 ∨ l2 ∨ l3, 3), and leaves two clauses
(l̄1 ∨ l3, 1), (l̄2 ∨ l̄3, 2) in the formula. On the contrary, MaxSatzc only replaces the part
of this cycle structure contained in an inconsistent subformula. If the minimum clause
weight in the inconsistent subformula is 2, MaxSatzc replaces this cycle structure with
(l̄1, 2), (l1∨ l̄2∨ l̄3, 2), (l̄1∨l2∨l3, 2), and leaves the cycle structure (l̄1∨l2, 1), (l̄1∨l3, 2),
(l̄2∨ l̄3, 3) in the formula, which is different from the unweighted case where MaxSatzc

never partly replaces a cycle structure.

6 Experimental Results and Analysis

We conducted experiments to compare the performance of the different versions of
MaxSatz described in the previous section (MaxSatz, MaxSatzc, MaxSatzp

c , MaxSatzp,
and MaxSatzc∗).

As benchmarks for Weighted MaxSAT, we considered random weighted Max-2SAT,
random weighted Max-3SAT, and random weighted Max-CUT instances, and all the
crafted instances of the 2008 MaxSAT Evaluation (the evaluation did not include indus-
trial instances for Weighted MaxSAT). As benchmarks for Partial MaxSAT, we con-
sidered random partial Max-2SAT and random partial Max-3SAT instances, and all
the industrial and crafted instances of the 2008 MaxSAT Evaluation. We did not solve
the random instances of the Weighted MaxSAT and Partial MaxSAT categories of the
2008 MaxSAT Evaluation because they are easily solved with the different versions
of MaxSatz. We selected instances which are harder and allow to analyze the scaling
behavior of the solvers.

We do not include the experimental results with other solvers in this section for three
reasons: (i) the purpose of the experiments is to show the effectiveness of the heuristic
replacement of cycles structures given in Algorithm 1., while keeping other things equal

476 C.M. Li et al.

in a solver; (ii) for randomly generated (weighted or partial) instances, other solvers are
too slow to be displayed in the figures; (iii) for crafted and industrial instances of the
2008 MaxSAT Evaluation, the performance of other solvers can be checked in the web
page of the evaluation (http://www.maxsat.udl.cat/08/).

Experiments were performed on a MacPro with two 2.8GHz Quad-Core Intel Xeon
processors and 4Gb of RAM. For every instance, besides the run time, we compute the
total number k of cycle structures replaced by applying MaxSAT resolution (in addition
to Rule 3 and Rule 4), and divide k by the search tree size t. The ratio k/t roughly indi-
cates the average number of cycle structures replaced (in addition to the applications of
Rule 3 and Rule 4) at a search tree node. For the 2008 MaxSAT Evaluation instances,
we set a cutoff of 30 minutes. These instances generally include no or very few cycle
structures in their initial formulas, so that the preprocessing is not significant. We do not
include MaxSatzp

c and MaxSatzp in the comparison for them for the sake of clarity.
The experimental results for Weighted MaxSAT are shown in Figure 1, Figure 2,

Figure 3, and Table 1. Figure 1 shows the mean time (left plot) and the mean ratio k/t
(right plot) to solve sets of 100 randomly generated Weighted Max-2SAT instances with
100 variables and an increasing number of clauses. MaxSatz is not included in the right
plot, because cycle structures replaced by Rule 3 and Rule 4 are not counted in k, so that
k is always 0 for MaxSatz. We observe a clear advantage of MaxSatzc and MaxSatzp

c ,
which are up to one order of magnitude better than MaxSatz and MaxSatzc∗ . The search
tree size (not shown for lack of space) follows the same ordering. It can be observed that,
it suffices to replace three or four cycle structures contained in an inconsistent subfor-
mula at a search tree node to obtain an important gain, and the gain grows with the
number of cycle structures replaced. However, if the cycle structures not contained in
an inconsistent subformula are also replaced as in MaxSatzc∗ , the LB becomes substan-
tially worse and the search tree larger, and the more replacements there are, the worse
the LB.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1500 1600 1700 1800 1900 2000 2100 2200

tim
e

(in
 s

ec
on

ds
)

number of clauses

Weighted-Max-2SAT - 100 variables

MaxSatzc*

MaxSatz

MaxSatzp

MaxSatzc

MaxSatzp
c

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1500 1600 1700 1800 1900 2000 2100 2200#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of clauses

Weighted-Max-2SAT - 100 variables

MaxSatzc*
MaxSatzc

MaxSatzp
c

MaxSatzp

Fig. 1. Weighted Max-2SAT instances

Figure 2 shows the mean time (left plot) and the mean ratio k/t (right plot) to solve
sets of 100 randomly generated Weighted Max-3SAT instance with 60 variables and
an increasing number of clauses. Since weighted Max-3SAT instances do not include
cycle structures, the preprocessing has no effect. Therefore, Figure 2 does not include

Exploiting Cycle Structures in Max-SAT 477

MaxSatzp
c and MaxSatzp. We observe that MaxSatzc is clearly better than the rest of

solvers. Note that all cycle structures are dynamically created during search.

 0

 200

 400

 600

 800

 1000

 1200

 800 900 1000 1100 1200 1300

tim
e

(in
 s

ec
on

ds
)

number of clauses

Weighted-Max-3SAT - 60 variables

MaxSatzc*

MaxSatz
MaxSatzc

 0

 2

 4

 6

 8

 10

 12

 14

 16

 800 900 1000 1100 1200 1300#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of clauses

Weighted-Max-3SAT - 60 variables

MaxSatzc*
MaxSatzc

Fig. 2. Weighted Max-3SAT instances

Figure 3 shows the mean time (left plot) and the mean ratio k/t (right plot) to solve
sets of 100 random Weighted Max-CUT instances generated from random graphs of
100 nodes and an increasing number of edges. MaxSatzc∗ is better than MaxSatz be-
cause a cycle structure easily belongs to an inconsistent subformula due to the special
structure of the Max-CUT problem. Nevertheless the heuristic application of MaxSAT
resolution to cycle structures contained in an inconsistent subformula makes MaxSatzc

significantly better than MaxSatzc∗ .

 0

 100

 200

 300

 400

 500

 600

 500 600 700 800 900

tim
e

(in
 s

ec
on

ds
)

number of edges

Weighted-MaxCUT - 100 nodes

MaxSatz
MaxSatzc*

MaxSatzp

MaxSatzp
c

MaxSatzc

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 500 600 700 800 900#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of edges

Weighted-MaxCUT - 100 variables

MaxSatzc*
MaxSatzc

MaxSatzp
c

MaxSatzp

Fig. 3. Weighted Max-CUT instances

Table 1 contains the results for the crafted instances of the Weighted Max-SAT cat-
egory of the 2008 MaxSAT Evaluation. For each group of instances, we display the
number of instances I in the group, and for each solver, the number of instances solved
within the cutoff of 30 minutes (in brackets) and the mean time in seconds to solve these
solved instances. MaxSatzc is the best performing solver, which solves 4 instances more
than MaxSatz and 2 instances more than Maxsatzc∗ .

478 C.M. Li et al.

Table 1. Crafted instances of the Weighted Max-SAT category of the 2008 MaxSAT Evaluation

Instance set I MaxSatz MaxSatzc MaxSatzc∗

KeXu 15 14.97(10) 13.85(10) 25.28(10)
RAMSEY 48 25.45(36) 10.93(36) 14.80(36)

WMAXCUT-DIMACS-MOD 62 54.22(55) 90.95(57) 89.34(55)
WMAXCUT-RANDOM 40 10.22(40) 3.54(40) 5.38(40)

WMAXCUT-SPINGLASS 5 301.83(2) 31.23(4) 35.60(4)
All instances 170 143 147 145

The experimental results for Partial MaxSAT are shown in Figure 4, Figure 5, Ta-
ble 2, and Table 3. Figure 4 shows the mean time (left plot) and the mean ratio k/t (right
plot) to solve sets of 100 randomly generated partial Max-2SAT instance with 150 vari-
ables, 150 hard clauses as in the 2008 MaxSAT evaluation, and an increasing number
of soft clauses. For these large instances, MaxSatzc outperforms the rest of solvers, and
MaxSatzc∗ is by far the worst.

 100

 200

 300

 400

 500

 600

 700

 3500 4000 4500 5000 5500 6000 6500 7000

tim
e

(in
 s

ec
on

ds
)

number of clauses

Partial-Max-2SAT - 150 variables

MaxSatzc*

MaxSatz

MaxSatzp

MaxSatzp
c

MaxSatzc

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 3500 4000 4500 5000 5500 6000 6500 7000#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of clauses

Partial-Max-2SAT - 150 variables

MaxSatzc*

MaxSatzp
c

MaxSatzc

MaxSatzp

Fig. 4. Partial Max-2SAT instances

Figure 5 shows the mean time (left plot) and the mean ratio k/t (right plot) to solve
sets of 100 randomly generated partial Max-3SAT instance with 80 variables, 80 hard
clauses, and an increasing number of soft clauses. Note that there are very few cy-
cle structures replaced at a search tree node, but the gain of MaxSatzc and the loss of
MaxSatzc∗ are very significant.

Table 2 contains the results for the industrial instances of the Partial Max-SAT cate-
gory of the 2008 MaxSAT Evaluation. MaxSatzc solves 25 instances more than MaxSatz,
and 40 instances more than MaxSatzc∗ . Table 3 contains the results for the crafted in-
stances of the Partial Max-SAT category of the 2008 MaxSAT Evaluation. MaxSatzc

solves 7 instances more than MaxSatzc∗ . There are very few cycle structures contained
in an inconsistent subformula during search for these instances. Their exploitation still
makes MaxSatzc the best performing solver in general.

Exploiting Cycle Structures in Max-SAT 479

 200

 400

 600

 800

 1000

 1000 1100 1200 1300 1400

tim
e

(in
 s

ec
on

ds
)

number of clauses

Partial-Max-3SAT - 80 variables

MaxSatzc*

MaxSatz
MaxSatzc

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1000 1100 1200 1300 1400#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of clauses

Partial-Max-3SAT - 80 variables

MaxSatzc*
MaxSatzc

Fig. 5. Partial Max-3SAT instances

Table 2. Industrial instances of the Partial Max-SAT category of the 2008 MaxSAT Evaluation

Instance set I MaxSatz MaxSatzc MaxSatzc∗

bcp-fir 59 8.91(7) 5.03(7) 8.16(7)
bcp-hipp-yRa1 1183 73.18(734) 70.81(744) 77.01(721)

bcp-msp 148 40.53(94) 17.86(94) 22.41(94)
bcp-mtg 215 33.07(144) 96.25(157) 95.41(154)
bcp-syn 74 97.41(22) 104.68(22) 82.67(21)

pbo-mqc-nencdr 128 514.05(77) 436.91(76) 475.17(64)
pbo-mqc-nlogencdr 128 323.57(104) 270.38(107) 333.04(106)

pbo-routing 15 61.43(5) 3.13(5) 5.22(5)
All instances 1950 1187 1212 1172

Table 3. Crafted instances of the Partial Max-SAT category of the 2008 MaxSAT Evaluation

Instance set I MaxSatz MaxSatzc MaxSatzc∗

MAXCLIQUE-RANDOM 96 75.67(83) 68.17(83) 48.68(80)
MAXCLIQUE-STRUCTURED 62 164.70(25) 138.90(25) 149.25(22)

MAXONE-3SAT 80 139.09(78) 148.70(78) 204.47(77)
MAXONE-STRUCTURED 60 80.63(58) 75.36(58) 96.41(58)

All instances 298 244 244 237

7 Conclusions

We have studied why and when is useful to apply MaxSAT resolution to cycle structures
in MaxSAT LB computation. We found that the exhaustive application of MaxSAT reso-
lution is not so effective in general, and that MaxSAT resolution is effective if it is applied
to cycle structures contained in an inconsistent subformula detected using unit propa-
gation or failed literal detection. The benefit is twofold: (i) the inconsistent subformula
can be transformed into a smaller one to liberate two ternary clauses for detecting other
inconsistent subformulas, (ii) the smaller inconsistent subformula is easier and faster
to detect or re-detect in subtrees. Experimental results suggest that the solver becomes

480 C.M. Li et al.

much slower when MaxSAT resolution is applied to cycle structures not contained in an
inconsistent subformula.

We defined a heuristic that guides the applications of MaxSAT resolution to cycle
structures. The implementation of this heuristic provides empirical evidence that it is
very effective on many hard instances of Weighted MaxSAT and Partial MaxSAT, inde-
pendently if they are random, crafted or industrial, as soon as few inconsistent subfor-
mulas contain a cycle structure.

In the future, we will study the exploitation of other structures in MaxSAT instances.
It is remarkable that a relevant exploitation of few structures at a search tree node can
result in a substantial speed-up in the solving of a MaxSAT problem.

References

1. Argelich, J., Li, C.M., Manyà, F.: An improved exact solver for partial Max-SAT. In: NCP
2007, pp. 230–231 (2007)

2. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence 171(8-9),
240–251 (2007)

3. Darras, S., Dequen, G., Devendeville, L., Li, C.M.: On inconsistent clause-subsets for max-
SAT solving. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 225–240. Springer, Hei-
delberg (2007)

4. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 41–55. Springer,
Heidelberg (2007)

5. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted
CSPs. In: IJCAI 2005, pp. 193–198 (2005)

6. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artificial
Intelligence 172(2-3), 204–233 (2008)

7. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Transforming inconsistent subformulas
in MaxSAT lower bound computation. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp.
582–587. Springer, Heidelberg (2008)

8. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
403–414. Springer, Heidelberg (2005)

9. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In: AAAI 2006, pp. 86–91 (2006)

10. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial In-
telligence Research 30, 321–359 (2007)

11. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound computation in
Max-SAT solving. In: AAAI 2008, pp. 351–356 (2008)

12. Pipatsrisawat, K., Darwiche, A.: Clone: Solving weighted Max-SAT in a reduced search
space. In: AI 2007, pp. 223–233 (2007)

13. Ramírez, M., Geffner, H.: Structural relaxations by variable renaming and their compilation
for solving MinCostSAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 605–619.
Springer, Heidelberg (2007)

	Exploiting Cycle Structures in Max-SAT
	Introduction
	Preliminaries
	Related Work
	Underestimation Component
	Inference Component

	Cycle Structures and Lower Bounds
	Heuristics for Applying MaxSAT Resolution in Cycle Structures
	Experimental Results and Analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

