
New Encodings of Pseudo-Boolean Constraints

into CNF

Olivier Bailleux1, Yacine Boufkhad2, and Olivier Roussel3

1 LERSIA – Université de Bourgogne
olivier.bailleux@u-bourgogne.fr

2 LIAFA, CNRS, Gang team INRIA, Université Paris Diderot, France
boufkhad@liafa.jussieu.fr

3 Université Lille-Nord de France, Artois, F-62307 Lens – CRIL, F-62307
Lens – CNRS UMR 8188, F-62307 Lens
olivier.roussel@cril.univ-artois.fr

Abstract. This paper answers affirmatively the open question of the
existence of a polynomial size CNF encoding of pseudo-Boolean (PB)
constraints such that generalized arc consistency (GAC) is maintained
through unit propagation (UP). All previous encodings of PB constraints
either did not allow UP to maintain GAC, or were of exponential size in
the worst case. This paper presents an encoding that realizes both of the
desired properties. From a theoretical point of view, this narrows the gap
between the expressive power of clauses and the one of pseudo-Boolean
constraints.

Keywords: Pseudo-Boolean, SAT translation.

1 Introduction

Many practical problems can be expressed as constraint satisfaction problems
and several formalisms for constraint satisfaction have been defined: integer
linear programming (ILP) [7], constraint satisfaction problems (CSP), pseudo-
Boolean constraints (PB) [2], propositional satisfiability (SAT) and Quantified
Boolean Formulae (QBF) to name only a few. These formalisms differ by the
expressivity of their constraints, the power of the inference rules that can be
used and the efficiency of the corresponding solvers.

Complexity theory is a first approach to compare these formalisms. For in-
stance, QBF has a higher complexity than SAT, PB, CSP and ILP. Both SAT,
PB, CSP1 and ILP are NP-complete problems. This implies that, from the point
of view of complexity theory, all these formalisms have the same expressive power
in the sense that there exist polynomial reductions from any of these problems
to another.

The existence of a polynomial reduction from a formalism F to another for-
malism F ′ means that a problem of F can always be solved by translating it into
1 Under the assumption that each constraint of the CSP can be checked in polynomial

time.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 181–194, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

182 O. Bailleux, Y. Boufkhad, and O. Roussel

a problem of F ′, and that such an indirect approach only implies a polynomial
overhead which can be considered as negligible for NP problems. This approach
can also be quite interesting in practice if solvers for F ′ are more efficient than
solvers for F . The efficiency of modern SAT solvers explains why SAT has be-
come very popular to encode and solve a number of problems. Some examples
are Model checking [6], Symbolic reachability [1], Planning [8], Scheduling [12],
Diagnosis [10], etc.

There may exist many encodings of a given problem in SAT and these en-
codings are not equivalent regarding SAT solving methods. For example, in [11]
it is shown that a problem can be encoded to SAT in two ways, one that is
exponential for resolution and another which is polynomial although the two
encodings are of polynomial size. Similarly in [4], some difficult benchmarks for
SAT solvers are shown to be easy if encoded in a different way. Thus, to make
the polynomial reduction to SAT a practical approach for solving problems, the
question is to find a polynomial reduction that preserves the basic inferences in a
given problem through the basic inferences used in SAT solvers. More precisely,
this paper focuses on Unit Propagation as the basic mechanism of inference in
complete SAT solvers.

For example, it is known that maintaining Arc Consistency on CSP instances
defined with only constraints in extension is equivalent to applying Unit Propaga-
tion on a polynomial SAT encoding of the constraints named “support encoding”
[9]. Another encoding with the same property is proposed in [3]. These encodings
show that SAT and CSP with only extensional constraints are very close prob-
lems. The same approach is used in this paper to compare the pseudo-Boolean
formalism with the Satisfiability formalism.

Pseudo-Boolean constraints can be seen as an extension of the clauses of
SAT, or as a special case of integer programming constraints. The following
observations suggest that pseudo-Boolean constraints are stronger than SAT
constraints (clauses). While clauses can be considered as constraints defined
in extension (a clause forbids one single partial assignment), pseudo-Boolean
constraints are defined in intention through a mathematical formula. Another
observation is that a SAT encoding of a PB constraint which doesn’t introduce
extra variables requires an exponential number of clauses in the worst case.
Besides, so far, all known SAT encodings of a PB constraint were either of
exponential size or did not allow unit propagation to maintain GAC. This article
presents a polynomial SAT encoding of PB constraints which proves that the
basic inferences on PB constraints (Generalized Arc Consistency) polynomially
reduce to Unit Propagation in SAT. To the best of our knowledge, the existence
of such an encoding was an open question. This result narrows the gap between
the PB and SAT formalisms.

Section 2 introduces the definitions and notations used throughout this paper.
The general idea of the new encoding is to sum the terms on the left side of the
PB constraint and compare it to the right term. The property required for the
encoding of the addition is that it must give a result even when some input
variables are unassigned. To reach this goal, the encoding is based on a unary

New Encodings of Pseudo-Boolean Constraints into CNF 183

representation of numbers (see section 3). For conciseness, coefficients in the
constraints are decomposed in binary, and a unary representation is used for
each power of two. A kind of carry between unary representations ensures that
the most significant unary representation computes the sum of the coefficients
of the true literals in the constraint. The key point in the encoding is to add
a constant to each side of the PB constraint so that the right term becomes a
multiple of a power of two, which makes the comparator trivial.

This general encoding is detailed in section 4.1. It can be declined in two
different versions: GPW that detects inconsistencies (section 4.2) and LPW that
maintains Generalized Arc Consistency (section 4.3). LPW is the first SAT en-
coding of a pseudo-Boolean constraint of n variables with a maximum coeffi-
cient of amax which is both polynomial (O(n2 log(n) log(amax)) variables and
O(n3 log(n) log(amax)) clauses) and which lets Unit Propagation maintain Gen-
eralized Arc Consistency. Section 5 compares the new method with the previous
encodings of PB constraints into SAT. At last, some perspectives are given.

2 Definitions and Notations

In this paper, we only consider constraints which are defined over a finite set
of Boolean variables xj . Boolean variables can take only two values 0 (false)
and 1 (true). A literal lj is either a Boolean variable xj or its negation xj (with
xj = 1 − xj). A linear pseudo-Boolean constraint is a constraint over Boolean
variables defined by

∑
j aj lj � M where aj and M are integer constants, lj are

literals and � is one of the classical relational operators (=, >,≥, < or ≤).
Without loss of generality, these constraints can be rewritten to use only the less
operator and positive coefficients aj (since −a.x can be rewritten as a.x − a).
A clause is a disjunction of literals. A clause l1 ∨ l2 ∨ . . . ∨ ln is equivalent to
l1 + l2 + . . .+ ln ≥ 1. So clauses are a special case of pseudo-Boolean constraints
where each aj = 1 and M = 1. An assignment is a mapping of Boolean variables
to their value (0 or 1). In the CSP context, an instantiation is a mapping of
variables to a value in their domain.

Unit propagation (UP) is the fundamental mechanism used in most SAT
solvers. Whenever each literal of a clause but one is false, the remaining lit-
eral must be set to true in order to satisfy the clause. The derivation of a literal
l by unit propagation from formula f will be denoted f �UP l. The derivation
of the empty clause is denoted f �UP⊥. Generalized Arc Consistency (GAC)
is one of the fundamental inference rules in CSP. Let scp(C) denote the scope
of a constraint C, which is the set of variables constrained by C. A value a of
a variable X is generalized arc consistent in a constraint C if X �∈ scp(C) or,
when X ∈ scp(C), if there exists an instantiation I of the other variables in the
scope of C such that I ∪ {X = a} satisfies C. A value a of X is generalized arc
consistent if it is generalized arc consistent in every constraint. A CSP instance
is generalized arc consistent if each value of each variable is generalized arc con-
sistent. Enforcing GAC consists in removing values which are not generalized arc
consistent from the domain of their variable. For example, let us consider the

184 O. Bailleux, Y. Boufkhad, and O. Roussel

PB constraint x1 +2x2 +4x3 < 3, value 1 for x3 is not generalized arc consistent
because no assignment of x1, x2 can satisfy the constraint once x3 = 1. Enforcing
GAC on this constraint will remove 1 from the domain of x3 and hence assign 0
to x3 .

An encoding E of a source language LS to a target language LT is a mapping
of constraints of LS to sets of constraints of LT such that any formula f of LS

is equivalent to E(f) in a generalized sense: any model of f can be extended
to obtain a model of E(f) (and conversely any model of E(f) can be projected
on the vocabulary of f to get a model of f). In the following definitions, we
only consider languages where variables are Boolean2. An encoding E is said to
UP-detect inconsistency if, for any constraint C of the source language and any
assignment A of the source language, C∧A |=⊥⇔ E(C)∧A �UP⊥. An encoding
E is said to UP-maintain GAC if, for any constraint C, any assignment A and
any literal l of the source language, C ∧A |= l ⇔ E(C) ∧A �UP l.

For example, let us consider the pseudo-Boolean constraint x1 + 2x2 + 4x3 <
6. Given the partial assignment {x1 = 1, x3 = 1}, any encoding which UP-
maintains GAC will allow unit propagation to fix x2 = 0. Given the partial
assignment {x2 = 1, x3 = 1}, any encoding which UP-detects inconsistency
must allow unit propagation to produce the empty clause.

Obviously, all things being equal, the more a solver propagates, the more
efficient it is. On the other hand, encodings which UP-maintain GAC generally
produce larger formulae than the other ones because they must encode each
potential implication of a literal. Of course, larger formulae slow down unit-
propagation. It is then not always clear which is the best trade-off between the
size of encodings and their ability to enforce propagations.

3 Unary Representation and Cardinality Constraints

First, let us recall briefly the notion of unary representation of integer intervals.
The details are in [4].

An integer variable u taking its values in the range 0..k is represented by a
vector of k Boolean variables U = 〈u1, ..., uk〉. At any time, only variables on the
left of this vector can be assigned 1, only variables on the right can be assigned
0 and variables in between are unassigned. More formally, U takes its values in a
set Uk ⊂ {0, 1, ∗}k (∗ standing for unassigned) such that there exists two ranks
a and b (0 ≤ a ≤ b ≤ k) having the following property: ui = 1 if i ≤ a, ui =
∗ if a < i ≤ b and ui = 0 if i > b.

An integer u such that u = m is represented by the vector having u1 = u2 =
... = um = 1 and um+1 = ... = uk = 0. The advantage of unary vectors is
that they allow the representation of integer intervals. For example a ≤ u ≤ b is
represented by a vector that assigns 1 to the a first Boolean variables and 0 to
the k − b last ones, the remaining variables being unassigned.
2 However, the generalization to languages where a variable X can take multiple

values vi is straightforward. For example, an encoding E UP-maintains GAC if,
∀C,∀A,∀X,∀v, C ∧A |= X �= v ⇔ E(C) ∧E(A) �UP E(X �= v).

New Encodings of Pseudo-Boolean Constraints into CNF 185

The other advantage of this representation is that it allows to encode an ad-
dition in such a way that unit propagation is able to do the expected inferences,
even when some variables are unassigned. Let U and V be two unary vectors
representing respectively two integers u and v and let W be the unary represen-
tation of their sum w = u + v. The encoding of this addition contains clauses
of the type ua ∨ vb ∨ wa+b stating that whenever u ≥ a and v ≥ b for some
values a and b then w ≥ a+ b. We will denote by ψ(U ⊕ V = W) the conjunc-
tion of all the clauses of that type that ensure that w ≥ u + v through their
unary representations. The sum of integers is naturally extended to the sum of
their representations through the operator ⊕. Formally, for two unary vectors
U = 〈u1, u2, .., uk〉, V = 〈v1, v2, .., vl〉 and W = U ⊕ V = 〈w1, w2, .., wk+l〉 with
the convention u0 = v0 = w0 = 1:

ψ (W = U ⊕ V) =
k∧

a=0

l∧

b=0

(ua ∨ vb ∨ wa+b)

Some other clauses ensuring that w ≤ u+ w are needed to obtain the encoding
of [4] but are omitted because they are not relevant in this paper. Clearly the
number of clauses in ψ (W = U ⊕ V) is O(n2) when the numbers are of size n.

In [4], the unary representation is used to efficiently encode cardinality con-
straints. The vector of variables involved in the cardinality constraint called
input variables is connected to a unary vector called output vector representing
its number of 1s through a CNF formula called a Totalizer. The Totalizer is in
charge of transforming the input vector in an output vector which contains the
same values but which also satisfies the requirements of the unary representation
(all 1s on the left, all 0s on the right and all unassigned variables in the middle).
In essence, this Totalizer plays the same role as a sorting network.

The Totalizer used in the encoding schemes described in this paper is simpler
than the one used in [4] because we never use the 0s in the output. All is needed
is that the Totalizer generate an output vector with all 1s on the left (as many
as in the input vector) and all other variables unassigned. For any vector X of
Boolean variables, let U(X) denote the vector of the unary representation of the
number of its 1s as enforced by the Totalizer. Let Φ(X) be the Totalizer which
transforms X into U(X). It is built in a recursive manner as described in the
recursive procedure Φ(X) of Algorithm 1. Indeed, the unary representation of
a single variable is the variable itself, the unary representation of the number
of 1s of vector X = 〈x1, x2, ..., xn〉 is the sum of the unary representations
of X1 = 〈x1, x2, ..., x�n/2�〉 and X2 = 〈x�n/2�+1, ...xn〉, and the CNF formula
enforcing this conjunction is ψ(U(X1)⊕U(X2) = U(X)). The whole formula of
the totalizer of some vector X is denoted by Φ(X). It is the conjunction of the
formulae ψ.

The fundamental property of the formula Φ(X) as it will be used later is
that for any partial assignment to the variables X unit propagation enforces
U(X) to be the unary representation of the number of ones in X . The number
of variables created by the encoding is clearly O(n log(n)) and the number of
clauses is O(n2 log(n)) since the procedure makes O(log(n)) recursive calls.

186 O. Bailleux, Y. Boufkhad, and O. Roussel

Algorithm 1. Φ(X)
Require: A vector X = 〈x1, x2, ..., xk〉

if k = 1 then
U(X)← 〈x1〉
return true

else
U(X)← 〈u1, u2, ..., uk〉 {ui are obtained from a global unique variable generator}

X1 ← 〈x1, x2, ..., x�n/2�〉
X2 ← 〈x�n/2�+1, ...xn〉
return Φ(X1) ∧ Φ(X2) ∧ ψ(U(X1)⊕ U(X2) = U(X))

end if

In the rest of the description of the encoding, it is necessary to define an
operator 1

2 on the vectors of unary representations of integers such that for some
vector W = 〈w0, w1, ..., w2i, w2i+1, ...〉, W 1

2 = 〈w1, w3, ..., w2i+1...〉 is the vector
of variables of odd ranks in the original. Clearly if W is the unary representation
of some integer w then W

1
2 is the unary representation of �w

2 �.

4 Global and Local Polynomial Watchdog Encoding
Schemes

We present in this section two SAT encoding schemes LPW and GPW standing
respectively for Local Polynomial Watchdog and Global Polynomial Watchdog.
A watchdog is a formula which will set a Boolean variable to 1 as soon as a
constraint gets falsified. LPW UP-maintains GAC while producing formulae of
polynomial size. GPW, which UP-detects inconsistencies, is more of practical
interest since it produces smaller formulae at the cost of losing the property of
UP-maintaining GAC.

4.1 Polynomial Watchdog

In the following we will consider without loss of generality a unique constraint C
defined by the sequence of positive integer coefficients (ai)i=1..n and an integer
M constraining

∑
i∈I aixi < M where I = {1, 2, ..., n} is a set of indices ranging

from 1 to n the number of Boolean variables involved in this constraint. We
consider only non trivial constraints i.e

∑
i∈I ai > M . For some integer a, let

bj(a) be the value of the bit of rank j in the binary representation of a.
A polynomial watchdog (PW) associated with a constraintC is a CNF formula

denoted by PW (C) based on the following sets of variables: the input variables
{xi|i ∈ I} of the constraint C, and a set of additional variables called encoding
variables. PW (C) has a single output variable ω. The formula PW (C) is built
in such a way that it has the following property: for every partial assignment to
the input variables that violates the constraint C, unit propagation applied to
PW (C) assigns the value 1 to the output variable ω.

New Encodings of Pseudo-Boolean Constraints into CNF 187

The idea used to construct PW (C) is to decompose each coefficient of the
constraint in its binary representation and sum each bit having the same weight
2k in a single Totalizer. There are as many Totalizers as the number of bits of the
greatest coefficient. Half of the value of the totalizer for weight 2k is computed
with operator 1

2 and integrated in the totalizer for weight 2k+1 (this is a kind
of carry). The value represented by the different Totalizers must be compared
to M . To make this comparison trivial, the constraint is first rewritten so that
the right term becomes a multiple of the weight of the last Totalizer. Once this
is done, the value of the comparison is represented by one single bit of the last
Totalizer. All computations can be performed by unit propagation, even when
some input variables are unassigned.

Let us now detail how the formula PW (C) is built. The binary representation
of the coefficients is considered. Let p be the index of the most significant bit in
the greatest ai. In other words, p is the integer such that p+1 is the number of bits
necessary to represent the largest coefficient, namely p = �log2(maxi=1..n(ai))�.

An important feature used by the Polynomial Watchdog encoding is the tare
which is an integer denoted by T . It turns out that the comparison with the
right side of the constraint is trivial when it is a multiple of 2p. For this reason,
we define the tare T as the smallest integer such that M + T is a multiple of
2p. Let m denote the integer such that M + T = m2p and let tp−1...t1t0 denote
the binary representation of T over p − 1 bits (T < 2p). Considering this, the
constraint can be rewritten to an equivalent form T +

∑
i∈I aixi < m2p.

For every j such that 0 ≤ j ≤ p, letBj be the set containing the input variables
with the bit of rank j equal to 1 in the binary representation of their coefficient plus
the constant tj (the jth bit of the tare) if tj = 1. More formallyBj = {xi|bj(ai) =
1} ∪ {tj if tj = 1} for 0 ≤ j ≤ p. The sets Bj are called buckets.

Example 1. For the constraint 2x1 +3x2 +5x3 +7x4 < 11, we have p = 2, T = 1
(t0 = 1, t1 = 0) and the buckets are B0 = {1, x2, x3, x4}, B1 = {x1, x2, x4} and
B2 = {x3, x4}. Figure 1 represents the different buckets and generated circuits.

The formula PW (C) is built recursively by cascading p+1 Totalizers (see Section
3). Let PWj(C) denote the Totalizer number j and Sj denote its output. The
CNF encoding of the totalizers and their inputs are defined recursively as follows.
〈Bj〉 is a vector formed by the elements of the bucket Bj taken in an arbitrary
order:

– For j = 0, let PW0(C) = Φ(〈B0〉). The output is S0 = U(〈B0〉).
– For any 1 ≤ j ≤ p, PWj(C) = Φ (〈Bj〉) ∧ ψ(Sj = U(〈Bj〉) ⊕ S

1
2
j−1). The

output unary vector is Sj = U(〈Bj〉) ⊕ S
1
2
j−1 enforced through the formula

ψ(Sj = U(〈Bj〉) ⊕ S
1
2
j−1).

The polynomial watchdog of the constraint C can now be defined as: PW (C) =∧p
j=0 PWj(C) The mth variable of the vector Sp is the output variable ω (Sp has

at least m bits because the constraint is not trivial). The algorithm 2 describes
the steps in the computation of the formula PW (C) and Figure 1 shows PW (C)
on the constraint of Example 1.

188 O. Bailleux, Y. Boufkhad, and O. Roussel

Fig. 1. Schematic representation of PW(2x1 + 3x2 + 5x3 + 7x4 < 11)

Algorithm 2. PW(C)
Require: a constraint

∑n
i=1 aixi < M

p← log2(maxi=1..n(ai))
T ← (m2p −M) s.t. m is the smallest integer having m2p ≥M
for j = 0 to p do
Bj ← {xi|bj(ai) = 1} ∪ {tj if tj = 1}

end for
F ← Φ(〈B0〉)
S0 ← U(〈B0〉)
for j = 1 to p do
F ← F ∧ Φ(〈Bj〉)
Sj ← U(〈Bj〉)⊕ S

1
2
j−1

F ← F ∧ ψ(Sj = U(〈Bj〉)⊕ S
1
2
j−1)

end for
return F

A polynomial watchdog is based on p+1 Totalizers requiring each O(n log(n))
variables and O(n2 log(n)) clauses. Then, in general, a constraint involving n
Boolean variables and having coefficients of at most amax generates at most
O(n log(n) log(amax)) variables and O(n2 log(n) log(amax)) clauses.

Lemma 1. For any partial assignment to the variables of C, Unit Propagation
on PW (C) assigns 1 to ω if and only if this partial assignment is inconsistent
with C.

Proof. Let si be the number of 1s in bucket Bi whose unary representation is
U(〈Bi〉). The lemma follows from the fact that UP enforces at any time Si for

0 ≤ i ≤ p to be the unary representation of �
∑ i

j=0 sj2
j

2i �. In particular, for p,

New Encodings of Pseudo-Boolean Constraints into CNF 189

since �
∑p

j=0 sj2j

2p � = �T+
∑p

j=0 ajxj

2p �, UP assigns 1 to the mth bit ω if and only if
the left side is greater or equal to M + T and hence the constraint is violated.

The fact that Si for 0 ≤ i ≤ p is the unary representation of �
∑ i

j=0 sj2j

2i �
can be proven by induction on i. For i = 0, it is obviously true thanks to
the first Totalizer. Suppose now that the property is true for some i i.e. it is

true that UP enforces Si to be the unary representation of �
∑ i

j=0 sj2
j

2i �, since

Si+1 = U(〈Bi+1〉)⊕S
1
2
i , UP will enforce — through the Totalizer Φ(〈Bi+1〉) and

ψ(Si+1 = U(〈Bi+1〉) ⊕ S
1
2
i) — Si+1 to be the unary representation of si+1 +

� �
∑i

j=0 sj2j

2i �
2 � = si+1 + �

∑ i
j=0 sj2

j

2i+1 � = �
∑ i+1

j=0 sj2
j

2i+1 �.

4.2 Global Polynomial Watchdog

The Global Polynomial Watchdog (GPW) is an encoding that detects incon-
sistencies. It is based on the PW described in the previous section. It consists
simply in adding the unit clause w. The formula generated to encode a con-
straint C is then GPW (C) = PW (C)∧w. GPW has the same complexity than
PW (C).

Proposition 1. A partial assignment of the variables of a constraint C is in-
consistent with it if and only if unit propagation applied to GPW (C) detects an
inconsistency.

However GPW does not UP-maintain GAC. This can be seen in the following
counterexample. GAC on the partial assignment x3 = 1 on Example 1 assigns
x4 = 0 but UP will not detect such an assignment. Indeed, all what UP will
derive is that the higher bits of U(〈B2〉) and S

1
2
1 cannot be equal to 1 at the

same time. This situation is obtained if x4 = 1 but UP cannot foresee it.
Although GPW does not UP-maintain GAC it is not far from doing it. Indeed,

GAC can be maintained through UP look-ahead. A UP look-ahead consists in
trying to assign 1 to an unassigned input variable and then to run UP. If an
inconsistency is detected, the variable must be assigned 0 otherwise it remains
unassigned. GAC can be maintained through UP look-ahead on the GPW en-
coding but few modern SAT solvers perform such tests.

4.3 Local Polynomial Watchdog

This encoding is analogous to the support encoding [9] applied to pseudo-Boolean
constraints. Each variable x of the encoded constraint is connected to a watchdog
formula that assigns through unit propagation x = 0 when the value x = 1 has
no support.

Consider the constraint
∑

i∈I aixi < M . Let Ik = I\{k} and let Ck be the
constraint defined as

∑
i∈Ik

aixi < M − ak. Clearly, whenever the constraint Ck

is inconsistent with a partial assignment, the variable xk must be fixed to 0.
Consider PW (Ck) the polynomial watchdog encoding of the constraint Ck

and ωk the output variable of this encoding. As described by Algorithm 3,

190 O. Bailleux, Y. Boufkhad, and O. Roussel

Algorithm 3. LPW (C)
Require: a constraint

∑n
i=1 aixi < M

F ← true
for k = 1 to n do
Ck ←

∑
i=1..n,i�=k aixi < M − ak

F ← F ∧ (PW (Ck) ∧ (ωk ∨ xk))
end for
return F

the Local Polynomial Watchdog can now be defined as the CNF: LPW (C) =∧n
k=1 (PW (Ck) ∧ (ωk ∨ xk)).

Theorem 1. Any pseudo-Boolean Constraint of integer weights using n vari-
ables having a maximum weight of amax can be translated into a CNF formula
of O(n2 log(n) log(amax)) variables and O(n3 log(n) log(amax)) clauses such that
Unit Propagation maintains Generalized Arc Consistency.

Proof. The proof follows from the fact that GAC assigns 0 to some xk if and
only if the corresponding Ck is inconsistent with the partial assignment. In this
case UP assigns ωk = 1 and then xk = 0. The complexity comes from the fact
that we have n Polynomial Watchdogs.

4.4 Implementation

The size of the watchdogs used in the two proposed encodings can be reduced by
sharing sub-formulae – both into the same watchdog as well as between different
ones – in a way to reduce the number of clauses. It is even possible to share sub-
formulae between several input constraints. The key of such an optimization
is how to split the input variables of each totalizer into the two sets of input
variables of its sub-totalizers. A first basic implementation has been done, for
validation purpose only. It is based on a static ordering of the variables of the
input constraint, which are sorted in decreasing order of their coefficients. No
extensive experimental evaluations of the LPW end GPW encodings has been
performed yet because the implementation is not yet optimized, and anyway an
extensive evaluation is not the purpose of this paper3.

That said, the first few results suggest that the new encodings could be of
practical interest. For exemple, the following unsatisfiable Bin-packing instance
was encoded using our basic implementation: 16 objects with weights 211, 203,
202, 201, 200, 199, 198, 197, 196, 194, 175, 167, 166, 165, 164, and 162 must
be put into 3 boxes, each with capacity 1000. For each box i and each object
j, a Boolean variable xij denotes whether the object i belongs to the box j.

3 Some tests were done on 1D bin packing instances, randomly generated instances
and hand crafted instances, with the only aim to verify that the size of the LPW
and GPW encodings does not make them intractable. We do not have enough space
to present these experiments.

New Encodings of Pseudo-Boolean Constraints into CNF 191

Three pseudo-Boolean constraints ensure the capacity requirement of each box,
and 16 additional cardinality constraints ensure that each object belongs exactly
to one box. The BDD encoding of [5] (see section 5) produces 38077 literals in
15637 clauses, and allows minisat to solve the problem within 486 seconds; the
LPW encoding produces 58521 literals in 21615 clauses, and allows minisat to
solve it within 12 seconds; the GPW encoding produces 7108 literals in 2714
clauses, and allows minisat to solve it within 3 seconds; the pseudo-Boolean
solver pueblo [14] solves the initial instance within 23 seconds; minisat+ solves
the initial instance within 8 seconds.

In some cases, our basic version of the LPW encoding seems to produce a
prohibitive number of clauses. For exemple, to put 50 objects into 5 boxes, each
with capacity 1000, it required 2553715 literals in 884945 clauses, while GPW
produced ”only” 95675 literals in 34200 clauses.

5 Related Work

In [16], Warner proposes a linear CNF encoding of pseudo-Boolean constraints.
It uses a binary adder network, which does not allow unit propagation to detect
whether any input constraint is falsified by a given partial assignment.

[4] proposes an encoding which UP-maintains GAC on cardinality constraints.
It is based on an extended version of the totalizers described in section 3 and
requires O(n log n) additional variables and O(n2) clauses of size at most 3 to
encode a constraint with n variables. [13] also introduces an encoding based
on a unary representation but uses a odd-even merge sorting network, thereby
reducing the number of clauses to O(n log2 n).

In [15], Sinz introduces two other encodings. The first one uses a sequen-
tial adder network with a unary representation of integers. It maintains arc-
consistency and, given a cardinality constraint

∑n
j=1 xi < M , it produces a

formula of size O(nM). The second one uses a parallel adder network with a
binary representation of integers. It does not detects local inconsistencies and
produces a formula of size O(n), but smaller than the one produced by Warner’s
encoding.

In 2006, Eén and Sörensson released the pseudo-Boolean solver minisat+ [13],
one of the best performers in the PB’06 competition. It is based on a conver-
sion of pseudo-Boolean constraints to a CNF formula, which is submitted to
the minisat solver. minisat+ uses some heuristics to choose between three en-
coding techniques based respectively on binary decision diagram (BDD), adder
networks, and sorting network. Another variant of BDD based encoding is si-
multaneously (and independently) introduced in [5].

The BDD based encoding transforms each pseudo-Boolean constraint into a
binary decision diagram. Each node in the BDD represents a pseudo-Boolean
constraint and the satisfaction of this constraint is reified by a propositional
variable in the encoding. The root of the BDD represents the constraint to
encode. Each node has at most two children which are obtained by assigning
the first variable of the constraint to the two possible values 0/1 and simplifying

192 O. Bailleux, Y. Boufkhad, and O. Roussel

the resulting constraints. Nodes corresponding to trivial constraints are pruned.
Two nodes can also share a common child. The relation between the truth of
a node and the truth of its children only depends on the variable chosen to
decompose the constraint and the variables corresponding to the nodes. In [13],
this relation is encoded in six ternary clauses. In [5], a slightly different encoding
is used, which translates each node of the BDD into two binary clauses and two
ternary clauses. These two encodings maintain arc-consistency, but can produce
an exponential number of clauses in the worst case [5].

The encoding based on adder networks produces a number of clauses (of length
at most 4) linearly related to the size of the encoded constraint, as [16], but using
a different structure. All the variables with a bit of a given weight in the base 2
representation of their coefficients are bundled in a bucket. The number of bits
set to 1 in each bucket is computed using a binary adders network. The results
are then combined thanks to additional adders. The resulting binary value feeds
a comparator, which is optimized to deal with the constant bound of the con-
straint. Like Warner’s one, this linear encoding does not detect inconsistencies,
then cannot maintain arc-consistency.

In [13], the encoding based on sorting networks is founded on the unary rep-
resentation of numbers [4,13] (see section 3). To compress the representation,
a number is represented by several buckets in unary notation and each bucket
has its own weight. Instead of using weights which are a power of a base b
(1, b, b2, b3, ..), [13] uses a general increasing sequence of positive integers. This is
in fact a generalization of the usual representation of numbers in a base b with
the exception that the ratio of the weights of two successive digits is no more a
constant. The GPW encoding presents similarities with this encodings but there
are several differences: (1) each of our bucket is related to a power of two, while
the encoding used in minisat+ uses arbitrary weights; (2) instead of our total-
izers, minisat+ uses odd even merge sorting networks; (3) minisat+ does not
uses a tare, which is an essential feature of GPW to ensure that the bound of the
constraint is a round number of the weight of the last sorter. As a consequence,
instead of a simple unit clause, a more complex non monotone circuit is used
to establish whether the constraint is satisfied or not. More importantly, it does
not maintain arc-consistency and it is not proved in [13] whether it UP-detects
inconsistency or not.

Let us mention the standard exponential transformation with no auxiliary
variables. Except for the trivial cases (i.e., constraints with only one literal
and constraints that are either impossible to satisfy or to falsify), a constraint∑n

i=1 aixi < M is translated as two sets of clauses. The first one encodes
(xn = 0)∨ (

∑n−1
i=1 aixi < M − an), and the second one encodes

∑n−1
i=1 aixi < M .

Unit resolution achieves the same propagations in this encoding as it does in
the BDD one, then it maintains arc-consistency and detects local inconsisten-
cies. Contrarily to the BDD one, direct encoding does not require additional
variables, but it often produces bigger formulae because each clause corresponds
to a path of the BDD. However, small constraints (with typically less than 6
variables) tend to produce more concise formulae.

New Encodings of Pseudo-Boolean Constraints into CNF 193

6 Synthesis and Perspectives

This paper provides a theoretical contribution on the encoding of pseudo-Boolean
constraints into CNF formulae. Now, it is known that there exists a polynomial
encoding that allows unit propagation (implemented in all DPLL-based SAT
solvers) to restore generalized arc consistency on the initial constraints. Clearly,
this result opens new questions and new perspectives in the field of indirect
resolution of pseudo-Boolean problems.

The space complexity of the proposed encoding is O(n3 log(n) log(amax)) but
in practice many sub-formulae could be shared by several totalizers – both into
the same watchdog as well as among different ones – in a way to reduce the
number of produced clauses. The key is the order of the variables into the vector
related to each bucket 〈Bj〉. Some work must be done to search for relevant
ordering heuristics.

Another issue is the existence of structurally more concise encodings that
maintain arc consistency. The underlying theoretical aim is to establish the min-
imum size for any such encoding. At this point, it is not known if there is a
gap – in terms of space complexity4 – between encodings which ”only” detect
local inconsistencies and encodings maintaining arc consistency. Furthermore, it
is not clear whether the former outperforms the latter with modern SAT solvers.
Answering these questions will probably require an extensive amount of future
work.

Moreover, the existing encodings could be combined in a way to use a specific
encoding for each individual constraint (and even the possibility to use redun-
dant encodings could be considered). The minisat+ solver always uses such an
approach, but it may be improved and extended to the new encodings introduced
in the present paper. These new encodings could also be improved by using a
sorting network, as in [13], instead of a totalizer.

An even more crucial question is whether solving pseudo-Boolean problems
with SAT solvers is actually relevant. On the one hand, this approach proved
its efficiency (see minisat+ at PB05) despite the fact that state-of-the-art en-
codings are not mature. On the other hand, one can hardly expect a SAT solver
to outperform a native pseudo-Boolean solver when this technology becomes
mature.

References

1. Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT-
solvers. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
411–425. Springer, Heidelberg (2000)

2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus Spe-
cialized 0-1 ILP: An Update. In: Proc. of Int. Conf. on Computer Aided Design
(ICCAD 2002), pp. 450–457 (2002)

3. Bacchus, F.: Gac via unit propagation. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833,
pp. 133–147. Springer, Heidelberg (2003)

4 Regarding the degree of the polynomial.

194 O. Bailleux, Y. Boufkhad, and O. Roussel

4. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer,
Heidelberg (2003)

5. Bailleux, O., Boufkhad, Y., Roussel, O.: A Translation of Pseudo Boolean Con-
straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation 2,
191–200 (2006)

6. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic Model Checking
using SAT procedures instead of BDDs. In: Proc. of Design Automation Conference
(DAC 1999), pp. 317–320 (1999)

7. Brand, S., Duck, G.J., Puchinger, J., Stuckey, P.J.: Flexible, Rule-based Con-
straint Model Linearisation. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS,
vol. 4902, pp. 68–83. Springer, Heidelberg (2008)

8. Ernst, M., Millstein, T., Weld, D.S.: Automatic SAT-Compilation of Planning
Problems. In: IJCAI 1997, pp. 1169–1176 (1997)

9. Gent, I.P.: Arc Consistency in SAT. In: Proc. of the Fifteenth European Conference
on Artificial Intelligence (ECAI 2002), pp. 121–125 (2002)

10. Grastien, A., Anbulagan, A., Rintanen, J., Kelareva, E.: Diagnosis of Discrete-
Event Systems Using Satisfiability Algorithms. In: AAAI-2007, pp. 305–310 (2007)

11. Hertel, A., Hertel, P., Urquhart, A.: Formalizing Dangerous SAT Encodings. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 159–172.
Springer, Heidelberg (2007)

12. Baker, A.B., Crawford, J.M.: Experimental Results on the Application of Satis-
fiability Algorithms to Scheduling Problems. In: Proc. of the Twelfth National
Conference on Artificial Intelligence, pp. 1092–1097 (1994)

13. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

14. Sheini, H.M., Sakallah, K.A.: Pueblo: a modern pseudo-Boolean SAT solver. In:
Design, Automation and Test in Europe, 2005. Proc., pp. 684–685 (2005)

15. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

16. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters 68(2), 63–69 (1998)

	New Encodings of Pseudo-Boolean Constraints into CNF
	Introduction
	Definitions and Notations
	Unary Representation and Cardinality Constraints
	Global and Local Polynomial Watchdog Encoding Schemes
	Polynomial Watchdog
	Global Polynomial Watchdog
	Local Polynomial Watchdog
	Implementation

	Related Work
	Synthesis and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

