

Lecture Notes in Computer Science 5584
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Oliver Kullmann (Ed.)

Theory and Applications
of Satisfiability Testing –
SAT 2009

12th International Conference, SAT 2009
Swansea, UK, June 30 - July 3, 2009
Proceedings

13

Volume Editor

Oliver Kullmann
Computer Science Department
Swansea University
Faraday Building, Singleton Park
Swansea, SA2 8PP, UK
E-mail: o.kullmann@swansea.ac.uk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.4.1, I.2.3, I.2.8, I.2, F.2.2, G.1.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-02776-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02776-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12712779 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at SAT 2009: 12th International
Conference on Theory and Applications of Satisfiability Testing, held from June
30 to July 3, 2009 in Swansea (UK).

The International Conference on Theory and Applications of Satisfiability
Testing (SAT) started in 1996 as a series of workshops, and, in parallel with the
growth of SAT, developed into the main event for SAT research. This year’s con-
ference testified to the strong interest in SAT, regarding theoretical research, re-
search on algorithms, investigations into applications, and development of solvers
and software systems. As a core problem of computer science, SAT is central for
many research areas, and has deep interactions with many mathematical sub-
jects. Major impulses for the development of SAT came from concrete practical
applications as well as from fundamental theoretical research. This fruitful col-
laboration can be seen in virtually all papers of this volume.

There were 86 submissions (completed papers within the scope of the con-
ference). Each submission was reviewed by at least three, and on average 4.0
Programme Committee members. The Committee decided to accept 45 papers,
consisting of 34 regular and 11 short papers (restricted to 6 pages). A main nov-
elty was a “shepherding process”, where 29% of the papers were accepted only
conditionally, and requirements on necessary improvements were formulated by
the Programme Committee and its installment monitored by the “shepherd” for
that paper (using possibly several rounds of feedback). This process helped enor-
mously to improve the quality of the papers, and it also enabled the Programme
Committee to accept 13 papers, which have very interesting contributions, but
which due to weaknesses normally wouldn’t have made it into the proceedings.
27 regular and 5 short papers were accepted unconditionally, and 7 long and
7 = 3 + 4 short papers were accepted conditionally (with 4 required conversions
from regular to short papers). All these 7 long papers and 6 of the 7 short papers
could then be accepted in the “second round”, involving in all cases substantial
work for the authors (often a complete revision) and the shepherd (ranging from
providing general advice to complete grammatical overhauls). As one author put
it: “I would, however, like to congratulate the reviewers, as their review is the
most useful and thorough I have ever received from any conference - indeed, if
integrated correctly, it brings a new level of quality to the paper.”

The organisation of the papers is by subjects (and within the categories
alphabetically). The programme included two invited talks:

– Robert Niewenhuis considered how SMT (“SAT modulo theories”) can en-
hance SAT solving in a systematic way by special algorithms, as it is possible
in constraint programming.

– Moshe Vardi investigated how the strong inference power delivered by OB-
DDs (“ordered binary decision diagrams”) can be harnessed by SAT solving.

VI Preface

One of the major topics of this conference was the MAXSAT problem (max-
imising the number of satisfied clauses), and boolean optimisation problems in
general. Besides these extensions, the papers of this conference show that “core
SAT”, that is, boolean CNF-SAT solving, has still a huge potential (I expect
that we just scratched the surface, and fascinating discoveries are waiting for
us). One fundamental topic was the understanding of why and when SAT solvers
are efficient, and interesting approaches were considered, towards a more precise
intelligent control of the execution of SAT solvers. Another strong area of this
year was the intelligent translation of problems into SAT. Regarding QBF, the
extension of SAT by allowing quantification, the quest for a “good” problem
representation becomes even more urgent, and we find theoretical and practical
approaches.

Several additional events were associated with the SAT conference, including
the SAT competition, the PB competition (“pseudo-boolean”, allowing certain
forms of arithmetic), the Max-SAT evaluation, and a special session on the var-
ious aspects of the process of developing SAT software.

Arnold Beckmann and Matthew Gwynne helped with the local organisation.
We gladly acknowledge the following people in organising the satellite events:

– the main organisers of the SAT competition Daniel Le Berre, Olivier Roussel,
Laurent Simon, the judges Andreas Goerdt, Inês Lynce and Aaron Stump,
and the special organisers Allen Van Gelder, Armin Biere, Edmund Clarke,
John Franco and Sean Weaver

– the organisers of the PB competition Vasco Manquinho and Olivier Roussel;
– and the organisers of the Max-SAT evaluation Josep Argelich, Chu Min Li,

Felip Manyà and Jordi Planes

A special thanks goes to the Programme Committee and the additional external
reviewers, who through their thorough and knowledgeable work enabled the
assembly of this body of high-quality work. We also thank the authors for their
enthusiastic collaboration in further improving their papers.

The EasyChair conference management system helped us with handling of
the paper submissions, paper reviewing, paper discussion and assembly of the
proceedings. I would like to thank the Chairs of the previous years, Hans Kleine
Büning, Xishun Zhao and Joao Marques-Silva, for their important advice on run-
ning a conference. The Department of Computer Science of Swansea University
provided logistic support. Finally I would like to thank the following sponsors for
their support of SAT 2009: Intel Corporation, NEC Laboratories, and Invensys
Rail Group.1

April 2009 Oliver Kullmann

1 Due to the difficult economic circumstances a number of former sponsors expressed
their regret for not being able to provide funding this year.

Conference Organisation

Conference and Programme Chair

Oliver Kullmann Computer Science Department, Swansea
University, UK

Local Organisation

Arnold Beckmann Computer Science Department, Swansea
University, UK

Matthew Gwynne Computer Science Department, Swansea
University, UK

Programme Committee

Dimitris Achlioptas
Armin Biere
Stephen Cook
Nadia Creignou
Evgeny Dantsin
Adnan Darwiche
John Franco
Nicola Galesi
Enrico Giunchiglia
Ziyad Hanna
Marijn Heule
Edward Hirsch
Kazuo Iwama
Hans Kleine Büning

Daniel LeBerre
Chu Min Li
Ines Lynce
Panagiotis Manolios
Joao Marques-Silva
David Mitchell
Albert Oliveras
Ramamohan Paturi
Lakhdar Sais
Karem Sakallah
Uwe Schöning
Roberto Sebastiani
Robert Sloan
Carsten Sinz

Niklas Sörensson
Ewald Speckenmeyer
Stefan Szeider
Armando Tacchella
Miroslaw Truszczynski
Alasdair Urquhart
Allen Van Gelder
Hans van Maaren
Toby Walsh
Sean Weaver
Emo Welzl
Lintao Zhang
Xishun Zhao

External Reviewers

Anbulagan Anbulagan
Carlos Ansótegui
Josep Argelich
Regis Barbanchon
Maria Luisa Bonet
Simone Bova
Roberto Bruttomesso
Uwe Bubeck

Lorenzo Carlucci
Harsh Raju Chamarthi
Benjamin Chambers
Hubie Chen
Gilles Dequen
Laure Devendeville
Juan Luis Esteban
Paulo Flores

Anders Franzen
Heidi Gebauer
Eugene Goldberg
Alexandra Goultiaeva
Alberto Griggio
Djamal Habet
Shai Haim
Miki Hermann

VIII Organization

Dmitry Itsykson
George Katsirelos
George Katsirelose
Arist Kojevnikov
Stephan Kottler
Alexander Kulikov
Javier Larrosa
Silvio Lattanzi
Massimo Lauria
Jimmy Lee
Theodor Lettmann
Florian Lonsing
Toni Mancini
Vasco Manquinho
Felip Manyà
Marco Maratea
Paolo Marin
John Moondanos

Robin Moser
Massimo Narizzano
Nina Naroditskaya
Sergey Nikolenko
Sergey Nurk
Richard Ostrowski
Cédric Piette
Knot Pipatsrisawat
Jordi Planes
Stefan Porschen
Luca Pulina
Silvio Ranise
Andreas Razen
Alyson Reeves
Olivier Roussel
Emanuele Di Rosa
Jabbour Said
Dominik Scheder

Thomas Schiex
Tatjana Schmidt
Henning Schnoor
Yuping Shen
Michael Soltys
Stefano Tonetta
Patrick Traxler
Enrico Tronci
Gyorgy Turan
Olga Tveretina
Alexander Wolpert
Stefan Woltran
Grigory Yaroslavtsev
Weiya Yue
Bruno Zanuttini
Michele Zito
Philipp Zumstein

Sponsoring Institutions

Computer Science Department, Swansea University
Invensys Rail Group
Intel Corporation
NEC Laboratories

Table of Contents

1. Invited Talks

SAT Modulo Theories: Enhancing SAT with Special-Purpose
Algorithms . 1

Robert Nieuwenhuis

Symbolic Techniques in Propositional Satisfiability Solving 2
Moshe Y. Vardi

2. Applications of SAT

Efficiently Calculating Evolutionary Tree Measures Using SAT 4
Maŕıa Luisa Bonet and Katherine St. John

Finding Lean Induced Cycles in Binary Hypercubes 18
Yury Chebiryak, Thomas Wahl, Daniel Kroening, and Leopold Haller

Finding Efficient Circuits Using SAT-Solvers . 32
Arist Kojevnikov, Alexander S. Kulikov, and Grigory Yaroslavtsev

Encoding Treewidth into SAT . 45
Marko Samer and Helmut Veith

3. Complexity Theory

The Complexity of Reasoning for Fragments of Default Logic 51
Olaf Beyersdorff, Arne Meier, Michael Thomas, and
Heribert Vollmer

Does Advice Help to Prove Propositional Tautologies? 65
Olaf Beyersdorff and Sebastian Müller

4. Structures for SAT

Backdoors in the Context of Learning . 73
Bistra Dilkina, Carla P. Gomes, and Ashish Sabharwal

Solving SAT for CNF Formulas with a One-Sided Restriction on
Variable Occurrences . 80

Daniel Johannsen, Igor Razgon, and Magnus Wahlström

On Some Aspects of Mixed Horn Formulas . 86
Stefan Porschen, Tatjana Schmidt, and Ewald Speckenmeyer

X Table of Contents

Variable Influences in Conjunctive Normal Forms . 101
Patrick Traxler

5. Resolution and SAT

Clause-Learning Algorithms with Many Restarts and Bounded-Width
Resolution . 114

Albert Atserias, Johannes Klaus Fichte, and Marc Thurley

An Exponential Lower Bound for Width-Restricted Clause Learning 128
Jan Johannsen

Improved Conflict-Clause Minimization Leads to Improved
Propositional Proof Traces . 141

Allen Van Gelder

Boundary Points and Resolution . 147
Eugene Goldberg

6. Translations to CNF

Sequential Encodings from Max-CSP into Partial Max-SAT 161
Josep Argelich, Alba Cabiscol, Inês Lynce, and Felip Manyà

Cardinality Networks and Their Applications . 167
Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and
Enric Rodŕıguez-Carbonell

New Encodings of Pseudo-Boolean Constraints into CNF 181
Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel

Efficient Term-ITE Conversion for Satisfiability Modulo Theories 195
Hyondeuk Kim, Fabio Somenzi, and HoonSang Jin

7. Techniques for Conflict-Driven SAT Solvers

On-the-Fly Clause Improvement . 209
Hyojung Han and Fabio Somenzi

Dynamic Symmetry Breaking by Simulating Zykov Contraction 223
Bas Schaafsma, Marijn J.H. Heule, and Hans van Maaren

Minimizing Learned Clauses . 237
Niklas Sörensson and Armin Biere

Extending SAT Solvers to Cryptographic Problems 244
Mate Soos, Karsten Nohl, and Claude Castelluccia

Table of Contents XI

8. Solving SAT by Local Search

Improving Variable Selection Process in Stochastic Local Search for
Propositional Satisfiability . 258

Anton Belov and Zbigniew Stachniak

A Theoretical Analysis of Search in GSAT . 265
Evgeny S. Skvortsov

The Parameterized Complexity of k-Flip Local Search for SAT and
MAX SAT . 276

Stefan Szeider

9. Hybrid SAT Solvers

A Novel Approach to Combine a SLS- and a DPLL-Solver for the
Satisfiability Problem . 284

Adrian Balint, Michael Henn, and Oliver Gableske

Building a Hybrid SAT Solver via Conflict-Driven, Look-Ahead and
XOR Reasoning Techniques . 298

Jingchao Chen

10. Automatic Adaption of SAT Solvers

Restart Strategy Selection Using Machine Learning Techniques 312
Shai Haim and Toby Walsh

Instance-Based Selection of Policies for SAT Solvers 326
Mladen Nikolić, Filip Marić, and Predrag Janičić

Width-Based Restart Policies for Clause-Learning Satisfiability
Solvers . 341

Knot Pipatsrisawat and Adnan Darwiche

Problem-Sensitive Restart Heuristics for the DPLL Procedure 356
Carsten Sinz and Markus Iser

11. Stochastic Approaches to SAT Solving

(1,2)-QSAT: A Good Candidate for Understanding Phase Transitions
Mechanisms . 363

Nadia Creignou, Hervé Daudé, Uwe Egly, and Raphaël Rossignol

VARSAT: Integrating Novel Probabilistic Inference Techniques with
DPLL Search . 377

Eric I. Hsu and Sheila A. McIlraith

XII Table of Contents

12. QBFs and Their Representations

Resolution and Expressiveness of Subclasses of Quantified Boolean
Formulas and Circuits . 391

Hans Kleine Büning, Xishun Zhao, and Uwe Bubeck

A Compact Representation for Syntactic Dependencies in QBFs 398
Florian Lonsing and Armin Biere

Beyond CNF: A Circuit-Based QBF Solver . 412
Alexandra Goultiaeva, Vicki Iverson, and Fahiem Bacchus

13. Optimisation Algorithms

Solving (Weighted) Partial MaxSAT through Satisfiability Testing 427
Carlos Ansótegui, Maŕıa Luisa Bonet, and Jordi Levy

Nonlinear Pseudo-Boolean Optimization: Relaxation or Propagation? . . . 441
Timo Berthold, Stefan Heinz, and Marc E. Pfetsch

Relaxed DPLL Search for MaxSAT . 447
Lukas Kroc, Ashish Sabharwal, and Bart Selman

Branch and Bound for Boolean Optimization and the Generation of
Optimality Certificates . 453

Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and
Enric Rodŕıguez-Carbonell

Exploiting Cycle Structures in Max-SAT . 467
Chu Min Li, Felip Manyà, Nouredine Mohamedou, and Jordi Planes

Generalizing Core-Guided Max-SAT . 481
Mark H. Liffiton and Karem A. Sakallah

Algorithms for Weighted Boolean Optimization . 495
Vasco Manquinho, Joao Marques-Silva, and Jordi Planes

14. Distributed and Parallel Solving

PaQuBE: Distributed QBF Solving with Advanced Knowledge
Sharing . 509

Matthew Lewis, Paolo Marin, Tobias Schubert, Massimo Narizzano,
Bernd Becker, and Enrico Giunchiglia

c-sat: A Parallel SAT Solver for Clusters . 524
Kei Ohmura and Kazunori Ueda

Author Index . 539

SAT Modulo Theories: Enhancing SAT with
Special-Purpose Algorithms

Robert Nieuwenhuis�

During the last decade SAT techniques have become very successful for prac-
tice, with important impact in applications such as electronic design automation.
DPLL-based clause-learning SAT solvers work surprisingly well on real-world
problems from many sources, using a single, fully automatic, push-button strat-
egy. Hence, modeling and using SAT is essentially a declarative task. On the
negative side, propositional logic is a very low level language and hence model-
ing and encoding tools are required. Also, the answer can only be “unsatisfiable”
(possibly with a proof) or a model: optimization aspects are not as well studied.

For applications such as hard/software verification, more and more compli-
cated and sophisticated encodings into SAT were developed for constraints such
as EUF (Equality with Uninterpreted Functions, i.e., congruences), Difference
Logic, or other fragments of linear arithmetic.

However, it is nowadays clear that SAT Modulo Theories (SMT) is frequently
several orders of magnitude faster. The idea is a tight integration of two compo-
nents: a theory solver that can handle conjunctive constraints, and a DPLL-based
SAT engine that does the search without knowing the semantics of the literals.
Similarly to the constraint propagators in Constraint Programming (CP), the
theory solver uses efficient specialized algorithms for detecting additional prop-
agations and inconsistencies.

In this talk we first give an overview of our DPLL(T) approach to SMT and
its implementation in the Barcelogic SMT tool. Then we discuss a longer-term
research project, namely the development of SMT technology for hard combina-
torial (optimization) problems outside the usual verification applications. Our
aim is to obtain the best of several worlds, combining the advantages inherited
from SAT: efficiency, robustness and automation (no need for tuning) and CP
features such as rich modeling languages, special-purpose filtering algorithms
(for, e.g., planning, scheduling or timetabling constraints), and sophisticated
optimization techniques. We give several examples and discuss the impact of
aspects such as first-fail heuristics vs activity-based ones, realistic structured
problems vs random or handcrafted ones, and lemma learning.

� Technical Univ. of Catalonia (UPC), Barcelona, Spain. Partially supported by Span-
ish Min. of Science &Innovation, LogicTools-2 project (TIN2007-68093-C02-01). For
more details and further references, see Robert Nieuwenhuis, Albert Oliveras and
Cesare Tinelli: Solving SAT and SAT Modulo Theories: From an Abstract Davis-
Putnam-Logemann-Loveland Procedure to DPLL(T), Journal of the ACM, 53(6),
937-977, 2006.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Symbolic Techniques in Propositional Satisfiability
Solving�

Moshe Y. Vardi

Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

http://www.cs.rice.edu/∼vardi

Search-based techniques in propositional satisfiability (SAT) solving have been enor-
mously successful, leading to what is becoming known as the “SAT Revolution”. Es-
sentially all state-of-the-art SAT solvers are based on the Davis-Putnam-Logemann-
Loveland (DPLL) technique, augmented with backjumping and conflict learning. Much
of current research in this area involves refinements and extensions of the DPLL tech-
nique. Yet, due to the impressive success of DPLL, little effort has gone into investigat-
ing alternative techniques. This work focuses on symbolic techniques for SAT solving,
with the aim of stimulating a broader research agenda in this area.

Refutation proofs can be viewed as a special case of constraint propagation, which is
a fundamental technique in solving constraint-satisfaction problems. The generalization
lifts, in a uniform way, the concept of refutation from Boolean satisfiability problems
to general constraint-satisfaction problems. On the one hand, this enables us to study
and characterize basic concepts, such as refutation width, using tools from finite-model
theory. On the other hand, this enables us to introduce new proof systems, based on rep-
resentation classes, that have not been considered up to this point. We consider ordered
binary decision diagrams (OBDDs) as a case study of a representation class for refuta-
tions, and compare their strength to well-known proof systems, such as resolution, the
Gaussian calculus, cutting planes, and Frege systems of bounded alternation-depth. In
particular, we show that refutations by ODBBs polynomially simulate resolution and
can be exponentially stronger.

We then describe an effort to turn OBDD refutations into OBBD decision proce-
dures. The idea of this approach, which we call symbolic quantifier elimination, is to
view an instance of propositional satisfiability as an existentially quantified proposi-
tional formula. Satisfiability solving then amounts to quantifier elimination; once all
quantifiers have been eliminated we are left with either 1 or 0. Our goal here is to study
the effectiveness of symbolic quantifier elimination as an approach to satisfiability solv-
ing. To that end, we conduct a direct comparison with the DPLL-based ZChaff, as well
as evaluate a variety of optimization techniques for the symbolic approach. In compar-
ing the symbolic approach to ZChaff, we evaluate scalability across a variety of classes
of formulas. We find that no approach dominates across all classes. While ZChaff dom-
inates for many classes of formulas, the symbolic approach is superior for other classes
of formulas.

� Work supported in part by NSF grants CCR-0311326, CCF-0613889, ANI-0216467, and
CCF-0728882.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 2–3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Symbolic Techniques in Propositional Satisfiability Solving 3

Finally, we turn our attention to Quantified Boolean Formulas (QBF) solving. Much
recent work has gone into adapting techniques that were originally developed for SAT
solving to QBF solving. In particular, QBF solvers are often based on SAT solvers.
Most competitive QBF solvers are search-based. Here we describe an alternative ap-
proach to QBF solving, based on symbolic quantifier elimination. We extend some
symbolic approaches for SAT solving to symbolic QBF solving, using various decision-
diagram formalisms such as OBDDs and ZDDs. In both approaches, QBF formulas are
solved by eliminating all their quantifiers. Our first solver, QMRES, maintains a set
of clauses represented by a ZDD and eliminates quantifiers via multi-resolution. Our
second solver, QBDD, maintains a set of OBDDs, and eliminate quantifiers by ap-
plying them to the underlying OBDDs. We compare our symbolic solvers to several
competitive search-based solvers. We show that QBDD is not competitive, but QM-
RESS compares favorably with search-based solvers on various benchmarks consisting
of non-random formulas.

References

1. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)

2. Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004)

3. Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. In: Hoos, H.H.,
Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250. Springer, Heidelberg (2005)

4. Pan, G., Vardi, M.Y.: Symbolic techniques in satisfiability solving. J. of Automated Reason-
ing 35, 25–50 (2005)

Efficiently Calculating Evolutionary Tree
Measures Using SAT

Maria Luisa Bonet1 and Katherine St. John2

1 Lenguajes y Sistemas Informáticos, Universidad Politécnica de Cataluña, Spain
2 Math & Computer Science Dept., Lehman College, City U. New York, USA

Abstract. We develop techniques to calculate important measures in
evolutionary biology by encoding to CNF formulas and using powerful
SAT solvers. Comparing evolutionary trees is a necessary step in tree re-
construction algorithms, locating recombination and lateral gene trans-
fer, and in analyzing and visualizing sets of trees. We focus on two pop-
ular comparison measures for trees: the hybridization number and the
rooted subtree-prune-and-regraft (rSPR) distance. Both have recently
been shown to be NP-hard, and efficient algorithms are needed to com-
pute and approximate these measures. We encode these as a Boolean
formula such that two trees have hybridization number k (or rSPR dis-
tance k) if and only if the corresponding formula is satisfiable. We use
state-of-the-art SAT solvers to determine if the formula encoding the
measure has a satisfying assignment. Our encoding also provides a rich
source of real-world SAT instances, and we include a comparison of sev-
eral recent solvers (minisat, adaptg2wsat, novelty+p, Walksat, March
KS and SATzilla).

1 Introduction

Phylogenies, or evolutionary histories, play a central role in biology. While tradi-
tionally represented as trees, due to evolutionary processes such as hybridization,
horizontal gene transfer and recombination [16], the relationship between many
species is better represented by networks, or directed graphs. These nontree
events connect nodes from different branches of a tree, and they are usually
called reticulations (see Figure 1). Given two trees that represent the evolu-
tionary history of different genes of a set of species, the hybridization number
between the trees characterizes the number of reticulation events needed to ex-
plain the evolution of the set of species. With the recent explosion in biological
data available, it is now possible to compute multiple phylogenetic trees for a
set of taxa (species), based on many different gene sequences. Calculating the
differences between species and gene trees very efficiently is essential to building
evolutionary histories, and in turn to understanding the underlying properties
of the species. Further, comparing phylogenies play important roles in locating
recombination and lateral gene transfers, and analyzing searches in treespace.

Our primary focus is on calculating the hybridization number. The related
rooted subtree-prune-and-reconnect (rSPR) distance is often used as a surrogate.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 4–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficiently Calculating Evolutionary Tree Measures Using SAT 5

b)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

a) d)c)

Fig. 1. Hybridization events: a) and b) represent two different gene trees on the same
set of species, and c) and d) show two possible evolutionary scenarios. In c), species 2
and 4 hybridize (combine genetic information) to form a new species 3. In d), we show
lateral gene transfer where some of the genetic information from species 3 is derived
along one lineage as in tree in a), while other information is derived along the lineages
shown in b).

rSPR captures individual hybridization events but misses an important acyclicity
condition that taxa cannot have themselves as ancestors. Further, while often
similar in size, there exist instances where the difference between the rSPR and
hybridization number are arbitrarily large [5].

Calculcating tree measures is of great interest, and the focus of much recent
work. Bordewich and Semple [6] showed that the hybridization number is NP-
hard and fixed parameter tractable, by relating it with an appropriately defined
agreement forest. Agreement forests were developed for evolutionary tree metrics
in the pioneering work of Hein et al. [14] and Allen and Steel [1] that linked
the tree distance to the size of the maximum agreement forest (MAF). With
the development of a MAF for the rooted subtree-prune-and-reconnect (rSPR)
distance [5] (see Figure 2), Bonet et al. [4] showed these algorithms are a 5-
approximation for rSPR distance. Algorithms for biologically relevant restricted
cases of rSPR were also developed by Hallett and Lagergren [13] and Beiko
and Hamilton [3]. Nakhleh et al. [20] developed a very fast heuristic for rSPR
distance, which due to its basis on maximum agreement subtrees, also yields
bounds on the hybridization number. Wu [28] encodes the rSPR problem into
an integer linear programming instance, achieving good results for the rSPR
problem only. To find exact answers for hybridization numbers, Linz et al. [7]
used clever combinatorial characterizations to yield an exhaustive search that
does well for surprisingly large values.

We have developed new software tools to calculate hybridization number and
rSPR distance, by transforming these into satisfiability (SAT) questions. Using
combinatorial characterizations and insights of past work, we can often reduce
the scope of the problem to several smaller subproblems for hybridization, or a
single smaller problem for rSPR. We use two different approaches to calculat-
ing these measures: exact calculation and an upper bound heuristic. Our novel
contribution is the use of powerful SAT solvers to finish this final part of the
computation on the reduced trees. We do this by encoding the problem as a
Boolean formula such that two trees have some particular or hybrid number

6 M.L. Bonet and K. John

T’’

1 2 3

1 2 3 4 5 6

T
r r

4 5 6 1 2 3

Fig. 2. rSPR Move: A rooted SPR move breaks off a subtree from the first tree and
reattaches the subtree to another tree. For technical reasons, we represent our rooted
trees as “planted trees” and allow rSPR moves to reattach subtree to the edge of the
root, as done with the rSPR move above.

(or rSPR distance) if and only if the corresponding formula is satisfiable. Then
we give the formula as input to one of the best SAT solvers. Due to the large
community focused on techniques to solve SAT more efficiently, there are many
different choices of SAT solvers, optimized for differing criteria.

For our upper bound heuristic (SAT Descent), we work down from an upper
bound (instead of eliminating possibilities counting up from zero). In this case we
do a comparison among several solvers. They are walksat [24,25], adaptg2wsat
[8], novelty+p [8], minisat [10,11], SATzilla [29] and March KS [15]. Notice that
we compare all kinds of different solvers: local search algorithms (the first three),
DPLL with learning (minisat), SAT solver portfolio (SATzilla) and solver spe-
cialized on random instances (March KS). The performance of minisat on our
instances was worse in general than the performance of the local search solvers.
Using local search algorithms yields excellent results in both accuracy and per-
formance. For example, we find solutions for biological data sets in 48 seconds
that take over 11 hours with the exact program, HybridNumber and do not finish
after two days of compute time using the complete solver minisat.

This paper is organized as follows: we give background on tree measures and
agreement forests in Section 2. Section 3 details our methods, with more infor-
mation on the SAT encoding in Section 4. Section 5 describes the data analyzed.
Results are in Section 6, followed by discussion and future work in Section 7.

2 Hybridization Networks and Agreement Forests

The recent theoretical results have linked tree measures to the size of maximum
agreement forests [14]. This link has been used to show NP-hardness, fixed pa-
rameter tractability, and is the basis for approximation algorithms. Roughly,
each measure corresponds to the size of the appropriately defined maximum
agreement forest. For a more thorough treatment, see [5,18,26].

Subtree Prune and Regraft (SPR). A subtree prune and regraft (SPR)
operation [1] on a binary tree T is defined as cutting any edge and thereby

Efficiently Calculating Evolutionary Tree Measures Using SAT 7

pruning a subtree t, then regrafting the subtree by the same cut edge to a new
vertex obtained by subdividing a pre-existing edge in T − t. We apply a forced
contraction to maintain the binary property of the resulting tree (see Figure 2).
The SPR distance between two trees T1 and T2 is the minimal number of SPR
moves needed to transform T1 into T2. When working with rooted trees, we refer
to this distance as rooted SPR or rSPR. Bordewich and Semple [5] showed
that the rSPR distance of two trees is the same as the size of an appropriately
defined maximum agreement forest for rooted trees of the two trees. This number
is related to another measure between trees that we next define.

Hybridization Number. A hybridization network on a leaf set X [5,26] is
a rooted acyclic directed graph with root ρ in which

– X is the set of leaves (vertices of outdegree zero);
– d+(ρ) ≥ 2;
– for all the vertices v with d+(v) = 1, we have d−(v) ≥ 2.

Let d−(v) be the indegree of v and d+(v) be the outdegree of v. The vertices
with indegree at least two represent the hybridization vertices. Now, we define
the hybridization number of a hybridization network H with root ρ as

h(H) =
∑
v �=ρ

(d−(v) − 1).

Let T be a rooted phylogenetic tree and H a hybridization network. We say
H displays T [5,26] if T can be obtained from H by first deleting a subset of
edges of H and any resulting isolated vertices, and then contracting edges. Then
given two trees T1 and T2,

h(T1, T2) = min{h(H) : H is a hybridization network that displays T1and T2}.

We define the hybridization number of two trees T1 and T2 as the minimal
hybridization number of all hybridization network H that display T1 and T2.

Agreement Forest. Originally linked to tree measures [14], agreement forests
are an essential tool for calculating and showing hardness for tree measures.
Roughly, an agreement forest for T1 and T2 with identical leaf set X , is a set
of subtrees that occur in both the initial trees T1 and T2, where:

1. The subtrees partition the leaf set X into {X0, . . . , Xk}.
2. The subtrees occur as induced subtrees of T1 and T2. i.e. for each i, 0 ≤ i ≤ k,

T1 restricted to the set of leaves Xi, and T2 restricted to the set of leaves Xi

are the ith subtree.
3. The subtrees are vertex disjoint in both T1 and T2.

For two trees, T1 and T2, with the same leaf set, a maximum agreement forest
(MAF) is an agreement forest with the minimal number of subtrees. Allen and
Steel [1] show the size of the MAF corresponds to another tree measure, the
tree-branch-and-reconnect (TBR) distance. Augmenting this forest definition to
handle rooted trees, Bordewich and Semple [5] link these new MAFs to rSPR
distance. Figure 3 illustrates agreement forests for rSPR distance.

8 M.L. Bonet and K. John

r

T’

4 5 6 1 2 3

4 5 6 1 2 31 2 3

1 2 3 4 5 6

T
r r

F = { r, , } G(F) =

F’ = { 1, 2, 3, } G(F’) =
4 5 6

Fig. 3. Agreement Forests: F and F ′ are two possible forests for the trees T and T ′. F
is also maximal for rSPR, but its associated graph, G(F) contains a cycle and is thus
not a good agreement forest for hybridization. The second, larger forest, is acyclic, and
is the maximum agreement forest for hybridization. The rSPR distance is 2, while the
hybrid number is 3.

Hybrid Number and Acyclicity of the Forest. We define the graph, GF

of a MAF F of two trees T1 and T2 as follows: the nodes are the trees of F ,
and there is an edge from one node (F1) to (F2) corresponding to two trees
of F if the root of (F1) is a descendant of the root of (F2) in either T1 or T2.
Adding the simple condition that the graph of the forest is acyclic yields a MAF
for hybridization number. That is, a forest that is maximal with respect to all
agreement forests that have acyclic associated graphs has size equivalent to the
hybridization number of the two trees [6]. See Figure 3.

Hardness Results. Both of these measures, hybridization number and rSPR
distance have been shown to be NP-hard and fixed parameter tractable [5,6].
The following operations help reduce the size of the trees and provide additional
efficiency for our methods by “shrinking” the size of the problem encoded:

Subtree Reduction (Rule 1 of [5]). Replace any pendant subtree that occurs
identically in both trees T1 and T2 by a single leaf with a new label.

Our second rule looks at clusters in trees. While not part of the fixed parame-
ter tractability reduction for hybridization number, it gives important reductions
on the sizes of the trees and improves the performance. A is a cluster for T1 and
T2 if there is a node in each tree that has A as its set of descendants in X . We
note that this reduction preserves hybridization number but does not preserve
rSPR distance [2]:

Cluster Reduction (Rule 3 of [2]). Let T1 and T2 be two rooted binary
X-trees, and A ⊂ X a cluster of both T1 and T2. Then,

h(T1, T2) = h(T1 | A, T2 | A) + h(T1a, T2a)

where T1a (T2a) is the result of substituting the subtree of T1 (T2) having leaf
set A by the new leaf a and T1 | A (T2 | A) is the restriction of T1 (T2) to A.

Efficiently Calculating Evolutionary Tree Measures Using SAT 9

3 Methods

We develop four related algorithms for calculating the tree measures: exact so-
lutions (‘SAT Ascent’) and upper bound heuristics (‘SAT Descent’) for both
hybridization number and rSPR distance. Our input is two trees, T1 and T2,
that represent the evolution of two different genes of a set of species. Our meth-
ods break into several parts:

1. Efficient preprocessing to reduce size, using known reductions (see §2),
2. Encoding the questions “hybridNumber(T1, T2) = r?” and “drSPR(T1, T2) =

r?” as Boolean formulas,
3. Using fast heuristics [20] to give starting upper bounds, and
4. Using different search strategies and solvers to answer these questions.

Efficient Preprocessing. Each of the reduction rules can be performed in
linear time, following a clever coding of trees by Day [9]. His coding stores
sufficient information about each internal vertex to identify internal structure.
This takes O(1) space per internal vertex, allowing linear time algorithms for
the reduction rules presented in the previous section (see [4] for more details).

Encoding. We describe the SAT encoding in more detail in the next section.

Efficient Heuristics. We use RIATA-HGT from the PhyloNet program suite
[20] to give starting points for our upper bounds. While not an approximation
algorithm (since families of trees can be constructed whose distance is fixed,
but whose distance found by the algorithm is arbitrarily large), RIATA-HGT
performs very well in practice (see Figures 4 and 5). It takes the input trees and
calculates a maximum agreement subtree. The maximum agreement subtree is
added to the forest and then used as a “backbone” and the algorithm is then
repeated for each subtree hanging from the backbone. While not explicitly stated,
the resulting forest is acyclic by construction and thus gives an upper bound for
both rSPR distance and hybridization number.

Different Search Strategies and SAT Solvers. We use Minisat [10,11] to
find exact solutions for rSPR and hybrid number. On the other hand, we use
Walksat [24,25], adaptg2wsat [8], novelty+p [8] for the upper bounds of both
measures. We use the UBCSAT implementation [27] for the latter two since it was
significantly faster than the stand-alone versions. We compare the performance of
these three local search solvers among themselves and also with the performance
of the complete solvers minisat,March KS and SATzilla. As we will see in the
experimentation, the local search algorithms work much faster in general.

Software. We built four different methods that calculate upper bounds for hy-
bridization numbers, upper bounds for drSPR, exact solutions for hybridization
number, and exact solutions for drSPR. The software is written in perl and java,
using the TreeJuxtaposer [19] java code base. All four have similar format, so,
we only describe the upper bound for hybridization numbers in detail:

10 M.L. Bonet and K. John

trees # of Hybrid SAT RIATA SAT Descent
[23] taxa Number[7] Exact -HGT[20] w [24] a [8] n[8] m [11] z [29]

ndhf 40 14 ≥ 9 15 14 16 14 ≤ 15 16
phyB 11h 2d 11s 4m 24s 48s 6h 44s
ndhf 36 13 ≥ 9 16 13 17 14 ≤ 14 18
rbcl 11.8h 2d 11s 4m 28s 51s 6h 48s
ndhf 34 12 ≥ 9 15 12 15 12 ≤ 12 15
rpoC2 26.3 h 2d 7s 3m 14s 35s 6h 34s
ndhf 19 9 9 9 9 10 9 ≤ 9 10
waxy 5m 46h 3s 19s 4s 7s 6h 2m
ndhf 46 ≥ 15 ≥ 9 24 22 22 21 ≤ 20 22
xits 2d 2d 12s 3m 50s 1.2m 6h 1m
phyB 21 4 4 4 4 4 5 4 4
rbcl 1s 6s 4s 7s 4s 4s 3s 5s
phyB 21 7 7 7 7 7 7 7 10
rpoC2 3m 1.5m 3s 33s 11s 13s 77s 11s
phyB 14 3 3 3 3 3 4 3 3
waxy 1s 3s 2s 5s 3s 2s 2s 2s
phyB 30 8 8 9 8 9 9 8 10
xits 19s 1.5h 6s 1m 10s 11s 1.7h 10s
rbcl 26 13 9 16 14 15 15 ≤ 15 14
rpoC2 29.5h 2d 5s 1m 9s 10s 6h 36s
rbcl 12 7 7 7 7 7 7 7 8
waxy 4m 42s 1s 10s 3s 3s 40s 7s
rbcl 29 ≥ 9 ≥ 9 15 14 19 14 ≤ 15 19
xits 2d 2d 6s 271s 20s 1m 6h 40s
rpoC2 10 1 1 1 1 1 1 1 1
waxy 1 s 1s 1s 3s 1s 1s 1s 1s
rpoC2 xits 31 ≥10 ≥9 17 15 18 15 ≤ 15 18

2d 2d 7s 4m 18s 50s 6h 1h
waxy 15 8 8 10 9 10 9 8 9
xits 10m 1s 2s 13s 6s 11s 1m 14s

Fig. 4. The Grass (Poaceae) Data Set: We compare the exact solver, HybridNum-
ber [7], the fast heuristic, RIATA-HGT [20], and our program using the SAT encodings.
The data for HybridNumber in the third column is from [7]. First: HybridNumber finds
the exact solution, but due to the NP-hardness of the problem, often does not find a
solution. Second: The performance of the SAT Ascent solver which works upward from
the smallest distance until the true distance is found. Its performance echos Hybrid-
Number. Third: RIATA-HGT gives very quickly a reasonable, but not tight, upper
bound. Right: Our software gives excellent results in reasonable time. It employs five
different solvers: the incomplete solvers: Walksat [24,25] and two high scoring solvers
from SAT 2007: adaptg2wsat and novelty+p [8] implemented in [27], as well as the com-
plete solvers minisat [11] and SATzilla [29]. Solutions listed as upper or lower bounds
did not halt before the time limit and estimates based on the log files are listed.

Efficiently Calculating Evolutionary Tree Measures Using SAT 11

20

15

10

5

15105

distance

moves

�

�

�

�

�

�

�

@

@

@

@

@

@

@

+

+

1000

750

500

250

15105

time (seconds)

moves

�

�

�

� � �

�

@ @ @@ @ @ @+

+

Fig. 5. Simulated Data Set: 50-taxa trees were generated under the Yule-Harding
distribution to be the “species tree” and then for each distance and each species tree, 10
“gene trees” of that distance were generated. In both graphs, @ is RIATA-HGT [20], ◦
is the SAT Descent using Walksat [25], and + is the exact algorithm HybridNumber [7].
Due to the similarity in results to HybridNumber, the results for SAT Ascent solution
are omitted. All runs had a 24 hour time limit. This did not affect RIATA-HGT and
SAT Descent, but limited the runs that completed for HybridNumber to values 2 and
4. The left graph shows the hybridization number returned by the programs; the right
graph shows the time, in seconds, to accomplish the task.

1. Preprocess by the reduction rules to yield smaller pairs of trees.
2. Find a starting upper bound for each pair using RIATA-HGT [20].
3. Starting with the upper bound, r, encode the formula for hybridization is r

and use a SAT solver to find a satisfiable assignment (i.e. a MAF).
4. Decrement r and loop to 3, until a satisfiable assignment is not found. Return

r + 1.

We similarly define the algorithm for upper bounds for drSPR. For the SAT
Ascent algorithm, we begin by looking for an agreement forest of size 1 and
work upwards until a forest is found.

4 Encoding

Our program takes pairs of phylogenetic trees on the same leaf set and a proposed
size for the MAF and produces SAT instances in DIMACS SAT format:
Input: Two trees, T1 and T2, and an integer r > 0.
Output: An encoding into a SAT instance, in the DIMACS SAT format.

12 M.L. Bonet and K. John

The resulting formula will be satisfiable if the hybridization number (rSPR
distance) between T1 and T2 is ≤ r. We rely on the correspondence to agreement
forests, described in Section 2. Namely, that drSPR(T1, T2) = r iff there is a
maximum agreement forest for T1 and T2 of size r. Similarly, the hybridization
number of T1 and T2 is r iff there is a maximum acyclic agreement forest for T1
and T2 of size r. Thus, most of the encoding focuses on saying that a agreement
forest exists:

Literals. For each subtree i in the forest and leaf j from the original leaf set,
we have a literal lij which is true iff leaf j is part of subtree i in the agreement
forest. We have similar sets of literals for internal vertices of T1 and T2. We
also have literals to reduce the number of clauses needed (explained below) and
to represent the acyclic conditions. The number of literals is O(rn + r2). Since
r < n, this yields O(nr).

Clauses for Subtrees Partition Leaf Sets. It is easy to say that every leaf
is in at least one subtree, by having clauses for each leaf j, l0j ∨ l1j ∨ . . . ∨ lrj ,
that literally say, “leaf j is in subtree 0 or leaf j is in subtree 1 or . . . leaf j is in
subtree r. This takes O(rn) clauses.

To say that every leaf occurs in at most one subtree is more difficult. The
obvious encoding takes O(rn2). Following [17], we introduce O(rn) new literals,
sij and use them to reduce the number of clauses needed to O(rn). The intuition
for these new literals and corresponding clauses is that they encode

∑
i lij ≤ 1.

The new variables signal when leaf j occurs in some tree i, and the clauses ensure
that this happens for only one i.

Clauses for Subtrees Occurring as Induced Trees. The clauses below
assert that the r + 1 subtrees occur in both T1 and T2. This is done in a similar
manner as above: we show that every internal vertex is in at most one subtree.
Note that we do not need to say that every internal node is in at least one
subtree. We need new variables to say to which subtrees of the agreement forest
the internal vertices of T1 and of T2 belong to. If a rooted binary tree has n
leaves, then it has n− 1 internal vertices. For tree T1, we have variables vij , for
0 ≤ i ≤ r and 1 ≤ j ≤ n − 1 such that vij is true iff the jth internal vertex is
part of the ith subtree. Similarly, for tree T2, we have variables v′ij .

We will further have two sets of variables to reduce the number of clauses
needed: ti,j and t′i,j for i = 0, . . . , r and j = 1, . . . , n− 1 (these are similar to the
s variables used for the leaves of the trees). The clauses for the internal nodes
of the trees state:

1. Every internal vertex of T1 (and of T2) is in at most one subtree.
This follows the same idea as in the previous step with v and t for T1 and
with v′ and t′ for T2. This is done twice to require that all the internal
vertices of both the input trees occur at most once in the subtrees of the
forest.

2. If two leaves occur in a subtree, then internal vertices on the path between
them must also occur in the same subtree.

Efficiently Calculating Evolutionary Tree Measures Using SAT 13

First, look at tree T1 (the clauses for T2 will be almost identical). For
every pair of leaves, j and k in T1, there exists a unique path between them
of internal vertices, vp1 , vp2 , . . . , vpx (x and the internal vertices on the path
depend on the leaves chosen and could be 0, if i = j, or up to n − 1). Our
clauses state that if j and k occur in subtree i, then so do the nodes on the
path between them: vp1 , vp2 , . . . , vpx . So for i = 0, . . . , r and j, k = 1, . . . , n−1
we need the clauses saying

(lij ∧ lik)→ (vip1 ∧ vip2 ∧ . . . ∧ vipx)

Note that the internal vertices and the paths depend on the particular tree.

Clauses for Checking that Subtrees are Equal. Once we have that the
leaves form subtrees, we add clauses to guarantee that the structure of the sub-
trees is the same in both T1 and T2. This is the last condition needed to have
that the subtrees form an rSPR agreement forest for T1 and T2. To do this, we
look at triples of all leaves and their structure in T1 and T2. If the structure
differs, then we add clauses preventing that triple of leaves from occurring in
the same tree. In the worst case, this takes O(rn3) clauses, but in practice it is
significantly smaller.

Clauses for Acyclic Conditions. For hybridization, the agreement forest
also needs to be acyclic. Adding variables to represent that there is a directed
edge between subtrees is O(r2). The clauses needed to encode the initial edges,
transitive closure of the edge relationship, and forbid cycles takes O(r3).

Expected Number of Clauses. The theoretical bound on the number of
clauses in this encoding is quite high, O(rn3) where n is the number of taxa in
the trees and r is the hybridization number (rSPR distance) that is encoded.
However, in practice, we see significantly smaller number of clauses generated
by the encoding. This large difference in sizes is due to the clauses needed to
check that the internal substructure of the subtrees are equal. It is possible that
all the O(n3) triplets of taxa will differ in structure in T1 and T2, resulting in
O(rn3) clauses. In practice, most trees compared have are similar and as such
most of triplets agree, and few are needed. For example, the theoretical upper
bound for unreduced trees with 50 taxa and with a starting upper bound of
13 is 1,625,000. For a pair chosen at random from our simulated dataset, the
reduction rules shrunk the size of the trees to 39 taxa from the initial 50 taxa
and the starting upper bound is 13. The number of literals and clauses depend
on the size of the reduced tree pairs and the starting upper bound. They are
3,416 literals and 370,571 clauses, a huge reduction from the worst case bound
for the full trees and half of the bound calculated for the reduced trees.

5 Data

We analyze both biological and simulated data. The biological data set, from
the analysis of HybridNumber [7] and described more fully there, is from the

14 M.L. Bonet and K. John

Poaceae (Grass) family. Hybridization is a well-recognized occurrence in grasses
[12], making this an excellent test data set. The data set consists of sequence data
for six loci: internal transcribed spacer of ribosomal DNA (ITS); NADH dehydro-
genase, subunit F (ndhF); phytochrome B (phyB); ribulose 1,5-biphosphate car-
boxylase/oxygenase, large subunit (rbcL); RNA polymerase II, subunit (rpoC2);
and granule bound starch synthase I (waxy). For each loci, a tree was built us-
ing the fastDNAmL program [21] by Heiko Schmidt [23]. As in [7], we looked at
pairs of trees, reduced to their common taxa. In all, we have 15 pairs of trees.
The pairs and the number of overlapping taxa are listed in Figure 4.

The simulated datasets were generated to capture small and medium distances
between reasonably sized trees. All trees have 50 taxa. For each run, we gener-
ated a “species” tree, and then 10 “gene” trees by making k rSPR-moves from
the species tree for k = 2, 4, 6, 8, 10, 12, 14. These give tree pairs with rSPR dis-
tance at most k, since it is possible for some of the sequence of moves to “cancel”
each other out. The hybridization number could be larger than k, since its cor-
responding maximum agreement forest is that for rSPR with additional acyclic
conditions. Each of the species trees was generated with Sanderson’s r8s pro-
gram [22], using Yule-Harding distribution. The program that alters the species
tree by k rSPR moves chooses a non-pendant edge uniformly and at random
(software written by the authors in Java). For each k, 10 trials were generated,
yielding 100 species-gene tree pairs, for a total of 700 pairs of trees.

6 Results

We show the results for the hybridization number algorithms. The rSPR distance
results have similar, and often worst running times, since cluster reduction rule
does not apply to rSPR distance. This rule often breaks the problem into rea-
sonably sized subproblems, speeding computation.

Poaceae (Grass) Dataset. The results for this dataset are presented in
Figure 4. Our exact solution algorithm does well at small cases, as HybridNum-
ber does but slows down for larger instances sooner. On the other hand, our
SAT Descent algorithm performs extremely well using the local search algo-
rithm, Walksat, finding the true number in 11 out of 12 of the known cases and
doing so in under five minutes time. Surprisingly, Walksat outperforms more re-
cent local search algorithms including adaptg2wsat (which recently won a silver
medal in SAT2007 competition in satisfiable random formula category). All the
local search algorithm outperformed the complete solvers, which often ran out
of time before completing the calculations. In Figure 4, we do not include the
results for March KS, since this solver performed very poorly on almost all these
instances. RIATA-HGT returns answers extremely quickly, all in less than 12
seconds, but overestimates by average of 9%.

Simulated 50 Taxa Dataset. Figure 5 contains the graphs for the simulated
data for both accuracy and speed. Both HybridNumber and SAT Ascent solver

Efficiently Calculating Evolutionary Tree Measures Using SAT 15

could not calculate the solutions for r ≥ 6 in the 24 hour time-limit used for
these experiments. Since the SAT Ascent solver’s results mirror HybridNumber,
we report only the latter. Our upper bound software did extremely well in both
accuracy and speed. By construction, SAT Descent with local search algorithms
always gave answers that were closer to the true answer. RIATA-HGT finished
in under 15 seconds for all runs. SAT Descent with local search algorithms com-
pleted all runs in less than 15 minutes. The standard deviations were omitted
from Figure 5 but are worth noting. For small values of k, they are below 5% for
the time and accuracy of both RIATA-HGT and SAT upper bound. The stan-
dard deviation for the time for RIATA-HGT remains below 2% for all values.
For all other algorithms, the standard deviations rise for both time and accuracy
to almost 20%, illustrating the variability of difficulty of problems even for small
and medium values.

7 Discussion and Conclusion

Encoding problems as SAT instances has positive and negative points. On the
negative side, we must build a SAT instance that may be even bigger than the
original problem. On the positive side, once the hard work of encoding is done,
we can use the variety of SAT tools to try many different search strategies to
improve our algorithms in both efficiency and time. In a way, it is like having
several solvers in one, since we can benefit from all the different tools that the
SAT community has developed over the years and from future improvements of
SAT solvers.

Our novel approach of encoding the NP-hard problems of calculating hy-
bridization number and rSPR distance into SAT instances yields an elegant and
efficient algorithm for estimating these measures. While not an exact answer,
our algorithms often find the true answer in a fraction of the time needed to
search for the exact solution. Given the ever-improving state of SAT-solvers,
these results will only improve, allowing for better bounds. Future work includes
improving the encoding, finding tighter bounds via combinatorial analysis of the
inputs, and uses for related tree problems such as TBR distance.

One final observation is that our grass instances are an unusual case of com-
binatorial real problems better solved by local search algorithms than by DPLL
solvers. Even though the instances come from real data, we are encoding an
NP-hard problem of complexity similar to random instances, and local search
solvers win the Random Satisfiable category in competitions.

Acknowledgements

The first author was partially supported by the Spanish grant TIN2007-68005-
C04-03. Also, this project was partially supported by USA NSF grants SEI
0513660, and by MRI 0215942 and the computational research center at the
CUNY Graduate Center. The second author would like to thank the Centre de
Recerca Matemàtica in Barcelona for hosting her visits in 2007. We also thank

16 M.L. Bonet and K. John

Charles Semple, Simone Linz, and Carlos Ansotegui for helpful conversations
and the Munzner group (UBC) for the TreeJuxtaposer [19] code base.

References

1. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on evo-
lutionary trees. Annals of Combinatorics 5, 1–13 (2001)

2. Baroni, M., Semple, C., Steel, M.: Hybrids in real time. Systematic Biology 55,
46–56 (2006)

3. Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer
events. BMC Evol. Biol. 6, 15 (2006)

4. Bonet, M.L., John, K.S., Mahindru, R., Amenta, N.: Approximating subtree dis-
tances between phylogenies. Journal of Computational Biology 13(8), 1419–1434
(2006)

5. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree
prune and regraft distance. Annals of Combinatorics 8, 409–423 (2005)

6. Bordewich, M., Semple, C.: Computing the minimum number of hybridization
events for a consistent evolutionary history. Discrete Applied Mathematics (2007)

7. Bordewich, M., Linz, S., John, K.S., Semple, C.: A reduction algorithm for comput-
ing the hybridization number of two trees. Evolutionary Bioinformatics 3, 86–98
(2007)

8. Zhang, H., Li, C.M., Wei, W.: Combining adaptive noise and look-ahead in local
search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 121–133. Springer, Heidelberg (2007)

9. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal
of Classification 2, 7–28 (1985)

10. Eén, N., Sörensson, N.: Software,
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

12. Grass Phylogeny Working Group. Phylogeny and subfamilial classification of the
grasses (poaceae). Annals of the Missouri Botanical Garden 88(3), 373–457 (2001)

13. Hallett, M.T., Lagergren, J.: Efficient algorithms for lateral gene transfer prob-
lems. In: ACM (ed.) Proceedings of the Fifth Annual International Conference
on Computational Molecular Biology (RECOMB 2001), pp. 149–156. ACM, New
York (2001)

14. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolu-
tionary trees. Discrete Applied Mathematics 71, 153–169 (1996)

15. Heule, M.J.H., van Maaren, H.: March dl: Adding adaptive heuristics and a new
branching strategy. Journal on Satisfiability, Boolean Modeling and Computa-
tion 2, 47–59 (2006)

16. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary
studies. Molecular Biology and Evolution 23(2), 254–267 (2006)

17. Lynce, I., Marques Silva, J.P.: Efficient haplotype inference with boolean satisfi-
ability. In: Proceedings of National Conference on Artificial Intelligence (AAAI)
(2006)

18. Moret, B., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun,
J., Timme, R.: Phylogenetic networks: Modeling, reconstructibility and accuracy.
IEEE Transactions on Computational Biology and Bioinformatics 1(1), 13–23
(2004)

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

Efficiently Calculating Evolutionary Tree Measures Using SAT 17

19. Munzner, T., Guimbrètiere, F., Tasiran, S., Zhang, L., Zhou, Y.: TreeJuxtaposer:
Scalable tree comparison using Focus+Context with guaranteed visibility. In: SIG-
GRAPH 2003 Proceedings, published as special issue of Transactions on Graphics,
pp. 453–462 (2003)

20. Nakhleh, L., Ruths, D., Wang, L.-S.: RIATA-HGT: A fast and accurate heuristic
for reconstructing horizontal gene transfer. In: Wang, L. (ed.) COCOON 2005.
LNCS, vol. 3595, pp. 84–93. Springer, Heidelberg (2005)

21. Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: Fastdnaml: A tool for
construction of phylogenetic trees of dna sequences using maximum likelihood.
Comput. Appl. Biosci. 10, 41–48 (1994)

22. Sanderson, M.J.: r8s; inferring absolute rates of evolution and divergence times in
the absence of a molecular clock. Bioinformatics 19, 301–302 (2003)

23. Schmidt, H.A.: Phylogenetic trees from large datasets. PhD thesis, Heinrich-Heine-
Universitat, Dusseldorf (2003)

24. Selman, B., Kautz, H.A., Cohen, B.: Software,
http://www.cs.rochester.edu/u/kautz/walksat/

25. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
In: Trick, M., Johnson, D.S. (eds.) Proceedings of the Second DIMACS Challange
on Cliques, Coloring, and Satisfiability, Providence RI (1993)

26. Semple, C.: Hybridization networks. New Mathematical Models for Evolution. Ox-
ford University Press, Oxford (2007)

27. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell,
D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

28. Wu, Y.: A practical method for exact computation of subtree prune and regraft
distance. Bioinformatics 25(2), 190–196 (2009)

29. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla:portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606
(2008)

http://www.cs.rochester.edu/u/kautz/walksat/

Finding Lean Induced Cycles
in Binary Hypercubes�

Yury Chebiryak1, Thomas Wahl1,2, Daniel Kroening1,2, and Leopold Haller2

1 Computer Systems Institute, ETH Zurich, Switzerland
2 Computing Laboratory, Oxford University, United Kingdom

Abstract. Induced (chord-free) cycles in binary hypercubes have many
applications in computer science. The state of the art for computing
such cycles relies on genetic algorithms, which are, however, unable to
perform a complete search. In this paper, we propose an approach to
finding a special class of induced cycles we call lean, based on an efficient
propositional SAT encoding. Lean induced cycles dominate a minimum
number of hypercube nodes. Such cycles have been identified in Systems
Biology as candidates for stable trajectories of gene regulatory networks.
The encoding enabled us to compute lean induced cycles for hypercubes
up to dimension 7. We also classify the induced cycles by the number
of nodes they fail to dominate, using a custom-built All-SAT solver.
We demonstrate how clause filtering can reduce the number of blocking
clauses by two orders of magnitude.

1 Introduction

Cycles through binary hypercubes have applications in numerous fields in com-
puting. The design of algorithms that reason about them is an active area of
research. This paper is concerned with obtaining a subclass of these cycles with
applications in Systems Biology.

Biochemical reactions in gene networks are frequently modeled using a system
of piece-wise linear ordinary differential equations (PLDE), whose number cor-
responds to the number of genes in the network [4]. It is of critical importance to
obtain stable solutions, because only stable orbits describe biologically relevant
dynamics of the genes. We focus on Glass PLDE, a specific type of PLDE that
simulates neural and gene regulatory networks [7].

The phase flow of Glass networks spans a sequence of coordinate orthants,
which can be represented by the nodes of a binary hypercube. The orientation
of the edges of the hypercube is determined by the choice of focal points of
the PLDE. The orientation of the edge shows the direction of the phase flow

� A part of this work was presented at the 7th Australia – New Zealand Mathematics
Convention, Christchurch, New Zealand, December 11, 2008. The work was sup-
ported by ETH Research Grant TH-19 06-3.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 18–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Finding Lean Induced Cycles in Binary Hypercubes 19

at the coordinate plane separating the orthants. Thus, the paths in oriented
binary hypercubes serve as a discrete representation of the continuous dynamics
of Glass gene regulatory networks. A special kind of such paths, coil-in-the-box
codes, is used for the identification of stable periodic orbits in the Glass PLDE.
Coil-in-the-box codes with maximum length represent the networks with longest
sequence of gene states for a given number of genes [10].

If a cycle in the hypercube is defined by a coil-in-the-box code, the orientation
of all edges adjacent to the cycle can be chosen to direct the flow towards it (the
cycle is then called a cyclic attractor). Such orientation ensures the convergence
of the flow to a periodic attractor that lies in the orthants included in the path. If
a node of the hypercube is not adjacent to the cycle, the node does not have edges
adjacent to the cycle, and the orientation of the edges at this node does not affect
the stability of the flow along the orthants that are defined by the coil-in-the-box
code. The choice of edge orientation in turn is linked to the specification of focal
points of the PLDE. Therefore, the presence of nodes that are not dominated
indicates that the phase flow along the attractor is robust to any variations of
the coefficients that define the equations in the orthant corresponding to that
node [20]. We say that a node that is not dominated by the cycle is shunned by
the cycle.

The computation of (preferably long) induced (i.e., chord-free) cycles that
dominate as few nodes as possible is therefore highly desirable in this context.
We call such cycles lean induced cycles.

The state-of-the art in computing longest induced cycles and paths relies on
genetic algorithms [5]. However, while this technique is able to identify individual
cycles with desired properties, it cannot guarantee completeness, i.e., it may miss
specific cycles. Many applications, including those in Systems Biology, rely on a
classification of all solutions, which precludes the use of any incomplete random
search technique.

Recent research suggests that SAT-based algorithms can solve many com-
binatorial problems efficiently: applications include oriented matroids [18], the
coverability problem for unbounded Petri nets [1], bounds on van der Waerden
numbers [12,6], and many more. Solving a propositional formula that encodes
a desired combinatorial object with a state-of-the-art SAT solver can be more
efficient than the alternatives.

Contribution. We encode the problem of identifying lean induced cycles in binary
hypercubes as a propositional SAT formula and compute solutions using a state-
of-the-art solver. As we aim at the complete set of cycles, we modify the solver
to solve the All-SAT problem, and present three orthogonal optimizations that
reduce the number of required blocking clauses by two orders of magnitude.

Our implementation enabled us to obtain a broad range of new results on
cycles of this kind. L. Glass presented a coil-in-the-box code with one shunned
node in the 4-cube [10]. We show that this is the maximum number of shunned
nodes that any lean induced cycle may have for that dimension. Then, we show

20 Y. Chebiryak et al.

that the longest induced cycles in the next two dimensions are cube-dominating:
these cycles dominate every node of the cube. In dimension 7, where an induced
cycle can be almost twice as long as the shortest cube-dominating cycles, there
are lean induced cycles shunning at least three nodes.

2 Preliminaries

We define basic concepts used frequently throughout the paper. The Hamming
distance between two bit-strings u = u1 . . . un, v = v1 . . . vn ∈ {0, 1}n of length
n is the number of bit positions in which u and v differ:

dn
H(u, v) = | { i ∈ {1, . . . , n} : ui 	= vi } | .

The n-dimensional Hypercube, or n-cube for short, is the graph (V, E) with
V = {0, 1}n and (u, v) ∈ E exactly if dn

H(u, v) = 1 (see also [14]). The n-
cube has n · 2n−1 edges. We use the standard definitions of path and cycle
through the hypercube graph. The length of a path is the number of its ver-
tices. A Hamiltonian path (cycle) through the n-cube is called a (cyclic) Gray
code. The cyclic distance of two nodes Wj and Wk along a cycle of length L in the
n-cube is

dn
C(Wj , Wk) = min{|k − j|, L− |k − j|} .

In this paper, we are concerned with particular cycles through the n-cube.

Definition 1. An induced cycle I0 . . . IL−1 in the n-cube is a cycle such that
any two nodes on the cycle that are neighbors in the n-cube are also neighbors
in the cycle:

∀j, k ∈ {0, . . . , L− 1} (dn
H(Ij , Ik) = 1 ⇒ dn

C(Ij , Ik) = 1) . (1)

Fig. 1 shows an induced cycle (bold edges) in the 4-cube. In this paper, we are
also interested in the immediate neighborhood of the cycle:

Definition 2. The cycle I0 . . . IL−1 dominates node W of the n-cube if W is
adjacent to some node of the cycle:

∃j ∈ {0, . . . , L− 1} dn
H(Ij , W) = 1 . (2)

We say the cycle shuns the nodes it does not dominate. A cycle is called cube-
dominating if it dominates every node of the n-cube; such cycles can be thought
of as “fat”. In contrast, in this paper we are interested in “lean” induced cycles,
which dominate as few nodes as possible:

Definition 3. A lean induced cycle is an induced cycle through the n-cube that
dominates a minimum number of cube nodes, among all induced n-cube cycles
of the same length.

Especially significant are induced cycles of maximum length. The induced cycle
in Fig. 1 is longest (length 8) in dimension 4. It is also lean, as it dominates 15
of the 16 cube nodes, and there is no induced cycle of length 8 dominating less
than 15 nodes.

Finding Lean Induced Cycles in Binary Hypercubes 21

0000

0001

0010

0011

0100

0101

0110

0111

1000
1010

1100 1110

1001 1011

1101 1111

Fig. 1. A lean induced cycle in the 4-cube. The cycle shuns node 1101.

Lean induced cycles in cell biology. Hypercubes with lean induced cycles can
aid the synthesis of Glass Boolean networks with stable periodic orbits and
stable equilibrium states. For example, C. elegans vulval development is known
to exhibit a series of cell divisions with 22 nuclei formed in the end of the
development. The cell division represents a complex reactive system and includes
at least four different molecular signaling pathways [15]. If the state of every
signaling pathway is represented by a valuation of a Boolean variable, the 4-
cube in Fig. 1 is useful for synthesizing a Glass Boolean network with a stable
periodic orbit describing the cell division and an equilibrium depicting the finale
state (at node 1101) of the gene regulatory system.

Co-existence of an induced cycle of maximum length and a shunned node in a
hypercube indicates that during cell division, the gene network may traverse the
maximum possible number of the different states before switching to the final
equilibrium.

3 Computing Lean Induced Cycles

In this section, we describe an encoding of induced cycles of a given length into
a propositional-logic formula. We then strengthen the encoding to assert the
existence of a certain number of shunned nodes. We finally illustrate how we
used the MiniSat solver to determine lean induced cycles where this number of
shunned nodes is maximized.

3.1 A SAT-Encoding of Induced Cycles with Shunned Nodes

Our encoding relies heavily on comparing the Hamming distance between two
hypercube nodes against some constant. We implement such comparisons effi-
ciently using once-twice chains, as described in [3]. In brief, a once-twice chain

22 Y. Chebiryak et al.

identifies differences between two strings up to some position j based on (i)
comparing them at position j, and (ii) recursively comparing their prefixes up
to position j − 1.

Induced Cycles. We use n · L Boolean variables Ij [k], where 0 ≤ j < L and
0 ≤ k < n, to encode the coordinates of an induced cycle of length L in the n-
cube. The variable Ij [k] denotes the k-th coordinate of the j-th node. In order to
form a cycle in an n-cube, consecutive nodes of the sequence must have Hamming
distance 1, including the last and the first:

ϕcycle :=
(∧L−2

i=0
dn

H(Ii, Ii+1) = 1
)

∧ dn
H(IL−1, I0) = 1 .

To make the cycle induced, we eliminate chords as follows:

ϕchord-free :=
∧

0 ≤ i < j < L,
dn

C(Ii, Ij) ≥ 2

dn
H(Ii, Ij) ≥ 2 .

This also ensures that the nodes along the cycle are pairwise distinct. In practice,
the formula ϕchord-free can be optimized by eliminating half of its clauses, using
an argument presented in [2].

The conjunction of these constraints is an encoding of induced cycles:

ϕIC := ϕcycle ∧ ϕchord-free .

Shunned Nodes. We encode the property that a cycle I0 . . . IL−1 shuns nodes
u0, . . . , uS−1, by requiring the distance of the nodes to the cycle to be at least 2:

ϕshunned :=
∧S−1

i=0

∧L−1

j=0
dn

H(ui, Ij) ≥ 2 .

We combine this with the condition that the nodes are distinct,

ϕdistinct :=
∧

0≤i<j<S
dn

H(ui, uj) ≥ 1 ,

to obtain an encoding of induced cycles with at least S shunned nodes:

ϕICS := ϕIC ∧ ϕshunned ∧ ϕdistinct . (3)

We point out some basic monotonicity properties of formula ϕICS . Let
IC(n, L, S+) be the number of induced cycles of length L in the n-cube with at
least S shunned hypercube nodes. It is easy to see that

n1 ≤ n2 ⇒ IC(n1, L, S+) ≤ IC(n2, L, S+) , and
S1 ≤ S2 ⇒ IC(n, L, S+

1) ≥ IC(n, L, S+
2) .

There is no analogous monotonicity law for the length parameter L of an induced
cycle. Intuitively, a medium value for L provides the greatest degree of freedom
for a cycle.

Finding Lean Induced Cycles in Binary Hypercubes 23

Table 1. Length of longest induced cycles, and number of shunned nodes

dim. n length L max. # shunned nodes
3 6 0
4 8 1
5 14 0
6 26 0
7 48 ≥ 3

3.2 Computing Lean Induced Cycles Using a SAT Solver

Every solution to equation (3) corresponds to an induced cycle of length L in
the n-cube with at least S shunned nodes. In order to make the cycle lean, we
need to maximize S. We achieve this by starting with cube-dominating induced
cycles, i.e., with S = 0, and increasing S in equation (3) until the SAT solver
reports unsatisfiability.1

Table 1 shows our findings for hypercubes up to dimension 7. For the classical
cube of dimension 3, the longest induced cycles have length 6. All of those are
cube-dominating. In dimension 4, the longest induced cycles have length 8; an
example is shown in Fig. 1. Some of these cycles shun 1 of the 16 cube nodes;
the others are cube-dominating. Interestingly, in dimensions 5 and 6, all longest
induced cycles are again cube-dominating.

In dimension 7, we found longest (length 48) induced cycles shunning 3 nodes.
For larger values of S, our search timed out after 24h. In our experiments, we
used the MiniSat solver by Eén and Sörensson [9]. MiniSat provides inter-
faces for incremental solving and All-SAT; the current version uses preprocessing
techniques [8] that simplify the original formula. All experiments were carried
out on an Intel Xeon 3.0 GHz, 4-GB RAM PC running Linux.

4 Classification of Induced Cycles

The goal of this section is to determine how many distinct induced cycles of
length L and with S shunned nodes exist in the n-cube, for a given triple
(n, L, S). By distinct, we mean that the cycles cannot be transformed into each
other by applying a symmetry permutation of the n-cube. That is, for each tuple
(n, L, S), we classify the induced cycles into equivalence classes.

The classification of induced cycles with respect to symmetries of a hypercube
is of interest in Glass models for neural and gene regulatory networks, because
the number of the equivalence classes of the codes indicates how many different
types of cells can be regulated by a set of genes [21,10].

1 Since the range of values for S for which (3) is satisfiable is contiguous, a binary
search strategy is also possible, using a heuristically determined initial value for S.

24 Y. Chebiryak et al.

The enumeration of the equivalence classes is achieved using a custom-made
All-SAT solver derived from MiniSat. We introduce blocking clauses that sup-
press solutions symmetric to one encountered before. We observe that cycles
identical up to cube symmetries belong to the same class (n, L, S). This ensures
that the symmetry breaking does not eliminate solutions with a different set
of parameters. In the rest of this section, we describe the classification and the
symmetry breaking in more detail.

4.1 Identifying Equivalence Classes Using Coordinate Sequences

In order to identify symmetry equivalence classes of cycles, it proved efficient to
encode cycles in a slightly different way.

Definition 4 ([10]). The coordinate sequence of a cycle I0 . . . IL−1 in the
n-cube is the sequence (c0, . . . , cL−1) ∈ {0, . . . , n− 1}L such that ci is the unique
coordinate that distinguishes Ii and Ii+1 mod L.

For example, the coordinate sequence of the cycle in Fig. 1 is the sequence
cs := (0, 1, 2, 0, 3, 2, 1, 3) , assuming I0 = 0000 and I1 = 0001. The dimensions
are listed in the order 3210 in the figure.

Given coordinate sequences, we can define cube symmetries.

Definition 5. Two cycles C1 and C2 in the n-cube are equivalent, C1 ∼ C2,
if their coordinate sequences are identical up to axis permutations, reflections
about the center position, and rotations by an arbitrary number of coordinates.

Given n and L, let CS denote the set of coordinate sequences of cycles of
length L in the n-cube. A reflection or rotation on CS is a permutation π on
the set {0, . . . , L− 1} that maps a coordinate sequence (ci)L−1

i=0 to the sequence
(cπ(i))

L−1
i=0 , that is, by acting on the position indices of the sequence. In contrast,

an axis permutation on CS is a permutation π on the set {0, . . . , n − 1} that
maps a coordinate sequence (ci)L−1

i=0 to the sequence (π(ci))L−1
i=0 , that is, by acting

on the coordinate values of the sequence. For example, the coordinate sequence
cs′ := (1, 0, 2, 3, 0, 1, 3, 2) is equivalent to sequence cs above, since cs′ can
be obtained from cs by a left-rotation by one position, followed by a reflection
and an axis permutation (1 2 3 0), mapping 1 to 2, 2 to 3, etc.

Our goal is to classify induced cycles based on cube symmetries, for a given
parameter tuple (n, L, S). In order for this classification to be sound, the sym-
metry permutations must not alter the (n, L, S) parameters of a cycle.

Lemma 1. Let C1 and C2 be two equivalent cycles. Then C1 and C2 have the
same length and shun the same number of cube nodes.

Proof (sketch). Since C1 and C2 are equivalent, there is a sequence Π of permu-
tations, of the type mentioned in definition 5, such that Π(C1) = C2. Reflections
and rotations of the coordinate sequence of C1 translate to reversals of C1’s ori-
entation, and to rotations of C1, respectively. These operations change neither
the length of the cycle, nor the distance of cube nodes to it.

Finding Lean Induced Cycles in Binary Hypercubes 25

For an axis permutation π, we have to show that definition 2, dominates, is
invariant under π. We omit the technical derivation of this property. �

As an example, the unique cycle of the 4-cube corresponding to the above-
mentioned coordinate sequence cs′, after fixing I0 := 0000 and I1 := 0010, is
lean and induced, as is the cycle in Fig. 1. Both cycles shun one cube node.
Conversely, cycles with the same parameters (n, L, S) may not be equivalent:
Table 2 (see Appendix) lists two distinct – in the above sense – cycles with
(n, L, S) = (4, 8, 0).

We determine the number IC(n, L, S) of ∼ equivalence classes of induced
cycles of length L with exactly S shunned nodes as the difference between the
number of classes of cycles shunning at least S and S + 1 nodes, respectively:

IC(n, L, S) = IC(n, L, S+) − IC(n, L, (S + 1)+) . (4)

The quantities on the right are computed, separately for S and S + 1, by enu-
merating satisfying assignments to Eq. (3), using an All-solutions SAT solver,
implemented on top of MiniSat (see Algorithm 1 on the next page).

As proposed in [3], we encode coordinate sequences using XOR gates on Bool-
ean variables denoting coordinates of a cycle. We write xork [m] to refer to the
m-th bit in bitwise xor-operation over coordinates of nodes Ik and Ik+1 mod L.
For example, if xor3[2] evaluates to true, dimension 2 is traversed while going
from I3 to I4. We call the variables xork[m] the “xor-variables”.

To ensure a single representative for each ∼ equivalence class, we add blocking
clauses for each solution found that prevent permutations of axes, rotations and
reflections of the coordinate sequence of the solution. The number of blocking
clauses to add per solution is (2L · n!). This is clearly a computational burden
for the SAT solver, especially when the solution space is nearly exhausted, and
the All-SAT procedure is about to find the formula to be unsatisfiable. In the
rest of this section, we present techniques that reduce both the number and the
length of the blocking clauses.

4.2 Optimizations

Compressing blocking clauses. A blocking clause for a given induced cycle, bar-
ring permutations of axes and rotations/reflections of a coordinate sequence, is
expressed in terms of the variables encoding the sequence. For instance, to block
permutations of the cycle in Fig. 1, we add the following clause:

(¬xor0[0] ∨ xor0[1] ∨ xor0[2] ∨ xor0[3]

∨ xor1[0] ∨ ¬xor1[1] ∨ xor1[2] ∨ xor1[3]
...
∨ xor7[0] ∨ xor7[1] ∨ xor7[2] ∨ ¬xor7[3]) .

26 Y. Chebiryak et al.

Algorithm 1: Compute-Equivalence-Classes

Input: the SAT instance I with fixed n, L, S;
the equivalence relation ∼

Output: The set of equivalence classes EC

1: EC := {}
2: SAT_solver.solve(I)
3: while SAT
4: do IC = SAT_solver.decode()
5: EC ← EC ∪ {IC}
6: ∀ICj ∼ IC. I .add_blocking_clause(ICj)
7: SAT_solver.solve(I)

The length of this blocking clause is (n ·L). Our first, and simplest, optimization
is to omit literals that evaluate to false, since we know that these variables
encode unit Hamming distance:

(¬xor0[0] ∨ ¬xor1[1] ∨ ¬xor2[2] ∨ ¬xor3[0] ∨ . . .) .

This reduces the length of a clause to L.

Symmetric Cycles. The following optimization applies to specific cycles, called
symmetric induced cycles. A Gray code is symmetric2 if elements of its coordinate
sequence that are L/2 apart are identical [19]. For a symmetric induced cycle,
the number of blocking clauses to be added can be reduced by one-half: rotations
by more than L/2 positions result in cycles that were already blocked.

Prefix Filtering. Without loss of generality, we fix the first two elements of the
coordinate sequence to (0, 1). For the next coordinate, dimension 0 cannot be
traversed because this would form a chord. Neither can dimension 1, since the
cycle must be simple. Out of higher dimensions, we can restrict the search to the
canonical class3 with prefix (0, 1, 2). We enforce this prefix by fixing the values
of the corresponding xor-variables using the following three clauses:

xor0[0] ∧ xor1[1] ∧ xor2[2] . (5)

This drastically reduces the number of solutions in each equivalence class,
and eliminates a large number of blocking clauses. For example, it becomes
unnecessary to add a blocking clause for the coordinate sequence cs′ on page 24,
as cs′ is blocked by Eq. (5).
2 This definition is not to be confused with the definition in [13], where this term refers

to a code for which the number of bit changes is uniformly distributed among the
bit positions, hence called a balanced Gray code in [17, p. 7].

3 A canonical coordinate sequence is the one in which each coordinate k appears before
the first appearance of k + 1 [11].

Finding Lean Induced Cycles in Binary Hypercubes 27

Phase Saving. In an attempt to speed up the enumeration of solutions, we added
phase-saving [16] to MiniSat. By default, MiniSat assigns false to all decision
variables. With phase saving, they are assigned their most recent values in the
search. Phase saving combines well with aggressive restarting schemes, since it
retains more information between restarts. Our intuition was that after finding
a solution, the solver might be able to quickly identify neighboring solutions.
Phase-saving alone, however, did not result in any speedups.

Ordering decision variables. Upon closer inspection of All-SAT runs, we found
that the activity-based variable selection heuristic mainly chooses from a small
set of branching variables. These variables correspond closely to the encoding of
solutions in the input CNF. In order to make use of this insight, we extended the
solver to allow for prioritization of important variables in the decision heuristic:
In this modification, unprioritized variables are only considered for branching
after all prioritized variables are assigned a value. We tested a number of possible
restrictions, and found that prioritizing the variables that encode the induced-
cycle nodes I0, . . . , IL−1 works well for some instances, but yields bad results in
general.

Combined Restart Policy. We found that the enumeration of solutions could
be sped up by disabling the geometric restart scheme, but this led to bad per-
formance on the final hard instances. By combining an initial high restart limit
(100000 conflicts) with a subsequent switch to MiniSat’s original geometric pol-
icy, starting again from a very low limit (100 conflicts), we were able to gain a
20% overall speed-up. Easier SAT instances can then be solved before the first
restart, while hard instances still profit from aggressive restarts.

Further experiments with different combinations of the discussed strategies
revealed that a combination of a high-restart limit, variable prioritization, and
phase saving also led to a performance increase of about 20%.

4.3 Evaluation

Using prefix filtering and the optimizations for symmetric cycles, we are able to
reduce the number of clauses drastically. As an example, consider an instance
encoding induced cycles of length 26 in a 6-dimensional hypercube. In order to
block a solution, we need to add only 312 blocking clauses in the non-symmetric
case and 156 clauses for a symmetric cycle, instead of originally 37440. Our
findings are presented in Fig. 2 and extend the classification presented in [22].

For some circuit length values L, the time required by the All-SAT solver
increases with the number of shunned nodes. For such values of L, it is faster to
perform the classification for a small value of S and then check how many nodes
the cycles dominate.

In general, the time required to find the first induced cycle is a few orders of
magnitude less than that to perform the classification, even in the case of one
class only, as the run-time is dominated by the final unsatisfiable instance.

28 Y. Chebiryak et al.

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#c
la

ss
es

S

n=6, L=16

 0

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9 10 11

#c
la

ss
es

S

n=6, L=18

 0

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9

#c
la

ss
es

S

n=6, L=20

 0
 20
 40
 60
 80

 100
 120
 140
 160

0 1 2 3 4 5 6

#c
la

ss
es

S

n=6, L=22

 0
 10
 20
 30
 40
 50
 60
 70
 80

0 1 2 3 4 5

#c
la

ss
es

S

n=6, L=24

Fig. 2. Classification of induced cycles by cube symmetries, for select triples (n, L, S)

5 Conclusion

In this paper we have formalized a combinatorial problem relevant in Systems
Biology: finding lean induced cycles in a hypercube, i.e., induced cycles that
dominate a minimum number of hypercube nodes. We have presented a solution
to this problem based on an efficient SAT encoding, and used this encoding to
find lean induced cycles using a SAT solver. When compared to genetic algo-
rithms, our method can provide guarantees for finding solutions, or prove the
absence thereof.

Our method is suitable for classifying large sets of solutions into symmetry
equivalence classes. As suggested by Fig. 2, this allows insights into the dis-
tribution of distinct solutions across the parameters n, L, and S. The SAT
solver’s performance is improved by filtering blocking clauses based on combi-
natorial properties of induced cycles, and by applying All-SAT specific internal
tunings.

Finding Lean Induced Cycles in Binary Hypercubes 29

Acknowledgments

The authors would like to thank Dr. Igor Zinovik for bringing their attention to
the problem of lean induced cycles and helping with preparing this script. They
also thank the anonymous reviewers for suggestions on how to improve the draft.

References

1. Abdulla, P.A., Iyer, S.P., Nylén, A.: SAT-solving the coverability problem for Petri
nets. Formal Methods in System Design 24(1), 25–43 (2004)

2. Chebiryak, Y., Kroening, D.: An efficient SAT encoding of circuit codes. In: Procs.
IEEE International Symposium on Information Theory and its Applications, Auck-
land, New Zealand, December 2008, pp. 1235–1238 (2008)

3. Chebiryak, Y., Kroening, D.: Towards a classification of Hamiltonian cycles in the
6-cube. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 4,
57–74 (2008)

4. de Jong, H., Page, M.: Search for steady states of piecewise-linear differential equa-
tion models of genetic regulatory networks. IEEE/ACM Trans. Comput. Biology
Bioinform. 5(2), 208–222 (2008)

5. Diaz-Gomez, P.A., Hougen, D.F.: Genetic algorithms for hunting snakes in hyper-
cubes: Fitness function analysis and open questions. In: SNPD-SAWN 2006: Pro-
ceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing, Washing-
ton, DC, USA, pp. 389–394. IEEE Computer Society, Los Alamitos (2006)

6. Dransfield, M.R., Marek, V.W., Truszczynski, M.: Satisfiability and computing van
der Waerden numbers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS,
vol. 2919, pp. 1–13. Springer, Heidelberg (2004)

7. Edwards, R.: Symbolic dynamics and computation in model gene networks.
Chaos 11(1), 160–169 (2001)

8. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Glass, L.: Combinatorial aspects of dynamics in biological systems. In: Landman,
U. (ed.) Statistical mechanics and statistical methods in theory and applications,
pp. 585–611. Plenum Press (1977)

11. Knuth, D.E.: The Art of Computer Programming. fascicle 2: Generating All Tuples
and Permutations, vol. 4. Addison-Wesley Professional, Reading (2005)

12. Kouril, M., Franco, J.V.: Resolution tunnels for improved SAT solver performance.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 143–157. Springer,
Heidelberg (2005)

13. Liu, X., Schrack, G.F.: A heuristic approach for constructing symmetric Gray
codes. Appl. Math. Comput. 155(1), 55–63 (2004)

14. Livingston, M., Stout, Q.: Perfect dominating sets. Congressus Numerantium 79,
187–203 (1990)

30 Y. Chebiryak et al.

15. Na’aman Kam, D., Kugler, H., Rami Marelly, A., Hubbard, J., Stern, M.: Formal
modelling of C. elegans development. A scenario-based approach. Modelling in
Molecular Biology, 151–174 (2004)

16. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

17. Savage, C.: A survey of combinatorial Gray codes. SIAM Review 39(4), 605–629
(1997)

18. Schewe, L.: Generation of oriented matroids using satisfiability solvers. In: Igle-
sias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 216–218. Springer,
Heidelberg (2006)

19. Singleton, R.C.: Generalized snake-in-the-box codes. IEEE Transactions on Elec-
tronic Computers EC-15(4), 596–602 (1966)

20. Zinovik, I., Chebiryak, Y., Kroening, D.: Cyclic attractors in Glass models for gene
regulatory networks. IEEE Trans. Inf. Theory: Special Issue on Molecular Biology
and Neuroscience (December 2009) (accepted)

21. Zinovik, I., Kroening, D., Chebiryak, Y.: An algebraic algorithm for the identifi-
cation of Glass networks with periodic orbits along cyclic attractors. In: Anai, H.,
Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 140–154. Springer,
Heidelberg (2007)

22. Zinovik, I., Kroening, D., Chebiryak, Y.: Computing binary combinatorial Gray
codes via exhaustive search with SAT-solvers. IEEE Transactions on Information
Theory 54(4), 1819–1823 (2008)

Finding Lean Induced Cycles in Binary Hypercubes 31

6 Appendix

Table 2 shows runtimes, and number of equivalence classes of induced cycles
found, for various values of (n, L, S).

Table 2. Classification of induced cycles, with runtimes

n L S Time (sec) #classes
first cycle All-SAT IC(n, L, S+) IC(n, L, S)

4 6 0 0.003 0.010 1 0
1 0.006 0.017 1 0
2 0.010 0.028 1 1
3 0.031 0

8 0 0.007 0.305 3 2
1 0.009 0.048 1 1
2 0.015 0

5 10 0 0.016 400.378 10 0
1 0.017 419.881 10 0
2 0.027 392.274 10 3
3 0.031 370.277 7 3
4 0.047 356.335 4 3
5 0.043 210.137 1 0
6 0.095 183.403 1 1
7 167.397 0

14 0 0.033 535.027 3 3
1 3.012 0

6 16 0 0.02 486.37 563 1
1 0.01 534.55 562 0
2 0.03 481.12 562 1
3 0.02 514.36 561 1
4 0.04 501.77 560 13
5 0.04 768.08 547 14
6 0.04 3252.77 533 44

6 24 0 0.08 1183.50 110 76
1 0.07 695.37 34 14
2 0.30 689.22 20 15
3 1.76 592.51 5 3
4 5.65 1062.92 2 1
5 26.56 1364.86 1 1
6 - 1014.34 0

6 26 0 0.42 583.43 4 4
1 - 750.39 0 0

Finding Efficient Circuits Using SAT-Solvers�

Arist Kojevnikov1, Alexander S. Kulikov2, and Grigory Yaroslavtsev3

1 OneSpin Solutions GmbH
2 St. Petersburg Department of Steklov Institute of Mathematics

3 Academic Physics and Technology University of the RAS
{arist,kulikov,grigory}@logic.pdmi.ras.ru

Abstract. In this paper we report preliminary results of experiments
with finding efficient circuits (over binary bases) using SAT-solvers. We
present upper bounds for functions with constant number of inputs as
well as general upper bounds that were found automatically. We focus
mainly on MOD-functions. Besides theoretical interest, these functions
are also interesting from a practical point of view as they are the core
of the residue number system. In particular, we present a circuit of size
3n + c over the full binary basis computing MODn

3 .

1 Introduction

In the recent years SAT solving became one of the main tools for formal verifica-
tion [15]. In [6] it was proposed to use SAT in another very important area of the
digital hardware production, namely in logical design synthesis. At the present
time most electronic design automation tools (EDA) use algebraic manipulations
[12] or binary decision diagrams (BDD) [10]. There are some successful experi-
ments with genetic algorithms [5] and annealing optimizations [17]. See [7] for a
survey.

Kamath at el. [6] propose a translation of the logical design synthesis problem
to SAT. In [3] experiments with modern SAT solvers using this translation were
reported. One of the advantages of this method is that it can also be used to
prove lower bounds on Boolean functions, i.e., to prove that circuits of a given
size do not exist. We use a similar reduction to CNF, however we are working
with a more general computational model, namely with circuits over any binary
basis.

It is known that finding efficient circuits is a difficult and important task.
For many important functions there is a large gap between known lower and
upper bounds. This shows that our current understanding of circuits is quite
poor. As Williams notes [21] it might be helpful to know optimal circuits for
such functions at least for small values of input size. Knowing this could help us
to understand the structure of optimal circuits for general functions.

� The first two authors are supported in part by RFBR (grant 08-01-00640-a)
and RAS Program for Fundamental Research (”Modern Problems of Theoretical
Mathematics”).

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 32–44, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

{arist,kulikov,grigory}@logic.pdmi.ras.ru

Finding Efficient Circuits Using SAT-Solvers 33

In this paper we report results of experiments with finding efficient circuits
using SAT-solvers. We focus mainly on circuit complexity of MOD-functions
defined as follows:

MODn
K,k(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ k (mod K)

(we omit k and/or n when they are not important). These are one of the simplest
symmetric Boolean functions. Circuit complexity of these functions was studied
by many researchers. Still, we know the exact circuit complexity for only a
few values of K. Table 1 shows known lower and upper bounds for MODn

K in
different computational models. There, by C and L we denote the circuit and
formula complexity, respectively; B2 is the full binary basis, U2 = B2 \ {⊕,≡}.
Interestingly, for formulas and circuits over the bases U2 and B2 it is known that
the complexity of MODn

K , K = 3 or K ≥ 5, is not less than the complexity of
MODn

4 . However, for none of these models it is known that MODn
3 or MODn

5 is
strictly harder than MODn

4 .

Table 1. Known lower and upper bounds on the complexity of MODn
K in different

computational models

K LU2 LB2 CU2 CB2

2
lower

Θ(n2) [8] n 3n + c [18] n − 1
upper

3
lower Ω(n2) [8] Ω(n log n) [4] 4n + c [22] 2.5n + c [19]

upper O(n2.58) [1] O(n2) [20] 7n + o(n) [13] 5n + o(n) [13]

4
lower Θ(n2) [8]

Ω(n log n) [4]
4n + c [22]

2.5n + c [19]
upper O(n2 log2 n)[4] 5n [22]

≥ 5
lower Ω(n2) [8] Ω(n log n) [4] 4n + c [22] 2.5n + c [19]

upper O(n4.57) [14] O(n3.13) [14] 7n + o(n) [13] 5n + o(n) [13]

Another motivation for studying MOD-functions is that a residue number
system [9] is based on such functions. One of the main advantages of the residue
number system is that additions, subtractions and multiplications are carry-free.

MOD-functions can be computed inductively. For example, the optimal cir-
cuit of size 2.5n + c for MODn

4 by Stockmeyer [19] is constructed from blocks
consisting of 10 gates that sums 4 new variables with a residue number modulo
4, see Fig. 1. There, the bits z0, z1 encode the value of

∑n
i=1 xi (mod 4) as

follows:
n∑

i=1

xi (mod 4) =

⎧⎪⎨⎪⎩
0, if (z0, z1) = (0, 0),
1, if (z0, z1) = (1, 1),
2, if (z0, z1) = (1, 0),
3, if (z0, z1) = (0, 1).

34 A. Kojevnikov, A.S. Kulikov, and G. Yaroslavtsev

z1 z0 xn+1 xn+2 xn+3 xn+4

⊕ ≡

∧ ⊕

⊕ ⊕

⊕

∨ ⊕

⊕

z′
1 z′

0

Fig. 1. Stockmeyer’s block for MOD4

The two output bits z′0, z
′
1 encode the value of

∑n+4
i=1 xi (mod 4) in the same

way. Thus, one can prove general upper bounds on the circuit complexity of
MOD-functions by finding efficient blocks of constant size. We report the results
of experiments with finding such blocks by translating them to SAT.

The rest of the paper is organized as follows. In Sect. 2 we give all the necessary
definitions. Section 3 describes the way we translate the fact of existence of a
particular circuit into a CNF formula. In Sect. 4 we present some new circuit
complexity upper bounds that were proved automatically. Sect. 5 presents results
of experiments. Finally, in Sect. 6 we discuss some further directions.

2 General Setting

By Bn we denote the set of all Boolean functions f : {0, 1}n → {0, 1}. A function
f ∈ Bn is called symmetric if its value depends on the sum of the input bits only.
That is, there must exist a vector v ∈ {0, 1}n+1 such that f(x1, . . . , xn) = vs

where s =
∑n

i=1 xi. A typical symmetric function is a modular function MODn
K,k

defined as follows:

MODn
K,k(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ k (mod K) .

A circuit over the basis A ⊆ B2 is a directed acyclic graph with nodes of
in-degree 0 or 2. Nodes of in-degree 0 are marked by variables from {x1, . . . , xn}
and are called inputs. Nodes of in-degree 2 are marked by functions from A and
are called gates. There are also special output gates. The size of a circuit is its

Finding Efficient Circuits Using SAT-Solvers 35

number of gates. In this paper we mainly consider circuits over the full binary
basis B2.

We call a function f ∈ Bn degenerated if it does not depend essentially on
some of its variables, i.e., there is a variable xi such that the subfunctions f |xi=0
and f |xi=1 are equal. It is easy to see that a gate computing a degenerated
function from B2 can be easily eliminated from a circuit without increasing its
size (when eliminating this gate one may need to change the functions computed
at its successors). For example, a gate computing NOT is degenerated. The set
B2 contains exactly ten non-degenerated functions f(x, y):

– eight functions of the form ((x⊕ a) ∧ (y ⊕ b))⊕ c, where a, b, c ∈ {0, 1};
– two functions of the form x⊕ y ⊕ a, where a ∈ {0, 1};

3 Using SAT-Solvers for Finding Small Circuits

In this section we give the details of the reduction we use to encode the fact of
existence of a particular circuit in CNF. We first describe the general reduction
which is quite similar to the one described in [2] (where circuits over the basis U2
are considered) and then discuss also some additional encoding which is specific
to the considered functions.

3.1 Representing Circuits as CNFs

Given a truth table of a Boolean function f : Bn → Bm we would like to find
a Boolean circuit computing f over the given basis A ⊆ B2 with the smallest
possible number of gates. We can encode the fact of existence of a circuit with
N gates computing the function f in CNF using the following Boolean variables
(input variables are numbered from 0 to n− 1 and gates from n to n + N − 1):

1. tib1b2 (n ≤ i < n + N , 0 ≤ b1 < 2, 0 ≤ b2 < 2) is the output of the i-th gate
if its first input is b1 and the second is b2. Four variables ti00, ti01, ti10, ti11
thus completely define the binary Boolean function computed by the i-th
gate. It gives O(N) variables in total.

2. cikj (n ≤ i < n + N − 1, 0 ≤ k < 2, 0 ≤ j < n + N) is true if the k-th
input of the i-th gate comes from the j-th gate and false otherwise. These
variables completely define the underlying graph of a circuit. It gives O(N2)
variables in total.

3. oij (n ≤ i < n + N , 0 ≤ j < m) is true iff the j-th output of a circuit is
computed by the i-th gate. These variables define which gates are used as
outputs. It gives O(Nm) variables in total.

4. vit (0 ≤ i ≤ n + N , 0 ≤ t < 2n) is the output value of the i-th gate if the
input variables have values represented by the bits of t. These variables are
used to describe the fact that the values computed by a circuit are correct
(according to the given truth table) on all 2n assignments to input variables.
It gives O(2nN) variables in total.

The following requirements about the circuit are written down as clauses.

36 A. Kojevnikov, A.S. Kulikov, and G. Yaroslavtsev

1. Binary functions computed by gates belong to the basis A.
2. For all (i, k), exactly one variable cikj is true (the k-th input of the i-th

gate is connected to only one gate). It gives O(N3) 2-clauses and O(N)
O(N)-clauses.

3. For all j, only one variable oij is true (the j-th output is computed by exactly
one of the gates). It gives O(N2m) 2-clauses and O(m) O(N)-clauses.

4. For all 0 ≤ i < n and 0 ≤ t < 2n, vit is equal to the corresponding bit in t.
It gives O(n · 2n) 1-clauses.

5. For all n ≤ i < n + N and 0 ≤ t < 2n, vit is equal to the value computed
by the i-th gate in the part of a circuit described by other variables. It gives
O(N3 ·2n) 6-clauses and this is where the most significant part of all clauses
comes from. Clauses of this type are written for all n ≤ i < n+N , n ≤ j0 < i,
j0 < j1 < i, 0 ≤ i0 < 2, 0 ≤ i1 < 2, 0 ≤ r < 2n and look as follows:

¬ci0j0 ∨ ¬ci1j1 ∨ ¬(vj0r = i0) ∨ ¬(vj1r = i1) ∨ (vir = tii0i1) .

Here first two literals let us find two gates, that are inputs of the i-th gate, the
following two literals let us find the values of these gates on input assignment
r and the last literal is for checking that the value in the i-th gate is correct.

6. The outputs of a circuit are computed correctly. It gives O(N2nm) 2-clauses.
Clauses of this type are written for all 0 ≤ k < m, 0 ≤ r < 2n, n ≤ i < n+N
and look as follows:

¬oik ∨ (vir = valuekr) ,

where valuekr is the required value of the k-th output on input assignment
r, according to the given truth table.

The clauses described above completely define all the requirements on a circuit.
W.l.o.g. we can assume also that the following statements are true.

1. Both inputs of every gate are computed by gates with smaller numbers (i.e.,
the gates are sorted topologically w.r.t. the used numbering).

2. For every gate its first input gate has a smaller number than the second one.
3. The gates do not compute degenerated functions.
4. At least one of the outputs is computed by the last gate.

In most interesting cases the resulting formulas turn out to be quite difficult for
modern SAT-solvers. E.g., a formula encoding the fact of existence of a circuit
consisting of, say, 12 gates is already quite hard. This is because the number of
different circuits as a function of the number of gates grows extremely fast. That
is why in some cases we used also some additional restrictions that reduce the
set of considered circuits. The main two of them are given below. Note however
that unsatisfiability of a CNF formula with at least one of these restrictions does
not imply that a circuit of a given size does not exist.

1. The out-degree of every gate is at most 2.
2. The i-th gate is fed by the (i − 1)-th gate (i.e., there is a directed path

through all the gates).

Finding Efficient Circuits Using SAT-Solvers 37

3.2 Residue Number Encodings

In the previous subsection we consider functions given by a truth table. Note
however that one can work as well with partially defined functions and, more
generally, with functions satisfying some particular properties. E.g., when search-
ing for an inductive block for a MOD-function it is not clear what is the optimal
encoding of a residue number. Thus, instead of providing a truth table of a block
one can write down the fact that this block sums up new variables with a residue
number which is encoded somehow.

Assume that we are looking for a block for MODK . Such a block sums up sev-
eral variables with a residue number modulo K whose encoding is not known in
advance. This residue number is encoded by �log2 K� bits. Since the encoding is
not known, we introduce new variables eij , where eij is true iff bit representation
of 0 ≤ j < 2�log2 K� encodes the residue number 0 ≤ i < K. Thus, a particular
residue number can be encoded by several j’s. Except for some straightforward
clauses stating that each i is encoded by some j and that each j is used for
exactly one i we add also the following statement. For each possible assignment
for inputs of a block, if the sum of input variables is s and the input residue
number is i (i.e., the corresponding eij is true), then the output residue number
cannot be j′ for all j′ such that ei′j′ is true for some i′ 	≡ i + s (mod K).

To give an example assume that we are searching for a block that takes as
input a residue number t modulo 3 which is somehow encoded by two bits (z0, z1)
and a new variable xn and outputs two bits (z′0, z

′
1) that encode in the same way

t + xn (mod 3). Then, e23 is true iff (z0, z1) = (1, 1) implies t = 2 and e11 is
true if (z0, z1) = (0, 1) implies t = 1. Now we add the following constraint:

(e23 ∧ z0 ∧ z1 ∧ xn ∧ e11)⇒ (z′0 ∨ ¬z′1) .

These residue number encodings turned out to be quite helpful as only with
them we were able to find an efficient block implying a 5.5n+ c upper bound for
CU2(MODn

3). However in most cases finding a block with an unknown encoding
is a much more difficult task.

4 New Upper Bounds for MOD3

Our main theoretical results are circuits of size 3n + O(1) and 5.5n + O(1)
for MODn

3 over the bases B2 and U2, respectively. The building blocks of the
circuits (as well as their truth tables) are given in Fig. 2 and Fig. 3. The blocks
take as input the value of

∑n
i=1 xi (mod 3) encoded by a pair of bits (z1, z2)

and three respectively two new variables. The output is the pair of bits (z′1, z
′
2)

encoding the value of
∑n+3

i=1 xi (mod 3) respectively
∑n+2

i=1 xi (mod 3). The
residue number encodings for the blocks are the following:

n∑
i=1

xi (mod 3) =

⎧⎨⎩ 0, if (z0, z1) = (0, 0),
1, if (z0, z1) = (0, 1),
2, if z0 = 1,

38 A. Kojevnikov, A.S. Kulikov, and G. Yaroslavtsev

xn+1 xn+2 xn+3z0z1

≡g1

∨g2

⊕g3

⊕g4

≡g5

∧g6

¬

≡g7

≡g8

∧g9

¬

z′
1z′

0

xn+1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

xn+2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

xn+3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

z0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

z1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

g1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

g2 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

g3 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0

g4 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1

g5 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1

g6 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0

g7 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0

g8 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1

g9 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1

z′
0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1

z′
1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0

Fig. 2. An inductive block for MOD3 over the basis B2 and its truth table

and
k∑

i=1

xi (mod 3) =

⎧⎨⎩
0, if z0 = 0,
1, if (z0, z1) = (1, 0),
2, if (z0, z1) = (1, 1).

Finding Efficient Circuits Using SAT-Solvers 39

xn+1 xn+2 z0 z1

∧g1

¬
∧g2 ∨g5

∨g3

¬

∧g4

¬
∨g7

¬

∧g6

¬

∧g10

¬

∧g8

¬

∧g11

¬

¬
∧g9

¬
¬

z′
0z′

1

xn+1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

xn+2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

z0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

z1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

g1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

g2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

g3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1

g4 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1

g5 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

g6 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

g7 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1

g8 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

g9 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1

g10 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0

g11 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0

z′
0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1

z′
1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0

Fig. 3. An inductive block for MOD3 over the basis U2 and its truth table

40 A. Kojevnikov, A.S. Kulikov, and G. Yaroslavtsev

x1 x2 x3

≡ ≡

∧

MOD3
3,0

x1 x2 x3

∧

∧
⊕

⊕

¬

MOD3
3,1

x1 x2x3

∨ ≡
≡

∧
¬

MOD3
3,2

x1 x2 x3 x4

⊕ ∧ ⊕ ∧

∨ ∨

≡

MOD4
3,0

x1 x2 x3x4

∨ ≡ ⊕∨

∧
¬

∧

≡

MOD4
3,1

x1 x2 x3x4

⊕ ≡ ⊕

∧
¬

∧

¬
¬

⊕

MOD4
3,2

Fig. 4. Optimal circuits for MODn
3,k for n = 3, 4

The upper bounds CB2(MODn
3) ≤ 3n + O(1) and CU2(MODn

3) ≤ 5.5n + O(1)
follow immediately from the existence of such blocks.

Table 2. Sizes of optimal circuits over B2 for MODn
3,k

n = 3 n = 4 n = 5

k = 0 3 7 ≤ 10

k = 1 4 7 ≤ 9

k = 2 4 6 ≤ 10

The blocks were found after a long sequence of experiments with different
restrictions on considered circuits as without restrictions the resulting formulas
cannot be handled by solvers. We still do not know whether the first block for
adding three variables is optimal and thus a 8n/3 upper bound for CB2(MODn

3)
is not excluded.

Finding Efficient Circuits Using SAT-Solvers 41

Table 3. Statistics

picosat

m
inisat207

oksolver

rsat

onespinsat

m
anysat

mod3 4vars 6gates.cnf * 11m32s * * 3m16s 35m23s

mod4block 3vars 7gates.cnf * * * * * *

mod3block 3vars 9gates restr.cnf 1m27s 0m5s 0m59s 0m2s 0m18s 0m29s

mod5block 1var 7gates.cnf 0m1s 0m2s * 0m1s 0m1s 0m3s

mod4block 2vars 8gates u2.cnf * * * * 22m43s *

mod5block 2vars 12gates.cnf * * * * * *

mod4block 2vars 9gates u2.cnf * * * * * *

owp 4vars 5gates.cnf 0m0.2s 0m0.3s 2m14s 0m0.3s 0m0.1s 0m0.7s

In Table 2 we also present the sizes of optimal circuits over B2 for MODn
3,k for

different values of n and k. CB2(MOD5
3,2) ≤ 10 means that we found a circuit of

size 10, but were unable to prove unsatisfiability of the fact that there exists a
circuit (without any restrictions on its structure) of size 9. Optimal circuits are
given in Fig. 4.

5 Empirical Studies

Table 3 provides the results of experiments with several formulas. All our ex-
periments were made on a 2.40GHz AMD Opteron Processor 250 running under
Linux. The DIMACS hardware benchmark program dfmax r500.5 takes 7.11
seconds on the machine.

A two-hour limit applied to all runs of all solvers. Below we describe the
benchmarks used in the table as well as benchmarks for which we still do not
know the answer. By N , K and L we denote the number of variables, the number
of clauses and the length (i.e., the total number of literals), respectively (however
our formulas contain some unit clauses and can be simplified).

– SAT
mod3block 3vars 9gates restr.cnf (N = 784, K = 219760, L =

1266513) expresses the fact that there exists a circuit that sums up a
residue number modulo 3 in a given encoding (0 — (0, 0), 1 — (1, 0),
2 — (1, 0), (1, 1)) with three new variables with two additional restric-
tions: there is a directed path through all the gates and the out-degree
of any gate is at most 2. The corresponding circuit is given in Fig. 2.

mod5block 1vars 7gates.cnf (N = 353, K = 50103, L = 292994) encodes
the fact that there exists an inductive block for MODn

5 adding two new
variables by 7 gates (residue number encoding is fixed).

42 A. Kojevnikov, A.S. Kulikov, and G. Yaroslavtsev

– UNSAT
mod3 4vars 6gates.cnf (N = 289, K = 36396, L = 213400) expresses the

fact that CB2(MOD4
3,0) ≤ 6.

owp vars4 gates5.cnf (N = 267, K = 25667, L = 149802) encodes the
fact that CB2(f) ≤ 5 for a permutation f : B4 → B4 given in [11]. Un-
satisfiability of this benchmark justifies the fact that f has asymmetric
circuit complexity (CB2(f) = 6, CB2(f−1) = 5).

– UNKNOWN
mod4block 3vars 7gates.cnf (N = 574, K = 125562, L = 742458) en-

codes the fact that there exists an inductive block for MODn
4 adding

three new variables by 7 gates (residue number encoding is fixed). Must
be unsatisfiable, as otherwise MODn

4 could be computed by circuits of
size about 7n/3.

mod4block 2vars {8,9}gates u2.cnf (N = 387/426, K = 66496/86121,
L = 389012/503636) encodes the fact that there exists an inductive
block for MODn

4 adding two new variables by {8, 9} gates in the basis
U2 (residue number encoding is fixed).

mod3block 2vars {9,10,11}gates u2 autoenc.cnf (N = 426/475/526,
K = 99345/125336/155313, L = 588054/741756/918948) encodes the
fact that there exists an inductive block for MODn

3 adding two new vari-
ables by 9 gates in the basis U2. Here the residue number encoding is
not fixed. Instead of this, benchmarks encode the fact that the required
circuit sums up several bits with a residue number modulo 3 whose en-
coding is not known in advance (details are given in Sect. 3).

mod4block 2vars {8,9,10,11}gates u2 autoenc.cnf (383 ≤ N ≤ 530,
81176 ≤ K ≤ 164070, 480856 ≤ L ≤ 965444) encodes the fact that there
exists an inductive block for MODn

4 adding two new variables by g =
8, 9, 10, 11 gates in the basis U2 (encoding is not fixed). Satisfiability of
a benchmark from this family would imply that CU2(MODn

4) ≤ gn/2+ c
(note that at the moment it is only known that 4n− c ≤ CU2(MODn

4) ≤
5n + c).

6 Further Directions

A natural further direction is to obtain more upper bounds for MODK-functions
for different values of K. Note however that even if an optimal circuit for a
MODn

K function can be constructed from inductive blocks, then these blocks
must be large for large values of K, just because one needs many bits in order to
encode a residue number modulo K. E.g., a block for summing up several new
variables with a residue number modulo K > 2t must have at least t inputs and
hence at least t gates. For t ≥ 15, even finding such circuits is a really difficult
task for modern SAT-solvers and proving that such a circuit does not exist is
much more difficult.

It would be interesting also to find efficient circuits for other important func-
tions. E.g., in [21] is is noted that it is easy to construct optimal circuits for 2×2-
matrix multiplication, while already for 3×3 this is a difficult task. It would also

Finding Efficient Circuits Using SAT-Solvers 43

be interesting to know optimal circuits for small input sizes for the well-known
CLIQUE-function which has super-polynomial complexity in the model of mono-
tone circuits [16]. Knowing optimal circuits for a function on small input sizes
could help to construct efficient circuits for all input sizes. SAT-solvers could
also apparently help to improve current upper bounds for addition and multipli-
cation. Note that the smallest known circuits and formulas for these functions
are also built from blocks [14].

Using the described reduction one can produce different unsatisfiable formu-
las (e.g., encoding the fact that there exists a circuit of size smaller than the
corresponding known lower bound). Such benchmarks turned out to be difficult
for modern solvers. One could think about complexity of such benchmarks in
different proof systems.

Another direction of further research is automatizing lower bounds proofs.
Essentially the only known method for proving lower bounds for unrestricted
circuits is gate elimination. For example, in order to prove a 2.5n−c lower bound
for MODn

4 Stockmeyer [19] proved that for any circuit computing MODn
4,k it is

possible to eliminate five gates by assigning values to two input variables. The
lower bound then follows by induction. However to prove that it is possible
to eliminate five gates one needs to consider many different cases. It would be
interesting to automate this case analysis.

Acknowledgments

The authors are very grateful to Anton Belov, Edward A. Hirsch, Evgeny Karib-
aev, Yakov Novikov and anonymous reviewers for helpful comments.

References

1. Chin, A.: On the depth complexity of the counting functions. Information Process-
ing Letters 35, 325–328 (1990)

2. Eén, N.: Practical SAT — a tutorial on applied satisfiability solving. Slides of
invited talk at FMCAD (2007)

3. Estrada, G.G.: A note on designing logical circuits using SAT. In: Tyrrell, A.M.,
Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 410–421.
Springer, Heidelberg (2003)

4. Fischer, M.J., Meyer, A.R., Paterson, M.S.: Ω(n log n) lower bounds on length of
Boolean formulas. SIAM Journal on Computing 11, 416–427 (1982)

5. Fogel, D.B.: Evolutionary computation: The fossil record. IEEE Press, New York
(1998)

6. Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G., Resende, M.G.C.: An in-
terior point approach to boolean vector function synthesis. In: Proceedings of the
36th International Midwest Symposium on Circuits and Systems (MSCAS 1993),
pp. 185–189 (1993)

7. Khatri, S., Shenoy, N.: Logic synthesis. In: Scheffer, L., Lavagno, L., Martin,
G. (eds.) Electronic Design Automation For Integrated Circuits Handbook. CRC
Press, Taylor & Francis Group (2006)

44 A. Kojevnikov, A.S. Kulikov, and G. Yaroslavtsev

8. Khrapchenko, V.M.: Complexity of the realization of a linear function in the case
of Π-circuits. Math. Notes Acad. Sciences 9, 21–23 (1971)

9. Koren, I.: Computer Arithmetic Algorithms. Prentice Hall, Englewood Cliffs (1993)
10. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell

Systems Technical Journal 38, 985–999 (1959)
11. Massey, J.L.: The difficulty with difficulty. In: A Guide to the Transparencies from

the EUROCRYPT 1996 IACR Distinguished Lecture (1996)
12. McCluskey, E.J.: Logic Design Principles: with emphasis on testable semicustom

circuits. Prentice-Hall, Englewood Cliffs (1986)
13. Nigmatullin, R.G.: Slognost’ bulevikh funktsii. Moskva, Nauka (1991) (in Russian)
14. Paterson, M.S., Zwick, U.: Shallow circuits and concise formulae for multiple ad-

dition and multiplication. Computational Complexity 3, 262–291 (1993)
15. Prasad, M.R., Biere, A., Aarti, G.: A survey of recent advances in SAT-based formal

verification. International Journal on Software Tools for Technology Transfer 7(2),
156–173 (2005)

16. Razborov, A.A.: Lower bounds for the monotone complexity of some Boolean func-
tions. Soviet Math. Doklady 31, 354–357 (1985)

17. Gelatt, C.D., Kirkpatrick, S., Vecchi, M.P.: Optimization by simulated annealing.
Science, New Series 220(4598), 671–680 (1983)

18. Schnorr, C.: Zwei lineare untere Schranken für die Komplexität Boolescher Funk-
tionen. Computing 13, 155–171 (1974)

19. Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean
functions. Mathematical Systems Theory 10, 323–336 (1977)

20. van Leijenhorst, D.C.: A note on the formula size of the “mod k” functions. Infor-
mation Processing Letters 24, 223–224 (1987)

21. Williams, R.: Applying practice to theory. ACM SIGACT News 39(4), 37–52 (2008)
22. Zwick, U.: A 4n lower bound on the combinational complexity of certain symmetric

boolean functions over the basis of unate dyadic Boolean functions. SIAM Journal
on Computing 20, 499–505 (1991)

Encoding Treewidth into SAT

Marko Samer and Helmut Veith

Department of Computer Science
TU Darmstadt, Germany

{samer,veith}@cs.tu-darmstadt.de

Abstract. One of the most important structural parameters of graphs is treewidth,
a measure for the “tree-likeness” and thus in many cases an indicator for the hard-
ness of problem instances. The smaller the treewidth, the closer the graph is to a
tree and the more efficiently the underlying instance often can be solved. How-
ever, computing the treewidth of a graph is NP-hard in general. In this paper we
propose an encoding of the decision problem whether the treewidth of a given
graph is at most k into the propositional satisfiability problem. The resulting SAT
instance can then be fed to a SAT solver. In this way we are able to improve the
known bounds on the treewidth of several benchmark graphs from the literature.

1 Introduction

Many important combinatorial problems that are NP-hard in general are easy to solve if
the instance is structured as a tree. Tree decompositions and the corresponding measure
treewidth [13] gradually generalize the tree structure of instances to “tree-likeness”.
Roughly speaking, the smaller the treewidth, the less cyclic the graph and the closer the
graph is to a tree. Instances with small treewidth can often be solved efficiently by dy-
namic programming on the tree decomposition. For example, Courcelle’s Theorem [9]
states that fixed graph properties expressible in monadic second-order logic (MSO) can
be decided in linear time on graphs with bounded treewidth. However, for unbounded k,
deciding whether a graph has treewidth at most k is NP-complete [1]. For this reason,
the common way in practice for computing tree decompositions is the use of heuristics
and approximation algorithms [2,4,8,12]. Although these methods often lead to tree de-
compositions of small width, the so obtained results are in general only upper bounds
on the treewidth: the actual treewidth is the minimum width over all possible tree de-
compositions. Complementary to these upper bound methods, several approaches for
computing lower bounds have been proposed as well [4,5,6,8,12]. Clearly, the treewidth
of a graph has been found if the lower and upper bounds coincide. For many graphs,
however, the lower and upper bound algorithms yield only an interval in which the
treewidth is contained. To make these intervals smaller or to determine the treewidth,
also exact algorithms based on branch-and-bound have been developed [3,11].

In this paper we propose one more algorithmic tool for determining the treewidth of
graphs: We present an encoding of the decision problem whether a given graph G =
(V, E) has treewidth at most k to an instance F of the propositional satisfiability prob-
lem (SAT) such that G has treewidth less than or equal to k if and only if F is satisfiable.
In this way we aim at exploiting the increasing power of modern SAT solvers to find

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 45–50, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

46 M. Samer and H. Veith

tree decompositions of minimal width and thus to determine the treewidth of graphs.
Our encoding results in SAT instances consisting of O(k |V |2) variables and O(|V |3)
clauses; the length of each clause is bounded by 4. Using this approach, we have been
able to determine the treewidth (or at least to shorten its interval) of several moderately
sized benchmark graphs from the literature.

This paper is organized as follows: In Section 2, we formally introduce the notion
of tree decompositions and treewidth. Moreover, we explain an alternative character-
ization of treewidth on which our encoding is based. Then, in Section 3, we present
our encoding into propositional satisfiability and our experimental results. Finally, we
conclude in Section 4.

2 Treewidth

A graph is a tuple (V, E) of a non-empty set V of vertices and a set E⊆{{x, y}x, y ∈
V } of edges. A tree decomposition of a graph G = (V, E) is a tree T = (V ′, E′) where
each node t ∈ V ′ is associated with a “bag” χ(t) ⊆ V containing vertices of G such
that the following conditions are satisfied [13]:

1.
⋃

t∈V ′ χ(t) = V .
2. For every edge e ∈ E, there is some node t ∈ V ′ such that e ⊆ χ(t).
3. For all nodes t1, t2, t3 ∈ V ′ such that t2 lies on the (unique) path from t1 to t3 in T ,

it holds that χ(t1) ∩ χ(t3) ⊆ χ(t2).

The first condition requires that there are only vertices in the bags and every vertex
occurs in some bag, the second condition requires that all pairs of vertices that are con-
nected by an edge occur together in some bag, and the third condition (“connectedness
condition”) requires that if a vertex occurs in the bags of two different nodes, then it
must occur in each bag on the unique path between them. The width of a tree decom-
position T = (V ′, E′) is given by maxt∈V ′ |χ(t)| − 1. The treewidth of a graph is the
minimum width over all its tree decompositions.

It is well known that from every linear ordering of the vertices of a graph G = (V, E)
one can easily construct a tree decomposition of G and that there is always a linear or-
dering such that the corresponding tree decomposition is optimal, i.e., its width equals
the treewidth of G (see, e.g., Bodlaender [4] or Dechter [10]). Our encoding will be
based on this alternative characterization. In fact, the linear ordering gives rise to a tri-
angulation of the graph from which the corresponding width can be directly read off,
i.e., we do not need to construct the tree decomposition explicitly. In this context, the
treewidth is also called induced width [10]. Given a linear ordering v1, v2, . . . , vn of
the vertices in V , we call vj a predecessor of vi if {vi, vj} ∈ E and j < i, and we
call vj a successor of vi if {vi, vj} ∈ E and j > i. To determine the width of the
tree decomposition obtained from this linear ordering, we proceed as follows: For each
pair of non-adjacent vertices vi and vj , we successively add an edge {vi, vj} to E if
and only if vi and vj have a common predecessor. This is repeated as long as new
edges can be added. The width of the tree decomposition is then the maximum number
of successors over all vertices, i.e., maxvi∈V |{{vi, vj} ∈ E : j > i}|. Figure 1 shows a

Encoding Treewidth into SAT 47

h c

b

g

a
d

f

e, g, h a, c, g

b, c, h

c, dc, g, h

a, f, g

ea g d c h bf < < < < < < <

e

Fig. 1. A graph of treewidth 2, one of its tree decompositions of width 2, and a corresponding
linear ordering (the dotted edges are added depending on the ordering)

graph, one of its tree decompositions, and the corresponding linear ordering. The solid
edges belong to the input graph and the dotted edges are added according to the above
rule: The edge {a, g} is added because f is a predecessor of both a and g. This newly
added edge now causes the edge {c, g} to be added, which in turn causes the edge {c, h}
to be added. Since the maximum number of successors after this process is 2, we know
that the corresponding tree decomposition has width 2.

3 The Encoding

Our encoding into propositional satisfiability is now based on the linear ordering as de-
scribed in Section 2. Let G = (V, E) be the input graph with n = |V | and m = |E| and
assume that all vertices are enumerated from 1 to n. To encode the linear ordering itself,
we introduce n(n− 1)/2 Boolean variables ord i,j with 1 ≤ i < j ≤ n: Variable ord i,j

is true if and only if vertex vi precedes vertex vj in the linear ordering. In addition, we
need n(n− 1)(n− 2) clauses of the form

(ord∗
i,j ∧ ord∗

j,l)→ ord∗
i,l, where ord∗

p,q =

{
ordp,q if p < q

¬ord q,p otherwise

to enforce transitivity. Note that ord∗
p,q is used here for presentation purposes only and

is replaced in our encoding by ordp,q and ¬ordq,p, respectively.
Having now encoded the linear ordering, we are going to encode the successor rela-

tion induced by this ordering. To this aim, note that the linear ordering gives a direction
to all edges {vi, vj} ∈ E, namely from vi to vj if and only if vj is a successor of vi.
Thus, we introduce n2 Boolean variables arci,j with 1 ≤ i, j ≤ n: Variable arci,j is
true if vertex vj is a successor of vertex vi. We call such an arc variable active if it is
assigned true and inactive otherwise. As mentioned in Section 2, the maximum number
of successors, i.e., the maximum number of active outgoing arcs, is then the width of
the corresponding tree decomposition. That means for each vertex we have to ensure
by a cardinality constraint that the number of its active outgoing arcs does not exceed

48 M. Samer and H. Veith

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

a

0

0

0

0

0
0
0
0
0
0

1

0
0
0
0

0
0
1

0
0

0
0

0

0

0

0

0

0

0
1

0

0
0

ba c d e f g h

0
0

0
0

0
0

0

1

0

0
0

1

0

0
0
0

1

0

1

0

1

0

0

1

0

0

1

0 1
01

C
ar

di
na

lit
y

C
on

st
r.

C
ar

di
na

lit
y

C
on

st
r.

C
ar

di
na

lit
y

C
on

st
r.

C
ar

di
na

lit
y

C
on

st
r.

C
ar

di
na

lit
y

C
on

st
r.

C
ar

di
na

lit
y

C
on

st
r.

C
ar

di
na

lit
y

C
on

st
r.

C
ar

di
na

lit
y

C
on

st
r.

Fig. 2. Encoding of the successor relation induced by the linear ordering in Figure 1

our upper bound k on the treewidth. Figure 2 illustrates this encoding of the successor
relation induced by the linear ordering in Figure 1.

Let us consider these steps in more detail. To encode the edges of the input graph,
we add 2m clauses of the form ord i,j → arci,j and ¬ord i,j → arcj,i for {vi, vj} ∈ E
and i < j. Moreover, in order to enforce the additional edges caused by the linear
ordering (i.e., the dotted edges in Figure 1), we add n(n−1)(n−2) clauses of the form

(arci,j ∧ arci,l ∧ ord j,l) → arcj,l and (arci,j ∧ arci,l ∧ ¬ord j,l) → arcl,j

for 1 ≤ i, j, l ≤ n, i 	= j, i 	= l, and j < l. We also add n(n− 1)(n− 2)/2 clauses of
the form ¬arci,j ∨¬arci,l ∨arcj,l∨arcl,j , which are actually redundant but accelerate
the SAT solving process. In addition, since self loops can be neglected, we add n unit
clauses of the form ¬arci,i for 1 ≤ i ≤ n.

We have now forced all outgoing arcs to be active if the corresponding vertex is a
successor. To guarantee that the instance is satisfiable if and only if there exists a tree
decomposition of width at most k, we have to make sure by a cardinality constraint that
at most k outgoing arcs of each vertex are active. A naive way of doing this is to add(

n
k+1

)
clauses of length k + 1 for each vertex to ensure that there is no subset of k + 1

active outgoing arcs. This, however, would result in O(nk+1) additional clauses. For
this reason, we implement the cardinality constraint by a counter that is able to count
the number of active outgoing arcs up to k.1 Our counter is a slightly improved variant
of the sequential unary counter proposed by Sinz [14]. Figure 3 illustrates two different
counting scenarios with our encoding. In both cases the column on the left represents the
outgoing arc variables associated to a vertex. The boxes on the right represent auxiliary
variables of the counter, where each row represents a number up to k in unary encoding.
In particular, the counter works in a bottom-up manner such that the number encoded
in the i-th row is (at least) the number of active arcs up to row i. Every time we find an
active arc, the counter is incremented as indicted by the arrows. If a variable in the last
column is assigned true, the counter has reached its upper bound and we add clauses that
forbid further active arcs as indicated by the shaded boxes in the scenario on the right.
Note that we neglect the topmost row of counter variables as n− 1 rows are sufficient.
In summary, each counter requires k(n − 1) − k(k − 1)/2 additional variables and
(2k + 1)n− k(k + 3) clauses, which can both be estimated by O(kn). We denote the
counter variables by ctr i,j,l with 1 ≤ i ≤ n, 1 ≤ j < n, and 1 ≤ l ≤ min(j, k), where
i denotes the vertex the counter is associated to, j denotes the row, and l denotes the

1 If k > n/2�, it is more efficient to count the number of inactive outgoing arcs up to n − k.

Encoding Treewidth into SAT 49

1
1

1
1
1
1
1

1
1

1
1
1

1
1

1
1

1
1

1

1

1
1

1
0

0

0

0
0

0
0

1
1

1
1
1

1

0

0
0

0

0
1
0

0
0 0

0 0
00

0 0
0 0

0

1

k=3︷ ︸︸ ︷ k=4︷ ︸︸ ︷

Fig. 3. Sequential unary counter that counts to 2 within its bound k = 3 (left) and that counts to 4
and exceeds its bound k = 4 as indicated by the shaded boxes (right)

column. The first kind of clauses added to encode the counter behavior are of the form
ctr i,j−1,l → ctr i,j,l for 1 ≤ i ≤ n, 1 < j < n, and 1 ≤ l ≤ min(j, k). These clauses
ensure that the counter is never decremented, i.e., if some counter variable is assigned
true, then all succeeding variables in the same column must be assigned true. Next we
add clauses to enforce the actual counting. This is done by clauses of the form

arci,j → ctr i,j,1

for 1 ≤ i ≤ n and 1 ≤ j < n, which ensure that the counter is at least one if there is an
active arc in the current row, and clauses of the form

(arci,j ∧ ctr i,j−1,l−1) → ctr i,j,l

for 1 ≤ i ≤ n, 1 < j < n, and 1 < l ≤ min(j, k), which ensure that the counter is
incremented from value l − 1 in the previous row to value l in the current row if there
is an active arc in the current row. The effect of these clauses is indicated by the arrows
in Figure 3. Finally, we enforce a conflict if any counter exceeds k by adding clauses
of the form ¬(arci,j ∧ ctr i,j−1,k) for 1 ≤ i ≤ n and k < j < n. Such a conflict is
indicated by the shaded boxes in the right scenario of Figure 3.

Table 1 shows for several benchmark graphs from computational biology [7] the
improvements of the bounds on the treewidth we have achieved with our encoding.
To solve our SAT instances we used MiniSAT on a quad-core Intel Xeon CPU with
2.33GHz and 24GB RAM. The timeout for a single run was one hour. We observed that
for graphs whose treewidth is known, the SAT solver could find a solution very fast if
k was set to the treewidth and it took very long if k was set just below the treewidth.
Thus, it can be seen as an indicator that there is no tree decomposition of width k if, for
moderately sized graphs, the SAT solver does not find a solution within the timeout.

Table 1. Previous and new lower and upper bounds on the treewidth of four benchmark graphs.
The last column shows the time to decide the obtained SAT instance with the new upper bound.

Graph |V | |E| Prev LB [7] Prev UB [7] New LB New UB Time

1c75 69 683 28 30 28 29 15.9s
1dj7 73 743 26 27 26 26 134.0s
1dp7 76 769 25 27 25 26 118.3s
1en2 69 463 16 17 16 16 180.7s

50 M. Samer and H. Veith

4 Conclusion

Several theoretical and experimental attempts have been made in the past to attack the
problem of determining the treewidth of graphs, but to the best of our knowledge this
is the first time a SAT solver has been used for this. Although the graphs we used
are relatively small and the improvements are not dramatic, we consider the presented
approach as a first step towards computing the treewidth of graphs by SAT solvers. One
of the main problems to be considered in future work is the size of the resulting SAT
instances: Improved encodings that exploit the structure of a given graph may be able
to keep the size of the instances small. Further work could be to identify redundant
clauses that accelerate the SAT solving process and to adapt the encoding for related
graph concepts like hypertree decomposition.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic and Discrete Methods 8(2), 277–284 (1987)

2. Bachoore, E.H., Bodlaender, H.L.: New upper bound heuristics for treewidth. In: Nikolet-
seas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 216–227. Springer, Heidelberg (2005)

3. Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower
bounds on treewidth. Technical Report UU-CS-2006-012, Department of Information and
Computing Sciences, Utrecht University (2006)

4. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B.,
Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)

5. Bodlaender, H.L., Grigoriev, A., Arie, M.C., Koster, A.: Treewidth lower bounds with bram-
bles. Algorithmica 51, 81–98 (2008)

6. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds.
Journal of Graph Algorithms and Applications (JGAA) 10(1), 5–49 (2006)

7. van den Broek, J.-W., Bodlaender, H.L.: TreewidthLIB (March 2009),
http://people.cs.uu.nl/hansb/treewidthlib/

8. Clautiaux, F., Carlier, J., Moukrim, A., Nègre, S.: New lower and upper bounds for graph
treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS,
vol. 2647, pp. 70–80. Springer, Heidelberg (2003)

9. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, ch. 5,
pp. 193–242. Elsevier, Amsterdam (1990)

10. Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi, F., van Beek,
P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 7, pp. 209–244. Elsevier,
Amsterdam (2006)

11. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proc. of the 20th
Conference on Uncertainty in Artificial Intelligence (UAI 2004). ACM International Confer-
ence Proceeding Series, vol. 70, pp. 201–208. AUAI Press (2004)

12. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational exper-
iments. Electronic Notes in Discrete Mathematics 8, 54–57 (2001); Extended version avail-
able as Technical Report ZIB-Report 01-38, Konrad-Zuse-Zentrum für Informationstechnik
Berlin (ZIB)

13. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width. Journal
of Algorithms 7, 309–322 (1986)

14. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

http://people.cs.uu.nl/hansb/treewidthlib/

The Complexity of Reasoning for Fragments of
Default Logic∗

Olaf Beyersdorff, Arne Meier, Michael Thomas, and Heribert Vollmer

Institut für Theoretische Informatik, Gottfried Wilhelm Leibniz Universität
Appelstr. 4, 30167 Hannover, Germany

{beyersdorff,meier,thomas,vollmer}@thi.uni-hannover.de

Abstract. Default logic was introduced by Reiter in 1980. In 1992,
Gottlob classified the complexity of the extension existence problem for
propositional default logic as Σp

2 -complete, and the complexity of the
credulous and skeptical reasoning problem as Σp

2-complete, resp. Πp
2-

complete. Additionally, he investigated restrictions on the default rules,
i. e., semi-normal default rules. Selman made in 1992 a similar approach
with disjunction-free and unary default rules. In this paper we system-
atically restrict the set of allowed propositional connectives. We give a
complete complexity classification for all sets of Boolean functions in
the meaning of Post’s lattice for all three common decision problems for
propositional default logic. We show that the complexity is a trichotomy
(Σp

2-, NP-complete, trivial) for the extension existence problem, whereas
for the credulous and sceptical reasoning problem we get a finer classifi-
cation down to NL-complete cases.

1 Introduction

When formal specifications are to be verified against real-world situations, one
has to overcome the qualification problem that denotes the impossibility of listing
all conditions required to decide compliance with the specification. To overcome
this problem, McCarthy proposed the introduction of “common-sense” into for-
mal logic [McC80]. Among the formalisms developed since then, Reiter’s default
logic is one of the best known and most successful formalisms for modeling of
common-sense reasoning. Default logic extends the usual logical (first-order or
propositional) derivations by patterns for default assumptions. These are of the
form “in the absence of contrary information, assume . . .”. Reiter argued that his
logic is an adequate formalization of the human reasoning under the closed world
assumption. In fact, today default logic is widely used in artificial intelligence
and computational logic.

What makes default logic computationally presumably harder than proposi-
tional or first-order logic is the fact that the semantics (i. e., the set of conse-
quences) of a given set of premises is defined in terms of a fixed-point equation.
The different fixed points (known as extensions or expansions) correspond to
different possible sets of knowledge of an agent, based on the given premises.
∗ Supported in part by DFG grant VO 630/6-1.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 51–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

52 O. Beyersdorff et al.

In a seminal paper from 1992, Georg Gottlob formally defined three important
decision problems for default logic:

1. Given a set of premises, decide whether it has an extension at all.
2. Given a set of premises and a formula, decide whether the formula occurs in

at least one extension (so called brave or credulous reasoning).
3. Given a set of premises and a formula, decide whether the formula occurs in

all extensions (cautious or sceptical reasoning).

While in the case of first-order default logic, all these computational tasks are
undecidable, Gottlob proved that for propositional default logic, the first and
second are complete for the class Σp

2 , the second level of the polynomial hierarchy,
while the third is complete for the class Πp

2 .
In the past, various semantic and syntactic restrictions have been proposed

in order to identify computationally easier or even tractable fragments (see,
e. g., [Sti90, KS91, BEZ02]). This is the starting point of the present paper. We
propose a systematic study of fragments of default logic defined by restricting
the set of allowed propositional connectives. For instance, if we look at the
fragment where we forbid negation and allow only conjunction and disjunction,
the monotone fragment of default logic, we show that while the first problem
is trivial (there always is an extension, in fact a unique one), the second and
third problem become coNP-complete. In this paper we look at all possible sets
B of propositional connectives and study the three decision problems defined
by Gottlob when all involved formulae contain only connectives from B. The
computational complexity of the problems then, of course, becomes a function
of B. We will see that Post’s lattice of all closed classes of Boolean functions is
the right way to study all such sets B. Depending on the location of B in this
lattice, we completely classify the complexity of all three reasoning tasks, see
Figs. 1 and 2. We will show that, depending on the set B of occurring connectives,
the problem to determine the existence of an extension is either Σp

2-complete,
NP-complete, or trivial, while the other two problems are complete in one of the
classes Σp

2 (or Πp
2), NP, coNP, P or NL (under first-order reductions).

The motivation behind our approach lies in the hope that identifying frag-
ments of default logic with simpler reasoning procedures may help us to under-
stand the sources of hardness for the full problem and to locate the boundary
between hard and easy fragments. Especially the improved algorithms can help
doing better approaches in solving the studied problems quite more efficiently.

This paper is organized as follows. After some preliminary remarks in Sect. 2,
we introduce Boolean clones in Sect. 3. At this place we also provide a full clas-
sification of the complexity of logical implications for fragments of propositional
logic, as this classification will serve as a central tool for subsequent sections.
In Sect. 4, we start to investigate propositional default logic. Section 5 then
presents our main results on the complexity of the decision problems for default
logic. Finally, in Sect. 6 we conclude with a summary and a discussion.

The Complexity of Reasoning for Fragments of Default Logic 53

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

trivial

NP-complete

Σp
2-complete

Complexity of SKEP(B):

Fig. 1. Post’s lattice. Colors indicate the complexity of EXT(B), the Extension Exis-
tence Problem for B-formulae.

2 Preliminaries

In this paper we make use of standard notions of complexity theory. The aris-
ing complexity degrees encompass the classes NL, P, NP, coNP, Σp

2 and Πp
2

(cf. [Pap94] for background information). For the hardness results constant-depth
reductions are used, defined as follows: A language A is constant-depth reducible
to a language B (A ≤cd B) if there exists a logtime-uniform AC0-circuit family
{Cn}n≥0 with unbounded fan-in {∧,∨,¬}-gates and oracle gates for B such that
for all x, C|x|(x) = 1 iff x ∈ A (cf. [Vol99]).

We also assume familiarity with propositional logic. The set of all proposi-
tional formulae is denoted by L. For A ⊆ L and ϕ ∈ L, we write A |= ϕ iff all
assignments satisfying all formulae in A also satisfy ϕ. By Th(A) we denote the
set of all consequences of A, i. e., Th(A) = {ϕ | A |= ϕ}. For a literal l and a

54 O. Beyersdorff et al.

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

Complexity of SKEP(B):

NL-complete

P-complete

coNP-complete

coNP-complete

Πp
2-complete

Complexity of CRED(B):

NL-complete

P-complete

NP-complete

coNP-complete

Σp
2-complete

Fig. 2. Post’s lattice. Colors indicate the complexity of CRED(B) and SKEP(B), the
Credulous and Skeptical Reasoning Problem for B-formulae.

variable x, we define the meta-language expression ∼l as ∼l := x if l = ¬x and
∼l := ¬x if l = x. For a formula ϕ, let ϕ[α/β] denote ϕ with all occurrences of α
replaced by β, and let A[α/β] := {ϕ[α/β] | ϕ ∈ A} for A ⊆ L.

3 Boolean Clones and the Complexity of the Implication
Problem

A propositional formula using only connectives from a finite set B of Boolean
functions is called a B-formula. The set of all B-formulae is denoted by L(B).
In order to cope with the infinitely many finite sets B of Boolean functions,
we require some algebraic tools to classify the complexity of the infinitely many
arising reasoning problems. A clone is a set B of Boolean functions that is closed

The Complexity of Reasoning for Fragments of Default Logic 55

Table 1. A list of Boolean clones with definitions and bases

Name Definition Base
BF All Boolean functions {∧,¬}
R0 {f : f is 0-reproducing} {∧, �→}
R1 {f : f is 1-reproducing} {∨,→}
M {f : f is monotone} {∨,∧, 0, 1}
S0 {f : f is 0-separating} {→}
S1 {f : f is 1-separating} {�→}
S00 S0 ∩ R0 ∩ R1 ∩ M {x∨ (y∧z)}
S10 S1 ∩ R0 ∩ R1 ∩ M {x∧ (y∨z)}
D {f : f is self-dual} {(x∧y) ∨ (x∧z) ∨ (y∧z)}
D2 D ∩ M {(x∧y) ∨ (y∧z) ∨ (x∧z)}
L {f : f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {≡}
L2 L ∩ R0 ∩ R1 {x⊕y⊕z}
L3 L ∩ D {x⊕y⊕z,¬}
V {f : f ≡ c0 ∨∨n

i=1 cixi where the cis are constant} {∨, 0, 1}
V2 [{∨}] {∨}
E {f : f ≡ c0 ∧∧n

i=1 cixi where the cis are constant} {∧, 0, 1}
E2 [{∧}] {∧}
N {f : f depends on at most one variable} {¬, 0, 1}
N2 [{¬}] {¬}
I {f : f is a projection or a constant} {id, 0, 1}
I2 [{id}] {id}

under superposition, i. e., B contains all projections and is closed under arbitrary
composition. For an arbitrary set B of Boolean functions, we denote by [B] the
smallest clone containing B and call B a base for [B]. In [Pos41] Post classified
the lattice of all clones and found a finite base for each clone, see Fig. 1. In order
to introduce the clones relevant to this paper, we define the following notions
for n-ary Boolean functions f :

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotone if a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn implies f(a1, . . . , an) ≤

f(b1, . . . , bn).
– f is c-separating if there exists an i ∈ {1, . . . , n} such that f(a1, . . . , an) = c

implies ai = c, c ∈ {0, 1}.
– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).
– f is linear if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c for a constant c ∈ {0, 1} and variables

x1, . . . , xn.

The clones relevant to this paper are listed in Table 1. The definition of all
Boolean clones can be found, e. g., in [BCRV03].

For a finite set B of Boolean functions, we define the Implication Problem
for B-formulae IMP(B) as the following computational task: given a set A of
B-formulae and a B-formula ϕ, decide whether A |= ϕ holds. The complexity of

56 O. Beyersdorff et al.

the implication problem is classified in [BMTV08]. The results relevant to this
paper are summarized in the following theorem.

Theorem 3.1 ([BMTV08, Theorem 4.1]). Let B be a finite set of Boolean
functions. Then IMP(B) is

1. coNP-complete if S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B], and
2. in P for all other cases.

A proof of Theorem 3.1 will be included in the full version of this paper.

4 Default Logic

Fix some finite set B of Boolean functions and let α, β, γ be propositional B-
formulae. A B-default (rule) is an expression d = α:β

γ ; α is called prerequisite, β
is called justification and γ is called consequent of d. A B-default theory is a pair
〈W, D〉, where W is a set of propositional B-formulae and D is a set of B-default
rules. Henceforth we will omit the prefix “B-” if B = BF or the meaning is clear
from the context.

For a given default theory 〈W, D〉 and a set of formulae E, let Γ(E) be the
smallest set of formulae such that

1. W ⊆ Γ(E),
2. Γ(E) is closed under deduction, i. e., Γ(E) = Th(Γ(E)), and
3. for all defaults α:β

γ ∈ D with α ∈ Γ(E) and ¬β /∈ E, it holds that γ ∈ Γ(E).

A (stable) extension of 〈W, D〉 is a fixpoint of Γ, i. e., a set E such that E = Γ(E).
The following theorem by Reiter provides an alternative characterization of

extensions:

Theorem 4.1 ([Rei80]). Let 〈W, D〉 be a default theory and E be a set of
formulae.

1. Let E0 = W and Ei+1 = Th(Ei)∪
{
γ
⏐⏐ α:β

γ ∈ D, α ∈ Ei and ¬β /∈ E
}
. Then

E is a stable extension of 〈W, D〉 iff E =
⋃

i∈N
Ei.

2. Let G =
{

α:β
γ ∈ D

⏐⏐α ∈ E and ¬β /∈ E
}
. If E is a stable extension of

〈W, D〉, then
E = Th(W ∪ {γ | α:β

γ ∈ G}).

In this case, G is also called the set of generating defaults for E.

Note that stable extensions need not be consistent. However, the following propo-
sition shows that this only occurs if the set W is inconsistent already.

Proposition 4.2 ([MT93, Corollary 3.60]). Let 〈W, D〉 be a default theory.
Then L is a stable extension of 〈W, D〉 iff W is inconsistent.

The Complexity of Reasoning for Fragments of Default Logic 57

As a consequence we obtain:

Corollary 4.3. Let 〈W, D〉 be a default theory.

– If W is consistent, then every stable extension of 〈W, D〉 is consistent.
– If W is inconsistent, then 〈W, D〉 has a stable extension.

The main reasoning tasks in nonmonotonic logics give rise to the following three
decision problems:

1. the Extension Existence Problem EXT(B)
Instance: a B-default theory 〈W, D〉
Question: Does 〈W, D〉 have a stable extension?

2. the Credulous Reasoning Problem CRED(B)
Instance: a B-formula ϕ and a B-default theory 〈W, D〉
Question: Is there a stable extension of 〈W, D〉 that includes ϕ?

3. the Skeptical Reasoning Problem SKEP(B)
Instance: a B-formula ϕ and a B-default theory 〈W, D〉
Question: Does every stable extension of 〈W, D〉 include ϕ?

The next theorem follows from [Got92] and states the complexity of the above
decision problems for the general case [B] = BF.

Theorem 4.4 ([Got92]). Let B be a finite set of Boolean functions such that
[B] = BF. Then EXT(B) and CRED(B) are Σp

2-complete, whereas SKEP(B) is
Πp

2-complete.

5 The Complexity of Default Reasoning

In this section we will classify the complexity of the three problems EXT(B),
CRED(B), and SKEP(B) for all choices of Boolean connectives B. We start
with some preparations which will substantially reduce the number of cases we
have to consider.

Lemma 5.1. Let P be any of the problems EXT, CRED, or SKEP. Then for
each finite set B of Boolean functions, P(B) ≡cd P(B ∪ {1}).

Proof. The reductions P(B) ≤cd P(B ∪ {1}) are obvious. For the converse re-
ductions, we will essentially substitute the constant 1 by a new variable t that is
forced to be true (this trick goes already back to Lewis [Lew79]). For EXT, the
reduction is given by 〈W, D〉 �→ 〈W ′, D′〉, where W ′ = W[1/t] ∪ {t}, D′ = D[1/t],
and t is a new variable not occurring in 〈W, D〉. If 〈W ′, D′〉 possesses a stable
extension E′, then t ∈ E′. Hence, E′

[t/1] is a stable extension of 〈W, D〉. On the
other hand, if E is a stable extension of 〈W, D〉, then Th(E[1/t]∪{t}) = E[1/t] is a
stable extension of 〈W ′, D′〉. Therefore, each extension E of 〈W, D〉 corresponds
to the extension E[1/t] of 〈W ′, D′〉, and vice versa.

For the problems CRED and SKEP, it suffices to note that the above reduction
〈W, D〉 �→ 〈W ′, D′〉 has the additional property that for each formula ϕ and each
extension E of 〈W, D〉, ϕ ∈ E iff ϕ[1/t] ∈ E[1/t]. �

58 O. Beyersdorff et al.

The next lemma shows that, quite often, B-default theories have unique
extensions.

Lemma 5.2. Let B be a finite set of Boolean functions such that [B] ⊆ R1 or
[B] ⊆ M. Let 〈W, D〉 be a B-default theory with finite D. Then 〈W, D〉 has a
unique stable extension.

Proof. For [B] ⊆ R1, every premise, justification and consequent is 1-reproduc-
ing. As all consequences of 1-reproducing functions are again 1-reproducing and
the negation of a 1-reproducing function is not 1-reproducing, the justifications
in D become irrelevant. Hence the characterization of stable extensions from
the first item in Theorem 4.1 simplifies to the following iterative construction:
E0 = W and Ei+1 = Th(Ei) ∪

{
γ
⏐⏐ α:β

γ ∈ D, α ∈ Ei

}
. As D is finite, this

construction terminates after finitely many steps, i. e., Ek = Ek+1 for some
k ≥ 0. Then E =

⋃
i≤k Ei is the unique stable extension of 〈W, D〉. For a similar

result confer [BO02, Theorem 4.6].
For [B] ⊆ M, every formula is either 1-reproducing or equivalent to 0. As rules

with justification equivalent to 0 are never applicable, each B-default theory
〈W, D〉 with finite D has a unique stable extension by the same argument as
above. �

As an immediate corollary, the credulous and the sceptical reasoning problem
are equivalent for the above choices of the underlying connectives.

Corollary 5.3. Let B be a finite set of Boolean functions such that [B] ⊆ R1
or [B] ⊆ M. Then CRED(B) ≡cd SKEP(B).

5.1 The Extension Existence Problem

Now we are ready to classify the complexity of EXT. The next theorem shows
that this is a trichotomy: the Σp

2-completeness of the general case [Got92] is
inherited by all clones above S1 and D, for a number of clones the complexity of
EXT reduces to NP-completeness, and, due to Lemma 5.2, for the majority of
cases the problem becomes trivial.

Theorem 5.4. Let B be a finite set of Boolean functions. Then EXT(B) is

1. Σp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

2. NP-complete if [B] ∈ {N, N2, L, L0, L3}, and
3. trivial in all other cases (i. e., if [B] ⊆ R1 or [B] ⊆ M).

Proof. For S1 ⊆ [B] ⊆ BF or [B] = D, observe that in both cases BF = [B∪{1}].
Claim 1 then follows from Theorem 4.4 and Lemma 5.1.

For the second claim, it suffices to prove membership in NP for EXT(B)
for every finite [B] ⊆ L and NP-hardness for EXT(B) for every finite B with
N ⊆ [B]. The remaining cases [B] ∈ {N2, L0, L3} all follow from Lemma 5.1,
because [N2 ∪ {1}] = N, [L0 ∪ {1}] = L, and [L3 ∪ {1}] = L.

We start by showing EXT(L) ∈ NP. Given a default theory 〈W, D〉, we first
guess a set G ⊆ D which will serve as the set of generating defaults for a stable

The Complexity of Reasoning for Fragments of Default Logic 59

extension. Let G′ = W ∪ {γ | α:β
γ ∈ G}. We use Theorem 4.1 to verify whether

Th(G′) is indeed a stable extension of 〈W, D〉. For this we inductively compute
generators Gi for the sets Ei from Theorem 4.1, until eventually Ei = Ei+1
(note, that because D is finite, this always occurs). We start by setting G0 = W .
Given Gi, we check for each rule α:β

γ ∈ D, whether Gi |= α and G′ 	|= ¬β (as all
formulae belong to L(B), this is possible by Theorem 3.1). If so, then γ is put
into Gi+1. If this process terminates, i. e., if Gi = Gi+1, then we check whether
G′ = Gi. By Theorem 4.1, this test is positive iff G generates a stable extension
of 〈W, D〉.

To show NP-hardness of EXT(B) for N ⊆ [B], we will ≤cd-reduce 3SAT
to EXT(B). Let ϕ =

∧n
i=1(li1 ∨ li2 ∨ li3) and lij be literals over propositions

{x1, . . . , xm} for 1 ≤ i ≤ n, 1 ≤ j ≤ 3. We transform ϕ to the B-default theory
〈W, Dϕ〉, where W := ∅ and

Dϕ :=
{

1 : xi

xi

⏐⏐⏐⏐ 1 ≤ i ≤ m

}
∪
{

1 : ¬xi

¬xi

⏐⏐⏐ 1 ≤ i ≤ m

}
∪{∼liπ(1) : ∼liπ(2)

liπ(3)

⏐⏐⏐⏐ 1 ≤ i ≤ n, π is a permutation of {1, 2, 3}
}

.

To prove the correctness of the reduction, first assume ϕ to be satisfiable. For
each satisfying assignment σ : {x1, . . . , xm} → {0, 1} for ϕ, we claim that

E := Th({xi | σ(xi) = 1} ∪ {¬xi | σ(xi) = 0})

is a stable extension of 〈W, Dϕ〉. We will verify this claim with the help of the
first part of Theorem 4.1. Starting with E0 = ∅, we already get E1 = E by the
default rules 1:xi

xi
and 1:¬xi

¬xi
in Dϕ. As σ is a satisfying assignment for ϕ, each

consequent of a default rule in Dϕ is already in E. Hence E2 = E1 and therefore
E =

⋃
i∈N

Ei is a stable extension of 〈W, Dϕ〉.
Conversely, assume that E is a stable extension of 〈W, Dϕ〉. Because of the

default rules 1:xi

xi
and 1:¬xi

¬xi
, we either get xi ∈ E or ¬xi ∈ E for all i = 1, . . . , m.

The rules of the type ∼li1:∼li2
li3

ensure that E contains at least one literal from
each clause li1 ∨ li2 ∨ li3 in ϕ. As E is deductively closed, E contains ϕ. By
Corollary 4.3, the extension E is consistent, and therefore ϕ is satisfiable.

Finally, the third item of the theorem directly follows from Lemma 5.2. �

5.2 The Credulous and the Sceptical Reasoning Problem

Now we will analyse the credulous and the sceptical reasoning problem. For these
problems, there are two sources for the complexity. On the one hand, we need
to determine a candidate for a stable extension. On the other hand, we have
to verify that this candidate is indeed a finite characterization of some stable
extension — a task that requires to test for formula implication. Whence the
Σp

2-completeness of CRED(B) and the Πp
2-completeness of SKEP(B) if [B] = BF

derives. Depending on the Boolean connectives allowed, one or both tasks can
be performed in polynomial time. We obtain coNP-completeness for clones that

60 O. Beyersdorff et al.

guarantee the existence of a stable extension but whose implication problem
remains coNP-complete. Conversely, if the implication problem becomes easy,
but determining an extension candidates is hard, then CRED(B) is NP-complete,
while SKEP(B) has to test for all extensions and is coNP-complete. This is the
case for the clones [B] ∈ {N, N2, L, L0, L3}. Finally, for clones B that allow for
solving both tasks in polynomial time, CRED(B) and SKEP(B) are in P. The
complete classification of CRED(B) is given in the following theorem.

Theorem 5.5. Let B be a finite set of Boolean functions. Then CRED(B) is

1. Σp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

2. coNP-complete if X ⊆ [B] ⊆ Y , where X ∈ {S00, S10, D2} and Y ∈ {R1, M},
3. NP-complete if [B] ∈ {N, N2, L, L0, L3},
4. P-complete if V2 ⊆ [B] ⊆ V, E2 ⊆ [B] ⊆ E or [B] ∈ {L1, L2}, and
5. NL-complete if I2 ⊆ [B] ⊆ I.

The proof of Theorem 5.5 follows from the upper and lower bounds given in the
Propositions 5.6 and 5.7 below.

Proposition 5.6. Let B be a finite set of Boolean functions. Then CRED(B)
is contained

1. in Σp
2 if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

2. in coNP if [B] ⊆ R1 or [B] ⊆ M,
3. in NP if [B] ⊆ L,
4. in P if [B] ⊆ V, [B] ⊆ E or [B] ⊆ L1, and
5. in NL if [B] ⊆ I.

Proof. Part 1 follows from Theorem 4.4 and Lemma 5.1. For [B] ⊆ R1, let

Algorithm 1. Determine existence of a
stable extension of 〈W, D〉 containing ϕ

Require: 〈W,D〉, ϕ
1: Gnew ← W
2: repeat
3: Gold ← Gnew

4: for all α:β
γ

∈ D do
5: if Gold |= α then
6: Gnew ← Gnew ∪ {γ}
7: end if
8: end for
9: until Gnew = Gold

10: if Gnew |= ϕ then
11: return true
12: else
13: return false
14: end if

〈W, D〉 be an R1-default theory and
ϕ ∈ L(R1). As for every default rule
α:β
γ ∈ D we can never derive ¬β

(as ¬β is not 1-reproducing), the jus-
tifications β are irrelevant for com-
puting a stable extension. Thence,
using the characterization in the first
part of Theorem 4.1, we can iter-
atively compute the applicable de-
faults and eventually check whether
ϕ is implied by W and those generat-
ing defaults. Algorithm 1 implements
these steps on a deterministic Turing
machine using a coNP-oracle to test
for implication of B-formulae. Clearly,
Algorithm 1 terminates after a poly-
nomial number of steps. Moreover,
Algorithm 1 is a monotone ≤p

T-
reduction from CRED(B) to IMP(B),

The Complexity of Reasoning for Fragments of Default Logic 61

in the sense that for any deterministic oracle Turing machine M that executes
Algorithm 1, A ⊆ B implies L(M, A) ⊆ L(M, B), where L(M, X) is the lan-
guage recognized by M with oracle X . As coNP is closed under monotone ≤p

T-
reductions [Sel82], CRED(B) ∈ coNP.

For [B] ⊆ M, Algorithm 1 can be easily adopted, because we are restricted to
1-reproducing functions and the constant 0. Thus, before executing Algorithm 1,
we just delete all rules α:β

γ with β ≡ 0 from D, as these rules are never applicable.
For [B] ⊆ L, we proceed similarly as in the proof of item 2 in Theorem 5.4.

First, we guess a set G of generating defaults and subsequently verify that both
Th(W ∪ {γ | α:β

γ ∈ G}) is a stable extension and that W ∪ {γ | α:β
γ ∈ G} |= ϕ.

Using Theorem 3.1, both conditions may be verified in polynomial time.
For [B] ⊆ V, [B] ⊆ E, and [B] ⊆ L1, we again use Algorithm 1. As for these

types of B-formulae, we have an efficient test for implication (Theorem 3.1).
Hence, CRED(B) ∈ P.

For [B] ⊆ I, we show that CRED(B) is constant-depth reducible to the graph
accessibility problem, GAP, a problem that is ≤cd-complete for NL. Let 〈W, D〉
be an I-default theory with D = {αi:βi

γi
| 1 ≤ i ≤ k} and let ϕ be an I-formula. We

transform (〈W, D〉, ϕ) to the GAP-instance (G,
∧

ψ∈W ψ, ϕ), where G = (V, E)
is a directed graph with

V := {αi | 1 ≤ i ≤ k} ∪ {γi | 1 ≤ i ≤ k} ∪ {
∧

ψ∈W ψ, ϕ} and

E := {(αi, γi) | 1 ≤ i ≤ k} ∪ {(u, v) ∈ V × V | u |= v} .

Then ϕ is included in the (unique) stable extension of 〈W, D〉 iff G contains a
path from

∧
ψ∈W ψ to ϕ. As implication testing for all B ⊆ I is possible in AC0,

CRED(B) ≤cd GAP. ��

We will now establish the lower bounds required to complete the proof of
Theorem 5.5.

Proposition 5.7. Let B be a finite set of Boolean functions. Then CRED(B)
is

1. Σp
2-hard if S1 ⊆ [B] or D ⊆ [B],

2. coNP-hard if S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B],
3. NP-hard if N2 ⊆ [B] or L0 ⊆ [B],
4. P-hard if V2 ⊆ [B], E2 ⊆ [B] or L2 ⊆ [B], and
5. NL-hard for all other clones.

Proof. Part 1 follows from Theorem 4.4 and Lemma 5.1.
For S00 ⊆ [B], S10 ⊆ [B], and D2 ⊆ [B], coNP-hardness is established by

a ≤cd-reduction from IMP(B). Let A ⊆ L(B) and ϕ ∈ L(B). Then the de-
fault theory 〈A, ∅〉 has the unique stable extension Th(A), and hence A |= ϕ
iff (〈A, ∅〉, ϕ) ∈ CRED(B). Therefore, IMP(B) ≤cd CRED(B), and the claim
follows with Theorem 3.1.

For the third item, it suffices to prove NP-hardness for N2 ⊆ [B]. For L0 ⊆ [B],
the claim then follows by Lemma 5.1. For N2 ⊆ [B], we obtain NP-hardness of

62 O. Beyersdorff et al.

CRED(B) by adjusting the reduction given in the proof of item 2 of Theorem 5.4.
Consider the mapping ϕ �→ (〈{ψ}, Dϕ〉, ψ), where Dϕ is the set of default rules
constructed from ϕ in Theorem 5.4, and ψ is a satisfiable B-formula such that
ϕ and ψ do not use common variables. By Theorem 5.4, ϕ ∈ 3SAT iff 〈{ψ}, Dϕ〉
has a stable extension. As any extension of 〈{ψ}, Dϕ〉 contains ψ, we obtain
3SAT ≤cd CRED(B) via the above reduction.

To prove P-hardness for E2 ⊆ [B], V2 ⊆ [B], and [B] ∈ {L1, L2}, we provide
a reduction from the accessibility problem for directed hypergraphs, HGAP.
HGAP is P-complete under ≤cd-reductions [SI90]. In directed hypergraphs H =
(V, E), hyperedges e ∈ E consist of a set of source nodes src(e) ⊆ V and a
destination dest(e) ∈ V . Instances of HGAP contain a directed hypergraph
H = (V, E), a set S ⊆ V of source nodes, and a target node t ∈ V . We transform
such an instance (H, S, t) to the CRED({∧})-instance (〈W, D〉, ϕ), where

W := {ps | s ∈ S}, D :=
{∧

v∈src(e) pv :
∧

v∈src(e) pv

pdest(e)

⏐⏐⏐⏐ e ∈ E

}
, ϕ := pt

with pairwise distinct propositions pv for v ∈ V . For V2 ⊆ [B], we set

W := {
∨
s/∈S

ps}, D :=
{∨

v∈V \src(e) pv :
∨

v∈V \src(e) pv∨
v∈V \(src(e)∪{dest(e)}) pv

⏐⏐⏐⏐ e ∈ E

}
, ϕ :=

∨
v∈V \{t}

pv.

For [B] ∈ {L1, L2}, we again modify the above reduction and map (H, S, t) to
the CRED(B)-instance

W := {ps | s ∈ S}, D :=
{≡v∈src(e) pv : ≡v∈src(e) pv

pdest(e)

⏐⏐⏐⏐ e ∈ E

}
, ϕ := pt.

The correctness of these reductions is easily verified.
Finally, it remains to show NL-hardness for I2 ⊆ [B]. We give a ≤cd-reduction

from GAP to CRED({id}). For a directed graph G = (V, E) and two nodes
s, t ∈ V , we transform the GAP-instance (G, s, t) to the CRED(I2)-instance

W := {ps}, D :=
{

pu : pu

pv

⏐⏐⏐⏐ (u, v) ∈ E

}
, ϕ := pt.

Clearly, (G, s, t) ∈ GAP iff ϕ is contained in all stable extensions of 〈W, D〉. �

Finally, we will classify the complexity of the sceptical reasoning problem. The
analysis is similar to the classification of the credulous reasoning problem
(Theorem 5.5).

Theorem 5.8. Let B be a finite set of Boolean functions. Then SKEP(B) is

1. Πp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

2. coNP-complete if X ⊆ [B] ⊆ Y , where X ∈ {S00, S10, N2, L0} and Y ∈
{R1, M, L},

3. P-complete if V2 ⊆ [B] ⊆ V, E2 ⊆ [B] ⊆ E or [B] ∈ {L1, L2}, and
4. NL-complete if I2 ⊆ [B] ⊆ I.

The Complexity of Reasoning for Fragments of Default Logic 63

Proof. The first part again follows from Theorem 4.4 and Lemma 5.1.
For [B] ∈ {N, N2, L, L0, L3}, we guess similarly as in Theorem 5.4 a set G of

defaults and then verify in the same way whether W and G generate a stable
extension E. If not, then we accept. Otherwise, we check if E |= ϕ and answer
according to this test. This yields a coNP-algorithm for SKEP(B). Hardness for
coNP is achieved by modifying the reduction from Theorem 5.4 (cf. also the proof
of Proposition 5.7): map ϕ to (〈∅, Dϕ〉, ψ), where Dϕ is defined as in the proof
of Theorem 5.4, and ψ is a B-formula such that ϕ and ψ do not share variables.
Then ϕ /∈ 3SAT iff 〈∅, Dϕ〉 does not have a stable extension. The latter is true
iff ψ is in all extensions of 〈∅, Dϕ〉. Hence 3SAT ≤cd SKEP(B), establishing the
claim.

For all remaining clones B, observe that [B] ⊆ R1 or [B] ⊆ M. Hence, Corol-
lary 5.3 and Theorem 5.5 imply the claim. �

6 Conclusion

In this paper we provided a complete classification of the complexity of the
main reasoning problems for default propositional logic, one of the most com-
mon frameworks for nonmonotonic reasoning. The complexity of the extension
existence problem shows an interesting similarity to the complexity of the satis-
fiability problem [Lew79], because in both cases the hardest instances lie above
the clone S1 (with the exception that instances from D are still hard for EXT,
but easy for SAT). The complexity of the membership problems, i. e., credulous
and skeptical reasoning, rests on two sources: first, whether there exist unique
extensions (cf. Lemma 5.2), and second, how hard it is to test for formula im-
plication. For this reason, we also classified the complexity of the implication
problem IMP(B).

A different complexity classification of reasoning for default logic has been
undertaken in [CHS07]. In that paper, the language of propositional formulas
was restricted to so called conjunctive queries, i.e., existentially quantified for-
mulas in conjunctive normal-form with generalized clauses. The complexity of
the reasoning tasks was determined depending on the type of clauses that are
allowed. We want to remark that though our approach at first sight seems to
be more general (since we do not restrict our formulas to CNF), the results in
[CHS07] do not follow from the results presented here (and vice versa, our results
do not follow from theirs).

In the light of our present contribution, it is interesting to remark that by
results of Konolige and Gottlob [Kon88, Got95], propositional default logic and
Moore’s autoepistemic logic are essentially equivalent. Even more, the transla-
tion is efficiently computable. Unfortunately, this translation requires a complete
set of Boolean connectives, whence our results do not immediately transfer to
autoepistemic logic. It is nevertheless interesting to ask whether the exchange of
default rules with the introspective operator L yields further efficiently decidable
fragments.

64 O. Beyersdorff et al.

Acknowledgements
We thank Ilka Schnoor for sending us a manuscript with the proof of the NP-
hardness of EXT(B) for all B such that N2 ⊆ [B]. We also acknowledge helpful
discussions on various topics of this paper with Peter Lohmann.

References

[BCRV03] Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean
blocks, part I: Post’s lattice with applications to complexity theory.
SIGACT News 34(4), 38–52 (2003)

[BEZ02] Ben-Eliyahu-Zohary, R.: Yet some more complexity results for default logic.
Artificial Intelligence 139(1), 1–20 (2002)

[BMTV08] Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complex-
ity of propositional implication. ACM Computing Research Repository,
arXiv:0811.0959v1 [cs.CC] (2008)

[BO02] Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic
logics. ACM Trans. Comput. Logic 3(2), 226–278 (2002)

[CHS07] Chapdelaine, P., Hermann, M., Schnoor, I.: Complexity of default logic on
generalized conjunctive queries. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS, vol. 4483, pp. 58–70. Springer, Heidelberg (2007)

[Got92] Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic
Computation 2(3), 397–425 (1992)

[Got95] Gottlob, G.: Translating default logic into standard autoepistemic logic. J.
ACM 42(4), 711–740 (1995)

[Kon88] Konolige, K.: On the relation between default and autoepistemic logic.
Artificial Intelligence 35(3), 343–382 (1988); Erratum: Artificial Intelligence
41(1), 115

[KS91] Kautz, H.A., Selman, B.: Hard problems for simple default logics. Artificial
Intelligence 49, 243–279 (1991)

[Lew79] Lewis, H.: Satisfiability problems for propositional calculi. Mathematical
Systems Theory 13, 45–53 (1979)

[McC80] McCarthy, J.: Circumscription – a form of non-monotonic reasoning. Arti-
ficial Intelligence 13, 27–39 (1980)

[MT93] Marek, V.W., Truszczyński, M.: Nonmonotonic Logic. Artificial Intelli-
gence. Springer, Heidelberg (1993)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Read-
ing (1994)

[Pos41] Post, E.: The two-valued iterative systems of mathematical logic. Annals
of Mathematical Studies 5, 1–122 (1941)

[Rei80] Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132
(1980)

[Sel82] Selman, A.L.: Reductions on NP and p-selective sets. Theoretical Com-
puter Science 19, 287–304 (1982)

[SI90] Sridhar, R., Iyengar, S.: Efficient parallel algorithms for functional depen-
dency manipulations. In: Proc. 2nd DPDS, pp. 126–137 (1990)

[Sti90] Stillman, J.: It’s not my default: The complexity of membership problems
in restricted propositional default logics. In: Proc. 8th AAAI, pp. 571–578
(1990)

[Vol99] Vollmer, H.: Introduction to Circuit Complexity. Texts in Theoretical Com-
puter Science. Springer, Heidelberg (1999)

Does Advice Help to Prove Propositional
Tautologies?

Olaf Beyersdorff1 and Sebastian Müller2,�

1 Institut für Theoretische Informatik, Leibniz-Universität Hannover, Germany
beyersdorff@thi.uni-hannover.de

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
smueller@informatik.hu-berlin.de

Abstract. One of the starting points of propositional proof complexity
is the seminal paper by Cook and Reckhow [6], where they defined propo-
sitional proof systems as poly-time computable functions which have all
propositional tautologies as their range. Motivated by provability con-
sequences in bounded arithmetic, Cook and Kraj́ıček [5] have recently
started the investigation of proof systems which are computed by poly-
time functions using advice. While this yields a more powerful model, it
is also less directly applicable in practice.

In this note we investigate the question whether the usage of advice in
propositional proof systems can be simplified or even eliminated. While
in principle, the advice can be very complex, we show that proof systems
with logarithmic advice are also computable in poly-time with access to a
sparse NP-oracle. In addition, we show that if advice is ”not very helpful”
for proving tautologies, then there exists an optimal propositional proof
system without advice. In our main result, we prove that advice can be
transferred from the proof to the formula, leading to an easier computa-
tional model. We obtain this result by employing a recent technique by
Buhrman and Hitchcock [4].

1 Introduction

Propositional proof complexity studies the question how difficult it is to prove
propositional tautologies. In the classical Cook-Reckhow model, proofs are veri-
fied in deterministic polynomial time [6]. While this is certainly the most useful
setting for practical applications, it is nevertheless interesting to ask if proofs
can be shortened when their verification is possible with stronger computational
resources. In this direction, Cook and Kra j́ıček [5] have recently initiated the
study of proof systems which use advice for the verification of proofs. Their re-
sults show that, like in the classical Cook-Reckhow setting, these proof systems
enjoy a close connection to theories of bounded arithmetic.

Subsequently, in [2,3] we studied the questions whether there exist polyno-
mially bounded or optimal proof systems with advice. For the first question,
one of the major motivations for proof complexity [6], we obtained a complete
� Supported by DFG grant KO 1053/5-2.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 65–72, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

66 O. Beyersdorff and S. Müller

complexity-theoretic characterization [2]. Unlike in the classical model, the sec-
ond question receives a surprising positive answer: optimal proof systems exist
when a small amount of advice is allowed [5,3].

Unfortunately, proof systems with advice do not constitute a feasible model
for the verification of proofs in practice, as the non-uniform advice can be very
complex (and even non-recursive). In this paper we therefore investigate the
question whether the advice can be simplified or even eliminated while still pre-
serving the same upper bounds on the lengths of proofs. Our first result shows
that proving propositional tautologies does not require complicated advice: ev-
ery propositional proof system with up to logarithmic advice is simulated by
a propositional proof system computable in polynomial time with access to a
sparse NP-oracle. Thus in propositional proof complexity, computation with ad-
vice can be replaced by a more realistic computational model.

While this first result holds unconditionally, our next two results explore con-
sequences of a positive or negative answer to our question in the title. Assume
first that advice helps to prove tautologies in the sense that proof systems with
advice admit non-trivial upper bounds on the lengths of proofs. Then we show
that the same upper bound can be achieved in a proof system with a simplified
advice model. On the other hand, if the answer is negative in the sense that ad-
vice does not help to shorten proofs even for simple tautologies, then we obtain
optimal propositional proof systems without advice.

2 Proof Systems with Advice – and without

We start with a general semantic definition of proof systems:

Definition 1. A proof system for a language L is a (possibly partial) surjective
function f : Σ∗ → L. For L = TAUT, f is called a propositional proof system.

A string w with f(w) = x is called an f -proof of x. Proof complexity studies
lengths of proofs, so we use the following notion: for a function t : N → N, a
proof system f for L is t-bounded if every x ∈ L has an f -proof of size ≤ t(|x|).
If t is a polynomial, then f is called polynomially bounded.

In the classical framework of Cook and Reckhow [6], proof systems are ad-
ditionally required to be computable in polynomial time. Recently, Cook and
Kra j́ıček [5] have started to investigate propositional proof systems that are
computable in polynomial time with the help of advice. This can be formalized
as follows:

Definition 2 ([2]). For a function k : N → N, a proof system f for L is a proof
system with k bits of advice, if there exist a polynomial-time Turing transducer
M , an advice function h : N → Σ∗, and an advice selector function : Σ∗ → 1∗

such that

1. is computable in polynomial time,
2. M computes the proof system f with the help of the advice h, i.e., for all

π ∈ Σ∗, f(π) = M(π, h(|(π)|)), and
3. for all n ∈ N, the length of the advice h(n) is bounded by k(n).

Does Advice Help to Prove Propositional Tautologies? 67

We say that f uses k bits of input advice if has the special form (π) = 1|π|. On
the other hand, in case (π) = 1|f(π)|, then f is said to use k bits of output advice.
The latter notion is only well-defined if we assume that the length of the output
f(π) (in case f(π) is defined) does not depend on the advice. By this definition,
proof systems with input advice use non-uniform information depending on the
length of the proof, while proof systems with output advice use non-uniform
information depending on the length of the proven formula.

In [2] we have shown that every proof system with advice is equivalent to
a proof system with the same amount of input advice, whereas output advice
seems to yield a strictly less powerful model. Yet, even output advice can be
arbitrarily complex and thus computing proofs with advice does not form a
feasible model to use in practice. Our first result shows that instead of possibly
complex non-uniform information we can also use sparse NP-oracles to achieve
the same proof lengths as in proof systems with advice. The qualification “same
proof length” is made precise by the notion of simulation [8]: a proof system g
simulates a proof system f , denoted f ≤ g, if there is a polynomial p such that
for every f -proof π there exists a g-proof π′ of size ≤ p(|π|) with f(π) = g(π′).

Theorem 3

1. Every propositional proof system with logarithmic advice is simulated by a
propositional proof system computable in polynomial time with access to a
sparse NP-oracle.

2. Conversely, every propositional proof system computable in polynomial time
with access to a sparse NP-oracle is simulated by a propositional proof system
with logarithmic advice.

Proof. For the first claim, let f be a propositional proof system computed by the
polynomial-time Turing transducer Mf with advice function hf where |hf (n)| ≤
c·log n for some constant c. Without loss of generality, we may assume that f uses
input advice (cf. [2]). We choose a length-injective polynomial-time computable
pairing function 〈·〉 and consider the set

A =
{
〈1n, a〉 | a ∈ Σ≤c·log n and for some π ∈ Σn, Mf(π, a) 	∈ TAUT

}
,

where Mf (π, a) denotes the computation of Mf on input π under advice a. Intu-
itively, A collects all incorrect advice strings for Mf on length n. By construction,
A is sparse. Further, A ∈ NP because on input 〈1n, a〉 we can guess π ∈ Σn and
nondeterministically verify Mf (π, a) 	∈ TAUT by guessing a satisfying assign-
ment for ¬Mf (π, a).

We now construct a polynomial-time oracle Turing transducer Mg which un-
der oracle A computes a proof system g ≥ f . Proofs in g will be of the form
〈π, ϕ〉. On such input, Mg queries all strings 〈1|π|, a〉, a ∈ Σ≤c·log |π|. For each
negative answer, Mg simulates Mf on input π using a as advice. If any of these
simulations outputs ϕ, then Mg also outputs ϕ, otherwise g(〈π, ϕ〉) is undefined.

68 O. Beyersdorff and S. Müller

Because Mg performs at most polynomially many simulations of Mf , the ma-
chine Mg runs in polynomial time. Correctness and completeness of g follow from
the fact that Mf is simulated with all correct advice strings, and the original
advice used by Mf is among these (as also other advice strings are used, g might
have shorter proofs than f , though).

For the second claim, let f be a propositional proof system computed by the
oracle transducer Mf under the sparse NP-oracle A. Let MA be an NP-machine
for A and let p(n) be a polynomial bounding the cardinality of A∩Σ≤n as well
as the running times of MA and Mf . With these conventions, there are at most
q(n) = p(p(n)) many strings in A that Mf may query on inputs of length n.

We now define a machine Mg, an advice function hg, and an advice selector
g which together yield a propositional proof system g ≥ f with logarithmic
advice. The advice function will be hg(n) = |A ∩ Σ≤p(n)|. As A is sparse this
results in logarithmic advice. Proofs in the system g are of the form

πg =
〈
a1, w1, . . . , aq(n), wq(n), πf

〉
where πf ∈ Σn (an f -proof), a1, . . . , aq(n) ∈ Σ≤p(n) (elements from A), and
w1, . . . , wq(n) ∈ Σ≤q(n) (computations of MA). At such a proof πg, the advice
selector chooses the advice corresponding to |πf |, i.e., we set g(πg) = |πf |.
The machine Mg works as follows: it first uses its advice to obtain the number
m = hg(|πf |) and checks whether a1, . . . , am are pairwise distinct and for each
i = 1, . . . , m, the string wi is an accepting computation of MA on input ai. If all
these simulations succeed, then we know that A∩Σ≤p(n) = {a1, . . . , am}. Hence
Mg can now simulate Mf on πf and give correct answers to all oracle queries
made in this computation. ��

Let us remark that Balcázar and Schöning [1] have shown a similar trade-off
between advice and oracle access in complexity theory: coNP ⊆ NP/log if and
only if coNP ⊆ NPS for some sparse S ∈ NP. We complete the picture by showing
that the simulations in the previous theorem cannot be strengthened to a full
equivalence between the two concepts:

Proposition 4. There exist propositional proof systems with constant advice
which cannot be computed with access to a recursive oracle.

Proof. Let f be a polynomial-time computable propositional proof system. With
each infinite sequence a = (ai)i∈N, ai ∈ {0, 1}, we associate the system

fa(π) =

{
f(π′) if either π = 0π′ or (π = 1π′ and a|π| = 0)
undefined if π = 1π′ and a|π| = 1.

As different sequences a and b yield different proof systems fa and fb, there exist
uncountably many different propositional proof systems with one bit of advice.
On the other hand, there are only countably many proof systems computed by
oracle Turing machines under recursive oracles. Hence the claim follows. ��

Does Advice Help to Prove Propositional Tautologies? 69

3 Optimal Proof Systems

A propositional proof system which simulates every other propositional proof
system is called optimal. While in the classical setting, the existence of optimal
proof systems is a prominent open question [8], Cook and Kra j́ıček [5] have shown
that there exists a propositional proof system with one bit of input advice which
simulates all classical Cook-Reckhow proof systems. Combining this result with
Theorem 3 yields:

Corollary 5. There exists a propositional proof system f which simulates every
polynomial-time computable propositional proof system. The system f is com-
putable in polynomial time under a sparse NP-oracle.

Our next result shows that if advice does not help to shorten proofs even for
easy languages, then optimal propositional proof systems exist.

Theorem 6. If every polynomially bounded proof system with logarithmic output
advice for some L ∈ coNP can be simulated by a proof system without advice, then
the class of all polynomial-time computable propositional proof systems contains
an optimal system.

Proof. The classical Cook-Reckhow Theorem characterizes the existence of poly-
nomially bounded proof systems: a language L has a polynomially bounded poly-
time computable proof system if and only if L ∈ NP. This result also holds in the
presence of advice (cf. [5,2]): L has a polynomially bounded proof system with
logarithmic output advice if and only if L ∈ NP/log. For languages from coNP,
this equivalence even holds for input instead of output advice [2]. Therefore, we
can restate the hypothesis of the theorem as (coNP ∩NP/log) ⊆ NP.

Now we can apply a result of Balcázar and Schöning [1] who have shown that
(coNP ∩ NP/log) ⊆ NP holds if and only if NE = coNE. The latter condition,
however, is known to imply the existence of optimal propositional proof systems
in the classical sense, as shown by Kra j́ıček and Pudlák [8] (cf. also [7]). ��

Let us remark that the hypothesis in Theorem 6 does not refer to TAUT, but
only to some of its subsets which are easy to prove with the help of advice.

4 Simplifying the Advice

There are two natural ways to enhance proof systems with advice by either
supplying non-uniform information to the proof (input advice) or to the proven
formula (output advice). Intuitively, input advice is the stronger model: proofs
can be quite long and formulas of the same size typically require proofs of differ-
ent size. Hence, supplying advice depending on the proof size is not only more
flexible, but also results in more advice per formula. This view is also supported
by previous results: there exist optimal proof systems with input advice [5,2],
whereas for output advice a similar result cannot be obtained by current tech-
niques [3]. Further evidence is provided by the existence of languages that have

70 O. Beyersdorff and S. Müller

polynomially bounded proof systems with logarithmic input advice, but do not
have such systems with output advice [2].

In our next result we show how input advice can be transformed into output
advice. We obtain this simplification of advice under the assumption of weak,
but non-trivial upper bounds to the proof size. More precisely, from a proof
system which uses logarithmic input advice and has sub-exponential size proofs
of all tautologies, we construct a system with polynomial output advice which
obeys almost the same upper bounds. For the proof we use a new technique by
Buhrman and Hitchcock [4] who show that sets of sub-exponential density are
not NP-hard unless coNP ⊆ NP/poly.

Theorem 7. Let t(n) ∈ 2O(
√

n) and assume that there exists a t(n)-bounded
propositional proof system f with polylogarithmic input advice. Then there ex-
ists an s(n)-bounded propositional proof system g with polynomial output advice
where s(n) ∈ O(t(d · n2)) with some fixed constant d independent of f .

Proof. Let t(n) ≤ 2c·√n for some constant c and let f be a t(n)-bounded propo-
sitional proof system with polylogarithmic input advice. We say that π is a
conjunctive f -proof for a tautology ϕ if there exist tautologies ψ1, . . . , ψn with
|ψi| = |ϕ| = n such that f(π) = ψ1 ∧ · · · ∧ ψn and ϕ is among the ψi. For a
number m ≥ 1, we denote by �n

m the number of tautologies ϕ ∈ TAUT=n which
have conjunctive f -proofs of size exactly m. By counting we obtain

(�n
m)n ≥ |{(ϕ1, . . . , ϕn) | ϕ1 ∧ · · · ∧ ϕn has an f -proof of size m and

|ϕi| = n for 1 ≤ i ≤ n }| .
(1)

As f is t-bounded, every ϕ ∈ TAUT=n has a conjunctive f -proof of size at most
t(d ·n2) where d is a constant such that for each sequence ψ1, . . . , ψn of formulas
of length n, |ψ1 ∧ · · · ∧ψn| ≤ d · n2. Let �n = max{�n

m | m ≤ t(d · n2)}. Using (1)
we obtain

|TAUT=n|n ≤
t(d·n2)∑
m=1

(�n
m)n ≤ (�n)n · t(d · n2)

≤ (�n)n · 2c·
√

d·n2
= (�n · 2c·√d)n .

Thus, setting δ = 2−c·√d, we get �n ≥ δ · |TAUT=n|. Therefore, by definition of
�n there exists a number mn,0 ≤ t(d · n2) such that �n

mn,0
≥ δ · |TAUT=n|, i.e., a

δ-fraction of all tautologies of length n has a conjunctive f -proof of size mn,0.
Consider now the set TAUT=n

0 of all tautologies of length n which do not have
conjunctive f -proofs of size mn,0. Repeating the above argument for TAUT=n

0
yields a proof length mn,1 such that �n

mn,1
≥ δ·|TAUT=n

0 |. Iterating this argument
we obtain a sequence

mn,0, mn,1, . . . , mn,
(n) with (n) =
⌈

log |TAUT=n|
log(1− δ)−1

⌉
≤
⌈

n

log(1 − δ)−1

⌉
such that every ϕ ∈ TAUT=n has a conjunctive f proof of size mn,i for some
i ∈ {0, . . . , (n)}.

Does Advice Help to Prove Propositional Tautologies? 71

We will now define a proof system g which uses polynomial output advice
and obeys the same proof lengths as f . Assume that f is computed by the
polynomial-time Turing transducer Mf with advice function hf . The system g
will be computed by a polynomial-time Turing transducer Mg using the advice
function

hg(n) =
〈
mn,0, hf (mn,0), . . . , mn,
(n), hf(mn,
(n))

〉
.

The machine Mg works as follows: first Mg checks whether the proof has the
form

〈ϕ, ψ1, . . . , ψn, π, i〉

where ϕ, ψ1, . . . , ψn are formulas of length n such that ϕ ∈ {ψ1, . . . , ψn}, π is a
string (an f -proof), and i is a number ≤ (n). If this test fails, then Mg outputs
�n (an easy tautology of length n). Then Mg uses its advice to check whether
|π| = mn,i. If so, then Mg simulates Mf on input π using advice hf(mn,i) (which
is available through the advice function hg). If the output of this simulation is
ψ1 ∧ · · · ∧ ψn, then Mg outputs ϕ, otherwise it outputs �n.

By our analysis above, g is a propositional proof system (it is correct and
complete). The advice only depends on the length n of the proven formula, so
g uses output advice. To estimate the advice length, let |hf (m)| ≤ loga m for
some constant a. Then

|hg(n)| ≤

(n)∑
i=0

(|mn,i|+ |h(mn,i|) ≤ ((n) + 1)
(
c
√

n + loga(2c
√

n)
)
∈ nO(1) .

The size of a g-proof 〈ϕ, ψ1, . . . , ψn, π, i〉 for ϕ ∈ TAUT=n is dominated by
|π| ≤ t(d · n2), and therefore g is s(n)-bounded for some s(n) ∈ O(t(d · n2)). ��

5 Conclusion

Does advice help to prove propositional tautologies? In this generality, we leave
open the question – but our results provide partial answers. On the one hand,
when proving tautologies “very complicated” advice is not necessary – it suffices
to use a “small amount of simple” advice (Theorem 3). Further, if advice is
helpful to prove tautologies in the sense that proofs become shorter in general,
then again the advice can be simplified (Theorem 7).

On the other hand, if advice is not at all useful to prove tautologies, then
optimal propositional proof systems exist (Theorem 6), a consequence which is
considered unlikely by many researchers (cf. [7]). For further research, it seems
interesting to explore how natural proof systems like resolution can facilitate
advice. Is it possible to shorten proofs in such systems by using advice?

Acknowledgement. The first author wishes to thank Uwe Schöning for sug-
gesting to apply results from [1] in the context of proof systems with advice.

72 O. Beyersdorff and S. Müller

References

1. Balcázar, J., Schöning, U.: Logarithmic advice classes. Theoretical Computer Sci-
ence 99, 279–290 (1992)

2. Beyersdorff, O., Köbler, J., Müller, S.: Nondeterministic instance complexity and
proof systems with advice. In: Proc. 3rd International Conference on Language
and Automata Theory and Applications. LNCS, vol. 5457, pp. 164–175. Springer,
Heidelberg (2009)

3. Beyersdorff, O., Müller, S.: A tight Karp-Lipton collapse result in bounded arith-
metic. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 199–214.
Springer, Heidelberg (2008)

4. Buhrman, H., Hitchcock, J.M.: NP-hard sets are exponentially dense unless coNP
⊆ NP/poly. In: Proc. 23rd Annual IEEE Conference on Computational Complexity,
pp. 1–7 (2008)

5. Cook, S.A., Kraj́ıček, J.: Consequences of the provability of NP ⊆ P/poly. The
Journal of Symbolic Logic 72(4), 1353–1371 (2007)

6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

7. Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for
promise classes. Information and Computation 184(1), 71–92 (2003)

8. Kraj́ıček, J., Pudlák, P.: Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic 54(3),
1063–1079 (1989)

Backdoors in the Context of Learning

Bistra Dilkina, Carla P. Gomes, and Ashish Sabharwal

Department of Computer Science
Cornell University, Ithaca NY 14853-7501, U.S.A.

{bistra,gomes,sabhar}@cs.cornell.edu

Abstract. The concept of backdoor variables has been introduced as a
structural property of combinatorial problems that provides insight into
the surprising ability of modern satisfiability (SAT) solvers to tackle
extremely large instances. This concept is, however, oblivious to “learn-
ing” during search—a key feature of successful combinatorial reasoning
engines for SAT, mixed integer programming (MIP), etc. We extend the
notion of backdoors to the context of learning during search. We prove
that the smallest backdoors for SAT that take into account clause learn-
ing and order-sensitivity of branching can be exponentially smaller than
“traditional” backdoors. We also study the effect of learning empirically.

1 Introduction

In recent years we have seen tremendous progress in the state of the art of SAT
solvers: we can now efficiently solve large real-world problems. A fruitful line of
research in understanding and explaining this outstanding success focuses on the
role of hidden structure in combinatorial problems. One example of such hidden
structure is a backdoor set, i.e., a set of variables such that once they are instan-
tiated, the remaining problem simplifies to a tractable class [6–8, 12, 15, 16].
Backdoor sets are defined with respect to efficient sub-algorithms, called sub-
solvers, employed within the systematic search framework of SAT solvers. In
particular, the definition of strong backdoor set B captures the fact that a sys-
tematic tree search procedure (such as DPLL) restricted to branching only on
variables in B will successfully solve the problem, whether satisfiable or unsat-
isfiable. Furthermore, in this case, the tree search procedure restricted to B will
succeed independently of the order in which it explores the search tree.

Most state-of-the-art SAT solvers rely heavily on clause learning which adds
new clauses every time a conflict is derived during search. Adding new informa-
tion as the search progresses has not been considered in the traditional concept
of backdoors. In this work we extend the concept of backdoors to the context
of learning, where information learned from previous search branches is allowed
to be used by the sub-solver underlying the backdoor. This often leads to much
smaller backdoors than the “traditional” ones. In particular, we prove that the
smallest backdoors for SAT that take into account clause learning can be expo-
nentially smaller than traditional backdoors oblivious to these solver features. We
also present empirical results showing that the added power of learning-sensitive
backdoors is also often observed in practice.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 73–79, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 B. Dilkina, C.P. Gomes, and A. Sabharwal

2 Preliminaries

For lack of space, we will assume familiarity with Boolean formulas in conjunctive
normal form (CNF), the satisfiability testing problem (SAT), and DPLL-based
backtrack search methods for SAT. Backdoor sets for such formulas and solvers
are defined with respect to efficient sub-algorithms, called sub-solvers, employed
within the systematic search framework of SAT solvers. In practice, these sub-
solvers often take the form of efficient procedures such as unit propagation (UP),
pure literal elimination, and failed-literal probing. In some theoretical studies, so-
lution methods for structural sub-classes of SAT such as 2-SAT, Horn-SAT, and
RenamableHorn-SAT have also been considered as sub-solvers. Formally [16], a
sub-solver A for SAT is any polynomial time algorithm satisfying certain natural
properties on every input CNF formula F : (1) Trichotomy: A either determines
F correctly (as satisfiable or unsatisfiable) or fails; (2) A determines F for sure
if F has no clauses or contains the empty clause; and (3) if A determines F , then
A also determines F |x=0 and F |x=1 for any variable x.

For a formula F and a truth assignment τ to a subset of the variables of
F , we will use F |τ to denote the simplified formula obtained after applying the
(partial) truth assignment to the affected variables.

Definition 1 (Weak and Strong Backdoors for SAT [16]). Given a CNF
formula F on variables X, a subset of variables B ⊆ X is a weak backdoor for
F w.r.t. a sub-solver A if for some truth assignment τ : B → {0, 1}, A returns a
satisfying assignment for F |τ . Such a subset B is a strong backdoor if for every
truth assignment τ : B → {0, 1}, A returns a satisfying assignment for F |τ or
concludes that F |τ is unsatisfiable.

Weak backdoor sets capture the fact that a well-designed heuristic can get
“lucky” and find the solution to a hard satisfiable instance if the heuristic guid-
ance is correct even on the small fraction of variables that constitute the back-
door set. Similarly, strong backdoor sets B capture the fact that a systematic
tree search procedure (such as DPLL) restricted to branching only on variables
in B will successfully solve the problem, whether satisfiable or unsatisfiable.
Furthermore, in this case, the tree search procedure restricted to B will succeed
independently of the order in which it explores the search tree.

3 Backdoor Sets for Clause Learning SAT Solvers

The last point made in Section 2—that the systematic search procedure will
succeed independent of the order in which it explores various truth valuations
of variables in a backdoor set B—is, in fact, a very important notion that has
only recently begun to be investigated, in the context of mixed-integer program-
ming [1]. In practice, many modern SAT solvers employ clause learning tech-
niques, which allow them to carry over information from previously explored
branches to newly considered branches. Prior work on proof methods based
on clause learning and the resolution proof system suggests that, especially for

Backdoors in the Context of Learning 75

unsatisfiable formulas, some variable-value assignment orders may lead to signif-
icantly shorter search proofs than others. In other words, it is very possible that
“learning-sensitive” backdoors are much smaller than “traditional” strong back-
doors. To make this notion of incorporating learning-during-search into backdoor
sets more precise, we introduce the following extended definition:

Definition 2 (Learning-Sensitive Backdoors for SAT). Given a CNF for-
mula F on variables X, a subset of variables B ⊆ X is a learning-sensitive
backdoor for F w.r.t. a sub-solver A if there exists a search tree exploration
order such that a clause learning SAT solver branching only on the variables in
B, with this order and with A as the sub-solver at the leaves of the search tree,
either finds a satisfying assignment for F or proves that F is unsatisfiable.

Note that, as before, each leaf of this search tree corresponds to a truth assign-
ment τ : B → {0, 1} and induces a simplified formula F |τ to be solved by A.
However, the tree search is naturally allowed to carry over and use learned in-
formation from previous branches in order to help A determine F |τ . Thus, while
F |τ may not always be solvable by A per se, additional information gathered
from previously explored branches may help A solve F |τ . We note that incorpo-
rating learned information can, in principle, also be considered for the related
notion of backdoor trees [14], which looks at the smallest search tree size rather
than the set of branching variables.

We explain the power of learning-sensitivity through the following example
formula, for which there is a natural learning-sensitive backdoor of size one w.r.t.
unit propagation but the smallest traditional strong backdoor is of size 2. We
will then generalize this observation into an exponential separation between the
power of learning-sensitive and traditional strong backdoors for SAT.

Example 1. Consider the unsatisfiable SAT instance, F1:

(x ∨ p1), (x ∨ p2), (¬p1 ∨ ¬p2 ∨ q), (¬q ∨ a), (¬q ∨ ¬a ∨ b), (¬q ∨ ¬a ∨ ¬b)
(¬x ∨ q ∨ r), (¬r ∨ a), (¬r ∨ ¬a ∨ b), (¬r ∨ ¬a ∨ ¬b)

We claim that {x} is a learning-sensitive backdoor for F1 w.r.t. the unit prop-
agation sub-solver, while all traditional strong backdoors are of size at least
two. First, let’s understand why {x} does work as a backdoor set when clause
learning is allowed. When we set x = 0, this implies—by unit propagation—the
literals p1 and p2, these together imply q which implies a, and finally, q and a
together imply both b and ¬b, causing a contradiction. At this point, a clause
learning algorithm will realize that the literal q forms what’s called a unique
implication point (UIP) for this conflict [10], and will learn the singleton clause
¬q. Now, when we set x = 1, this, along with the learned clause ¬q, will unit
propagate one of the clauses of F1 and imply r, which will then imply a and
cause a contradiction as before. Thus, setting x = 0 leads to a contradiction by
unit propagation as well as a learned clause, and setting x = 1 after this also
leads to a contradiction.

To see that there is no traditional strong backdoor of size one with respect
to unit propagation (and, in particular, {x} does not work as a strong backdoor

76 B. Dilkina, C.P. Gomes, and A. Sabharwal

without the help of the learned clause ¬q), observe that for every variable of F1,
there exists at least one polarity in which it does not appear in any 1- or 2-clause
(i.e., a clause containing only 1 or 2 variables) and therefore there is no empty
clause generation or unit propagation under at least one truth assignment for
that variable. (Note that F1 does not have any 1-clauses to begin with.) E.g.,
q does not appear in any 2-clause of F1 and therefore setting q = 0 does not
cause any unit propagation at all, eliminating any chance of deducing a conflict.
Similarly, setting x = 1 does not cause any unit propagation. In general, no
variable of F1 can lead to a contradiction by itself under both truth assignments
to it, and thus cannot be a traditional strong backdoor. Note that {x, q} does
form a traditional strong backdoor of size two for F1 w.r.t. unit propagation. ��
Theorem 1. There are unsatisfiable SAT instances for which the smallest
learning-sensitive backdoors w.r.t. unit propagation are exponentially smaller
than the smallest traditional strong backdoors.

Proof (Sketch). We, in fact, provide two proofs of this statement by constructing
two unsatisfiable formulas F2 and F3 over N = k+3 ·2k variables and M = 4 ·2k

clauses, with the following property: both formulas have a learning-sensitive
backdoor of size k = Θ(log N) but no traditional strong backdoor of size smaller
than 2k +k = Θ(N). F2 is perhaps a bit easier to understand and has a relatively
weak ordering requirement for the size k learning-sensitive backdoor to work
(namely, that the all-1 truth assignment must be evaluated at the very end);
F3, on the other hand, requires a strict value ordering to work as a backdoor
(namely, the lexicographic order from 000 . . .0 to 111 . . . 1) and highlights the
strong role a good branching order plays in the effectiveness of backdoors. For
lack of space, the details are deferred to an extended Technical Report [3]. ��
In fact, the discussion in the proof of Theorem 1 also reveals that for the con-
structed formula F3, any value ordering that starts by assigning 1’s to all xi’s
will lead to a learning-sensitive backdoor of size no smaller than 2k. This imme-
diately yields the following result under-scoring the importance of the “right”
value ordering even amongst various learning-sensitive backdoors.

Corollary 1. There are unsatisfiable SAT instances for which one value order-
ing of the variables can lead to exponentially smaller learning-sensitive backdoors
w.r.t. unit propagation than a different value ordering.

We now turn our attention to the study of strong backdoors for satisfiable in-
stances, and show that clause learning can also lead to strictly smaller (strong)
backdoors for satisfiable instances. In fact, our experiments suggest a much more
drastic impact of clause learning on backdoors for practical satisfiable instances
than on backdoors for unsatisfiable instances. We have the following formal re-
sult that can be derived from a slight modification of the construction of formula
F1 used earlier in Example 1 (see Technical Report [3]).

Theorem 2. There are satisfiable SAT instances for which there exist learning-
sensitive backdoors w.r.t. unit propagation that are smaller than the smallest
traditional strong backdoors.

Backdoors in the Context of Learning 77

As a closing remark, we note that the presence of clause learning does not affect
the power of weak backdoors w.r.t. a natural class of syntactically-defined sub-
solvers, i.e., sub-solvers that work when the constraint graph of the instance
satisfies a certain polynomial-time verifiable property. Good examples of such
syntactic classes w.r.t. which strong backdoors have been studied in depth are 2-
SAT, Horn-SAT, and RenamableHorn-SAT [cf. 2, 11, 12]. Most of such syntactic
classes satisfy a natural property, namely, they are closed under clause removal.
In other words, if F is a 2-SAT or Horn formula, then removing some clauses from
F yields a smaller formula that is also a 2-SAT or Horn formula, respectively.
We have the following observation (see Technical Report [3] for a proof):

Proposition 1. Clause learning does not reduce the size of weak backdoors with
respect to syntactic sub-solver classes that are closed under clause removal.

4 Experimental Results

We evaluate the effect of clause learning on the size of backdoors in a set of
well-known SAT instances from SATLIB [5]. Upper bounds on the size of the
smallest leaning-sensitive backdoor w.r.t. UP were obtained using the SAT solver
RSat [13]. At every search node RSat employs UP and at every conflict it employs
clause learning based on UIP. We turned off restarts and randomized the variable
and value selection. In addition, we traced the set of variables used for branching
during search—the backdoor. We ran the modified RSat 5,000 times per instance
and recorded the smallest backdoor set among all runs.

Upper bounds on the size of the smallest traditional backdoor w.r.t. UP were
obtained using a modified version of Satz-rand [4, 9] that employs UP as a sub-
solver and also traces the set of branch variables. We ran the modified Satz 5,000
times per instance and recorded the smallest backdoor set among all runs. Note
that these results concern traditional weak backdoors for satisfiable instances
and strong backdoors for unsatisfiable instances. Satz relies heavily on good
variable selection heuristics in order to minimize the solution time. Hence, using

Table 1. Upper bounds on the size of the smallest backdoor when using clause learning
and unit propagation (within RSat) and when using only unit propagation (within
Satz). Results are given as percentage of the number of variables.

Instance Status Vars Clauses UP+CL UP
bf0432-007 UNSAT 1,040 3,668 12.12% 13.65%
bf1355-075 UNSAT 2,180 6,778 3.90% 5.92%
bf1355-638 UNSAT 2,177 6,768 3.86% 6.84%
bf2670-001 UNSAT 1,393 3,434 1.22% 2.08%

apex7 gr 2pin w4 UNSAT 1,322 10,940 12.25% 20.73%
parity unsat 4 5 UNSAT 2,508 17,295 9.85% 39.07%

anomaly SAT 48 261 4.17% 4.17%
medium SAT 116 953 1.72% 14.66%

huge SAT 459 7,054 1.09% 3.27%
bw large.a SAT 459 4,675 1.53% 3.49%
bw large.b SAT 1,087 13,772 1.93% 11.59%
bw large.c SAT 3,016 50,457 2.95% 13.76%
bw large.d SAT 6,325 131,973 3.37% 43.27%

78 B. Dilkina, C.P. Gomes, and A. Sabharwal

Satz instead of a modified version of RSat with learning turned off gave us much
better bounds on traditional backdoors w.r.t. UP.

The results are summarized in Table 1. Across all satisfiable instances the
learning-sensitive backdoor upper bounds are significantly smaller than the tra-
ditional ones. For unsatisfiable instances, the upper bounds on the learning-
sensitive and traditional backdoors are not very different. However, a notable
exception is the parity instance where including clause learning reduces the back-
door upper bound to less than 10% from almost 39%.

Acknowledgments

This research was supported by IISI, Cornell University (AFOSR grant FA9550-
04-1-0151), NSF Expeditions in Computing award for Computational Sustain-
ability (Grant 0832782) and NSF IIS award (Grant 0514429). The first author
was partially supported by an NSERC PGS Scholarship. Part of this work was
done while the third author was visiting McGill University.

References

[1] Dilkina, B., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M.: Backdoors
to combinatorial optimization: Feasibility and optimality. In: CPAIOR (2009)

[2] Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoor
detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256–270. Springer,
Heidelberg (2007)

[3] Dilkina, B., Gomes, C.P., Sabharwal, A.: Backdoors in the context of learning (ex-
tended version). Technical report, Cornell University, Computing and Information
Science (April 2009), http://hdl.handle.net/1813/12231

[4] Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: AAAI, pp. 431–437 (1998)

[5] Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. In:
SAT, pp. 283–292 (2000), http://www.satlib.org

[6] Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in
satisfiability. In: AAAI, pp. 1368–1373 (2005)

[7] Kullmann, O.: Investigating a general hierarchy of polynomially decidable classes
of cnf’s based on short tree-like resolution proofs. In: ECCC, vol. 41 (1999)

[8] Kullmann, O.: Upper and lower bounds on the complexity of generalised resolu-
tion and generalised constraint satisfaction problems. Annals of Mathematics and
Artificial Intelligence 40(3-4), 303–352 (2004)

[9] Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability prob-
lems. In: IJCAI, pp. 366–371 (1997)

[10] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535 (2001)

[11] Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to
Horn and binary clauses. In: SAT, pp. 96–103 (2004)

[12] Paris, L., Ostrowski, R., Siegel, P., Sais, L.: Computing Horn strong backdoor sets
thanks to local search. In: ICTAI, pp. 139–143 (2006)

http://hdl.handle.net/1813/12231
http://www.satlib.org

Backdoors in the Context of Learning 79

[13] Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for
satisfiability solvers. In: SAT, pp. 294–299 (2007)

[14] Samer, M., Szeider, S.: Backdoor trees. In: AAAI, pp. 363–368 (2008)
[15] Szeider, S.: Backdoor sets for DLL subsolvers. J. Auto. Reas. 35(1-3), 73–88 (2005)
[16] Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:

IJCAI, pp. 1173–1178 (2003)

Solving SAT for CNF Formulas with a
One-Sided Restriction on Variable Occurrences

Daniel Johannsen1, Igor Razgon2, and Magnus Wahlström1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Cork Constraint Computation Centre, University College Cork, Ireland

Abstract. In this paper we consider the class of boolean formulas in
Conjunctive Normal Form (CNF) where for each variable all but at
most d occurrences are either positive or negative. This class is a general-
ization of the class of CNF formulas with at most d occurrences (positive
and negative) of each variable which was studied in [Wahlström, 2005].

Applying complement search [Purdom, 1984], we show that for every d
there exists a constant γd < 2 − 1

2d+1 such that satisfiability of a CNF
formula on n variables can be checked in runtime O(γn

d) if all but at
most d occurrences of each variable are either positive or negative. We
thoroughly analyze the proposed branching strategy and determine the
asymptotic growth constant γd more precisely. Finally, we show that the
trivial O(2n) barrier of satisfiability checking can be broken even for a
more general class of formulas, namely formulas where the positive or
negative literals of every variable have what we will call a d–covering.

To the best of our knowledge, for the considered classes of formulas
there are no previous non-trivial upper bounds on the complexity of
satisfiability checking.

1 Introduction

Design of fast exponential algorithms for satisfiability checking has attracted
considerable attention of various research communities in applied as well as in
theoretical fields of computer science. Since it is unknown how to break the
trivial O(2n) barrier for the runtime of the unrestricted satisfiability problem
(SAT) on n variables, current research concentrates on more efficient satisfia-
bility checking of restricted classes of conjunctive normal form (CNF) formulas.
The most widely considered restriction is k–SAT, including all formulas whose
maximal clause length is at most k. Currently the best runtime is O

(
(2− 2

k+1)n
)

for a deterministic algorithm [3], and a stronger but comparable bound for a
randomized one [4]. However, to improve the understanding of how the struc-
ture of a CNF formula influences the efficiency of satisfiability checking, it is
important to study further sub-classes of CNF formulas. Two such sub-classes
are formulas with restrictions on (i) the value of the density m/n (where m is
the number of clauses) and (ii) on the number of occurrences of each variable.
Calabro, Impagliazzo, and Paturi [2] proved that for both classes satisfiability
can be checked in runtime O(γn) with γ < 2, and asymptotically related the
bounds of k–SAT, SAT with m/n ≤ Δ, and SAT with at most d occurrences per
variable to one another, essentially showing that the two latter bounds behave

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 80–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Solving SAT for CNF Formulas with a One-Sided Restriction 81

as the former one with k = Θ(log Δ) and k = Θ(log d), respectively. For small
values of d, Wahlström [7,6] has given a stronger bound for formulas with at
most d occurrences per variable of order O(1.1279(d−2)n).

The main contribution of this paper is extending the boundaries of the classes
of CNF formulas for which satisfiability can be checked faster than in run-
time O(2n). In particular, we continue the line of research of [7], where the
total number of occurrences (positive and negative) of each variable in a CNF
formula F was restricted to at most d. Now, for each variable x of F we call the
literal ∈ {x,¬x} with less occurrences in F minor and its negation major. We
then only restrict the number of minor literals in F to be at most d, that is, the
total number of literal occurrences per variable in F remains unrestricted.

We first study the satisfiability of formulas where for each variable all but one
occurrences are positive or negative and give an algorithm with runtime O∗(3n/3)
(Theorem 1)1. Then, we propose an algorithm based on complement search [5]
and show that for each fixed d there exists a constant γd < 2 such that the
satisfiability of CNF formulas with at most d minor literals per variable can be
checked in runtime O(γn

d) (Theorem 2). Next, we investigate the main parame-
ter of the algorithm closer and bound γd by 2 − 1

2d+1 (Theorem 3). Finally, we
further generalize the class of CNF formulas with at most d minor literals per
variable to a class we call CNF formulas with a d–covering and present an algo-
rithm checking satisfiability of such formulas in runtime O∗(Φn

d+1) (Theorem 4),
where Φn

d < 2 is the Fibonacci constant of order d as defined below.

2 SAT for CNF Formulas with Unique Minor Literals

In this section we study CNF formulas with exactly one minor literal per variable.

Lemma 1. A CNF formula with at most one minor literal per variable either
contains a clause consisting only of minor literals or is trivially satisfied by
satisfying all major literals.

This basic observation allows us to check the satisfiability of such formulas.

Algorithm 1
Input: CNF formula F with set of minor literals M , each occurring once.
Output: True if F is satisfiable, otherwise False.
If F is empty then return True.
If F contains an empty clause then return False.
If F contains a clause C = (1 ∨ . . . ∨ r) with 1, . . . , r ∈M then

let Ci = C[i = False]2 for i ∈ {1, . . . , r} and
try branches F [i = True, Ci = False] for i ∈ {1, . . . , r}

else evaluate F [= False for all ∈ M].
1 We use the O∗(·) notation to suppress factors polynomial in the length of the input.
2 For a literal � or a clause C we denote by F [� / C = True /False] the residual

formula obtained by assigning True or False to � or all literals of C, respectively.
If this assigns all literals of a clause to False, then leave the clause as an empty
clause (indicating that a contradiction has been encountered).

82 D. Johannsen, I. Razgon, and M. Wahlström

According to Lemma 1 this algorithm is correct. The runtime is dominated by
the branching strategy and thus of order maxr∈N r n/r which is worst at r = 3.

Theorem 1. Let n ∈ N and let F be a CNF formula on n variables with at
most one minor literal per variable. Then Algorithm 1 checks the satisfiability
of F in runtime O∗(3n/3) ⊆ O(1.4423n).

Correspondingly, we can express a pseudo-lower runtime bound of Ω(2n/2) which
holds if the general SAT problem cannot be solved faster than in Ω(2n).

Lemma 2. Let n ∈ N and γ > 1. If the satisfiability of any CNF formula
on n variables with at most one minor literal per variable can be checked in
runtime O(γn) then the satisfiability of any (unrestricted) CNF formula on n
variables can be checked in runtime O(γ2n).

Proof. Every general CNF formula on n variables can be equivalently trans-
formed to a CNF formula on 2n variables such that each minor literal occurs
at most once. For each variable, replace all minor literals by a new variable and
add a clause containing the minor literal and the negation of the new variable.

A similar reduction from 3-CSP improves this pseudo-lower bound to Ω(3n/3)
but is omitted due to lack of space.

3 SAT of CNF Formulas with at Most d Minor Literals

The following lemma by Purdom [5] allows us to recursively check the satisfia-
bility of CNF formulas with n variables and at most d minor literals per variable
in runtime O(γn) with γ < 2.

Lemma 3. Let be a literal of a CNF formula F . Then either F [= False] is
satisfiable or for all satisfying assignments of F there is a clause C containing
such that all literals of C are assigned False except for which is assigned
True.

The previous lemma allows us to check the satisfiability of CNF formulas with at
most d minor literals per variable by using a branching strategy parameterized
by the branching threshold k for short clauses.

Algorithm 2
Parameter: Branching threshold k for short clauses.
Input: CNF formula F with set of minor literals M
Output: True if F is satisfiable, otherwise False.
If F is empty then return True.
If F contains an empty clause then return False.
If F contains a clause C = (1 ∨ . . . ∨ r) with r ≤ k then

try branches F [1 = . . . = i−1 = False, i = True] for i ∈ {1, . . . , r}
else

pick ∈M contained in the clauses C1, . . . , Cs and
let C′

i = Ci[= False] for i ∈ {1, . . . , s} and
try branches F [= True] and F [= True, C′

i = False] for i ∈ {1, . . . , s}.

Solving SAT for CNF Formulas with a One-Sided Restriction 83

Let T (n) be the runtime of the algorithms branching procedure (where n is
the number of variables). The runtime of the branch where the shortest clause
is of size r ≤ k is of order T (n− 1) + . . . + T (n− r) which is at most

TA(n) =
k∑

i=1

T (n− i) (1)

The growth constant of this recursion is known to be the k–th order Fibonacci
number Φk (see, e. g., [8]). That is, TA(n) ∈ O∗(Φn

k), where Φk is the unique
solution of the equation xk(2 − x) = 1 in the interval (1, 2). The number Φ2 is
the golden ratio (1 +

√
5)/2, more initial values of Φk are given in Table 1.

The runtime of the branch where the shortest clause is of size at least k +1 is
at most TB(n) = T (n− 1) + s · T (n− (k + 1)) where s is the number of clauses
containing the eliminated literal. Thus, for s ≤ d, this runtime is at most

TB(n) = T (n− 1) + d · T (n− 1− k) . (2)

Hence, the maximum of TA(n) and TB(n) is an upper bound on the run-
time T (n) of Algorithm 2 with parameter k on CNF formulas with at most d
minor literals per variable. Obviously, T (n) is strongly influenced by the choice
of k. For example, if we choose k = d + 1, then TA(n) dominates TB(n).

Theorem 2. Let n, d ∈ N and let F be a CNF formula on n variables with at
most d minor literals per variable. Then Algorithm 2 with parameter d+1 checks
the satisfiability of F in runtime O∗(Φn

d+1).

In the remainder of this section we see, how to choose the parameter k optimally
for every fixed d ∈ N. Suppose that k is also fixed. Then T (n) is of order γn,
where γ ∈ (1, 2) is the smallest constant that satisfies both recursions (1) and (2).

Lemma 4. Let n, d, k ∈ N with d ≥ 2 and let F be a CNF formula on n variables
with at most d minor literals per variable. Then Algorithm 2 with parameter k
checks the satisfiability of F in runtime O∗(γn) for all γ ∈ (1, 2) with

d

γ − 1
≤ γk ≤ 1

2− γ
. (3)

Proof. The statement follows by induction on n. �
A direct consequence of the previous lemma is that the minimal γ satisfying
condition (3) dominates the growth constant of T (n) for given d and k. Clearly,
the condition is satisfied for every d ≥ 2 and k ∈ N as γ tends to two. On the
other hand, as γ tends to one, eventually one of the two inequalities is violated.
Thus, a minimal γ satisfies at least one of the two equations with equality.

On the other hand, if there exists a k such that the corresponding γ satisfies
both inequalities, then γ is optimal for all values of k (decreasing k violates the
first inequality while increasing k violates the second one; in both cases we need
to increase γ to satisfy condition (3) again). This situation occurs if γ = 2− 1

d+1 .
In this case the lower and the upper bound on γk both have the value d+1. For
smaller values of γ, condition (3) can never be satisfied.

84 D. Johannsen, I. Razgon, and M. Wahlström

Lemma 5. Let d ∈ N with d ≥ 2. Then 2 − 1
d+1 is a lower bound on all γ

satisfying condition (3) for any k ∈ N.

Note that this lower bound is not necessarily attained since k is integral. If
we drop this condition, then for k∗

d = log(d + 1)/(log(2d + 1)− log(d + 1)) both
inequalities in condition (3) become equalities. For k ≥ �k∗

d�, the right inequality
in condition (3) is violated for γ = 2 − 1

d+1 , while the left right inequality is
satisfied. For k ≤ �k∗

d� the opposite holds. The further k is apart from k∗
d, the

more we have to increase γ to satisfy the violated inequality. Thus one of �k∗
d�

and �k∗
d� is optimal, depending for which the corresponding γ is smaller. Table 1

lists kd, γA and γB for the initial values of d.

Lemma 6. Let d ≥ 2 and let k∗
d = log(d+1)

log(2d+1)−log(d+1) . Moreover, let γA and γB

be the unique solutions of (2− γA) γ
�k∗

d�
A = 1 and (γB − 1) γ

�k∗
d�

B = d in the inter-
val (1, 2). Then γd = min{γA, γB} satisfies condition (3) for kd ∈ {�k∗

d�, �k∗
d�}

chosen respectively. Furthermore, in this γd is minimal for all k.

Finally, we show a closed form upper bound for the runtime of Algorithm 2.

Theorem 3. Let n, d ∈ N with d ≥ 2 and kd and γd as in Lemma 6. Then
Algorithm 2 with parameter kd checks the satisfiability of a CNF formula on n
variables with at most d minor literals per variable in runtime O

(
(2 − 1

2d+1)n
)
.

Proof. For d ≥ 2, γ is smaller than d/(γ− 1) and strictly smaller than 1/(2− γ)
divided by d/(γ−1). Hence, there exists a k ∈ N such that γ = 2− 1

2d+1 satisfies
condition (3). The statement follows from Lemma 4 and Lemma 5.

4 Further Generalization

We can further generalize Lemma 3 to obtain an algorithm of runtime O(γn)
with γ < 2 for a class of CNF formulas which neither have short clauses nor a
one-sided restriction on the variable occurrences.

Table 1. Runtime bounds for Algorithm 2 with parameter k on CNF formulas with
at most d minor literals per variable. For d = 2, . . . , 6 the table shows the following
values: the optimal choice of the branching threshold kd and the corresponding relaxed
real-valued optimum k∗

d; the two choices of the optimal growth constant γA and γB

(Lemma 6) with the better one in bold face; the lower bound 2−1/(d+1) (Lemma 5), the
upper bound 2−1/(2d+1) (Theorem 3), and the weak upper bound Φd+1 (Theorem 2).

d kd k∗
d γA γB 2 − 1

d+1 2 − 1
2d+1 Φd+1

2 2 2.15064 1.69562 1.83929 1.66667 1.80000 1.83929
3 3 2.47720 1.86371 1.83929 1.75000 1.85714 1.92756
4 3 2.73817 2.00000 1.83929 1.80000 1.88889 1.96595
5 3 2.95602 2.11634 1.83929 1.83333 1.90909 1.98358
6 3 3.14343 1.88947 1.92756 1.85714 1.92308 1.99196

Solving SAT for CNF Formulas with a One-Sided Restriction 85

A covering of a literal in a CNF formula F is a set L of literals, such that (i)
no literal and its negation are both in L, (ii) is not in L, and (iii) all clauses
of F containing also contain a literal of L. We say that F has a d–covering if
one of the two literals corresponding to each variable has a covering of size d.

It is not hard to see that a CNF formula with clauses of size at least d+1 and
at most d minor literals per variable has a d–covering. But, this weaker condition
is still sufficient for breaking the O(2n) runtime barrier.3

Algorithm 3
Input: CNF formula F with set of minor literals M
Output: True if F is satisfiable, otherwise False.
If F is empty then return True.
If F contains an empty clause then return False.
Pick literal 0 covered by 1, . . . d and
try branches F [0 = . . . = i−1 = True, i = False] for i ∈ {0, . . . , d}

According to Lemma 3 and the definition of a d–covering of a CNF formula F ,
any satisfying assignment of F also satisfies the clause (¬0 ∨ ¬1 ∨ · · · ∨ ¬d).

Theorem 4. Let n, d ∈ N. Then Algorithm 3 checks the satisfiability of a CNF
formula on n variables that has a d–covering in runtime O∗(Φn

d+1).

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-
restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)

2. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause
density for SAT. In: Annual IEEE Conference on Computational Complexity, pp.
252–260 (2006)

3. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.M., Papadimitriou,
C.H., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for
k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

4. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algo-
rithm for k-sat. J. ACM 52(3), 337–364 (2005)

5. Purdom, P.W.: Solving satisfiability with less searching. IEEE Trans. Pattern Anal.
Machine Intell. 6(4), 510–513 (1984)

6. Wahlström, M.: An algorithm for the SAT problem for formulae of linear length. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 107–118. Springer,
Heidelberg (2005)

7. Wahlström, M.: Faster exact solving of SAT formulae with a low number of occur-
rences per variable. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 309–323. Springer, Heidelberg (2005)

8. Wolfram, D.: Solving generalized Fibonacci recurrences. The Fibonacci Quar-
terly 36(2), 129–145 (1998)

3 For fixed d ∈ N we can test for a d–covering of a CNF formula (and also find
it) in runtime O(nf(d)). However, Parameterized Complexity Theory suggests also a
lower bound of Ω(nd). Furthermore, the problem to compute a minimal covering of a
given CNF formula is a generalization of the hitting set problem, which in polynomial
time cannot be approximated better than within a factor Θ(log n) unless P=NP [1].

On Some Aspects of Mixed Horn Formulas

Stefan Porschen�, Tatjana Schmidt, and Ewald Speckenmeyer

Institut für Informatik, Universität zu Köln,
Pohligstr. 1, D-50969 Köln, Germany

{porschen,schmidt,esp}@informatik.uni-koeln.de

Abstract. We consider various aspects of the Mixed Horn formula class
(MHF). A formula F ∈ MHF consists of a 2-CNF part P and a Horn
part H . We propose that MHF has a central relevance in CNF, because
many prominent NP-complete problems, e.g. Feedback Vertex Set, Ver-
tex Cover, Dominating Set and Hitting Set can easily be encoded as
MHF. Furthermore we show that SAT for some interesting subclasses
of MHF remains NP-complete. Finally we provide algorithms for two of
these subclasses solving SAT in a better running time than O(20.5284n) =
O((3

√
3)n) which is the best bound for MHF so far, over n variables. One

of these subclasses consists of formulas, where the Horn part is negative
monotone and the variable graph corresponding to the positive 2-CNF
part P consists of disjoint triangles only. For this class we provide an
algorithm and present the running times for the k-uniform cases, where
k ∈ {3, 4, 5, 6}. Regarding the other subclass consisting of certain k-
uniform linear mixed Horn formulas, we provide an algorithm solving
SAT in time O((k

√
k)n), for k ≥ 4.

Keywords: Mixed Horn formula, satisfiability, polynomial time reduc-
tion, exact algorithm, NP-completeness.

1 Introduction

In recent time the interest in designing exact algorithms providing better upper
time bounds than the trivial ones for NP-complete problems and their NP-hard
optimization counterparts has increased. Of particular interest in this context
is the investigation of exact algorithms for testing the satisfiability (SAT) of
propositional formulas in conjunctive normal form (CNF). This interest stems
from the fact that SAT is well known to be a fundamental NP-complete problem
appearing naturally or via reduction as the abstract core of many application-
relevant problems. In this context it turns out that reducing many classical
NP-complete problems to SAT, formulas of a restricted structure are generated.
Namely formulas F = P ∧ H of a positive monotone 2-CNF part P and a
Horn part H , called mixed Horn formulas (MHF) according to [8]. Therefore
it is worthwhile to design good algorithms for solving formulas of this special
structure.
� The first author was partially supported by the DFG project under grant No. SP

317/7-1.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 86–100, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Some Aspects of Mixed Horn Formulas 87

As already shown in [8] graph colorability, problems for level graphs, like
level-planarity test or the NP-hard crossing-minimization problem [10], can be
formulated conveniently in terms of MHF. The main purpose of this paper is
to provide a more systematical insight into MHF as destination class and thus
to illustrate that MHF has a central relevance in CNF. To that end we provide
straightforward reductions to MHF-SAT for prominent NP-complete problems,
e.g. the Feedback Vertex Set, the Vertex Cover, the Dominating Set and the
Hitting Set problem can easily be encoded as MHF.

Furthermore we consider restricted subclasses of MHF and show that they
are NP-complete w.r.t. SAT.

Finally we provide algorithms for two NP-complete subclasses of MHF solving
SAT significantly faster than in time O((3

√
3)n) = O(1.443n) the currently best

worst case running time of an algorithm for solving unrestricted members of the
class MHF [8]. The first of these subclasses consists of formulas, where the Horn
part is negative monotone and the variable graph corresponding to the positive
2-CNF part P consists of disjoint triangles only. For this class we provide an
algorithm and give the running times for the cases that H is k-uniform, for
k ∈ {3, 4, 5, 6} The motivation for looking at this subclass of MHF consists of
the fact that the analysis of an algorithm for solving unrestricted MHF has its
worst case behaviour just for this class of formulas.

The other NP-complete subclass of MHF actually consists of infinitely many
subclasses with parameter k ≥ 3. For fixed k a worst-case bound of O(k

n
k)

is shown. For k = 4, 5, 6, 10 the bases of the exponential growth are k
1
k ≈

1.415, 1.38, 1.259 resp., going to 1 with k going to ∞. While the class looks
artificial the derivation of the running time deserves attention. In this case enu-
merating minimal satisfying assignments of the Horn part of the input formulas
helps, whereas for unrestricted MHF, and for the first subclass mentioned above
enumerating minimal satisfying assignments of the 2-CNF part yields better
bounds.

By the way, there is an interesting connection between MHF-SAT and un-
restricted SAT presented in [8]: If there is some α < 1

2 such that each MHF
M = P ∧H , where P has k ≤ 2n variables, can be solved in time O(‖M‖2αk),
then there is some β ≤ 2α < 1 such that SAT for an arbitrary CNF-formula F
can be decided in time O(‖F‖2βn). Here ||F || denotes the length of F . Although,
there has been made some progress recently in finding non-trivial bounds for SAT
for arbitrary CNF formulas [2,3], it would require a significant breakthrough in
our understanding of SAT to obtain upper time bounds of the form O(2(1−ε)n),
for some ε > 0.

To fix the notation and basics, let CNF denote the set of duplicate-free con-
junctive normal form formulas over propositional variables x ∈ {0, 1}. A positive
(negative) literal is a (negated) variable. The negation (complement) of a literal
l is l̄. Each formula F ∈ CNF is considered as a conjunction of clauses, and
each clause c ∈ F is a disjunction of literals, which in addition is assumed to be
free of complemented pairs {x, x̄}. For formula F , clause c, by V (F), V (c) we
denote the variables contained (neglecting negations), respectively. We demand

88 S. Porschen, T. Schmidt, and E. Speckenmeyer

that clauses may not contain a literal more than once. The satisfiability problem
(SAT) asks, whether input F ∈ CNF has a model, which is a truth assignment
α : V (F) → {0, 1} assigning at least one literal in each clause of F to 1. The truth
assignment α is obtained from α by complementing all assignments: α := 1−α.
A backbone variable has the same value in each model of a satisfiable formula.

2 Classical NP-Complete Problems Encoded as
MHF-SAT

In this section we provide reductions from some classical NP-complete problems
to SAT and we will show that by complementing all literals of the corresponding
SAT-instance F we obtain a mixed Horn instance F . The Graph Colorability
problem was mentioned already as an example of such a problem in [8]. But there
are many more NP-complete problems which can easily be encoded into MHF-
SAT. To demonstrate this, we explicitly transform four classical NP-complete
problems, [4], to MHF-SAT, the Feedback Vertex Set, the Vertex Cover, the
Hitting Set, and the Dominating Set problem. Inspecting the reductions of a
dozen of further NP-complete problems to SAT, presented in [12], it turns out
that most of them can easily be brought to the MHF-form.

The following abbreviations for propositional formulas are useful for our re-
duction: The formula at most one (at least one) defines that at most one (at
least one) literal of the argument is true:

at most one{l1, . . . , lx} :=
∧

1≤i<j≤x

(li ∨ lj)

at least one{l1, . . . , lx} := (l1 ∨ l2 ∨ . . . ∨ lx)

With these fomulas it is easy to define exactly one, which is true if, and only if,
exactly one of its arguments is true:

exactly one{l1, . . . , lx} := at most one{l1, . . . , lx} ∧ at leat one{l1, . . . , lx}

We begin with the Feedback Vertex Set Problem, which is defined as follows:

INSTANCE: G = (V, A) a directed graph, k ≤ |V | positive integer.
QUESTION: Is there a set V ′ ⊆ V , |V ′| ≤ k, such that G−{V ′} has no directed

circles?

The Feedback Vertex Set problem can be reduced to SAT as follows [12]:

X = {[v, i]|v ∈ V, 1 ≤ i ≤ |V |}

F =
∧

1≤i≤|V |
exactly one{[v, i]|v ∈ V } ∧

∧
v∈V

exactly one{[v, i]|1 ≤ i ≤ |V |}

∧
∧

(u,v)∈A

∧
k<i≤|V |

([u, i]⇒ at least one{[v, j]|1 ≤ j ≤ k, i < j ≤ |V |})

On Some Aspects of Mixed Horn Formulas 89

This reduction is due to the fact, that any directed acyclic graph (DAG) admits
a linear ordering of its vertices such that all arcs are directed from left to right.
The first two parts

∧
describe a one-to-one labeling of the vertices, where the

vertices with labels ≤ k are considered to build V ′. In the last part
∧∧

the DAG
property is checked for the reduced graph. The existence of an edge between a
vertex u with a label i > k and a vertex v with a label j, where k < j < i, is not
allowed. Let α be a satisfying truth assignment of F . Then all the vertices v ∈ V ,
for which α([v, i]) = 1 holds, where 1 ≤ i ≤ k, belong to the feedback vertex
set V ′ and vice versa. Now we will consider F and show that we can provide a
reduction to a mixed Horn instance. Let V = {v1, . . . , vn} then:

F =
∧

1≤i≤n

⎛⎝([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i]) ∧
∧

1≤j<l≤n

([vj , i] ∨ [vl, i])

⎞⎠
∧
∧

v∈V

⎛⎝([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, n]) ∧
∧

1≤j<l≤n

([v, j] ∨ [v, l])

⎞⎠
∧

∧
(u,v)∈A

∧
k<i≤n

(
[u, i] ∨ ([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, k] ∨ [v, i + 1] ∨ . . . ∨ [v, n])

)
Complementing all literals in F we obtain F ∈ MHF:

F =
∧

1≤i≤n

∧
1≤j<l≤n

([vj , i] ∨ [vl, i]) ∧
∧

v∈V

∧
1≤j<l≤n

([v, j] ∨ [v, l])

∧
∧

1≤i≤n

([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i]) ∧
∧

v∈V

([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, n])∧

∧
(u,v)∈A

∧
k<i≤n

(
[u, i] ∨ ([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, k] ∨ [v, i + 1] ∨ . . . ∨ [v, n])

)

We have:

P :=
∧

1≤i≤n

∧
1≤j<l≤n

([vj , i] ∨ [vl, i]) ∧
∧

v∈V

∧
1≤j<l≤n

([v, j] ∨ [v, l])

and

H :=
∧

1≤i≤n

([v1, i] ∨ [v2, i] ∨ . . . ∨ [vn, i]) ∧
∧

v∈V

([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, n])∧

∧
(u,v)∈A

∧
k<i≤n

(
[u, i] ∨ ([v, 1] ∨ [v, 2] ∨ . . . ∨ [v, k] ∨ [v, i + 1] ∨ . . . ∨ [v, n])

)

Obviously F = P ∧ H is a mixed Horn formula which satisfies: Let α be a
satisfying truth assignment of F , then all the vertices v ∈ V belong to the FVS
V ′, for which holds: α([v, i]) = 0, where 1 ≤ i ≤ k.

90 S. Porschen, T. Schmidt, and E. Speckenmeyer

Similarly we can provide a reduction from the Feedback Arc Set problem to
MHF-SAT. Recall that in the Feedback Arc Set problem instead of vertices we
consider arcs.

Next we treat the Vertex Cover Problem, which is defined as follows:

INSTANCE: Graph G = (V, E), positive integer k ≤ |V |.
QUESTION: Is there a set V ′ ⊆ V , |V ′| ≤ k, such that for all {u, v} ∈ E we
have {u, v} ∩ V ′ 	= ∅?

The Vertex Cover problem can be reduced to SAT as follows [12]:

X = {[v, i]|v ∈ V, 1 ≤ i ≤ k}

F =
∧

1≤i≤k

at most one{[v, i]|v ∈ V }

∧
∧

(u,v)∈E

at least one{[u, i], [v, i]|1 ≤ i ≤ k}

The first part
∧

implies that at most k vertices are chosen (literals [v, i] set to
true), and the second part

∧
verifies that the chosen vertex set is a vertex cover

indeed.
We now consider F and after some calculation we will assert that a reduction

to a mixed Horn instance is possible. Let V = {v1, . . . , vn} then we obtain:

F =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

∧
∧

(u,v)∈E

([u, 1] ∨ [v, 1] ∨ [u, 2] ∨ [v, 2] ∨ . . . ∨ [u, k] ∨ [v, k])

Complementing all literals in F we obtain F :

F =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

∧
∧

(u,v)∈E

([u, 1] ∨ [v, 1] ∨ [u, 2] ∨ [v, 2] ∨ . . . ∨ [u, k] ∨ [v, k])

For F we have: Let α be a satisfying truth assignment of F , then all the vertices
which belong to the literals [v, i] assigned 0 to, form the vertex cover V ′. We set

P =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

and
H =

∧
(u,v)∈E

([u, 1] ∨ [v, 1] ∨ [u, 2] ∨ [v, 2] ∨ . . . ∨ [u, k] ∨ [v, k])

Obviously P is a positive monotone 2-CNF formula and H is a Horn formula.
Thus the instance F = P ∧H belongs to the class MHF.

On Some Aspects of Mixed Horn Formulas 91

The Hitting Set problem can also be encoded into MHF-SAT. It is defined as
follows:

INSTANCE: Set C of subsets of a finite set S, a positive integer k ≤ |S|.
QUESTION: Is there a set S′ ⊆ S, |S′| ≤ k, such that for all c ∈ C we have
c ∩ S′ 	= ∅?

The Hitting Set problem can be transformed to SAT as follows [12]:

X = {[s, i]|s ∈ S, 1 ≤ i ≤ k}

F =
∧

1≤i≤k

at most one{[s, i]|s ∈ S} ∧
∧
c∈C

at least one{[s, i]|s ∈ c, 1 ≤ i ≤ k}

This obviously is a generalization of the Vertex Cover Problem, where |c| = 2
for all c ∈ C. The first part choses at most k elements from S which will be part
of S′. The second part verifies that this selection is indeed a hitting set. From
F we obtain:

F =
∧

1≤i≤k

∧
1≤j<l≤|S|

([sj , i] ∨ [sl, i]) ∧
∧

c∈C

([s1, 1] ∨ . . . ∨ [s1, k] ∨ . . . ∨ [sc, 1] ∨ . . . ∨ [sc, k])

By s1, . . . s|c| we denote all elements of c, for an arbitrary c ∈ C. Complementing
all literals of F we obtain a mixed Horn formula F :

F =
∧

1≤i≤k

∧
1≤j<l≤|S|

([sj , i] ∨ [sl, i]) ∧
∧

c∈C

([s1, 1] ∨ . . . ∨ [s1, k] ∨ . . . ∨ [sc, 1] ∨ . . . ∨ [sc, k])

It is obviously that F = P ∧H a mixed Horn formula, where

P :=
∧

1≤i≤k

∧
1≤j<l≤|S|

([sj , i] ∨ [sl, i])

is a positive monotone 2-CNF formula and

H :=
∧
c∈C

([s1, 1] ∨ . . . ∨ [s1, k] ∨ . . . ∨ [sc, 1] ∨ . . . ∨ [sc, k])

is a negative monotone Horn formula.
Next we consider the Dominating Set Problem, which is defined as follows:

INSTANCE: Graph G = (V, E), a positive integer k ≤ |V |.
QUESTION: Is there a set V ′ ⊆ V , |V ′| ≤ k, such that for all v ∈ V we have
({v} ∪N(v)) ∩ V ′ 	= ∅?

Transforming the Dominating Set problem to SAT can be done as follows [12]:

X = {[v, i]|v ∈ V, 1 ≤ i ≤ k}

F =
∧

1≤i≤k

at most one{[v, i]|v ∈ V }

∧
∧

v∈V

at least one{[w, i]|1 ≤ i ≤ k, w ∈ ({v} ∪N(v))}

92 S. Porschen, T. Schmidt, and E. Speckenmeyer

The first
∧

assures that at most k vertices are selected, and the second
∧

verifies
that the chosen vertex-set is a dominating set. We denote by N(v) the set of
all vertices which are adjacent to the vertex v. If F is satisfiable, then all the
vertices belong to the dominating set which correspond to the variables assigned
to 1. Let V = {v1, . . . , vn}. Then we obtain from F :

F =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

∧
∧

v∈V

([v, 1] ∨ . . . ∨ [v, k] ∨ [vN1 , 1] ∨ . . . ∨ [vN1 , k] ∨ [vN2 , 1] . . . ∨ [vN2 , k] ∨ . . .

∨ [vNv , 1] . . . ∨ [vNv , k])

Let vN1 , . . . , vNv be all the vertices adjacent to v in G. Complementing all
literals of F we obtain F :

F =
∧

1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

∧
∧

v∈V

([v, 1] ∨ . . . ∨ [v, k] ∨ [vN1 , 1] ∨ . . . ∨[vN1 , k] ∨ [vN2 , 1] . . . ∨ [vN2 , k] ∨ . . .

∨ [vNv , 1] . . . ∨ [vNv , k])

We set
P :=

∧
1≤i≤k

∧
1≤j<l≤n

([vj , i] ∨ [vl, i])

and

H :=
∧

v∈V

([v, 1]∨. . .∨[v, k]∨[vN1 , 1]∨. . .∨[vN1 , k]∨[vN2 , 1] . . .∨[vN2 , k]∨. . .∨[vNv , 1] . . .∨[vNv , k])

Then P is a positive monotone 2-CNF formula and H is a negative monotone
Horn formula. Thus F = P ∧ H is a mixed Horn formula. Considering any
satisfying truth assignment of F all the vertices which correspond to the variables
which are assigned 0 to belong to the dominating set.

In this way, we can show similarly that nearly all NP-complete problems
introduced by Karp [4] have a natural and straightforward encoding as an MHF-
SAT problem. Some of these problems are listed below and are treated in the
full version of the paper [7]:

– The Edge Dominating Set Problem:

INSTANCE: Graph G = (V, E), a positive integer k ≤ |E|.
FRAGE: Is there a set E′ ⊆ E, |E′| ≥ k, such that for all e ∈ E we have
that there exists a f ∈ E′, such that e ∩ f 	= ∅?

– The Idependent Set Problem:

INSTANCE: Graph G = (V, E), a positive integer k > 0.
QUESTION: Is there a set V ′ ⊆ V , |V ′| ≥ k, such that for all {u, v} ∈ E we
have {u, v} 	⊆ V ′?

On Some Aspects of Mixed Horn Formulas 93

– The Minimum Maximal Matching Problem:

INSTANCE: Graph G = (V, E), a positive integer k ≤ |E|.
QUESTION: Is there a set E′ ⊆ E, |E′| ≤ k, such that for all {u, v} ∈ E we
have {u, v} ∩ V (E′) 	= ∅?

The number of Boolean variables in the resulting member of MHF often is larger
than the relevant instance size of the original problem, e.g. in case of the Feedback
Vertex Set problem (FVS) n2 vs. n. However, solving the MHF member by an
up-to-date SAT solver is pretty fast, because of the large number of 2-clauses
which allow for iterated unit resolution phases, in case of FVS of length n each
time.

3 Some NP-Complete Subclasses of MHF

This section is devoted to establish NP-completeness of certain interesting sub-
classes of MHF. The first class to consider consists of formulas whose Horn
clauses are k-uniform, that means they have all equal length k, where k ≥ 3 and
whose 2-CNF part is positive monotone. We denote this class by MHkF+. Next
we consider the class MH−

k F+ ⊂ MHkF+ of mixed Horn formulas with a positive
monotone 2-CNF part and negative monotone, k-uniform, Horn clauses, k ≥ 3.
Afterwards we consider a subclass of MH−

k F+, for which additionally holds that
the variable-graph GP of the positive monotone 2-CNF part P consists of dis-
joint edges only. We denote such a class of formulas by MH−

k Fd+. Finally we
consider the class LMH−

k F+ ⊂ MH−
k F+ which consists of mixed Horn formulas

of MH−
k F+, for which additionally holds that the Horn clauses are linear [9]. A

CNF formula F is called linear if

(1) F contains no pair of complementary unit clauses and
(2) for all c1, c2 ∈ F : c1 	= c2 we have |V (c1) ∩ V (c2)| ≤ 1.

Theorem 1. SAT is NP-complete for the following MHF-subclasses: MHkF+,
MH−

k F+, MH−
k Fd+ and LMH−

k F+, for k ≥ 3.

Proof. Note that the NP-completeness of all these MHF-subclasses directly fol-
lows from Schaefer’s theorem [11], because none of these subclasses is properly
contained in any tractable CNF class due to Schaefer’s theorem. However, direct
reductions are of interest per se. To that end, it is easy to see that the encoding
of k-colorability for graphs, k ≥ 3, to SAT directly yields the NP-completeness of
LMH−

k F+ ⊂MH−
k F+ ⊂ MHkF+. But this connection to graph colorability does

not hold for the class MH−
k Fd+, for which we provide the following reduction: It

is well-known that the class k-CNF, k ≥ 3, is NP-complete. Let F ∈ k-CNF be
an arbitrary formula. Then we can reduce F to a SAT-equivalent formula M̃F of
the class MH−

k Fd+ in polynomial time. The transformation consists of two main
steps, the first of which is refered to as MHF-reduction:
1. Let V +(F) ⊆ V (F) be the set of all variables having a positive occurrence
in F . For each variable x ∈ V +(F) we introduce a new variable yx 	∈ V (F) and

94 S. Porschen, T. Schmidt, and E. Speckenmeyer

perform the following steps: We replace each positive occurrence of x ∈ V +(F)
in the k-clauses by yx, for each x ∈ V +(F). Let F ′ be the resulting formula.
Next we add the constraints yx ⇔ x, for all x ∈ V +(F), to F ′, equivalent to

(yx ⇔ x) ⇔ ((yx ∨ x) ∧ (yx ∨ x))

yielding the new formula

MF = F ′ ∧
∧

x∈V +(F)

(yx ∨ x) ∧ (yx ∨ x)

Here F ′ only consists of Horn clauses of length k.

2. As formulas of each class MH−
k Fd+ are allowed to contain positive 2-clauses

only, but MF also contains the negative monotone 2-clauses (yx ∨ x), for each
x ∈ V +(F), we add to each such negative 2-clause exactly (k − 2) backbone
variables zi

x and the formulas F i
x ∈ MH−

k Fd+,for i = 1, . . . , k − 2, such that zi
x

is a backbone variable of F i
x which has to be set to 1. All such formulas F i

x,
i = 1, . . . , k−2, must be pairwise and also with F ′ variable-disjoint. An example
of such a backbone-formula is:

Let i = 1, . . .k − 2.

F i
x = (zi

x1 ∨ zi
x2) ∧ (zi

x3 ∨ zi
x4) ∧ (zi

x5 ∨ zi
x6) ∧ . . . ∧ (zi

x(2k−1) ∨ zi
x(2)k)

∧ (zi
x1 ∨ zi

x3 ∨ . . . ∨ zi
x(2k−1)) ∧ . . . ∧ (zi

x2 ∨ zi
x4 ∨ . . . ∨ zi

x(2k−1))

The Horn part consists of 2k−1 negative monotone k-clauses, where each k-clause
consists of the variables of a vertex cover of the positive monotone 2-CNF part
(zi

1∨zi
2)∧ (zi

3∨zi
4)∧ (zi

5∨zi
6)∧ . . .∧ (zi

2k−1∨zi
2k). Since the positive monotone 2-

CNF part has altogether 2k negative monotone vertex covers, but there are only
2k−1 negative monotone k-clauses in the Horn part, the formula F i

x is satisfiable
and has k backbone-variables, which have to be set to 1. We assume that the
vertex cover which selects from each positive 2-clause the variable with the odd
index does not appear as negative Horn clause in F i

x. Thus each variable of this
clause is a backbone variable of F i

x.
Finally we add to each negative monotone clause (yx ∨ x) of MF the literals

z1
x, . . . , zk−2

x , for x ∈ V +(F), and obtain (yx ∨ x ∨ z1
x ∨ . . . ∨ zk−2

x). Altogether
we obtain

M̃F = F ′ ∧
∧

x∈V +(F)

(
(yx ∨ x ∨ z1

x ∨ . . . ∨ zk−2
x) ∧ F 1

x ∧ . . . ∧ F k−2
x

)
∧

∧
x∈V +(F)

(yx ∨ x) ∈MH−
k Fd+

It holds that M̃F is satisfiable if and only if F is satisfiable: We assume that F
is satisfiable. Let α be a model of F , then we set all the variables, which M̃F

and F have in common, also according to α. Each newly introduced variable yx

On Some Aspects of Mixed Horn Formulas 95

equivalent to x ∈ V (F) is set as follows: yx = 1−α(x). Since the added backbone
formulas F i

x are always satisfiable, M̃F is also satisfiable. If F is unsatisfiable,
then we obviously cannot satisfy F ′ and hence M̃F . ��

4 Algorithms for SAT of Further Mixed Horn Classes

In this section we consider some special classes of mixed Horn formulas, for which
we can solve SAT in a running time better than O(20.5284n). Let H be a k-uniform
(k ≥ 3), negative monotone and linear formula, with the following properties:
All clauses can be arranged in c1, . . . , c|H| and for each clause ci all the literals
can be arranged such that either the last literal of the clause ci (i = 1 . . . , |H |)
and the first literal of ci+1 are equal or the clauses are variable-disjoint. Further,
each clause ci, i ∈ {1, . . . , |H |} is not allowed to share a variable with any other
clause except with ci−1 and ci+1. Then we say H has overlappings in boundary
variables only.

Definition 1. We consider formulas M = G ∧ H ∈ MHF with the following
properties: G consists of 2-clauses not necessarily positive monotone and H con-
sists of linear Horn clauses, for which holds: All clauses are negative monotone,
k-uniform, k ≥ 3, and there is an ordering c1, c2 . . . , c|H| of the clauses of H
and an ordering of all literals in each clause, such that H has overlappings in
boundary variables only. We denote this class by k-BLMHF (k-Boundary-Linear
mixed Horn formulas).

Each connected component of the incidence graph GH for H , looks like Figure
1. Note that H with this restriction belongs to a subclass of the class of nested
formulas studied by Knuth [6].

����

��

�
�
�
�

�
�
�
�

����

����
����

�
�
�
�
�
�
�
�

��
��
��
�� �

�
�
�

��

�
�
�
�

x1

x

x

x

x

x

x

2

3

4

5

6

7

x

x
x

8

9

10

c

c

c

1

2

3

Fig. 1. The incidence graph for H = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x4 ∨ x5 ∨ x6 ∨ x7) ∧ (x7 ∨
x8 ∨ x9 ∨ x10)

96 S. Porschen, T. Schmidt, and E. Speckenmeyer

Theorem 2. SAT remains NP-complete for the class k-BLMHF, k ≥ 3.

Proof. We provide a polynomial time reduction from k-CNF-SAT, which is NP-
complete to k-BLMHF-SAT, proving the NP-completeness of the latter. Let F ∈
k-CNF. First we perform the MHF-reduction step as in the proof of Theorem
1 obtaining the corresponding formula MF . Let the clauses of F ′ be labeled as
follows: c1, c2, . . . , c|F ′|. Then we proceed as follows:

At the beginning let i = 1, as long as i < |F ′|: We consider ci. As long as ci

has a common variable x with cj , for some j ≥ i + 1, we replace x in cj by
yx, yx not yet occurring in the set of variables of MF , and add the 2-clauses
(x ∨ yx) ∧ (yx ∨ x) to MC . Now we set i := i + 1.

Obviously MF equivalent to F concerning SAT and the transformation can
be performed in polynomial time. ��

Theorem 3. SAT for k-BLMHF, k ≥ 3, can be solved in time O((k
√

k)n).

Proof. The following algorithm solves SAT for the class k-BLMHF in polynomial
time:

Algorithm k-BLMHF

INPUT: F ∈ k-BLMHF, F = G ∧H , where G consists of 2-clauses and H is k-
uniform, negative monotone, linear and has overlappings in boundary variables
only.

OUTPUT: A satisfying truth assignment for F , if F is satisfiable. Else F is not
satisfiable.

begin
1. Compute all minimal Hitting Sets of H , let these be Si, i = 1, . . . , m.
2. Set i = 1.
3. As long as no satisfying truth assignment is found and i ≤ m, do:

(a) Assign 0 to all variables of Si and 1 to all other variables and check, whether
this assignment satisfies G.

(b) If it does, then the assignment is a truth assignment for F and the algorithm
stopps.

(c) If not, then check for Si+1.

4. Return F is unsatisfiable.

end

Correctness. The algorithm k-BLMHF verifies for each minimal hitting set of
H , whether the partial truth assignment setting all variables in the hitting set
to 0 can be extended to a model of F by checking the remaining 2-CNF part
in linear time [1]. Since we consider only the minimal hitting sets of H we do
not perform any restriction concerning the satisfiability of H , because for each
model of F the set of all variables, which are set to 0 either corresponds to a
minimal hitting set of H or it contains a minimal hitting set of H itself.

On Some Aspects of Mixed Horn Formulas 97

Analysis of the running time. Let F ∈ k-BLMHF with n variables. One can
show that the number of minimal hitting sets is maximal if the Horn part of
F consists of disjoint clauses only. So the running time of the algorithm k-
BLMHF is dominated by this subclass of k-BLMHF, for which the number of
minimal hitting sets of H is k�n/k� yielding the running time O((k

√
k)n). As

the sequence (k
√

k)k∈N decreases monotonically with increasing k, we obtain for
k ≥ 4 a running time better than 3n/3. ��

The next NP-complete subclass of MHF we consider is the class MH−F� con-
sisting of mixed Horn formulas M = P ∧H , with a negative monotone Horn part
H and a positive monotone 2-CNF part P , for which holds that the correspond-
ing variable graph GP consists of disjoint triangles only. We further assume that
V (P) = V (H).

Theorem 4. SAT remains NP-complete for the class MH−
3 F�.

Proof. In Theorem 1 is shown, that SAT remains NP-complete for the class
MH−

k Fd+. Now we provide a polynomial time reduction from MH−
k Fd+-SAT to

MH−F�-SAT. Let F ∈MH−
k Fd+ with a Horn part consisting of negative mono-

tone clauses and with a positive monotone 2-CNF part P , whose corresponding
variables graph GP consists of disjoint edges only:

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6) ∧ . . .

Then for each such (xi ∨ xi+1) we introduce a new variable yi,i+1 and enlarge
the P part to P̃ :

(x1 ∨ x2) ∧ (x1 ∨ y1,2) ∧ (x2 ∨ y1,2) ∧ (x3 ∨ x4) ∧ (x3 ∨ y3,4) ∧ (x4 ∨ y3,4)
∧ (x5 ∨ x6) ∧ (x5 ∨ y5,6) ∧ (x6 ∨ y5,6) ∧ . . .

Now obviously GP̃ consists of disjoint triangles. Further we add to H the fol-
lowing clauses each one consisting of all variables of the same triangle of P , but
all negated: (x1 ∨ x2 ∨ y1,2) ∧ (x3 ∨ x4 ∨ y3,4) ∧ (x5 ∨ x6 ∨ y5,6) ∧ . . . and obtain
H̃ . Setting yi,i+1 to 1, for all i we can satisfy the new added 2-clauses and also
the new added Horn clauses. Thus F̃ = P̃ ∧ H̃ is satisfiable if and only if F is
satisfiable. ��

Now we present an algorithm solving SAT for formulas in MH−F�. The running
time is stated below for k-uniform Horn parts, for k ∈ {3, 4, 5, 6}. The proof of
the running time is rather technical, therefore it is omitted and is contained in
the full version of the paper [7]. By backtracking variables of the Horn part are
set to 0 without violating P . To that end, in each triangle at least two variables
must be set to 1. When setting a variable x to 0 to satisfy a clause in the Horn
part, the other two variables of the triangle $x must be set to 1. Clauses of H
that are satisfied are put on a stack. Variables set to 0 are stored in the set V
and those set to 1 are stored in the set W .

98 S. Porschen, T. Schmidt, and E. Speckenmeyer

ALGORITHM MH−F�

INPUT: Let a formula M = (P ∧ H) ∈ MH−F� be given and let k be the
number of triangles in GP .
OUTPUT: M is satisfiables, if there is a satisfying truth assignment for M .
Else: M is not satisfiable.

begin
1.) Let H = c1 ∧ c2 ∧ ... ∧ ch, where |c1| ≤ . . . ≤ |ch|.
2.) Delete all clauses cj , for which there is a clause ci, (i < j), such that ci ⊂ cj .
3.) Delete all clauses ci of H , where V ($j) ⊂ V (ci), for a $j ∈ GP .
4.) Set V := ∅, W := ∅, i := 1 and sH ← create.
5.) For all i = 1, . . . , h set a Pointer ∗ in front of the first literal in the clause ci:

(ci, ∗) = (∗xi1 ∨ . . . ∨ xim)

6.) Perform Procedure Backtrack(c1,∗).

end

Procedure Backtrack(ci,∗)
1.) Set all variables of the unit clauses and save all variables assigned 0 in V
and all variables assigned 1 in W . When assigning 0 to a variable x search for
the triangle $x ∈ GP also containing x and set the two other variables of $x

to 1. If there are complementary unit clauses or another contradiction, then the
procedure stopps and returns M is not satisfiable.
2.) If (ci, ∗) = (xi1 ∨ . . . ∨ xil

∨ . . . ∨ xim∗) and i = 1, then the procedure stopps
end returns M is unsatisfiable.
3.) If (ci, ∗) = (xi1 ∨ . . .∨ xil

∨ . . .∨ xim∗) and i 	= 1, then perform the following
steps:

(a) Perform the operation popsH : Delete all the clauses from the stack, which
have been put on the stack in the last procedure call, and insert them in the
original order into H .

(b) Delete all variables xi saved in V in the last procedure call from V and save
them in W , after deleting the two other variables from $xi from W .

(c) Verify, if there are two variabels of the same triangle saved in W . If yes, then
set the third variable of this triangle to 0 and save it in Ṽ .

(d) Set the Pointer at the beginning of the clause ci:

ci := (∗xi1 ∨ . . . ∨ xil
∨ . . . ∨ xim)

(e) Call the Procedure Backtrack(ci−1 ,∗) .

4.) If (ci, ∗) = (xi1 ∨ . . . ∨ ∗xil
∨ . . . ∨ xim), then set j := il.

5.) As long as xj ∈ W and j ≤ im, augment j: j = j + 1.
6.) If j = im + 1, then: Perform the same steps as in 3. a)-e).
7.) If xj /∈W and j ≤ im, then perform the following steps:

On Some Aspects of Mixed Horn Formulas 99

a) Set xj := 0; V := V ∪ {xj}; W := W ∪$xj ;
b) Set the Pointer in front of xj+1:

(ci, ∗) := (xi1 ∨ . . . ∨ xj ∨ ∗xj+1 ∨ . . . ∨ xim)

c) Delete all clauses from H , which contain xj and put them on stack sH :
sH := pushsH (Cxj), where Cxj is the set of all remaining Horn clauses
containing the variable xj .

d) If H is empty, then the procedure stops and returns M is satisfiable.
e) If H is not empty, then call the Procedure Backtrack(ci+1,∗).

Note that the algorithm works for arbitrary negative Horn parts. Specifically for
k-uniform Horn parts, a careful analysis of yields the following results:

Theorem 5. [7] Algorithm MH−F� decides satisfiability for M ∈ MH−F� over
n variables in time O(1.336n), for k = 3, in O(1.384n), for k = 4, in O(1.397n),
for k = 5 and in O(1.408n), for k = 6.

For k = 3 the running time is better than the so far best runnig time O(1.427n),
[5], for mixed Horn formulas with an arbitrary 3-uniform Horn part.

Remark 1. For k = 3 a better running time of O(1.273n) can be achieved
using a clever branching strategy. However, it is not obvious how to extend this
branching algorithm to the cases k ≥ 4.

Acknowledgement. We want to thank the anonymous referees for their valu-
able comments, especially the first reviewer for establishing Remark 1.

References

1. Aspvall, B., Plass, M.R., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Inform. Process. Lett. 8, 121–123 (1979)

2. Dantsin, E., Wolpert, A.: Algorithms for SAT based on search in Hamming balls,
ECCC Report No. 17 (2004)

3. Dantsin, E., Wolpert, A.: A faster clause-shortening algorithm for SAT with no
restriction on clause length. J. Satisfiability, Boolean Modeling and Computation 1,
49–60 (2005)

4. Karp, R.M.: Reducibility Among Combinatorial Problems. In Complexity of Com-
puter Computations. In: Proc. Sympos. IBM Thomas J. Watson Res. Center, York-
town Heights, pp. 85–103. Plenum, New York (1972)

5. Kottler, S., Kaufmann, M., Sinz, C.: A New Bound for an NP-Hard Subclass of
3-SAT Using Backdoors. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS,
vol. 4996, pp. 161–167. Springer, Heidelberg (2008)

6. Knuth, D.E.: Nested Satisfiability. Acta Informatica 28, 1–6 (1990)
7. Porschen, S., Schmidt, T., Speckenmeyer, E.: MHF – a central subclass of CNF,

working paper, Universität zu Köln (2009)
8. Porschen, S., Speckenmeyer, E.: Satisfiability of Mixed Horn Formulas. Discrete

Appl. Math. 155, 1408–1419 (2007)
9. Porschen, S., Speckenmeyer, E., Zhao, X.: Linear CNF formulas and satisfiability.

Discrete Appl. Math. 157, 1046–1068 (2009)

100 S. Porschen, T. Schmidt, and E. Speckenmeyer

10. Randerath, B., Speckenmeyer, E., Boros, E., Hammer, P., Kogan, A., Makino, K.,
Simeone, B., Cepek, O.: A Satisfiability Formulation of Problems on Level Graphs.
In: ENDM, vol. 9 (2001)

11. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978, pp.
216–226. ACM Press, New York (1978)

12. Stamm-Wilbrandt, H.: Programming in propositional Logic or Reductions: Back
to the Roots (Satisfiability), Technical Report, Universität Bonn (1991)

Variable Influences in Conjunctive Normal
Forms

Patrick Traxler�

Institute of Theoretical Computer Science, ETH Zürich, Switzerland
patrick.traxler@inf.ethz.ch

Abstract. We provide an upper bound on the total influence of Boolean
functions defined by k-cnfs. Our bound is nearly optimal. We achieve it
by an extension and appropriate use of an algorithm of Paturi, Pudlák,
and Zane. We also discuss applications to prove and compute lower
bounds for the maximum clause width k.

1 Introduction

Changing the value of a random point x ∼ μ, μ a distribution, in coordinate
i can change the value f(x) of a Boolean function f : {0, 1}n → {0, 1}. The
probability that the value changes is called variable influence and denoted by
Iμ

i (f). The total influence is the sum over all variable influences and denoted
by Iμ(f). It is one of the key concepts in the analysis of Boolean functions and
related to concepts and problems in different areas. A by far not complete list
includes constant depth circuit complexity, the study of voting systems, existence
of sharp thresholds in random structures. See also [14,19].

We provide a nearly tight upper bound on the total influence of k-cnfs. The
bound fulfills an optimality criterion introduced by Kahn & Kalai [12] which
we will discuss below. The benefit of our bound is that it allows lower bounds
for the maximum clauses width of Boolean functions with a sparse amount true
points. We also discuss the problem of computing variable influences.

1.1 Upper Bounds on Total Influence and Applications

We state our result first. Notation is introduced in Sec. 2. Define

uμ :=
n

max
i=1

{(μi log(1/μi))−1, ((1− μi) log(1/(1− μi)))−1}

for a product distribution μ = (μ1, ..., μn). Define μ(f) := Prx∼μ(f(x) = 1).

Theorem 1. Let μ be a product distribution. For every k-cnf function f with
μ(f) > 0,

Iμ(f) ≤ uμ k μ(f) log(1/μ(f)).

� This work was supported by the Swiss National Science Foundation SNF under
project 200021-118001/1.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 101–113, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

102 P. Traxler

A weaker bound was discovered by Boppana in the context of circuit complexity.
Boppana notes in [4] that Iμ(f) ≤ 2k if f is a k-cnf or k-dnf and μ the uniform
distribution. Boppana uses this fact together with H̊astad’s Switching Lemma
to show Iμ(f) ≤ 2k �10 log(4s)�d−2 for any f computable by a circuit of bottom
fan in at most k, depth d, and size s. This result improves on Linial et al. [16].
A further improvement was obtained by H̊astad [9]. A standard application uses
the fact that parity has total influence n w.r.t. the uniform distribution. We
conclude from it that parity and actually any Boolean function with large total
influence requires exponentially large circuits of constant depth.

Our bound is stronger in the following sense. It implies Iμ(f) ≤ 1.062 k, μ
the uniform distribution, and it supports our intuition that the total influence
should be small if μ(f) is small. We will discuss the optimality of this bound
below and also how it relates to work of Kahn & Kalai [12]. The benefit of
our bound is that is non-trivial for sparse f , i.e., f with μ(f) = 2cn for some
c < 1 which depends on k. The trivial upper bound for I(f) is 2 n μ1/2(f). It is
better than our bound as soon as μ1/2(f) < 2−n/k. Another benefit is that the
bound holds for the Bernoulli distribution which we denote by μp. The Bernoulli
distribution is used for example in the random graph model in which every edge is
chosen with probability p. A graph property like connectivity induces a Boolean
function and our bound applies to such functions, i.e., random graph properties.

Our upper bound can be used to prove or compute lower bounds for the max-
imum clause width. The maximum clause width is one of the critical parameters
in SAT-solving. Small clause width seems to be necessary for fast SAT-solving
of general cnfs. Impagliazzo & Paturi [11] give a theoretical justification for this.
Their result implies that we can not reduce efficiently the maximum clause width
to, say, 3 with only introducing o(n) many new variables, unless we can solve
k-SAT in subexponential time. With regard to this observations we consider the
following problem. We have given a Boolean function f : {0, 1}n → {0, 1} and
we want to know a lower bound for the smallest k such that f is definable by a
k-cnf.

There are different ways to prove lower bounds for the total influence of a
Boolean function. For example, Kahn et al. [13] prove that any Boolean function
has a highly influential variable. This implies that any symmetric Boolean func-
tion has high total influence. Nisan & Szegedy [18] relate the total influence of a
Boolean function to the maximum degree of a polynomial defining it. O’Donnell
et al. [20] show that Boolean functions of low decision tree complexity have a
highly influential variable.

Computing a lower bound for the maximum clause width is probable more in-
teresting from a practical point of view. Despite computational results in learning
theory, researchers in computer science and artificial intelligence started recently
to consider computing variables influences. Considered function classes are for
example given by the weighted majority rule [17,15], network flow games or (s, t)-
connectivity games [2]. The problem is usually #P-complete [23,17,2]. Bachrach
et al. [1] provide an algorithm for approximating variable influences up to an

Variable Influences in Conjunctive Normal Forms 103

additive error ±ε of any Boolean function using only membership queries. We
discuss in Sec. 4 how to use SAT-solvers to compute variable influences.

1.2 Related Work: PPZ and Its Extension

The proof of the upper bound is probabilistic. It has its origin in circuit complex-
ity. Paturi et al. [22] used it originally to prove that parity requires OR-AND-OR
circuits, so called Σ3-circuits, with at least Ω(n1/4 2

√
n) many gates. This bound

is tight up to a constant factor. They generalized their result and showed that
Iμ(f) = O(log(sn)2), s the number of gates in a Σ3-circuit computing f , and
μ the uniform distribution. Their bound works however only if μ(f) = 1

2 . They
also observe that their technique yields a randomized algorithm of running time
roughly O(2(1−1/k)n) to decide satisfiability of a given k-cnf. Calabro et al. [5]
used the Edge-Isoperimetric Inequality to show that the algorithm is sensitive
to the number of satisfying assignments. The edge-isoperimetry of a Boolean
function is closely related to its total influence.

Our contributions are an extension of the analysis in [22,5] to an algorithm
in which every variable is set with a given probability. The probabilities may
differ. Moreover, we use the analysis to bound the total influence. We use the
observation that the success probability of the algorithm is high if the total
influence is large. This implies an upper on the total influence since the success
probability can not be too large. This observation also allows us to conclude
Theorem 1 for the uniform case directly from the analysis of PPZ [22,5] if we
additionally observe that the degree of isolation I(x) of a satisfying assignment
x, as used in [22,5], and the total influence are closely related. More precisely,
let μ be the uniform distribution. Then, Iμ(f) = 2−n (

∑
x:f(x)=1 n− I(x)).

1.3 Background: Optimal Low Total Influence

Kahn & Kalai [12] raise several conjectures about ”optimal” functions in [12].
Any of these conjectures is still unverified to our knowledge but would have
implications for the study of k-cnf functions as well. This is what will point
next.

Definition 2 (Kahn & Kalai [12]). Let C ≥ 0 and 0 < p < 1 and μp denote
the Bernoulli distribution with bias p. A (monotone increasing) Boolean function
f with μp(f) > 0 is called (C, p)-optimal iff

Iμp(f) ≤ C

p log(1/p)
μp(f) log(1/μp(f)).

The reason for Kahn & Kalai to name their concept (C, p)-optimal comes from
the Edge-Isoperimetric Inequality and a generalization of it to the Bernoulli
distribution [12] based on Log-Sobolev Inequalities. These inequalities show that
the total variable influence of (C, p)-optimal functions is optimal up to the factor
C and a factor depending on p. Kahn & Kalai [12] showed

Iμp(f) ≥ 1
p log(1/p)

μp(f) log(1/μp(f))

104 P. Traxler

for any monotone increasing f . (The Edge-Isoperimetric Inequality corresponds
to the case p = 1/2 and f an arbitrary Boolean function.) An implication of
Theorem 1 is.

Corollary 3. Let 0 < p ≤ 1
2 . Every k-cnf function is (k, p)-optimal.

We determined therefore the total variable influence of k-cnf functions up to a
factor depending on k and p and also identified a first important class of (C, p)-
optimal functions. For this special case and p = 1

2 we can show that Conjecture
(6a) from [12] holds.

Conjecture 4 (Kahn & Kalai [12]). Given C, there are K, δ > 0 such that for
any (C log(1/p), p)-optimal and monotone increasing function f with μp(f) > 0
there exists I ⊆ {1, ..., n} of size at most K log(1/μp(f)), such that μp(f(x) =
1 | xi = 1 ∀i ∈ I) ≥ (1 + δ)μp(f).

Theorem 5. Let f be a monotone increasing k-cnf function. There exists I ⊆
{1, ..., n} of size at most O(k 2k log(1 + δ)) such that

Pr
x∼μ1/2

(f(x) = 1 | xi = 1 ∀i ∈ I) ≥ (1 + δ)μ1/2(f).

Similar results for the uniform distribution and k-cnfs are also known. Theorem
(3.5) in [10] and Lemma (7) from [24]. We will prove the theorem actually for
any (not necessarily monotone) k-cnf function and the index set I can be any
set which contains all the variable indices of enough clauses.

Not every C-optimal function is a C-cnf function. O’Donnell & Wimmer [21]
provide a (monotone) function f with I(f) = O(log(n)) such that any cnf which
agrees on at least a 0.1-fraction of the points with f has size at least 2Ω(n/ log(n)).
Henceforth, even approximate representations are impossible.

2 Notation

2.1 Variable Influences and Expectations

We assume that 0 < μi < 1 for every i ∈ [n] = {1, ..., n}. A product distribution
μ over {0, 1}n is given by (μ1, ..., μn) and the probability mass function μ(x) :=∏n

i=1 μxi

i (1 − μi)1−xi , x ∈ {0, 1}n. Let ei be the point with the i-th bit 1 and
0 elsewhere and let ⊕ denote addition modulo 2. The variable influence of the
i-th variable is defined as

Iμ
i (f) := Pr

x∼μ
(f(x) 	= f(x⊕ ei)).

The total influence is defined as Iμ(f) :=
∑n

i=1 I
μ
i (f). The expectation Eμ[] is

defined w.r.t. μ and for functions h : {0, 1}n → R.

Eμ[h] :=
∑

x∈{0,1}n

h(x)μ(x).

Variable Influences in Conjunctive Normal Forms 105

The quantity μ(f) := Prx∼μ(f(x) = 1) is sometimes called the expectation of f
since μ(f) = Eμ(f) for {0, 1}-valued f . We refer to it as the bias of f .

We make the following conventions. We write μp for the Bernoulli distribution,
i.e., μp,i = p for every i ∈ [n]. Whenever we omit μ we assume the uniform
distribution. For example, if f(x1, ..., xn) = 1 ⊕

⊕n
i=1 xi then μ1/2(f) = 1

2 and
I(f) = n.

2.2 Conjunctive Normal Forms

A k-cnf function f is a Boolean function f : {0, 1}n → {0, 1} for which there
exist P1, ..., Pm ⊆ [n] and N1, ..., Nm ⊆ [n] such that |Pi| + |Ni| ≤ k for every i
and

f(x1, ..., xn) =
m∧

i=1

∨
j∈Pi

xj ∨
∨

k∈Ni

xk.

The ORs in this definition are called clauses and the whole expression a k-cnf.
By exchanging ∧ and ∨ we get the dual expression which is called a k-dnf. The
ANDs in a k-dnf are called terms. We call a point which maps to 1 (resp. 0)
under f a true point (resp. false point) of f . Every true point of a k-cnf function
is a satisfying assignment of a corresponding k-cnf and vice versa.

3 Upper Bound on Total Influence

We will define a distribution D on {0, 1}n which is strongly concentrated on
the true points of a k-cnf function if its total influence is large. Using stan-
dard inequalities from probability, like Jensen’s inequality, we conclude that the
concentration and therefore the total influence can not be too large.

Some Preparation. Let x ∈ {0, 1}n, i ∈ [n], and j ∈ {0, 1}. Define sj(f, x, i)
to be 1 if xi = j and f(x) 	= f(x ⊕ ei), otherwise 0. The identity Iμ

i (f) =
Ex∼μ[s0(f, x, i) + s1(f, x, i)] is immediate. We will need however the following.

Lemma 6. It holds that

Iμ
i (f) =

1
1− μi

Eμ[f(x) s0(f, x, i)] +
1
μi

Eμ[f(x) s1(f, x, i)]. (1)

Proof. To prove the claim it suffices to show that

μi

1− μi
Eμ[f(x) s0(f, x, i)] = Eμ[(1 − f(x)) s1(f, x, i)] (2)

and

1− μi

μi
Eμ[f(x) s1(f, x, i)] = Eμ[(1 − f(x)) s0(f, x, i)] (3)

106 P. Traxler

since

Iμ
i (f) = Eμ[|f(x)− f(x⊕ ei)|] =

∑
j∈{0,1}

Eμ[sj(f, x, i)] =

=
∑

j∈{0,1}
Eμ[f(x) sj(f, x, i)] + Eμ[(1− f(x)) sj(f, x, i)].

We prove (2). Equation (3) follows by the same argument. Fix some true point
x′ of f with x′

i = 0. It has mass μ(x′) and s0(f, x′, i) indicates if a false point y′

with |x′ ⊕ y′| = 1 exists. This point has mass μi

1−μi
μ(x′) since x′

i = 0. Moreover,
every pair (x, y) of a true point x with xi = 0 and a false point y with |x⊕y| = 1
and yi = 1 contribute the same value μi

1−μi
μ(x) = μ(y) to the sum on the left

side of

μi

1− μi

∑
|x⊕y|=1

(1− xi) f(x) (1 − f(y))μ(x) =
μi

1− μi
Eμ[f(x) s0(f, x, i)]

and to the sum on the left side of∑
|x⊕y|=1

yi f(x) (1 − f(y))μ(y) = Eμ[(1− f(y)) s1(f, y, i)].

The left sides of these identities are thus equal. This implies that (2) holds and
therefore also the lemma. ��

We recall Jensen’s Inequality.

Proposition 7. Let ϕ : R ⊆ R → R be convex, 0 ≤ λi ≤ 1,
∑n

i=1 λi = 1. Then

ϕ

(n∑
i=1

xi λi

)
≤

n∑
i=1

ϕ(xi)λi. (4)

Definition of D. Let F be a k-cnf which defines f and μ = (μ1, ..., μn) a
product distribution. We start with defining the randomized algorithm eppz(F)
(Extended Paturi & Pudlák & Zane Algorithm [22]). It takes as input F and
outputs a point x ∈ {0, 1}n. The algorithm chooses uniformly at random some
permutation π of the variable indices [n]. For i = 1, ..., n the variable vπ(i) is set
to 1 if the single-variable clause (vπ(i)) is in F , set to 0 if (vπ(i)) is in F , or —
in the last case — the value of vπ(i) is set to 1 with probability μi and to 0 with
probability 1 − μi. At the end x is output. Define for D = DF the mass of a
point x as

DF (x) := Pr(eppz(F) outputs x).

The probability is over the random choices eppz makes. We are only interested
in the event that some true point, i.e. satisfying assignment, is output.

Variable Influences in Conjunctive Normal Forms 107

Lemma 8 (Extension of [22]). Let f be a k-cnf function defined by F and x
a true point of f . Then

DF (x) ≥ μ(x)
n∏

i=1

(
1
μi

) s1(f,x,i)
k

(
1

1− μi

) s0(f,x,i)
k

. (5)

Proof. Denote by lj(F, π, x, i) the indicator the eppz sets the value of variable
vi randomly to j, j ∈ {0, 1}, given that π was chosen and x output. We prove
the following claim first.

Eπ [l0(F, π, x, i)] ≤ (1− xi)
(

1− s0(f, x, i)
k

)
= (1− xi)−

(
s0(f, x, i)

k

)
. (6)

Eπ [l1(F, π, x, i)] ≤ xi

(
1− s1(f, x, i)

k

)
= xi −

(
s1(f, x, i)

k

)
. (7)

Let x be true point and x′ be a false point such that |x⊕ x′| = 1 and xi 	= x′
i.

Since x is a true point and x′ a false point there exists a clause C =
∨

l∈P vl ∨∨
l∈N vl in F such that C(x′) = 0 and C(x) = 1. Since |x⊕x′| = 1 the only literal

in C set to 1 by x is the literal of variable vi. (Note that i ∈ P if j = 1 and i ∈ N
if j = 0.) Algorithm eppz sets the value of vi deterministically if i occurs after
all indices P ∪ N \ {c} in π. This happens with probability 1/|P ∪ N | ≥ 1/k.
The existence of C is indicated by sj(f, x, i). Thus Prπ(lj(F, x, π, i) = 0) ≥
sj(f, x, i)/k. This implies Prπ(lj(F, x, π, i) = 1) ≤ 1−sj(f, x, i)/k whether xi = 0
or xi = 1. The probability is however 0 in one of the cases which we express by
a factor xi and 1− xi, respectively. This proves the claim.

Let P be the set of all permutations of the variable indices [n] and x ∈ {0, 1}n.
Using Jensen’s Inequality (4) and then (6) yields

DF (x) =
∑
σ∈P

Pr(eppz(F) = x |π = σ) Pr(π = σ) =

=
∑
σ∈P

n∏
i=1

μ
l1(F,σ,x,i)
i (1− μi)l0(F,σ,x,i) 1

n!
≥(4)

≥ 2Eπ[
∑n

i=1 log(μi) l1(F,π,x,i))+log(1−μi) l0(F,π,x,i)] =

=
n∏

i=1

μ
Eπ[l1(F,π,x,i)]
i (1− μi)Eπ[l0(F,π,x,i)] ≥(6),(7)

≥
n∏

i=1

μ
xi− s1(f,x,i)

k

i (1− μi)(1−xi)− s0(f,x,i)
k =

= μ(x)
n∏

i=1

μ
− s1(f,x,i)

k

i (1− μi)−
s0(f,x,i)

k .

��

108 P. Traxler

Concentration on True Points. We are now in a position to make our intu-
ition precise. We provide a lower bound for EDF [f] and use it to prove an upper
bound on Iμ(f). We prove actually a more general result than Theorem 1 to
emphasize a counter intuitive fact. Hard instances of eppz have small total influ-
ence. Comparing with results from circuit complexity [4,16] and PAC-learning
[16,7] we would rather guess the opposite. In the definition of hard instances we
take into account that the success probability pF of eppz, i.e. pF = Ex∼DF [f(x)],
depends on μ(f). In particular, pF ≥ μ(f) holds.

Definition 9. Let pF be the success probability of eppz given a k-cnf F as an
input. Let f be the function defined by F . F is called c-hard iff pF ≤ c μ(f). A
Boolean function g is called (c, k)-hard iff there exists a k-cnf G defining g such
that G is c-hard.

Theorem 10. Let μ be a product distribution and f be a (c, k)-hard function
with μ(f) > 0. Then,

Iμ(f) ≤ uμ k μ(f) log(c).

Theorem 1 follows because any k-cnf function is (1/μ(f), k)-hard.

Proof (of Theorem 10). Define

S := Eμ

[
f(x)

(n∑
i=1

log(1/μi) s1(f, x, i) + log(1/(1− μi)) s0(f, x, i)
)]

.

We have

EDF [f] ≥(5) Eμ

[
f(x)

n∏
i=1

(
1
μi

) s1(f,x,i)
k

(
1

1− μi

) s0(f,x,i)
k

]
=

= μ(f) Eμ

[
1

μ(f)
f(x)

n∏
i=1

(
1
μi

) s1(f,x,i)
k

(
1

1− μi

) s0(f,x,i)
k

]
≥(4)

≥ μ(f) 2S (k μ(f))−1
.

By the prerequisites, there exists a k-cnf F such that

EDF [f] ≤ c μ(f),

and therefore S ≤ k μ(f) log(c). It it is worthwhile to take a second look at this
calculation and note that the application of Jensen’s Inequality is responsible for
the factor μ(f) log(c) in our final result. We are left with relating S and Ip(f).
By linearity of expectation

S =
n∑

i=1

log(1/μi) Eμ[f(x) s1(f, x, i)] + log(1/(1− μi)) Eμ[f(x) s0(f, x, i)].

Variable Influences in Conjunctive Normal Forms 109

By Lemma 6

Iμ(f) =
n∑

i=1

1
μi

Eμ[f(x) s1(f, x, i)] +
1

1− μi
Eμ[f(x) s0(f, x, i)].

We want a constant c = c(μ) s.t. Iμ(f) ≤ c S. A sufficient condition is given by
the inequalities (

1
μi
− c log(1/μi)

)
Eμ[f(x) s1(f, x, i)] ≤ 0

and (
1

1− μi
− c log(1/(1− μi))

)
Eμ[f(x) s0(f, x, i)] ≤ 0

for all i ∈ [n]. Setting c = uμ finishes the proof of Theorem 1. ��

Remarks

– The combinatorial picture: The quantity n−I(f) (2μ1/2(f))−1 is the average
degree of the graph which consists of all true points of f and in which we
draw an edge between two vertices iff they have Hamming distance 1 to each
other. If the graph emerges from a k-cnf function then it is average degree
is at least n− k log(1/μ1/2(f)).

– Tightness: We define the parity function on k out of n variables as
PARk

n(x) := 1⊕x1⊕...⊕xk. Clearly, μ1/2(PARk
n) = 1

2 and I(PARk
n) = k. We

recall the Edge-Isoperimetric Inequality: I(f) ≥ 2 μ1/2(f) log(1/μ1/2(f)) for
any Boolean function f . The functions PAR1

n and PARk
n witness that the

Edge-Isoperimetric Inequality and our upper bound are tight for functions
with μ1/2(f) = 1

2 , so called balanced functions. In particular, the gap be-
tween the smallest possible and the largest possible total influence of k-cnf
functions has to be exactly k for balanced functions and if μ = μ1/2. It
is not clear for what other values of μ1/2(f) and k this holds. However,
I(f) = 2 μ1/2(f) log(1/μ1/2(f)) for all 1-cnf functions since the bounds
match in this case.

– Improvement of Boppana’s Bound [4]: A consequence of our upper bound
is I(f) ≤ 1.062 k. For seeing this note that the upper bound on I(f) has
the form 2 z log(1/z). The function z log(1/z) takes its maximum in the
interval (0, 1] at the inverse Euler constant 1/2.718... what we can see by
differentiating.

– DNFs: By definition, Iμ
i (f) = Iμ

i (1 − f). This implies an upper of Iμ(f) ≤
uμ k (1− μ(f)) log(1/(1− μ(f))) for any k-dnf function f .

4 Calculating Variable Influences

Variable influences capture the effect of removing a variable. This is a simple
consequence of Lemma 6. Assume we have the given Boolean function fF defined

110 P. Traxler

by a cnf F . Let F (i) be F after removing xi. We consider F (i) as a cnf over n−1
variables. Thus, fF (i) is a Boolean function of the form {0, 1}n−1 → {0, 1}. Define
ΔiF := μ(fF)− μ(fF (i)). We observe: If F is satisfiable, then F (i) is satisfiable
iff ΔiF < μ(fF).

Lemma 11. Let i ∈ [n] and F be a cnf which defines f .

Iμ
i (f) =

∑
j∈{0,1}

Pr
x∼μ

(f(x) = 1 |xi = j)− Pr
x∼μ

(f(x) = f(x⊕ ei) = 1 |xi = j).

Proof. We recall (1) (Lemma 6). It holds that

Iμ
i (f) =

1
1− μi

Eμ[f(x) s0(f, x, i)] +
1
μi

Eμ[f(x) s1(f, x, i)].

The claim follows then from

Eμ[f(x) sj(f, x, i)] = Pr
x∼μ

(xi = j, f(x) = 1, f(x⊕ ei) = 0) =

= Pr
x∼μ

(xi = j, f(x) = 1)− Pr
x∼μ

(xi = j, f(x) = 1, f(x⊕ ei) = 1) =

= Pr
x∼μ

(xi = j)
(

Pr
x∼μ

(f(x) = 1 |xi = j)− Pr
x∼μ

(f(x) = f(x⊕ ei) = 1 |xi = j)
)

.

��
We get for the uniform distribution,

Ii(f) = 2(μ1/2(f)− Pr
x∼μ1/2

(f(x) = f(x⊕ ei) = 1)).

Corollary 12. Let i ∈ [n] and F be a cnf which defines f .

ΔiF =
Ii(f)

2
.

Proof. Clearly, μ1/2(fF (i)) = Prx∼μ1/2(fF (x) = fF (x ⊕ ei) = 1). ��

We noted this result because it allows us to compute variable influences in cnfs
without designing a new algorithm. If we can compute the involved probabilities,
we can compute variable influences and thus the total influence. If μ = μ1/2, the
problem reduces to counting by the previous corollary. An approach of Gomes
et al. [8] uses SAT-solvers to approximately count satisfying assignments. Their
approach outperforms exact counting algorithms on the tested instances. If the
Boolean function is not given by a cnf, we may use the algorithm in [1]. Also note
that the theorem yields tractable special cases. An important tractable special
case of #SAT are cnfs with bounded tree-width. See for example [6].

Variable Influences in Conjunctive Normal Forms 111

Further Remarks

– Complexity: The problem of computing variable influences in cnfs w.r.t.
μ1/2 is #P-completeness. This follows directly from the observation that
In+1(fF ′) = 2μ1/2(fF ′) = μ1/2(fF) for a cnf F over variables x1,, xn and
F ′ = F ∧ xn+1. For the #P-completeness of computing the total influence
of a cnf we set F ′ = F ∧

∧n
i=1(xi ∨ xn+i)∧ (xi ∨ xn+i). If τ is the number of

satisfying assignments of F ′ then τ
2n is the number of satisfying assignments

of F .
– Combining our upper bound with the observation that F (i) is satisfiable

iff ΔiF < μ1/2(fF), we can remove any of at least n − k log(1/μ1/2(fF))
variables to get a satisfiability equivalent k-cnf.

5 A Special Case of a Conjecture of Kahn and Kalai

Our proof of Theorem 5 is based on the concept of a canonical decision tree used
by Beame [3] to give a combinatorial proof of H̊astad’s Switching Lemma.

Canonical Decision Tree. Let F be a cnf. Fix an order of the variables. The
canonical decision tree for F , T (F) is defined inductively as follows: 1. If F is
constant 0 or 1 then T (F) consists of a single leaf node labeled by the corre-
sponding constant value 0 or 1. 2. Let C a clause in F and V be the set of
variables in C. T (F) starts with a complete binary tree for V . Each leaf lα in
the tree is associated with a point α ∈ {0, 1}V corresponding to the the path
from the root to lα. For each lα we replace the leaf node lα by the subtree T (Fα).
Fα is F with the variables set according to α.

Let F be a k-cnf defining f . We construct a point y ∈ {0, 1}I, I ⊆ [n], s.t.

Pr
x∼μ1/2

(f(x) = 1 | xi = yi ∀i ∈ I) ≥ (1 + δ)μ1/2(f). (8)

The point y is described by a path from the root down T (f).

Construction. We go in the canonical decision tree from the root to some inner
node or leaf. If we are in situation (1) we stop. In situation (2) we set I ← I ∪V
and extend y by α∗ ∈ {0, 1}V s.t. the bias of the function defined by Fα∗ is
maximized. We stop as soon as 8 is satisfied.

Case (1) is clear. So, let C and V be as in Case (2). There are α1, ..., α2|V |−1 ∈
{0, 1}V points satisfying C. One point leads directly to the leaf node 0. For every
i ∈ [2|V |−1] let fi : {0, 1}n → {0, 1} be the function resulting from f after fixing
the values of the coordinates in V according to αi. Then

2|V |−1∑
i=1

μ1/2(fi) = μ1/2(f).

112 P. Traxler

By averaging there exists j ∈ [2|V | − 1] such that

μ1/2(fj) ≥
μ1/2(f)
2|V | − 1

.

Thus

Pr
x∼μ1/2

(f(x) = 1 |xi = α∗
i ∀i ∈ V) ≥ μ1/2(f)

2|V |

2|V | − 1
≥ μ(f)

2k

2k − 1
.

Let Vt be the union of all variable index sets after t steps and let y ∈ {0, 1}Vt

describe the path gone so far. Then

Pr
x∼μ

(f(x) = 1 |xi = yi ∀i ∈ Vt) ≥ μ(f)
(

2k

2k − 1

)t

.

Define t as the smallest integer larger than log(1 + δ)/ log(2k/(2k − 1)). This
proves the existence of a point y ∈ {0, 1}I which satisfies (8) and |I| ≤ t k =
O(k 2k log(1 + δ)).

We did not use the monotonicity of f yet. So, let f be monotone increasing.
The theorem states the existence of I and ỹ = (1, ..., 1) ∈ {0, 1}I rather than an
arbitrary point y ∈ {0, 1}I. Since f is monotone increasing

Pr
x∼μ1/2

(f(x) = 1, xi = 1 ∀i ∈ I) ≥ Pr
x∼μ1/2

(f(x) = 1, xi = yi ∀i ∈ I).

Together with μ1/2(y) = μ1/2(ỹ), the theorem follows.

References

1. Bachrach, Y., Markakis, E., Procaccia, A.D., Rosenschein, J.S., Saberi, A.: Ap-
proximating power indices. In: Proc. of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 943–950 (2008)

2. Bachrach, Y., Rosenschein, J.S.: Computing the Banzhaf power index in network
flow games. In: Proc. of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 335–340 (2007)

3. Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01, De-
partment of Computer Science and Engineering, University of Washington (Novem-
ber 1994)

4. Boppana, R.B.: The average sensitivity of bounded-depth circuits. Information
Processing Letters 63(5), 257–261 (1997)

5. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of Unique
k-SAT: An isolation lemma for k-CNFs. J. Computer and System Sciences 74(3),
386–393 (2008)

6. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas
of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–
529 (2008)

7. Furst, M.L., Jackson, J.C., Smith, S.W.: Improved learning of AC0 functions. In:
Proc. of the 4th Annual ACM Conference on Computational Learning Theory, pp.
317–325 (1991)

Variable Influences in Conjunctive Normal Forms 113

8. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: A new strategy for ob-
taining good bounds. In: Proc. of the 21st National Conference on Artificial Intel-
ligence and the 18th Innovative Applications of Artificial Intelligence Conference
(2006)

9. H̊astad, J.: A slight sharpening of LMN. J. Computer and System Sciences 63(3),
498–508 (2001)

10. Hirsch, E.A.: A fast deterministic algorithm for formulas that have many satisfying
assignments. Logic Journal of the IGPL 6(1), 59–71 (1998)

11. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Computer and System
Sciences 62(2), 367–375 (2001)

12. Kahn, J., Kalai, G.: Thresholds and expectation thresholds. Combinatorics, Prob-
ability and Computing 16(3), 495–502 (2007)

13. Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In:
Proc. of the 29th Annual IEEE Symposium on Foundations of Computer Science,
pp. 68–80 (1988)

14. Kalai, G., Safra, S.: Threshold phenomena and influence, with some perspec-
tives from mathematics, computer science, and economics. Discussion Paper Series
dp398, Center for Rationality and Interactive Decision Theory, Hebrew University,
Jerusalem (August 2005)

15. Klinz, B., Woeginger, G.J.: Faster algorithms for computing power indices in
weighted voting games. Mathematical Social Sciences 49(1), 111–116 (2005)

16. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and
learnability. J. ACM 40(3), 607–620 (1993)

17. Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted
majority games. Theoretical Computer Science 263(1-2), 305–310 (2001)

18. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials.
Computational Complexity 4, 301–313 (1994)

19. O’Donnell, R.: Some topics in analysis of boolean functions. In: Proc. of the 40th
Annual ACM Symposium on Theory of Computing, pp. 569–578 (2008)

20. O’Donnell, R., Saks, M.E., Schramm, O., Servedio, R.A.: Every decision tree has an
influential variable. In: Proc. of the 46th Annual IEEE Symposium on Foundations
of Computer Science, pp. 31–39 (2005)

21. O’Donnell, R., Wimmer, K.: Approximation by DNF: Examples and counterexam-
ples. In: Proc. of the 34th International Colloquium on Automata, Languages and
Programming, pp. 195–206 (2007)

22. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. Chicago J. Theoretical
Computer Science 1999(115) (1999)

23. Prasad, K., Kelly, J.S.: NP-completeness of some problems concerning voting
games. International Journal of Game Theory 19(1), 1–9 (1990)

24. Trevisan, L.: A note on approximate counting for k-DNF. In: Proc. of the 7th Inter-
national Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, and 8th International Workshop on Randomization and Computation,
pp. 417–426 (2004)

Clause-Learning Algorithms with Many Restarts
and Bounded-Width Resolution�

Albert Atserias1, Johannes Klaus Fichte2, and Marc Thurley2

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Humboldt Universität zu Berlin, Berlin, Germany

Abstract. We offer a new understanding of some aspects of practi-
cal SAT-solvers that are based on DPLL with unit-clause propagation,
clause-learning, and restarts. On the theoretical side, we do so by ana-
lyzing a concrete algorithm which we claim is faithful to what practical
solvers do. In particular, before making any new decision or restart, the
solver repeatedly applies the unit-resolution rule until saturation, and
leaves no component to the mercy of non-determinism except for some
internal randomness. We prove the perhaps surprising fact that, although
the solver is not explicitely designed for it, it ends up behaving as width-
k resolution after no more than n2k+1 conflicts and restarts, where n
is the number of variables. In other words, width-k resolution can be
thought as n2k+1 restarts of the unit-resolution rule with learning. On
the experimental side, we give evidence for the claim that this theoretical
result describes real world solvers. We do so by running some of the most
prominent solvers on some CNF formulas that we designed to have res-
olution refutations of width k. It turns out that the upper bound of the
theoretical result holds for these solvers and that the true performance
appears to be not very far from it.

1 Introduction

The discovery of a method to introduce practically feasible clause learning to
DPLL-based solvers [15,10] layed the foundation of what is sometimes called
“modern” SAT-solving. These methods set the ground for new effective imple-
mentations [11] that spawned tremendous gains in the efficiency of SAT solvers
with many practical applications. Such great and somewhat unexpected suc-
cess seemed to contradict the widely assumed intractability of SAT, and at the
same time uncovered the need for a formal understanding of the capabilities and
limitations underlying these methods.

Several different approaches have been suggested in the literature for devel-
oping a rigorous understanding. Among these we find the proof-complexity ap-
proach, which captures the power of SAT solvers in terms of propositional proof
systems [3,4,9], and the rewriting approach, which provides a useful handle to
reason about the properties of the underlying algorithms and their correctness

� Partially supported by project CICYT TIN2007-68005-C04-03.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 114–127, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Clause-Learning Algorithms with Many Restarts 115

[12]. In both approaches, SAT solvers are viewed as algorithms that search for
proofs in some underlying proof system for propositional logic. With this view
in mind, it was illuminating to understand that the proof system underlying
modern solvers is always a subsystem of resolution [3]. In particular, this means
that their performance can never beat resolution lower bounds, and at the same
time it provides many explicit examples where SAT solvers require exponential
time. Complementing this is the observation that an idealized SAT solver that
relies on non-determinism to apply the techniques in the best possible way will
be able to perform as good as general resolution [4,9]. As the authors in [4] put it,
the negative proof complexity results uncover examples of inherent intractability
even under perfect choice strategies, while the positive proof complexity results
give hope of finding a good choice strategy.

In this work we add a new perspective to this kind of rigorous result. On one
hand we try to avoid non-deterministic choices on all components of our ab-
stract solver and still get positive proof complexity results. On the other hand,
we test the theoretical results experimentally with some of the available solvers,
on benchmarks designed for the purpose. Our main finding is that a concrete
family of SAT solvers that do not rely on non-determinism besides mild ran-
domness is at least as powerful as bounded width resolution. The precise proof-
complexity result is that under the unit-propagation rule, the totally random
branching strategy, and a standard learning scheme considered by true solvers,
8k ln(8n)n2k conflicts and deterministic restarts are enough to detect the un-
satisfiability of any CNF formula on n variables having a width-k resolution
refutation, with probability at least 1/2. Note that this bound is not asymp-
totic. The experimental results with actual solvers seem to confirm that our
model is faithful enough. We discuss these at the end of this introduction.

The theoretical result by itself has some nice consequences, which we shall
sketch briefly. First, it is not very surprising that, although not explicitely de-
signed for that purpose, SAT-solvers are able to solve instances of 2-SAT in very
reasonable time. The reason for this is that every unsatisfiable 2-CNF formula
has a resolution refutation of width two. More strongly, our result can be inter-
preted as showing that width-k resolution can be simulated by O(k log(n)n2k)
rounds of unit-clause propagation. To our knowledge, such a tight connection
between width-k resolution and repeated application of “width-one” methods
was unknown before. Another consequence is that SAT solvers are able to solve
formulas of bounded branch-width (and hence bounded treewidth) in polyno-
mial time. We elaborate on these later in the paper. Finally, from the partial
automatizability results in [5], it follows that SAT solvers are able to solve formu-
las having polynomial-size tree-like resolution proofs in quasipolynomial time,
and formulas having polynomial-size general resolution proofs in subexponential
time.

Concerning the techniques, it is perhaps surprising that the proof of our main
result does not proceed by showing that the width-k refutation is learned by the
algorithm. For all we know the produced proof has much larger width. All we
show is that every width-k clause in the refutation is absorbed by the algorithm,

116 A. Atserias, J.K. Fichte, and M. Thurley

which means that it behaves as if it had been learned, even though it might not.
In particular, if a literal and its complement are both absorbed, the algorithm
correctly declares that the formula is unsatisfiable. This analysis is the main
technical contribution of this paper, and deviates significantly from [4] and [9].

Before we close this introduction, a few words on the experimental results are
in order. We considered six of the most popular available SAT solvers: BerkMin
5.61 [8], MinSAT 2 [7], Siege ver. 4 [14], zChaff 2001.2.17 (32-Bit version), ZChaff
2007.3.12. (64-Bit) [11] and RSat 2.02 [13]. We ran each of these solvers with
specially designed families of unsatisfiable formulas. The formulas come param-
eterized by two integers q and k and are designed in such a way that the number
of variables n is roughly k2q, the number of clauses is roughly 8k2q, and they
have width-k resolution refutations. The outcome from the experiment appears
to be that the number of decisions (and hence conflicts) that the solvers make
on those formulas is bounded by a function of the form nck , where ck is a real
number that is in fact smaller but comparable to k.

2 Preliminaries

A literal is a propositional variable x or its negation x̄. We use the notation x0

for x̄ and x1 for x. Note that xa is defined in such a way that the assignment
x = a satisfies it. For a ∈ {0, 1}, we also use ā for 1− a, and for a literal = xa

we use ̄ for x1−a. A CNF formula F is a set of clauses which in turn are sets
of literals. The width of a clause is the number of literals in it. For two clauses
A = {x, 1, . . . , r} and B = {x̄, ′1, . . . ,

′
s} we define the resolvent of A and B

by Res(A, B) = {1, . . . , r,
′
1, . . . ,

′
s}. We further write Res(A, B, x) if we want

to refer to the variable which we resolve on. For a clause C, a variable x, and a
truth value a ∈ {0, 1}, the restriction of C on x = a is the constant 1 if the literal
xa belongs to C, and the clause obtained from C by deleting any occurrence of
the literal x1−a otherwise. We write C|x=a for the restriction of C on x = a.
A partial assignment is a sequence of assignments (x1 = a1, . . . , xr = ar) with
all variables distinct. If S is a partial assignment and C is a clause, we let C|S
be the result of applying the restrictions x1 = a1, . . . , xr = ar to C. Clearly the
order does not matter. We say that S satisfies C if it sets at least one of its
literals to 1; i.e., if C|S = 1. We say that S falsifies C if it sets all its literals
to 0; i.e., if C|S = ∅. If D is a set of clauses, we let D|S denote the result of
applying the restriction S to each clause in D, and removing the resulting 1’s.
We call D|S the residual set of clauses.

3 Algorithm and Resolution Width

3.1 Definition of the Algorithm

A state is a sequence of assignments (x1 = a1, . . . , xr = ar) in which all
variables are distinct and some assignments are marked as decisions. We use the
notation xi

d= ai to mean that the assignment xi = ai is a decision assignment.

Clause-Learning Algorithms with Many Restarts 117

In this case xi is called a decision variable. The rest of assignments are called
implied assignments. We use the letters S and T to denote states. The empty
state is the one without any assignments.

The algorithm maintains a current state S and a current database of clauses D.
There are four modes of operation DEFAULT, CONFLICT, UNIT, and DECISION.
Here is what the algorithm is required to do in each mode:

– DEFAULT. Check if S satisfies every clause in D, in which case stop and
output SAT together with the current state S. Otherwise, check if S falsifies
some clause in D, in which case move to CONFLICT mode. If not all clauses
are satisfied and none of the clauses is falsified, move to UNIT mode. Finally,
if control reaches this point, move to DECISION mode.

– CONFLICT. Apply the learning scheme to add a new clause to D. Then
apply the restart policy to decide whether to continue further or to restart
in DEFAULT mode with S initialized to the empty state and the current
D. In case we continue further, find the most recently added (or conflict-
causing) decision x

d= a in S, if such exists. If none is found, stop and output
UNSAT. If one is found, replace it by x = a, delete all later assignments from
S, and go back to DEFAULT mode.

– UNIT. For any clause in D for which S gives value to all its literals but one,
say xa, add x = a to the current state and go back to DEFAULT mode.

– DECISION. Apply the branching strategy to determine a decision x
d= a to

be added to the current state, and go back to DEFAULT mode.

The algorithm is started in DEFAULT mode with the empty state as the current
state and the given CNF formula F as the current database.

The well-known DPLL-procedure is the special case of this algorithm in which
the learning scheme never adds any new clause, the restart policy does not dictate
any restart at all, and the branching strategy chooses the first (or any other) vari-
able that is still unset in the current state. Note that unit-propagation is enforced
greedily before every decision is made in accordance to practical implementa-
tions. Modern SAT-solvers enhance the performance of the DPLL-procedure
by implementing non-trivial learning schemes, restart policies, and branching
strategies, as well as a technique known as backjumping. This is the mechanism
by which the solver in CONFLICT mode determines which conflict-causing de-
cision to backtrack on, based on the clause that the learning scheme adds to
the database. We discuss our choice for these components of the algorithm in
Section 3.3.

3.2 Runs of the Algorithm

Consider a run of the algorithm started in DEFAULT mode with the empty state
and initial database D, until a clause is falsified and thus a conflict occurs. Such a
run is called a round started with D and we represent it by the sequence of states
S0, . . . , Sm that the algorithm goes through, where S0 is the empty state and Sm

is the state where the falsified clause is found. Note that for i ∈ {1, . . . , m}, the

118 A. Atserias, J.K. Fichte, and M. Thurley

state Si extends Si−1 by exactly one assignment of the form xi = ai or xi
d= ai

depending on whether UNIT or DECISION is executed at that iteration.
A partial round is an initial segment S0, . . . , Sr of a round up to a state where

one of the following is true for the residual database D|Sr : either D|Sr has no
clauses left, or D|Sr contains the empty clause, or D|Sr does not contain any
unit clause. If one of the first two cases occurs we say that the partial round is
conclusive. If a partial round is not conclusive we call it unconclusive. We say
that the partial round satisfies a clause if its last state, interpreted as a partial
assignment, satisfies it. We say that it falsifies it if its last state, interpreted as a
partial assignment, falsifies it. Note that a round may neither satisfy nor falsify
a clause.

One important feature of partial rounds is that if they are unconclusive, then
the residual database D|Sr does not contain unit clauses and, in particular, it
is closed under unit propagation. This means that for an unconclusive partial
round S0, . . . , Sr started with D, if A is a clause in D and Sr falsifies all its
literals but one, then Sr must satisfy the remaining literal, and hence A as well.
Besides those in D, other clauses may have this property, which is important
enough to deserve a definition:

Definition 1. Let D be a set of clauses and let A be a non-empty clause. We
say that D absorbs A if for every literal in A and every unconclusive partial
round S0, . . . , Sr started with D, if Sr falsifies A \ {}, then it satisfies A.

We argued already that every clause in D is absorbed by D. We give an example
showing that D may absorb other clauses. Let D be the database consisting of
the three clauses

a ∨ b̄ b ∨ c ā ∨ b̄ ∨ d ∨ e.

In this example, the clause a ∨ c is absorbed by D but does not belong to D.
Also the clause b̄ ∨ d ∨ e is not absorbed by D (consider the partial round that
starts by d

d= 0, e
d= 0) but is a consequence of D (resolve the first and the third

clause on a).
The following lemma states three nice monotonicity properties of the concept

of clause-absorption, where the first is the one that motivated its definition. We
omit the proof due to space restrictions.

Lemma 1. Let D and E be sets of clauses and let A and B be non-empty
clauses. The following hold:

1. if A belongs to D, then D absorbs A,
2. if A ⊆ B and D absorbs A, then D absorbs B,
3. if D ⊆ E and D absorbs A, then E absorbs A.

The following lemma describes how the resolvent of two absorbed clauses might
look if it stays unabsorbed. We say that a partial round S0, . . . , Sr branches in
a set of literals C if all decision variables of Sr are variables of C.

Lemma 2. Let D be a set of clauses, let A and B be two resolvable clauses that
are absorbed by D, and let C = Res(A, B). If C is non-empty and not absorbed
by D, then the following hold:

Clause-Learning Algorithms with Many Restarts 119

1. there is a literal xa which occurs in both A and B,
2. there is an unconclusive partial round R started with D that falsifies C\{xa},
3. the partial round R branches in C \ {xa} and leaves x unassigned, and
4. extending R by the decision x

d= ā yields a conclusive round.

Proof. Let A = {, 1, . . . , p} and B = {̄, ′1, . . . , ′q}. As C is non-empty and
not absorbed by D, there is a literal xa in C and an unconclusive partial round
T0, . . . , Ts started with D which falsifies C′ = C \ {xa} but does not satisfy
C. In particular x is not assigned a in Ts. Also x is not assigned ā in Ts since
otherwise, as A and B are absorbed by D, both and ̄ would be satisfied by
Ts. This shows that x is unassigned in Ts.

Assume without loss of generality that xa belongs to A, let A′ = A\{xa} and
define B′ = B \{̄}. We also have that xa belongs to B. To see this, observe that
otherwise Ts would falsify B′, implying that is falsified by Ts as B is absorbed
by D. Then Ts falsifies A′ and thus x is set to a in Ts, this time because A is
absorbed by D. This contradicts the previous argument that x is unassigned in
Ts. Altogether we have that xa occurs in both A and B.

We still need to prove the existence of an unconclusive partial round S0, . . . , Sr

as stated in the Lemma. We will construct this round from the given unconclusive
one T0, . . . , Ts. As Ts falsifies C′ and x is unassigned in Ts the sole issue we need
to resolve is the possibility that Ts might not branch in C′. We will define
S0, . . . , Sr inductively. It will be convenient to also define an offset ji for each
i ∈ {0, . . . , r}. Recall that S0 is the empty state by definition. We define j0 = 0.
To construct Si+1, let h > ji be the minimum number in {0, . . . , s} such that
the h-th assignment in Ts is of one of the following types, if it exists:

1. a decision y
d= b for some variable y from C′,

2. an implied assignment y = b, and {yb} is a unit clause in D|Si ,
3. an implied assignment y = b, and y is a variable from C′.

If no such h exists, we stop the construction and let r = i. If such an h exists, we
define ji+1 = h and Si+1 from Si by cases. In the first of the three cases above,
let Si+1 be obtained from Si by adding the decision y

d= b. In the second case,
the assignment is due to the existence of the unit clause {yb} in D|Th−1 . As {yb}
is also a unit clause in D|Si , we define Si+1 as the extension of Si by adding this
assignment. If the first two cases do not occur, we must be in the third, and we
define Si+1 from Si by extending it with y

d= b.
Clearly, this defines a valid partial round S0, . . . , Sr which branches in C′.

Further Sr falsifies C′ and all the assignments in Sr also appear in Ts except for
some additional “decision” marks on some assignments. Therefore the partial
round is unconclusive and the variable x is unassigned in Sr. Finally, as the
assignments Sr and Ts are the same with respect to the literals in A and B,
extending the partial round S0, . . . , Sr by a decision x

d= ā yields a conclusive
round; otherwise both and ̄ would be satisfied since both A and B are absorbed
by D. ��

The following lemma will allow us to turn the existential statement about a
partial round R in Lemma 2 into a universal statement about all partial rounds

120 A. Atserias, J.K. Fichte, and M. Thurley

R′ that make decisions that are already in R. If R and R′ are partial rounds,
we say that the decisions of R′ are subsumed by R if every decision assignment
in R′ is also an assignment in R. We say that R′ is subsumed by R if every
assignment made in R′ is also an assignment in R.

Lemma 3. Let D be a set of clauses, let R be an unconclusive partial round
started with D, and let R′ be a partial round started with D with all its decisions
subsumed by R. Then R′ is subsumed by R.

Proof. Let S0, . . . , Sr and T0, . . . , Ts be the partial rounds R and R′, respectively.
Assume for contradiction that R′ is not subsumed by R. Then there exists a
minimal i ∈ {1, . . . , s} such that all assignments made in Ti−1 are also in made
in R, but the last assignment in Ti is not made in R. Since every decision
assignment in R′ is also an assignment in R, the last assignment in Ti must be
an implied one of the form x = a. Thus, there exists a unit clause {xa} in D|Ti−1 .
As every assignment in Ti−1 is also made in R, and as R is unconclusive and
does not contain x = a or x

d= a, there exists a j ∈ {0, . . . , r} such that this unit
clause is also present in D|Sj . Finally, since R is an unconclusive partial round,
D|Sr does not contain unit clauses and thus x = a is also an assignment in Sr.
Contradiction. ��

One consequence of this lemma is that under the hypothesis and the notation of
Lemma 2, if xa and R are the literal and the unconclusive partial round claimed
to exist in that lemma, then every partial round started with D that has all
its decisions subsumed by R stays unconclusive, and if in addition it ends up
falsifying C \ {xa}, then it yields a conclusive round after extending it with
x

d= ā. Indeed, the extension x
d= ā would force the round to satify both and

̄ as both A and B are absorbed by hypothesis. We will need this fact in what
follows.

3.3 Restart Policy, Learning Scheme, and Branching Strategy

The only really important issue of the restart policy that we want to use is that it
should dictate restarts often enough. As a matter of fact, we will state and prove
our result for the most aggressive of all restart policies, the one that dictates a
restart at every conflict, and the analysis will extend to other restart policies by
monotonicity. More precisely, by the monotonicity properties discussed in the
previous section, it will follow from our analysis that if we decide to use a policy
that allows c > 1 conflicts per round before a restart, then the upper bound on
the number of required restarts can only decrease (or stay the same). Only the
upper bound on the number of conflicts would appear multiplied by a factor of
c, even though the truth might be that even those decrease as well. One further
consequence of monotonicity is that the validity of our analysis is insensitive
to whether the solver implements backjumping or not. For the same reason as
before, allowing c > 1 conflicts per round with their corresponding backjumps
can only decrease the number of required restarts in our analysis, and multiply

Clause-Learning Algorithms with Many Restarts 121

the number of conflicts by a factor of c. Thus, for the rest of the paper, we fix
the restart policy to the one that restarts at every conflict.

Let us discuss now the learning scheme. This determines which clause to add
to the database in the CONFLICT mode of the algorithm. We will consider the
scheme called Decision in the literature, that obtains the clause by the following
method. Let S0, . . . , Sm be a conclusive round started with the clause database
D that ends up falsifying some clause of D. We anotate each state Si of the
round by a clause Ai by reverse induction on i ∈ {1, . . . , m}:

1. For i = m, let Ai be the first clause in D that is falsified by Si.
2. For i < m for which xi

d= ai is a decision, let Ai = Ai+1.
3. For i < m for which xi = ai is implied, let Bi be the first clause in D which

contains literal xai

i and for which Si−1 gives value to all its literals but one,
and let Ai = Res(Ai+1, Bi, xi) if these clauses are resolvable on xi, and let
Ai = Ai+1 otherwise.

It is quite clear from the construction that each Ai has a resolution proof from
the clauses in the database D. In fact, the resolution proof is linear and even
trivial in the sense of [4]. The learning scheme called Decision is the one that
adds the clause A1 to the current database after each conflict. It is not hard to
check that every literal in A1 is the negation of some decision literal in Sm; this
will be important later on.

The branching strategy determines which literal xa is branched next in the
DECISION mode of the algorithm. We will analyse the totally random branch-
ing strategy defined as follows: if the current state of the algorithm is S, we
choose a variable x uniformly at random among the variables that appear in
the residual database D|S , and a value a in {0, 1} also uniformly at random
and independently of x. Our analysis actually applies to any other branching
strategy that randomly chooses between making a heuristic-based decision or a
random decision as above, provided the second case has non-negligible probabil-
ity of happening. If p ∈ (0, 1] is the probability of the second case, the bounds in
our analysis will appear multiplied by a factor of p−k, where k is the resolution
width that we are trying to achieve.

3.4 Resolution Width

We start by analysing the number of rounds it takes until the resolvent of two
absorbed clauses is absorbed as a function of its width.

Lemma 4. Let D be a database of clauses, and let A and B be two resolv-
able clauses that are absorbed by D and that have a non-empty resolvent C =
Res(A, B). Then, for every integer t ≥ 0, the probability that C is not absorbed
by the database after t restarts is at most e−t/4nk

, where n is the total number
of variables in D and k is the width of C.

Proof. Let D0, D1, . . . , Dt be the sequence of databases produced by the algo-
rithm, starting with D = D0. By the monotonicity properties in Lemma 1, if C

122 A. Atserias, J.K. Fichte, and M. Thurley

is ever absorbed by some Di it will stay so until Dt. Thus, it will suffice to bound
the probability that Di+1 does not absorb C conditional on the event that Di

does not absorb C.
Assume Di does not absorb C. By Lemma 2, there exists a literal xa in

A ∩ B ∩ C and an unconclusive partial round R started with Di that falsifies
C \ {xa}, branches in C \ {xa}, leaves x unassigned, and the extension of R by
x

d= ā yields a conclusive round. Moreover, by Lemma 3 and the discussion after
it, any partial round R′ that has all its decisions subsumed by R stays subsumed
by R and unconclusive, and if it ends up falsifying C \ {xa}, then its extension
by x

d= ā will also yield a conclusive round. Such a round would yield a conflict
that makes the Decision scheme learn a subclause of C, which implies that C
would be absorbed by Di+1 by Lemma 1.

First, let us compute a lower bound on the probability that the first k − 1
choices of the branching strategy falsify C \ {xa} and that the k-th choice is
x

d= ā. This probability is at least[(
k − 1
2n

)(
k − 2

2(n− 1)

)
· · ·

(
1

2(n− k + 2)

)](
1

2(n− k + 1)

)
≥ 1

4nk
.

Note that a round following these choices may not even be able to do some of
the decisions as the corresponding assignments may be implied. However, before
the decision x

d= ā, the round will only perform decisions that are subsumed
by R and therefore stay subsumed by R by Lemma 3. In particular it will stay
unconclusive and x will remain unset. It follows that the probability that the
round will start by branching in, and falsifying, C \ {xa}, and end by deciding
x

d= ā can only increase. This gives a lower bound on the probability that a
subclause of C is actually learned, and with it, the probability that C is not
absorbed by Di+1 is bounded by 1− 1

4nk .
By chaining these t conditional probabilities, the probability that C is not

absorbed by Dt is bounded by(
1− 1

4nk

)t

≤ e−t/4nk

,

as was to be proved. ��

Finally, we are ready to state and prove the main result of the paper.

Theorem 1. Let F be a set of clauses on n variables having a resolution refuta-
tion of width k and length m. With probability at least 1/2, the algorithm started
with F learns the empty clause after at most 4m ln(4m)nk conflicts and restarts.

Proof. The resolution refutation must terminate with an application of the reso-
lution rule of the form Res(x, x̄). We will show that for both = x and = x̄, the
probability that {} is not absorbed by the current database after 4m ln(4m)nk

restarts is at most 1/4. Thus, both {x} and {x̄} will be absorbed with probabil-
ity at least 1/2. If this is the case, it is straightforward that every round of the

Clause-Learning Algorithms with Many Restarts 123

algorithm is conclusive. In particular, the round that does not make any decision
is conclusive, and in such a case the empty clause is learned.

Let C1, C2, . . . , Cr = {} be the resolution proof of {} that is included in
the width-k resolution refutation of F . In particular r ≤ m − 1 and every Ci

is non-empty and has width at most k. Let D0, D1, . . . , Ds be the sequence of
databases produced by the algorithm where s = rt and t = �4 ln(4r)nk�. For
every i ∈ {0, . . . , r}, let Ei be the event that every clause in the initial segment
C1, . . . , Ci is absorbed by Dit, and let Ei be its negation. Note that Pr[E0] = 1
vacuously and hence Pr[E0] = 0. For i > 0, we bound the probability that
Ei does not hold conditional on Ei−1 by cases. Let pi = Pr[Ei | Ei−1] be this
probability. If Ci is a clause in F , we have pi = 0 by Lemma 1. If Ci is derived
from two previous clauses, we have pi ≤ e−t/4nk

by Lemma 4, which is at most
1/4r by the choice of t.

The law of total probability gives

Pr
[

Ei

]
= Pr

[
Ei | Ei−1

]
Pr [Ei−1] + Pr

[
Ei | Ei−1

]
Pr

[
Ei−1

]
≤ Pr

[
Ei | Ei−1

]
+ Pr

[
Ei−1

]
.

Adding up over all i ∈ {1, . . . , r}, together with Pr
[
E0

]
= 0, gives

Pr
[

Er

]
≤

r∑
i=1

pi ≤
r

4r
=

1
4
.

Since the probability that Cr is not absorbed by Drt is bounded by Pr[Er],
the proof follows. ��

The total number of clauses of width k on n variables is bounded by 2k
(
n
k

)
, which

is at most 2nk for every n and k. Therefore, if F has n variables and a width-k
resolution refutation, we may assume that its length is at most 2nk. We obtain
the following consequence:

Corollary 1. Let F be a set of clauses on n variables having a resolution refu-
tation of width k. With probability at least 1/2, the algorithm started with F
learns the empty clause after at most 8k ln(8n)n2k conflicts and restarts.

An application of Corollary 1 is that, even though it is not explicitely defined
for the purpose, the algorithm can be used to decide the satisfiability of CNF
formulas of treewidth at most k in time O(k log(n)n2k+2). This follows from
the known fact that every unsatisfiable formula of treewidth at most k has
a resolution refutation of width at most k + 1 [1,6,2]. If we are interested in
producing a satisfying assignment when it exists, we proceed by self-reducibility:
we assign variables one at a time, running the algorithm log2(n) + 1 times at
each iteration to detect if the current partial assignment cannot be extended
any further, in which case we choose the complementary value for the variable.
For this we use the fact that if F has treewidth at most k, then F |x=a also has
treewidth at most k. Note that each iteration is correct with probability at least
1 − 1/2n, which means that all iterations are correct with probability at least
1/2. The running time of this algorithm is O(k(log(n))2n2k+3).

124 A. Atserias, J.K. Fichte, and M. Thurley

4 Experiments on Tseitin Formulas

In this section we will discuss the experiments performed to illustrate our theo-
retical results. The class of formulas we tested are Tseitin formulas on trees of
k-grids. To give a precise definition let the k-grid be a graph Gk = (Vk, Ek) with
vertex set Vk = {vi,j | i, j ∈ [k]} and edges Ek = {{vi,j, vi′,j′} | |i− j|− |i′− j′| =
1}. Let further k′ = �k/2� and define {v1,1, . . . , v1,k′} as the set of top vertices
and {vk,1, . . . , vk,k′} and {vk,k−k′ , . . . , vk,k} that of left and right bottom vertices
of Gk. In a given rooted binary tree T we associate with each node t a distinct
labelled k-grid Gt. Then if t has a child t′ the top vertices of Gt′ are merged
with the left bottom vertices of Gt by identifying v′1,i with vk,i for all i ∈ [k′]. A
second child t′′ is treated analogously by now merging the right bottom vertices
of Gt with the top vertices of Gt′′ .

For any tree of k-grids G = (V, E) as defined above, we construct an un-
satisfiable Tseitin CNF-formula FG. The construction is well-known an can be
found e.g. in [16]. Note that the number of variables of FG is roughly n = k2|V |.
Further, the resolution width of FG is at most k.

Randomized formulas. To average running times of SAT solvers on the above
formulas, we introduce some randomization. Let q ∈ N. A random binary tree
T contains a root r and is constructed as follows. Then for every node t assume
that we know the number q′ > 0 of its descendants to be constructed. Choose
q′′ ≤ q′ u.a.r. and recursively construct two subtrees, one with q′′ nodes, the
other one with q′− q′′ nodes. The process stops if q′ = 0. For q, k ∈ N a random
Tseitin formula Fq,k is a formula FG for some tree of k-grids G which in turn
has been constructed from a random binary tree on q nodes.

4.1 Results

We conducted experiments using several SAT solvers on a Linux machine with
a 3.0 GHz Pentium 4 processor and 1 GB of RAM. The solvers tested include
BerkMin 5.61 [8], MinSAT 2 [7], Siege ver. 4 [14], zChaff 2001.2.17 (32-Bit ver-
sion), zChaff 2007.3.12. (64-Bit) [11] and RSat 2.02 [13]. As running times of the
solvers increase quickly with the parameter k, we chose to consider different test
sets for the different solvers.
Small values k = 2, . . . , 5. For each k we generated instances Fq,k with q varying
from 1 to 101 in steps of 10 with 100 instances per step. Note that for k = 5 and
q = 100 a formula Fq,k already contains about 4000 variables and 14000 clauses.

Average running times for solving instances Fq,k with k = 5 and q = 100
are as small as 20s for RSat, whereas MiniSat timed out after 10000s. We are
however not interested in the actual running times of the solver but we aim at
quantifying the difficulty (as a function of k) of solving these formulas.

We therefore chose to consider the average number of decisions with respect
to the number n of variables of the formulas Fq,k. Under the hypothesis that
for fixed k the number of decisions d is bounded by a polynomial in n, we
determined, for each solver and each n the minimum c = c(k) such that d ≤ nc.

Clause-Learning Algorithms with Many Restarts 125

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6

c(
k)

k

BerkMin
MiniSAT

Siege
zChaff01
zChaff07

RSat

Fig. 1. The value c = c(k)

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 10 20 30 40 50 60 70 80 90 100

c(
k)

nodes

2x2
3x3
4x4
5x5

Fig. 2. Stabilization of the Degree

Table 1. The value c = c(k). For the marks ∗ see the discussion in the text.

grid sz. BerkMin MiniSAT Siege zChaff01 zChaff07 RSat2.0
2 × 2 1.41 1.35 1.44 1.41 1.45 1.32
3 × 3 1.76 1.48 1.75 1.59 1.68 1.45
4 × 4 1.92 2.03 1.92 1.81∗ 1.91 1.60
5 × 5 2.12 2.62∗ 2.03 –∗ 2.07 1.77
6 × 6 – – 2.22 – 2.55∗ 1.91
7 × 7 – – 2.39 – – 2.04∗

8 × 8 – – 2.63∗ – – 2.13∗

The experimental results show that this c is a function c = c(k, n) of k and n.
The dependence of c on n is significant especially for small formulas. However,
for fixed k and large n it turns out that the value of c(k, n) is quite stable.
For example, on formulas with more than 100 tree nodes we observed that the
oscillation of c(k, n) did never exceed 10%. Figure 2 displays the exponents for
RSat, which, for comparability, are given in terms of the tree nodes q.

Altogether, it turns out that for fixed k the number of decisions of the solvers
is bounded by a polynomial nc(k). Figure 1 illustrates these values of c(k) for the
different solvers. The actual values were determined for q = 100, which we chose
as some solvers turned out to have problems solving much larger instances.

In particular, for k = 5 MiniSAT was not able to solve instances with q ≥ 60
within 10000s therefore the corresponding value has been excluded from Fig-
ure 1. Further, although the 2001 zChaff solved many instances for k = 4, 5 and
arbitrary q within the given time bounds, most of these instances could not be
solved due to out-of-memory errors.
Larger values k = 6, . . . , 8. The running times of most solvers quickly exceeded
10000s. Therefore we generated very sparse sets of test instances, mainly to show
the tendency of the growth of the running time.

For k = 6 we generated a test set with q = 1, . . . 101 in steps of 10 with 10
instances per step. On these formulas BerkMin showed a peculiar behaviour in so
far as it was able to solve most instances of up to 6 tree-nodes within 50s although

126 A. Atserias, J.K. Fichte, and M. Thurley

starting at 7 nodes it was not at all able to solve any instance within 10000s.
The 2007 version of zChaff was much more stable, but the average running time
exceeded 10000s at 30 tree nodes. The exponent in the table was taken for q = 51
where the average running time exceeded even 31000s.

The test set for k = 7 was identical to that for k = 6. Only Siege and RSat
remained for testing. Siege was able to finish the test set. For RSat, the exponent
was determined at q = 81, since at q = 91 out of memory errors occurred. For
k = 8 we generated a test set of 1, . . . 51 tree nodes in steps of 10 and 5 instances
per step. The average running time of both Siege and RSat was about 60000s at
51 tree nodes.

Discussion. The test set for smaller k seems to confirm the theoretical results of
the previous section. The growth of the decisions of all solvers is polynomial for
each fixed k and the exponent of this running time grows at most linearly with
k. For Siege and RSat this growth even seems to be mildly sublinear, although
exact analysis of this fact would necessitate more detailed tests. Note that the
number of decisions is always at least that of the conflicts. Thus the number of
conflicts is bounded as predicted by Theorem 1.

However, it is not possible to draw a safe conclusion from these results. Espe-
cially by the sparsity of the test set for large k, we cannot take the results to be
more than an illustration of the link we assume between true SAT solvers and
our theoretical results.

5 Future Work

Our theoretical results establish a correlation between restarts and width, and
the experimental results indicate that real-world solvers seem tuned in a way
that exploits this correlation. The experiments are however at an early stage
and further work will be necessary before drawing definitive conclusions. First,
one should try larger test sets and larger values of the parameter k. A sec-
ond particularly urgent matter is that our experiments do not count restarts
directly; they count conflicts, which is only an upper bound on the number of
restarts. Related to this is the question of testing the different solvers with differ-
ent restart policies to compare their behaviour with the theoretical prediction.
This is perhaps the most promising open end for applications of our theoretical
investigation. Third, an important pressing issue is the lack of a truly general
model of randomized formulas of a given width. This is, indeed, a question of
theoretical interest by itself.

Acknowledgements

The authors would like to thank Martin Grohe for two reasons. First for giv-
ing the idea for the class of formulas used in the experimental part. Most im-
portantly we thank him for the conjecture which became the main result of
this paper.

Clause-Learning Algorithms with Many Restarts 127

References

1. Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and tseitin tautolo-
gies. In: FOCS, pp. 593–603. IEEE Computer Society Press, Los Alamitos (2002)

2. Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. J.
Comput. Syst. Sci. 74(3), 323–334 (2008)

3. Beame, P., Kautz, H.A., Sabharwal, A.: Understanding the power of clause learn-
ing. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 1194–1201. Morgan Kaufmann,
San Francisco (2003)

4. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res (JAIR) 22, 319–351 (2004)

5. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple.
In: STOC, pp. 517–526 (1999)

6. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 310–326. Springer, Heidelberg (2002)

7. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. In: Design, Au-
tomation and Test in Europe, DATE 2002 (2002)

9. Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively
p-simulate general propositional resolution. In: Fox, D., Gomes, C.P. (eds.) AAAI,
pp. 283–290. AAAI Press, Menlo Park (2008)

10. Bayardo Jr., R.J., Schrag, R.C.: Using csp look-back techniques to solve real-world
sat instances. In: Proceedings of the Fourtheenth National Conference on Artificial
Intelligence (AAAI 1997), pp. 203–208 (1997)

11. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient sat solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001) (June 2001)

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

13. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Technical Re-
port D–153, Automated Reasoning Group, Computer Science Department, UCLA
(2007)

14. Ryan, L.: Efficient algorithms for clause-learning sat solvers. Master’s thesis, Simon
Fraser University (2004)

15. Marques Silva, J.P., Sakallah, K.A.: Grasp - a new search algorithm for satisfiabil-
ity. In: Proceedings of IEEE/ACM International Conference on Computer-Aided
Design, November 1996, pp. 220–227 (1996)

16. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)

An Exponential Lower Bound for
Width-Restricted Clause Learning

Jan Johannsen

Institut für Informatik
Ludwig-Maximilians-Universität München

jan.johannsen@ifi.lmu.de

Abstract. It has been observed empirically that clause learning does
not significantly improve the performance of a satisfiability solver when
restricted to learning short clauses only. This experience is supported
by a lower bound theorem: an unsatisfiable set of clauses, claiming the
existence of an ordering of n points without a maximum element, can
be solved in polynomial time when learning arbitrary clauses, but it is
shown to require exponential time when learning only clauses of size
at most n/4. The lower bound is of the same order of magnitude as
a known lower bound for backtracking algorithms without any clause
learning. It is shown by proving lower bounds on the proof length in a
certain resolution proof system related to clause learning.

1 Introduction

Most contemporary SAT solvers are based on extensions of the basic backtrack-
ing procedure known as the DLL-algorithm [6]. One of the most successful of
these extensions is clause learning [11], which works roughly as follows: When
the backtracking algorithm encounters a conflict, i.e., a clause falsified by the
current partial assignment α, then a sub-assignment α′ of α that suffices to cause
this conflict is computed. This sub-assignment α′, the reason for the conflict, can
then be stored in form of a new clause C added to the formula, viz. the unique
largest clause C falsified by α′. This way the algorithm can later backtrack ear-
lier when again a partial assignment extending α′ occurs in another branch of
the search tree, since then the added clause C becomes falsified and thus causes
a conflict.

When clause learning is implemented, a heuristic is needed to decide which
learnable clauses to actually keep in memory, as learning a large number of
clauses leads to excessive memory usage, which slows the algorithm down rather
than helping it. An obvious simple heuristic is to learn only short clauses, i.e.,
to set a threshold (possibly depending on the input clauses), and to keep in
memory only clauses whose size does not exceed the threshold.

Researchers who have experimented with heuristics for clause learning, e.g.
the author himself or Letz [9], have experienced that this simple heuristic is not
very helpful, i.e., learning only short clauses does not significantly improve the
performance of a DLL algorithm for hard formulas The present work aims at

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 128–140, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Exponential Lower Bound for Width-Restricted Clause Learning 129

supporting this experience with a rigorous mathematical analysis in the form of
a lower bound theorem.

In earlier work [5], we have shown such a lower bound for the well-known
pigeonhole principle clauses PHPn. These formulas require time 2Ω(n log n) to
solve when learning clauses of width up to n/2 only, whereas they can be solved
in time 2O(n) when learning arbitrary clauses. While this example in principle
shows the weakness of the heuristic, it is not fully satisfactory, since even with
arbitrary learning, the time required is exponential in n, it just takes still more
time – about n! – to solve when learning short clauses only.

Here we provide another example using a set of clauses Ordn based on the or-
dering principle. These formulas can be solved in polynomial time when learning
arbitrary clauses, but require exponential time to solve when learning clauses of
size up to n/4 only. This lower bound is asymptotically the same as the known
exponential lower bound [4] on the time for solving Ordn by DLL algorithms
without clause learning.

The lower bounds on the run-time are shown by proving the same lower
bounds on the length of refutations in a certain propositional proof system. The
relationship of this proof system to the DLL algorithm with clause learning has
been established in several earlier works [5, 7].

2 Preliminaries

A literal is a variable x or a negated variable x̄, the former are positive literals
and the latter negative literals. A clause is a disjunction C = a1 ∨ . . . ∨ ak of
literals ai, its width is w(C) = k, the number of literals in it. We identify a clause
with the set of literals occurring in it, even though for clarity we still write it as
a disjunction. A clause is negative if it contains no positive literals. A formula in
conjunctive normal form (CNF) is a conjunction F = C1 ∧ . . . ∧ Cm of clauses,
it is usually identified with the set of clauses

{
C1, . . . , Cm

}
.

We consider refutation systems for formulas in CNF based on the resolution
rule, which are well-known to be strongly related to DLL algorithms. The proof
systems under consideration have two inference rules: the weakening rule, which
allows to conclude a clause D from any clause C with C ⊆ D, and the resolution
rule, which allows to infer the clause C ∨D from the two clauses C ∨x and D∨ x̄,
provided that the variable x does not occur in either C or D, pictorially:

C ∨ x D ∨ x̄

C ∨ D

We say that the variable x is eliminated in this inference.
A resolution derivation of a clause C from a CNF-formula F is a directed

acyclic graph (dag) with a unique sink, in which every node has in-degree at
most 2, and with every node ν labeled with a clause Cν such that:

1. The sink is labeled with C.
2. If a node ν has one predecessor ν′, then Cν follows from Cν′ by the weakening

rule.

130 J. Johannsen

3. If a node ν has two predecessors ν1, ν2, then Cν follows from Cν1 and Cν2

by the resolution rule.
4. A source node ν is labeled by a clause C in F .

The size of a resolution derivation is the number of nodes in the dag. A resolution
refutation of F is a resolution derivation of the empty clause from F . We call a
derivation tree-like if the underlying unlabeled dag is a tree, otherwise we may
call it dag-like for emphasis.

Note that the weakening rule is redundant in tree-like and dag-like resolution
refutations: its uses can be eliminated from a refutation without increasing the
size. This may not be the case for the proof system we define below.

A resolution derivation is called regular if on every path through the dag, each
variable is eliminated at most once. Regularity is not an essential restriction on
tree-like resolution since minimal tree-like refutations are always regular [13], but
regular dag-like refutations can necessarily be exponentially longer than general
ones [1].

Regular tree-like resolution exactly corresponds to the DLL algorithm by the
following well-known correspondence: the run of a DLL-algorithm on an unsat-
isfiable formula F forms a regular, tree-like resolution refutation of F without
use of the weakening rule. Since the weakening rule is redundant in tree-like
resolution proofs, the converse direction holds as well.

The proof system studied in this work are resolution trees with lemmas (RTL),
which are defined as follows: An RTL-derivation of C from F is defined like a
tree-like resolution derivation of C from F , but here a node with in-degree 2 has
a distinguished left and right predecessor. Then the clause 4 of the definition
liberalized to:

4a. A source node ν is labeled by a clause D in F , or by a clause C labelling
some node ν′ ≺ ν. In the latter case we call C a lemma.

Here ≺ denotes the post-ordering of the tree, i.e., the order in which the nodes
of the tree are visited by a post-order traversal, which at a node ν with two
predecessors first recursively traverses the left subtree, i.e., the subtree rooted at
the left predecessor of ν, then recursively traverses the right subtree, and then
visits ν itself.

An RTL-derivation is an RTL(k)-derivation if every lemma C is of width
w(C) ≤ k. An RTL-derivation of the empty clause from F is an RTL-refutation
of F . Note that RTL is equivalent to dag-like resolution and RTL(0) is equivalent
to tree-like resolution.

A subsystem WRTI of RTL has been described by Buss et al. [5] which cor-
responds to a general formulation of the DLL algorithm with clause learning.
This system WRTI imposes the regularity restriction on derivations, and does
not include the full weakening rule, but incorporates some amount of weakening
into a generalized resolution inference rule, the so-called w-resolution rule. It
also restricts further the structure of sub-derivations of clauses that can be used
as lemmas, which have to be derived by input resolution derivations. W.r.t. the
length of proofs, WRTI lies between regular and general dag-like resolution.

An Exponential Lower Bound for Width-Restricted Clause Learning 131

The size of a refutation of an unsatisfiable formula F in WRTI has been
shown [5] to be polynomially related to the runtime of a schematic algorithm
DLL-L-UP on F . This schema DLL-L-UP subsumes all commonly used clause
learning strategies, including first-UIP [11], all-UIP, decision [15] and rel-sat [2],
but is slightly more general than a DLL algorithm with clause learning by being
non-greedy in the sense that it can continue branching even after a conflict was
reached. In the simulation of clause learning by WRTI, the clauses learned by
the algorithm are those clauses used as lemmas in the refutation.

A different system with similar properties was described by Hertel et al. [7],
building on earlier work of van Gelder [14], which can likewise be seen as a
subsystem of RTL.

It follows that if an unsatisfiable formula F can be solved by a DLL-algorithm
with clause learning in time t, then it has an RTL-refutation of size polynomial
in t. Moreover, if the algorithm learns only clauses of width k, then the refutation
is in RTL(k). In the following we prove lower bounds on the size of refutations in
RTL(k), which thus readily translate into lower bounds on the runtime of DLL
with width-restricted clause-learning.

A common tool in proof complexity is to consider formulas under a partial
assignment, called restriction in this context. We shall need a slightly more
general notion of restriction in this work.

Let X be a set of variables. A restriction with renaming is a (total) function
ρ : X → X ∪ {0, 1}. The function ρ is extended to literals by setting

ρ(x̄) :=

⎧⎪⎨⎪⎩
1 if ρ(x) = 0
0 if ρ(x) = 1
ρ(x) if ρ(x) ∈ X .

For a clause C in variables X , we define

C�ρ :=

⎧⎪⎨⎪⎩
1 if ρ(a) = 1 for some a ∈ C∨
a∈C, ρ(a) �=0

ρ(a) otherwise,

where the empty disjunction is identified with the constant 0. For a CNF-formula
F over X , we define

F �ρ :=

⎧⎪⎨⎪⎩
0 if C�ρ = 0 for some C ∈ F∧
C∈F, C�ρ�=1

C�ρ otherwise,

where the empty conjunction is identified with 1.
Just like ordinary restrictions, the more general renaming restrictions preserve

proofs in most propositional proof systems. We state this fact here only for
resolution.

Proposition 1. Let R be a (tree-like) resolution proof of C from F of size s,
and ρ a restriction with renaming. Then there is a (tree-like) resolution proof R′

of C�ρ from F �ρ of size at most 2s.

132 J. Johannsen

The proposition is shown by a straightforward induction along the proof R, the
proof will not be given here, as we will prove a special case that we actually use
below.

In the following we just use the word restriction for restrictions with renaming,
since ordinary restrictions do not occur in this work.

3 The Ordering Principle

The ordering principle expresses the fact that every finite total ordering has a
maximal element. Its negation is expressed in propositional logic by the following
set of clauses Ordn over the variables xi,j for 1 ≤ i, j ≤ n with i 	= j:

x̄i,j ∨ x̄j,i for 1 ≤ i < j ≤ n (Ai,j)
xi,j ∨ xj,i for 1 ≤ i < j ≤ n (Ti,j)
x̄i,j ∨ x̄j,k ∨ x̄k,i for 1 ≤ i < j, k ≤ n with j 	= k (Δi,j,k)∨
j∈[n]\{i}

xi,j for 1 ≤ i ≤ n (Mi)

Let R be the relation on [n] given by an assignment to the variables, so that
i R j holds iff xi,j is set to 1. The clauses Ai,j and Ti,j state that for every i and
j, either i R j or j R i holds, but not both. The clause Δi,j,k state that there
are no cycles of length 3 in R, which modulo the first two families of clauses is
equivalent to R being transitive. Thus the first three clause sets state that R is
a total ordering. The clauses Mi then state that this ordering has no maximal
element, therefore the formula is unsatisfiable.

The formulas Ordn were introduced by Krishnamurthy [8] as potential hard
example formulas for resolution, but short regular resolution refutations for them
were constructed by St̊almarck [12].

Proposition 2. There are dag-like regular resolution refutations of Ordn of size
O(n3).

Note that the size of the formula Ordn is Θ(n3), so the size of these refutations
is linear in the size of the formula. A general simulation of regular resolution by
WRTI [5] yields WRTI-refutations of Ordn of polynomial size. From these, it is
straightforward to construct a polynomial length run of a DLL algorithm with
clause learning on Ordn, making the branching and learning decisions suggested
by the refutation.

On the other hand, the following lower bound for tree-like resolution refuta-
tions of Ordn was shown by Bonet and Galesi [4]. It implies that a DLL algorithm
without clause learning requires exponential time to solve these formulas.

Theorem 3. Every tree-like resolution refutation of Ordn is of size 2Ω(n).

More precisely, the lower bound proved by Bonet and Galesi is Ω(2n/6). We shall
prove a larger lower bound of Ω(2n/2) below. Our main result is a lower bound
on the size of RTL(k)-refutations of the formulas Ordn.

An Exponential Lower Bound for Width-Restricted Clause Learning 133

Theorem 4. For k < n/4, every RTL(k)-refutation of Ordn is of size 2Ω(n).

It follows that a DLL algorithm with learning requires exponential time to solve
these formulas, when learning is restricted to clauses of width less than n/4.

The idea of the proof is similar to that of the mentioned lower bound for
the pigeonhole principle PHPn [5]: the goal is to show that a long derivation
is required to obtain a clause that is short enough to be used as a lemma. To
prove this, look at the first sufficiently short clause C, and find a restriction ρ
falsifying C. Then the derivation of C, restricted by ρ, is a tree-like resolution
refutation of PHPn′ for some n′ < n, and therefore needs to be large by a known
lower bound.

This strategy does not quite work here directly, since from Ordn short clauses
can be derived very quickly. Therefore we single out a class of useful clauses, and
show that any refutation can be transformed so that only these useful clauses
are used as lemmas, in Section 5.

After that, we again look at the first clause used as a lemma, and find a
restriction falsifying it. Thereby we obtain a tree-like refutation of a smaller
instance of the ordering principle, which needs to be large by a known lower
bound. A class of restrictions that makes this construction possible is defined
below.

The argument becomes simpler if the proof is first brought into a normal
form that contains only negative clauses; this is done in Section 4. Finally, in
Section 6, everything is put together to prove the theorem.

As mentioned, we need to define a class of restrictions that preserve the or-
dering principle clauses, similar to the matching restrictions that preserve the
pigeonhole principle formulas, but in contrast to those we require restrictions
with renaming. For a non-empty set S ⊆ [n] and a total ordering ≺ on S, we
define the ordering restriction ρ(S,≺) by

ρ(S,≺) : xi,j �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if i, j ∈ S and i ≺ j

0 if i, j ∈ S and j ≺ i

xs,j if i ∈ S and j /∈ S

xi,s if i /∈ S and j ∈ S

xi,j otherwise,

where s ∈ S is arbitrary but fixed, e.g. s := maxS. We let σ range over ordering
restrictions, and for σ = ρ(S,≺) we let |σ| := |S|.

The main property of ordering restrictions is that they preserve the ordering
principle formulas.

Proposition 5. For every ordering restriction σ with |σ| ≥ 1,

Ordn�σ = Ordn−|σ|+1 .

Proof. We shall see that the restriction of every clause from Ordn by σ = ρ(S,≺)
with |S| ≥ 1 is again one of the clauses from Ordn, with indices from [n]\S∪{s}.
Thus after a renaming of variables we obtain the clauses Ordn−|S|+1.

134 J. Johannsen

The clauses Ti,j , Ai,j and Δi,j,k for i, j, k /∈ S remain unaffected by the re-
striction.

The restriction by σ of the clauses Ti,j, where i ∈ S and j /∈ S are the clauses
Ts,j, and similarly for j ∈ S and i /∈ S. The clauses Ti,j�σ with {i, j} ⊆ S are
satisfied. The analogous statements hold for the clauses Ai,j .

The clauses Δi,j,k�σ with i ∈ S and j, k /∈ S are Δs,j,k, and similarly for the
other situations where |{i, j, k} ∩ S| = 1.

The clauses Δi,j,k with i, j ∈ S and k /∈ S with j ≺ i are satisfied by σ, and
similarly for the symmetric situations as well as for {i, j, k} ⊆ S. For i, j ∈ S
with i ≺ j, the restriction of Δi,j,k by σ is As,k, and similarly for the symmetric
cases.

Finally, the restriction of Mi for i /∈ S is Mi over the smaller domain, for
the maximal element i of S under ≺ it is Ms, and for other values i ∈ S it is
satisfied. ��

4 Negative Calculus

We now define a normal form for RTL-derivations from Ordn, in form of a
negative calculus NTL that uses only negative clauses.

For a clause C in the variables of Ordn, we define a negative clause CN that
is equivalent to C w.r.t. ordering restrictions as follows:

x̄N
i,j := x̄i,j

xN
i,j := x̄j,i

CN :=
∨

a∈C

aN

Observe that w(CN) ≤ w(C) for every clause C, but the translated clause can
be strictly smaller, e.g., (x1,2∨x1,3∨ x̄2,1)N is x̄2,1∨ x̄3,1. The negative translation
OrdN

n of the ordering principle is the conjunction of the clauses:

Ai,j for 1 ≤ i < j ≤ n,

Δi,j,k for 1 ≤ i < j, k ≤ n with j 	= k, and

MN
i for 1 ≤ i ≤ n.

It is easily seen that the negative translation commutes with ordering restric-
tions, i.e., for every clause C and ordering restriction σ we have CN �σ = (C�σ)N .
It follows from Lemma 5 and this fact that ordering restrictions preserve the
negative-translated ordering principle:

Corollary 6. For every ordering restriction σ with |σ| ≥ 1,

OrdN
n �σ = OrdN

n−|σ|+1 .

An Exponential Lower Bound for Width-Restricted Clause Learning 135

In the negative calculus NTL, the essential positive clauses Ti,j in the ordering
principle are coded in an inference rule, the negative inference:

C ∨ x̄i,j D ∨ x̄j,i

C ∨ D

An NTL-derivation is defined exactly as an RTL-derivation, only with the neg-
ative inference replacing the resolution inference. An NTL-derivation that does
not use any lemmas is called a tree-like negative derivation. Also, an NTL-
derivation is an NTL(k)-derivation if every lemma used is of width at most k.

We now provide a translation of RTL-derivations from the ordering principle
clauses into the negative calculus that preserves the proof size and the width of
lemmas used.

Lemma 7. If C has an RTL(k)-derivation from Ordn of size s, then CN has
an NTL(k)-derivation from OrdN

n of size at most 2s.

Proof. Let R be an RTL(k)-derivation of C from from Ordn. We construct an
NTL(k)-derivation of CN of the appropriate size.

For each clause C in Ordn, the translation CN is in OrdN
n , so the claim holds

for the axiom leaves. For the lemma leaves, we shall take care in the construction
that the clauses CN for C occurring in R, occur in RN in the same order, so the
lemmas can be used as needed. Also note that since w(CN) ≤ w(C), the lemmas
used do not exceed the width bound.

If D is derived by a weakening inference from C ⊆ D, and C has a derivation
of size s − 1, then by induction CN has an NTL(k)-derivation of size at most
2s − 2, and a weakening inference yields DN ⊇ CN . The size of the obtained
derivation is at most 2s − 1, and the ordering of clauses in the derivation is
preserved.

Now let C ∨ D be derived by a resolution inference from C ∨ xi,j and D ∨ x̄i,j ,
which are derived by RTL(k)-derivations of size s1 and s2, resp., where s =
s1 + s2 + 1. By induction, there are NTL(k)-derivations of C̃ ∨ x̄j,i of size at
most 2s1, and of D̃ ∨ x̄i,j of size at most 2s2, where C̃ ⊆ CN and D̃ ⊆ DN . A
negative inference then yields C̃ ∨ D̃, and by a weakening inference we obtain
CN ∨ DN . Note that CN might contain x̄j,i, or similarly for DN , thus we can
not necessarily obtain CN ∨DN immediately by a negative inference. The size of
the derivation is at most 2s1 + 2s2 + 2 = 2s, and the ordering is preserved. ��

The converse direction also holds, we state it for completeness without proof
since we shall not need it here:

Proposition 8. If C has an NTL(k)-derivation from OrdN
n of size s, then C

also has an RTL(k)-derivation from Ordn of size at most 6ns.

Negative tree-like derivations are preserved under ordering restrictions. Note
that this does not hold for arbitrary restrictions.

Proposition 9. Let R be a tree-like negative derivation of C from F of size s,
and σ an ordering restriction. There is a tree-like negative derivation R′ of some
subclause C′ ⊆ C�σ from F �σ of size at most s.

136 J. Johannsen

Proof. The proof is by induction of s. If s = 1, then R is just the single clause
C ∈ F , and hence C�σ is in F �σ, having a derivation of size 1 as well.

If C is derived by weakening from D ⊆ C, where D has a derivation of size
s − 1, then by the induction hypothesis there is D′ ⊆ D�σ having a derivation
of size at most s − 1, from which we obtain C�σ ⊇ D�σ ⊇ D′ by a weakening
again.

Now let C be derived from D1 = D′
1 ∨ x̄i,j and D2 = D′

2 ∨ x̄j,i by a negative
inference, with Di having a derivation of size si for i = 1, 2 where s = s1+s2+1.
By the induction hypothesis, we have for i = 1, 2 a derivation of D′′

i ⊆ Di�σ of
size at most si. We distinguish three cases.

If x̄i,j does not occur in D′′
1 , then we obtain C�σ ⊇ D′

1�σ ⊇ D′′
1 by weakening,

and the resulting derivation is of size at most s1 + 1. The case where x̄j,i does
not occur in D′′

2 is dual.
Otherwise, we have D′′

1 = D̃1 ∨ x̄i,j and D′′
2 = D̃2 ∨ x̄j,i, and we obtain

C′ = D̃1 ∨ D̃2 ⊆ D′
1�σ ∨D′

2�σ = C�σ by a negative inference, giving a derivation
of size at most s1 + s2 + 1 = s again. ��

In particular, if R is a refutation of F , then R′ is a refutation of F �σ. As usual,
we denote R′ by R�σ.

We now prove a lower bound on the size of tree-like negative refutations of
the (negative-translated) ordering principle that is slightly larger than the bound
obtained from the translation of Theorem 3. Via Lemma 7, it yields the same
larger lower bound for tree-like resolution refutations of Ordn. The proof given
here is implicit in the proof of a lower bound for regular resolution refutations
of a modification of Ordn [1].

Lemma 10. Every tree-like negative refutation of OrdN
n is of size at least

2(n−1)/2.

Proof. Let R be a tree-like negative refutation of OrdN
n . We will define a subtree

T of R, and for each node ν in T labeled with the clause Cν an ordering restriction
σν = ρ(Sν ,≺ν) such that Cν�σν = 0.

The root of T is the root r of R, and we define Sr = ∅ and ≺r as the empty
ordering. Since Cr = 0, the claim holds.

Now suppose we have defined T up to a node ν with |σν | ≤ n − 2. Since no
ordering restriction of size less than n falsifies a clause in OrdN

n , ν must be an
inner node in R.

If ν has a single successor ν′, and Cν is derived by weakening from Cν′ ⊂ Cν ,
then Cν′�σν = 0, so we add ν′ to T and set σν′ = σν .

If ν has two successors ν1 and ν2, and Cν is derived by a negative inference

Cν1 = C ∨ x̄i,j Cν2 = D ∨ x̄j,i

Cν = C ∨ D

then we distinguish two cases.
If i ∈ Sν and j ∈ Sν , then we add one of the children of ν to T . If i ≺ν j, then

we set ν′ = ν1, otherwise we set ν′ = ν2, and we add ν′ to T . In either case, by
construction we have Cν′�σν = 0, and thus we set σν′ = σν .

An Exponential Lower Bound for Width-Restricted Clause Learning 137

If i /∈ S or j /∈ S, then we add both ν1 and ν2 to T , and in this case we
call ν a branching node. We set Sν1 = Sν2 = Sν ∪ {i, j}. We then choose some
extension ≺ν1⊇≺ν with i ≺ν1 j, and another extension ≺ν2⊇≺ν with j ≺ν2 i.
By construction, we have Cνi�σνi = 0 and |Sνi | ≤ |Sν |+ 2 for i = 1, 2.

Now every branch in T contains at least (n − 1)/2 branching nodes, and
therefore T and hence R is of size at least 2(n−1)/2. ��

5 Cyclic Clauses

For a negative clause C over the variables of Ordn, let G(C) be the directed
graph with vertex set [n] and edges {(i, j) ; x̄i,j ∈ C}. A negative clause is
cyclic, if G(C) contains a (directed) cycle, and acyclic otherwise. It is easily seen
that cyclic clauses have short tree-like negative refutations.

Lemma 11. Any cyclic clause over the variables of Ordn of width k has a tree-
like negative refutation of size at most 2 min(k, n).

Proof. If G(C) is cyclic, it contains a cycle i1, i2, . . . i
, i1 with ≤ min(k, n). We
first show that for every such cycle, the clause

x̄i1,i2 ∨ . . . ∨ x̄i�−1,i�
∨ x̄i�,i1

has a negative derivation of length at most 2− 1. From this clause, the clause
C is derived by one weakening inference, hence it has a derivation of length
2 ≤ 2 min(k, n).

We prove the claim by induction on . For ≤ 3, this clause is either Ai1,i2

or Δiq,i2,i3 , and hence already in OrdN
n . Assume the claim holds for , then by

a negative inference we obtain:

x̄i1,i2 ∨ . . . ∨ x̄i�−1,i�
∨ x̄i�,i1 x̄i1,i�

∨ x̄i�,i�+1 ∨ x̄i�+1,i1

x̄i1,i2 ∨ . . . ∨ x̄i�,i�+1 ∨ x̄i�+1,i1

and the length of the resulting derivation is 2 − 1 + 2 = 2(+ 1) − 1, which
shows the claim. ��

It follows that cyclic clauses are useless as lemmas for refuting OrdN
n .

Lemma 12. Let R be an NTL(k)-refutation of OrdN
n of size s. Then there is

an NTL(k)-refutation R′ of OrdN
n such that every lemma used in R′ is acyclic,

and |R′| ≤ 2n · s.

Proof. Replace each cyclic lemma used by its derivation of size at most 2n, which
exists by Lemma 11. ��

The final ingredient for our proof is the following lemma showing that a short
acyclic clause can always be falsified by a small ordering restriction.

Lemma 13. If C is an acyclic negative clause of width w(C) ≤ k, then there is
an ordering restriction σ of size |σ| ≤ 2k such that C�σ = 0.

138 J. Johannsen

Proof. Let S be the set of those i ≤ n that are mentioned in C, i.e., such that
x̄i,j or x̄j,i occurs in C for some j. Clearly |S| ≤ 2k. Consider the subgraph G of
G(C) induced by S, which only differs from G(C) by omitting isolated vertices.
Since C is acyclic, so is G. Let ≺ be any topological ordering of G, i.e., a total
ordering of S such that u ≺ v for every edge (u, v) in G. Then for σ := ρ(S,≺)
we have C�σ = 0 by construction, and |σ| ≤ 2k as required. ��

6 Proof of the Lower Bound

We are now ready to plug all ingredients together to prove our lower bound
result, Theorem 4.

Proof. Let k < n/4, and let R be an RTL(k)-refutation of Ordn of size s. By
Lemma 7, there is an NTL(k)-refutation RN of OrdN

n of size |RN | ≤ 2s. Lemma
12 then yields an NTL(k)-refutation R′ of OrdN

n with only acyclic lemmas, of
size |R′| ≤ 4ns.

Let C be the first clause in R′ that is used as a lemma. Then the subtree
R′

C of R′ rooted at C is a tree-like negative derivation of C from OrdN
n , of size

|R′
C | ≤ 4ns. Since C is acyclic, from Lemma 13 we obtain an ordering restriction

σ of size |σ| ≤ 2k < n/2 such that C�σ = 0, and Proposition 9 yields a tree-like
negative refutation R̃ := R′

C�σ of OrdN
n−|σ|+1 of size at most 8ns. By Lemma

10, R̃ is of size at least

|R̃| ≥ 2(n−|σ|)/2 ≥ 2(n−2k)/2 ≥ 2n/4 ,

therefore we obtain 8ns ≥ 2n/4, and thus

s ≥ 2n/4/8n = 2n/4−log n−3 = 2Ω(n)

which proves the claim. ��

7 Implication Graph Formulas

In contrast to our result above, we now give an example where even the use of
very small lemmas gives an exponential speed-up over tree-like resolution. We
show that the implication graph formulas for every graph on n vertices have
RTL(2)-refutations of linear size, whereas it is known that for some graphs they
require exponential size tree-like resolution refutations [3].

Let a pointed graph be a directed acyclic graph with a unique sink t, where
every vertex that is not a source has in-degree 2. The implication graph formula
Imp(G) for such a pointed graph G consists of the source clause xs ∨ys for every
source s, the sink clauses x̄t and ȳt, and the four implication clauses

x̄u ∨ x̄v ∨ xw ∨ yw

x̄u ∨ ȳv ∨ xw ∨ yw

ȳu ∨ x̄v ∨ xw ∨ yw

ȳu ∨ ȳv ∨ xw ∨ yw

An Exponential Lower Bound for Width-Restricted Clause Learning 139

for an inner vertex w with predecessors u and v.
Ben-Sasson et al. [3] show a lower bound for tree-like resolution refutations of

the implication graph formulas for certain graphs:

Theorem 14. There are pointed graphs Gn with n vertices such that tree-like
resolution refutations of Imp(Gn) require size 2Ω(n/ log n).

On the other hand, we have:

Theorem 15. For every graph G with n vertices, there are RTL(2)-refutations
of Imp(G) of size O(n).

Proof. For every vertex w with predecessors u and v, there is a tree-like deriva-
tion of xw ∨ yw from the lemmas xu ∨ yu and xv ∨ yv as follows:

First resolve xv ∨yv with the first two implication clauses, giving x̄u ∨xw ∨yw.
Also, resolve xv ∨ yv with the last two implication clauses to give ȳu ∨ xw ∨ yw.
These two are resolved with xu ∨ yu to obtain xw ∨ yw.

Now these derivations can be plugged together to yield an RTL(2)-derivation
of xt ∨ yt from all the source clauses. Resolving this with the sink clauses gives
the desired refutation. ��

8 Conclusion

We have provided an example of a class of formulas which can be solved quickly
by DLL algorithms with clause learning, but require exponential time when
learning is restricted to short clauses. This rigorous lower bound result supports
the experience made in practice that restricting to short clauses is not a useful
heuristic for deciding which clauses to learn. The hard examples used are the
formulas Ordn based on the ordering principle, which frequently occur as hard
examples in proof complexity.

It would be nice to have another example showing this behavior that has
only short input clauses, but it seems likely that the technique of this paper can
be extended to provide such an example, based on a 3-CNF extension of the
formulas Ordn or a restriction of Ordn to the edges of an expander graph as
used by Segerlind et al. [10]. This is being investigated in ongoing work.

A major problem is to extend the lower bounds to systems with lemmas of
arbitrary length, and thus to separate the systems corresponding to DLL with
clause learning [5, 7] – and thus the algorithm itself – from general dag-like
resolution. For this problem, the techniques used here and in the earlier lower
bound for the pigeonhole principle [5] are insufficient, since they rely heavily on
the proofs being non-regular. But without the regularity restriction, the systems
with arbitrary lemmas are equivalent to general resolution.

Acknowledgments. I thank Jan Hoffmann for helpful discussions about the re-
sults in this paper, and two reviewers for some useful suggestions.

140 J. Johannsen

References

[1] Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential sep-
aration between regular and general resolution. Theory of Computing 3, 81–102
(2007)

[2] Bayardo Jr., R.J., Schrag, R.C.: Using CSP look-back techniques to solver real-
world SAT instances. In: Proc. 14th Natl. Conference on Artificial Intelligence,
pp. 203–208 (1997)

[3] Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near-optimal separation of gen-
eral and tree-like resolution. Combinatorica 24(4), 585–604 (2004)

[4] Bonet, M.L., Galesi, N.: Optimality of size-width tradeoffs for resolution. Com-
putational Complexity 10(4), 261–276 (2001)

[5] Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolu-
tion refinements that characterize DLL algorithms with clause learning. Logical
Methods in Computer Science 4(4) (2008)

[6] Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Communications of the ACM 5(7), 394–397 (1962)

[7] Hertel, P., Bacchus, F., Pitassi, T., van Gelder, A.: Clause learning can effectively
p-simulate general propositional resolution. In: Fox, D., Gomes, C.P. (eds.) Pro-
ceedings of the 23rd AAAI Conference on Artificial Intelligence, AAAI 2008, pp.
283–290. AAAI Press, Menlo Park (2008)

[8] Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22, 253–274
(1985)

[9] Letz, R.: Personal communication
[10] Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restric-

tions and lower bounds for k-DNF resolution. SIAM Journal on Computing 33(5),
1171–1200 (2004)

[11] Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiabil-
ity. In: Proc. IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pp. 220–227 (1996)

[12] St̊almarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta
Informatica 33, 277–280 (1996)

[13] Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1968)

[14] van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL
with clause learning. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS
(LNAI), vol. 3835, pp. 580–594. Springer, Heidelberg (2005)

[15] Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in a Boolean satisfiability solver. In: Proc. IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 279–285 (2001)

Improved Conflict-Clause Minimization Leads to
Improved Propositional Proof Traces

Allen Van Gelder

Univ. of California, Santa Cruz, CA 95064
http://www.cse.ucsc.edu/∼avg

Abstract. Recent empirical results show that recursive, or expensive,
conflict-clause minimization is quite beneficial on industrial-style propo-
sitional satisfiability problems. The details of this procedure appear to be
unpublished to date, but may be found in the open-source code of Min-
iSat 2.0, for example. Biere reports that proof traces are made more com-
plicated when conflict-clause minimization is used because some clauses
need to be resolved upon multiple times during the minimization pro-
cedure as found in MiniSat 2.0. Biere proposes a proof-trace format in
which the set of clause numbers needed for a certain derivation is given,
but their order is not specified. This paper presents a new procedure
for conflict-clause minimization that is slightly more efficient and, more
importantly, discovers a correct order so that each clause used for the
derivation is resolved upon only once. This permits the proof trace to
specify the order in which to use the clauses, greatly reducing the burden
on software that processes the proof trace. The method is validated on
the unsatisfiable formulas used for industrial benchmarks in the verified-
unsatisfiable track of the SAT 2007 competition.

1 Introduction

Sinz and Biere [6] and later Biere [1] describe and discuss a system of proof traces
and checking for Sat solvers based on conflict-driven clause learning, such as
zchaff, minisat, picosat, and many others. In many respects, their proposal is
simply the union of two earlier ground-breaking proposals: Goldberg and Novikov
proposed to output the literals of each derived conflict clause [4], while Zhang
and Malik proposed to output the sequence of clause numbers whose linear
resolution would create each derived conflict clause [9]. The original motivation
for outputting proofs was to provide certificates of correctness that could be
checked offline. Biere argues that proofs have other uses in several applications
[1]. In these contexts, proofs are viewed as explanations, the main goal is to
extract useful information, rather than check correctness. Therefore, the format
should be compact and easy to use. Biere argues that the proof trace should
contain both the conflict clause and the clause numbers needed to derive it.

However, the Sinz and Biere proof-trace format differs in one important re-
spect from other proposals. It produces the unordered set of clause numbers that

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 141–146, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

142 A. Van Gelder

are sufficient to derive the conflict clause. One reason given is that when conflict-
clause minimization is employed, the solver knows which clauses are necessary
for the derivation, but some of the clauses might be used multiple times and
figuring out a resolution order would entail extra work. Other inference methods
that might appear in the future also might not be amenable to linear derivations.

This short paper shows that it is feasible to produce an ordered sequence, even
when “recursive” conflict-clause minimization is employed. Although our proce-
dure is specific for conflict graphs, the idea may well extend to other settings,
where more clauses are available. The procedure given in this paper has been
“dropped into” MiniSat 2.0, replacing the “recursive” conflict-clause minimiza-
tion in the distribution (called “expensive” in the MiniSat code), and has sped
up the program slightly. But this minor speed-up is really a by-product. The
main motivation is that our procedure is able to discover a correct sequence for
deriving a minimized conflict clause by a linear resolution in which no variable
is resolved upon more than once, and consequently no clause is used more than
once. Such proofs were dubbed trivial resolutions by Beame et al.. who showed
that these proofs are of minimum length among those using only clauses in the
conflict graph [2].

After the original and new methods are described, experimental results are
presented based on the industrial benchmarks used for the SAT–2007 verification
track. See http://www.cse.ucsc.edu/∼avg/ProofChecker/ for details.

2 Conflict Clauses and Conflict Graphs

Leading SAT solvers use a conflict graph data structure to infer conflict clauses.
Readers unfamiliar with conflict graphs and their relationship to conflict clauses
should consult citations in this paragraph. Figure 1 illustrates a conflict graph.
Our notation varies from some others [10,2] to reflect the data structures used by
zchaff, MiniSat, picosat, etc. Arrows indicate the reference direction in the
data structures, and “⊥” is associated with a clause that became empty during
unit-clause propagation, as in the original presentation [5].

An antecedent clause determines the edges leaving the vertex, and vice versa.
In Figure 1, the antecedent clause of “⊥” is

[
e, f , j

]
, and the antecedent clause

of “e” is
[
e, g, k

]
.1 For working through examples, we assume that literals of

antecedent clauses are stored in alphabetical order.
In Figure 1, the 1-UIP cut has the associated 1-UIP conflict clause:

D0 =
[
p, j, k, i, m, r, , q

]
. (1)

The literals of D0 are listed in the order that MiniSat stores them. Notice that
those within a decision level are not in any particular order among themselves.
This clause and Figure 1 are used for running examples in this paper.
1 It is easy to see that the set of antecedent clauses for a particular conflict graph is

renamable Horn, so there is no loss of generality in assuming all vertices correspond
to positive literals.

Improved Conflict-Clause Minimization 143

4 d w p h g f e �

3 c x q m � k j i

2 b y r

s t u n

1 a z

δ γ β α v

Fig. 1. Conflict graph with 1-UIP cut shown as dotted line. The corresponding conflict
clause is D0 =

[
p, j, k, i, m, r, �, q

]
. Decision levels and decision literals are on the left.

3 Conflict Clause Minimization in MiniSat 2.0

We now explain the clause minimization procedure in MiniSat (and other solvers)
using conflict clause D0 in (1) and Figure 1 as an example. After determining
D0, MiniSat 2.0 tests each literal L in D0, except p, to see if it can be resolved
away without (ultimately) adding any new literals to the resulting clause. Only
antecedent clauses are considered for such resolutions.2 The procedure does not
actually perform any resolutions. Instead, for each candidate literal L in D0,
a depth-first search rooted at L checks whether all paths leaving L encounter
some other vertex in D0.3 If this condition holds, L can be removed. The search
is aborted as soon as it is determined that some path exists that terminates
without meeting D0. The final conflict clause is called D, and is a subset of D0.

In the following, the notation “(in)” means the search backtracks from this
vertex without exploring further, because this vertex is part of D0. First, p is
bypassed because it is never removable. Next, j is checked, generating the search
sequence j, k (in), n, u, t, s, r (in), v, α, β, γ, δ, r (in), z (fail). It is unnecessary
to trace the rest of the path from z to a because D0 has no literals on this decision
level, so this must be a failure path. Therefore, j must be kept in D. When the
search aborts, all other information found during the search is discarded.

Next, k is checked, generating the search sequence k, (in), n, . . . (the rest
is the same as the j search). Then comes i, generating i, j (in), n, . . . (the
rest is the same as the j search). This repetition shows an inefficiency in the
code, but it is not easy to overcome because the depth-first search is coded in
2 In MiniSat code, the vector reason[] stores what we call the antecedent clause.
3 Actually, the negation of the vertex is in the clause, but there is no confusion in the

simpler wording.

144 A. Van Gelder

the old-fashioned manner, without recursion, where the programmer manages
the vertex stack. This style has no convenient access to post-order time for the
vertices (also known as finishing time).

The minimization procedure continues with m. The sequence is m, q (in), s,
r (in), t, s (removable). Thus m can be removed from D0. Notice that upon the
second encounter with s it was remembered that if s is temporarily added to the
clause, it can be removed. The same is remembered about t at this point. As
long as the overall search is successful, it remembers that all the vertices visited
are removable. It is only when the search ultimately fails that the procedure
does not know which vertices are removable and discards all new information.

Next, the search from r proceeds to y and b, and fails, so r must be kept
in D. Next, is checked, generating the sequence , m (in), s (removable), t
(removable). So is also removable. Finally, q is checked and must be kept in D.

In summary, the procedure found first that m can be removed, then that
can be removed. Unfortunately, a resolution derivation that shortens D0 by first
removing m, then removing , is unnecessarily long and does not fit the pattern
of the trivial resolution. Using the orders found in the searches would lead to the
following sequence of resolvents (with abuse of notation): D1 = D0 −m + s + t,
D2 = D1− s, D3 = D2 − t + s, D4 = D3 − s. Finally, D4 is D0 with m removed
and nothing added.

But now it gets worse. To remove , it is necessary to re-introduce m and
remove it all over again: D5 = D4 − + m + s + t, D6 = D5 −m, D7 = D6 − s,
D8 = D7 − t + s, D9 = D8 − s. The final minimized clause is D = D9. Possibly,
this example can be extended to construct an exponential worst case [7].

This example explains why Sinz and Biere advocated that the trace should
simply specify that D was somehow derived from the antecedents of ⊥, e, f , g,
h, m, s, t, and , without specifying a sequence.

4 New Minimization Procedure

Our new procedure for minimization uses the modern recursive version of depth-
first search (DFS) that provides access to the post-order times of vertices (also
called finishing time) [3]. The DFS can be visualized as someonemoving around the
graph and able to do tasks when they arrive at a vertex either for the first time or
upon backtracking. Initially vertices are marked as in or out of D0. Upon reaching
a vertex L at post-order time, enough information has been gathered to categorize
it as one of the following: keep: L remains in D; removable: L is not in D, but is in
D0 or some intermediate resolvent; poison: L must not enter any intermediate (or
final) resolvent. A decision literal is keep if it is in D0, otherwise poison.

The post-order rules for non-decision literals are straightforward: (1) If L is in
D0 and some successor is poison, keep; (2) if L is not in D0 and some successor
is poison, poison; (3) if all successors of L are keep or removable, L is removable.

The crucial idea is this: at the post-order time for L, if L is found to be
removable, then it is pushed on a stack. (Some removables may be unneeded
because they cannot be reached by a path of removables; they can be removed

Improved Conflict-Clause Minimization 145

easily by post-processing.) Correctness easily follows using the fact that the top-
to-bottom order of the needed removables is a topological order, as required for
a trivial resolution to reduce D0 to D [7].

A DFS is rooted at each L in D0, but now information is stored for both
failing and successful subsearches, so nothing is discarded and repeated.

Let us trace this procedure on the same example. The notation “↓” means the
vertex is backtracked to. As before, p is bypassed. A DFS is rooted at j, gener-
ating the search sequence j, k, , m, q, x, c (poison), ↓ x (poison), ↓ q (keep),
↓ m, s, r, y, b (poison), ↓ y (poison), ↓ r (keep), ↓ s (removable, push(s)), ↓ m,
t (removable, push(t)), ↓ m (removable, push(m)), ↓ (removable, push()),
↓ k, n, u (removable, push(u)), ↓ n, v, α, β, γ, δ, z (poison), ↓ δ, ↓ γ, ↓ β, ↓ α,
↓ v, ↓ n (all six poison), ↓ k (keep), ↓ j (keep).

A second DFS is rooted at i, but both its successors have been visited, so i is
immediately categorized as keep.

The top-to-bottom order of the removable stack is: u, , m, t, s. Since D0 has
neither u nor u, resolution with the antecedent of u is not needed. The trivial
resolution to reduce D0 to D uses the antecedents of , m, t, s, in that order.

5 Experimental Results

We ran several configurations of MiniSat 2.0 on 17 industrial benchmarks from
the verified-unsatisfiable track of the SAT 2007 competition. At the URL in
Section 1, see minisat-comparison.pdf and cert-poster-sat07.pdf for ad-
ditional data and benchmark information; space constraints prevent including
them here. CPU times are based on Intel XEON 2.00GHz, 4 GB memory.

The modified MiniSat consists of “dropping in” the new recursive conflict-
clause minimization procedure presented in this paper (see MiniSat2ccmin.tar).
This change did not affect the computational results, not even the order of the
literals within any clauses, as was verified by observing that all printed counter
values (in the 100’s per run, including lengths and numbers of conflict clauses
at each restart point) were identical for both versions.

Table 1 shows that, on 16 benchmarks (the 17-th was solved by unit propa-
gation), the modification saved time 9 times, and lost time 7 times. However,
profiling the analyze() percent, the modification lowered this percent 9 times
and raised it 2 times. Most changes were only 1 percent of the total time, but
the larger changes all favored the modified version and were 2, 3, and 13 per-
cent of the total time. This is the most specific data we could get, because the
conflict-clause minimization code is in-line in the original analyze(), which also
computes the conflict clause, the backtrack level, and other related data. As ex-
pected, since no changes were made except in analyze() and its subroutines, the
larger differences in CPU time are almost entirely attributable to the differences
in analyze() percent.

This data provides evidence that our improved procedure for “recursive” con-
flict-clause minimization achieves its primary purpose, which is to enable a proof
trace to show a correct order of resolutions to achieve a trivial resolution deriva-
tion of the minimized conflict clause, in the sense of Beame et al. [2]. Moreover,

146 A. Van Gelder

Table 1. MiniSat 2.0 original and modified CPU times and fractions

benchmark CPU CPU CPU percentage analyze analyze
name orig mod mod–orig mod–orig pct orig pct mod
eq.atree.braun.7.unsat 3.39 3.41 0.02 0.59 28 27
eq.atree.braun.8.unsat 38.34 37.77 -0.57 -1.49 22 22
eq.atree.braun.9.unsat 174.71 180.87 6.16 3.46 16 16
AProVE07-21 1369.26 1362.23 -7.03 -0.50 11 11
AProVE07-02 4204.60 4227.81 23.21 0.55 21 20
AProVE07-22 397.68 395.76 -1.92 -0.47 17 16
AProVE07-20 753.64 764.27 10.63 1.40 13 14
AProVE07-15 609.09 611.34 2.25 0.37 21 21
IBM FV 2004··30··.k15 1394.55 1357.30 -37.25 -2.70 15 13
itox vc965 0.25 0.25 0 0 0 0
dated-5-11-u 726.91 738.13 11.22 1.53 8 9
dated-5-15-u 5031.67 4999.84 -31.83 -0.62 20 18
total-5-11-u 84.71 83.81 -0.90 -1.06 14 13
total-5-13-u 206.64 204.36 -2.28 -1.10 13 12
dated-10-15-u 97.12 84.04 -13.08 -14.43 32 19
dspam dump vc973 18202.99 17754.12 -448.87 -2.50 38 35
manol-pipe-c10nidw s 919.38 919.49 0.11 0.01 10 10
TOTAL(17) 34214.88 33724.8 -490.08 -1.44 26 24

this is achieved without increasing the computation time; indeed, modest de-
creases were achieved.

We thank Armin Biere for many helpful email discussions.

References

1. Biere, A.: Picosat Essentials. J. Satisfiability 4, 75–97 (2008)
2. Beame, P., Kautz, H., Sabharwal, A.: Towards Understanding and Harnessing the

Potential of Clause Learning. J.A.I.R. 22, 319–351 (2004)
3. Baase, S., Van Gelder, A.: Computer Algorithms: Introduction to Design and Anal-

ysis, 3rd edn. Addison-Wesley, Reading (2000)
4. Goldberg, E., Novikov, Y.: Verification of Proofs of Unsatisfiability for CNF For-

mulas. In: Proc. Design, Automation and Test in Europe, pp. 886–891 (2003)
5. Marques-Silva, J.P., Sakallah, K.A.: GRASP–A Search Algorithm for Propositional

Satisfiability. IEEE Transactions on Computers 48, 506–521 (1999)
6. Sinz, C., Biere, A.: Extended Resolution Proofs for Conjoining BDDs. In: Grigoriev,

D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006)

7. Van Gelder, A.: Verifying Propositional Unsatisfiability: Pitfalls to Avoid. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 328–333.
Springer, Heidelberg (2007)

8. Zhang, L., Malik, S.: Extracting Small Unsatisfiable Cores from Unsatisfiable
Boolean Formula. In: SAT 2003, Sta. Marguerita, It. (2003)

9. Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent Resolution-
Based Checker. In: Proc. Design, Automation and Test in Europe (2003)

10. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient Conflict Driven Learn-
ing in a Boolean Satisfiability Solver. In: ICCAD (November 2001)

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 147–160, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Boundary Points and Resolution

Eugene Goldberg

eu.goldberg@gmail.com

Abstract. We use the notion of boundary points to study resolution proofs.
Given a CNF formula F, a lit(x)-boundary point is a complete assignment
falsifying only clauses of F having the same literal lit(x) of variable x. A
lit(x)-boundary point mandates a resolution on variable x. Adding the resolvent
of this resolution to F eliminates this boundary point. Any resolution proof has
to eventually eliminate all boundary points of F. Hence one can study resolution
proofs from the viewpoint of boundary point elimination. We use equivalence
checking formulas to compare proofs of their unsatisfiability built by a conflict
driven SAT-solver and very short proofs tailored to these formulas. We show
experimentally that in contrast to proofs generated by this SAT-solver, almost
every resolution of a specialized proof eliminates a boundary point. This
implies that one may use the share of resolutions eliminating boundary points as
a metric for proof quality.

Keywords: SAT-solver, boundary points, resolution, proof quality.

1 Introduction

Resolution-based SAT-solvers [4,9,13,16,18,19,20] have achieved great success in
numerous applications. Importantly, in many cases, the quality of resolution proofs
generated by a SAT-solver matters as much as its performance. For example, in
bounded model checking [5], a resolution proof is used to identify the part of the
circuit relevant to a particular property [7]. In interpolation based model checking
[15], the size of interpolant strongly depends on that of the resolution proof it is
extracted from. In [10], we showed that high-quality tests can be obtained from a
resolution proof. The number of these tests is proportional to the number of resolu-
tions in the proof. So proof reduction means getting a more compact test set.

In this paper, we study the relation between resolution and boundary points [12].
The motivation here is as follows. To show that a CNF formula is unsatisfiable it is
sufficient to eliminate all its boundary points. Resolution can be viewed as a method
of boundary point elimination. Relating resolution proofs with boundary point elimi-
nation, may lead to a) better understanding of resolution proofs; b) identifying proof
redundancies; c) designing SAT-solvers that generate smaller proofs.

Given a CNF formula F(x1,..,xn), a non-satisfying complete assignment p is called a
lit(xi)-boundary point, if it falsifies only the clauses of F that have literal lit(xi). The
name is due to the fact that for satisfiable formulas the set of such points contain the
boundary between satisfying and unsatisfying assignments. If F is unsatisfiable, for
every lit(xi)-boundary point p there is a resolvent of two clauses of F on variable xi

148 E. Goldberg

that eliminates p (i.e. after adding such a resolvent to F, p is not a boundary point
anymore). On the contrary, for a non-empty satisfiable formula F, there is always a
boundary point that can not be eliminated by adding a clause implied by F.

To prove that a CNF formula F is unsatisfiable it is sufficient to eliminate all its
boundary points. In the resolution proof system [3], one reaches this goal by adding
to F resolvents. If formula F has a lit(xi)-boundary point, a resolution proof has to
have a resolution operation on variable xi. The resolvents of a resolution proof even-
tually eliminate all boundary points. (A formula with an empty clause does not have
any boundary points.) However, as we show experimentally many resolution opera-
tions of proofs generated by a conflict driven SAT-solver do not eliminate any bound-
ary points (non-boundary resolutions). We use the ratio of boundary and non-
boundary resolutions of a proof as a redundancy measure called SBR metric (Share of
Boundary Resolutions).

To check if there is a relation between the value of SBR metric and proof quality
we computed the values of this metric for two kinds of proofs for equivalence check-
ing formulas. (These formulas describe equivalence checking of two copies of a
combinational circuit.) Namely, we considered short proofs of linear size particu-
larly tailored for equivalence checking formulas and much longer proofs generated by
a SAT-solver with conflict driven learning. We showed experimentally that the share
of boundary resolution operations in high-quality specialized proofs is much greater
than in proofs generated by the SAT-solver. This implies that the SAT-solver’s
proofs may have some redundancies.

The contribution of this paper is threefold. First, we show that one can view reso-
lution as elimination of boundary points. Second, we introduce the SBR metric that
can be potentially used as a measure of proof redundancy. Third, we give some ex-
perimental results about the relation between SBR -metric and proof quality.

This paper is structured as follows. Section 2 introduces main definitions. Some
properties of boundary points are given in Section 3. Section 4 views a resolution
proof as a process of boundary point elimination. A class of equivalence checking
formulas and their short resolution proofs are described in Section 5. Experimental
results are given in Section 6. Some relevant background is recalled in Section 7.
Conclusions and directions for future research are listed in Section 8.

2 Basic Definitions

Definition 1. A literal of a Boolean variable xi (denoted as lit(xi)) is a Boolean func-
tion of xi. The identity function (denoted just as xi) is called the positive literal of xi.
The negation function (denoted as ~xi) is called the negative literal of xi.

Definition 2. A clause is the disjunction of literals where no two (or more) literals of
the same variable can appear. A CNF formula is the conjunction of clauses. We will
also view a CNF formula as a set of clauses.

Definition 3. Given a CNF formula F(x1,..,xn), a complete assignment (also called a
point) is a mapping {x1,..,xn} → {0,1}. Given a complete assignment p and a clause
C, denote by C(p) the value of C when its variables are assigned by p. A clause C is

 Boundary Points and Resolution 149

satisfied (respectively falsified) by a complete assignment p, if C(p) = 1 (respectively
C(p) = 0).

Definition 4. Given a CNF formula F, a satisfying assignment p is a complete as-
signment satisfying every clause of F. The satisfiability problem (SAT) is to find a
satisfying assignment for F or to prove that such an assignment does not exist.

Definition 5. Let F be a CNF formula and p be a complete assignment. Denote by
Unsat(p,F) the set of all clauses of F falsified by p.

Definition 6. Given a CNF formula F(x1,..,xn), a complete assignment p is called a
lit(xi)-boundary point if Unsat(p,F) is not empty and every clause of Unsat(p,F)
contains literal lit(xi).

Example 1. Let F consist of 5 clauses: C1= x2, C2= ~x2 ∨ x3, C3 =~x1 ∨ ~x3,
C4 = x1 ∨ ~x3, C5 = ~x2 ∨ ~x3. Complete assignment p1=(x1=0,x2=0,x3=1) falsifies
clauses C1,C4. So Unsat(p1,F)={C1,C4}. There is no literal shared by the clauses of
Unsat(p1,F). Hence p1 is not a boundary point. On the other hand, p2=
(x1=0,x2=1,x3=1) falsifies the clauses C4,C5 sharing literal ~x3. So p2 is a
~x3-boundary point.

3 Basic Properties of Boundary Points

In this section we give some properties of boundary points.

3.1 Basic Propositions

In this subsection, we prove the following propositions. The set of boundary points
contains the boundary between satisfying and unsatisfying assignments (Proposi-
tion 1). A CNF formula without boundary points is unsatisfiable (Proposition 2).
Boundary points come in pairs (Proposition 3).

Definition 7. Denote by Bnd_pnts(F) the set of all boundary points of a CNF formula
F. We assume that a lit(xi)-boundary point p is specified in Bnd_pnts(F) as the pair
(lit(xi), p). So the same point p may be present in Bnd_pnts(F) more than once (e.g. if
p is a lit(xi)-boundary point and a lit(xj)-boundary point at the same time).

Proposition 1. Let F be a satisfiable formula whose set of clauses is not empty. Let
p1 and p2 be two complete assignments such that a) F(p1)=0, F(p2)=1; b) p1 and p2 are
different only in the value of variable xi. Then p1 is a lit(xi)-boundary point.

Proof. Assume the contrary i.e. Unsat(p1,F) contains a clause C of F that does not
have variable xi. Then p2 falsifies C too and so p2 cannot be a satisfying assignment. A
contradiction.

Proposition 1 means that the set Bnd_pnts(F) contains the boundary between satisfy-
ing and unsatisfying assignments of a satisfiable CNF formula F.

150 E. Goldberg

Proposition 2. Let F be a CNF formula that has at least one clause. If
Bnd_pnts(F) = ∅, then F is unsatisfiable.

Proof. Assume the contrary i.e. Bnd_pnts(F) = ∅ and F is satisfiable. Since F is not
empty, one can always find two points p1 and p2 such that F(p1)=0 and F(p2)=1 and
that are different only in the value of one variable xi of F. Then according to Proposi-
tion 1, p1 is a lit(xi)-boundary point. A contradiction.

Proposition 3. Let p1 be a lit(xi)-boundary point for a CNF formula F. Let p2 be the
point obtained from p1 by changing the value of xi. Then p2 is either a satisfying as-
signment or a ~lit(xi)-boundary point.

Proof. Reformulating the proposition, one needs to show that Unsat(p2,F) is either
empty or contains only clauses with ~lit(xi). Assume that contrary, i.e. Unsat(p2,F)
contains a clause C with no literal of xi. (All clauses with lit(xi) are satisfied by p2.)
Then C is falsified by p1 too and so p1 is not a lit(xi)-boundary point. A contradiction.

Definition 8. Proposition 3 means that for unsatisfiable formulas every xi-boundary
point has the corresponding ~xi-boundary point (and vice versa). We will call such a
pair of points twin boundary points in variable xi.

Example 2. The point p2= (x1=0,x2=1,x3=1) of Example 1 is an ~x3-boundary point.
The point p3=(x1=0,x2=1, x3=0) obtained from p2 by flipping the value of x3 falsifies
only clause C2= ~x2 ∨ x3. So p3 is an x3-boundary point.

3.2 Elimination of Boundary Points by Adding Resolvents

In this subsection, we prove the following propositions. Clauses of a CNF formula F
falsified by twin boundary points can be resolved (Proposition 4). Adding such a
resolvent to F eliminates these boundary points (Proposition 5). Adding the resol-
vents of a resolution proof eventually eliminates all boundary points (Proposition 6).
A lit(xi)-boundary point can be eliminated only by a resolution on variable xi (Propo-
sition 7). If formula F has a lit(xi)-boundary point, any resolution proof that F is un-
satisfiable has a resolution on variable xi. (Proposition 8).

Definition 9. Let C1 and C2 be two clauses that have opposite literals of variable xi
(and no opposite literals of any other variable). The resolvent C of C1 and C2 is the
clause consisting of all the literals of C1 and C2 but the literals of xi. The clause C is
said to be obtained by a resolution operation on variable xi. C1 and C2 are called the
parent clauses.

Proposition 4. Let p1 and p2 be twin boundary points of a CNF formula F in variable
xi. Let C1 and C2 be two arbitrary clauses falsified by p1 and p2 respectively. Then
a) C1 , C2 can be resolved on variable xi; b) C(p1) = 0, C(p2) = 0 where C is the resol-
vent of C1 and C2.

Proof. Since C1(p1)=0, C2(p2)=0 and p1 and p2 are twin boundary points in xi, C1 and
C2 have opposite literals of variable xi. Since p1 and p2 are different only in the value

 Boundary Points and Resolution 151

of xi, clauses C1 and C2 can not contain opposite literals of a variable other than xi.
(Otherwise, p1 and p2 had to be different in values of at least 2 variables.) Since p1
and p2 are different only in the value of xi, they both set to 0 all the literals of C1 and
C2 but literals of xi. So the resolvent C of C1 and C2 is falsified by p1 and p2.

Example 3. Points p2= (x1=0, x2=1, x3=1) and p3=(x1=0, x2=1, x3=0) from Exam-
ples 1 and 2 are twin boundary points in variable x3. Unsat(p2, F)={C4,C5} and Un-
sat(p3, F) ={C2}. For example, C4 = x1 ∨ ~x3, can be resolved with C2=~x2 ∨ x3 on
variable x3. Their resolvent C= x1 ∨ ~x2 is falsified by both p2 and p3.

Proposition 5. Let p1 and p2 be twin boundary points in variable xi and C1 and C2 be
clauses falsified by p1 and p2 respectively Then adding the resolvent C of C1 and C2
to F eliminates the boundary points p1 and p2. That is pairs (xi,p1) and (~xi,p2) are
not in the set Bnd_pnts(F ∧ C) (here we assume that p1 is an xi-boundary point and p2
is a ~xi-boundary point of F).

Proof. According to Proposition 4, any clauses C1 and C2 falsified by p1 and p2
respectively can be resolved in xi and p1 and p2 falsify the resolvent C of C1 and C2.
Since clause C does not have a literal of xi , p1 is not an xi-boundary point and p2 is not
a ~xi-boundary point of F ∧ C.

Proposition 6. If a CNF formula F contains an empty clause, then Bnd_pnts(F) = ∅.

Proof. For any complete assignment p, the set Unsat(p,F) contains the empty clause
of F. So p can not be a lit(xi)-boundary point.

Proposition 6 works only in one direction, i.e. if Bnd_pnts(F) = ∅, it does not mean
that F contains an empty clause. Proposition 6 implies that, given an unsatisfiable
formula F for which Bnd_pnts(F) is not empty , the resovlents of any resolution proof
of unsatisfiability of F eventually eliminate all the boundary points.

Proposition 7. Let F be a CNF formula and p be a lit(xi)-boundary point of F. Let C
be the resolvent of clauses C1 and C2 of F that eliminates p (i.e. (lit(xi),p) is not in
Bnd_pnts(F ∧ C)). Then C is obtained by resolution on variable xi. In other words, a
lit(xi)-boundary point can be eliminated only by adding to F a resolvent on variable xi.

Proof. Assume the contrary i.e. adding C to F eliminates p and C is obtained by
resolving C1 and C2 on variable xj, j≠ i. Since C eliminates p as a lit(xi)-boundary
point, it is falsified by p and does not contain lit(xi). This means that neither C1 nor
C2 contain variable xi. Since C is falsified by p, one of the parent clauses, say clause
C1, is falsified by p too. Since C1 does not contain literal lit(xi), p is not a lit(xi)-
boundary point of F. A contradiction.

Proposition 8. Let p be a lit(xi)-boundary point of a CNF formula F. Then any reso-
lution derivation of an empty clause from F has to contain a resolution operation on
variable xi.

152 E. Goldberg

Proof. According to Proposition 6, every boundary point of F is eventually elimi-
nated in a resolution proof. According to Proposition 7, a lit(xi)-boundary point can
be eliminated only by adding to F a clause produced by resolution on variable xi.

3.3 Boundary Points and Clause Redundancy

In this subsection, we show that redundant clauses (e.g. conflict clauses) can be used
in resolutions as parent clauses to eliminate boundary points.

Definition 10. A clause C of a CNF formula F is called redundant if F \ {C} → C.

Proposition 9. Let C be a clause of a CNF formula F. Let lit(xi) be a literal of C.
Suppose that no lit(xi)-boundary point of F falsifies clause C. Then C is redundant.

Proof. Assume the contrary, i.e. C is not redundant. Then there is an assignment p
such that C is falsified and all the other clauses of F are satisfied. Then p is a lit(xi)-
boundary point. A contradiction.

Importantly, Proposition 9 works only in one direction. That is the fact that a clause
C is redundant in F does not mean that no boundary point of F falsifies C. Let CNF
formula F(x1,x2) consist of four clauses: ~x1, x1, x1 ∨ ~x2, x1 ∨ x2. Although the clause
x1 is redundant in F, p = (x1=0, x2=0) is an x1-boundary point falsifying x1 (and
x1 ∨ x2). The resolvent of clauses x1 and ~x1 eliminates p as a boundary point.

4 Resolution Proofs and Boundary Points

In this section, we view construction of a resolution proof as a process of boundary
point elimination and give a metric for measuring potential proof redundancy.

4.1 Resolution Proof as Boundary Point Elimination

First, we define the notion of a resolution proof [3] and a boundary resolution.

Definition 11. Let F be an unsatisfiable formula. Let R1,…,Rk be a set of clauses such
that a) each clause Ri is obtained by resolution operation where a parent clause is
either a clause of F or the resolvent of a previous resolution operation; b) clauses Ri
are numbered in the order they are derived; c) Rk is an empty clause; Then the set of
resolutions that produced the resolvents R1,..,Rk is called a resolution proof. We as-
sume that this proof is irredundant i.e. removal of any non-empty subset of these k
resolvents breaks condition a).

Definition 12. Let R1,..,Rk be the set of resolvents forming a resolution proof that a
CNF formula F is unsatisfiable. Denote by Fi the CNF formula that is equal to F for
i=1 and to F ∪ {R1,..,Ri-1} for i = 2,…,k.. In other words, Fi consists of the initial
clauses of F and first i-1 resolvents. We will say that the i-th resolution (i.e. one that
produces resolvent Ri) is non-boundary if Bnd_pnts(Fi) = Bnd_pnts(Fi+1). Otherwise
(i.e. if Bnd_pnts(Fi) ⊃ Bnd_pnts(Fi+1), because adding a clause can not create a

 Boundary Points and Resolution 153

boundary point), i-th resolution is called boundary. So a resolution operation is
boundary if adding Ri to Fi eliminates a boundary point.

In the previous section, we showed that eventually all the boundary points of a CNF
formula F are removed by resolvents. Importantly, a lit(xi)-boundary point mandates a
resolution on variable xi. Besides, as we showed in Section 3.3. even redundant
clauses can be used to produce new resolvents eliminating boundary points. It is im-
portant because, all clauses derived by resolution (in particular conflict clauses gen-
erated by modern SAT-solvers) are redundant. So the derived clauses are as good for
boundary point elimination as the original ones.

A natural question arises about the role of non-boundary resolutions. When an-
swering this question it makes sense to separate redundant and irredundant formulas.
(A CNF formula F is said to be irredundant if no clause of F is redundant, see Defini-
tion 10) For a redundant formula, one may have to use non-boundary resolutions. (In
particular, a heavily redundant formula may not have boundary points at all. In such a
case, every resolution operation is non-boundary.) For irredundant formulas the situa-
tion is different.

Proposition 10. Let F be an irredundant formula of m clauses. Then F has at least d
boundary points where d is the total number of literals in the clauses of F.

Proof. Let C be a clause of F. Then there is a complete assignment p falsifying C
and satisfying the clauses of F \{C}. This assignment is a lit(xi)-boundary point where
lit(xi) is a literal of C.

As far as irredundant formulas are concerned some natural questions arise. Given an
irredundant formula, can one always build a resolution proof using only boundary
resolutions? If so, what is the relation between such a limited proof system and gen-
eral resolution? Can general resolution produce proofs shorter than in this limited
proof system?

We do not answer the questions above theoretically. Instead we introduce a metric
measuring the Share of Boundary Resolutions (SBR-metric) to check if proof quality
depends on the value of SBR metric. (This value is computed as the percent of
boundary resolutions of a proof). In Section 6, we give some experimental evidence
that the value of SBR metric for short specialized proofs for equivalence checking
formulas is much higher than for proofs generated by a SAT-solver with conflict
driven learning.

4.2 SBR Metric and Proof Redundancy

Although we do not know the nature of non-boundary resolutions we still can argue
that the low value of SBR metric may mean some proof redundancy. The reason is
that such a redundancy indeed leads to the appearance of non-boundary resolutions.
We give two examples of that below.

Not sharing resolutions of conflict clause derivations. In a typical SAT-solver with
conflict-driven learning, the only type of clauses learned are conflict clauses (this ap-
plies to the Sat-solver DMRP-SAT that we used in our experiments). On the other

154 E. Goldberg

hand, a conflict clause is the result of many resolution operations. The intermediate
resolvents of these operations are usually discarded. It may be the case though that for
two conflict clauses C1 and C2 resolution proofs of their derivation share some interme-
diate resolvents. When the value of SBR metric is computed, all resolvents are taken
into consideration. This lack of sharing resolutions used in conflict clause derivations
would lead to appearance of non-boundary resolutions (a resolution deriving a clause
produced earlier by some other resolution can not eliminate a boundary point).

Appearance of unsatisfiable subformulas. Even if the initial unsatisfiable CNF for-
mula F to be solved is irredundant, an unsatisfiable subformula of F inevitably ap-
pears due to the addition of new clauses. (In particular, one can view an empty clause
as an unsatisfiable subformula of the final CNF formula.) Let F1 be an unsatisfiable
subformula of F. Let Vars(F) and Vars(F1) denote the sets of variables of F and F1.
Then no lit(xi)-boundary point exists if xi is in Vars(F) \ Vars(F1). (The set of clauses
falsified by p contains at least one clause of F1 and such a clause does not have a
literal of xi.) So any resolution on a variable of Vars(F) \ Vars(F1) is non-boundary.

The appearance of unsatisfiable subformulas may lead to increasing the share of
non-boundary resolutions in the final proof. For example, instead of deriving an
empty clause from the clauses of F1, the SAT-solver may first derive some clauses
having variables of Vars(F1) from clauses of F \ F1. It is possible since clauses of
F \ F1 may contain variables of Vars(F1). When deriving such clauses the SAT-solver
may use (non-boundary) resolutions on variables of Vars(F) \ Vars(F1), which leads
to redundancy of the final proof.

5 Equivalence Checking Formulas

In this section, we introduce the formulas we use in the experimental part of this pa-
per. These are the formulas that describe equivalence checking of two copies of a
combinational circuit. In Subsection 5.1 we show how such formulas are constructed.
In Subsection 5.2. we describe how short proofs of unsatisfiability particularly tai-
lored for equivalence checking formulas can be built.

5.1 Building Equivalence Checking Formulas

Let N and N* be two single-output combinational circuits. To check their functional
equivalence one constructs a circuit called a miter (we denote it as Miter(N,N*)). It is
a circuit that is satisfiable (i.e. its output can be set to 1) if and only if N and N* are
not functionally equivalent. (N and N* are not functionally equivalent if there is an
input assignment for which N and N* produce different output values.) Then a CNF
formula FMiter is generated that is satisfiable if and only if Miter(N,N*) is satisfiable.
In our experiments we built a miter of two identical copies of the same circuit. In such
a case Miter(N,N*) is always unsatisfiable and so is CNF formula FMiter.

Example 4. Figure 1 shows the miter of copies N and N* of the same circuit. Here g1,
g1* are OR gates, g2, g2* are AND gates and h is an XOR gate (implementing
modulo-2 sum). Note that N and N* have the same set of input variables but different

 Boundary Points and Resolution 155

intermediate and output variables. Since
g2⊕g2* evaluates to 1 if and only if g2 ≠ g2*,
and N and N* are functionally equivalent, the
circuit Miter(N,N*) evaluates only to 0.

A CNF formula FMiter whose satisfiability is
equivalent to that of Miter(N,N*) is formed as
FN ∧FN* ∧ Fxor ∧ h. Here FN and FN* are for-
mulas specifying the functionality of N and N*
respectively. The formula Fxor specifies the
functionality of the XOR gate h and the unit
clause h forces the output of Miter(N,N*) to be
set to 1.

Since, in our case, the miter evaluates only
to 0, the formula FM is unsatisfiable.

Formulas FN and FN* are formed as the con-
junction of subformulas describing the gates of

N and N*. For instance, FN = Fg1 ∧ Fg2 where, for example, Fg1 = (x1 ∨ x2 ∨ ~g1) ∧
(~x1 ∨ g1) ∧ (~x2 ∨ g1) specifies the functionality of an OR gate. Each clause of Fg1
rules out some inconsistent assignments to the variables of gate g1. For example, the
clause (x1 ∨ x2 ∨ ~g1) rules out the assignment x1=0, x2=0, g1=1.

5.2 Short Proofs for Equivalence Checking Formulas

For a CNF formula FMiter describing equivalence checking of two copies N,N* of the
same circuit, there is a short resolution proof that FMiter is unsatisfiable. This proof is
linear in the number of gates in N and N*. The idea of this proof is as follows. For
every pair gi, gi* of the corresponding gates of N and N* , the clauses of CNF for-
mula Eq(gi,gi*) specifying the equivalence of variables gi, gi* are derived. Here
Eq(gi,gi*) is equal to (~gi ∨ gi*) ∧ (gi ∨ ~gi*). These clauses are derived according to
topological levels of gates gi,gi* in Miter(N,N*). (The topological level of a gate gi is
the length of the longest path from an input to gate gi measured in the number of gates
on this path.) First, clauses of Eq(gi,gi*) are derived for all pairs of gates gi,gi* of
topological level 1. Then using previously derived Eq(gi,gi*), same clauses are de-
rived for the pairs of gates gj,gj* of topological level 2 and so on.

Eventually, the clauses of Eq(gs,gs*) relating the output variables gs, gs* of N and
N* are derived. Resolving the clauses of Eq(gs,gs*) and the clauses describing the
XOR gate, the clause ~h is derived. Resolution of ~h and the unit clause h of FMiter
produces an empty clause.

Example 5. Let us explain the construction of the proof using the CNF FMiter from Ex-
ample 4. Gates g1,g1* have topological level 1 in Miter(N,N*). So first, the clauses of
Eq(g1,g1*) are obtained. They are derived from the CNF formulas Fg1 and Fg1* describ-
ing gates g1 and g1*. That the clauses of Eq(g1,g1*) can be derived from Fg1 ∧ Fg1* just
follows from the completeness of resolution and the fact that Eq(g1,g1*) is implied by
the CNF formula Fg1 ∧ Fg1* . (This implication is due to the fact that Fg1 and Fg1* de-
scribe two functionally equivalent gates with the same set of input variables). More
specifically, the clause ~g1 ∨ g1* is obtained by resolving the clause x1 ∨ x2 ∨ ~g1 of

x1 x1 x3

g1

g2

g1*

g2*

h

N N*

Fig. 1. Circuit Miter(N, N*)

156 E. Goldberg

Fg1 with the clause ~x1 ∨ g1* of Fg1* and then resolving the resolvent with the clause
~x2 ∨ g1* of Fg1*. In a similar manner, the clause g1 ∨ ~g1* is derived by resolving the
clause x1 ∨ x2 ∨ ~g1* of Fg1* with clauses ~x1 ∨ g1 and ~x2 ∨ g1 of Fg1.

Then the clauses of Eq(g2,g2*) are derived (gates g2,g2* have topological level 2).
Eq(g2,g2*) is implied by Fg2 ∧ Fg2* ∧ Eq(g1,g1*) . Indeed, g2 and g2* are functionally
equivalent gates that have the same input variable x3. The other input variables g1 and
g1* are identical too due to the presence of Eq(g1,g1*). So the clauses of Eq(g2,g2*)
can be derived from clauses of Fg2 ∧ Fg2* ∧ Eq(g1,g1*) by resolution. Then the clause
~h is derived as implied by Fxor ∧ Eq(g2,g2*) (an XOR gate produces output 0 when its
input variables have equal values). Resolution of h and ~h produces an empty clause.

6 Experimental Results

The goal of experiments was to compare the values of SBR metric for two kinds of
proofs of different quality. In the experiments we used formulas describing the
equivalence checking of two copies of combinational circuits. The reason for using
such formulas is that one can easily generate high-quality specialized proofs of their
unsatisfiability (see Section 5). In the experiments we compared these short proofs
with ones generated by the SAT-solver DMRP-SAT [11].

We performed the experiments on a Pentium-4 PC with clock frequency of 3 GHz.
The CNF formulas and proofs of both types we used in the experiments can be
downloaded from http://eigold.tripod.com/exper_sat_2009.tar.gz. The time limit in
all experiments was set to 1 hour.

Given a resolution proof R of k resolutions that a CNF formula F is unsatisfiable,
computing the value of SBR metric of R reduces to k SAT-checks. In our experi-
ments these SAT-checks were performed by a version of DMRP-SAT. Let Fi be the
CNF formula F ∪ {R1,..,Ri-1} where R1,..,Ri-1 are the resolvents generated in the first
i-1 resolutions. Let C1 and C2 be the clauses of Fi that are the parent clauses of the
resolvent Ri. Let C1 and C2 be resolved on variable xj. Assume that C1 contains the
positive literal of xj. Checking if i-the resolution eliminates an xj-boundary point
can be performed as follows. First, all the clauses with a literal of xj are removed
from Fi. Then one adds to Fi the unit clauses that force the assignments setting all
the literals of C1 and all the literals of C2 but the literal ~xj to 0. Denote the result-
ing CNF formula by Gi.

If Gi is satisfiable then there is a complete assignment p that is falsified by C1 and
maybe by some other clauses with literal xj. So p is an xj-boundary point of Fi. Since
p falsifies all the literals of C2 but ~xj, it is falsified by the resolvent of C1 and C2. So
the satisfiability of Gi means that i-th resolution eliminates p and so this resolution is
boundary. If Gi is unsatisfiable, then no xj-boundary point is eliminated by i-th resolu-
tion. All boundary points come in pairs (see Proposition 3). So no ~xj-boundary point
is eliminated by i-th resolution either. Hence the unsatisfiability of Gi means that the
i-th resolution is non-boundary.

Table 1. shows the value of SBR metric for the short specialized proofs. The first
column gives the name of the benchmark circuit whose self-equivalence is described
by the corresponding CNF formula. The size of this CNF formula is given in the
second and third columns. The fourth column of Table 1 gives the size of the proof

 Boundary Points and Resolution 157

(in the number of resolutions). The fifth column shows the value of SBR metric and
the last column of Table 1 gives the run time of computing this value. These run times
can be significantly improved if one uses a faster SAT-solver and tunes it to solving
the particular problem of computing the value of SBR metric. (For example, one can
try to share conflict clauses learned in different SAT-checks.)

Looking at Table 1 one can conclude that the specialized proofs have a very high
value of SBR-metric (almost every resolution operation eliminates a boundary point).
The only exception is the dalu formula (84%). The fact that the value of SBR metric
for dalu and some other formulas is different from 100% is probably due to the fact
that the corresponding circuits have some redundancies. Such redundancies would
lead to redundancy of CNF formulas specifying the corresponding miters, which
would lower the value of SBR metric.

Table 1. Computing value of SBR metric for short specialized proofs

Name #vars #clauses #resolu-
tions

#boundary
resol. %

run
time
(s)

c432 480 1,333 1,569 95 10.2
9symml 480 1,413 1,436 100 4.5
c880 807 2,264 2.469 100 24.6
alu4 2,369 7,066 8.229 96 270
c3540 2,625 7,746 9.241 97 1,743
x1 4,381 12,991 12,885 97 2,890
dalu 4,714 13,916 15,593 84 2,202
c6288 4,771 14,278 17,925 100 2,462

Table 2. Indirect comparison of proofs generated by Minisat and DMRP-SAT

Minisat (v1.14) DMRP-SAT Name
#confl.
clauses

run time
 (sec.)

#confl.
clauses

run time
(sec.)

c432 809 0.05 374 0.08
9symml 259 0.03 275 0.08
c880 6,000 0.29 1,309 0.27
alu4 2,355 0.33 1,320 1.20
c3540 22,214 2.65 10,021 7.75
x1 3,294 0.45 765 1.06
dalu 4,402 0.94 3,351 4.39
c6288 * > 3,600 * > 3,600

Table 2 is meant to show that the proofs generated by DMRP-SAT have high

quality (for a SAT-solver with conflict driven learning). Here we compare the proofs
generated by Minisat (version 1.14) and DMRP-SAT in the number of conflict
clauses. (Minisat does not generate proofs so we could not compare the actual proof

158 E. Goldberg

sizes). Although this is an indirect comparison, it gives an idea of the quality of
proofs generated by DMRP-SAT. For self-equivalence of a 16-bit multiplier (instance
C6288), neither SAT-solver finished the formula within the time limit.

The values of SBR-metric for the proofs generated by DMRP-SAT are given in Ta-
ble 3. The second column gives the size of resolution proofs generated by DMRP-SAT.
When computing the size of these proofs we removed the obvious redundancies.
Namely, the derivation of the conflict clauses that did not contribute to the derivation
of an empty clause was ignored. The third column shows the value of SBR metric and
the last column gives the run time of computing this value. In the case the computation
did not finish within the time limit, the number in parentheses shows the percent of the
resolution operations processed before the computation terminated.

Table 3 shows that the size of the proofs generated by DMRP-SAT is much larger
than that of specialized proofs (Table 1, fourth column). The only exception is the
instance x1 where the two kinds of proofs have comparable size. Interestingly, x1 is
the instance with the highest value of SBR metric (88%) among DMRP-SAT proofs.
For the rest of the formulas the value of SBR metric is much smaller. Importantly,
the value of SBR metric we give for the formulas for which computation was termi-
nated due to exceeding the time limit is higher than it should be. Typically, the later a
resolution occurs in a resolution proof, the more likely it is that this resolution is non-
boundary. So the early termination of SBR metric computation ignored resolutions
with the highest chances to be non-boundary.

Table 3. Computing value of SBR metric for proofs generated by DMRP-SAT

Name #resolu-
tions

#boundary
resol. %

run time
(s) (% of proof finished)

c432 7,655 37 48
9symml 5,317 57 23
c880 24,478 37 503
alu4 98,600 36 >3,600 (49%)
c3540 347,264 54 >3,600 (6%)
x1 16,259 88 864
dalu 119,553 40 >3,600 (33.4%)

Summing up, one can conclude that for the formulas we considered in experiments,

the proofs of poorer quality (generated by DMRP-SAT) have lower values of SBR
metric. It remains to be seen though whether it means that these proofs are redundant
in some way and so can be optimized.

7 Some Background

The notion of boundary points was introduced in [12] where they were called essen-
tial points. (We decided to switch to the term “boundary point” as more precise.)
Boundary points were used in [12] to help a SAT-solver prune the search space. If
the subspace xi=0 does not contain a satisfying assignment or an xi-boundary
point, one can claim that the symmetric subspace xi=1 can not contain a satisfying

 Boundary Points and Resolution 159

assignment either (due to Proposition 3). The same idea of search pruning was inde-
pendently described in [17] and implemented in the SAT-solver Jerusat. The ideas of
search pruning introduced in [12] were further developed in [2].

In [14] we formulate two proof systems meant for exploring the 1-neighborhood
of clauses of the formula to be solved. The union of the 1-neighborhhoods of these
clauses is essentially a superset approximation of the set of boundary points. To prove
that a formula is unsatisfiable it is sufficient to eliminate all boundary points (Proposi-
tion 2). The proof systems of [14] show that one can eliminate all boundary points
without generation of an empty clause. So resolution can be viewed as a special case
of boundary point elimination.

The results of the present paper can also be considered as an approach to improv-
ing automatizability of resolution [6]. General resolution is most likely non-
automatizable [1]. This means that finding short proofs can not be done efficiently in
general resolution. A natural way to mitigate this problem is to look for restricted
versions of general resolution that are “more automatizable” i.e. that facilitate finding
good proofs. Intuitively, boundary resolutions is a tiny part of the set of all possible
resolutions. So the restriction of resolutions to boundary ones can be viewed as a way
to make it easier to find good proofs (assuming that such a restriction does not kill all
high-quality proofs.)

8 Conclusions and Directions for Future Research

We show that a resolution proof can be viewed as the process of boundary point
elimination. We introduce the SBR metric that is the percent of resolutions of the
proof that eliminate boundary points (boundary resolutions). This metric can be used
for estimating proof redundancy. We experimentally show that short specialized
proofs for equivalence checking formulas have high values of SBR metric. On the
other hand, values of this metric for proofs generated by a SAT-solver with conflict
driven learning are low. This implies that the proofs generated by this SAT-solver
may have some redundancies.

The idea of treating resolution as boundary proof elimination has many interesting
directions for research. Here are a few of them.

1) Testing further the conjecture that SBR metric relates to proof redundancy.
2) Proving completeness of resolution performing only boundary resolutions for

irredundant CNF formulas
3) Answering the question about the nature of non-boundary resolutions. In par-

ticular, is the resolution proof system where only boundary resolutions are al-
lowed less powerful than general resolution?

4) Designing SAT-solvers that generate proofs with high value of SBR metric.

References

1. Alekhnovich, M., Razborov, A.: Resolution Is Not Automatizable Unless W[P] Is Tracta-
ble. SIAM J. Comput. 38(4), 1347–1363 (2008)

2. Babic, D., Bihgham, J., Hu, A.: Efficient SAT solving: beyond supercubes. In: DAC 2005,
pp. 744–749 (2005)

160 E. Goldberg

3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A.
(eds.) ch. 2, vol. 1, pp. 19–99. Elsevier Science Publ., Amsterdam (2001)

4. Bierre, A.: PicoSAT essentials. JSAT 4, 75–97 (2008)
5. Bierre, A., Cimatti, A., Clarke, F.M., Zhu, Y.: Symbolic model checking using SAT pro-

cedures instead of BDDs. In: DAC 1999, pp. 317–320 (1999)
6. Bonet, M.L., Pitassi, T., Raz, R.: On Interpolation and Automatization for Frege Systems.

SIAM J. Comput. 29(6), 1939–1967 (2000)
7. Clarke, E., Gupta, A., Strichman, O.: SAT-based counterexample-guided abstraction re-

finement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 23(7), 1113–1123 (2004)

8. Davis, M., Longemann, G., Loveland, D.: A Machine program for theorem proving.
Communications of the ACM 5, 394–397 (1962)

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Goldberg, E.: On Bridging Simulation and Formal Verification. In: VMCAI-2008, pp.
127–141 (2008)

11. Goldberg, E.: A Decision-Making Procedure for Resolution-Based SAT-Solvers. In:
Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 119–132. Springer,
Heidelberg (2008)

12. Goldberg, E., Prasad, M., Brayton, R.: Using Problem Symmetry in Search Based Satisfi-
ability Algorithms. In: DATE 2002, pp. 134–141 (2002)

13. Goldberg, E., Novikov, Y.: BerkMin: a Fast and Robust SAT-Solver. In: DATE 2002, pp.
142–149 (2002)

14. Goldberg, E.: Proving unsatisfiability of CNFs locally. J. Autom. Reasoning 28(5), 417–
434 (2002)

15. McMillan, K.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

16. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Effi-
cient SAT Solver. In: DAC 2001, pp. 530–535 (2001)

17. Nadel, A.: Backtrack search algorithms for propositional logic satisfiability: review and
innovations. Master Thesis, the Hebrew University (2002)

18. The siege sat-solver, http://www.cs.sfu.ca/~cl/software/siege/
19. Silva, J., Sakallah, K.: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE

Transactions of Computers 48, 506–521 (1999)
20. Zhang, H.: SATO: An efficient propositional prover. In: McCune, W. (ed.) CADE 1997.

LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997)

Sequential Encodings
from Max-CSP into Partial Max-SAT�

Josep Argelich1, Alba Cabiscol2, Inês Lynce3, and Felip Manyà4

1 INESC-ID, Lisbon, Portugal
2 Computer Science Department, Universitat de Lleida, Spain

3 IST/INESC-ID, and Technical University of Lisbon, Portugal
4 Artificial Intelligence Research Institute (IIIA, CSIC), Spain

Abstract. We define new encodings from Max-CSP into Partial Max-
SAT which are obtained by modelling the at-most-one condition with the
sequential SAT encoding of the cardinality constraint ≤ 1(x1, . . . , xn).
They have fewer clauses than the existing encodings, and the experimen-
tal results indicate that they have a better performance profile.

1 Introduction

We describe, following our previous results in [2,3,4], novel encodings from Max-
CSP into Partial Max-SAT. In [2,3], we defined a new encoding from CSP into
SAT, called minimal support encoding, and defined the extensions from Max-CSP
into Partial Max-SAT of the direct and support encodings from CSP into SAT, as
well as the extension of the minimal support encoding. The experimental results
for Partial Max-SAT provide evidence that, in general, the minimal support
encoding outperforms the other encodings on both pure random [2,3] and more
structured, realistic instances [4]. In the sequel, when we say direct, support and
minimal support encodings we refer to the corresponding encodings from Max-
CSP into Partial Max-SAT. We also refer to them as the standard encodings.

Recently [4], we have defined new variants of the standard encodings, called
regular direct, regular support and regular minimal support encodings. They are
obtained by modelling the at-least-one (ALO) and at-most-one (AMO) condi-
tions of the corresponding standard encodings using a regular signed encod-
ing [1]. This way, we get encodings with a more compact set of hard clauses,
but we need to introduce auxiliary variables. Fortunately, it is sufficient to limit
branching to non-auxiliary variables [4]. From a practical point of view, the
regular encodings usually outperform the corresponding standard encodings.

In this paper we define new encodings —sequential direct, sequential support
and sequential minimal support —, which are obtained by modelling the ALO

� Research funded by European project Mancoosi (FP7-ICT-214898), FCT projects
Bsolo (PTDC/EIA/76572/2006) and SHIPs (PTDC/EIA/64164/2006), and the
Ministerio de Ciencia e Innovación projects CONSOLIDER CSD2007-0022, INGE-
NIO 2010, TIN2006-15662-C02-02, and TIN2007-68005-C04-04.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 161–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

162 J. Argelich et al.

condition as in the standard encoding, and the AMO condition with the sequen-
tial SAT encoding of the cardinality constraint ≤ 1(x1, . . . , xn) [6]. They have
fewer clauses than the existing encodings, and the experimental results indicate
that they have a better performance profile. In our experiments we solve both
pure random and more structured, realistic instances. We refer to [2,3,4] for basic
definitions of Max-SAT and Max-CSP.

2 Encodings from Max-CSP into Partial Max-SAT

2.1 Standard Encodings

We associate a Boolean variable xi with each value i of the CSP variable X .
If X has a domain d(X) of size m, the ALO clause of X is x1 ∨ · · · ∨ xm,
and ensures that X is given a value. The AMO clauses are the set of clauses
{xi ∨ xj |i, j ∈ d(X), i < j}, and ensure that X takes no more than one value.

Definition 1. The direct encoding (dir) of a Max-CSP instance 〈X ,D, C〉 is
the Partial Max-SAT instance that contains as hard clauses the above ALO and
AMO clauses for every CSP variable in X , and a soft clause xi ∨ yj for every
nogood (X = i, Y = j) of every constraint of C with scope {X, Y }.

In the support encoding from CSP into SAT, besides the ALO and AMO clauses,
there are clauses that encode the support for a value instead of encoding conflicts.
The support for a value j of a CSP variable X across a binary constraint with
scope {X, Y } is the set of values of Y which allow X = j. If v1, v2, . . . , vk are the
supporting values of variable Y for X = j, we add the clause xj∨yv1∨yv2∨· · ·∨yvk

(called support clause). There is one support clause for each pair of variables X, Y
involved in a constraint, and for each value in the domain of X . In the standard
support encoding, a clause in each direction is used: one for the pair X, Y and
one for Y, X [7].

In [2], we defined the minimal support encoding: it is like the support encoding
except for the fact that, for every constraint Ck with scope {X, Y }, we only add
either the support clauses for all the domain values of the CSP variable X or
the support clauses for all the domain values of the CSP variable Y .

Definition 2. The minimal support encoding of a Max-CSP instance 〈X ,D, C〉
is the Partial Max-SAT instance that contains as hard clauses the corresponding
ALO and AMO clauses for every CSP variable in X , and as soft clauses the
support clauses of the minimal support encoding from CSP into SAT.

The support encoding is the Partial Max-SAT instance that contains as hard
clauses the corresponding ALO and AMO clauses for every CSP variable in X ,
and contains, for every constraint Ck ∈ C with scope {X, Y }, a soft clause of
the form SX=j ∨ ck for every support clause SX=j encoding the support for the
value j of the CSP variable X, where ck is an auxiliary variable, and contains a
soft clause of the form SY =m ∨ ck for every support clause SY =m encoding the
support for the value m of the CSP variable Y .

Sequential Encodings from Max-CSP into Partial Max-SAT 163

Example 1. The direct encoding for the Max-CSP instance 〈X ,D, C〉 =
〈{X, Y }, {d(X) = {1, 2, 3}, d(Y) = {1, 2, 3}}, {X ≤ Y }〉 is as follows:

ALO [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
AMO [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3] [y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
conflict clauses (x2 ∨ y1) (x3 ∨ y1) (x3 ∨ y2)

We get the minimal support encoding if we replace the conflict clauses with
(x2 ∨ y2 ∨ y3), (x3 ∨ y3), and get the support encoding if we replace the conflict
clauses with (x2 ∨ y2 ∨ y3 ∨ c1), (y1 ∨ x1 ∨ c1), (x3 ∨ y3 ∨ c1), (y2 ∨ x1 ∨ x2 ∨ c1).

In the experiments we used the support encoding (supxy), and two variants of
the minimal support encoding (supl and supc): supl is the encoding containing,
for each constraint, the support clauses for the variable that produces a smaller
total number of literals; and supc is the encoding containing, for each constraint,
the support clauses for the variable that produces smaller size clauses; we give
a score of 16 to unit clauses, a score of 4 to binary clauses and a score of 1 to
ternary clauses, and choose the variable with higher sum of scores.

2.2 Regular Encodings

The regular encodings differ in the fact that they encode the ALO and AMO
conditions using a regular signed encoding [1]. To this end, for every CSP variable
X , we associate a Boolean variable xi with each value i that can be assigned
to the CSP variable X in such a way that xi is true if X = i. Moreover, we
associate a Boolean variable x≥

i with each value i of the domain of X such that
x≥

i is true if X ≥ i. Then, the regular encoding of the ALO and AMO conditions
for a variable X with d(X) = {1, . . . , n} is formed by the following clauses [1]:

x≥
n → x≥

n−1 x1 ↔ x≥
2

x≥
n−1 → x≥

n−2 x2 ↔ x≥
2 ∧ x≥

3
· ·
x≥

3 → x≥
2 xi ↔ x≥

i ∧ x≥
i+1

x≥
2 → x≥

1 · · · · · · · · · · · · · · ·
xn−1 ↔ x≥

n−1 ∧ x≥
n

xn ↔ x≥
n

(1)

The clauses on the left encode the relationship among the different regular literals
of a variable while the clauses on the right link the variables of the form xi with
the variables of the form x≥

i .

Definition 3. The regular direct, support, and minimal support encodings are,
respectively, the standard direct, support, and minimal support encodings from
Max-CSP into Partial Max-SAT but using the regular encoding of the ALO and
AMO conditions.

In [4] we proved that when solving a Max-CSP instance with a regular encod-
ing and a Davis-Logemann-Loveland (DLL) style branch and bound solver, if
branching is performed only on non-auxiliary variables, then the solver finds an
optimal solution. We assume this kind of branching in the rest of the paper.

164 J. Argelich et al.

3 Sequential Encodings

Our new encodings model the ALO condition as in the standard encoding, and
the AMO condition using the following SAT encoding, based on sequential coun-
ters, of the cardinality constraint ≤ 1(x1, . . . , xn) [6]:

(x1 ∨ s1) ∧ (xn ∨ sn−1)
∧

1<i<n

((xi ∨ si) ∧ (si−1 ∨ si) ∧ (xi ∨ si−1)),

where si, 1 ≤ i ≤ n− 1, are auxiliary variables. We refer to such an encoding as
the sequential encoding of the AMO condition.

Definition 4. The sequential direct, support, and minimal support encodings
are, respectively, the standard direct, support, and minimal support encodings
from Max-CSP into Partial Max-SAT but using the sequential encoding of the
AMO condition.

Example 2. A sequential minimal support encoding for the Max-CSP problem of
the CSP instance from Example 1 is formed by the following clauses:

hard clauses [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
[x1 ∨ sx

1] [x3 ∨ sx
2] [x2 ∨ sx

2] [sx
1 ∨ sx

2] [x2 ∨ sx
1]

[y1 ∨ sy
1] [y3 ∨ sy

2] [y2 ∨ sy
2] [sy

1 ∨ sy
2] [y2 ∨ sy

1]
support clauses (x2 ∨ y2 ∨ y3) (x3 ∨ y3)

We get the sequential support encoding if we replace the previous support clauses
with (x2 ∨ y2 ∨ y3 ∨ c1), (y1 ∨ x1 ∨ c1), (x3 ∨ y3 ∨ c1), (y2 ∨ x1 ∨ x2 ∨ c1). Finally,
we get the sequential direct encoding if we replace the previous support clauses
with (x2 ∨ y1), (x3 ∨ y1), (x3 ∨ y2).

In the sequential encodings, the number of clauses for modelling the ALO and
AMO conditions for a CSP variable X with domain d(X) is onO(d(X)). Observe
that, for large domains, there are fewer clauses in the sequential encodings than
in the regular and standard encodings.

Proposition 1. When solving a Max-CSP instance with a sequential encoding
and a DLL style branch and bound solver, if branching is performed only on
non-auxiliary variables, then the solver finds an optimal solution.

4 Experimental Results

We conducted experiments on a cluster with 2 GHz AMD Opteron 248 Proces-
sors, 1 GB of memory. The benchmarks are random binary Max-CSP instances
as the ones solved in [3], as well as the instances of clique trees with different
constraint tightness (Kbtree 10–90) and warehouse location solved in [4], which
are more structured and realistic. We used the solver WMaxSatz [5] because its
code is available, and we had to modify it for implementing a branching scheme

Sequential Encodings from Max-CSP into Partial Max-SAT 165

Table 1. Comparison between branching schemes

s-supl s-dir s-supc s-supxy
Kbtree (t) # nb b nb b nb b nb b
10 50 0.05(50) 0.10(50) 0.03(50) 15.01(50) 0.05(50) 1.24(50) 34.27(50) 89.18(44)
20 50 0.78(50) 46.02(50) 0.36(50) 345.30(49) 0.70(50) 57.07(50) 682.66(36) 0.00(0)
30 50 3.97(50) 559.65(38) 2.92(50) 1440.02(2) 3.78(50) 562.56(40) 0.00(0) 0.00(0)
40 50 20.19(50) 1175.17(3) 31.28(50) 0.00(0) 21.92(50) 1063.29(4) 0.00(0) 0.00(0)
50 50 55.31(50) 0.00(0) 96.69(50) 0.00(0) 48.80(50) 0.00(0) 0.00(0) 0.00(0)
60 50 233.63(50) 0.00(0) 549.40(50) 0.00(0) 345.89(50) 0.00(0) 0.00(0) 0.00(0)
70 50 586.40(44) 0.00(0) 892.17(30) 0.00(0) 1072.85(17) 0.00(0) 0.00(0) 0.00(0)
80 50 0.00(0) 0.00(0) 1252.77(6) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)
90 50 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0) 0.00(0)
Solved 450 344 141 336 101 317 144 86 44

s-supl s-dir s-supc s-supxy
Warehouse # nb b nb b nb b nb b
warehouse 2 0.09(1) 2.37(1) 0.08(1) 2.35(1) 0.09(1) 2.36(1) 0.26(1) 1.34(1)
Solved 2 1 1 1 1 1 1 1 1

 1

 10

 100

 1000

 10 12 14 16 18 20 22 24

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

 (
lo

gs
ca

le
)

p

URBCSP <15, 5, 90, p>

regular
standard

sequential

 1

 10

 100

 1000

 10 12 14 16 18 20 22 24

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

 (
lo

gs
ca

le
)

p

URBCSP <15, 5, 90, p>

s-dir
s-supxy
s-supc

Fig. 1. Results for Random Max-CSP instances

that ignores auxiliary variables. The sequential versions of the encodings dir,
supc, supl and supxy are denoted by s-dir, s-supc, s-supl and s-supxy.

In all the solved benchmarks, we observed that it is better to perform branch-
ing only on non-auxiliary variables. Table 1 compares this branching (nb) with
the normal branching (b) for the instances in [4]. The gains of the new branching
scheme are clear; for example, we solve up to 3 times more instances of clique
trees using the sequential direct encoding s-dir. For the warehouse instances,
the new branching scheme reduces the time needed to solve one instance. In
the rest of experiments we assume that the branching is performed only on
non-auxiliary variables. In all the tables, the cutoff time is of 30 minutes.

The left plot of Figure 1 compares standard, regular, and sequential encodings
of Random Max-CSP instances with the minimal support encoding supc. We
display encoding supc because it is the best performing encoding for this bench-
mark. The instances were obtained with a generator of uniform random binary
CSPs that implements the so-called model B: in the class 〈n, d, p1, p2〉 with n
variables of domain size d, we choose a random subset of exactly p1n(n − 1)/2
constraints (rounded to the nearest integer), each with exactly p2d

2 conflicts
(rounded to the nearest integer); p1 may be thought of as the density of the
problem and p2 as the tightness of constraints. The difficulty of the instances
depends on the selected values for n, d, p1 and p2. We selected values that
allowed to solve the instances in a reasonable amount of time. We observe that

166 J. Argelich et al.

Table 2. Comparison between sequential encodings and regular encodings

supc supl dir supxy
Kbtree (t) # sequential regular sequential regular sequential regular sequential regular
10 50 1.24(50) 0.36(50) 0.10(50) 0.07(50) 15.01(50) 1.58(50) 89.18(44) 150.22(47)
20 50 57.07(50) 70.91(50) 46.02(50) 57.12(50) 345.30(49) 375.07(48) 0.00(0) 0.00(0)
30 50 562.56(40) 627.38(36) 559.65(38) 664.75(35) 1440.02(2) 0.00(0) 0.00(0) 0.00(0)
40 50 1063.29(4) 1341.48(2) 1175.17(3) 1714.93(2) 0.00(0) 0.00(0) 0.00(0) 0.00(0)
Solved 450 144 138 141 137 101 98 44 47

supc supl dir supxy
Warehouses # sequential regular sequential regular sequential regular sequential regular
warehouse 2 2.36(1) 2.43(1) 2.38(1) 2.46(1) 2.35(1) 2.43(1) 1.34(1) 1.44(1)

Solved instances 2 1 1 1 1 1 1 1 1

the sequential encoding is up to one order of magnitude faster than the standard
and regular encodings. The right plot compares the different sequential encod-
ings (direct, minimal and support) defined in this paper. We observe that the
minimal encoding is the best performing except for large values of p, where the
support encoding dominates. For lower values of p, there is a big gap between
the minimal and support encodings. It is also remarkable the superiority of the
minimal encoding wrt the direct encoding.

Table 2 compares sequential encodings with regular encodings on the instances
used in [4]. Standard encodings are not included because they are worse than
regular encodings [4]. We see that, in general, the sequential encodings outper-
form the regular encodings on both the time needed to solve an instance and
the number of solved instances. We also see that the minimal encodings are the
best performing encodings.

Finally, we notice that our encodings may be easily extended with weigths
because there is exactly one violated clause for every violated constraint, as well
as that the direct encoding may incorporate non-binary constraints. As future
work, we plan to investigate structural properties of encodings that may be useful
to predict their performance.

References

1. Ansótegui, C., Manyà, F.: Mapping Problems with Finite-Domain Variables to Prob-
lems with Boolean Variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 1–15. Springer, Heidelberg (2005)

2. Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Encoding Max-CSP into Partial
Max-SAT. In: ISMVL 2008 (2008)

3. Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Modelling Max-CSP as Partial Max-
SAT. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 1–14.
Springer, Heidelberg (2008)

4. Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Regular encodings from Max-CSP
into Partial Max-SAT. In: ISMVL 2009 (2009)

5. Argelich, J., Li, C.M., Manyà, F.: An improved exact solver for Partial Max-SAT.
In: NCP-2007, pp. 230–231 (2007)

6. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

7. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456.
Springer, Heidelberg (2000)

Cardinality Networks and Their Applications

Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and
Enric Rodŕıguez-Carbonell�

Abstract. We introduce Cardinality Networks, a new CNF encoding of
cardinality constraints. It improves upon the previously existing encod-
ings such as the sorting networks of [ES06] in that it requires much less
clauses and auxiliary variables, while arc consistency is still preserved:
e.g., for a constraint x1 + . . . + xn ≤ k, as soon as k variables among
the xi’s become true, unit propagation sets all other xi’s to false. Our
encoding also still admits incremental strengthening: this constraint for
any smaller k is obtained without adding any new clauses, by setting a
single variable to false.

Here we give precise recursive definitions of the clause sets that are
needed and give detailed proofs of the required properties. We demon-
strate the practical impact of this new encoding by careful experiments
comparing it with previous encodings on real-world instances.

1 Introduction

Compared with other systematic constraint solving techniques, SAT solvers have
many advantages for non-expert users as extremely efficient off-the-shelf black
boxes that moreover require no tuning regarding variable (or value) selection
heuristics. Therefore quite some work has been devoted to finding good propo-
sitional encodings for many kinds of constraints.

A particularly important class of constraints are the cardinality constraints,
i.e., constraints of the form x1 + . . . + xn # k where k is a natural number and
∈ {<,≤, =,≥, >}.

Cardinality constraints appear in many practical problem contexts, such as
timetabling, scheduling, or pseudo-boolean constraint solving. For instance,
given an input formula F over n variables x1, . . . , xn, one may be interested
in finding a model of F in which at most k variables are set to true. For this, one
can add the clauses encoding the constraint x1 + . . .+xn ≤ k. Going beyond, for
instance for the min-ones problem for F , that is, finding a model with the mini-
mal number of true variables, one can incrementally strengthen the constraint for
successively lower k until it becomes unsatisfiable. In fact, cardinality constraints
frequently occur in other optimization problems too. For example, the Max-SAT
problem consists of, given a set of clauses S = {C1, . . . , Cn}, finding an assign-
ment A that satisfies the maximal number of clauses in S. One way of doing this is

� Technical Univ. of Catalonia, Barcelona. All authors partially supported by Spanish
Min. of Educ. and Science through the LogicTools-2 project (TIN2007-68093-C02-
01). The first author is also partially supported by FPI grant TIN2004-03382.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 167–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

168 R. Aśın et al.

to add a fresh indicator variable xi to each clause, getting {C1 ∨x1, . . . , Cn ∨xn}
and incrementally strengthening the constraint x1 + . . . + xn ≤ k. In general, it
is typical to see situations where n is much larger than k.

This kind of applications of cardinality constraints has been very elegantly
handled in MiniSAT and its extension to pseudo-boolean constraints [ES06].
There, one encoding for cardinality constraints is based on sorting networks with
inputs x1, . . . , xn and output y1, . . . , yn, such that if exactly k input variables
are true, then y1, . . . , yk will become true and yk+1, . . . , yn will be false. For
enforcing the constraint x1 + . . . + xn ≤ k, it then suffices to set yk+1 to false,
and incrementally strengthening the constraint can be done by setting to false
yp’s with successively smaller p.

In [ES06] it is also proved that for the CNF encoding of sorting networks
unit propagation preserves arc consistency. For instance, for a constraint of the
form x1 + . . . + xn ≤ k, as soon as k variables among the xi’s become true, unit
propagation sets all other xi’s to false. The proof of arc consistency given in
[ES06] relies on general properties of sorting networks.

Here we give recursive definitions for this kind of networks that, given se-
quences of input variables, return a sequence of output variables and a set of
clauses. The required arc-consistency properties under unit propagation can be
directly proved by induction from these definitions. Our starting point will be a
deconstruction of the odd-even merge sorting networks of [Bat68], focussing on
their specific use for encoding cardinality constraints in SAT.

For this purpose, and for allowing the reader to become familiar with the
notations and methodology of this paper, in Section 3 we first define Half Merging
Networks and Half Sorting Networks, which require only half as many clauses
as their standard versions while preserving all desired properties.

As said, in many applications, it is typical to find cardinality constraints
x1 + . . . + xn # k where n is much larger than k. This motivated us to look
for encodings that exploit this fact. In Section 4 we introduce Cardinality Net-
works which require O(n log2 k) clauses instead of O(n log2 n) as in previous ap-
proaches. In addition, Cardinality Networks also leverage the advantages from
the use of Half Merging and Half Sorting Networks. All definitions, properties
and proofs in this section and in Section 3 are for cardinality constraints of the
form x1 + . . .+xn ≤ k. Therefore, in Section 5 we extend them to the other cases
such as ≥ and =, and to range constraints of the form k ≤ x1 + . . . + xn ≤ k′.

In Section 6 we demonstrate the practical impact of this new encoding by
careful experiments comparing it with previous encodings on real-world instances
and we conclude in Section 7. Because of space limitation, not all results are
proved in the paper.

2 Preliminaries

Let P be a fixed finite set of propositional variables. If p ∈ P , then p and p are
literals of P . The negation of a literal l, written l, denotes p if l is p, and p if l is
p. A clause is a disjunction of literals l1∨. . .∨ln. A CNF formula is a conjunction

Cardinality Networks and Their Applications 169

of one or more clauses C1 ∧ . . . ∧ Cn. When it leads to no ambiguities, we will
sometimes consider such a formula as the set of its clauses.

A (partial truth) assignment M is a set of literals such that {p, p} ⊆ M for
no p. A literal l is true in M if l ∈ M , is false in M if l ∈ M , and is undefined
in M otherwise. A clause C is true in M if at least one of its literals is true in
M . A formula F is true in M if all its clauses are true in M . In that case, M
is a model of F . The systems that decide whether a formula has a model or not
are called SAT solvers.

Most state-of-the-art SAT solvers are based on extensions of the DPLL al-
gorithm [DP60, DLL62]. The main inference rule in DPLL is known as unit
propagation. Given a set of clauses S and an empty assignment M , clauses are
sought in which all literals are false but one, say l, which is undefined (initially
only clauses of size one satisfy this condition). This literal l is then added to M
and the process is iterated until reaching a fix point. If U is the set of all literals
that have been added to the assignment in this process, we will denote this fact
by S |=up U .

In this paper we will work with cardinality constraints a1 + . . . + an # k,
where # ∈ {≤,≥, =}, the ai’s are propositional variables and k is a natural
number. An assignment M satisfies such a constraint if at most (≤), at least(≥)
or exactly (=) k literals in {a1, . . . , an} are true in M . The aim of this paper is,
given a set of cardinality constraints C, to obtain a CNF formula S such that
looking for assignments satisfying C is equivalent to looking for models of S.
Moreover this S should be as small as possible and, whenever a concrete value
for a variable in a constraint can be inferred, this should be detected by unit
propagation on S.

In what follows, we consider variable sequences, or simply sequences, which are
ordered lists of distinct propositional variables, written 〈x1 . . . xn〉, and denoted
by capital letters A, B, C, . . . Unless stated otherwise, these lists always have
length n = 2m, for some m ≥ 0. When necessary these lists will be seen as sets,
so that we can consider subsets of their variables.

Sometimes new fresh variables, that is, distinct new variables, will be intro-
duced, These will always be denoted by the (possibly subscripted or primed)
letters c, d, e.

3 Half Merging and Half Sorting Networks

In this section we introduce Half Merging Networks and Half Sorting Networks,
which are like the Sorting Networks based on odd-even merges of [Bat68, ES06],
but only need half of the clauses. The definitions and properties that are given
will be used later on and allow the reader to become familiar with our notations
and methodology. We remind that all the definitions in this section and in Sec-
tion 4 are designed to be used in constraints of the form x1 + . . . + xn ≤ k, and
that we implicitly assume that all sequences have size 2m for some m ≥ 0. In
Section 5 we explain how to treat the case where n is not a power of two.

170 R. Aśın et al.

3.1 Half Merging Networks

Given two sequences A and B of length n, the Half Merging Network of A and
B, denoted HMerge(A, B), is a pair (C, S), where C is a sequence of length 2n
and S is a set of clauses, defined as follows.

For sequences of length 1 we define:

HMerge(〈a〉, 〈b〉) = (〈 c1 c2 〉, { a∨ b∨ c2, a∨ c1, b∨ c1 })

For sequences of length n > 1 we define:

HMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) = (〈 d1 c2 . . . c2n−1 en 〉, Sodd ∪ Seven ∪ S′)

recursively in terms of the odd and the even subsequences:
HMerge(〈a1 a3 . . .an−1〉, 〈b1 b3 . . . bn−1〉) = (〈d1 . . . dn〉, Sodd),
HMerge(〈a2 a4 . . .an 〉, 〈b2 b4 . . . bn 〉) = (〈e1 . . . en〉, Seven),

where the clause set S′ is:
⋃n−1

i=1 { di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }.
Example 1. Intuitively, a (Half) Merging Network merges two sequences of input
variables 〈a1 . . . an〉 and 〈b1 . . . bn〉 that are already sorted into a single sorted
output sequence 〈c1 . . . c2n〉, and the required unit propagation is that if a1 . . .ap

and b1 . . . bq are true, then the first p + q output variables will become true
(Lemma 1 below), and (roughly speaking) if in addition cp+q+1 is set to false,
then also ap+1 and bq+1 will become false (Lemma 2).

Let us take HMerge(〈a1 a2〉, 〈b1 b2〉), which is (〈d1 c2 c3 e2〉, S) with S
being the set of clauses:

a1 ∨ b1 ∨d2 a2 ∨ b2 ∨e2 d2 ∨ e1 ∨ c3
a1 ∨d1 a2 ∨e1 d2 ∨ c1
b1 ∨d1 b2 ∨e1 e1 ∨ c2

The partial assignments (a1, a2) = (1, 0) and (b1, b2) = (0, 0) cause S to unit
propagate the first output (d1), but not the second one (c2). If we add another 1
to the input, for example (a1, a2) = (1, 1), then both d1 and c2 get propagated,
but not c3. For propagating c3 we need to add another input 1, e.g, setting
(b1, b2) = (1, 0), but (b1, b2) = (0, 1) would not do it, since this propagation
only works if all ones appear as a prefix in the input sequences, which will
always be the case in our uses of HMerge. With inputs (a1, a2) = (1, 0) and
(b1, b2) = (1, 0), and setting c3 to false, unit propagation will set a2 and b2 to
false. Similar properties about propagation of ones and zeros will hold in all the
constructions in this paper and will be precisely stated in each case. ��
Lemma 1. If HMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) = (〈 c1 . . . c2n 〉, S) and
p, q ∈ N with 1 ≤ p, q ≤ n, then S ∪ {a1 . . . ap b1 . . . bq } |=up c1, . . . , cp+q.

Lemma 2. Let HMerge(〈a1 . . .an〉, 〈b1 . . . bn〉) be (〈 c1 . . . c2n 〉, S), and
p, q ∈ N with p, q ≤ n.
If p < n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1, bq+1.
If p = n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up bq+1.
If p < n and q = n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1.

Cardinality Networks and Their Applications 171

Lemma 3. Given A and B sequences of length n, the Half Merging Network
HMerge(A, B) contains O(n log n) clauses with O(n log n) auxiliary variables.

3.2 Half Sorting Networks

Given a sequence A of length 2n, the Half Sorting Network of A, denoted
HSort(A), is a pair (C, S), where C is a sequence of length 2n and S is a set of
clauses, defined as follows.

For sequences of length 2 we define:

HSort(〈a b〉) = HMerge(〈a〉, 〈b〉)

For sequences of length 2n > 2 we define:

HSort(〈a1 . . . a2n 〉) = (〈 c1 . . . c2n 〉, SD ∪ SD′ ∪ SM)

recursively in terms of two subsequences of size n:
HSort(〈 a1 . . . an 〉) = (〈d1 . . . dn〉, SD),
HSort(〈 an+1 . . . a2n〉) = (〈d′1 . . . d′n〉, SD′),

and the merge of them
HMerge(〈d1 . . . dn 〉, 〈d′1 . . . d′n 〉) = (〈c1 . . . c2n〉, SM),

Lemma 4. Given a sequence A of length n, the Half Sorting Network HSort(A)
contains O(n log2 n) clauses with O(n log2 n) auxiliary variables.

Similar properties to the ones of Half Merging Networks also hold here, but
without the requirement that the input ones are at prefixes: (i) if any p in-
put variables are set to true, the first p output variables are unit propagated
(Lemma 5), and (ii) if in addition the p+1-th output is set to false, the remain-
ing input variables are set to false (Lemma 6), hence not allowing more than p
input variables to be true.

Fig. 1. HSort with input 〈a1 . . . a8〉 and output 〈c1 . . . c8〉

172 R. Aśın et al.

Lemma 5. Let HSort(A) be (〈c1 . . . c2n 〉, S) and let A′ ⊆ A with |A′| = p.
Then,

S ∪ A′ |=up c1, . . . , cp

Lemma 6. Let HSort(A) be (〈c1 . . . c2n 〉, S) and let A′ �A with |A′|=p < 2n.
Then,

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A−A′)

4 Cardinality Networks

Here we exploit the fact that in cardinality constraints x1 + . . . + xn ≤ k it
is frequently the case that n is much larger than k. We introduce Cardinality
Networks which require O(n log2 k) clauses instead of O(n log2 n) as in previ-
ous approaches. A main ingredient for Cardinality Networks are the Simplified
Merging Networks, which we introduce first.

4.1 Simplified Merging Networks

If we are only interested in the (maximal) n + 1 bits of the output (instead of
the 2n original ones), Half Merging Networks can be further simplified. Given
two sequences A and B of length n, the Simplified Merging Network of A and
B, denoted SMerge(A, B), is a pair (C, S), where C is a sequence of length n+1
and S is a set of clauses, defined as follows. For n = 1, we have

SMerge(〈 a 〉, 〈 b 〉) = (〈 c1, c2 〉, { a ∨ b ∨ c2, a ∨ c1, b ∨ c1 })

The case n > 1 is defined

SMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) = (〈 d1 c2 . . . cn+1 〉, Sodd ∪ Seven ∪ S′)

recursively in terms of the odd and the even subsequences,

SMerge(〈a1 a3 . . .an−1〉, 〈b1 b3 . . . bn−1〉) = (〈d1 . . . dn
2 +1〉, Sodd)

SMerge(〈a2 a4 . . .an 〉, 〈b2 b4 . . . bn 〉) = (〈e1 . . . en
2 +1〉, Seven)

where the clause set S′ is:⋃n
2
i=1{ di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }.

Remark. We have defined Simplified Merging Networks with n + 1 outputs be-
cause this n + 1-th bit is needed for the odd recursive case: dn

2 +1 is used in the
clause set S′. But output en

2 +1 from the even subcase is not used, and the n+1-
th bit is not used either in the Cardinality Networks defined below. This fact
can be exploited for a slightly further optimization in our encodings by using
Simplified Merging Networks with n outputs for these subcases, but for clarity
of explanation we have chosen not to do so here.

We now precisely state the propagation properties of Simplified Merging Net-
works. Lemma 7 is the equivalent of Lemma 1, proving that p + q inputs ones
properly placed (e.g. as prefixes in the input sequences), unit propagate the first
p + q outputs. After that, Lemma 8, the equivalent of Lemma 2, proves how
zeros can be propagated from outputs to inputs.

Cardinality Networks and Their Applications 173

Lemma 7. If SMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) = (〈 c1 . . . cn+1 〉, S) and
p, q ∈ N with 1 ≤ p + q ≤ n + 1, then S ∪ {a1, . . . , ap, b1, . . . , bq } |=up cp+q.

Proof. (By induction on n). If n = 1, we have

SMerge(〈 a 〉, 〈 b 〉) = (〈 c1, c2 〉, { a ∨ c1, b ∨ c1, a ∨ b ∨ c2 }).

If p = 0, q = 1 then setting b clearly propagates c1. Similarly, if p = 1, q = 0,
setting a propagates c1. Otherwise, p = 1, q = 1, and a and b propagate c2.

For the induction step (n > 1) we consider four different cases, depending on
whether p and q are odd or even:

CASE 1: p is odd and q even. (Let p = 2p′ + 1 and q = 2q′).
Let us focus on the odd part of SMerge:

SMerge(〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉) = (〈d1 . . . dn
2 +1〉, Sodd).

In 〈a1 a2 . . . ap〉 there are p′ +1 odd indices, namely {1, 3, . . . , 2p′ +1}. Similarly,
in 〈b1 b2 . . . bq〉 there are q′ odd indices, namely {1, 3, . . . , 2q′ − 1}. Hence, by
IH we have Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′−1, } |=up dp′+q′+1 (note that
1 ≤ (p′ + 1) + q′ ≤ n

2 + 1).

Now, let us take the even part of SMerge:

SMerge(〈a2 a4 . . .an〉, 〈b2 b4 . . . bn〉) = (〈e1 . . . en
2 +1〉, Seven)

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in
〈b2 b4 . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, by IH we
have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , } |=up ep′+q′ (note that 1 ≤ p′ + q′ ≤
n
2 + 1).

Finally, since 1 ≤ p′ + q′ ≤ n
2 the clause dp′+q′+1 ∨ ep′+q′ ∨ c2p′+2q′+1 belongs

to S, and hence literal c2p′+2q′+1 can be unit propagated, as we wanted to prove.

CASE 2: p is even and q odd. (Symmetric to the previous one).

CASE 3: p and q are odd. (Let p = 2p′ + 1 and q = 2q′ + 1).
We will now use only the odd part of SMerge:

SMerge(〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉) = (〈d1 . . . dn
2 +1〉, Sodd).

In 〈a1 a2 . . . ap〉 there are p′ +1 odd indices, namely {1, 3, . . . , 2p′ +1}. Similarly,
in 〈b1 b2 . . . bq〉 there are q′ + 1 odd indices, namely {1, 3, . . . , 2q′ + 1}. Hence,
by IH we have Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′+1, } |=up dp′+q′+2 (note that,
using that n is even, one can see that 1 ≤ (p′ + 1) + (q′ + 1) ≤ n

2 + 1).
Now, since 1 ≤ p′ + q′ + 1 ≤ n

2 , the clause dp′+q′+2 ∨ c2p′+2q′+2 belongs to S,
the literal c2p′+2q′+2 can be unit propagated.

CASE 4: p and q are even. (Let p = 2p′ and q = 2q′).
We will now only use the even part of SMerge:

SMerge(〈a2 a4 . . .an〉, 〈b2 b4 . . . bn〉) = (〈e1 . . . en
2 +1〉, Seven)

174 R. Aśın et al.

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in
〈b2 b4 . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, by IH we
have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , } |=up ep′+q′ (note that 1 ≤ p′ + q′ ≤
n
2 + 1).

Now, using that n is even, one can see that 1 ≤ p′+q′ ≤ n
2 and hence the clause

ep′+q′ ∨ c2p′+2q′ belongs to S, allowing one to propagate the literal c2p′+2q′ . ��

Lemma 8. Let SMerge(〈a1 . . .an〉, 〈b1 . . . bn〉) be (〈 c1 . . . cn+1 〉, S), and
p, q ∈ N with p + q ≤ n.
If p < n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1, bq+1.
If p = n and q = 0 then S ∪ {a1, . . . , an, cn+1} |=up b1.
If p = 0 and q = n then S ∪ {b1, . . . , bn, cn+1} |=up a1.

Lemma 9. Given A and B sequences of length n, the Simplified Merging Network
SMerge(A, B) contains O(n log n) clauses with O(n log n) auxiliary variables.

4.2 K-Cardinality Networks

Given a sequence A of length n = m × k with k = 2r and m ∈ N, the k-
Cardinality Network of A, denoted Card(A, k), is a pair (C, S), where C is a
sequence of length k and S is a set of clauses, defined as follows.

For sequences of length k, we define:

Card(〈a1 . . . ak〉, k) = HSort(〈a1 . . . ak〉)

Fig. 2. Representation of Card(〈a1 . . . a32〉, 8) with output 〈c1 . . . c8〉

Cardinality Networks and Their Applications 175

For sequences of length n > k we define:

Card(〈 a1 . . . an 〉 , k) = (〈 c1 . . . ck 〉, SD ∪ SD′ ∪ SM)

recursively in terms of subsequences of sizes k and n− k:
Card(〈 a1 . . . ak 〉, k) = (〈d1 . . . dk〉, SD),
Card(〈ak+1 . . . an〉, k) = (〈d′1 . . . d′k〉, SD′),

and a simplified merge of them (note that its last output is not used)
SMerge(〈d1 . . . dk 〉, 〈d′1 . . .d′k 〉) = (〈c1 . . . ck+1〉, SM),

Lemma 10. Given a sequence A of length n = m×k, the k-Cardinality Network
Card(A, k) contains O(n log2 k) clauses with O(n log2 k) auxiliary variables.

Again, the usual properties of how zeros and ones are unit propagated follow.
Their proofs are analogous to the ones of Lemma 5 and Lemma 6.

Lemma 11. If Card(A, k) = (〈 c1 . . . ck 〉, S) and A′ ⊆ A with |A′| = p ≤ k,
then

S ∪ A′ |=up c1, . . . , cp

Proof. Sequence A will be of the form 〈a1 . . . an〉 with n = m× k. We will prove
the lemma by induction on m.

If m = 1, we have Card(〈 a1, . . . ak 〉, k) = HSort(〈a1, . . . , ak〉). Using
lemma 5 we conclude that {c1, . . . , cp} are unit propagated.

For the induction step (m > 1) we have:

Card(〈 a1 . . . an 〉 , k) = (〈 c1 . . . ck 〉, SD ∪ SD′ ∪ SM), with
Card(〈 a1 . . . ak 〉, k) = (〈d1 . . . dk〉, SD),
Card(〈ak+1 . . .an〉, k) = (〈d′1 . . . d′k〉, SD′) and
SMerge(〈d1 . . . dk 〉, 〈d′1 . . . d′k 〉,) = (〈c1 . . . ck+1〉, SM)

If we now consider the sets AD = A′ ∩ {a1, . . . , ak}, with size |AD| = pD, and
AD′ = A′ ∩ {ak+1, . . . , an}, with |AD′ | = pD′ , by IH we have AD ∪ SD |=up

d1, . . . , dpD and AD′ ∪ SD′ |=up d′1, . . . , d′pD′ . Now, by lemma 7 we know that
SM ∪ {d1, . . . , dpD , d′1, . . . , d′pD′ } |=up c1, . . . , cpD+pD′ , which, since p = pD +
pD′ , concludes the proof. ��

Theorem 1. If Card(〈a1 . . . an〉, k) = (〈 c1 . . . ck 〉, S) and A′ � A with size
|A′| = p < k, then

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A \A′)

Proof. We have that n = m × k, and we will prove the lemma by induction
on m.

If m = 1, we have Card(〈 a1, . . . ak 〉, k) = HSort(〈a1, . . . , ak〉) and in
this case the theorem amounts to Lemma 6.

For the induction step (m > 1) we have:

176 R. Aśın et al.

Card(〈 a1 . . . an 〉 , k) = (〈c1 . . . ck 〉, SD∪ SD′∪ SM), with
Card(〈 a1 . . . ak 〉, k) = (〈d1 . . . dk〉, SD),
Card(〈ak+1 . . . an〉, k) = (〈d′1 . . . d′k〉, SD′) and
SMerge(〈d1 . . . dk 〉, 〈d′1 . . . d′k 〉,) = (〈c1 . . . ck+1〉, SM)

If we now consider the sets AD = A′ ∩ {a1, . . . , ak}, with size |AD| = pD, and
AD′ = A′ ∩ {ak+1, . . . , an}, with |AD′ | = pD′ , by Lemma 11 we know that
AD ∪ SD |=up d1, . . . , dpD and AD′ ∪ SD′ |=up d′1, . . . , d′pD′ . Due to these
propagated literals and knowing that p = pD + pD′ ≤ k and both pD < k and
pD′ < k, we obtain SM ∪ {d1, . . . , dpD , d′1, . . . , d′pD′ , cp+1} |=up dpD+1, d′pD′+1
by applying Lemma 8.

Finally these two unit propagations allow us to use the IH to infer that SD ∪
AD ∪ dpD+1 |=up aj for all aj ∈ ({a1 . . . ak}−AD) and also that SD′ ∪ AD′ ∪
d′pD′+1 |=up aj for all aj ∈ ({ak+1 . . . an}−AD′), which concludes the proof. ��

5 Application to SAT Solving and Extensions

In this section we show how to apply the previous constructions in practice and
we further present some extensions:

• Use of Card in practice. Theorem 1 indicates how to apply the con-
struction Card in practice. Assume we are given a formula F to which we
want to impose the cardinality constraint a1 + . . .an ≤ p. We should first
find k, the smallest power of two with k > p and consider the construction
Card(〈a1 . . . an+m〉, k) = (〈c1, . . . ck〉, S). Note that we may need to add m ex-
tra variables to the input sequence to obtain a sequence of size multiple of k,
but these variables are initially set to false and do not enlarge the search space.
Now, the problem amounts to check the satisfiability of F ∧ S ∧ cp+1 since, due
to Theorem 1, as soon as p variables in 〈a1, . . . , an+m〉 are set to true, the re-
maining ones will be unit propagated to false, hence disallowing any model not
satisfying the cardinality constraint.

• Incremental strengthening. Another important feature of these encod-
ings can be exploited in applications where one needs to solve a sequence of
problems that only differ in that a cardinality constraint a1 + . . . + an ≤ p be-
comes increasingly stronger by decreasing p to p′, as it happens in optimization
problems. In this setting, we only need to assert the corresponding literal cp′+1,
and the search can be resumed keeping all lemmas generated in the previous
problems. Most state-of-the-art SAT solvers used as black boxes provide a user
interface for doing this.

• Constraints of the form a1 + . . .an ≥ p. For these type of constraints, we
should first find k, the smallest power of two with k ≥ p. After that, we should
consider a new construction Card≥(〈a1, . . . , an+m〉, k) = (〈c1, . . . , ck〉, S), iden-
tical to Card(A, k), except that its blocks HMerge and SMerge contain, in their
basic case, the clauses {a∨ b∨ c1, a∨ c2, b∨ c2} and, for the recursive case, the
clause set S′ is built from the clauses {di+1 ∨ c2i+1, ei ∨ c2i+1, di+1 ∨ ei ∨ c2i}.
We have the following result:

Cardinality Networks and Their Applications 177

Theorem 2. If Card≥ (〈a1 . . . an〉, k) = (〈 c1 . . . ck 〉, S) and A′ � A with
|A′| = n− p, for some p ∈ N with 1 ≤ p ≤ k, then

S ∪ A′ ∪ cp |=up aj for all aj ∈ (A \A′),

where A′ contains the negation of all variables of A′.

This theorem ensures that, if we set cp to true, as soon as n− p literals are set
to false, the remaining p will be set to true, hence forcing the constraint to be
satisfied.

• Constraints of the form p ≤ a1 + . . .an ≤ q. For these constraints, of
which equality constraints a1 + . . .+an = p are a particular case, we should first
find k, the smallest power of two such that k > q. Then, we will use another con-
struction Card rng(〈a1, . . . , an+m〉, k) = (〈c1, . . . , ck〉, S), identical to Card(A, k),
except that its blocks HMerge and SMerge contain, in their basic and recursive
cases, all 6 mentioned clauses (the ones for Card and the ones for Card≥). This
allows one to avoid encoding the two constraints independently, which would
roughly duplicate the number of variables. For this construction, we have:

Theorem 3. Let Card rng(〈a1 . . .an〉, k) = (〈 c1 . . . ck 〉, S) and A′ � A.

– If |A′| = n− p for some p ∈ N with 1 ≤ p ≤ k then

S ∪ A′ ∪ cp |=up aj for all aj ∈ (A \A′),

– If |A′| = p for some p < k then

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A \A′)

This theorem ensures that, if we set cp and cq+1, then (i) as soon as n − p
variables are set to false, the remaining ones will be set to true and (ii) as soon
as q variables are set to true, the remaining ones will be set to false, which forces
the constraint to be satisfied.

• Constraints a1+ . . .+an ≤ p with p > n
2 . Note that Cardinality Networks

were designed to improve upon Sorting Networks when n is much larger than
p. If p > n

2 we can use the fact that the constraint above can be rewritten as
(1−a1)+ . . .+(1−an) ≥ n−p. The latter constraint, where now n−p < n

2 , can
be encoded using Cardinality Networks by simply changing the input variables
by their negations.

6 Evaluation

We first show some statistics, for a constraint a1 + . . . + an ≤ k, about the
number of variables and clauses1 in Cardinality Networks compared with the
1 Since for every ternary clause there are two binary clauses, the number of literals in

the encodings is 7
3 times the number of clauses.

178 R. Aśın et al.

Sorting Networks of [Bat68, ES06] (figures for our Half Sorting Networks are as
for Sorting Networks, except that the number of clauses is halved). Cardinality
Networks provide a huge advantage for small values of k, whereas for k = n

2 (its
worst case) there is still more than a factor-two advantage due to the use of Half
Sorting/Merging Networks instead of full ones.

Sorting Network Cardinality Network
k=5 k=10 k=15 k=n/2

n vars clauses vars clauses vars clauses vars clauses vars clauses

105 18 · 106 54 · 106 77 · 104 12 · 105 12 · 105 18 · 105 12 · 105 19 · 105 15 · 106 23 · 106

104 15 · 105 45 · 105 77 · 103 12 · 104 12 · 104 18 · 104 12 · 104 19 · 104 12 · 105 19 · 105

103 48150 144403 7713 12065 12223 18825 12857 19771 39919 59879
102 2970 8855 773 1205 1251 1917 1325 2023 2279 3419

We now also assess the practical performance of the encodings. To the best of
our knowledge there is no standard library for SAT benchmarks with cardinality
constraints. However, there exists a very large and diverse source of realistic
instances, namely the ones produced by the msu4 algorithm [MSP08] where
Max-SAT problems are reduced to a series of SAT problems with cardinality
constraints.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
C

ar
di

na
lit

y

Time Sorting

Cardinality vs. Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
C

ar
di

na
lit

y

Time Sorting

Cardinality vs. Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
C

ar
di

na
lit

y

Time Sorting

Cardinality vs. Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
C

ar
di

na
lit

y

Time Sorting

Cardinality vs. Sorting

Fig. 3. Times in seconds and logarithmic scale is used

We have made a simple msu4 implementation which, every time a non-trivial
cardinality constraint is used (that is, that cannot be converted into a single
clause or a set of unit literals), also writes the SAT + cardinality constraints
problem into a file. We have run this prototype on all benchmarks used in the

Cardinality Networks and Their Applications 179

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 3-Sorting

3-Cardinality vs. 3-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 3-Sorting

3-Cardinality vs. 3-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 3-Sorting

3-Cardinality vs. 3-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 3-Sorting

3-Cardinality vs. 3-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

S
or

tin
g

Time 6-Sorting

3-Sorting vs. 6-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

S
or

tin
g

Time 6-Sorting

3-Sorting vs. 6-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

S
or

tin
g

Time 6-Sorting

3-Sorting vs. 6-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

S
or

tin
g

Time 6-Sorting

3-Sorting vs. 6-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 6-Cardinality

3-Cardinality vs. 6-Cardinality

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 6-Cardinality

3-Cardinality vs. 6-Cardinality

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 6-Cardinality

3-Cardinality vs. 6-Cardinality

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 6-Cardinality

3-Cardinality vs. 6-Cardinality

Fig. 4. Times in seconds and logarithmic scale is used. Best settings on the y-axes.

Partial Max-SAT division of the Third Max-SAT evaluation2. Hence, for every
benchmark in this division (some 1800), we have created a family of SAT +
cardinality constraints problems, usually between 2 and 10, which we believe
constitute a large and diverse enough set of benchmarks. We run each one of
them with Sorting and with Cardinality Networks on a 2Ghz Linux Quad-Core
AMD using our Barcelogic SAT Solver that ranked 3rd in the 2008 SAT-Race3.
Results are plotted in Figure 3, which shows a clear win for Cardinality Networks.
Each cross represents the time to solve a family of benchmarks. Each benchmark
was given 600 seconds and timing out in a single benchmark is counted as a
timeout for the whole family (in the plot, these are the crosses in the vertical or
horizontal lines).

One may wonder where the improvements come from the use of Half Merging/
Sorting Networks (3 clauses instead of 6) or from the asymptotically smaller Cardi-
nality Networks (O(n log2 k) clauses and auxiliary variables vs. O(n log2 n)). The
answer is: both, as one can see from Figure 4, where we also compare with 3-
Sorting: Half Sorting Networks as described in Section 3.2, and 6-Cardinality:
Cardinality Networks with HMerge and SMerge using all 6 clauses instead of only
the 3 mentioned in Section 3.1 and Section 4.1. In particular, using 3 clauses has
beneficial effects for both Sorting Networks and Cardinality Constraints.

2 See http://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks
3 See http://baldur.iti.uka.de/sat-race-2008/

180 R. Aśın et al.

7 Conclusions and Further Work

SAT solvers can be used off the shelf, giving high performance push-button
tools, i.e., tools that require no tuning for variable or value selection heuristics.
In order to exploit these features optimally, it is important to develop a catalogue
of encodings for the most common general-purpose constraints, in such a way
that the SAT solver’s unit propagation can efficiently preserve arc consistency.

The cardinality constraints we have studied here are certainly among the
most ubiquitous ones. Therefore, apart from the aforementioned work [ES06],
they have also been studied elsewhere. For instance in [Sin05] two encodings
are given, one requiring 7n clauses and 2n auxiliary variables, and another one
based on n unary k− bit counters ci denoting the number of true inputs among
x1 . . . xi; this latter encoding preserves arc consistency like ours, but it requires
O(n · k) clauses and new variables; in [BB03] arc consistency is also preserved
but O(n2) clauses and O(n log n) variables are required. In [SL07] the case of
k = 1 is studied, showing how a state-of-the-art SAT solver can be adapted to
diminish the noise introduced by the auxiliary variables.

Our approach is based on precise (recursive) definitions of the generated clause
sets and on inductive proofs for the arc consistency properties, combined with a
careful quantitative and experimental analysis.

We believe that in a similar way it will be possible to go beyond, re-visiting
pseudo-boolean constraints and other important constraints that are well known
in the Constraint Programming community.

References

[Bat68] Batcher, K.E.: Sorting Networks and their Applications. In: AFIPS Spring
Joint Computing Conference, pp. 307–314 (1968)

[BB03] Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean Cardinality
Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122.
Springer, Heidelberg (2003)

[DLL62] Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem-
Proving. Communications of the ACM, CACM 5(7), 394–397 (1962)

[DP60] Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory.
Journal of the ACM, JACM 7(3), 201–215 (1960)

[ES06] Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

[MSP08] Marques-Silva, J., Planes, J.: Algorithms for Maximum Satisfiability usint
Unsatisfiable Cores. In: DATE 2008, pp. 408–413. IEEE Computer Society
Press, Los Alamitos (2008)

[Sin05] Sinz, C.: Towards an optimal CNF encoding of boolean cardinality con-
straints. In: van Beek, P. (ed.) CP 2005, vol. 3709, pp. 827–831. Springer,
Heidelberg (2005)

[SL07] Marques-Silva, J.P., Lynce, I.: Towards robust CNF encodings of cardinality
constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497.
Springer, Heidelberg (2007)

New Encodings of Pseudo-Boolean Constraints
into CNF

Olivier Bailleux1, Yacine Boufkhad2, and Olivier Roussel3

1 LERSIA – Université de Bourgogne
olivier.bailleux@u-bourgogne.fr

2 LIAFA, CNRS, Gang team INRIA, Université Paris Diderot, France
boufkhad@liafa.jussieu.fr

3 Université Lille-Nord de France, Artois, F-62307 Lens – CRIL, F-62307
Lens – CNRS UMR 8188, F-62307 Lens
olivier.roussel@cril.univ-artois.fr

Abstract. This paper answers affirmatively the open question of the
existence of a polynomial size CNF encoding of pseudo-Boolean (PB)
constraints such that generalized arc consistency (GAC) is maintained
through unit propagation (UP). All previous encodings of PB constraints
either did not allow UP to maintain GAC, or were of exponential size in
the worst case. This paper presents an encoding that realizes both of the
desired properties. From a theoretical point of view, this narrows the gap
between the expressive power of clauses and the one of pseudo-Boolean
constraints.

Keywords: Pseudo-Boolean, SAT translation.

1 Introduction

Many practical problems can be expressed as constraint satisfaction problems
and several formalisms for constraint satisfaction have been defined: integer
linear programming (ILP) [7], constraint satisfaction problems (CSP), pseudo-
Boolean constraints (PB) [2], propositional satisfiability (SAT) and Quantified
Boolean Formulae (QBF) to name only a few. These formalisms differ by the
expressivity of their constraints, the power of the inference rules that can be
used and the efficiency of the corresponding solvers.

Complexity theory is a first approach to compare these formalisms. For in-
stance, QBF has a higher complexity than SAT, PB, CSP and ILP. Both SAT,
PB, CSP1 and ILP are NP-complete problems. This implies that, from the point
of view of complexity theory, all these formalisms have the same expressive power
in the sense that there exist polynomial reductions from any of these problems
to another.

The existence of a polynomial reduction from a formalism F to another for-
malism F ′ means that a problem of F can always be solved by translating it into
1 Under the assumption that each constraint of the CSP can be checked in polynomial

time.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 181–194, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

182 O. Bailleux, Y. Boufkhad, and O. Roussel

a problem of F ′, and that such an indirect approach only implies a polynomial
overhead which can be considered as negligible for NP problems. This approach
can also be quite interesting in practice if solvers for F ′ are more efficient than
solvers for F . The efficiency of modern SAT solvers explains why SAT has be-
come very popular to encode and solve a number of problems. Some examples
are Model checking [6], Symbolic reachability [1], Planning [8], Scheduling [12],
Diagnosis [10], etc.

There may exist many encodings of a given problem in SAT and these en-
codings are not equivalent regarding SAT solving methods. For example, in [11]
it is shown that a problem can be encoded to SAT in two ways, one that is
exponential for resolution and another which is polynomial although the two
encodings are of polynomial size. Similarly in [4], some difficult benchmarks for
SAT solvers are shown to be easy if encoded in a different way. Thus, to make
the polynomial reduction to SAT a practical approach for solving problems, the
question is to find a polynomial reduction that preserves the basic inferences in a
given problem through the basic inferences used in SAT solvers. More precisely,
this paper focuses on Unit Propagation as the basic mechanism of inference in
complete SAT solvers.

For example, it is known that maintaining Arc Consistency on CSP instances
defined with only constraints in extension is equivalent to applying Unit Propaga-
tion on a polynomial SAT encoding of the constraints named “support encoding”
[9]. Another encoding with the same property is proposed in [3]. These encodings
show that SAT and CSP with only extensional constraints are very close prob-
lems. The same approach is used in this paper to compare the pseudo-Boolean
formalism with the Satisfiability formalism.

Pseudo-Boolean constraints can be seen as an extension of the clauses of
SAT, or as a special case of integer programming constraints. The following
observations suggest that pseudo-Boolean constraints are stronger than SAT
constraints (clauses). While clauses can be considered as constraints defined
in extension (a clause forbids one single partial assignment), pseudo-Boolean
constraints are defined in intention through a mathematical formula. Another
observation is that a SAT encoding of a PB constraint which doesn’t introduce
extra variables requires an exponential number of clauses in the worst case.
Besides, so far, all known SAT encodings of a PB constraint were either of
exponential size or did not allow unit propagation to maintain GAC. This article
presents a polynomial SAT encoding of PB constraints which proves that the
basic inferences on PB constraints (Generalized Arc Consistency) polynomially
reduce to Unit Propagation in SAT. To the best of our knowledge, the existence
of such an encoding was an open question. This result narrows the gap between
the PB and SAT formalisms.

Section 2 introduces the definitions and notations used throughout this paper.
The general idea of the new encoding is to sum the terms on the left side of the
PB constraint and compare it to the right term. The property required for the
encoding of the addition is that it must give a result even when some input
variables are unassigned. To reach this goal, the encoding is based on a unary

New Encodings of Pseudo-Boolean Constraints into CNF 183

representation of numbers (see section 3). For conciseness, coefficients in the
constraints are decomposed in binary, and a unary representation is used for
each power of two. A kind of carry between unary representations ensures that
the most significant unary representation computes the sum of the coefficients
of the true literals in the constraint. The key point in the encoding is to add
a constant to each side of the PB constraint so that the right term becomes a
multiple of a power of two, which makes the comparator trivial.

This general encoding is detailed in section 4.1. It can be declined in two
different versions: GPW that detects inconsistencies (section 4.2) and LPW that
maintains Generalized Arc Consistency (section 4.3). LPW is the first SAT en-
coding of a pseudo-Boolean constraint of n variables with a maximum coeffi-
cient of amax which is both polynomial (O(n2 log(n) log(amax)) variables and
O(n3 log(n) log(amax)) clauses) and which lets Unit Propagation maintain Gen-
eralized Arc Consistency. Section 5 compares the new method with the previous
encodings of PB constraints into SAT. At last, some perspectives are given.

2 Definitions and Notations

In this paper, we only consider constraints which are defined over a finite set
of Boolean variables xj . Boolean variables can take only two values 0 (false)
and 1 (true). A literal lj is either a Boolean variable xj or its negation xj (with
xj = 1 − xj). A linear pseudo-Boolean constraint is a constraint over Boolean
variables defined by

∑
j aj lj � M where aj and M are integer constants, lj are

literals and � is one of the classical relational operators (=, >,≥, < or ≤).
Without loss of generality, these constraints can be rewritten to use only the less
operator and positive coefficients aj (since −a.x can be rewritten as a.x − a).
A clause is a disjunction of literals. A clause l1 ∨ l2 ∨ . . . ∨ ln is equivalent to
l1 + l2 + . . .+ ln ≥ 1. So clauses are a special case of pseudo-Boolean constraints
where each aj = 1 and M = 1. An assignment is a mapping of Boolean variables
to their value (0 or 1). In the CSP context, an instantiation is a mapping of
variables to a value in their domain.

Unit propagation (UP) is the fundamental mechanism used in most SAT
solvers. Whenever each literal of a clause but one is false, the remaining lit-
eral must be set to true in order to satisfy the clause. The derivation of a literal
l by unit propagation from formula f will be denoted f +UP l. The derivation
of the empty clause is denoted f +UP⊥. Generalized Arc Consistency (GAC)
is one of the fundamental inference rules in CSP. Let scp(C) denote the scope
of a constraint C, which is the set of variables constrained by C. A value a of
a variable X is generalized arc consistent in a constraint C if X 	∈ scp(C) or,
when X ∈ scp(C), if there exists an instantiation I of the other variables in the
scope of C such that I ∪ {X = a} satisfies C. A value a of X is generalized arc
consistent if it is generalized arc consistent in every constraint. A CSP instance
is generalized arc consistent if each value of each variable is generalized arc con-
sistent. Enforcing GAC consists in removing values which are not generalized arc
consistent from the domain of their variable. For example, let us consider the

184 O. Bailleux, Y. Boufkhad, and O. Roussel

PB constraint x1 +2x2 +4x3 < 3, value 1 for x3 is not generalized arc consistent
because no assignment of x1, x2 can satisfy the constraint once x3 = 1. Enforcing
GAC on this constraint will remove 1 from the domain of x3 and hence assign 0
to x3 .

An encoding E of a source language LS to a target language LT is a mapping
of constraints of LS to sets of constraints of LT such that any formula f of LS

is equivalent to E(f) in a generalized sense: any model of f can be extended
to obtain a model of E(f) (and conversely any model of E(f) can be projected
on the vocabulary of f to get a model of f). In the following definitions, we
only consider languages where variables are Boolean2. An encoding E is said to
UP-detect inconsistency if, for any constraint C of the source language and any
assignment A of the source language, C∧A |=⊥⇔ E(C)∧A +UP⊥. An encoding
E is said to UP-maintain GAC if, for any constraint C, any assignment A and
any literal l of the source language, C ∧A |= l ⇔ E(C) ∧A +UP l.

For example, let us consider the pseudo-Boolean constraint x1 + 2x2 + 4x3 <
6. Given the partial assignment {x1 = 1, x3 = 1}, any encoding which UP-
maintains GAC will allow unit propagation to fix x2 = 0. Given the partial
assignment {x2 = 1, x3 = 1}, any encoding which UP-detects inconsistency
must allow unit propagation to produce the empty clause.

Obviously, all things being equal, the more a solver propagates, the more
efficient it is. On the other hand, encodings which UP-maintain GAC generally
produce larger formulae than the other ones because they must encode each
potential implication of a literal. Of course, larger formulae slow down unit-
propagation. It is then not always clear which is the best trade-off between the
size of encodings and their ability to enforce propagations.

3 Unary Representation and Cardinality Constraints

First, let us recall briefly the notion of unary representation of integer intervals.
The details are in [4].

An integer variable u taking its values in the range 0..k is represented by a
vector of k Boolean variables U = 〈u1, ..., uk〉. At any time, only variables on the
left of this vector can be assigned 1, only variables on the right can be assigned
0 and variables in between are unassigned. More formally, U takes its values in a
set Uk ⊂ {0, 1, ∗}k (∗ standing for unassigned) such that there exists two ranks
a and b (0 ≤ a ≤ b ≤ k) having the following property: ui = 1 if i ≤ a, ui =
∗ if a < i ≤ b and ui = 0 if i > b.

An integer u such that u = m is represented by the vector having u1 = u2 =
... = um = 1 and um+1 = ... = uk = 0. The advantage of unary vectors is
that they allow the representation of integer intervals. For example a ≤ u ≤ b is
represented by a vector that assigns 1 to the a first Boolean variables and 0 to
the k − b last ones, the remaining variables being unassigned.
2 However, the generalization to languages where a variable X can take multiple

values vi is straightforward. For example, an encoding E UP-maintains GAC if,
∀C,∀A,∀X,∀v, C ∧ A |= X �= v ⇔ E(C) ∧ E(A) �UP E(X �= v).

New Encodings of Pseudo-Boolean Constraints into CNF 185

The other advantage of this representation is that it allows to encode an ad-
dition in such a way that unit propagation is able to do the expected inferences,
even when some variables are unassigned. Let U and V be two unary vectors
representing respectively two integers u and v and let W be the unary represen-
tation of their sum w = u + v. The encoding of this addition contains clauses
of the type ua ∨ vb ∨ wa+b stating that whenever u ≥ a and v ≥ b for some
values a and b then w ≥ a + b. We will denote by ψ(U ⊕ V = W) the conjunc-
tion of all the clauses of that type that ensure that w ≥ u + v through their
unary representations. The sum of integers is naturally extended to the sum of
their representations through the operator ⊕. Formally, for two unary vectors
U = 〈u1, u2, .., uk〉, V = 〈v1, v2, .., vl〉 and W = U ⊕ V = 〈w1, w2, .., wk+l〉 with
the convention u0 = v0 = w0 = 1:

ψ (W = U ⊕ V) =
k∧

a=0

l∧
b=0

(ua ∨ vb ∨ wa+b)

Some other clauses ensuring that w ≤ u + w are needed to obtain the encoding
of [4] but are omitted because they are not relevant in this paper. Clearly the
number of clauses in ψ (W = U ⊕ V) is O(n2) when the numbers are of size n.

In [4], the unary representation is used to efficiently encode cardinality con-
straints. The vector of variables involved in the cardinality constraint called
input variables is connected to a unary vector called output vector representing
its number of 1s through a CNF formula called a Totalizer. The Totalizer is in
charge of transforming the input vector in an output vector which contains the
same values but which also satisfies the requirements of the unary representation
(all 1s on the left, all 0s on the right and all unassigned variables in the middle).
In essence, this Totalizer plays the same role as a sorting network.

The Totalizer used in the encoding schemes described in this paper is simpler
than the one used in [4] because we never use the 0s in the output. All is needed
is that the Totalizer generate an output vector with all 1s on the left (as many
as in the input vector) and all other variables unassigned. For any vector X of
Boolean variables, let U(X) denote the vector of the unary representation of the
number of its 1s as enforced by the Totalizer. Let Φ(X) be the Totalizer which
transforms X into U(X). It is built in a recursive manner as described in the
recursive procedure Φ(X) of Algorithm 1. Indeed, the unary representation of
a single variable is the variable itself, the unary representation of the number
of 1s of vector X = 〈x1, x2, ..., xn〉 is the sum of the unary representations
of X1 = 〈x1, x2, ..., x�n/2�〉 and X2 = 〈x�n/2�+1, ...xn〉, and the CNF formula
enforcing this conjunction is ψ(U(X1)⊕U(X2) = U(X)). The whole formula of
the totalizer of some vector X is denoted by Φ(X). It is the conjunction of the
formulae ψ.

The fundamental property of the formula Φ(X) as it will be used later is
that for any partial assignment to the variables X unit propagation enforces
U(X) to be the unary representation of the number of ones in X . The number
of variables created by the encoding is clearly O(n log(n)) and the number of
clauses is O(n2 log(n)) since the procedure makes O(log(n)) recursive calls.

186 O. Bailleux, Y. Boufkhad, and O. Roussel

Algorithm 1. Φ(X)
Require: A vector X = 〈x1, x2, ..., xk〉

if k = 1 then
U(X) ← 〈x1〉
return true

else
U(X) ← 〈u1, u2, ..., uk〉 {ui are obtained from a global unique variable generator}

X1 ← 〈x1, x2, ..., x�n/2�〉
X2 ← 〈x�n/2�+1, ...xn〉
return Φ(X1) ∧ Φ(X2) ∧ ψ(U(X1) ⊕ U(X2) = U(X))

end if

In the rest of the description of the encoding, it is necessary to define an
operator 1

2 on the vectors of unary representations of integers such that for some
vector W = 〈w0, w1, ..., w2i, w2i+1, ...〉, W

1
2 = 〈w1, w3, ..., w2i+1...〉 is the vector

of variables of odd ranks in the original. Clearly if W is the unary representation
of some integer w then W

1
2 is the unary representation of �w

2 �.

4 Global and Local Polynomial Watchdog Encoding
Schemes

We present in this section two SAT encoding schemes LPW and GPW standing
respectively for Local Polynomial Watchdog and Global Polynomial Watchdog.
A watchdog is a formula which will set a Boolean variable to 1 as soon as a
constraint gets falsified. LPW UP-maintains GAC while producing formulae of
polynomial size. GPW, which UP-detects inconsistencies, is more of practical
interest since it produces smaller formulae at the cost of losing the property of
UP-maintaining GAC.

4.1 Polynomial Watchdog

In the following we will consider without loss of generality a unique constraint C
defined by the sequence of positive integer coefficients (ai)i=1..n and an integer
M constraining

∑
i∈I aixi < M where I = {1, 2, ..., n} is a set of indices ranging

from 1 to n the number of Boolean variables involved in this constraint. We
consider only non trivial constraints i.e

∑
i∈I ai > M . For some integer a, let

bj(a) be the value of the bit of rank j in the binary representation of a.
A polynomial watchdog (PW) associated with a constraint C is a CNF formula

denoted by PW (C) based on the following sets of variables: the input variables
{xi|i ∈ I} of the constraint C, and a set of additional variables called encoding
variables. PW (C) has a single output variable ω. The formula PW (C) is built
in such a way that it has the following property: for every partial assignment to
the input variables that violates the constraint C, unit propagation applied to
PW (C) assigns the value 1 to the output variable ω.

New Encodings of Pseudo-Boolean Constraints into CNF 187

The idea used to construct PW (C) is to decompose each coefficient of the
constraint in its binary representation and sum each bit having the same weight
2k in a single Totalizer. There are as many Totalizers as the number of bits of the
greatest coefficient. Half of the value of the totalizer for weight 2k is computed
with operator 1

2 and integrated in the totalizer for weight 2k+1 (this is a kind
of carry). The value represented by the different Totalizers must be compared
to M . To make this comparison trivial, the constraint is first rewritten so that
the right term becomes a multiple of the weight of the last Totalizer. Once this
is done, the value of the comparison is represented by one single bit of the last
Totalizer. All computations can be performed by unit propagation, even when
some input variables are unassigned.

Let us now detail how the formula PW (C) is built. The binary representation
of the coefficients is considered. Let p be the index of the most significant bit in
the greatest ai. In other words, p is the integer such that p+1 is the number of bits
necessary to represent the largest coefficient, namely p = �log2(maxi=1..n(ai))�.

An important feature used by the Polynomial Watchdog encoding is the tare
which is an integer denoted by T . It turns out that the comparison with the
right side of the constraint is trivial when it is a multiple of 2p. For this reason,
we define the tare T as the smallest integer such that M + T is a multiple of
2p. Let m denote the integer such that M + T = m2p and let tp−1...t1t0 denote
the binary representation of T over p − 1 bits (T < 2p). Considering this, the
constraint can be rewritten to an equivalent form T +

∑
i∈I aixi < m2p.

For every j such that 0 ≤ j ≤ p, let Bj be the set containing the input variables
with the bit of rank j equal to 1 in the binary representation of their coefficient plus
the constant tj (the jth bit of the tare) if tj = 1. More formally Bj = {xi|bj(ai) =
1} ∪ {tj if tj = 1} for 0 ≤ j ≤ p. The sets Bj are called buckets.

Example 1. For the constraint 2x1 +3x2 +5x3 +7x4 < 11, we have p = 2, T = 1
(t0 = 1, t1 = 0) and the buckets are B0 = {1, x2, x3, x4}, B1 = {x1, x2, x4} and
B2 = {x3, x4}. Figure 1 represents the different buckets and generated circuits.

The formula PW (C) is built recursively by cascading p+1 Totalizers (see Section
3). Let PWj(C) denote the Totalizer number j and Sj denote its output. The
CNF encoding of the totalizers and their inputs are defined recursively as follows.
〈Bj〉 is a vector formed by the elements of the bucket Bj taken in an arbitrary
order:

– For j = 0, let PW0(C) = Φ(〈B0〉). The output is S0 = U(〈B0〉).
– For any 1 ≤ j ≤ p, PWj(C) = Φ (〈Bj〉) ∧ ψ(Sj = U(〈Bj〉) ⊕ S

1
2
j−1). The

output unary vector is Sj = U(〈Bj〉) ⊕ S
1
2
j−1 enforced through the formula

ψ(Sj = U(〈Bj〉)⊕ S
1
2
j−1).

The polynomial watchdog of the constraint C can now be defined as: PW (C) =∧p
j=0 PWj(C) The mth variable of the vector Sp is the output variable ω (Sp has

at least m bits because the constraint is not trivial). The algorithm 2 describes
the steps in the computation of the formula PW (C) and Figure 1 shows PW (C)
on the constraint of Example 1.

188 O. Bailleux, Y. Boufkhad, and O. Roussel

Fig. 1. Schematic representation of PW(2x1 + 3x2 + 5x3 + 7x4 < 11)

Algorithm 2. PW(C)
Require: a constraint

∑n
i=1 aixi < M

p ← log2(maxi=1..n(ai))
T ← (m2p − M) s.t. m is the smallest integer having m2p ≥ M
for j = 0 to p do

Bj ← {xi|bj(ai) = 1} ∪ {tj if tj = 1}
end for
F ← Φ(〈B0〉)
S0 ← U(〈B0〉)
for j = 1 to p do

F ← F ∧ Φ(〈Bj〉)
Sj ← U(〈Bj〉) ⊕ S

1
2
j−1

F ← F ∧ ψ(Sj = U(〈Bj〉) ⊕ S
1
2
j−1)

end for
return F

A polynomial watchdog is based on p+1 Totalizers requiring each O(n log(n))
variables and O(n2 log(n)) clauses. Then, in general, a constraint involving n
Boolean variables and having coefficients of at most amax generates at most
O(n log(n) log(amax)) variables and O(n2 log(n) log(amax)) clauses.

Lemma 1. For any partial assignment to the variables of C, Unit Propagation
on PW (C) assigns 1 to ω if and only if this partial assignment is inconsistent
with C.

Proof. Let si be the number of 1s in bucket Bi whose unary representation is
U(〈Bi〉). The lemma follows from the fact that UP enforces at any time Si for

0 ≤ i ≤ p to be the unary representation of �
∑ i

j=0 sj2j

2i �. In particular, for p,

New Encodings of Pseudo-Boolean Constraints into CNF 189

since �
∑p

j=0 sj2j

2p � = �T+
∑p

j=0 ajxj

2p �, UP assigns 1 to the mth bit ω if and only if
the left side is greater or equal to M + T and hence the constraint is violated.

The fact that Si for 0 ≤ i ≤ p is the unary representation of �
∑ i

j=0 sj2j

2i �
can be proven by induction on i. For i = 0, it is obviously true thanks to
the first Totalizer. Suppose now that the property is true for some i i.e. it is

true that UP enforces Si to be the unary representation of �
∑ i

j=0 sj2j

2i �, since

Si+1 = U(〈Bi+1〉)⊕S
1
2
i , UP will enforce — through the Totalizer Φ(〈Bi+1〉) and

ψ(Si+1 = U(〈Bi+1〉) ⊕ S
1
2
i) — Si+1 to be the unary representation of si+1 +

� �
∑i

j=0 sj2j

2i �
2 � = si+1 + �

∑ i
j=0 sj2j

2i+1 � = �
∑ i+1

j=0 sj2j

2i+1 �.

4.2 Global Polynomial Watchdog

The Global Polynomial Watchdog (GPW) is an encoding that detects incon-
sistencies. It is based on the PW described in the previous section. It consists
simply in adding the unit clause w. The formula generated to encode a con-
straint C is then GPW (C) = PW (C)∧w. GPW has the same complexity than
PW (C).

Proposition 1. A partial assignment of the variables of a constraint C is in-
consistent with it if and only if unit propagation applied to GPW (C) detects an
inconsistency.

However GPW does not UP-maintain GAC. This can be seen in the following
counterexample. GAC on the partial assignment x3 = 1 on Example 1 assigns
x4 = 0 but UP will not detect such an assignment. Indeed, all what UP will
derive is that the higher bits of U(〈B2〉) and S

1
2
1 cannot be equal to 1 at the

same time. This situation is obtained if x4 = 1 but UP cannot foresee it.
Although GPW does not UP-maintain GAC it is not far from doing it. Indeed,

GAC can be maintained through UP look-ahead. A UP look-ahead consists in
trying to assign 1 to an unassigned input variable and then to run UP. If an
inconsistency is detected, the variable must be assigned 0 otherwise it remains
unassigned. GAC can be maintained through UP look-ahead on the GPW en-
coding but few modern SAT solvers perform such tests.

4.3 Local Polynomial Watchdog

This encoding is analogous to the support encoding [9] applied to pseudo-Boolean
constraints. Each variable x of the encoded constraint is connected to a watchdog
formula that assigns through unit propagation x = 0 when the value x = 1 has
no support.

Consider the constraint
∑

i∈I aixi < M . Let Ik = I\{k} and let Ck be the
constraint defined as

∑
i∈Ik

aixi < M − ak. Clearly, whenever the constraint Ck

is inconsistent with a partial assignment, the variable xk must be fixed to 0.
Consider PW (Ck) the polynomial watchdog encoding of the constraint Ck

and ωk the output variable of this encoding. As described by Algorithm 3,

190 O. Bailleux, Y. Boufkhad, and O. Roussel

Algorithm 3. LPW (C)
Require: a constraint

∑n
i=1 aixi < M

F ← true
for k = 1 to n do

Ck ← ∑
i=1..n,i	=k aixi < M − ak

F ← F ∧ (PW (Ck) ∧ (ωk ∨ xk))
end for
return F

the Local Polynomial Watchdog can now be defined as the CNF: LPW (C) =∧n
k=1 (PW (Ck) ∧ (ωk ∨ xk)).

Theorem 1. Any pseudo-Boolean Constraint of integer weights using n vari-
ables having a maximum weight of amax can be translated into a CNF formula
of O(n2 log(n) log(amax)) variables and O(n3 log(n) log(amax)) clauses such that
Unit Propagation maintains Generalized Arc Consistency.

Proof. The proof follows from the fact that GAC assigns 0 to some xk if and
only if the corresponding Ck is inconsistent with the partial assignment. In this
case UP assigns ωk = 1 and then xk = 0. The complexity comes from the fact
that we have n Polynomial Watchdogs.

4.4 Implementation

The size of the watchdogs used in the two proposed encodings can be reduced by
sharing sub-formulae – both into the same watchdog as well as between different
ones – in a way to reduce the number of clauses. It is even possible to share sub-
formulae between several input constraints. The key of such an optimization
is how to split the input variables of each totalizer into the two sets of input
variables of its sub-totalizers. A first basic implementation has been done, for
validation purpose only. It is based on a static ordering of the variables of the
input constraint, which are sorted in decreasing order of their coefficients. No
extensive experimental evaluations of the LPW end GPW encodings has been
performed yet because the implementation is not yet optimized, and anyway an
extensive evaluation is not the purpose of this paper3.

That said, the first few results suggest that the new encodings could be of
practical interest. For exemple, the following unsatisfiable Bin-packing instance
was encoded using our basic implementation: 16 objects with weights 211, 203,
202, 201, 200, 199, 198, 197, 196, 194, 175, 167, 166, 165, 164, and 162 must
be put into 3 boxes, each with capacity 1000. For each box i and each object
j, a Boolean variable xij denotes whether the object i belongs to the box j.

3 Some tests were done on 1D bin packing instances, randomly generated instances
and hand crafted instances, with the only aim to verify that the size of the LPW
and GPW encodings does not make them intractable. We do not have enough space
to present these experiments.

New Encodings of Pseudo-Boolean Constraints into CNF 191

Three pseudo-Boolean constraints ensure the capacity requirement of each box,
and 16 additional cardinality constraints ensure that each object belongs exactly
to one box. The BDD encoding of [5] (see section 5) produces 38077 literals in
15637 clauses, and allows minisat to solve the problem within 486 seconds; the
LPW encoding produces 58521 literals in 21615 clauses, and allows minisat to
solve it within 12 seconds; the GPW encoding produces 7108 literals in 2714
clauses, and allows minisat to solve it within 3 seconds; the pseudo-Boolean
solver pueblo [14] solves the initial instance within 23 seconds; minisat+ solves
the initial instance within 8 seconds.

In some cases, our basic version of the LPW encoding seems to produce a
prohibitive number of clauses. For exemple, to put 50 objects into 5 boxes, each
with capacity 1000, it required 2553715 literals in 884945 clauses, while GPW
produced ”only” 95675 literals in 34200 clauses.

5 Related Work

In [16], Warner proposes a linear CNF encoding of pseudo-Boolean constraints.
It uses a binary adder network, which does not allow unit propagation to detect
whether any input constraint is falsified by a given partial assignment.

[4] proposes an encoding which UP-maintains GAC on cardinality constraints.
It is based on an extended version of the totalizers described in section 3 and
requires O(n log n) additional variables and O(n2) clauses of size at most 3 to
encode a constraint with n variables. [13] also introduces an encoding based
on a unary representation but uses a odd-even merge sorting network, thereby
reducing the number of clauses to O(n log2 n).

In [15], Sinz introduces two other encodings. The first one uses a sequen-
tial adder network with a unary representation of integers. It maintains arc-
consistency and, given a cardinality constraint

∑n
j=1 xi < M , it produces a

formula of size O(nM). The second one uses a parallel adder network with a
binary representation of integers. It does not detects local inconsistencies and
produces a formula of size O(n), but smaller than the one produced by Warner’s
encoding.

In 2006, Eén and Sörensson released the pseudo-Boolean solver minisat+ [13],
one of the best performers in the PB’06 competition. It is based on a conver-
sion of pseudo-Boolean constraints to a CNF formula, which is submitted to
the minisat solver. minisat+ uses some heuristics to choose between three en-
coding techniques based respectively on binary decision diagram (BDD), adder
networks, and sorting network. Another variant of BDD based encoding is si-
multaneously (and independently) introduced in [5].

The BDD based encoding transforms each pseudo-Boolean constraint into a
binary decision diagram. Each node in the BDD represents a pseudo-Boolean
constraint and the satisfaction of this constraint is reified by a propositional
variable in the encoding. The root of the BDD represents the constraint to
encode. Each node has at most two children which are obtained by assigning
the first variable of the constraint to the two possible values 0/1 and simplifying

192 O. Bailleux, Y. Boufkhad, and O. Roussel

the resulting constraints. Nodes corresponding to trivial constraints are pruned.
Two nodes can also share a common child. The relation between the truth of
a node and the truth of its children only depends on the variable chosen to
decompose the constraint and the variables corresponding to the nodes. In [13],
this relation is encoded in six ternary clauses. In [5], a slightly different encoding
is used, which translates each node of the BDD into two binary clauses and two
ternary clauses. These two encodings maintain arc-consistency, but can produce
an exponential number of clauses in the worst case [5].

The encoding based on adder networks produces a number of clauses (of length
at most 4) linearly related to the size of the encoded constraint, as [16], but using
a different structure. All the variables with a bit of a given weight in the base 2
representation of their coefficients are bundled in a bucket. The number of bits
set to 1 in each bucket is computed using a binary adders network. The results
are then combined thanks to additional adders. The resulting binary value feeds
a comparator, which is optimized to deal with the constant bound of the con-
straint. Like Warner’s one, this linear encoding does not detect inconsistencies,
then cannot maintain arc-consistency.

In [13], the encoding based on sorting networks is founded on the unary rep-
resentation of numbers [4,13] (see section 3). To compress the representation,
a number is represented by several buckets in unary notation and each bucket
has its own weight. Instead of using weights which are a power of a base b
(1, b, b2, b3, ..), [13] uses a general increasing sequence of positive integers. This is
in fact a generalization of the usual representation of numbers in a base b with
the exception that the ratio of the weights of two successive digits is no more a
constant. The GPW encoding presents similarities with this encodings but there
are several differences: (1) each of our bucket is related to a power of two, while
the encoding used in minisat+ uses arbitrary weights; (2) instead of our total-
izers, minisat+ uses odd even merge sorting networks; (3) minisat+ does not
uses a tare, which is an essential feature of GPW to ensure that the bound of the
constraint is a round number of the weight of the last sorter. As a consequence,
instead of a simple unit clause, a more complex non monotone circuit is used
to establish whether the constraint is satisfied or not. More importantly, it does
not maintain arc-consistency and it is not proved in [13] whether it UP-detects
inconsistency or not.

Let us mention the standard exponential transformation with no auxiliary
variables. Except for the trivial cases (i.e., constraints with only one literal
and constraints that are either impossible to satisfy or to falsify), a constraint∑n

i=1 aixi < M is translated as two sets of clauses. The first one encodes
(xn = 0)∨ (

∑n−1
i=1 aixi < M − an), and the second one encodes

∑n−1
i=1 aixi < M .

Unit resolution achieves the same propagations in this encoding as it does in
the BDD one, then it maintains arc-consistency and detects local inconsisten-
cies. Contrarily to the BDD one, direct encoding does not require additional
variables, but it often produces bigger formulae because each clause corresponds
to a path of the BDD. However, small constraints (with typically less than 6
variables) tend to produce more concise formulae.

New Encodings of Pseudo-Boolean Constraints into CNF 193

6 Synthesis and Perspectives

This paper provides a theoretical contribution on the encoding of pseudo-Boolean
constraints into CNF formulae. Now, it is known that there exists a polynomial
encoding that allows unit propagation (implemented in all DPLL-based SAT
solvers) to restore generalized arc consistency on the initial constraints. Clearly,
this result opens new questions and new perspectives in the field of indirect
resolution of pseudo-Boolean problems.

The space complexity of the proposed encoding is O(n3 log(n) log(amax)) but
in practice many sub-formulae could be shared by several totalizers – both into
the same watchdog as well as among different ones – in a way to reduce the
number of produced clauses. The key is the order of the variables into the vector
related to each bucket 〈Bj〉. Some work must be done to search for relevant
ordering heuristics.

Another issue is the existence of structurally more concise encodings that
maintain arc consistency. The underlying theoretical aim is to establish the min-
imum size for any such encoding. At this point, it is not known if there is a
gap – in terms of space complexity4 – between encodings which ”only” detect
local inconsistencies and encodings maintaining arc consistency. Furthermore, it
is not clear whether the former outperforms the latter with modern SAT solvers.
Answering these questions will probably require an extensive amount of future
work.

Moreover, the existing encodings could be combined in a way to use a specific
encoding for each individual constraint (and even the possibility to use redun-
dant encodings could be considered). The minisat+ solver always uses such an
approach, but it may be improved and extended to the new encodings introduced
in the present paper. These new encodings could also be improved by using a
sorting network, as in [13], instead of a totalizer.

An even more crucial question is whether solving pseudo-Boolean problems
with SAT solvers is actually relevant. On the one hand, this approach proved
its efficiency (see minisat+ at PB05) despite the fact that state-of-the-art en-
codings are not mature. On the other hand, one can hardly expect a SAT solver
to outperform a native pseudo-Boolean solver when this technology becomes
mature.

References

1. Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT-
solvers. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
411–425. Springer, Heidelberg (2000)

2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus Spe-
cialized 0-1 ILP: An Update. In: Proc. of Int. Conf. on Computer Aided Design
(ICCAD 2002), pp. 450–457 (2002)

3. Bacchus, F.: Gac via unit propagation. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833,
pp. 133–147. Springer, Heidelberg (2003)

4 Regarding the degree of the polynomial.

194 O. Bailleux, Y. Boufkhad, and O. Roussel

4. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer,
Heidelberg (2003)

5. Bailleux, O., Boufkhad, Y., Roussel, O.: A Translation of Pseudo Boolean Con-
straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation 2,
191–200 (2006)

6. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic Model Checking
using SAT procedures instead of BDDs. In: Proc. of Design Automation Conference
(DAC 1999), pp. 317–320 (1999)

7. Brand, S., Duck, G.J., Puchinger, J., Stuckey, P.J.: Flexible, Rule-based Con-
straint Model Linearisation. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS,
vol. 4902, pp. 68–83. Springer, Heidelberg (2008)

8. Ernst, M., Millstein, T., Weld, D.S.: Automatic SAT-Compilation of Planning
Problems. In: IJCAI 1997, pp. 1169–1176 (1997)

9. Gent, I.P.: Arc Consistency in SAT. In: Proc. of the Fifteenth European Conference
on Artificial Intelligence (ECAI 2002), pp. 121–125 (2002)

10. Grastien, A., Anbulagan, A., Rintanen, J., Kelareva, E.: Diagnosis of Discrete-
Event Systems Using Satisfiability Algorithms. In: AAAI-2007, pp. 305–310 (2007)

11. Hertel, A., Hertel, P., Urquhart, A.: Formalizing Dangerous SAT Encodings. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 159–172.
Springer, Heidelberg (2007)

12. Baker, A.B., Crawford, J.M.: Experimental Results on the Application of Satis-
fiability Algorithms to Scheduling Problems. In: Proc. of the Twelfth National
Conference on Artificial Intelligence, pp. 1092–1097 (1994)

13. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

14. Sheini, H.M., Sakallah, K.A.: Pueblo: a modern pseudo-Boolean SAT solver. In:
Design, Automation and Test in Europe, 2005. Proc., pp. 684–685 (2005)

15. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

16. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters 68(2), 63–69 (1998)

Efficient Term-ITE Conversion for Satisfiability Modulo
Theories�

Hyondeuk Kim1, Fabio Somenzi1, and HoonSang Jin2

1 University of Colorado at Boulder
2 Cadence Design Systems

{Hyondeuk.Kim,Fabio}@Colorado.EDU,
hsjin@cadence.com

Abstract. This paper describes how term-if-then-else (term-ITE) is handled in
Satisfiability Modulo Theories (SMT) and to decide Linear Arithmetic Logic (LA)
in particular. Term-ITEs allow one to conveniently express verification condi-
tions; hence, they are very common in practice. However, the theory provers of
SMT solvers are usually designed to work on conjunctions of literals; therefore,
the input formulae are rewritten so as to eliminate term-ITEs. The challenge in
rewriting is to avoid introducing too many new variables, while avoiding as often
as possible the exponential explosion that is frequent when a naive approach is
applied. We propose a solution that is based on cofactoring and theory propaga-
tion, which often produces orders-of-magnitude speedups in several SMT solvers
for LA problems.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers find increasing applications in areas like
formal verification in which one needs to reason about complex Boolean combinations
of numerical constraints. The most common approach to this problem leverages the
efficiency of modern propositional satisfiability solvers that work on a propositional
abstraction of the given formula. At the same time, they interact with theory solvers,
which check conjunctions of literals for consistency and learn consequences (new lem-
mas) from them. This approach has come to be known as DPLL(T) [12].

Among the logics for which theory solvers have been developed in recent times,
linear arithmetic is one of the most useful and well-researched. Many current solvers
adopt some variant of the simplex algorithm. In particular, the backtrackable version of
[3] fits well in the DPLL(T) scheme and has shown good results in practice for both
integer and real-valued variables.

The Boolean dimension of many SMT instances, however, continues to pose a chal-
lenge to solvers. In this paper we address this problem. In particular, we focus on those
instances that make extensive use of the term-if-then-else (ITE) operator. This operator
facilitates the analysis of problems in which paths through control-flow graphs must be
translated into SMT formulae. It is not surprising, therefore, that many of the available
benchmark instances for linear arithmetic are rich in term-ITEs. Given a code fragment

� This work was supported in part by SRC contract 1859-TJ-2008.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 195–208, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

196 H. Kim, F. Somenzi, and H. Jin

main(void){

t-ite

t-ite

y

=

t-ite

y ≥ 3

1

x = 1

x = 0

x = 2

2

3

∧

F

4

.

.

.
if(x = 0){

y = 1;

}else if(x = 1){
y = 2;

}else if(x = 2){
y = 3;

}else {
y = 4;

}
assert(y ≤ 2);

}

Fig. 1. Verification condition F with term-ITEs

that contains if statements, a verification condition can be naturally formulated with
ITEs as shown in Fig. 1.

Two major approaches can be envisioned to deal with term-ITEs. On the one hand,
one can modify the theory solver to deal with conditional expressions. Without ITEs,
every assignment to an atom of the SMT formula adds to a conjunction of literals that is
analyzed by the theory solver. With ITEs, this is no longer the case. In order to analyze
the atom, the conditional expressions of the ITEs need to be assigned. On the other hand,
one can eliminate all the ITEs from the formula by rewriting. The problem here is that
the rewritten formula may retain a lot of redundancies depending on how one rewrites it.
We address this problem by a procedure based on cofactoring and theory simplification.
Although our approach may cause a blow-up, it often simplifies the formula in practice.
Our approach is applied to linear arithmetic logic in this paper; however, it can be easily
applied to other logics like the logic of equality and uninterpreted function symbols
(EUF), the logic of bit-vector, or the logic of arrays. Only the terminal cases are different
in each logic. Our experiments show that our approach is promising and often speeds
up a solver by orders of magnitude. The experiments also demonstrate the effectiveness
of theory simplification.

The rest of this paper is organized as follows. Section 2 defines notation and sum-
marizes the main concepts. Section 3 discusses motivation and outlines our approach
to the problem. Section 4 presents the simplifications applied before invoking the term-
ITE conversion. Section 5 presents an algorithm for term-ITE conversion with theory
reasoning. After a survey of related work in Sect. 6, experiments are presented in Sect. 7,
and conclusions are offered in Sect. 8.

2 Preliminaries

We consider the satisfiability problem for linear arithmetic logic, which is the quantifier-
free fragment of first-order logic that deals with linear arithmetic constraints. Let VB

be a set of propositional variables and VR be a set of real-valued variables. The formu-
lae in linear arithmetic logic are inductively defined as the largest set that satisfies the
following rules.

Efficient Term-ITE Conversion for Satisfiability Modulo Theories 197

– A propositional variable a ∈ VB is a formula.
– A real number c ∈ R is a (constant) term.
– The product cx of a real number c ∈ R and a real-valued variable x ∈ VR is a term.
– If t1 and t2 are terms, then t1 + t2 is a term.
– If t1 and t2 are terms, and f is a formula, then term-ite(f, t1, t2) is a term.
– If t1 and t2 are terms, and ∼ is a relational operator in {=, 	=, <,≤, >,≥}, then

t1 ∼ t2 is a formula.
– If f1, f2, and f3 are formulae, then ¬f1, f1 ∧ f2, f1 ∨ f2 and ite(f1, f2, f3) are

formulae.

The semantics are defined in the usual way; in particular, ite(f1, f2, f3) is equivalent to
(f1 ∧ f2)∨ (¬f1 ∧ f3). An atomic formula is one of the form t1 ∼ t2. A positive literal
is an atomic formula or a propositional variable; a negative literal is the negation of a
positive literal.

A model for a formula f is an assignment of values to the variables in the formula that
is consistent with the type of each variable and that makes the formula true. A formula
that has at least one model is satisfiable. In recent years, decision procedure for LA,
and other fragments of quantifier-free first-order logic, have been based on the DPLL
procedure. formula F, a propositional abstraction Fb of F is built by substituting each
atomic formula with a new propositional variable. As the DPLL procedure provides a
model for Fb, a theory solver for LA is invoked with the set of atomic formulae that are
assigned. The theory solver checks the feasibility of the set. If the set is feasible, then
the model is also a model in theory. If the set is infeasible, then the explanation of the
infeasibility is returned to the DPLL procedure. The procedure continues until it finds a
complete model, or decides that F is unsatisfiable in the given theory.

3 Term-ITE Conversion

An LA formula can often be expressed more concisely by using term-ITEs. For example,
Fig. 2 shows that the formula f in (a) is equivalent to the more verbose formula f ′ in
(b). Despite the conciseness afforded by term-ITEs, a LA formula with term-ITEs is
often converted into a formula without them, so that the formula may be solved by an
SMT solver based on the propositional abstraction.

3.1 Two Methods for Term-ITE Conversion

A common way to eliminate these term-ITEs is to introduce a fresh constant that re-
places the term-ITE. In particular, an LA formula f(term-ite(g, t1, t2)) is converted to
the equisatisfiable

f(c) ∧ ite(g, t1 = c, t2 = c) , (1)

where c is a constant that does not appear in the given formula. The advantage of this
conversion is that it does not blow up; however, it often retains redundancies in the
converted formula. For example, the formula term-ite(g, 1, 2) = term-ite(h, 3, 4) can
be reduced to ⊥, whereas the conversion generates ite(g, c = 1, c = 2) ∧ ite(h, c =
3, c = 4) that contains a redundancy. To remove the redundancy, additional theory

198 H. Kim, F. Somenzi, and H. Jin

A x y B u v

ite

ite

ite

= = = =

t-ite t-ite

x u x v y u y v

A

B B

f ′f

=

(b)(a)

Fig. 2. Term-ITE conversion

reasoning is required. A naive approach to the term-ITE conversion will be to combine
every term in the left-hand side of the relational operator with the terms in the right-
hand side depending on the conditional terms of term-ITEs. In particular, an LA formula
f(term-ite(g, t1, t2)) is converted according to following conversion rule [7].

f(term-ite(g, t1, t2)) ⇐⇒ ite(g, f(t1), f(t2)) . (2)

This approach removes the redundancy in the above example on the fly; however, as
Fig. 2 illustrates, the converted formula may grow exponentially large in the worst case.

3.2 Term-ITE Conversion with Cofactors

As an alternative to the approaches described in Sect. 3.1, term-ITE conversion can be
done by computing cofactors.

Definition 1. Let f(x1, ..., xn) be an LA formula, where each xi is a positive literal.
Then,

fxi = f(x1, ..., xi−1,�, xi+1, ..., xn)
f¬xi = f(x1, ..., xi−1,⊥, xi+1, ..., xn)

are the positive and negative cofactors of f with respect to xi.

Theorem 1 (Boole). Let f(x1, ..., xn) be an LA formula. Then f(x1, ..., xn) = (xi ∧
fxi) ∨ (¬xi ∧ f¬xi) = ite(xi, fxi , f¬xi) .

According to Theorem 1, the following rule can be used to rewrite an LA formula:

f(term-ite(g, t1, t2)) ⇐⇒ ite(x, fx(term-ite(g, t1, t2)), f¬x(term-ite(g, t1, t2))) .
(3)

Efficient Term-ITE Conversion for Satisfiability Modulo Theories 199

=

t-ite

t-ite

¬A

A B

x 3

5

4

ite

⊥

=

B 3 5

4t-ite

=

5 4

= =

3 5 4

f = ⊥

f fA f¬A

fA¬BfAB

4

Fig. 3. Term-ITE conversion with cofactor

By computing the cofactors of f , the conversion may greatly simplify the converted
formula. In Fig. 3, f is simplified to ⊥ using (3). In particular, the cofactors fA ⇐⇒
(term-ite(B, 3, 5) = 4) and f¬A ⇐⇒ (5 = 4) ⇐⇒ ⊥ are first computed. Then f is
simplified to (A ∧ fA), and finally reduced to ⊥ by cofactoring fA with respect to B.

This kind of simplification can often be applied to the LA problems in SMT-LIB
[14]. As the previous example shows, the simplification for equality is easily done
by comparing two constants. On the other hand, if fresh constants are introduced, re-
dundancy may remain in the converted formula: a fresh constant c replaces the term
term-ite(ite(A, B,⊥), term-ite(¬A, x, 3), 5) in f . Then f is rewritten in two steps: first
as

(c = 4) ∧ ite(ite(A, B,⊥), c = term-ite(¬A, x, 3), c = 5) ,

and then as

(c = 4) ∧ (c′ = c) ∧ ite(ite(A, B,⊥), ite(¬A, c′ = x, c′ = 3), c = 5) ,

where c′ is another fresh constant. Removing the redundancy from the converted for-
mula requires theory reasoning. While such reasoning is uncomplicated in this exam-
ple, in general the new constants may make it cumbersome. Although the cofactoring
method may give a huge reduction, it may blow up if there is little simplification. Com-
pared to the approach that introduces a fresh constant, it is more aggressive.

Definition 2. Let x be a literal and h be a formula. We write x |=T h if h is a conse-
quence of x in theory T , and we call h a theory consequence of x.

200 H. Kim, F. Somenzi, and H. Jin

The cofactoring method can be further extended with theory reasoning. Using the theory
propagation method [12], an assignment to an atomic predicate may entail assignments
to other atomic predicates. For example, in LA, if we make an assignment to (x <
0) = �, then (x < 3) = � and (x > 1) = ⊥. The following rules show how theory
propagation may help in the simplification of the converted formula:

x |=T h

fx(term-ite(h, t1, t2)) ⇐⇒ fx(t1)
(4)

x |=T ¬h

fx(term-ite(h, t1, t2)) ⇐⇒ fx(t2)
. (5)

As we compute the cofactors in the term-ITE conversion, we make an assignment to
the cofactoring literal. If the cofactoring literal is an atomic formula and the computed
cofactor is also an atomic formula, then theory reasoning can be invoked to check the
relation between these two atoms. The following consequence of Theorem 1 gives an
idea of how this simplification can be done; it will be used in Sect. 5.

Theorem 2. Given a formula f of theory T and a literal xi, if xi |=T fxi , then f ⇐⇒
xi ∨ f¬xi . If xi |=T ¬fxi , then f ⇐⇒ ¬xi ∧ f¬xi .

4 Simple Preprocessing

Before we execute term-ITE conversion for an LA formula f , terminal cases for term-
ITE are detected and basic simplification is carried out. Let a ∈ VB ; let t1, t2, and t3 be
terms and let c1, c2, and c3 be constants. In the LA formula, we detect special cases like
term-ite(�, t1, t2) ⇐⇒ t1, term-ite(⊥, t1, t2) ⇐⇒ t2, term-ite(a, t1, t1) ⇐⇒ t1.
We also simplify nested term-ITEs such as term-ite(a, term-ite(a, t1, t3), t2) ⇐⇒
term-ite(a, t1, t2), term-ite(a, term-ite(¬a, t3, t2), t1) ⇐⇒ term-ite(a, t2, t1). For
arithmetic terms, (0 + t1) ⇐⇒ t1, (0 · t1) ⇐⇒ 0, (1 · t1) ⇐⇒ t1, (−(−t1)) ⇐⇒
t1, (c1 + c2) ⇐⇒ c3, where c3 is the sum of c1 and c2.

204

B 201

203A

t-ite

t-ite

=

⊥

f

202

Fig. 4. Term-ITE conversion with simple check

Efficient Term-ITE Conversion for Satisfiability Modulo Theories 201

Furthermore, if a formula f has a root node that is a relational operator applied to
term-ITEs and has leaves that are all constants, then it can be simplified. For simplicity,
we only check the case where either of the children of the root node is a constant.
Example 1 shows such a case.

Example 1. Let f be a formula shown in Fig. 4. The formula f is an equality with term-
ITEs. As Fig. 4 shows, the terms on the left-hand side of the root node are all constants
and the one on the right-hand side is also a constant. In such a case, we compare all the
constants in the left hand side for equality with the constant on the right, 204. Clearly,
(202 = 204) ⇐⇒ ⊥, (201 = 204) ⇐⇒ ⊥ and (201 = 203) ⇐⇒ ⊥; hence
f = ⊥.

5 Algorithm

We assume that an SMT solver adopts the rewriting procedure. Given an LA formula F

with term-ITEs, an SMT solver converts F into F′ by removing all term-ITEs in F. The
SMT solver then decides the satisfiability of F′. In this section, we describe how F is
converted into F′.

As the pseudocode of Fig. 5 shows, the main function of term-ITE conversion is
called with an LA formula F. The formula F is represented as a directed acyclic graph
(DAG), where each node is a Boolean operator, a relational operator, an arithmetic op-
erator, a term-ITE, or an atom. The conversion is applied to each relational operator
in the DAG, and the procedure ends when F′ no longer contains term-ITEs. The main
function starts by selecting the candidates for the conversion in the DAG. Each can-
didate is a relational operator that has a term-ITE as a descendant, and the candidates
are gathered in F . As Line 4 in Fig. 5 shows, the term-ITE conversion is invoked with
f ∈ F , and all the term-ITEs are removed from f . After the conversion of f , the con-
verted formula f ′ is either a Boolean ITE or an atom. The procedure ends when all
f ∈ F have been considered. At that point, F has been converted into F′, which does
not contain any term-ITEs.

As TermIteConversion is invoked with f ∈ F , a cofactoring variable v is searched
for in f at Line 10. We select an atom as a cofactoring variable that resides in the
conditional term of the term-ITE. With v, we recursively compute the cofactor of f .
In general, the cofactors are computed for the children of f with respect to v, and a
new formula fv is created with new children. As shown in Line 38 of Fig. 6, if f is
a relational operator, we compute the cofactors lv and rv for the children of f . After
computing the cofactors, we check for simple cases with lv and rv . The simple check
detects terminal cases for the terms lv and rv with respect to the type (=, <,≤, >,≥)
of f . Figure 4 shows an example of simplification. If a terminal case is not found, a
new formula fv is generated with type(f), lv and rv. The newly generated formula,
fv is either an atom or a relation operator with term-ITEs. In the latter case, term-
ITE conversion is called with fv, again. In Line 47 of Fig. 6, if fv is an atom, theory
reasoning is done with v. As Theorem 2 shows, if v |=T fv, then f in Line 13 of Fig. 5
is simplified to v∨f¬v . Likewise, if v |=T ¬fv , then f is simplified to ¬v∧f¬v . When
f is either a term-ITE or a Boolean ITE, the cofactor for each term of f is computed as
shown in Line 58 of Fig. 6. As in the cofactoring on the relational operator, a terminal

202 H. Kim, F. Somenzi, and H. Jin

case is checked for the conditional term fc. If fc is an atomic predicate, theory reasoning
is done with v and fc using Rules 4–5 of Sect. 3.2. If a terminal case is not found, then
the cofactors for the terms of f are computed to obtain fv .

Example 2. If f is a relational operator such that D(f) contains term-ITEs, we convert
f into f ′ such that there is no term-ITE in D(f ′). In Fig. 7, let A ↔ (x ≥ 50) and
B ↔ (y ≤ 58). We first traverse D(f) to find a cofactoring variable. We pick an atomic

1 TermIteConversionMain (F) {
2 F := GatherCandidateForTermIteConversion (F);
3 for (each f ∈ F in topological order) {
4 f ′ := TermIteConversion (f);
5 F′ := UpdateFormula (F, f ′);
6 }
7 return F′;
8 }

9 TermIteConversion (f) {
10 while (v := GetCofactorVariable (f)) {
11 fv := CofactorRecur (f , v);
12 f¬v := CofactorRecur (f , ¬v);
13 f := Ite (v, fv , f¬v);
14 }
15 return f ;
16 }

17 CofactorRecur (f , v) {
18 if (f = v) {
19 fv := �;
20 } else if (f = ¬v) {
21 fv := ⊥;
22 } else if (is relation(f)) {
23 fv := CofactorRelRecur (f , v);
24 } else if (is term ite(f)) {
25 fv := CofactorTiteRecur (f , v);
26 } else { /* +,−,× */
27 C := children(f);
28 For each c ∈ C {
29 d := CofactorRecur (c, v);
30 Add(D, d);
31 }
32 fv := NewFormula (type(f), D); /* type(f) is either +,−,×. */
33 SimplifyArithFormula(fv);
34 }
35 return fv;
36 }

Fig. 5. Term-ITE conversion algorithm

Efficient Term-ITE Conversion for Satisfiability Modulo Theories 203

37 CofactorRelRecur (f , v) {
38 lv := CofactorRelRecur (left(f), v);
39 rv := CofactorRelRecur (right(f), v);
40 fv := SimpleCheckWithTerms (type(f), lv , rv);
41 if (fv = NoSimplification) {
42 fv := NewFormula (type(f), lv , rv);
43 if (is term ite(lv) or is term ite(rv)) {
44 fv = TermIteConversion (fv);
45 }
46 }
47 if (is atom(fv)) {
48 if (v |=T fv) { /* theory reasoning */
49 fv := �
50 } else if (v |=T ¬fv) { /* theory reasoning */
51 fv := ⊥
52 }
53 }
54 return fv ;
55 }

56 CofactorTiteRecur (f , v) {
57 fc := CondTerm(f); ft := ThenTerm(f); fe := ElseTerm(f);
58 if (fc = �) {
59 return CofactorRecur (ft, v);
60 } else if (fc = ⊥) {
61 return CofactorRecur (fe, v);
62 } else if (is pred(fc)) {
63 if (v |=T fc) { /* theory reasoning */
64 return CofactorRecur (ft, v);
65 } else if (v |=T ¬fc)) { /* theory reasoning */
66 return CofactorRecur (fe, v);
67 }
68 }
69 cv := CofactorRecur (fc, v);
70 tv := CofactorRecur (ft, v);
71 ev := CofactorRecur (fe, v);
72 fv := Ite (cv , tv , ev);
73 return fv ;
74 }

Fig. 6. Term-ITE conversion algorithm

formula A as cofactoring variable and compute the cofactors of f with respect to A. As
we proceed, fA = (36 ≤ 55) = � and f¬A is constructed with a new term-ITE. Since
there still exists a term-ITE in D(f¬A), we look for another cofactoring variable in f¬A.
We select B and compute the cofactors for f¬A. As a result, we get f¬AB = (x ≤ 55)
and f¬A¬B = (y ≤ 55). Since A |=T f¬AB and ¬B |=T ¬f¬A¬B, f¬AB = � and
f¬A¬B = ⊥. Finally, the converted formula f ′ gets reduced to ite(A,�, B) as shown
in Fig. 7.

204 H. Kim, F. Somenzi, and H. Jin

f

55t-ite

x

36

t-ite

y¬A⊥A B

≤

5536

fA = �

55t-ite

f¬A

B x y

x 55 y 55A � B

≤≤

f¬AB = � f¬A¬B = ⊥

≤≤

f ′

A ⇐⇒ (x ≥ 50), B ⇐⇒ (y ≤ 58)

ite

ite

Fig. 7. Term-ITE conversion

6 Related Work

Early references on the treatment of ITEs are [8], [2] and [7]. For SMT preprocessing,
HTP [13] introduces several preprocessing techniques such as unate predicate detection,
variable substitution and symmetry breaking. Yices [3] uses a Gaussian elimination to
reduce the size of initial tableau of equality constraints. In [17], Yu et al. describes
a static learning technique that analyzes the relationship of the linear constraints. In
Karplus’s technical report [8], a new canonical form for ITE DAGs is introduced using
two-cuts, and ITE normalization using recursive transformation is shown in [11].

7 Experimental Results

We have implemented the algorithm presented in Sect. 5 in Sateen [10, 9, 15], a theorem
prover for quantifier-free first-order logic that combines the propositional reasoning en-
gine of [5, 6] with theory-specific procedures. Experiments are done with the full set of
QF LIA (Quantifier free linear integer arithmetic logic) benchmarks from SMT-COMP
(Satisfiability Modulo Theories Competition) [14]. The experiments were performed
on an Intel 2.4 GHz Quad Core with 4 GB of RAM running Linux. Time out was set
at 1000 seconds. Sateen was compared with Z3.2 [14], MathSAT-4.2[1, 14] and Yices-
1.0.16 [16]. Z3.2 and MathSAT-4.2 are the ones that were submitted to SMT-COMP in
2008. We used most recent version of Yices that is available.

In QF LIA benchmarks, there are two benchmark sets, nec-smt and rings, that are
rich in term-ITE operators. More than 90 percent of the QF LIA benchmarks belong to
those two sets. The instances in the nec-smt set are generated by the SMT-based BMC

Efficient Term-ITE Conversion for Satisfiability Modulo Theories 205

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

Z3 : time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 8. Z3 vs. Sateen on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

MATHSAT : time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 9. MATHSAT vs. Sateen on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

YICES : time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 10. YICES vs. Sateen on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Z
3

w
ith

 p
re

pr
oc

es
s

: t
im

e
(s

)

Z3 : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Fig. 11. Z3 WITH PREPROCESS vs. Z3 on
QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

M
A

T
H

SA
T

 w
ith

 p
re

pr
oc

es
s

: t
im

e
(s

)

MATHSAT : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Fig. 12. MATHSAT WITH PREPROCESS vs.
MATHSAT on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Y
IC

E
S

w
ith

 p
re

pr
oc

es
s

: t
im

e
(s

)

YICES : time (s)

Scatter plot for SMT QF-LIA nec benchmark

Fig. 13. YICES WITH PREPROCESS vs. YICES
on QF LIA

206 H. Kim, F. Somenzi, and H. Jin

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

Sateen without Theory-Simp: time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 14. SATEEN vs. Sateen without Theory-
Simp on QF LIA

10-1

100

101

102

103

10-1 100 101 102 103

Sa
te

en
 :

tim
e

(s
)

Sateen with naive approach: time (s)

Scatter plot for SMT QF-LIA benchmark

Fig. 15. SATEEN vs. Sateen with naive ap-
proach on QF LIA

engine of F-Soft [4]; the instances in rings encode associativity properties on modular
arithmetic.

Figures 8–10 show scatterplots comparing Z3, MathSAT and Yices to Sateen. Points
below the diagonal represent wins for Sateen. Each scatterplot shows two lines: The
main diagonal, and y = κ · xη , where κ and η are obtained by least-square fitting.
Figure 8 shows that Sateen is often an order of magnitude faster than Z3. In Fig. 9
and 10, Sateen is often a few orders of magnitude faster than MathSAT and Yices.

We further evaluated our preprocessor by generating simplified formulae from the
nec-smt benchmarks and running Z3, MathSAT, and Yices on them. All solvers took less
than a second on each simplified problem. Figures 11–13 show scatterplots comparing
Z3, MathSAT and Yices with preprocessor and without preprocessor. The times for
the solvers with preprocessor include preprocessing time. As Figures 11–13 show, our
preprocessor is also effective for other solvers.

Table 1 shows the number of term-ITE reductions with the simple preprocessing on
randomly selected benchmarks. The first column gives the name of the benchmarks, the

Table 1. Number of term-ITE reduction with simple preprocessing

Benchmark Before S.P. After S.P. rate(%)
bftpd login/prp-74-50.smt 38773 34085 12
checkpass/prp-10-46.smt 17240 14949 13
checkpass/prp-63-50.smt 25376 21893 14

checkpass pwd/prp-38-42.smt 12196 10354 15
getoption/prp-2-200.smt 11269 9791 13

getoption directories/prp-0-110.smt 72892 62457 14
getoption group/prp-72-49.smt 15021 12094 20
handler sigchld/prp-20-46.smt 7800 6824 13

int from list/prp-34-41.smt 7184 5888 18
user is in group/prp-23-48.smt 22549 17939 20

Efficient Term-ITE Conversion for Satisfiability Modulo Theories 207

second one is the initial number of term-ITEs, and the third one is the number of term-
ITEs after the simple preprocessing. The last column gives the rate of the reduction.
On average, we achieved 15% term-ITE reduction with the simple preprocessing of
Section 4.

Finally, we compared our approach to the naive approach of Eq. 2. As Fig. 15 shows,
our approach is significantly better. In addition, we disabled theory simplification in the
algorithm and ran the experiment on the problems where the simplifications play a
significant role. Figure 14 shows that Sateen with theory simplification is consistently
better than the one without simplification.

8 Conclusions

We have presented an algorithm for the term-ITE conversion in first-order theories like
the theory of linear arithmetic. The approach is based on the computation of cofactors
and theory simplification. The simplification is done by detecting special cases in the
formula or using theory propagation on the atomic predicates. Experiments show that
this approach is very effective in most QF LIA benchmarks and often speeds up SMT
solvers. On the other hand, since our approach may still blow up in general, we are
working on combining it with a less aggressive approach, based on (1), that does not
blow up.

Acknowledgment. The authors thank the reviewers for their detailed suggestions.

References

[1] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz, S., Sebas-
tiani, R.: An incremental and layered procedure for the satisfiability of linear arithmetic
logic. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 317–333.
Springer, Heidelberg (2005)

[2] Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD package. In:
Proceedings of the 27th Design Automation Conference, Orlando, FL, June 1990, pp. 40–
45 (1990)

[3] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

[4] Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-soft: Software
verification platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 301–306. Springer, Heidelberg (2005)

[5] Jin, H., Han, H., Somenzi, F.: Efficient conflict analysis for finding all satisfying assign-
ments of a Boolean circuit. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 287–300. Springer, Heidelberg (2005)

[6] Jin, H., Somenzi, F.: Prime clauses for fast enumeration of satisfying assignments to
Boolean circuits. In: Proceedings of the Design Automation Conference, Anaheim, CA,
June 2005, pp. 750–753 (2005)

[7] Jones, R.B., Dill, D.L., Burch, J.R.: Efficient validity checking for processor verification.
In: Proceedings of the International Conference on Computer-Aided Design, San Jose, CA,
November 1995, pp. 2–6 (1995)

208 H. Kim, F. Somenzi, and H. Jin

[8] Karplus, K.: Representing Boolean functions with if-then-else DAGs. In Technical Report
UCSC-CRL-88-28, Board of Studies in Computer Engineering, University of California at
Santa Cruz, Santa Cruz, CA 95064 (December 1988)

[9] Kim, H., Jin, H., Ravi, K., Spacek, P., Pierce, J., Kurshan, B., Somenzi, F.: Application
of formal word-level analysis to constrained random simulation. In: Gupta, A., Malik, S.
(eds.) CAV 2008. LNCS, vol. 5123, pp. 487–490. Springer, Heidelberg (2008)

[10] Kim, H., Jin, H., Somenzi, F.: Disequality management in integer difference logic via fi-
nite instantiations. Journal on Satisfiability, Boolean Modeling and Computation 3, 47–66
(2007)

[11] Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM Transac-
tions on Programming Languages and Systems 1(2), 245–257 (2008)

[12] Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and its ap-
plication to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 321–334. Springer, Heidelberg (2005)

[13] Roe, K.: The heuristic theorem prover: Yet another SMT modulo theorem prover. In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 467–470. Springer, Heidelberg
(2006)

[14] http://smtcomp.org/
[15] http://vlsi.colorado.edu/˜vis
[16] http://yices.csl.sri.com
[17] Yu, Y., Malik, S.: Lemma learning in SMT on linear constraints. In: Biere, A., Gomes, C.P.

(eds.) SAT 2006. LNCS, vol. 4121, pp. 142–155. Springer, Heidelberg (2006)

http://smtcomp.org/
http://vlsi.colorado.edu/~vis
http://yices.csl.sri.com

On-the-Fly Clause Improvement�

Hyojung Han and Fabio Somenzi

University of Colorado at Boulder
{Hhhan,Fabio}@Colorado.EDU

Abstract. Most current propositional SAT solvers apply resolution at various
stages to derive new clauses or simplify existing ones. The former happens during
conflict analysis, while the latter is usually done during preprocessing. We show
how subsumption of the operands by the resolvent can be inexpensively detected
during resolution; we then show how this detection is used to improve three stages
of the SAT solver: variable elimination, clause distillation, and conflict analysis.
The “on-the-fly” subsumption check is easily integrated in a SAT solver. In par-
ticular, it is compatible with the strong conflict analysis and the generation of
unsatisfiability proofs. Experiments show the effectiveness of this technique and
illustrate an interesting synergy between preprocessing and the DPLL procedure.

1 Introduction

In the last decade, advances in the satisfiability checking (SAT) of propositional formu-
lae have been achieved through a variety of techniques to efficiently prune the search
space and algorithms to improve the quality of the input formula.

Simplifying the CNF clauses speeds up Boolean Constraint Propagation (BCP) and
accelerates detection of conflicts. Techniques like subsumption, variable elimination,
and distillation have had significant success in practice. Preprocessing may solve some
simple problems by itself, but usually does not remove all redundant clauses. That is
because it has to trade off the reduction in the input formula against to the time spent.

Clause recording adds conflict-learned clauses or, simply, conflict clauses to the orig-
inal SAT instance. Each conflicting assignment is analyzed to identify a subset that is
sufficient to cause the current conflict. The disjunction of the literals in the subset be-
comes a new clause added to the original SAT instance.

Previous work has addressed the quality of conflict clauses [7, 13, 11, 6]. In partic-
ular, strong conflict analysis proposed in [6] generates a second conflict clause that is
often more effective than a regular conflict clause of [13] in escaping regions of the
search space where the solver would otherwise linger for long time. A common thread
of most work on the subject is the search for a balance between a technique’s cost and
its ability of to detect implications—the deductive power of [4].

In this paper we propose an algorithm that detects subsumptions during resolution
during both preprocessing and conflict analysis with the minimal extra effort required
to compare the lengths of operands and resolvent. Our on-the-fly subsumption check
can be easily applied to both strong and regular conflict analysis. We show how this

� This work was supported in part by SRC contract 2008-TJ-1859.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 209–222, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

210 H. Han and F. Somenzi

inexpensive check is used to improve deductive power at three stages of the SAT solver:
variable elimination, clause distillation, and conflict analysis.

Experiments show that the on-the-fly subsumption check proposed produces a great
effect on run time of both the SAT solver and the preprocessing stage. Moreover, the
results illustrate an interesting synergy between preprocessing techniques and on-the-
fly subsumption check in the DPLL procedure.

Related to on-the-fly simplification is the problem of finding compact conflict clauses
after conflict analysis. Conflict clause minimization [2] tests every literal in a newly-
generated conflict clause. It removes any literal in the conflict clause if its negation is
implied by the other literals in the clause. To do this, it also uses a resolution-based
subsumption check (self subsumption) applied to the conflict clause and the antecedent
clause. However, in contrast to on-the-fly simplification, this method does not simplify
existing clauses. The minimization algorithm traverses only the part beyond the UIP in
the implication graph, while our proposed simplification algorithm traverses between
the conflicting clause and the first UIP. Assignment shrinking [7] is a technique to
derive a new conflict clause, which tends to be more compact than the conflict clause.
The algorithm of [7], after generating a conflict learned clause, backtracks to the highest
level to undo all the assignments in the conflict clause. It then starts replicating the
assignments to the literals involved in the previous conflict, until a new conflict occurs.
This may produce a new smaller conflict clause. Since this is an expensive technique,
its invocation is controlled by a criterion based on the length of the conflict clause.

An existing clause may be subsumed by a conflict clause newly found by any of
the conflict analysis algorithms. Hence, one may try to simplify the newly redundant
clauses. On-the-fly simplification algorithm used in [12] can detect the subsumed clause
with a one watched literal scheme, when a new clause is generated by conflict analy-
sis. In spite of the efficiency afforded by the one watched literal scheme, checking the
subsumption relation between clauses requires significant extra work.

The rest of this paper is organized as follows. Background material is covered in
Section 2. In Section 3 we describe the principles of our on-the-fly clause improvement
approach during conflict analysis and present the details of the algorithm. Section 4
discusses how the subsumption check applies to the preprocessing stages, i.e., variable
elimination and distillation of clauses. Section 5 reports results from the implementation
of the proposed approach. We draw conclusions and outline future work in Sect. 6.

2 Preliminaries

In this paper we assume that the input to the SAT solver is a formula in Conjunctive
Normal Form (CNF). A CNF formula is a set of clauses; each clause is a set of literals;
each literal is either a variable or its negation. The function of a clause is the disjunction
of its literals, and the function of a CNF formula is the conjunction of its clauses.

{{¬a, c}, {¬b, c}, {¬a,¬c, d}, {¬b,¬c,¬d}}

corresponds to the following propositional formula:

(¬a ∨ c) ∧ (¬b ∨ c) ∧ (¬a ∨ ¬c ∨ d) ∧ (¬b ∨ ¬c ∨ ¬d).

On-the-Fly Clause Improvement 211

Clause γ1 subsumes clause γ2 if γ1 ⊆ γ2. Given γ1 = γ′
1∪{l} and γ2 = γ′

2∪{¬l}, the
resolvent of γ1 and γ2 is γ′

1 ∪ γ′
2 and is implied by {γ1, γ2}. An assignment for CNF

formula F over the set of variables V is a mapping from V to {true, false}. A partial
assignment maps a subset of V . A satisfying assignment for CNF formula F is one that
causes F to evaluate to true. We represent assignments by sets of unit clauses, that is,
clauses containing exactly one literal. For instance, the partial assignment that sets a
and b to true and d to false is written {{a}, {b}, {¬d}} or, interchangeably, a ∧ b ∧
¬d. A literals assigned under the partial assignment may be annotated with a decision
level, the number of following the @ sign. For example, a assigned true at level 1 is
written a@1. A clause γ is asserting under assignment A if all its literals except one (the
asserted literal) are false. We say that an asserting clause is an antecedent of its asserted
literal.

Many successful SAT solvers are based on the DPLL procedure, whose modern in-
carnations are described by the pseudocode of Fig. 1. The solver maintains a current
partial assignment that is extended until it either becomes a total satisfying assign-
ment, or becomes conflicting. In the latter case, the solver analyzes the conflict and
backtracks accordingly. Conflict analysis [10]leads to learning a conflict clause, that
is, a clause computed from repeated applications of resolution to the conflicting clause
and the antecedent clause of the literal in the conflicting clause that was most recently
implied.

1 GRASP DPLL() {
2 while (CHOOSENEXTASSIGNMENT() == FOUND)
3 while (DEDUCE() == CONFLICT) {
4 blevel = ANALYZECONFLICT();
5 if (blevel < 0) return UNSATISFIABLE;
6 else BACKTRACK(blevel);
7 }
8 return SATISFIABLE;
9 }

Fig. 1. GRASP DPLL algorithm

The GRASP DPLL procedure is often applied after a preprocessing phase, which
attempts to remove redundant clauses and literals to speed up SAT solvers. SatELite [1,
9] simplifies a CNF formula by iteratively checking the subsumption relation between
clauses and eliminates variables by resolution. For instance, a ∨ b and a ∨ ¬b ∨ c give
a resolvent a ∨ c that subsumes the latter; this is called self subsumption. Resolution
can also be applied to eliminate variables from the formula. If, for example, a ∨ b,
¬b ∨ c and ¬b ∨ d are the only clauses containing b, then they can be replaced by a ∨ c
and a ∨ d while guaranteeing equisatisfiability. Since the elimination of variables may
increase the number of clauses, it is used in a limited way in preprocessing. In [4], the
CNF formula is distilled to increase its deductive power. The transformation is done by
asserting the negation of each in a clause until either a conflict is found, or one of the
literals of the clause is implied true. In both cases, the distillation procedure analyzes
the implication graph to generate the improved clause.

212 H. Han and F. Somenzi

Example 1. Consider the following formula:

(a∨b∨¬c)∧(a∨c∨d)∧(b∨c∨e)∧(¬d∨f)∧(¬e∨g)∧(¬f ∨¬g∨h)∧(¬f ∨¬g∨¬h)

Suppose that the decisions {¬a@1,¬b@2} are made by the SAT solver and that the
implications of those decisions are computed. Figure 2 shows the implication graph
that represents the implications derived up to the current decision level. Directed edges
in the graph are labeled with clause numbers. The implications result in a conflict on
variable h, that is, two opposite assignment to h at the same time. Conflict analysis is
therefore invoked. The implication graph in Fig. 2 also shows each resolvent γi that the
conflict analysis generates while traversing backward the implication graph from the
conflicting clause c7. ��

γ4 : (b ∨ c ∨ ¬d)

d@2

e@2

f@2 h@2

¬h@2g@2¬b@2

¬a@1

conflict
6

7

4

5

2

3

¬c@21

γ1 : (¬g ∨ ¬f)γ3 : (¬d ∨ ¬e)

γ2 : (¬e ∨ ¬f)γ5 : (a ∨ b ∨ c)

γ6 : (a ∨ b)

Fig. 2. Implication graph for the first conflict of Example 1

Most conflict analysis algorithms terminate as soon as they find a clause containing a
Unique Implication Point (UIP), that is, a single assignment made at the current level.
For this case, since γ6 contains the first UIP, that is literal b, it is chosen as conflict
clause. However, the UIP is in this case the decision variable. When the first UIP is far
from the conflict in the implication graph, the conflict clause may not be effective in
preventing the SAT solver from repeating the same mistake. Strong conflict analysis [6]
can be a remedy in such cases: It examines intermediate resolvents as UIP-based con-
flict analysis does. Contrary to UIP-based analysis, however, it generates an additional
conflict clause that contains more than one literal assigned at the current decision level.
This additional conflict clause must be one of the intermediate resolvents derived be-
tween the conflict and the first UIP. Usually, the closer to the conflict, the fewer literals
the resolvent contains. Therefore, the additional conflict clause tends to be shorter than
the conflict clause with 1-UIP.

3 On-the-Fly Simplification Based on Resolution

Detecting whether the resolvent of two clauses subsumes either operand is easy and
inexpensive. Therefore, checking on-the-fly for subsumption can be added with almost
no penalty to those operations of SAT solvers that are based on resolution. In this section
we review the basic idea and detail its application to conflict analysis. Later, we discuss
on-the-fly subsumption in preprocessing.

An efficient on-the-fly check for subsumption during resolution is based on the fol-
lowing elementary fact.

On-the-Fly Clause Improvement 213

Lemma 1. Let c1 = c′1∪{l} and c2 = c′2∪{¬l} be two clauses. Their resolvent c′1∪c′2
subsumes c1 (c2) iff |c′1 ∪ c′2| = |c1| − 1 (|c′1 ∪ c′2| = |c2| − 1).

Thanks to Lemma 1, it is possible to detect existing clauses that are subsumed by re-
solvents and replace them with the resolvents themselves. Doing so during conflict
analysis is easy because the eliminated literal is the one asserted by the clause itself.
If that literal is kept in first position in the clause [3], it is easily accessed. In variable
elimination, as we shall see, the literal to be removed corresponds to the variable that is
being eliminated. Therefore, it is enough to save its position while scanning a clause. In
summary, the overhead of on-the-fly subsumption check is negligible. The advantages,
on the other hand, may be significant as illustrated by the following example.

Example 2. Consider the following set of clauses:

F = (a ∨ b ∨ ¬c) ∧ (a ∨ b ∨ ¬d) ∧ (c ∨ d ∨ ¬e) ∧ (c ∨ e ∨ f) ∧ (d ∨ e ∨ ¬f) ∧
(¬b ∨ ¬d ∨ e) ∧ (¬d ∨ ¬e)

Suppose that the first decision is to set a to false, and the second decision is to set b to
false. From these decisions literals ¬c, ¬d, and ¬e are deduced at level 2. This partial
assignment, in turn, yields f and ¬f through the fourth and the fifth clause. Analysis of
this conflict produces the implication graph shown in Fig. 3.

f@2

¬f@2

¬c@2

¬d@2

¬e@2

¬a@1

¬b@2 2

1 4

5

3 conflict

Fig. 3. Implication graph of Example 2

Suppose that the fifth clause is the conflicting clause. Conflict analysis goes back
through the implication graph building the resolution tree shown in Fig. 4. The tree is
comprised of leaves, ci, which correspond to the clauses appearing in the implication
graph; intermediate nodes, γi, which are the resolvents, and a root node which is both
a resolvent and the conflict-learned clause. The resolution tree shows that γ2 subsumes
c3, and that γ4 subsumes c1. The subsumed clauses can be strengthened by eliminating
the pivot variable on which they were resolved. In addition to the simplifications, γ4
containing the first UIP subsumes c1; it is not required to add it to the clause data base.
Rather, c1 is strengthened. The simplified CNF is therefore

F ′ = (a∨b)∧(a∨b∨¬d)∧(c∨d)∧(c∨e∨f)∧(d∨e∨¬f)∧(¬b∨¬d∨e)∧(¬d∨¬e)

Then, the solver backtracks to level 1, which is the highest decision level in c1. After
backtracking, b@1 is asserted by c1.

This example shows how the CNF database can be simplified by checking subsump-
tion on-the-fly. First of all, a clause can be shortened when it is resolved during conflict
analysis and it is subsumed by the resolvent. The resolvent may contain a UIP. Then,
the clause that is strengthened can serve as conflict-learned clause. In this case, the SAT
solver has the same deductive power, even without adding conflict clause. ��

214 H. Han and F. Somenzi

c4 : (c ∨ e ∨ f)
c5 : (d ∨ e ∨ ¬f)

γ1 : (c ∨ d ∨ e)
c3 : (c ∨ d ∨ ¬e)

f

γ2 : (c ∨ d)
c2 : (a ∨ b ∨ ¬d)

d

e

γ3 : (a ∨ b ∨ c)
c1 : (a ∨ b ∨ ¬c)

c

γ4 : (a ∨ b)

Fig. 4. Resolution tree of conflict analysis for Fig. 2

In our solver, conflict analysis based on 1-UIP may be followed by strong conflict anal-
ysis. We now consider the on-the-fly subsumption check with respect to strong conflict
analysis.

Lemma 2. Let C be a clause simplified with the resolvent produced in conflict analysis.
Then C is conflicting at the current level.

Proof. Every resolvent produced in conflict analysis is conflicting at the current deci-
sion level. Therefore, clause C, which is one such resolvent, is also conflicting. ��

Lemma 3. Let C be the clause most recently simplified by on-the-fly subsumption dur-
ing conflict analysis. The subgraph of the implication graph between this clause and the
1-UIP is either a single vertex or a valid implication graph (hence, suitable for strong
conflict analysis).

Proof. The requirement for a valid implication subgraph is that the source vertex be a
clause with at least two literals assigned at the current level. By Lemma 2, C is con-
flicting at the current decision level. If C contains the 1-UIP, the subgraph consists of a
single vertex and strong conflict analysis is not invoked. Otherwise, since the residual
clauses beyond C on the graph were not touched, they are also valid to be examined by
strong conflict analysis. ��

Lemmas 2 and 3 allow us to conclude that on-the-fly subsumption check is compatible
with strong conflict analysis. As an alternative, one could postpone the strengthening of
the clauses until after strong conflict analysis. Our experiments, however, indicate that
it would not be as efficient.

On-the-Fly Clause Improvement 215

1 AnalyzeConflictWithDistill(F , conflicting) {
2 resolvent = conflicting;
3 in CNF resolvent = TRUE;
4 while (!FOUNDUIP(resolvent)) {
5 lit = GETLATESTASSIGNEDLITERAL(resolvent);
6 ante = GETANTECEDENTCLAUSE(lit);
7 var = VARIABLE(lit);
8 resolvent′ = RESOLVE(resolvent, ante, var);
9 if (in CNF resolvent) {
10 if (SIZE(resolvent′) < SIZE(resolvent)) {
11 STRENGTHENCLAUSE(resolvent, var);
12 in CNF resolvent = TRUE;
13 if (SIZE(resolvent′) < SIZE(ante))
14 DELETECLAUSE(ante);
15 }
16 }
17 else if (SIZE(resolvent′) < SIZE(ante)) {
18 STRENGTHENCLAUSE(ante, var);
19 in CNF resolvent = TRUE;
20 }
21 else
22 in CNF resolvent = FALSE;
23 resolvent = resolvent′ ;
24 }
25 if (!in CNF resolvent)
26 ADDCONFLICTCLAUSE(resolvent);
27 blevel = COMPUTEHIGHESTLEVELINCONFLICTCLAUSE(resolvent);
28 return (blevel);
29 }

Fig. 5. Algorithm for conflict analysis with subsumption check

Returning to Example 1, in Fig. 2, γ1, γ2, and γ3 all have a chance to be additional
conflict clauses, since all of them have only two literals, and both literals are assigned
at the current level. The strong conflict analysis, however, dismisses γ1 because it is
too close to the conflicting clause. Therefore, it misses the chance to strengthen c6 and
drop c7. In contrast, on-the-fly subsumption is not constrained to use only one clause
for simplification.

Figure 5 shows the pseudocode of the algorithm that detects and simplifies the sub-
sumed clauses during conflict analysis. The algorithm AnalyzeConflictWithDistill()
keeps checking the subsumption condition whenever a new resolvent is produced as
long as FoundUIP() is false (line 4). By Lemma 1, if the operand exists in the clause
database, that is, the old resolvent with in CNF resolvent = TRUE (line 9) or the an-
tecedent (line 13 and 17), and the new resolvent contains fewer literals than one of
its operands (line 10, 13, and 17), the operand is strengthened for the pivot variable
by StrengthenClause() (line 11 and 18). When both operands are subsumed, only one
of them is selected to survive, and the other is deleted (line 14). If a clause is re-
placed with the resolvent, the flag in CNF resolvent is set to TRUE (line 12, and 19).

216 H. Han and F. Somenzi

Otherwise,in CNF resolvent is reset to FALSE (line 22), since the new resolvent does
not exist in the clause database yet. At the end of the resolution step (line 25), if the final
resolvent containing the UIP is identified as an existing clause, that is in CNF resolvent
is false, the conflict analysis algorithm refrains from adding a new conflict clause into
the clause database (line 26). Whether a new conflict clause is added or not, the DPLL
procedure backtracks up to the level returned by the conflict analysis (line 28), and
asserts the clause finally learned from the latest conflict.

The pseudocode of Fig. 5 omits some details for the sake of clarity. In the actual
implementation, the implication graph is shrunk with a new conflicting clause by re-
placing the current conflicting clause with a newly strengthened clause, which must be
a new resolvent. The modified graph then is available for strong conflict analysis.

4 Application to Preprocessors

Resolution is the main operation in preprocessing. In this section, we review its appli-
cation to the preprocessors for variable elimination and clause distillation.

To select variables to be eliminated, all the variables are sorted by a metric such that
δ = (|clausesv| ∗ |clauses¬v|) − (|clausesv| + |clauses¬v|), where clausesv stands for
an occurrence list of variable v, and |clauses| represents the length of the list. δ stresses
the fact that the less symmetric occurrence lists are, the earlier the variable should be
selected. The length of a resolvent should also be taken into account, because clauses
may also be lengthened through resolution. This can be harmful to the SAT solver.
Hence, we use an additional criterion, the number of literals of the resolvents, to choose
variables to be eliminated.

To eliminate a variable, resolutions are applied to all the pairs of clauses in the occur-
rence lists of the two literals of the variable. In our variable elimination, all the literals
of each clause are sorted by variable index. Taking the union of two sorted clauses can
be done in linear time by a variation of the merge-sort algorithm. This linear operation
guarantees that all the literals are still sorted after merging. With minor modification
in the algorithm, the linear operation can be also used to check subsumption relation
between two clauses.

A variable is eliminated only when the produced resolvents are fewer than the oc-
currence clauses of the variable. At each resolution operation, we can check if one of
the operands is subsumed by the resolvent, like the on-the-fly subsumption check in
conflict analysis of Sect. 3. A clause can be simplified by the on-the-fly subsump-
tion, regardless of whether the variable is eliminated. The clause simplified by the
on-the-fly subsumption is removed out of the occurrence list. In such a case, the cur-
rent elimination check may benefit from the shortened occurrence list. Every simpli-
fied clause is checked for subsumption to other clauses after the variable elimination
check.

During distillation of clauses, conflict analysis takes the majority of the time. Con-
flict analysis in clause distillation also performs resolutions steps as conflict analysis
in DPLL. Therefore we can increase efficiency in conflict analysis by using on-the-fly
simplification. In the original algorithm of distillation, the clauses of the SAT instance
are distilled only if such conflict clauses are detected. More chances for simplifica-
tions, however, can be produced if we apply on-the-fly simplification. In addition to

On-the-Fly Clause Improvement 217

the on-the-fly subsumption check, the distillation procedure is combined with ”regular
subsumption check” used in variable elimination procedure. The clause that is being
distilled may participate in conflict analysis. If a clause that is an antecedent in conflict
analysis contains all the decision variables, then it is the clause being distilled. We can
identify such clauses while scanning the clause for resolution. If such a clause is found,
it can be replaced by the conflict clause. Otherwise, the regular subsumption check can
simplify the clause after distillation procedure.

5 Experimental Results

We have implemented the three applications of on-the-fly subsumption checking pro-
posed in this paper on top of the CirCUs SAT solver [5]. The implemented approaches
are the enhanced variable elimination, the improved Alembic, and on-the-fly simplifi-
cation in conflict analysis.

The benchmark suite is composed of all the instances (no duplication) from the in-
dustrial category of the SAT Races of 2006 and 2008, and the SAT competition of 2007.
We conducted the experiments on a 2.4 GHz Intel Core2 Duo processor with 4GB of
memory. We used 3600 seconds as timeout, and 2GB as memory bound. We tested
MiniSat 2.0 along with CirCUs 2.0 to provide a reference point.

Figure 6(a) shows the CPU time taken by MiniSat and CirCUs with and without
their respective preprocessors. In the plot, to distinguish from SatELite, our variable
elimination algorithm only is named EV, and EV with clause distillation of Alembic is
named EVAL, and OTS stands for on-the-fly simplification. The data points on the plot
show how many instances are solved within the given time bound.

Figure 6(b) details the effect of adding on-the-fly subsumption check to each of the
three steps discussed in this paper. It can be seen that while the overall benefit is clear,
there is no advantage to the application of on-the-fly subsumption to conflict analysis
alone. We investigate this apparent anomaly with the help of Fig. 7, which compares
the number of on-the-fly subsumptions per conflict(Fig. 7(a)) and the average resolu-
tion depth in conflict analysis(Fig. 7(b)) with and without variable preprocessing. The
scatterplot confirms that there is a strong synergy between preprocessing and on-the-fly
subsumption. Further analysis shows that variable elimination is the main responsible
for the marked increase of subsumptions per conflict and for the shortening of reso-
lution steps computed in conflict analysis. The following example sheds light on this
phenomenon.

Example 3. Consider the following clauses:

(¬a ∨ ¬p)1 ∧ (b ∨ ¬p)2 ∧ (a ∨ ¬b ∨ p)3 ∧ (a ∨ ¬q)4 ∧ (¬b ∨ ¬q)5 ∧ (¬a ∨ b ∨ q)6
∧(¬p∨ r)7∧ (¬q∨ r)8 ∧ (p ∨ q ∨ ¬r)9 ∧ (a ∨ ¬s)10 ∧ (b ∨ ¬s)11 ∧ (¬a ∨ ¬b ∨ s)12

∧(¬a ∨ ¬t)13 ∧ (¬b ∨ ¬t)14 ∧ (a ∨ b ∨ t)15 ∧ (¬s ∨ ¬u)16 ∧ (¬t ∨ ¬u)17
∧(s ∨ t ∨ u)18 ∧ (r ∨ u)19 ∧ (¬r ∨ ¬u)20.

Suppose that the SAT solver makes decisions ¬a@1 and ¬b@2. This leads to a con-
flict on c19, with the implication graph shown in Fig. 8. There are no instances of

218 H. Han and F. Somenzi

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 120 140 160 180 200 220 240 260 280

C
PU

 ti
m

e
(s

ec
)

Number of Instances

Instances solved within 3600 sec.

MiniSat
CirCUs

MiniSat+SatELite
CirCUs+EVAL+OTS

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 120 140 160 180 200 220 240 260 280

C
PU

 ti
m

e
(s

ec
)

Number of Instances

Instances solved within 3600 sec.

CirCUs+OTS
CirCUs

CirCUs+EV
CirCUs+EVAL

CirCUs+EV+OTS
CirCUs+EVAL+OTS

(b)

Fig. 6. Number of instances solved by various SAT solvers versus CPU time. (a) comparison
of the proposed algorithm to modern SAT solvers; (b) individual contributions of simplification
methods to CirCUs.

on-the-fly subsumption during conflict analysis, even though the learned clause, γ5 =
a ∨ b, subsumes c15: γ5 directly subsumes other resolvents rather than c15.

If we eliminate p, q, s, and t, we get the following clauses:

(a ∨ ¬b ∨ r)1 ∧ (a ∨ b ∨ ¬r)2 ∧ (¬a ∨ ¬b ∨ ¬r)3 ∧ (¬a ∨ b ∨ r)4 ∧ (a ∨ ¬b ∨ u)5
∧(a ∨ b ∨ ¬u)6 ∧ (¬a ∨ ¬b ∨ ¬u)7 ∧ (¬a ∨ b ∨ u)8 ∧ (r ∨ u)14 ∧ (¬r ∨ ¬u)15 .

Figure 9 shows that the conflict-learned clause subsume c2. (It also subsumes c6, but
this is not detected by the algorithm.) This time there are fewer resolution steps, and
this “abridgment” of the process allows the subsumed clause to enter the analysis right

On-the-Fly Clause Improvement 219

10-3

10-2

10-1

100

101

10-3 10-2 10-1 100 101

E
V

A
L

+
O

T
S

OTS

On-the-fly Subsumptions per Conflict

(a)

100

101

102

103

104

100 101 102 103 104

E
V

A
L

+
O

T
S

OTS

Average Resolution Depth

(b)

Fig. 7. (a) On-the-fly subsumptions per conflict; (b) Average depth of resolution

¬a@1

¬b@2 ¬p@2

¬q@1

¬s@1

t@2 ¬u@2

u@2

conflict

9

17

19

15

10

4 ¬r@2

γ1 : (r ∨ ¬t)

γ2 : (p ∨ q ∨ ¬t)γ4 : (a ∨ b ∨ q)

γ3 : (b ∨ q ∨ ¬t)γ5 : (a ∨ b)

2

Fig. 8. Implication graph for the original clauses of Example 3

¬a@1 ¬u@2

¬b@2 u@2

conflict

¬r@2 9

6

2

γ1 : (a ∨ b ∨ r)γ2 : (a ∨ b)

Fig. 9. Implication graph for the clauses of Example 3 after elimination

before the subsuming resolvent is computed instead of several steps before. This mech-
anism seems to account for several cases in which variable elimination, and preprocess-
ing in general, increase the frequency of on-the-fly subsumptions. ��

For the purpose of calibration, we also compared CirCUs+EVAL+OTS to Rsat 3.01 [8].
In the comparison, CirCUs+EVAL+OTS solved 240 instances, and Rsat 3.01 solved 256
instances within one hour.

Finally, we report statistics on the performance of the preprocessors. Figure 10(a)
compares the speed of EVAL to SatELite. In this case, SatELite is run on all CNF
formulae, while, in Fig. 6(a), SatELite can be disabled depending on the size of CNF
formulae. This results in a few timeouts, but otherwise the two preprocessors are quite

220 H. Han and F. Somenzi

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 120 140 160 180 200 220 240 260 280

C
PU

 ti
m

e
(s

ec
)

Number of Instances

Instances simplified within 3600 sec.

EVAL+OTS
SatELite

(a)

 0

 50

 100

 150

 200

 100 120 140 160 180 200 220 240 260 280

C
PU

 ti
m

e
(s

ec
)

Number of Instances

Instances simplified within 3600 sec.

EVAL
EVAL+OTS

EV+OTS
EV

(b)

Fig. 10. Number of instances simplified by various preprocessors versus CPU time. (a) compari-
son of the proposed preprocessor to SatELite in MiniSat; (b) detailed comparison of the applied
preprocessing techniques.

comparable. It should be noted that the current implementation of Alembic is much
faster than that described in [4]. Figure 10(b), in particular, shows that on-the-fly sub-
sumption significantly contributes to the improved preprocessor speed.

It is also interesting to compare the reductions achieved by the different prepro-
cessors. In Fig. 11, we see that CirCUs’s variable elimination is less aggressive than
SatELite: it eliminates fewer clauses, but almost never increases the number of literals.
Adding Alembic yields the least number of clauses without compromising the good
performance in terms of literals.

On-the-Fly Clause Improvement 221

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

In
st

an
ce

s
(%

)

Reduction (%)

Reductions on Variables

CirCUs+EVAL+OTS
CirCUs+EV+OTS
MiniSat+SatELite

(a)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

In
st

an
ce

s
(%

)

Reduction (%)

Reductions on Clauses

CirCUs+EVAL+OTS
CirCUs+EV+OTS
MiniSat+SatELite

(b)

 0

 20

 40

 60

 80

 100

-100 -50 0 50 100

In
st

an
ce

s
(%

)

Reduction (%)

Reductions on Literals

CirCUs+EVAL+OTS
CirCUs+EV+OTS
MiniSat+SatELite

(c)

Fig. 11. Ratio of simplification made by various preprocessors on variables, clauses, and literals

6 Conclusions

We have presented a simple, efficient technique to detect subsumption of an operand
by the resolvent of two clauses. This technique can be applied with minimal overhead
to both preprocessing of the CNF formula and to conflict analysis. The effect is to
simplify clauses in such a way that implications are obtained earlier and conflicts are
sometimes avoided. Another beneficial effect is the reduction of the number of added
conflict-learned clauses without detriment for the deductive power. Our experiments
show that the new technique delivers a significant improvement in performance. One
final advantage is its compatibility with advanced conflict analysis techniques and with
the generation of unsatisfiability proofs.

References

[1] Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimina-
tion. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer,
Heidelberg (2005)

222 H. Han and F. Somenzi

[2] Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up SAT.
In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 272–286.
Springer, Heidelberg (2007)

[3] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

[4] Han, H., Somenzi, F.: Alembic: An efficient algorithm for CNF preprocessing. In: Pro-
ceedings of the Design Automation Conference, San Diego, CA, June 2007, pp. 582–587
(2007)

[5] Jin, H., Awedh, M., Somenzi, F.: CirCUs: A satisfiability solver geared towards bounded
model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 519–522.
Springer, Heidelberg (2004)

[6] Jin, H., Somenzi, F.: Strong conflict analysis for propositional satisfiability. In: Design,
Automation and Test in Europe (DATE 2006), Munich, Germany, March 2006, pp. 818–
823 (2006)

[7] Nadel, A.: The Jerusat SAT solver. Master’s thesis, Hebrew University of Jerusalem (2002)
[8] http://reasoning.cs.ucla.edu/rsat/
[9] http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

MiniSat.html
[10] Silva, J.P.M., Sakallah, K.A.: Grasp—a new search algorithm for satisfiability. In: Proceed-

ings of the International Conference on Computer-Aided Design, San Jose, CA, November
1996, pp. 220–227 (1996)

[11] Sörensson, N., Eén, N.: MiniSat v1.13 – a SAT solver with conflict-clause minimization.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569. Springer, Heidelberg (2005)

[12] Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bacchus, F.,
Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer, Heidelberg (2005)

[13] Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in
Boolean satisfiability solver. In: Proceedings of the International Conference on Computer-
Aided Design, San Jose, CA, November 2001, pp. 279–285 (2001)

http://reasoning.cs.ucla.edu/rsat/
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html

Dynamic Symmetry Breaking
by Simulating Zykov Contraction

Bas Schaafsma, Marijn J.H. Heule�, and Hans van Maaren

Department of Software Technology, Delft University of Technology
schaafsma@ch.tudelft.nl, marijn@heule.nl, h.vanmaaren@tudelft.nl

Abstract. We present a new method to break symmetry in graph color-
ing problems. While most alternative techniques add symmetry breaking
predicates in a pre-processing step, we developed a learning scheme that
translates each encountered conflict into one conflict clause which covers
equivalent conflicts arising from any permutation of the colors.

Our technique introduces new Boolean variables during the search. For
many problems the size of the resolution refutation can be significantly
reduced by this technique. Although this is shown for various hand-made
refutations, it is rarely used in practice, because it is hard to determine
which variables to introduce defining useful predicates. In case of graph
coloring, the reason for each conflicting coloring can be expressed as
a node in the Zykov-tree, that stems from merging some vertices and
adding some edges. So, we focus on variables that represent the Boolean
expression that two vertices can be merged (if set to true), or that an
edge can be placed between them (if set to false). Further, our algorithm
reduces the number of introduced variables by reusing them.

We implemented our technique in the state-of-the-art solver minisat. It
is competitive with alternative SAT based techniques for graph coloring
problems. Moreover, our technique can be used on top of other symmetry
breaking techniques. In fact, combined with adding symmetry breaking
predicates, huge performance gains are realized.

1 Introduction

Satisfiability (SAT) solvers have become very powerful in recent years. Especially
conflict-driven clause learning SAT solvers can effective tackle certain huge prob-
lems. Crucial to strong performance is learning conflict clauses that ensure that
the same search space is not explored multiple times. However, in the presence
of symmetry the effectiveness of conflict clauses is highly reduced: search spaces
could be visited that are symmetric to already refuted areas.

This paper focusses on symmetry in graph coloring problems. In particulary,
we want to break the symmetry that arises by permuting the colors. This can be
broken statically, as a preprocessing step, or dynamically, during the search. A
frequently used static technique assigns a different color to all vertices in a large
� Supported by the Dutch Organization for Scientific Research (NWO) under grant

617.023.611.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 223–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

224 B. Schaafsma, M.J.H. Heule, and H. van Maaren

clique [19]. Although effective and cheap (a large clique is easy to find), it only
breaks the symmetry partially [15]. A dynamic symmetry breaking technique [10]
adds, besides the conflict clause expressing the conflict, all symmetric conflict
clauses. Yet the number of symmetric conflict clauses grows exponentially with
the number of colors. Here, we present an alternative dynamic technique.

For each conflicting assignment of k colors in the DPLL-tree there exists k!
symmetric conflicting assignments that can be obtained by a permutation of the
colors. At the core of our algorithm is the observation that all these symmetric
conflicting assignments correspond to the same node in the Zykov-tree: a binary
search tree that selects in each node two nonadjacent vertices of the graph being
colored. One branch explores the search space by merging these vertices (the
same color), while the other branch examines the space created by placing an
edge between them (not the same color). We transform each conflicting DPLL-
node to the corresponding Zykov-node and translate the latter back to SAT.

Since the Zykov algorithm branches on merging two nonadjacent vertices or
placing an edge between, new variables are introduced – called merge variables:
these variables represent that two vertices must have the same color (a merge
step) if set to true, while they must be colored differently (adding an edge) if
set to false. The proposed technique converts the original variables in conflict
clauses to merge variables.

The outline of this paper is as follows: Section 2 deals with encoding graph
coloring problems into SAT. Transformation of conflict clauses is explained in
Section 3. Section 4 offers experimental results. Finally, in Section 5 we draw
some conclusions and provide suggestions for future research.

2 Preliminaries

2.1 The Satisfiability Problem

The Satisfiability problem (in short SAT) asks whether there exists an assign-
ment for a given Boolean formula such that it evaluates to true. If such an
assignment does exist, we call the problem satisfiable else the problem is qual-
ified as unsatisfiable. In a more formal setting a formula F = {C1 ∧ . . . ∧ Cm}
consists of conjunction of clauses Ci, while each clause Ci = (li,1 ∨ . . . ∨ li,j)
consists of disjunction of literals. A literal l refers either to a Boolean variable
xi or to its negation ¬xi. A clause is satisfied when at least one of its literals
evaluates to true. Finally, a satisfying assignment satisfies all clauses.

2.2 The k-Coloring Problem

The k-coloring problem deals with the question whether the vertices of a graph
can be colored with k colors such that two connected vertices have a different
color. Or more formal, let ϕcolor be a mapping of vertices v ∈ V onto an integer
in {1, . . . , k}. A graph G = (V, E) is k-colorable, when there exists a ϕcolor to
all vertices such that for every (v, w) ∈ E, ϕcolor(v) 	= ϕcolor(w). The smallest k
for which G is still k-colorable is known as the chromatic number of G or X (G).

Dynamic Symmetry Breaking by Simulating Zykov Contraction 225

The k-coloring problem can be naturally translated to SAT. We focus on the
widely used direct encoding [14]. It uses Boolean variables xv,i ↔ ϕcolor(v) = i,
which we refer to as color variables. The property that all vertices must be
colored is encoded by the at-least-one clauses, which are of the form:∧

v∈V

(xv,1 ∨ xv,2 ∨ · · · ∨ xv,k) (1)

Further, for each (v, w) ∈ E, k conflicting clauses encode ϕcolor(v) 	= ϕcolor(w):∧
1≤i≤k

∧
(v,w)∈E

(¬xv,i ∨ ¬xw,i) (2)

The above is known as the minimum encoding [9]. The extended encoding adds
redundant clauses which encode that vertices must have at-most-one color:∧

1≤i<j≤k

∧
v∈V

(¬xv,i ∨ ¬xv,j) (3)

Although optional, most complete solvers perform better on instances where
these clauses have been added [14]. Yet for our technique they are not required.

2.3 Zykov Contraction Algorithms

One of the main family of algorithms which determines X (G) for a graph G, or
approximates X (G) is known as Contraction. This family of algorithms is based
on a theorem due to Zykov [20], which states:

X (G) = min(X (G/(v, w)),X (G + (v, w))) (4)

In this theorem, G/(v, w) denotes the graph with vertex v and w contracted,
meaning that vertex w is deleted and all its edges are transferred to v. G+(v, w)
means that an edge is added between vertex v and w, as shown in Figure 1.

3

1

7

4 5 6

2

8G+v3, v5 G/v3, v5

3

1

7

4 5 6

2

8

1

7

4 /3,5 6

2

8

Fig. 1. A Zykov-tree example. The numbers in the vertices refer to their index vi.

226 B. Schaafsma, M.J.H. Heule, and H. van Maaren

Repeated steps of applying this theorem to a graph G result in a binary tree.
The leaves of this tree are fully connected graphs, which each have a chromatic
number equal to their number of vertices. The chromatic number of G is then
equal to the chromatic number of the graph with the least amount of vertices.

Zykov Contraction can be simulated in a SAT solver by adding redundant
variables and clauses to the CNF translation of a graph coloring problem. Adding
redundant variables and clauses was introduced by Tseitin and is known as
Extended Resolution (ER) [17]. ER is shown to be very powerful in theory [3].

Each step of the Contraction algorithm can be simulated by introducing a
Boolean variable ev,w, referred to as merge variables, which expresses:

ev,w ↔ ϕcolor(v) = ϕcolor(w) (5)
This relation can be translated to CNF using the following clauses:

∧
1≤i≤k

(ev,w∨¬xv,i∨¬xw,i) ∧ (¬ev,w∨xv,i∨¬xw,i) ∧ (¬ev,w∨¬xv,i∨xw,i) (6)

These clauses will propagate the fact that vertices v and w have equal or
unequal colors when ev,w is set. If set to true the clauses simulate merging two
vertices, while setting ev,w to false represents placing an edge between them.

Initially, we studied the use of adding merge variables and the corresponding
clauses to a given formula as a preprocessing step. This turned out to merely
decrease the performance. However, we observed that one could capitalize on the
expressive power of merge variables by strengthening conflict clauses. Therefore,
instead of ER, only the clauses are added which are required for the Tseitin
translation [17] of these learnt clauses.

3 Merge Clauses

A powerful application of simulating Contraction lies in strengthening conflict
clauses in conflict-driven algorithms [11] for graph coloring instances. Simply put,
conflict-driven solvers continue to assign variables until a conflict is detected.
When a conflict is detected, the solver determines an assignment responsible
for this conflict and adds a conflict clause Cconflict to F , where Cconflict is the
negation of the assignments which led to the conflict.

To illustrate the benefits of simulating Contraction, consider the example
conflict, in the 3-coloring instance presented in Figure 2. In the corresponding
SAT instance, a conflict clause for this conflict would be:

(¬x1,1 ∨ ¬x2,1 ∨ ¬x3,2 ∨ ¬x4,2 ∨ ¬x5,3) (7)

Yet, due to the inherent symmetries of a k-coloring instance, any permutation of
colors in a conflicting assignment is also a conflicting assignment. Thus for the
corresponding SAT instance, the following clause is also logically implied by F :

(¬x1,3 ∨ ¬x2,3 ∨ ¬x3,1 ∨ ¬x4,1 ∨ ¬x5,2) (8)

Unfortunately, with a maximum of k! possible permutations it is impractical to
add each implied clause, for almost any k larger than four [10].

Dynamic Symmetry Breaking by Simulating Zykov Contraction 227

1 2 3 4 5

6 7

8 9

remaining graph remaining graph

/1,2 /3,4 5

6 7

8 9

(v4,v5)

(v2,v5)

Fig. 2. A Zykov Contraction example. The numbers in the vertices refer to the index
vi. The added edges are shown as dashed lines. Vertex v9 is in conflict because it
cannot be colored. The example focusses on the assignment to v1, v2, v3, v4, and v5.

3.1 Transforming Conflict Clauses

Any conflict clause, which consists of negative color literals, such as the clauses
depicted in (7) and (8), encodes a conflicting coloring ϕcolor of a subset of vertices
in G. This encoded coloring corresponds to some node in a Zykov-tree with G as
root. Vertices in this subset that are equally colored in ϕcolor are contracted into
a single vertex and edges are added to induce a clique among these contracted
vertices. This relation exists, because once the vertices are contracted and the
clique is induced, any two vertices equally colored in ϕcolor, will be equally colored
in any coloring of our created clique, because they have been merged. Further-
more, any two vertices that were not equally colored in ϕcolor, will be unequally
colored in any coloring of our clique, because there exists an edge between them.
Thus any coloring of the created clique corresponds to a permutation of ϕcolor
and therefore will, just like ϕcolor, result in a conflict. Therefore, any conflict
clause consisting out of negative color literals can be converted in a correspond-
ing merge clause, denoted by Cmerge, which is a conflict clause consisting out of
merge variables.

Back to the example, consider the conflict depicted in Figure 2 as a node in a
Zykov-tree, in which v1 and v2 are merged, v3 and v4 are merged, and the edges
(v2, v5), (v4, v5) are added. This is represented using merge variables as:

(¬e1,2 ∨ ¬e3,4 ∨ e2,5 ∨ e4,5) (9)

In any merge clause Cmerge, negative literals correspond to contractions of
the equally colored vertices in ϕcolor. For each set of n equally colored vertices
in ϕcolor we will need n− 1 negative merge literals. The positive literals Cmerge
correspond to the edges added to induce a clique. Of course no edges need to be
added between contracted vertices v and w, if such an edge already exists in G.

Unfortunately, in most cases one could choose from many merge variables
to construct a merge conflict clause. In the example, instead of using e2,5 (or
e4,5), one could select e1,5 (or e3,5). The choice of the merge variables influences

228 B. Schaafsma, M.J.H. Heule, and H. van Maaren

the performance, therefore one would prefer to select the “optimal” candidates.
Heuristics for this selection are discussed in Section 3.2.

Besides Cmerge, one also needs to add the clauses M(Cmerge), which arise
from the Tseitin translation [17], to F . Theoretically, for each introduced merge
variable we could add the full set of clauses described in Section 2.3. Yet, in
practice it suffices to add only the clauses that contain the negation of the
literal of our introduced variable. Only adding these clauses is good practice as
it saves resources [13]. For any Cmerge, M(Cmerge) equals to:∧
1≤i≤k

(∧
ev,w∈Cmerge

(
(¬ev,w∨xv,i∨¬xw,i)∧(¬ev,w∨¬xv,i∨xw,i)

)
∧
∧

¬ev,w∈Cmerge

(ev,w∨¬xv,i∨¬xw,i)
)

(10)
Thus M(Cmerge) for our example is:

∧
1≤i≤k

((e1,2 ∨ ¬x1,i ∨ ¬x2,i) ∧ (¬e2,5 ∨ x2,i ∨ ¬x5,i) ∧ (¬e2,5 ∨ ¬x2,i ∨ x5,i) ∧
(e3,4 ∨ ¬x3,i ∨ ¬x4,i) ∧ (¬e4,5 ∨ x4,i ∨ ¬x5,i) ∧ (¬e4,5 ∨ ¬x4,i ∨ x5,i)

)
(11)

3.2 Implementation

We have applied the principal of merge conflict clauses in the conflict-driven
clause learning (CDCL) SAT-solver architecture which we refer to as the CD-

CLmerge algorithm. CDCLmerge is specialized for the k-coloring problem
and uses merge conflict clauses to store conflicts. Its most important feature
is the transformConflict procedure, which transforms the color literals in
a conflict clause to merge literals. In order to make the transformConflict

function properly, we also had to adapt the decide procedure. Algorithm 1 gives
a detailed overview of the CDCLmerge algorithm.

The decide procedure
The proposed transformation to merge clauses requires that all conflicts can be
expressed as a disjunctions of negative color literals and merge literals. This
cannot be guaranteed if the solver branches on negative literals. E.g. consider
the perfect graph of size three. Assigning x1,1 to false, x2,1 to false, and x3,2 to
true results in a conflict which can be expressed as (x1,1 ∨ x2,1 ∨ ¬x3,2). Notice
that this conflict clause cannot be translated to a merge clause is a meaningful
way. Therefore, decide is adapted such that it assigns each decision variable to
true. This heuristic is similar to the one used in minisat which assigns all decision
variables to false [7].

The transformingConflict procedure
The input Cconflict is transformed into Cmerge using the following steps:

1. Positive color literals in Cconflict are replaced by merge and negative color
literals by expanding them into their reason literals. For instance, say the
example conflict clause would have been (x1,3 ∨ x2,2 ∨ x3,3 ∨ x4,2 ∨ ¬x5,3).

Dynamic Symmetry Breaking by Simulating Zykov Contraction 229

Algorithm 1. CDCLmerge(F)
1: while true do
2: propagate() /* propagate unit clauses */
3: if not conflict then
4: if all variables assigned then
5: return satisfiable

6: end if
7: decide() /*select decision variable. ADAPTED*/
8: else
9: Cconflict ← analyze() /*analyze the conflict*/

10: Cmerge ← transformConflict(Cconflict) /*ADDED*/
11: if top level conflict found then
12: return unsatisfiable

13: end if
14: backtrack(Cconflict) /*backtrack while Cconflict remains unit or falsified*/
15: end if
16: end while

Assume that the same conflicting coloring was its reason. In that case ¬x1,2
will be the reason literal for x1,3. Therefore, we can replace the latter by the
former. This process is iterated while Cconflict contains positive literals.

2. Redundant literals (see Theorem 2 and 3) are removed from Cconflict.
3. Cconflict is split into Ccolor, which consist out of all negative color literals in

Cconflict and Cextra, which consists of all merge literals in Cconflict.
4. Transform Ccolor into a merge clause Czykov by computing the correspond-

ing node in the Zykov-tree. Preliminary tests showed that the performance
improved if the number of introduced variables were kept to a minimum
and introduced variables were reused whenever possible. Therefore, in case
of choice between possible merge literals to use in the transformation to
Czykov, the merge literal is selected which is most frequently used in conflict
clauses. Ties are broken pseudo randomly.

5. Return the union of Czykov and Cextra as the transformed clause Cmerge.

The backtrack procedure
Conflict-driven clause learning SAT solvers backtrack (also known as backjump)
to the lowest decision level where the latest conflict clause is still a unit clause.
In CDCLmerge this aspect of the solving algorithm is not changed. However,
if a conflict clause Cconflict is unit, a corresponding merge clause Cmerge may not
be unit.

Recall the example at the start of this section:

Cconflict ⇔ Cmerge

(¬x1,1 ∨ ¬x2,1 ∨ ¬x3,2 ∨ ¬x4,2 ∨ ¬x5,3) ⇔ (¬e1,2 ∨ ¬e3,4 ∨ e2,5 ∨ e4,5)

Say that variable xv,i is assigned at level v. The backtrack procedure will
jump to level 4. At this level Cconflict is reduced to (¬x5,3), while Cmerge is

230 B. Schaafsma, M.J.H. Heule, and H. van Maaren

reduced to (e2,5 ∨ e4,5). The reason is that two merge literals refer to vertex v5.
Currently, this problem is solved by changing the decide procedure in such a
way that if the latest merge clause consists of multiple unassigned literals one of
these literals is assigned to false. This is repeated until the merge clause becomes
unit.

Although Cconflict is satisfiability equivalent to Cmerge ∧ M(Cmerge) (see
Theorem 4), the transformation is not arc-consistent under unit propagation [8].
As soon as a merge clause contains multiple literals that refer to the same vertex,
the merge clause will not become unit when the original conflict clause would
be unit. In the example a similar problem would arise in case v2 (or v4) was the
last assigned vertex, because both ¬e1,2 and e2,5 (or both ¬e3,4 and e4,5) occur
in Cmerge.

The lack of arc-consistency is a serious weakness of the current implementa-
tion. We study various options to deal with this weakness. An interesting partial
solution is adding a second merge clause. Back to the example: besides Cmerge,
we could also add (¬e1,2∨¬e3,4∨e1,5∨e3,5). This solves arc-consistency for ver-
tex v2 and v4. However, the problem is still unsolved for vertex v5. In general, a
second merge clause can fix arc-consistency for all vertices that are colored the
same as another vertex in the conflict clause.

3.3 Optimizations

Variable Selection Heuristics
Although merge variables are useful to create merge conflict clauses, they seem
rather weak as decision variables. For instance, if a clique of size k + 1 arises
by assigning some merge variables (i.e. a conflicting assignment), one may not
detect this at the CNF level (no empty clause). Therefore, we only branch on
color (original) variables. This choice is also supported by some experiments.

Finally, we propose a specialized version of the VSIDS activity heuristic [12].
Since merge variables will not be selected as decision variables, it does not make
sense to maintain an activity for them. If a merge variable should have been
increased, we want to bump the activity of the corresponding color variables
instead. This idea have been implemented using an activity counter for vertices
too. Each time a merge variable contributes to a conflict, the activity heuristic
of both corresponding vertices is increased. The selection of decision variables
is narrowed by choosing a variable from the most active vertex. This variant of
VSIDS is inspired by [2].

Symmetry Breaking in the Presence of Unit Clauses
In the presence of symmetry, it is good practice to add symmetry breaking pred-
icates [15]. In case of graph coloring problems, one can search for a large clique
and force all vertices in that clique to a different color – by adding unit clauses
to the formula. Cliques in a graph can be cheaply detected using the algorithm
by M. Trick [21]. In the more general context of CNF formulae, shatter [1] can
be used to compute symmetry breaking predicates.

Apart from symmetry breaking predicates, many structured graph coloring
problems, such as quasi-group instances [9], contain unit clauses. In case the

Dynamic Symmetry Breaking by Simulating Zykov Contraction 231

symmetry is already partially broken by some unit clauses, it does not make
sense to introduce merge variables.

Regarding the implementation: if unit clause (xu,i) ∈ F and ¬xu,i ∈ Cconflict,
then none of the literals ¬xv,i ∈ Cconflict are replaced by merge literals. Further,
if unit clause (xu,i) ∈ F , then for all positive merge literals eu,w that would have
added, the positive color literal xw,i is added instead.

3.4 Proof of Correctness of Merge Conflict Clauses

Definition 1. Let π : (1, . . . , k) → (1, . . . , k) be a function that is one to one
and onto.

Definition 2. Let Pπ be a function for which holds (with lh,i as literals of Ch):

Pπ(Ch) = (Pπ(lh,1) ∨ . . . ∨ Pπ(lh,i))
Pπ(¬lh,i) = ¬Pπ(lh,i)
Pπ(xv,i) = xv,π(i)
Pπ(ev,w) = ev,w

Theorem 1. If Boolean function F represents a k-coloring problem and clause
Ch is logically implied by F , then for any π, Pπ(Ch) is logically implied by F .

Proof. Every satisfying assignment makes Ch true. Applying π to the satisfying
assignments yields a permutation of them. So, these assignments satisfy Pπ(Ch).

Theorem 2. Let Cconflict be a conflict clause consisting of merge literals and
negative color literals. Let C = {i : ¬xv,i ∈ Cconflict} denote the set of colors used
in Cconflict. A literal ¬xu,i ∈ Cconflict is redundant, if Cconflict does not contain a
literal ¬xv,i (u 	= v) and for each j ∈ C(j 	= i) Cconflict contains a literal ¬xw,j

(u 	= w) such that (u, w) ∈ E (the edge set).

Proof. Cconflict with and without ¬xu,i correspond to the same node in the
Zykov-tree, because ¬xu,i is the only literal assigned to i assures that no merge
steps are required, while no edges have to be added, because for each j ∈ C(j 	= i),
u is already connected to a vertex w with ϕcolor(w) = j.

Theorem 3. Let Cconflict be a conflict clause consisting of merge literals and
negative color literals. A literal ¬eu,v ∈ Cconflict is redundant, if (¬xu,i∨¬xv,i) ∈
Cconflict, while a literal eu,w ∈ Cconflict is redundant, if (¬xu,i∨¬xw,j) ∈ Cconflict.

Proof. Any solution to a graph coloring problem assigns a Boolean value to all
color variables. So, each solution will be a full assignment. Each full assignment
which satisfies ¬eu,v also satisfies (¬xu,i ∨ ¬xv,i), while each full assignment
which satisfies eu,w also falsifies (¬xu,i ∨ ¬xw,j).

Notice that based on this theorem, we can conclude that a formula is unsatisfiable
if a conflict clause only consists of a negative color literal. We refer to a reduced
clause if all redundant literals (based on Theorem 2 and 3) are removed.

232 B. Schaafsma, M.J.H. Heule, and H. van Maaren

Theorem 4. Let Boolean function F represent a k-coloring problem and let Ch

be a reduced clause logically implied by F . If Ch consists of merge literals and
negative color literals and Cmerge is a corresponging merge clause of Ch, then∧

π1..πk!

Pπi(Ch) is satisfiability equivalent to Cmerge ∧M(Cmerge) (12)

Proof. Recall that any solution must be a full assignment. (UNSAT ⇒ UNSAT)
If a full assignment falsifies

∧
Pπi(Ch), then there exists a πi for which Pπi(Ch) is

falsified. Since Pπi(Cmerge) = Cmerge also representsPπi(Ch), Cmerge∧M(Cmerge)
is falsified as well. (SAT⇒ SAT) If a full assignment satisfies

∧
Pπi(Ch) by merge

literals in Ch, then Cmerge is also satisfied because it contains all merge literals in
Ch. Notice that because Ch is a reduced clause, it either contains zero negative
color literals (in case the former case is applicable) or at least two negative color
literals. A full assignment can only satisfy

∧
Pπi(Ch) if two vertices are assigned

a different color while the corresponding color literals in Ch have the same color
index, or two vertices are assigned the same color while the corresponding color
literals in Ch have the different color index. In both cases Cmerge ∧M(Cmerge) is
satisfied as well.

Thus once we have learnt Cconflict, we could add all clauses Pπi(Cconflict) to F
(Theorem 1). Yet, based on Theorem 4, we add Cmerge ∧ M(Cmerge) instead.
Furthermore, Theorem 4 implies that using merge conflict clauses requires that
every conflict can be expressed into merge literals and negative color literals. In
order to ensure this, the variables selection heuristics of the solver have to be
adapted. This adaptation is described in Section 3.2.

4 Results

All experiments were performed on a 2.0 GHz Intel Core 2 Duo with 1 GB of
DDR2 Memory. Instances were encoded using the extended direct encoding and
we used the method of finding and forcing cliques as symmetry breaking method.

4.1 Medium Sized Random Graphs

This experiment was performed to compare our CDCLmerge implementation,
referred to as MiniColor to the standard distribution of MiniSat2, branching
on positive variables. In this experiment we generated 45 random graphs of
70 vertices, with varying edge probabilities (denoted by Pedge). Per graph, one
SAT instance (G, X (G)) and one UNSAT instance (G, X (G) -1) were created.
Table 1 shows the average solving times and the number of solved instances.

As can be seen in Table 1 the performances on satisfiable instances are on par,
although MiniColor was able to solve one more instance. On the other hand, per-
formance on unsatisfiable instances has significantly improved. Besides solving
more instances, MiniColor was on average one order of magnitude faster.

Dynamic Symmetry Breaking by Simulating Zykov Contraction 233

Table 1. Average runtimes for medium sized graphs, with a 1200 (s) timeout

SAT instances UNSAT instances
Minisat2 MiniColor Minisat2 MiniColor

|G| |V | Pedge X (G) time (s) # time (s) # time (s) # time (s) #
15 70 0.5 11-12 25.59 15 13.94 15 190.72 14 39.98 15
15 70 0.7 17-18 24.73 13 43.41 14 307.88 8 26.1 14
15 70 0.9 27-28 0.73 15 0.16 15 19.00 13 0.95 15

MiniColor

M
in

iS
at

2

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

satisfiable

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

�� ��

��

��
��

�� ��

��

��

��

����
��

��

��
��

��

��

��

��

��

��

��
��

��

��

��

��

��
��

��

��

unsatisfiable
�

�

�

�

�
�

�

�

�

�

�

�
�� �

�

� ��
�

�

�

�

�

�

�

� � ��

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

Fig. 3. Performance comparison between MiniColor and MiniSat2 on medium sized
random graphs, with a 1200 (s) timeout

4.2 DIMACS Benchmarks

This experiment was executed to compare MiniColor to published results on
graph coloring and to the unmodified MiniSat2 solver. As published benchmark
performances we used the results published in [19] by Van Gelder which, to our
knowledge, present the best broad overview of SAT based graph coloring results.
Of the 27 graphs used in this benchmark set most are relatively easy. However,
the five graphs presented in Table 2 were shown to be particularly difficult.

A comparison of MiniColor with best presented runtimes in [19], denoted by
VanGelder and the runtimes of MiniSat2 on these graphs can be found in Table 3
and 4. For comparative purposes, we scaled the times presented in [19] to what
they would have been if the instances were run on our platform1.

1 The dfmax benchmark takes 12s for r500.5.b on our platform compared to 16.96 in
[19]. For more information of the dfmax benchmark, please check [22].

234 B. Schaafsma, M.J.H. Heule, and H. van Maaren

Table 2. Difficult DIMACS instances

instance |V | |E| X found clique size
Myciel6 95 755 7 2
Myciel7 191 2360 8 2
abb313GPIA 1557 53356 9 6
DSJC125.5 125 3891 ? 10
DSJC125.9 125 6961 ? 33

Table 3. Runtimes on difficult satisfiable DIMACS in seconds

SAT instances
instance k VanGelder MiniSat2 MiniColor
Myciel6 7 0 0 0.01
abb313GPIA 9 1256 3.63 1.89
DSJC125.5 19 4446 43.46 18.51
DSJC125.9 46 19119 140 16.73

Table 4. Runtimes on difficult unsatisfiable DIMACS in seconds

UNSAT instances
instance k VanGelder MiniSat2 MiniColor

Myciel6 6 2113 3096 1726
abb313GPIA 8 5.63 0.73 0.72
DSJC125.5 12 488 5.85 4.08
DSJC125.9 37 4630 934 53.06

Table 5. Runtimes of MiniColor and MiniSat2 on harder versions of the DIMACS
instances

SAT instances UNSAT instances
instance k MiniSat2 MiniColor k MiniSat2 MiniColor
Myciel7 8 0 0.03 6 6497 1381
DSJC125.5 18 > 19000 > 19000 13 > 19000 2931
DSJC125.9 45 > 19000 1008 38 > 19000 4683

As can be seen in Table 3 and 4, the runtimes of our implementation are vast
improvements over the runtimes of MiniSat2 and those presented in [19]. After
these encouraging results, we tried how our implementation would handle more
difficult coloring of these graphs. As it turned out we could prove that Myciel7 is
not 6 colorable, DSJC125.5 is not 13 colorable and DSJC125.9 is not 38 colorable
within reasonable time. The corresponding runtimes are shown in Table 5.

Dynamic Symmetry Breaking by Simulating Zykov Contraction 235

5 Conclusions and Future Research

We showed how a SAT conflict-driven solver can be optimized for graph coloring
problems by converting conflict clauses in such a way that they cover all per-
mutations of the colors. This technique can be used in combination with other
optimizations for graph coloring such as adding symmetry breaking predicates.
In fact, the best performances are achieved by this combination.

We introduce new Boolean variables during the search. Although very power-
ful in theory, it is hardly used in practice. Regarding its practical application, we
learnt two lessons. First, the introduced variables should be meaningful within
the context of the problem – in this case, the branches in the Zykov-tree. Second,
reusage of introduced (merge) variables is crucial. Recall that in each conversion
step one can choose from many merge variables. Yet, heuristics that try to min-
imize the number of introduced variables were required to make the technique
competitive.

Although the proposed technique is, as presented, only applicable to graph
coloring problems, we have reason to believe that it can be generalized. Many
multi-valued SAT problems seem fit for this purpose. In particular those con-
sisting of constraints in which variables should either have the same value or
a different one. Examples of such applications are computing Van der Waerden
numbers and Schur numbers. The usefulness of our ideas will depend on whether
they can be generalized successfully.

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments that
helped improving this paper.

References

1. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient Symmetry Breaking for Boolean
Satisfiability. In: International Joint Conference on Artificial Intelligence (IJCAI),
pp. 271–282 (2003)

2. Ansótegui, C., Larrubia, J., Li, C.M., Manyà, F.: Exploiting multivalued knowl-
edge in variable selection heuristics for SAT solvers. Annals of Mathematics and
Artificial Intelligence 49(1-4), 191–205 (2007)

3. Cook, S.A.: A short proof of the pigeonhole principle using extended resolution.
SIGACT News 8(4), 28–32 (1976)

4. Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Pro-
ceedings of STOC 1975, pp. 83–97 (1975)

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394–397 (1962)

6. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal
of the ACM 7(3), 201–215 (1960)

7. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

236 B. Schaafsma, M.J.H. Heule, and H. van Maaren

8. Gent, I.P.: Arc Consistency in SAT. In: Proceedings of the Fifteenth European
Conference on Artificial Intelligence, ECAI 2002 (2002)

9. Gomes, C.P., Shmoys, D.B.: Completing Quasigroups or Latin Squares: A Struc-
tured Graph Coloring Problem. In: Proceedings of the Computational Symposium
on Graph Coloring and Generalizations, Ithaca, USA, pp. 22–39 (2002)

10. Keur, A., Stevens, C., Voortman, M.: Symmetry Breaking Options in Conflict
Driven SAT Solving. TU-delft technical report,
http://www.st.ewi.tudelft.nl/sat/reports.php

11. Marques-Silva, J.P., Sakallah, K.A.: GRASP – a new search algorithm for sat-
isfiability. In: International Conference on Computer-Aided Design, pp. 220–227
(1996)

12. Moskewicz, M.W., Madigan, C.F.: Chaff: engineering an efficient SAT solve. In:
Proceedings of DAC 2001, pp. 530–535 (2001)

13. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation.
Journal of Symbolic Computation 2(3), 293–304 (1986)

14. Prestwich, S.: Local Search on SAT-Encoded Colouring Problems. In: Hoos, H.H.,
Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 26–29. Springer, Heidelberg
(2005)

15. Sakallah, K.A.: Symmetry and Satisfiability. In: Handbook of Satisfiability, ch. 10,
pp. 289–338 (2009)

16. Sinz, C., Biere, A.: Extended Resolution Proofs for Conjoining BDDs. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006)

17. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies
in Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)

18. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219
(1987)

19. Van Gelder, A.: Another look at graph coloring via propositional satisfiability.
Discrete Applied Mathematics 156(2), 230–243 (2008)

20. Zykov, A.A.: On some properties of linear complexes. Amer. Math. Soc. Transla-
tions 79, 81 (1952)

21. http://mat.gsia.cmu.edu/COLOR/solvers/trick.c

22. Computational Series: Graph Coloring and Its Generalizations,
http://mat.gsia.cmu.edu/COLOR04

http://www.st.ewi.tudelft.nl/sat/reports.php
http://mat.gsia.cmu.edu/COLOR/solvers/trick.c
http://mat.gsia.cmu.edu/COLOR04

Minimizing Learned Clauses

Niklas Sörensson1 and Armin Biere2

1 Chalmers University of Technology, Göteborg, Sweden
2 Johannes Kepler University, Linz, Austria

Abstract. Minimizing learned clauses is an effective technique to reduce
memory usage and also speed up solving time. It has been implemented
in MINISAT since 2005 and is now adopted by most modern SAT solvers
in academia, even though it has not been described in the literature
properly yet. With this paper we intend to close this gap and also provide
a thorough experimental analysis of it’s effectiveness for the first time.

1 Introduction

Learning clauses [9] is an essential part in modern SAT solvers [6,8,10]. Learning
is used for forward pruning search space and in combination with a conflict-
driven assignment loop [8,9] also allows to skip redundant decisions during back-
tracking. The 1-UIP learning scheme [9] is considered to work best [4,18]. It is
possible to increase the efficiency of the 1-UIP scheme, by removing additional
literals from learned clauses. This can either be done locally [2] or recursively
[11,16]. The latter was first implemented in MiniSAT in 2005 but has not been
properly described in the literature yet.

Learning is usually explained with the help of implication graphs [8], which
has assigned variables as nodes connected through antecedents [8]. The analy-
sis starts with a clause in which all literals are assigned to false, formally the
antecedent of the conflict κ [8], and resolves in antecedents from its implied
[8] variables recursively. Several termination conditions are possible [18]. In the
simplest scheme the process continues until only decisions are left. The standard
algorithm [9] makes sure that learned clauses derived this way contain exactly
one literal from the current decisions level. This is usually referred to as that the
learned clause must be asserting.

If antecedents are resolved in reverse assignment order, the first derived as-
serting clause, is called the first unique implication point (1-UIP) clause [8,9].
Learning 1-UIP clauses is considered to be the best learning scheme [4,18]. In
extensions [4,7,9,13] additional learned clauses are not asserting, and are added
as complement to the 1-UIP clause. However, a proper subset of the 1-UIP clause
will necessarily be more successful at pruning future search. This is our original
motivation for the algorithms in this paper.

The 1-UIP clause is minimized by resolving more antecedents without adding
literals. A similar idea appears in [2], which we call local minimization. A general
version was discovered independently by the first author and implemented in
MINISAT 1.13 [16]. This recursive minimization is now part of many SAT solvers.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 237–243, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

238 N. Sörensson and A. Biere

2 Minimization

The example in Fig. 1 applies the original 1-UIP scheme and the decision scheme.
It also explains how the 1-UIP clause can be minimized locally or recursively.
More precisely, the 1-UIP clause can be minimized locally by resolving out a
literal, which has other literals in its antecedent already in the 1-UIP clause.
This gives a first version of an algorithm for locally minimizing learned clauses:

Generate the 1-UIP clause. Apply self-subsuming resolution, in reverse
assignment order, using antecedent clauses for self-subsuming resolution.

This algorithm actually produces a regular and linear resolution derivation of
the minimized clause. In general, resolving antecedents can not introduce cycles,
even if resolved out-of-order with respect to assignment order, in contrast to
[1]. Furthermore, tree-like resolution can be made regular [17]. Thus literals can
actually be deleted in an arbitrary order. This simplifies implementation consid-
erably and results in the following modified algorithm for local minimization:

top−level

decision

decision

decision

decision

k

c

f

r

a

d

g

l

unit

t

= 1 @ 0

= 1 @ 1

= 1 @ 2

= 1 @ 1

= 1 @ 3

= 1 @ 4 = 1 @ 4

= 1 @ 3 = 1 @ 3

= 1 @ 2 i = 1 @ 2

κ

unit

conflict

e = 1 @ 1

b = 1 @ 0

h = 1 @ 2

y = 1 @ 4s = 1 @ 4

= 1 @ 4 z = 1 @ 4x

Fig. 1. An implication graph with two top-level unit clauses, and four decisions. The
1-UIP scheme, resolves from the antecedent (y ∨ z) of the conflict as few as possible
literals until exactly one literal from the current decision level, the 1-UIP s, is left. The
resulting 1-UIP clause is (d ∨ g ∨ h ∨ i ∨ s). Depending on the definition, e.g. whether
all literals in the derived clause are decisions, or just the UIP on the current decision
level, the decision UIP clause either is comprised of the negations of all the decisions
(c ∨ f ∨ k ∨ r) or is obtained from the 1-UIP clause, replacing s by l ∨ r. In any case,
all four non top-level decision levels are “pulled” into the decision UIP clause, while
the 1-UIP clause allows to jump over the decision level of k. Local minimization of the
1-UIP clause removes i, since its single antecedent literal h already occurs in the 1-UIP
clause. This is an instance of self-subsuming resolution, resolving (d ∨ g ∨ h ∨ i ∨ s)
with (h∨ i) to obtain (d∨ g ∨ h∨ s). No other local minimization is possible. Top-level
assigned literals can be ignored. Thus the nodes d and g together dominate h. As a
consequence h can be deleted using recursive minimization to obtain (d ∨ g ∨ s).

Minimizing Learned Clauses 239

Generate the 1-UIP clause. Mark all its literals. Remove those implied
variables which have all their antecedent literals marked.

On the current decision level, enforcing traversal in assignment order presents
no overhead, since literals of the current decision level have to be unassigned
anyhow. Traversing the trail [6] backward gives the desired topological ordering.
Traversing all literals on the trail of previous decision levels is more costly.

It is possible to continue resolving out literals, as long all newly introduced
literals are eventually resolved out. A literal can be deleted if its antecedent
literals are, in the implication graph, dominated by other literals from the 1-UIP
clause. The recursive minimization algorithm can be formulated as follows:

Generate the 1-UIP clause. Mark its literals. Implied variables in 1-UIP
clause are candidates for removal. Search implication graph. Start from
antecedent literals of candidate. Stop at marked literals or decisions. If
search always ends at marked literals then the candidate can be removed.

Soundness can be proven by simulating graph traversal with resolution. The
only issue is, if literals are resolved out, not respecting the reverse chronological
assignment order. Again these irregularities can be eliminated by reorganizing
the derivation [17]. The result is a regular tree-shaped resolution derivation.

As optimizations successful removals should be cached and we can terminate
the search through the implication graph early as soon as a literal from a de-
cision level that is not present in the 1-UIP clause is encountered. This early
termination condition can be implemented by marking decision levels of the 1-
UIP clause, if decision levels are represented explicitly in the SAT solver, or as
in MINISAT and PICOSAT, by an over-approximation technique based on signa-
tures as in subsumption algorithms [5].

3 Experiments

To empirically compare the effectiveness of recursive versus local minimization
versus no minimization of learned clauses at all, we used the same set of 100
benchmarks as in the SAT Race’08 [14]. The run times were obtained on our 15
node cluster with Pentium 4 CPUs running at 2.8 GHz with 2 GB main memory.
The space limit was 1.5 GB and the time limit 1800 seconds.

In order to obtain a statistically valid evaluation, we first employed two differ-
ent SAT solvers. Additionally we used two versions of each SAT solver, one with
preprocessing enabled and one version in which it was disabled. Second we use
all 100 SAT Race’08 instances. Third, we injected noise using a random num-
ber generator to influence decision heuristics. The same set of benchmarks was
then run 10 times with different seeds for each of the four configurations, i.e. one
out of two SAT solvers with and without preprocessing. Altogether we have 4000
runs for each of the three variants of the minimization algorithm. The worst case
accumulated execution time would have been 3·4000·1800 seconds = 6000 hours.
Since many instances finished before the time limit was reached it actually only
took 2513 hours of compute time to finish all 12000 runs.

240 N. Sörensson and A. Biere

Table 1. Experiments with MINISAT and PICOSAT on SAT Race’08 benchmarks. The
first column specifies the configuration, e.g. which of the two SAT solvers is used and
whether preprocessing is enabled or disabled. The last three rows summarize these
four configurations. The next column specifies the minimization algorithm: “recur” is
recursive minimization, the default in MINISAT and PICOSAT. Then there are rows with
“local” minimization for each configuration and “none” denotes the base case, in which
learned clauses are not minimized at all. The third column gives the number of solved
instances out of 1000, respectively 4000 in the last three rows. Each row corresponds
to the 10 runs with different seeds over the 100 instances. The next column gives the
improvement in number of solved instances with respect to the base case. The number
of solved instances increases by roughly 10% for recursive minimization, and half that
much for local minimization only. The difference in run-time, shown in the next two
columns, gives a similar picture. The percentage in the 6th column is calculated as
the amount of time the minimizing algorithm finishes earlier relative to the base case.
An unsolved instance contributes 1800 seconds. In the next two columns we report on
memory usage, calculated as the sum of the maximum main memory used in each run,
at most 1.5 GB per run. Half of the memory can be saved using recursive minimization,
with local minimization one quarter. This effect is even more dramatic with respect to
the number of times a run reached the space limit, which is shown in columns 9 and 10
next, particularly in the case of MINISAT. PICOSAT uses more compact data structures
than MINISAT, for instance to store binary clauses [12]. Minimization also reduced the
number of space-outs by more than 60%. Finally, the last column, shows the average
number of deleted literals per learned clause. This is calculated with respect to the
size of the 1-UIP clause, which would have been generated without minimization, even
though the 1-UIP clause is minimized afterwards. This is different from comparing the
average length of learned clauses with and without minimization, since these statistics
are computed within the minimizing solver. This gives an explanation why memory
savings are almost twice as much as savings due to deleted literals only. Minimization
not only saves space, but also reduces the search space.

solved time space out of deleted
instances in hours in GB memory literals

MINISAT recur 788 9% 170 11% 198 49% 11 89% 33%
with local 774 7% 177 8% 298 24% 72 30% 16%

preprocessing none 726 192 392 103

MINISAT recur 705 13% 222 8% 232 59% 11 94% 37%
without local 642 3% 237 2% 429 24% 145 26% 15%

preprocessing none 623 242 565 196

PICOSAT recur 767 10% 182 13% 144 45% 10 60% 31%
with local 745 6% 190 9% 188 29% 10 60% 15%

preprocessing none 700 209 263 25

PICOSAT recur 690 6% 221 8% 105 63% 10 68% 33%
without local 679 5% 230 5% 194 31% 10 68% 14%

preprocessing none 649 241 281 31

recur 2950 9% 795 10% 679 55% 42 88% 34%
altogether local 2840 5% 834 6% 1109 26% 237 33% 15%

none 2698 884 1501 355

Minimizing Learned Clauses 241

Table 2. Even for 100 benchmarks there is a great variance for different seeds. The
columns are as in Tab. 1. Even though the space reduction and also the percentage
of deleted literals is consistent for different seeds, the run-time and the number of
solved instances vary widely. Both, for MINISAT and PICOSAT, it would be possible
to draw the conclusion that local minimization is better than recursive minimization,
by picking two specific seeds, for instance MINISAT/local/0 vs. MINISAT/recur/2, and
PICOSAT/local/7 vs. PICOSAT/recur/1. The relative space usage is consistent over dif-
ferent runs of the same algorithm, as is the percentage of deleted literals. For empirical
evaluations of heuristics of SAT solvers, we suggest, to enforce identical search behavior
[3], or to use a very large set of benchmarks, definitely more than 100. However, it is
probably necessary to randomize the algorithms and run them with different seeds a
sufficient number of times. Another option is to use secondary statistics directly related
to the proposed heuristics, like the number of deleted literals in our case, in addition
to the number of solved instances, time usage, or a scatter plot.

MINISAT PICOSAT

with preprocessing with preprocessing
seed solved time space mo del seed solved time space mo del

recur 8 82 16 19 1 33% recur 9 79 17 14 1 31%
recur 6 81 17 20 1 33% recur 0 78 18 14 1 31%
local 0 81 16 29 7 16% recur 3 78 18 14 1 31%
local 7 80 17 29 8 15% recur 8 78 18 14 1 31%
recur 4 80 17 20 1 33% recur 2 77 19 14 1 31%
recur 1 79 17 20 1 33% local 7 77 19 19 1 15%
recur 9 79 17 20 1 34% recur 6 77 18 14 1 31%
local 5 78 18 29 7 16% local 3 77 18 18 1 15%
local 1 78 17 29 6 16% recur 7 76 18 14 1 31%
recur 0 78 17 20 1 34% local 4 75 19 19 1 15%
recur 5 78 17 19 1 33% local 1 75 19 19 1 15%
local 3 77 18 31 7 16% recur 4 75 18 14 1 31%
local 8 77 18 30 8 16% recur 5 75 18 14 1 30%
recur 7 77 17 20 1 34% local 2 74 19 19 1 15%
recur 3 77 17 20 1 34% local 8 74 19 19 1 15%
recur 2 77 17 20 2 33% recur 1 74 19 14 1 31%
none 7 76 19 39 9 0% local 5 74 19 18 1 15%
local 2 76 18 31 8 16% local 6 73 20 19 1 15%
local 4 76 18 31 7 16% local 0 73 20 19 1 15%
local 6 76 18 30 7 16% local 9 73 19 19 1 16%
local 9 75 19 29 7 16% none 5 72 21 26 4 0%
none 9 74 19 39 10 0% none 3 72 20 26 3 0%
none 6 73 19 40 12 0% none 7 72 20 26 2 0%
none 3 73 19 39 10 0% none 8 71 21 27 2 0%
none 8 72 20 39 11 0% none 9 71 20 25 3 0%
none 0 72 20 39 11 0% none 1 70 21 27 1 0%
none 1 72 19 39 9 0% none 4 69 21 26 2 0%
none 5 72 19 39 10 0% none 0 69 21 26 4 0%
none 2 71 20 40 11 0% none 6 68 21 26 2 0%
none 4 71 19 39 10 0% none 2 66 22 27 2 0%

242 N. Sörensson and A. Biere

As first SAT solver we use an internal version of MINISAT [6], a snapshot from
November 11, 2008. It is almost identical to the one described in [15] the winner
of the SAT Race’08. It additionally allows to perturbate the initial variable
ordering slightly using a pseudo random number generator. The second SAT
solver is PICOSAT [3] version 880, an improved version of PICOSAT [3]. The major
improvement was to separate garbage collection of learned clauses from restart
scheduling. One out of 1000 decisions is a random decision in PICOSAT. The
seed for the random number generator is specified on the command line. Table 1
shows our main experimental results. In Tab. 2, we focus on two configurations.
More details can be found at http://fmv.jku.at/papers/minimize.7z.

4 Conclusion

In this paper we discussed algorithms for minimizing learned clauses. Our ex-
tensive experimental analysis proves the effectiveness of clause minimization.

References

1. Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., Sais, L.: A generalized
framework for conflict analysis. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008.
LNCS, vol. 4996, pp. 21–27. Springer, Heidelberg (2008)

2. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. (JAIR) 22 (2004)

3. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT) 4 (2008)

4. Dershowitz, N., Hanna, Z., Nadel, A.: Towards a better understanding of the func-
tionality of a conflict-driven SAT solver. In: Marques-Silva, J., Sakallah, K.A. (eds.)
SAT 2007. LNCS, vol. 4501, pp. 287–293. Springer, Heidelberg (2007)

5. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Jin, H.S., Somenzi, F.: Strong conflict analysis for propositional satisfiability. In:
Proc. DATE 2006 (2006)

8. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, IOS Press, Amsterdam (2009)

9. Marques-Silva, J., Sakallah, K.: GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Trans. on Computers 48(5) (1999)

10. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proc. DAC 2001 (2001)

11. Nadel, A.: Understanding and Improving a Modern SAT Solver. PhD thesis, Tel
Aviv University (submitted, 2008)

12. Pilarski, S., Hu, G.: Speeding up SAT for EDA. In: Proc. DATE 2002 (2002)
13. Pipatsrisawat, K., Darwiche, A.: A new clause learning scheme for efficient unsat-

isfiability proofs. In: Proc. AAAI 2008 (2008)
14. Sinz, C.: SAT-Race 2008 (2008), http://baldur.iti.uka.de/sat-race-2008

http://baldur.iti.uka.de/sat-race-2008

Minimizing Learned Clauses 243

15. Sörensson, N., Eén, N.: MS 2.1 and MS++ 1.0, SAT Race 2008 edn. (2008)
16. Sörensson, N., Eén, N.: MiniSat v1.13 – A SAT solver with conflict-clause mini-

mization (2005)
17. Urquhart, A.: The complexity of propositional proofs. Bull. of EATCS 64 (1998)
18. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning

in boolean satisfiability solver. In: Proc. ICCAD 2001 (2001)

Extending SAT Solvers to Cryptographic
Problems

Mate Soos1, Karsten Nohl2, and Claude Castelluccia1

1 INRIA Rhône-Alpes
2 University of Virginia

Abstract. Cryptography ensures the confidentiality and authenticity of
information but often relies on unproven assumptions. SAT solvers are
a powerful tool to test the hardness of certain problems and have suc-
cessfully been used to test hardness assumptions. This paper extends
a SAT solver to efficiently work on cryptographic problems. The pa-
per further illustrates how SAT solvers process cryptographic functions
using automatically generated visualizations, introduces techniques for
simplifying the solving process by modifying cipher representations, and
demonstrates the feasibility of the approach by solving three stream ci-
phers.

To optimize a SAT solver for cryptographic problems, we extended the
solver’s input language to support the XOR operation that is common in
cryptography. To better understand the inner workings of the adapted
solver and to identify bottlenecks, we visualize its execution. Finally,
to improve the solving time significantly, we remove these bottlenecks
by altering the function representation and by pre-parsing the resulting
system of equations.

The main contribution of this paper is a new approach to solving
cryptographic problems by adapting both the problem description and
the solver synchronously instead of tweaking just one of them. Using
these techniques, we were able to solve a well-researched stream cipher
26 times faster than was previously possible.

1 Introduction

Cryptographic functions are at the base of computer security with encryption ci-
phers ensuring confidentiality and authenticity. Despite their importance, many
practical cryptographic functions rely on unproven assumptions about the com-
plexity of their underlying mathematical problems. When these assumptions are
found to be incorrect, new theoretical and practical attacks are constructed that
sharpen the understanding of a specific problem and advance the evolution of
cryptography in general. SAT solvers have been shown to be a powerful tool
in testing mathematical assumptions. In this paper, we extend SAT solvers to
better work in the environment of cryptography.

Previous work on solving cryptographic problems with SAT solvers has con-
centrated on the best mathematical representation of ciphers [1]. To further

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 244–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Extending SAT Solvers to Cryptographic Problems 245

improve the potential of SAT solvers, we adapted a SAT solver to better suit
cryptographic problems and then manipulated the representation of some cryp-
tographic problems to best fit this modified solver. We refined SAT solvers to
understand the XOR operation, which is common in cryptography, besides func-
tions in the conjunctive normal form (CNF) that is native to many SAT solvers.
We further added dynamic behavior analysis to more thoroughly understand the
workings of SAT solvers on cryptographic primitives.

To show the effectiveness of our approach, we solved a few different ciphers.
The first two targets, Crypto-1 [2] and HiTag2 [3], are weak stream ciphers,
widely used in electronic payment, access control and car immobilizers. Our third
target, Bivium [4], is a simplified version of the eSTREAM standard stream ci-
pher Trivium [5] known for its simple description. Solving these ciphers with
an unmodified SAT solver and with only basic improvements to their CNF rep-
resentation reveals the secret state within 170 hours for Crypto-1, a week for
HiTag2 and in 242.7 s [6] for Bivium. With our adapted SAT solver and tuned
cipher description techniques, the average attack time on a desktop PC drops to
40 seconds for Crypto-1, 6.5 hours for HiTag2 and 236.5 s for Bivium.

Contributions

We optimize a standard SAT solver for cryptographic problems in Sect. 3. The
SAT solver now handles XOR operations natively to faster solve cryptographic
problems and the solver’s execution is visualized to allow insight into its in-
ner workings. Based on these improvements, guidelines are derived on how to
convert ciphers to a description that can be quickly solved in Sect. 4. Finally,
three ciphers are solved using the adapted SAT solver faster than was previously
possible with other SAT solver-based techniques, in Sect. 5.

2 Background

Our results build on research in stream ciphers, SAT solvers, and algebraic crypt-
analysis. This section presents the current state of research in these areas and
indicates where they connect.

2.1 Stream Ciphers

A stream cipher is a symmetric cryptographic function that allows two parties to
communicate privately when they share a secret key. Stream ciphers produce a
stream of pseudorandom bits (the keystream) given a secret key and a non-secret
random initialization vector (IV). This key stream is XORed with a message
prior to sending and again XORed after receiving so that the message cannot
be read while in transit.

The stream ciphers discussed in this paper are based on one or more shift
registers with linear or non-linear feedback function as well as a filter function
that maps the register states to keystream bits. Stream ciphers have two phases:

246 M. Soos, K. Nohl, and C. Castelluccia

an initialization phase followed by a keystream generation phase. During initial-
ization, key and IV are typically mixed to become the initial state by shifting
the registers while feeding in a combination of the feedback function and the
filter function. During keystream generation, the registers are shifted and their
feedback function is applied, while the keystream is generated from the state
using the filter function.

2.2 SAT Solvers

Satisfiability solvers are programs that employ highly optimized mathematical
algorithms to decide whether a set of constraints have a solution. This paper only
discusses one widely-used constraint set, the conjunctive normal form (CNF). In
CNF, each element in the constraints, a or ā, is called a literal. A clause is a
disjunction (or-ing) of literals. CNF is a conjunction (and-ing) of clauses. Hence,
the constraints are presented to the SAT solver as an “and of ors”.

SAT solvers are mostly used in electronic design automation (EDA), though
they are also used in a growing number of other domains. State-of-the-art solvers
have been extended or adopted to meet the specific characteristics of different
problem domains, for example temporal induction in [7].

Modern SAT solvers that are based on the DPLL algorithm [8] evolved from
GRASP [9] which introduced learning, and later from from Chaff [10] which
introduced watched literals and dynamic variable ordering. Solvers that employ
these techniques are called conflict-driven SAT solvers. In this paper we extend
MiniSat [11], a conflict-driven SAT solver designed for researchers to adapt it to
different domains.

MiniSat employs a backtracking-based, depth-first search algorithm to find a
satisfying variable assignment for a system of clauses. The algorithm branches
on a variable by guessing it to true or false and examining whether the value
of other variables depends on this guess. The affected variables are then assigned
and the search continues until no more assignments can be made. During this pe-
riod, called propagation, a clause may be found that cannot be satisfied anymore.
If such a conflict is encountered, a learned clause is generated that captures the
wrong guesses that lead to the conflict. The topmost guess allowed by the learned
clause is then reversed and the algorithm continues. The learned clauses trim the
search tree and guide the algorithm in choosing the best next guess. Eventually,
either a satisfiable assignment is found or the search tree is exhausted, meaning
that no solution exists.

2.3 Algebraic Cryptanalysis

Algebraic cryptanalysis is a family of attacks that exploits insufficient complex-
ity in ciphers. These attacks have successfully been applied to break a number
of ciphers secure against other forms of cryptanalysis. In algebraic attacks, equa-
tions are constructed that express the output bits of a cipher in terms of its
inputs, or its state. These equations are then solved and reasoned about with
either dedicated equation solvers such as the F5 algorithm [12], or standard SAT
solvers.

Extending SAT Solvers to Cryptographic Problems 247

The first SAT-based cryptanalysis was by Massacci et al. [13], experimenting
with the Data Encryption Standard (DES) using DPLL-based SAT solvers. More
recent work by Courtois and Bard has produced attacks against KeeLoq [1]
and stream ciphers with linear feedback [14]. Algebraic cryptanalysis has also
been used on modern stream ciphers, such as the reduced version of Trivium,
Bivium [4].

3 Adapting the SAT Solver

To take full advantage of the power of SAT solving we adapted and optimized
MiniSat, a state-of-the-art DPLL-based SAT solver, for algebraic cryptanalysis.
We further added visualization to the solver to help identify bottlenecks and
improve the solving by altering the problem representation. Among the many
choices for modern SAT solvers, we chose MiniSat for its competitive perfor-
mance, code availability, and a design that specifically encourages extensions to
its input language.

3.1 XOR Support

Cryptographic building blocks such as filter and feedback functions lead to equa-
tions with many XORs. These XOR constraints, when converted to CNF repre-
sentation without further elaboration, grow exponentially in size. This is because
the XOR constraint’s Karnaugh table contains 2len−1 minterms, and hence needs
2len−1 clauses to describe in CNF.

To circumvent this limitation, previous research extended the Satz solver to
reason about 2- and 3-long XOR constraints, which they called equivalency rea-
soning [15]. For MiniSat, previous research [1, Sect. 6.4] cut up the XOR function
into groups of smaller XORs, each setting an additional variable. The full XOR
was then represented as a XOR of the additional variables.

While cutting up XORs allows MiniSat to work on long XOR chains, this ap-
proach forces the solver to watch and examine many clauses for variable changes,
when in fact only one XOR constraint should be watched. To mitigate this lim-
itation, we implemented the XOR constraint natively into MiniSat. Each XOR
constraint is represented by a single xor-clause. A xor-clause behaves as a reg-
ular clause towards all unchanged parts of the solver: it dynamically changes
appearance when propagating or causing a conflict by appearing as a different
regular clause depending on the current assignment of variables.

For example, the xor-clause a⊕ b⊕ c represents all the regular clauses

a ∨ b ∨ c (1) a ∨ b ∨ c (2)
a ∨ b ∨ c (3) a ∨ b ∨ c (4)

and if, for example a = true and b = true, then it changes its appearance to
the regular clause (2), and causes the propagation c = true just as its regular
representation would. If, however, a = false, b = true and c = true, the xor-
clause changes its appearance to regular clause (1) and causes a conflict just as
its regular representation would.

248 M. Soos, K. Nohl, and C. Castelluccia

Generating a conflicting or propagating clause from a xor-clause is done as
follows. All variables that are assigned to false are included as-is, and all vari-
ables that are assigned to true are included in a negated form. If propagating,
the single unassigned variable is also included, its negation depending on the
values of the other variables in the xor-clause.

Solving cryptographic functions is accelerated considerably by integrating xor-
clauses into MiniSat. For the stream ciphers Crypto-1 and Grain solving is up
to twice as fast with xor-clauses and memory usage is decreased by at least an
order of magnitude.

Besides speeding up the solving, native XOR support leads to more concise
input file and internal data structures, which simplify analyzing the dynamic be-
havior of the solver. Lastly, xor-clauses enable a straightforward implementation
of Gaussian elimination into MiniSat as explained in the next section.

3.2 Gaussian Elimination

Gaussian elimination is an efficient algorithm for solving systems of linear equa-
tions. Since each xor-clause is a linear equation, we can use this algorithm to
solve the system of equations described by the xor-clauses. Some linear problems
with as many as 100 variables can be trivially solved with Gaussian elimination
but take an excessive amount of time when solved with SAT solvers. This phe-
nomenon is due to the fact that SAT solvers solve by guessing variables and
determining if there is any equation that gives a result given the current assign-
ments. If the set of linear equations is dense (i.e. all equations contain many
variables), almost all variables need to be guessed before any equation gives a
result. Thus, for a system with 100 variables, it is not uncommon that 80 vari-
ables need to be guessed before any equation gives a result, i.e. the search space
is on the order of 280. When using Gaussian elimination, on the other hand, the
same problem can be solved in less than 220 operations.

Since Gaussian elimination and the DPLL algorithm (used in MiniSat) are op-
timal for different parts of cryptographic problems, the best results are achieved
by switching between the two. To benefit from Gaussian elimination during
solving, whenever the SAT solver cannot perform any further propagations and
would need to guess a variable, we ask the Gaussian elimination if there is any
information it could extract from the xor-clauses.

Execution of the Gaussian elimination gives one of the following results: either
it finds nothing, or it finds that a variable can be propagated by a combination
of xor-clauses, or it finds that given the current assignments, the system of
equations is unsatisfiable. In the two latter cases, the solver needs the actual
xor-clause, which when evaluated with the variable assignments, gives a unit or
empty clause, respectively. This actual xor-clause is important, as it signals the
solver what variable was propagated by what clause (in case of a propagation),
or what clause caused the conflict (in case of a conflict). To calculate the actual
xor-clauses, we keep two matrixes: one updated with the current assignments,
and one that mirrors the other only with its row-swap and row-xor operations.
Whenever there is a propagation or conflict indicated by the first matrix, the

Extending SAT Solvers to Cryptographic Problems 249

second matrix is used to generate the actual xor-clause. For example, if the two
matrixes are:

xor-clauses
with v8 assigned to true

v10 v8 v9 v12 aug⎡⎢⎢⎣
1 − 1 1 1
0 − 1 1 1
0 − 0 1 0
0 − 0 0 0

⎤⎥⎥⎦

actual xor-clauses

v10 v8 v9 v12 const⎡⎢⎢⎣
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1

⎤⎥⎥⎦
then the second to last row of the first matrix indicates propagation of v12 =
false. The actual xor-clause can be read from the second matrix: it is v8⊕v12⊕1.
The matrix used by the Gaussian elimination algorithm is upper triangular, but
the matrix containing the actual xor-clauses is only upper triangular for the
columns representing variables that are not assigned.

Including Gaussian elimination into MiniSat is based on the idea of SAT Mod-
ulo Theories (SMT). An SMT instance is a generalization of a Boolean SAT in-
stance in which various sets of variables are replaced by predicates from a variety
of underlying theories. Naturally, SMT formulas provide a much richer modeling
language than is possible with Boolean SAT formulas. In essence, xor-clauses
enrich MiniSat’s language, which the Gaussian elimination can understand and
reason about, tightly integrating its conclusions into the DPLL algorithm of
MiniSat.

A trade-off parameter for the Gaussian elimination is the cut-off depth until
which it is worthwhile to execute the algorithm. Cutting off branches at the
top reduces the search space more than cutting at the bottom, but it takes
approximately the same time to execute the algorithm. However, if the cut-off
depth is too shallow, the constant overhead is more than the benefit, but if too
deep, the dynamic overhead is more than the benefit. In the end, we made the
cut-off depth configurable, and ran tests to decide for each cipher which depth
gave the most benefit.

To save time, the matrix is incrementally normalized as the solver travels
down the search tree and assignments are made. We save the matrix at every
search depth, and in case the solver has to jump back (due to a conflict), we
re-load the matrix from the state saved at that depth.

Using Gaussian elimination, solving Bivium and Trivium is faster by 1-5% if
we restrict the search depth to between 1 and 8, depending on the number of
guessed bits. For other instances derived from other ciphers, Gaussian elimina-
tion does not appear to decrease the overall solving time. A comparative figure
for Bivium, showing the speed of solving and the explored search space versus
the depth until which the algorithm was active is present in Fig. 1. It is appar-
ent from the graphs that using Gaussian elimination reduces the explored search
space (in the example, by up to 83%), but the algorithm takes more and more
time to execute as the cut-off depth is increased.

250 M. Soos, K. Nohl, and C. Castelluccia

300

600

900

1200

1500

0 3 6 9 12 15 18

T
im

e(
s)

Gaussian elimination active
until depth

0

4e+8

8e+8

1.2e+9

1.6e+9

0 3 6 9 12 15 18

N
o.

of
pr

op
ag

at
io

ns
(∼

ex
pl

or
ed

se
ar

ch
sp

ac
e)

Gaussian elimination active
until depth

Fig. 1. Comparison between the time and the number of propagations (∼explored
search space), relative to the depth until which the Gaussian elimination was active.
Each point in the graphs represent 2000 random examples of the Bivium cipher, given
56 randomly guessed state bits.

Apart from the marginal speedup that Gaussian elimination brings, it is a
useful tool for multiple other reasons. First of all, it demonstrates that SAT
solvers ignore certain characteristics of the problem they are dealing with, and
by exploiting these properties the search space could be significantly reduced.
Secondly, the combined solver works much faster on problems that have large
parts that can benefit from Gaussian elimination. Lastly, our implementation of
Gaussian elimination can likely be improved upon leading to greater speedups.

3.3 Dynamic Behavior Analysis

The dynamic behavior of SAT solvers is hard to follow since branching and
propagation occur far too many times to be traceable by hand. Understanding
the solver’s dynamic behavior, however, is essential for estimating a cipher’s
complexity and for improving the solver’s performance.

To better understand how MiniSat reaches solutions, we implemented search
tree tracing into the solver. The output of our MiniSat trace extension can be
analyzed visually and statistically. Visualizing the operation of DPLL-based SAT
solvers was introduced in [16], which our implementation augments in multiple
ways. Our extension allows for variables to be named and for clauses to be
grouped, which is useful when multiple clauses are used to represent one logical
entity (e.g. a feedback function). The calculated statistics include the type of
most conflicted clauses (e.g. filter functions), the average number of propagations
per search tree branch, etc. An example search tree of the Crypto-1 cipher is in
Fig. 2. The visualization allowed us, for instance, to identify the regularly placed
filter function taps of Crypto-1 as its largest weakness over an improved variant
found in HiTag2 tags.

It is clear from the variable branching statistics that during solving, the most
important variables are picked automatically by MiniSat, which are always the

Extending SAT Solvers to Cryptographic Problems 251

BEGIN

- s[60]

guess

- s[104]

guess

 s[104]

**115

 s[63]

**121

 s[74]

**123

 s[103]

**125

 s[79]

**126

- s[103]

guess

 s[103]

**99

 s[79]

**107

 s[74]

**111

 s[63]

**113

 s[78]

**114

- s[102]

guess

- s[100]

**95

 s[63]

**97

 s[79]

**98

- s[101]

guess

 s[100]

**87

 s[79]

**91

 s[63]

**93

 s[74]

**94

- s[100]

guess

- s[99]

guess

 s[99]

**79

 s[74]

**83

 s[63]

**85

 s[79]

**86

- s[98]

guess

 s[96]

**72

 s[63]

**75

 s[79]

**77

 s[74]

**78

- s[97]

guess

- s[96]

guess

- s[95]

guess

- s[79]

**68

 s[63]

**70

 s[74]

**71

- s[94]

guess

- s[93]

guess

- s[92]

guess

- s[91]

guess

- s[90]

guess

- s[89]

guess

- s[88]

guess

- s[87]

guess

- s[86]

guess

- s[85]

guess

- s[84]

guess

 s[79]

**64

 s[74]

**66

 s[65]

**67

- s[83]

guess

- s[82]

guess

- s[81]

guess

- s[80]

guess

- s[79]

guess

- s[78]

guess

 s[78]

**60

 s[63]

**62

 s[65]

**63

- s[77]

guess

 s[77]

learned
clause no. 58

 s[74]

learned
clause no. 59

- s[76]

guess

 s[76]

**57

 s[63]

calc_s[28]

- s[65]

calc_s[17]

 s[72]

calc_s[30]

 s[74]

calc_s[93]

- s[62]

calc_s[2]

- s[75]

calc_s[100]

- s[61]

calc_s[80]

 s[76]
 s[77]
 s[78]

 s[102]
 s[79]

 s[100]
 s[60]
 s[93]

calc_s[102]

- s[63]

calc_s[28]

 s[65]

calc_s[17]

- s[72]

calc_s[30]

 s[74]

calc_s[93]

 s[77]
 s[78]
 s[79]
 s[60]
 s[93]
 s[102]
 s[100]

calc_s[31]

- s[74]

guess

- s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[74]
- s[77]
 s[79]
 s[78]
 s[93]
 s[60]

calc_s[17]

 s[72]

calc_s[31]

- s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[75]

calc_s[99]

 s[76]

calc_s[28]

 s[78]
 s[79]
 s[60]
 s[103]
 s[99]
 s[93]
 s[102]
 s[100]

calc_s[103]

- s[63]

guess

 s[74]

**61

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[103]

- s[65]

calc_s[30]

 s[74]
 s[63]
 s[99]
 s[60]
- s[78]
 s[79]

 s[103]

calc_s[99]

 s[72]

calc_s[31]

 s[75]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[61]

calc_s[80]

 s[77]

calc_s[93]

 s[63]
 s[79]
- s[78]
 s[93]
 s[60]
 s[99]

 s[103]

calc_s[17]

- s[76]

calc_s[28]

- s[65]

guess

- s[72]

calc_s[30]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[74]

calc_s[31]

- s[64]

calc_s[104]

 s[75]

calc_s[96]

 s[65]
- s[78]
 s[79]
 s[85]
- s[63]
 s[96]

 s[104]
 s[60]

calc_s[85]

 s[72]

calc_s[30]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[31]

 s[79]
 s[85]
 s[60]
 s[93]
 s[96]

 s[104]
 s[99]

 s[103]
 s[102]
 s[100]

calc_s[93]

- s[74]

guess

 s[63]

**65

 s[72]

calc_s[31]

- s[63]

guess

 s[76]

calc_s[28]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[63]
 s[74]
 s[60]
- s[79]
 s[99]
 s[103]
 s[100]

calc_s[3]

- s[76]

calc_s[28]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[77]

calc_s[17]

 s[74]
- s[79]
 s[60]
 s[96]
 s[99]
 s[103]
 s[100]

calc_s[2]

- s[72]

calc_s[31]

- s[65]

guess

 s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

- s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[68]

calc_s[10]

 s[77]

calc_s[104]

 s[65]
- s[74]
 s[60]
- s[79]
 s[100]
 s[99]

calc_s[3]

- s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

 s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[79]
 s[96]
 s[103]
 s[100]
 s[99]
 s[60]

calc_s[103]

- s[63]

guess

 s[74]

**69

 s[76]

calc_s[28]

- s[74]

guess

- s[78]

**61

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[93]

**60

 s[65]

calc_s[30]

 s[74]
 s[63]
 s[60]
 s[79]
 s[103]
 s[100]
 s[99]

calc_s[103]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[63]
 s[96]
 s[102]
 s[103]
 s[60]
 s[100]
 s[99]

calc_s[7]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
 s[79]

 s[103]
 s[96]

 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[96]
 s[99]
 s[102]
 s[103]
 s[100]
 s[60]

calc_s[20]

- s[63]

guess

 s[74]

**73

 s[79]

**74

 s[76]

calc_s[28]

- s[74]

guess

- s[79]

**65

 s[74]
 s[63]
 s[60]

 s[103]
 s[100]
 s[99]

**69

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

 s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

- s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[74]
 s[60]
 s[63]
 s[102]
 s[103]
- s[96]
 s[100]

calc_s[7]

 s[65]

**67

- s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[64]

calc_s[4]

 s[63]
 s[99]
 s[100]
 s[60]
 s[102]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[74]

**76

- s[79]

guess

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[79]
- s[63]
 s[60]

 s[103]
- s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[63]
 s[60]
 s[102]
 s[103]
- s[96]
 s[100]

calc_s[20]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
- s[79]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[65]

**67

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[99]
 s[100]
 s[60]
 s[103]
 s[102]

calc_s[99]

- s[74]

guess

 s[63]

**81

 s[79]

**82

- s[63]

guess

 s[79]

**80

 s[76]

calc_s[28]

- s[79]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[60]
 s[74]
 s[103]
 s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]
 s[60]
 s[103]
 s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**76

 s[79]
 s[74]
 s[60]
 s[103]
 s[100]

**71

- s[96]

**78

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[100]
 s[103]
 s[60]

calc_s[8]

- s[63]

guess

 s[79]

**84

 s[76]

calc_s[28]

- s[79]

guess

- s[96]

**74

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[63]
 s[60]
 s[102]
 s[103]
 s[100]

calc_s[7]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[63]
 s[100]
 s[103]
 s[60]
 s[102]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**77

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[100]
 s[102]
 s[103]
 s[60]

calc_s[20]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]
 s[102]
 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**89

 s[74]

**90

- s[63]

guess

 s[74]

**88

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
- s[100]
 s[103]
 s[60]

calc_s[23]

- s[63]

guess

 s[74]

**92

 s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[74]
 s[63]
 s[60]
 s[103]
- s[100]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[100]
 s[103]
 s[60]

calc_s[4]

- s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[74]
- s[100]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]
 s[103]
 s[60]

calc_s[4]

 s[74]

**83

 s[79]

**96

 s[102]

**87

- s[63]

guess

 s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[63]
 s[104]
 s[60]
 s[103]

calc_s[104]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[63]
 s[103]
 s[60]
 s[104]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[104]

calc_s[104]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[104]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**103

 s[74]

**105

 s[78]

**106

- s[63]

guess

 s[74]

**101

 s[78]

**102

 s[76]

calc_s[28]

 s[75]

**100

- s[74]

guess

- s[72]

calc_s[31]

- s[100]

guess

- s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[75]
 s[74]
 s[79]
 s[63]
 s[60]

- s[103]

calc_s[4]

 s[100]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[104]
 s[79]
 s[60]

calc_s[104]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]
 s[104]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**104

- s[74]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[74]
 s[79]
- s[63]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
- s[63]
- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
- s[63]
 s[60]
 s[79]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[104]
 s[60]

calc_s[104]

- s[74]

guess

 s[63]

**109

 s[78]

**110

 s[72]

calc_s[31]

 s[78]

**108

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[60]
- s[79]
 s[74]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[63]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

- s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[78]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]
- s[79]
 s[60]

- s[103]

calc_s[23]

- s[72]

calc_s[31]

 s[78]

**112

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[104]
 s[60]

calc_s[4]

- s[63]

guess

 s[74]

**117

 s[103]

**119

 s[78]

**120

 s[76]

calc_s[28]

 s[103]

**116

- s[74]

guess

- s[79]

guess

- s[103]

**101

- s[72]

calc_s[31]

- s[100]

**95

 s[102]

**85

 s[103]
 s[74]
 s[60]
 s[63]

**81

- s[79]

**113

 s[74]
 s[63]
 s[60]

**101

- s[103]

guess

 s[79]

**118

- s[100]

**95

 s[102]

**85

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[63]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[103]
 s[63]
 s[60]

calc_s[99]

- s[79]

**113

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[60]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[60]

calc_s[23]

- s[76]

calc_s[28]

 s[103]

**122

- s[74]

guess

- s[103]

guess

- s[100]

**95

 s[102]

**87

 s[103]
 s[74]
 s[60]

**83

- s[79]

**111

 s[74]
 s[60]

**105

- s[103]

guess

 s[79]

**124

- s[100]

**95

 s[102]

**87

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[78]

**106

 s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[60]

calc_s[24]

 s[78]

**114

- s[72]

calc_s[31]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[60]

calc_s[4]

node66

 s[60]

learnt unit clause

 s[74]

learnt unit clause

- s[74]

guess

 s[103]

**134

 s[63]

**138

 s[79]

**140

 s[78]

**141

- s[103]

guess

 s[63]

**130

 s[79]

**132

 s[78]

**133

- s[63]

guess

 s[79]

**128

 s[78]

**129

 s[76]

calc_s[28]

 s[78]

**127

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[74]

 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[63]
 s[74]
 s[103]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]
 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[103]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**131

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]

 s[103]

calc_s[25]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[103]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[86]

guess

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[103]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[103]
 s[74]

calc_s[4]

- s[63]

guess

 s[79]

**136

 s[78]

**137

 s[76]

calc_s[28]

 s[78]

**135

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]
 s[63]

calc_s[25]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**139

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[74]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[74]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[4]

- s[103]

guess

 s[63]

**145

 s[79]

**147

 s[78]

**148

- s[63]

guess

 s[79]

**143

 s[78]

**144

 s[76]

calc_s[28]

 s[78]

**142

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[63]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

- s[85]

calc_s[85]

 s[78]
 s[63]

 s[103]

calc_s[16]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**146

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

- s[85]

calc_s[85]

- s[92]

calc_s[92]

- s[61]

calc_s[18]

 s[93]

calc_s[93]

- s[104]

calc_s[104]

- s[83]

calc_s[83]

 s[87]

calc_s[87]

 s[96]

calc_s[96]

- s[102]

calc_s[102]

 s[81]

calc_s[81]

 s[97]

calc_s[97]

- s[90]

calc_s[90]

- s[98]

calc_s[98]

- s[82]

calc_s[82]

- s[88]

calc_s[88]

- s[84]

calc_s[84]

- s[101]

calc_s[101]

 s[80]

calc_s[80]

- s[94]

calc_s[94]

- s[95]

calc_s[95]

 s[89]

calc_s[89]

- s[91]

calc_s[91]

- s[86]

calc_s[86]

MODEL

- s[78]

guess
learned

clause no. 58
learned

clause no. 59

- s[83]

 s[87]

calc_s[87]

Fig. 2. Graphviz visualization of an example search for the Crypto-1 cipher’s states.
The tree is read from left to right, top to bottom: the left- and bottommost pen-
tagon is the first conflict clause, the right- and bottommost circle is the satisfying
assignment.

state or key bits. By examining smaller search graphs and the statistics on
the most conflicted clause groups, we further found that once the important
variables have been guessed, the results of these assignments are propagated to
the equations representing the known keystream bits, and if they do not match,
a conflict occurs, a guess is reversed, and the algorithm starts again.

The solver’s strategy is therefore similar to a brute force search in which all
key or state bits are tried. If one or more keystream bits can be evaluated without
knowing all state bits, the SAT solver will evaluate them, and if the equations
do not work out, stop the computation there, effectively doing partial evaluation.
Furthermore, clauses are learnt during the search, which later prune the search
tree, helping to perform partial evaluation.

The lessons learnt from search-tree tracing are as follows. It is best not to
include long initialization sequences (such as that used by Grain) in the equations
since after initialization all keystream bits depend on all key bits. This forces
the solver to calculate a large part of the cipher in an ineffective way, as its
description and subsequent evaluation in the solver is more complicated than
the way the cipher was originally meant to be calculated.

A stream cipher is considered broken if its state can be determined at any point
during keystream generation. Therefore, instead of making initialization part the
problem, its state at a suitable point should be treated as the unknown, as this
is the only possible way to take advantage of the partial evaluation property of
SAT solvers. Although this state is larger than the key for all modern ciphers, it
is relatively easy to solve a large part of it, as the keystream bits depend much
more directly on the selected state’s bits.

252 M. Soos, K. Nohl, and C. Castelluccia

4 Adapting the Cipher Representation

Finding the best representation of stream ciphers in regular and xor-clauses is a
crucial step in breaking a cipher with SAT solvers [1, Sect. 8]. For the techniques
in this paper, a cipher is described as a logical circuit with functions, variables,
the known keystream, and known inputs.

4.1 Logical Circuit Representation

In the logical circuit representation used in our approach, the unknown is the
reference state’s bits, and functions are expressed in regular and xor-clauses,
using variables as input. An example logical circuit for a 3-bit state stream cipher
is given in Fig. 3. In the figure, the cipher produces four keystream bits, and the
shift register is shifted three times, using the feedback function. Functions are
shown as hexagons, variables as simple boxes, and the reference state is marked
in gray.

The depth of a keystream bit is the number of distinct functions (resp.
hexagons) traversed on the way from the keystream bit to the reference state
bits. For example, on Fig. 3. the 1st keystream bit’s depth is one, while the 4th

keystream bit’s is four. Since the solver guesses the reference state’s bits, the
depth of the circuit indicates the number of functions that must be evaluated
by the solver to realize that a wrong guess was made for a given keystream bit.
Therefore, the shallower the overall depth of the circuit, the faster the solving.
The difficulty hidden behind the functions (resp. hexagons) is also relevant, as
when traversed, these must be calculated. If the number and length of clauses
representing these hexagons are large, the solver is slowed down considerably.

State bit
3

State bit
4

States

Filter
Function

Filter

Key
stream

Feedback
Function

Feed
back

Filter Filter

Reference state
State bit

2
State bit

1
State bit

5

Feed
back

Feed
back

State bit
6

Filter

1st bit 2nd bit 3rd bit 4th bit

Fig. 3. Logical circuit representation of an example stream cipher: The cipher has a
3-bit shift register, whose filter function depends on the first two bits in the register,
and whose feedback function depends on the last two bits in the register

Extending SAT Solvers to Cryptographic Problems 253

fe
ed

ba
ck

fu
nc

. 4
8

st
at

e
48

fa
 [3

6,
45

,4
6,

48
]

st
at

e
47

fe
ed

ba
ck

fu
nc

. 5
0

fe
ed

ba
ck

fu
nc

. 5
1

fe
ed

ba
ck

fu
nc

. 5
2

fa
 [3

5,
44

,4
5,

47
]

fa
 [3

7,
46

,4
7,

49
]

st
at

e
46

fe
ed

ba
ck

fu
nc

. 4
9

fa
 [3

4,
43

,4
4,

46
]

st
at

e
43

fa
 [3

3,
42

,4
3,

45
]

st
at

e
42

st
at

e
41

st
at

e
30

fb
 [2

7,
28

,3
0,

32
]

fb
 [2

9,
30

,3
2,

34
]

fb
 [3

0,
31

,3
3,

35
]

st
at

e
26

fb
 [1

7,
21

,2
3,

26
]

fb
 [2

0,
24

,2
6,

29
]

st
at

e
23

fb
 [1

9,
23

,2
5,

28
]

st
at

e
22

fb
 [1

6,
20

,2
2,

25
]

fb
 [1

8,
22

,2
4,

27
]

st
at

e
16

fb
 [9

,1
3,

15
,1

6]

fb
 [1

0,
14

,1
6,

17
]

st
at

e
8

fb
 [8

,1
2,

14
,1

5]

fa
 [4

,5
,7

,8
]

fa
 [5

,6
,8

,9
]

st
at

e
7

fb
 [7

,1
1,

13
,1

4]

fa
 [3

,4
,6

,7
]

st
at

e
6

fa
 [2

,3
,5

,6
]

st
at

e
3

st
at

e
2

fa
 [1

,2
,4

,5
]

st
at

e
0

st
at

e
49

st
at

e
44

st
at

e
31

fb
 [2

8,
29

,3
1,

33
]

fb
 [3

1,
32

,3
4,

36
]

st
at

e
27

st
at

e
24

st
at

e
17

fb
 [1

1,
15

,1
7,

18
]

st
at

e
9

st
at

e
4

st
at

e
1

st
at

e
50

st
at

e
45

st
at

e
32

st
at

e
28

st
at

e
25

st
at

e
18

st
at

e
10

st
at

e
5

st
at

e
51

st
at

e
33

st
at

e
29

st
at

e
19

st
at

e
11

st
at

e
52

st
at

e
34

st
at

e
20

st
at

e
12

st
at

e
13

st
at

e
14

st
at

e
15

st
at

e
21

st
at

e
35

st
at

e
36

st
at

e
37

fa
 [1

,2
,4

,5
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 0

fb
 [7

,1
1,

13
,1

4]

in
te

rn
al

 v
ar

fb
 [1

6,
20

,2
2,

25
]

in
te

rn
al

 v
ar

fb
 [2

7,
28

,3
0,

32
]

in
te

rn
al

 v
ar

fa
 [3

3,
42

,4
3,

45
]

in
te

rn
al

 v
ar

fa
 [2

,3
,5

,6
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 1

fb
 [8

,1
2,

14
,1

5]

in
te

rn
al

 v
ar

fb
 [1

7,
21

,2
3,

26
]

in
te

rn
al

 v
ar

fb
 [2

8,
29

,3
1,

33
]

in
te

rn
al

 v
ar

fa
 [3

4,
43

,4
4,

46
]

in
te

rn
al

 v
ar

fa
 [3

,4
,6

,7
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 2

fb
 [9

,1
3,

15
,1

6]

in
te

rn
al

 v
ar

fb
 [1

8,
22

,2
4,

27
]

in
te

rn
al

 v
ar

fb
 [2

9,
30

,3
2,

34
]

in
te

rn
al

 v
ar

fa
 [3

5,
44

,4
5,

47
]

in
te

rn
al

 v
ar

fa
 [4

,5
,7

,8
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 3

fb
 [1

0,
14

,1
6,

17
]

in
te

rn
al

 v
ar

fb
 [1

9,
23

,2
5,

28
]

in
te

rn
al

 v
ar

fb
 [3

0,
31

,3
3,

35
]

in
te

rn
al

 v
ar

fa
 [3

6,
45

,4
6,

48
]

in
te

rn
al

 v
ar

fa
 [5

,6
,8

,9
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 4

fb
 [1

1,
15

,1
7,

18
]

in
te

rn
al

 v
ar

fb
 [2

0,
24

,2
6,

29
]

in
te

rn
al

 v
ar

fb
 [3

1,
32

,3
4,

36
]

in
te

rn
al

 v
ar

fa
 [3

7,
46

,4
7,

49
]

in
te

rn
al

 v
ar

Fig. 4. Clause- and variable-dependency graph of HiTag2. Clause groups are repre-
sented as hexagons, and variables as boxes. The known keystream bits are the 5 final
filter functions at the top, and the feedback functions are the 5 hexagons at the bottom
right.

Finally, the number of reference state bits each keystream bit depends on plays
an important role during solving, as a large part of these must be guessed before
evaluation can take place. This dependency number can be calculated by simply
traversing the graph in a breath-first search fashion from the keystream up. The
lower this number, the faster the solving.

To summarize, when attempting to represent a cipher, the depth of the re-
sulting logical circuit, the number of reference state bit dependencies and the
complexity of the traversed functions’ representations must all be optimized to
maximize solving speed.

4.2 Generating the Logical Circuit Representation

To evaluate the effectiveness of different representations of the same stream
cipher, we extended MiniSat by a tool that generates the logical circuit’s de-
scription. Given some additional information in the input language, the circuit
is visualized with Graphviz or statistically analyzed to calculate keystream bit
depths and state-bit dependencies. In the generated circuit, just as in the search
tree, clauses are grouped into logical elements (such as a filter function), and
variables are named (such as reference state bit). An example visualization of
HiTag2’s logical circuit representation is in Fig. 4.

Having the logical circuit representation allowed us to implement a dependen-
cy-tree walker that removes functions whose output does not contribute to any
keystream bits, e.g. the last feedback function in Fig. 3. The method used is
in essence the same that is used in electric circuit design to remove unused el-
ements, applied to the domain of SAT-based cryptanalysis. Removing useless
functions gives only a minor speedup of about 1%, however, unnecessary func-
tions no longer show up on the dynamic behavior analysis statistics, which helps
in understanding the inner workings of the solver.

4.3 Optimizing the Representation of LFSRs

Most stream ciphers contain one or more linear feedback shift registers (LFSR).
For these ciphers, the state bits not in the reference state can be either be

254 M. Soos, K. Nohl, and C. Castelluccia

deduced by continually applying the forward and backward feedback functions or
be directly calculated from the reference state’s bits. This latter option increases
the interdependency of the resulting equations, which helps the solver generate
learned clauses that are useful for a larger part of the search tree. These learnt
clauses are then used later to avoid useless branches of the search tree, reducing
the overall search time.

To generate r keystream bits, r distinct states are needed since generating the
n-th keystream bit requires the filter function to be applied to the n-th state.
For the solving to be fast, we need to choose the reference state that generates
the least complex logical circuit representation. In particular, we must minimize
both the average depth and the reference state bit dependencies. According to
our experience, this optimal reference state is usually near the r/2-th state. As
an example, if we had taken state 2 (i.e. state bits 2 to 4) as reference in Fig. 3.,
the overall depth of the circuit would have been reduced.

4.4 Optimizing the Representation of Non-linear Functions

For efficient solving, the number of clauses, the average clause length, and the
number of variables should all be low, but often there exists a trade-off between
the three properties.

As an example, the simple GF(2) polynomial

x1 ⊕ x1x2 ⊕ x2x3 ⊕ x1x3

has a Karnaugh table presentation in CNF of

x̄1 ∨ x̄3 x̄2 ∨ x3 x1 ∨ x2

However, the same polynomial can be represented with each non-single monomial
expressed as a function, setting additional variables i1 . . . i3. The polynomial then
becomes

x1 ⊕ i1 ⊕ i2 ⊕ i3

Using this representation, the number of clauses increases to 3 × 3 regular + 1
xor-clause, and the average clause length increases to 4.14. Three extra variables
also need to be added, diluting the possible learnt clauses with extra variables,
thus reducing the effectiveness of learning.

The trade-offs between the two representation methods are complex; from our
experience with Grain, Trivium, Crypto-1 and other ciphers, we find that the
Karnaugh-table representation works well for functions that contain few (up to
5-6) variables and where these variables are often repeated in many monomials.
For instance, solving HiTag2 and Crypto-1 are both sped up by a factor of up
to 9x using the Karnaugh table representation.

When a polynomial can be broken up into sub-functions that do not share vari-
ables among themselves, such as the polynomials representing the filter functions
of Crypto-1 and HiTag2, then these sub-functions must be modelled separately.
This increases the overall depth of the resulting logical circuit, however, the com-
plexity of the individual functions traversed during solving is much lower, which
is crucial for the solver.

Extending SAT Solvers to Cryptographic Problems 255

5 Implemented Attacks

The extended SAT solver can solve many stream ciphers. Attacks against three
ciphers have been implemented that are faster than any previous SAT solver-
based attacks. The first two targets, Crypto-1 and its relative HiTag2, are a
weak ciphers used in contactless cards and car immobilizers. The third target,
Bivium, is a simplified version of Trivium, a modern cipher standardized through
the eSTREAM competition. The solving times for Crypto-1, HiTag2, and Bivium
are in Table 1, and their detailed discussion is below.

5.1 Crypto-1 and HiTag2

The Crypto-1 stream cipher [2] is implemented on the NXP Mifare Classic card,
which is widely used for micropayment in public transport and for building access
control. The cipher was designed to have a particularly small hardware footprint
consisting of an 48-bit LFSR and a network of small binary functions that form
the filter function. HiTag2 [3], used in car immobilizers, is a relative of Crypto-1,
and shares its structure but uses different feedback and filter functions.

The security of Crypto-1 has already been broken using MiniSat by Courtois
et al. [17]. They did not publish the details of their attack but only stated that
secret keys can be found within 200 seconds on average on a PC given 56 bits of
keystream. Their attack, however, modifies the equations describing the cipher
by mathematical means, which makes their techniques mostly orthogonal to ours.
With our method, solving Crypto-1 using 56 bits of known keystream takes 40 s,
while solving HiTag2 given the same number of keystream bits takes 214.5 s.

5.2 Bivium

The Bivium stream cipher [4], is a reduced version of the original Trivium cipher,
and is intended to be used solely as a research tool to analyze the original cipher.
The papers that have been published on this cipher [4,6] improve on each other’s
results, the best of which is solving in 242.7 s on a desktop machine.

Bivium can be solved by describing it in MiniSat using the enhancements and
insight presented in this paper. To let the solver finish within reasonable time, we
randomly guessed some randomly picked reference state bits and did a thousand
different runs for each configuration. With this approach the time to solve is
exponential in the number of guessed state bits, as illustrated in Fig. 5. Due to

Table 1. Running times for solving Crypto-1, HiTag2, and Bivium

Vanilla Karnaugh Karnaugh and xor-clause
MiniSat optimization optimizations

Crypto-1 500 s 72 s 40 s
HiTag2 217.8 s 215 s 214.5 s
Bivium 236.7 s 236.7 s 236.5 s

256 M. Soos, K. Nohl, and C. Castelluccia

100

1000

10000

100000

1e+06

40 42 44 46 48 50 52 54 56

T
im

e
(s

)

No. of randomly guessed bits

Fig. 5. Solving the Bivium cipher 1000 times, with randomly selected and assigned
guess bits. The time to solve is exponential in the number of guess bits.

the large amount of random runs for each point, we can safely extrapolate the
graph, giving the result that solving Bivium’s state given 177 keystream bits
takes about 236.5 s.

To generate this result, Gaussian elimination was turned off, as it proved to
slow down the solver if less than 58 reference state bits were guessed – for more
than 58 guessed bits however, Gaussian elimination with cut-off depth 8 gave an
average 5% speedup.

6 Conclusions

SAT solvers are a powerful tool in the analysis of mathematical assumptions,
including cryptographic hardness and complexity assumptions. The full potential
of SAT solving can only be achieved by matching the problem description to the
solver language. For cryptographic ciphers, matching the solver and the problem
requires extensive changes to the solver itself. We implemented several steps
towards a specialized SAT solver for cryptography including native support for
the XOR operation, Gaussian elimination, and logical circuit generation.

The extended solver solves problems from its target domain, simple and com-
plex stream ciphers, faster than any other known SAT-solver based techniques.
The Crypto-1 cipher is solved in 40 seconds, HiTag2 in 214.5 s, while Bivium
takes 236.5 s, 26 times less than the previous best SAT solver-based attack [6].
Stream ciphers can be strengthened against the attacks presented in this paper
through the use of larger states, more complex feedback functions, and through
longer initialization phases.

References

1. Bard, G.V.: Algorithms for the solution of polynomial and linear systems of equa-
tions over finite fields, with an application to the cryptanalysis of KeeLoq. Technical
report, University of Maryland Dissertation (April 2008)

Extending SAT Solvers to Cryptographic Problems 257

2. Garcia, F.D., et al.: Dismantling MIFARE Classic. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

3. Nohl, K.: Description of HiTag2 (Webpage),
http://cryptolib.com/ciphers/hitag2/

4. Raddum, H.: Cryptanalytic results on Trivium. Technical Report 2006/039,
ECRYPT Stream Cipher Project (2006)

5. De Cannière, C.: Trivium: A stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

6. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with Minisat. Technical
Report 2007/040, ECRYPT Stream Cipher Project (2007)

7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. In: Proc.
of Intl. Workshop on Bounded Model Checking. ENTCS, vol. 89 (2003)

8. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.
ACM 7(3), 201–215 (1960)

9. Marques, J.P., Karem, S., Sakallah, A.: Conflict analysis in search algorithms for
propositional satisfiability. In: Proc. of the IEEE Intl. Conf. on Tools with Artificial
Intelligence (1996)

10. Malik, S., Zhao, Y., Madigan, C.F., Zhang, L., Moskewicz, M.W.: Chaff: Engi-
neering an efficient SAT solver. In: Design Automation Conference, pp. 530–535
(2001)

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

12. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

13. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT-problem: Encoding and
analysis. Journal of Automated Reasoning 24, 165–203 (2000)

14. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

15. Li, C.M.: Equivalency reasoning to solve a class of hard SAT problems. Information
Processing Letters 75(1-2), 75–81 (1999)

16. Sinz, C.: Visualizing SAT instances and runs of the DPLL algorithm. J. Autom.
Reason. 39(2), 219–243 (2007)

17. Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the Crypto-1 stream
cipher in Mifare Classic and Oyster cards. Technical Report 2008/166, Cryptology
ePrint Archive (2008)

http://cryptolib.com/ciphers/hitag2/

Improving Variable Selection Process in Stochastic
Local Search for Propositional Satisfiability

Anton Belov and Zbigniew Stachniak�

Department of Computer Science and Engineering,
York University, Toronto, Canada

{antonb,zbigniew}@cse.yorku.ca

Abstract. This paper considers two methods for speeding-up stochastic local
search SAT procedures. The first method aims at using the search history (rep-
resented by additional formulas derived at every state of the search process) to
constrain the selection of candidate variables used to navigate through the search
space of truth-value assignments. The second method uses the search history to
allow multiple modifications of the current truth-value assignment in a single
search step. Empirical studies of these two methods have demonstrated their ef-
fectiveness on structured and industrial SAT instances.

1 Introduction

This paper introduces two techniques for improving stochastic local search (SLS) for
models of Boolean formulas in the space of truth-value assignments. Informally speak-
ing, a SLS solver in search state h that falsifies the input formula α selects and moves
to one of the neighboring states of h by changing (’flipping’) the truth-value of one of
the variables of α from that assigned by h to the opposite one. The first speedup tech-
nique proposed in this paper, named candidate variable trimming procedure, narrows
the choice of the next state by disallowing some of the variables of α from being se-
lected for the flip of their truth-values. It is then the purpose of the variable selection
heuristic of the solver to select a variable v that is not blocked by the candidate variable
trimming procedure and to form the next state hv.

The second technique discussed in this paper, named literal commitment strategy,
refines the way the next state of the search for a model of an input formula is selected. In
short, this technique forces a SLS solver to further modify the state hv described above
by flipping the truth-values of some additional variables. These additional variables are
determined by reasoning about the search history represented by additional formulas
that the solver is required to derive from the input formula at every state of the search.

Both techniques are applicable to clausal as well as non-clausal SLS SAT solvers.
When incorporated into the CNF solver UBCSAT ([13]) and into the non-clausal solver
polSAT-N ([12]) they markedly improved the performance of the solvers on structured
and industrial problems. However, the utility of these speed-up techniques for random
SAT instances seems to be less than favorable.
� Research of both authors supported by grants from the Natural Sciences and Engineering Re-

search Council of Canada.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 258–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improving Variable Selection Process in Stochastic Local Search 259

We assume that the reader is familiar with the fundamental concepts of SLS and
complete backtracking SAT solving methods (as discussed, for instance, in [5,6,9,11]).

The entailment operation of classical propositional logic (CPL) is denoted by +. Let
α be a formula of CPL. V ar(α) denotes the set of all the variables that occur in α.
A truth-value assignment for α is a function h mapping V ar(α) into the set {0, 1} of
truth-values. Since CPL’s semantics allows the unique extension of every truth-value
assignment h to the set of all sub-formulas of α, we shall be making no distinction
between h and its extension. Finally, a truth-value assignment h is a model (resp. a
countermodel) for α, if h(α) = 1 (resp. h(α) = 0).

2 Selecting Candidate Variables

A generic SLS procedure for SAT is presented in Figure 1. For every input formula α,
the domain of a variable selection heuristic is restricted to the set Cand(α, h) of candi-
date variables computed in line (1) for each value of the current truth-value assignment
h. In many clausal SLS systems, such as WalkSAT ([11]), Cand(α, h) is the set of vari-
ables that occur in some conjunct of α that is false under h. In the non-clausal solver
polSAT ([12]), Cand(α, h) is computed based on the structure of α.

procedure SLS-SAT(α)
for i := 1 to MaxTries do

h :=random truth-value assignment
for j := 1 to MaxF lips do

if h(α) = 1 then return h else
(1) compute Cand(α, h) ⊆ V ar(α);
(2) pick v ∈ Cand(α, h) using a variable selection heuristic; h(v) := 1 − h(v);

end if
end for

end for
return ‘satisfying valuation for α not found’

Fig. 1. Generic SLS procedure for SAT

Henceforth, we shall consider SLS procedures S that satisfy the following properties.
Given an input formula α and its countermodel h,

(s1) for every model h′ for α, there exists p ∈ Cand(α, h), such that h′(p) 	= h(p);
(s2) S generates a clause ch such that V ar(ch) ⊆ Cand(α, h), h(ch) = 0, and α + ch.

Each clause ch described in (s2) can be viewed as a partial record of the current state of
the search as represented by h. A solver can keep track of the search history by storing
and maintaining these clauses. Therefore we shall also assume that

(s3) an SLS SAT solver retains clauses ch in a database DB.

Let α be a satisfiable formula and h be one of its countermodels. The property (s1) guar-
antees that there is at least one variable in Cand(α, h) whose flip would bring us closer

260 A. Belov and Z. Stachniak

to a model for α. This property does not ensure, however, that the choice of any variable
would have this effect. It is the purpose of the first speed-up technique introduced in this
paper to eliminate some of the variables from Cand(α, h) that, from the point of view
of the current search state, could be considered useless. To describe this elimination
process with sufficient precision, let us introduce the notion of a trace – a partial truth-
value assignment tr that records truth-value assignments made by SLS-SAT in line (2)
by letting tr(v) to be the new (flipped) truth-value of v each time v is selected.

Definition. Let h be a truth-value assignment. A trace through h is a partial truth-value
assignment tr such that for every variable v, if tr(v) is defined, then tr(v) = h(v). By
Lit(tr) we shall denote the set of literals that are true under tr.

We can view DB (cf. (s3)) as a set of constraints on models for α that can be used
to assess the ‘quality’ of this new truth-value assignment by testing the consistency sta-
tus of DB ∪ Lit(tr). Indeed, by (s2), every model for α is a model for DB. So, if
DB∪Lit(tr) is inconsistent, then some of the truth-value assignments made so far and
recorded in tr have to be incorrect. We should therefore block the selection of v if such
a choice leads to the inconsistency of DB ∪ Lit(tr). This can be achieved by ‘trim-
ming’ Cand(α, h) using the candidate variable trimming procedure given in Figure 2.
Let ε denote the trim assignment that is undefined for every variable.

procedure Trim(Cand, h, DB, tr)
Ctemp = ∅;
for every v ∈ Cand do

trtemp = tr; trtemp(v) = 1 − h(v);
if DB ∪ Lit(trtemp) is consistent then Ctemp = Ctemp ∪ {v};

end for
if Ctemp �= ∅ then Cand = Ctemp; else tr = ε;
return Cand and tr;

Fig. 2. Candidate variable trimming procedure

The input to Trim is a set of variables Cand, a truth-value assignment h, a set of
clausal constraints DB, and a trace tr. Trim attempts to remove any v ∈ Cand which
would cause the inconsistency of DB ∪ Lit(trv), where trv is obtained from tr by
assigning 1 − h(v) to v. If every variable in Cand causes such an inconsistency, then
Cand is not modified (however, tr is reset to the empty assignment ε). For efficiency
reasons, the consistency check for DB ∪ Lit(tr) should be done using a tractable (but
incomplete) form of reasoning such as unit propagation.

The Trim procedure can be incorporated into the SLS-SAT algorithm by initializing
DB to ∅ and tr to ε, and by replacing line (2) in Figure 1 with the following code:

(2a) ch :=
∨{vh : v ∈ Cand(α, h)};

(2b) call Trim(Cand(α, h), h, DB, tr);
(2c) pick v ∈ Cand(α, h) using a variable selection heuristic;
(2d) h(v) := 1 − h(v), tr(v) := h(v); DB := DB ∪ {ch};

Improving Variable Selection Process in Stochastic Local Search 261

where vh denotes the literal ¬v, if h(v) = 1 or v, otherwise. The main novelty of
the resulting SLS algorithm is the restriction of the domain of the variable selection
heuristic used in step (2c) from Cand(α, h) computed in line (1) in Figure 1 to its
subset returned by the call to Trim in step (2b). Let us also point out to the dynamic
process of building the set DB of clauses and the trace tr in steps (2a) and (2d).

3 Literal Commitment Strategy

In a CNF SAT solver built on what is known as the Davis-Putnam-Logemann-Loveland
procedure ([1]), the selection of a decision variable by a decision heuristic is followed
by the assignment of truth-values to additional variables (called implied variables) as a
result of the application of unit propagation and pure literal elimination. Such a solver
is committed to these truth-vale assignments until a contradiction is detected. If one ac-
cepts the view that in a SLS procedure, a trace tr represents the truth-value assignment
choices committed to by the solver, then the literals inferred from DB ∪ Lit(tr) can
be viewed as the extent of such a commitment and the current truth-value assignment
should be modified to reflect it. This strategy for modifying the current truth-value as-
signment beyond a single flip of the selected variable’s truth-value can be implemented
by replacing the assignment h(v) = 1− h(v) in line (2d) with these ones:

tr(v) = 1− h(v) and for every l ∈ UP (DB ∪ Lit(tr)), h(l) = 1,

where UP (DB ∪ Lit(tr)) denotes the closure of DB ∪ Lit(tr) under unit propaga-
tion. We shall call this version of the truth-value assignment modification the literal
commitment strategy.

4 Experimental Evaluation

We performed series of experiments in order to determine the impact of the candidate
variable trimming procedure and the literal commitment strategy on the performance of
SLS SAT solvers. Although the two techniques originated from our research on non-
clausal SLS methods, there is nothing intrinsically ‘non-clausal’ in their formulation.
Hence, we evaluated the two techniques in both clausal and non-clausal settings.

As a base solver for our evaluation in the non-clausal setting we selected the SLS
solver polSAT-N [12]. In polSAT-N the set Cand(α, h) is computed in such a way that
the properties (s1) and (s2) defined in Section 1 are always satisfied. The variable selec-
tion heuristic used in polSAT-N is a non-clausal variant of the Adaptive Novelty+ [7].
By polSAT-N+ we denote the solver which results from the addition of the candidate
variable trimming procedure to polSAT-N. The consistency check in the Trim proce-
dure (Figure 2) is implemented by maintaining the implication graph in which the liter-
als in the trace are used as the source nodes, and the clauses in DB are used to derive the
implications – conflicts in this graph indicate the inconsistency of DB ∪ Lit(trtemp).
The literal commitment strategy can be added to polSAT-N+ by allowing the modifi-
cation of the current truth-value assignment to be carried out using the implied literals
from the graph. We denote the resulting solver by polSAT-N++.

262 A. Belov and Z. Stachniak

To evaluate the performance of the proposed techniques in the clausal setting, we
have added the implication graph based candidate variable trimming and literal com-
mitment strategies to the clausal SLS solver UBCSAT [13] – the resulting solver is
denoted as UBCSAT++. Both solvers use Adaptive Novelty+ to select variables.

The evaluation of the solvers is based on the analysis of run-length and run-time
distributions (cf. [6]) on variety of instances from different benchmark classes. The non-
clausal benchmarks are described in detail in [12] – we will only mention that fs-* and
fsf-* are non-clausal extensions of random k-CNFs. As the non-clausal benchmarks
are also available in CNF, we used them for both clausal and non-clausal evaluations.
Additional CNF benchmarks come from SATLIB1 and M.Velev’s website 2. In most
cases the distributions were obtained over 250-1000 tries with the infinite cutoff – cases
when this was not possible are indicated. All experiments were performed on Intel Xeon
X5355, 2.66GHz, 4MB cache, 4GB RAM. The results of our experiments are presented
in Table 1 – the first group of instances in the table are industrial problems, second are
structured and the last are random.

Table 1. The median of the number of flips and the CPU time (sec). Cutoff is infinite – excep-
tions are indicated by the >cutoff and >time values. The “n/a” entry indicates that the non-CNF
version of a benchmark was not available.

non-CNF solvers CNF solvers
polSAT-N polSAT-N+ polSAT-N++ UBCSAT UBCSAT++

flips time flips time flips time flips time flips time
2dlx * 005 > 107 > 281 110375 12.42 44304 6.10 > 108 > 220 8442 0.91
2dlx * 017 2521192 88.10 34539 7.54 22812 6.03 > 108 > 258 1779 0.18
2dlx * 049 1873929 17.70 47666 2.60 20876 0.96 > 108 > 82 5794 0.26
e0ddr2-*-1 n/a n/a n/a 31294564 19.44 8310 1.42
e0ddr2-*-4 n/a n/a n/a 14726114 9.49 657 0.14

parity8.easy 212497 0.45 9215 0.09 5747 0.09 117697 0.03 4706 0.04
parity8.hard 1804016 3.67 25157 0.19 18120 0.27 1029140 0.26 13878 0.10
logistics.d n/a n/a n/a 176000 0.08 2996 0.24

qg2-08 n/a n/a n/a 6221172 22.39 566161 31.37
qg4-09 n/a n/a n/a 120456 0.08 1503 0.05
qg5-11 n/a n/a n/a 8918742 11.56 1278 0.15
par16-1 n/a n/a n/a 113885457 31.50 781092 4.90
par16-4 n/a n/a n/a 396084299 110.53 884731 5.48

fsf-300-*.easy 8384 0.11 14392 0.55 203975 28.17 17055099 6.46 > 107 > 190
fs-200-*.hard 107737 1.93 246087 26.92 > 106 > 136 117011 0.71 5786484 274.90
uf-250-072 n/a n/a n/a 43833 0.02 2241390 10.45
uf-250-093 n/a n/a n/a 125165 0.07 2126147 9.97

The results indicate that the addition of the candidate variable trimming and the lit-
eral commitment strategies to SLS solvers significantly improves their performance on
industrial SAT instances (in some cases by 2-3 orders of magnitude). Similar improve-
ments can also be observed on many structured instances – however, in some cases the
computational cost of the new techniques out-weights the improvement in the number
of search steps on these instances. Finally, on random instances, the strategies in the
current form seem to hurt the performance.

1 http://www.satlib.org
2 http://www.miroslav-velev.com/sat benchmarks.html

Improving Variable Selection Process in Stochastic Local Search 263

5 Related Work and Final Remarks

The use of the search history, represented by a set DB of clausal constraints and a
trace tr, provides a general direction for enhancing the performance of non-clausal SLS
solvers with clausal techniques for SAT. It defines a class of hybrid SAT solvers whose
main search heuristics still explore the input formula’s original structure. However, at
every step of the search for a model of an input formula α, such heuristics are refined
using the search history. Since every clause in DB is an implicate of α, almost any
speed-up technique developed for clausal SLS systems can be adopted to non-clausal
SLS solvers. These include methods ranging from input formula simplification via the
detection of dependent variables, as described in [3], to expanding DB with conflict
clauses (cf. [9]) when the inconsistency of DB ∪ Lit(tr) is detected.

The research on SAT procedures that combine local search with reasoning (e.g. unit
propagation or resolution) can be traced back to the early 1990’s ([2,14]). Since then,
the list of such hybrid procedures has grown significantly. The speed-up techniques pre-
sented in this paper share features with some of these hybrids, most notably with the
weak commitment search procedure suggested in [14] and subsequently developed in
[8] and [10]. The use of unit propagation to implement the literal commitment in the
context of SLS was previously suggested in [4]. In [10] unit propagation was also pro-
posed in the context of the weak commitment search. The literal commitment strategy
proposed in this paper is modeled after these ideas.

Acknowledgments. We thank the anonymous referees for helpful comments.

References

1. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem-Proving. Com-
munications of the ACM 5(7), 394–397 (1962)

2. Ginsberg, M.L., McAllester, D.A.: GSAT and Dynamic Backtracking In. In: Proc. of KR
1994, pp. 226–237 (1994)

3. Grégoire, É., Ostrowski, R., Mazure, B., Saı̈s, L.: Automatic extraction of functional depen-
dencies. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 122–132.
Springer, Heidelberg (2005)

4. Hirsch, E.A., Kojevnikov, A.: UnitWalk: A new SAT solver that uses local search guided by
unit clause elimination. In: Annals of Mathematics and Artificial Intelligence, pp. 91–111
(2005)

5. Hoos, H.H., Stutzle, T.: Stochastic Local Search Foundations and Applications. Elsevier,
Amsterdam (2005)

6. Hoos, H.H., Stutzle, T.: Local Search Algorithms for SAT: An Empirical Evaluation. J. of
Automated Reasoning, 421–481 (2000)

7. Hoos, H.H.: An adaptive noise mechanism for walkSAT. In: Proc. of AAAI 2002, pp. 655–
660 (2002)

8. Jussien, N., Lhomme, O.: Local Search with Constraint Propagation and Conflict-Based
Heuristics. In: Proc. of AAAI 2000, pp. 169–174 (2000)

9. Lynce, I., Marques-Silva, J.P.: An Overview of Backtrack Search Satisfiability Algorithms.
In: Annals of Mathematics and Artificial Intelligence, pp. 307–326 (2003)

10. Richards, E.T., Richards, B.: Nonsystematic Search and No-Good Learning. In: Journal of
Automated Reasoning, pp. 483–533 (2000)

264 A. Belov and Z. Stachniak

11. Selman, B., Kautz, H., Cohen, B.: Noise Strategies for Local Search. In: Proc. of AAAI 1994,
pp. 337–343 (1994)

12. Stachniak, Z., Belov, A.: Speeding-up Non-Clausal Local Search for Propositional Satis-
fiability with Clause Learning. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS,
vol. 4996, pp. 257–270. Springer, Heidelberg (2008)

13. Tompkins, D.A.D., Hoos, H.: UBCSAT: An Implementation and Experimentation Environ-
ment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT
2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

14. Yokoo, M.: Weak-commitment Search for Solving Constraint Satisfaction Problems. In:
Proc. of AAAI 1994, pp. 313–318 (1994)

A Theoretical Analysis of Search in GSAT

Evgeny S. Skvortsov

School of Computing Science
Simon Fraser Univerity

evgenys@sfu.ca

Abstract. This paper is devoted to a rigorous analysis of the GSAT
algorithm in the typical case for the random planted 3-SAT distribution.
GSAT was the first widely appreciated practical heuristic developed for
SAT that was based on the local search principles. We show that for
any constant κ > 0 GSAT, with high probability, solves random planted
3-SAT problems of density ρ = κ lnn. This performance is substantially
better than the performance of the pure Iterative Improvement algorithm
that has a phase transition at ρ = 7

6 ln n and fails for problems of smaller
density.

1 Introduction

The GSAT algorithm was proposed in the early 90s by Selman, Levesque and
Mitchell [13]. This algorithm starts its work with a random assignment and at
every step flips one of the variables that give the maximum increase in the num-
ber of satisfied clauses (the maximum possible increase can happen to be zero or
even negative). If a satisfying assignment is not found for a certain number of steps
then the algorithm restarts. It was demonstrated in the same paper that GSAT
outperformed state-of-the-art systematic search algorithms of the time. Extensive
empirical analysis of GSAT was carried out by Gent et al. [5].

Later many algorithms were built on the basis of GSAT. In particular Gent
and Walsh have experimentally demonstrated [7,6] that greediness is not very
important for success of GSAT. The algorithm they designed, CSAT, starts with
a random assignment and then at every step flips a variable chosen uniformly at
random among ones that give any increase in the number of satisfied clauses. If
no such variable exists then a variable is chosen among those that do not change
the number of satisfied clauses (that is a plateau move is performed). Similarly
to GSAT if a satisfying assignment is not found after a certain number of steps
CSAT restarts.

Worst case efficiency of GSAT applied to SAT when time given to solve the
problem is polynomial is not better than performance of Iterative Improvement
[10] (the basic Local Search algorithm which can be viewed as CSAT with neither
plateau moves nor restarts). It guarantees only k

k+1 -th fraction of clauses to
become satisfied [8,12], where k is the length of the shortest clause. Worst case
efficiency of the GSAT and CSAT algorithms for formulas of bounded clause to
variable ratio in the settings of exponentially long run was studied by Hirsch.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 265–275, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

266 E.S. Skvortsov

In particular exponential upperbound of the form 2cn, c < 1 was shown for
time of the execution of CSAT as a Monte-Carlo randomized algorithm. This
upperbound was obtained for its execution without use of plateau moves.

Typical case efficiency of SAT algorithms is often studied for two distributions:
random 3-SAT of fixed density and random planted 3-SAT of fixed density. Ran-
dom 3-SAT problem of density ρ = ρ(n) is sampled uniformly at random from
the set of all 3-CNFs with n variables and ρ(n) · n clauses. To sample a random
planted 3-SAT one first fixes a boolean assignment of values to variables and
the 3-CNF is sampled uniformly at random from the set of all 3-CNFs that are
satisfied by this assignment.

A positive result about efficiency of GSAT in the typical case for a random
planted 3-SAT was proven by Koutsoupias and Papadimitriou [11]. It was shown
that for linear density ρ = κn GSAT succeeds with high probability. As in the
proof of the upper bound of the time complexity in [9] plateau and downward
moves were not used in the analysis. Also authors formulated conjecture that
their upper bound is not tight and that GSAT can solve random planted 3-SAT
for a large constant density.

Later Gent [4] has adapted techniques of Koutsoupias and Papadimitriou [11]
to show that even for Stupid Algorithm (i. e. an algorithm that assigns 1 or 0 to
a variable depending on whether this variable occurs more often in positive or
negative literals) there exists a large constant κ0 such that this algorithm can
solve random planted 3-SAT for density κ ln n, for any κ > κ0.

Recently, in a joint work with Bulatov, we have shown [1] that the efficiency
of Iterative Improvement has a phase transition at density ρ0 = 7

6 ln n. That is
for any positive constant ε if we have ρ > ρ0 ·(1+ε) then Iterative Improvement,
with high probability, finds a solution for random planted 3-SAT of density ρ.
For ρ < ρ0 · (1 − ε) Iterative Improvement with high probability fails. It is not
hard to estimate that the constant κ for which the Stupid Algorithm works is
orders larger that 7

6 .
In this paper we show that for any constant κ > 0 GSAT and CSAT can

solve random planted 3-SAT of density ρ = κ ln n without restarts. The result
rigorously proves that using plateau moves substantially increases efficiency of
Iterative Improvement when applied to random 3-SAT with a planted solution.

Note that there are algorithms that were proven to solve random planted 3-
SAT for densities smaller than logarithmic. A spectral heuristic algorithm was
developed by Flaxman [3] with the specific purpose of solving random planted 3-
SAT and its modifications of high constant density. So there exists a constant ρ0
such that spectral heuristic solves random planted 3-SAT of any constant density
ρ, such that ρ > ρ0. Later Feige and Vilenchik [2] developed a more intuitive local
search based algorithm with similar performance on random planted 3-SAT that
was also demonstrated to be robust against a certain type of non-randomness
of the problem. Our goal in this paper is not to develop a better algorithm
for random planted 3-SAT, but to move closer to a theoretical understanding
of specific reasons that make algorithms used in practice to be as efficient as
they are.

A Theoretical Analysis of Search in GSAT 267

The rest of the paper is organized as follows. In Section 2 we give neces-
sary definitions, in Section 3 we prove the main result, we conclude and discuss
directions of future work in Section 4.

2 Definitions

A literal is a boolean variable or a negation of a boolean variable. A disjunction
of k literals corresponding to distinct variables is called a k-clause. A 3-CNF
is a conjunction of 3-clauses. As we consider only 3-CNFs, we will always call
them just clauses. We assume that variables in the 3-CNF are x1, . . . , xn and we
consider any boolean vector v of dimension n as an assignment {xi = vi}i=1...n.

A random 3-CNF distribution Φ(n, ρ(n)n) is a uniform probability measure
and its state space is a set of all 3-CNFs with n variables and �ρ(n)n� clauses.
In other words a random 3-CNF φ ∈ Φ(n, ρ(n)n) is generated by choosing inde-

pendently uniformly at random �ρn� out of 8
(

n
3

)
all possible clauses.

A random 3-CNF with a planted solution v distribution is obtained from a
random 3-CNF by restricting its state space to a set of 3-CNFs that are satisfied
by v. We can sample random planted 3-CNF φ ∈ Φplant(n, ρ(n)n, v) by choosing

�ρ(n)n� out of all 7
(

n
3

)
clauses that are satisfied by v. It is convenient to assume

that v = (1, . . . , 1) and shorten the notation and the name of this distribution
to Φplant(n, ρn) and random planted 3-CNF respectively.

We call a clause c a (+,−,−) clause if one of its literals is positive and other
two are negative. That is, c is a horn clause.

For φ ∈ Φplant(n, ρn) we say that a statement E(φ) is true with high probability
if probability of the event E(φ) tends to 1 for φ ∈ Φplant(n, ρn), n →∞. We shall
also use standard acronym “whp”.

For arbitrary functions f(n), g(n) we denote equality f(n) = g(n) + o(n) by
f(n) ≈ g(n) and we write f(n) � g(n) if inequality f(n) ≤ g(n) holds for large
enough n.

As it was discussed in [9,1] there are two kinds of local maxima of a random
3-CNF with a planted solution. Some maxima have almost all variables equal to
zero and others have almost all variables equal to one. Maxima that have almost
all variables equal to zero satisfy extremely few clauses. GSAT starts with a
random assignment that has around 7

8 th fraction of clauses satisfied and never
reaches this kind of maxima. So it will be convenient for us to say “assignment
v is a local maximum” for “assignment v is a local maximum of the number of
satisfied clauses that has more than 1

10 th fraction of variables assigned to one”.
Let v′

i be a vector obtained from v by flipping i-th coordinate. Statements “c
is a clause in φ” and “clause c is satisfied by v” we denote by c ∈ φ and c(v)
respectively. The GSAT algorithm is presented at Fig. 1.

3 Main Result

Now the main result of this paper is easy to formulate.

268 E.S. Skvortsov

Input: A 3-CNF φ, integers maxtries, maxflips

Output: fail or an assignment v that satisfies φ
Method:

do maxtries times
pick v uniformly at random
do maxflips times

if v satisfies φ then return v
pick a variable xi such that |{c ∈ φ | c(v′

i)}| is maximal uniformly at random
let v = v′

i

return fail

Fig. 1. The GSAT algorithm

Theorem 1. For any κ > 0, ρ = κ lnn the GSAT algorithm with settings
maxflips= n60/κ+3, maxtries= 1 finds a solution for φ ∈ Φplant(n, ρn) whp.

After O(maxflips×maxtries) steps that did not lead to a solution of the prob-
lem GSAT fails so Theorem 1 means that GSAT finds solution in polynomial
number of steps.

It is sufficient to prove the result for κ < 2, since by Teorem 1 of [1] for κ > 7
6

GSAT will find solution without even switching to plateau moves stage.
Lemmas 1-3 describe relations between variables that are assigned to 0 in a

local maximum and variables that occur in few (+,−,−) clauses. These lemmas
lead to a proof of Lemma 4 that will be the key instrument to prove Theorem 1.
This lemma is formulated in terms of a graph of co-occurrences that we define
later. In terms of the original formula φ Lemma 4 states that when a local maxi-
mum of the number of satisfied clauses is reached we have the following picture.
Clauses containing variables that are still assigned incorrectly fall apart into sev-
eral sub-formulas φ1, . . . , φt. Formulas φ1, . . . , φt are pairwise disjoint, that is no
φi, φj contain a common clause. Moreover these sub-formulas are disjoint with re-
spect to variables, that is no φi, φj refer to a common variable. The lemma also
states that any such sub-formula φi that contains an unsatisfied clause contains
an incorrectly assigned variable that can be flipped by GSAT. In the proof of the
Theorem 1 we apply the Lemma 4 and observe that the landscape of the value
function is with high probability such that from any proper local maximum there
is a finite path along plateau that leads to a higher ground. The path is finite mean-
ing that its length can be bounded by some constant � that does not depend on
n. So with constant probability among next �n
 steps there will be � that will be
made along such a path and a better assignment will be reached.

We will discuss intuition behind Lemmas 1-3 directly before formulating them.
Next we define a graph Gφ of co-occurrences of variables in clauses of φ and
several related notions.

Let φ be a CNF and E be a set of pairs of variables (xi, xj) such that xi

and xj occur in the same clause. We denote a graph ({x1, . . . , xn}, E) by Gφ.
Since formula φ will always be clear from context we will omit upper index φ
and introduce all further notation without it.

A Theoretical Analysis of Search in GSAT 269

For a graph G = (V, E) and a subset of its vertices X we denote by G|X a
subgraph induced by X , i.e. graph (X, E ∩ X2). Let l ∈ N and El be a set of
pairs of vertices that are connected by paths of length at most l in G. We denote
graph (V, El) by Gl. We denote by NG,d(X) a d-th neighborhood of X in G, i.e.

NG,d(X) = {y | there exists x ∈ X such that (x, y) ∈ Ed}.

Observation 1. For any ρ ≤ 2 ln n whp no two variables occur together in
more than 2 clauses of φ ∈ Φplant(n, ρn). That is, whp any two vertices of G are
connected by at most 2 edges.

Proof. Indeed if we fix two variables and three clauses then probability of the
variables to occur together in these three clauses is O(n−6). There are O(n2)
pairs of variables and O(m3) triples of clauses so applying union bound we con-
clude that probability that there exist such pair and triple is less than O(n−4m3)
which tends to zero for m ≤ 2n lnn. �

We say that a variable is Δ-isolated in φ if it occurs positively in less than Δ
clauses of type (+,−,−). We denote a set of all Δ-isolated variables by IΔ.

Intuitively, our interest in Δ-isolated clauses comes from the fact that in the
case of logarithmic density of the formula extremely few clauses with two or three
positive literals are unsatisfied in a local maximum. This happens because almost
all variables are assigned correctly and probability that a clause has two incorrect
variables is very small. Thus many unsatisfied clauses in a local maximum are
(+,−,−) and variables that are assigned wrong tend to be Δ-isolated variables.
In the first Lemma of this paper we show that Δ-isolated variables do not “flock
together” so with high probability you do not find many of them close to each
other.

Lemma 1. For any κ ∈ R there is a constant l ∈ N such that for any constants
Δ ∈ N, d ∈ N and ρ = κ ln n, φ ∈ Φplant(n, ρn) whp any connected component of
Gd|IΔ contains less than l variables.

Proof. Fix an arbitrary constant r. Let M be a set of r variables. Obviously
the probability of the event

all variables in M are in IΔ

is less than the probability of the event

#(positive occurrences of variables from M in (+,−,−)-clauses) ≤ |M | ×Δ.

The latter probability can be bounded above by

rΔ∑
k=0

(
ρn
k

)(r

n

)k
(

1− 3r

7n

)ρn−k

≤ (1)

rΔ

(
ρn
rΔ

)(r

n

)rΔ
(

1− 3r

7n

)ρn−rΔ

� (2)

rΔρrΔΔ−rΔe−3/7ρr/((rΔ)!) � e−3ρr/14. (3)

270 E.S. Skvortsov

The number of connected sets of variables in Gd can be bounded above by the
number of subgraphs of Gd isomorphic to trees. Since whp maximum degree of a
variable is bounded above by ln2 n the number of subgraphs of size r isomorphic
to trees can be bounded above by n(r ln2d n)r−1 � n2 whp.

Now we apply union bound to the probability of an event that there exists a
connected set M of vertices of Gd

φ of size r such that all variables in M are in
IΔ getting the upper bound

n2e−3κr ln n/14 = eln n(2−3κr/14).

Therefore if we set l = 10/κ then for any constant r, r > l we have the probabil-
ity tending to 0. �

For an assignment v we denote by Wv a set of all variables assigned by v incor-
rectly. I. e.

Wv = {xi | vi = 0}.

In Lemma 2 we show that in a local maximum any connected component of a
graph of co-occurenses of variables assigned incorrectly needs a constant fraction
of its members to belong to IΔ.

Lemma 2. For any κ ∈ R and odd Δ ≥ 11 for ρ = κ ln n, φ ∈ Φplant(n, ρn) whp
for any local maximum v any connected component C of G|Wv contains at least
|C|(Δ−9)

Δ+1 variables from IΔ.

Proof. By Lemma 3 from [1] there exists α such that 0 < α < 1 and any local
maximum contains less than nα zeros. Consider an arbitrary local minimum v
and a connected component C of G|Wv .

Let xi be such that xi ∈ C \ IΔ. Variable xi occurs positively in at least
Δ clauses of type (+,−,−). If clause c is of type (+,−,−), variable xi occurs
positively in c and it is the only variable in c that is assigned to 0 then c is not
satisfied and will become satisfied if xi is flipped. But v is a local maximum and
flipping xi should not increase number of satisfied clauses. If xi has no neighbors
assigned to 0 by v then after flipping xi number of satisfied clauses will increase
by at least Δ. A neighbor xj of xi may decrease this advantage by making one
of (+,−,−) clauses that refer to xi satisfied or by making some other clause
where xi occurs negatively unsatisfied. But each neighbor xj assigned to 0 can
not decrease the advantage of flipping of xi by more than the number of co-
occurences of xi and xj in clauses of φ. By Observation 1 whp no two variables
occur together in more than 2 clauses. So if xi has t neighbors assigned to 0 then
advantage of flipping xi will be at least Δ − 2t. And since the advantage must
be non positive and is an integer number we have t ≥ (Δ + 1)/2.

Therefore xi must have at least (Δ + 1)/2 neighbors in G that are assigned
to zero by v. Obviously all these variables are in C, so degree of xi in G|Wv

is at least (Δ + 1)/2. We can bound average degree of C from below by
(|C \ IΔ| · (Δ + 1)/2) /|C|. Since |C| < nα by Lemma 1(1) from [1] it follows
that average degree of C is less than 5. Thus we have

A Theoretical Analysis of Search in GSAT 271

(|C \ IΔ| · (Δ + 1)/2) /|C| < 5

and consequently

|C \ IΔ| <
10|C|
Δ + 1

, (4)

|C ∩ IΔ| >
|C|(Δ− 9)

Δ + 1
. (5)

Since inequality (5) was shown for an arbitrary connected component of G|Wv

the Lemma is proven. �

We say that a variable xi is potentially wrong if there is an assignment v such
that it is a local minimum and vi = 0. A set of all potentially wrong variables is
denoted by W , that is

W =
⋃

v is a local maximum
Wv .

In the following lemma we show that for large enough Δ the set of Δ-isolated
variables is dense in the set of potentially wrong variables. Namely that any
potentially wrong variable must have at least one Δ-isolated variable in a finite
distance.

Lemma 3. For any κ ∈ R there is a constant r ∈ N such that for ρ = κ ln n, φ ∈
Φplant(n, ρn), and odd Δ, Δ ≥ 11, whp any xi ∈ W has a Δ-isolated variable at
distance less than r.

Proof. Let l be the number corresponding to κ by Lemma 1, let r = 7l and let

M = {x|x is connected in Gr to some y ∈ IΔ} = NG,r(IΔ).

Consider an arbitrary local maximum v. To prove the lemma we must show that

Wv ⊆M.

For the sake of contradiction let us assume that

there exists xj ∈ Wv \M . (6)

Let C be a connected component of G|Wv containing xj . By Lemma 2 set C

contains at least |C|(Δ−9)
Δ+1 variables from IΔ. For Δ ≥ 11 we have

|C ∩ IΔ| ≥ 1/6|C| (7)

and consequently nonempty C must contain at least 1 variable form IΔ. Now we
take arbitrary xk ∈ IΔ ∩ C and consider a connected component C′ of G2r|IΔ

that contains xk. Note that Lemma 1 implies

|NG,r(C′) ∩ IΔ ∩ C| ≤ |NG,r(C′) ∩ IΔ| ≤ l.

272 E.S. Skvortsov

On the other hand since xj 	∈M ⊇ NG,r(C′) and xj is connected to an element
of C′ we have

|NG,r(C′) ∩ C| ≥ r = 7l.

By definitions of NG,d and Gd any distinct connected components C1 and C2
of G2r |IΔ satisfy

NG,r(C1) ∩NG,r(C2) = ∅.

Therefore if s > 0 is the number of connected components of G2r|IΔ that
intersect with C we have bounds

|IΔ ∩C| ≤ sl (8)

and
|C| ≥ 7sl. (9)

Conjunction of (8) and (9) contradicts (7), therefore assumption (6) was false
and the lemma is proven. �

By now we are in a position to prove the lemma from which the main result will
rather easily follow. As it was discussed in the beginning of the section intuitive
meaning of Lemma 4 is that in a local maximum we have variables assigned
incorrectly split into several finite connected components. Moreover each com-
ponent that contains a variable occurring in an unsatisfied clause contains also
a variable that can be flipped by GSAT.

Lemma 4. For any κ ∈ R there is s ∈ N such that for ρ = κ lnn, φ ∈
Φplant(n, ρn) whp for any local maximum v and any connected component C
of G|Wv the following is true:

– C contains less than s elements,
– if there is an unsatisfied clause containing a variable from C then there is a

variable xj ∈ C such that the number of unsatisfied clauses where xj occurs
equals to the number of clauses that are satisfied only by xj.

Proof. We fix some local maximum v and a connected component C of G|Wv .
By Lemma 3 for Δ = 11 there is a constant r such that whp for every variable

xi ∈ C there is a variable xj ∈ IΔ such that distance between xi and xj is less
than r. Let us denote such xj by xi ↑. It is easy to see that set {xi ↑ |xi ∈
C} ∪ (C ∩ IΔ) is connected in G2r+1|IΔ and by Lemma 1 its size can not be
greater than some constant l. Thus |C ∩ IΔ| < l and by Lemma 2 for Δ = 11
we have |C| < 6l. So we set s = 6l and have the first statement of the Lemma
proven. Note that in the proof of Lemma 2 we set l = 10/κ so here we have
s = 60/κ.

To prove the second statement of the Lemma we consider an arbitrary variable
xj in C and a clause c where xj occurs. We can make the following

Observation 2. For c to be satisfied only by xj in v the following two conditions
are necessary: (a) xj occurs in c negatively, (b) there is a variable xi that occurs
in c positively and such that vi = 0.

A Theoretical Analysis of Search in GSAT 273

Consider a directed graph

SC = (C, {(xi, xj)|there is a clause c ∈ φ, containing literals xi and ¬xj}).

Assume for the sake of contradiction that for any variable xj ∈ C the number
of clauses that are satisfied only by xj is strictly greater than the number of
unsatisfied clauses where xj occurs. Then for each xj ∈ C there is at least one
clause that is satisfied only by xj . Which by Observation 2 means that the in-
degree of every vertex in SC is at least 1. Set C contains a variable xk that
occurs at some unsatisfied clause c so there must be at least two clauses that are
satisfied only by xk. Thus the in-degree of xk in SC is at least 2 and SC contains
at least |C|+1 edges. If variables are connected in SC they are connected in G|C
and we have that G|C contains at least |C|+ 1 edges.

We finish the proof by showing that for any constants h and q such that h > q
whp there is no set of variables C such that |C| = q and the graph G|C contains

h edges. Indeed there are
(

n
q

)
sets of variables of size q and

(
m
h

)
sets of clauses

of size h. For a given set of clauses of size h the probability to have 2h positions
to be occupied by variables from a given set C, |C| = q can be bounded above
by (3h)2hn−2h. Applying union bound we have that the probability under con-
sideration is less than (3h)2hmhnqn−2h which tends to 0 for any fixed κ if h > q.�

We are now in a position to prove the main result.

Proof. (of Theorem 1) By Lemma 4 once GSAT reaches a local maximum v set
Wv falls apart into several connected components of size at most s. If there are
no more unsatisfied clauses left then the problem is solved and GSAT returns
a satisfying assignment. Otherwise let us consider a connected component C of
G|Wv that contains a variable xi that occurs in an unsatisfied clause.

Now we show that with probability at least n−s after s steps GSAT will be
at some assignment u that satisfies more clauses than v. By Lemma 4 there is
a variable xi1 ∈ C such that the number of clauses that are satisfied only by xi1

equals the number of clauses that contain xi1 and are not satisfied. Thus with
probability 1/n variable xi1 will be the next variable that is flipped by GSAT.
If it happens then for an assignment v′ obtained at the next step there are two
possibilities: 1) v′ is not a local maximum or 2) v′ is still a local maximum. In
case 1) GSAT will increase the number of satisfied clauses at the next step. In
case 2) let C1 be a subset of C \ {xi1} that is a connected component of G|Wv

and contains variable that occurs in an unsatisfied clause. We have |C1| ≤ |C|−1
and with probability 1/n a variable from C1 will be flipped by GSAT at the next
step, which will either lead to an increase of the number of satisfied clauses or
to a new set C2, |C2| ≤ |C| − 2, etc. Size of C is at most s so with probability
greater than n−s after s steps number of satisfied clauses will be increased.

Therefore if GSAT is at a local maximum then in sns+1 steps it will increase
number of satisfied clauses with probability at least 1− (1−n−s)ns+1 ≈ 1− e−n.
So once the local maximum is reached for the first time the problem will be
solved after sns+2 steps with probability at least 1− ne−n. �

274 E.S. Skvortsov

4 Conclusion and Future Work

Note that in no proof we used greediness of GSAT and all the reasoning would
go in the very same way for CSAT. Therefore we can formulate

Corollary 1. For any κ > 0, ρ = κ lnn the CSAT algorithm with settings
maxflips= n60/κ+3, maxtries= 1 finds a solution for φ ∈ Φplant(n, ρn) whp.

Comparing Corollary 1 with Theorem 1 in [1] and noting that CSAT is the
Iterative Improvement (basic Local Search) enhanced with plateau moves and
restarts we can conclude that adding plateau moves to Iterative Improvement
increases its power substantially. The intuitive essence of this conclusion is by no
means novel but now we have it rigorously proven within the context of random
planted 3-SAT.

We believe that the analysis of the landscape of the value function of random
planted 3-SAT carried out in this paper gives more general intuitive under-
standing of the process of the execution of the local search algorithms. Possible
directions of the future work include

– exploration of the efficiency of GSAT for random planted 3-SAT of smaller
densities,

– the analysis of GSAT for the uniform random 3-SAT problem.

It was experimentally shown [13] that GSAT works well for constant densities
for random 3-SAT and this fact must have a theoretical explanation.

Acknowledgement. The author is grateful to his supervisors Andrei Bulatov
and David Mitchell for multiple fruitful discussions of the topic.

References

1. Bulatov, A.A., Skvortsov, E.S.: Phase transition for local search on planted SAT.
CoRR, abs/0811.2546 (2008)

2. Feige, U., Vilenchik, D.: A local search algorithm for 3SAT. Technical report
MCS04-07 of the Weizmann Institute (2004)

3. Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. In:
SODA, pp. 357–363 (2003)

4. Gent, I.: On the stupid algorithm for Satisfiability. Ian. Gent. APES Report APES-
03-1998. APES Research Group (1998)

5. Gent, I.P., Bridge, S., Walsh, T.: An empirical analysis of search in GSAT. Journal
of Artificial Intelligence Research 1, 47–59 (1993)

6. Gent, I.P., Walsh, T.: The enigma of SAT hill-climbing procedures. Technical re-
port, Department of AI, University of Edinburgh (1992)

7. Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for
SAT. In: AAAI, pp. 28–33 (1993)

8. Hansen, P., Jaumard, B.: Algorithms for the maximum Satisfiability problem. Com-
puting 44, 279–303 (1990)

9. Hirsch, E.A.: SAT local search algorithms: Worst-case study. J. Autom. Rea-
son 24(1-2), 127–143 (2000)

A Theoretical Analysis of Search in GSAT 275

10. Hoos, H., Sttzle, T.: Stochastic Local Search: Foundations & Applications. Morgan
Kaufmann Publishers Inc., San Francisco (2004)

11. Koutsoupias, E., Papadimitriou, C.: On the greedy algorithm for Satisfiability. Inf.
Process. Lett. 43(1), 53–55 (1992)

12. Mastrolilli, M., Gambardella, L.M.: Maximum satisfiability: How good are tabu
search and plateau moves in the worst-case? European Journal of Operational
Research 166(1), 63–76 (2005)

13. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: AAAI, pp. 440–446 (1992)

The Parameterized Complexity of k-Flip Local Search
for SAT and MAX SAT

Stefan Szeider

Department of Computer Science, Durham University,
Durham DH1 3LE, England, United Kingdom
stefan.szeider@durham.ac.uk

Abstract. SAT and MAX SAT are among the most prominent problems for which
local search algorithms have been successfully applied. A fundamental task for
such an algorithm is to increase the number of clauses satisfied by a given truth
assignment by flipping the truth values of at most k variables (k-flip local search).
For a total number of n variables the size of the search space is of order nk

and grows quickly in k; hence most practical algorithms use 1-flip local search
only. In this paper we investigate the worst-case complexity of k-flip local search,
considering k as a parameter: is it possible to search significantly faster than the
trivial nk bound? In addition to the unbounded case we consider instances with a
bounded number of literals per clause or where each variable occurs in a bounded
number of clauses. We also consider the related problem that asks whether we can
satisfy all clauses by flipping the truth values of at most k variables.

1 Introduction

Local search (LS) is one of the most fundamental algorithmic concepts and has been
successfully applied to a wide range of hard combinatorial optimization problems, most
prominently to Maximum Satisfiability (MAX SAT) and the Travelling Salesperson
Problem (TSP). The basic idea is to move—as long as possible—from a candidate solu-
tion to a “better” neighboring candidate solution. For MAX SAT the candidate solutions
are truth assignments; two truth assignments are k-flip neighbors if they differ in the
values of at most k variables; a truth assignment is better than the other if it satisfies
more clauses. Numerous sophisticated variants of the basic LS algorithm for MAX SAT

have been suggested in the literature; for example LS algorithms that, if stuck at a local
maximum, heuristically move to a non-improving solution. An in-depth coverage LS
algorithms can be found in Hoos and Stützle’s book [6].

The number of k-flip neighbors of a truth assignment on n variables is of order nk, a
size that grows rapidly in k. It is therefore not surprising that most practical algorithms
consider 1-flip neighborhoods only; already 2- or 3-flip neighborhoods are too large for
a brute forth search, as typical instances have tens or hundreds of thousands of variables.

In this paper we study the question of whether the k-flip neighborhood can be ex-
haustively searched in a more efficient way. In particular, we investigate whether the
search can be carried out within a worst-case time bound that is polynomial for fixed k
where the order of the polynomial is independent of k (in contrast to the nk time bound
as required by brute forth search). Problems that admit an algorithmic solution of this

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 276–283, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Parameterized Complexity of k-Flip Local Search 277

type are called fixed-parameter tractable (FPT). Whether or not a problem is fixed-
parameter tractable is studied in the theoretical framework of Parameterized Complex-
ity [2,4,12,14]; we provide some basic definitions and concepts in Section 2.2. We study
the parameterized complexity of LS for MAX SAT in general and for special cases
where clause-size or the number of occurrences of variables are bounded. Furthermore
we study the parameterized complexity of a related problem where we ask whether a
k-flip neighbor of the current truth assignment satisfies all clauses (i.e., if there is a full
solution of distance at most k from the current one). More specifically, we consider the
following two problems and special cases thereof with bounds on clause-size and the
occurrence of variables.

k-FLIP MAX SAT

Instance: A CNF formula F and a truth assignment τ : var(F)→ {0, 1}.
Question: Is there a k-flip neighbor τ ′ of τ that satisfies more clauses of F
than τ?

k-FLIP SAT

Instance: A CNF formula F and a truth assignment τ : var(F)→ {0, 1}.
Question: Is there a k-flip neighbor τ ′ of τ that satisfies all clauses of F ?

The following table summarizes our results (“FPT” indicates fixed-parameter tractabil-
ity, “W[1]-hard” and “W[2]-hard” indicate that the considered problem is most likely
not fixed-parameter tractable, see Section 2.2).

size of clauses occurrence of variables k-FLIP MAX SAT k-FLIP SAT

unbounded unbounded W[1]-hard W[2]-hard
unbounded bounded W[1]-hard W[1]-hard

bounded unbounded W[1]-hard FPT
bounded bounded FPT FPT

Related Work. k-flip LS plays an important role in various theoretical investigations,
for example in Dantsin et al.’s work on worst-case upper bounds for the running time of
3-SAT algorithms [1]. The expected running time for searching 2- and 3-flip neighbor-
hoods on random instances has been investigated by Yagiura and Ibaraki [15]. Johnson,
Papadimitriou, and Yannakakis [8] introduced the class PLS of LS problems for which
local optimality can be verified in polynomial time, and showed that there are complete
problems for this class.

The study of the parameterized complexity of LS was initiated by Fellows [3]. To
date only a handful results are known: Khuller, Bhatia, and Pless [9] investigated the
problem of finding a feedback edge set in a graph that is incident to as few vertices as
possible. They showed that the search for a better solution which can be obtained by
replacing at most k edges of the feedback edge set is fixed-parameter tractable. Marx
[11] studied the parameterized complexity of LS for TSP. He established that finding
a better tour by replacing at most k arcs of a given tour is W[1]-hard, even when the
distance matrix is symmetric and satisfies the triangle inequality. The parameterized
complexity of the important special case where the cities are points in the Euclidean

278 S. Szeider

plane remains open. Krokhin and Marx [10] investigated the parameterized complexity
of LS for finding a satisfying truth assignment for a Boolean constraint satisfaction in-
stance that sets as few variables as possible to 0. They established a dichotomy theorem
(similar to Schaefer’s Theorem) that exactly characterizes which classes of Boolean
relations allow fixed-parameter tractability and which do not.

2 Preliminaries

2.1 CNF Formulas and Truth Assignments

We consider propositional formulas in conjunctive normal form, CNF formulas, given
as sets of clauses. A clause is a set of literals, a literal is a propositional variable x
(a positive literal) or a negated variable ¬x (a negative literal). A CNF formula F is a
q-CNF formula if each clause of F contains at most q literals. We say that a variable x
occurs in a clause C if x ∈ C or ¬x ∈ C. The variable occurrence of a CNF formula F
is bounded by an integer p if each variable x of F occurs in at most p clauses of F . We
write var(F) for the set of variables that occur in F . A truth assignment is a mapping
τ : X → {0, 1} defined on a set X of variables. A truth assignment τ satisfies a clause
C if τ(x) = 1 for some x ∈ C or τ(x) = 0 for some¬x ∈ C; τ satisfies a CNF formula
F if it satisfies all clauses of F . Let τ : var(F) → {0, 1} and τ ′ : var(F) → {0, 1}
be truth assignments. We define dist(τ, τ ′) = |{ x ∈ var(F) : τ(x) 	= τ(x′) }| and
sat(τ, F) = |{C ∈ F : τ satisfies C }|. If dist(τ, τ ′) ≤ k then we say that τ and τ ′ are
k-flip neighbors.

2.2 Parameterized Complexity

An instance of a parameterized problem is a pair (I, k) where I is the main part and k is
the parameter; the latter is usually a non-negative integer. A parameterized problem is
fixed-parameter tractable if there exist a computable function f and a constant c such
that instances (I, k) can be solved in time O(f(k)‖I‖c) where ‖I‖ denotes the size
of I . FPT is the class of all fixed-parameter tractable decision problems.

A parameterized reduction is a many-one reduction where the parameter for one
problem maps into the parameter for the other. More specifically, problem L reduces
to problem L′ if there is a mapping R from instances of L to instances of L′ such
that (i) (I, k) is a yes-instance of L if and only if (I ′, k′) = R(I, k) is a yes-instance
of L′, (ii) k′ = g(k) for a computable function g, and (iii) R can be computed in time
O(f(k)‖I‖c) where f is a computable function and c is a constant.

The Weft Hierarchy consists of parameterized complexity classes W[1] ⊆ W[2] ⊆
· · · which are defined as the closure of certain parameterized problems under param-
eterized reductions (see [2,4,12] for definitions). There is strong theoretical evidence
that parameterized problems that are hard for classes W[i] are not fixed-parameter
tractable. For example FPT = W[1] implies that the Exponential Time Hypothesis
(ETH) fails; that is, FPT = W[1] implies the existence of a 2o(n) algorithm for n-vari-
able 3SAT [4,7].

We establish our hardness results by parameterized reductions from the following
parameterized decision problems (k denotes the parameter).

The Parameterized Complexity of k-Flip Local Search 279

INDEPENDENT SET

Instance: A graph G = (V, E), a non-negative integer k.
Question: Is there a set I ⊆ V of size k such that for no edge uv ∈ E we have
both u ∈ I and v ∈ I? (I is an independent set of G.)
Remark: This problem is W[1]-complete, see [2].

HITTING SET

Instance: Finite sets S1, . . . , Sm, a non-negative integer k.
Question: Is there a set H ⊆

⋃m
i=1 Si of size at most k such that H ∩ Si 	= ∅

for all 1 ≤ i ≤ m? (H is a hitting set of S1, . . . , Sm.)
Remark: This problem is W[2]-complete, see [2].

PARTITIONED CLIQUE

Instance: A k-partite graph G = (V, E) with partition V1, . . . , Vk such that
|Vi| = |Vj | for 1 ≤ i < j ≤ k.
Question: Are there k vertices v1, . . . , vk such that vi ∈ Vi for 1 ≤ i ≤ k and
vivj ∈ E for 1 ≤ i < j ≤ k? (The graph K = ({v1, . . . , vk}, { vivj : 1 ≤ i <
j ≤ k } is a clique of G.)
Remark: This problem is W[1]-complete, see [13].

3 W-Hardness

Theorem 1. k-FLIP MAX SAT is W[1]-hard and remains W[1]-hard for 2-CNF
formulas.

Proof. We devise a parameterized reduction from INDEPENDENT SET; let (G, k) with
G = (V, E) be an instance of this problem. We denote the degree of a vertex v ∈ V in
G by d(v) and we let$ = maxv∈V d(v); furthermore we put m = |E|. We construct a
CNF formula F as follows. The variables of F are the vertices of G plus new variables
a1, . . . , a�−1, b1, . . . , bk−1, c1, . . . , cm, and z.

We define the clauses of F in five groups.

1. For each edge uv ∈ E we introduce the clause {u, v}.
2. For each v ∈ V and 1 ≤ i ≤ d(v) − 1 we introduce the clause {¬v, ai}.
3. For each 1 ≤ i ≤ k − 1 we introduce the clause {¬z, bi}.
4. For each v ∈ V we introduce the clause {¬v, z}.
5. For each 1 ≤ i ≤ $− 1, 1 ≤ i′ ≤ k − 1, and 1 ≤ j ≤ m we introduce the clauses
{¬ai, cj}, {¬ai,¬cj}, {¬bi′ , cj}, and {¬bi′ ,¬cj}.

We denote the set of clauses introduced in step i by Fi, 1 ≤ i ≤ 5. Setting F =
⋃5

i=1 Fi

completes the construction of F . Clearly F can be constructed in polynomial time in
terms of the size of G.

Let τ : var(F) → {0} be the all-0-assignment of F . Observe that τ satisfies all
clauses of F except for the clauses in F1; thus sat(τ, F) = |F | − |E|.

Claim: G has an independent set of size k if and only if F has a truth assignment τ ′

such that dist(τ, τ ′) ≤ k + 1 and sat(τ ′, F) > sat(τ, F).

280 S. Szeider

We sketch the proof of the claim. Let I be an independent set of G with |I| = k. We
define a truth assignment τ ′ : var(F) → {0, 1} by setting τ ′(x) = 1 if x ∈ I ∪ {z} and
τ ′(x) = 0 otherwise. By construction we have dist(τ, τ ′) = k + 1; it is easy to verify
that sat(τ ′, F) = sat(τ, F) +1, thus one direction of the claim holds. Conversely, let τ ′

be a truth assignment of F with dist(τ, τ ′) ≤ k + 1 and sat(τ ′, F) > sat(τ, F). Clearly
τ(ai) = 0 for all 1 ≤ i ≤ $− 1 and τ(bi) = 0 for all 1 ≤ i ≤ k − 1 since otherwise
at least m clauses of F5 would not be satisfied, a deficit that cannot be compensated
elsewhere. By setting τ ′(v) = 1 for a single v ∈ V we can increase the total number of
satisfied clauses at most by one, and this is exactly the case if τ ′(z) = 1 and no clause
of F1 that contains v is already satisfied. On the other hand, τ ′(z) = 1 implies that
all k − 1 clauses in F3 are not satisfied by τ ′. Therefore, the only possibility for τ ′ is
to set z and exactly k independent vertices of V to 1. In other words, G must have an
independent set of size k. Hence the claim is shown true.

We conclude that our construction provides indeed a parameterized reduction from
INDEPENDENT SET to k-FLIP MAX SAT by mapping the instance (G, k) of the former
problem to the instance (F, τ, k + 1) of the latter. ��

Theorem 2. k-FLIP SAT is W[2]-hard.

Proof. The result follows easily by a reduction from HITTING SET. Let (H, k) be an
instance of HITTING SET with H = {S1, . . . , Sm} and X =

⋃m
i=1 Si. We consider

H as a positive CNF formula and let τ : X → {0} be the all-0-assignment on X . It is
evident that H has a satisfying truth assignment τ ′ : X → {0, 1} such that dist(τ, τ ′) ≤
k if and only if H has a hitting set of size at most k. ��

Theorem 3. The problems k-FLIP SAT and k-FLIP MAX SAT remain W[1]-hard if
each variable occurs in at most 3 clauses.

Proof. We devise a parameterized reduction from PARTITIONED CLIQUE; let G =
(V, E) with partition V1, . . . , Vk, |V1| = · · · = |Vk| = n, be an instance of this problem.
We construct a CNF formula F . The variables of F are the vertices and edges of G plus
a new variable z; we define the clauses of F as follows:

1. We introduce the clause {z}.
2. For each 1 ≤ i ≤ k we introduce the clause Ci = Vi ∪ {¬z}.
3. For each v ∈ Vi, 1 ≤ i ≤ k, and each j ∈ {1, . . . , k} \ {i}, we add the clause

Ci,j,v = {¬v} ∪ { vu : u ∈ Vj and vu ∈ E }.

This completes the construction of F .
Let τ : var(F) → {0} be the all-0-assignment of F . Observe that τ satisfies all

clauses of F except clause {z}. Increasing the number of satisfied clauses is equivalent
to satisfying all clauses of F , thus solutions to SAT and MAX SAT coincide for (F, τ).

Let k′ = k +
(
k
2

)
+ 1.

Claim: G contains a clique on k vertices if and only if F is satisfied by a truth
assignment τ ′ : var(F) → {0, 1} with dist(τ, τ ′) ≤ k′.

Let K = (V ′, E′) with V ′ = {v1, . . . , vk} and vi ∈ Vi, 1 ≤ i ≤ k, be a clique of G.
Let τ ′ be the truth assignment that sets all variables in V ′ ∪ E′ ∪ {z} to 1 and all other
variables to 0. It is easy to verify that dist(τ, τ ′) = k′ and τ ′ satisfies F . Conversely,

The Parameterized Complexity of k-Flip Local Search 281

let τ ′ : var(F) → {0, 1} be a truth assignment that satisfies F with dist(τ, τ ′) ≤ k′.
Because of the clause {z} ∈ F clearly τ ′(z) = 1. Because of the clauses Ci it follows
that each set Vi, 1 ≤ i ≤ k, must contain some variable vi with τ ′(vi) = 1. Hence
there is a set V ′ = {v1, . . . , vk}, with vi ∈ Vi and τ ′(vi) = 1 for 1 ≤ i ≤ k. Let
E′ = { e ∈ E : τ ′(e) = 1 }. Since τ ′ sets at most k′ variables to 1, and among these
variables are v1, . . . , vk and z, we conclude that |E′| ≤ k′ − k − 1 =

(
k
2

)
. Because of

the clauses Ci,j,vi it follows that for each vi and each j ∈ {1, . . . , k} \ {i} there is an
edge viuj ∈ E′ for some uj ∈ Vj . Since |E′| ≤

(
k
2

)
it follows that uj = vj . Hence

E′ = { vivj : 1 ≤ i < j ≤ k } and |E′| =
(
k
2

)
; thus K = (V ′, E′) is indeed a clique

of G with k vertices. This completes the proof of the claim.
We conclude that the above construction specifies a parameterized reduction from

PARTITIONED CLIQUE to k-FLIP (MAX) SAT by mapping an instance (G, k) of the
former problem to the instance (F, τ, k′) of the latter.

Next we outline how the reduction can be modified so that each variable occurs in at
most three clauses.

Let F ∗ be the CNF formula obtained from F by replacing variables of F that occur in
more than three clauses by new variables (a separate variable per clause), and by adding
“implication cycles” of binary clauses that ensure that new variables of F ∗ representing
the same variable of F will have the same truth value under any satisfying assignment
of F ∗. Note that the all-0-assignment σ of F ∗ satisfies all but one clause of F ∗. It is
easy to verify that satisfying truth assignments of F that set exactly k′ variables to 1
are in a one-to-one correspondence with satisfying truth assignments of F ∗ that set
exactly k∗ = k2 +

(
k
2

)
+ k + 1 variables to 1. Hence we can map the instance (G, k) of

PARTITIONED CLIQUE to the instance (F ∗, σ, k∗) of k-FLIP (MAX) SAT where each
variable occurs in at most three clauses. Thus the theorem follows. ��
The CNF formulas F and F ∗ as constructed in the proof of Theorem 3 are anti-Horn
(each clause contains at most one negative literal). We can give a dual reduction that
produces Horn formulas (each clause contains at most one positive literal). Hence The-
orem 3 remains valid for Horn and for anti-Horn formulas.

4 Fixed-Parameter Tractability

Theorem 4. Let q be an arbitrary but fixed positive integer. k-FLIP SAT is fixed-
parameter tractable for q-CNF formulas.

This result follows by a straightforward application of the bounded search tree
method [2]; branching on literals of unsatisfied clauses gives a search tree with O(q3)
nodes.

Theorem 5. Let p, q be arbitrary but fixed positive integers. k-FLIP MAX SAT is fixed-
parameter tractable for q-CNF formulas where each variable occurs in at most p
clauses.

The proof of this theorem requires some preparation. Let S denote a finite relational
structure and ϕ a first-order (FO) formula. S is a model of ϕ (in symbols S |= ϕ) if
ϕ is true in S in the usual sense (see, e.g., [4]). We consider the following problem,
parameterized by the length of the considered FO formula ϕ.

282 S. Szeider

FO MODEL CHECKING

Instance: A finite structure S, a FO formula ϕ.
Question: Does S |= ϕ hold?

We associate with a relational structure S its Gaifman graph G(S), whose vertices are
the elements of the universe of S, and where two distinct vertices are joined by an edge
if and only if they occur together in some tuple of a relation of S. By means of Gaifman
graphs one can associate graph invariants such as maximum degree or treewidth with
a relational structure. Frick and Grohe [5] have shown that FO MODEL CHECKING

for structures of bounded maximum degree is fixed-parameter tractable (they show the
result for classes of structures of “effectively bounded local treewidth” which includes
structures of bounded maximum degree as a special case). In fact, Frick and Grohe’s
result establishes that FO MODEL CHECKING is fixed-parameter tractable for the com-
bined parameter d + k where d bounds the maximum degree of the given structure
and k bounds the length of the FO formula (see [4] for more background and technical
details).

Proof of Theorem 5. Consider an instance (F, τ, k) of k-FLIP MAX SAT where each
clause contains at most q literals and each variable occurs in at most p clauses.

We represent the pair (F, τ) by a relational structure SF as follows. For every vari-
able x of F and every clause C of F , the universe of SF contains distinct elements ax

and aC , respectively. The relations of SF are defined as follows.

V = { ax : x ∈ var(F) } (variables)
C = { aC : C ∈ F } (clauses)
P = { (ax, aC) : x ∈ var(F), C ∈ F, and x ∈ C } (positive occurrence)
N = { (ax, aC) : x ∈ var(F), C ∈ F, and ¬x ∈ C } (negative occurrence)
T = { ax : x ∈ var(F) and τ(x) = 1 } (variables that are true under τ)

The maximum degree of SF is bounded by the maximum of p and q.
For fixed t, s, u it is not difficult to construct a FO formula ϕt,s,u which states that

there exist t distinct variables x1, . . . , xt and s+u distinct clauses y1, . . . , ys, z1, . . . , zu

such that the clauses yj are exactly those which are not satisfied by τ but are satisfied
after flipping the truth values of the variables xi, and the clauses zj are exactly those
which are satisfied by τ but are not satisfied after the flipping. We define ϕ as the
disjunction of various instances of ϕt,s,u with 1 ≤ t ≤ k and 0 ≤ u < s ≤ p · t.
Clearly the length of ϕ depends on k and p only, and it holds that SF |= ϕ if and only
if (F, τ, k) is a yes-instance of k-FLIP MAX SAT. Consequently Theorem 5 follows by
Frick and Grohe’s result. ��

The proofs of Theorems 4 and 5 show that the considered problems are even fixed-
parameter tractable if p and q are part of the parameter and not constants. That is,
k-FLIP SAT is fixed-parameter tractable for parameter k + p and k-FLIP MAX SAT is
fixed-parameter tractable for parameter k + p + q.

The Parameterized Complexity of k-Flip Local Search 283

References

1. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.M., Papadimitriou, C.H.,
Raghavan, P., Schöning, U.: A deterministic (2−2/(k +1))n algorithm for k-SAT based on
local search. Theoret. Comput. Sci. 289(1), 69–83 (2002)

2. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Sci-
ence. Springer, Heidelberg (1999)

3. Fellows, M.R.: Blow-Ups, Win/Win’s, and Crown Rules: Some New Directions in FPT. In:
Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)

4. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series, vol. XIV. Springer, Heidelberg (2006)

5. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures.
J. ACM 48(6), 1184–1206 (2001)

6. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Else-
vier/Morgan Kaufmann (2004)

7. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?
J. of Computer and System Sciences 63(4), 512–530 (2001)

8. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. of Com-
puter and System Sciences 37(1), 79–100 (1988)

9. Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM
J. Comput. 32(2), 470–487 (2003)

10. Krokhin, A.A., Marx, D.: On the hardness of losing weight. In: Aceto, L., Damgård, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part I. LNCS, vol. 5125, pp. 662–673. Springer, Heidelberg (2008)

11. Marx, D.: Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res.
Lett. 36(1), 31–36 (2008)

12. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics and its Applications. Oxford University Press, Oxford (2006)

13. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common su-
persequence and longest common subsequence problems. J. of Computer and System Sci-
ences 67(4), 757–771 (2003)

14. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van Maaren,
H., Walsh, T. (eds.) Handbook of Satisfiability, ch. 13, pp. 425–454. IOS Press, Amsterdam
(2009)

15. Yagiura, M., Ibaraki, T.: Analyses on the 2 and 3-flip neighborhoods for the MAX SAT. J.
Comb. Optim. 3(1), 95–114 (1999)

A Novel Approach to Combine a SLS- and a
DPLL-Solver for the Satisfiability Problem

Adrian Balint, Michael Henn, and Oliver Gableske�

Ulm University
Institute of Theoretical Computer Science

89069 Ulm, Germany
{adrian.balint,michael.henn,oliver.gableske}@uni-ulm.de

Abstract. The paper at hand presents a novel and generic approach on
how to combine a SLS and a DPLL solver to create an incomplete hybrid
SAT solver. In our approach, the SLS solver gets supported by a DPLL
solver to boost its performance. In order to develop the idea behind our
approach, we first define the term of a search space partition (SSP) and
explain its construction and use. For testing our new approach, which
utilizes SSPs, we implemented it in the solver hybridGM, using gNovelty+
and March ks. After explaining the implementation details, we perform
an empirical study on several publicly available benchmarks in order to
test the performance of the new hybrid SAT solver. The results indicate
a superior performance of hybridGM over gNovelty+, proving our new
approach to be worthwhile.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most studied NP-
complete problems [1] in computer science. One reason for that is the wide range
of SAT’s practical applications ranging from hardware verification to planning
and scheduling.

Most of today’s SAT solvers’ architectures are based on one of the following
paradigms: DPLL (based on DP [4]) and SLS (based on GSAT [19]). Both
paradigms have quite oppositional benefits and drawbacks. SLS solvers scale very
well on random instances and use comparatively little memory. On the other hand
they can not disclose the unsatisfiability of a problem. In contrast to that, DPLL
solvers are good at solving industrial and structured problems and they can as-
certain if a problem is satisfiable or unsatisfiable, but they have difficulties solving
random instances and use a larger amount of memory than SLS solvers.

Altogether, DPLL and SLS solvers seem to complement each other very well,
and therefore, the idea of combining both approaches seems promising. The ideal
hybrid SAT solver, that follows both paradigms, would be very fast, scale very
well, and would be complete. This is why the construction of hybrid SAT solvers
is an active field of research, that has seen large efforts over the past years.
� Funded by the Graduate School Mathematical Analysis of Evolution, Information

and Complexity at Ulm University.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 284–297, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Novel Approach to Combine a SLS- and a DPLL-Solver 285

2 Related Work

Considerable effort has been undertaken to create hybrid SAT solvers for more
than a decade now. In general, three different approaches to create such hybrid
SAT solvers have emerged.

First, one tries to use a SLS solver to support a DPLL solver ([2,17,5,10,7,8]).
Such a support can come in various ways. In [2], a SLS solver is used to derive
weights for clauses. These clause weights are then used by a DPLL solver to
preferably branch on variables that occur more often in clauses with higher
weights. In [17], a SLS solver is used to find inconsistent kernels in a formula.
This knowledge is then used to narrow the search of a DPLL solver to only the
inconsistent part of a formula. As a result, the global unsatisfiability of a formula
can be shown in less computation time. In [5], a SLS solver is used to determine
an ordering of the branching variables that a DPLL solver should follow. In [8],
a SLS solver is used to identify areas of the search space that are more likely to
contain a solution. These areas are then represented as partial assignments, that
a DPLL solver starts its search with. Confined to such a portion of the search
space, the DPLL solver is usually faster in finding a solution than it would be
when left to itself.

As a second approach, one might be able to use information gathered by DPLL
solvers on a certain formula to support the search of a SLS solver ([14,6,9]). In
[6], a DPLL solver is called whenever the SLS solver has moved into a local
minimum in the search space. The approach adds implied clauses (learned by
the DPLL solver) to modify the search space landscape the SLS solver works
in. This learning process is repeated until the SLS solver is able to move out
of the (former) local minimum. In [9], a DPLL solver will derive implications
between variables when arriving in a certain node of its search tree. With these
implications, a reduced version of the currently investigated formula is created,
consisting of only equivalence classes. When applying the SLS solver on the
reduced formula, it will consider the equivalence classes rather than the original
variables. This in turn helps the SLS solver to concentrate on actually different
variables, when making its choice what variable is to be flipped next. The SLS
solver is then allowed to perform a maximum number of flips for searching a
solution (under the DPLL provided preconditions). If the SLS solver finds a
solution during its search, the algorithm terminates. If the SLS solver used up
its allowed flips and did not find a solution, the DPLL solver comes back into
play and continues traveling down its search tree.

The third approach on creating hybrid SAT solvers is peer-like, where SLS
and DPLL solvers are supposed to benefit equally from each other as presented
in [7,15]. The hbisat solver [7] and its successor hinotos [15] both use a SLS solver
that first tries to solve the formula. When a certain criterion is met (e.g. only a
certain number of unsatisfied clauses remain), a DPLL solver is called, that is
supposed to solve these clauses separately. When the DPLL solver finds a model
for this partial set of clauses, it will return the corresponding assignment to the
SLS solver, that will then use this assignment to continue its search. Eventually,
the SLS solver will be able to find a solution. If this is not the case, the set

286 A. Balint, M. Henn, and O. Gableske

of clauses that the DPLL solver investigates, grows over time. Eventually, the
DPLL solver will be provided with enough clauses to find a contradiction and
deduce the unsatisfiability of the formula or it can provide a solution for the
complete formula.

Despite the efforts undertaken so far, no truly superior hybrid SAT solver has
yet emerged. This is why we think that more effort is needed in this field of
research. This paper is supposed to contribute to these efforts.

3 Preliminary Study

Towards the development of a hybrid SAT solver we started by investigating the
search of a SLS solver, looking for weaknesses. The main goal was to find a way
to support a SLS solver by additionally using a DPLL solver to overcome these
weaknesses and thereby boost the SLS solver’s performance.

Looking at the results of the SLS solvers in the random category of the SAT
2007 Competition, we noticed that the runtime of a SLS solver on formulae of
the same size can vary greatly. To analyze this effect we focused our attention on
the winning SLS solver of the SAT 2007 Competition in the random category,
gNovelty+ [20,18]. Our assumption was that the search space structure of the
hard to solve formulae contained many attractive local minima that were vis-
ited by the SLS solver very often. To verify this assumption we tried to cluster
all points from gNovelty+’s search trajectory. This approach was unsuccessful
because of the too huge amount of data that had to be clustered. Another ap-
proach was to analyze only the points where the objective function had very low
values (i.e. local minima and their close neighborhood). Because the amount of
data was still too large, we used a bloom filter to save all local minima. Then we
checked how many assignments, that gNovelty+ visited, fell in the neighborhood
of the saved local minima. The maximum matching we could reach was 2%. This
indicated that the diversification of gNovelty+’s search is excellent.

The next thing to analyze was if the intensification of gNovelty+’s search
around these local minima was good enough to assure with a high probability
that there are no solutions. To prove this we would have had to search the
complete neighborhood of a local minimum within a certain Hamming distance.
This is possible for small formulae, but for the formulae having thousands of
variables the neighborhood is far too large to be computed in foreseeable time.
Zhang showed in [23] that the Hamming distance between a good local minimum
and the nearest solution is correlated with the quality of that local minimum.
Attempting to find such a correlation we came up with the term of a “search
space partition”. To formalize this we have to give some definitions.

3.1 Search Space Partition (SSP)

Let F be a CNF formula containing n variables {x1, x2, . . . , xn}, xi ∈ B where
B = {0, 1}. A complete assignment of the formula F is α ∈ Bn. The application of
the assignment α on formula F is denoted by F (α) ∈ {0, 1}. A partial assignment

A Novel Approach to Combine a SLS- and a DPLL-Solver 287

is β ∈ RBn where RB = {0, 1, ?}. The application of a partial assignment β on F
is denoted by F (β) = F ′, where F ′ is a new formula in which the value of β[i] is
assigned to xi if β[i] ∈ {0, 1} and xi remains unchanged if β[i] =? ∀i ∈ {1, . . . , n}.
Additionally, we assume that the obvious simplifications have been applied to
F (β) = F ′. The number of ?-symbols in β (size of β) is described by |β|?,
representing the number of remaining variables in F ′.

Example 1. For

F = (x1 ∨x2 ∨x5)∧ (x1 ∨x3 ∨x5)∧ (x3 ∨x4 ∨x5)∧ (x2 ∨x3 ∨x4)∧ (x1 ∨x2 ∨x5)

an example for α and β could be α = (1, 0, 1, 1, 0) and β = (?, 1, 1, ?, ?). The
application of α and β on F is: F (α) = 1 and F ′ = F (β) = (x1 ∨ x5) ∧ (x4 ∨
x5) ∧ (x1 ∨ x5).

Definition 1 (flip trajectory of a SLS solver). Given a SLS solver S with
input formula F and a complete starting assignment αs we define the flip tra-
jectory of S(F, αs) as TS(F, αs) = (t1, . . . , tw) where ti ∈ {x1, . . . , xn} denote
the variables being flipped by the SLS-algorithm S, and w is the total number of
flips made, starting with the formula F and the initial assignment αs.

Example 2. Given the formula from example 1 and a starting assignment αs =
(0, 1, 0, 0, 0), a possible flip trajectory that would lead to a satisfying assignment
could be TS(F, αs) = (x1, x5, x3, x2)

Definition 2 (search space partition). We define a search space partition
(SSP) by construction: Given a complete assignment αj, which was visited by S
in the j’th flip of the trajectory, we construct the SSP by starting with k = 0
and β = αj. Then we repeat setting β[tj+k] =? and β[tj−k] =?, where tj±k ∈
TS(F, αs), and increasing k by 1 until |β|? ≥ c · n where c is some constant
c ∈ (0, 1) (to be determined later).

Example 3. Let α7 = (0, 0, 1, 1, 0, 1, 0, 1, 1, 1) be a complete assignment for a
formula F with 10 variables and let the surrounding flip trajectory be

TS(F, αs) = (x2, x6, x1, x9, x1, x6,x1, x3, x9, x1, x1, x8, x3, . . .)

If we set c = 0.5 and start to construct a SSP from position j = 7 in TS(F, αs),
then the first variable that is unassigned in β is x1 (k = 0). In the next
step x3 and x6 get unassigned (k = 1) according to TS(F, αs). This proce-
dure is repeated until |β|? ≥ 5. After five steps the process will stop with
β = (?, 0, ?, 1, 0, ?, 0, ?, ?, 1).

The connection between an assignment and a SSP is as follows. A complete
assignment is a point in the space Bn, whereas a SSP is a set of points (subset
of Bn) of dimension �c · n�, c ∈ (0, 1), that can be characterized by a partial
assignment. Intuitively, the SSP created with the help of a SLS solver can also
be seen as the confidence of the solver, that certain values of its assignment are
set correctly.

288 A. Balint, M. Henn, and O. Gableske

The notation of search space partitions was also used by Wu and Hsiao in
[22], where they propose a simulation-based algorithm for checking the safety
property of digital systems. Although the notion is similar, the concepts are
quite different. The search space in [22] is represented by the internal nodes
of a Boolean circuit. These nodes are joined together to node sets that repre-
sent the search space partition. Because the nodes contained in a node set are
strongly connected with each other by gates, some value combinations can be
dismissed from the search space partition, so that the whole search space gets
smaller. In order to point out the difference to our work, we provide the following
example.

Example 4. Suppose we have a circuit with nine internal nodes denoted by
{n1, . . . , n9} and connected by gates without flip-flops. A possible partitioning
in sets could be: {n1, n2, n3, n4}, {n7, n8} and {n5, n6, n9}. Now suppose that
the nodes n1 and n2 are the inputs of an and-gate, so are n3 and n4. Then from
all possible 24 = 16 inputs of the subset only 9 are valid ones, so that 7 are dis-
missed. Now suppose that for the second set only 3 possible value combinations
are valid and for the third one only 5. The whole search space now contains only
9 · 3 · 5 = 135 possible inputs out of 512.

We instead construct a SSP (which is a partial assignment) by starting from a
complete assignment and then unassigning variables. In our case unassigning 4
variables for an assignment of {n1, . . . , n9} would lead to a SSP containing 16
complete assignments.

4 Explaining the Construction and Use of Search Space
Partitions

As mentioned in section 3 we are interested in the study of local minima and
their neighborhood. Therefore the αj mentioned in the definition of a SSP would
ideally be a local minimum. A SSP created as defined above overlaps with the
Hamming neighborhood of the local minimum but is not the same.

Figure 1 describes how SSPs are created around local minima with exactly
one unsatisfied clause. It has to be mentioned that a SSP can contain multiple
minima.

A local minimum exists, because several variables imply a complex conflict
that cannot be solved by a SLS solver within the next flip. To resolve such a
conflict, the SLS solver would have to flip several of these variables. The variables
that are flipped are determined by the variable selection heuristic of the SLS
solver, which is usually quite reasonable. However, the order and number in
which the variables are flipped (and therefore, the resulting assignments) are
usually determined by the landscape of the objective function. This landscape
will, however, not always guide the right way. Therefore, we can identify probably
conflicting variables in a local minimum by monitoring the flips made by the
SLS solver around the discovered local minimum in the trajectory. Their correct
values are then to be determined.

A Novel Approach to Combine a SLS- and a DPLL-Solver 289

Fig. 1. A schematic visual of the objective function and the flips used for the construc-
tion of a SSP

Using this knowledge, we can create a partial assignment by unassigning these
identified variables in the complete assignment of the local minimum, what leads
to a SSP. Given such a SSP, our hybrid strategy consists in calling a DPLL solver,
which will try to resolve the conflict by finding an assignment for the remaining
variables in the SSP. In case the DPLL solver finds an assignment that resolves
the conflict using the unassigned variables, a solution for the complete formula is
found. In case such an assignment does not exist, the conflict can not be resolved
by using only the free variables in the SSP. In this case, the search of the SLS
solver must continue to identify a new local minimum.

All in all, a generic algorithm implementing the above idea would use a SLS
solver to localize good local minima, build a SSP, apply the partial assignment
of the SSP on the formula and try to find a solution for the simplified formula
with a DPLL solver. This process would be repeated until a solution is found
or until another stopping criterion is met. The algorithm can not prove the
unsatisfiability of the problem but it could speed up the SLS solver by finding a
solution sooner.

5 hybridGM

To check if our approach is promising we implemented a hybrid SAT solver which
we call hybridGM. The SLS solver used is gNovelty+. Because we expected that
a SSP does not contain a solution in the majority of cases (which we found
to be true), we needed a solver that can prove the unsatisfiability of a given
(sub-)formula fast and because March ks was the winner of random UNSAT
category of the SAT 2007 Competition [20], we have chosen March ks for the
DPLL component of hybridGM.

When implementing hybridGM two questions arose. First, which local minima
should be used to create a SSP? Using every appearing local minimum in the
objective function leads to an overwhelming workload. Numerous local minima
are discovered by the SLS solver as we have noticed when analyzing the search
trajectory of gNovelty+. To reduce the workload, we confine ourselves to using
only those assignments that leave exactly one clause in the formula unsatisfied.

Second, how large should the SSP be, i.e. how to set c, where |β|? ≥ c · n?
The more variables in β are set to ?, the higher is the probability to resolve all

290 A. Balint, M. Henn, and O. Gableske

conflicts in the corresponding SSP. On the other hand, the less variables in β
are set to ?, the faster the DPLL solver can return a result. Therefore, we have
to compromise between the probability to resolve all conflicts and the runtime
of the DPLL solver.

For initial tests we have chosen |β|? = 0.5 · n. In this case, the DPLL solver
almost instantaneously returns SAT/UNSAT. If it reports UNSAT together with
a unary conflict, we increase c by 0.05.

Listing 1. Pseudocode for hybridGM

INPUT: formula F , cutoff. OUTPUT: model for F or UNKNOWN.
hybridGM(F , cutoff){

α = αs = randomly generated starting assignment;
numFlips = 0; c = 0.5; barrier= 1; collectSSP = FALSE;
while(numFlips < cutoff){

var = pickVar();
append(TgNovelty+(F, αs),var);
α[var] = 1−α[var];
numFlips++;
if (α is model for F) return α;
if (numUnsatClauses ≤ barrier){

β = α;
collectSSP = TRUE;
j = numFlips; k = 0;

}
if (collectSSP == TRUE){

β[variableIndex(TgNovelty+(F, αs)[j + k])] =?;
β[variableIndex(TgNovelty+(F, αs)[j − k])] =?;
k++;

}
if (|β|? ≥ cn){

μ = March ks(F , β);
if (μ is model for F) return μ;
else if (unaryConflictOccurred() == TRUE) c = c + 0.05;
collectSSP = FALSE;

}
updateParameters(); //noise, scores

}
return UNKNOWN;

}

The framework of hybridGM is that of gNovelty+ with the extension of collect-
ing SSPs when the number of unsatisfied clauses reaches a certain barrier. If
this happens, the number of the flip in the trajectory will be saved in j. This j
is used for the construction of the SSP as given in definition 2. When the size
of the SSP has reached the size of cn then March ks is called with the initial
formula and the partial assignment β. If March ks succeeds in solving the formula

A Novel Approach to Combine a SLS- and a DPLL-Solver 291

by extending the partial assignment, the solution is returned, else if March ks
discovers a unary conflict, c is adapted. Finally, the parameters of gNovelty+ are
updated and the search continues until the number of flips reaches the cutoff.
Before presenting the results of the empirical study we first give a short overview
about the solvers gNovelty+ and March ks.

6 The SAT Solvers Used for the Hybridization

6.1 gNovelty+

gNovelty+ [18] is a SLS solver that follows the WalkSAT architecture, and it can
be seen as an improvement of the SLS solver G2WSAT [16]. In its core, gNovelty+
utilizes a gradient-based variable score update scheme to calculate candidate
variables for the next flip of the WalkSAT procedure (as G2WSAT originally
does). However, several improvements over G2WSAT have been introduced for
gNovelty+.

First, the original variable selection heuristic of G2WSAT, called Novelty++,
was replaced by AdaptNovelty+ [12]. Second, gNovelty+ applies a clause weight-
ing scheme quite similar to SAPS (see [13]) but with purely additive weight
update functions [18].

gNovelty+ has proven to be very competitive during the SAT 2007 Compe-
tition when it comes to satisfiable uniform random k-SAT (see [18,20] for more
details). Therefore, it is considered a state-of-the-art SLS SAT solver.

6.2 March ks

March ks [11] is a double look-ahead DPLL solver, that utilizes numerous fea-
tures and performed very well at the SAT 2007 Competition [20]. Originating
from a solver called march, several versions have evolved over time. The first
solver in this line with reasonable performance was March eq.

March eq introduced the equivalency reasoning into the march solver family,
enabling it to find and separately exploit variable equivalences in a searched
instance. March dl is its successor.

March dl introduced the double look-ahead into the march solver family, en-
abling March dl to detect failed literals sooner than March eq. Furthermore,
March dl introduced a new branching strategy called local branching. The suc-
cessor of March dl was March ks [11].

March ks introduced two new features to the march solver family. First, it
used a modified version of the double look-ahead, called adaptive double look-
ahead [11]. Second, March ks makes use of a new backtracking strategy called
distribution jumping.

March ks has proven to be very competitive when it comes to uniform random
k-SAT formulae, and is therefore considered one of todays state-of-the-art DPLL
SAT solvers. For more details on the performance of March ks see [20].

292 A. Balint, M. Henn, and O. Gableske

7 Empirical Study
For the implementation of hybridGM we used the gNovelty+ code, with a
changed smoothing probability from 0.4 to 0.33. The barrier was fixed to one, so
that SSPs are built only when exactly one clause remains unsatisfied. In some
cases when calling March ks and returning the result to gNovelty+ we observed
that a part of the memory allocated by March ks data structure is not released.
This memory leak is very small but if the number of March ks calls gets too
large, we get an out of memory exception. To avoid this case we limited the
number of March ks calls to 5000. Furthermore, we sometimes get a signal 6
abort, which indicates that there are further bugs to be resolved in the code.

We also tested different settings for the border |β|?, i.e. the number of variables
in a SSP, that must be unassigned before March ks examines it. However, we
noticed that an initial value > 0.5·n just raises the calculation times of March ks,
without improving its success rate of resolving all conflicts in a SSP.

7.1 Soft- and Hardware

The gNovelty+ and the adaptg2wsat0 code we used for the comparison was the
one submitted to the SAT 2007 Competition1. The March ks code we used was a
bug-fixed version of the SAT 2007 Competition2. The code of hybridGM can be
downloaded from our website at http://www.uni-ulm.de/in/theo/research/
sat-solving.html.

The solvers were run on a part of the bwGrid, where we were provided with
a total of 140 Intel Harpertown quad-core CPUs with 2.83 GHz and 8 GByte
RAM. The operating system was Scientific Linux.

7.2 The Benchmark Formulae

We used formulae from two benchmark sets to test hybridGM against gNovelty+
and adaptg2wsat0 : the SAT 2007 Competition benchmark [20], and the SATLIB
benchmark [21].

Concerning the SAT 2007 Competition benchmark, we selected numerous
satisfiable random and industrial formulae. First, we randomly picked 24 of the
satisfiable 2 + p formulae of different sizes. Second, we randomly picked 5 small
uniform random 3-SAT formulae with 650 variables. Third, we picked numerous
3−SAT formulae from the large-size category, as well as some 5−, and 7−SAT
formulae from the on-threshold category. Concerning the SAT 2007 Competi-
tion benchmark, we also ran tests on some industrial and crafted instances that
gNovelty+ was able to solve during the SAT 2007 Competition. Concerning the
SATLIB benchmark, we chose some prominent crafted and industrial instances.

7.3 Results
When taking a closer look at table 1, one discoveres that hybridGM dominated
gNovelty+ in several areas. One of these areas is the 2 + p formula set of the

1 http://www.satcompetition.org/2007/winners.tgz
2 http://www.st.ewi.tudelft.nl/sat/Sources/sat2007/march_ks.zip

http://www.uni-ulm.de/in/theo/research/
sat-solving.html
http://www.satcompetition.org/2007/winners.tgz
http://www.st.ewi.tudelft.nl/sat/Sources/sat2007/march_ks.zip

A Novel Approach to Combine a SLS- and a DPLL-Solver 293

Table 1. The table presents the results of our empirical study. Each solver performed
100 runs per instance (gNovelty+ and hybridGM were started with the same seed).
Runtimes are given in seconds: mean | median. If the solver was not able to succeed
100 times (each within 2000 seconds), we just give the success rate for the instance
in percent. The hybridGM column also contains a tuple, that presents which compo-
nent found the solution how often within the 100 runs (gNovelty+, March ks). The
gain column represents the speed-up of hybridGM over gNovelty+ (> 1 indicates that
hybridGM was faster or had a better success rate, ≤ 1 indicates the opposite).

Instance gNovelty+ adaptG2-
WSAT0

hybridGM
(gNov,March)

Gain

SAT 2007 Competition random instances

unif2p-p0.7-v3500-c9345-S1286605994-07 91% 16.38 | 11.84 38.96 | 29.72 (20, 80) >1>1>1>1>1>1>1>1>1

unif2p-p0.7-v3500-c9345-S1568322528-08 10% 2.91 | 1.63 9.63 | 7.82 (9, 91) >1>1>1>1>1>1>1>1>1

unif2p-p0.7-v4500-c12015-S1545977164-16 2% 50.64 | 7.84 109.25 | 91.15 (7, 93) >1>1>1>1>1>1>1>1>1

unif2p-p0.7-v4500-c12015-S1973057201-08 25% 138.52 | 42.71 121.52 | 82.44 (23, 77) >1>1>1>1>1>1>1>1>1

unif2p-p0.7-v5500-c14685-S1568197186-18 2.00 | 1.39 0.39 | 0.24 0.46 | 0.42 (37, 63) 4.354.354.35

unif2p-p0.7-v5500-c14685-S915337037-05 95% 3.33 | 1.60 20.51 | 5.79 (24, 76) >1>1>1>1>1>1>1>1>1

unif2p-p0.7-v6500-c17355-S1097641288-15 97.64 | 69.35 3.75 | 1.61 4.31 | 2.57 (20, 80) 22.6522.6522.65

unif2p-p0.7-v6500-c17355-S152598520-02 226.64 | 168.00 10.23 | 1.90 2.17 | 1.66 (27, 73) 104.44104.44104.44

unif2p-p0.8-v1295-c4027-S1679085272-10 0.74 | 0.58 6.06 | 4.20 0.45 | 0.36 (73, 27) 1.641.641.64

unif2p-p0.8-v1295-c4027-S1762612346-15 136.06 | 94.03 1.13 | 0.79 2.65 | 2.20 (9, 91) 51.3451.3451.34

unif2p-p0.8-v1665-c5178-S1363528912-04 20.84 | 16.16 5.11 | 3.33 5.21 | 4.65 (73, 27) 4.004.004.00

unif2p-p0.8-v1665-c5178-S1404069132-16 265.54 | 196.49 5.70 | 3.10 23.56 | 17.24 (13, 87) 11.2711.2711.27

unif2p-p0.8-v2035-c6328-S1703132040-12 1.47 | 1.02 0.74 | 0.32 0.46 | 0.38 (44, 56) 3.203.203.20

unif2p-p0.8-v2035-c6328-S316347254-19 0.75 | 0.48 0.18 | 0.14 0.23 | 0.17 (40, 60) 3.263.263.26

unif2p-p0.8-v2405-c7479-S1163137157-19 8.18 | 6.14 4.00 | 2.27 9.67 | 8.01 (28, 72) 0.85

unif2p-p0.8-v2405-c7479-S183991542-09 33% 33.50 | 21.10 92% (5, 87) >1>1>1>1>1>1>1>1>1

unif2p-p0.9-v1170-c4235-S1575802003-16 0.94 | 0.74 0.31 | 0.24 0.41 | 0.29 (59, 41) 2.292.292.29

unif2p-p0.9-v1170-c4235-S2131244303-19 52.26 | 31.82 1.45 | 1.21 2.80 | 2.07 (30, 70) 18.6618.6618.66

unif2p-p0.9-v630-c2280-S1804595013-08 4.32 | 3.33 0.91 | 0.67 1.72 | 1.35 (31, 69) 2.512.512.51

unif2p-p0.9-v630-c2280-S2099846342-04 0.35 | 0.27 0.14 | 0.10 0.33 | 0.23 (88, 12) 1.061.061.06

unif2p-p0.9-v810-c2932-S1014417748-14 0.12 | 0.08 0.08 | 0.06 0.11 | 0.09 (75, 25) 1.091.091.09

unif2p-p0.9-v810-c2932-S1274825698-06 0.27 | 0.21 0.06 | 0.05 0.15 | 0.10 (59, 41) 1.801.801.80

unif2p-p0.9-v990-c3583-S361865778-09 4.55 | 3.71 2.34 | 1.49 2.37 | 1.67 (67, 33) 1.921.921.92

unif2p-p0.9-v990-c3583-S461590508-14 0.28 | 0.21 0.10 | 0.08 0.23 | 0.18 (56, 44) 1.221.221.22

unif-k3-r4.261-v650-c2769-S1089058690-02 0.25 | 0.16 0.17 | 0.10 0.38 | 0.28 (61, 39) 0.66

unif-k3-r4.261-v650-c2769-S1159448555-06 0.46 | 0.29 0.24 | 0.19 0.67 | 0.53 (76, 24) 0.69

unif-k3-r4.261-v650-c2769-S1172355929-14 0.04 | 0.02 0.02 | 0.02 0.05 | 0.04 (79, 21) 0.80

unif-k3-r4.261-v650-c2769-S1470952774-07 4.31 | 3.42 2.21 | 1.89 7.25 | 5.51 (71, 29) 0.59

unif-k3-r4.261-v650-c2769-S1481730841-18 0.07 | 0.06 0.07 | 0.04 0.09 | 0.07 (76, 24) 0.78

unif-k3-r4.2-v10000-c42000-S1173369833-06 73.87 | 50.01 11% 7.28 | 5.61 (23, 77) 10.1510.1510.15

unif-k3-r4.2-v10000-c42000-S1912540524-08 207.11 | 152.90 1% 16.85 | 14.69 (28, 72) 12.2912.2912.29

unif-k3-r4.2-v10000-c42000-S421554531-04 98.25 | 79.86 7% 11.66 | 9.52 (30, 70) 8.438.438.43

unif-k3-r4.2-v10000-c42000-S597645631-10 101.45 | 77.88 5% 8.01 | 6.37 (31, 69) 12.6712.6712.67

unif-k3-r4.2-v10000-c42000-S657313757-16 98% 0% 59.16 | 46.26 (33, 67) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v10000-c42000-S897388318-05 205.65 | 170.49 2% 22.51 | 19.32 (24, 76) 9.149.149.14

unif-k3-r4.2-v10000-c42000-S971732863-03 64.10 | 42.61 19% 7.54 | 5.85 (37, 63) 8.508.508.50

unif-k3-r4.2-v13000-c54600-S1054448974-13 97% 0% 44.89 | 38.74 (36, 64) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v13000-c54600-S1416986890-04 331.30 | 250.70 0% 22.02 | 17.58 (23, 77) 15.0515.0515.05

unif-k3-r4.2-v13000-c54600-S161446644-14 55% 0% 99% (33, 66) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v13000-c54600-S1890278326-03 98% 0% 35.77 | 30.03 (35, 65) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v13000-c54600-S287388441-16 300.62 | 224.63 0% 18.23 | 15.29 (26, 74) 16.4916.4916.49

unif-k3-r4.2-v16000-c67200-S1099746708-06 23% 0% 79% (24, 55) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v16000-c67200-S1415445307-13 67% 0% 127.96 | 84.56 (35, 65) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v16000-c67200-S1600965758-04 18% 0% 73% (18, 55) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v16000-c67200-S1826381479-08 550.04 | 457.84 0% 38.00 | 33.06 (23, 77) 14.4714.4714.47

unif-k3-r4.2-v16000-c67200-S1980187645-03 42% 0% 416.34 | 344.16 (33, 67) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v16000-c67200-S202413125-05 28% 0% 67% (19, 48) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v16000-c67200-S448238512-10 38% 0% 88% (22, 66) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v16000-c67200-S791125864-16 88% 0% 85.56 | 69.47 (33, 67) >1>1>1>1>1>1>1>1>1

294 A. Balint, M. Henn, and O. Gableske

Table 1. (continued)

Instance gNovelty+ adaptG2-
WSAT0

hybridGM
(gNov,March)

Gain

unif-k3-r4.2-v16000-c67200-S81758219-15 99% 0% 45.38 | 38.10 (27, 73) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v16000-c67200-S886048189-14 87% 0% 33.89 | 31.33 (31, 69) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1106616038-10 74% 0% 92.02 | 70.75 (39, 61) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1172889356-05 15% 0% 99% (27, 72) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1299985238-16 2% 0% 60% (16, 44) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1314701073-08 73% 0% 123.08 | 101.84 (27, 73) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1330787624-15 3% 0% 25% (8, 17) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1496322949-03 24% 0% 97% (35, 62) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1661055114-06 99% 0% 39.10 | 33.75 (27, 73) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1753083943-04 99% 0% 28.23 | 23.99 (38, 62) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v19000-c79800-S1875179522-13 470.69 | 381.00 0% 25.59 | 20.93 (25, 75) 18.3918.3918.39

unif-k3-r4.2-v19000-c79800-S49237390-14 50% 0% 129.71 | 108.21 (30, 70) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v4000-c16800-S1178874381-13 8.11 | 6.02 184.52 | 110.63 4.99 | 4.00 (46, 54) 1.631.631.63

unif-k3-r4.2-v4000-c16800-S1580061366-10 2.51 | 1.98 19.21 | 13.11 1.18 | 1.01 (42, 58) 2.132.132.13

unif-k3-r4.2-v4000-c16800-S1588170820-15 94% 14% 11% (5, 6) ≤ 1

unif-k3-r4.2-v4000-c16800-S1946534526-16 32.55 | 26.42 99% 74.09 | 53.54 (39, 61) 0.44

unif-k3-r4.2-v4000-c16800-S251010207-06 25.84 | 19.71 319.55 | 225.40 12.70 | 9.04 (42, 58) 2.032.032.03

unif-k3-r4.2-v4000-c16800-S313074252-14 8.11 | 5.25 89.64 | 71.40 2.46 | 2.06 (44, 56) 3.303.303.30

unif-k3-r4.2-v4000-c16800-S417670629-08 29.57 | 19.12 98% 20.68 | 14.36 (39, 61) 1.431.431.43

unif-k3-r4.2-v4000-c16800-S440063851-05 2.40 | 1.78 17.06 | 10.64 1.24 | 1.14 (39, 61) 1.941.941.94

unif-k3-r4.2-v4000-c16800-S450187849-03 10% 0% 0% (0, 0) ≤ 1

unif-k3-r4.2-v4000-c16800-S669431406-04 20.39 | 12.51 208.07 | 138.03 6.65 | 5.13 (48, 52) 3.073.073.07

unif-k3-r4.2-v7000-c29400-S102550125-14 42.92 | 31.46 82% 6.85 | 5.70 (28, 72) 6.276.276.27

unif-k3-r4.2-v7000-c29400-S1312035429-13 288.97 | 184.15 1% 246.31 | 160.57 (40, 60) 1.171.171.17

unif-k3-r4.2-v7000-c29400-S2051531193-03 45.65 | 27.33 56% 9.84 | 7.48 (30, 70) 4.644.644.64

unif-k3-r4.2-v7000-c29400-S2118640909-06 23.84 | 17.10 89% 4.03 | 3.08 (38, 62) 5.925.925.92

unif-k3-r4.2-v7000-c29400-S427890210-10 22.69 | 16.40 92% 4.31 | 3.60 (26, 74) 5.265.265.26

unif-k3-r4.2-v7000-c29400-S565127616-04 99% 10% 21.95 | 17.34 (31, 69) >1>1>1>1>1>1>1>1>1

unif-k3-r4.2-v7000-c29400-S56884336-05 137.91 | 94.34 5% 87.66 | 60.91 (30, 70) 1.571.571.57

unif-k3-r4.2-v7000-c29400-S67600799-16 53.26 | 34.62 61% 4.81 | 4.45 (41, 59) 11.0711.0711.07

unif-k3-r4.2-v7000-c29400-S856579407-15 34.58 | 26.92 92% 6.33 | 4.69 (37, 63) 5.465.465.46

unif-k3-r4.2-v7000-c29400-S880121748-08 121.99 | 90.63 15% 25.12 | 17.88 (39, 61) 4.864.864.86

unif-k5-r21.3-v100-c2130-S1047920973-05 0.04 | 0.03 0.05 | 0.04 94% (93, 1) ≤ 1

unif-k5-r21.3-v100-c2130-S1180773190-07 1.28 | 1.05 0.80 | 0.60 93% (93, 0) ≤ 1

unif-k5-r21.3-v100-c2130-S455021619-18 0.02 | 0.02 0.05 | 0.04 0.04 | 0.04 (96, 3) 0.50

unif-k5-r21.3-v100-c2130-S744612847-12 0.06 | 0.04 0.06 | 0.06 0.08 | 0.06 (98, 2) 0.75

unif-k5-r21.3-v100-c2130-S804631280-01 0.11 | 0.09 0.10 | 0.08 0.13 | 0.11 (100, 0) 0.85

unif-k5-r21.3-v110-c2343-S1019153514-04 0.66 | 0.47 0.33 | 0.26 94% (94, 0) ≤ 1

unif-k5-r21.3-v110-c2343-S1813726766-14 0.10 | 0.08 0.11 | 0.09 99% (96, 3) ≤ 1

unif-k5-r21.3-v110-c2343-S1869272420-19 0.05 | 0.04 0.06 | 0.05 99% (95, 4) ≤ 1

unif-k5-r21.3-v110-c2343-S2044406543-15 0.17 | 0.14 0.13 | 0.10 0.20 | 0.17 (98, 2) 0.85

unif-k5-r21.3-v110-c2343-S2094099432-08 0.11 | 0.07 0.11 | 0.09 99% (93, 6) ≤ 1

unif-k5-r21.3-v120-c2556-S1191693850-19 0.14 | 0.11 0.12 | 0.08 98% (96, 2) ≤ 1

unif-k5-r21.3-v120-c2556-S1376493471-11 0.30 | 0.24 0.18 | 0.12 98% (98, 0) ≤ 1

unif-k5-r21.3-v120-c2556-S1615006153-07 0.48 | 0.32 0.40 | 0.26 0.55 | 0.37 (98, 2) 0.87

unif-k5-r21.3-v120-c2556-S340864765-13 1.92 | 1.35 1.50 | 0.82 82% (82, 0) ≤ 1

unif-k5-r21.3-v120-c2556-S429936805-03 0.06 | 0.04 0.06 | 0.06 99% (94, 5) ≤ 1

unif-k5-r21.3-v130-c2769-S1032474357-17 0.55 | 0.42 0.44 | 0.36 99% (99, 0) ≤ 1

unif-k5-r21.3-v130-c2769-S1109841921-18 0.50 | 0.40 0.39 | 0.28 99% (97, 2) ≤ 1

unif-k5-r21.3-v130-c2769-S116991008-16 0.37 | 0.27 0.29 | 0.22 94% (88, 6) ≤ 1

unif-k5-r21.3-v130-c2769-S1284937235-05 0.33 | 0.24 0.27 | 0.18 99% (97, 2) ≤ 1

unif-k5-r21.3-v130-c2769-S1513299405-10 0.38 | 0.31 0.29 | 0.22 99% (93, 6) ≤ 1

unif-k7-r89-v70-c6230-S1084572666-19 1.99 | 1.45 2.43 | 1.98 2.04 | 1.49 (100, 0) 0.98

unif-k7-r89-v70-c6230-S1106151685-15 0.64 | 0.38 1.43 | 1.26 99% (99, 0) ≤ 1

unif-k7-r89-v70-c6230-S1533440099-09 1.13 | 0.79 1.86 | 1.69 98% (98, 0) ≤ 1

unif-k7-r89-v70-c6230-S1635684145-01 0.52 | 0.38 1.28 | 1.15 0.55 | 0.40 (100, 0) 0.95

unif-k7-r89-v70-c6230-S1907907390-05 0.57 | 0.37 1.40 | 1.26 0.61 | 0.40 (100, 0) 0.93

unif-k7-r89-v75-c6675-S1299158672-14 11.33 | 8.29 10.93 | 6.86 98% (98, 0) ≤ 1

unif-k7-r89-v75-c6675-S1534329206-02 2.67 | 2.04 3.02 | 2.17 99% (99, 0) ≤ 1

A Novel Approach to Combine a SLS- and a DPLL-Solver 295

Table 1. (continued)

Instance gNovelty+ adaptG2-
WSAT0

hybridGM
(gNov,March)

Gain

unif-k7-r89-v75-c6675-S1572638390-17 9.99 | 7.29 10.98 | 8.39 10.26 | 7.53 (100, 0) 0.97

SAT 2007 Competition industrial instances

vmpc 24 84.41 | 69.67 19.12 | 14.58 160.45 | 117.59 (100, 0) 0.53

vmpc 25 321.18 | 272.56 107.23 | 78.70 92% (92, 0) ≤ 1

vmpc 26 99% 160.83 | 116.69 69% (69, 0) ≤ 1

vmpc 27 93% 95.06 | 56.37 77% (77, 0) ≤ 1

SAT 2007 Competition crafted instances

QG7a-gensys-brn004.sat05-3669.reshuffled-07 59% 36.31 | 31.48 86% (75, 11) >1>1>1>1>1>1>1>1>1

QG7a-gensys-brn100.sat05-3765.reshuffled-07 84% 27.91 | 22.67 95% (86, 9) >1>1>1>1>1>1>1>1>1

QG7a-gensys-ukn001.sat05-3841.reshuffled-07 84% 44.92 | 32.18 85% (81, 4) >1>1>1>1>1>1>1>1>1

QG7a-gensys-ukn005.sat05-3845.reshuffled-07 89% 46.01 | 37.03 85% (77, 8) ≤ 1

sat-grid-pbl-0200.sat05-1339.reshuffled-07 71% 81% 62% (62, 0) ≤ 1

SATLIB industrial instances

bw large.c 4.31 | 2.94 3.49 | 2.72 2.30 | 1.77 (21, 79) 1.871.871.87

bw large.d 21.34 | 15.30 16.11 | 10.63 30.78 | 27.91 (27, 0) 0.69

g125.17 11.00 | 7.50 2.17 | 1.53 6% (6, 0) ≤ 1

g125.18 0.13 | 0.13 0.22 | 0.22 0.16 | 0.16 (100, 0) 0.81

g250.15 0.25 | 0.25 1.07 | 1.07 0.34 | 0.35 (100, 0) 0.74

g250.29 13.92 | 10.11 8.96 | 7.96 14.81 | 13.41 (76, 0) 0.94

qg1-08 202.40 | 166.45 4.53 | 4.31 71% (70, 1) ≤ 1

qg2-08 43% 10.77 | 9.07 5% (5, 0) ≤ 1

qg5-11 2% 64% 5% (5, 0) >1>1>1>1>1>1>1>1>1

qg6-09 92% 2.95 | 1.64 80% (68, 12) ≤ 1

qg7-13 0% 18% 0% (0, 0) ≤ 1

SATLIB crafted instances

par16-1-c 4.49 | 2.96 12.20 | 8.56 70% (66, 4) ≤ 1

par16-2-c 51.64 | 40.79 101.65 | 81.98 66% (52, 14) ≤ 1

par16-3-c 18.24 | 14.20 30.18 | 22.65 99% (96, 3) ≤ 1

par16-4-c 19.77 | 11.30 24.91 | 17.13 97% (96, 1) ≤ 1

par16-5-c 19.21 | 12.32 17.20 | 13.45 98% (95, 3) ≤ 1

par32-1-c 0% 0% 0% (0, 0) ≤ 1

par32-2-c 0% 0% 0% (0, 0) ≤ 1

par32-3-c 0% 0% 0% (0, 0) ≤ 1

par32-4-c 0% 0% 0% (0, 0) ≤ 1

par32-5-c 0% 0% 0% (0, 0) ≤ 1

SAT 2007 Competition random benchmark. Since 2 + p formulae are usually
under-constrained, March ks is able to extend a SSP quite easily to a solution.
When taking a closer look at the hybridGM column in table 1, one can see that
the gain is larger when the number of solutions found by March ks is larger as
well. It is interesting to note, that a call of March ks creates very little overhead.
Furthermore, hybridGM dominates gNovelty+ on large size uniform random 3-
SAT formulae, because of the facts mentioned in section 4.

On smaller random 3-SAT formulae, gNovelty+ and hybridGM perform
equally well (in terms of real time, not gain-factor). In the case of of 5- and
7-SAT instances the created SSP rarely contains a solution so that hybridGM
can not solve these instances faster than gNovelty+. The reason for this has not
yet been discovered. Actually, hybridGM and gNovelty+ also perform similar on
5- and 7-SAT instances apart from the little overhead produced my March ks.
The unsuccessful runs of hybridGM were only due to the little memory leak
of March ks, that unfortunately still exists. That is why we sometimes received
signal 11.

296 A. Balint, M. Henn, and O. Gableske

Concerning the crafted and industrial instances, both gNovelty+ and hy-
bridGM perform quite bad, as expected. gNovelty+ and hybridGM are simply
not designed to solve industrial and crafted formulae. One might think, that
hybridGM should have an advantage over gNovelty+ because it uses March ks.
March ks is a DPLL solver and DPLL solvers usually perform well on crafted
and industrial instances compared to SLS algorithms. However, March ks is a
DPLL solver designed to solve random formulae. Therefore, March ks is not a
big help when trying to solve industrial/crafted instances.

8 Conclusions and Future Work

We have presented a novel and simple approach to create an incomplete hybrid
SAT solver. This approach became manifested in the term of a Search Space
Partition (SSP). We defined this new term, explained how such SSPs are con-
structed and how they are used. We implemented our novel approach in the
hybrid SAT solver hybridGM, utilizing gNovelty+ as the SLS component and
March ks as the DPLL component.

We performed an empirical study to test our new solver against gNovelty+
(and adaptg2wsat0 as a reference solver). This study revealed, that hybridGM
outperforms gNovelty+ on 2+p and large size uniform random 3-SAT formulae,
without experiencing serious losses in other formula categories. We also showed,
that the DPLL component March ks of hybridGM means no further advantage
on (the tested) crafted and industrial instances.

However, several findings of this study raise questions that remain unan-
swered. For example, on uniform random 5- and 7-SAT instances, March ks
almost never finds a solution. Even though we provided an intuitive explana-
tion for this in the previous section, further research is needed to explain this
behavior of hybridGM.

Furthermore, we believe that it would be beneficial to dynamically adapt
the barrier (i.e. the required number of unsatisfied clauses of local minima we
consider for the creation of SSPs) while hybridGM performs a search. This could
be used to control the number of used minima for the construction of SSPs, and
thereby the number of times March ks is called in order to optimize its workload.

Acknowledgments

We would like to thank the bwGrid [3] project and especially the local coordi-
nator of the project Christian Mosch. We would also like to thank Marijn Heule
for providing us with some major bug-fixes of March ks.

References

1. Cook, S.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
3rd ACM Symposium on Theory of Computing, vol. 1, pp. 151–158 (1971)

2. Crawford, J.M.: Solving satisfiability problems using a combination of systematic
and local search. In: Second DIMACS Challenge, Rutgers University, NJ (1993)

A Novel Approach to Combine a SLS- and a DPLL-Solver 297

3. The bwGRiD, http://www.bw-grid.de/
4. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal

of the ACM 7(3), 201–215 (1960)
5. Ferris, B., Fröhlich, J.: WalkSAT as an Informed Heuristic to DPLL in SAT Solving.

Technical report, CSE 573: Artificial Intelligence (2004)
6. Fang, H., Ruml, W.: Complete Local Search for Propositional Satisfiability. In:

Association for the Advancement of Artificial Intelligence (AAAI 2004), pp. 161–
166 (2004)

7. Fang, L., Hsiao, M.: A New Hybrid Solution to Boost SAT Solver Performance. In:
Design, Automation, and Test in Europe, pp. 1307–1313 (2007)

8. Gableske, O.: Towards the Development of a Hybrid SAT Solver. Diploma Thesis,
University of Ulm, Germany (January 2009), http://www.uni-ulm.de/fileadmin/
website_uni_ulm/iui.inst.190/Mitarbeiter/gableske/DA.pdf

9. Habet, D., Li, C.M., Devendeville, L., Vasquez, M.: A Hybrid Approach for SAT.
In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 172–184. Springer,
Heidelberg (2002)

10. Havens, W., Dilkina, B.: A Hybrid Schema for Systematic Local Search. In: Tawfik,
A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS, vol. 3060, pp. 248–260.
Springer, Heidelberg (2004)

11. Heule, M., van Maaren, H.: Effective incorporation of Double Look-Ahead Proce-
dures. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
258–271. Springer, Heidelberg (2007)

12. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI
2002, pp. 635–660 (2002)

13. Hutter, F., Tompkins, D.A., Hoos, H.H.: Scaling and probabilistic smoothing: Effi-
cient dynamic local search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 233–248. Springer, Heidelberg (2002)

14. Jussien, N., Lhomme, O.: Local Search With Constraint Propagation and Conflict-
Based Heuristics. In: 7th National Conference on Artificial Intelligence, pp. 169–174
(2002)

15. Letombe, F., Marques-Silva, J.: Improvements to hybrid incremental SAT algo-
rithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp.
168–181. Springer, Heidelberg (2008)

16. Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfi-
ability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172.
Springer, Heidelberg (2005)

17. Mazure,B., Sais,L.,Gregoire,E.:Boostingcomplete techniques thanks to local search
methods. Annals of Mathematics and Artificial Intelligence 22, 319–331 (1998)

18. Pham, D.N., Thornton, J.R., Gretton, C., Sattar, A.: Advances in Local Search for
Satisfiability. In: Australian Conference on Artificial Intelligence 2007, pp. 213–222
(2007)

19. Selman, B., Levesque, H., Mitchell, D.: A New Method for Solving Hard Satisfi-
ability Problems. In: Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 440–446. AAAI Press, Menlo Park (1992)

20. The SAT Competition Homepage, http://www.satcompetition.org
21. The SATLIB Benchmark problems, http://www.cs.ubc.ca/~hoos/SATLIB
22. Wu, Q., Hsiao, M.S.: A New Simulation-Based Property Checking Algorithm Based

on Partitioned Alternative Search Space Traversal. IEEE Transactions on Comput-
ers 55(11) (2006)

23. Zhang, W.: Configuration landscape analysis and backbone local search. Part I:
Satisfiability and maximum satisfiability. Artificial Intelligence 158, 1–26 (2004)

http://www.bw-grid.de/
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/gableske/DA.pdf
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/gableske/DA.pdf
http://www.satcompetition.org
http://www.cs.ubc.ca/~hoos/SATLIB

Building a Hybrid SAT Solver via
Conflict-Driven, Look-Ahead and XOR

Reasoning Techniques

Jingchao Chen

School of Informatics, Donghua University
2999 North Renmin Road, Songjiang District, Shanghai 201620, P.R. China

chen-jc@dhu.edu.cn

Abstract. The paper develops a new hybrid SAT solver, called MoRsat.
The framework of the solver is based on a look-ahead technique, and its
core is a conflict-driven search. A look-ahead technique is used to split the
original problem to sub-problems, each of them is either solved or aborted
by a conflict-driven DPLL. Aborted sub-problems are solved recursively.
We present new properties of XOR clauses, which are used to incorporate
XOR reasoning into our conflict-driven DPLL. Compared with the latest
versions of Rsat and March, the Gold Medal winners in the industrial and
handmade SAT category of the SAT 2007 competition, MoRsat achieves
remarkable improvements. Moreover, MoRsat can solve some industrial
instances that were not solved in the SAT 2007 competition.

Keywords: Boolean satisfiability (SAT), Conflict-driven, Look-ahead,
XOR reasoning, Hybrid solving technique, search pruning technique.

1 Introduction

A Boolean satisfiability (SAT) problem deals with the following question: For
a given propositional formula, does there exist an assignment of truth values
(1 or 0) to its variables for which each clause in that formula evaluates to be
true. The problem is represented in Conjunctive Normal Form (CNF), in which
a formula is a conjunction of clauses, each clause being a disjunction of Boolean
literals, where each literal is either a variable or the negation of a variable. Many
problems in the application domain such as computer aided design, artificial
intelligence, cryptanalysis, planning, equivalence checking, model checking, test
pattern generation etc., can be formulated as SAT problems. SAT is the first
problem showed to be NP-complete [3]. Since this problem was posed, many
researchers have been involved in studying it. So far, numerous SAT solvers
have been developed. However, many SAT instances still remain unsolvable.

Modern SAT solvers can be divided into three categories: Conflict-driven
(Rsat [1], Minisat [13], vallst, zChaff [5], eSAT), look-ahead (kcnfs, March, OK-
solver) and local search (adaptnovelty, WalkSat, unitwalk, SAPS, PAWS, DLM).
Each has its own strong points. Conflict-driven solvers are superior on industrial

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 298–311, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Building a Hybrid SAT Solver via Conflict-Driven 299

instances, look-ahead solvers are strong on unsatisfiable random and crafted in-
stances, while local search solvers are very strong on large satisfiable random
instances. We study the challenging subject how to integrate various advantages
of these solvers to build a more efficient SAT solver.

Although both the conflict-driven and look-ahead type of solvers are based
on a DPLL (Davis-Putnam-Logemann-Loveland) procedure, which is a com-
plete, systematic depth-first search process, the features and data structure of
the two categories are very different. The techniques included in conflict-driven
solvers have watched literals scheme [5,6], learning mechanisms, restart strate-
gies, constraint database management (clause deletion mechanisms) and branch-
ing heuristic (variable selection heuristic), while the techniques included in look-
ahead solvers have adaptive double-look [16], pre-selection heuristics for partial
look-ahead, dynamic addition of binary resolvents and time stamp scheme [2,15].
Notice, learning mechanisms in conflict-driven solvers are not compatible with
addition of binary resolvents in look-ahead solvers. Therefore, up to now, no
solver combines the conflict-driven and look-ahead techniques.

The goal of the paper is to provide a framework to boost the performance
of the SAT solver via a combination of the conflict-driven and look-ahead tech-
nique. The basic idea is to use a look-ahead technique to decompose the orig-
inal problem into sub-problems, each of them is either solved or aborted by
a conflict-driven DPLL. Aborted sub-problems are solved in a recursive way.
The look-ahead technique used in this paper is similar to March [2], but simpli-
fied. We removed the double-look and simplified the branch decision heuristic
in March. The conflict-driven technique used in this paper is similar to Rsat
[1], but improved. We improved the restart strategies and constraint database
management. Due to the problem with data structure, existing conflict-driven
solvers are difficult to perform XOR reasoning so that they cannot solve some
well-structured instances. In order to tackle this problem, we present new prop-
erties of XOR clauses, by which we incorporate XOR reasoning and extend the
existing watched literals scheme so that the conflict-driven DPLL can also ana-
lyze efficiently XOR clauses. The resulting hybrid solver is called MoRsat. The
performance of MoRsat is significantly better than Rsat and March, which won
Gold Medals in the industrial and handmade SAT category at the SAT 2007
competition [17], respectively. On the handmade category, MoRsat can outper-
form March. On the industrial category, MoRsat is faster than Rsat in many
instances, and can solve some industrial instances that were not solved in the
SAT 2007 competition. On the random category, MoRsat is slower than March.
However, the number of random instances solved by MoRsat is almost the same
as that solved by March within 5000 seconds.

2 Embedding XOR Reasoning into Conflict-Driven DPLL

In general, conflict-driven solvers, e.g. Rsat [1], MiniSat [13], have difficulties
to solve structured instances such as the 32-bit parity problem. However, look-
ahead solvers such as March [2] can solve them easily. The reason is that the

300 J. Chen

parity problem contains many so called XOR (exclusive-or, which is called equiv-
alence in [9,15]) clauses, and the March solver does a considerable amount of
reasoning during the pre-processing phase, and a minimal amount of XOR rea-
soning during the solving phase. To enhance the performance, we decided to
modify the conflict-driven solver and its data structure in such a way that it can
apply also XOR reasoning. During the pre-processing phase, without any modi-
fication, the conflict-driven solver can perform XOR reasoning. However, during
the solving phase, because of the watched-literals scheme and conflict resolv-
ing (clause learning), we need overcome some obstacles, which will be discussed
below.

For the sake of the discussion, we formalize some concepts by notations. A
CNF formula F can be formulated as

F =
m∧

i=1
Ci

where Ci is a clause, which can be denoted by the following notations:

Ci =
k∨

j=1
xj

where xj is a literal, which is either a variable or the negation of a variable. Let
⊕ stand for a XOR operation, i.e. equivalently modulo 2 arithmetic. A XOR
clause is defined as

x1 ⊕ x2 ⊕ · · · ⊕ xn = 1
where xi(i = 1, 2, . . . n) is a literal. This is equivalent to that the sum of
x1, x2, . . . , xn is odd. For any literal x, we have

¬x = x⊕ 1
Hereafter, we will use this formula to denote ¬ (negation) operation. Similarly,
we will use x = x⊕ 0 to denote x itself. By observing the relation between XOR
clauses and CNF clauses, we obtain the following lemma.

Lemma 1. x1⊕x2⊕· · ·⊕xn = 1 iff the CNF formula
∧

y1⊕y2⊕···⊕yn=0

n∨
i=1

(xi⊕yi)

is true, where xi is a literal, and yi is a Boolean constant in {0, 1}.
Proof. It is straightforward. The XOR formula x1 ⊕ x2 ⊕ · · · ⊕ xn = 1 means
that the sum of x1, x2, . . . , xn is odd. In each clause C: (x1 ⊕ y1) ∨ (x2 ⊕ y2) ∨
· · · ∨ (xn⊕ yn), the number of ¬xi = xi⊕ yi is even, since y1⊕ y2⊕ · · · ⊕ yn = 0.
In other words, when the XOR formula holds, for each clause C, there exists
at least one xj such that (xj = 1 ∧ yj = 0) or (xj = 0 ∧ yj = 1). Conversely,
the CNF formula holds, the number of xj = 1 must be odd. Otherwise, setting
yj = 1 when xj = 1 yields that a clause is false, which is contradiction. ��
Clearly, the following lemma holds.

Lemma 2. Suppose y1, y2, . . . , yn are Boolean constants in {0, 1}. If y1 ⊕ y2 ⊕
· · · ⊕ yn = 0, then x1 ⊕ x2 ⊕ · · · ⊕ xn = 1 is equivalent to (x1 ⊕ y1) ⊕ (x2 ⊕
y2)⊕ · · · ⊕ (xn ⊕ yn) = 1, where xi ⊕ yi corresponds to ¬xi when yi = 1, and xi

otherwise.

Unlike the March solver [2], which uses a multiplicative representation to de-
rive an XOR constraint, our solver uses an additive representation to derive an

Building a Hybrid SAT Solver via Conflict-Driven 301

XOR constraint. Based on Lemma 1, the XOR constraints can be recognized
syntactically from the given CNF formula F . This extracting process is very
simple. It can be done by identifying whether for all y1 ⊕ y2 ⊕ · · · ⊕ yn = 0,
(x1 ⊕ y1) ∨ (x2 ⊕ y2) ∨ · · · ∨ (xn ⊕ yn) is in F , where xi ⊕ yi(i = 1, . . . , n) corre-
sponds to ¬xi when yi = 1, and xi otherwise. If it is true, F contains the XOR
constraint x1 ⊕ x2 ⊕ · · · ⊕ xn = 1. Consider the example formula F :

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3).
We can derive XOR constraint x1 ⊕ x2 ⊕ x3 = 1, since y1 ⊕ y2 ⊕ y3 = 0 implies
in total four cases 〈y1, y2, y3〉 = 〈0, 0, 0〉, 〈1, 1, 0〉, 〈1, 0, 1〉, or 〈0, 1, 1〉, and in each
case, (x1 ⊕ y1) ∨ (x2 ⊕ y2) ∨ (x3 ⊕ y3) ∈ F . In the final implementation, XOR
constraints are extracted by sorting CNF clauses, and counting the number of
negated literals in each clause.

Some instances such as the parity problem contain a large amount of XOR
constraints. Only the extraction operation of XOR constraints is not sufficient
to solve them. Like the March solver [2], we perform additional optimization
operations on detected XOR constraints. These optimization operations include
the separation of independent and dependent variables, XOR constraint substi-
tution, the elimination of tautological XOR constraints, and the shortening of
XOR constraints. For the implementation details of the optimizations, we refer
the reader to [18].

We can store XOR clauses in the same way as CNF clauses. However, this
makes an impact on conflict-driven solvers. The main impact is the watched-
literals scheme and keeping track of implication reasons. In contrast to CNF
clauses, XOR constraints requires more than two watch pointers. In order to
ensure that any truth value change in the watched literals is propagated in XOR
clauses, in addition to two watched literals l1 and l2, we maintain their negations
¬l1 and ¬l2 for each XOR clause. So we use 2× 2 watched literals l1, l2,¬l1 and
¬l2 to watch each XOR cluase, instead of 2 literals.

Conflict-driven solvers use clause learning, which plays a critical role in im-
proving the efficiency of modern SAT solvers. Its goal is to cache “causes of
conflict”, which are derived by resolving the current conflict. To do this, we
need maintain the implication reasons, which are described by the implied lit-
eral and the clause associated with an implication. To record an implication
reason, when a CNF clause becomes implied, that clause will be updated into
the following form: the implied literal followed by the assigned literals with value
0. This technique cannot directly be applied to XOR clauses, since when an XOR
clause becomes implied, the assigned literals in that clause are not necessarily of
value 0. However, we can also maintain the implication reasons of XOR clauses
by making a slight modification: negating the implied literal with value 0 and the
assigned literals with value 1. In detail, first, we swap the implied literal to the
first position and place the other literals after it. Second, change into its negation
when it is either the implied literal with value 0 or an assigned literal with value
1, and do absolutely nothing otherwise. From Lemma2, it is easy to verify that
the original XOR clause and the XOR clause newly created by negation opera-
tions are equivalent. Given an XOR clause C1 : x1⊕ x2⊕ · · · ⊕xn = 1, where x1

302 J. Chen

is an implied literal, while the others are assigned. We set y1 to 1 when the value
of x1 is 0, and 0 otherwise, set yi(i = 2, 3, . . . , n) to 1 when the value of xi is 1,
and 0 otherwise. Clearly, y1 ⊕ y2 ⊕ · · · ⊕ yn = 0. The XOR clause newly created
by negation operations is viewed as C2 : (x1⊕y1)⊕(x2⊕y2)⊕· · ·⊕(xn⊕yn) = 1.
From Lemma 2, the clauses C1 and C2 are equivalent. Furthermore, it can be
guaranteed that the implied literal x1 ⊕ y1 (which corresponds to ¬x1 when
y1 = 1, and x1 otherwise) is forced to 1, and all the other literals (xi ⊕ yi) are
assigned to value 0. Therefore, conflict-driven SAT solvers can also use the data
structure of CNF clauses to perform clause learning on XOR clauses.

3 A Variant of Conflict-Driven DPLL

Our SAT solver MoRsat is built on the top of Rsat [14]. We will solve each sub-
problem by an improved Rsat. The core of Rsat is a conflict-driven DPLL solver.
To avoid spending too much time in branches in which finding an answer is very
uncertain, we escape from the morass before the search procedure terminates by
setting a parameter cutoff, which is similar to a timeout parameter. The variant
of conflict-driven DPLL used in our solver may be described in the following
pseudo-code:

Algorithm 1. ConflictDrivenDPLL(F , cutoff)
#conflicts := 0
while true do

if no unassigned vars then return satisfiable
lit := GetBranchLiteral()
F := BCP(F ∪ {lit})
while F contain empty clause do

blevel := AnalyzeConflict()
if blevel = 0 then return unsatisfiable
#conflicts := #conflicts+1
if #conflicts > cutoff then return unknown
F := Backtrack(blevel)
F := BCP(F)

end while
end while

Except that parameter cutoff is used to control the search space, Algorithm
1 is the same as the usual conflict-driven DPLL. Procedure GetBranchLiteral()
is to select a variable unassigned so far, and assign it a value as a return. Here,
various variable selection strategies can be applied. One used in MoRsat is VSIDS
(Variable State Independent Decaying Sum) [5].

Procedure BCP(F) performs Boolean Constraint Propagation on formula F .
In detail, if a clause consists only of literals assigned to value 0 (false) and
one unassigned literal, this procedure fixes that unassigned literal to the value
1 (true) to satisfy that clause. This variable assignment is referred to as an
implication. The clause associated with an implication is said to be a unit clause.

Building a Hybrid SAT Solver via Conflict-Driven 303

Procedure BCP carries out repeatedly the identification of unit clauses and the
creation of the associated implications until either no more implications are
found or a conflict (empty clause) is produced.

Procedure AnalyzeConflict() is to determine the depth of the search tree to
which the algorithm should backtrack. This is not a chronological backtrack-
ing. The concrete backtracking depth depends on conflict resolving algorithms
[1,5,13]. When the backtracking level goes beyond the root of the tree, i.e.
blevel = 0, the procedure terminates and indicates that the problem is unsatis-
fiable. The operation of Backtrack(blevel) is to invalidate any implications with
decision levels ≥ blevel to which we backtracked, and flip simply the value of
the decision assignment at that backtracking level. Then, we continue to carry
out BCP with the F in the new state. Another role of AnalyzeConflict() is to
add one or more conflict clauses describing the resolved conflict to the clause
learning database. This is to avoid the repeated search.

The BCP operation is time-consuming. It is reported that about 90% of the
solver’s run time is spent in the BCP process [5]. Therefore, Moskewicz et al. [5]
proposed a BCP optimizing strategy, called the watched-literals scheme, which
has been used by most SAT solvers. This can be traced back to earlier lazy data
structures introduced by Zhang [6] in the solver SATO. This scheme is based on
the fact that any active (i.e., not yet satisfied) clause has at least two unassigned
literals. The basic idea of this scheme is to maintain two special literals to watch
for each active clause. Without the watch scheme, for a clause with n literals, we
need to visit it n−1 times in order to set one of its literals to true. With the watch
scheme, we need to visit it only when one of its two watched litreals is assigned
to false. To achieve this goal, when a clause is visited, we need to perform the
following operation: if a clause is not unit, we choose one non-watched literal to
replace the one just assigned to 0 (false). This is guaranteed that each clause has
still two watched literals. If a clause is unit, we set the other watched literal to
true. The main benefit of the watch scheme is to save the costs of visiting long
clauses and reassigning a variable.

4 A Hybrid SAT Solver

Look-ahead solvers, such as March [2], can easily solve some crafted CNF in-
stances, while conflict-driven solvers cannot. In order to enable our solver to solve
them like look-ahead style solvers, we decided to use a look-ahead technique as
a basic framework to decompose the original problem into sub-problems, each of
them corresponds to a branch of the search space tree. Before entering a branch,
we try to solve it by a conflict-driven DPLL. This search space is limited by the
number of conflicts collected so far. In general, the value of cutoff is restricted to
be very small, but becomes sharply large at some search-tree depth. If the try
fails, we continue to search each branch along the look-ahead framework. Com-
pared with the usual look-ahead framework, our search framework adds only a
call to the conflict-driven DPLL given above. Algorithm 2 shows the pseudo-code
of our SAT solver.

304 J. Chen

When calling ConflictDrivenDPLL, we use function cutoff(level) to compute
the value of cutoff, which depends on the current level and the nature of SAT
problems. In our implementation, in most cases, cutoff(level) is set to

cutoff(level) =

⎧⎨⎩
300000 level = 0

5000 level < 8
130000 level ≥ 8

Up to now, we have no the theoretical evidence that what the optimal value of
cutoff(level) is. Actually, the value of cutoff is adjustable. Based on our observa-
tion and intuition, if the number of assigned variables is less than the number
of variables/4, even if level ≥ 8, it is better to set cutoff to 5000. For large SAT
instances, if the maximal H(xi) value (which is defined in Algorithm 3) is very
small, we tend to set the initial cutoff (i.e. the case of level = 0) to a larger
value, say 500000.

Algorithm 2. SATsolver(F , level)
if F = ∅ then return satisfiable
if empty clause ∈ F then return unsatisfiable
〈lbranch, Ret〉 := LookAhead(F)
if Ret = unsatisfiable then return unsatisfiable
Ret := ConflictDrivenDPLL(F ,cutoff(level))
if Ret 	= unknown then return Ret //either SAT or UNSAT
if SATsolver(F(lbranch=1), level + 1) = satisfiable then return satisfiable
return SATsolver(F(lbranch = 0), level + 1)

Algorithm 3. LookAhead(F)
for each variable xi in P do

F ′ := F(xi = 0)
F ′′ := F(xi = 1)
if empty clause ∈ F ′ and empty clause ∈ F ′′ then return

unsatisfiable
if empty clause ∈ F ′ then F := F ′′

else if empty clause ∈ F ′′ then F := F ′

else H(xi) := ACE(xi,F ,F ′)×ACE(¬xi,F ,F ′′)
end for
vbranch := xi with greatest H(xi)
return GetDirection(vbranch)

In the procedure shown in Algorithm 3, P denotes the pre-selected set, on
which a look-ahead procedure is performed. For small SAT instances, say #var <
10000, P is actually the set of all the unassigned variables. However, for large
SAT instances, performing a look-ahead procedure on all unassigned variables is
very costly. Therefore, in this case, we restrict P to a subset of the unassigned
variables. The selection criterion of the subset depends on the variable ranking.
Variables with the highest ranking are usually selected. The ranking of a variable

Building a Hybrid SAT Solver via Conflict-Driven 305

is determined by the number of its occurrences in CNF and XOR clauses. The
higher the number of the occurrences, the higher the ranking.

The notation F(xi=0) denotes the resulting formula after assigning xi to false
and performing iterative unit propagation. F(xi=1) is similar. When the two
look-ahead procedures both result in a conflict (the empty clause is generated),
Algorithm 3 will terminate and indicate that F is unsatisfiable.

We rank variables by a simple heuristics function H(xi), which is defined as
the product of two ACE (Approximation of the Combined lookahead Evaluation)
functions. Our ACE is simpler than that used in March [2,18]. It is defined as

ACE(x,F ,F ′) =
∑

Ci∈CNF(x,F)
CW (size(Ci,F ′)) +

∑
Ci∈XOR(x,F)

XW (size(Ci,F ′))

where CNF(x,F) and XOR(x,F) refer to the set of CNF clauses and the set of
XOR clauses in formula F in which variable x occurs, respectively, size(Ci,F ′)
denotes the length of the clause to which Ci is reduced after an iterative unit
propagation F ′, and weight functions CW (n) and XW (n) are defined as

CW (n) = 52−n

XW (n) = 5.5× 0.85n

where n is the length of the reduced clause. The computational overhead for the
heuristics function H(xi) is very cheap.

The use of watch pointers makes it difficult to compute the length of reduced
clauses. For this reason, we maintain two kinds of data structures: full pointers
and watch pointers. In the full-pointers data structure, each literal is placed in
the watch list. This data structure is used to compute the length of reduced
clauses in the look-ahead procedure. The watch-pointers data structure is used
in the conflict-driven solving procedure. In our implementation, we do not add
any learned clauses to the full-pointers data structure to reduce the maintenance
cost, since maintaining it dynamically is expensive. While computing the length
of reduced clauses, we propagate failed literals, but we do not learn any local
resolvents.

Function GetDirection is used to calculate the branch direction. Its value
is determined by ACE. When ACE(¬v,F ,F(v=1)) ≤ ACE(v,F ,F(v=0)), we
enter first the latter branch F(v=0), otherwise the former. Note that the branch
direction obtained here is opposite to the one used in March [2].

5 Various Optimizations

When solving sub-problems, we use the conflict-driven solver shown above. In
many places, our conflict-driven solver is the same as Rsat. For example, the
conflict resolution scheme (clause learning scheme) and decision heuristic used in
our solver are firstUIP (unique implication points) + conflict clause minimization
and VSIDS (Variable State Independent Decaying Sum), which are the same as
those used in Rsat 2.01 [14]. However, in some places, our solver is different from
Rsat. We made a slight modification and optimization on some strategies such
as restart strategies, clause learning database maintenance etc.

306 J. Chen

5.1 Restart Strategies

Like other conflict-driven SAT solvers, our solver has also a “restart” policy.
Many restart policies have been proposed [7]. The restart policy employed in
our solver is a combination of two restart techniques: Geometric series and Luby
et al. series. The first restart policy restarts after every x conflicts. The value
of x is multiplied by y after each restart. Like Minisat [13], we initialize the
parameters of this policy to x = 100 and y = 1.5. The second restart policy
performs restarts according to the Luby series: 1, 1, 2, 1, 1, 2, 3,. . . , multiplied
by a unit-run constant x. In Rsat, x = 512, which is the same as one used in our
solver. Depending on the nature of the instance to be solved, our solver adopts
different restart policies. If the instance to be solved contains XOR clauses, our
solver will adopt Minisat (Geometric) restart policy. Otherwise, it will adopt
the Luby restart policy. This choice is based on the fact that for instances with
XOR clauses, Minisat is faster than Rsat. For example, Minisat can solve two
out of five ezfact64 instaces used in SAT 2007 competition, while Rsat cannot
solve any of them.

5.2 Clause Learning Database Maintenance

Like the restart policy, our clause learning database management is also a com-
bination of two strategies: Minisat [13] strategy and Rsat [1] strategy. When a
problem to be solved contains XOR clauses, we use Minisat strategy to compute
the upper bound of constraint database. In other cases, we use Rsat management
strategy. For instances with XOR clauses, the maximal number of learned clauses
is increased by a factor of 1.04 (which is 1.05 in Minisat) after each restart, while
for instances without XOR clauses, it is increased by a factor of 1.38 (which is 1.5
in Rsat) after each restart. At any time, the maximal number of learned clauses
is limited to 300000. This limitation improves the search efficiency, and reduces
the memory usage. When solving a new sub-problem, we do not clear some
still-relevant clauses added previously to the database to avoid simply repeating
previous analysis. This is similar to a restart process. Like other conflict-driven
solvers, our solver supports also the deletion of added conflict (learned) clauses
to avoid a memory explosion. Furthermore, our deletion strategy is completely
the same as Rsat 2.01 [14].

6 Empirical Evaluation

To measure the efficiency of our solver MoRsat [19], as comparison objects, we
selected two of the most representative solvers. One is the conflict-driven solver
Rsat, which won a Gold Medal for the industrial category at SAT 2007. The
other is the look-ahead solver March, which won a Gold Medal for handmade
SAT category at SAT 2007. We selected the most recent versions, Rsat 3.01
[14] and March ks [2]. All our experiments were done under such a platform:
Intel Core 2 Quad Q6600 CPU with speed of 2.40GHz and 2GB memory. The
instances used in our experiments cover three categories: random, crafted and

Building a Hybrid SAT Solver via Conflict-Driven 307

Table 1. Runtime comparison (in seconds). (The crafted, industrial and random bench-
marks are placed in up, middle, down sub-table. “>5000” shows that the instance
cannot be solved in 5000 seconds.)

Instance Answer MoRsat Rsat 3.01 March ks
cnf-r4-b1-k1.1 SAT 484.45 431.02 >5000
cnf-r4-b1-k1.2 SAT 69.97 213.68 >5000
philips UNSAT 417.47 >5000 177.76
hwb-n26-01 UNSAT 719.33 >5000 761.16
ezfact64-1 SAT02 SAT 89.69 >5000 1002.81
ezfact64-2 SAT02 SAT 98.66 >5000 1667.55
ezfact64-3 SAT07 SAT 194.84 >5000 1862.14
ezfact64-4 SAT07 SAT 136.41 >5000 3069.36
ezfact64-5 SAT07 SAT 76.72 >5000 4625.41
ezfact64-6 SAT07 SAT 342.05 >5000 1609.57
ezfact64-7 SAT02 SAT 1229.06 >5000 >5000
ezfact64-8 SAT02 SAT 528.78 >5000 >5000
ezfact64-9 SAT02 SAT 1268.09 >5000 1846.32
ezfact64-10 SAT07 SAT 869.86 >5000 >5000
par32-1 SAT 1.86 >5000 1.38
par32-2 SAT 0.97 2640.40 1.58
par32-3 SAT 0.38 >5000 0.50
par32-4 SAT 4.16 >5000 0.22
par32-5 SAT 3.95 >5000 0.77
par32-1-c SAT 5.98 >5000 1.34
par32-2-c SAT 2.55 >5000 2.33
par32-3-c SAT 1.06 >5000 2.38
par32-4-c SAT 2.19 >5000 2.21
par32-5-c SAT 9.14 >5000 1.34
lisa21-99-a SAT 4.66 11.83 41.87
pb-s-40-4 SAT 195.22 305.8 402.83
dated-5-15-u UNSAT 405.13 714.32 Out of Memory
dated-5-17-u UNSAT 571.80 762.66 Out of Memory
dated-10-11-u UNSAT 3600.34 3907.44 Out of Memory
dated-10-13-u UNSAT 1711.20 1968.46 >10000
mizh-md5-47-4 SAT 75.08 1975.33 >10000
mizh-md5-47-5 SAT 67.86 1238.24 >10000
AproVE07-01 UNSAT 7098.52 >10000 >10000
AproVE07-27 UNSAT 1881.64 4162.75 >10000
9vliw-m-9stages-iq3-C1-bug1 SAT 123.45 243.73 >10000
9dlx-vliw-at-iq2 UNSAT 1278.59 437.41 >10000
unif2p-p0.7-v3500-c9345
S1286605994 SAT 142.59 622.39 26.63

unif2p-p0.7-v3500-c9345
S1377128774-12 UNSAT 54.38 35.21 17.06

unif2p-p0.7-v4500-c12015
S1311582577-17 UNSAT 2737.67 >5000 580.42

308 J. Chen

industrial, analogue to the SAT competition. Most of the instances are from
SAT 2007 competition. Table 1 shows the experimental results of the instances
we tested1. In our experiments, the timeout for each solver was 10000 seconds for
each industrial instance, and 5000 seconds for each crafted or random instance.
All the running times for MoRsat and March include various preprocessing times
such as XOR detection. In our test cases, the preprocessing time for each instance
was very short and never exceeded 10 seconds.

For the crafted category, we selected the following benchmarks:

• DES instances, cnf-r4-b1-k1.1 and cnf-r4-b1-k1.2, contributed by Massacci
(1999) [9]. These are encoding of cryptographic key search and contain XOR
clauses from 4 rounds;

• the philips family submitted by Heule to SAT 2004 [8], which arises from an
encoding of a multiplier circuit provided by Philips;

• the hwb family used in SAT 2007. It consists of equivalence checking problems
that arise in combining two circuits computed by the hidden weighted bit
function - provided by Stanion [10];

• the ezfact64 family used in SAT 2002 and SAT 2007. This family is encoding
of factorization problems contributed by Pehoushek [11].

• the parity32 family contributed by Crawford et al. which arises from the SAT-
encoding of minimal disagreement parity problems [4];

• the lisa21-99-a contributed by Aloul [11];
• the pb-s-40-4 contributed by Pyhala Braun to SAT 2002 [11]. This is another

encoding of factoring problems.

On this category, Rsat was not competitive at all. As a whole, March was also
significantly slower than MoRsat. As shown in Table 1, for ezfact64, MoRsat
solved easily all 10 of the benchmarks, while Rsat could not solve any instance,
and March aborted three. For par32, Rsat could complete only one out of 10
benchmarks. MoRsat again completed all 10 within 10 seconds, and achieved
almost the same performance as March. For most of the other crafted instances,
MoRsat was faster than both Rsat and March.

For the industrial category, all the benchmarks used in our experiments come
from SAT 2007 [17]. They consist of the following instances:

• the dated family contributed by anbulagan;
• the mizh-md5 family from MD5 cryptanalysis contributed by Mironov and

Zhang;
• the AproVE07 family;
• the vliw-sat.4.0 and vliw-unsat.2.0 family from pipelined machine

verification[12].

On this category, March was not competitive at all. It was either out of memory
or timed out on this set. Except for one (9dlx-vliw-at-iq2) of the benchmarks,
MoRsat was faster than Rsat. Particularly for mizh-md5, MoRsat obtained one
1 MoRsat has been submitted to SAT 2009 competition. Therefore, for additional

results we refer to the SAT 2009 competition results.

Building a Hybrid SAT Solver via Conflict-Driven 309

to two orders of magnitude performance improvement in comparison with Rsat.
To our best knowledge, up to now, no solver can solve AProVE07-01 in a rea-
sonable time. However, MoRsat solved it in 7098 seconds.

Figure 1 presents a log-log scatter plot comparing the runtimes of MoRsat
and Rsat on some industrial instances, which are from SAT 2007, and cover all
sub-categories except for the IBM benchmark. Points lying above the diagonal
denote instances in which MoRsat outperforms Rsat. As can be seen, for more
than half of instances, MoRsat is faster than Rsat.

For the random category, only three instances were chosen from SAT 2007
[17], as shown in the last three rows of Table 1. Because the empirical results
on other random instances were similar, we omitted them. On this category,
MoRsat outperformed Rsat, but was slower than March. Even so, the number
of instances solved by MoRsat was almost the same as the number of instances
solved by March within 5000 seconds.

In the tested instances, the maximal number of levels required by MoRsat to
find a solution ranges from 0 to 25. On par32 and mizh-md5 benchmarks, the
maximal number of levels is 0. On the ezfact64 benchmark, it is 10. On some
DES instances, it is 25. On the random benchmark, it is about 16. If the maximal
number of levels is too large, say 50, it is difficult to find a solution.

For different instances, the reason why the performance is improved varies.
The improvement on some instances is only due to the XOR handling, e.g.
par32, mizh-md5 etc., while the improvement on other some instances is due to
the hybrid technique of look ahead and conflict driven, and the XOR handling,
e.g. ezfact64, hwb-n26 etc. The reason why we omit comparison with Minisat is
based on two points: 1) Except for instances with XOR constraints, in most cases,

0.01 0.1 1 10 100 1000 10000
0.01

0.1

1

10

100

1000

10000

MoRsat (seconds)

R
sa

t (
se

co
nd

s)

Fig. 1. Comparing the runtimes of MoRsat and Rsat on some industrial instances from
SAT 2007

310 J. Chen

Minisat is not better than Rsat; 2) Our solver inherits many features from Rsat.
In many cases, the performance of our solver is consistent with that of Rsat.

7 Conclusions

The conflict-driven technique seems to pay attention to the local nature, while
the look-ahead technique seems to pay attention to the global nature. We com-
bined them to build a new SAT solver. The proposed solver has a significant
speed-up. The improvement is mainly obtained by the structure of the frame-
work or meta-heuristics. The search framework given in this paper is not only
applicable to the conflict-driven and look-ahead technique, but also to other
techniques. On the other hand, efficiency of solvers based on the framework re-
lies heavily on the state of the art of the basic solving technique. Using a more
efficient conflict-driven and look-ahead technique, without a doubt, a more effi-
cient solver will be obtained. However, it is possible that no matter how much
the existing techniques are improveed, some SAT problems remain still unsolv-
able. Therefore, developing a new search framework, reasoning mechanism and
analysis technique is necessary. This is our future research project.

References

1. Pipatssrisawat, K., Darwiche, A.: Rsat 2.0: SAT solver description. In: SAT 2007
competition (2007)

2. March ks SAT solver, the version of SAT 2007 competition,
http://www.st.ewi.tudelft.nl/sat/download.php

3. Cook, S.A.: The Complexity of Theorem Proving Procedures. In: 3rd ACM Symp.
on Theory of Computing, pp. 151–158 (1971)

4. Crawford, J.M., Kearns, M.J., Schapire, R.E.: The Minimal Disagreement Parity
Problem as a Hard Satisfiability Problem. Draft version (1995)

5. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L.T., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Design Automation Conference, DAC (2001)

6. Zhang, H.: SATO: An efficient propositional prover. In: McCune, W. (ed.) CADE
1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997)

7. Ryvchin, V., Strichman, O.: Local Restarts. In: Kleine Büning, H., Zhao, X. (eds.)
SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008)

8. Le Berre, D., Simon, L.: Fifty-five solvers in vancouver: The SAT 2004 competition.
In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 321–344.
Springer, Heidelberg (2005)

9. Li, C.M.: Integrating Equivalency Reasoning into Davis-Putnam Procedure. In:
AAAI-2000, Austin, Texas (2000)

10. Le Berre, D., Simon, L.: The essentials of the SAT 2003 competition. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 452–467.
Springer, Heidelberg (2004)

11. Simon, L., Le Berre, D., Hirsch, E.: The SAT 2002 competition. Annals of Mathe-
matics and Artificial Intelligence (AMAI) 43, 343–378 (2005)

12. Velev, M., Bryant, R.: Effective use of Boolean Satisfiability Procedures in the For-
mal Verification Superscalar and VLIW Microprocessors. In: Design Automation
Conferece, DAC (2001)

http://www.st.ewi.tudelft.nl/sat/download.php

Building a Hybrid SAT Solver via Conflict-Driven 311

13. Eén, N., Sörénsson, N.: Minisat v2.0 (beta) solvers description, SAT-race (2006),
http://minisat.se

14. Rsat SAT solver homepage, http://reasoning.cs.ucla.edu/rsat/
15. Heule, M., Van Maaren, H.: Aligning CNF- and Equivalence-Reasoning. In: Hoos,

H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 145–156. Springer,
Heidelberg (2005)

16. Heule, M., Van Maaren, H.: Effective Incorporation of double look-ahead proce-
dures. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
258–271. Springer, Heidelberg (2007)

17. SAT 2007 Competition Homepage, http://www.satcompetition.org/2007/
18. Heule, M.: March: towards a look-ahead SAT solver for general purposes, Master

thesis (2004)
19. Chen, J.C.: The SAT solver, MoRsat. In: SAT 2009 Competition (2009) (submit-

ted)

http://minisat.se
http://reasoning.cs.ucla.edu/rsat/
http://www.satcompetition.org/2007/

Restart Strategy Selection Using Machine
Learning Techniques

Shai Haim and Toby Walsh

NICTA and School of Computer Science and Engineering
University of New South Wales

Sydney, Australia
{shai.haim,toby.walsh}@nicta.com.au

Abstract. Restart strategies are an important factor in the perfor-
mance of conflict-driven Davis Putnam style SAT solvers. Selecting a
good restart strategy for a problem instance can enhance the perfor-
mance of a solver. Inspired by recent success applying machine learning
techniques to predict the runtime of SAT solvers, we present a method
which uses machine learning to boost solver performance through a smart
selection of the restart strategy. Based on easy to compute features, we
train both a satisfiability classifier and runtime models. We use these
models to choose between restart strategies. We present experimental
results comparing this technique with the most commonly used restart
strategies. Our results demonstrate that machine learning is effective in
improving solver performance.

1 Introduction

Restarts have been shown to boost the performance of backtracking SAT solvers
(see for example [11],[24]). A restart strategy (t1,t2,t3,...) is a sequence of restart
lengths that the solver follows in the course of its execution. The solver first
performs t1 steps (in case of SAT solvers a step is usually a conflict). If a solution
is not found, the solver abandons its current partial assignment and starts over.
The second time it runs for t2 steps, and so on. Luby, Sinclair and Zuckerman
[16] show that for each instance there exists t∗, an optimal restart length that
leads to the optimal restart strategy (t∗,t∗,t∗,...). In order to calculate t∗, one
needs to have full knowledge of the runtime distribution (RTD) of the instance,
a condition which is rarely met in practical cases.

Since the RTD is not known, solvers commonly use “Universal Restart Strate-
gies”. These strategies do not assume prior knowledge of the RTD and they at-
tempt to perform well on any given instance. Huang [11] shows that when applied
with Conflict Driven Clause Learning solvers (CDCL), none of the commonly
used universal strategies dominates all others on all benchmark families. He also
demonstrates the great influence on the runtime of different restart strategies,
when all its other parameters are fixed.

In this paper we show that the recent success in applying machine learning
techniques to estimate solvers’ runtimes can be harnessed to improve solvers’

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 312–325, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Restart Strategy Selection Using Machine Learning Techniques 313

performance. We start by discussing the different universal strategies and recent
machine learning success in Sect. 2. In Sect. 3 we present LMPick, a restart
strategy portfolio based solver. Experimental results are presented and analyzed
in Sect. 4. We conclude and suggest optional future study in Sect. 5.

2 Background

Competitive DPLL solvers typically use restarts. Most use “universal” strategies,
while some use “dynamic” restart schemes, that induce or delay restarts (such
as the ones presented in [1] and [22]).

Currently, the most commonly used universal strategies fall into one of the
following categories:

– Fixed strategy - ([9]). In this strategy a restart takes place every constant
number of conflicts. While some solvers allow for a very short interval be-
tween restarts, others allow for longer periods, but generally fixed strategies
lead to a frequent restart pattern. Examples of its use can be found in Berk-
Min [8] (where the fixed restart size is 550 conflicts) and Seige [21] (fixed
size is 16000 conflicts).

– Geometric strategy - ([23]). In this strategy the size of restarts grows geomet-
rically. This strategy is defined using an initial restart size and a geometric
factor. Wu and van Beek [24] show that the expected runtime of this strat-
egy can be unbounded worse than the optimal fixed strategy in the worst
case. They also present several conditions which, if met, guarantee that the
geometric strategy would yield a performance improvement. This strategy
is used by MiniSat v1.14 [5] with initial restart size of 100 conflicts and a
geometric factor of 1.5.

– Luby Strategy - ([16]). In this strategy the length of restart i is u · ti when
u is a constant “unit size” and

ti =

{
2k−1, if i = 2k − 1
ti−2k−1+1, if 2k−1 ≤ i < 2k − 1

The first elements of this sequence are 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,1,... Luby,
Sinclair and Zuckerman [16] show that the performance of this strategy is
within a logarithmic factor of the true optimal strategy, and that any uni-
versal strategy that outperforms their strategy will not do it by more than
a constant factor. These results apply to pure Las Vegas algorithms, and
do not immediately apply to CDCL solvers in which learnt clauses are kept
across restarts. The effectiveness of the strategy in CDCL solvers appears
mixed ([11],[20]) and there is still no theoretical work that that analyzes
its effectiveness in such solvers. However, Luby’s restart strategy is used by
several competitive solvers including MiniSat2.1 and TiniSat.

– Nested Restart strategy - ([2]) This strategy and can be seen as a simplified
version of the Luby strategy. After every iteration the restart length grows
geometrically until it reaches a higher bound, at this point the restart size

314 S. Haim and T. Walsh

is reset to the initial value and the higher bound is increased geometrically.
This strategy is used by PicoSat [2] and Barcelogic1.

Previous work shows that restart strategies perform differently on different data
sets. Huang [11] compares the performance of different strategies both for bench-
mark families and different benchmarks. He shows that there is no one strategy
that outperformed all others across all benchmark families which suggests that
adapting a strategy to a benchmark family, or even a single benchmark, could
lead to performance gain. This suggests that choosing the best strategy from
a set of strategies could improve the overall runtime, and for some benchmark
families, improves it significantly.

Machine learning was previously shown to be an effective way to predict the
runtime of SAT solvers. SatZilla [25] is a portfolio based solver that uses machine
learning to predict which of the solvers it uses is optimal for a given instance.
SatZilla uses an hierarchical approach [26] and can use different evaluation crite-
ria for solver performance. SatZilla utilizes runtime estimations to pick the best
solver from a solver portfolio. The solvers are used as-is, and SatZilla does not
have any control over their execution. SatZilla was shown to be very effective in
the SAT competition of 2007. Two other Machine Learning based approaches
for local search and CDCL are presented in [13] and [3] respectively.

Ruan et al. [19] suggest a way to use dynamic programming to derive dynamic
restart strategies that are improved during search using data gathered in the
beginning of the search. This idea corresponds with the “Observation Window”
that we will discuss in the next section. There are several differences between
this work and ours. One important difference is that their technique chooses a
different instance from the ensemble at each restart. While our intention is to
solve each of the instances in the ensemble, it seems their technique is geared
towards a different goal, where the solver is given an ensemble of instances and
is required to solve as many of them as possible.

Another approach for runtime estimation was presented in our previous work
[10]. In that paper we introduce a Linear Model Predictor (LMP) which demon-
strates that runtime estimation can also be achieved using parameters that are
gathered in an online manner, while a search is taking place, as opposed to
the mostly static features gathered by SatZilla. Another difference between the
methods is the way training instances are used. While SatZilla uses a large num-
ber of instances that are not tightly related, LMP uses a much smaller set of
problems, but these should be more homogeneous.

3 LMPick : A Restart-Strategy Selector

Since restart strategies are an important factor in the performance of DPLL style
SAT solvers, a selection of a good restart strategy for a given instance should
improve the performance of the solver for that instance. We suggest that by
using supervised machine learning, it is possible to select a good restart strategy
1 http://www.barcelogic.org/

Restart Strategy Selection Using Machine Learning Techniques 315

for a given instance. We present LMPick, a machine learning based technique
which enhances CDCL solvers’ performance.

3.1 Restart Strategies Portfolio

LMPick uses a portfolio of restart strategies from which it chooses the best one
for a given instance. Following [11] we recognize several restart strategies that
have shown to be effective on one benchmark family or more. We chose 9 restart
strategies that represent, to our understanding, a good mapping of commonly
used restart strategies.

– luby-32 - A Luby restart strategy with a “unit run” of 32 conflicts. This
strategy represents a Luby restart strategy with a relatively small “unit run”.
This technique was shown to be effective by Huang [11].

– luby-512 - A Luby restart strategy with a “unit run” of 512 conflicts. This
strategy represents a Luby restart strategy with a larger “unit run”. This is
the original restart scheme used by TiniSat, the solver we used in this study.

– Fixed-512 - A fixed restart scheme with a restart size of 512 conflicts. Similar
restart schemes that are used by solvers are BerkMin’s Fixed-550 [8], and
the 2004 version of zChaff, Fixed-700 [17].

– Fixed-4096 - A fixed balance scheme with a restart size of 4096 conflicts.
We chose this restart scheme because it balances the short and long fixed
schemes, and because it performed very well in our preliminary tests.

– Fixed-16384 - A fixed balance scheme with a restart size of 16384 conflicts.
A longer fixed strategy, similar to the one used by Siege [21] (Fixed-16000).

– Geometric-1.1 - A geometric restart scheme with a first restart size of 32 con-
flicts and a geometric factor of 1.1. inspired by the one used by Hunag [11].

– Geometric-1.5 - A geometric restart scheme with a first restart size of 100
conflicts and a geometric factor of 1.5. This is the restart scheme used in
MiniSat v1.14 [5].

– Nested-1.1 - A nested restart strategy, with an inner value of 100 conflicts,
an outer value of 1000 values and a geometric factor of 1.1. This strategy is
parameterized as the one used by PicoSAT [2].

– Nested-1.5 - A nested restart strategy, with an inner value of 100 conflicts,
an outer value of 1000 values and a geometric factor of 1.5. Inspired by the
results presented in [22].

3.2 Supervised Machine Learning

Satsifiable and unsatisfiable instances from the same benchmark family tend
to have different runtime distributions [7]. A runtime prediction model that is
trained using both SAT and UNSAT instances performs worse than a homo-
geneous model. It is better to train a layer of two models, one trained with
satisfiable instances (Msat) and the other with unsatisfiable instances (Munsat).
Since in most cases we do not know whether a given instance is satisfiable or
not we need to determine which of the models is the correct one to query for

316 S. Haim and T. Walsh

Set I:
1. Number of variable
2. Number of clauses

Set II:
3. Number of variable
4. Number of clauses
5. Variable to clauses ratio
6. Number of binary clauses
7. Number of ternary clauses
8. Number of horn clauses
9-12. VCG - Variable nodes degree
statistics: mean, variation coefficient, min
and max
13-16. VCG - Clause nodes degree
statistics: mean, variation coefficient, min
and max
17-20. Number of occurrences in Horn
clauses: mean, variation coefficient, min and
max
21-24. Ratio of positive and negative oc-
currences of variables: mean, variation co-
efficient, min and max
25. Number of assigned variable

Set III:
26-29. Backjump Size: mean, variation coeffi-
cient, min and max
30-33. Search Depth: mean, variation coefficient,
min and max
34-37. log(WBE) value : mean, variation coeffi-
cient, min and max

Set IV:
38. Number of variable
39. Number of clauses
40. Variable to clauses ratio
41. Number of binary clauses
42. Number of ternary clauses
43. Number of horn clauses
44-47. VCG - Variable nodes degree statistics:
mean, variation coefficient, min and max
48-51. VCG - Clause nodes degree statistics:
mean, variation coefficient, min and max
52-55. Number of occurrences in Horn
clauses: mean, variation coefficient, min and max
56-59. Ratio of positive and negative occur-
rences of variables: mean, variation coefficient,
min and max
60. Number of assigned variable

Fig. 1. A list of features used to build models

a given instance according to its probability to be satisfiable. Previous work
([26],[4]) suggests that machine learning can be successfully used for this task
as well. A classifier can be trained to estimate the probability of an instance to
be satisfiable. Some classification techniques perform better than others, but it
seems that for most benchmark families, a classifier with 80% accuracy or more
is achievable.

Using supervised machine learning, we train models offline in order to use
them for predictions online. For every training example t ∈ T , where T is the
training set, we gather the feature vector x = {x1, x2, . . . , xn} using the features
presented in section 3.3. Once the raw data is gathered, we perform a feature
selection. We repeatedly remove the feature with the smallest standardised co-
efficient until no improvement is observed based on the standard AIC (Akaike
Information Criterion). We then searched and eliminate co-linear features in the
chosen set. The reduced feature vector x̂ is then used to train a classifier and
several runtime prediction models. The classifier predicts the probability of an
instance to be satisfiable and the runtime models predict cpu-runtime. LMPick
trains one classifier, but two runtime models for each restart strategy s ∈ S
(where S is the set of all participating strategies) to the total of 2|S| models.
Each training instance is used to train the satisfiability classifier, labeled with
its satisfiability class, and |S| runtime models, for each model it is labeled with
the appropriate runtime.

As the classifier, we used a Logistic Regression technique. Any classifier that
returns probabilities would be suitable. We found Logistic Regression to be a
simple yet effective classifier which was also robust enough to deal with different
data sets. We have considered both Sparse Multinomial Linear Regression [15]

Restart Strategy Selection Using Machine Learning Techniques 317

(suggested to be effective for this task in [25]), and the classifiers suggested by
Devlin and O’Sullivan in [4], but the result of all classifiers were on par when
using the presented feature vector on our datasets.

For the runtime prediction models we used Ridge Linear Regression. Using
ridge linear regression, we fit our coefficient vector w to create a linear predictor
fw (x̂) = wT x̂i. We chose ridge regression, since it is a quick and simple technique
for numerical prediction, and it was shown to be effective in the Linear Model
Predictor (LMP) [10]. While LMP predicts the log of number of conflicts, in this
work we found that predicting cpu-runtime is more effective as a selection crite-
rion for restart strategies. Using the number of conflicts as a selection criterion
tends to bias the selection towards frequent restart strategies for large instances.
This is because an instance with many variables spends more time going down
the first branch to a conflict after a restart. This work is unaccounted for when
conflicts are used as the cost criterion. Hence a very frequent restart strategy
might be very effective in the number of conflict while much less effective in
cpu-time.

3.3 Feature Vector

There are 4 different sets of features that we used in this study, all are inspired
by the two previously discussed techniques - SatZilla [25] and LMP [10]. The first
set include only the number of variables and the number of clauses in the original
clause database. These values are the only ones that are not normalized. The
second set includes variables that are gathered before the solver starts but after
removing clauses that are already satisfiable, shrinking clauses with multiple
appearances and propagating unit clauses in the original formula. These features
are all normalized appropriately. They are inspired by SatZilla and were first
suggested in [18]. The third set include statistics that are gathered during the
“Observation Window”, this is a period where we analyze the behavior of the
solver while solving the instance. The “Observation Window” was first used in
[10]. The way the observation window is used in this study will be discussed
shortly. The variables in this set are the only ones which are DPLL dependent.
The last set includes the same features as the second, but they are calculated
at the end of the observation window. A full list of the features is presented in
Fig. 1. For further explanation about these features see [18] and [10].

1. Gather information for features sets I and II.
2. Run a first restart for 100 conflicts.
3. Run a second restart for 2000 conflicts, this restart hosts the observation

window, during which feature set III is gathered. At the end of the observa-
tion window, feature set IV is gathered.

4. Predict instance’s probability of satisfiability using satisfiability classifier.
5. Predict runtime with each of the Models, weighing according to the proba-

bility of satisfiability.
6. Choose the strategy with the minimal weighted runtime.

Fig. 2. Steps in the operation of a restart strategy portfolio based solver. Features sets
I through IV are presented in Fig. 1.

318 S. Haim and T. Walsh

3.4 Operation of the Solver

Once all runtime models are fitted and the satisfiability classifier is trained, we
can use them to improve performance for future instances. The steps that are
taken by LMPick are presented in Fig. 2.

Since no prediction can be made before the observation window is terminated,
and since we favor an early estimation, it is important that the observation
window should terminate early in the search. In our preliminary testings we
have noticed that the first restart tends to be very noisy, and that results are
better if data is collected in the second restart onwards. We have tried several
options for the observation window location and size, eventually we opted for a
first restart which is very short (100 conflicts), followed by a second restart (of
size 2000) which hosts the observation window. Hence the observation window
is closed and all data is gathered after 2100 conflicts.

Once the feature vector x is gathered it is used with the classifier to de-
termine the probability of the instance to be satisfiable, P (sat|x). For each
of the strategies, both models are queried and a best strategy sb(x) is picked
using

sb(x) = argmin
s∈S

[P (sat|x) ·Msat,s(x) + P (unsat|x) ·Munsat,s(x)].

The restart strategy which is predicted to be the first to terminate is picked,
and the solver starts following this strategy from the next restart onwards. Al-
though restart strategies are usually followed from the beginning of the search,
we do not want to lose the learned clauses from the first 2100 conflicts. Therefore,
we continue the current solving process and keep the already learnt clauses. We
denote the restart sequence that takes place from the first restart to termination
as LMPicksb

. It is important to note that sb 	= LMPicksb
.

4 Results

4.1 Experiment Settings

In this study we used TiniSat (version 0.22) [12] as the basic solver. TiniSat
is a lightweight DPLL style solver that was first presented in the SAT Race of
2006. TiniSat is a modern solver that uses clause learning and a unique decision
heuristic that generally favours variables from recent assignments (as in BerkMin
[8]) and uses VSIDS [17] over the literals as a backup. We chose to use TiniSat
since (i) it is tuned in a way that would make comparison of restart strategies
more meaningful [11] and (ii) it is a compact and straightforward implementation
which allows for greater ease of use. TiniSat is not equipped with a pre-processor,
and we have not used any in our study. By default, TiniSat uses a Luby restart
strategy with a run unit of 512 conflicts.

All our experiments were conducted on a cluster of 14 Dual Intel Xeon CPUs
with EM64T (64-bit) extensions, running at 3.2GHz with 4GB of RAM under
Debian GNU/Linux 4.0. By implementing a runtime cutoff of 90 minutes per in-
stance, we managed to complete all experiments in approximately 290 CPU days.

Restart Strategy Selection Using Machine Learning Techniques 319

1 int cbmc_function_sat(int x) {
2 int a[ARRAY_SIZE];
3 signed low=0, high=ARRAY_SIZE;
4 while(low<high) {
5 signed middle=low+((high-low)>>1);
6 if(a[middle]<x)
7 high=middle;
8 else if(a[middle+1]>x)
9 low=middle+1;
10 else
11 return middle;
12 }
13 return -1;
14 }

(a) sat

1 int cbmc_function_unsat(int x) {
2 int a[ARRAY_SIZE];
3 signed low=0, high=ARRAY_SIZE;
4 while(low<high) {
5 signed middle=low+((high-low)>>1);
6 if(a[middle]<x)
7 high=middle;
8 else if(a[middle]>x)
9 low=middle+1;
10 else
11 return middle;
12 }
13 return -1;
14 }

(b) unsat

Fig. 3. Code verified byCBMC to generate the bmc dataset. Different instances are made
using different ARRAY SIZE values and a different number of unwinding iterations.

Table 1. Summary of features of datasets. For each dataset the following details are
presented: The dataset’s classification (Class), the number of instances (Ins.) and its
size in MB (all file are zipped). Also, we present the time (in hours) it took for all
9 restart strategies to solve these datasets. We present the mean time (Mean), the
standard deviation (SD) and the minimal and maximal time. Runtime cutoff is 5400
seconds and it is the maximal runtime per instance.

Name Class Ins.
Size Runtime
(MB) Mean SD Min Max

bmc
sat 234 4,420.0 154.42 26.41 127.93 213.27
unsat 237 1,951.7 113.82 18.59 93.48 155.04

velev
sat 72 1,866.2 32.68 3.74 24.77 37.87
unsat 105 953.4 70.74 1.64 68.16 73.29

crypto
sat 139 2.7 140.71 11.54 122.52 164.78
unsat 300 5.5 14.19 1.53 11.61 16.65

rand
sat 457 1.90 76.93 14.98 54.00 105.10
unsat 601 2.3 84.82 10.82 70.87 103.56

4.2 Benchmarks

In this study we used four different distributions of SAT instances. Instances in
each data set are of various difficulty. We have omitted very easy instances that
are solved before the “observation window” terminates.

– bmc: An ensemble of software verification problems generated using CBMC2

verifying the C functions presented in Fig. 3. These two functions are almost
identical, apart for a change in line 8, which causes the sat script to over-
flow. The different instances use different array sizes and different number of
unwindings. This dataset represents an ensemble of problems that are very
similar and generated by the same process. We use 234 satisfiable and 237
unsatisfiable problems.

2 http://www.cprover.org/cbmc/

320 S. Haim and T. Walsh

– velev: An ensemble of hardware formal verification problems distributed
by Miroslav Velev3. These are well studied verification hardware bench-
marks. This ensemble is not as homogeneous as bmc because it is a union of
many small benchmark families. We use 72 satisfiable and 105 unsatisfiable
instances.

– crypto: An ensemble of problems that are generated as part of an attack on
the Bivium stream cipher, presented by Eibach, Pilz and Völkel [6]. This
ensemble presents some interesting characteristics. While it is generated by
a non-random process, the instances are significantly smaller than common
industrial instances. The satisfiable instances we use were generated with 35
guesses, the unsatisfiable ones were generated with 40 guesses. The reason
for this discrepancy is that unsatisfiable instances are harder to solve in this
benchmark family, and different number of guesses renders the datasets too
easy or too hard. We use 139 sat and 300 unsat instances.

– rand: An ensemble of 457 satisfiable and 601 unsatisfiable randomly gener-
ated 3-SAT problems with 250 to 450 variables and a clause-to-var ratio of
4.1 to 5.0.

Some further data about these data sets is presented in Table 1. We would
like to draw the reader’s attention to the “SD” column. This column presents
the standard deviation observed when the problem is solved by all 9 restart
strategies. A small value indicates that all restart strategies perform on par on
this data set, while a large value indicates that runtimes are scattered.

Each data set is split into training and testing sets. Instances in the training set
are used to train Msat, Munsat and the classifier while the instances in the testing
set are only used to generate the results. We used a 10-fold cross validation
technique after randomly shuffling all instances.

4.3 Restart Strategy Portfolio Performance

Table 2 demonstrates the effectiveness of LMPick. We present the performance
of each of the 9 restart strategies on each of the data sets. We use two matrices:
The number of instances solved within the cutoff time of 90 minutes, and the
total time it took to solved the entire data set. Timed out instances are counted
as contributing 90 minutes to the total runtime. We then present the average
performance achieved by all strategies. This solver (denoted Random-pick) rep-
resents the expected behavior when there is no prior knowledge regarding which
of the strategies is most suitable for a given instance. The last row presents the
results we get using the LMPick process.

This table shows that for all of the data sets LMPick performs better than
using a randomly picked strategy, both for problems solved and for total runtime.
3 http://www.miroslav-velev.com/sat benchmarks.html. We use the following bench-

mark families: vliw sat 2.0, vliw sat 2.1, vliw sat 4.0, vliw unsat 2.0, vliw unsat 3.0,
vliw unsat 4.0, pipe sat 1.0, pipe sat 1.1, pipe unsat 1.0, pipe unsat 1.1, liveness s-
at 1.0, liveness unsat 1.0, liveness unsat 2.0, dlx iq unsat 1.0, dlx iq unsat 2.0, en-
gine unsat 1.0, fvp sat 3.0, fvp unsat 1.0, fvp unsat 2.0, fvp unsat 3.0.

Restart Strategy Selection Using Machine Learning Techniques 321

Table 2. Performance comparison of all strategies over data sets, two metrics (M) are
presented: number of solved instances (S) and total runtime (T, in seconds). Average
solver behaviour (a randomly picked solver) is presented as Rand.. Runtime cutoff is
5400 second. Unsolved instances are considered to contribute 5400 seconds to the total
runtime.

Strategy M
bmc velev crypto random

Total
SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT

Luby-32
S 192 220 53 64 67 300 427 561 1884
T 143.26 98.68 37.86 72.30 138.02 16.65 90.34 96.60 693.74

Luby-512
S 196 226 59 64 71 300 431 564 1911
T 132.90 93.48 31.72 71.48 141.19 14.30 74.89 86.44 646.38

Fix-512
S 142 187 58 62 50 300 414 558 1771
T 185.73 134.17 32.66 73.29 164.78 15.94 105.10 103.56 815.24

Fix-4096
S 199 213 59 64 73 300 431 563 1902
T 138.67 110.52 33.02 69.80 136.46 13.57 72.63 83.30 657.97

Fix-16384
S 191 212 61 65 69 300 432 569 1899
T 157.68 119.88 24.77 68.16 147.86 13.10 65.37 72.34 669.17

Geom-1.1
S 189 213 59 64 62 300 432 571 1890
T 127.93 104.83 29.94 69.02 149.69 13.96 68.18 79.44 642.99

Geom-1.5
S 128 174 54 62 84 300 439 573 1814
T 213.27 155.04 37.81 72.62 130.86 12.93 54.00 70.87 747.39

Nest-1.1
S 192 218 61 65 76 300 423 566 1901
T 137.64 107.69 32.49 69.76 134.94 15.65 92.27 94.87 685.31

Nest-1.5
S 179 215 58 63 88 300 434 574 1911
T 152.67 100.12 33.82 70.29 122.52 11.61 69.60 75.93 636.56

Rand.
S 178.67 208.67 58 63.66 62.77 300 429.22 566.56 1862.04
T 154.42 113.82 32.68 70.74 140.71 14.19 76.93 84.82 666.98

LMPick
S 203 221 61 66 72 300 435 571 1929
T 124.57 97.53 28.09 68.98 138.17 12.02 68.00 80.86 618.23

In terms of problem solved, LMPick performs better than any given restart
strategy in two of the cases, and performs on par with the optimal strategy in
two other cases. The “Total” column shows that for these data sets, LMPick
would solve more instances in less time than any single restart strategy.

For the bmc data set, LMPick performs significantly better than any other
restart scheme for satisfiable instances. It solves 4 instances more than the best
strategy (Static-4096), and the total runtime shows 19.33% improvement over
the average Random-pick strategy. For unsatisfiable instances, it performs worse.
Although it is second amongst the strategies, it is clearly worse than Luby-512
that solves 6 more instances. Comparing the standard deviation of these two
data sets in Table 1 does not explain this descripency in performance. Both
show large, almost similar, coefficients (sat’s standard deviation is 154.42, and
its variation coefficient is 0.171 while unsat’s standard deviation is 113.82 and
its variation coefficient is 0.1633), this indicates a high potential of improvement
for both data sets. We conjecture that the reason for the poorer performance lies

322 S. Haim and T. Walsh

Table 3. Accuracy results for the satisfiability classifier. Figures represent the percent
of correctly classified instances.

Class bmc velev crypto rand

SAT 100.00% 97.22% 99.28% 82.49%
UNSAT 83.54% 82.85% 100.00% 94.51%
ALL 91.72% 88.70% 99.77% 89.31%

Table 4. Performance of LMPick ’s chosen restart strategy (sb) in comparison with
other strategies. The figures represent the percent of strategies that outperform sb for
a given data set.

Class bmc velev crypto rand

SAT 30.18% 35.58% 32.24% 39.29%
UNSAT 32.01% 37.05% 14.77% 39.61%

in the fact that both the classifier, and the runtime models are more accurate
for bmc-sat than for bmc-unsat.

Table 3 presents the performance of the satisfiability classifier. The figures in
the table represent the percent of instances that were predicted correctly. It is
important to note that since we did not apply a “winner takes all” approach,
in some of the cases where the classification was correct but not with 100% cer-
tainty, the wrong model was also considered. We can see that for bmc, satisfiable
instances are classifed correctly every time, while unsatisfiable ones are classi-
fied correctly only 83.54% of the times. In order to check the influence of these
classifaction errors on the performance of LMPick for this dataset, we ran an-
other experiment, where we used a classification oracle. LMPick ’s performance
is improved, and it solved 224 instances, which are 3 more than the original
results. This shows the effect of a good classification technique over the overall
performance.

In order for LMPick to enhance the solver’s performance, runtime estimation
models need to perform well. Nevertheless, it is not crucial that each model’s
prediction is accurate. The important factor is the relative order of these predic-
tions. We would prefer the chosen strategy (sb) to be amongst the best strategies
for that instance. Table 4 demonstrates the quality of the chosen strategy sb.
The table presents the percentage of strategies that outperform sb. This table
shows that in all cases sb is better than picking a random strategy, and that for
the crypto-unsat instances it performs very well.

The difference in the performance on the crypto-sat data set is not easily
explained by the data presented so far. While both the classifier and runtime
prediction models perform better than on the velev-sat, the overall performance
is worse. We conjecture that the cause of this difference is the differing likelihood
of an instance being solved by multiple strategies.

Figure 4 compares the 3 non-random satisfiable data sets. In Fig. 4(a) bars
represent the percent of instances in the data set that were solved within the
cutoff time by each number of strategies. There is a clear difference between

Restart Strategy Selection Using Machine Learning Techniques 323

0 %

20 %

40 %

60 %

0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

 o
f p

ro
bl

em
s

so
lv

ed
 w

ith
in

 c
ut

of
f t

im
e

Number of strategies

bmc-sat
velev-sat

crypto-sat

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 a

n
in

st
an

ce
 w

ith
in

 th
e

cu
to

ff
tim

e

Ranking of the selected strategy

bmc-sat
velev-sat

crypto-sat

(b)

Fig. 4. A comparison of strategies’ performance on three satisfiable data sets. On the
left, bars represent the percent of instances that are solved (within cutoff time) by each
number of strategies, when 0 means all instances that cannot be solved by any of the
strategies and 9 means all instances that are solved by all strategies. On the right the
plot shows the probability of solving a randomly picked instance (within cutoff time) as
a function of the quality of the selection decision, when 1 means the strategy selected
was the best one and 9 means it was the worst.

crypto-sat and the other 2 data sets. While for both industrial verification based
data sets, most instances were solved by the majority of strategies, for crypto-sat
many of the instances are solved by a small set of strategies. The effect of this
difference is demonstrated in Fig. 4(b). This plot presents the probability of a
randomly picked instance being solved within the cutoff time given the quality
of selected strategy. From left to right, the picked strategy shift from best to
worse. If LMPick picks one of the the two best strategies, the probability of
all three data sets is quite similar, but when the chosen strategy is 3rd or 4th,
the probability of solving a crypto-sat instance drops significantly compared to
the other two. Many instances in the crypto-sat data set are only solved within
the cutoff by a small subset of strategies, making this data set harder as a sub-
optimal selection is likely to lead to a timeout.

5 Conclusions and Future Work

Restart strategies have an important role in the success of DPLL style SAT solvers.
The performance of different strategies varies over different benchmark families.
We harness machine learning to enhance the performance of SAT solvers. We have
presented LMPick, a technique that uses both satisfiability classification and
solver runtime estimation to pick promising restart strategies for instances. We
have demonstrated the effectiveness of LMPick and compared its results with
the most commonly used restart strategies. We have established that in many
cases LMPick outperforms any single restart strategy and that it is never worse
than a randomly picked strategy. We have also discussed the influence of different
components of LMPick on its performance.

324 S. Haim and T. Walsh

While universal restart strategies are more commonly used than dynamic ones,
dynamic strategies are getting more attention lately. An interesting continuation
to this work would be to use machine learning to develop a fully dynamic restart
strategy. Such a strategy could use unsupervised machine learning algorithm to
develop a dynamic restart policy for a benchmark family of problems. Restart
strategies are not the only aspect of SAT solving influencing performance on
different benchmark families. Machine learning can be also used to tune other
parameters that govern the behavior of modern DPLL based solvers, namely,
parameters that are commonly set manually as a result of a trial and error
process, such as decision heuristic parameters, clause deletion policy, etc.

Acknowledgements

NICTA is funded by the Department of Broadband, Communications and the
Digial Economy, and the ARC through Backing Australia’s Ability and the ICT
Centre of Excellence program.

References

1. Biere, A.: Adaptive Restart Strategies for Conflict Driven SAT Solvers. In: Proc.
of the 11th Int. Conf. on Theory and Applications of Satisfiability Testing (2008)

2. Biere, A.: PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and
Computation 4, 75–97 (2008)

3. Bregman, D., Mitchell, D.: The SAT solver MXC (version 0.75). Solver Description
for the SAT Race 2008 solver competition (2008)

4. Devlin, D., O’Sullivan, B.: Satisfiability as a Classification Problem. In: Proc. of
the 19th Irish Conf. on Artificial Intelligence and Cognitive Science (2008)

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. of the 6th Int. Conf.
on Theory and Applications of Satisfiability Testing (2003)

6. Eibach, T., Pilz, E., Völkel, G.: Attacking Bivium Using Using SAT Solvers. In:
Proc. of the 11th Int. Conf. on Theory and Applications of Satisfiability Testing
(2008)

7. Frost, D., Rish, I.: Summarizing CSP hardness with continuous probability distri-
butions. In: Proc. of the 14th National Conf. on Artificial Intelligence (1997)

8. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proc. of
Design Automation and Test in Europe (2002)

9. Gomes, C.P., Selman, B., Kautz, H.: Boosting Combinatorial Search through Ran-
domization. In: Proc. of the 15th National Conf. on Artificial Intelligence (1998)

10. Haim, S., Walsh, T.: Online Estimation of SAT Solving Runtime. In: Proc. of the
11th Int. Conf. on Theory and Applications of Satisfiability Testing (2008)

11. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. of
the 20th Int. Joint Conf. on Artificial Intelligence (2007)

12. Huang, J.: A Case for Simple SAT Solvers. In: Proc. of the 13th Int. Conf. on
Principles and Practice of Constraint Programming (2007)

13. Hutter, F., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance Prediction and
Automated Tuning of Randomized and Parametric Algorithms. In: Proc. of the
12th Int. Conf. on Principles and Practice of Constraint Programming (2006)

Restart Strategy Selection Using Machine Learning Techniques 325

14. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart Policies.
In: Proc. of the 18th National Conf. on Artificial Intelligence (2002)

15. Krishnapuram, B., Figueiredo, M., Carin, L., Hartemink, A.: Sparse Multinomial
Logistic Regression: Fast Algorithms and Generalization Bounds. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 27, 957–968 (2005)

16. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
In: Proc. of the 2nd Israel Symp. on the Theory and Computing Systems (1993)

17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proc. of the 38th Design Automation Conference
(2001)

18. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing Random SAT: Beyond the Clauses-to-Variables Ratio. In: Wallace, M.
(ed.) CP 2004, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

19. Ruan, Y., Horvitz, E., Kautz, H.: Restart Policies with Dependence among Runs: A
Dynamic Programming Approach. In: Van Hentenryck, P. (ed.) CP 2002, vol. 2470,
p. 573. Springer, Heidelberg (2002)

20. Ruan, Y., Horvitz, E., Kautz, H.: Hardness-aware restart policies. In: The 18th Int.
Joint Conference on Artificial Intelligence: Workshop on Stochastic Search (2003)

21. Ryan, L.: Efficient algorithms for clause learning SAT solvers. Master thesis, Simon
Fraser University, School of Computing Science (2004)

22. Ryvchin, V., Strichman, O.: Local Restarts. In: Kleine Büning, H., Zhao, X. (eds.)
SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008)

23. Walsh, T.: Search in a Small World. In: Proc. of the 12th Int. Joint Conference on
Artificial Intelligence (1999)

24. Wu, H., van Beek, P.: On Universal Restart Strategies for Backtracking Search.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 681–695. Springer, Heidelberg
(2007)

25. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based Algo-
rithm Selection for SAT. Journal of Artificial Intelligence Research 32, 565–606
(2008)

26. Xu, L., Hoos, H., Leyton-Brown, K.: Hierarchical Hardness Models for SAT. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 696–711. Springer, Heidelberg
(2007)

Instance-Based Selection of Policies for SAT
Solvers�

Mladen Nikolić, Filip Marić, and Predrag Janičić

Faculty of Mathematics, University of Belgrade,
Belgrade, Studentski Trg 16, Serbia

{nikolic,filip,janicic}@matf.bg.ac.rs

Abstract. Execution of most of the modern DPLL-based SAT solvers is
guided by a number of heuristics. Decisions made during the search pro-
cess are usually driven by some fixed heuristic policies. Despite the out-
standing progress in SAT solving in recent years, there is still an appeal-
ing lack of techniques for selecting policies appropriate for solving specific
input formulae. In this paper we present a methodology for instance-
based selection of solver’s policies that uses a data-mining classification
technique. The methodology also relies on analysis of relationships be-
tween formulae, their families, and their suitable solving strategies. The
evaluation results are very good, demonstrate practical usability of the
methodology, and encourage further efforts in this direction.

1 Introduction

The propositional satisfiability problem (SAT) is one of the fundamental prob-
lems in computer science. It is the problem of deciding if there is a truth assign-
ment under which a given propositional formula (in conjunctive normal form)
evaluates to true. SAT was the first problem proved to be NP-complete [Coo71]
and it still has a central position in the field of computational complexity. SAT
problem is also very important in many practical domains such as electronic de-
sign automation, software and hardware verification, artificial intelligence, and
operations research. Thanks to recent advances in propositional solving technol-
ogy, SAT solvers (procedures that solve the SAT problem) are becoming a tool
for attacking more and more practical problems.

A number of SAT solvers have been developed. The majority of state-of-
the-art complete SAT solvers are based on the branch and backtrack algo-
rithm called Davis-Putnam-Logemann-Loveland or the DPLL algorithm [DP60,
DLL62]. Spectacular improvements in the performance of DPLL-based SAT
solvers achieved in the last few years are due to (i) several conceptual enhance-
ments on the original DPLL procedure, aimed at reducing the amount of ex-
plored search space (e.g., backjumping, conflict-driven lemma learning, restarts),
(ii) better implementation techniques (e.g., two-watched literals scheme for unit
propagation), and (iii) smart heuristic components (which we focus on in this

� This work was partially supported by Serbian Ministry of Science grant 144030.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 326–340, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Instance-Based Selection of Policies for SAT Solvers 327

work). These advances make possible to decide the satisfiability of industrial
SAT problems with tens of thousands of variables and millions of clauses.

Complex policies, heuristics that guide the search process, represent impor-
tant parts of modern SAT solvers and are crucial for solver’s efficiency. These
include policies for literal selection, for determining the clause database size,
for choosing restart points, etc. Specific policies are usually parameterized by
a number of numerical and categorial parameters. Single policy with different
parameter values can be treated as different policies. SAT solving process is
completely determined (up to randomized choices) only when all its heuristic
policies are set. Selected combinations of policies specify the solving strategy (or
simply strategy).

Typically, every SAT solver uses a predetermined, hard-coded strategy and
applies it on all its input formulae. However, in recent times, SAT solvers tend
to implement multiple policies and the question arises as to how to choose a
strategy that would give good performance for a specific SAT instance. Address-
ing this question is of crucial importance because the solving time for the same
input formula can vary for several orders of magnitude depending on the solving
strategy used. The problem of adapting a SAT solver to the input formula has
been addressed for the first time only recently. Our approach significantly differs
from the only existing related approach we are aware of (as discussed in Sect. 5).

Propositional formulae can be clustered in families of formulae by their origin
— industrial problems (e.g., FPGA routing), manually crafted problems (e.g.,
graph coloring, Hanoi towers), or random generated problems (e.g., k-SAT). It
is interesting to explore the behaviour of different policies and solving strategies
on families of formulae. The important question is whether one strategy shows
the same or similar behaviour on similar formulae. If this is the case, and if one
can automatically guess a family to which a given formula belongs, then this
could be used for selecting an appropriate strategy for this particular formula.
To implement this approach, one needs (i) a technique for classifying formulae
based only on their syntax; (ii) information about behaviour of different policies
on various families of formulae.

The main message of this work is that intelligent selecting of solving policies,
based on the syntax of the input formula, can significantly improve efficiency of a
SAT solver. The proposed methodology will not lead to optimal performance on
each input formula, but the solving performance will be significantly improved
in average on multiple input formulae. Here, by improving efficiency of a SAT
solver we mean increasing the number of formulae solvable within some time
limit and decreasing the solving time.

The proposed methodology relies on several hypotheses that will be investi-
gated in the rest of the paper:

(H1) Formulae of the same family (i.e., of similar origin) share some syntactical
properties that can be used for automated formula classification;

(H2) For each family of formulae there is only a small number of solving strate-
gies that are appropriate — that show better performance on formulae be-
longing to that family then all other available strategies.

328 M. Nikolić, F. Marić, and P. Janičić

(H3) For formulae that are syntactically similar, the best strategies are also (in
some sense) similar.

If the above hypotheses hold, then our methodology will be practically applica-
ble. Namely, if the formula is correctly classified then it has a good chance to be
solved by a solving strategy suitable for a family that the formula belongs to.
However, even if the formula is misclassified, it will be solved using a strategy
similar to the optimal one.

The rest of the paper is organized as follows: in Sect. 2, a brief background in-
formation on SAT problem, SAT solvers, and their heuristic components is given.
In Sect. 3, the proposed methodology is described. The experimental results are
given in Sect. 4. In Sect. 5 related work is discussed. In Sect. 6 final conclusions
are drawn and some directions of possible further work are discussed.

2 Background

Most of today’s state-of-the-art solvers are complex variations of the DPLL pro-
cedure. In the rest of the paper, we shall assume that the reader is familiar with
the modern SAT solving techniques. More on these topics can be found, for ex-
ample, in [NOT06, KG07, Mar08, GKSS07]. Although modern SAT solvers share
common underlying algorithms and implementation techniques, their operation
is guided by a number of heuristic policies that have to be selected in order to
define solving strategies. The most important heuristic policies determine: (i)
which literals to choose for branching, (ii) when to apply restarting, and (iii)
when to forget some clauses that are learnt during the solving process. In the
rest of this section, policies that were varied in our experiments will be described.

Literal selection policies. During the DPLL backtrack-search, literals used for
branching should be somehow selected. This is the role of literal selection policies.
Most literal selection policies separately select a variable v (by using a variable
selection policy) and only then choose its polarity, i.e., choose if it should be
negated or not (by using a polarity selection policy).

Some variable selection policies are the following1:

VSrandom — This policy randomly chooses a variable among all variables of the
initial formula that are not defined in the current valuation, i.e., assertion
trail.

VSb,d,init
V SIDS — The goal of this policy (introduced in the solver Chaff [MMZ+01])
is to select a variable that was active in recent conflicts. In order to imple-
ment this, an activity score is assigned to each variable. On every conflict,
the scores of the variables that occur in the conflict clause are bumped, i.e.,
increased by a bump factor given by the parameter b. Also, during the con-
flict analysis process, on each resolution step all variables that occur in the

1 The policy names will be printed in subscripts and their parameters in superscripts.

Instance-Based Selection of Policies for SAT Solvers 329

explanation clause are bumped. To stimulate recent conflicts, on each con-
flict all the scores are decayed, i.e., decreased by a decay factor given by the
parameter d.

An important aspect of the vsids variable selection policy is how to assign
initial scores to variables. If the parameter init has the value zero, scores of
all variables are set to zero, hence all variables have the same chance to be
selected. If the parameter init has the value freq, the initial score of each
variable is set to its number of occurrences in the initial formula F0.

VSp
random◦ VSx — This compound policy chooses a random variable with prob-
ability p and otherwise uses a given policy here denoted by VSx.

Some polarity selection policies are the following:

PSpositive — Always selects a non-negated literal.
PSnegative — Always selects a negated literal.
PSp

random — A random selection which chooses a non-negated literal with prob-
ability p.

PSinit
polarity caching — When using this policy (introduced in the solver RSAT
[PD07] as phase caching), a preferred polarity is assigned to each variable
and it is used for polarity selection. Whenever a literal is asserted to the
current assertion trail (either as a decision or as a propagated literal), its
polarity defines the future preferred polarity of its variable. When a literal
is removed from the trail (during backjumping or restarting) its preferred
polarity is not changed. If the parameter init has the value pos, then initial
polarities of all variables are positive, it has the value neg then they are
set to negative, and if it has the value freq, then preferred polarity of each
variable is set to the polarity which is more frequent of the two in the initial
formula.

Restart policies. Restart policies determine when to apply restarting. Most
restart policies are based on conflict counting. On each conflict, the counter is
increased. Restarting is applied whenever the counter reaches a certain threshold
value. When this happens, the counter is reset and a new threshold is selected
according to some specific policy. Some possible restart policies are the following:

Rno restart — Restarting is not applied.
Rc0,q

minisat — The initial threshold value is set to c0 and the threshold values form
a geometric sequence with a quotient q [ES04].

Rm
luby — The threshold values are elements of the Luby series [LSZ93] multiplied

by a positive integer m, while the Luby series is:

ti =
{

2k−1 if i = 2k − 1
ti−2k−1+1 if 2k−1 ≤ i ≤ 2k − 1

Its first few elements for m = 1 are 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, ...
Rc0,q

picosat — In this policy (introduced by the solver PicoSAT [Bie08]), restarts
are controlled by two geometric sequences of threshold values — inner and

330 M. Nikolić, F. Marić, and P. Janičić

outer, both with an initial member c0 and a quotient q. Restarting is ap-
plied when the number of the conflicts reaches the current inner threshold
value, and then the inner threshold value advances to the next element of
the sequence. When the inner threshold exceeds the current outer threshold
value, it is reset to the initial value c0, and the outer threshold advances.

3 Methodology

Our methodology, when applied to a given SAT solver, selects an appropriate
solving strategy (i.e., combination of policies) for each input formula. The pro-
posed methodology can be applied to any DPLL-based SAT solver, provided it
supports multiple policies. In our experiments, the ArgoSAT solver2 was used
since it implements a large number of policies and since its modular architecture
allows easy modification of existing and implementation of new policies [Mar09].

The overall methodology consists of two phases.

Training phase. This phase consists of systematic solving of all formulae from
a representative corpus, by using all candidate solving strategies. This allows
selecting the best solving strategy (the one that solves the most formulae)
for each family of formulae from the corpus. Profiles of all formulae from the
corpus (i.e., their representation suitable for classification) are also computed
in this phase.

Exploitation phase. In this phase, the family of a given formula is guessed and
the strategy that showed the best results on that family during the training
phase is used for its solving.3 After the training, the system implementing the
methodology can be applied both to the formulae from the training corpus
and to some other formulae.

Several issues still need to be addressed, as discussed below.

The choice of candidate solving strategies. In our case candidate strate-
gies are defined as all (60 = 3 · 5 · 4) possible combinations of the given
policies. They are listed in Table 1. Apart from the policies that are sub-
ject to automatic selection, some important policies (e.g., forget and conflict
analysis) are fixed.4 We do not claim that some other policies could not give
better performance. Some of the considered policies are even expected to be
inferior. However, we are proposing a general methodology that can be used
with any input set of policies.

2 http://argo.matf.bg.ac.rs/software/
3 We also tested an alternative approach that does not use information on families.

In that approach, k (k ≥ 1) formulae that are most similar to the input formula are
detected. Then, a solving strategy that occurs most frequently among l (l ≥ 1) best
strategies for each detected formula is chosen. This alternative approach will not be
discussed in more details because it gave inferior results.

4 A MiniSAT-style forget policy [ES04] and 1UIP technique [ZMMM01] for conflict
analysis are used.

http://argo.matf.bg.ac.rs/software/

Instance-Based Selection of Policies for SAT Solvers 331

Table 1. Overview of policies used in our experiments

Variable selection VSrandom, VS
1.0, 1.0/0.95, freq

V SIDS , VS0.05
random◦ VS

1.0, 1.0/0.95, freq

V SIDS

Polarity selection PSpos, PSneg, PS0.5
random, PSneg

polarity caching, PSfreq

polarity caching

Restart policies Rno restart, R100,1.5
minisat, R512

luby , R100,1.5
picosat

The choice of corpus of formulae for training and evaluation. In our
experiments (both during the training and for testing), the corpus from the
SAT competition in 2002 was used. It consists of a large number of families of
formulae, with many families containing formulae of various difficulty. The
total number of formulae in this corpus is 1964, and we clustered them into
39 families, mostly just by following the directory structure. Since this cor-
pus was systematically solved in the training phase, it can be used both for
testing of hypotheses and for thorough analysis of the proposed methodol-
ogy. For testing of a generalization power of our methodology on a different
corpus, the SAT competition corpus from 2007 was used. Namely, out of 906
formulae in this corpus, only 12 of them also belong to the corpus from 2002.
In addition, the two corpora include significantly different families (although
overlapping exists). Since the SAT2007 corpus was used only for evalua-
tion of our resulting solving system, we do not consider its partitioning into
families.

The choice of relevant features of propositional formulae. In order to
measure the syntactic similarity of propositional formulae (which is nec-
essary for classification), the formulae were represented by using the first
33 features used in [XHHLB08]. These are features that can be calculated
in short time. They include the number of clauses c and variables v in the
input formula, their ratio c

v , fraction of binary, ternary, and Horn clauses,
node degree statistics for variable nodes in variable-clause graph like mean,
variation coefficient, minimum, maximum, and entropy, etc. The vectors of
these features are called the formula profiles or simply profiles.

The choice of methods for classification of propositional formulae. For
classification, the k-nearest neighbour algorithm was used. When given an
unknown instance, this algorithm selects the class that contains the most of
the k instances from the training corpus that are closest to the given one.
A number of distance functions between the profiles were used [TJK06]. For
instance:

d1(P ′,P ′′) =
√∑

i

(P ′
i − P ′′

i)2 d2(P ′,P ′′) =
∑

i

(
P ′

i −P ′′
i√|P ′

iP ′′
i)| + 1

)2

d3(P ′,P ′′) =
∑

i

|P ′
i − P ′′

i |√|P ′
iP ′′

i | + 1
d4(P ′,P ′′) =

∑
i

(
P ′

i − P ′′
i√|P ′

iP ′′
i | + 10

)2

where P ′ and P ′′ are instance profiles.

332 M. Nikolić, F. Marić, and P. Janičić

4 Experiments and Evaluation

Experiments described in this section test the hypotheses that our approach
relies on (given in Sect. 1), and also demonstrate a good overall quality of our
methodology.

Training Phase. During the training phase, the cutoff time for solving one for-
mula by one strategy was set to 600s. It would be interesting to consider higher
cutoff times as well, but this choice was made with regard to available compu-
tational resources. Since shuffling of clauses and variables of a formula can lead
to big differences in its solving time (up to an order of magnitude), the solving
times associated with the formulae were calculated in the following way. For each
formula, the original and one shuffled variant were solved. If both variants of the
formula were solved within the time limit, the arithmetic mean of their solving
times was associated to the formula. If either variant was not solved within the
cutoff time limit, the formula was considered to be unsolved. The SAT solver
was used on all the formulae from the extended corpus, for all 60 strategies.
The total number of calls to the SAT solver was 235680 (= 1964 · 60 · 2). The
experiments were conducted on an IBM Cluster 1350 cluster computer with 32
processors. The total processor time used was around 1010 days.

Along with solving the formulae, their profiles were computed. The average
profile computation time was 0.39s per formula.

4.1 Testing Hypotheses

Hypothesis (H1). The first hypothesis is that formulae from the same family
share syntactical properties that can be used for automated formula classifica-
tion. In the k-nearest neighbours method, values 1, 3, 5, 7 were used for k. The
best results were obtained for k = 1 with the distance function d3

5. The preci-
sion, a ratio between the number of correctly classified formulae and the total
number of formulae classified, was 98.5%. The arithmetic mean of precisions for
individual families6, was 89.4%. To avoid evaluating on the same data that was
used for training, both statistics were estimated using the leave-one-out proce-
dure. This procedure consists of removing formula from the corpus, computing
the relevant statistic on the rest of the corpus, and returning the formula into
the corpus. This is done for all formulae. The obtained values of the statistic
were averaged at the end to give the final estimate of the statistic on given data.

The results of the classification are outstanding (especially keeping in mind a
rather large number of classes — 39) and show that the first hypothesis of the
methodology is sound. Since the average profile computation time for a formula
is 0.39s and the classification time of a known profile is less than 0.01s, this
5 Therefore, in all experimental results in the rest of the paper, this distance function

will be assumed.
6 Precision alone is not reliable in cases when some families are much larger than the

others (which is the case with the SAT2002 corpus), so a high precision on large
classes can hide a low precision on small classes.

Instance-Based Selection of Policies for SAT Solvers 333

approach to classification is practically usable for our purposes and may have
applications in other domains too.

Hypothesis (H2). The second hypothesis of our methodology is that there is a
small number of strategies for each family of formulae that show better perfor-
mance on formulae belonging to that family then all other available strategies.
To check this hypothesis, for each strategy and for each family of formulae a
percentage of formulae for which that strategy was better then any other strat-
egy was calculated. The results are shown in a graphical form in Fig. 1. In the
left part of the figure, darker shades correspond to higher values, and lighter
to lower values. The highest value (i.e., percentage) in the table is 30, and the
lowest value is 0. In the right part of the figure, normalized entropies for families
are shown. For simplicity, the results are shown only for families with at least 10
formulae that were solved by at least one strategy. The figure shows that there
is no family with a dominantly best strategy. However, the presented matrix
is sparse and the average normalized entropy for all families is 0.39 — hence,
for each family there is a rather small set of good strategies and therefore, the
second hypothesis can be considered to be justified.

These results also reveal the quality of some strategies. For instance, 15 empty
columns correspond to strategies with VSrandom variable selection policy, which
suggests a poor performance of this policy.

Hypothesis (H3). The third hypothesis of our methodology is that the best
solving strategies for syntactically similar formulae are also similar. Syntacti-
cal similarity between formulae is already defined by the choice of profiles and
the distance function (d3) from Sect. 3. On the other hand, similarity between
strategies can be defined using the edit distance over strategies:

dc(s1s2s3, t1t2t3) =
3∑

i=1

c(si, ti)

where s1s2s3 and t1t2t3 are triples of policies that determine strategies and
c(si, ti) are non-negative numerical costs of switching from policy si to policy ti.

0 0.5 1

Fig. 1. The left part shows percentages of formulae from a family for which a strategy
is better than any other (columns correspond to strategies and rows correspond to
families). The right part shows normalized entropy values for families.

334 M. Nikolić, F. Marić, and P. Janičić

To analyze the correlation between similarity of formulae and similarity of
their corresponding best strategies, for each two formulae f1 and f2 from the cor-
pus, with best strategies c1 and c2 respectively, values log d3(f1, f2) and dc(c1, c2)
were calculated. Then, the Pearson correlation coefficient between these sets of
values was calculated. The costs in the function dc were manually tuned to
achieve a maximal correlation coefficient. This procedure was legitimate and it
is closely related to the following question: for which group of policies (restart,
variable selection, literal selection) optimal choices differ the least for syntacti-
cally similar formulae? Only formulae solved in more than 2s were included in
the calculation.7

The calculated correlation coefficient was 0.51 with the p-value less then 0.001.
This can be considered a moderate, but important correlation, keeping in mind
the small number of policies that were used in the experiments and the inher-
ent instability of the SAT solving process. Hence, we can consider the third
hypothesis to be justified.

Magnitudes of costs in the function dc, suggest that for syntactically similar
formulae, the optimal restarting policy varies the least (thus being in some sense
the strongest common characteristic of syntactically similar formulae) and the
polarity selection policy varies the most.

4.2 Exploitation Phase

Evaluation of Strategy Selection Method on the SAT2002 Corpus. For evaluation
purposes the proposed strategy selection method was compared to (i) the “best-
fixed” strategy selection method which always uses the best fixed candidate
strategy8, and to (ii) the “oracle” (idealized) strategy selection method which
uses the best candidate strategy for each specific formula. The first one is a fair
choice for the lower bound of required performance and the second one represents
the upper bound for performance because it gives the best possible performance
over the set of candidate strategies on the SAT2002 corpus.

As the main measures of the overall quality of a strategy selection method
the total number of formulae that it solved and its median solving time were
used. There are strong reasons to base the evaluation on median instead on
mean and total solving time. First, one cannot account for the censored data —
solving times over the cutoff limit. If one chooses not to include these data in
the calculation then the mean and total solving time show preference for solvers
that solve less formulae because even if a hard formula is solved its solving time
is typically near the cutoff limit, and thus raises the mean and the total solving
time. On the other hand, if at least half of the formulae were solved, the median
time can be calculated. Also, median time is known to be less sensitive to outliers.

To estimate the performance on the SAT2002 corpus, similarly as in the
leave-one-out procedure, the solving time of each formula was computed for the
7 Trivial formulae cannot discriminate between good and bad strategies. Also, vari-

ation of their solving time due to processor context switching is larger relative to
their solving time.

8 In our case the best strategy was (VS
1.0, 1.0/0.95, freq

V SIDS , PSneg

polarity caching, R100,1.5
minisat).

Instance-Based Selection of Policies for SAT Solvers 335

Table 2. Comparison of strategy selection methods on SAT2002 corpus

Method Number of solved Median solving
formulae time

“Best fixed” 1073 207.4s
Proposed 1135 92.6s
“Oracle” 1187 45.8s

0 200 400 600 800 1000 1200

100

200

300

400

500

600

Formula number

Time
"Best fixed" method
Proposed method
"Oracle"

Fig. 2. Sorted solving times for differ-
ent ways of choosing the strategy. Ordi-
nal numbers in the sequence of the sorted
solving times of the formulae are shown
on the X axis. Solving times are shown
on the Y axis.

0 5 10 15 20 25 30 35 40 45 50 55 60

10

20

30

40

50

60

70

80

90

100

Rank of strategy

Percentage
of formulae "Best fixed" method

Proposed method

Fig. 3. Cumulative distribution function
of ranks of chosen strategies for the “best
fixed” method and the proposed method.
Ranks of strategies are shown on the
X axis, while percentage of formulae for
which strategies of that or smaller rank
are chosen is shown on the Y axis.

strategy selected based on the results of the training phase, but with that for-
mula excluded from the corpus. Table 2 shows the results for the two referent
methods and for the one proposed. Important results were achieved, especially
keeping in mind a rapid growth of the sorted solving times of formulae for all
three methods, as shown in Fig. 2. The differences in the numbers of the solved
formulae for all three methods seem small, but would be much higher if numerous
easy formulae were not taken into account.

Given a strategy selection method, it is important to consider how often it
chooses best, good or bad strategies (especially when compared to some other
selection methods). For each formula, candidate strategies can be sorted in as-
cending order according to their corresponding solving times. Each strategy can
be given a rank according to its position in such sequence. A strategy with the
rank 1 is the most desirable for that specific formula. In Fig. 3 we present the cu-
mulative distribution function of the ranks of chosen strategies for the proposed
and for the “best fixed” method. The figure shows that the proposed method
chooses good strategies much more often than the “best fixed” method.

The histogram in Fig. 4 shows the number of formulae solved by the proposed
method in some percentage of a referent time, up to 200%. As a referent time
we use the solving time obtained by the “best fixed” method. Only formulae

336 M. Nikolić, F. Marić, and P. Janičić

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

2

4

6

8

10

12

14

16

18

20

22

Percentage of formulae

Fig. 4. Histogram of the number of formulae solved by the proposed method in some
percentage of the referent time. Percentage of the referent time is shown on the X axes,
while the number of formulae solved in that percentage of the referent time is shown
on the Y axis.

that were solved either way were considered. 48 formulae are solved in more
than 200% of the referent time. There are 74 formulae that were solved by the
proposed method but not by the “best fixed” method, but only 12 that were
solved by the “best fixed” method and not by the proposed method. It can be
observed that much more formulae were solved faster than slower, compared to
the “best fixed” method.

These results show that the main thesis of this work — that intelligent choos-
ing of the solver’s strategy based on the syntax of the input formula, can signif-
icantly improve efficiency of a SAT solver — is true.

Evaluation of ArgoSmArT system on SAT2007 corpus. Based on the method-
ology described above, we implemented a SAT solving system ArgoSmArT (on
top of the ArgoSAT solver).

For an additional evaluation of the proposed methodology, we used the
SAT2007 corpus and showed that performance improvement achieved on one
corpus is present on a different corpus too.

The formulae from the SAT2007 corpus are much harder then the ones from
the SAT2002 corpus and the median time cannot be calculated, since in cutoff
time of 600s less than a half of the formulae can be solved. Thus, we present 20-th
percentile of the solving times9. The results of the comparison of ArgoSmArT

to its base solver ArgoSAT are shown in Table 3 (ArgoSAT used the best
fixed strategy detected in the experiments on the SAT2002 corpus).

Notice that the performance improvement achieved on the SAT2002 corpus in
the number of solved formulae is also present on the SAT2007 corpus. The im-
provement in the solving time is also significant. As said above, these two corpora
share only 12 formulae, and only one of them was solved by the ArgoSmArT

9 20-th percentile of the solving times is the value that splits the sorted solving times
in two parts, the lower one having 20% of the total number of values.

Instance-Based Selection of Policies for SAT Solvers 337

Table 3. Results of comparison between ArgoSAT and ArgoSmArT on the SAT2007
corpus

System No. of solved 20-th percentile
formulae of solving time

ArgoSAT 219 311.6s
ArgoSmArT 239 249.5s

within 600s, so the improvement cannot be attributed to overlapping of the
training and the test set.

5 Related Work

Hypotheses like H2 and H3 are already discussed as a basis for instance-based
solving of the algorithm selection problem [SM08]. Algorithm selection for con-
straint satisfaction problems (CSP) based on performance prediction is described
in [LL98]. A reinforcement learning based approach to choose variable selection
policy for CSP, with only preliminary results is described in [XSS09]. In quan-
tified boolean formulae (QBF) solving, multinomial logistic regression was suc-
cessfully used for dynamic, online selection of variable selection policies[SM07].
Strategy selection for MiniSAT based on neural networks that gave limited
results is described in [Kib07].

Features used for classification in this paper are first described in [NBH+04]
for prediction of a solver’s running time and were later used in SATzilla system
[XHHLB08]. SATzilla is the system that uses linear regression predictions of
solver running times to select one of its component solvers for solving an input
formula. As reported in [XHHLB08] for the corpus SAT2007, evaluation on the
random category of SAT instances, demonstrated a significant improvement in
running time. Average running time for SATzilla system was around 90s, while
its best component solver average was 290s. On the crafted category, SATzilla

average was around 150s, compared to its best component solver average of 280s.
For the industrial category, this improvement was smaller, but still significant —
260s compared to 330s. In 27% of cases SATzilla chooses its best component
solver [XHHLB07].

While both SATzilla and ArgoSmArT adjust the solving process to the
input formula, there are important differences between these two approaches.
First, SATzilla is the system that chooses among its component solvers (7
solvers were used at the SAT competition 2007), and these solvers are used as
they are. On the other hand, our approach aims at boosting performance of
just a single, arbitrary, base solver by selecting strategies appropriate for an
input formula (in the current setup it chooses between 21 strategies that happen
to be the best for some of the families from the training corpus). Therefore
these two approaches can be considered complementary. The advantage of the
SATzilla approach, compared to the ArgoSmArT approach, is that it offers

338 M. Nikolić, F. Marić, and P. Janičić

an estimate of the running time. On the other hand, an important advantage of
ArgoSmArT is that it can detect a family that the input formula belongs to.

Stochastic optimization of SAT solver parameters is described in [HBHH07].
It could be used for finding better strategies within our approach.

6 Conclusions and Future Work

We proposed a methodology for instance-based selection of solving strategies
that can be applied to an arbitrary SAT solver which supports multiple solving
strategies. We showed that the family a formula belongs to can be automatically
recognized and that precision achieved was excellent. Also, we demonstrated that
for each family of formulae, among many possible strategies, just a small number
of strategies is appropriate for its solving. Along with significant correlation
between syntactical similarities of formulae and similarities of strategies most
appropriate for their solving, these conclusions form a firm basis for our strategy
selection methodology.

The methodology was evaluated on two representative corpora. As for the
overall performance, on the SAT2002 corpus a greater number of formulae was
solved and the median time dropped more than 50%. The performance im-
provement was also demonstrated on a corpus different from the one the system
was trained on. Overall, the results obtained are very good and show that the
methodology is practically applicable and that further research in this, still new
field, is feasible. We are planning to work on additional statistical analyzes of
gathered data in order to gain a deeper insight into the nature of our best
strategies and relationships between their component policies. We plan to fur-
ther improve our system by using the stochastic parameter optimization, which
would significantly decrease duration of the training phase. Also, we will try to
combine our approach with the SATzilla approach by training SATzilla to
choose between different strategies of a solver. While inspecting our data we came
across the incompatibility of the MiniSAT forgetting strategy we used with the
fast restarting strategies when forgetting quickly ceases. Impacts of these in-
compatibilities should be investigated and potentially better results achieved
by changing the forget strategy. Also, a deeper analysis of behaviour of best
strategies for k-SAT instances is planned.

Acknowledgements. We thank Mathematical Institute of Serbian Academy of
Sciences and Arts for providing us access to their cluster computer.

References

[Bie08] Biere, A.: PicoSAT Essentials. Journal on Satisfiability, Boolean Model-
ing, and Computation (2008)

[Coo71] Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: STOC
1971: Proceedings of the Third Annual ACM Symposium on Theory of
Computing. ACM Press, New York (1971)

Instance-Based Selection of Policies for SAT Solvers 339

[DLL62] Davis, M., Logemann, G., Loveland, D.: A Machine Program for
Theorem-Proving. Commun. ACM (1962)

[DP60] Davis, M., Putnam, H.: A Computing Procedure for Quantification The-
ory. J. ACM (1960)

[ES04] Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Theory and Ap-
plications of Satisfiability Testing (2004)

[GKSS07] Gomes, P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability Solvers.
In: Handbook of Knowledge Representation, Elsevier, Amsterdam (2007)

[HBHH07] Hutter, F., Babic, D., Hoos, H.H., Hu, A.J.: Boosting Verification by
Automatic Tuning of Decision Procedures. In: FMCAD 2007: Proceed-
ings of the Formal Methods in Computer Aided Design, IEEE Computer
Society Press, Los Alamitos (2007)

[KG07] Krstić, S., Goel, A.: Architecting solvers for SAT modulo theories:
Nelson-oppen with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007.
LNCS, vol. 4720, pp. 1–27. Springer, Heidelberg (2007)

[Kib07] Kibria, R.H.: Evolving a Neural Net-Based Decision and Search Heuristic
for DPLL SAT Solvers. In: IJCNN (2007)

[LL98] Lobjois, L., Lemaitre, M.: Branch and Bound Algorithm Selection by
Performance Prediction. In: AAAI, AAAI Press, Menlo Park (1998)

[LSZ93] Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas
algorithms. Information Processing Letters (1993)

[Mar08] Marić, F.: Formalization and Implementation of SAT Solvers. Journal
of Automated Reasoning (submitted, 2008)

[Mar09] Marić, F.: Flexible Implementation of SAT solvers. In: SAT 2009, (sub-
mitted, 2009)

[MMZ+01] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an Efficient SAT Solver. In: Proceedings of the 38th Design
Automation Conference, DAC 2001 (2001)

[NBH+04] Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.:
Understanding Random SAT: Beyond the Clauses-to-Variables Ratio.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer,
Heidelberg (2004)

[NOT06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: From an Abstract Davis-Putnam-Logemann-Loveland Proce-
dure to DPLL(T). J. of the ACM (2006)

[PD07] Pipatsrisawat, K., Darwiche, A.: A Lightweight Component Caching
Scheme for Satisfiability Solvers. In: Marques-Silva, J., Sakallah, K.A.
(eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg
(2007)

[SM07] Samulowitz, H., Memisevic, R.: Learning to Solve QBF. In: Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelligence, AAAI
Press, Menlo Park (2007)

[SM08] Smith-Miles, K.: Cross-Disciplinary Perspectives on Meta-Learning for
Algorithm Selection. ACM Comput. Surv. (2008)

[TJK06] Tomovic, A., Janicic, P., Keselj, V.: n-Gram-Based Classification and
Unsupervised Hierarchical Clustering of Genome Sequences. Computer
Methods and Programs in Biomedicine (2006)

[XHHLB07] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: The Design and Analysis
of an Algorithm Portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 712–727. Springer, Heidelberg (2007)

340 M. Nikolić, F. Marić, and P. Janičić

[XHHLB08] Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-
based Algorithm Selection for SAT. Journal of Artificial Intelligence Re-
search (2008)

[XSS09] Xu, Y., Stern, D., Samulowitz, H.: Learning Adaptation to Solve Con-
straint Satisfaction Problems. In: LION 3 (2009)

[ZMMM01] Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient Con-
flict Driven Learning in a Boolean Satisfiability Solver. In: International
Conference on Computer Aided Design (ICCAD) (2001)

Width-Based Restart Policies for
Clause-Learning Satisfiability Solvers

Knot Pipatsrisawat and Adnan Darwiche

Computer Science Department
University of California, Los Angeles, USA

{thammakn,darwiche}@cs.ucla.edu

Abstract. In this paper, we present a new class of restart policies, called
width-based policies, for modern clause-learning SAT solvers. The new
policies encourage the solvers to find refutation proofs with small widths
by determining restarting points based on the sizes of conflict clauses
learned rather than the number of conflicts experienced by the solvers.
We show that width-based restart policies can outperform traditional
restart policies on some special classes of SAT problems. We then pro-
pose different ways of adjusting the width parameter of the policies. Our
experiment on industrial problems shows that width-based policies are
competitive with the restart policy used by many state-of-the-art solvers.
Moreover, we find that the combination of these two types of restart poli-
cies yields improvements on many classes of problems.

1 Introduction

Restarting has become an essential component of modern SAT solvers since the
work of Gomes et al [1], which pointed out a problem of backtracking algorithms
on combinatorial problems. In the past, restart policies used by SAT solvers
were mostly static and were based on the number of conflicts experienced by the
solvers (e.g., [2,3,4,5]). The intuition behind these approaches is that conflicts
indicate bad assignments. So, if the solver experiences a lot of conflicts, it might
have made some bad assignments early on and restarting, together with a dy-
namic decision heuristic, may allow these assignments to be fixed. However, this
class of approaches does not take into account the actual search behavior of the
solvers and may yield a bad performance on even some easy problems.

Recently, some researchers tried to improve this idea further by studying
dynamic restart policies. For example, in [6], the notion of agility, which approx-
imates the diversity of the assignments recently explored by the solver, was used
to prevent the solver from restarting too frequently. In [7], the authors argued
that restarts should be triggered based on the number of conflicts experienced
under each search branch and proposed some restart policies based on this idea.

It is well-known that modern clause-learning SAT solvers can be viewed as
resolution engines, which produce refutation proofs on unsatisfiable problems [8].
From this perspective, the class of restart policies based on the number of con-
flicts can be viewed as a way of biasing the solvers to find short unsatisfiable
proofs for unsatisfiable problems.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 341–355, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

342 K. Pipatsrisawat and A. Darwiche

In this work, we utilize the notion of proof width [9], which can also be used
to measure the quality of resolution proofs, to control restarts in clause-learning
SAT solvers. In particular, we propose a new class of restart policies, called width-
based policies. According to these policies, the solvers maintain a width limit at
any moment and restart as soon as too many clauses of size greater than the limit
are learned. This class of policies simply tries to encourage the solvers to find a
refutation proof with a small width, which could also lead to a small proof. We
demonstrate how simple width-based restart policies with constant width limits
can significantly outperform policies used by state-of-the-art solvers on some
families of SAT problems. Then, we propose a general algorithm for adjusting
the width limits used in such policies. Finally, we evaluate several width-based
policies based on this algorithm on various classes of problems.

The rest of this paper is organized as follows. We review some basic notations
about resolution proofs and modern clause-learning SAT solvers in the next sec-
tion. In Section 3, we review existing restart policies used by leading SAT solvers
and describe width-based restart policies. In Section 4, we present the results
of our empirical studies on some special classes of problems, which demonstrate
the strengths of width-based policies. In Section 5, we describe a general algo-
rithm for adjusting the width limit in width-based policies. Then, we present
experimental results on industrial and crafted problems in Section 6. Finally, we
discuss some related work in Section 7 and conclude in Section 8.

2 Preliminaries

In this section, we discuss some basic notions that form the basis of our later
discussions. First, we review basic notations about resolution and resolution
proofs. Then, we briefly describe how modern clause-learning SAT solvers work
from a resolution perspective. Finally, we point out the relationship between our
work and an existing SAT algorithm based on proof width.

2.1 Resolution Proofs

A resolution between two clauses C1 = (x∨α) and C2 = (¬x∨β) is the derivation
of the clause C = (α∨β). In this case, C is called the resolvent of the resolution.
A resolution proof Π of clause Ck from CNF Δ is a sequence of clauses Π =
C1, C2, ..., Ck, where each clause Ci is either in Δ or is the resolvent of some
clauses preceding Ci. The size of Π is simply the number of clauses in it, while
its width is the size of the largest clause in it. In this work, we are mostly
interested in refutation proofs, which are resolution proofs of the empty clause
(i.e., false) from unsatisfiable CNFs. The width of an unsatisfiable CNF is simply
the smallest width of any of its refutation proofs.

2.2 Modern Clause-Learning SAT Solvers

A typical modern clause-learning SAT solver works by repeatedly making deci-
sions and using unit resolution to derive implications. Upon a conflict, the solver

Width-Based Restart Policies 343

derives a conflict clause to allow unit resolution to see an implication that was
missed earlier. Then, it backtracks, asserts the learned clause, and continues
making decisions. This process is repeated until either a solution is found or the
empty clause is derived. For a more detailed description see [10].

For example, consider the following CNF:

Δ = (¬a ∨ ¬b ∨ c), (¬a ∨ ¬c ∨ d), (¬a ∨ ¬c ∨ e), (¬a ∨ ¬d ∨ ¬e),
(¬a ∨ c ∨ d), (¬a ∨ c ∨ e), (a ∨ ¬b ∨ c), (a ∨ ¬b ∨ ¬c),
(a ∨ b ∨ ¬c), (a ∨ b ∨ e), (a ∨ b ∨ ¬f), (c ∨ ¬e ∨ f).

We can view the execution of a clause-learning SAT solver as a series of decision
making and clause learning. Table 1 shows the sequence of decisions made and
clauses learned by the solver in chronological order. In this example, we assume
that the solver makes decisions in alphabetical order and always sets decision
variables to true. Implications derived by unit resolution after each decision and
after each clause learning are also shown. Lastly, each step is associated with
a level, which is simply the number of decisions currently in effect. After the
first decision (a = true), no implication is derived. However, after setting b =
true, unit resolution will derive implications c, d, e and find that (¬a ∨ ¬d ∨ ¬e)
is falsified (indicated by false in the implication row). From this conflict, the
solver will learn (¬a∨¬c) and backtrack to level 1. Applying unit resolution on
this clause will result in implications ¬c, d, e and another conflict, from which
the solver learns (¬a) and backtracks to the top level (level 0). Asserting (¬a)
produces only one implication. The next decision is b = true, because a is already
set to false. The solver will encounter yet another conflict and derive (a ∨ ¬b).
Asserting this clause at the top level yields a conflict and (a) can be derived.
Since the solver has learned (¬a) and (a), the empty clause (false) can be derived
and the solver can now conclude that Δ is unsatisfiable.

Each conflict clause learned by the solver can be derived by resolving clauses
present in the knowledge base of the solvers at the time of the conflict. Hence,
when a clause-learning solver solves an unsatisfiable CNF, the conflict clauses
learned by the solver can be thought of as traces of the refutation proof produced
by the solver. A full refutation proof can be extracted from any run of clause-
learning SAT solvers (on an unsatisfiable CNF) if the solvers keep track of every
resolution performed during their executions [11].

Figure 1 shows the refutation proof of Δ produced by the solver in the above
example, demonstrating how the conflict clauses come together to form a proof
of the empty clause. The conflict clauses are enclosed in boxes in this figure.
Other clauses in the proof are either original clauses in Δ or are intermediate

Table 1. An execution trace of a typical modern clause-learning SAT solver

Decisions/learned clauses a b (¬a ∨ ¬c) (¬a) b (a ∨ ¬b) (a)
Implications - c, d, e, false ¬c, d, e, false ¬a c, false ¬c, e,¬f, false false

Levels 1 2 1 0 1 0 0

344 K. Pipatsrisawat and A. Darwiche

(¬a v ¬d v ¬e)

(¬a v ¬c v ¬d) (¬a v c v ¬d)

(¬a v ¬c v e)

 (¬a v ¬c)

(¬a v ¬c v d)

 (¬a)

(¬a v c v e)

(¬a v c)

(¬a v c v d)

false

(a v ¬b v c)

 (a v ¬b)

(a v ¬b v ¬c)

 (a)

(a v b v e)

(a v b v c v f)

(¬e v c v f)

(a v b v c)

(¬f v a v b)

(a v b)

(a v b v ¬c)

Fig. 1. A refutation proof generated by a modern SAT solver. Conflict clauses are
shown in boxes.

resolvents, which are not kept by the solver. The width of this refutation proof
is 4, because the longest clause, (a ∨ b ∨ c ∨ f), contains 4 literals.

2.3 A Width-Based Algorithm for SAT

Galil [12] proposed a SAT algorithm which runs in time exponential in the width
of the CNF formula. This algorithm, which was later reformulated in [13] and [9],
works by deriving all resolvents of size ≤ k, for increasing k. Since there are only
O(nk) clauses of size ≤ k, where n is the total number of variables, this algorithm
works well on formulas with bounded or small widths. Moreover, it was shown
in [9] that this algorithm runs in time that is at most quasi-polynomial in the
size of the smallest tree-like refutation proof (i.e., optimal DPLL).

Nevertheless, one drawback which limits the practicality of this approach is
the amount of memory it requires. Even though the space complexity of the
algorithm is only exponential in the width of the proof, in practice, this could
be a serious limiting factor–especially when compared to the clause-learning
descendants of DPLL, which perform resolution in a more directed way and
keep only a fraction of the resolvents in the knowledge base.

The restart policies that we propose in this work can be thought of as a way to
efficiently combine the benefits of both approaches. In other words, our approach
can be viewed as a way of using the low memory requirement of modern clause-
learning SAT algorithms to loosely imitate the above width-based algorithm.

3 Existing and Width-Based Restart Policies

3.1 Existing Restart Policies

In this section, we briefly review existing restart policies used by state-of-the-art
clause-learning SAT solvers. One common characteristic of these policies is that
they use the number of conflicts experienced by the solver to determine restarting
points. According to these policies, the solvers restart as soon as the number of
conflicts (since the last restart) exceeds the current threshold. Since a typical
clause-learning SAT solver learns one clause per conflict, this class of restart

Width-Based Restart Policies 345

policies can be viewed as a way of roughly enforcing a limit on the size of the
refutation proof currently considered by the solver. For this reason, we will refer
to this class of policies as size-based restart policies. These policies only differ in
the way the size threshold is updated at each restart. In the following discussion,
we group these policies based on their methods of updating the threshold.

1. Arithmetic series: the threshold is increased by a constant amount (≥ 0) at
every restart. This type of policy was used (with different parameters) in
zChaff (2004) [14], Berkmin [4], Siege [10], and Eureka [15].

2. Geometric series: the threshold is multiplied by a constant factor (> 1) at
every restart. This type of policy is used in MiniSat 1.14 and 2.0 [3].

3. Inner-outer geometric series: the solver maintains two thresholds (inner and
outer). The inner threshold is used to trigger restarts and is multiplied by
a constant factor (> 1) at every restart. However, if the value of the inner
threshold exceeds the value of the outer threshold, the inner threshold is
reset back to its minimum value, while the outer threshold is multiplied by
a constant factor (> 1). PicoSAT [16] uses this policy.

4. Luby’s series [5]: the threshold is updated according to the following se-
quence: x, x, 2x, x, x, 2x, 4x, x, x, 2x, x, x, 2x, 4x, 8x, ..., where x is a constant
called Luby’s unit (see [5] for more details). TiniSAT [17] , Rsat [18], and
the latest version of MiniSat [19] use this restart policy.

Clearly, one drawback of these policies is that they are insensitive to the actual
search behavior of the solver. Dynamic policies leverage on additional informa-
tion generated during the execution of the solver to improve performance. In [6],
the diversity of partial assignments current explored by the solver is used to cre-
ate another layer of control, which helps prevent the solvers from restarting too
frequently on some problems. In [7], the number of conflicts experienced below
each search branch is used to determine when to restart.

3.2 Width-Based Restart Policy

Our approach to restart is based on a different model, which does not rely on
the number of conflicts experienced by the solvers. Rather, we pay attention to
the sizes of conflict clauses learned by the solver. If the CNF in question has a
short refutation proof, the well-known result in [9] states that the formula must
also have a refutation proof with a small width. If a formula has a proof with
width k, then we know we can certainly find such a proof in time O(nk). Thus,
enforcing a limit on proof width allows us to bound not just the size of the proof
found, but also the amount of work needed to find such a proof.

In a width-based restart policy, the solver maintains a width limit W at any
given moment. Any conflict clause whose length is greater than the current value
of W is called a violating clause. In the most general form, the solver restarts
as soon as it derives N or more violating clauses since the last time it restarted.
For example, if W = 10 and N = 3, the solver will restart once at least 3 clauses

346 K. Pipatsrisawat and A. Darwiche

of length 11 or greater are derived.1 Note that violating clauses are not deleted
by the solver immediately, but are treated normally just like non-violating ones.
During the execution of the solver, the value of W may be kept constant or
changed based on some criteria. This choice does not affect the completeness of
clause-learning solvers as long as a complete clause-deleting policy is employed.
Note also that, the absence of conflict clauses of size > W does not guarantee
that the width of the refutation proof generated by the solver will be ≤ W .
For instance, consider again the refutation proof in Figure 1. Even though every
conflict clause in this proof has length at most 2, the width of this proof is
actually 4. In general, the clause-learning algorithm may generate some long
intermediate clauses, which do not get learned by the solver. These clauses are
not taken into account in our approach.

4 Potential Benefits of Width-Based Policies

In this section, we demonstrate the potential benefits of width-based restart poli-
cies by comparing them against size-based policies on interesting SAT problems
with relatively small widths. If the width k of an unsatisfiable CNF is given,
one natural restart policy is to restart as soon as a conflict clause of size > k
is learned. To demonstrate the benefits of this approach, we will show that a
width-based policy with an appropriate width limit can significantly outperform
size-based policies used by state-of-the-art solvers. All experiments discussed in
this section were performed on a computer with a 1.83GHz CPU and 1.5GB
RAM. We set the timeout limit to 2000 seconds. We used Rsat [18] (without the
preprocessor) in the following experiments.

In the first experiment, we used the unsatisfiable grid pebbling formulas with
two variables per node as described in [8]. All formulas have a very small constant
width (4). Nevertheless, this family was shown to be difficult for tree-like resolu-
tion [20]. Evaluated in this experiment are size-based policies (using arithmetic,
geometric, and Luby’s series), and a width-based restart policy. An increment of
700 was used for the arithmetic series (like zChaff 2004), a factor of 1.5 was used
for the geometric series (like MiniSAT 1.14), and the Luby’s unit was set to 512
(like TiniSAT, Rsat) for the Luby’s series. The width limit of the width-based
policy was set to 4. Table 2 reports the running time of Rsat with the considered
policies on this set of problems. The first row shows the grid sizes of the grid
pebbling formulas (i.e., the numbers of layers in [8]). Each remaining row shows
the running time of a restart policy on these problems.

Figure 2 (a) is a plot of the running time of all restart policies as functions of
grid size. According to the result, the geometric size-based policy has the worst
performance as it begins to timeout when the grid size is only about 60. The
policy based on Luby’s series starts to timeout when the grid size gets larger than
220. The policy based on arithmetic series performs quite well on these problems
1 We found that restarting only when the solver is not in a conflict state simplifies the

implementation. In this approach, it is possible for the number of violating clauses
to be (usually slightly) greater than N when the solver actually restarts.

Width-Based Restart Policies 347

Table 2. Running time (in seconds) of Rsat with different restart policies on unsatis-
fiable grid pebbling formulas of different sizes

Grid size 51 52 53 151 152 153 201 202 203 238 239 240
Arith. 1 1 3 124 111 81 193 225 262 410 477 T/O
Geo. 21 210 379 T/O T/O T/O T/O T/O T/O T/O T/O T/O
Luby 3 3 4 200 87 202 569 903 640 T/O T/O T/O
Width 1 1 1 36 27 21 85 93 108 244 414 257

0

500

1000

1500

2000

2500

 0 50 100 150 200 250

Arithmetic
Geometric

Luby
Width

0.0e0

2.0e6

4.0e6

6.0e6

8.0e6

1.0e7

1.2e7

 0 50 100 150 200 250

Arithmetic
Geometric

Luby
Width

Fig. 2. Performance of Rsat with different restart policies on grid pebbling problems. In
both plots, the x-axes represents the grid size. The y-axis of left (right) plot represents
the running time (number of conflicts).

and could solve the problems up to grid size equal to 239, because it has relatively
short restart periods, which are very effective for preventing the solver from
getting stuck deriving long, useless clauses. In any case, the width-based policy
has the best performance on these problems–up to an order of magnitude faster
than the Luby size-based policy and several times faster than the arithmetic
size-based policy. The superiority of the width-based policy becomes even more
apparent when the solvers are compared in terms of number of conflicts needed
to solve the problems (Figure 2 (b)). In our experiment (result not shown here),
Rsat with the width-based restart policy could solve the problem with grid size
equal 500 in 1,373 seconds.

We also experimented with the satisfiable version of the grid pebbling formulas
(as described in [8]). Again, the width-based policy dominates the size-based
policies both in terms of running time and conflicts. For instance, at grid size
equal 260, the arithmetic size-based policy took 421 seconds, the Luby size-based
policy took 922 seconds, while the width-based policy only took 134 seconds (the
geometric size-based timed out for grid size ≥ 150).

Figure 3 shows similar results for the GTn family of unsatisfiable problems [8].
A GTn formula is a formula over ∼ n2 variables whose width is linear in n. In
this case, we use the same set of size-based policies and set the width limit of
the width-based policy to be 20. The result shows that the geometric size-based
policy timed out for n ≥ 21, the arithmetic size-based policy timed out after

348 K. Pipatsrisawat and A. Darwiche

0

500

1000

1500

2000

 10 15 20 25 30

Arithmetic
Geometric

Luby
Width

0.0e0

5.0e5

1.0e6

1.5e6

2.0e6

2.5e6

3.0e6

3.5e6

4.0e6

4.5e6

5.0e6

 10 15 20 25 30

Arithmetic
Geometric

Luby
Width

Fig. 3. (Left) running time of Rsat with different policies on unsatisfiable GTn formulas
as functions of n. (Right) number of conflicts as functions of n.

n = 24, and Luby size-based policy timed out after n = 25. The width-based
policy was able to solve the problem with n = 30 in about 480 seconds. To give a
sense of the hardness of these problems, consider the problem gt-ordering-sat-gt-
040.sat05-1297.reshuffled-07 from the crafted category of the SAT competition
2007. In the competition, this problem was not solved by MiniSat, Rsat, TiniSat,
or PicoSat under a 5000-second timeout. However, it could be solved with a
width-based policy with the width limit set to 20 in 40 seconds.

We found that some industrial problems can also be solved without requiring
any long clauses to be learned. For example, consider the dspam dump fam-
ily from the SAT competition 2007. These problems were generated by CA-
LYSTO [21,22] from a software verification task (NULL-pointer dereferencing)
on a spam filter. Based on our experiment, these unsatisfiable problems could be
easily solved without any long conflict clauses, yet clause-learning solvers may
derive many long clauses. Table 3 shows the information collected from running
Rsat, which uses Luby size-based policy, on selected problems from this fam-
ily.2 The first column shows the names of the problems. The second and third
columns reports the number of variables and clauses. The forth column reports
the size of the largest conflict clause of each refutation proof found by Rsat. The
remaining columns show the running time, the size of the largest conflict clause
learned, and the percentage of conflict clauses longer than the ones needed by
the proof, respectively. Rsat with Luby size-based restart policy took over 2,200
seconds to solve all four problems. Moreover, most of the clauses learned by
the solver were unnecessarily long. Nevertheless, these problems become easy
if a width-based restart policy (with an appropriate width limit) is used. Rsat
using a width-based restart policy with width limit set to 6 can solve all these
problems within 25 seconds (combined).

The results of these experiments show that a width-based restart policy (with
the right width limit) can dramatically reduce the running time of the solver
on some problems. However, in practice, the width of the problem is not known

2 We disabled conflict clause deletion in order to collect some statistics.

Width-Based Restart Policies 349

Table 3. Information obtained from the executions of Rsat (using Luby size-based
restart policy) on dspam dump problems from SAT competition 2007

Problem vars clauses largest clause running largest % long
in proof time (s) clause size clauses

dspam dump vc1080 118,298 372,017 4 205 1,147 86.5
dspam dump vc1081 118,426 372,337 3 1,716 2,533 96.6
dspam dump vc1103 280,972 921,211 5 195 1,408 85.9
dspam dump vc1104 280,972 921,147 3 169 1,229 89.1

beforehand and width computation is believed to be very hard [23].3 Therefore,
we need to adjust the width limit dynamically to obtain good performance.

5 Adjusting Width Limits

In this section, we describe a general algorithm for updating the width limit and
propose several methods for updating the width limit. In a general width-based
policy, at any given time, the solver maintains one width limit W and restarts
as soon as it derives N or more conflict clauses with size greater than W . We
consider the following methods for updating W .

1. Arithmetic series: after R restarts at the current limit, W is incremented by
a constant C1.

2. Geometric series: after R restarts at the current limit, W is multiplied by a
constant C2.

3. Inner-outer geometric series: after R restarts at the current limit, W is mul-
tiplied by a constant factor C2. However, as soon as the value of W reaches
V , it is reset to its initial value and V is multiplied by a constant factor C3.

4. Luby series: after R restarts at the current limit, W is updated to be the
next number in the Luby series with unit U .

The values of N, R, U, V, C1, C2, C3 are parameters that need to be fine-tuned for
these policies. Nevertheless, finding optimal values for these parameters is not the
main focus of this work. In subsequent experiments, we set W = 15 (initially),
N = 10, R = 1, U = 6, V = 20 (initially), C1 = 1, C2 = 1.005, C3 = 1.05. One
can certainly envision policies which adjust these parameters dynamically.

In addition to these pure width-based restart policies, we also consider their
combinations with a size-based restart policy. In this case, the proofs explored
by the solvers are loosely bounded both in terms of size and width. For this
combination, we used the size-based restart policy based on Luby’s series, which
has been found to yield good performance on industrial problems [5]. In such a
hybrid policy, the width limit and the size threshold are enforced independently.
That is, the solver restarts based on clause size as described above and, more-
over, if the number of conflicts experienced by the solver (since the last time
it restarted based on number of conflicts) reaches the size threshold, the solver
also restarts (without updating the width limit).
3 The problem of computing width was conjectured to be EXPTIME-complete.

350 K. Pipatsrisawat and A. Darwiche

6 Experimental Results

In this section, we evaluate the performance of the restart policies discussed
in the previous section. All experiments were performed on a computer with a
3.8GHz CPU and 4GB of RAM. The timeout was set to 30 minutes per problem.
The use of proprocessor was diabled in all experiments in order to obtain the
impacts of the restart policies on pure clause-learning solvers.

In the first experiment, we compared the proposed width-based restart policies
against the Luby size-based policy (unit=512) on 175 industrial problems from
the last SAT competition.4 Table 4 reports the number of problems solved by
each policy. According to the table, (pure) width-based policies seem to consis-
tently result in worse performance on satisfiable problems. This could be due to
the significant increase in the number of restarts introduced by the width-based
policies. More frequent restarts cause the solver to remake many decisions and
spending more time in unit propagation.5 For unsatisfiable problems, the results
are more comparable. The geometric width-based policy actually solved 5 more
unsatisfiable problems than the size-based policy. Overall, the performance of the
geometric width-based policy is about the same as that of the Luby size-based
policy. This result demonstrates that width-based policies, could be competitive
to a size-based policy. Note that the parameters used in our experiment were
not fine-tuned. The table also shows that the hybrid policies consistently outper-
formed the Luby size-based policy (except the one with inner-outer width-based
policy, which performed poorly on satisfiable problems). The combination of
the geometric width-based policy and the Luby size-based policy, in particular,
appears to be the best version on this set of problems.

Table 4. Number of industrial problems from the SAT competition 2007 solved by
different restart policies

Policy Solved problems
Total SAT UNSAT

Size-based (Luby,unit=512) 107 49 58
Width-based (Arith.) 100 46 54
Width-based (Geo.) 108 45 63
Width-based (Luby) 103 47 56
Width-based (In-out.) 90 36 54
Width-based (Arith.)+size-based (Luby) 110 48 62
Width-based (Geo.)+size-based (Luby) 115 52 63
Width-based (Luby)+size-based (Luby) 114 54 60
Width-based (In-out.)+size-based (Luby) 106 43 63

4 Obtained from http://www.satcompetition.org.
5 For example, whenever the width-based policy (geo.) solves the problem with the

number of conflicts comparable (within 5%) to that of the size-based policy (Luby),
it makes 42% more decisions on average.

Width-Based Restart Policies 351

Table 5. Number of problems solved by different versions of Rsat

Family Total Solved problems
Rsat Rsat-ag Rsat-lc Rsat-ws-1 Rsat-ws-2 Rsat-ws-3

SAT comp. 07 175 107 109 114 115 114 110
SAT-Race’06 100 86 87 84 90 88 84
dlx-iq-unsat-1.0 32 11 12 7 18 14 17
fvp-unsat-1.0,2.0,3.0 32 26 26 26 26 26 26
liveness-sat-1.0 10 5 5 6 7 6 6
liveness-unsat-2.0 9 3 3 3 3 3 3
pipe-ooo-1.0,1.1 29 12 12 11 13 12 13
pipe-unsat-1.0,1.1 27 14 14 13 16 16 16
vliw-unsat-2.0,4.0 13 0 0 0 2 0 0
Total 427 264 268 264 290 279 275

Next, we compare the best policies from the previous experiment against other
dynamic restart policies in order to establish a context for the benefit of width-
based restart policies. This time, we also consider problems from SAT-Race 2006
and some hardware verification problems.6 Considered in this experiment are the
following versions of Rsat.

1. Rsat 2.00 (SAT competition 2007 version) [Rsat]. This version of Rsat uses a
size-based restart policy based on Luby’s series with Luby’s unit set to 512.

2. Rsat with agility-based restart policy [Rsat-ag]. Restart is disabled if the
agility of the solver is greater than 0.25 (as described in [6]).

3. Rsat with local restarts [Rsat-lc]. A restart is triggered only when the number
of conflicts under some search branch exceeds the threshold (as described
in [7]). The Luby’s series (unit=512) is used to update the threshold.

4. Rsat with hybrid restart policies [Rsat-ws-1,2,3]. The Luby size-based policy
is combined with (1) the geometric width-based, (2) the Luby width-based,
and (3) the arithmetic width-based policies.

Table 5 shows the number of problems solved by each solver. Overall, the agility-
based restart policy allows Rsat to solve a few more problems, while local restarts
yield about the same performance as the original Rsat. These techniques seem to
be most effective on problems from the SAT competition and SAT-Race’06.7 The
hybrid restart policies have the best overall performance. Rsat-ws-1,2,3 solved 26,
15, 11 more problems than Rsat, respectively. Clearly, the geometric width-based
and Luby size-based combination (Rsat-ws-1) yielded the best performance. Note
that, in a hybrid policy, number of restarts triggered by width violations usually
dominates size-based restarts.8 Moreover, using width-based restart policies also

6 The hardware verification problems were obtained from http://www.miroslav-
velev.com/sat benchmarks.html

7 We did not optimize the parameters used in these techniques.
8 E.g., on SAT’07 problems, 78% of restarts are width-based, while on SAT-Race’06

problems, 73% of restarts are width-based (based on the execution of Rsat-ws-1).

352 K. Pipatsrisawat and A. Darwiche

0

200

400

600

800

1000

1200

1400

1600

1800

 40 50 60 70 80 90 100

Rsat
Rsat-ag
Rsat-lc

Rsat-ws-1

0

200

400

600

800

1000

1200

1400

1600

1800

 60 80 100 120 140 160 180

Rsat
Rsat-ag
Rsat-lc

Rsat-ws-1

Fig. 4. Running time profiles of Rsat with different restart policies on (left) satisfi-
able and (right) unsatisfiable problems. Both x-axes represent the number of solved
problems, while the y-axes represent running time in seconds.

tends to reduce the sizes of clauses learned. On the SAT competition 2007 prob-
lems, the sizes of clauses learned by Rsat-ws-1 is only 76% of those learned by Rsat
on average. On SAT-Race’06 problems, this percentage is 81%.

Figure 4 shows the running time profiles of different versions of Rsat on the
sets of problems in Table 5. For clarity, we show only one profile of Rsat with a
hybrid policy, Rsat-ws-1. The left plot shows the profiles on satisfiable problems,
while the right plot shows the profiles on unsatisfiable problems. The left plot
indicates that Rsat-ws-1 actually performed slightly worse than Rsat on satisfi-
able problems, even though it ended up solving 2 more problems. The right plot,
however, shows that Rsat-ws-1 is the clear winner on unsatisfiable problems.
Rsat-ag and Rsat-lc appear to have comparable profiles to Rsat.

Our experiment on crafted problems from the SAT competition 2007 also
confirms the benefit of the hybrid policy. We compared the performance of Rsat
against the best hybrid policy, Rsat-ws-1. Figure 5 shows the running time pro-
files of these solvers on satisfiable (left) and unsatisfiable (right) problems. Even
though Rsat-ws-1 solved fewer satisfiable problems, it took less time on most
of the ones it solved. Moreover, Rsat-ws-1 solved 7 more unsatisfiable problems
and took less time on those that both versions could solve.

We also tested the hybrid restart policy on MiniSat 2.0 (no preprocessor).
By default, MiniSat uses a geometric size-based restart policy. We added the
geometric width-based policy on top of this to obtain a hybrid policy (geometric
width-based + geometric size-based). Our experiment on the industrial prob-
lems of SAT competition 2007 showed that MiniSat solved 109 problems, while
MiniSat with the hybrid restart policy solved 114 problems.9

9 Here, we used progress saving [24] in both versions of MiniSat as this technique
seems to allow a frequent restart policy to realize its full potential. Without
progress saving, both versions solved fewer problems and the improvement is less
significant.

Width-Based Restart Policies 353

0

200

400

600

800

1000

1200

1400

1600

1800

 0 2 4 6 8 10 12 14 16

Rsat
Rsat-ws-1

0

200

400

600

800

1000

1200

1400

1600

1800

 0 5 10 15 20 25 30 35

Rsat
Rsat-ws-1

Fig. 5. Running time profiles of Rsat with different restart policies on (left) satisfiable
and (right) unsatisfiable problems from the crafted category of SAT’07 competition

7 Related Work

The concept of space-bounded learning has long been studied in CSP [25,26] and
SAT [27]. This approach restricts the algorithm to learning only those constraints
with a limited number of variables. The restart policies we propose still allows
long clauses to be learned, but use restarts to discourage their learning.

A technique in SAT, which tries to achieve similar goals, is known as deci-
sion stack shrinking, which was introduced by JeruSAT [28] and later used by
zChaff2004 [14]. This technique tries to force the solver to discover a conflict at
a lower level, thus deriving shorter a conflict clause. The technique is invoked
whenever a long conflict clause is learned. Upon learning such a clause, the solver
examines the decision levels of the literals in the clause and backtracks to the
lowest level that is sufficiently smaller than the next higher level of any literal
in the conflict clause. The solver then makes assignments in order to falsify the
conflict clause (and run into the same conflict). Since some of the variables unas-
signed by the backtrack may not get assigned by the time the new conflict is
discovered, the size of the decision stack is likely going to reduce, leading to
potentially a shorter conflict clause. Our approach utilizes restarts to direct the
solvers away from undesirable parts of the search space, thus inducing shorter
conflict clauses. Decision stack shrinking, however, aims at improving the quality
of conflict clause learned from a given (or similar) conflict.

8 Conclusions

We presented a new class of restart policies, called width-based restart policies,
for clause-learning SAT solvers. These policies trigger a restart whenever the
number of long clauses learned by the solver is sufficiently large. They can be
thought of as ways to encourage the solvers to discover refutation proofs with
small widths (instead of small sizes as done in traditional policies). Our study
shows that width-based restart policies can be orders of magnitude faster than
policies based on number of conflicts on special classes of problems. We then

354 K. Pipatsrisawat and A. Darwiche

propose a general algorithm for adjusting the width limits of width-based poli-
cies. Our experiment on industrial problems showed that pure width-based poli-
cies are competitive to the policy used by state-of-the-art solvers. Moreover, we
show that width-based policies, when combined with a size-based policy, can
lead to significant improvements on industrial and crafted problems.

References

1. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Principles and Practice of Constraint Programming, pp. 121–135 (1997)

2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient sat solver. In: Proc. of DAC 2001, pp. 530–535 (2001)

3. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. In: DATE 2002,
pp. 142–149 (2002)

5. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. of
IJCAI 2007, pp. 2318–2323 (2007)

6. Biere, A.: Adaptive restart strategies for conflict driven sat solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer,
Heidelberg (2008)

7. Ryvchin, V., Strichman, O.: Local restarts. In: Kleine Büning, H., Zhao, X. (eds.)
SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008)

8. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. JAIR 22, 319–351 (2004)

9. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
J. ACM 48(2), 149–169 (2001)

10. Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis,
Simon Fraser University (2004)

11. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based
checker: Practical implementations and other applications. In: DATE 2003, pp.
880–885 (2003)

12. Galil, Z.: On resolution with clauses of bounded size. SIAM Journal on Comput-
ing 6(3), 444–459 (1977)

13. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Annual
IEEE Symposium on Foundations of Computer Science, p. 274 (1996)

14. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient sat solver. In: Proc. of
SAT 2005, pp. 360–375 (2005)

15. Nadel, A., Gordon, M., Patti, A., Hanna, Z.: Eureka-2006 sat solver Solver descrip-
tion for SAT-Race 2006 (2006)

16. Biere, A.: Picosat essentials. JSAT, 75–97 (2008)
17. Huang, J.: A case for simple SAT solvers. In: Bessière, C. (ed.) CP 2007. LNCS,

vol. 4741, pp. 839–846. Springer, Heidelberg (2007)
18. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Technical Re-

port D–153, Automated Reasoning Group, Computer Science Department, UCLA
(2007)

19. Sörensson, N., Eén, N.: Minisat 2.1 and minisat++ 1.0–sat race 2008 editions
(2008)

Width-Based Restart Policies 355

20. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-
like and general resolution. Combinatorica 24(4), 585–603 (2004)

21. Babić, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 371–383.
Springer, Heidelberg (2007)

22. Babić, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking. In:
Proc. of ICSE 2008, pp. 211–220 (2008)

23. Hertel, A., Urquhart, A.: Comments on eccc report tr06-133: The resolution width
problem is exptime-complete. Technical Report TR09-003, ECCC (2009)

24. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

25. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition. Artif. Intell. 41(3), 273–312 (1990)

26. Bayardo, R.J., Miranker, D.P.: A complexity analysis of space-bounded learning
algorithms for the constraint satisfaction problem. In: AAAI 1996, pp. 298–304
(1996)

27. Bayardo, R.J.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proc. of AAAI 1997, Providence, Rhode Island, pp. 203–208
(1997)

28. Nadel, A.: Backtrack search algorithms for propositional logic satisfiability: Review
and innovations. Master’s thesis, The Hebrew University (2002)

Problem-Sensitive Restart Heuristics
for the DPLL Procedure�

Carsten Sinz and Markus Iser

Research Group “Verification meets Algorithm Engineering”
Institute for Theoretical Computer Science

University of Karlsruhe, Germany
{sinz,iser}@ira.uka.de

Abstract. Search restarts have shown great potential in speeding up SAT solvers
based on the DPLL procedure. However, most restart policies presented so far do
not take the problem structure into account. In this paper we present several new
problem-sensitive restart heuristics. They all observe different search parameters
like conflict level or backtrack level over time and, based on their development,
decide whether to perform a restart or not. We also present a Java tool to visualize
these search parameters on a given SAT instance over time in order to analyze
existing heuristics and develop new one.

1 Introduction

Randomization and restart policies have been incorporated into SAT solvers since the
mid 90s [1,2]. In a search procedure, a restart cancels the search for a solution after a
certain number of steps, and then starts over again performing another solving attempt.
To prevent the solver from generating the same search tree repeatedly, in early work on
restarts randomization has been added to the decision heuristics of the DPLL procedure,
thus modifying the search tree slightly on each run. With the advent of conflict driven
clause learning (CDCL) SAT solvers [3,4], new ways to modify the search tree (to pre-
vent repeated searches without progress) emerged, as these solvers dynamically com-
pute variable activities, which can be taken into consideration after a restart: variables
with highest activity (i.e. those occurring most frequently in recently learned clauses)
are branched on first. Using learned clauses also allows to carry over results from previ-
ously cancelled attempts, as learned clauses need not be dropped after a restart. So the
time spent in a failed search is not wasted. The theoretical groundwork for restarts was
laid down in the seminal paper by Gomes et al. [6], where they explained the success
of restarts by heavy-tailed distributions, which occur in randomized searches.

Current DPLL SAT solvers implement different restart heuristics or restart schemes.
MiniSat 2.0, the latest publicly available version of the well-known MiniSat [7] solver,
implements the RGR strategy (randomization and geometric restarts) proposed by
Walsh [8], i.e. the n-th restart is performed k · αn−1 steps after the previous restart
(where k = 100 and α = 1.5 by default, and steps refer to the number of conflicts).

� This work was supported in part by the “Concept for the Future” of Karlsruhe Institute of
Technology within the framework of the German Excellence Initiative.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 356–362, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Problem-Sensitive Restart Heuristics for the DPLL Procedure 357

Other, more recent restart schemes are based on Luby sequences [9] or inner/outer
restarts.

However, until recently, restart schemes for DPLL solvers have been static, in the
sense that they are the same for each SAT instance, do not change during search, and
thus are not problem-sensitive.1 To the best of our knowledge, the first attempt to bring
dynamic restart policies to DPLL solvers was made by Biere [12]. His adaptive restart
strategy ANRFA (average number of recently flipped assignments) tries to estimate the
agilityof the on-going search process by taking the number of variable flips (determined
with respect to the memorized phases) into account. A high number of flips indicates
a high agility, which is considered good, whereas a low number of flips might indicate
that the search process got stuck and a restart might be advantageous.

In this paper we present a set of new problem-sensitive restart policies. They are
all based on observing a problem parameter during search and, depending on the de-
velopment of this parameter, decide whether or not to perform a restart. We have also
developed a Java tool for monitoring and visualizing such search parameters over time
for a given SAT instance.

2 Problem-Sensitive Restart Heuristics

Accurately estimating the progress of a search process is a non-trivial task. However,
some search parameters of a CDCL search—like length of learned clauses, search
depth, or backtrack level—give hints whether the search is progressing fast or slowly.
Based on these parameters, we have developed a set of new restart policies, which we
will now describe in more detail. All our strategies are based on observing search pa-
rameters over time. Typically, we average over the last few parameter values that have
occurred at a certain state during the search (in order to obtain more stable results).
To put the most recent values of a search parameter into relation with “typical” values
for the problem instance, we employ a short-term as well as a long-term memory for
each parameter (storing the last L resp. S values for each). The short-term memory
allows computing the current (smoothed) average value of the parameter, whereas the
long-term memory is used to determine an average value over a longer period of time
to compute, in a sense, a “typical” value for the parameter on this instance.

Such averaging over last (temporal) values is also know as moving average (or run-
ning average) in statistics. To compute the moving average of a parameter x, we use an
array to store its L + 1 most recent values xn−L, . . . , xn. The same array can be used
for both the long-term and short-term moving averages. It is used as a cyclic buffer with
a pointer to the most recent entry. New entries move the pointer forward and overwrite
the oldest value. Computing the moving average (An) over the last L values can be
done efficiently (without summing over the whole array) in an iterative manner:

An = An−1 +
xn − xn−L

L
.

During the first L steps we just fill the array with values and, starting with step L+1,
we use it to compute average values and to decide whether to restart or not. We record

1 For local search solvers, problem-sensitive restart policies have been known for some time
[10,11].

358 C. Sinz and M. Iser

parameter values at each leaf of the search tree (i.e. on each conflict), such that the
notion of step coincides with the number of conflicts. Parameters we found suitable for
monitoring over time include

Conflict level: the height of the search tree when a conflict occurred.
Backtrack level: the height of the search tree to which the solver jumped back.
Length of learned clauses: the length of the currently learned clause.
Trail size: The total number of assigned variables when a conflict occurred (including

variables assigned by unit propagation).

To determine whether we should perform a restart, we selected one of these parameters
and tracked its evolution over time. It is possible to combine several parameters in a
restart heuristic, but we have not made any experiments in this direction so far. We
describe our restart heuristics exemplarily for the parameter conflict level.

Ratio of long term vs. short term average (R): This heuristic assumes that (relative-
ly) low conflict levels are preferable to high conflict levels. The intuition is that
uniformly low conflict levels span up a smaller search space. Moreover, the conflict
clauses produced on lower conflict levels are potentially shorter and thus prune a
larger fraction of the search space. Low conflict levels are determined in relation to
the long-term average value: as soon as the short-term average conflict level (cS)
is much higher (cS/cL ≥ fT) than the long-term average conflict level (cL), we
perform a restart. Here fT is a fixed threshold factor.

Avoidance of plateaus (P): When during search the same (high) conflict level occurs
over and over again, this could indicate that the search got stuck. To avoid such a
situation, we count the number S of minimal values of the conflict level over the
last L steps. If the minimum occurs more often than a fixed number of times (given
as a fraction of L) and the minimum is larger than a threshold value (cT,min), a
restart is performed.

Preference for high variance (V): Similar to the last heuristic, and related to Biere’s
notion of agility, the intuition behind this restart scheme is to avoid situations
where the conflict level is mainly constant (low variance). We compute the vari-
ance (resp. the standard deviation) over the last L conflict levels by σ2 = 1

L−1 ·∑n
i=n−L+1(xi−μ)2, where μ = 1

L ·
∑n

i=n−L+1 xi is the mean value of the last L
conflict levels. If σ2 is smaller than a threshold value cT,σ , a restart is performed.

3 Experimental Evaluation

We have implemented the restart heuristics mentioned in the previous section on top of
MiniSat 2.0.2 The implementation required only minor modifications, including addi-
tion of the array storing recent versions of a search parameter.3

2 http://minisat.se/downloads/minisat2-070721.zip
3 In CDCL solvers, restarts are often closely tied to the deletion of learned clauses (“garbage

collection”). In our extensions of MiniSat we left the clause deletion intervals unchanged. Also
note that only either the restart intervals or the clause deletion intervals have to be gradually
increased to ascertain completeness of the search procedure.

http://minisat.se/downloads/minisat2-070721.zip

Problem-Sensitive Restart Heuristics for the DPLL Procedure 359

We have made experiments with all search parameters mentioned in the previous
section, but will report only on results based on the backtrack level as, without further
tuning of the heuristics’ threshold values, further investigation of this parameter seemed
most promising. For heuristic R, we have used a threshold factor of fT = 3.5, and
values L = 30 and S = 7 for long and short term ranges. For restart scheme P, we
have determined best parameters for L and S by a sequence of experiments (using the
manolios benchmark set), which resulted in L = 24 and S = 4 as optimal values.
The restart threshold cT,min was set to 100 · V

C , where V and C denote the number of
variables resp. clauses of the instance. For heuristic V , we have set L to 30 and cT,σ to
1.32 = 1.69. We compared our heuristics with both the original MiniSat 2.0 version4

(denoted by M in the tables) and a restart heuristics that makes (frequent) restarts after
a constant number of 200 steps (denoted by C in the tables).

Table 1. Comparison of problem-sensitive restart strategies

benchmark # instances # solved sat # solved unsat # solved total
family sat unsat total P R V C M P R V C M P R V C M
manolios 0 210 210 – – – – – 166 145 161 158 151 166 145 161 158 151
velev-pipe 0 27 27 – – – – – 16 6 15 16 8 16 6 15 16 8
sat-race-2006 43 57 100 26 29 28 22 36 50 33 48 45 39 76 62 76 67 75
satcomp-07 indust. 68 107 175 36 37 44 40 37 63 51 55 57 53 99 88 99 97 90
satcomp-07 crafted ≥34 ≥95 201 16 17 9 9 22 36 48 15 25 46 52 65 24 34 68
sat-race-2008 48 52 100 24 29 25 22 33 37 27 31 41 30 61 56 56 63 63

Table 1 shows the results of different restart heuristics on a number of benchmark
families. All experiments were performed under SuSE Linux on machines equipped
with an Intel Xeon E5430 processor running at 2.66 GHz and 16 GB of RAM. We set
a time limit of 900 seconds per instance and solver for all of our experiments. The test
set manolios is a parameterized benchmark suite consisting of hard pipelined-machine-
verification problems. The velev-pipe family includes Velev’s pipe-unsat-1.0 and pipe-
unsat-1.1 problem sets.5 The other benchmarks stem from previous SAT Competitions
(2007, industrial and crafted category) and SAT-Races (2006 and 2008).6 Table 1 shows
the number of instances contained in each benchmark package, split into satisfiable and
unsatisfiable instances. The following columns report on the number of instances that
could be solved using the respective heuristics (P, R, V, C, or M), first only counting
satisfiable, then unsatisfiable, and finally all instances. Best results for a benchmark set
are indicated in boldface.

Whereas on satisfiable instances our restart heuristics did not perform better then the
plain Minisat 2.0 RGR heuristic (in general even worse, with the exception of heuristic
V on the SAT Competition 2007 instances, industrial category), on unsatisfiable in-
stances our heuristics were able to outperform the static Minisat scheme. Notable is a

4 As mentioned in the introduction, MiniSat 2.0 implements a RGR strategy, where times be-
tween restarts grows exponentially over time.

5 Available from http://www.miroslav-velev.com/sat_benchmarks.html
6 The SAT-Race 2006 and 2008 instances have been processed with the SatELite preprocessor.

http://www.miroslav-velev.com/sat_benchmarks.html

360 C. Sinz and M. Iser

100% increase in the number of solved instances for our heuristic P on the velev-pipe
benchmark suite, as well as an increase of almost 10% on the manolios benchmarks.
Considering both satisfiable and unsatisfiable instances, heuristic P still outperforms
MiniSat in the number of solved instances in general.

On selected instances from the manolios and velev-pipe benchmark families, our
restart scheme P considerably outperforms MiniSat, with speed-ups up to a factor of
approximately 167. On average, heuristic P shows a speed-up of more than 38% over
MiniSat 2.0 on these benchmark families. Noteworthy is also the achieved reduction in
search space, measured in number of conflicts, which lies between 42.6% and 99.2%. In
only one case (out of all 42 instances of the manolios benchmark that could be solved
by both heuristics in between 2 and 15 minutes) the number of conflicts was higher
for our strategy P. A reduction in number of conflicts is also typically connected with
shorter proofs of unsatisfiability. This is especially important for algorithms that further
process proofs generated by SAT solvers, like interpolation-based methods [13]. It is
also striking that the number of restarts made by heuristic P is much higher than the
number of restarts made by MiniSat.

We also made experiments comparing heuristic P with the latest, non-public version
of MiniSat (2.1), as used in SAT-Race 2008. MiniSat 2.1 adds a whole set of improve-
ments to version 2.0, including phase memorization, special handling for binary and
blocked clauses, an improved memory manager, and a Luby restart strategy. MiniSat
2.1 has shown to perform considerably better than MiniSat 2.0 in SAT-Race 2008 (81
vs. 59 solved instances). This even holds when MiniSat 2.0 is extended with our new
problem-sensitive restart strategy P. However, on the manolios benchmark family, our
heuristic performs better, even without the other improvements implemented in MiniSat
2.1. Considering only unsatisfiable instances, strategy P is also better on the SAT-Race
2006 instances.

We performed further experiments with a modified version of MiniSat 2.0 imple-
menting the same Luby strategy as in MiniSat 2.1. However, on all benchmark sets,
we obtained better results with our strategy P. In another set of experiments we added
phase memorization to MiniSat 2.0 with Luby strategy and heuristics P. Again, the
results with strategy P were better (in number of solved instances), with the only ex-
ception of the velev benchmark set, where the Luby strategy was able to solve one
instance more.

RViewer: A Tool for Monitoring Search Parameters. To experiment with different
restart heuristics and to visualize search parameters over time we have implemented
a Java tool called RViewer7. RViewer reads a dump file generated by a CDCL SAT
solver, which contains the sequence of search parameters over time, one for each con-
flict. RViewer visualizes the development of the contained parameters during search. It
allows to select one or multiple search parameters for display, computation of the mov-
ing average, zooming in and out, as well as moving through the dump file. RViewer was
of great help in setting up restart policy P and to detect the phenomenon of plateaus for
the backtrack level.

7 RViewer is available for download at http://baldur.iti.uka.de/software/
RViewer

http://baldur.iti.uka.de/software/
RViewer

Problem-Sensitive Restart Heuristics for the DPLL Procedure 361

4 Related Work and Conclusion

Huang [14] experimentally compares different restart policies, including a whole set of
different RGR strategies, and a strategy based on Luby sequences. All policies exam-
ined in his survey are static ones, but he suggests that “substantial performance gains
may be possible by using appropriate dynamic restart policies.” Kautz et al. [15] give
theoretical and empirical results on context-sensitive restart policies for randomized
search procedures. The notion of context-sensitivity they use differs from our notion of
problem-sensitivity in that their strategies are selected per instance, whereas our strate-
gies are “more dynamic” in that they can also vary during a solver’s run. Related to our
work is that of Haim and Walsh [16], where they estimate the runtime of a SAT solver
based on problem parameters observed during the initial phase of the search.

We have presented different dynamic, problem-sensitive restart heuristics that we
implemented on top of MiniSat 2.0. We obtained good results with our policy P, which
is based on avoidance of plateaus. The phenomenon of plateaus, which we observed
in almost all SAT instances using our tool RViewer, also seems to be new. Directions
for future research include further refinement of dynamic restart policies, especially by
employing a combination of several problem parameters. It would also be interesting
to find a theoretical underpinning why unsatisfiable instances seem to profit most from
dynamic restart policies. A larger set of different restart policies might also be of help
in implementing parallel SAT solvers based on competition parallelism.

References

1. Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfiability algo-
rithms to scheduling problems. In: AAAI (1994)

2. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world SAT in-
stances. In: AAAI/IAAI (1997)

3. Marques Silva, J.P., Sakallah, K.A.: GRASP – a new search algorithm for satisfiability. In:
ICCAD (1996)

4. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: DAC (2001)

5. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability
solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–
299. Springer, Heidelberg (2007)

6. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomiza-
tion. In: AAAI/IAAI (1998)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Walsh, T.: Search in a small world. In: IJCAI (1996)
9. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Pro-

cess. Lett. 47(4) (1993)
10. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: AAAI/IAAI (2002)
11. Wei, W., Li, C.M., Zhang, H.: A switching criterion for intensification and diversification in

local search for SAT. J. Satisfiability, Boolean Modeling and Comput. 4, 219–237 (2008)
12. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H.,

Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)

362 C. Sinz and M. Iser

13. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

14. Huang, J.: The effect of restarts on the efficiency of clause learning. In: IJCAI (2007)
15. Kautz, H.A., Horvitz, E., Ruan, Y., Gomes, C.P., Selman, B.: Dynamic restart policies. In:

AAAI/IAAI (2002)
16. Haim, S., Walsh, T.: Online estimation of SAT solving runtime. In: Kleine Büning, H., Zhao,

X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 133–138. Springer, Heidelberg (2008)

(1,2)-QSAT: A Good Candidate for
Understanding Phase Transitions Mechanisms

Nadia Creignou1, Hervé Daudé2, Uwe Egly3, and Raphaël Rossignol4

1 Université d’Aix-Marseille II, Laboratoire d’Informatique Fondamentale,
Luminy, F-13288 Marseille, France

2 Université d’Aix-Marseille I, Laboratoire d’Analyse, Topologie et Probabilités,
Chateau Gombert F-13453 Marseille, France

3 Institut für Informationsysteme 184/3, Technische Universität Wien
Favoritenstrasse 9-11, A-1040 Wien, Austria

4 Université de Paris 11, Département de Mathématiques, Bâtiment 425,
F-91405 Orsay Cedex, France

Abstract. We explore random Boolean quantified CNF formulas of the
form ∀X∃Y ϕ(X, Y), where X has m = 	α log n
 variables (α > 0), Y
has n variables and each clause in ϕ has one literal from X and two
from Y . These (1,2)-QCNF-formulas, which can be seen as quantified ex-
tended 2-CNF formulas, were introduced in SAT’08. It was proved that
the threshold phenomenon associated to the satisfiability of such random
formulas, (1,2)-QSAT, is controlled by the ratio c between the number of
clauses and the number n of existential variables. In this paper, we prove
that the threshold is sharp. For any value of α, we give the exact location
of the associated critical ratio, a(α). At this ratio, our study highlights
the sudden emergence of unsatisfiable formulas with a very specific shape.
From the experimental point of view (1,2)-QSAT is challenging. Indeed,
while for small values of m the critical ratio can be observed experimen-
tally, it is not anymore the case for bigger values of m. For small values of
m we give precise numerical estimates of the probability of satisfiability
for critical (1,2)-QCNF-formulas. These experiments give evidence that
the asymptotical regime is difficult to reach and provide some indica-
tion on the behavior of random instances. Moreover, experiments show
that the computational effort, which is increasing with m, is maximized
within the phase transition.

1 Introduction

In the last decades, numerous experimental studies have provided strong evi-
dence that the difficulty to solve large instances of k-SAT is tightly linked to
a phase transition in the probability that a random instance is satisfiable. As
the clauses-to-variables ratio increases, the vast majority of formulas abruptly
stop being satisfiable at a critical threshold point. The instances that are hard to
solve seem to be located around this critical point. Determining the nature of the
phase transition, locating it, determining a precise scaling window and gaining
a better understanding of the structure of the space of solutions turn out to be

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 363–376, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

364 N. Creignou et al.

challenging tasks, which have aroused a lot of interest and fructuous collabora-
tions among different disciplines, namely combinatorics, probability, computer
science and statistical physics.

Most of the studies have focused on 3-SAT. However, neither the value, nor
even the existence of a critical ratio has been established. In order to gain in-
sight into this hard problem, several researchers turned to studying a tractable
variant: 2-SAT. Chvàtal and Reed [CR92], Goerdt [Goe96] and Fernandez de la
Vega [dlV92] independently proved that 2-SAT exhibits a sharp transition. They
proved that the critical clauses-to-variables ratio is equal to 1. More recently
Bollobàs et al. [BBC+01] determined the scaling window for random 2-SAT.
The reason why so many results could be obtained is the existence of a simple
combinatorial characterization of unsatisfiable 2-CNF formulas [APT79]. On the
one hand, this characterization provides an efficient (linear time) procedure to
decide the satisfiability of 2-CNF formulas, thus allowing simulations at a very
high scale. On the other hand, this characterization enables a direct combinato-
rial attack of random 2-SAT that focuses on the emergence of the most likely un-
satisfiable formulas in the evolution of the random formula (see [CR92, Goe96]).
In comparison, the difficulty to understand the phase transition for 3-SAT can
be explained by the fact that 3-SAT is NP-complete (thus making simulations
hard to run), and lacks a simple characterization of unsatisfiable formulas.

We propose to investigate an intermediate satisfiability problem, (1,2)-QSAT,
which was first introduced by the authors in [CDER08]. This problem concerns
a certain subclass of quantified Boolean formulas. More precisely, we are inter-
ested in (1,2)-QCNF-formulas, namely in formulas of the type ∀X∃Y ϕ(X, Y),
where X has m variables, Y has n variables, and ϕ(X, Y) is a conjunction of
3-clauses, each of which containing exactly one universal literal and two existen-
tial ones. This problem has several interesting features, which make it a good
candidate to understand the mechanisms driving phase transitions. The key is
that a (1,2)-QCNF-formula can be seen as an extended 2-CNF-formula. Indeed,
the semantical elimination of the ∀-quantifiers yields the conjunction of 2m exis-
tential 2-CNF formulas. As a first consequence this gives an upper bound for the
complexity of deciding the truth value of such a formula, O(2m|ϕ|). This means
that this problem can be solved in polynomial time when m is of logarithmic
order compared to n (nevertheless, it is worth noticing that, in full generality,
this problem is coNP-complete, see [FKB90]). Thus, the additional parameter of
this problem, m, makes the complexity of the problem scalable to a polynomial
of any degree. Moreover, since it is a quantified satisfiability problem we can
take advantage of competitive QBF solvers for running experiments. As a sec-
ond consequence, it inherits the good combinatorial properties of 2-SAT: there
is a simple combinatorial characterization of unsatisfiable (1,2)-QCNF-formulas.
So, we have here a problem much harder to solve than 2-SAT, and for which we
can nevertheless hope to combine successfully practical and theoretical studies
on random instances.

In [CDER08], we proved that the phase transition for (1,2)-QSAT is controlled
by the clauses-to-existential-variables ratio c. We showed that when m is small

(1,2)-QSAT: A Good Candidate 365

enough, there is a critical ratio equal to 2, when m is big enough there is a
critical ratio equal to 1. When m is of logarithmic order compared to n, m =
�α ln n� (α > 0), there is an intermediate regime. At this intermediate regime,
we obtained lower and upper bounds for the critical ratio, whenever it exists,
thus showing that it is strictly between 1 and 2. It was left open the nature of
the transition and the exact value of the critical ratio, whenever it exists. It was
also observed that, while the simulations had turned out to be very helpful to
guide the theoretical investigation, they failed in giving a precise location of the
threshold.

In this paper, we get a new upper bound for the threshold, which matches
the lower bound given in [CDER08]. Thus, we prove that the threshold is sharp.
For any value of α, we give the exact location of the associated critical ratio,
a(α). Moreover, we prove the emergence of very typical minimal unsatisfiable
subformulas when entering the unsatisfiability phase.

From the experimental side, we continue our simulations. We run experiments
with a much higher precision than before. While in [CDER08] we used 1000
formulas per data point, we use here 100,000 formulas. As a result, the numerical
estimates that are obtained have a much lower uncertainty. We report extended
simulations for small values of m. They allow to give reliable numerical estimates
of the probability of satisfiability of critical (1,2)-QCNF-formulas (i.e., formulas
having exactly a(α)·n clauses). They indicate that this probability decreases to 0
as m increases. Also, they give strong evidence that, for m ≥ 5, the experiments
are not run at a scale high enough in order to deliver results which also hold
for very large problem instances. Finally they provide evidence that at least
when m ≤ 4 and n is big enough, a random (1,2)-QCNF-formula behaves as the
conjunction of 2m independent random 2-CNF-formulas. Moreover, we measure
the computational effort which is needed to decide the truth value of random
instances. We show that these instances exhibit a now well-known “easy-hard-
easy” pattern.

2 Theoretical Results

2.1 Definition of the Problem and Main Result

A literal is a propositional variable or its negation. The atom of a literal l is
the variable p if l is p or p. Literals are said to be strictly distinct when their
corresponding atoms are pairwise different. A clause is a finite disjunction of
literals. A formula is in conjunctive normal form (CNF) if it is a conjunction of
clauses. A formula is in k-CNF, if any clause consists of exactly k literals. Here
we are interested in formulas of the form

F = ∀X∃Y ϕ(X, Y)

where X = {x1, . . . , xm}, and Y = {y1, . . . , yn}, and ϕ(X, Y) is a 3-CNF formula
with exactly one universal and two existential literals in each clause. We will call
such formulas (1,2)-QCNFs.

366 N. Creignou et al.

A truth assignment for the existential (resp. universal) variables, Y (resp. X)
is a Boolean function I : Y → {0, 1} (resp. X → {0, 1}), which can be extended
to literals by I(x) = 1− I(x). A (1,2)-QCNF formula is true (or satisfiable) if for
every assignment to the variables X , there exists an assignment to the variables
Y such that ϕ is true.

We consider formulas built on m universal variables and n existential vari-
ables. Thus we have

N = m

(
n

2

)
23 = 4mn(n− 1)

different clauses at hand. We may establish our result in considering random
formulas obtained by taking each one of the N possible clauses independently
from the others with probability p ∈]0, 1[. Let c > 0, it is well known (see
for instance [JLR00, Sections 1.4 and 1.5]) that the threshold obtained in this
model translates to the model alluded to in the introduction – in which L =
�cn� distinct clauses are picked uniformly at random among all the N possible
choices – when p = L

4mn(n−1) . Thus, from now on we shall always suppose that
p = c

4mn , and we continue to denote by Pm,c(n) the probability that a random
formula in this model is satisfiable. We are interested in studying lim

n→+∞ Pm,c(n)

as a function of the parameters m and c. Any value of c such that Pm,c(n) → 1
(resp. such that Pm,c(n)→ 0) gives a lower (resp. upper) bound for the threshold
effect associated to the phase transition.

In [CDER08], it has been established that when m is small enough, actually

when m ≤ log n

log 2
, there is a sharp threshold at c = 2. On the other side, when

m is large enough, actually when m 0 ln n, there is a sharp threshold at c = 1.

Moreover, when m = �α ln n� with α >
1

ln 2
, an upper bound a(α) and a lower

bound b(α) for the location of the transition have been given: a(α) being the

solution of the equation α · H(c) = 1, where H(c) = ln(c) +
(2
c
− 1

)
ln(2 − c)

and b(α) being strictly greater than a(α). Thus the following proposition was
established.

Proposition 1. [CDER08]

For any
1

ln 2
< α, if c < a(α), then P�α ln n�,c −−−−−→

n→+∞ 1

Here, in developing further the techniques used by Chvàtal and Reed [CR92]
and Goerdt [Goe96], we prove the following.

Theorem 1. For any
1

ln 2
< α, if c > a(α), then P�α ln n�,c −−−−−→

n→+∞ 0.

Thus, we can plot in Fig. 1 the evolution of the critical ratio as a function of α.
Our analysis is based on new results about specific minimal unsatisfiable for-

mulas, called pure snakes.

(1,2)-QSAT: A Good Candidate 367

1

2

1/ ln 2 α5 10 15

a(α)

Fig. 1. Evolution of the critical ratio values

2.2 Pure Snakes

The notion of purity over sets of universal literals is useful to characterize the
truth value of (1,2)-QCNF-formulas. A (multi-)set or sequence of literals is pure
if it does not contain both a variable x and its negation x.

Definition 1. A pure snake of length s + 1 ≥ 4, with s + 1 = 2t, is a set of
s + 1 clauses C0, . . . , Cs which have the following structure: there are s strictly
distinct existential literals w1, . . . , ws, and a pure sequence of s + 1 universal
literals v0, . . . , vs such that, for every 0 ≤ r ≤ s, Cr = (vr ∨ wr ∨ wr+1) with
w0 = ws+1 = wt.

Every (1,2)-QCNF-formula that contains a pure snake is false. Let Xs,k be the
number of pure snakes of length s + 1 with k universal variables in a random
(1,2)-QCNF formula. We obtain

Em,c(Xs,k) = ps+1 · (n)s · 2s ·
(

m

k

)
· 2k · S(s + 1, k) · k! (1)

with S(s + 1, k) denoting the Stirling number of the second kind and (n)s =
n(n− 1) · · · (n− s + 1).

When m = �α ln n�, it appears that long snakes of length 0 ln n have asymp-
totically no chance to appear when α > 1/ ln 2 and c ∈]1, 2[. Therefore, in our
study we can focus on snakes of length proportional to ln n. Hence, let us set
β = k/ lnn and γ = (s + 1)/ lnn.

The following proposition shows that the behavior of the average number of
snakes is governed by a continuous function of several real variables. It can be
derived in using the following well-known estimates for binomial coefficients and
precise results on Stirling numbers of the second kind. If 1 ≤ b ≤ a, then√

1
a

(a

b

)b

·
(

a

a− b

)a−b

≤
(

a

b

)
≤
(a

b

)b

·
(

a

a− b

)a−b

. (2)

368 N. Creignou et al.

Moreover, as shown in [Tem93], there exist K > 0 and K ′ > 0 such that, for
1 ≤ b ≤ a,

K

√
b

a

(
ex0 − 1

x0

)b (a

e

)a

xb−a
0 ≤ b!S(a, b) ≤ K ′√b

(
ex0 − 1

x0

)b (a

e

)a

xb−a
0 (3)

where x0 > 0 is a function of b/a defined implicitly for b < a by 1− e−x0 = b
ax0,

and for a = b by x0 = 0. The conventions are that 00 = 1 and e0−1
0 = 1.

Proposition 2. There exist A > 0 and B > 0 such that for any c > 0, for every
positive integers n, m, s and k such that k ≤ min(m, s + 1), it holds that

A (n)s

√
k

ns
√

m(s + 1)
n

g m
ln n

,c(
k

ln n , s+1
ln n) ≤ Em,c(Xs,k) ≤ B

√
m n

g m
ln n

,c(
k

ln n , s+1
ln n) (4)

where for any 1 < c < 2 and α > 0, gα,c is a continuous function on Dα =
{(β, γ) | 0 < β ≤ α and β ≤ γ} with a strict and global maximum on Dα, given
by its unique stationary point in Dα. More precisely

max
Dα

gα,c(β, γ) = gα,c(β̂(α, c), γ̂(α, c)) = αH(c)− 1 (5)

with β̂ =
2α(c− 1)

c
, γ̂ =

−2α ln(2− c)
c

, H(c) = ln c +
(2

c
− 1

)
ln(2− c).

This result points out for each α the values of k and s that contribute the most
to the average number.

2.3 Dominant Pure Snakes at the Phase Transition

The proof of our main result (Theorem 1) is obtained in considering pure snakes
of a very specific shape together with a general exponential inequality. More
precisely, let s+1 = �γ̂ ln n� = 2t and k = �β̂ ln n�. From [JLR00, Theorem 2.18
ii)], we know that

Pm,c(n) ≤ Pr(Xs,k = 0) ≤ exp

(
− Em,c(Xs,k)

1 +
∑s

i=1 Nm,s,k(i)ps+1−i

)
(6)

where Nm,s,k(i) denotes the number of pure snakes B of length s + 1 with k
universal variables that share exactly i clauses with a given pure snake A0 of
length s + 1 with k universal variables. Starting from Proposition 2, we can
derive some tight bounds for the quantities appearing in the right-hand side of
(6). Thus, it can be shown that, when α ln 2 > 1 and for any c > a(α), we have
Pm,c(n) = o(1). More precisely we also gain new and interesting information
about the structure of random unsatisfiable formulas at the threshold ratio, as
stated in the following proposition.

(1,2)-QSAT: A Good Candidate 369

Proposition 3. Let us denote by As,k the event that there exists a pure snake
of length s + 1 with k universal variables. For any α > 1/ ln 2, define:

β(α) =
2α(a(α) − 1)

a(α)
,

γ(α) = −2α ln(2− a(α))/a(α) and

I(α) = [(γ(α) − εn) ln n, (γ(α) + εn) ln n]× [(β(α) − εn) ln n, (β(α) + εn) ln n] .

Then, for any α > 1/ ln 2, there are suitable positive constants C1 and C2,
such that for δn = C1

ln ln n
ln n , εn = C2

√
δn, m = �α ln n� and cn = a(α) + δn:

Pm,cn

⎛⎝ ⋃
(s,k)∈I(α)c

As,k

⎞⎠ = o(1)

and
Pm,cn

(
A�γ(α) ln n�,�β(α) ln n�

)
= 1− o(1) .

Thus we prove that when we enter the phase of unsatisfiability, pure snakes
suddenly appear with a very specific structure, namely their number of universal
variables is β(α) ln n, and their number of existential variables (and hence, their
length) is γ(α) ln n, where β(α) and γ(α) are positive functions of α.

3 Experimental Results

3.1 The Threshold for Small Values of m

Before we start discussing the empirical results, let us first describe how we
ran the experiments. All experiments were conducted according to the same
scheme, which is described with the help of Fig. 2. One experiment consisted
in generating at random (in drawing uniformly and independently) (1,2)-QCNF
formulas over given values of m universal variables and n existential variables,
with a clauses-to-existential-variables ratio indicated by the points. Since we are
interested in the behavior around the crossing point of the curves, we draw them
up to a ratio between 2.1 and 2.2, regardless whether the curves have reached
the x-axis or not. In Fig. 2, we considered successively m = 1, 2, 3 and 4 and
n = 2, 000, 4, 000, 8, 000, 16, 000 and 32, 000. For each of the chosen values
of ratio, a sample of 100, 000 formulas was studied using the QBF solver QuBE
[GNT01], thus computing the truth value of each formula. The proportion of true
(or satisfiable) instances for each considered value of ratio was then plotted.

Let us recall that for constant values of m, the critical ratio is equal to 2. This
can be observed in Fig. 2. Indeed, in each of these figures, the curves sharpen
as n increases and pivot about a single point, thus indicating a critical ratio at
c = 2. Already when m = 4, the crossing point seems to occur before 2.

In Fig. 3, one can observe that the crossing point is moving to the left as
m increases. For m = 7, one can see successive crossings of pairs of curves

370 N. Creignou et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.7 1.8 1.9 2 2.1 2.2 2.3

S
A

T

L/n

2Q-1-2-1-2000
2Q-1-2-1-4000
2Q-1-2-1-8000

2Q-1-2-1-16000
2Q-1-2-1-32000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.7 1.8 1.9 2 2.1 2.2 2.3

S
A

T

L/n

2Q-1-2-2-2000
2Q-1-2-2-4000
2Q-1-2-2-8000

2Q-1-2-2-16000
2Q-1-2-2-32000
2Q-1-2-2-64000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.7 1.8 1.9 2 2.1 2.2 2.3

S
A

T

L/n

2Q-1-2-3-2000
2Q-1-2-3-4000
2Q-1-2-3-8000

2Q-1-2-3-16000
2Q-1-2-3-32000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.7 1.8 1.9 2 2.1 2.2 2.3

S
A

T

L/n

2Q-1-2-4-2000
2Q-1-2-4-4000
2Q-1-2-4-8000

2Q-1-2-4-16000
2Q-1-2-4-32000

Fig. 2. The satisfiability curves for m = 1, m = 2, m = 3 and m = 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

S
A

T

L/n

2Q-1-2-5-2000
2Q-1-2-5-4000
2Q-1-2-5-8000

2Q-1-2-5-16000
2Q-1-2-5-32000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

S
A

T

L/n

2Q-1-2-7-2000
2Q-1-2-7-4000
2Q-1-2-7-8000

2Q-1-2-7-16000
2Q-1-2-7-32000

Fig. 3. The satisfiability curves for m = 5 and m = 7

for increasing values of n, thus making a rough estimate of the critical ratio
difficult. Observe moreover that the probability of satisfiability exactly at the
critical ratio, i.e., when the number of clauses is 2n, seems to vanish to 0 as
m increases. So, these observations suggest that the critical value is difficult to
estimate from the experiments as m increases for two reasons: the probability of
satisfiability for critical formulas vanishes to 0, while the asymptotical regime is
reached at a higher scale, as m increases.

(1,2)-QSAT: A Good Candidate 371

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5

S
A

T

m

fraction of SAT at 2 for n= 2000
fraction of SAT at 2 for n= 4000
fraction of SAT at 2 for n= 8000

fraction of SAT at 2 for n=16000
fraction of SAT at 2 for n=32000
fraction of SAT at 2 for n=64000

Fig. 4. The fraction of satisfiable formulas at c = 2 for different n and m

This will be confirmed by numerical estimates of the probability of satisfia-
bility for critical formulas as discussed in the next section.

3.2 Numerical Estimates of the Probability of Satisfiability for
Critical (1,2)-QCNF Formulas

Numerical estimates of the probability of satisfiability of a critical random 2-CNF
formula, i.e., a random 2-CNF formulawhose number of clauses is equal to the num-
ber of variables, were given in [DM06]. We give here similar estimates for
(1,2)-QSAT for small values of m. For m = 1 up to 5, we provide precise results
based on numerical estimates of the probability of satisfiability for (1,2)-QCNF-
formulas with n = 2, 000 up to 32, 000 existential variables, with a critical ratio
equal to 2. Recall that, for each size n, we drew at random 100,000 instances and we
determined if they were satisfiable or not. Results from the simulations are plotted
in Fig. 4. It is worth noticing that the high number of instances we used for each
data point is needed in order to get reliable statistics as discussed below.

These estimates indicate that for m fixed and small, the probability of satisfi-
ability of a random critical (1,2)-QCNF-formula is converging to a positive value
as n tends to infinity and that this value decreases as m increases. Moreover,
observe that, for a fixed m, this probability decreases as n increases. For m =1,
this probability of satisfiability seems to have reached a fixed point (at m = 1
the five data points are very close to each other). On the contrary, for m = 5
the probability does still significantly decrease when n is increased and has not
reached a fixed point. This gives evidence that, for m = 5, we have not yet
entered the asymptotical regime.

372 N. Creignou et al.

Table 1.

m n p̂0,m(n) p̂1(n, m) Îm,n fit
1 8000 0.84723 0.84379] -0.01203,0.00515 [y
1 16000 0.84217 0.83879] -0.01197,0.00521 [y
1 32000 0.83856 0.83683] -0.01032,0.00686 [y
1 64000 0.83678 0.83133] -0.01404,0.00314 [y
2 8000 0.71952 0.71298] -0.01513,0.00205 [y
2 16000 0.71008 0.70332] -0.01535,0.00183 [y
2 32000 0.70324 0.69994] -0.01189,0.00529 [y
2 64000 0.6969 0.6962] -0.00929,0.00789 [y
3 8000 0.51781 0.51649] -0.00991,0.00727 [y
3 16000 0.50668 0.50504] -0.01023,0.00695 [y
3 32000 0.49447 0.49337] -0.00969,0.00749 [y
3 64000 0.48683 0.4847] -0.01072,0.00646 [y
4 8000 0.2673 0.2861] 0.01021,0.02739 [n
4 16000 0.25349 0.26775] 0.00567,0.02285 [n
4 32000 0.2461 0.2551] 0.00041,0.01759 [n
4 64000 0.23761 0.24531] -0.00089,0.01629 [y
5 8000 0.07213 0.10304] 0.02232,0.03950 [n
5 16000 0.06411 0.08851] 0.01581,0.03299 [n
5 32000 0.06039 0.07561] 0.00663,0.02381 [n
5 64000 0.05596 0.06914] 0.00459,0.02177 [n

Actually, these estimates give us another important indication on the behav-
ior of random critical instances for small m. Let p0(n) be the probability that a
random 2-CNF formula with n variables and n clauses is satisfiable. Let p1(n, m)
be the probability that a random (1,2)-QCNF-formula with n existential vari-
ables, m universal variables and 2n clauses is satisfiable. For each m > 0, the
semantical elimination of the ∀-quantifiers in such a formula yields the conjunc-
tion of 2m 2-CNF formulas. More precisely, for m = 1, it can be shown that
a random (1,2)-QCNF-formula with parameter c behaves as the conjunction of
two independent random 2-CNF-formula with parameter equivalent (as n goes
to infinity) to c/2. Thus, one has:

p1(1, n)− p0(n)2 −−−−→
n→∞ 0 .

When m ≥ 2, a random (1,2)-QCNF-formula with parameter c behaves as the
conjunction of 2m dependent random 2-CNF-formula with parameter equivalent
to c/2. In fact, each pair of such “half-formulas” contains, roughly, between 0 and
m−1

m c/2 clauses in common. However, it seems plausible that this dependence is
not important concerning satisfiability at the threshold, i.e, at c = 2 for fixed m.
Indeed, for critical 2-SAT, it is plausible that knowing that a formula F is true
(resp. false) does not give a significant hint about the fact that a formula F ′

obtained from F by re-sampling a fixed fraction of its clauses is still true (resp.
false). This would lead (somewhat rashly) to conjecture that p1(m, n)− p0(n)2

m

(1,2)-QSAT: A Good Candidate 373

goes to zero as n goes to infinity, for fixed m. To support this conjecture, we
give estimations for p1(m, n)− p0(n)2

m

.
For some values of n and m, we drew at random N = 100, 000 conjunctions

of 2m critical 2-CNF-formulas, i.e., with critical ratio c0 = 1. We counted the
proportion p̂0,m(n) of satisfiable conjunctions. Next, for the same values of n
and m, we drew at random N = 100, 000 critical (1,2)-QCNF-formulas, i.e., with
critical ratio c1 = 2. We counted the proportion p̂1(m, n) of satisfiable formulas.
We want to know, on the basis of these estimators, whether it is plausible that
p1(m, n)− p0(n)2

m

goes to zero as n goes to infinity. Hoeffding’s inequality (see
[Hoe63]) implies that for any ε ∈]0, 1[, m and n,

Pr

(
|p̂1(m, n)− p̂0,m(n)− (p1(m, n)− p0(n)2

m

)| ≥
√

2
N

log
2
ε

)
≤ ε ,

which gives us the following confidence interval for p1(m, n) − p0(n)2
m

with
security coefficient 1− ε:

Îm,n =

]
p̂1(m, n)− p̂0,m(n)−

√
2
N

log
2
ε
; p̂1(m, n)− p̂0,m(n) +

√
2
N

log
2
ε

[
.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 1.7 1.8 1.9 2 2.1 2.2 2.3

N
um

be
r

of
 p

ro
pa

ga
te

d
lit

er
al

s
(p

ro
ps

)

L/n

props for 2Q-1-2-1-4000
props for 2Q-1-2-2-4000
props for 2Q-1-2-3-4000
props for 2Q-1-2-4-4000
props for 2Q-1-2-5-4000
props for 2Q-1-2-6-4000
props for 2Q-1-2-7-4000
props for 2Q-1-2-8-4000
props for 2Q-1-2-9-4000

props for 2Q-1-2-10-4000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1.7 1.8 1.9 2 2.1 2.2 2.3

N
um

be
r

of
 p

ro
pa

ga
te

d
lit

er
al

s
(p

ro
ps

)

L/n

props for 2Q-1-2-1-8000
props for 2Q-1-2-2-8000
props for 2Q-1-2-3-8000
props for 2Q-1-2-4-8000
props for 2Q-1-2-5-8000
props for 2Q-1-2-6-8000
props for 2Q-1-2-7-8000
props for 2Q-1-2-8-8000
props for 2Q-1-2-9-8000

props for 2Q-1-2-10-8000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1.7 1.8 1.9 2 2.1 2.2 2.3

N
um

be
r

of
 p

ro
pa

ga
te

d
lit

er
al

s
(p

ro
ps

)

L/n

props for 2Q-1-2-1-16000
props for 2Q-1-2-2-16000
props for 2Q-1-2-3-16000
props for 2Q-1-2-4-16000
props for 2Q-1-2-5-16000
props for 2Q-1-2-7-16000

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1.7 1.8 1.9 2 2.1 2.2 2.3

N
um

be
r

of
 p

ro
pa

ga
te

d
lit

er
al

s
(p

ro
ps

)

L/n

props for 2Q-1-2-1-32000
props for 2Q-1-2-2-32000
props for 2Q-1-2-3-32000
props for 2Q-1-2-4-32000
props for 2Q-1-2-5-32000
props for 2Q-1-2-7-32000

Fig. 5. The propagation curves for n = 4, 000; 8, 000; 16, 000 and 32, 000

374 N. Creignou et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

S
A

T

N
um

be
r

of
 p

ro
pa

ga
te

d
lit

er
al

s
(p

ro
ps

)

L/n

2Q-1-2-5-2000
2Q-1-2-5-4000
2Q-1-2-5-8000

2Q-1-2-5-16000
2Q-1-2-5-32000

props for 2Q-1-2-5-32000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

S
A

T

N
um

be
r

of
 p

ro
pa

ga
te

d
lit

er
al

s
(p

ro
ps

)

L/n

2Q-1-2-7-2000
2Q-1-2-7-4000
2Q-1-2-7-8000

2Q-1-2-7-16000
2Q-1-2-7-32000

props for 2Q-1-2-7-32000

Fig. 6. A propagation curve together with satisfiability curves for m = 5 and m = 7

Choosing ε = 0.05, we consider that our conjecture is supported by the simula-
tions if, for n large enough, the interval Îm,n contains zero. This is reported by
a “y” in the column “fit” of Table 1.

We can observe that it fits for m = 1, 2, 3 and 4 for n large enough. The data
starts to diverge for m = 5. There are two possible reasons: either the conjecture
is false for m = 5, or n = 64000 is not large enough to see the convergence
conjectured for this value of m. Notice however that it is close to fit for large n.
In any case, these results support our conjecture that for m small enough (i.e,
at least when m ≤ 4), a critical (1,2)-QCNF-formula behaves as the conjunction
of 2m independent 2-CNF-formulas.

3.3 Where the Hard Instances Are

In [SML96], Selman et al. gave experimental evidence suggesting that there is a
range of the clauses-to-variables ratio, r, within which it seems hard to decide

(1,2)-QSAT: A Good Candidate 375

whether a randomly chosen 3-SAT instance is satisfiable or not. For r ∼ 4.2,
a satisfying assignment can be found for roughly half the formulas and around
this point the computational effort for finding a truth assignment, whenever one
exists, is maximized. We are interested in knowing whether such a pattern can
also be observed for (1,2)-QSAT.

Measuring the running time of a program is a difficult task in a multi-
core/multi-processor environment, especially if the machine has heavy load.
Therefore, we have to use another measure like the number of branches, the
number of decisions, etc. A measure which is offered by the used solver QuBE
is the number of of propagations of (existential and universal) literals.

In Fig. 5, we find the curves showing the average number of propagations for
a specific n = 4000, 8000, 16000, 32000 and different m. Notice that the scale on
the y-axis is not the same from one figure to the other.

These results appear to be fully consistent with the worst-case complexity
upper bound we have, i.e., the complexity naturally increases with m. Moreover,
there is a peak in the computational effort. Interestingly, Fig. 6 shows that
this peak occurs within the phase transition, i.e., the computational effort for
deciding the truth value of a formula is maximized for when the percentage of
true formulas is between 30 percent and 80 percent.

4 Conclusion

Our study of (1,2)-QSAT turns out to be even more challenging than expected.
At the interesting regime, i.e., when m = �α ln n� with α > 1/ ln 2, we are able
to give the exact location of the threshold as a function of α. Actually, our
study goes beyond this step since we also give precise information on typical
substructures that occur in random formulas just after the phase transition.
Indeed, our analysis shows the emergence of specific minimally unsatisfiable
formulas in evolving random formulas. Hence, we assert that, at the critical
point c, pure snakes of length −2α ln(2 − c)/c logn are the first syndrome of
unsatisfiability.

We have made precise simulations for small m. They have given some indi-
cations on the probability of satisfiability of critical formulas. Obviously getting
precise results as observing the critical ratio, or measuring the width of the tran-
sition from satisfiability to unsatisfiability (see [Wil02]) will require experiments
at a much higher scale, and thus will need more computational power. At the
same time, it is also challenging to find out new forms of simulations, whose
results can guide the theoretical investigations, even if not run at a very high
scale.

Finally, let us emphasize that (1,2)-QSAT is a quantified problem. Therefore,
we can hope that its investigation will enable a better understanding of the typ-
ical behavior of random quantified formulas, and thus support the development
of competitive QBF solvers. Let us recall that (1,2)-QSAT is a problem whose
complexity smoothly interpolates between P and coNP. Moreover experiments
have shown that random instances of (1,2)-QSAT exhibit an “easy-hard-easy”

376 N. Creignou et al.

pattern. The peak of the computational effort occurs within the phase transi-
tion Therefore, in making m varying, we get a whole bunch of instances having
different complexities that we can be used to test and evaluate QBF solvers.

References

[APT79] Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing
Letters 8(3), 121–123 (1979)

[BBC+01] Bollobás, B., Borgs, C., Chayes, J.T., Kim, J.H., Wilson, D.B.: The
scaling window of the 2-SAT transition. Random Structures and Algo-
rithms 18(3), 201–256 (2001)

[CDER08] Creignou, N., Daudé, H., Egly, U., Rossignol, R.: New results on the phase
transition for random quantified Boolean formulas. In: Kleine Büning,
H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 34–47. Springer,
Heidelberg (2008)

[CR92] Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In:
Proceedings of the 33rd Annual Symposium on Foundations of Computer
Science (FOCS 1992), pp. 620–627 (1992)

[dlV92] de la Fernandez Vega, W.: On random 2-SAT (manuscript, 1992)
[DM06] Deroulers, C., Monasson, R.: Criticality and universality in the unit-

propagation search rule. Eur. Phys. J. B 49, 339–369 (2006)
[FKB90] Flögel, A., Karpinski, M., Kleine Büning, H.: Subclasses of quantified

Boolean formulas. In: Proceedings of the 4th Workshop on Computer
Science Logic (CSL 1990), pp. 145–155 (1990)

[GNT01] Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE: A system for decid-
ing quantified Boolean formulas satisfiability. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 364–369. Springer,
Heidelberg (2001)

[Goe96] Goerdt, A.: A threshold for unsatisfiability. Journal of of Computer and
System Sciences 53(3), 469–486 (1996)

[Hoe63] Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. J. Amer. Statist. Assoc. 58, 13–30 (1963)

[JLR00] Janson, S., Luczack, T., Rucinski, A.: Random graphs. John Wiley, New
York (2000)

[SML96] Selman, B., Mitchell, D., Levesque, H.J.: Generating hard satisfiability
problems. Artificial Intelligence 81(1-2), 17–29 (1996)

[Tem93] Temme, N.M.: Asymptotic estimates of Stirling numbers. Stud. appl.
Math. 89, 223–243 (1993)

[Wil02] Wilson, D.B.: On the critical exponents of random k-SAT. Random Struc-
tures and Algorithms 21(2), 182–195 (2002)

VARSAT: Integrating Novel Probabilistic Inference
Techniques with DPLL Search

Eric I. Hsu and Sheila A. McIlraith

Department of Computer Science
University of Toronto

{eihsu,sheila}@cs.toronto.edu
http://www.cs.toronto.edu/˜eihsu/VARSAT

Abstract. Probabilistic inference techniques can be used to estimate variable
bias, or the proportion of solutions to a given SAT problem that fix a variable
positively or negatively. Methods like Belief Propagation (BP), Survey Propaga-
tion (SP), and Expectation Maximization BP (EMBP) have been used to guess
solutions directly, but intuitively they should also prove useful as variable- and
value- ordering heuristics within full backtracking (DPLL) search. Here we re-
port on practical design issues for realizing this intuition in the VARSAT system,
which is built upon the full-featured MiniSat solver. A second, algorithmic, con-
tribution is to present four novel inference techniques that combine BP/SP models
with local/global consistency constraints via the EMBP framework. Empirically,
we can also report exponential speed-up over existing complete methods, for ran-
dom problems at the critically-constrained phase transition region in problem
hardness. For industrial problems, VARSAT is slower that MiniSat, but compa-
rable in the number and types problems it is able to solve.

Keywords: Probabilistic Inference, Survey Propagation/EMBP, Variable/Value
Ordering Heuristics.

1 Introduction

A variety of message-passing (a.k.a. “propagation”) algorithms have been used to esti-
mate variable “bias,” or the probability of finding each variable set one way or another
if we could somehow sample from the space of solutions to a given SAT instance. In
particular, Belief Propagation (BP) has been used to differentiate solutions where a
variable is constrained to be positive from those where it is negatively constrained [1].
Survey Propagation (SP) extends this model to represent a third probability represent-
ing solutions where the variable is not constrained at all; on hypothetically sampling we
might find that it is set positively or negatively, but flipping it would still result in a so-
lution [2]. Either model can be employed within the Expectation Maximization Belief
Propagation (EMBP) framework, a convergent alternative that accommodates a choice
of consistency constraints for balancing speed and accuracy in estimating bias [3].

While bias estimators produce intuitively useful information about the solutions of
SAT instances, they cannot actually solve a problem on their own. To date they have
all employed a “decimation” framework of computing a single sequence of estimates,

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 377–390, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.toronto.edu/~eihsu/VARSAT

378 E.I. Hsu and S.A. McIlraith

while setting a block of one or more most strongly-biased variables after each estimate.
Taken with this decimation framework, the probabilistic bias estimators are state-of-the-
art for solving large random problems near the critically-constrained phase transition in
problem hardness [4]. However, this construction cannot backtrack or take advantage of
modern advances in systematic DPLL search like clause learning; the decimation pro-
cess either directly reaches a solution by a series of fortuitous variable assignments, or
it ends in failure without determining satisfiability or unsatisfiability. Toward the upper
reaches of the phase transition threshold, failure occurs about half the time (at α = 4.4
for satisfiable problems). For industrial SAT problems with “real-world” structure, the
combination is entirely unusable [5].

Here we report on the integration of six bias estimators as variable- and value-
ordering heuristics within the full-featured MiniSat backtracking solver [6]. Moving
past basic intuitions and creating a practical solver requires a number of possibly intu-
itive, but still non-obvious design decisions and optimizations, due especially to the high
computational expense associated with bias estimation. A second contribution consists
of four novel estimation techniques whose stand-alone accuracy has been summarized
elsewhere without explanation–here they are presented in full for the first time [5].
In particular, we employ local or global consistency approximations to extend either
the BP or the SP model, producing EMBP-L, EMSP-L, EMBP-G, and EMSP-G. To-
gether with basic BP and SP, these rules drive the resulting VARSAT solver, so-named
in recognition of the variational methods underlying the estimators [7]. VARSAT re-
tains the superior performance of probabilistic techniques on hard random problems,
but represents a first step toward handling industrial problems as well. On the latter, its
performance is comparable to regular MiniSat in that they are both able to solve mostly
the same problems within a given time limit; the main difference is that VARSAT is
slower to solve the same problems.

The following two sections provide further background and formal definitions con-
cerning propagation algorithms and their application to SAT. Next, Section 4 presents the
six bias estimators alongside intuitive explanations of how they work. Then, Section 5
discusses their integration within backtracking DPLL search, and Section 6 summarizes
the main experimental findings. Lastly, Section 7 extracts overall conclusions and dis-
cusses future work.

2 Background

Message-passing algorithms have been applied to a growing variety of combinato-
rial problems [2,8,9,10], augmenting their traditional roles in probabilistic inference
[11,12,13]. The methods all operate by propagating messages between a problem’s
variables, causing them to iteratively adjust their own bias estimates from some ini-
tial randomized values.

The techniques produce “surveys”, representing, informally, the probability that each
variable should be set a certain way if we were to assemble a satisfying assignment.
Thus a propagation algorithm does not output an outright solution to a SAT problem.
Rather, applying a probabilistic method to SAT-solving requires two interrelated design
decisions: a means of calculating surveys, and a means of using the surveys to fix the

VARSAT: Integrating Novel Probabilistic Inference Techniques 379

SAT Theory: C1 ∧ . . . ∧ C8

C1 = (x1 ∨ x2 ∨ ¬x3) C2 = (¬x1 ∨ ¬x2 ∨ ¬x4)
C3 = (x1 ∨ ¬x2 ∨ ¬x5) C4 = (¬x1 ∨ x3 ∨ ¬x4)
C5 = (x1 ∨ ¬x3 ∨ x5) C6 = (x1 ∨ ¬x4 ∨ x5)
C7 = (x2 ∨ x4 ∨ x5) C8 = (¬x3 ∨ x4 ∨ ¬x5)

X1

X2

f7

f1

f3

f2

f4

X3

X4 X5

f6

f5

f8

variable appears
positively in clause:

variable appears
negatively in clause:

Fig. 1. Example 3-SAT Problem: as Factor Graph and as CNF Theory

x1 x2 x3 x4 x5

〈 0, 0, 0, 0, 1 〉
〈 0, 0, 0, 1, 1 〉
〈 0, 1, 0, 0, 0 〉
〈 1, 0, 0, 0, 1 〉
〈 1, 0, 1, 1, 0 〉
〈 1, 0, 1, 1, 1 〉
〈 1, 1, 0, 0, 0 〉
〈 1, 1, 0, 0, 1 〉
〈 1, 1, 1, 0, 0 〉

θ1(+) = 6/9, θ1(−) = 3/9
θ2(+) = 4/9, θ2(−) = 5/9
θ3(+) = 3/9, θ3(−) = 6/9
θ4(+) = 3/9, θ4(−) = 6/9
θ5(+) = 5/9, θ5(−) = 4/9

Fig. 2. Solutions to Example 3-SAT Problem, and Resulting Biases

next variable within an arbitrary search framework. A reasonable strategy for the sec-
ond step is to pick the variable with the most extreme bias, and set it in the direction
of that bias, i.e. “succeed-first” search. But by better understanding the characteristics of

380 E.I. Hsu and S.A. McIlraith

various survey techniques, we can explore more sophisticated approaches to variable
and value ordering.

Note also that integrating with a solver will mean computing a new survey each time
we fix a single variable; in other words the size of a decimation block will be one. This
is a standard practice for addressing correlations between variables [3]; A single survey
might report that v1 is usually true within the space of solutions, and that v2 is usually
false, even though the two events happen simultaneously with relative infrequency. In-
stead of attempting to fix multiple variables at once, then, we will fix a single first and
simplify the resulting problem. In subsequent surveys the other variables’ biases would
thus be conditioned on this first assignment.

At a high level, propagation techniques accomplish the bias estimation task by pass-
ing messages over a given SAT problem’s “factor graph” representation, as depicted in
Figure 1. Nodes representing variables connect to “factor” nodes representing clauses
in which they appear. Edges can be distinguished, conceptually, by whether the vari-
ables appear as positive or negative literals in the clauses. Thus, for example, we see
that factor f1 realizes the disjunction x1 ∨ x2 ∨ ¬x3.

The example problem has nine solutions, as listed in Figure 2. From this table we
can calculate exact biases by tallying entries along each column: for instance x1 is set
positively in six out of the nine solutions, and negatively in the remaining three. (This
calculation glosses the notion of variables being constrained positively or negatively,
versus merely appearing as such; this is the distinction between BP and SP.)

Conceptually, edges carry clause-to-variable messages in one direction, and variable-
to clause messages in the other. For all the techniques presented shortly, each variable
is first randomly seeded with an initial bias, and informs all of its clauses by passing
variable-to-clause messages along the edges. The clauses compile such reports and de-
termine whether they are poorly supported–that is, they calculate the probability that
their variables will jointly end up failing to satisfy them. From here they signal each
variable as to whether they need their support by passing messages back along the
edges, in the opposite direction. The variables weigh such requests, and begin a new
iteration by updating and reporting their new biases.

Importantly, though, the entire factor graph framework is notional in the sense that it
formalizes the derivation of our bias estimators [5], but they will never actually repre-
sent such a structure in memory, or organize a series of messages. This is crucial to the
efficient implementation of such methods; in the end we will instead use a set of update
rules whereby a given variable’s bias is directly updated via a fixed calculation in terms
of the biases of adjacent variables (that is, those with which it appears together in some
clause.)

3 Definitions

Definition 1 (SAT instance). A (CNF) SAT instance is a set C of m clauses, con-
straining a set V of n Boolean variables. Each clause c ∈ C is a disjunction of literals
built from the variables in V . An assignment X ∈ {0, 1}n to the variables satisfies
the instance if it makes at least one literal true in each clause. The sets V +

c and V −
c

comprise the variables appearing positively and negatively in a clause c, respectively.

VARSAT: Integrating Novel Probabilistic Inference Techniques 381

The sets C+
v and C−

v comprise the clauses that contain positive and negative literals
for variable v, respectively. Cv = C+

v ∪ C−
v comprises all clauses that contain v as a

whole.

Definition 2 (Bias, Survey). For a satisfiable SAT instance F , the bias distribution
θv of a variable v represents the fraction of solutions to F wherein v appears positively
or negatively. Thus it consists of a positive bias θ+

v and a negative bias θ−v , where
θ+

v , θ−v ∈ [0, 1] and θ+
v + θ−v = 1. A vector of bias distributions, one for each variable

in a theory, will be called a survey, denoted Θ(F).

Less formally, it is useful to describe a variable as “positively biased” with respect to
a true or estimated bias distribution. This means that under the given distribution, its
positive bias exceeds its negative bias. Similarly the “strength” of a bias distribution
indicates how much it favors one value over the other, as defined by the maximum
difference between its positive or negative bias and 0.5.

4 Probabilistic Methods for Estimating Bias

In this section we present six distinct propagation methods for measuring variable bias:
Belief Propagation (BP), EM Belief Propagation-Local/Global (EMBP-L and EMBP-
G), Survey Propagation (SP), and EM Survey Propagation-Local/Global (EMSP-L and
EMSP-G). These methods represent the space of algorithms defined by choosing be-
tween BP and SP and then employing one of them either in original form, or by applying
a local- or global-consistency transformation based on the Expectation Maximization
framework. The EM-based rules represent a secondary contribution of this work; they
have been studied empirically without explanation [14] but have not been presented up
to this point. (Complete derivations are available online [5].)

On receiving a SAT instance F , any of the propagation methods begins by formu-
lating an initial survey at random. For instance, the positive bias can be randomly gen-
erated, and the negative bias can be set to its complement: ∀v, θ+

v ∼ U [0, 1]; θ−v ←
1 − θ+

v . Each algorithm proceeds to successively refine its estimates, over multiple it-
erations. An iteration consists of a single pass through all variables, where the bias for
each variable is updated with respect to the other variables’ biases, according to the
characteristic rule for a method. If no variable’s bias has changed between two succes-
sive iterations, the process ends with convergence; otherwise an algorithm terminates
by timeout or some other parameter. EM-type methods are “convergent”, or guaranteed
to converge naturally, while regular BP and SP are not [3].

The six propagation methods are discussed elsewhere in greater theoretical detail
than space permits here [3,2]. But for a practical understanding, they can be viewed as
update rules that assign weights (ω+

v and ω−
v) toward a variable’s positive and negative

biases–plus a third weight (ω∗
v) for the “joker bias” (described below) in the case of

SP-based methods. The rules will make extensive use of the formula σ(v, c) in Figure
3(a). In doing so they express the probability that variable v is the “sole-support” of
clause c in an implicitly sampled configuration of all the variables: every other variable
that appears in the clause is set unsatisfyingly. From a generative statistical perspective,
the probability of this event is the product of the negative biases of all other variables

382 E.I. Hsu and S.A. McIlraith

σ(v, c) �
∏

i∈V +
c \{v}

θ−
i

∏
j∈V −

c \{v}
θ+

j

(a) σ(v, c): v is the sole support of c.

θ+
v

′ ← ω+
v

ω+
v + ω−

v
θ−

v
′ ← ω−

v

ω+
v + ω−

v

(b) Bias normalization for BP methods.

θ+
v

′ ← ω+
v

ω+
v + ω−

v + ω∗
v

θ−
v

′ ← ω−
v

ω+
v + ω−

v + ω∗
v

θ∗
v
′ ← ω∗

v

ω+
v + ω−

v + ω∗
v

(c) Bias normalization for SP methods.

Fig. 3. Formula for “sole-support”; normalizing rules for BP and SP families of bias estimators

that appear in the clause as positive literals, and the positive biases of all variables that
are supposed to be negative.

The six sets of update rules produce intermediate “weight” values for each variable,
by consulting the current biases of its surrounding variables. In the case of BP-based
methods, each variable has two weights: one toward the positive, and one toward the
negative; introducing the SP model will add a third weight toward the unconstrained
state. Such weights are then normalized into proper probabilities as depicted in Figures
3(b) and 3(c), depending on whether we are using the BP or SP model. This probabil-
ity constitutes a new estimated bias distribution for each variable, completing a single
iteration of the algorithm. The update rules are presented below in Figures 4 and 5.

BP can be viewed at first as generating the probability that v should be positive according
to the odds that one of its positive clauses is completely dependent on v for support.
That is, v appears as a positive literal in some c ∈ C+

v for which every other positive
literal i turns out negative (with probability θ−i), and for which every negative literal ¬j
turns out positive (with probability θ+

j). This combination of unsatisfying events would
be represented by the expression σ(v, c). However, a defining characteristic of BP is its

ω+
v =

∏
c∈C−

v

(1 − σ(v, c))

ω−
v =

∏
c∈C

+
v

(1 − σ(v, c))

(a) Regular BP update rule.

ω+
v = |Cv| − ∑

c∈C−
v

σ(v, c)

ω−
v = |Cv| − ∑

c∈C
+
v

σ(v, c)

(b) EMBP-L update rule.

ω+
v = |C−

v |
[∏

c∈C−
v

(1 − σ(v, c))

]
+ |C+

v |

ω−
v = |C+

v |
[∏

c∈C+
v

(1 − σ(v, c))

]
+ |C−

v |

(c) EMBP-G update rule.

Fig. 4. Update rules for the Belief Propagation (BP) family of bias estimators

VARSAT: Integrating Novel Probabilistic Inference Techniques 383

assumption that every v is the sole support of at least one clause. (Further, v cannot be the
only hope of support both a positive and a negative clause simultaneously, since we are
sampling from the space of satisfying assignments.) Thus, we should view Figure 4(a)
as weighing the probability that no negative clause needs v (implying that v is positive
by assumption), versus the probability that no positive clause needs v for support.

EMBP-L is the first of a set of update rules derived using the EM method for maximum-
likelihood parameter estimation. This statistical technique features guaranteed conver-
gence, but requires a bit of invention to be used as a bias estimator for constraint
satisfaction problems [13,9]. Resulting rules like EMBP-L are variations on BP that
calculate a milder, arithmetic average by using summation, in contrast to the harsher
geometric average realized by products. This is one reflection of an EM-based method’s
convergence versus the non-convergence of regular BP and SP. All propagation meth-
ods can be viewed as energy minimization techniques whose successive updates form
paths to local optima in the landscape of survey likelihood [3]. By taking smaller, arith-
metic steps, EMBP-L (and EMBP-G) is guaranteed to proceed from its initial estimate
to the nearest optimum; BP and SP take larger, geometric steps, and can therefore over-
shoot optima. This explains why BP and SP can explore a larger area of the space of
surveys, even when initialized from the same point as EMBP-L, but it also leads to their
non-convergence. Empirically, EMBP-L and EMBP-G usually converge in three or four
iterations for the examined SAT instances, whereas BP and SP typically require at least
ten or so, if they converge at all.

Intuitively, the equation in Figure 4(b) (additively) reduces the weight on a variable’s
positive bias according to the chances that it is needed by negative clauses, and vice-
versa. Such reductions are taken from a smoothing constant representing the number
of clauses a variable appears in overall; highly connected variables have less extreme
biases than those with fewer constraints.

EMBP-G is also based on smoother, arithmetic averages, but employs a broader view
than EMBP-L. While the latter is based on “local” inference, resembling generalized
arc-consistency, the derivation of EMBP-G uses global consistency across all variables.
In the final result, this is partly reflected by the way that Figure 5(c) weights a variable’s
positive bias by going through each negative clause (in multiplying by |C−

v |) and uni-
formly adding the chance that all negative clauses are satisfied without v. In contrast,
when EMBP-L iterates through the negative clauses, it considers their satisfaction on an
individual basis, without regard to how the clauses’ means of satisfaction might interact
with one another. So local consistency is more sensitive to individual clauses in that it
will subtract a different value for each clause from the total weight, instead of using the
same value uniformly. At the same time, the uniform value that global consistency does
apply for each constraint reflects the satisfaction of all clauses at once.

SP can be seen as a more sophisticated version of BP, specialized for SAT. To eliminate
the assumption that every variable is the sole support of some clause, it introduces the
possibility that a variable is not constrained at all in a given satisfying assignment.
Thus, it uses the three-weight normalization equations in Figure 3(c) to calculate a
three-part bias distribution for each variable: θ+

v , θ−v , and θ∗v , where ‘*’ indicates the

384 E.I. Hsu and S.A. McIlraith

ω+
v =

∏
c∈C−

v

(1 − σ(v, c)) · ρ
[
1 − ∏

c∈C+
v

(1 − σ(v, c))

]

ω−
v =

∏
c∈C+

v

(1 − σ(v, c)) · ρ
[
1 − ∏

c∈C−
v

(1 − σ(v, c))

]

ω∗
v =

∏
c∈Cv

(1 − σ(v, c))

(a) Regular SP update rule.

ω+
v = |Cv| − ∑

c∈C−
v

σ(v, c)

ω−
v = |Cv | − ∑

c∈C+
v

σ(v, c)

ω∗
v = |Cv| − ∑

c∈Cv

σ(v, c)

(b) EMSP-L update rule.

ω+
v = |C−

v | ∏
c∈C−

v

(1 − σ(v, c)) + |C+
v |

[
1 − ∏

c∈C+
v

(1 − σ(v, c))

]

ω−
v = |C+

v | ∏
c∈C+

v

(1 − σ(v, c)) + |C−
v |

[
1 − ∏

c∈C−
v

(1 − σ(v, c))

]

ω∗
v = |Cv| ∏

c∈Cv

(1 − σ(v, c))

(c) EMSP-G update rule.

Fig. 5. Update rules for the Survey Propagation (SP) family of bias estimators

unconstrained (a.k.a “joker”) state. Thus, in examining the weight on the positive bias in
Figure 5(a), it is no longer sufficient to represent the probability that no negative clause
needs v. Rather, we explicitly factor in the condition that some positive clause needs v,
by complementing the probability that no positive clause needs it. This acknowledges
the possibility that no negative clause needs v, but no positive clause needs it either.
As seen in the equation for ω∗

v , such mass goes toward the joker state. (The parameter
ρ = 0.95 is an optional smoothing constant explained in [15].)

For the purposes of estimating bias and finding backbones, any probability mass
for θ∗v is evenly distributed between θ+

v and θ−v when the final survey is compiled.
This reflects how the event of finding a solution with v labeled as unconstrained indi-
cates that there exists one otherwise identical solution with v set to true, and another
with it set to false. So while the “joker” state plays a role between iterations in set-
ting a variable’s bias, the final result omits it for the purposes of bias estimation. (One
point of future interest is to examine the prevalence of lower “joker” bias in backdoor
variables [16].)

EMSP-L and EMSP-G are analogous to their BP counterparts, extended to weight
the third ’*’ state where a variable may be unconstrained. So similarly, they can be
understood as convergent versions of SP that take a locally or globally consistent view
of finding a solution, respectively.

VARSAT: Integrating Novel Probabilistic Inference Techniques 385

5 Practical Design Considerations

In this section we discuss the most salient design considerations for integrating the
rules of the previous section within MiniSat, a backtracking DPLL solver that integrates
clause learning, restarts, and pre-processing with a built-in ordering heuristic based on
VSIDS [6]. In short, the efficient operation of VARSAT hinges upon the interaction of
five principle design decisions: a branching strategy for ordering variables and values,
a threshold for deactivating the entire bias estimation apparatus, the decimation block
size for fixing variables on completing a survey, a policy for using learned clauses in
surveys, and finally, the choice of bias estimation technique.

Other than the choice of branching strategy, all of these decisions seek a profitable
sacrifice in accuracy in return for spending less time on computing surveys. Here it is
important to note that in searching for a satisfying solution, robustness is more impor-
tant than pure accuracy. Even if our bias estimator instructs us to set a variable positively
when its true bias is 90% negative, there still exists some set of solutions in the resulting
subproblem. Thus our system would always proceed directly to a solution without even
backtracking, so long as we never set a variable to a polarity for which it has a true bias
of zero.

5.1 Branching Strategy

We tested several branching strategies for using surveys as variable- and value-ordering
heuristics. In addition to the “conflict-avoiding” strategy of setting the most strongly
biased variable to its stronger value, we also tried to “fail-first” or streamline a prob-
lem via the “conflict-seeking” strategy of setting the strongest variable to its weaker
value [17].

Additional approaches involved different ways of blending the two: for instance,
one strategy might involve triggering propagations and building up a strong database
of learned clauses by seeking conflicts, and then trying to find a solution within this
greatly restricted search space by switching to conflict avoidance. A second motivator
for seeking conflicts is unsatisfiable problems. While surveys are not well-defined for
such problems, seeking conflicts can lead to shorter proofs of unsatisfiability and thus
faster run-times; since we must account for the entire breadth of the search tree, we
should order variables so that conflicts occur on the shallowest subtrees possible.

For mixtures of satisfiable and unsatisfiable problems like those comprising the test
cases for recent SAT-Solving contests, it turns out that the single best strategy is the
(presumably) most intuitive one of avoiding conflicts.

5.2 Deactivation Threshold

A second consideration when integrating with a backtracking solver is that any of the
six bias estimators can be governed by a “threshold” parameter expressed in terms of
the most strongly biased variable in a survey. For instance, if this parameter is set to 0.6,
then we only persist in using surveys so long as their most strongly biased variables have
a gap of size 0.6 between their positive and negative bias. As soon as we receive a survey
where the strongest bias for a variable does not exceed this gap, then we deactivate the

386 E.I. Hsu and S.A. McIlraith

bias estimation process and revert to using MiniSat’s default variable and value ordering
heuristic until the solver triggers a restart. (Note that setting this parameter to 0.0 is the
same as directing the solver to never deactivate the bias estimator.)

The underlying motivation is that problems should contain a few important variables
that are more constrained than the rest, and that the rest of the variables should be easy
to set once these few have been assigned correctly. The aim is to detect and fix the first
type of variable via strong bias estimates, and then solve the resulting subproblem using
DPLL search alone with a default ordering heuristic. For various theoretical reasons,
the divide between a small number of constrained variables and a large number of less
important ones is thought to be of special relevance within the phase-transition region
in hardness for random problems [18]. For industrial and crafted problems, the hope
is that a similar distinction exists; but here the exact ratio eludes formal analysis. Most
generally, surveys are highly valuable but also very expensive; they can take the majority
of a solver’s total runtime depending on how this parameter and others are set. So it is
critical to stop computing surveys after the most important decisions have been made.

For typical SAT contest problems, we have found .9 to be a good value in com-
bination with the other settings decided in this section. This will typically result in
the execution of about one survey per thousand variables before deactivation, for large
problems with tens of thousands of variables and up1 (Each time the solver performs
a restart in solving a given problem, the bias estimation module is re-instated if it was
previously deactivated.)

5.3 Decimation Block Size

Another way to mitigate the high cost of computing surveys is to use a large decimation
block size, meaning that we can set a number of variables at once each time we complete
a survey. The problem is then simplified via unit propagation and we compute a new
survey on the resulting sub-problem.

Under preliminary investigation we have found that it is still better to use a block size
of 1, though this issue is not fully resolved due to the many combinations of settings
for the other parameters discussed so far. As mentioned previously, the motivation for
a small decimation size is to account for correlations between variable biases. When
setting a block of multiple variables, we are approximating a joint probability over
their mutual configuration by the product of their individual marginal probabilities. If
we instead set a single variable and compute a new survey, the resulting values are
conditioned upon our previous decision. At this point it seems that the extra accuracy
provided by this property is worth the greater computational cost.

5.4 Integrating Learned Clauses

Integrating learned clauses into surveys represents another balance between accuracy
and runtime efficiency. On the one hand, learned clauses are all implied by a theory,
and their influence is already implicitly captured by the original clauses of a problem.

1 For the smaller problems considered in Figure 6, surveys typically wound up running over
approximately a tenth of the total variables in a problem.

VARSAT: Integrating Novel Probabilistic Inference Techniques 387

On the other, they may provide especially useful information about the specific area
of the search space that a solver is currently exploring. There is an extra cost in run-
time because update rules must now iterate through additional clauses when estimating
biases; at an implementational level there is also the overhead of managing memory for
registering learned clauses to be used in surveys, and for unregistering them when they
are periodically purged.

The tradeoff is accomplished by a parameter that states the maximum size that a
learned clause can have if it is to be used in surveys. (Shorter clauses are more valuable
in the sense that they contain more information, and they are also faster to process since
they appear in the update rules of fewer variables.) In practice we have found it best
to integrate all learned 4-clauses and below into survey computations. For the SAT-
contest problems considered, though, very few such clauses are ever learned, and the
improvement over not using any learned clauses at all is small.

5.5 Bias Estimation Technique

Finally, the choice of bias estimator represents a tradeoff between runtime and various
types of accuracy. This decision has the most interaction with the way the other design
issues are resolved. For instance, suppose we are decimating one variable at a time
and are seeking solutions by branching on the one with strongest estimated bias. Then
it does us no good if our chosen estimator has excellent accuracy on the majority of
the variables if it often happens that the one variable with strongest estimated bias is
guessed incorrectly.

For random problems, stronger global constraints and the richer SP model make
EMSP-G the best bias estimator, despite the greater cost of computing such constraints
and performing three updates per variable instead of two. For industrial problems from
recent SAT contests, the global constraints are still valuable but the SP model no longer
seems to be worthwhile–here EMBP-G is the method of choice.

6 Empirical Performance

Here we briefly summarize the empirical performance of the completed VARSAT sys-
tem. More in-depth studies of the individual bias estimators and parameter settings are
detailed online [5], while performance on specific data sets will be available when the
2009 SAT contest is completed.

Figure 6 compares VARSAT’s heuristic strategy with the default strategy of Min-
iSat 2.0, on hard random problems of increasing size. Here EMSP-G was used as the
bias estimator, with deactivation threshold 0.6, to perform conflict-avoiding search with
decimation block size of one and no learned clauses consulted in forming surveys.

For each problem size marked in the graph, the two solvers were run on 1000 satis-
fiable instances that were randomly generated with a clause-to-variable ratio of 4.11–
such problems approach the hard region of the satisfiability phase transition. The av-
erage runtime on such problems is plotted in log-scale. The last two data points for
default MiniSat represent lower bounds; on a percentage of the runs MiniSat timed out
by failing to solve an instance within 10,800 seconds (three hours.)

388 E.I. Hsu and S.A. McIlraith

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 R
un

tim
e

in
 S

ec
on

ds
 /

T
im

eo
ut

 =
 1

0,
80

0
se

c.

Number of Variables in Problem (n)

+3% timeout

+11% timeout

’EMSPG’
’default’

’default-lb’

Fig. 6. Comparison on Random Problems, n = 50 − 500, α ≡ m
n

= 4.11

However, the real strength of MiniSat and other DPLL-based solvers is on industrial
problems. While the results of this year’s contest remain to be seen, it is possible to per-
form a comparison using last year’s data sets. Here the best configuration of VARSAT
was to use EMBP-G with a deactivation threshold of 0.9, and the other parameters re-
maining the same. On running the two solvers on a collection of 125 past problems
with a timeout of 15 minutes, they were both able to solve 65 of them, and both failed
to solve 46. Of the former, MiniSat was generally faster though both were within the
time limit. Additionally, there were 4 problems that only VARSAT could solve, com-
pared to 10 for MiniSat. Other comparisons suggest that the performance of VARSAT
relative MiniSat improves given a longer timeout–on the larger problems, bias estima-
tion takes up more than 99% of runtime, and just initializing the appropriate structures
can take minutes under the current implementation.

7 Conclusions and Future Work

The main finding of this work has been that probabilistic message-passing techniques
can be successfully integrated within a backtracking search framework, in order to
achieve completeness and also in order to handle industrial problems. This is contin-
gent on a number of design decisions that primarily trade accuracy for time. A second
contribution is four novel bias estimators, two of which (EMBP-G and EMSP-G) have

VARSAT: Integrating Novel Probabilistic Inference Techniques 389

proved to be the most useful within the resulting VARSAT solver. Integrating message-
passing with DPLL combines the best properties of random-walk based methods (good
performance on random problems) with backtracking methods (completeness), but in
a very simple sense. In terms of raw performance, VARSAT is comparable but still
generally slower than MiniSat on non-random problems.

However, the overall framework is new and not close to fully explored. The param-
eters discussed in Section 5 produce a complex of combinations and interactions that
should be resolved more systematically according to the type of problem being solved.
Statistical analysis provides one automated means for doing so [19,20]. Unsatisfiable
problems are such a type of especial future interest; while the scheme presented here
works reasonably well on satisfiable and unsatisfiable problem instances alike, the ac-
tual semantics of bias over the latter type of instance eludes easy definition. At any rate
it appears likely that a specialized set of parameter settings will improve future efforts
to apply VARSAT to unsatisfiable problems.

Another task is to speed up the bias estimation process by better optimizing its code
at an implementational level, possibly to include porting it to alternative hardware [21].
Algorithmically, an additional possibility is to use only a portion of a variable’s clauses
in estimating its bias.

There are interesting abstract similarities with other problem-solving methodologies
for constraint satisfaction. Bias measures the probability of a variable setting given
satisfaction, while many local search methods maximize the probability of satisfaction
given a certain variable setting [22]. Thus, the two targets are directly proportional
via Bayes’ Rule and techniques for one can be applied to the other. Another line of
similar research calculates exact solution counts for individual constraints as a means
of ordering variables and values [23]. Fundamentally, such an approach represents an
exact and localized version of the approximate and interlinked techniques studied here.
Finally, another means to making incomplete search complete is to define a gradient
function for local search and register local minima by adding successive constraints
until the resulting problem is convex [24]. The probabilistic (marginal computation)
methods presented here are not strictly related to local search, but they are very similar
to gradient-based (MAP-computation) methods that follow the same framework [7].

Future applications of bias estimation include query answering and model counting.
In the case of model counting, one detail omitted from discussion is that the normal-
ization value ω+

v + ω−
v in Figure 3(b) (in fact, the log-partition function of a specific

Markov Random Field) is proportional to the number of solutions for a given problem.

References

1. Dechter, R., Kask, K., Mateescu, R.: Iterative join-graph propagation. In: Proc. of 18th
International Conference on Uncertainty in Artificial Intelligence (UAI 2002), Edmonton,
Canada, pp. 128–136 (2002)

2. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiabil-
ity. Random Structures and Algorithms 27, 201–226 (2005)

3. Hsu, E., McIlraith, S.: Characterizing Propagation Methods for Boolean Satisfiability. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 325–338. Springer, Heidelberg
(2006)

390 E.I. Hsu and S.A. McIlraith

4. Achlioptas, D., Ricci-Tersenghi, F.: Random formulas have frozen variables. SIAM Journal
of Computing (to appear)

5. Hsu, E.I.: VARSAT SAT-Solver homepage (2008),
http://www.cs.toronto.edu/˜eihsu/VARSAT/

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational methods for
graphical models. In: Jordan, M. (ed.) Learning in Graphical Models. MIT Press, Cambridge
(1998)

8. Kask, K., Dechter, R., Gogate, V.: Counting-based look-ahead schemes for constraint satis-
faction. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 317–331. Springer, Heidelberg
(2004)

9. Hsu, E., Kitching, M., Bacchus, F., McIlraith, S.: Using EM to find likely assignments for
solving CSP’s. In: Proc. of 22nd Conference on Artificial Intelligence (AAAI 2007), Van-
couver, Canada (2007)

10. Kroc, L., Sabharwal, A., Selman, B.: Survey propagation revisited. In: Proc. of 23rd Interna-
tional Conference on Uncertainty in Artificial Intelligence (UAI 2007), Vancouver, Canada
(2007)

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo
(1988)

12. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory 47(2) (2001)

13. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society 39(1), 1–39 (1977)

14. Hsu, E., Muise, C., Beck, J.C., McIlraith, S.: Probabilistically estimating backbones and
variable bias: Experimental overview. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202.
Springer, Heidelberg (2008)

15. Maneva, E., Mossel, E., Wainwright, M.: A new look at survey propagation and its general-
izations. Journal of the ACM 54(4), 2–41 (2007)

16. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proc. of 18th
International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico
(2003)

17. Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail-first. In: Faltings, B.V., Petcu,
A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 41–55. Springer,
Heidelberg (2005)

18. Braunstein, A., Zecchina, R.: Survey propagation as local equilibrium equations. Journal of
Statistical Mechanics: Theory and Experiments PO6007 (2004)

19. Wallace, R.J.: Factor analytic studies of CSP heuristics. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 712–726. Springer, Heidelberg (2005)

20. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selec-
tion for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

21. Manolios, P., Zhang, Y.: Implementing survey propagation on graphics processing units. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 311–324. Springer, Heidelberg
(2006)

22. Zhang, W.: Configuration landscape analysis and backbone guided local search. Part I: Sat-
isfiability and maximum satisfiability. Artificial Intelligence 158(1), 1–26 (2004)

23. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered search heuris-
tics. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 743–757. Springer, Heidelberg
(2007)

24. Fang, H., Ruml, W.: Complete local search for propositional satisfiability. In: Proc. of 19th
National Conference on Artificial Intelligence (AAAI 2004), San Jose, CA (2004)

http://www.cs.toronto.edu/~eihsu/VARSAT/

Resolution and Expressiveness of Subclasses of
Quantified Boolean Formulas and Circuits

Hans Kleine Büning1, Xishun Zhao2, and Uwe Bubeck1

1 Universität Paderborn, Germany
kbcsl@upb.de, bubeck@upb.de

2 Sun Yat-sen University Guangzhou, PR China
hsszxs@mail.sysu.edu.cn

Abstract. We present an extension of Q-Unit resolution for formulas
that are not completely in clausal form. This b-unit resolution is applied
to different classes of quantified Boolean formulas in which the existen-
tial and universal variables satisfy the Horn property. These formulas are
transformed into propositional equivalents consisting of only polynomi-
ally many subformulas. We obtain compact encodings as Boolean circuits
and show that both representations have the same expressive power.

1 Introduction

Recently, there has been growing interest [7, 8] in non-clausal or structural quan-
tified Boolean formulas (QBF or QBF∗ if free variables are allowed). Accordingly,
we present an extension of Q-Unit resolution, denoted b-unit resolution, for for-
mulas that are not completely in clausal form. We relate the idea to Boolean
circuits which have the ability to use intermediate results in multiple places by
fan-out, so that we avoid copying of resolvents in our b-unit resolution.

We begin with some definitions. A QBF∗ formula Φ is satisfiable if there is a
truth assignment v to the free variables z such that Φ is true after substituting the
truth values v for the free variables. For Φ∈QCNF∗, we write Φ = Q

∧
i(φ

b
i ∨φf

i),
where the b-part φb

i is a clause over bound variables and the f-part φf
i is a clause

over free variables. QHORN∗ is the set of quantified Horn formulas with free
variables, i.e. formulas Qφ where φ is a Horn formula. QHORNb is the set of
formulas where each b-part φb

i is a Horn clause and φf
i an arbitrary clause over

free variables. QHORN+ (QHORN−) is the subset of QHORNb for which the
f-part of each clause is a disjunction of positive (negated) variables.

A circuit is a DAG with one outgoing edge and multiple input nodes labeled
with Boolean variables. The other nodes are AND-, OR-, and NOT-gates that
each have two (AND and OR) or one (NOT) incoming edges. The fan-out of a
circuit is the maximum number of outgoing edges of the AND- and OR-gates.
We can transform in linear time any circuit into standard form, where the inner
nodes are only AND- and OR-gates and the inputs are variables x and/or negated
variables ¬x. Subsequently, we focus on the class C of circuits in standard form.

A monotone propositional formula contains no negations. Anti-monotone for-
mulas are negated monotone formulas. Analogously, monotone circuits Cmon

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 391–397, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

392 H.K. Büning, X. Zhao, and U. Bubeck

have only non-negated variables as inputs. Anti-monotone circuits Canti−mon

have only negated inputs ¬x. Suppose we have Horn clauses (α1 → x), ...,
(αn → x). We can combine these into ((α1 ∨ . . .∨αn)→ x), which is not a Horn
clause, but (α1∨. . .∨αn) is monotone and thus equivalent to a monotone circuit.
More generally, we introduce C-Horn clauses (c → z), where c is a monotone
propositional formula and z a variable. (c → z) can be represented as a circuit
(z ∨ ¬c) with monotone c. This non-standard circuit can be transformed into
(z ∨ c′) in standard form, where c′ ≈ ¬c and c′ is anti-monotone. A conjunction∧

i(ci → zi) of circuits that represent C-Horn clauses is called a CHorn circuit.
For i = 1, 2, let Φi(z) be a propositional formula over variables z, a QBF∗

formula with free variables z, or a circuit with input variables z. Then Φ1 and
Φ2 are equivalent (Φ1 ≈ Φ2) if and only if for every truth assignment v over
z we have v(Φ1) = v(Φ2). The size |c| of a circuit c is the number of gates.
For a formula Φ, |Φ| is its length. The usual definition is to count the number of
occurrences of variables, including the prefix. Without multiple negations (¬¬x),
this differs only by a constant factor from the number of operators.

Definition 1. For classes A, B of propositional or QBF∗ formulas or circuits,
we let A ≤r

p B if and only if there is a polynomial q such that for any α ∈ A
there is β ∈ B with α ≈ β and |β| ≤ q(|α|). A =r

p B if A ≤r
p B and B ≤r

p A.

2 Extensions of Unit Resolution

It is well known that unit resolution is complete for Horn formulas. Q-Unit reso-
lution [5] extends the idea to QCNF∗ by resolving on free and existential literals
where one of the parent clauses has exactly one such literal. This is correct and
refutation-complete [5] for formulas Φ = Q(α1∧ . . .∧αm) with free variables z in
which for every clause αi the existential and free literals form a Horn clause, i.e.
after eliminating all universals the clause is in HORN. Such formulas are called
quantified extended Horn (QEHORN∗). The satisfiability problem for this class
has been shown to be PSPACE-complete in general and coNP-complete for a
fixed number of prefix alternations (∀∃)k, k ≥ 1 [4]. There exist QEHORN for-
mulas for which every resolution refutation requires exponentially many steps [5].

We now present an extension of Q-Unit resolution for formulas that are not
completely in clausal form. Let Φ = Qv1 . . . Qvn

∧
i(φ

b
i∨αi) be in QBF∗, where φb

i

is a Horn clause over bound variables and αi an arbitrary propositional formula
over free variables. Then Φ is not in QHORNb if αi is not a disjunction of literals.
But φb

i is a Horn formula on which we can apply unit resolution.

Definition 2. We say that (L ∨ α) is a b-unit clause if L is a literal over an
existentially quantified variable and α is a formula over free variables.

Let (L∨α1) be a b-unit clause, (¬L∨ β) a Horn clause over bound variables,
and α2 a formula over free variables. Then we define b-unit resolution as

(L ∨ α1), (¬L ∨ β ∨ α2) | 1
b-Unit-Res (β ∨ α1 ∨ α2) .

Resolution and Expressiveness of Subclasses 393

Q-Unit resolution is only refutation complete in combination with universal re-
duction, that is, the removal of universals that do not dominate any existential in
the same clause. We also have to be careful not to resolve clauses with tautolog-
ical universals. Such blockings usually require detours in resolution derivations,
making them longer. While ∃-unit clauses in Q-Unit resolution may have an ar-
bitrary number of universals, our definition of b-unit resolution avoids these dif-
ficulties by requiring that b-unit clauses have exactly one bounded literal which
is existential. This is justified by the following result on QHORNb formulas.

It has been shown in [3] that any QHORN∗ formula Φ can be transformed
into an equivalent Φ′ ∈ ∃HORN∗, such that the length of Φ′ and the time
for executing the transformation are less than quadratic in |Φ|. That proves
QHORN∗ =r

p ∃HORN∗. A careful analysis of the transformation shows that the
free parts of the clauses remain unchanged. Thus, ∃HORN− =r

p QHORN−. For
Φ ∈ QHORN+, we substitute the positive occurrences of free variables by their
complements. Then the formula is in QHORN− and has an equivalent formula
in ∃HORN− of at most quadratic length. We reverse the substitution and obtain
a formula in ∃HORN+ equivalent to Φ and with length at most quadratic in |Φ|.

For QHORNb ≤r
p ∃HORNb, let Φ(z) = Q (

∧
1≤i≤m(φb

i ∨ φf
i)) be a QHORNb

formula. We introduce for each clause a new variable wi and replace φf
i with

¬wi. We get the QHORN− formula Φ(w) = Q
∧

1≤i≤m(φb
i ∨ ¬wi). Because of

∃HORN− =r
p QHORN−, there is an ∃HORN− formula Φ′(w) = ∃y

∧
j(ϕ

b
j ∨ϕf

j)
of quadratic length with Φ(w) ≈ Φ′(w). For 1 ≤ i ≤ m, we now replace ¬wi

with φf
i and obtain for (ϕb

j ∨ ¬wi1 ∨ · · · ∨ ¬wir) the clause (ϕb
j ∨ φf

i1
∨ · · · ∨ φf

ir
).

The result is equivalent to Φ and is in ∃HORNb with length polynomial in |Φ|.

Lemma 1. ∃HORN◦ =r
p QHORN◦ for ◦ ∈ {∗, b, +,−} by polynomial-time

transformations.

Each step of b-unit resolution can be simulated by a series of regular Q-Unit
resolution steps. Let Qφ = Q(φ′ ∧ (L ∨ α1) ∧ (¬L ∨ β ∨ α2)) be the formula
which contains the two extended clauses to be resolved. Then we transform
(L ∨ α1) into an equivalent conjunction of clauses (L ∨ α1,1) ∧ ... ∧ (L ∨ α1,r),
and similarly (¬L ∨ β ∨ α2) into (¬L ∨ β ∨ α2,1) ∧ ... ∧ (¬L ∨ β ∨ α2,s). Now
we perform all possible Q-Unit resolutions over L. The definition of Q-Unit
resolution implies Qψ ≈ Q(ψ∧σ) for every resolvent σ [6]. In our case, it follows
that Qφ ≈ Q(φ

∧
i,j(β ∨ α1,i ∨ α2,j)). Since all resolvents contain β, we pull it

out
∧

i,j(β ∨ α1,i ∨ α2,j) ≈ β ∨
∧

i,j(α1,i ∨ α2,j). Now we can reverse the CNF
transformation of α1 and α2: β ∨

∧
i,j(α1,i ∨ α2,j) ≈ β ∨

∧
i(α1,i ∨

∧
j α2,j) ≈

β ∨
∧

i(α1,i ∨α2) ≈ β ∨α1 ∨ α2, which is the b-unit resolvent as defined above.

Proposition 1. Let Φ = Qφ be a QBF∗ formula, and let σ be a b-unit resolvent
Φ | 1

b-Unit-Res σ. Then we have Qφ ≈ Q(φ ∧ σ).

So, b-unit resolution is a way to perform multiple unit resolution steps at once.
We attempt to make even more use of this capability by actively combining
multiple b-unit clauses with the same bound variable into a larger b-unit clause.

394 H.K. Büning, X. Zhao, and U. Bubeck

Definition 3. Let ϕ = {F1,1 → x1...Fr1,1 → x1, ..., F1,m → xm...Frm,m → xm}
be a set of b-unit clauses. Fi,j contains only free variables, and xj is bound.

We define cmb(ϕ) := {(F1,1∨. . .∨Fr1,1)→ x1, . . . , (F1,m∨. . .∨Frm,m)→ xm}.

3 Structure of Resolvents and Circuits

We now want to derive by b-unit resolution from a given ∃HORN∗ formula a
quantifier-free formula (F → z) where F is a monotone propositional formula.
While F may have exponential size, we show that it essentially consists of only
at most quadratically many different subformulas, because it can be derived
by a quadratic number of b-unit resolution steps, where each resolvent can be
represented by a linear-size circuit. By fan-out greater than 1, the substitution
of one resolvent into another one can be performed without copying. The ability
of b-unit resolution to work on non-CNF avoids subformulas being torn apart
by repeated CNF transformation. The following example illustrates the idea:
Let Φ = ∃x1∃x2∃x3∃y (¬y∨z)∧(a → x1)∧(b → x1)∧(c∧x1 → y)∧(d∧x1 → x3).
Φ contains the b-units T (0) := {(a → x1), (b → x1)}. We combine these into
G(0) := {(a∨b)→ x1}. Then we resolve the units in G(0) with the clauses in Φ by
b-unit resolution and get T (1) := {(c∧(a∨b)→ y), (d∧(a∨b)→ x3)}∪T (0). The
combined b-units are G(1) := {((a∨b) → x1), (c∧(a∨b) → y), (d∧(a∨b) → x3)}.
Further propagation does not lead to new combined b-units. Finally, we resolve
on the clause (¬y∨z) with negative b-part and get T f = ((c∧(a∨b)) → z) ≈ Φ.
This leads to the algorithm in Listing 1.

Listing 1. ∃HORN∗ to CHorn Transformation

Input Φ(z) = ∃xφ ∈ ∃HORN∗ with free variables z = z0, . . . , zm

and n clauses, each containing a bound variable.

Φb = ∃xφb is unsatisfiable, φ contains exactly one clause
φ1 = (B1 → z0) whose bound part is a negative clause;

T (0) := {(F → x) ∈ φ | x bound, F has only (positive) free vars};
G(0) := cmb(T (0));
for each (F → x) ∈ G(0)

build a monotone circuit cx(0) ≈ F with output labeled x;
for (k = 0 to n) {

T (k + 1) := {ψ[x1/F1, . . . , xr/Fr] → x | (ψ → x) ∈ φ, (Fi → xi) ∈ G(k),
x1, . . . , xr are the bound variables in ψ, x is bound}

for each (ψ′ → x) ∈ T (k + 1)
build a monotone circuit cψ′(k + 1) ≈ ψ′ = ψ[x1/F1, . . . , xr/Fr]
with output labeled ψ′ by reusing the circuits cxi(k);

G(k + 1) := cmb(G(k) ∪ T (k + 1));
for each (F → x) ∈ G(k + 1)
build a monotone circuit cx(k + 1) ≈ F with output labeled x
by reusing the circuits cxi(k) and cψ′

j
(k + 1);

}

T f := (B1[x1/F1, . . . , xr/Fr] → z0)

Resolution and Expressiveness of Subclasses 395

where x1, . . . , xr are the bound variables in the distinguished
clause (B1 → z0) and (Fi → xi) ∈ G(n + 1);

combine circuits cx1(n + 1), · · · , cxr (n + 1) by AND−gates into a
monotone circuit cΦ ≈ B1[x1/F1, . . . , xr/Fr];

Output CHorn circuit c ≈ z0 ∨ ¬cΦ. It follows that c ≈ Φ(z).

The algorithm requires some initial transformations. Each Φ = Q
∧

i(φ
b
i∨φf

i) can
be converted in polynomial time into an equivalent formula such that every f-part
contains at most one literal. Let φf

i = (α ∨ β) and φb
i = (ϕ1 ∨ϕ2) where ϕ1 and

ϕ2 contain the negative and the positive literals, respectively. Then we introduce
a new bound variable y and replace φi with (ϕ2 ∨¬y ∨α) and (ϕ1 ∨ y ∨ β). The
monotone or anti-monotone structure of the f-parts and the Horn structure of
the b-parts is preserved. So we assume that the clauses in QHORN∗ (QHORN+,
QHORN−, QHORNb) formulas contain at most one free literal such that the
complete clause is a Horn clause (the f-part is a positive literal, the f-part is a
negative literal, the f-part is an arbitrary free literal). Clauses φj = φf

j can be
shifted before the prefix, such that Φ ≈ φj ∧ Q

∧
i�=j φi. We therefore focus on

formulas in which every clause contains a bound variable. We also require that
every bound variable has at least one positive and one negative occurrence.

We can decide in linear time whether the conjunction Φb :=
∧

i φb
i of all b-

parts is satisfiable, because Horn satisfiability is solvable in linear time. If Φb is
indeed satisfiable, Φ(z) is true for any truth assignment to the free variables and
can be replaced by (z ∨ ¬z). Hence, we assume that Φb is unsatisfiable. Since
any minimal unsatisfiable Horn formula contains exactly one negative clause in
addition to the mixed clauses, we divide the formula into multiple subformulas
that each contain a single negative clause φb

i . Suppose Φ has the negative b-parts
φb

1, . . . , φ
b
r. Let φ′ := φ−{φ1, . . . , φr}. Then ∃xφ ≈ ∃x(φ′∧φ1)∧ . . .∧∃x(φ′∧φr).

The clauses φi have the form φi = (¬xj1 ∨ . . .∨¬xjs ∨ ¬zk1 ∨ . . .∨ ¬zkt ∨ z0)
for free variables zk1 , . . . , zkt , z0. W.l.o.g., we assume φi = (¬xj1 ∨ . . .∨¬xjs ∨z0)
without negative free variables. If that were not the case for some φi, we could
split it into (¬xj1 ∨ . . .∨¬xjs ∨¬zk1 ∨ . . .∨¬zkt ∨ x̃) and (¬x̃∨z0) by introducing
a new bound variable x̃. Now the only clause with negative b-part is (¬x̃ ∨ z0).

From Listing 1, it is clear that the size of the circuit cΦ → z0 is polynomial
in |φ|, because the number of b-units in T (i) and G(i), 0 ≤ i ≤ n + 1, is
each bounded by the number of clauses in Φ, and each circuit that represents
one of these b-units has linear size due to the reusing of existing circuits. The
equivalence of Φ and T f follows in the direction from left to right immediately
from Proposition 1. In the other direction, it is possible to show that for truth
assignments V with V |= T f , V implies enough left hand sides of b-unit clauses
(Fi → xi) ∈ G(n + 1) such that φ is satisfied by V and xi = 1 for these xi.

Theorem 1. Let Φ = ∃xφ be the input to the transformation in Listing 1.
In polynomial time, the algorithm computes T f with T f ≈ ∃xφ. T f can be
represented by a CHorn circuit of polynomial size, and thus, ∃HORN∗ ≤r

p CHorn.

396 H.K. Büning, X. Zhao, and U. Bubeck

Any Φ ∈ ∃HORN− is in ∃HORN∗ without positive free literals. Then the algo-
rithm produces a disjunction of anti-monotone circuits c1, . . . , cr. The disjunction
of anti-monotone circuits is again anti-monotone, so ∃HORN− ≤r

p Canti−mon.
For Φ ∈ ∃HORN+, we replace the free literals with their complements and

obtain a formula in ∃HORN− and then an equivalent anti-monotone circuit.
We reverse the substitution and obtain a monotone circuit. Then ∃HORN+ ≤r

p

Cmon.
For Φ ∈ ∃HORNb, the f-parts φf

i are arbitrary clauses over free variables. For
each φi, we choose a new variable wi that replaces φf

i . The result is in ∃HORN+,
and there is an equivalent monotone circuit c. For each φf

i , we build an equiva-
lent circuit ci with output yi and connect it to the input wi of c. The new circuit
is equivalent to Φ, and its size is polynomial in |Φ|. Thus, ∃HORNb ≤r

p C.
The well-known transformation of circuits to formulas [1, 2] produces ∃HORNb

formulas. A close look at these for monotone, anti-monotone and CHorn circuits
shows that the above polynomial-size relations also hold in the other direction.

Theorem 2. (Quantified Horn Formulas and Circuits)
By polynomial-time transformations, we have:

1. QHORN+ =r
p ∃HORN+ =r

p Cmon

2. QHORN− =r
p ∃HORN− =r

p Canti−mon

3. QHORN∗ =r
p ∃HORN∗ =r

p CHorn

4. QHORNb =r
p ∃HORNb =r

p C

The latter constitutes an alternative proof to an earlier result ∃HORNb =r
p C

by Anderaa and Börger [1], which is based on the fact that Horn satisfiability is
solvable by a polynomial-time deterministic Turing machine, which in turn can
be encoded by a uniform family of polynomial-size circuits.

4 Conclusion

By developing b-unit resolution for formulas that are not completely in clausal
form, we have shown that various classes of quantified Boolean formulas in which
the bound variables satisfy the Horn property can be transformed into quantifier-
free formulas consisting of only polynomially many subformulas. These have com-
pact encodings as circuits, and vice versa, which shows that both representations
have the same expressive power, even if universal quantifiers are allowed.

References

[1] Anderaa, S., Börger, E.: The Equivalence of Horn and Network Complexity for
Boolean Functions. Acta Informatica 15, 303–307 (1981)

[2] Bauer, M., Brand, D., Fischer, M., Meyer, A., Paterson, M.: A Note on Disjunctive
Form Tautologies. SIGACT News 5(2), 17–20 (1973)

[3] Bubeck, U., Kleine Büning, H.: Models and Quantifier Elimination for Quantified
Horn Formulas. Discrete Applied Mathematics 156(10), 1606–1622 (2008)

Resolution and Expressiveness of Subclasses 397

[4] Flögel, A., Karpinski, M., Kleine Büning, H.: Subclasses of Quantified Boolean
Formulas. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.)
CSL 1990. LNCS, vol. 533, pp. 145–155. Springer, Heidelberg (1991)

[5] Flögel, A., Karpinski, M., Kleine Büning, H.: Resolution for Quantified Boolean
Formulas. Information and Computation 117(1), 12–18 (1995)

[6] Karpinski, M., Kleine Büning, H., Schmitt, P.: On the computational complexity
of quantified Horn clauses. In: CSL 1987. LNCS, vol. 329, pp. 129–137. Springer,
Heidelberg (1988)

[7] Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF Solving. In: Kleine Bün-
ing, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidel-
berg (2008)

[8] Sabharwal, A., Ansotegui, C., Gomes, C., Hart, J., Selman, B.: QBF Modeling:
Exploiting Player Symmetry for Simplicity and Efficiency. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 382–395. Springer, Heidelberg (2006)

A Compact Representation for Syntactic
Dependencies in QBFs

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at/

Abstract. Different quantifier types in Quantified Boolean Formulae
(QBF) introduce variable dependencies which have to be taken into con-
sideration when deciding satisfiability of a QBF. In this work, we focus on
dependencies based on syntactically connected variables. We generalize
our previous ideas for efficiently representing dependency sets of univer-
sal variables to existential ones. We obtain a dependency graph which
is applicable to arbitrary QBF solvers. The core part of our work is the
formulation and correctness proof of a static and compact, tree-shaped
connection relation over equivalence classes of existential variables. In
practice, this relation is constructed once from a given QBF and al-
lows to share connection information among all variables. We report on
practical aspects and demonstrate the effectiveness of our approach in
experiments on structured formulae from QBF competitions. Further, we
show by example that the common approach of quantifier scope analysis
is not optimal among syntactic methods for dependency computation.

1 Introduction

In the logic of Quantified Boolean Formulae (QBF), variables can be existen-
tially or universally quantified. This extends propositional logic (SAT), where
all variables are existentially quantified, and renders the decision problem of
QBF PSPACE-complete [26]. Whereas QBF is not more expressive than SAT,
relevant problems from formal verification [6,11,19] often can be encoded more
compactly in QBF than in SAT.

The two quantifier types in QBF introduce dependencies between differently
quantified variables. For example, if (the value of) an existential variable y de-
pends on (the value of) a universal variable x, then a search-based QBF solver
must not assign y before x to ensure soundness.

Example 1. In the satisfiable QBF ∀x∃y. (x∨¬y)∧ (¬x∨ y), y depends on x. If
erroneously y is assigned before x then satisfiability can not be concluded.

Dependencies limit the solver’s freedom to assign variables and thus influence its
performance negatively and complicate the integration of unit propagation and
learning as reported in [16,17,18,21,28]. The problem of determining smallest

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 398–411, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://fmv.jku.at/

A Compact Representation for Syntactic Dependencies in QBFs 399

possible dependency sets is therefore closely related to the practical applicabil-
ity of QBF solvers. This also applies to memory-bound solvers which eliminate
variables, for example by expansion [7,8] or skolemization [5,20].

Identifying dependencies in QBFs has been addressed in various ways in pre-
vious approaches. Most QBF solvers process formulae in prenex conjunctive
normal form (PCNF), where all quantifiers occur in the quantifier prefix and
the quantifier-free part of the formula is in CNF. For example, in search-based
solvers like [10,14,28], dependencies are given by the total linear quantifier order-
ing in the prefix. Strategies for converting QBFs into PCNF were suggested in
[12] to produce optimal prefixes with respect to the number of quantifier alter-
nations. As a more powerful approach, mini-scoping was used in [2] to minimize
quantifier scopes by shifting quantifiers from the prefix into the formula. Mini-
scoping results in a tree shaped dependency relation, which follows the formula
structure.

By a similar approach in [4], syntactic quantifier trees were extracted from
a PCNF to be used instead of the linear prefix. In expansion-based solvers like
[7,8], dependencies are identified by variable connections. A partial quantifier
ordering was derived in [18] by analyzing the quantifier scope structure in non-
PCNF formulae prior to conversion into PCNF. Again this results in a tree-
shaped prefix which leaves more freedom for choosing decision variables. The
same method can implicitly be applied in non-PCNF solvers [13]. All of these
approaches mentioned so far are based on syntactic analysis of the QBF.

Informally, y depends on x in a QBF if reordering the quantifiers of x and y
in the prefix changes satisfiability. For example, the formula in Ex. 1 becomes
unsatisfiable under the prefix ∃y∀x. Dependencies were formalized in [25] in
terms of dependency schemes. A dependency scheme for a QBF is a binary
relation D on the set of variables where (x, y) ∈ D if y depends on x. In practice,
D must be computed according to some strategy which influences the quality of
D. Trivially D could be defined to correspond to the prefix: (x, y) ∈ D if y occurs
to the right of x in the prefix and is quantified differently. Such trivial dependency
scheme is usually too restrictive. The goal is to minimize dependencies.

Since the problem of computing the optimal, that is the smallest, dependency
scheme is PSPACE-hard [25], a trade-off has to be found between efficiency (poly-
nomial time computation) and optimality (non-optimal over-approximation). In
this work we focus on dependency computation for QBFs in PCNF by the stan-
dard dependency scheme Dstd defined in [25], which is another syntactic ap-
proach based on variable connections [7,8]. As we show, Dstd can be efficiently
represented as a compact graph. This first result gives a structural characteriza-
tion of the standard dependency scheme. We then show how this graph can be
constructed and give experimental results.

Before elaborating our ideas, we review dependency computation by mini-
scoping [2,4] and point out two drawbacks compared to our approach using Dstd.
While considering QBFs in PCNF, we argue that our results can be extended to
QBFs with tree-shaped prefixes. Thus they are also applicable to solvers using
quantifier scope analysis [4,13,18]. Again, using a less restrictive (that is smaller)
dependency relation provides more flexibility.

400 F. Lonsing and A. Biere

1.1 Motivation

Mini-scoping was applied in various contexts as a syntactic method for depen-
dency computation [2,4,5,7,8,12]. By rule (Qx. (φ∧ψ)) ≡ (Qx. φ)∧ψ where x 	∈
Var(ψ), Q ∈ {∀, ∃}, quantifiers are shifted from the prefix into the formula.
Their scopes are reduced to a subset of clauses. This produces a syntactic quan-
tifier tree (parse tree) similar to [4]. For a quantifier tree and a variable x, all
differently quantified descendants of x are regarded as depending on x.

Example 2. Consider the QBF ∃a, b∀x, y∃c, d. (a∨x∨c)∧(a∨b)∧(b∨d)∧(y∨d).
Minimizing ∃c, ∃d, ∀x and ∀y yields ∃a, b. (∀x∃c. (a∨x∨c))∧(a∨b)∧(∀y∃d. (b∨
d)∧ (y∨d)). Now there is the non-deterministic choice whether to first minimize
∃a and then ∃b or vice versa. Fig. 1 shows the quantifier trees for the two alter-
natives. Dependency schemes resulting from the trees (left and middle) are Dl =
{(a, x), (x, c), (a, y), (b, y), (y, d)} and Dm = {(b, x), (a, x), (x, c), (b, y), (y, d)}.

Apart from non-determinism, which has already been reported in [4,12,13,18],
mini-scoping as well as quantifier scope analysis [13,18] is not optimal among
syntactic methods for dependency computation. At this point, we informally
introduce Dstd and report its advantage over mini-scoping and scope analysis.

The standard dependency scheme Dstd, which is the focus of our work, was
defined in [25] and is based on ideas from expansion-based solvers [7,8]. Depen-
dencies are identified by analyzing connections between variables in a PCNF
over sequences of clauses as follows.

Definition 1 (X-path). For x, y ∈ V , where V is the set of variables in the
PCNF, and X ⊆ V , an X-path between x and y is a sequence C1, . . . , Ck of
clauses such that x ∈ C1, y ∈ Ck and Ci ∩ Ci+1 ∩X 	= ∅ for 1 ≤ i < k.

Example 3. For the formula from Ex. 2, there are X-paths between b and y for
X = {d} and clauses (b ∨ d) and (y ∨ d), and between a and y for X = {b, d}
and clauses (a ∨ b), (b ∨ d) and (y ∨ d).

Definition 2 (Dstd informally). (x, y) ∈ Dstd whenever x and y are quanti-
fied differently and there is an X-path between x and y where X is the set of
existential variables to the right of, but not adjacent to x in the quantifier prefix.

E

b

E

c

A

x

E

A

y

E

b

E

a

d

E

A

E

E

A

E

c

x

a

b

y

d

E

A

E

A

E

c

x

a

y

d

Fig. 1. Two possible quantifier trees for the QBF ∃a, b∀x, y∃c, d. (a∨ x∨ c)∧ (a∨ b)∧
(b ∨ d) ∧ (y ∨ d) obtained by mini-scoping (left and middle) and dependencies by the
standard dependency scheme Dstd (right). See also Ex. 2 and 4.

A Compact Representation for Syntactic Dependencies in QBFs 401

A correctness proof of Dstd is given in [25] and a formal definition in Def. 5.

Example 4. For the formula from Ex. 2, Dstd = {(a, x), (x, c), (b, y), (y, d)}.

Note that in Ex. 4 (a, y) 	∈ Dstd and (b, x) 	∈ Dstd, hence y does not depend on
a and x not on b by Dstd. By Def. 2, a and b are excluded from X , and there
are no X-paths for X = {c, d} between a, y and b, x in the QBF from Ex. 2.

Comparing dependencies from Ex. 2 and 4 shows a crucial difference between
mini-scoping or scope analysis and Dstd. Dependencies by Dstd can be strictly
less restrictive: no matter which of the two non-deterministically constructed
quantifier trees (Fig. 1) are taken for dependency computation, either (a, y) or
(b, x) is included in the resulting dependency set, but neither in Dstd. The same
applies to scope analysis like in [13,18] because any tree-shaped prefix of non-
PCNF formulae can in principle be obtained by mini-scoping.

Because of non-determinism and more restrictive dependencies when using
mini-scoping or scope analysis, we focus on Dstd. Our motivation is two-fold.
First, we want to extract a static graph representation of Dstd from a QBF in
PCNF. By traversing clauses in a QBF φ, Dstd(x) for one variable x ∈ Var(φ)
can be computed in O(|φ|) time [25] where |φ| is the length of φ. However, com-
puting Dstd(x) for all variables x by the same approach requires O(|Var (φ)|.|φ|)
time. We construct a directed acyclic graph (DAG) for Dstd, which has the
same worst-case time complexity but can be done efficiently in practice. The
idea is similar to quantifier trees by mini-scoping [4] but does not suffer from
non-determinism and, as shown, results in a less restrictive dependency relation.

Example 5. Search-based solvers profit from Dstd because variables can be as-
signed earlier. In Fig. 1, both a and b have to be assigned before y (left tree)
and before x (middle). By Dstd (right), x and y can be assigned as soon as a,
respectively b has been assigned.

Second, we aim at compactness in practice. We take advantage of properties
of the connection relations from [7,8] which allow to merge existential variables
into equivalence classes. A static connection relation over equivalence classes is
defined which is shared between all variables, thus contributing to compactness.

In this work, we extend our ideas from [22] to existential variables, thus making
our work applicable to arbitrary QBF solvers. We develop a formal background
for a graph representation of Dstd in Sec. 3 including proofs. Based on this the-
oretical part, practical aspects concerning dependency computation and graph
construction are reported in Sec. 4. In Sec. 5, experimental results on structured
formulae demonstrate the effectiveness of our approach.

2 Preliminaries

For a set of propositional variables V , a literal is either a variable x ∈ V or its
negation ¬x where v(x) = x and v(¬x) = x denotes the variable of a literal.
A clause is a disjunction over literals. A propositional formula is in conjunctive
normal form (CNF) if it consists of a conjunction over clauses.

402 F. Lonsing and A. Biere

A quantified boolean formula (QBF) S1 . . . Sn. φ in prenex conjunctive normal
form (PCNF) consists of a propositional formula φ in CNF over a set of variables
V and a quantifier prefix S1 . . . Sn. The quantifier prefix is a linearly ordered set
of scopes Si where S1 < . . . < Sn, which forms a partition on the set of variables:
V = S1 ∪ . . . ∪ Sn where Si 	= ∅ and Si ∩ Sj = ∅ for 1 ≤ i, j ≤ n and i 	= j.

A scope Si is existential if it is associated with an existential quantifier, written
as q(Si) = ∃ and universal otherwise where q(Si) = ∀. The set of existential and
universal variables is denoted by V∃ =

⋃
Si for q(Si) = ∃ and V∀ =

⋃
Si for

q(Si) = ∀, respectively. For a variable x ∈ Si, s(x) = Si is the scope of x
and q(x) = q(s(x)) the type of x. For two adjacent scopes Si and Si+1 where
1 ≤ i < n, q(Si) 	= q(Si+1). Given a QBF with n scopes, there are n−1 quantifier
alternations.

For a scope Si and literal l, δ(Si) = i and δ(l) = δ(s(v(l))) denote the level of
Si and of l, respectively. For scopes Si, Sj and literals l, k, Sj is larger than Si

and k is larger than l if δ(Si) < δ(Sj) and δ(l) < δ(k), respectively.
Let R ⊆ V × V be a binary relation on the set of variables V . The reflexive

and transitive closure of R is the smallest reflexive and transitive R′ ⊆ V × V
such that R ⊆ R′. The reflexive and transitive reduction of R is the smallest
R′ ⊆ V × V such that R and R′ have the same reflexive and transitive closure.

In the following, we consider QBFs in PCNF where for all clauses C = (l1 ∨
. . . ∨ lk), v(li) 	= v(lj) and δ(li) ≤ δ(lj) for 1 ≤ i < j ≤ k and q(v(lk)) = ∃.
A clause neither contains multiple nor complementary literals of one and the
same variable, all literals are sorted ascendingly according to their level and the
largest literal is existential. Universal reduction [7,9] can be applied to remove
literals lk for which q(v(lk)) = ∀. Furthermore, we assume that there occurs at
least one literal for each x ∈ V in the formula.

3 Theoretical Background

The goal of our work is a compact graph representation of the standard depen-
dency scheme Dstd. In this section we pick up our ideas from [22]. We first define
a connection relation over equivalence classes of existential variables. A directed
and reduced variant of this relation is tree-shaped and, as we prove, can be
used for dependency computation by Dstd. For reasons of space and conciseness
we omit detailed proofs when appropriate. In definitions we explicitly state the
types of variables since this is crucial particularly for connection relations.

Definition 3. For x ∈ V , if q(x) = ∃ then q(x) = ∀ and q(x) = ∃ otherwise.

Definition 4. For a QBF and q ∈ {∃, ∀}, Vq,i = {y ∈ Vq | δ(y) ≥ i}.
Definition 5 (Standard Dependency Scheme). For x ∈ V, i = δ(x) + 1 :
Dstd(x) = {y ∈ Vq(x),i | there is an X-path between x and y for X = V∃,i}.

By setting i = δ(x) + 1 and X = V∃,i, universal variables as well as variables
from the scope of x are excluded from X as already informally in Def. 2.1

1 The correctness proof of Dstd in [25] is given for i = δ(x) and, according to the
author’s remarks, also works when i = δ(x) + 1 as for our purposes.

A Compact Representation for Syntactic Dependencies in QBFs 403

i q(Si) Si (a2, e5, e9)
1 ∀ a1, a2 (e5, e9, e15)
2 ∃ e3, e4, e5 (e3, e8, e13)
3 ∀ a6, a7 (e4, a7, e10)
4 ∃ e8, e9, e10 (e4, e13, e14)
5 ∀ a11, a12 (a1, a6, e8, e14)
6 ∃ e13, e14, e15 (a11, a12, e13)

a1

e3

a2

e5e4

a6

e8 e10

a7

e9

a12

e14 e15

a11

e13

Fig. 2. QBF example. The table on the left shows the levels, quantifiers and variables
for each scope in the first three columns and clauses as lists of literals in the last column.
Variables and literals are uniquely identified by integers as in QDIMACS format [24].
Identifier prefixes “e” and “a” indicate types ∃ and ∀, respectively. The graph on the
right shows a compact representation of Dstd for the QBF (see also Ex. 10).

Example 6. For the QBF in Fig. 2, e13 ∈ Dstd(a1) by clauses (a1, a6, e8, e14)
and (e3, e8, e13), and X = V∃,2 = {e3, e4, e5, e8, e9, e10, e13, e14, e15}.
Different from [7,8,25], the following definition of connections is scope-aware.

Definition 6 (Connection). For x, y ∈ V , x is connected to y with respect to
scope Si, written as x→i y, if, and only if y ∈ V∃,i and there is a clause C such
that x ∈ C and y ∈ C. →∗

i denotes the reflexive and transitive closure of →i.

Relation →∗
i is defined with respect to some scope Si: if x →∗

i y, then x is
connected to y over existential variables from scopes larger than or equal to Si

only. There is a close correspondence between X-paths and →∗
i .

Corollary 1. For x, y ∈ V , if x →∗
i y, then there is an X-path between x and

y for X = V∃,i.

Due to Def. 6 the converse of Cor. 1 does not hold in general. For example, if
there is an X-path between x ∈ V∃ and y ∈ V∀ then x 	→∗

i y for all i. A weaker
variant can be stated as follows.

Corollary 2. For x ∈ V, y ∈ V∃, if there is an X-path between x and y for
X = V∃,i and i ≤ min(δ(x), δ(y)), then x →∗

i y.

Connections with respect to a scope Sj are preserved for any smaller scope Si.

Corollary 3. For x, y ∈ V, i ≤ j : if x →∗
j y, then also x →∗

i y.

For proper values of i, connections between existential variables are symmetric
because X-paths resulting from Cor. 1 can be reversed.

Lemma 1. For x, y ∈ V∃ and i ≤ min(δ(x), δ(y)) : if x→∗
i y then y →∗

i x.

Example 7. For the QBF in Fig. 2, e3 →4 e8 but e3 	→5 e8, e8 →6 e14 and by
Cor. 3 also e8 →1 e14, further e3 →∗

2 e14 and by Lem. 1 e14→∗
2 e3.

404 F. Lonsing and A. Biere

As a first step towards a compact representation of Dstd we want to take advan-
tage of situations where two variables can be regarded as equivalent.

Definition 7 (Equivalence). For x, y ∈ V , x is equivalent to y, written as
x ≈ y, if, and only if either (1) x = y or (2) q(x) = q(y) = ∃, δ(x) = δ(y) = i
and x →∗

i y.

Variables x and y are equivalent if x = y or both are from the same existential
scope Si and are connected by existential variables larger than or equal to Si.

Theorem 1. ≈ is an equivalence relation. For x ∈ V , [x] is the class of x.

Proof. Reflexivity is trivial since x ≈ x for x ∈ V by Def. 7. If not q(x) =
q(y) = ∃ then by Def. 7 x ≈ y if, and only if x = y. Since = is an equivalence
relation, symmetry and transitivity of ≈ follow immediately. Otherwise, assume
q(x) = q(y) = ∃. If x ≈ y and x = y, then also y ≈ x by Def. 7. If x ≈ y and
x 	= y then by Def. 6 and Def. 7 δ(x) = δ(y) and x →∗

i y for i = δ(x) = δ(y).
Then by Lem. 1 also y →∗

i x and hence y ≈ x. Therefore ≈ is symmetric. To
show transitivity, assume x ≈ y′ and y′ ≈ y for y′ ∈ V . Then more precisely
y′ ∈ V∃ (because otherwise x 	≈ y′ and y′ 	≈ y) and by Def. 7 also x →∗

i y′,
y′ →∗

i y for i = δ(x) = δ(y′) = δ(y) and q(x) = q(y′) = q(y). By x →∗
i y′,

y′ →∗
i y and transitivity of →∗

i , also x→∗
i y, hence x ≈ y. ��

Example 8. For the QBF in Fig. 2: e3 ≈ e4 since q(e3) = q(e4) = ∃, δ(e3) =
δ(e4) = 2 and e3 →∗

2 e4 by e3 →2 e8 →2 e14 →2 e4. Also e13 ≈ e14 since
e13→6 e14 but e5 	≈ e4 because e5 	→∗

2 e4. Trivially a11 ≈ a11 and e3 	≈ e14.

Relation →∗
i is compatible with ≈: if two variables are connected then so are all

members of their respective classes and vice versa as stated in Lem. 2.

Lemma 2. Let x, y ∈ V, i ≤ min(δ(x), δ(y)). Then x →∗
i y if, and only if

x′ →∗
i y′ for all x′ ∈ [x], y′ ∈ [y].

Proof. The proof works regardless of the types of x and y by Def. 6 (reflexivity
of →∗

i), Cor. 3 and Def. 7. Trivial cases arise for V∀. Assume x→∗
i y for x, y ∈ V

and i ≤ min(δ(x), δ(y)). Then for x′ ∈ [x], y′ ∈ [y], x′ →∗
i x and y →∗

i y′ by
Cor. 3 and Def. 7. Since x′ →∗

i x, x →∗
i y (by assumption), y →∗

i y′, also x′ →∗
i y′

by transitivity of→∗
i . The other direction can be shown similarly by Lem. 1. ��

When regarding [x] as an arbitrary class member, we may write, for example,
[x]→∗

i [y] by Lem. 2. This notation denotes connections between classes.
Lem. 2 would not hold for arbitrary values of i. For example, if δ(x) < i then

x 	→∗
i x′ for x′ ∈ [x], which contradicts Def. 7. The following variant of Lem. 2

does not refer to [x] and holds for arbitrary values of i.

Lemma 3. Let x, y ∈ V with δ(x) ≤ δ(y). Then x →∗
i y if, and only if x →∗

i y′

for all y′ ∈ [y].

Example 9. For the QBF in Fig. 2, e3 ≈ e4, e10 ≈ e10, where [e10] is a singleton
class, and e4 →∗

2 e10 because e4 →2 e10. By Lem. 2, also e3 →∗
2 e10 because

e3→2 e8→2 e14→2 e4→2 e10.

A Compact Representation for Syntactic Dependencies in QBFs 405

Besides considering classes in →∗
i by Lem. 2, the following relation additionally

allows to share information about connections, which is pointed out in Sec. 4.1.

Definition 8 (Directed Connection). �∗ denotes the directed connection
relation. For x ∈ V, y ∈ V∃, [x] �∗ [y] if, and only if, δ(x) ≤ δ(y) and x →∗

i y
for i = δ(x). The reflexive and transitive reduction of �∗ is denoted by �.

Corollary 4. For x, y ∈ V : if [x] �∗ [y] then either [x] = [y] or δ(x) < δ(y).

Relation �∗ is defined on classes only and respects the scope ordering. If [x] �∗

[y] then variables smaller than x are excluded in the connection between x and
y. By Cor. 4, if [x] �∗ [y] then either x and y are in the same class or in different
classes but from different scopes. We now prove that our definitions can be used
to compute Dstd.

Theorem 2 (Dependency Computation). For x ∈ V, i = δ(x) + 1 :

Dstd(x) = {y ∈ V
q(x),i | ∃w ∈ V∃,i : x →∗

i w and y →∗
i w} (1)

= {y ∈ Vq(x),i | ∃w ∈ V∃,i : x →∗
i [w] and [y]→∗

i [w]} (2)

= {y ∈ Vq(x),i | ∃w ∈ V∃,i : x →∗
i [w] and [y] �∗ [w]} (3)

Proof. Equivalence of left (LHS) and right-hand sides (RHS) of Eqn. 1 to 3.

– LHS(1) = RHS(1): Assume X-path P between x and y by clauses C1, . . . , Ck

where y ∈ Vq(x),i. P can be split into P1 between x, w for clauses C1, . . . , Cj

where w ∈ Cj , 1 ≤ j ≤ k, w ∈ V∃,i and P2 between w, y by clauses Cj , . . . , Ck.
By P1 and Cor. 2 also x →∗

i w and by reversing P2 and Cor. 2, also y →∗
i w

and hence y ∈ RHS(1). For the other direction, assume x →∗
i w and y →∗

i w.
Then by Cor. 1, there are X-paths P1 between x, w and P2 between y, w for
X = V∃,i. An X-path P between x, y can be constructed by combining P1
with reversed P2, thus y ∈ LHS(1).

– RHS(1) = RHS(2): Assume x →∗
i w and y →∗

i w. Since w ∈ V∃,i, also
δ(x) ≤ δ(w) and hence by Lem. 3 and Def. 7 also x →∗

i [w]. Further, because
i ≤ δ(y) and i ≤ δ(w) and hence i ≤ min(δ(y), δ(w)), also [y] →∗

i [w] by
Lem. 2 and Def. 7. Since x →∗

i [w] and [y] →∗
i [w], also y ∈ RHS(2). For

the other direction, assume x →∗
i [w] and [y] →∗

i [w]. Similar arguments
apply to derive x →∗

i w and y →∗
i w by Lem. 2, Lem. 3 and Def. 7. Hence

y ∈ RHS(1).
– RHS(2) = RHS(3): Assume x →∗

i [w] and [y] →∗
i [w]. Since LHS(1) =

RHS(1) = RHS(2), there is an X-path P between x, y for X = V∃,i and
clauses C1, . . . , Ck where y ∈ Ck. Let l denote the largest literal in Ck. By
assumptions in Sec. 2, v(l) ∈ V∃ and more precisely δ(y) ≤ δ(l) (if q(y) = ∀
then δ(y) < δ(l)). Assume that w = v(l). Then δ(y) ≤ δ(w). By y, w ∈ Ck

also y →j w for j = δ(y) and y →∗
j w by Def. 6. By y →∗

j w and δ(y) ≤ δ(w)
also [y] �∗ [w]. Since x →∗

i [w] and [y] �∗ [w] also y ∈ RHS(3). For the
other direction, Def. 8, Cor. 3 and Lem. 2 apply. ��

406 F. Lonsing and A. Biere

4 Practical Application

In Thm. 2, Eqn. 1 is similar to computation by X-paths in Def. 5, Eqn. 2 refers
to classes rather than individual variables, which is already an improvement. The
step from Eqn. 2 to Eqn. 3 is the most interesting one for practical applications,
yet this is not apparent from theory. Since �∗ is directed, it restricts the set
of classes to be considered when connections of a variable are determined. In
practice this contributes to compactness in addition to equivalence classes. In
this section we first examine properties of �∗ over existential variables which
allow to efficiently represent its reflexive and transitive reduction � as a tree.
This tree can be shared between all variables and is the basis for a graph data-
structure representing Dstd.

4.1 A Tree-Shaped Representation of �

Since �∗ is directed by Def. 8 and hence also antisymmetric and acyclic, its
transitive reduction � is unique [1]. The following lemma states a property of
�∗ which accounts for the tree structure of �.

Lemma 4. Let x, y, z ∈ V∃ where δ(x) ≤ δ(y). If [x] �∗ [z] and [y] �∗ [z] then
[x] �∗ [y].

Proof. Assume [x] �∗ [z] and [y] �∗ [z] where δ(x) ≤ δ(y). Then by Def. 8,
x →∗

i z for i = δ(x) and y →∗
j z for j = δ(y) and δ(x) ≤ δ(y) ≤ δ(z). By Cor. 3

also y →∗
i z and by Lem. 1 z →∗

i y. By Def. 6, x→∗
i z and z →∗

i y, also x →∗
i y

and [x] �∗ [y]. ��

If [x] �∗ [z] and [y] �∗ [z] for existential variables x, y, z and δ(x) ≤ δ(y) then
by Lem. 4 [x] �∗ [z] is transitive. As a consequence [x] 	� [z]: at most one class
is related to another one in �. Hence � can directly be represented as a forest,
that is a collection of trees.

Definition 9 (Connection Forest). The connection forest (c-forest) for a
QBF with m existential scopes is a collection of trees over V∃ with respect to ≈
with the following properties:

1. For x, y ∈ V∃ : there is an edge ([x], [y]) if, and only if [x] � [y].
2. For x, y ∈ V∃ : there is a path from [x] to [y] if, and only if [x] �∗ [y].
3. The maximum length (number of edges) of a path is m− 1 (by Cor. 4).

4.2 Dependency Computation by Connection-Forests

The c-forest represents directed connections between existential variables. To
compute Dstd(x) for arbitrary x ∈ V , a set of proper classes has to be found
in the c-forest which exactly denote all connections of x to larger existential
variables. Classes in such a set must be connected to x and be minimal with
respect to the scope ordering since edges in the c-forest are directed. Descendants
of such classes in the c-forest then comprise all connections of x by �∗.

A Compact Representation for Syntactic Dependencies in QBFs 407

Definition 10 (Smallest Ancestor). For y ∈ V∃, i ≤ δ(y) and the c-forest,
let h(i, [y]) = [y′] such that y′ ∈ V∃,i, [y′] �∗ [y] and there is no y′′ ∈ V∃,i with
i ≤ δ(y′′) < δ(y′) and [y′′] �∗ [y].

Class h(i, [y]) is the smallest ancestor of [y] which is larger than or equal to Si,
hence h(i, [y]) is minimal with respect to Si and the scope ordering.

Definition 11 (Descendants). For x ∈ V and the c-forest, the set of descen-
dants H∗

i (x) with respect to scope Si is defined as follows:

1. VC,i(x) := {[y] | y ∈ V∃,i and x→i y}
2. Hi(x) := {[z] | [z] = h(i, [y]) for [y] ∈ VC,i(x)}
3. H∗

i (x) := {[y] | [z] �∗ [y] for [z] ∈ Hi(x)}
From clauses containing x, classes of existential variables larger than or equal
to Si are collected in VC,i(x). Hi(x) contains smallest ancestors with respect to
Si for classes in VC,i(x). H∗

i (x) comprises descendants of classes in Hi(x) and
represents all connections of x to existential variables larger than or equal to Si.

Corollary 5. For x ∈ V : if [y] ∈ H∗
i (x) then x →∗

i y.

For x ∈ V , H∗
i (x) exactly characterizes connections of x to existential vari-

ables. This is sufficient for computing Dstd(x). Informally, there is a dependence
between two differently quantified variables if their sets of descendants in the
c-forest are not disjoint.

Theorem 3 (Dependency Computation). For x ∈ V, i = δ(x) + 1 :
Dstd(x) = {y ∈ Vq(x),i | H∗

i (x) ∩H∗
j (y) 	= ∅ for j = δ(y)}.

Proof. Assume x ∈ V and i = δ(x) + 1. Direction ⊇ follows right from Def. 11,
Cor. 5, Cor. 3 and Thm. 2. To show ⊆, assume y ∈ Dstd(x). Then there is an
X-path P between x, y for X = V∃,i. Hence there are clauses C1, . . . , Ck where
y, yk ∈ Ck for some yk ∈ V∃,i with δ(y) ≤ δ(yk). Such yk always exists since
by assumption the largest literal in a clause is existential.2 Then P is also an
X-path between x and yk by C1, . . . , Ck and hence x →∗

i yk and δ(x) < δ(yk)
since i ≤ δ(yk), i = δ(x) + 1. We show that [yk] ∈ H∗

i (x) ∩H∗
j (y) for j = δ(y).

Since y, yk ∈ Ck by P , also [yk] ∈ VC,j(y). Then [z′] ∈ Hj(y) where [z′] =
h(j, [yk]) for j = δ(y). By Def. 10, [z′] �∗ [yk], hence [yk] ∈ H∗

j (y).
Since P connects x and yk, also x, y1 ∈ C1 for some y1 ∈ V∃,i. Thus [y1] ∈

VC,i(x) and [z1] ∈ Hi(x) for [z1] = h(i, [y1]). Then by Def. 10, [z1] �∗ [y1].
P is also an X-path between y1 and yk by C1, . . . , Ck, hence y1 →∗

i yk and
δ(x) < δ(y1), δ(x) < δ(yk). Let w denote the smallest connecting variable in P
between y1, yk: m = δ(w) = min({δ(v) | v ∈ Ci ∩ Ci+1 ∩ X, 1 ≤ i < k}). Since
m is minimal, also y1 →∗

m w, w →∗
m yk and by Lem. 1 w →∗

m y1. By Def. 8
and since m = δ(w), also [w] �∗ [y1], [w] �∗ [yk]. By Lem. 4, [z1] �∗ [y1] and
[w] �∗ [y1], also [z1] �∗ [w]. Then by [z1] �∗ [w], [w] �∗ [yk] and transitivity
also [z1] �∗ [yk], hence [yk] ∈ H∗

i (x) because [z1] ∈ Hi(x). ��
In contrast to Thm. 2, practical application follows right from Thm. 3. For a
QBF, dependencies can be identified by checking descendants in the c-forest.
2 If x ∈ V∀ then y ∈ V∃ and we may choose yk = y.

408 F. Lonsing and A. Biere

4.3 A Graph Representation of Dstd

We describe a static graph representation of Dstd for a given QBF which is
compact in practice. Representing each pair (x, y) ∈ Dstd as a separate edge
yields a graph with |V |2 edges in the worst case. Instead, this can often be
avoided by building the c-forest once and inserting edges as follows.

First, if x ∈ V∀ then by Thm. 3 any member y′ of a class [y] ∈ H∗
i (x) for

i = δ(x) + 1 depends on x (see also Thm. 3 in [22]). Thus the c-forest and
set Hi(x) compactly represent Dstd(x) (see also Ex. 10). In the graph Hi(x) is
represented as edges from class [x], which is singleton by Def. 7, to classes in
the c-forest. After Hi(x) for all x ∈ V∀ have been determined, universal classes
[y1], [y2] are merged whenever Hj(y1) = Hj(y2) for j = δ(y1)+1 = δ(y2)+1 and
either Hj(y1) or Hj(y2) is discarded. This reduces the number of edges in the
graph. Such merging does not correspond to ≈ but is applied as post-processing.

Second, if x ∈ V∃ then edges for y ∈ Dstd(x) need to be inserted explicitly in
the graph. For x ∈ V∃ and descendant [y′] ∈ H∗

i (x) where i = δ(x) + 1, there is
an edge from variable x to [y] for y ∈ V∀,i if [y′] ∈ Hj(y) for j = δ(y) + 1. This
amounts to checking descendants in H∗

i (x) and sets Hj(y) for y ∈ V∀,i. Since
universal classes have been merged before, again the number of inserted edges
is reduced. Edges corresponding to transitive dependencies are discarded.

Example 10. In the graph in Fig. 2, boxes denote class representatives. Dotted
vertical pointers like from [e3] to [e8] correspond to � and denoted edges in the
c-forest, dotted horizontal edges like between e13 and e14 connect class members
and solid vertical pointers indicate dependencies. The classes of a11 and a12 have
been merged in post-processing. The dependency e15 ∈ Dstd(a2) is represented
implicitly by the pointer from [a2] to [e5] and the path from [e5] to [e15]. Also
e13 ∈ Dstd(a11) by the pointer from [a12] to [e14] and a11 ∈ Dstd(e8) by the
pointer from [e8] to [a12]. Further a7 ∈ Dstd(e4) by the pointer from e4 to [a7],
but a7 	∈ Dstd(e3) since [e10] 	∈ H∗

3 (e3).

5 Experimental Results

We have implemented a tool which constructs the graph representing Dstd for
a given QBF as described in Sec. 4.3. Tab. 1 shows experimental results with
conclusions. In a first pass over the clauses, the c-forest is incrementally built by
maintaining relation � whenever pairs of existential literals l1, l2 are encountered
in a clause. Additionally, sets Hi(x) for x ∈ V, i = δ(x)+1 are updated for literal
pairs l1, l2 where v(l1) = x, δ(l1) < δ(l2) and either q(v(l1)) = q(v(l2)) = ∃ or
q(v(l1)) = ∀ and q(v(l2)) = ∃. An efficient union-find data structure [27] is used
to represent classes. In subsequent passes over the c-forest for x ∈ V∃, pointers
representing dependencies of existential variables are inserted.

By using the c-forest over equivalence classes as basis for the graph of Dstd,
both time and memory requirements are kept small. For a given QBF φ, the
graph can be constructed in O(|V |.|φ|) time and O(|V |2) space, when keeping
edges for transitive dependencies. We observed that time required for removing

A Compact Representation for Syntactic Dependencies in QBFs 409

Table 1. Experimental results on publicly available, structured (“fixed” class) in-
stances from QBF competitions 2005 to 2008 [15]. We did not include random instances.
Experiments were run on 64-bit Ubuntu Linux 8.04, Intel R© Q6700 at 2.66 GHz and
8 GB of memory. For reference, statistical data and a binary of our tool are available
from http://fmv.jku.at/qdag/. For all formulae in the sets the graph for Dstd has
been built (see also Sec. 4.3 and 5 for comments on graph construction). The first line
shows the numbers of formulae per set. Total run time, maximum over all formulae and
average per formula are reported in seconds. Statistics are divided into two sections for
existential and universal variables, respectively, and always i = δ(x)+1. Maximum and
average number of dependencies by Dstd over all variables are shown. Compactness of
the graph is indicated several times. For x ∈ V∀ classes in H∗

i (x), which are reachable by
ancestors in Hi(x), efficiently represent Dstd(x). This becomes apparent when compar-
ing |Hi(x)|, |H∗

i (x)| and |Dstd(x)|. For x ∈ V∃, |Hi(x)| and |H∗
i (x)| measure the effort

for inserting dependency pointers since, starting from classes in Hi(x), descendants in
H∗

i (x) are visited. Further, the average number of dependency classes per dependency
for all x ∈ V∀ and x ∈ V∃, denoted by line |{[y]∈Dstd(x)}|

|{y∈Dstd(x)}| , is small. Note that classes
result from ≈ for x ∈ V∃ and from post-processing for x ∈ V∀. The worst-case is 100%,
where each dependency is in a singleton class. This is clearly not the case. The last
line in each section shows the average number of classes per variable in each formula.
Again, values are far below 100%, hence many variables can be regarded as equivalent.

QBFEVAL’05 QBFEVAL’06 QBFEVAL’07 QBFEVAL’08

size 211 216 1136 3328
total time 7.94 1.35 227.05 300.31
max. time 0.58 0.03 7.96 8.11
avg. time 0.04 0.01 0.2 0.09
x ∈ V∀

max. |Dstd(x)| 256535 9993 2177280 2177280
avg. |Dstd(x)| 82055.87 4794.60 33447.6 19807
max. |Hi(x)| 256 1 518 518
avg. |Hi(x)| 3.26 0.98 2.02 1.14
max. |H∗

i (x)| 797 5 797 1872
avg. |H∗

i (x)| 19.51 1.12 39.06 8.24

avg. |{[y]∈Dstd(x)}|
|{y∈Dstd(x)}| 3.44% 0.04% 6.42% 1.21%

classes per variables 28.2% 10.23% 40.31% 21.29%
x ∈ V∃

max. |Dstd(x)| 5040 440 5040 22696
avg. |Dstd(x)| 12.76 2.98 3.24 4
max. |Hi(x)| 24 7 490 490
avg. |Hi(x)| 0.14 0.13 0.17 0.13
max. |H∗

i (x)| 797 7 797 1872
avg. |H∗

i (x)| 5.16 0.16 1.32 1.31

avg. |{[y]∈Dstd(x)}|
|{y∈Dstd(x)}| 2.37% 0.4% 2.76% 2.09%

classes per variables 10.96% 4.99% 11.45% 7.11%

410 F. Lonsing and A. Biere

transitive dependencies is negligible. As the results in Tab. 1 indicate, we achieve
compaction of up to two orders of magnitude compared to a graph of Dstd over
variables rather than classes. This is due to the fact that connection information
is shared between variables in the c-forest. To increase confidence in our imple-
mentation, we have run random tests and tests on formulae from Tab. 1 where
we compared dependencies resulting from the graph to those from Def. 5.

6 Conclusion

Using less restrictive dependency schemes than those obtained from mini-scoping
or scoping information readily available in structural formulae has the potential
to boost performance of QBF solvers considerably. We gave a structural charac-
terization of the simplest such formulation, based on the standard dependency
scheme. The standard dependency scheme has so far only been applied in expan-
sion based QBF solvers and preprocessing algorithms. As next step we want to
incorporate our dependency analysis into search-based solvers, which currently
are restricted to use tree-shaped prefixes. In a search-based solver it is prohibitive
to recompute the dependency relation at each decision point. This also applies
to static dependency representations based on mini-scoping such as quantifier
trees [4]. As quantifier trees, our compact graph representation can be used as a
precomputed approximation of actual dependencies. This can also be beneficial
for expansion-based solvers.

Even though our algorithms can easily be extended to work on CNF with a
tree-shaped prefix, it is not clear at this point how dependencies of variables
introduced to encode structural QBF into CNF can be eliminated in order to
lift our arguments to arbitrary structural QBF. This would also give us a way
to experimentally show that less restrictive dependency schemes are useful for
structural QBF solvers as well. As alternative one can try to generalize the
concept of dependency schemes to structural formulas. Furthermore, we want
to apply similar ideas to more advanced dependency schemes. Finally, we would
like to thank Marko Samer for fruitful discussions on dependency schemes.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The Transitive Reduction of a Directed
Graph. SIAM J. Comput. 1(2), 131–137 (1972)

2. Ayari, A., Basin, D.A.: QUBOS: Deciding Quantified Boolean Logic Using Propo-
sitional Satisfiability Solvers. In: Aagaard, M., O’Leary, J.W. (eds.) FMCAD 2002.
LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002)

3. Bacchus, F., Walsh, T. (eds.): SAT 2005. LNCS, vol. 3569. Springer, Heidelberg
(2005)

4. Benedetti, M.: Quantifier Trees for QBFs. In: [3], pp. 378–385
5. Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs. In: Nieuwenhuis, R.

(ed.) CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)
6. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and

Perspectives. JSAT 5, 133–191 (2008)

A Compact Representation for Syntactic Dependencies in QBFs 411

7. Biere, A.: Resolve and Expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

8. Bubeck, U., Kleine Büning, H.: Bounded Universal Expansion for Preprocessing
QBF. In: Marques-Silva, Sakallah (eds.) [23], pp. 244–257

9. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean
Formulas. Inf. Comput. 117(1), 12–18 (1995)

10. Cadoli, M., Giovanardi, A., Schaerf, M.: An Algorithm to Evaluate Quantified
Boolean Formulae. In: AAAI/IAAI, pp. 262–267 (1998)

11. Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with QBF. In: [3],
pp. 408–414

12. Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing Different
Prenexing Strategies for Quantified Boolean Formulas. In: Giunchiglia, E., Tac-
chella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg
(2004)

13. Egly, U., Seidl, M., Woltran, S.: A Solver for QBFs in Nonprenex Form. In: Brewka,
G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI. FAIA, vol. 141, pp. 477–
481. IOS Press, Amsterdam (2006)

14. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A System for Deciding Quan-
tified Boolean Formulas Satisfiability. In: Goré, R., Leitsch, A., Nipkow, T. (eds.)
IJCAR 2001. LNCS, vol. 2083, pp. 364–369. Springer, Heidelberg (2001)

15. Giunchiglia, E., Narizzano, M., Tacchella, A.: QBF Solver Evaluation Portal, 2001-
2009, http://www.qbflib.org/index_eval.php

16. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for Quantified Boolean
Logic Satisfiability. In: AAAI/IAAI, pp. 649–654 (2002)

17. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean
Logic satisfiability. Artif. Intell. 145(1-2), 99–120 (2003)

18. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantifier Structure in Search-Based
Procedures for QBFs. TCAD 26(3), 497–507 (2007)

19. Jussila, T., Biere, A.: Compressing BMC Encodings with QBF. ENTCS 174(3),
45–56 (2007)

20. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A First Step
Towards a Unified Proof Checker for QBF. In: Marques-Silva, Sakallah (eds.) [23],
pp. 201–214

21. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381,
pp. 160–175. Springer, Heidelberg (2002)

22. Lonsing, F., Biere, A.: Efficiently Representing Existential Dependency Sets for
Expansion-based QBF Solvers. In: Proc. MEMICS, pp. 148–155 (2008)

23. Marques-Silva, J., Sakallah, K.A. (eds.): SAT 2007. LNCS, vol. 4501. Springer,
Heidelberg (2007)

24. QBFLIB. QDIMACS Standard v1.1, http://www.qbflib.org/qdimacs.html
25. Samer, M., Szeider, S.: Backdoor Sets of Quantified Boolean Formulas. Journal of

Automated Reasoning (JAR) 42(1), 77–97 (2009)
26. Stockmeyer, L.J., Meyer, A.R.: Word Problems Requiring Exponential Time: Pre-

liminary Report. In: STOC, pp. 1–9. ACM, New York (1973)
27. Tarjan, R.E.: Efficiency of a Good But Not Linear Set Union Algorithm. J.

ACM 22(2), 215–225 (1975)
28. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean Satisfiability

solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) ICCAD, pp. 442–449. ACM, New
York (2002)

http://www.qbflib.org/index_eval.php
http://www.qbflib.org/qdimacs.html

Beyond CNF: A Circuit-Based QBF Solver

Alexandra Goultiaeva, Vicki Iverson, and Fahiem Bacchus

Department of Computer Science
University of Toronto

{alexia,viverson,fbacchus}@cs.toronto.edu

Abstract. State-of-the-art solvers for Quantified Boolean Formulas (QBF) have
employed many techniques from the field of Boolean Satisfiability (SAT) includ-
ing the use of Conjunctive Normal Form (CNF) in representing the QBF formula.
Although CNF has worked well for SAT solvers, recent work has pointed out
some inherent problems with using CNF in QBF solvers.

In this paper, we describe a QBF solver, called CirQit (Cir-Q-it) that utilizes
a circuit representation rather than CNF. The solver can exploit its circuit repre-
sentation to avoid many of the problems of CNF. For example, we show how this
approach generalizes some previously proposed techniques for overcoming the
disadvantages of CNF for QBF solvers. We also show how important techniques
like clause and cube learning can be made to work with a circuit representation.
Finally, we empirically compare the resulting solver against other state-of-the-art
QBF solvers, demonstrating that our approach can often outperform these solvers.

1 Introduction

QBF is a powerful generalization of SAT in which the variables can be universally
or existentially quantified. While any problem in NP can be encoded in SAT, QBF
allows us to encode any problem in PSPACE. This opens a much wider range of poten-
tial application areas for a QBF solver, including problems from areas like automated
planning (particularly conformant and conditional planning), non-monotonic reasoning,
electronic design automation, scheduling, model checking and verification, strategic de-
cision making, and multi-agent scenarios, see for, e.g., [1,2,3].

State-of-the-art QBF solvers have utilized a number of techniques inherited from
SAT solving technology. This has included the use of DPLL search augmented with
clause learning along with additional QBF-specific techniques like solution backtrack-
ing and cube learning. Besides DPLL the original Davis-Putnam SAT solving technique
[4] of ordered resolution has also been utilized [5], as well as methods involving the use
of Skolemization to convert the QBF formula to SAT [6]. One constant in almost all
of this work, however, has been the utilization of conjunctive normal form (CNF) in
representing the QBF formula.

It has long been noted that conversion to CNF can lead to losing structure that could
potentially be exploited computationally. As a result there has been some work on non-
CNF SAT solvers, e.g., [7,8]. This work has shown that non-clausal representations can
be effective for solving SAT. Nevertheless, the allure of CNF is that it can lead to very
high performance implementations since it is a very simple and uniform representation.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 412–426, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Beyond CNF: A Circuit-Based QBF Solver 413

Hence, the extra structure that can be exploited in a non-clausal representation has not
been able to significantly outweigh the practical advantages of CNF in SAT solvers, and
most SAT solvers continue to utilize CNF.

In QBF however the situation is different. In particular, for a similarly sized problem
the search space explored by a QBF solver tends to be much larger than that explored by
a SAT solver. Hence, there is much more potential for savings from exploiting the extra
structure contained in non-clausal representations. In fact, there have been a number of
papers that have identified various inadequacies of the CNF representation for QBF and
proposed alternate representations aimed at addressing these problems, e.g., [9,10].

One of the most general and structure laden non-clausal representations is a circuit
representation. Circuit representations have been used before in SAT solvers, e.g., [7,8],
and in this paper we explore the use of this representation in a QBF solver.

One advantage of circuits is that they are more compatible with real problems—
typically CNFs are generated from more structured representations like circuits. We
also investigate ways of exploiting within our solver some of the extra structural infor-
mation contained in the circuit. One particular example is the exploitation of don’t care
reasoning. We explain why don’t care reasoning has more potential for efficiency gains
when solving a QBF than when solving SAT. We also demonstrate how the essential
techniques of unit propagation, clause learning, and cube learning used in CNF solvers
can be adapted to a circuit representation. Finally, we explain how a circuit represen-
tation generalizes some of the key previously proposed techniques for addressing the
inadequacies of CNF in the context of QBF.

We have implemented a solver we call CirQit (pronounced Cir-Q-it) that is based
on our approach of utilizing a circuit representation. We are able to show empirically
that it is very competitive with current state-of-the-art QBF solvers, and that on some
problem suites it exhibits superior performance.

In the rest of the paper we first provide some essential background on QBF and the
circuit representation of a QBF. We present some of the details of our circuit-based
solver. Our solver utilizes a DPLL search procedure running on a circuit representation
rather than on a CNF representation. We describe how propagation can be performed,
and how clause and cube learning can be implemented. We discuss related work on QBF
solvers based on non-clausal representations. Finally, we present various experimental
results demonstrating the merit of our approach, and close with some conclusions.

2 Background

2.1 QBF

A QBF has the form Q.φ, where φ is an arbitrary propositional formula and Q is a
sequence of quantified variables (∀x or ∃x). We require that the set of variables in φ be
contained in Q so that Q.φ has no free variables, and that φ contain only the connectives
AND (∧), OR (∨), and NOT (¬).

A quantifier block qb of Q is a maximal contiguous subsequence of Q where every
variable in qb has the same quantifier type. The quantifier blocks are ordered by their
appearance in Q: qb1 ≤ qb2 iff qb1 is equal to or appears before qb2 in Q. Each variable

414 A. Goultiaeva, V. Iverson, and F. Bacchus

x in φ appears in some quantifier block qb(x). For two variables x and y we say that y
is downstream of x (x is upstream of y) if qb(y) > qb(x) (qb(x) < qb(y)). We also
say that x is universal (existential) if its quantifier in Q is ∀ (∃).

A QBF instance can be reduced by a literal � (i.e., an assignment to one of its vari-
ables). The reduction of a formula Q.φ by � is denoted by Q.φ|
. The reduction is the
new formula Q.φ′ where φ′ is φ with v replaced by the constant TRUE (if � = v) or
FALSE (if � = ¬v), and optionally simplified according to standard logical rules: e.g.,
for any formula ψ, FALSE ∧ψ is equivalent to FALSE and ∀x.ψ is equivalent to ψ if the
variable x does not appear in ψ. A specific example is ∀xz.∃y.(¬y ∨ (x ∧ z)) ∧ ¬(x ∨
z)|¬x which is equal to ∀xz.∃y.(¬y ∨ (FALSE ∧ z)) ∧ ¬(FALSE ∨ z) which simplifies
to ∀z.∃y.¬y ∧ ¬z.

Semantically, the truth or falsity of a QBF formula (with no free variables) can be de-
fined recursively: (1) ∀xQ.φ is true iff both Q.φ|x and Q.φ|¬x are true, and (2) ∃xQ.φ
is true iff at least one of Q.φ|x or Q.φ|¬x is true. By instantiating the quantified vari-
ables one by one, following the quantifier ordering, and substituting true or false into φ
we arrive at either a QBF where φ simplifies to FALSE (which is a false QBF) or a QBF
where φ simplifies to TRUE (which is a true QBF).

A circuit is a directed acyclic graph with a single sink where the nodes are logical
gates and the edges are signal lines connecting the gates. Each gate is either an AND,
OR, or NOT gate, has a single outgoing output line, and one or more incoming input
lines. The output line of the sink gate is the circuit output, and the lines that are not
outputs of any gate are the circuit inputs. A circuit representation Q.C for the QBF
formula Q.φ is a circuit C where the variables in Q are in 1-1 correspondence with the
circuit inputs. C can be constructed recursively as follows. If φ is a variable x, then C
has only one line labeled by the variable x and no gates. If φ = ¬ψ, then C consists of
the circuit representing ψ with the output of this circuit connected to the input of a NOT
gate. If φ = ψ1 ∧ · · · ∧ψi (ψ1 ∨ · · · ∨ψi), then C consists of the outputs of the circuits
representing ψ1 to ψi connected as inputs of an AND (OR) gate. One key feature of
the circuit representation is that duplicated sub-formulas in φ can be represented by a
single subcircuit—the output line of that subcircuit can be used as an input in all places
the sub-formula appears.

The lines of a circuit can take on the values TRUE or FALSE, and these values
can be propagated to other lines of the circuit using standard rules of Boolean logic.
For example, if an input line of an AND gate has value FALSE then FALSE can be
propagated to the output line of the gate. A circuit Q.C represents a formula Q.φ
when for any setting of the variables in φ, φ will simplify to TRUE (FALSE) if and
only if TRUE (FALSE) is propagated to the output of C given the same setting for its
corresponding input lines. The construction described above yields a circuit C that
represents φ.

Hence, we can evaluate a QBF formula Q.φ by constructing a circuit Q.C represent-
ing it, and then evaluating the previously given definition of truth for a QBF formula by
propagating values in C. That is, we can detect when φ simplifies to TRUE or FALSE by
detecting when TRUE or FALSE is propagated to the output line of C.

Beyond CNF: A Circuit-Based QBF Solver 415

3 A Circuit-Based Solver

Similar to previous circuit based SAT solvers, e.g., [7,8], our solver utilizes DPLL
search to determine the truth or falsity of the QBF Q.φ. Specifically, φ is represented
as a circuit C with the variables in Q being the inputs to C. During DPLL search, these
variables are branched on in an order respecting the quantifier ordering (i.e., if x is up-
stream of y then the search must branch on x before y). Each branch sets a variable
of φ and hence a corresponding input line of C. The input line values are propagated
through C, and the search verifies that at least one side each existential branch and both
sides of each universal branch lead to a true circuit output (i.e., satisfies φ).

However, to make this process more efficient, e.g., to detect when certain input lines
must take on a particular value for the circuit output to be TRUE, the solver initially
sets the circuit output line to TRUE and propagates values backwards in the circuit as
well as forwards. Backwards propagation, like forward propagation, follows the rules
of Boolean logic, e.g., if an OR gate’s output line is set to FALSE then FALSE can be
propagated to all of its input lines. With backward propagation from a TRUE output
we can detect when φ is falsified (i.e., when a setting of the input lines would lead to
FALSE being propagated to the output line) by the occurrence of a conflict where both
TRUE and FALSE is propagated to some line in the circuit. Such conflicts also allow us
to employ 1UIP clause learning techniques on the circuit representation.

One negative aspect of fixing the circuit output line to TRUE, however, is that we can
no longer use the propagation of TRUE to the circuit output to detect when the formula
φ has become satisfied by the current setting of its variables—the output line always
has that value. We discuss below how this problem is resolved in our solver by utilizing
information gathered during don’t care propagation.

3.1 Propagation

Our implementation of forward and backward propagation in the circuit is based on a
previous circuit based SAT solver described in [7]. In that paper Thiffault et al. showed
that this kind of propagation in the circuit corresponds in a precise way to Unit Propa-
gation (UP) on an equivalent CNF encoding of the formula. In particular, if the circuit
was converted to CNF using the standard Tseitin encoding [11], then corresponding to
each circuit line l there would be a new variable v in the CNF encoding such that a value
would be propagated to the line l in the circuit if and only if UP in the CNF forces v
to take the same value. Besides this basic mechanism, however, our QBF solver differs
from previous circuit based SAT solvers in a number of ways.

Representing internal lines. The CNF encoding of a formula introduces additional vari-
ables that correspond to the sub-formulas of the formula. These additional variables are
very useful in a SAT solver as they can be branched on in a DPLL search (implicitly
positing a truth value for an entire sub-formula), and they can be included in learnt
clauses increasing the effectiveness of clause learning.

A key feature of our circuit based QBF solver is that it also utilizes the learning tech-
niques common in DPLL based QBF solvers that employ CNF [12] i.e., clause and cube
learning. Hence, to facilitate the power of the learnt clauses we introduce additional vari-
ables to label the internal lines of the circuit, as is done in circuit based SAT solvers. (The

416 A. Goultiaeva, V. Iverson, and F. Bacchus

input lines are all labeled with a variable of the original formula Q.φ). Formally, all of
these new variables are existential, and we place them as early in the quantifier ordering
as possible. Specifically, each internal line l in the circuit is the output line of a sub-circuit
c that has some set of input lines representing a set of variables V of φ. We place the new
variable representing l in the quantifier prefix immediately after the last variable of V in
the prefix. By placing these new variables as early as possible in the quantifier prefix we
enable more effective universal reduction during clause learning and propagation.

Note however that in QBF, unlike SAT, these new variables are never branched on
during the DPLL search. The DPLL search must respect the quantification order when
selecting variables to branch on, so by the time it can select a variable v representing
the output of sub-circuit c all of the inputs to c must have already been assigned, and
hence v would already be assigned by propagation.

Universal Reduction. In CNF represented QBF formulas universal reduction is a pow-
erful additional rule of inference that enables further unit propagation and conflict de-
tection. We say that a universal variable is tailing in a clause if it is downstream of all
existentials in the clause. Universal reduction is the rule of inference where all tailing
universals can be removed from a clause. It can be applied during search: when an ex-
istential in a clause is falsified and thus removed from the clause some universal in the
clause might become tailing and thus removable by universal reduction.

There are two cases where universal reduction can reduce DPLL search. First, it can
be used to infer a conflict when a clause contains only universal variables: by universal
reduction we can reduce any such clause to the empty clause. Second, it can be used to
infer unit clauses when a clause becomes unit after universal reduction. In this case it
must be that the clause contains a single existential variable e with all other variables in
the clause being universal and downstream of e.

Our solver can detect the same set of conflicts and unit propagants arising from
universal reduction as would be detected in CNF representation. Two additional prop-
agation rules are utilized to achieve this. The first rule is triggered whenever there is a
gate g such that (a) the output line of g has been assigned some value TF, (b) TF is not
entailed by g’s assigned input lines (e.g., if g is an OR gate, TF = TRUE, and none of
g’s assigned inputs are TRUE), and (c) all of g’s unassigned input lines are universally
quantified. In this case we have a conflict corresponding to the generation of a clause
containing only universals. The second rule is triggered whenever there is a gate g such
that conditions (a) and (b) as above hold, and (c) g’s unassigned input lines contain
only a single existential line e and all of the other unassigned lines, which are hence
universal, are downstream of e. In this case we can force e to take on a value that entails
TF. This corresponds to the generation of a unit clause after universal reduction. For
example, if g is an AND gate, TF = FALSE, and all of g’s other assigned inputs are
TRUE, then e is forced to be FALSE.

3.2 Don’t Care Propagation

An important way in which the circuit structure can be exploited is via don’t care rea-
soning. For example, when one input of an OR gate is set to TRUE, the other inputs
become irrelevant to its output value. By detecting the variables that have become ir-
relevant to all the gates they feed into, DPLL can avoid branching on them. Don’t care

Beyond CNF: A Circuit-Based QBF Solver 417

Fig. 1. Circuit and Equivalent CNF Encoding

propagation detects such variables and we implement don’t care propagation in our
solver using the techniques developed in [7].

Don’t care propagation can be useful in SAT, but it has even more potential to be
helpful in QBF due to repetitions caused by universal variables. To illustrate, consider
the circuit in Figure 1, where Q1X1...QkXk represents an arbitrary set of quantifiers
over the variables x1, ..., xm, and F is an arbitrarily complicated boolean circuit. It can
be seen that any variable assignment with at least one of a1, ..., an set to TRUE makes
the circuit output TRUE. In our solver, as soon as one of the variables ai is set to TRUE,
all xi variables can be recognized as irrelevant, so there is only one setting of a1, ...an

for which the solver actually branches on any xi variables.
A CNF based solver, on the other hand, would have the CNF representation shown in

Figure 1b, where CNFF represents the clausal encoding of F . If any of the ai variables
are set TRUE, then out is also set to TRUE, and all clauses disappear except for those
in CNFF . The solver will then have to continue branching on the xi variables until
a solution is found that satisfies all clauses in CNFF , a potentially difficult task. Fur-
thermore, we see that the solver can unnecessarily try to satisfy the clauses in CNFF

2n−1 times. A solver exploiting learning might solve these repetitions more efficiently,
but can still perform many unnecessary branching operations. It is this repetition from
universal variables that makes don’t care reasoning more effective in QBF.

Don’t care propagation is achieved by detecting when gate outputs are justified. A
gate in the circuit is justified when its assigned inputs are sufficient to imply its output.
Once a gate is justified, its unassigned inputs have no effect, so they become irrelevant
with respect to that gate. If a line becomes irrelevant with respect to all of the gates it
is an input of, it becomes a don’t care, meaning its value has no effect on the circuit
output. Further, if the don’t care line is a gate output all of its unset inputs can in turn
be marked as irrelevant with respect to it, which might generate another round of don’t
care propagation. Since these don’t care variables have no effect on the circuit the DPLL
search engine need never branch on them. For example, in Figure 1 once one of the ai

inputs is set to TRUE, all remaining unassigned inputs to the final OR gate will be
marked as don’t care: they have all become irrelevant with respect to that gate and this
is the only gate they are an input to. Don’t cares can then be propagated back through
all of the sub-circuit F until all of the xi are marked as don’t care. After this, DPLL
can detect that it need not branch on any other variables as all remaining unassigned
variables (input lines and internal lines) have become don’t care.

418 A. Goultiaeva, V. Iverson, and F. Bacchus

3.3 Clause Learning

Following [7] we implement clause learning in our solver by computing a clausal rea-
son from the circuit structure for every line that is assigned by propagation. As DPLL
branches on variables that correspond to input lines of the circuit, propagation is used
to set other lines in the circuit. Since each circuit line is represented by an existential
variable, propagating a value to these lines corresponds to forcing a literal representing
the assignment of this value to the line’s corresponding variable. The logical structure
that allowed the value to be propagated can then be used to construct a clausal rea-
son for that forced literal. For example, if g is an AND gate with its output o set to
FALSE, all of its assigned inputs a1, . . . , ak, set to TRUE, and with unassigned inputs
e, u1, . . . , um where e is existential, the ui are universal, and e is upstream of all of the
ui, then propagation will set e to FALSE. In this case we can extract from the circuit
the clause (¬e, ¬u1, . . ., ¬um, ¬a1, . . ., ¬ak, o) as the clausal reason for ¬e. Hence,
on the trail of the DPLL search engine every forced literal can be given an associated
clausal reason. Note that these clausal reasons are like the clauses that a QBF solver
using a CNF representation would use to label its unit propagated literals.

In a similar way when conflicts are detected in the circuit a conflict clause can be con-
structed and returned to the DPLL search engine. For example, if g is an OR gate with
its output o set to TRUE, with assigned inputs a1, . . . , ak all set to FALSE, and unas-
signed inputs u1, . . . , um all of which are universal, then a conflict corresponding to
the detection of an all universal clause is detected. From this conflict the conflict clause
(¬o, a1, . . . , ak, u1, . . . , um) can be constructed and returned to the DPLL search en-
gine. With a CNF representation this is the clause that the current assignments would
have reduced to an all universal clause. The case where a line has both TRUE and FALSE

propagated to it can be handled in a similar fashion.
With conflict clauses to seed the process, and all forced literals on the trail la-

beled with clausal reasons, our solver can proceed to perform 1-UIP clause learning
in the manner standard to DPLL-based QBF solvers and to use these clauses to non-
chronologically backtrack the DPLL search. Finally, the solver can employ unit prop-
agation over the learnt clauses in conjunction with propagation in the circuit, using
literals forced by unit propagation to set lines and do further propagation in the circuit,
and using lines set in the circuit to initiate further unit propagation in the learnt clauses.

3.4 Cube Learning

As mentioned above, because the circuit output O is initially set to TRUE we cannot use
the propagation of TRUE to O to detect that the formula has become satisfied by the cur-
rent set of variable assignments. Nevertheless, we can employ don’t care propagation to
detect circuit (formula) satisfaction. In particular, when all variables that are not marked
as being don’t care have been assigned and no conflicts have been generated, we know
that the circuit is satisfied by the current set of assignments. Say we had not initially set
the circuit output to TRUE. It can then be observed that whenever the assigned circuit
input lines suffice to propagate TRUE to the circuit output, all remaining unset lines in
the circuit (both internal and input lines) become don’t care. It can be further observed
that the don’t care propagation mechanism outlined above will successfully label these
unset lines as don’t care.

Beyond CNF: A Circuit-Based QBF Solver 419

Once the formula has been satisfied by the current variable assignments, we would
like to perform cube learning. This involves finding a subset of the current variable
assignments that are sufficient to satisfy the formula. Such a subset forms a base cube
that can then be stored in a cube database, triggered in other parts of the DPLL search,
and resolved with other cubes during search to generate more powerful cubes. A key
element in making cube learning effective is to be able to generate small base cubes.1

With CNF representations base cubes must contain at least one true literal from each
clause in the theory. With a circuit representation, however, finding a subset of vari-
able assignments sufficient to satisfy the formula corresponds to finding a subset of the
circuit inputs whose assigned values suffice to propagate TRUE to the circuit output.
Don’t care propagation helps in constructing small base cubes, as it eliminates from
consideration all circuit inputs marked as don’t care.

The algorithm we use in our solver is specified in Algorithm 1. The algorithm is ini-
tially called with the circuit’s output as its input argument, and it involves sweeping
through the circuit from the output to inputs picking a set of lines whose assigned val-
ues suffices to support the circuit output. Starting with the output gate, the algorithm
selects a set of input lines that support the gate output. Then it continues on to find sup-
ports for the selected input lines. For example, if the gate is an AND gate with output
set to FALSE then only one false input line is needed as support.

We note that we need not consider any don’t care lines, all of the gate output lines the
algorithm encounters have to be justified. To guide the selection of a supporting input, for
each gate output line we memorize the input line that was responsible for it first becoming
justified. For gate output line l we use l.justfiedReason to denote this input line.

This approach for selecting a supporting input for each gate output has two advan-
tages. First, it is very efficient to implement: the cube can be recovered in a single pass
of the circuit. Second, it favours adding the earliest-set variables to the base cube which
sometimes allows the solver to backtrack further.

In the algorithm specification we also use l.gateType to denote the gate type that
l is an output for. If l is an input line (and hence not associated with a gate) we let
l.gateType be equal to INPUT. Finally, let l.inputs denote input lines of the gate that l
is an output, and let l.val denote the value assigned to l.

4 Related Work

4.1 CCDNF

In [10] Zhang proposed adding to the CNF encoding of the QBF a redundant DNF
encoding, creating a Combined Conjunctive and Disjunctive Normal Form (CCDNF).
The aim of the DNF encoding was to overcome the inability of CNF to easily detect
when the formula becomes satisfied. The DNF allowed the resulting solver to detect
solutions earlier, without needing to assign all variables in the formula.

In some cases, our circuit based solver achieves similar early solution detection
through its don’t care propagation. In particular, once a partial assignment is sufficient
to imply the circuit output, all remaining variables will be marked as don’t care and

1 Other heuristic considerations come into play, but space precludes discussing them here.

420 A. Goultiaeva, V. Iverson, and F. Bacchus

Algorithm 1: RecoverCube—Construct a Base Cube from a Circuit

RecoverCube (l)1

// Return a set of supporting input lines
begin2

if l.gateType = INPUT then3

return {l}4

else if l.gateType = NOT then5

return RecoverCube (l.inputs)6

else if
((l.gateType = AND and l.val = TRUE)

or (l.gateType = OR and l.val = FALSE)

)
then

7

S = ∅ // Consider all children8

foreach c ∈ l.inputs do9

S = S∪ RecoverCube (c)10

end11

return S12

else13

// root is a False AND gate or a True OR gate
// Can select one child that is assigned the same

value
return RecoverCube (l.justfiedReason)14

end15

the search engine can immediately backtrack. However, when a solution is detected,
our solver must execute Algorithm 1 to extract a base cube—with the DNF encoding
this computation is not needed, the information contained in the base cube is already
encoded in the triggered DNF. Also the DNF encoding contains auxiliary variables that
can make the cubes more compact, and perhaps more powerful. In our solver all base
cubes contain input variables only.

However, the circuit representation has some advantages over IQTest. It preserves
more problem structure than the CCDNF encoding. Potentially, additional ways can be
discovered for further exploiting this structure. Also don’t care propagation allows us
to avoid branching on irrelevant variables. IQTest, on the other hand, has no way of
determining when a variable is irrelevant, and can still branch on such variables prior to
finding a solution. Thus, our solver can sometimes make fewer decisions during search.

Also, while making its conversion, IQTest creates two different sets of auxiliary vari-
ables: one set for the CNF, and another one for DNF representations. This limits the
amount of knowledge sharing between the two representations. The circuit representa-
tion has only one set of auxiliary variables (variables representing the internal lines), so
that the different modes of reasoning share the same representation.

Nevertheless, given that the circuit representation contains all of the information
used to generate the DNF encoding, it is possible that the computational advantages of
the DNF encoding can be captured directly from the circuit representation. We plan to
investigate this possibility in future work.

The empirical results in the next section show that while IQTest outperforms our
solver on some benchmarks, there are domains where the advantages of the circuit
representation are evident.

Beyond CNF: A Circuit-Based QBF Solver 421

4.2 Don’t Care Literals

In [13], the authors augment the CNF encoding by adding don’t care literals to clauses
so they can be marked as redundant when the don’t care literals become true. This is
effectively the same as our solver marking a circuit line as redundant, but as they point
out, they are unable to encode all don’t care conditions. By dynamically detecting don’t
care conditions as they occur, we are able to detect more don’t care variables during
search than their static method.

Fig. 2. Adversarial game encoding

4.3 Dual CNF and DNF

[9] created a dual CNF-DNF encoding geared towards addressing the inadequacies of
CNF when encoding adversarial games. Their approach is to encode the rules for the
universal player in a DNF. Then, if the universal player ever violates the rules, the DNF
portion is detected to be true, and the existential player is declared the winner.

The main benefit of their approach—determining when the universal player cheats—
is easily achieved in our solver by exploiting a circuit representation. Figure 2 shows
an example of a circuit encoding an arbitrary two player game with n turns [14]. A
box labeled L∃

i represents a sub-circuit encoding the rules for the existential player in
move i, while L∀

j encodes the rules for the universal player in move j. At any move, if
the universal player violates their rules, all remaining moves in the game become don’t
care, and the existential player is declared the winner (i.e., TRUE is propagated to the
circuit output).

4.4 Negation Normal Form

In [15] the authors discuss a solver qpro for formulas in Negation Normal Form (NNF).
The main focus of qpro is relaxing the restriction of a prenex form. This is orthogonal
to our approach, and the circuit solver can be extended in a similar manner.

However, even without explicitly dealing with non-prenex formulas, don’t care prop-
agation together with clause and cube learning can often achieve similar results, and
our solver is quite competitive with qpro even in the domains with very short but wide
quantifier trees. This is demonstrated in the experimental results.

The backtracking technique of qpro—relevance sets—involves the solver computing
the set of variables whose values determined the truth or falsity of the formula, and
allows the solver to backtrack non-chronologically over irrelevant variables. The idea
of identifying relevant sets underlies the notions of clause and cube learning. Learnt

422 A. Goultiaeva, V. Iverson, and F. Bacchus

cubes and clauses also allow a solver to backtrack non-chronologically over unrelated
variables, with the added benefit that the learnt cubes and clauses can be utilized in the
rest of the search. Since our solver implements cube and clause learning it does not
need to compute relevance sets.

5 Experimental Results

Our solver CirQit implements the ideas described in this paper. Its input is a circuit de-
scription in ISCAS-85 format using AND, OR and NOT gates, along with the quantifier
prefix. The solver first simplifies the circuit by merging identical subformulas. It then
solves the circuit using DPLL search running on the circuit representation as described
above.

Table 1. Comparison between CirQit and other state-of-the-art non-CNF non-Prenex solvers.
The largest number of instances solved is shown in bold, with ties broken by the time taken to
solve those instances.

Benchmark Families CirQit qpro pQBF
(number of instances) Solved Time Solved Time Solved Time

Seidl (150) 147 2,281 150 7 13 3,326
assertion (120) 3 1 1 0 0 0
consistency (10) 0 0 0 0 0 0
counter (45) 39 1,315 31 126 31 161
dme (11) 10 15 10 1,193 5 287
possibility (120) 10 1,707 0 0 0 0
ring (20) 15 60 9 397 9 158
semaphore (16) 16 7 16 91 16 726
Total (492) 240 5,389 217 1,816 74 4,660

We compared CirQit with state-of-the art CNF and non-CNF solvers on all the non-
Prenex, non-CNF benchmarks currently available from QBFLIB [16]. Unless otherwise
stated, all tests were run on a 2.8GHz machine with 12GB of RAM. The results display
the number of problems that each solver was able to solve within the time limit of 1200
CPU seconds per instance, and the total time taken for all the solved instances, rounded
down to the nearest second.

Table 1 shows the comparison against the two top solvers from the non-prenex non-
CNF track of the QBFEVAL’08 competition. One of the solvers is qpro (discussed
above), version of 29.02.08 available from the authors’ site. The other one is pQBF
[17].2 The benchmarks, originally in QBF1.0 format, were converted into ISCAS-85
format for CirQit and into pro format for qpro. Conversion time was negligible and was
not included in the results.

2 On some instances pQBF gave a parser stack overflow error. In a few cases, it proceeded to
return an answer. This happened on large instances in benchmark families for which pQBF
timed out on smaller problems. The answer returned under these circumstances was always
FALSE, and on at least one instance it was confirmed to be incorrect by multiple other solvers.
This led us to believe that this answer was returned in error. The results presented here consider
such instances as failure cases for pQBF.

Beyond CNF: A Circuit-Based QBF Solver 423

Table 2. Comparison between CirQit and other state-of-the-art CNF-based solvers. The largest
number of instances solved is shown in bold, with ties broken by the time taken to solve those
instances.

Benchmark Families CirQit sKizzo 2clsQ yquaffle quantor Qube
(number of instances) Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

Seidl (150) 147 2281 37 6,301 0 0 0 0 42 3,272 144 4,688
assertion (120) 3 1 14 796 49 7,035 23 114 119 8,736 3 0
consistency (10) 0 0 1 40 0 0 0 0 10 720 0 0
counter (45) 39 1,315 34 1,185 30 89 31 1,077 28 414 29 1225
dme (11) 10 15 0 0 0 0 0 0 0 0 6 75
possibility (120) 10 1,707 13 700 13 1,666 10 505 111 7,976 10 25
ring (20) 15 60 12 752 11 1,048 12 607 11 479 15 1,781
semaphore (16) 16 7 14 68 13 47 7 261 16 12 14 1,833

Total (492) 240 5,389 125 9,844 116 9,888 83 2,566 337 21,613 212 9,629

qpro outperforms CirQit on only the Seidl dataset (shown in Table 1). This dataset
contains problem instances that typically have short but wide quantifier trees, a structure
that qpro is particularly well suited to exploit. Although CirQit performs worse than
qpro on this dataset, we can see that it outperforms all the other solvers (including the
CNF-based solvers discussed below), and is one of only two solvers that come close to
qpro on this dataset.

Other than the Seidl dataset, CirQit dominates the other two non-CNF solvers: it was
able to solve all the problems that they solved, and also some additional ones.

Table 2 compares CirQit against a number of CNF-based solvers. In order to apply
the CNF-based solvers, the benchmarks were converted from QBF1.0 to qdimacs for-
mat using the translator available from QBFLIB webpage. Again, the conversion times
were not included.

The solvers tested were sKizzo (v0.8.2) [18], 2clsQ [19], yQuaffle (version 21006)
[12], quantor (version 3.0, with the recommended picosat back end) [5] and Qube (ver-
sion 6.1) [20]. These solvers are state-of-the-art QBF solvers as shown by QBFEVAL
competition results. The predecessors of solvers sKizzo and Quantor were the best
two solvers at QBFEVAL’05; 2clsQ and sKizzo took first and second places at QBFE-
VAL’06; Qube won QBFEVAL’07 with yQuaffle being the next-best standalone solver
(disregarding the solvers based on a portfolio approach), and Qube6.1 was the best
standalone solver at the QBFEVAL’08 competition– second only to a solver based on a
portfolio approach.

Comparing with the CNF solvers, we see that CirQit is quite competitive with them.
It outperforms all of the CNF solvers on a number of domains. For domains counter
and dme, CirQit is able to solve a number of problems that no CNF-based solver could
solve; for each of ring and semaphore domains, CirQit is tied with one CNF-based
solver (Qube and quantor, respectively) on the number of solved instances but wins
based on the time taken to solve them, and does notably better than the other solvers.

The domains on which CirQit does not outperform the CNF solvers are the asser-
tion, consistency and possibility domains, which are all part of the set BMC QBF 1.0.
Note that all of the non-CNF solvers perform badly on this benchmark set. On these
problems, Quantor is the clear winner. It also far outperforms all the other solvers on
these benchmarks. Quantor does not employ DPLL search, using instead a combination

424 A. Goultiaeva, V. Iverson, and F. Bacchus

0.1

1

10

100

1000

0.1 1 10 100 1000

IQTest

CirQit

Scholl dataset

♦
♦

♦

♦

♦♦

♦♦

♦ ♦

♦ ♦

♦♦

♦♦

♦♦

♦

♦♦

♦ ♦

♦♦♦

♦

♦♦

♦

♦

♦♦♦

♦

♦♦

♦
♦♦

♦

♦♦

♦
♦

♦

♦ ♦♦

♦ ♦
♦♦

♦
♦

♦♦

(a) Scholl dataset.

0.1

1

10

100

1000

0.1 1 10 100 1000

IQTest

CirQit

Seidl dataset

♦ ♦♦♦♦♦♦♦
♦

♦
♦

♦
♦♦♦
♦

♦
♦

♦♦♦
♦♦

♦♦♦♦
♦

♦ ♦♦♦
♦♦

♦

♦
♦

♦

♦♦
♦

♦♦♦♦♦
♦
♦

♦

♦♦♦♦♦ ♦♦ ♦♦♦♦♦♦♦
♦♦♦♦♦♦♦

♦
♦

♦♦
♦

♦
♦♦ ♦♦ ♦

♦♦ ♦
♦♦

♦
♦ ♦ ♦

♦♦
♦

♦♦

♦
♦♦ ♦

♦
♦

♦

♦
♦♦♦

♦♦♦♦♦ ♦♦
♦

♦
♦

♦
♦

♦ ♦♦♦♦
♦ ♦ ♦♦♦

♦
♦♦♦

♦♦♦
♦♦♦

♦♦ ♦ ♦♦♦

♦
♦♦ ♦♦ ♦

(b) Seidl dataset

Fig. 3. Time comparison between CirQit and IQTest on two benchmark sets

of resolution and universal quantification to reduce the formula. Clearly this approach
is better for these problems than any form of DPLL search.

Finally, we compared our solver with the previously discussed IQTest [10], which
uses both a CNF and an DNF encoding of the problem. We were not able to perform a
comprehensive comparison with IQTest due to the fact that IQTest is available only as
a Windows executable. We were, however, able to experiment with two datasets. The
first dataset is the Scholl dataset that was used to demonstrate IQTest in the paper [10].
The second dataset we tested is the Seidl dataset from QBFLIB.

A plot comparing the runtimes for the Scholl and Seidl datasets is shown in Figure 3.
The experiments were run on a 2.41GHz machines with 2GB of RAM. An instance is
plotted with the time CirQit took to solve it on the x-axis and IQTest on the y-axis.
So, an instance above the bisecting line is one on which our solver exhibited superior
performance, and an instance below the line is one where IQTest was superior. Timed
out instances are placed at the 1200 second mark on the graph.

On the first dataset, IQTest outperforms CirQit. There are eight problems that IQTest
was able to solve, sometimes fairly quickly, but CirQit was unable solve in the time
allotted. However, there were also a number of problems that CirQit was able to solve
a few orders of magnitude faster than IQTest. On the Seidl dataset, on the other hand,
CirQit confidently outperforms IQTest. The detailed results were that on Scholl, con-
taining 63 problems, CirQit solved 38 problems in 382 seconds, while IQTest solved
46 problems in 3,887 seconds. On the other hand, on Seidl, containing 150 problems,
CirQit solved 147 problems in 2,969 seconds, while IQTest solved 126 problems in
53,110 seconds.

Although this is not a complete analysis, these sets show that while IQTest is better
than CirQit on some problems, there are problem suites for which CirQit is better suited.

Finally, although we don’t show any results, we did experiment with CirQit turning
don’t care propagation on and off. Over a large number of problems we found that don’t
care propagation yielded on average almost a 40% speedup.

Beyond CNF: A Circuit-Based QBF Solver 425

6 Conclusions and Future Work

This paper demonstrates the effectiveness of exploiting structural information in QBF
solving. By skipping the last step of encoding QBF problems into CNF, the structure of
the problem can be maintained and used by a DPLL search engine. While other work
has been done in the past to overcome some of the limitations of the CNF representation,
our circuit based solver includes many of the benefits realized by these partial solutions.

We demonstrated that a solver using a circuit representation can be highly competi-
tive with state of the art solvers using both non-CNF and CNF representations.

The circuit representation is compact, and allows more powerful propagation. Many
more benefits could potentially be reaped from the circuit representation. The circuit
representation allows the solver to generate CNF clauses for clause learning on-the-fly.
We believe that it is possible to use the circuit in a similar way to extract DNF cubes on
the fly. We are investigating this approach.

Many orthogonal improvements, such as exploiting non-prenex structure or using
problem decomposition, can also be applied to the circuit solver.

In sum it seems that using a circuit representation is a very fruitful direction for
obtaining further advances in QBF solving.

References

1. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: Pro-
ceedings of the AAAI National Conference (AAAI), pp. 1045–1050 (2007)

2. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quanti-
fied boolean formulas. In: Proceedings of the AAAI National Conference (AAAI), pp. 417–
422. AAAI Press, Menlo Park (2000)

3. Mangassarian, H., Veneris, A.G., Safarpour, S., Benedetti, M., Smith, D.: A performance-
driven QBF-based iterative logic array representation with applications to verification, debug
and test. In: International Conference on Computer-Aided Design (ICCAD), pp. 240–245
(2007)

4. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7, 201–215 (1960)

5. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004, vol. 3542,
pp. 59–70. Springer, Heidelberg (2005)

6. Benedetti, M.: sKizzo: a QBF decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report TR04-11-03 (2004)

7. Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In:
Proceedings of the International Conference on Theory and Applications of Satisfiability
Testing (SAT) (2004)

8. Wu, C.A., Lin, T.H., Lee, C.C., Huang, C.Y.: QuteSAT: a robust circuit-based SAT solver
for complex circuit structure. In: Design, Automation and Test in Europe Conference and
Exposition (DATE), pp. 1313–1318 (2007)

9. Sabharwal, A., Ansótegui, C., Gomes, C.P., Hart, J.W., Selman, B.: QBF modeling: Exploit-
ing player symmetry for simplicity and efficiency. In: Biere, A., Gomes, C.P. (eds.) SAT
2006. LNCS, vol. 4121, pp. 382–395. Springer, Heidelberg (2006)

10. Zhang, L.: Solving QBF with combined conjunctive and disjunctive normal form. In: Pro-
ceedings of the AAAI National Conference (AAAI) (2006)

426 A. Goultiaeva, V. Iverson, and F. Bacchus

11. Tseitin, G.: On the complexity of proofs in poropositional logics. In: Siekmann, J., Wright-
son, G. (eds.) Automation of Reasoning: Classical Papers in Computational Logic 1967–
1970, vol. 2. Springer, Heidelberg (1983); Originally published (1970)

12. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quanti-
fied boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002, vol. 2470, pp. 200–
215. Springer, Heidelberg (2002)

13. Tang, D., Malik, S.: Solving quantified boolean formulas with circuit observability don’t
cares. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 368–381. Springer,
Heidelberg (2006)

14. Benedetti, M., Lallouet, A., Vautard, J.: QCSP made practical by virtue of restricted quantifi-
cation. In: Veloso, M.M. (ed.) Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 38–43 (2007)

15. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Con-
straints 14(1), 38–79 (2009)

16. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability
library (QBFLIB) (2001), www.qbflib.org

17. Stéphan, I.: Boolean propagation based on literals for quantified boolean formulae. In: 17th
European Conference on Artificial Intelligence (2006)

18. Benedetti, M.: skizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE
2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)

19. Samulowitz, H., Bacchus, F.: Dynamically partitioning for solving QBF. In: Marques-Silva,
J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 215–229. Springer, Heidelberg
(2007)

20. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A system for deciding Quantified
Boolean Formulas satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS, vol. 2083, pp. 364–369. Springer, Heidelberg (2001)

www.qbflib.org

Solving (Weighted) Partial MaxSAT through
Satisfiability Testing�

Carlos Ansótegui1, Maŕıa Luisa Bonet2, and Jordi Levy3

1 Universitat de Lleida (DIEI, UdL)
2 Universitat Politècnica de Catalunya (LSI, UPC)

3 Artificial Intelligence Research Institute (IIIA, CSIC)

Abstract. Recently, Fu and Malik described an unweighted Partial
MaxSAT solver based on successive calls to a SAT solver. At the kth
iteration the SAT solver tries to certify that there exist an assignment
that satisfies all but k clauses. Later Marques-Silva and Planes imple-
mented and extended these ideas. In this paper we present and implement
two Partial MaxSAT solvers and the weighted variant of one of them.
Both are based on Fu and Malik ideas. We prove the correctness of our
algorithm and compare our solver with other (Weighted) MaxSAT and
(Weighted) Partial MaxSAT solvers.

1 Introduction

In real-life, some solutions to a problem are acceptable even when some con-
straints are violated. In fact, in many situations it is impossible to satisfy all
constraints. For instance, in the context of planning, scheduling, packing, etc., a
solution satisfying all the constraints may be impossible to obtain. However we
are still interested on which is the maximum number of constraints that can be
satisfied with a minimal penalty.

We can solve these problems through the use of MaxSAT formalisms, such as
(Weighted) MaxSAT and (Weighted) Partial MaxSAT. Recently, there has been
an increasing interest in the development of solvers for these formalisms. Since
2006, every year takes place the MaxSAT evaluation [2]. Most of the solvers sub-
mitted to the last MaxSAT08 evaluation are implementations of branch&bound
algorithms (MaxSatz [11], IncWMaxSatz, W-MaxSatz, WMaxsatz icss [6], Min-
iMaxSat [10], Lb-Sat and Lb-PSat [12,13], PMS [3], ToolBar3 [9]). There are
other approaches like the solver Clone [17], that makes use of a tractable lan-
guage known as d-DNNF, and those which are based on the use of Satisfiability
testing, SAT4J [4], msu1.2 [14,15] and msu4.0 [16].

None of these solvers is a clear winner, specially for industrial and crafted
instances. In particular, for the industrial category the solvers based on Satisfia-
bility testing seem to perform very well for many benchmarks. Since the ultimate
goal is to solve real world (industrial) instances it makes sense to study in detail
� Research partially supported by the projects TIN2007-68005-C04-{01,03,04} and

TIN2006-15662-C02-02 funded by the MEC.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 427–440, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

428 C. Ansótegui, M.L. Bonet, and J. Levy

this approach. Why these solvers work better for industrial instances may be a
phenomena not only related to the hardness of the unsatisfiability cores included
in the formulas (that can be efficiently detected by a SAT solver) but also to
how these cores are connected.

The base of the study of this paper is the work of Fu and Malik [7,8], where two
Partial MaxSAT algorithms based on calls to a SAT solver are proposed, and the
work of Marques-Silva and Planes [15,16] and Marques-Silva and Manquinho [14]
which extend that previous work.

The contributions of our work are (i) a more optimized implementation of the
original Fu and Malik algorithm; (ii) a weighted version of the original Fu and
Malik algorithm together which the proof of its correctness; and (iii) another
Partial MaxSAT solver variant of the Fu and Malik algorithm, and the proof of
its correctness.

For the purpose of the evaluation of these algorithms, there is only one solver,
SAT4J [4], that is adapted to deal with weights. In this paper, we provide a
weighted version of the Fu and Malik algorithm [8]. Our experimental investiga-
tion confirms what we already knew from previous MaxSAT evaluations. There
is no unique best algorithm for solving MaxSAT or the other variants. Never-
theless, our implementation has a better performance than other solvers based
on Satisfiability testing. In the case of the Partial Weighted MaxSAT, our solver
is the first implementation of the original Fu and Malik ideas extended to the
weighted problem. Therefore, we can only compare with SAT4J.

2 Preliminaries

In the Partial MaxSAT context we work with two sets of clauses, hard and soft.
The Partial MaxSAT problem for a multiset of clauses is the problem of finding
an optimal assignment to the variables that satisfies all the hard clauses, and
the maximum number of soft clauses. The number of soft clause falsified by an
assignment is the cost of this assignment. The cost of the optimal assignment of
a formula F is called the cost of the formula, and is denoted by MaxSAT (F).

In Weighted Partial MaxSAT, we use multisets of weighted clauses. A weighted
clause is a pair (C, w), where C is a clause and w is a natural number meaning
the penalty for falsifying the clause C. The pair (C, w) is clearly equivalent to
having w copies of clause C in our multiset (in case C is soft). If a clause is hard,
the corresponding weight is infinity.

Given a truth assignment I and a multiset of weighted clauses C, the cost of
assignment I on C is the sum of the weights of the clauses falsified by I.

The Weighted Partial MaxSAT problem for a multiset of weighted clauses
C is the problem of finding an optimal assignment to the variables of C that
minimizes the cost of the assignment on C. If the cost is infinity, it means that
we have falsified a hard clause, and we say that the multiset is unsatisfiable.

Our approach is based on successive calls to a SAT solver. The SAT solver
may return a set of clauses that is unsatisfiable. We call this set unsatisfiable
core.

Solving (Weighted) Partial MaxSAT through Satisfiability Testing 429

3 A Weighted Partial MaxSAT Algorithm

Before giving the full version of our algorithm, we will present the original Fu
and Malik [8] algorithm for Partial MaxSAT, and show the correction of the
algorithm. The reason for doing this is that we will need parts of the argument
to show the correctness of our algorithm for solving Weighted Partial MaxSAT.

The algorithm consists in iteratively calling a SAT solver on a working formula
ϕ. This corresponds to the line (st, ϕc) := SAT (ϕw). The SAT solver will say
whether the formula is satisfiable or not (variable st), and in case the formula is
unsatisfiable, it will give an unsatisfiable core (ϕc). At this point the algorithm
will produce new variables, blocking variables (BV in the code), one for each
clause. The new working formula ϕ will consist in adding the new variables to the
formulas of the core, adding a cardinality constraint saying that exactly one of
the new variables should be true (CNF (

∑
b∈BV b = 1) in the code), and adding

one to the counter of falsified clauses. This procedure is applied until the SAT
solver returns satisfiable.

input: ϕ = {C1, . . . , Cm}
cost := 0 Optimal
while true do

(st, ϕc) := SAT (ϕ) Call to the SAT solver
if st = SAT then return cost
BV := ∅ Set of blocking variables
for each C ∈ ϕc do

if C is soft then
b := new blocking variable
ϕ := ϕ \ {C} ∪ {C ∨ b} Add blocking variable
BV := BV ∪ {b}

if BV = ∅ then return UNSAT There are no soft clauses in the core
ϕ := ϕ ∪ CNF (

∑
b∈BV b = 1) Add cardinality constraint as hard clauses

cost := cost + 1

Fig. 1. The pseudo-code of the Fu&Malik algorithm

The following lemma and definition are part of the correctness of the algorithm
for both the weighted and unweighted versions.

Definition 1. We say that two (Weighted) (Partial) MaxSAT formulas ϕ and
ϕ′ are MaxSAT equivalent if the cost of the optimal assignment of ϕ is equal to
the cost of the optimal assignment of ϕ′.

Lemma 1. Let ϕ be an unsatisfiable CNF formula, and ϕc = {C1, . . . , Cs} be
an unsatisfiable core in ϕ. Define

ϕ′ = (ϕ \ ϕc) ∪ {C1 ∨ b1, . . . , Cs ∨ bs} ∪ CNF (
s∑

i=1

bi = 1) ∪ { }

where b1, . . . , bs are new variables.

430 C. Ansótegui, M.L. Bonet, and J. Levy

Then, the minimum number of falsified clauses of ϕ is the same as the mini-
mum number of falsified clauses of ϕ′, i.e. ϕ and ϕ′ are MaxSAT equivalent.

Proof: Let I be a truth assignment for the variables of ϕ that satisfies all the
hard clauses of ϕ. Since ϕc is an unsatisfiable core, I falsifies some clause in
ϕc. Let Ci be one such clause. Now define I ′ the following way: for all x ∈ ϕ,
I ′(x) = I(x); I ′(bi) = 1 and I ′(bj) = 0 for all j 	= i, 1 ≤ j ≤ s. Now I ′ satisfies
CNF (

∑s
i=1 bi = 1). For every clause C in ϕ \ ϕc, I ′(C) = I(C), and the same is

true for all the clauses Cj ∨ bj for j 	= i. Now, I falsifies Ci but I ′ satisfies Ci∨ bi

and falsifies . As a consequence the number of falsified clauses of ϕ′ by I ′ is
the same as the number of falsified clauses of ϕ by I.

Now consider an optimal assignment I ′ for ϕ′. By the optimality of I ′, we
know that I ′ satisfies CNF (

∑s
i=1 bi = 1) and if I ′(Ci) = 1 then I ′(bi) = 0. Now

we define an assignment I for ϕ the following way: I(x) = I ′(x) for all x ∈ ϕ.
We will see that the number of falsified clauses of I is the same as the number
of falsified clauses in I ′. The number of falsified clauses in ϕ \ ϕc is clearly the
same. Let bi be the variable assigned true by I ′. Then I ′(Cj ∨ bj) = I(Cj) for
j 	= i. On the other hand, I(Ci) = 0 and I ′(Ci ∨ bi) = 1 but I ′ falsifies .

Theorem 1. Fu&Malik is a correct algorithm for Partial MaxSAT.

Proof: In each iteration of the while loop, if the SAT solver returns unsatisfiable
and the unsatisfiable core has soft clauses, we substitute a formula ϕ by another
ϕ′ plus the addition of one to the variable cost. Adding 1 to cost is equivalent to
considering that ϕ′ has also the empty clause. Lemma 1 shows that both formulas
are equivalent in terms of the minimum number of unsatisfiable clauses.

The following algorithm is the weighted version of the previous one. Now we
iteratively call the SAT solver with the working formula without the weights.
When the SAT solver returns an unsatisfiable core, we calculate the minimum
weight of the clauses of the core, wmin in the algorithm. Now we transform the
working formula in the following way: we duplicate the core having on one of
the copies, the clauses with weight the original minus the minimum weight, and
on the other copy we put the blocking variables and we give it the minimum
weight. Finally we add the cardinality constraint on the blocking variables, and
we add wmin to the cost.

Lemma 2. Let ϕ be a weighted partial formula. Let exp(ϕ) be the natural
expansion of ϕ into an unweighted formula by substituting every clause (C, w)
of ϕ into w copies of C.

The minimum weight of ϕ is the same as the minimum number of falsified
clauses of exp(ϕ).

Proof: This is straightforward.

The next lemma shows that if we have several identical unsatisfiable cores, we
don’t need to add different blocking variables to each core. Instead all cores can
have the same set of blocking variables.

Solving (Weighted) Partial MaxSAT through Satisfiability Testing 431

input: ϕ = {(C1, w1), . . . , (Cm, wm)}
cost := 0 Optimal
while true do

(st, ϕc) := SAT ({Ci | (Ci, wi) ∈ ϕ}) Call to the SAT solver without weights
if st = SAT then return cost
BV := ∅ Blocking variables of the core
wmin := min{wi | Ci ∈ ϕc and Ci is soft}
for each Ci ∈ ϕc do

if Ci is soft then
bi := new blocking variable
ϕ := ϕ \ {(Ci, wi)} ∪ {(Ci, wi − wmin)} ∪ {(Ci ∨ bi, wmin)}

Duplicate soft clauses of the core
BV := BV ∪ {bi}

if BV = ∅ then return UNSAT There are no soft clauses in the core
else ϕ := ϕ ∪ CNF (

∑
b∈BV b = 1) Add cardinality constraint as hard clauses

cost := cost + wmin

Fig. 2. The pseudo-code of the WPM1 algorithm

Lemma 3. Let ϕ be an unsatisfiable partial formula and let ϕc = {C1, . . . , Cs}
be an unsatisfiable core in ϕ that appears l times. Consider the following
formulas:

ϕ1 = ϕ \ ϕc ∪ {Ci ∨ bi, . . . , Ci ∨ bi︸ ︷︷ ︸
l times

| Ci ∈ ϕc} ∪ CNF (
s∑

i=1

bi = 1)

and
ϕ2 =ϕ \ ϕc ∪ {Ci ∨ b1

i , . . . , Ci ∨ bl
i | Ci ∈ ϕc}

∪ CNF (
∑s

i=1 b1
i = 1) ∪ . . . ∪ CNF (

∑s
i=1 bl

i = 1)

Then, the minimum number of unsatisfiable clauses of ϕ1 and ϕ2 are the
same, i.e. ϕ1 and ϕ2 are MaxSAT equivalent.

Proof: Let I be an optimal interpretation for ϕ1. Then, if I(Ci) = 1, for some
i = 1, . . . , s, then I(bi) = 0. This is true because ϕc is unsatisfiable and I is
optimal. Now we will modify I into an assignment I ′ the following way:

I ′(x) = I(x) for all x ∈ ϕ

I ′(bj
i) = I(bi) for i = 1, . . . , s and j = 1, . . . , l

It is clear that for all C ∈ ϕ− ϕc, I ′(C) = I(C). Also, I ′(Ci ∨ bj
i) = I(Ci ∨ bi).

Let now I ′ be an optimal assignment for ϕ2. Then as before, if I(Ci) = 1, for
some i = 1, . . . , s, then I(bj

i) = 0 for every j = 1, . . . , l. Now we will modify I ′

into an assignment I the following way:

432 C. Ansótegui, M.L. Bonet, and J. Levy

I(x) = I ′(x) for all x ∈ ϕ
I(bi) = I(b1

i) for all i = 1, . . . , s

It is clear that for all C ∈ ϕ−ϕc, I ′(C) = I(C). We will show that the number of
unsatisfied clauses of {C1∨bj

1, . . . , Cs∨bj
s} by I ′ for every j = 1, . . . , l is the same

as the number of unsatisfied clauses of {Ci ∨ b1, . . . , Cs ∨ bs} by I. Now suppose
that the only b variable that I assigns true is bj

i and the only b variable that I

assigns true is bk. By assumption, I(Ci) = I(Ck) = 0. Then I ′(Ci ∨ bj
i) = 1 and

I ′(Ck ∨ bj
k) = 0, but I(Ci ∨ bi) = 0 and I(Ck ∨ bk) = 1.

The next lemma shows the correctness of one iteration of our Weighted Partial
MaxSAT algorithm WPM1.

Lemma 4. Let ϕ be an unsatisfiable weighted partial formula, let ϕc =
{C1, . . . , Cs} be an unsatisfiable core in the set of clauses from ϕ, and let
ϕw

c = {(C1, w1), . . . , (Cs, ws)} the subset of weighted clauses of ϕ that corre-
sponds to the core. Let wmin = min(w1, . . . , ws), and let

ϕ′ =(ϕ \ ϕw
c) ∪ {(Ci, wi − wmin) | Ci ∈ ϕc}

∪ {(Ci ∨ bi, wmin) | Ci ∈ ϕc}
∪ CNF (

∑s
i=1 bi = 1) ∪ {(, wmin)}

where {b1, . . . , bs} is a set of new variables.
Then, ϕ and ϕ′ are MaxSAT equivalent.

Proof: Let exp(ϕ) be the unweighted expansion of ϕ. Lemma 2 shows that
the minimum weight of ϕ is the same as the number of falsified clauses of
exp(ϕ). Now ϕc = {C1, . . . , Cs} is an unsatisfiable core of exp(ϕ), and since
wmin = min(w1, . . . , ws), ϕc appears wmin times in exp(ϕ). Now we can apply
the transformation of lemma 1 wmin times to obtain a formula

ϕ2 =ϕ \ ϕc ∪ {Ci ∨ b1
i . . . Ci ∨ bwmin

i | Ci ∈ ϕc}
∪ CNF (

∑s
i=1 b1

i = 1) ∪ . . . ∪ CNF (
∑s

i=1 bl
i = 1)

{ Ci, . . . , Ci︸ ︷︷ ︸
wi − wmin copies

| Ci ∈ ϕc} ∪ { , . . . ,︸ ︷︷ ︸
wmin

}

MaxSAT equivalent to ϕexp. By Lemma 3, ϕ′ is MaxSAT equivalent to the
formula

ϕ1 =ϕ \ ϕc ∪ {Ci ∨ bi, . . . , Ci ∨ bi︸ ︷︷ ︸
wmin copies

| Ci ∈ ϕc}

∪{ Ci, . . . , Ci︸ ︷︷ ︸
wi − wmin copies

| Ci ∈ ϕc}

∪ CNF (
∑s

i=1 bi = 1) ∪ { , . . . ,︸ ︷︷ ︸
wmin

}

Solving (Weighted) Partial MaxSAT through Satisfiability Testing 433

Now using again Lemma 2, ϕ1 is MaxSAT equivalent to ϕ′ as in the statement
of the lemma.

Theorem 2. WPM1 is a correct algorithm for Weighted Partial MaxSAT.

Proof: The theorem is proved iterating Lemma 4 for every execution of the
loop of the algorithm.

4 Another Partial MaxSAT Algorithm

The next algorithm, that we call PM2, is also a variant of the Fu and Malik
algorithm that avoids the use of more than one blocking variable in a clause.
A single blocking variable is added to each soft clause, like in other solvers like
SAT4J [4], msu3 [15] and msu4.0 [16].

PM2 works as follows: every clause gets an additional variable and the car-
dinality constraint says that all these additional variables have to be false. Also
before the first iteration of the algorithm the counter of falsified clauses, cost, is
set to zero. At every iteration of the algorithm a SAT solver is called. As before,
if the solver returns unsatisfiable, it also gives an unsatisfiable core. If the core
only contains hard clauses, then the algorithm returns unsatisfiable. Otherwise,
we put the blocking variables of the soft clauses of the core in a set B. Since we
have found a new unsatisfiable core, variable cost gets increased by one. Also we
look for other cores such that the soft clauses are included in the new core. If no
such core exists, we add an at least cardinality constraint saying that the sum
of the blocking variables of B is larger than or equal to one. If some cores are
included, we add the cardinality constraint saying that the number of variables
in B that need to be one is at least the number of cores included in the last core
found (counting the last). In every call to the SAT solver we also add an at most
cardinality constraint saying that the sum of all blocking variables is at most
cost. If the solver says that the formula is satisfiable, the algorithm returns cost
as the minimal number of falsified clauses.

PM2 simplifies Fu&Malik in the sense that it only adds one blocking variable
per clause. Intuitively, this would have to result into a more efficient algorithm
because there are less blocking variables, so the SAT solver will have to check
less possible assignments. This idea is already used in other MaxSAT solvers,
like SAT4J [4], msu3 [15] and msu4.0 [16]. In SAT4J only one at most cardinality
constraint (saying that the sum of blocking variables is smaller than k) is used.
This bound k is reduced until the SAT solvers says unsatisfiable. In msu3 [15], in
a first phase they compute a maximal set of disjoint cores, and in a second phase
they do as in SAT4J but increasing the bound k (starting with the number of
disjoint cores) until the SAT solver returns sat, and only summing the blocking
variables that have appeared in some core. Finally, in the msu4.0 algorithm [16],
apart from the at most constraint, they also use some at least constraints saying
that blocking variables occurring in a core, and not occurring in previous cores,
have to sum at least one. The algorithm alternates phases where the SAT solver
returns sat or unsat, refining a lower or upper bound, and only terminates when

434 C. Ansótegui, M.L. Bonet, and J. Levy

the upper and lower bound coincide, or when the new core does not contain new
blocking variables. Our approach is different from previous ones in two senses.
First, our at most constraint has a bound cost that is successively increased like
in msu3, instead of decreased like in SAT4J. Second, our at least constraints
may impose a bound strictly greater than one, in contrast with the msu4.0
algorithm. This would have to result in a more restrictive constraint, thus in
fewer assignments to check by the SAT solver.

input: ϕ = {C1, . . . , Cm}
BV := {b1, . . . , bm} Set of all blocking variables
ϕw := {C1 ∨ b1, . . . , Cm ∨ bm} Protect all clauses
cost := 0 Optimal
L := ∅ Set of Cores
while true do

(st, ϕc) := SAT (ϕw ∪ CNF (
∑

b∈BV b ≤ cost)) Call to the SAT solver with
at most cardinality constraint

if st = SAT then return cost
remove the hard clauses from ϕc

if ϕc = ∅ then return UNSAT
B := ∅ Blocking variables of the core
for each C = Ci ∨ bi ∈ ϕc do

B := B ∪ {bi}
L := L ∪ {ϕc}
k := |{ψ ∈ L | ψ ⊆ ϕc}| Num. of cores contained in ϕc including ϕc

ϕw := ϕw ∪ CNF (
∑

b∈B b ≥ k) Add at least cardinality constraint
cost := cost + 1

Fig. 3. The pseudo-code of the PM2 algorithm

To prove that the PM2 algorithm is correct, we will prove that the
Fu&Malik algorithm can simulate it. We have to be aware they are non-
deterministic, since we assume that the SAT solver returns an unsatisfiable core
non-deterministically. However, recall that we have proved that Fu&Malik al-
gorithm is correct for every possible run. The proof is by induction on the num-
ber of execution steps. From now on, when we say that a set of soft clauses is
a core, we mean that this set, together with the hard clauses, is a core. A core
B = {i1, . . . , im} will be a set of indexes of soft clauses. Suppose that Fu&Malik

has simulated PM2 for s steps. We will prove that 1) if PM2 finds a core B,
then this set B of (soft) clauses is also a core for the Fu&Malik algorithm, in
particular if the set B = ∅ is a core for PM2, and it returns UNSAT, then the
same set B = ∅ is a core for Fu&Malik, that also returns UNSAT; and 2) if
PM2 does not find any cores, and stops, then Fu&Malik does not find any
cores either, and also stops returning the same MaxSAT value, since both have
run the same number of steps.

Solving (Weighted) Partial MaxSAT through Satisfiability Testing 435

Since Theorem 3 will be proved by induction, assume by induction hypothesis
that

ϕ = {C1 ∨ a1, . . . , Cm ∨ am} ∪CNF (
m∑

i=1

ai ≤ s) ∪
s⋃

r=1

CNF (
∑
i∈Br

ai ≥ kr)

is the formula computed by PM2 after s execution steps, where B1, . . . , Bs is
the sequence of cores, and kj is the number of cores from B1, . . . , Bj included in
Bj . Assume also that Fu&Malik, after s steps simulating PM2, with the same
sequence of cores B1, . . . , Bs, obtains the formula

ϕ̂ = {C1 ∨
∨

1∈Bj

bj
1, . . . , Cn ∨

∨
n∈Bj

bj
n} ∪

s⋃
j=1

CNF (
∑
i∈Bj

bj
i = 1)

Lemma 5. Let ϕ and ϕ̂ be the formulas obtained by PM2 and Fu&Malik al-
gorithms, respectively, after s steps of simulation. For any optimal interpretation
Î of the variables of ϕ̂, let I be the interpretation of the variables of ϕ given by

I(x) = Î(x) for any variable x ∈ {C1, . . . , Cn}
I(ai) = max{Î(bj

i) | i ∈ Bj} for the blocking variables

Then, (1) if Î satisfies the hard clause C ∈ ϕ̂, then I satisfies the hard clause
C ∈ ϕ;
(2) if Î satisfies the cardinality constraints of ϕ̂, then I satisfies the cardinality
constraints of ϕ; and
(3) if Î satisfies the soft clause Ci∨

∨
i∈Bj

bj
i ∈ ϕ̂, then I satisfies the soft clause

Ci ∨ ai ∈ ϕ.

Proof: Statement (1) is trivial, since I and Î assign the same values to the
original variables. For (2), if Î satisfies the cardinality constraints of ϕ̂, then∑

i∈Br
Î(br

i) = 1, for any core Br. Hence,∑
i∈Br

∑
i∈Bj

j=1,...s

Î(bj
i) ≥

∑
Bj⊂Br

j≤r

∑
i∈Bj

Î(bj
i) = |{Bj | Bj ⊆ Br ∧ j ≤ r}|

for any of the cores Br obtained in the execution. If the interpretation Î is
optimal, it means that it assigns true to at most one of the blocking variables
of a clause. In other words,∑

i∈Bj
j=1,...,s

Î(bj
i) ≤ 1 hence I(ai)=max{Î(bj

i) | i ∈ Bj∧j = 1, . . . , s}=
∑
i∈Bj

j=1,...,s

Î(bj
i)

for any i = 1, . . . , n. From all this, we conclude
∑

i∈Br
I(ai) ≥ |{Bj | Bj ⊆

Br∧j ≤ r}| = kr, i.e. I satisfies the cardinality constraints CNF (
∑

i∈Br
ai ≥ kr).

436 C. Ansótegui, M.L. Bonet, and J. Levy

Similarly, we can prove that if Î is optimal

n∑
i=1

I(ai) =
n∑

i=1

max{Î(bj
i) | i ∈ Bj ∧ j = 1, . . . , s}

=
n∑

i=1

∑
i∈Bj

j=1,...,s

Î(bj
i) =

s∑
j=1

∑
i∈Bj

Î(bj
i) =

s∑
j=1

1 = s

Hence, the other cardinality constraint CNF (
∑m

i=1 ai ≤ s) is also satisfied.
For (3), if Î satisfies Ci∨

∨
i∈Bj

bj
i , then either it satisfies Ci, and so I because

the assign the same values to original variables, or it satisfies some of the variables
bj
i . In this second case, the way we define the value of ai ensures that I satisfies

this value, hence the clause Ci ∨ ai ∈ ϕ.

Lemma 6. Let ϕ and ϕ̂ be the formulas obtained by PM2 and Fu&Malik

algorithms, respectively, after s steps of simulation. If B is a core of ϕ, then B
is also a core of ϕ̂.

Proof: If B is not a core of ϕ̂, then there exists an interpretation I of ϕ̂ that
satisfies all hard clauses, all cardinality constraints of ϕ̂, and all soft clauses
Ci ∨

∨
i∈Bj

bj
i where i ∈ B. By Lemma 5, Ǐ will satisfy all hard clauses, all

cardinality constraints of ϕ, and all soft clauses Ci ∨ai where i ∈ B. This would
contradict that B is a core of ϕ.

The previous lemma ensures that if PM2 finds a core, then Fu&Malik also
finds a core. Hence, if PM2 does not stop, then Fu&Malik does not stop, either.
Therefore, the values computed by PM2 are smaller than the values calculated
by Fu&Malik. However, it is still possible that PM2 computes underestimated
values of MaxSAT of a formula. The following lemma shows that this is not
the case. Notice that the proof of this lemma relies on the correctness of the
Fu&Malik algorithm.

Lemma 7. Let ϕ and ϕ̂ be the formulas obtained by PM2 and Fu&Malik

algorithms, respectively, after s steps of simulation. If ϕ is satisfiable, then ϕ̂ is
satisfiable.

Proof: Let I be an interpretation satisfying ϕ. In particular, I satisfies
CNF (

∑m
i=1 ai ≤ s), and all hard and soft clauses. Therefore, I satisfies all the

original soft clauses Ci where I(ai) = false, and there are at least n − s of such
clauses. We have MaxSAT (C1, . . . , Cn) ≤ s. Since, Fu&Malik is a correct algo-
rithm for MaxSAT, it has to stop before s or less execution steps. And, since it has
not finished before, it has to finish after these s steps, hence ϕ̂ is satisfiable.

Theorem 3. PM2 is a correct algorithm for Partial MaxSAT.

Solving (Weighted) Partial MaxSAT through Satisfiability Testing 437

Table 1. Time in seconds (solved). Timeout of 1200 seconds. # stands for number of
instances of the benchmark.

set # best08 WPM1 PM2 msu1.2 msu4.0 SAT4J

Unweighted MaxSAT Category

Crafted

Maxcut/dimacs mod/ 62 IncMaxSatz - 81.8(52) 0.03(4) 175(7) 0.28(4) 1.71(3) 0.93(2)

Maxcut/random/ 58 MaxSatz - 4.5(40) -(0) -(0) - (0) - (0) - (0)

Maxcut/Spinglass/ 5 MiniMaxSatz - 1.62(3) 0.85(2) 102.5(2) 0.68 (2) -(0) -(0)

Industrial

SeanSafarpour 112 msu1.2 - 57.5(72) 66.6(81) 90.2(75) 57.5(72) 64.4(50) 14.5(10)

Partial MaxSAT Category

Crafted

Maxclique/Random/ 96 MiniMaxSAT - 2.4(96) 50.4(1) -(0) -(0) 106(61) 114(52)

Maxclique/Structured/ 62 MiniMaxSAT - 73(36) 41.2(11) 32.6(6) 4.9(7) 105.2(13) 50.5(13)

Maxone/3SAT/ 80 IncMaxSatz - 0.46(80) 15.82(46) 105.7(79) 52.7(40) 118.2(35) 96.6(31)

Maxone/Structured/ 60 SAT4J - 10.1(60) 0.69(2) 547.5(13) 122.7(2) 3.34(1) 10.1(60)

Industrial

Bcp-fir/ 59 msu1.2 - 49.2(46) 31.7 (57) 67.4(56) 49.2(46) -(0) 13.3(10)

Bcp-hipp-yRa1/ 1183 SAT4J - 19.2(1111) 2.9(1122) 13.5(1162) 7.2(1105) 0.29(348) 12.20(1109)

Bcp-msp/ 148 MiniMaxSAT - 48.9(104) 15.5(26) 384.2(36) 4.9(25) 22.9(79) 8.8(93)

Bcp-mtg/ 215 MiniMaxSAT - 25.7(206) 5.8(170) 10.5(214) 17.5(164) 0.43(22) 57(196)

Bcp-syn/ 74 lb-psat - 63.4(34) 14.1(32) 71.2(34) 51.1(31) 105.2(11) 67.4(21)

Pbo-mqc-nencdr/ 128 msu4.0 - 167.5(115) 80.4(50) 142(78) 50.3(54) 167.5(115) 180.6(102)

Pbo-mqc-nlogencdr/ 128 msu4.0 - 111(128) 67.1(75) 140.3(97) 53(65) 111(128) 117.5(126)

Pbo-routing/ 15 msu1.2 - 2.9(15) 0.94(15) 24.7(15) 2.9(15) 54.9(15) 26.4(9)

5 Experimental Results

In order to conduct our experimental investigation we have selected the bench-
marks submitted to the MaxSAT08 evaluation [2]. We have focus on the crafted
and industrial instances for all the four categories: unweighted MaxSAT, partial
MaxSAT, weighted MaxSAT and weighted partial MaxSAT. The appropriate
testing instances for our algorithms would be the industrial instances, where
we can expect these approaches to be competitive. However, since there is a
lack of industrial instances, in particular for the weighted and partial weighted
categories, we decided also to incorporate the crafted instances.

Our experiments have been run on the same machine specs as the MaxSAT
evaluation; Operating System: Rocks Cluster 4.0.0 Linux 2.6.9, Processor: AMD
Opteron 248 Processor, 2 GHz and compilers, Memory: 1 GB and Compilers
GCC 3.4.3, javac JDK 1.5.0. The solvers we compare are the best solvers for
each category and benchmark at the MaxSAT08 evaluation [2], the solvers based
on satisfiability testing (msu1.2, msu4.0 [16], and SAT4J [4]) and our implemen-
tations of the weighted version of Fu&Malik (WPM1) and Partial MaxSAT 2
(PM2) presented in this paper.

Our solvers are implemented on top of the SAT solver picosat846 [5], al-
though they can be easily adapted to work with any other solver that provides an

438 C. Ansótegui, M.L. Bonet, and J. Levy

Table 2. Time in seconds (solved). Timeout of 1200 seconds. # stands for number of
instances of the benchmark.

set # best08 WPM1 SAT4J
Weighted MaxSAT Category

Crafted

KeXu/ 15 IncWMaxsatz - 126.5(15) 478(1) 7.7(4)
Ramsey/ 48 lb-psat - 1.63(37) 0.05(34) 16(35)

WMaxcut/dimacs mod/ 62 ToolBar3 - 59(56) 0.12(3) 0.84(2)
WMaxcut/Random/ 40 MiniMaxSAT - 5.43(40) -(0) -(0)
WMaxcut/Spinglass/ 5 MiniMaxSAT - 27.6(4) -(0) -(0)

Weighted Partial MaxSAT Category

Crafted

Auctions/Auc paths/ 88 IncWMaxsatz - 8.4(88) -(0) 497(15)
Auctions/Auc regions/ 88 MiniMaxSAT - 1.7(84) -(0) 166(76)
Auctions/Auc Sched/ 84 MiniMaxSAT - 46(84) -(0) 317(49)

Random-net/ 350 Clone - 72(236) 194(91) 331(13)
Pseudo-factor/ 186 IncWMaxsatz - 0.07(186) 16(124) 3.3(186)
Pseudo- miplib/ 16 SAT4J - 13(6) 0.29(3) 13(6)

QCP/ 25 SAT4J - 6.14(25) 0.27(25) 6.14(25)
WCSP/Planning/ 71 SAT4J - 6.55(71) 0.9(46) 6.55(71)

WCSP/Spot5/Dir/ 21 Clone - 87.6(6) 2.31(4) 76(3)
WCSP/Spot5/Log/ 21 Clone - 15(6) 0.52(5) 63.8(3)

Industrial

Protein ins 12 MiniMaxSAT - 482(8) 42(1) 6.05(1)

interface to access to the unsatisfiable core when the formula is UNSAT. In order
to encode the cardinality constraints, for WPM1, we use the regular encoding
presented in [1], and for PM2 we use the encoding based on sequential counters
presented in [18].

In SAT4J [4], for each clause ci in the original problem, a new blocking variable
bi is added. Then a SAT solver is called to solve the new formula, and each time
a model is found, a cardinality constraint is added to the formula that states that
the sum of blocking variables has to be less than the number of blocking variables
satisfied in the previous iteration. Once the SAT solver gives an UNSAT answer,
the latest model is an optimal solution.

Msu1.2 [14,15] is another implementation of the Fu&Malik algorithm.
Msu4.0 [16] is a more sophisticated approach, which alternates iterations to
discover new cores with iterations to reduce the number of blocking variables
that need to be set to true in each core.

Table 1 and Table 2 show the results of our experimental investigation. We
set as timeout 1200 seconds. We report the number of solved instances (within
parenthesis), and the mean time of the solved instances for each solver. The
rules at the MaxSAT08 evaluation [2] establish that the winner is the solver

Solving (Weighted) Partial MaxSAT through Satisfiability Testing 439

which solves more instances and ties are broken by selecting the solver with the
minimum mean time. In bold we present the results of the winners.

We are interested in answering two questions: how our solvers would have
performed at the MaxSAT08 evaluation [2], and how they compare to the current
solvers based on satisfiability testing.

As we can see for the unweighted category, the solvers based on satisfiability
testing perform well at the industrial category being our solver WPM1 the best
performing one. For the crafted instances, the solvers based on satisfiability
testing are not competitive, however our solver PM2 is the best among them.

For the partial category and the crafted instances, the solvers based on satisfi-
ability testing are again not competitive, except for SAT4J [4] at one benchmark.
However, for the industrial instances, they win 7 out of 9 benchmarks, in par-
ticular, WPM1 wins at 2, PM2 at 3 and msu4.0 [16] at 2.

For the weighted category, WPM1 and SAT4J [4] just show a good behavior
on one set of instances, the Ramsey set. However, looking more closely to the
set, many of the instances are actually satisfiable. Unfortunately, there are not
available industrial instances for this category.

For the weighted partial category and crafted instances, WPM1 and SAT4J [4]
are just able to win at 2 out 9 benchmarks. Again, unfortunately, there is only
one set of industrial instances, and MinimaxSAT is the only solver able to solve
8 instances while the rest of the solvers submitted to the MaxSAT08 evalua-
tion [2] and the one presented in this paper are not able to solve more than
2 instances.

As a whole, we can say that there is not a clear winner in all the categories,
and so far, all the approaches can have some potential. Respect to the solvers
we have presented in this paper, we have shown that our implementations show
a good performance on the industrial instances for the unweighted and partial
categories. That should be a promising base point for the weighted versions.
Although we can not make such a claim yet, since there are not enough industrial
instances at these categories in order to test our solvers, we think this research
avenue is worth further investigation.

Acknowledgements

We especially thank Armin Biere for the insightful discussions about his SAT
solver picosat. We would also like to thank the organizers of the MaxSAT
evaluations.

References

1. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables to prob-
lems with boolean variables. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 1–15. Springer, Heidelberg (2005)

2. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second Max-SAT eval-
uations. Journal on Satisfiability 4, 251–278 (2008)

440 C. Ansótegui, M.L. Bonet, and J. Levy

3. Argelich, J., Manyà, F.: Partial Max-SAT solvers with clause learning. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 28–40. Springer,
Heidelberg (2007)

4. Berre, D.L.: Sat4jmaxsat, http://www.sat4j.org
5. Biere, A.: PicoSAT essentials. Journal on Satisfiability 4, 75–97 (2008)
6. Darras, S., Dequen, G., Devendeville, L., Li, C.M.: On inconsistent clause-subsets

for Max-SAT solving. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 225–240.
Springer, Heidelberg (2007)

7. Fu, Z.: Extending the Power of Boolean Satisfiability: Techniques and Applications.
PhD thesis, Princeton University, Princeton (2007)

8. Fu, Z., Malik, S.: On solving the partial max-sat problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

9. Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: Proc.
the 21th National Conference on Artificial Intelligence (AAAI 2006) (2006)

10. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver.
In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 41–55.
Springer, Heidelberg (2007)

11. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell.
Res. (JAIR) 30, 321–359 (2007)

12. Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for Max-SAT
solving. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI
2007), pp. 2334–2339 (2007)

13. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound com-
putation in Max-SAT solving. In: Proc. the 23th National Conference on Artificial
Intelligence (AAAI 2008), pp. 351–356 (2008)

14. Marques-Silva, J., Manquinho, V.M.: Towards more effective unsatisfiability-based
maximum satisfiability algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT
2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)

15. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satis-
fiability. CoRR, abs/0712.1097 (2007)

16. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsat-
isfiable cores. In: Proc. of the Conf. on Design, Automation and Test in Europe
(DATE 2008), pp. 408–413 (2008)

17. Pipatsrisawat, K., Darwiche, A.: Clone: Solving weighted Max-SAT in a reduced
search space. In: Australian Conference on Artificial Intelligence, pp. 223–233
(2007)

18. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

http://www.sat4j.org

Nonlinear Pseudo-Boolean Optimization:
Relaxation or Propagation?

Timo Berthold1,�, Stefan Heinz1,�, and Marc E. Pfetsch2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{berthold,heinz}@zib.de

2 Technische Universität Braunschweig, Institut für Mathematische Optimierung,
Pockelsstraße 14, 38106 Braunschweig, Germany

m.pfetsch@tu-bs.de

Abstract. Pseudo-Boolean problems lie on the border between satis-
fiability problems, constraint programming, and integer programming.
In particular, nonlinear constraints in pseudo-Boolean optimization can
be handled by methods arising in these different fields: One can either
linearize them and work on a linear programming relaxation or one can
treat them directly by propagation. In this paper, we investigate the
individual strengths of these approaches and compare their computa-
tional performance. Furthermore, we integrate these techniques into a
branch-and-cut-and-propagate framework, resulting in an efficient non-
linear pseudo-Boolean solver.

1 Introduction

Pseudo-Boolean (PB) optimization extends the satisfiability (SAT) problem by
allowing integer coefficients in the constraints, multiplication of variables, and
an objective function. As in SAT, variables take 0/1 (false/true) values.

There are several, fundamentally different, ways to attack the solution of PB-
problems. One way is to apply a transformation to a SAT problem. This approach
is used, for instance, in the solver MiniSat+ [10]. Another way is to handle
PB-constraints directly in the solver, see, e.g., SAT4JPseudo [8], PBS [6],
and pueblo [18]. Other solvers use a constraint programming approach, e.g.,
absconPseudo [13]. Pseudo-Boolean problems can also be formulated as an
0/1 integer program (IP), in which the nonlinear constraints are linearized. For
instance glpPB uses this idea and applies the IP-solver glpk [12]. The solver
bsolo [14] combines SAT-solving techniques with IP-methodologies to solve
linear pseudo-Boolean problems, if the bounds from the linear programming (LP)
relaxation are promising. The performance of the IP-solver Cplex for linear
pseudo-Boolean problems was investigated in [5]. A variety of PB-solvers have
been compared during the Pseudo-Boolean Evaluations [15,16].

In this paper, we approach nonlinear PB-problems via constraint integer pro-
gramming (CIP). CIP is a combination of IP, SAT, and constraint programming
� Supported by the DFG Research Center Matheon Mathematics for key technologies

in Berlin.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 441–446, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

442 T. Berthold, S. Heinz, and M.E. Pfetsch

(CP) methodologies. CIP was introduced by Achterberg [1,2] and implemented in
the framework scip. The basic idea is to apply a branch-and-cut-and-propagate
method. Hence, one performs a branch-and-bound algorithm to decompose the
problem into subproblems (as in SAT, CP, and IP-solvers). One solves a lin-
ear relaxation, which is strengthened by additional inequalities/cutting planes
if possible (as in IP-solvers). One uses propagation techniques (similar to CP-
solvers) in the nodes of the search tree. Moreover, one applies conflict analysis
and restarts (similar to SAT-solvers). Detailed descriptions of the CIP-paradigm
and the algorithmic design of scip can be found in [1,2,3].

The main goal when applying CIP to PB problems is to use the IP-machinery
with LP-relaxations, cutting planes, elaborated branching rules, etc., and di-
rectly propagating the (nonlinear) multiplications. As far as we know, all of
the PB-solvers discussed above either handle nonlinearities directly or add a
complete linearization to the problem formulation. We compare both ideas and
introduce a hybrid approach which only partially linearizes the nonlinear part
of the problem. It turns out that the combination of both, propagation and
(partial) linear relaxation, performs better than applying only one of these.

2 Problem Definition

For a Boolean variable x ∈ {0, 1}, a literal � is either the original variable x or
its negation x := 1 − x. A (nonlinear) pseudo-Boolean problem with Boolean
variables x1, . . . , xn (n ∈ �) is an optimization problem of the following form:

min
t0∑

j=1

cj ·
∏

∈I0j

� (1)

ti∑
j=1

aij ·
∏

∈Iij

� ≥ bi for i = 1, . . . , m

x ∈ {0, 1}n.

Here, m ∈ � defines the number of constraints, Iij is a subset of literals for
i = 0, . . . , m and j = 1, . . . , ti, where ti ∈ � is the number of summands in
constraint i. All coefficients aij , bi, cj are required to be integral. Let

I := {(i, j) : i ∈ {0, . . . , m}, j ∈ {1, . . . , ti}}.

The above formulation is quite general: one can easily incorporate maximization,
“≤” constraints, equations, and pure satisfiability problems. If |Iij | ≤ 1 for all
(i, j) ∈ I, the objective function and the constraints are linear expressions in the
variables. We call such instances linear pseudo-Boolean problems. If the objective
function equals zero (or any other constant), we have satisfiability problems,
otherwise optimization problems.

SAT problems are special cases of PB problems with bi = 1, for i = 1, . . . , m,
cj = 0, for j = 1, . . . , t0, and aij ∈ {0, 1} for i = 1, . . . , m, j = 1, . . . , ti.

Nonlinear Pseudo-Boolean Optimization: Relaxation or Propagation? 443

3 Handling of Nonlinearities
Linear Relaxations. To deal with the nonlinear constraints, we transform
Problem (1) as follows. For each (i, j) ∈ I with |Iij | > 1, we introduce a
new Boolean variable zij =

∏

∈Iij

�. The product can also be seen as an and-
expression zij =

∧

∈Iij

�, for which we apply the following linearization:

zij − � ≤ 0 for � ∈ Iij (2)∑

∈Iij

�− zij ≤ |Iij | − 1. (3)

After replacing the and-expressions by zij , the resulting constraint is linear
in zij . This linearization has the following nice feature – we omit the proof.

Lemma. The polyhedron defined by (2), (3), zij ≥ 0, and � ≤ 1 for all � ∈ Iij

is integral, i.e., has only integral vertices.

Note that the above linearization is different from∑

∈Iij

�− |Iij | zij ≥ 0,
∑

∈Iij

�− zij ≤ |Iij | − 1, (4)

which is used in the Pseudo-Boolean Evaluation [16]. Both linearizations have
the property that 0/1-solutions of the corresponding systems are solutions of
their and-expressions and conversely. However, while the above Lemma holds
for the first linearization, the corresponding polyhedron of (4) is not integral,
since zij = 1

n , �̂ = 1 for some �̂ ∈ Iij , � = 0 for all � ∈ Iij \ �̂ is a fractional vertex.
Linearization (4) has the advantage that it contains only two constraints,

compared to |Iij |+1 in (2) and (3). The larger size of the first linearization can be
handled by a so-called separation mechanism, i.e., the necessary inequalities are
generated on the fly, if they are violated. More precisely, one solves an LP which
initially only consists of the objective function and the linear constraints in zij

and neglect the and-expressions (and integrality constraints). Inequalities (2)
and (3) are added, only if they violate the optimal solution of this LP-relaxation.
Then the resulting LP is solved and the process is iterated.

The advantages and disadvantages of the above linearizations have been widely
discussed in the literature, see, for instance, Glover and Woolsey [11], Balas and
Mazzola [7], and Adams and Sherali [4].

Constraint Programming. The CP approach applies a domain propagation
algorithm at each subproblem of the branch-and-bound process in order to fix
further variables. The propagation rules are as follows. If one of the operand
variables � ∈ Iij is fixed to zero the resultant variable zij has to be zero, too.
On the other hand, if all operand variables are set to one, the resultant variables
must also be fixed to one, and vice versa. Finally, if the resultant variable zij

is zero and all but one of the operand variables are one, the remaining operand
variable can be fixed to zero.

The main advantage of this approach is that all these propagation rules can
be applied very efficiently and therefore the computation time per node is very

444 T. Berthold, S. Heinz, and M.E. Pfetsch

small. The disadvantage is that one looses the global view of the LP-relaxation
and its strong capability of pruning suboptimal parts of the tree.

Constraint Integer Programming. The hope of an integrated approach is
that on the one hand the fixings derived by domain propagation reduce the size
of the LP and therefore potentially the computational overhead. On the other
hand, these fixings may even yield a stronger LP-bound which vice versa can
lead to further variable fixings which can be propagated and so forth.

We study three different variants of integration. First, we apply the suggested
separation mechanism simultaneously with the propagation algorithm. Second,
we add the complete linearization and apply propagation. Third, we change the
strategy dynamically depending on the problem’s degree of nonlinearity.

4 Computational Results

In this section, we analyze how each of the approaches performs for the nonlinear
test sets of the Pseudo-Boolean Evaluation 2007 [16].

All computations reported in the following were obtained using version 1.1.0.6
of scip [17] on Intel Xeon Core 2.66 GHz computers (in 64 bit mode) with 4 MB
cache, running Linux, and 6 GB of main memory. We integrated CLP release
version 1.9.0 as underlying LP-solver [9]. Thus, we only used noncommercial
software, which is available in source code.

As in the PB evaluation, we set a time limit of 1800 seconds. We compared the
performance of scip for six different settings, which only differ in the way they han-
dle the and-expressions. The setting “only relaxation” only applies the complete
linearization of the and-expressions before starting the search, “only separation”
only uses separation, i.e., adding inequalities (2) and (3) when they are violated,
and “only propagation” only performs propagationwithout using the linearization.
The settings “relaxation/propagation” and “separation/propagation” linearize the
and-expressions in advance and on the fly, respectively. Additionally, they apply
the described propagation algorithms, thereby combining CP and IP techniques.
The setting “dynamic” incorporates the latter two: If the linearization of the and-
expressions consists of less than10 000 linear constraints, “relaxation/propagation”
will be used, otherwise, “separation/propagation” will be used. The motivation was
toworkon the complete linear descriptiononly if it is small andnot likely toproduce
a huge computational overhead.Weuse the inequalities (2) and (3) as linearization.
All remaining parameters of scip were set to their default values, hence we use pri-
mal heuristics such as the feasibility pump, general purpose cutting planes such as
Gomory cuts, preprocessing strategies, and we use conflict analysis and restarts.

According to the PB evaluation, the instances are split into the following
two groups, both with “small” integers, i.e., all coefficients are representable as
32 bit integers: Opt-Smallint-Nlc (nonlinear PB optimization), SatUnsat-

Smallint-Nlc (nonlinear PB satisfiability). For details we refer to [16].
We compare for how many instances optimality (“opt”) or at least satisfia-

bility (“sat”) could be proven, the number of instances for which no result was
obtained (“unkn”), total time and number of branch-and-bound nodes over all

Nonlinear Pseudo-Boolean Optimization: Relaxation or Propagation? 445

Table 1. Results for the 405 Opt-Smallint-Nlc instances

Nodes Time in [s]
Setting opt sat unkn total(k) geom1 total(k) geom1

only propagation 269 321 84 152027 13477 235.3 62.6
only separation 225 276 129 67313 5583 359.3 202.5
only relaxation 236 326 79 90639 4184 340.5 194.0
separation/propagation 288 341 64 12219 1267 225.2 61.5
relaxation/propagation 284 372 33 5105 846 226.3 59.6
dynamic 291 342 63 11009 1219 223.5 64.3
MiniSat+ 279 397 8 – – 234.0 46.2

instances in the test set and the shifted geometric means1 (“geom”) over these
two performance measures. For the satisfiability test set, we compare the number
of instances for which an answer could be found (“solved”), which we subdivide
into feasible (“sat”) and infeasible (“unsat”) instances, the time and the number
of branch-and-bound nodes in total and in shifted geometric mean as before.

The results of Tables 1 and 2 show that the combined approaches are superior
to the ones which use only one algorithm. For the optimization instances, each of
them solves more instances to optimality and finds more feasible solutions than
each of the “only” settings. The same holds for the number of solved instances
in the satisfiability test set. Furthermore, the combined approaches usually need
less branch-and-bound nodes and less overall running time.

As one would expect, the setting “relaxation/propagation”, the method with
the highest computational effort, needs the fewest branch-and-bound nodes for
both test sets, but spends the most time per node. In contrast, “only propagation”
requires little time per node, but needs the most branch-and-bound nodes.

The “dynamic” setting enables to solve most of the optimization problems
and only one instance less than the best setting for the satisfiability instances.
The setting “relaxation/propagation” is the best performing for the satisfiability
instances and, moreover, the best in finding feasible solutions for the optimization
problems. This can be explained by the fact that the primal heuristics work best,
if there is a full linear description present.

We conclude that combining LP-relaxation and domain propagation techniques
help to solve nonlinear pseudo-Boolean problems. Furthermore, for proving opti-
mality, it is recommendable to only use a partial linearization for instances with a
large nonlinear part. We also performed all experiments using the linearization (4).
The results are similar, but slightly worse.

For comparison,we ranMiniSat+, the best solver for nonlinearPB problems in
the PB evaluation 2007, on the same computational environment. For the results
in Tables 1 and 2 we used linearization (2) and (3), while with linearization (4)
MiniSat+ solved two instances less of the optimization test set and performed
slightly worse in both cases.

1 The shifted geometric mean of values t1, . . . , tn is defined as
(∏

(ti + s)
)1/n − s with

shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease
the strong influence of the very easy instances in the mean values.

446 T. Berthold, S. Heinz, and M.E. Pfetsch

Table 2. Results for the 100 SatUnsat-Smallint-Nlc instances

Nodes Time in [s]
Setting solved sat unsat unkn total(k) geom1 total(k) geom1

only propagation 60 50 10 40 41085 6883 72.5 86.5
only separation 70 50 20 30 671 281 55.0 57.3
only relaxation 71 51 20 29 446 161 58.4 69.6
separation/propagation 72 52 20 28 883 284 51.7 53.3
relaxation/propagation 73 53 20 27 489 154 55.7 66.4
dynamic 72 52 20 28 835 279 51.8 55.6
MiniSat+ 65 50 15 35 – – 63.1 56.4

References

1. Achterberg, T.: Constraint Integer Programming. PhD thesis, TU Berlin (2007)
2. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Program-

ming Computation, 1 (2008)
3. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer program-

ming: A new approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)

4. Adams, W.P., Sherali, H.D.: Linearization strategies for a class of zero-one mixed
integer programming problems. Oper. Res. 38(2), 217–226 (1990)

5. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus spe-
cialized 0-1 ILP: an update. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proc. of the
2002 IEEE/ACM International Conference on Computer-aided Design, pp. 450–
457. ACM, New York (2002)

6. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: PBS: A backtrack-search
pseudo-boolean solver and optimizer. In: Proc. Fifth International Symposium on
Theory and Applications of Satisfiability Testing (SAT 2002), pp. 346–353 (2002)

7. Balas, E., Mazzola, J.B.: Nonlinear 0-1 programming: I. Linearization techniques.
Math. Prog. 30(1), 1–21 (1984)

8. Berre, D.L.: Sat4j, http://www.sat4j.org/
9. Clp. COIN-OR LP-solver, http://www.coin-or.org/projects/Clp.xml

10. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisf.
Boolean Model. Comput. 2, 1–26 (2006)

11. Glover, F., Woolsey, E.: Converting the 0-1 polynomial programming problem to
a 0-1 linear program. Oper. Res. 22(1), 180–182 (1974)

12. GLPK. GNU linear programming kit, http://www.gnu.org/software/glpk/
13. Hemery, F., Lecoutre, C.: AbsconPseudo 2006 (2006),

http://www.cril.univ-artois.fr/PB06/papers/abscon2006V2.pdf
14. Manquinho, V.M., Marques-Silva, J.: On using cutting planes in pseudo-Boolean

optimization. J. Satisf. Boolean Model. Comput. 2, 209–219 (2006)
15. Manquinho, V.M., Roussel, O.: The first evaluation of pseudo-Boolean solvers (PB

2005). J. Satisf. Boolean Model. Comput. 2, 103–143 (2006)
16. Manquinho, V.M., Roussel, O.: Pseudo-Boolean evaluation 2007 (2007),

http://www.cril.univ-artois.fr/PB07/
17. SCIP. Solving Constraint Integer Programs, http://scip.zib.de/
18. Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean SAT solver. J.

Satisf. Boolean Model. Comput. 2, 165–189 (2006)

http://www.sat4j.org/
http://www.coin-or.org/projects/Clp.xml
http://www.gnu.org/software/glpk/
http://www.cril.univ-artois.fr/PB06/papers/abscon2006V2.pdf
http://www.cril.univ-artois.fr/PB07/
http://scip.zib.de/

Relaxed DPLL Search for MaxSAT�

Lukas Kroc, Ashish Sabharwal, and Bart Selman

Department of Computer Science
Cornell University, Ithaca NY 14853-7501, U.S.A.

{kroc,sabhar,selman}@cs.cornell.edu

Abstract. We propose a new incomplete algorithm for the Maximum
Satisfiability (MaxSAT) problem on unweighted Boolean formulas,
focused specifically on instances for which proving unsatisfiability is al-
ready computationally difficult. For such instances, our approach is often
able to identify a small number of what we call “bottleneck” constraints,
in time comparable to the time it takes to prove unsatisfiability. These
bottleneck constraints can have useful semantic content. Our algorithm
uses a relaxation of the standard backtrack search for satisfiability testing
(SAT) as a guiding heuristic, followed by a low-noise local search when
needed. This allows us to heuristically exploit the power of unit propa-
gation and clause learning. On a test suite consisting of all unsatisfiable
industrial instances from SAT Race 2008, our solver, RelaxedMinisat,
is the only (MaxSAT) solver capable of identifying a single bottleneck
constraint in all but one instance.

1 Introduction

In recent years, we have seen tremendous progress in the area of Boolean Satis-
fiability (SAT) solvers. Current solvers can handle instances with over a million
variables and millions of clauses. These advances have led to an ever growing
range of applications, particularly in hardware and software verification, and
planning. In fact, the technology has matured from being a largely academic en-
deavor to an area of research with strong academic and industrial participation.
The current best SAT solvers for handling “structured” instances are based on
Davis-Putnam-Logemann-Loveland (DPLL) style complete search.

Determining whether a Boolean formula is satisfiable or not is a special case
of the maximum satisfiability (MaxSAT) problem, where the goal is to find an
assignment that satisfies as many clauses as possible. Even though MaxSAT is a
natural generalization of SAT, and thus closely related, progress has been much
slower on the MaxSAT problem. There is a good explanation as to why this
is the case. Two of the key components behind the rapid progress for DPLL-
based SAT solvers are highly effective unit propagation and clause learning.
� This research was supported by IISI, Cornell University (AFOSR grant FA9550-

04-1-0151), NSF Expeditions in Computing award for Computational Sustainability
(Grant 0832782) and NSF IIS award (Grant 0514429). Part of this work was done
while the second author was visiting McGill University.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 447–452, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

448 L. Kroc, A. Sabharwal, and B. Selman

Both techniques in a sense focus on avoiding local inconsistencies: when a unit
clause occurs in a formula, one should immediately assign the appropriate truth
value to the variable so that it satisfies the clause, and when a branch reaches a
contradiction, a no-good clause can be derived which captures the cause of the
local inconsistency. In a MaxSAT setting, these strategies can be quite counter-
productive and inaccurate. For example, for an unsatisfiable instance, the best
assignment, i.e., one satisfying the most clauses, may be the one that violates
several unit clauses. Also, when a contradiction is reached, the best solution may
be to violate one of the clauses that led to the contradiction rather than adding
a no-good clause which effectively steers the search away from the contradiction.
So, neither unit propagation nor clause learning appear directly suitable for a
MaxSAT solver.1 Unfortunately, taking such mechanisms out of DPLL search
dramatically reduces its effectiveness. This is confirmed when one considers the
performance of exact solvers for MaxSAT that, in effect, employ a branch-and-
bound search but do not have unit propagation or clause learning incorporated.
The MaxSAT instances that can be solved by exact solvers in practice are gen-
erally much smaller than instances that can be handled by SAT solvers [cf. 6].

The question we ask in this work is the following: can traditional SAT solver
techniques like unit propagation and clauses learning be directly used as effective
heuristics for an incomplete MaxSAT algorithm? Our results demonstrate that
the answer is clearly affirmative, as long as the instances are not too easy to
prove unsatisfiable. Specifically, we consider a relaxation of the standard DPLL-
based solver where it is allowed to essentially ignore the first � conflicts. We
show that this strategy is able to solve challenging industrial MaxSAT instances
that are hard to prove unsatisfiable, specifically all unsatisfiable instances from
SAT Race 2008 [10], better than currently available exact as well as approximate
alternative techniques. In a few of these instances where the candidate MaxSAT
solution found by this approach is sub-optimal, we show that performing a low-
noise (and hence very greedy and fast) local search initiated at this candidate
solution is often results in an optimal MaxSAT solution within seconds.2

Bottleneck Constraints: Interestingly, our approach revealed that the opti-
mal solutions for allbut one of the unsatisfiable industrial instances from SAT Race
2008haveonlyone violated clause.Note that, in contrast,all otherMaxSAT solvers
incorrectly suggest that these very instances have hundreds, if not thousands, of vi-
olated clauses in the best MaxSAT solutions. This one clause can be thought of as a
bottleneck constraint whose semantics can sometimes be used to guide the problem
designer towards appropriate additional resources that may be acquired to turn
the instance into a feasible one. Of course, it is unclear that a bottleneck constraint
always provides meaningful semantic information about additional resources that
are realistic to acquire; the violated constraint could, in principle, be a “frame ax-
iom” or “consistency constraint” enforcing that the encoding is meaningful.
1 Unit propagation is used indirectly in many exact MaxSAT solvers to generate good

lower bounds [cf. 6, 8], and so are resolution-based inference mechanisms [6]. We
compare our results against these approaches as well as local search methods.

2 Performing local search also works for instances that are too easy to prove unsatis-
fiable and thus not ideal for us; here our method falls back to pure local search.

Relaxed DPLL Search for MaxSAT 449

To investigate this further, we conducted experiments on AI planning in-
stances for which we have full knowledge of the variable and clause semantics.
Specifically, we considered the TPP (Traveling Purchase Problem) domain from
the IPC-5 Competition [3], giving the planner one fewer time step than what it
needs to solve the instance. We translated instances of this infeasible problem
into unsatisfiable SAT formulas following the SatPlan framework [4]. Our solver,
RelaxedMinisat, was able to identify a single violated clause in instances thus
generated. With different random seeds, we obtained a number of different “ex-
planations” of the unsatisfiability of each instance, in the form of a bottleneck
constraint. As an example, in an instance involving 10 goods to be purchased in
various quantities and transported, 1 storage depot, 3 markets, and 3 trucks, a
violated bottleneck constraint had the following precondition-style semantics: “in
order to drive truck-3 from depot-1 to market-2 at time-step-7, truck-3 must be
at depot-1 at the end of time-step-6.” One thing this bottleneck constraint sug-
gests is that there is a plan that “almost” works if the post condition achieved
by the action under consideration is somehow made to hold, i.e., if we could
somehow make a truck available at market-2 at the end of time-step-7. Indeed,
if we add a fourth truck as a new resource at market-2 as part of the initial
conditions, the instance becomes satisfiable in the given time steps.

This suggests that the small number of bottleneck constraints identified by
our approach can provide useful semantic information about potential additional
resources that can make the problem feasible. This information is complemen-
tary to that provided by, for example, “minimal unsatisfiable cores” and related
concepts [cf. 8]. For the specific example discussed above, the minimal unsat core
returned by the zChaff solver involves 522 clauses. For a more detailed discussion
of this motivation, we refer the reader to our recent related work [5].

2 Using Relaxed DPLL as a Heuristic for MaxSAT

Due to lack of space we assume familiarity with Boolean formulas in conjunc-
tive normal form (CNF), the satisfiability testing problem (SAT), the maximum
satisfiability problem (MaxSAT), the standard DPLL style systematic backtrack
search for SAT with conflict clause learning, and basic local search. The reader
may want to refer to the Handbook of Satisfiability [1] for a review.

The idea behind our solver, RelaxedMinisat, is relatively simple: use a state-of-
the-art DPLL solver such as Minisat [2] but relax it to “ignore” a fixed number
� of conflicts on each search branch, and quit once a truth assignment violating
at most � clauses is found. If necessary, run a low-noise local search initiated at
the partial assignment found by the DPLL solver.

We chose Minisat [2] as the DPLL solver to build on. To implement the one
extra feature we need—allowing up to � conflicts on a search branch—we slightly
modify the routine performing unit propagation. When a conflict is detected
on a search branch b and it is amongst the first � conflicts along b, the clause
causing the conflict is silently ignored until the solver later backtracks the closest
branching decision made before getting to this point. All other functionality of
the solver is left intact, including clause learning. If � conflicts are reached on

450 L. Kroc, A. Sabharwal, and B. Selman

the branch b, conflict directed backtracking is performed as usual. It is not hard
to see that the conflict clause C learned at this point has the following property:
if any truth assignment σ satisfies all clauses except the � conflict generating
clauses seen on branch b, then σ also satisfies C. Adding C as a learned clause
therefore preserves the soundness of the technique. (But C could, in principle,
rule out other potential solutions that violate a different set of � or fewer clauses;
adding C therefore does not preserve completeness.) If a solution is found before
reaching � conflicts, this solution is reported as a candidate MaxSAT solution;
this provides an upper bound for the optimal MaxSAT solution. Alternatively,
RelaxedMinisat can return the “UNSAT” status, in which case we increase the
parameter � to attempt to find some other truth assignment. (The “UNSAT”
status of RelaxedMinisat does not mean that there is no assignment violating
at most � clauses.) Using binary search, one can find the smallest value of � for
which RelaxedMinisat does report an assignment; for nearly satisfiable instances
such as the ones with very few bottleneck constraints that we focus on, this is
very quick as � is small. Experiments suggest that rapid restarting improves the
performance of RelaxedMinisat. We restart after every 100 conflicts.

For some of the harder formulas, the candidate solution found by
RelaxedMinisat was not clearly optimal (i.e., had more than one violated clause).
In this case, we ran the local search solver Walksat [9] (without any modification)
with the search initiated at this candidate truth assignment, looking for a better
solution. Empirically, we observed that rapid restarts are again beneficial, along
with very low noise to make the local search extremely greedy and focused.

3 Experimental Results

We conducted experiments on all 52 unsatisfiable formulas from the SAT-Race
2008 suite [10], which are all non-trivial to prove unsatisfiable and, as we will
see, often beyond the reach of existing MaxSAT solvers. The solvers used in
the comparison were from four families: exact MaxSAT solvers maxsatz [6] and
msuf [8]; local search SAT solvers saps [11] and adaptg2wsat+p [7]; our previous
hybrid approach MiniWalk [5] which tries to combine the power of DPLL and
local search methods; and RelaxedMinisat. We used a cluster of 3.8 GHz Intel
Xeon computers running Linux 2.6.9-22.ELsmp with a time limit of 1 hour (see
two exceptions discussed below) and a memory limit to 2 GB.

The exact MaxSAT solvers selected were those that performed exceptionally
well in MaxSAT Evaluation 2007, especially on industrial instances. The local
search algorithms were selected as the best performing ones on our suite from
a wide pool of choices offered by the UBCSAT solver [12]. Three runs for each
problem and local search algorithm were performed with default parameters (or
those used in the accompanying papers for the solvers, e.g., α = 1.05 for saps),
and the best run is reported.

For RelaxedMinisat, we first run the modified DPLL part allowing at most
one conflict (� = 1), and increase this relaxation parameter when necessary. We

Relaxed DPLL Search for MaxSAT 451

Table 1. Comparison of MaxSAT results for exact, local search, hybrid, and currently
proposed methods. Timelimit: 1 hour (except for two instance which took two hours).
If a sure optimum was achieved (i.e., one unsatisfied clause), the time is reported in
parenthesis. The RelaxedMinisat column shows the final number of unsatisfied clauses
reached, and in parenthesis the number of allowed conflicts �, time for the DPLL part,
and, if applicable, time for local search.

Exact Local Search Hybrid Relaxed DPLL
#unsat best #unsat best #uns best #unsat

Instance #vars #cls maxsatz Adapt- SAPS MiniWalk RelaxedMinisat
or msuf g2wsat+p

babic-dspam-vc1080 118K 375K — 728 306 20 1 (1,35s,–)
babic-dspam-vc973 274K 908K — 2112 1412 267 1 (4,100s,44s)
ibm-2002-22r-k60 209K 851K — 198 409 10 1 (3,115m,1s)
ibm-2002-24r3-k100 148K 550K — 205 221 2 1 (1,7m,–)
manol-pipe-f7nidw 310K 923K — 810 797 7 1 (1,3m,–)
manol-pipe-f9b 183K 547K — 756 600 177 1 (1,8s,–)
manol-pipe-g10nid 218K 646K — 585 727 27 1 (1,12s,–)
manol-pipe-g8nidw 121K 358K — 356 336 7 1 (1,6s,–)
post-c32s-col400-16 286K 840K — 88 111 698 1 (50,1m,8s)
post-c32s-gcdm16-23 136K 404K — 25 225 127 1 (3,100m,1m)
post-cbmc-aes-ele 277K 1601K — 864 781 2008 1 (1,14s,–)
simon-s03-fifo8-400 260K 708K — 89 289 13 1 (1,11m,–)
aloul-chnl11-13 286 1742 — 4 4 4 4 (4,3s,×)
anbul-dated-5-15-u 152K 687K — 12 22 1 (15m) 1 (1,8s,–)
een-pico-prop05-75 77K 248K — 2 47 1 (4s) 1 (1,2m,–)
fuhs-aprove-15 21K 74K — 35 31 1 (0s) 1 (1,0s,–)
fuhs-aprove-16 52K 182K — 437 246 1 (1s) 1 (1,0s,–)
goldb-heqc-dalumul 9426 60K — 11 10 1 (0s) 1 (1,1s,–)
goldb-heqc-frg1mul 3230 21K — 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
goldb-heqc-x1mul 8760 56K — 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
hoons-vbmc-lucky7 8503 25K — 1 (0s) 3 9 1 (7,27s,36s)
ibm-2002-25r-k10 61K 302K — 111 95 1 (9s) 1 (1,2s,–)
ibm-2002-31 1r3-k30 44K 194K — 78 101 1 (2s) 1 (1,6s,–)
ibm-2004-29-k25 17K 78K — 14 12 1 (6m) 1 (1,5s,–)
manol-pipe-c10nid i 253K 751K — 678 695 1 (20m) 1 (1,13s,–)
manol-pipe-c10nidw 434K 1292K — 1013 1363 1 (16s) 1 (1,37m,–)
manol-pipe-c6bidw i 96K 284K — 239 274 1 (24s) 1 (1,3s,–)
manol-pipe-c8nidw 269K 800K — 697 742 1 (7s) 1 (1,6m,–)
manol-pipe-c9n i 35K 104K — 214 66 1 (3s) 1 (1,0s,–)
manol-pipe-g10bid i 266K 792K — 723 822 1 (103s) 1 (1,18s,–)
post-c32s-ss-8 54K 148K — 1 (2s) 1 (8s) 1 (0s) 1 (1,0s,–)
post-cbmc-aes-d-r2 278K 1608K — 834 734 1 (69s) 1 (1,8s,–)
post-cbmc-aes-ee-r2 268K 1576K — 839 760 1 (37s) 1 (1,12s,–)
post-cbmc-aes-ee-r3 501K 2928K — 1817 1822 1 (37m) 1 (1,47s,–)
schup-l2s-abp4-1-k31 15K 48K — 7 16 1 (0s) 1 (1,2s,–)
schup-l2s-bc56s-1-k391 561K 1779K — 5153 26312 1 (168s) 1 (1,11m,–)
simon-s02-f2clk-50 35K 101K — 1 (110s) 32 1 (12s) 1 (1,17s,–)
velev-vliw-uns-2.0-iq1 25K 261K — 1 (40m) 4 1 (0s) 1 (1,0s,–)
velev-vliw-uns-2.0-iq2 44K 542K — 2 2 1 (1s) 1 (1,1s,–)
velev-vliw-uns-2.0-uq5 152K 2466K — 40 11 1 (18s) 1 (1,4s,–)
velev-vliw-uns-4.0-9-i1 96K 1814K — 12 10 1 (23s) 1 (1,4s,–)
velev-vliw-uns-4.0-9 154K 3231K — 2 3 1 (10s) 1 (1,3s,–)
babic-dspam-vc949 113K 360K 1 (315s) 797 216 250 1 (2,10s,0s)
cmu-bmc-barrel6 2306 8931 1 (19m) 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
cmu-bmc-longmult13 6565 20K 1 (171s) 5 12 1 (1s) 1 (1,0s,–)
cmu-bmc-longmult15 7807 24K 1 (137s) 6 4 1 (5s) 1 (1,0s,–)
een-pico-prop00-75 94K 324K 1 (4m) 23 108 276 1 (2,2m,1s)
goldb-heqc-alu4mul 4736 30K 1 (14m) 1 (105s) 1 (47m) 1 (1s) 1 (1,0s,–)
jarvi-eq-atree-9 892 3006 1 (158s) 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
marijn-philips 3641 4456 1 (336) 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
post-cbmc-aes-d-r1 41K 252K 1 (177s) 7 10 1 (1s) 1 (1,1s,–)
velev-engi-uns-1.0-4nd 7000 68K 1 (76s) 1 (3s) 2 1 (0s) 1 (1,0s,–)

452 L. Kroc, A. Sabharwal, and B. Selman

report in Table 1 the final number of unsatisfied clauses reached, followed by, in
parentheses, the relaxation parameter, the time taken by the DPLL part, and
the additional time taken to run the local search part afterwards (if applicable).
In fact, in only 8 instances the DPLL part alone did not find the sure optimum
solution; for these instances we increase � (not necessarily by one) to the number
reported in the table so that a candidate truth assignment is found. The table
reports the time for the last run of RelaxedMinisat, with the appropriate value
of � (often 1). On only two instances did RelaxedMinisat require more than one
hour (ibm-2002-22r-k60 and post-c32s-gcdm16-23). For local search, we use the
default quick restarts of Walksat every 100,000 flips. (However, for post-c32s-
col400-16 and post-c32s-gcdm16-23 instances, this was increased to 1 million.)
In all cases the noise parameter for Walksat was set to a low value of 5%.

Table 1 shows that RelaxedMinisat is the only solver able to solve 51 of out 52
instances to optimality. (For aloul-chnl11-13, we know that the optimum is not
1.) Moreover, 39 of these instances, i.e. 76%, were solved in under one minute. In
contrast, the best local search approaches often could not find a solution violating
less than a few hundred or thousand clauses in one hour of computation time.
The hybrid method, MiniWalk, showed better performance but was still unable
to solve to optimality 16 instances out of 52 (i.e., 30% of the instances). These
results demonstrate that our relaxed DPLL solver is able to efficiently identify
bottleneck constraints in challenging unsatisfiable problem instances.

References

[1] Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfi-
ability. Frontiers in AI and Applications, vol. 185. IOS Press, Amsterdam (2009)

[2] Eén, N., Sörensson, N.: MiniSat: A SAT solver with conflict-clause minimization.
In: 8th SAT, St. Andrews, UK (June 2005)

[3] Gerevini, A., Dimopoulos, Y., Haslum, P., Saetti, A. (Organizers): IPC-5 interna-
tional planning competition (June 2006), http://zeus.ing.unibs.it/ipc-5

[4] Kautz, H.A., Selman, B.: BLACKBOX: A new approach to the application of
theorem proving to problem solving. In: Workshop on Planning as Combinatorial
Search, held in conjunction with AIPS 1998, Pittsburgh, PA (1998)

[5] Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and
local search paradigms: A new strategy for MaxSAT. In: 21st IJCAI (July 2009)

[6] Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. JAIR 30 (2007)
[7] Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local

search for SAT. In: 10th SAT, Lisbon, Portugal, May 2007, pp. 121–133 (2007)
[8] Marques-Silva, J.P., Manquinho, V.M.: Towards more effective unsatisfiability-

based maximum satisfiability algorithms. In: 11th SAT, May 2008, pp. 225–230
(2008)

[9] Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: The Second DIMACS Implementation Challenge, pp. 521–532 (1996)

[10] Sinz, C. (Organizer).: SAT-race 2008 (May 2008)
[11] Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: Dynamic

local search for unweighted MAX-SAT. In: 16th Canadian AI, pp. 145–159 (2003)
[12] Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An impl. and experim. env. for SLS

algorithms for SAT and MAX-SAT. In: 7th SAT, Vancouver, BC (May 2004)

http://zeus.ing.unibs.it/ipc-5

Branch and Bound for Boolean Optimization
and the Generation of Optimality Certificates

Javier Larrosa, Robert Nieuwenhuis,
Albert Oliveras, and Enric Rodŕıguez-Carbonell�

Abstract. We consider optimization problems of the form (S, cost),
where S is a clause set over Boolean variables x1 . . . xn, with an arbi-
trary cost function cost : Bn → R, and the aim is to find a model A of S
such that cost(A) is minimized.

Here we study the generation of proofs of optimality in the context
of branch-and-bound procedures for such problems. For this purpose we
introduce DPLLBB, an abstract DPLL-based branch and bound algorithm
that can model optimization concepts such as cost-based propagation
and cost-based backjumping.

Most, if not all, SAT-related optimization problems are in the scope of
DPLLBB. Since many of the existing approaches for solving these problems
can be seen as instances, DPLLBB allows one to formally reason about them
in a simple way and exploit the enhancements of DPLLBB given here, in
particular its uniform method for generating independently verifiable
optimality proofs.

1 Introduction

An important issue on algorithms for Boolean satisfiability is their ability to
provide proofs of unsatisfiability, so that also negative answers can be verified
with a trusted independent proof checker. Many current SAT solvers provide
this feature typically by writing (with little overhead) a trace file from which a
resolution proof can be reconstructed and checked.

In this paper we address a related topic. We take a very general class of
Boolean optimization problems and consider the problem of computing the best
model of a CNF with respect to a cost function and, additionally, a proof of
its optimality. The purpose of the paper is to provide a general solving frame-
work that is faithful to state-of-the-art branch-and-bound solvers and where it
is simple to reason about them and to generate optimality proofs. We show how
branch-and-bound algorithms can provide proofs with little overhead, as in the
SAT case. To the best of our knowledge, no existing solvers offer this feature.

The first contribution of the paper is an abstract DPLL-like branch-and-
bound algorithm (DPLLBB) that can deal with most, if not all, Boolean optimiza-
tion problems considered in the literature. DPLLBB is based on standard abstract
DPLL rules and includes features such as propagation, backjumping, learning

� All authors from Technical Univ. of Catalonia, Barcelona, and partially supported by
Spanish Min. of Science and Innovation through the projects TIN2006-15387-C03-0
and TIN2007-68093-C02-01 (LogicTools-2).

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 453–466, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

454 J. Larrosa et al.

or restarts. The essential difference between classical DPLL and its branch-and-
bound counterpart is that the rules are extended from the usual SAT context
to the optimization context by taking into account the cost function to obtain
entailed information. Thus, DPLLBB can model concepts such as, e.g., cost-based
propagation and cost-based backjumping. To exploit the cost function in the
search with these techniques, DPLLBB assumes the existence of a lower bound-
ing procedure that, additionally to returning a numerical lower bound, provides
a reason for it, i.e., a (presumably short) clause whose violation is a sufficient
condition for the computed lower bound, see [MS00, MS04].

The second contribution of the paper is the connection between a DPLLBB exe-
cution and a proof of optimality. We show that each time that DPLLBB backjumps
due to a soft conflict (i.e. the lower bound indicates that it is useless to extend
the current assignment) we can infer a cost-based lemma, which is entailed from
the problem. By recording these lemmas (among others), we can construct a
very intuitive optimality proof.

This work could have been cast into the framework of SAT Modulo Theories
(SMT) with a sequence of increasingly stronger theories [NO06]. However, the
generation of proofs for SMT with theory strengthening has not been worked out
(although the generation of unsatisfiable cores for normal SMT was analyzed in
[CGS07]), and would in any case obfuscate the simple concept of proof we have
here. Also, we believe that in its current form, the way we have integrated the
concepts of lower bounding and cost-based propagation and learning is far more
useful and accessible to a much wider audience.

This paper is structured as follows. In Section 2 we give some basic notions and
preliminary definitions. In Section 3 the DPLLBB procedure is presented, whereas
in Section 4 we develop the framework for the generation of proof certificates.
Section 5 shows several important instances of problems that can be handled
with DPLLBB. Finally Section 6 gives conclusions of this work and points out
directions for future research.

2 Preliminaries

We consider a fixed set of Boolean variables {x1, . . . , xn}. Literals, denoted by the
(subscripted, primed) letter l are elements of the set {x1, . . . , xn,¬x1, . . . ,¬xn}.
A clause (denoted by the letters C, D, . . .) is a disjunction of literals l1∨ . . .∨ lm.
The empty clause will be noted �. A (partial truth) assignment I is a set of
literals such that {x,¬x} ⊆ I for no x. A literal l is true in I if l ∈ I, false in I if
¬l ∈ I, and undefined in I otherwise. A clause C is true in I if at least one of its
literals is true in I, false in I if all its literals are false in I, and undefined in I
otherwise. Note that the empty clause is false in every assignment I. Sometimes
we will write ¬I to denote the clause that is the disjunction of the negations of
the literals in I. A clause set S is true in I if all its clauses are true in I. Then
I is called a model of S, and we write I |= S (and similarly if a literal or clause
is true in I). We sometimes write I |= ¬C to indicate that all literals of a clause
C are false in I.

Branch and Bound for Boolean Optimization 455

We consider the following class of problems, which covers a broad spectrum
of instances (see Section 5):

Definition 1. A Boolean optimization problem is a pair (S, cost), where S is
a clause set, cost is a function cost : Bn → R, and the goal is to find a model A
of S such that cost(A) is minimized.

Definition 2. A cost clause is an expression of the form C ∨ c ≥ k where C is
a clause and k ∈ R.

A cost clause C ∨ c ≥ k may be better understood with its equivalent notation
¬C −→ c ≥ k which tells that if C is falsified, then the cost function must be
greater than or equal to k.

Definition 3. Let (S, cost) be an optimization problem. A cost clause C∨c ≥ k
is entailed by (S, cost) if cost(A) ≥ k for every model A of S such that A |= ¬C.

Definition 4. Given an optimization problem (S, cost), a real number k is called
a lower bound for an assignment I if cost(A) ≥ k for every model A of S such
that I ⊆ A.

A lower bounding procedure lb is a procedure that, given an assignment I,
returns a lower bound k, denoted lb(I), and a cost clause of the form C ∨ c ≥ k,
called the lb-reason of the lower bound, such that C∨c ≥ k is entailed by (S, cost)
and I |= ¬C.

Any procedure that can compute a lower bound k for a given I can be extended
to a lower bounding procedure: it suffices to generate ¬I ∨ c ≥ k as the lb-
reason. But generating short lb-reasons is important for efficiency reasons, and
in Section 5 we will see how this can be done for several classes of lower bounding
methods.

3 Abstract Branch and Bound

3.1 DPLLBB Procedure

The DPLLBB procedure is modeled by a transition relation, defined by means of
rules over states.

Definition 5. A DPLLBB state is a 4-tuple I || S || k || A, where:
I is a sequence of literals representing the current partial assignment,
S is a finite set of classical clauses (i.e. not cost clauses),
k is a real number representing the best-so-far cost,
A is the best-so-far model of S (i.e. cost(A) = k).

Some literals l in I are annotated as decision literals and written ld.

Note that the cost function and the variable set are not part of the states,
since they do not change over time (they are fixed by the context).

456 J. Larrosa et al.

Definition 6. The DPLLBB system consists of the following rules:

Decide :
I || S || k || A =⇒ I ld || S || k || A if

{
l is undefined in I

UnitPropagate :

I || S || k || A =⇒ I l || S || k || A if
{

C ∨ l ∈ S, I |= ¬C
l is undefined in I

Optimum :

I || S || k || A =⇒ OptimumFound if
{

C ∈ S, I |= ¬C
no decision literals in I

Backjump :

I ld I ′ || S || k || A =⇒ I l′ || S || k || A if
{

C∨l′ ∈ S, I |= ¬C
l′ is undefined in I

Learn :
I || S || k || A =⇒ I || S, C || k || A if

{
(S, cost) entails C ∨ c ≥ k

Forget :
I || S, C || k || A =⇒ I || S || k || A if

{
(S, cost) entails C ∨ c ≥ k

Restart :
I || S || k || A =⇒ ∅ || S || k || A

Improve :
I || S || k || A =⇒ I || S || k′ || I if

{
I |= S and cost(I) = k′ < k

As we will see, one can use these rules for finding an optimal solution to a
problem (S, cost) by generating an arbitrary derivation ∅ || S || ∞ || ∅ =⇒
It will always terminate with . . . =⇒ I || S′ || k || A =⇒ OptimumFound . Then
A is a minimum-cost model for S with cost(A) = k. If S has no models at all
then A will be ∅ and k = ∞.

All the rules except Improve are natural extensions of the Abstract DPLL
approach of [NOT06]. In the following we briefly explain them.

– The Decide rule represents a case split: an undefined literal l is chosen and
added to I, annotated as a decision literal.

– UnitPropagate forces a literal l to be true if there is a clause C ∨ l in S whose
part C is false in I.

– The Optimum rule expresses that if in a state I || S || k || A in S there is
a so-called conflicting clause C (i.e., such that I |= ¬C), and there is no
decision literal in I, then the optimization procedure has terminated, which
shows that the best-so-far cost is optimal.

– On the other hand, if there is some decision literal in I and an entailed
conflicting clause, then one can always find (and Learn) a backjump clause,
an entailed cost clause of the form C ∨ l′ ∨ c ≥ k, such that Backjump
using C ∨ l′ applies (see Lemma 1 below). Good backjump clauses can be

Branch and Bound for Boolean Optimization 457

found by conflict analysis of the conflicting clause [MSS99, ZMMM01], see
Example 3.2 below.

– By Learn one can add any entailed cost clause to S. Learned clauses pre-
vent repeated work in similar conflicts, which frequently occur in industrial
problems having some regular structure. Notice that when such a clause is
learned the c ≥ k literal is dropped (it is only kept at a metalevel for the
generation of optimality certificates, see Section 4).

– Since a lemma is aimed at preventing future similar conflicts, it can be
removed using Forget, when such conflicts are not very likely to be found
again. In practice this is done if its activity, that is, how many times it has
participated in recent conflicts, has become low.

– Restart is used to escape from bad search behaviors. The newly learned
clauses will lead the heuristics for Decide to behave differently, and hope-
fully make DPLLBB explore the search space in a more compact way.

– Improve allows one to model non-trivial optimization concepts, namely cost-
based backjumping and and cost-based propagation. If lb(I) ≥ k, the lower
bounding procedure can provide an lb-reason C∨c ≥ k. As explained above,
given this conflicting clause, Backjump applies if there is some decision literal
in I, and otherwise Optimum is applicable. A cost-based propagation of a
literal l that is undefined in I can be made if lb(I l) ≥ k ([XZ05]; for linear
cost functions, cf. the “limit lower bound theorem” of [CM95]). Then again
the corresponding lb-reason is conflicting and either Backjump or Optimum
applies.

Lemma 1. (See [NOT06] for proofs of this and other related properties.) Let
(S, cost) be an optimization problem, and assume

∅ || S || ∞ || ∅ =⇒ . . . =⇒ I || S′ || k || A

If there is some decision literal in I and C is entailed by (S′, cost) and conflicting
in I, then I is of the form I ′ ld I ′′ and there exists a backjump clause, i.e., a cost
clause of the form C ∨ l′ ∨ c ≥ k that is entailed by (S′, cost) and such that
I ′ |= ¬C and l′ is undefined in I ′.

The potential of the previous rules will be illustrated in Section 3.2. The cor-
rectness of DPLLBB is summarized in Theorem 1:

Definition 7. A derivation ∅ || S || ∞ || ∅ =⇒ . . . is progressive if it contains
only finitely many consecutive Learn or Forget steps and Restart is applied with
increasing periodicity.

Theorem 1. Let (S, cost) be an optimization problem, and consider a progres-
sive derivation with initial state ∅ || S || ∞ || ∅. Then this derivation is finite.
Moreover, if a final state is reached, i.e., a state to which no rule can be applied,
then the derivation is of the form

∅ || S || ∞ || ∅ =⇒ . . . =⇒ I || S′ || k || A =⇒ OptimumFound

and then A is a minimum-cost model for S, where cost(A) = k. In particular, S
has no models if, and only if, k = ∞ and A = ∅.

458 J. Larrosa et al.

Of course the previous formal result provides more freedom in the strategy
for applying the rules than needed. Practical implementations will only generate
progressive derivations. Typically at each conflict the backjump clause is learned,
and from time to time a certain portion of the learned clauses is forgotten (e.g.,
the 50% of less active ones). Restarts are applied with increasing periodicity by,
e.g., restarting after a certain number N of conflicts and then increasing N .

3.2 DPLLBB Example

Consider the clause set S defined over x1, . . . x6 (denoting ¬xi by x̄i):

1. x2 ∨ x4 5. x1 ∨ x̄3 ∨ x̄6
2. x2 ∨ x̄5 6. x̄1 ∨ x̄3 ∨ x̄6
3. x4 ∨ x̄5 7. x2 ∨ x3 ∨ x5 ∨ x̄6
4. x5 ∨ x6 8. x2 ∨ x̄3 ∨ x5 ∨ x̄6

where cost(x1, . . . x6) = 1x1+2x2+ . . .+6x6, i.e., subindices are cost coefficients.
We start an DPLLBB derivation, first deciding x6 to be false (setting high-cost
variables to false can be a good heuristic):

∅ || S || ∞ || ∅
=⇒Decide x̄d

6 || S || ∞ || ∅
=⇒UnitPropagate x̄d

6x5 || S || ∞ || ∅
=⇒UnitPropagate x̄d

6x5x2 || S || ∞ || ∅
=⇒UnitPropagate x̄d

6x5x2x4 || S || ∞ || ∅
=⇒Decide x̄d

6x5x2x4x̄
d
3 || S || ∞ || ∅

=⇒Decide x̄d
6x5x2x4x̄

d
3x̄

d
1 || S || ∞ || ∅

Now, since x̄6x5x2x4x̄3x̄1 is a model of S of cost 11 < ∞, we can apply Improve
and the corresponding lb-reason, e.g., x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11, then becomes a
conflicting clause. Intuitively, it expresses that any assignment where x2, x4 and
x5 are set to true must have cost at least 11. Now, a conflict analysis procedure
starting form this conflicting clause can be used to compute a backjump clause.
This is done by successive resolution steps on the conflicting clause, resolving
away the literals x̄4 and x̄2 in the reverse order their negations were propagated,
with the respective clauses that caused the propagations:

x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11 x4 ∨ x̄5

x̄2 ∨ x̄5 ∨ c ≥ 11 x2 ∨ x̄5

x̄5 ∨ c ≥ 11

until a single literal of the current decision level (called the 1UIP) is left, yielding
x̄5 ∨ c ≥ 11. Learning the clause C = x̄5 allows one to jump from decision level
3 back to decision level 0 and assert x5. All this can be modeled as follows:

. . . =⇒Improve x̄d
6x5x2x4x̄

d
3x̄

d
1 || S || 11 || x̄6x5x2x4x̄3x̄1

=⇒Learn x̄d
6x5x2x4x̄

d
3x̄

d
1 || S, C || 11 || x̄6x5x2x4x̄3x̄1

=⇒Backjump x̄5 || S, C || 11 || x̄6x5x2x4x̄3x̄1

Branch and Bound for Boolean Optimization 459

Now the derivation could continue, e.g., as follows:

. . . =⇒UnitPropagate x̄5x6 || S, C || 11 || x̄6x5x2x4x̄3x̄1
=⇒Decide x̄5x6x̄

d
4 || S, C || 11 || x̄6x5x2x4x̄3x̄1

=⇒UnitPropagate x̄5x6x̄
d
4x2 || S, C || 11 || x̄6x5x2x4x̄3x̄1

Now notice that x3 is not assigned, and that since x2 and x6 are true in the
current partial assignment any assignment strictly improving the best-so-far cost
11 must assign x3 to false. As explained above, this cost-based propagation can
be modeled as follows. The lower bounding procedure expresses the fact that
any solution setting x2, x3 and x6 to true has cost no better than 11 by means
of the lb-reason x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11. This is an entailed cost clause that is
learned as C′ = x̄2 ∨ x̄3 ∨ x̄6. Then literal x̄3 is propagated.

. . . =⇒Learn x̄5x6x̄
d
4x2 || S, C, C′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒UnitPropagate x̄5x6x̄
d
4x2x̄3 || S, C, C′ || 11 || x̄6x5x2x4x̄3x̄1

If we now UnitPropagate x1 with clause 5, clause 6 becomes conflicting. As usual,
a backjump clause is computed by doing conflict analysis from the falsified clause,
using among others the clause C′ that was learned to propagate x̄3:

x1 ∨ x3 ∨ x̄6 x̄1 ∨ x3 ∨ x̄6
x3 ∨ x̄6 x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11

x̄2 ∨ x̄6 ∨ c ≥ 11

Learning C′′ = x̄2 ∨ x̄6 allows one to jump back to decision level 0 asserting x̄2.

. . . =⇒UnitPropagate x̄5x6x̄
d
4x2x̄3x1 || S, C, C′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒Learn x̄5x6x̄
d
4x2x̄3x1 || S, C, C′, C′′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒Backjump x̄5x6x̄2 || S, C, C′, C′′ || 11 || x̄6x5x2x4x̄3x̄1

Finally after unit propagating with clause 7 one gets a conflict with clause 8,
and as no decision literals are left, the optimization procedure terminates:

. . . =⇒UnitPropagate x̄5x6x̄2x3 || S, C, C′, C′′ || 11 || x̄6x5x2x4x̄3x̄1
=⇒Optimum OptimumFound �

4 Certificates of Optimality

In the following, we show how from a certain trace of an DPLLBB execution one can
extract a formal proof of optimality in a proof system asserting “A is an optimal
model of S with respect to cost”. Our proof system relies on the following type
of resolution over cost clauses,

Definition 8. The Cost Resolution rule is the following inference rule with two
cost clauses as premises and another cost clause as conclusion:

x ∨ C ∨ c ≥ k ¬x ∨ D ∨ c ≥ k′

C ∨D ∨ c ≥ min(k, k′)
Cost Resolution

460 J. Larrosa et al.

Cost Resolution behaves like classical resolution, except in that it further exploits
the fact that c ≥ k ∨ c ≥ k′ is equivalent to c ≥ min(k, k′). In what follows,
when needed a clause C from S will be seen as the trivially entailed cost clause
C ∨ c ≥ ∞.

Theorem 2. Cost Resolution is correct, that is, if x ∨ C ∨ c ≥ k and ¬x ∨
D ∨ c ≥ k′ are cost clauses entailed by an optimization problem (S, cost), then
C ∨D ∨ c ≥ min(k, k′) is also entailed by (S, cost).

Definition 9. Let S be a set of cost clauses and let C be a cost clause. A Cost
Resolution proof of C from S is a binary tree where:

– each node is (labeled by) a cost clause
– the root is C
– the leaves are clauses from S
– every non-leaf node has two parents from which it can be obtained in one

Cost Resolution step.

Together with a model A such that cost(A) = k, a k-lower-bound certificate as
we define now gives a precise k-optimality certificate for (S, cost):

Definition 10. A k-lower-bound certificate for an optimization problem (S, cost)
consists of the following three components:

1. a set of cost clauses S′

2. a Cost-Resolution Proof of the clause c ≥ k from S ∪ S′

3. for each cost clause in S′, a proof of entailment of it from (S, cost)

As we will see, the set of cost clauses S′ of component 1. of this definition cor-
responds to the different lb-reasons generated by the lower bounding procedure
that may have been used along the DPLLBB derivation. A very simple indepen-
dent k-lower-bound certificate checker can just check the cost resolution proof,
if the lower bounding procedure is trusted in that indeed all cost clauses of S′ are
entailed. Then, since by correctness of Cost Resolution the root c ≥ k of a Cost
Resolution proof is entailed if the leaves are entailed, a k-lower-bound certificate
guarantees that c ≥ k is indeed entailed by (S ∪ S′, cost), and the entailment of
c ≥ k by definition means that “cost(A) ≥ k for every model A of S”.

If one cannot trust the lower bounding procedure, then also component 3.
is needed. The notion of a “proof of entailment” from (S, cost) for each cost
clause in S′ of course necessarily depends on the particular lower bounding
procedure used, and an independent optimality proof checker should hence have
some knowledge of the deductive process used by the lower bounding procedure.
This aspect is addressed in detail in the next section.

4.1 Generation of k-Lower-Bound Certificates

Each time an lb-reason is generated and used in an DPLLBB execution, it is written
to a file which we will call S′ since it corresponds to component 1. of the k-lower-
bound certificate. Now observe that any execution of DPLLBB terminates with a

Branch and Bound for Boolean Optimization 461

step of Optimum, i.e., with a conflict at decision level 0. From a standard SAT
solver point of view, this means that S ∪S′ forms an unsatisfiable SAT instance
and a refutation proof for this contradiction can be reconstructed as follows (cf.
[ZM03] for details). All clauses in S and in S′ get a unique identifier (ID). Each
time a backjump step takes place, the backjump clause also gets a (unique)
ID and a line ID ID1 ... IDm is written to a trace file, where ID1 ... IDm
are the IDs of all parent clauses in the conflict analysis process generating this
backjump clause. A last line is written when the conflict at decision level 0 is
detected for the parents of this last conflict analysis which produces the empty
clause. By processing backwards this trace file, composing all the component
resolution proofs from each conflict analysis, a resolution proof from S ∪ S′ of
the last derived clause, i.e., the empty clause, can be constructed.

If we recover the cost literals of cost clauses (recall that the Learn rule of DPLLBB
drops the cost literal) in the refutation proof, it turns out that it becomes a k-
lower-bound certificate where k is the optimum of the problem. The reason is
that in a Cost Resolution proof the cost literal of the root clause is the minimum
among the cost literals of the leaf clauses. The following example illustrates the
whole process.

Example 1. For the DPLLBB derivation of Section 3.2, the initial clauses have
ID’s 1-8, the set the S′ will contain the the lb-reasons x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11 and
x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11 with ID’s 9 and 10 respectively. The two backjump clauses
x̄5 ∨ c ≥ 11 and x̄2 ∨ x̄6 ∨ c ≥ 11 and the final “empty” clause c ≥ 11 get ID’s
11,12,13 respectively, and the trace file will be:

11← 2, 3, 9
12← 5, 6, 10
13← 4, 7, 8, 11, 12

By processing this file backwards it is straightforward to produce a Cost Res-
olution proof of c ≥ 11. This is done below, where for lack of space the proof
has been split in two at the clause marked with (∗). This proof, together with
each lb-reason and its entailment certificate, will constitute an 11-lower-bound
certificate. The optimality certificate is finally obtained with the addition of the
11-upper-bound certificate x̄6x5x2x4x̄3x̄1.

x2 ∨ x3 ∨ x5 ∨ x̄6 x2 ∨ x̄3 ∨ x5 ∨ x̄6
x2 ∨ x5 ∨ x̄6

x1 ∨ x3 ∨ x̄6 x̄1 ∨ x3 ∨ x̄6
x3 ∨ x̄6 x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11

x̄2 ∨ x̄6 ∨ c ≥ 11
x5 ∨ x̄6 ∨ c ≥ 11 (∗)

x5 ∨ x6 x5 ∨ x̄6 ∨ c ≥ 11 (∗)
x5 ∨ c ≥ 11

x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11 x4 ∨ x̄5

x̄2 ∨ x̄5 ∨ c ≥ 11 x2 ∨ x̄5

x̄5 ∨ c ≥ 11
c ≥ 11

462 J. Larrosa et al.

5 Instances of DPLLBB and Lower Bounding Procedures

In order to complete the method for generating optimality certificates, in this
section we show, for different classes of cost functions, several lower bounding
procedures together with ways for proving the entailment from (S, cost) for any
lb-reason C ∨ c ≥ k they generate.

Of course a general approach for this is to provide a list of all the models
A1, . . . , Am of S ∧ ¬C, checking that each one of them has cost at least k,
together with a resolution refutation of S ∧ ¬C ∧ ¬A1 ∧ · · · ¬Am, which shows
that these A1, . . . , Am are indeed all the models of S ∧ ¬C.

But this will usually not be feasible in practice. Therefore, we now describe
some lower bounding procedures producing simple and compact certificates that
can be understood by ad-hoc proof checkers.

5.1 Linear Cost Functions

A very important class of optimization problems is that with linear cost func-
tions, i.e., of the form cost(x1, . . . , xn) =

∑n
i=1 cixi for certain ci ≥ 0. In this

context ci is called the cost of variable xi. Note that this also covers the cases
of negative costs or costs associated to negated variables, which are harmlessly
reduced to this one.

Linear Boolean optimization has many applications, amongst others Auto-
matic Test Pattern Generation [FNMS01], FPGA Routing, Electronic Design
Automation, Graph Coloring, Artificial Intelligence Planning [HS00] and Elec-
tronic Commerce [San99]. In particular the case where ci = 1 for all 1 ≤ i ≤ n,
called the Min-Ones problem, appears naturally in the optimization versions of
important well-known NP-complete problems such as the maximum clique or
the minimum hitting set problems.

The problem of computing lower bounds for linear optimization problems in
a branch-and-bound setting has been widely studied in the literature. Here we
consider the two main techniques for that purpose: independent sets and linear
programming.

Independent Sets. Given a partial assignment I and a clause C, let undefI(C)
denote the set of literals in C which are undefined in I, i.e., undefI(C) = {l ∈
C | l 	∈ I and ¬l 	∈ I}. A set of clauses M is an independent set for I if:

– for all C ∈M , neither I |= C nor I |= ¬C;
– for all C ∈M , undefI(C) is non-empty and only contains positive literals;
– for all C, C′ ∈M such that C 	= C′, undefI(C) ∩ undefI(C′) = ∅.

If M is an independent set for I, any total assignment extending I and satisfying
M has cost at least

K =
∑
xi∈I

ci +
∑

C∈M

min{cj | xj ∈ C and ¬xj 	∈ I}

since satisfying each clause C of M will require to add the minimum cost of
the positive non-false (in I) literals in C. Independent sets have been used in

Branch and Bound for Boolean Optimization 463

e.g., [Cou96, MS02]. In [FM06] they are precomputed in order to speed up the
actual branch-and-bound procedure.

In this case the lower bounding procedure generates the lb-reason ¬I ′∨c ≥ K,
where I ′ ⊆ I contains:

– the positive literals in I with non-null cost;
– the positive literals whose negations appear in M (which belong to I); and
– the negative literals ¬xi ∈ I such that xi ∈ C for some C ∈ M and ci <

min{cj | xj ∈ C and ¬xj 	∈ I}.
For this lower bounding procedure a proof of entailment of the lb-reason must of
course contain the independent set M itself. Then the proof checker can check
that M ⊆ S, that M is indeed independent for I and that K ≥ k.
Example 2. Consider the clause set S = { x1 ∨ x3 ∨ x5, x2 ∨ x4 ∨ x5 ∨ ¬x6,

¬x1 ∨¬x2 }, and the cost function cost(x1, x2, x3, x4) =
∑6

i=1 i · xi. It is easy to
see that M = {x1∨x3∨x5, x2∨x4∨x5∨¬x6} is an independent set for the partial
assignment I = {¬x5, x6}. The lower bound is 6+min(1, 3)+min(2, 4) = 9, and
the lb-reason x5 ∨ ¬x6 ∨ c ≥ 9 is produced. ��
Linear Programming [LD97, Li04]. This approach for computing lower bounds
relies on the fact that linear Boolean optimization is a particular case of 0-1 In-
teger Linear Programming. Indeed, such a Boolean optimization problem can
be transformed into an integer program by imposing for each variable x that
0 ≤ x ≤ 1 and x ∈ Z, and transforming each clause x1∨· · ·∨xn∨¬y1∨· · ·∨¬ym

into the linear constraint
∑n

i=1 xi +
∑m

j=1(1 − yj) ≥ 1. The current partial as-
signment I is encoded by imposing additional constraints x = 1 if x ∈ I, x = 0
if ¬x ∈ I. Then a lower bound can be computed by dropping the integrality
condition and solving the resulting relaxation in the rationals with an LP solver.

If K is the lower bound obtained after solving the relaxation, an lb-reason
of the form ¬I ′ ∨ c ≥ K where I ′ ⊆ I can be computed using an exact dual
solution of multipliers [Sch86] (which may be computed by an exact LP solver
[Mak08]). Moreover, a proof of entailment of this lb-reason consists in the dual
solution itself, which proves the optimality of K.
Example 3. Consider again the clause set, the cost function and the partial
assignment as in Example 2. In this case the linear program is

min{x1 +2x2 +3x3 +4x4 +5x5 +6x6 | x1 +x3 +x5 ≥ 1, x2 +x4 +x5−x6 ≥ 0,
−x1 − x2 ≥ −1, x5 = 0, x6 = 1, 0 ≤ x1, x2, x3, x4 ≤ 1}, whose optimum is

11. A proof of optimality (in fact, of the lower bound) is:

x1 +2 x2 +3 x3 +4 x4 +5 x5 +6 x6 −11 =
+ 3 (x1 + x3 + x5 −1)
+ 4 (x2 + x4 + x5 − x6)
+ 2 (− x1 − x2 +1)
− 2 x5
+ 10 (x6 −1)

which witnesses that x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≥ 11 for all x1, x2, x3,
x4, x5, x6 such that x1 + x3 + x5 ≥ 1, x2 + x4 + x5 − x6 ≥ 0, −x1 − x2 ≥ −1,

464 J. Larrosa et al.

x5 ≤ 0 and x6 ≥ 1. This can be used as a proof of entailment of the lb-reason
x5 ∨ ¬x6 ∨ c ≥ 11 (notice that none of the literals of the assignment is dropped
in the lb-reason since both x5 ≤ 0 and x6 ≥ 1 are used). ��

5.2 Max-SAT

In a (partial weighted) Max-SAT problem (S, cost), the cost function is defined
by a set of so-called soft clauses S′ with a weight function ω : S′ → R. Then
the cost of a total assignment A is the sum of the weights of the clauses in S′

that are false in A. Note that S′ is disjoint from the (possibly empty) set of
clauses S, which are called hard clauses in this context. Max-SAT has many ap-
plications, among others Probabilistic Reasoning [Par02], Frequency Assignment
[RLFAP99], Computer Vision, Machine Learning and Pattern Recognition (see
the introduction of [Wer05]).

Max-SAT as a non-linear polynomial cost function. Given a clause C =
y1 ∨ . . . ∨ yp ∨ ¬z1 ∨ . . . ∨ ¬zq over a set of variables {x1 . . . xn}, the polynomial
pC(x1, . . . , xn) =

∏p
i=1(1 − yi) ·

∏m
j=1(zj) fulfills for any total assignment A

that pC(A) = 1 if A |= ¬C, and pC(A) = 0 otherwise. Therefore we have that
cost(A) =

∑
C∈S′ pC(A) · ω(C).

Linear Boolean optimization vs Max-SAT. Linear Boolean optimization
can be cast as an instance of Max-SAT by having one soft unit positive clause for
each variable with non-null cost, with this cost as weight. Reciprocally, Max-SAT
can be expressed as a linear optimization problem by adding slack variables to
soft clauses. However, this translation is normally unpractical, making the SAT
solver extremely slow, since, e.g., it hinders the application of unit propagation
[ANORC08].

Branch and bound for Max-SAT. But most of the research in recent years
in the Max-SAT community has been devoted to the computation of good qual-
ity lower bounds to be used within a branch-and-bound setting. As shown in
[LHdG08], most of these lower bounding procedures can be seen as limited forms
of Max-resolution (see below). Since Max-resolution is sound, theoretically one
can in fact use it to certify optimality in any Max-SAT problem. But the growth
in the number of clauses makes this unpractical except for small problems. How-
ever, one can use it for the proof of entailment for individual lb-reasons.

For simplicity, we show here Max-resolution for soft clauses of the form (l1 ∨
l2, w) , where w denotes the weight:

(x ∨ a, u) (¬x ∨ b, v)
(a ∨ b, m)(x ∨ a, u−m)(¬x ∨ b, v −m)(x ∨ a ∨ ¬b, m)(¬x ∨ b ∨ ¬a, m)

where m = min(u, v) and the conclusions replace the premises instead of being
added to the clause set.

Example 4. Consider a Max-SAT problem without hard clauses and where soft
clauses are S′ = { (x1 ∨x2 ∨x3, 1), (x1 ∨¬x2 ∨x3, 2), (¬x1 ∨x2 ∨x3, 3), (¬x1 ∨

Branch and Bound for Boolean Optimization 465

¬x2 ∨ x3, 4) }. Given the partial assignment I = {¬x3, x4}, by means of the
following steps of Max-resolution

(x1 ∨ x2 ∨ x3, 1) (x1 ∨ ¬x2 ∨ x3, 2)
....

(x1 ∨ x3, 1)

(¬x1 ∨ x2 ∨ x3, 3) (¬x1 ∨ ¬x2 ∨ x3, 4)
....

(¬x1 ∨ x3, 3)
(x3, 1)

one gets clause x3 with weight 1. Taking into account the partial assignment
I = {¬x3, x4}, this clause implies that 1 is a lower bound and a lb-reason is
¬x3 ∨ c ≥ 1. Moreover, the proof of Max-resolution above proves the entailment
of the lb-reason. ��

6 Conclusions

Our abstract DPLL-based branch-and-bound algorithm, although being very
similar to abstract DPLL, can model optimization concepts such as cost-based
propagation and cost-based learning. Thus, DPLLBB is natural to SAT practition-
ers, but still faithful to most state-of-the-art branch-and-bound solvers. Inter-
estingly, several branch-and-bound solvers, even state-of-the-art ones, still do
not use cost-based backjumping and propagation, which appear naturally in
DPLLBB. Our formal definition of optimality certificates and the description of
how a DPLLBB trace can be used to generate them turns out to be elegant and
analagous to the generation of refutation proofs by resolution in SAT.

We think that DPLLBB will help understanding and reasoning about new branch-
and-bound implementations and extensions. For example, it is not difficult to use
it for computing the m best (i.e., lowest-cost) models for some m, or for computing
all models with cost lower than a certain threshold, and also the certificates for
these can be derived without much effort.

References

[ANORC08] Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Efficient
Generation of Unsatisfiability Proofs and Cores in SAT. In: Cervesato, I.,
Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp. 16–30.
Springer, Heidelberg (2008)

[RLFAP99] Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio Link
Frequency Assignment. Constraints 4, 79–89 (1999)

[CGS07] Cimatti, A., Griggio, A., Sebastiani, R.: A Simple and Flexible Way
of Computing Small Unsatisfiable Cores in SAT Modulo Theories. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
334–339. Springer, Heidelberg (2007)

[CM95] Coudert, O., Madre, J.C.: New Ideas for Solving Covering Problems. In:
Proc. of DAC 1995, pp. 641–646. ACM, New York (1995)

[Cou96] Coudert, O.: On Solving Binate Covering Problems. In: Proc. of DAC
1996, pp. 197–202. ACM, New York (1996)

466 J. Larrosa et al.

[FM06] Fu, Z., Malik, S.: Solving the Minimum Cost Satisability Problem Using
SAT Based Branch-and-Bound Search. In: Proc. of ICCAD 1996, pp. 852–
859 (2006)

[FNMS01] Flores, P.F., Neto, H.C., Marques-Silva, J.P.: An Exact Solution to the
Minimum Size Test Pattern Problem. ACM Trans. Des. Autom. Electron.
Syst. 6(4), 629–644 (2001)

[HS00] Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on
SAT. In: Proc. of SAT 2000, pp. 283–292. IOS Press, Amsterdam (2000),
www.satlib.org

[LD97] Liao, S., Devadas, S.: Solving Covering Problems Using LPR-Based Lower
Bounds. In: Proc. of DAC 1997, pp. 117–120. ACM, New York (1997)

[LHdG08] Larrosa, J., Heras, F., de Givry, S.: A Logical Approach to Efficient Max-
SAT Solving. Artif. Intell. 172(2-3), 204–233 (2008)

[Li04] Li, X.Y.: Optimization Algorithms for the Minimum-Cost Satisfiability
Problem. PhD thesis, Dept. Comp. Sc., N. Carolina State Univ. (2004)

[Mak08] Makhorin, A.: GNU Linear Programming Kit (2008),
http://www.gnu.org/software/glpk/glpk.html

[MS00] Manquinho, V.M., Marques Silva, J.P.: Search Pruning Conditions for
Boolean Optimization. In: Proc. of ECAI 2000, pp. 103–107. IOS Press,
Amsterdam (2000)

[MS02] Manquinho, V.M., Marques Silva, J.P.: Search Pruning Techniques in
SAT-Based Branch-and-bound Algorithms for the Binate Covering Prob-
lem. IEEE Trans. on CAD of Integ. Circ. and Syst. 21(5), 505–516 (2002)

[MS04] Manquinho, V.M., Marques Silva, J.P.: Satisfiability-Based Algorithms for
Boolean Optimization. Ann. Math. Artif. Intell. 40(3-4), 353–372 (2004)

[MSS99] Marques-Silva, J., Sakallah, K.A.: GRASP: A Search Algorithm for Propo-
sitional Satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

[NO06] Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization
Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 156–169. Springer, Heidelberg (2006)

[NOT06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)

[Par02] Park, J.D.: Using Weighted Max-SAT Engines to Solve MPE. In: Proc. of
AAAI 2002, Edmonton, Alberta, Canada, pp. 682–687 (2002)

[San99] Sandholm, T.: An Algorithm for Optimal Winner Determination in Com-
binatorial Auctions. In: IJCAI 1999, pp. 542–547 (1999)

[Sch86] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley &
Sons, Chichester (1986)

[Wer05] Werner, T.: A Linear Programming Approach to Max-Sum Problem: A
review. Technical Report CTU-CMP-2005-25, Center for Machine Percep-
tion, Czech Technical University (2005)

[XZ05] Xing, Z., Zhang, W.: Maxsolver: An Efficient Exact Algorithm for
(Weighted) Maximum Satisfiability. Artif. Intell. 164(1-2), 47–80 (2005)

[ZM03] Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent
Resolution-Based Checker: Practical Implementations and Other Applica-
tions. In: Proc. of DATE 2003, pp. 10880–10885. IEEE Computer Society,
Los Alamitos (2003)

[ZMMM01] Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient Conflict Driven
Learning in Boolean Satisfiability Solver. In: Proc. of ICCAD 2001, pp.
279–285 (2001)

www.satlib.org
http://www.gnu.org/software/glpk/glpk.html

Exploiting Cycle Structures in Max-SAT

Chu Min Li1, Felip Manyà2, Nouredine Mohamedou1, and Jordi Planes3,�

1 MIS, Université de Picardie Jules Verne, 5 Rue du Moulin Neuf 80000 Amiens, France
2 IIIA-CSIC, Campus UAB, 08193 Bellaterra Spain

3 Computer Science Department, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain

Abstract. We investigate the role of cycles structures (i.e., subsets of clauses
of the form l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3) in the quality of the lower bound
(LB) of modern MaxSAT solvers. Given a cycle structure, we have two
options: (i) use the cycle structure just to detect inconsistent subformulas
in the underestimation component, and (ii) replace the cycle structure with
l̄1, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 by applying MaxSAT resolution and, at the
same time, change the behaviour of the underestimation component. We first
show that it is better to apply MaxSAT resolution to cycle structures occur-
ring in inconsistent subformulas detected using unit propagation or failed literal
detection. We then propose a heuristic that guides the application of MaxSAT res-
olution to cycle structures during failed literal detection, and evaluate this heuris-
tic by implementing it in MaxSatz, obtaining a new solver called MaxSatzc. Our
experiments on weighted MaxSAT and Partial MaxSAT instances indicate that
MaxSatzc substantially improves MaxSatz on many hard random, crafted and
industrial instances.

1 Introduction

The lower bound (LB) computation method implemented in branch and bound MaxSAT
solvers (e.g. [4,6,10,12,13]) is decisive for obtaining a competitive solver. The LB of
MaxSatz [10] and MiniMaxSat [4] —two of the best performing solvers in the 2008
MaxSAT Evaluation— has two components: (i) the underestimation component, which
detects disjoint inconsistent subformulas and takes the number of detected subformulas
as an underestimation of the LB, and (ii) the inference component, which applies in-
ference rules and, in the best case, makes explicit a contradiction by deriving an empty
clause which allows to increment the LB. Both components are applied at each node of
the search space, and cooperate rather than work independently.

A MaxSAT instance may contain different structures that influence the behavior
of the two components of the LB. In this paper we investigate the role of the so-
called cycles structures (i.e., subsets of clauses of the form l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3)1

in the quality of the LB. Given a cycle structure, we have two options: (i) use the cy-
cle structure just to detect inconsistent subformulas in the underestimation component

� Research partially supported by the Generalitat de Catalunya under grant 2005-SGR-00093,
and the Ministerio de Ciencia e Innovación research projects CONSOLIDER CSD2007-0022,
INGENIO 2010, TIN2006-15662-C02-02, and TIN2007-68005-C04-04.

1 l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 is equivalent to l1 → l2, l1 → l3, l̄2 ∨ l̄3.

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 467–480, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

468 C.M. Li et al.

(note that a cycle structure implies a failed literal l1), and (ii) replace the cycle structure
with l̄1, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 by applying MaxSAT resolution [2,5], which amounts
to activate the inference component and, at the same time, change the behaviour of the
underestimation component. We first show that it is better to apply MaxSAT resolution
to cycle structures occurring in inconsistent subformulas detected using unit propaga-
tion or failed literal detection. We then propose a heuristic that guides the application
of MaxSAT resolution to cycle structures during failed literal detection, and evaluate
this heuristic by implementing it in MaxSatz, obtaining a new solver called MaxSatzc.
Our experimental investigation on weighted MaxSAT and Partial MaxSAT instances
shows that MaxSatzc substantially improves MaxSatz on many hard random, crafted
and industrial instances.

This paper extends the results of [7] to Weighted MaxSAT and Partial MaxSAT, and
includes experiments with random, crafted and industrial instances of the last MaxSAT
Evaluation (in [7], the results are only for unweighted MaxSAT, and experiments are
limited to Max-2SAT instances). The implementations in [7] were performed on top
of an optimized version of MaxSatz for unweighed MaxSAT that was first used in the
2007 MaxSAT Evaluation, but the implementations of this paper were performed on
top of an optimized version of MaxSatz for Weighted Partial MaxSAT that was used
in the 2008 MaxSAT Evaluation. This paper also contains two new lemmas (Lemma 1
and Lemma 2), a formal proof of Proposition 1, an example (Example 2) that shows that
applying MaxSAT resolution to cycle structures not contained in an inconsistent subfor-
mula may lead to worse LBs, and a deeper analysis of the experimental results. For the
sake of clarity, we explain our work for unweighted MaxSAT, but the implementation
and experiments include Weighted MaxSAT and Partial MaxSAT.

2 Preliminaries

We define CNF formulas as multisets of clauses because, in Max-SAT, duplicated clauses
cannot be collapsed into one clause, and define weighted CNF formulas as multisets of
weighted clauses. A weighted clause is a pair (Ci, wi), where Ci is a disjunction of
literals and wi, its weight, is a positive number. The weighted clauses (C, wi), (C, wj)
can be replaced with (C, wi + wj). A literal l in a (weighted) CNF formula φ is failed
if unit propagation derives a contradiction from φ ∧ l but not from φ. An empty clause
cannot be satisfied and is denoted by .

The (Unweighted) MaxSAT problem for a CNF formula φ is the problem of find-
ing a truth assignment that maximizes (minimizes) the number of satisfied (unsatisfied)
clauses.2 MaxSAT instances φ1 and φ2 are equivalent if φ1 and φ2 have the same number
of unsatisfied clauses for every complete assignment of φ1 and φ2. A MaxSAT inference
rule is sound if it transforms an instance into an equivalent instance.

The Weighted MaxSAT problem for a weighted CNF formula φ is the problem of
finding an assignment that minimizes the sum of weights of unsatisfied clauses. A Partial
MaxSAT instance is a CNF formula in which some clauses are relaxable or soft and the
rest are non-relaxable or hard. Solving a Partial MaxSAT instance amounts to find an
assignment that satisfies all the hard clauses and the maximum number of soft clauses.

2 In the sequel, we always refer to the minimization version of MaxSAT, also called MinUNSAT.

Exploiting Cycle Structures in Max-SAT 469

3 Related Work

3.1 Underestimation Component

The underestimation in LB UP [8] is the number of disjoint inconsistent subformulas that
can be detected with unit propagation. UP works as follows: it applies unit propagation
until a contradiction is derived. Then, UP identifies, by inspecting the implication graph
created by unit propagation, a subset of clauses from which a unit refutation can be
constructed, and tries to derive new contradictions from the remaining clauses. The order
in which unit clauses are propagated has a clear impact on the quality of the LB [9].
Recently, Darras et al. [3] and Han et al. [11] have developed two versions of UP in
which the computation of the LB is made more incremental.

UP can be enhanced with failed literal detection (UPFL) [9] : Given a MaxSAT
instance φ to which we have already applied UP, and a variable x, UPFL applies UP to
φ∧x and φ∧ x̄. If UP derives a contradiction from both φ∧x and φ∧ x̄, then the union
of the two inconsistent subformulas identified by UP respectively in φ∧ x and φ∧ x̄ is
an inconsistent subformula of φ, after excluding x and x̄. Since applying failed literal
detection to every variable is time consuming, it is only applied to the variables which
do not occur in unit clauses, and have at least two positive and two negative occurrences
in binary clauses. Once an inconsistent subformula γ is detected, γ is removed from φ,
the underestimation is increased by one, and UPFL continues in the modified φ.

In this paper, when we say an inconsistent subformula, we mean an inconsistent sub-
formula detected using unit propagation or failed literal detection.

Another approach for computing underestimations is based on first reducing the
MaxSAT instance one wants to solve to an instance of another problem, and then solving
a relaxation of the obtained instance. For example, Clone [12] and SR(w) [13] solve the
minimum cardinality problem of a deterministic decomposable negation normal form
(d-DNNF) compilation of a relaxation of the current MaxSAT instance.

3.2 Inference Component

An alternative to improve the quality of the LB consists in applying MaxSAT resolu-
tion. In practice, competitive solvers apply some refinements of the rule for efficiency
reasons. In contrast to SAT resolution, a MaxSAT inference rule replaces the clauses in
the premises with the clauses in the conclusion in order to preserve the number of un-
satisfied clauses. If the conclusion would be added to the premises as in SAT resolution,
the number of unsatisfied clauses might increase.

MaxSatz [10] incorporates the following rules (also called Rule 1, Rule 2, Rule 3,
Rule 4 in this paper) capturing special structures in a MaxSAT instance:

l1, l1 ∨ l2, l2 =⇒ , l1 ∨ l2 (1)

l1, l̄1 ∨ l2, l̄2 ∨ l3, · · · , l̄k ∨ lk+1, l̄k+1 =⇒ , l1 ∨ l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1

(2)

l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 =⇒ , l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 (3)

470 C.M. Li et al.

l1, l̄1 ∨ l2, l̄2 ∨ l3, · · · , l̄k ∨ lk+1,
l̄k+1 ∨ lk+2, l̄k+1 ∨ lk+3, l̄k+2 ∨ l̄k+3

=⇒ , l1 ∨ l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1,
lk+1 ∨ l̄k+2 ∨ l̄k+3, l̄k+1 ∨ lk+2 ∨ lk+3

(4)
Max-DPLL [6] incorporates several rules for weighted MaxSAT, including chain reso-
lution (which is equivalent to Rule 2 in the unweighted case) and cycle resolution. Cycle
resolution, which captures the cycle structure, is implemented for 3 variables:

l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 =⇒ l̄1, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 (5)

MiniMaxSat incorporates LB UP and, once a contradiction is found, it applies MaxSAT
resolution to the detected inconsistent subformula if the largest resolvent in the refutation
has arity less than 4; otherwise, it just increments the underestimation.

Max-DPLL applies MaxSAT resolution, via the cycle resolution inference rule, to
all the cycle structures occurring in a MaxSAT instance, and does not combine its ap-
plication with the underestimation component. MaxSatz and MiniMaxSat both select
cycle structures to which MaxSAT resolution can be applied. MaxSatz applies MaxSAT
resolution, via Rule 3 and Rule 4, just when unit propagation detects a contradiction
containing the cycle structure. MiniMaxSat applies MaxSAT resolution to cycles struc-
tures which are contained in an inconsistent subformula detected by UP provided that
the largest resolvent in the refutation of the subformula has arity less than 4.

4 Cycle Structures and Lower Bounds

Exploiting cycle structures has proved very useful in Max-DPLL, MaxSatz, and Mini-
MaxSat. In this section, we study why and when exploiting cycle structures is useful.

The operation of Rule 3 and Rule 4 of MaxSatz can be analyzed as follows. Given an
inconsistent subformula {l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3} detected using unit propagation,
Rule 3 applies MaxSAT resolution to transform the subformula into {l1, l̄1, l1 ∨ l̄2 ∨
l̄3, l̄1∨ l2∨ l3}, and then into { , l1∨ l̄2∨ l̄3, l̄1∨ l2∨ l3} (since {l1, l̄1} is equivalent to

). The benefit of the transformation is twofold: (i) the empty clause does not need to be
re-detected in the subtree rooted at the current node because it remains in the transformed
formula, and (ii) the transformed subformula includes two new ternary clauses, and such
liberated clauses may be used to detect further inconsistent subformulas, allowing to
compute better LBs. The case of Rule 4 is similar.

The next example illustrates the usefulness of applying MaxSAT resolution to cycle
structures in scenarios where there is no unit clause.

Example 1. Assume that a MaxSAT instance φ contains

x1 ∨ x2, x̄2 ∨ x3, x̄2 ∨ x4, x̄3 ∨ x̄4, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7
x8 ∨ x̄2, x8 ∨ x3, x8 ∨ x4, x̄8 ∨ x9, x̄8 ∨ x10, x̄8 ∨ x11, x̄9 ∨ x̄10 ∨ x̄11

Rule 3 and Rule 4 are not applied since there is no unit clause. Failed literal detection
on the variable x1 finds the inconsistent subformula in the first line. After removing this

Exploiting Cycle Structures in Max-SAT 471

subformula, it cannot detect further inconsistent subformulas. The underestimation is
only incremented by 1. However, if MaxSAT resolution is applied to

x̄2 ∨ x3, x̄2 ∨ x4, x̄3 ∨ x̄4

in the first line, these clauses are replaced with

x̄2, x2 ∨ x̄3 ∨ x̄4, x̄2 ∨ x3 ∨ x4

and then the underestimation component detects 2 inconsistent subformulas instead of 1.
The first with failed literal detection on the variable x1:

x1 ∨ x2, x̄2, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7

and the second with failed literal detection on the variable x8:

x8 ∨ x̄2, x8 ∨x3, x8 ∨x4, x̄8 ∨x9, x̄8 ∨x10, x̄8 ∨x11, x̄9 ∨ x̄10 ∨ x̄11, x2 ∨ x̄3 ∨ x̄4

Example 1, together with the analysis of Rule 3 and Rule 4, suggests that one should
apply MaxSAT resolution to cycle structures contained in an inconsistent subformula to
improve the quality of LBs. In fact, generally speaking, let φ be a MaxSAT instance and
l a literal of φ, we have

Lemma 1. Let l be a failed literal in φ (i.e., UP(φ∧ l) derives an empty clause), and let
Sl be the set of clauses used to derive the contradiction in UP(φ ∧ l). If Sl contains the
cycle structure l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3, then l1 was set to true in the unit propagation.

Proof. Except the empty clause, every clause in Sl becomes unit when it is used for
propagation, meaning that every clause in Sl is satisfied by at most one literal in the unit
propagation. If l1 was set to false in the propagation, then at least one of the three clauses
l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 would be satisfied by two literals and could not belong to Sl. So,
l1 was set to true in the unit propagation. �

Lemma 2. If l is a failed literal, and Sl contains the cycle structure l̄1∨l2, l̄1∨l3, l̄2∨l̄3,
then l1 was assigned a truth value before l2 and l3 in UP(φ ∧ l).

Proof. Except the empty clause, every clause in Sl was unit when it was satisfied in the
unit propagation. We assume that l2 was assigned a truth value before l1 and show that
this is impossible. If l2 was assigned true, clause l̄1∨ l2 would be satisfied without being
unit; if l2 was assigned false, then l3 would be assigned true before l2 was assigned false,
since otherwise clause l̄2∨ l̄3 would be satisfied before being unit. But in the latter case,
clause l̄1 ∨ l3 would be satisfied without being unit. �

Lemma 2 also means that if Sl contains a cycle structure, then the cycle structure must
be the last three binary clauses in the implication graph detecting Sl, which makes the
identification of the cycle structure in Sl fast and easy.

Proposition 1. Let l be a failed literal in φ (i.e., UP(φ∧l) derives an empty clause), and
let Sl be the set of clauses used to derive the contradiction in UP(φ ∧ l). If Sl contains
the cycle structure l̄1∨ l2, l̄1∨ l3, l̄2∨ l̄3, and S′

l is Sl after applying MaxSAT resolution
to the cycle structure, then S′

l – {l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3} is inconsistent.

472 C.M. Li et al.

Proof. By Lemma 1 and Lemma 2, l1 was assigned true in UP(φ ∧ l) independently
of the three clauses l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3, which are replaced with {l̄1, l1 ∨ l̄2 ∨ l̄3,
l̄1∨ l2∨ l3} in S′

l . So, unit propagation in S′
l – {l1∨ l̄2∨ l̄3, l̄1∨ l2∨ l3} derives an empty

clause from the unit clause l̄1. �
Proposition 1 means that, if both l and l̄ are failed literals, and Sl contains the cycle
structure l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3, we can apply MaxSAT resolution in φ (replacing these
three binary clauses with one unit clause l̄1 and two ternary clauses l1 ∨ l̄2 ∨ l̄3 and
l̄1 ∨ l2 ∨ l3) to obtain S′

l , and then transform the inconsistent subformula S′
l∪Sl̄ – {l,

l̄} into a smaller inconsistent subformula S′
l∪Sl̄ – {l, l̄, l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3} of φ.

So, apart from incrementing the underestimation by 1, this transformation liberates two
ternary clauses from S′

l∪Sl̄ – {l, l̄} that can be used to derive other disjoint inconsistent
subformulas, allowing to obtain better LBs.

In Example 1, Sx̄1∪Sx1 – {x̄1, x1} is equal to

{x1 ∨ x2, x̄2 ∨ x3, x̄2 ∨ x4, x̄3 ∨ x̄4, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7}

which is transformed by applying MaxSAT resolution to the cycle structure x̄2∨x3, x̄2∨
x4, x̄3 ∨ x̄4 into a smaller inconsistent subformula

{x1 ∨ x2, x̄2, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7}

So, after incrementing the underestimation by 1, we have two additional ternary clauses
(x2 ∨ x̄3 ∨ x̄4 and x̄2 ∨ x3 ∨ x4) liberated from the cycle structure which can be used
to detect further inconsistent subformulas.

The benefit of applying MaxSAT resolution to a cycle structure not contained in an
inconsistent subformula is not so clear. The next example suggests that this application
may lead to a worse LB.

Example 2. Assume that a MaxSAT instance φ contains

x1 ∨ x̄2, x1 ∨ x̄3, x2 ∨ x3, x2 ∨ x6, x3 ∨ x̄6,
x̄1 ∨ x7, x̄1 ∨ x8, x̄7 ∨ x9, x̄8 ∨ x̄9,
x̄4, x4 ∨ x̄2, x̄3 ∨ x5, x̄5

Without activating the inference component, unit propagation detects an inconsistent
subformula

{x2 ∨ x3, x̄4, x4 ∨ x̄2, x̄3 ∨ x5, x̄5}
Then, after removing this subformula from φ, failed literal detection on x1 (i.e., unit
propagation in φ∧x̄1 and in φ∧x1 respectively) finds the second inconsistent subformula

{x1 ∨ x̄2, x1 ∨ x̄3, x2 ∨ x6, x3 ∨ x̄6, x̄1 ∨ x7, x̄1 ∨ x8, x̄7 ∨ x9, x̄8 ∨ x̄9}

Note that the first three clauses of φ form a cycle structure but do not belong to a same
inconsistent subformula detected using unit propagation or failed literal detection. If
MaxSAT resolution is applied to the cycle structure, φ becomes

x1, x̄1 ∨ x2 ∨ x3, x1 ∨ x̄2 ∨ x̄3, x2 ∨ x6, x3 ∨ x̄6,
x̄1 ∨ x7, x̄1 ∨ x8, x̄7 ∨ x9, x̄8 ∨ x̄9,
x̄4, x4 ∨ x̄2, x̄3 ∨ x5, x̄5.

Exploiting Cycle Structures in Max-SAT 473

Once unit propagation detects the inconsistent subformula

{x1, x̄1 ∨ x2 ∨ x3, x̄4, x4 ∨ x̄2, x̄3 ∨ x5, x̄5}

φ becomes (after removing the inconsistent subformula)

{x1 ∨ x̄2 ∨ x̄3, x2 ∨ x6, x3 ∨ x̄6, x̄1 ∨ x7, x̄1 ∨ x8, x̄7 ∨ x9, x̄8 ∨ x̄9}

and is consistent. So, only one inconsistent subformula is detected when MaxSAT
resolution is applied to the cycle structure, making the LB worse.

5 Heuristics for Applying MaxSAT Resolution in Cycle Structures

From the previous analysis, we observe that it is better to apply MaxSAT resolution
to cycle structures contained in an inconsistent subformula in order to transform the in-
consistent subformula and liberate two ternary clauses from the subformula. In practice,
when we identify a cycle structure at a node of the search tree, we distinguish three cases:

1. The cycle structure is contained in an inconsistent subformula.
2. The cycle structure is not contained in an inconsistent subformula at the current

node, but probably belongs to an inconsistent subformula in the subtree below the
current node.

3. The cycle structure is not contained in an inconsistent subformula at the current node
and probably will not belong to an inconsistent subformula in the subtree.

We define a heuristic that applies MaxSAT resolution in the first two cases. As we will
see, the benefit of applying MaxSAT resolution in the second case is twofold: two ternary
clauses are liberated in advance, and the probable inconsistent subformula containing the
cycle structure will be easier and faster to detect in the subtree with the application of
MaxSAT resolution. This heuristic is implemented in Algorithm 1., where occ2(l) is the
number of occurrences of literal l in the binary clauses of φ.

Between the two literals of a variable x that have reasonable probability to be failed
(since their satisfaction results in at least two new unit clauses), Algorithm 1. detects first
the literal l with more occurrences in binary clauses. Note that l has a smaller probability
of being failed than l̄ since its satisfaction produces fewer new unit clauses than the
satisfaction of l̄.

If l is a failed literal and Sl contains a cycle structure, the cycle structure is re-
placed to obtain S′

l before detecting l̄. If l̄ also is a failed literal, the inconsistent sub-
formula S′

l∪Sl̄ – {l, l̄} is transformed into a smaller inconsistent subformula to liberate
two ternary clauses. If l̄ is not a failed literal in the current node, failed literal detection
does not detect an inconsistent subformula containing the cycle structure of Sl, but Sl

is now smaller thanks to MaxSAT resolution because it becomes now S′
l – {l1 ∨ l̄2 ∨ l̄3,

l̄1 ∨ l2 ∨ l3} by Proposition 1, and it will be easier to re-detect in the subtree. Note that
l̄ has reasonable probability to be a failed literal in the subtree, i.e., the cycle structure
in the original Sl has reasonable probability to be contained in an inconsistent subfor-
mula in the subtree. As soon as l̄ fails in the subtree, Algorithm 1. will detect the smaller
inconsistent subformula Sl∪Sl̄ – {l, l̄} with smaller cost (recall Sl is now smaller).

474 C.M. Li et al.

Algorithm 1. flAndCycle(φ, x), combining MaxSAT resolution to cycle structures and
failed literal detection

Input: A MaxSAT instance φ, and a variable x such that occ2(x)≥ 2 and occ2(x̄)≥ 2
Output: φ in which MaxSAT resolution is possibly applied to a cycle structure, and an underes-

timation
begin1

if occ2(x)>occ2(x̄) then l←−x; else l←−x̄;2

underestimation ←− 0;
if UP(φ ∧ l) derives a contradiction then

if Sl contains a cycle structure, replace the cycle structure with one unit clause and two3

ternary clauses;
if UP(φ ∧ l̄) derives a contradiction then

if Sl̄ contains a cycle structure, replace the cycle structure with one unit clause and4

two ternary clauses;
underestimation ←− 1;

return new φ and underestimation5

end6

On the contrary, if l is not a failed literal, Algorithm 1. does not detect an inconsistent
subformula, l̄ is not detected and no inference is applied to Sl̄ even if l̄ is a failed literal,
avoiding the application of MaxSAT resolution to a cycle structure not contained in an
inconsistent subformula.

With the aim of evaluating the impact of Algorithm 1. in the performance of MaxSatz,
we define the following variants of solvers:

– MaxSatz: It is a Weighted Partial MaxSAT solver developed by J. Argelich, C.M. Li
and F. Manyà [1]. MaxSatz participated in the 2008 MaxSAT Evaluation, and in-
corporates all the MaxSatz inference rules, and failed literal detection, besides UP,
in the underestimation component. MaxSatz applies MaxSAT resolution to cycles
structures in a limited way using Rule 3 and Rule 4.

– MaxSatzc: It is a variant of MaxSatz in which failed literal detection is combined
with the heuristic application of MaxSAT resolution to cycle structures. For every
variable x such that occ2(x)≥ 2 and occ2(x̄)≥ 2, failed literal detection is replaced
with Algorithm 1.. For the rest of variables, it is applied as in MaxSatz.

– MaxSatzp
c : It is a variant of MaxSatzc in which MaxSAT resolution is applied to all

the cycle structures appearing at the root node, and is applied as in MaxSatzc to the
cycle structures appearing in the rest of nodes. In other words, MaxSAT resolution
is exhaustively applied to cycle structures as a preprocessing. Notice that this pre-
processing has no effect on problems not containing cycle structures in the input
formula (e.g., Max-3SAT). In this case, MaxSatzp

c is just MaxSatzc. Although all
cycle structures at the root node are replaced, new cycle structures can be created in
the rest of nodes. Cycle structures may appear because (i) non-binary clauses may
become binary clauses during the search, and (ii) Rule 1, Rule 2, Rule 3, and Rule 4
applied in UP, before failed literal detection, may transform binary clauses and add
ternary clauses.

Exploiting Cycle Structures in Max-SAT 475

– MaxSatzp: It is a variant of MaxSatz in which MaxSAT resolution is applied to all
the cycle structures appearing at the root node, and in the rest of nodes, it is just
MaxSatz.

– MaxSatzc∗ : It is a variant of MaxSatz in which MaxSAT resolution is applied ex-
haustively to all cycle structures at each node after applying UP and inference rules
(Rule 1, Rule 2, Rule 3, and Rule 4), and before applying failed literal detection.
The application is exhaustive because no subset of binary clauses matching a cycle
structure remains in the current instance.

MaxSatzc∗ is related to Max-DPLL when replacing every cycle structure with one
unit clause and two ternary clauses. MaxSatzc extends MaxSatz and MiniMaxSat in
that MaxSatzc additionally applies MaxSAT resolution to cycle structures contained in
an inconsistent subformula detected using failed literal detection. Moreover, differently
from MiniMaxSat, MaxSatzc replaces these cycle structures no matter if the refutation
has arity less than 4 or not.

Recall that a weighted clause (C, w1+w2) is equivalent to two weighted clauses (C,
w1) and (C, w2). The difference between MaxSatzc and MaxSatzc∗ should be bigger for
Weighted MaxSAT than for unweighted MaxSAT. For example, if a weighted formula
contains a cycle structure (l̄1∨ l2, 3), (l̄1∨ l3, 4), (l̄2∨ l̄3, 5), MaxSatzc∗ replaces entirely
this cycle structure with (l̄1, 3), (l1 ∨ l̄2 ∨ l̄3, 3), (l̄1 ∨ l2 ∨ l3, 3), and leaves two clauses
(l̄1 ∨ l3, 1), (l̄2 ∨ l̄3, 2) in the formula. On the contrary, MaxSatzc only replaces the part
of this cycle structure contained in an inconsistent subformula. If the minimum clause
weight in the inconsistent subformula is 2, MaxSatzc replaces this cycle structure with
(l̄1, 2), (l1∨ l̄2∨ l̄3, 2), (l̄1∨l2∨l3, 2), and leaves the cycle structure (l̄1∨l2, 1), (l̄1∨l3, 2),
(l̄2∨ l̄3, 3) in the formula, which is different from the unweighted case where MaxSatzc

never partly replaces a cycle structure.

6 Experimental Results and Analysis

We conducted experiments to compare the performance of the different versions of
MaxSatz described in the previous section (MaxSatz, MaxSatzc, MaxSatzp

c , MaxSatzp,
and MaxSatzc∗).

As benchmarks for Weighted MaxSAT, we considered random weighted Max-2SAT,
random weighted Max-3SAT, and random weighted Max-CUT instances, and all the
crafted instances of the 2008 MaxSAT Evaluation (the evaluation did not include indus-
trial instances for Weighted MaxSAT). As benchmarks for Partial MaxSAT, we con-
sidered random partial Max-2SAT and random partial Max-3SAT instances, and all
the industrial and crafted instances of the 2008 MaxSAT Evaluation. We did not solve
the random instances of the Weighted MaxSAT and Partial MaxSAT categories of the
2008 MaxSAT Evaluation because they are easily solved with the different versions
of MaxSatz. We selected instances which are harder and allow to analyze the scaling
behavior of the solvers.

We do not include the experimental results with other solvers in this section for three
reasons: (i) the purpose of the experiments is to show the effectiveness of the heuristic
replacement of cycles structures given in Algorithm 1., while keeping other things equal

476 C.M. Li et al.

in a solver; (ii) for randomly generated (weighted or partial) instances, other solvers are
too slow to be displayed in the figures; (iii) for crafted and industrial instances of the
2008 MaxSAT Evaluation, the performance of other solvers can be checked in the web
page of the evaluation (http://www.maxsat.udl.cat/08/).

Experiments were performed on a MacPro with two 2.8GHz Quad-Core Intel Xeon
processors and 4Gb of RAM. For every instance, besides the run time, we compute the
total number k of cycle structures replaced by applying MaxSAT resolution (in addition
to Rule 3 and Rule 4), and divide k by the search tree size t. The ratio k/t roughly indi-
cates the average number of cycle structures replaced (in addition to the applications of
Rule 3 and Rule 4) at a search tree node. For the 2008 MaxSAT Evaluation instances,
we set a cutoff of 30 minutes. These instances generally include no or very few cycle
structures in their initial formulas, so that the preprocessing is not significant. We do not
include MaxSatzp

c and MaxSatzp in the comparison for them for the sake of clarity.
The experimental results for Weighted MaxSAT are shown in Figure 1, Figure 2,

Figure 3, and Table 1. Figure 1 shows the mean time (left plot) and the mean ratio k/t
(right plot) to solve sets of 100 randomly generated Weighted Max-2SAT instances with
100 variables and an increasing number of clauses. MaxSatz is not included in the right
plot, because cycle structures replaced by Rule 3 and Rule 4 are not counted in k, so that
k is always 0 for MaxSatz. We observe a clear advantage of MaxSatzc and MaxSatzp

c ,
which are up to one order of magnitude better than MaxSatz and MaxSatzc∗ . The search
tree size (not shown for lack of space) follows the same ordering. It can be observed that,
it suffices to replace three or four cycle structures contained in an inconsistent subfor-
mula at a search tree node to obtain an important gain, and the gain grows with the
number of cycle structures replaced. However, if the cycle structures not contained in
an inconsistent subformula are also replaced as in MaxSatzc∗ , the LB becomes substan-
tially worse and the search tree larger, and the more replacements there are, the worse
the LB.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1500 1600 1700 1800 1900 2000 2100 2200

tim
e

(in
 s

ec
on

ds
)

number of clauses

Weighted-Max-2SAT - 100 variables

MaxSatzc*

MaxSatz

MaxSatzp

MaxSatzc

MaxSatzp
c

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1500 1600 1700 1800 1900 2000 2100 2200#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of clauses

Weighted-Max-2SAT - 100 variables

MaxSatzc*
MaxSatzc

MaxSatzp
c

MaxSatzp

Fig. 1. Weighted Max-2SAT instances

Figure 2 shows the mean time (left plot) and the mean ratio k/t (right plot) to solve
sets of 100 randomly generated Weighted Max-3SAT instance with 60 variables and
an increasing number of clauses. Since weighted Max-3SAT instances do not include
cycle structures, the preprocessing has no effect. Therefore, Figure 2 does not include

Exploiting Cycle Structures in Max-SAT 477

MaxSatzp
c and MaxSatzp. We observe that MaxSatzc is clearly better than the rest of

solvers. Note that all cycle structures are dynamically created during search.

 0

 200

 400

 600

 800

 1000

 1200

 800 900 1000 1100 1200 1300

tim
e

(in
 s

ec
on

ds
)

number of clauses

Weighted-Max-3SAT - 60 variables

MaxSatzc*

MaxSatz
MaxSatzc

 0

 2

 4

 6

 8

 10

 12

 14

 16

 800 900 1000 1100 1200 1300#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of clauses

Weighted-Max-3SAT - 60 variables

MaxSatzc*
MaxSatzc

Fig. 2. Weighted Max-3SAT instances

Figure 3 shows the mean time (left plot) and the mean ratio k/t (right plot) to solve
sets of 100 random Weighted Max-CUT instances generated from random graphs of
100 nodes and an increasing number of edges. MaxSatzc∗ is better than MaxSatz be-
cause a cycle structure easily belongs to an inconsistent subformula due to the special
structure of the Max-CUT problem. Nevertheless the heuristic application of MaxSAT
resolution to cycle structures contained in an inconsistent subformula makes MaxSatzc

significantly better than MaxSatzc∗ .

 0

 100

 200

 300

 400

 500

 600

 500 600 700 800 900

tim
e

(in
 s

ec
on

ds
)

number of edges

Weighted-MaxCUT - 100 nodes

MaxSatz
MaxSatzc*

MaxSatzp

MaxSatzp
c

MaxSatzc

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 500 600 700 800 900#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of edges

Weighted-MaxCUT - 100 variables

MaxSatzc*
MaxSatzc

MaxSatzp
c

MaxSatzp

Fig. 3. Weighted Max-CUT instances

Table 1 contains the results for the crafted instances of the Weighted Max-SAT cat-
egory of the 2008 MaxSAT Evaluation. For each group of instances, we display the
number of instances I in the group, and for each solver, the number of instances solved
within the cutoff of 30 minutes (in brackets) and the mean time in seconds to solve these
solved instances. MaxSatzc is the best performing solver, which solves 4 instances more
than MaxSatz and 2 instances more than Maxsatzc∗ .

478 C.M. Li et al.

Table 1. Crafted instances of the Weighted Max-SAT category of the 2008 MaxSAT Evaluation

Instance set I MaxSatz MaxSatzc MaxSatzc∗

KeXu 15 14.97(10) 13.85(10) 25.28(10)
RAMSEY 48 25.45(36) 10.93(36) 14.80(36)

WMAXCUT-DIMACS-MOD 62 54.22(55) 90.95(57) 89.34(55)
WMAXCUT-RANDOM 40 10.22(40) 3.54(40) 5.38(40)

WMAXCUT-SPINGLASS 5 301.83(2) 31.23(4) 35.60(4)
All instances 170 143 147 145

The experimental results for Partial MaxSAT are shown in Figure 4, Figure 5, Ta-
ble 2, and Table 3. Figure 4 shows the mean time (left plot) and the mean ratio k/t (right
plot) to solve sets of 100 randomly generated partial Max-2SAT instance with 150 vari-
ables, 150 hard clauses as in the 2008 MaxSAT evaluation, and an increasing number
of soft clauses. For these large instances, MaxSatzc outperforms the rest of solvers, and
MaxSatzc∗ is by far the worst.

 100

 200

 300

 400

 500

 600

 700

 3500 4000 4500 5000 5500 6000 6500 7000

tim
e

(in
 s

ec
on

ds
)

number of clauses

Partial-Max-2SAT - 150 variables

MaxSatzc*

MaxSatz

MaxSatzp

MaxSatzp
c

MaxSatzc

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 3500 4000 4500 5000 5500 6000 6500 7000#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of clauses

Partial-Max-2SAT - 150 variables

MaxSatzc*

MaxSatzp
c

MaxSatzc

MaxSatzp

Fig. 4. Partial Max-2SAT instances

Figure 5 shows the mean time (left plot) and the mean ratio k/t (right plot) to solve
sets of 100 randomly generated partial Max-3SAT instance with 80 variables, 80 hard
clauses, and an increasing number of soft clauses. Note that there are very few cy-
cle structures replaced at a search tree node, but the gain of MaxSatzc and the loss of
MaxSatzc∗ are very significant.

Table 2 contains the results for the industrial instances of the Partial Max-SAT cate-
gory of the 2008 MaxSAT Evaluation. MaxSatzc solves 25 instances more than MaxSatz,
and 40 instances more than MaxSatzc∗ . Table 3 contains the results for the crafted in-
stances of the Partial Max-SAT category of the 2008 MaxSAT Evaluation. MaxSatzc

solves 7 instances more than MaxSatzc∗ . There are very few cycle structures contained
in an inconsistent subformula during search for these instances. Their exploitation still
makes MaxSatzc the best performing solver in general.

Exploiting Cycle Structures in Max-SAT 479

 200

 400

 600

 800

 1000

 1000 1100 1200 1300 1400

tim
e

(in
 s

ec
on

ds
)

number of clauses

Partial-Max-3SAT - 80 variables

MaxSatzc*

MaxSatz
MaxSatzc

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1000 1100 1200 1300 1400#a
dd

iti
on

al
 c

yc
le

 s
tr

uc
tu

re
s

re
pl

ac
ed

 p
er

 n
od

e
(k

/t)

number of clauses

Partial-Max-3SAT - 80 variables

MaxSatzc*
MaxSatzc

Fig. 5. Partial Max-3SAT instances

Table 2. Industrial instances of the Partial Max-SAT category of the 2008 MaxSAT Evaluation

Instance set I MaxSatz MaxSatzc MaxSatzc∗

bcp-fir 59 8.91(7) 5.03(7) 8.16(7)
bcp-hipp-yRa1 1183 73.18(734) 70.81(744) 77.01(721)

bcp-msp 148 40.53(94) 17.86(94) 22.41(94)
bcp-mtg 215 33.07(144) 96.25(157) 95.41(154)
bcp-syn 74 97.41(22) 104.68(22) 82.67(21)

pbo-mqc-nencdr 128 514.05(77) 436.91(76) 475.17(64)
pbo-mqc-nlogencdr 128 323.57(104) 270.38(107) 333.04(106)

pbo-routing 15 61.43(5) 3.13(5) 5.22(5)
All instances 1950 1187 1212 1172

Table 3. Crafted instances of the Partial Max-SAT category of the 2008 MaxSAT Evaluation

Instance set I MaxSatz MaxSatzc MaxSatzc∗

MAXCLIQUE-RANDOM 96 75.67(83) 68.17(83) 48.68(80)
MAXCLIQUE-STRUCTURED 62 164.70(25) 138.90(25) 149.25(22)

MAXONE-3SAT 80 139.09(78) 148.70(78) 204.47(77)
MAXONE-STRUCTURED 60 80.63(58) 75.36(58) 96.41(58)

All instances 298 244 244 237

7 Conclusions

We have studied why and when is useful to apply MaxSAT resolution to cycle structures
in MaxSAT LB computation. We found that the exhaustive application of MaxSAT reso-
lution is not so effective in general, and that MaxSAT resolution is effective if it is applied
to cycle structures contained in an inconsistent subformula detected using unit propa-
gation or failed literal detection. The benefit is twofold: (i) the inconsistent subformula
can be transformed into a smaller one to liberate two ternary clauses for detecting other
inconsistent subformulas, (ii) the smaller inconsistent subformula is easier and faster
to detect or re-detect in subtrees. Experimental results suggest that the solver becomes

480 C.M. Li et al.

much slower when MaxSAT resolution is applied to cycle structures not contained in an
inconsistent subformula.

We defined a heuristic that guides the applications of MaxSAT resolution to cycle
structures. The implementation of this heuristic provides empirical evidence that it is
very effective on many hard instances of Weighted MaxSAT and Partial MaxSAT, inde-
pendently if they are random, crafted or industrial, as soon as few inconsistent subfor-
mulas contain a cycle structure.

In the future, we will study the exploitation of other structures in MaxSAT instances.
It is remarkable that a relevant exploitation of few structures at a search tree node can
result in a substantial speed-up in the solving of a MaxSAT problem.

References

1. Argelich, J., Li, C.M., Manyà, F.: An improved exact solver for partial Max-SAT. In: NCP
2007, pp. 230–231 (2007)

2. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence 171(8-9),
240–251 (2007)

3. Darras, S., Dequen, G., Devendeville, L., Li, C.M.: On inconsistent clause-subsets for max-
SAT solving. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 225–240. Springer, Hei-
delberg (2007)

4. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 41–55. Springer,
Heidelberg (2007)

5. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted
CSPs. In: IJCAI 2005, pp. 193–198 (2005)

6. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artificial
Intelligence 172(2-3), 204–233 (2008)

7. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Transforming inconsistent subformulas
in MaxSAT lower bound computation. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp.
582–587. Springer, Heidelberg (2008)

8. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
403–414. Springer, Heidelberg (2005)

9. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In: AAAI 2006, pp. 86–91 (2006)

10. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial In-
telligence Research 30, 321–359 (2007)

11. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound computation in
Max-SAT solving. In: AAAI 2008, pp. 351–356 (2008)

12. Pipatsrisawat, K., Darwiche, A.: Clone: Solving weighted Max-SAT in a reduced search
space. In: AI 2007, pp. 223–233 (2007)

13. Ramírez, M., Geffner, H.: Structural relaxations by variable renaming and their compilation
for solving MinCostSAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 605–619.
Springer, Heidelberg (2007)

Generalizing Core-Guided Max-SAT

Mark H. Liffiton and Karem A. Sakallah

Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor 48109-2121

{liffiton,karem}@eecs.umich.edu

Abstract. Recent work has shown the value of using unsatisfiable cores
to guide maximum satisfiability algorithms (Max-SAT) running on
industrial instances [5,9,10,11]. We take this concept and generalize it,
applying it to the problem of finding minimal correction sets (MCSes),
which themselves are generalizations of Max-SAT solutions. With the
technique’s success in Max-SAT for industrial instances, our development
of a generalized approach is motivated by the industrial applications of
MCSes in circuit debugging [12] and as a precursor to computing mini-
mal unsatisfiable subsets (MUSes) in a hardware verification system [1].
Though the application of the technique to finding MCSes is straightfor-
ward, its correctness and completeness are not, and we prove both for
our algorithm. Our empirical results show that our modified MCS algo-
rithm performs better, often by orders of magnitude, than the existing
algorithm, even in cases where the use of cores has a negative impact on
the performance of Max-SAT algorithms.

1 Introduction

In the field of constraint processing, and particularly within the domain of
Boolean Satisfiability (SAT), the analysis of infeasible constraint systems has
become increasingly important. Following the impressive advancements in the
performance of SAT solvers in the past decade, which enable fast answers about
the satisfiability of industrially relevant instances, researchers have begun to
look at analyses beyond the “unsatisfiable” result returned for overconstrained
instances. The work is spurred not only by academic interest but also by novel
industrial applications of these analyses. In this paper, we take one of the re-
cent advances in analyzing infeasible instances, namely unsatisfiable-core-guided
maximum satisfiability (core-guided Max-SAT), and generalize it to solve a re-
lated analysis with direct industrial applications: the identification of minimal
correction sets (MCSes).

The concept of core-guided Max-SAT was first developed by Fu & Malik [5]
and later enhanced and optimized by Marques-Silva and others [9,10,11]; the
algorithms and differences in their approaches are detailed in Section 3. The
technique relies on and exploits one of the relationships between satisfiable and
unsatisfiable subsets of infeasible systems that have been explored in depth in [3]
and [6,7]. Briefly, an unsatisfiable instance will contain one or more unsatisfiable

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 481–494, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

482 M.H. Liffiton and K.A. Sakallah

cores. No satisfiable subset of such an instance can contain any complete cores;
therefore, any Max-SAT solution must must leave unsatisfied at least one clause
from every core. The core-guided Max-SAT approach thus identifies unsatisfiable
cores of an instance and only considers clauses within those cores as potential
“removals,” limiting the search space dramatically.

The use of unsatisfiable cores in solving Max-SAT yields drastically different
performance than other current Max-SAT techniques, which are generally based
on branch-and-bound. In the 2008 Max-SAT Evaluation [2], core-guided Max-
SAT algorithms performed extremely well in the industrial Max-SAT category
(one solving 72 of 112 instances within the timeout, when other approaches
solved 0-3 and, in one case, 10 instances within the timeout), while performing
among the bottom of the pack on random and crafted instances.

The industrial Max-SAT instances in the Max-SAT Evaluation are in fact
produced by the circuit debugging system in [12], in which the desired result
is actually MCSes of the CNF instances. In that work, an algorithm simply
called MCSes [7] is used as a preprocessing step, identifying approximations
of MCSes which are then used to boost a complete SAT-based search. In this
work, motivated by the success of core-guided Max-SAT on these instances,
we generalize the core-guided Max-SAT approach to apply it to the problem of
finding MCSes of CNF instances. Our new algorithm, MCSes-U, is described and
its correctness proven in Section 4, and we present experimental results showing
its improvement over MCSes in Section 5.

2 Preliminaries

Boolean satisfiability (SAT) is a problem domain involving Boolean formulas
in conjunctive normal form (CNF). Formally, a CNF formula ϕ is defined as
follows:

ϕ =
∧

i=1...n

Ci Ci =
∨

j=1...ki

aij

where each literal aij is either a positive or negative instance of some Boolean
variable (e.g., x3 or ¬x3, where the domain of x3 is {0, 1}), the value ki is the
number of literals in the clause Ci (a disjunction of literals), and n is the number
of clauses in the formula. In more general terms, each clause is a constraint of
the constraint system ϕ. We will often treat CNF formulas as sets of clauses
(clause sets), so equivalently: ϕ =

⋃
i=1...n Ci.

A CNF instance is said to be satisfiable if there exists some assignment to its
variables that makes the formula evaluate to 1 or TRUE; otherwise, it is unsat-
isfiable. We will use the following unsatisfiable CNF instance ϕ as an example.

ϕ = (a)(¬a)(¬a ∨ b)(¬b)

Maximum Satisfiability (Max-SAT) is the problem of, given an unsatisfiable
CNF formula, identifying a satisfiable subset of its clauses with maximum cardi-
nality. Alternatively, we can say it is the problem of finding an assignment of the

Generalizing Core-Guided Max-SAT 483

formula’s variables that satisfies a maximum cardinality subset of the clauses.
The example formula ϕ has a single Max-SAT solution: {(¬a), (¬a ∨ b), (¬b)}
are satisfied by a = F, b = F.

Minimal Correction Sets (MCSes) can be understood as generalizations of Max-
SAT solutions. Given any Max-SAT solution in the form of a satisfiable subset
of clauses, we can look at those clauses left unsatisfied as a correction set (CS),
because removing them from the formula corrects it, making it satisfiable. Due
to the maximum cardinality of a Max-SAT solution, its corresponding correction
set has minimum cardinality; no smaller correction sets exist. We generalize this
to the concept of minimal correction sets: An MCS is a correction set such
that all of its proper subsets are not correction sets. MCSes are minimal, or
irreducible, but not necessarily minimum. Every Max-SAT solution indicates
an MCS, but there can be more MCSes than those that are complements of a
Max-SAT solution. The clause (a), not satisfied in ϕ’s Max-SAT solution, is an
MCS, as are {(¬a), (¬a ∨ b)} and {(¬a), (¬b)}.

Unsatisfiable Cores / MUSes: Given an unsatisfiable CNF formula, an unsat-
isfiable core of the formula is any subset of its clauses that is unsatisfiable. A
Minimal Unsatisfiable Subset (MUS) is then an unsatisfiable core that is mini-
mal in the same sense that an MCS is minimal: every proper subset of an MUS
is satisfiable. MUSes are thus minimal/irreducible, but, again, not necessarily
minimum. There are two MUSes in ϕ: {(a), (¬a)} and {(a), (¬a ∨ b), (¬b)}.

Resolution Proofs: In the process of solving unsatisfiable instances, some SAT
solvers produce resolution proofs (or resolution refutations), directed acyclic
graphs containing the resolution steps used to prove unsatisfiability. As a solver
progresses, it learns new clauses arising from applying resolution to combinations
of existing clauses (e.g., (x2 ∨ x5) ∧ (¬x5 ∨ x7) → (x2 ∨ x7)), and the “parent”
clauses of each new clause can be stored in a graph structure. With this struc-
ture, the provenance of any learned clause can be traced back to a subset of the
original clauses from which the learned clause can be derived. When a solver
“learns” the empty clause, the instance must be unsatisfiable, and tracing the
empty clause’s parents back to the original clauses identifies an unsatisfiable
core of the instance [17] (the identified core must be unsatisfiable because those
clauses can be used to derive the empty clause).

AtMost Constraints are a type of counting or cardinality constraint. Given a
set of n literals {l1, l2, . . . , ln} and a positive integer k, s.t. k < n, an AtMost
constraint is defined as

AtMost({l1, l2, . . . , ln}, k) ≡
n∑

i=1

val(li) ≤ k

where val(li) is 1 if li is assigned TRUE and 0 otherwise. This constraint places
an upper bound on the number of literals in the set assigned TRUE.

484 M.H. Liffiton and K.A. Sakallah

Clause-Selector Variables can be used to augment a CNF formula in such a
way that standard SAT solvers can manipulate and, in effect, reason about the
formula’s clauses without any modification to the solver itself.

Every clause Ci in a CNF formula ϕ is augmented with a negated clause-
selector variable yi to give C′

i = (¬yi ∨ Ci) in a new formula ϕ′. Notice that
each C′

i is an implication, C′
i = (yi → Ci). Assigning a particular yi the value

TRUE implies the original clause, essentially enabling it. Conversely, assigning
yi FALSE has the effect of disabling or removing Ci from the set of constraints,
as the augmented clause C′

i is satisfied by the assignment to yi. This change
gives a SAT solver the ability to enable and disable constraints as part of its
normal search, checking the satisfiability of different subsets of constraints within
a single backtracking search tree.

3 Use of Cores in Max-SAT

As described in Section 1, unsatisfiable cores can be used to guide Max-SAT
algorithms by limiting the number of clauses they must consider for “removal”
or leaving unsatisfied. Researchers have developed a number of algorithms ex-
ploiting this, all using the inexpensive resolution proof method for generating
unsatisfiable cores.

Fu & Malik first introduced the idea of using unsatisfiable cores to assist
in solving Max-SAT in [5]. They described an algorithm based on “diagnosis”
that repeatedly finds a core by the resolution proof method, adds clause-selector
variables to the clauses in that core, places a one-hot constraint on those clause-
selector variables, and searches for a satisfying solution to the modified prob-
lem. Essentially, the algorithm identifies a core in each iteration that must be
neutralized (by the removal of a clause) in any Max-SAT solution.

Marques-Silva, Planes, and Manquinho [9,10,11] improved upon Fu & Malik’s
algorithm, which they dubbed MSU1, with several refinements and optimiza-
tions. In [10] and [11], Marques-Silva and Planes introduce algorithms MSU1.1,
MSU3, and MSU41. The MSU1.1 algorithm is a variant of MSU1 with three im-
portant modifications. First, it uses a better encoding for the one-hot constraints,
namely a BDD representation of a counter converted to CNF with several
optimizations. Second, MSU1.1 exploits the authors’ observation that the one-
hot constraints can actually be AtMost(1) constraints, because the identified
cores are unsatisfiable if no clauses are removed. Third, an AtMost(1) constraint
is placed on the clause-selector variables for each clause that has more than one.

The authors also describe MSU3, which avoids some of the size explosion of
the additional variables and clauses created by MSU1 by using a single clause-
selector variable per clause and a single AtMost constraint over all of them. In
[11], the authors further introduce MSU4, essentially a modification of MSU3
that exploits relationships between unsatisfiable cores and bounds on Max-SAT
solutions. Finally, Marques-Silva and Manquinho introduce MSU1.2 and MSU2
1 We have adopted the algorithm naming from the most recent paper [9], which is

slightly changed from earlier papers.

Generalizing Core-Guided Max-SAT 485

in [9]. MSU1.2 improves on MSU1.1 using a bitwise encoding, with a logarithmic
number of auxiliary variables, for each cardinality constraint, and MSU2 takes
that a step further, employing a bitwise one-hot encoding on the clause-selector
variables themselves.

Table 1. Comparison of all MSU* algorithms

Algorithm Cardinality Constraints Cardinality Encoding
MSU1 Per-core One-Hot Adder tree
MSU1.1 Per-core AtMost BDD to CNF
MSU1.2 Per-core AtMost Bitwise on variables
MSU2 Per-core One-Hot Bitwise on clauses
MSU3 Single AtMost BDD to CNF
MSU4-v1 Single AtMost BDD to CNF
MSU4-v2 Single AtMost Sorting networks

A parallel development of the concept of using unsatisfiable cores for Max-
SAT was done in the domain of logic circuit debugging/diagnosis by Sülflow, et
al. [15]. Without explicitly noting the connection to Max-SAT, they developed
a new SAT-based debugging framework that exploits unsatisfiable core extrac-
tion. Though the terminology is different and the theories and algorithms are
often described in terms of gates instead of constraints or clauses, SAT-based
debugging is essentially the process of solving Max-SAT for circuit-derived CNF
instances [12].

The primary difference between the work of Sülflow, et al. and the MSU*
algorithms is that the debugging framework produces all Max-SAT results
(equivalent to finding all minimum-cardinality MCSes) by an iterative solving
procedure. Their use of cores is closest to MSU3, with a single cardinality con-
straint covering all identified cores; however, non-overlapping cores are given
separate cardinality constraints, as this limits the size of the search space with
little overhead. They do mention alternative approaches for producing cardi-
nality constraints, including one which creates a separate constraint for every
intersection of any subset of the cores, but they dismiss these as not outperform-
ing their chosen approach in most of their experiments.

4 Using Cores to Find MCSes

Our algorithm is a synthesis of 1) the MCSes algorithm for finding all MCSes of
an infeasible constraint system from [7] and 2) the application of unsatisfiable
cores to the Max-SAT problem as first shown by Fu & Malik [5] and refined by
Marques-Silva, et al. [9,10,11]. Because finding MCSes is a generalization of the
Max-SAT problem (cf. Section 2), this combination is a natural one. In fact, the
MCSes algorithm is very similar to the MSU3 algorithm described in [10].

486 M.H. Liffiton and K.A. Sakallah

MCSes-U(ϕ)

1. k ← 1 � iteration counter

2. MCSes ← ∅ � growing set of results

3. Corek ← Core(ϕ) � any unsatisfiable core (preferably small) of ϕ

4. while (InstrumentAll(ϕ) + Blocking(MCSes)) is satisfiable

� clauses contained in Corek are instrumented with clause-selector variables

5. ϕk ← Instrument(ϕ, Corek) + AtMost(Corek, k)

� AllSAT finds all models of ϕk corresponding to MCSes of size k

6. MCSes ← MCSes + AllSAT(ϕk)

� the Core function projects instrumented clauses onto clauses of ϕ

7. Corek+1 ← Corek + Core(ϕk + Blocking(MCSes))

8. k ← k + 1

9. return MCSes

Fig. 1. The MCSes-U algorithm finds all MCSes of an unsatisfiable formula ϕ using
unsatisfiable cores

Briefly, the overall approach of both MCSes and MSU3 is to instrument clauses
in an unsatisfiable clause set with clause-selector variables, then to use cardi-
nality constraints on those clause-selector variables to search for small subsets
of clauses whose removal leaves the remaining set satisfiable. For Max-SAT, the
goal is to find such a set of the smallest cardinality; finding MCSes requires find-
ing all such sets that are minimal or irreducible. Therefore, it is reasonable to
assume that an approach used to solve Max-SAT, especially one that has been
paired with a basic algorithm so similar to that used for finding MCSes, could
be applied to an algorithm for finding MCSes.

4.1 Algorithm

Figure 1 contains pseudocode for our algorithm, dubbed MCSes-U (the -U signi-
fies its use of unsatisfiable cores). Two persistent variables, k and MCSes, keep
track of the current iteration and the set of results, respectively. In any particu-
lar iteration of the do/while loop, Corek contains the set of clauses that will be
considered for removal, and thus potentially included in an MCS, in that itera-
tion. The input formula is instrumented with clause-selector variables on those
clauses contained within Corek, and an AtMost constraint is added on those
selector variables with the current bound k. The AllSAT function in MCSes-U
behaves exactly like the incremental solving employed in MCSes: find a solution,
record the MCS, block that MCS from future solutions with a blocking clause
formed from its clause-selector variables, and continue until no solutions remain.

Generalizing Core-Guided Max-SAT 487

The core extraction in line 7 produces an unsatisfiable core of the combination
of the instrumented formula ϕk with the blocking clauses produced from the set
of MCSes found thus far (ϕk itself is satisfiable). This core is mapped back to
clauses in the original clause set ϕ and added to Corek to make Corek+1 for the
following iteration. The process repeats as long as further MCSes remain, which
can be determined by checking whether there is any way to make ϕ satisfiable
by removing clauses without removing any MCS identified thus far.

For comparison purposes, consider that the previous algorithm MCSes is
equivalent to MCSes-U under the condition that Core always returns the com-
plete set of clauses in ϕ. In this situation, the entire formula will be instrumented
with clause-selector variables in each iteration, and the AtMost bound will al-
ways apply to all of the clause-selector variables as well. The primary difference
between MCSes and MCSes-U is that here we are using unsatisfiable cores to
identify subsets of the clause set in which we know the MCSes must be found,
or, conversely, we determine subsets that we know must not contain any MCSes.
In the following subsection, we prove that this use of unsatisfiable cores is correct.

4.2 Completeness/Correctness Proof

Fu and Malik proved that their use of unsatisfiable cores in Max-SAT is correct
in [5]; however, that proof does not carry over to our algorithm other than to
prove that the first result returned will be a Max-SAT solution. We must further
prove both 1) that every result returned by MCSes-U is an MCS (correctness)
and 2) that all MCSes are found by the algorithm (completeness). These two
points are interrelated:

Theorem 1. Given an unsatisfiable clause set ϕ and a positive integer k:
If all MCSes of ϕ of size less than k are found, then every result of size k

returned by MCSes-U(ϕ) is an MCS of ϕ.

This is stated without a formal proof, but it follows from the correctness of
the underlying algorithm for finding MCSes, described fully in [7], that we have
adapted in this work. Briefly, the algorithm finds MCSes in increasing order of
size; as every MCS of a size less than k is found, it is blocked from future solu-
tions, and any correction set of size k that is found then must be minimal. With
this theorem, we see that the algorithm’s correctness hinges on its completeness.
We shall prove that MCSes-U is complete in the following.

We wish to prove that the algorithm produces all MCSes of an instance.
We will presuppose the completeness of the base algorithm as described in [7]
and focus on the effect of our use of unsatisfiable cores. The base algorithm is
equivalent to that presented in Figure 1 if we take Corek to be the complete
formula ϕ in every iteration of the while loop (i.e., with no limitation on the
clauses considered for finding MCSes). Therefore, we will prove here that the
MCSes-U algorithm is complete in that it does not miss any MCSes due to
restricting the search for MCSes to the clauses in Corek.

First, we must define a new term, “k-correction,” and present a useful lemma
linking k-corrections to MCSes.

488 M.H. Liffiton and K.A. Sakallah

Definition 1. A k-correction of a set of clauses C is a set of k or fewer clauses
whose removal makes C satisfiable.

Lemma 1. Given an unsatisfiable subset C of a clause set ϕ and an integer k:
If every (k − 1)-correction of C contains some MCS of ϕ, then C contains all
MCSes of ϕ with size k.

(Proofs of this and the following lemmas are included in Appendix A.)
With this lemma, we can prove the completeness of our algorithm by induc-

tion. We wish to prove that the MCSes-U algorithm finds all MCSes of size k in
the kth iteration of its loop. We will first prove by induction that every (k− 1)-
correction of Corek contains an MCS of ϕ. Then, using Lemma 1, we can directly
show that Corek contains all MCSes of size k, for all k. First, we will prove the
base case of the inductive portion of our proof, for k = 1.

Lemma 2. In MCSes-U, every 0-correction of Core1 contains an MCS of ϕ.

With Lemmas 1 and 2, we see that the algorithm is complete for k = 1. Core1
contains all single-clause MCSes of ϕ, and the algorithm produces all MCSes of
size 1. This can be seen from a different perspective by noting that an MCS of
size 1 is a single clause, c, contained in every MUS of a formula, and thus Corek,
which is some unsatisfiable core of ϕ, must contain every MCS of size 1.

With our base case proven in Lemma 2, we now prove the inductive step.

Lemma 3. Given some positive integer k:
In MCSes-U, if every (k − 1)-correction of Corek contains an MCS of ϕ, then
every k-correction of Corek+1 contains an MCS of ϕ.

With these lemmas, we can prove the completeness of MCSes-U in Theorem 2,
which, with Theorem 1, proves that it is correct as well.

Theorem 2. For any positive integer k: the MCSes-U algorithm finds all MCSes
of size k in the kth iteration of its loop.

Proof. By Lemmas 2 and 3, we have that every (k − 1)-correction of Corek

contains an MCS of ϕ, for all k. With Lemma 1, then, Corek contains every
MCS of ϕ of size k for all k. �

5 Experimental Results

Our primary experimental goal was to determine the value of using unsatisfi-
able cores to guide the search for MCSes in practice; specifically, we wished to
compare the performance of MCSes and MCSes-U on industrial instances. In the
course of running these experiments, we noticed an interesting situation in which
using cores was in fact detrimental to the performance of Max-SAT algorithms
but the MCSes-U algorithm still benefited, and we explore this case here as well.

Generalizing Core-Guided Max-SAT 489

Experimental Setup: All experiments were run in Linux (Fedora 9) on a 3.0GHz
Intel Core 2 Duo E6850 with 3GB of physical RAM. The MCSes and MCSes-U
algorithms were implemented in C++ using MiniSAT version 1.12b [4], which al-
lows “native” AtMost constraints (instead of CNF encodings thereof). We added
unsatisfiable core extraction to this version of MiniSAT using the resolution-
graph method [17], storing the parents of each learned clause in memory. Binaries
for MSU1.1 and MSU1.2 were supplied by João Marques-Silva.

Benchmark Families: We selected four sets of unsatisfiable industrial CNF bench-
marks for these experiments:

– Diagnosis: These 108 instances, from the Max-SAT 2008 Evaluation [2], are
generated in a process that diagnoses potential error locations in a physical
circuit that is producing incorrect output(s) [12]. In this application, the
MCSes of each instance directly identify the candidate error locations. (The
set used in the Max-SAT Evaluation has 112 instances, and we removed 4
that are satisfiable.)

– Reveal: Reveal is a system for logic circuit verification that operates on
Verilog code with a counterexample-guided abstraction refinement flow [1].
These 62 instances were generated in the abstraction refinement phase of
Reveal when run on three different designs.

– FVP-UNSAT.2.0: 21 instances, used in previous SAT competitions, ob-
tained from [16], and “generated in the formal verification of correct super-
scalar microprocessors.”

– DC: This is a set of 84 instances from an automotive product configuration
domain [13,14] that have previously been shown to have a wide range of
characteristics with respect to each instance’s MCSes and MUSes. They are
of interest mainly because their diversity of results (from small sets found in
less than a second to intractably large sets) exercises algorithms broadly.

The value of using cores is evident when we look at the results for finding
multiple MCSes across all of these instances. Because the complete set of MCSes
can be intractably large, we look at the velocity of finding MCSes: the number
of MCSes found per second until all have been found or until a set timeout (600
seconds, here) has been reached. Many applications do not require the complete
set of MCSes: the diagnosis task in [12] finds MCSes up to a certain cardinality,
and the CAMUS algorithm used in Reveal can use a subset of the MCSes to
find a subset of the MUSes of an instance [7]. Figure 2 compares the velocity
of MCSes (w/o cores) to that of MCSes-U (w/ cores) on these instances. Points
above the diagonal are instances where MCSes-U finds MCSes more quickly.
MCSes-U outperforms MCSes in nearly all cases. With the Diagnosis instances
in particular, we see several benchmarks for which MCSes finds no MCSes within
the timeout, while MCSes-U outputs up to several hundred per second.

An interesting situation is displayed in Figure 3, which compares the runtime
of the MCSes algorithm solving Max-SAT against three Max-SAT algorithms
that use unsatisfiable cores: MCSes-U in the same Max-SAT mode, MSU1.1,

490 M.H. Liffiton and K.A. Sakallah

10000

1000
se

c)

100

ity
 (#

M
CS

es
/s

1

10

Co
re

s)
: V

el
oc

i

Diagnosis

0.1

M
CS

es
-U

 (w
/

C

Reveal

FVP-UNSAT.2.0

0.001

0.01

M

DC

0.001 0.01 0.1 1 10 100 1000 10000

MCSes (w/o Cores): Velocity (#MCSes/sec)

Fig. 2. Comparing the performance of MCSes and MCSes-U on industrial benchmarks.
(600 second timeout, 0 velocity mapped to 0.001).

and MSU1.2 (these were the two MSU* algorithms with implementations avail-
able to us). For MCSes and MCSes-U to solve Max-SAT, they can both re-
turn the first MCS found and stop. Because the algorithms generate MCSes in
increasing order of size, the first result is guaranteed to be an optimal Max-
SAT solution; the complement of the MCS will be a maximum cardinality sat-
isfiable subset of the constraints. Note that the MSU* binaries had a differ-
ent implementation, using a different solver and CNF-encoded cardinality con-
straints, than MCSes[-U], so the results are not directly comparing the underlying
algorithms.

These results are for the FVP-UNSAT.2.0 benchmarks. For these instances, we
see that all of the algorithms that use cores take about two orders of magnitude
longer than the vanilla MCSes algorithm. The number of Max-SAT solutions in
each benchmark is large. For example, for each of the three 2pipe* instances
in this set, approximately one quarter of the clauses are single-clause MCSes;
removing any one of them makes the instance satisfiable. Therefore, solving Max-
SAT for these instances is simple, as there are so many solutions, and they will
be found in the first iteration of MCSes. Interestingly, the time taken to run a
solver on each benchmark (in order to extract a core) far outweighs that taken
to identify a single clause whose removal yields satisfiability.

We see that the time used to find a core can outweigh that needed to find a
single MCS or Max-SAT solution in instances like the FVP-UNSAT.2.0 set with
very many, single-clause MCSes. However, when finding MCSes, the overhead

Generalizing Core-Guided Max-SAT 491

1000

100

600 sec.
timeout

10(s
ec

)

1ax
-S

AT
 T

im
e

(

MCS U

0.1

M
a MCSes-U

MSU1.1

S 2

0.01

MSU1.2

0.01 0.1 1 10 100 1000

MCSes (w/o Cores): Max-SAT Time (sec)

Fig. 3. Comparing the performance of MCSes solving Max-SAT against MCSes-U
MSU1.1, and MSU1.2 on industrial benchmarks. (FVP-UNSAT.2.0 benchmarks.)

of finding cores is amortized over the large number of results and is outweighed
by the increase in velocity gained from limiting the search space, even in those
instances that appear to be worst-case scenarios for exploiting cores. Therefore,
core extraction appears to be a safe addition to MCS algorithms with potentially
large performance gains in industrial instances.

6 Conclusion

We have presented a generalization of the core-guided Max-SAT approach, ap-
plying it to the more general problem of identifying minimal correction sets
(MCSes). By using unsatisfiable cores to guide the search for MCSes in a similar
manner to their use in Max-SAT [5,9,10,11], we have realized significant perfor-
mance gains in MCSes-U, an enhancement of the algorithm for finding MCSes
in [7]. Experimental results show the value of this approach on a variety of in-
dustrial instances; it is particularly effective on instances generated by a circuit
diagnosis application in which MCSes have a direct application.

Looking forward, we see that there are further ideas from the Max-SAT do-
main that can be applied to MCS algorithms. Notably, the use of one AtMost
constraint per identified core, as in the MSU1.* algorithms, may be applicable
to MCSes-U. For Max-SAT, the MSU1.* approach has shown better performance
than the approach used in MSU3 and MSU4 of creating a single monolithic At-
Most constraint over all extracted cores, and it may be beneficial for MCSes-U as

492 M.H. Liffiton and K.A. Sakallah

well. As with the proofs in this paper, determining and proving the correct appli-
cation of the concept to the generalized problem of finding MCSes may require
non-trivial work. We are also interested in investigating the combination and
interplay of the core-guidance technique with autarky pruning, another method
for reducing the search space of the MCS search [8].

Further, the results here motivate applying MCSes-U in circuit debugging /
diagnosis, as MCSes was applied in [12]. While MCSes was used as an approxi-
mating preprocessor for an exact search in that work, the improved performance
of MCSes-U may make it suitable for solving problems directly. A comparison
to the algorithm in [15] could be instructive as well; though it is algorithmi-
cally very similar to MCSes-U, any substantial performance differences would
indicate important implementation details that would aid in engineering future
implementations. Further, [15] is restricted to only find minimum-cardinality so-
lutions, and the more complete view of examining the set of all MCSes in such
instances, which MCSes-U enables, could be beneficial.

Acknowledgments

We thank João Marques-Silva for providing binaries for his MSU* algorithms.
This material is based upon work supported by the National Science Founda-
tion under ITR Grant No. 0205288. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the view of the National Science Foundation (NSF). This
work was funded in part by the DARPA/MARCO Gigascale Systems Research
Center.

References

1. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Refinement strategies for verification
methods based on datapath abstraction. In: Proceedings of the 2006 conference on
Asia South Pacific design automation (ASP-DAC 2006), pp. 19–24 (2006)

2. Argelich, J., Li, C.M., Manyà, F., Planes, J.: Max-SAT evaluation (2008),
http://www.maxsat.udl.es/08/

3. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. Journal of Experimental and Theoretical Artificial Intelligence 15,
25–46 (2003)

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

5. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

6. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer,
Heidelberg (2005)

7. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)

http://www.maxsat.udl.es/08/

Generalizing Core-Guided Max-SAT 493

8. Liffiton, M.H., Sakallah, K.A.: Searching for autarkies to trim unsatisfiable clause
sets. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 182–
195. Springer, Heidelberg (2008)

9. Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based
maximum satisfiability algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT
2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)

10. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satis-
fiability. Computing Research Repository, abs/0712.1097 (December 2007)

11. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsat-
isfiable cores. In: Proceedings of the Conference on Design, Automation, and Test
in Europe (DATE 2008) (March 2008)

12. Safarpour, S., Liffiton, M., Mangassarian, H., Veneris, A., Sakallah, K.: Improved
design debugging using maximum satisfiability. In: Proceedings of the Interna-
tional Conference on Formal Methods in Computer-Aided Design (FMCAD 2007),
November 2007, pp. 13–19 (2007)

13. Sinz, C.: SAT benchmarks from automotive product configuration,
http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/

14. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive
product configuration data. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 17(1), 75–97 (2003)

15. Sülflow, A., Fey, G., Bloem, R., Drechsler, R.: Using unsatisfiable cores to debug
multiple design errors. In: Proceedings of the 18th ACM Great Lakes symposium
on VLSI, pp. 77–82 (2008)

16. Velev, M.: Miroslav Velev’s SAT Benchmarks,
http://www.miroslav-velev.com/sat_benchmarks.html

17. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In: The 6th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2003) (2003)

A Proofs
Lemma 1. Given an unsatisfiable subset C of a clause set ϕ and an integer k:

If every (k− 1)-correction of C contains some MCS of ϕ, then C contains all
MCSes of ϕ with size k.

Proof. By contradiction: Assume that there exists some MCS M of ϕ with size k
that is not contained entirely within C. We will denote the subset of M contained
within C by M ′ = M ∩ C. Thus, our assumption requires |M ′| ≤ k − 1.

Because M is an MCS of ϕ and C is a subset of ϕ, M ′ must be a correction
set of C. Formally, if ϕ −M is satisfiable, then C ∩ (ϕ −M) must be as well.
This can be transformed:

C ∩ (ϕ−M) = (ϕ ∩ C)− (M ∩ C) = C −M ′

And so M ′ is a correction set of C, because C −M ′ is satisfiable.
Furthermore, M ′ is a (k − 1)-correction of C, because |M ′| ≤ k − 1. By the

antecedent of this lemma, we know that M ′ must contain some MCS of ϕ. Because
M is a proper superset of M ′, which contains an MCS, M can not be a minimal
correction set of ϕ. This is a contradiction, and therefore we have proven that any
MCS M of ϕ with size k must be contained entirely within C. �

http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/
http://www.miroslav-velev.com/sat_benchmarks.html

494 M.H. Liffiton and K.A. Sakallah

Lemma 2. In MCSes-U, every 0-correction of Core1 contains an MCS of ϕ.

Proof. Unsatisfiable clause sets have no 0-corrections, as removing 0 clauses can
not make them satisfiable. Core1 is an unsatisfiable clause set; therefore, Core1
has no 0-corrections, and the lemma is trivially true. �
Lemma 3. Given some positive integer k:
In MCSes-U, if every (k − 1)-correction of Corek contains an MCS of ϕ, then
every k-correction of Corek+1 contains an MCS of ϕ.

Proof. Proof by cases, depending on the k-corrections of Corek:

Case 1: Corek has no k-corrections.
The algorithm includes Corek in Corek+1. Therefore, in this case, Corek+1
will have no k-corrections, as it is a superset of Corek. Thus, trivially, every
k-correction of Corek+1 contains an MCS of ϕ.

Case 2: Every k-correction of Corek contains an MCS of ϕ.
Again, due to the fact that Corek ⊆ Corek+1, every k-correction of Corek+1
is also a k-correction of Corek, and thus every k-correction of Corek+1 must
contain some MCS of ϕ.

Case 3: At least one k-correction, δ, of Corek contains no MCSes of ϕ.
Because δ does not contain any MCSes of ϕ, the blocking clauses added to
ϕk based on the MCSes of ϕ will all allow the relaxation of the clauses in δ.
We will say that δ is thus an unblocked k-correction. At line 6 of MCSes-U,
there exists a complete assignment for ϕk that relaxes all MUSes contained
within Corek without violating the AtMost bound on relaxed clauses; such
an assignment can relax the clauses in any unblocked k-correction.

However, ϕk is unsatisfiable at this point, after the addition of all block-
ing clauses for the MCSes found thus far (up to size k). Therefore, for
any complete assignment that satisfies the blocking clauses and relaxes all
MUSes contained in Corek, there must be some MUS of ϕ that is not relaxed
by that assignment. Any unsatisfiable core of ϕk will necessarily include one
MUS of ϕ that is not relaxed for every such assignment. That is, any un-
blocked k-correction δ of Corek must be “counteracted” by including in
Corek+1 an MUS of ϕ untouched by δ.

Any k-correction of Corek+1 must contain a k-correction of Corek, be-
cause Corek ⊆ Corek+1. Any unblocked k-correction of Corek necessar-
ily leaves at least one MUS in Corek+1 untouched (by the construction of
Corek+1 described above). Thus, unblocked k-corrections of Corek cannot
be k-corrections of Corek+1. Therefore, the only k-corrections of Corek+1
must be “unblocked,” containing an MCS of ϕ.

These cases cover all possibilities, and, in every case, every k-correction of
Corek+1 contains an MCS of ϕ. �

Algorithms for Weighted Boolean Optimization

Vasco Manquinho1, Joao Marques-Silva2, and Jordi Planes3

1 IST/UTL - INESC-ID
vasco.manquinho@inesc-id.pt

2 University College Dublin
jpms@ucd.ie

3 Universitat de Lleida
jplanes@diei.udl.cat

Abstract. The Pseudo-Boolean Optimization (PBO) and Maximum Satisfiabil-
ity (MaxSAT) problems are natural optimization extensions of Boolean Satisfia-
bility (SAT). In the recent past, different algorithms have been proposed for PBO
and for MaxSAT, despite the existence of straightforward mappings from PBO to
MaxSAT, and vice-versa. This papers proposes Weighted Boolean Optimization
(WBO), a new unified framework that aggregates and extends PBO and MaxSAT.
In addition, the paper proposes a new unsatisfiability-based algorithm for WBO,
based on recent unsatisfiability-based algorithms for MaxSAT. Besides standard
MaxSAT, the new algorithm can also be used to solve weighted MaxSAT and
PBO, handling pseudo-Boolean constraints either natively or by translation to
clausal form. Experimental results illustrate that unsatisfiability-based algorithms
for MaxSAT can be orders of magnitude more efficient than existing dedicated
algorithms. Finally, the paper illustrates how other algorithms for either PBO or
MaxSAT can be extended to WBO.

1 Introduction

In the area of Boolean-based decision and optimization procedures, natural extensions
of Boolean Satisfiability (SAT) include Maximum Satisfiability (MaxSAT) [10] and
Pseudo-Boolean Optimization (PBO) [6]. Algorithms for MaxSAT and PBO have been
the subject of significant improvements over the last few years. This in turn, motivated
the use of both PBO and, more recently, of MaxSAT in a number of practical appli-
cations. Interestingly, albeit there are simple translations from any MaxSAT variant to
PBO and vice-versa (by encoding to CNF) [1,18], algorithms for MaxSAT and PBO
have evolved separately, and often use fairly different algorithmic organizations. Nev-
ertheless, there exists work that acknowledges this relationship and algorithms that can
solve instances of MaxSAT and of PBO have already been proposed [1,18].

Recent work has provided more alternatives for solving either MaxSAT or PBO, by
using SAT solvers and the identification of unsatisfiable sub-formulas [16,27]. However,
the proposed algorithms were restricted to the plain and partial variants of MaxSAT and
to a restricted form of Binate Covering for PBO. This paper extends this recent work
in a number of directions. First, the paper proposes a simple algorithm for (Partial)
Weighted MaxSAT, using unsatisfiable sub-formula identification. Second, the paper
generalizes MaxSAT and PBO by introducing Weighted Boolean Optimization (WBO),

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 495–508, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

496 V. Manquinho, J. Marques-Silva, and J. Planes

a new modeling framework for solving linear optimization problems over Boolean
domains. Third, the paper shows how to extend the unsatisfiability-based algorithm
for MaxSAT for solving WBO problems. Finally, the paper suggests how other algo-
rithms can be used for solving WBO. Besides the proposed contributions, the paper also
provides empirical evidence that unsatisfiability-based MaxSAT and WBO solvers can
outperform state-of-the-art solvers on problem instances from practical problems.

The paper is organized as follows. Section 2 provides a brief overview of the topics
addressed in the paper, namely MaxSAT, PBO, translations from MaxSAT to PBO and
vice-versa, and unsatisfiability-based algorithms for MaxSAT. Section 3 details an algo-
rithm for (Partial) Weighted MaxSAT based on unsatisfiable sub-formula identification.
Next, Section 4 introduces Weighted Boolean Optimization (WBO), and shows how to
extend the algorithm of Section 3 to WBO. Section 5 analyzes the experimental results,
obtained on representative classes of problem instances. Section 6 overviews related
work, and Section 7 concludes the paper.

2 Preliminaries

This section briefly introduces the Maximum Satisfiability (MaxSAT) problem and
its variants, as well as the Pseudo-Boolean Optimization (PBO) problem. The main
approaches used by state-of-the-art solvers are summarized. Moreover, translation pro-
cedures from MaxSAT to PBO and vice-versa are overviewed. Finally, unsatisfiability-
based MaxSAT algorithms are surveyed, all of which the paper uses in later sections.

2.1 Maximum Satisfiability

Given a CNF formula ϕ, the Maximum Satisfiability (MaxSAT) problem can be defined
as finding an assignment that maximizes the number of satisfied clauses (which implies
that the assignment minimizes the number of unsatisfied clauses). Besides the classi-
cal MaxSAT problem, there are also three well-known variants of MaxSAT: weighted
MaxSAT, partial MaxSAT and weighted partial MaxSAT. All these formulations have
been used in a wide range of practical applications, namely scheduling, FPGA rout-
ing [34], design automation [31], among others.

A partial CNF formula is described as the conjunction of two CNF formulas ϕh

and ϕs, where ϕh represents the hard clauses and ϕs represents the soft clauses. The
partial MaxSAT problem consists of finding an assignment to the problem variables
such that all hard clauses (ϕh) are satisfied, and the number of satisfied soft clauses
(ϕs) is maximixed.

A weighted CNF formula is a set of weighted clauses. A weighted clause is a pair
(ω, c), where ω is a classical clause and c is a positive natural number (N∗) correspond-
ing to the cost of unsatisfying ω. Given a weighted CNF formula, the weighted MaxSAT
problem consists of finding an assignment to the problem variables such that the total
weight of the satified clauses is maximized (which implies that the total weight of the
unsatisfied clauses is minimized).

A weighted partial CNF formula is the conjunction of a weighted CNF formula (soft
clauses) and a classical CNF formula (hard clauses). The weighted partial MaxSAT

Algorithms for Weighted Boolean Optimization 497

problem consists of finding an assignment to the variables such that all hard clauses
are satisfied and the total weight of satisfied soft clauses is maximized. Observe that,
for both partial MaxSAT and weighted partial MaxSAT, hard clauses can also be repre-
sented as weighted clauses: one can consider that the weight is greater than the sum of
the weights of the soft clauses.

Starting with the seminal work of Borchers and Furman [10], there has been an in-
creasing interest in developing efficient MaxSAT solvers. Following such work, two
branch and bound based solvers have been developed: (i) MaxSatz [20], the first solver
to implement a unit propagation based lower bound and a failed literal based lower
bound, both closely linked with a set of inference rules. Such a solver has been
extended into several solvers: IncMaxSatz [22] and MaxSatzicss [13], with efficient
incremental lower bound computation; and WMaxSatz [3], which deals with weighted
clauses; (ii) MiniMaxSAT [18], a solver created on top of MiniSAT with MaxSAT res-
olution [9] applied over an unsatisfiable sub-formula detected by the unit propagation
based lower bound. A different approach has been the conversion of MaxSAT into a dif-
ferent formalism. The most notable works using this approach have been: Toolbar [19],
a weighted CSP solver which converts MaxSAT instances into a weighted constraint
network; SAT4J MAXSAT [7], a solver which iteratively converts a MaxSAT instance
into a PBO instance; Clone [29] and sr(w) [30], solvers which convert a MaxSAT in-
stance into a deterministic decomposable negation normal form (d-DNNF) instance;
and MSUnCore [27], a solver which solves MaxSAT using the unsatisfiable cores
detected by iteratively encoding the problem instance into SAT. In the last Max-SAT
Evaluation [4], this latter approach has been shown to be effective for industrial
problems.

2.2 Pseudo-Boolean Optimization

The Pseudo-Boolean Optimization (PBO) problem is another extension of SAT where
constraints can be any linear inequality with integer coefficients (also known as pseudo-
Boolean constraints) defined over the set of problem variables. The objective in PBO is
to find an assignment to problem variables such that all problem constraints are satisfied
and the value of a linear objective function is optimized. Any pseudo-Boolean formula-
tion can be easily translated into a normal form [6] such that all integer coefficients are
non-negative.

minimize
∑

j∈N

cj · xj

subject to
∑

j∈N

aij lj ≥ bi,

lj ∈ {xj , x̄j}, xj ∈ {0, 1}, aij, bi, cj ∈ N+
0

(1)

Almost all algorithms to solve PBO rely on the generalization of the most effective tech-
niques already used in SAT solvers, namely Boolean Constraint Propagation, conflict-
based learning and conflict-directed backtracking [23,11]. Nevertheless, there are
several approaches to solve PBO formulations. The most common using SAT solvers
is to make a linear search on the value of the objective function.The idea is to general-
ize SAT algorithms to deal natively with pseudo-Boolean constraints [6] and whenever

498 V. Manquinho, J. Marques-Silva, and J. Planes

a solution for the problem constraints is found, a new constraint is added such that only
solutions with a lower value for the objective function can be accepted. The algorithm
finishes when the solver cannot improve on the last solution found, therefore proving
its optimality.

Another common approach is branch and bound, where lower bounding procedures
to estimate the value of the objective function are used. Several lower bounding pro-
cedures have been proposed, namely Maximum Independent Set of constraints [12],
Linear Programming Relaxation [21,24], among others [24]. There are also algorithms
that encode pseudo-Boolean constraints into propositional clauses [33,5,15] and solve
the problem by subsequently using a SAT solver. This approach has been proved to be
very effective for several problem sets, in particular when the clause encoding is not
much larger than the original pseudo-Boolean formulation.

2.3 Translations between MaxSAT and PBO

Although MaxSAT and PBO are different formalisms, it is possible to encode any
MaxSAT instance into a PBO instance and vice-versa [2,1,17]. This section focus solely
on weighted partial MaxSAT, since the encodings of the other variants easily follow.

The encoding of hard clauses from weighted partial MaxSAT to PBO is straightfor-
ward, since propositional clauses are a particular case of pseudo-Boolean constraints.
However, for each soft clause ωi = (l1 ∨ l2 ∨ . . . ∨ lk) with weight ci, the encoding to
PBO involves the use of an additional selection variable si, such that the correspond-
ing constraint in PBO to ωi would be si +

∑k
j=1 lj ≥ 1. This ensures that variable

si is assigned to true whenever ωi is not satisfied. The objective function of the corre-
sponding PBO instance is to minimize the weighted sum of the selection variables. For
each selection variable si in the objective function, its coefficient is the weight ci of the
corresponding soft clause ωi.

Example 1. Consider the following weighted partial MaxSAT instance.

ϕh = { (x1 ∨ x2 ∨ x̄3), (x̄2 ∨ x3), (x̄1 ∨ x3)}
ϕs = { (x̄3, 6), (x1 ∨ x2, 3), (x1 ∨ x3, 2)} (2)

According to the described encoding, the corresponding PBO instance would be:

minimize 6s1 + 3s2 + 2s3
subject to x1 + x2 + x̄3 ≥ 1

x̄2 + x3 ≥ 1
x̄1 + x3 ≥ 1
s1 + x̄3 ≥ 1

s2 + x1 + x2 ≥ 1
s3 + x1 + x3 ≥ 1

(3)

The encoding of PBO constraints into MaxSAT can be done using any of the pro-
posed encodings from pseudo-Boolean constraints to clauses [33,5,15]. Hence, for each
pseudo-Boolean constraint there will be a set of hard clauses encoding it in the respec-
tive MaxSAT instance. The number of clauses and additional variables, depends on the

Algorithms for Weighted Boolean Optimization 499

translation process used. The encoding is trivial when the original constraint in the PBO
instance is already a clause.

The objective function of PBO instances can be encoded into MaxSAT with the use
of weighted soft clauses. The idea is that for each variable xj with coefficient cj in
the objective function, a corresponding soft clause (x̄j) with weight cj is added to the
MaxSAT instance. Therefore, the solution of the MaxSAT formulation minimizes the
weighted sum of problem variables, as required in the PBO instance.

Example 2. For illustration purposes, consider the following PBO instance:

minimize 4x1 + 2x2 + x3
subject to 2x1 + 3x2 + 5x3 ≥ 5

x̄1 + x̄2 ≥ 1
x1 + x2 + x3 ≥ 2

(4)

Note that the first and third constraint must be encoded into CNF, but the second con-
straint is already a clause and so it can be represented directly as a hard clause. The
corresponding MaxSAT instance would be:

ϕh = { CNF(2x1 + 3x2 + 5x3 ≥ 5), (x̄1 ∨ x̄2), CNF(x1 + x2 + x3 ≥ 2)}
ϕs = { (x̄1, 4), (x̄2, 2), (x̄3, 1)} (5)

2.4 Unsatisfiability-Based MaxSAT

Recent work proposed the use of SAT solvers to solve (partial) MaxSAT, by iteratively
identifying and relaxing unsatisfiable sub-formulas [16,27,26,25]. In this paper we refer
to these algorithms generically as MSU (Maximum Satisfiability with Unsatisfiability)
algorithms.

The original algorithm of Fu&Malik [16] (referred to as MSU1.0) iteratively identi-
fies unsatisfiable sub-formulas. For each computed unsatisfiable sub-formula, all origi-
nal (soft) clauses are relaxed with fresh relaxation variables. Moreover, a new Equals1
(or AtMost1) constraint relates the relaxation variables of each iteration, i.e. exactly 1 of
these relaxation variables can be assigned value 1. The MSU1.0 algorithm can use more
than one relaxation variable for each clause. In the original algorithm [16], a quadratic
pairwise encoding of the Equals1 constraint was used. Finally, observe that the Equals1
constraint in line 13 of Algorithm 1 can be replaced by an AtMost1 constraint, without
affecting the correctness of the algorithm.

More recently, several new MSU algorithms were proposed [26,27]. The differences
of the MSU algorithms include the number of cardinality constraints used, the encoding
of cardinality constraints (of which the AtMost1 and Equals1 constraints are a special
case), the number of relaxation variables considered for each clause, and how the MSU
algorithm proceeds. Extensive experimentation (from [25] but also from the MaxSAT
Evaluation [4]) suggests that an optimized variation of Fu&Malik’s algorithm[25] is
currently the best performing MSU algorithm.

3 Unsatisfiability-Based Weighted MaxSAT

This section describes extensions of MSU1.0, described in Algorithm 1, for solving
(Partial) Weighted MaxSAT problems. One simple solution is to create cj replicas of

500 V. Manquinho, J. Marques-Silva, and J. Planes

Algorithm 1. The (Partial) MaxSAT algorithm of Fu&Malik [16]

MSU1(ϕ)

1 ϕW ← ϕ � Working formula, initially set to ϕ
2 while true
3 do (st, ϕC) ← SAT(ϕW)
4 � ϕC is an unsatisfiable sub-formula if ϕW is unsat
5 if st = UNSAT
6 then VR ← ∅
7 for each ω ∈ ϕC

8 do if not hard(ω)
9 then r is a new relaxation variable

10 ωR ← ω ∪ {r}
11 ϕW ← ϕW − {ω} ∪ {ωR}
12 VR ← VR ∪ {r}
13 ϕR ← CNF(

∑
r∈VR

r = 1) � Equals1 constraint
14 Set all clauses in ϕR as hard clauses
15 ϕW ← ϕW ∪ ϕR � Clauses in ϕR are declared hard
16 else � Solution to MaxSAT problem
17 ν ← | relaxation variables w/ value 1 |
18 return |ϕ| − ν

clause ωj , where cj is the weight of clause ωj . The resulting extended CNF formula can
then be solved by MSU1.0. The proof of Fu&Malik’s paper would also apply in this
case, and so correctness follows. The operation of this solution for (Partial) Weighted
MaxSAT justifies a few observations. Consider an unsatisfiable sub-formula ϕC where
the smallest weight is minc. Each clause would be replaced by a number of replicas.
Hence, this unsatisfiable sub-formula would be identified minc times. Clearly, this so-
lution is unlikely to scale for clauses with very large weights. Hence, a more effective
solution is needed, which is detailed below.

An alternative solution is to split a clause only when the clause is included in an un-
satisfiable sub-formula. The way the clause is split depends on its weight. An algorithm
implementing this solution is shown in Algorithm 2. For each unsatisfiable sub-formula,
the smallest weight minc of the clauses in the sub-formula is computed. This smallest
weight is then used to update a lower bound on minimum cost of unsatisfiable clauses.
Clauses in the unsatisfiable sub-formula are relaxed. However, if the weight of a clause
is larger than minc, then the clause is split: a new relaxed clause with weight minc is
created, and the weight of the original clause is decreased by minc.

Example 3. Consider the partial MaxSAT instance in (2). Assume that the unsatisfiable
sub-formula detected in line 4 of Algorithm 2 is:

ϕC = { (x̄2 ∨ x3), (x̄1 ∨ x3), (x̄3, 6), (x1 ∨ x2, 3) }. (6)

Algorithms for Weighted Boolean Optimization 501

Algorithm 2. Unsatisfiability-based (Partial) Weighted MaxSAT algorithm : WMSU1

WMSU1(ϕ)

1 ϕW ← ϕ � Working formula, initially set to ϕ
2 cost lb ← 0
3 while true
4 do (st, ϕC) ← SAT(ϕW)
5 � ϕC is an unsatisfiable sub-formula if ϕW is unsat
6 if st = UNSAT
7 then minc ← minω∈ϕC∧hard(ω) cost(ω)
8 cost lb ← cost lb + minc

9 VR ← ∅
10 for each ω ∈ ϕC

11 do if not hard(ω)
12 then r is a new relaxation variable
13 VR ← VR ∪ {r}
14 ωR ← ω ∪ {r}
15 cost(ωR) ← minc

16 if cost(ω) > minc

17 then ϕW ← ϕW ∪ {ωR}
18 cost(ω) ← cost(ω) − minc

19 else ϕW ← ϕW − {ω} ∪ {ωR}
20 ϕR ← CNF(

∑
r∈VR

r = 1) � Equals1 constraint
21 Set all clauses in ϕR as hard clauses
22 ϕW ← ϕW ∪ ϕR � Clauses in ϕR are declared hard
23 else � Solution to Weighted MaxSAT problem
24 return cost lb

Then, the smallest weight minc is 3, and the new formula becomes ϕW = ϕh ∪ ϕs,
where

ϕh = { (x1 ∨ x2 ∨ x̄3), (x̄2 ∨ x3), (x̄1 ∨ x3), CNF(s1 + s2 = 1) }
ϕs = { (x̄3, 3), (x1 ∨ x3, 2), (s1 ∨ x̄3, 3), (s2 ∨ x1 ∨ x2, 3) }. (7)

Observe that the new algorithm can be viewed as a direct optimization of the naive
algorithm outlined earlier. The main difference is that each iteration of the algorithm
collapses minc iterations of the naive algorithm. For clauses with large weights the
difference can be significant.

Theorem 1 (Correctness of WMSU1). The value returned by Algorithm 2 is the
minimum cost of non-satisfied clauses in ϕ.

Proof. The previous discussion and the proof in [16]. �

4 Weighted Boolean Optimization

This section introduces Weighted Boolean Optimization (WBO), a new framework for
modeling with hard and soft pseudo-Boolean constraints, that extends both MaxSAT

502 V. Manquinho, J. Marques-Silva, and J. Planes

and its variants and PBO. Furthermore, a new algorithm based on identifying unsatisfi-
able sub-formulas is also proposed for solving WBO.

A Weighted Boolean Optimization (WBO) formula ϕ is composed of two sets of
pseudo-Boolean constraints, ϕs and ϕh, where ϕs contains the soft constraints and ϕh

contains the hard constraints. For each soft constraint ωi ∈ ϕs there is an associated
integer weight ci > 0. The WBO problem consists of finding an assignment to the
problem variables such that all hard constraints are satisfied and the total weight of the
unsatisfied soft constraints is minimized (i.e. the total weight of satisfied soft constraints
is maximized).

It should be noted that WBO represents a generalization of weighted partial MaxSAT
by introducing the use of pseudo-Boolean constraints instead of just using proposi-
tional clauses. Hence, more compact formulations can be obtained with WBO than with
MaxSAT. Moreover, PBO formulations can also be linearly encoded into WBO. Con-
straints in PBO can be directly encoded as hard constraints in WBO and the objective
function can also be encoded as described in section 2.3. Therefore, WBO is a gener-
alization of MaxSAT and its variants, as well as of PBO, allowing a unified modeling
framework to integrate both of these Boolean optimization problems.

4.1 Unsatisfiability-Based WBO

This section describes how Algorithm 2 (introduced in Section 3) for weighted partial
MaxSAT can be modified for solving WBO formulas. First of all, in a WBO formula,
constraints are not restricted to be propositional clauses. Both soft and hard constraints
can be pseudo-Boolean constraints. Hence, ϕ is a pseudo-Boolean formula, instead of
a CNF formula. Moreover, the use of a SAT solver in line 6 is replaced with a pseudo-
Boolean solver extended with the ability to generate an unsatisfiable sub-formula from
the original pseudo-Boolean formula.

Next, if the formula is unsatisfiable, the weight associated with the unsatisfiable sub-
formula is computed in the same way (lines 9-13) and the soft constraints in the core
must also be relaxed using new relaxation variables (lines 15-24). Consider that ω =∑

aj lj ≥ b denotes the pseudo-Boolean constraint to be relaxed using variable r. The
resulting relaxed constraint in line 19 will be ωR = b · r +

∑
aj lj ≥ b.

Finally, the constraint on the new relaxation variables in line 25 does not need to
be encoded into CNF. The pseudo-Boolean constraint

∑
r∈VR

r = 1 can be directly
added to ϕW , resulting in a more compact formulation, in particular if the number of
soft constraints in the core is large.

In some cases, for an unsatisfiable sub-formula with k soft constraints, it is pos-
sible to use less than k additional variables. Consider the following soft constraints
ω1 =

∑
lj∈L1

a1j lj ≥ b1 and ω2 =
∑

lj∈L2
a2j lj ≥ b2 in a given unsatisfiable sub-

formula, where L1 and L2 denote respectively the set of literals in constraints ω1 and
ω2. Additionally, let xk ∈ L1, x̄k ∈ L2, a1k ≥ b1 and a2k ≥ b2, i.e. assigning xk to
true satisfies ω1 and assigning xk to false satisfies ω2.1 In this case, these constraints
can share the same relaxing variable. This is due to the fact that it is impossible for

1 This is a generalization to pseudo-Boolean constraints. Note that if the WBO instance corre-
sponds to a MaxSAT instance, this is very common to occur, since ω1 and ω2 are clauses.

Algorithms for Weighted Boolean Optimization 503

both ω1 and ω2 to be unsatisfied by the same assignment, since either xk satisfies ω1 or
x̄k satisfies ω2. Therefore, by using the same relaxing variable on both constraints, it is
maintained the restriction that at most one soft constraint in the core can be relaxed.

Example 4. Suppose that the following set of soft constraints defines an unsatisfiable
sub-formula in a WBO instance:

ω1 = 2x1 + 3x2 + 5x3 ≥ 5
ω2 = x̄1 + x̄2 ≥ 1
ω3 = x2 + x̄3 ≥ 1
ω4 = x1 + x̄3 ≥ 1

(8)

In this case, constraints ω1 and ω3 can share the same relaxation variable, since the
assignment of a value to x3 implies that either ω1 or ω3 is satisfied. The same occurs
with ω2 and ω4, given that the assignment to x1 either satisfies ω2 or ω4. Therefore, after
the relaxation, the resulting formula can include just two relaxation variables, instead
of four. The resulting formula would be:

5s1 + 2x1 + 3x2 + 5x3 ≥ 5
s2 + x̄1 + x̄2 ≥ 1
s1 + x2 + x̄3 ≥ 1
s2 + x1 + x̄3 ≥ 1

s1 + s2 ≤ 1

(9)

The application of this reduction rule of relaxing variables raises the problem of
finding the smallest number of relaxation variables to be used. This problem can be
mapped into finding a matching of maximum cardinality in an undirected graph. In
such a graph, there is a vertex for each constraint in the unsatisfiable sub-formula, while
edges connect vertexes corresponding to constraints that can share a relaxation variable.
The problem of finding a matching of maximum cardinality in an undirected graph can
be solved in polynomial time [14]. Nevertheless, our prototype implementation of WBO
solver uses a greedy algorithmic approach.

4.2 Other Algorithms for WBO

An alternative solution for solving WBO is to extend existing PBO algorithms. For
example, soft pseudo-Boolean constraints can be represented in a PBO instance as
relaxable constraints, and the overall cost function becomes the weighted sum of the
relaxation variables of all soft pseudo-Boolean constraints of the original WBO for-
mulation. This solution resembles the existing approach for solving MaxSAT with
PBO [2,1], and has the same potential drawbacks.

One additional alternative solution is to generalize branch and bound weighted par-
tial MaxSAT solvers to deal with soft and hard pseudo-Boolean constraints. However,
note that these approaches focus on a search process that uses successive refinements
on the upper bound of the WBO solution, while the algorithm proposed in section 4.1
works by refining lower bounds on the optimum solution value.

504 V. Manquinho, J. Marques-Silva, and J. Planes

5 Results

With the objective of evaluating the new (partial) weighted MaxSAT algorithm and the
new WBO solver, a set of industrially-motivated problem instances was selected. The
characteristics of the classes of instances considered are shown in Table 1. For each
class of instances, the table provides the class name, the number of instances (#I), the
type of MaxSAT variant, and the source for the class of instances.

Table 1. Classes of problem instances

Class #I MaxSAT Variant Source

IND 110 Partial Weighted MaxSAT Evaluation 2009
FIR 59 Partial Pseudo-Boolean Evaluation 2007
SYN 74 Partial Pseudo-Boolean Evaluation 2005

Moreover, a wide range of MaxSAT and PBO solvers were considered, all among
the best performing in either the MaxSAT or the Pseudo-Boolean evaluations. The
weighted MaxSAT solvers considered were WMaxSatz [3], MiniMaxSat [18], IncW-
MaxSatz [22], Clone [29], and SAT4J (MaxSAT) [7]. Solver sr(w) [30] was also con-
sidered, but the results are not competitive. In addition, a new version of MSUnCore
[26,27,25], integrating the weighted MaxSAT algorithm proposed in Section 3, was
also evaluated. The PBO solvers considered were BSOLO [24], PBS [1], Pueblo [32],
Minisat+[15], and SAT4J (PB) [7]. Finally, results for the new WBO solver, implement-
ing the WBO organization described in Section 4 is also shown.

All experiments were run on a cluster of Linux AMD Opteron 2GHz servers with
1GB of RAM. The CPU time limit was set to 1800 seconds, and the RAM limit was
set to 1 GB.

All algorithms were run on all problem instances considered. The original repre-
sentations were used, in order to avoid introducing any bias towards any of the prob-
lem representations. Tables 2 and 3 summarize the number of instances aborted by
each solver for each class of instances. As can be concluded, for practical problem
instances, only a small number of MaxSAT solvers is effective. The results are some-
what different for the PBO solvers, where several can be competitive for different
classes of instances. It should be noted that the IND benchmarks can be considered
challenging for pseudo-Boolean solvers due to the large clause weights used.

For class IND and for the MaxSAT solvers, the results are somewhat surprising.
Some of the solvers perform extremely well, whereas the others cannot solve most of
the problem instances. IncWMaxSatz, MSUnCore and WBO are capable of solving all
problem instances, but other MaxSAT solvers abort the vast majority of the problem
instances. One additional observation is the very good performance of IncWMaxSatz
when compared to WMaxSatz. This clearly indicates that the lower bound computa-
tion used in IncWMaxSatz can be very effective, even for industrial problem instances.
For the PBO solvers, given the set of benchmark instances considered, SAT4J (PB) and
BSOLO come out as the best performing. Clearly, this conclusion is based on the class

Algorithms for Weighted Boolean Optimization 505

Table 2. Solved Instances for MaxSAT Solvers

Class WMaxSatz MiniMaxSat IncWMaxSatz Clone SAT4J (MS) MSUncore

IND 11 0 110 0 10 110
FIR 7 14 33 5 10 45
SYN 22 29 19 13 21 34

Total (Out of 243) 40 43 162 18 41 189

Table 3. Solved Instances for PBO & WBO Solvers

Class BSOLO PBS Pueblo Minisat+ SAT4J (PB) WBO

IND 17 0 0 0 60 110
FIR 20 11 14 22 7 39
SYN 51 19 30 30 22 33

Total (Out of 243) 88 30 44 52 89 182

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250

C
P

U
ti

m
e

instances

MSUnCore WBO IncWMaxSatz

Fig. 1. Run times for IncWMaxSatz, MSUnCore, and WBO for all instances

of instances considered, which nevertheless derive from practical applications. More-
over, SAT4J (PB) performs significantly better than SAT4J (MaxSAT). This may be the
result of a less effective encoding internally to SAT4J.

Motivated by the overall results, the best MaxSAT, PBO and the WBO solver were
analyzed in more detail. Given the experimental results, IncWMaxSatz, MSUnCore,

506 V. Manquinho, J. Marques-Silva, and J. Planes

and WBO were selected. Figure 1 shows the results for the selected solvers by increas-
ing run times.

As can be concluded, the plot confirms the trends in the tables of results. MSUnCore
is the best performing, followed by WBO and IncWMaxSatz. For smaller run times
(instances from class IND), IncWMaxSatz can be more efficient than WBO. Moreover,
these results indicate that, for the classes of instances considered, encoding cardinality
constraints into CNF (as done in MSUnCore) may be a better solution than natively han-
dling cardinality and pseudo-Boolean constraints (as done in WBO). It should be noted
that all the instances considered can be encoded with cardinality constraints, for which
existing polynomial encodings guarantee arc-consistency. This is not true for prob-
lem instances that use other pseudo-Boolean constraints, and for which encodings that
ensure arc-consistency are exponential in the worst-case [15]. Finally, another source
of difference in the experimental results is that whereas MSUnCore is built on top of
PicoSAT [8], WBO is built on top of Minisat2. The different underlying SAT solvers
may also contribute to explain some of the differences observed.

6 Related Work

A brief account of MaxSAT and PBO solvers is provided in Section 2. The use of
unsatisfiability for solving MaxSAT was first proposed in 2006 [16]. This work was
later extended [26,27,25], to accommodate several alternative algorithms and a number
of optimizations to the first algorithm. To the best of our knowledge, MSUnCore is the
first algorithm for solving (Partial) Weighted MaxSAT with unsatisfiable sub-formula
identification. Also, to the best of our knowledge, WBO represents a new modeling
framework, and the associate algorithm is new.

The use of optimization variants of decision procedures has also been proposed in the
area of SMT [28], and a few SMT solvers now offer the ability for solving optimization
problems. The approaches used for solving optimization problems in SMT are based on
the use of relaxation variables, similarly to the PBO approach for solving MaxSAT [1].

7 Conclusions and Future Work

This paper proposes a new algorithm for (Partial) Weighted MaxSAT, based on unsat-
isfiable sub-formula identification. In addition, the paper introduces Weighted Boolean
Optimization (WBO), that aggregates and generalizes PBO and MaxSAT. The paper
then shows how unsatisfiability-based algorithms for (Partial) Weighted MaxSAT can
be extended to WBO. Finally, the paper illustrates how to extend other algorithms for
PBO and MaxSAT to solve WBO.

Experimental results, obtained on a representative set of benchmark instances with
industrial motivations, shows that the new algorithm for weighted MaxSAT can outper-
form other existing algorithms by orders of magnitude. The experimental results also
provide a preliminary (albeit possibly biased) study on the performance differences be-
tween handling pseudo-Boolean constraints natively and encoding to CNF. Finally, the
paper shows that a general algorithm for WBO can be as efficient as other dedicated
algorithms.

Algorithms for Weighted Boolean Optimization 507

The integration of MaxSAT and PBO into a unique optimization extension of SAT
increases the range of problems that can be solved. It also allows developing other
general purpose algorithms, integrating the best techniques from both domains. Future
research work will address adapting other algorithms for WBO. One concrete example
is the use of PBO solvers. The other is extending the existing family of MSU algorithms
for WBO.

Acknowledgement. This work is partially supported by EU grant ICT/217069 and
FCT grant PTDC/EIA/76572/2006.

References

1. Aloul, F., Ramani, A., Markov, I., Sakallah, K.A.: Generic ILP versus specialized 0-1 ILP:
An update. In: International Conference on Computer-Aided Design, pp. 450–457 (2002)

2. Amgoud, L., Cayrol, C., Berre, D.L.: Comparing arguments using preference ordering for
argument-based reasoning. In: International Conference on Tools with Artificial Intelligence,
pp. 400–403 (1996)

3. Argelich, J., Li, C.M., Manà, F.: An improved exact solver for partial max-sat. In: Interna-
tional Conference on Nonconvex Programming: Local and Global Approaches, pp. 230–231
(2007)

4. Argelich, J., Li, C.M., Manyà, F., Planes, J.: Third Max-SAT evaluation (2008),
http://www.maxsat.udl.cat/08/

5. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo Boolean constraints to SAT.
Journal on Satisfiability, Boolean Modeling and Computation 2, 191–200 (2006)

6. Barth, P.: A Davis-Putnam Enumeration Algorithm for Linear Pseudo-Boolean Optimization.
Technical Report MPI-I-95-2-003, Max Plank Institute for Computer Science (1995)

7. Berre, D.L.: SAT4J library, http://www.sat4j.org
8. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computa-

tion 2, 75–97 (2008)
9. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence 171(8-9),

606–618 (2007)
10. Borchers, B., Furman, J.: A two-phase exact algorithm for MAX-SAT and weighted MAX-

SAT problems. Journal of Combinatorial Optimization 2, 299–306 (1999)
11. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. In: Design Automation

Conference, pp. 830–835 (2003)
12. Coudert, O.: On Solving Covering Problems. In: Design Automation Conference, pp. 197–

202 (1996)
13. Darras, S., Dequen, G., Devendeville, L., Li, C.M.: On inconsistent clause-subsets for Max-

SAT solving. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 225–240. Springer, Hei-
delberg (2007)

14. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)
15. Een, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-

fiability, Boolean Modeling and Computation 2, 1–26 (2006)
16. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.)

SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)
17. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: a new weighted Max-SAT solver. In:

Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 41–55. Springer,
Heidelberg (2007)

http://www.maxsat.udl.cat/08/
http://www.sat4j.org

508 V. Manquinho, J. Marques-Silva, and J. Planes

18. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficient weighted Max-SAT solver.
Journal of Artificial Intelligence Research 31, 1–32 (2008)

19. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artifi-
cial Intelligence 172(2-3), 204–233 (2008)

20. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial In-
telligence Research 30, 321–359 (2007)

21. Liao, S., Devadas, S.: Solving Covering Problems Using LPR-Based Lower Bounds. In:
Design Automation Conference, pp. 117–120 (1997)

22. Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for MAX-SAT solving.
In: International Joint Conference on Artificial Intelligence, pp. 2334–2339 (2007)

23. Manquinho, V., Marques-Silva, J.: Search pruning techniques in SAT-based branch-and-
bound algorithms for the binate covering problem. IEEE Transactions on Computer-Aided
Design 21(5), 505–516 (2002)

24. Manquinho, V., Marques-Silva, J.: Effective lower bounding techniques for pseudo-boolean
optimization. In: Design, Automation and Test in Europe Conference, pp. 660–665 (2005)

25. Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based maximum
satisfiability algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996,
pp. 225–230. Springer, Heidelberg (2008)

26. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.
Computing Research Repository, abs/0712.0097 (December 2007)

27. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable
cores. In: Design, Automation and Testing in Europe Conference, pp. 408–413 (2008)

28. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg
(2006)

29. Pipatsrisawat, K., Palyan, A., Chavira, M., Choi, A., Darwiche, A.: Solving weighted Max-
SAT problems in a reduced search space: A performance analysis. Journal on Satisfiability
Boolean Modeling and Computation (JSAT) 4, 191–217 (2008)

30. Ramı́rez, M., Geffner, H.: Structural relaxations by variable renaming and their compilation
for solving MinCostSAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 605–619.
Springer, Heidelberg (2007)

31. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Improved design
debugging using maximum satisfiability. In: Formal Methods in Computer-Aided Design
(2007)

32. Sheini, H., Sakallah, K.A.: Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on Satis-
fiability, Boolean Modeling and Computation 2, 165–189 (2006)

33. Warners, J.: A linear-time transformation of linear inequalities into conjunctive normal form.
Information Processing Letters 68(2), 63–69 (1998)

34. Xu, H., Rutenbar, R.A., Sakallah, K.A.: sub-SAT: a formulation for relaxed boolean satisfi-
ability with applications in routing. IEEE Transactions on CAD of Integrated Circuits and
Systems 22(6), 814–820 (2003)

PaQuBE: Distributed QBF Solving
with Advanced Knowledge Sharing

Matthew Lewis1, Paolo Marin2, Tobias Schubert1, Massimo Narizzano2,
Bernd Becker1, and Enrico Giunchiglia2

1 {lewis,schubert,becker}@informatik.uni-freiburg.de

http://ira.informatik.uni-freiburg.de/
2 {paolo.marin,massimo.narizzano,enrico.giunchiglia}@unige.it

http://www.star-lab.it/

Abstract. In this paper we present the parallel QBF Solver PaQuBE.
This new solver leverages the additional computational power that can be
exploited from modern computer architectures, from pervasive multicore
boxes to clusters and grids, to solve more relevant instances and faster
than previous generation solvers. PaQuBE extends QuBE, its sequen-
tial core, by providing a Master/Slave Message Passing Interface (MPI)
based design that allows it to split the problem up over an arbitrary num-
ber of distributed processes. Furthermore, PaQuBE’s progressive parallel
framework is the first to support advanced knowledge sharing in which
solution cubes as well as conflict clauses can be shared. According to the
last QBF Evaluation, QuBE is the most powerful state-of-the-art QBF
Solver. It was able to solve more than twice as many benchmarks as
the next best independent solver. Our results here, show that PaQuBE
provides additional speedup, solving even more instances, faster.

Keywords: Parallel QBF Solving, Message Passing, Master/Slave
Architecture, MPI.

1 Introduction

Recently, Boolean Satisfiability (SAT) solvers have become powerful enough to
solve many practically relevant problems, and they are currently used in nu-
merous industrial tools for circuit verification. Building apon this success, the
research community has begun to consider the more general (but also more com-
plicated) Quantified Boolean Formula (QBF) domain. This allows researchers
to encode problems encountered in Black Box or Partial Circuit Verification
[1], Bounded Model Checking [2], and AI planning [3] more naturally and com-
pactly than in SAT. However, since QBF problems are generally more difficult
(PSPACE-Complete vs. NP-Complete), they require dedicated algorithms and
increased computation power to solve relevant instances. In this context, using
multi-processor systems and parallel algorithms is a possible and interesting
solution.

While many QBF solvers are still based on the DPLL algorithm [4], they
have advanced considerably in recent years. For instance, some QBF algorithm

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 509–523, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://ira.informatik.uni-freiburg.de/
http://www.star-lab.it/

510 M. Lewis et al.

specific advances include conflict and solution analysis with non-chronological
backtracking [5,6,7,8], and preprocessing [9,10]. Modern QBF solvers must com-
bine all these new ideas into an efficient implementation to be competitive.

Furthermore, single processor performance has also played a large role in the
ability of modern QBF solvers to handle relevant problems. For many years clock
frequencies, and single core performance increased rapidly. However, current im-
provements in clock frequency and single core processor performance are slowing.
To compensate for this, we have seen the introduction of multi-core and/or mul-
tithreaded processors which have resulted in some of the largest jumps in perfor-
mance potential in recent times. Companies such as INTEL, AMD, SUN, and
IBM, now produce CPUs that contain four or more cores. Future QBF solvers
must harness this untapped potential if they wish to provide leading edge per-
formance. These new processors, and the introduction of cheap clusters in labs
are the main motivation for the development of PaQuBE.

The following section will start with a description of the QBF problem, and
how sequential and parallel QBF solvers work. Sections 3 and 4 will talk about
the design and implementation of PaQuBE, and the performance results that
were obtained. Finally, Section 5 will conclude this paper with some closing
remarks, and discuss future directions we wish to take PaQuBE.

2 QBF Problem/Solver Overview

In our context, QBF formulas are defined in Conjunctive Normal Form (CNF).
A problem in CNF form would first consist of a variable definition, typically con-
taining multiple alternations of existentially and universally quantified variables.
More formally, a QBF is an expression of the form:

ϕ = Q1z1Q2z2 . . . QnznΦ (n ≥ 0) (1)

Here, every Qi (1 ≤ i ≤ n) is a quantifier, either existential ∃ or universal
∀, z1, . . . , zn are distinct sets of variables, and Φ is a propositional formula.
Q1z1 . . . Qnzn is defined as the prefix, and Φ, the propositional formula, would
contain a set P of clauses. While a variable is defined as an element of P, an
occurrence of that variable or its negation in a clause is referred to as a literal.
In the following, the literal l is defined as the negative occurrence of varable |l|
in P, and l is the positive occurrence. In the following, we also use true and
false as abbreviations for the empty conjunction and the empty disjunction,
respectively. For example, an entire problem definition might be as follows:

∃x1∀y∃x2{{x1 ∨ y ∨ x2} ∧ {y ∨ x2} ∧ {x2} ∧ {x1 ∨ y} ∧ {y ∨ x2}} (2)

We say that (1) is in Conjunctive Normal Form (CNF) when Φ is a conjunction
of clauses, where each clause is a disjunction of literals as shown in (2). And
that (1) is in Disjunctive Normal Form (DNF) when Φ is a disjunction of cubes,

PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing 511

where each cube is a conjunction of literals1. We use constraints when we refer
to clauses and cubes indistinctly. Finally, in (1), we define

– the level of a variable zi, to be 1 + the number of alternations QjzjQj+1zj+1
in the prefix with j ≥ i and Qj 	= Qj+1;

– the level of a literal l, to be the level of |l|.
– the level of the formula (1), to be the level of z1.

For example, in (2) x2 is existential and has level 1, y is universal and has level
2, x1 is existential and has level 3.

2.1 Sequential QBF Solver

A DPLL based solver would start by reading the formula. Then, using a heuristic,
one of the variables in the formula would be chosen and assigned a value (true

or false). In the QBF domain, the decision heuristic is restricted to choosing
variables on the first quantification level. Only when all the variables on this
level are defined, can the heuristic move on to the next level. Once a decision
is made, a Boolean Constraint Propagation (BCP) procedure is run. The BCP
procedure finds the implications or consequences of that decision. If the BCP
procedure completes and no conflicts are found, the decision procedure is run
again. However, if a conflict is found, a conflict analysis procedure is run in
order to find the reason for the conflict. It would then try to resolve the conflict
by backtracking to a previous decision level. If the conflict cannot be resolved,
the problem is unsatisfiable. However, if backtracking can resolve the conflict, a
conflict clause would also be recorded to prevent the solver from repeating this
error in the future.

In case of QBF Solvers like QuBE [11] which feature Solution Backjumping,
whenever a solution is found, an initial reason can be computed in order to
run the above conflict analysis procedure almost symmetrically, thus recording
a solution cube. If the solution cannot be resolved, the problem is satisfiable.

Note, while many QBF solvers run in the way described above, there are many
details not covered here, and we refer the reader to [7,8,11,12].

2.2 Parallel QBF Solver

In our context, a parallel QBF solver consists of multiple copies of a sequential
solver. Each sequential solver (in the total parallel solver) functions in the same
manner as described in Section 2.1. However, instead of working on the entire prob-
lem, each individual solver is given a small part of the original problem. This is
done by dividing the search space into 2 or more disjoint parts. This can be accom-
plished by selecting a decision variable and telling each solver to search opposite as-
signments of that variable. This method is referred to as the Guiding Path method
in SAT and it was first introduced by PSATO [13]. Normally, in SAT, the chrono-
logically first decision variable is taken as shown in Figure 1. The search space can
1 Solution cubes are also referred to as solution terms.

512 M. Lewis et al.

P1

P2

P3

DL3

DL2

DL1

Fig. 1. Guiding Paths

be divided repeatedly in this manner by choosing newer decision variables. How-
ever, when using this method to produce subproblems in QBF, a more elaborate
mechanism must be in place to keep track of which parts of the search space are
currently being searched, and which parts have already been proved satisfiable or
unsatisfiable. This is because different clients will not only have different available
splitting variables, but these variables could be on different quantification levels.

2.3 Current Sequential QBF Solvers

There are many sequential QBF solvers.Most solvers like QMiraXT [14], QuBE [6],
yQuaffle [15], sSolve [16], are in principal based on the DPLL algorithm. Others,
like Quantor [17] or Nenofex [18], try to resolve and expand the formula until no
universally quantified variables remain. This allows them then to send their re-
maining, existentially quantified problem to a SAT solver. This workswell on many
problems, but it can result in an explosion with respect to the size of the formula.
On the other hand, solvers like sKizzo [19] do the opposite of Quantor, and use
symbolic skolemization to eliminate all the existentially quantified variables in the
formula. Some so-called incomplete solvers (e.g. WalkQSAT [20]) are also based
on stochastic search methods, and they can be very effective in solving some cat-
egories of problems, but are not able to prove the value of unsatisfiable formulas.
Finally, in [21,22] a portfolio of solvers is considered, and the best one is selected
using machine learning techniques.

While many of these techniques show promise, our focus here is on QuBE,
which is a DPLL based algorithm. It would however be interesting to see if al-
gorithms like Quantor’s “Resolve and Expand” and sKizzo’s “Symbolic Skolem-
ization” could be parallelized. Or even what algorithms like [21,22] could do if
they ran a portfolio of algorithms at once, but this is open for future research.

2.4 Previous Parallel QBF Solver Work

The parallelisation of SAT has been studied e.g. in [13,23,24]. There is, however,
only one parallel QBF solver that we are aware of, called PQSOLVE [25], that

PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing 513

takes advantage of Message Passing. PQSOLVE was based on the basic DPLL al-
gorithm, without conflict analysis, solution analysis, watched literals, and many
other advanced techniques used in QBF solvers today. PQSOLVE also had many
limitations with respect to problem splitting. First, PQSOLVE needed to keep
track of a complicated list of parent and children nodes that described who do-
nated and received which subproblem. This was required to ensure completeness.
Additionally, even on random problems that should be easier to parallelize in a
basic DPLL search, idle times for the system with 32 processors were about 16%
(increasing to 31% for 128 processors). Lastly, since PQSOLVE did not include
any type of conflict or solution analysis procedures, aspects like clause or cube
sharing were not even relevant. This is not to say that PQSOLVE was not a novel
solver. On the contrary, at the time it was published it was a state-of-the-art
solver, but that was almost a decade ago.

Recently, as the need for parallel QBF algorithms has become more appar-
ent, the threaded parallel SAT solver MiraXT [24] was modified so that it could
directly handle QBF formulas [14]. QMiraXT was developed to use multicore/
multi-CPU workstations. Its tight integration of threads allows significantly more
knowledge sharing than an MPI design. QMiraXT also introduced some novel
ideas on how to transform ideas from the parallel SAT domain to QBF. For in-
stance, PaQuBE uses some of these ideas such as the Single Quantification Level
Scheduling (SQLS) subproblem generation algorithm, and knowledge sharing in
a QBF context that QMiraXT introduced. PaQuBE builds upon these ideas and
includes sharing of solution cubes as well. Furthermore, due to its Master/Slave
MPI design, PaQuBE is far more scalable than QMiraXT allowing it to take
advantage of entire clusters or grids.

3 PaQuBE Design Overview

We now present the parallelisation of QuBE, resulting in the distributed QBF
proving algorithm PaQuBE. QuBE is a search based QBF Solver that uses lazy
data structures for both unit clauses propagation and for pure literals detec-
tion [6]. It also features conflict and solution non-chronological backtracking
and learning and it is a competitive state of the art solver2. Next, the following
sections will describe the general properties of our approach, while focusing on
the dynamic partitioning of the overall search space and the cooperation between
the processes.

3.1 General Properties

PaQuBE has been implemented following a Master/Slave Model, where one pro-
cess is dedicated to be the master, and n − 1 are acting as slaves that actually
perform the solving. Here, n represents the total number of processes running
on the system. An illustration, using three clients, is given in Figure 2.
2 Version 6.5. Actually, QuBE6.5 is a composition of the preprocessor sQueezeBF and

the core solver.

514 M. Lewis et al.

Client 0
PaQuBE

Master

PaQuBE

PaQuBE

Client 1
PaQuBE
Client 2

Solution Cubes
Conflict Clauses

SAT/UNSAT
Guiding Path
Control Signals

Fig. 2. PaQuBE Design

In our implementation, the master is a central part of the solver and it is
required to ensure completeness. In more detail, the role of the master is:

1. Maintain information about the current subproblems and splitting variables.
2. Start the slaves.
3. When there are sleeping slaves waiting for new subproblems, select a working

slave and then request a subproblem from it while maintaining the SQLS
rules discussed later.

4. Activate sleeping slaves with new subproblems to analyze when new sub-
problems become available.

5. Stop all the slaves if one of them proves the satisfiability/unsatisfiability of
the formula.

Likewise, the role of the slave is:

1. Receive and solve a subproblem, represented as a set of assumptions about
the complete problem.

2. Split its subproblem if asked, and then send the new unevaluated part to
the master.

3. Share with other slaves some conflict clauses learnt during the search.
4. Compress and share with other slaves some solution terms learnt during the

search.
5. Receive and add to the local database part of the conflict clauses and solution

terms forwarded by other slaves.

Since the master spends most of its time sleeping, and when working there is at
least one inactive slave, it can be run alongside other processes without really
needing a dedicated CPU. Indeed, in contrast to many other parallel MPI based
SAT solvers, the knowledge sharing mechanism does not involve the master.

PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing 515

The only reason we need a master process is for controlling the SQLS scheduling
algorithm. Without a master process, each PaQuBE client would need to talk to
all other clients before donating a subproblem. This would generate significantly
more messages compared to the Master/Slave model used in our approach.

The core solver used in each slave is QuBE, tweaked in order to deal with as-
sumptions and to work in a group environment. In particular, the backjumping
engine has to treat subproblem assumptions like decision literals when evaluat-
ing the reasons for conflicts, i.e. even if they have been assigned at decision level
0 they cannot be resolved out of the formula. We have also added a procedure
to correctly set the watched literals in those clauses or terms learnt from other
slaves, while also backtracking if possible. Furthermore, during the search each
slave must check for messages coming from the master (e.g. requests for subprob-
lems or a notification that the problem has been solved) or a slave (incoming
clauses or terms). This check is done regularly after a fixed number of assign-
ments. Whenever a slave checks for messages, learnt constraints are shared with
other slaves if selected as suitable under the knowledge sharing mechanism.

The entire communication has been realized using MPICH2 [26], an imple-
mentation of the Message Passing Interface standard [27]. According to the
Master/Slave model sketched above, all communication tasks are encoded as
messages and sent/received using MPI Send and MPI Recv, respectively.

3.2 Initialization

At start-up, the slaves read in the preprocessed input formula. The preprocessor
sQueezeBF is used here, and it is the only sequential part of this parallel solver.
Afterwards, slave #1 sends the master a few basic properties of the formula so
that it can initialize the SQLS scheduler. In particular, these are the number of
variables, clauses, and the number of quantification levels or alternations in the
input formula. Then, slave #1 begins the search trying to solve the complete
problem, i.e. the given formula without any assumptions. The slaves from #2
to n request and then wait for incoming subproblems to solve. Waiting slaves
are put to sleep (using the MPI Iprobe command) so that they do not affect the
performance of running slaves.

3.3 Single Quantification Level Scheduling

For parallel QBF, the total search space has to be divided into disjoint fractions.
We adopt the dynamic splitting technique called Single Quantification Level
Scheduling (SQLS) which was introduced in [14]. SQLS basically divides the
search space in a fashion similar to PSATO, using the first decision variable
assigned by the decision heuristic. However, because we now have a QBF formula
instead of a SAT formula, the master must keep track of more information. In
PQSOLVE, this task was quite complicated. SQLS simplifies this, allowing the
master to only control the quantification level of the variables being used to
generate new subproblems (root variables), while also keeping track of how many
slaves are actually running.

516 M. Lewis et al.

In SQLS, the master will first ask for subproblems with a root variable ini-
tialized to the first level in the formula. Whenever a slave asks the master for a
subproblem, this request will be forwarded to a working slave, requiring that the
subproblem must be rooted at the current quantification level. If the first branch
done by the inquired slave is not quantified on the correct level, the master tries
again with another slave. In case all the variables quantified at this level have
already been checked, the master will move on to the next level when there is at
most one running process. This poses the only limit over the maximum number
of processes that can be run simultaneously. However, in most cases this is not a
limiting factor. With only 10 decision variables on the outermost quantification
level, we have 210 possible subproblems. Normally, there are 10s, if not 100s
of variables on the first quantification level. Lastly, the master can stop all the
slaves as soon as one of them finds its subproblem to be unsatisfiable and the
current quantification level is even (universally quantified), or satisfiable with
an odd quantification level (existentially quantified).

3.4 Knowledge Sharing

As stated above, PaQuBE slaves can share both learnt clauses and terms. As
learning made SAT/QBF Solvers able to solve real world problems, acquiring
clauses derived from solving parts of the search space can help as well [24].
Moreover, it is well known that computing initial reasons for backjumping from
a solution (terms or cubes) is far more expensive than the conflict case (see [8]
and [12] for more detailed considerations). As a consequence, sharing small and
already computed solution terms may speed up the search. In order to save part
of the time (latency and transmission time) needed to send these large messages
in general, clauses are packed into bundles, and terms are packed and compressed,
with the aim of filling without exceeding the capacity of a TCP packet.

The algorithm used for compressing terms works on the assumption that these
terms share many literals, in particular those quantified at the highest levels.
This is normally true, especially at the beginning of the search. Therefore, if the
literals occurring in these terms are sorted according to the prefix order, in every
block of terms we can effectively detect and avoid sending the common part of
each. Moreover, every literal that may occur in a term (e.g. those bounded by
quantification levels from the highest to the lowest universal) are encoded into
two-bits. This encoding allows us to communicate that a literal (i) occurs with a
positive polarity (01), (ii) a negative polarity (11), or (iii) does not occur in this
term (00). The remaining allowable value is used as a marker for the end of the
term. Finally, after converting all the selected terms, we put the complete first
term into the packet. Then, for the following terms, we only include the term’s
differing tail, and an offset pointing to where this term starts to differ from the
first one. Consider for example the formula below.

ϕ = ∀y1y2∃x1x2∀y3∃x3ϕ (3)

PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing 517

Excluding the innermost existential variables (those bounded at the lowest quan-
tification level) 5 atoms may occur in a term (because of minimization). Now,
let’s say a solver learns the following terms:

{y1,¬y2, x1, y3}, {y1,¬y2, x1,¬x2,¬y3} (4)

Their 2−bit encodings are, respectively,

{01|11|01|00|01}, {01|11|01|11|11} (5)

Only the last 2 literals (highlighted in italic) differ. We say: “the difference begins
at the 4th position”. Then, the sent message will be:

{01|11|01|00|01|4|11|11} (6)

Here, the comparison between terms has been done literal by literal (pairs of
bits), but for the sake of efficiency in PaQuBE this is done between sets of 16
literals, that are 32 bits long.

Now, when receiving clauses or cubes, slaves only add ones that are either
short, conflicting, or producing implications. This eliminates adding many un-
useful clauses or terms, while providing a balance between the knowledge sharing
and the number of clauses the BCP procedure must evaluate. However, it has
a limitation already known from parallel SAT solvers based on message passing:
when a slave selects constraints to be shared, is not aware of their usefulness to
other slaves. This is because slaves are not aware of other slaves’ current status
or subproblems. In order to exchange this information and keep it up-to-date
would imply either too many messages or too great of latency if updated just
before sharing. Being able to select the constraints in this way however, would
allow us to share even larger ones more effectively, even if less knowledge in total
was shared. This is an interesting approach that we are currently developing.

4 Experimental Results

To evaluate the performance of PaQuBE and the effectiveness of our ideas, we
have run multiple experiments on a selected pool of fixed-structure instances
from qbflib [28]. The benchmarking machine used in this section was a Sun Fire
X4440. It contains four Quadcore AMD Opteron 8356 processors. Each processor
runs at 2.3 GHz, and is connected to 16 GB of local memory (64 GB in total).
This machine runs a 64 bit version of the Linux 2.6.24 kernel, and supports the
MPICH 2-1.0.8 library. Also, in our current setup, PaQuBE’s knowledge sharing
is tuned for this AMD system. PaQuBE’s information bundles contain the last
20 learnt conflict clauses or cubes. Each clause is limited to a size that contains
< 15% of the variables within the problem, and cubes having a length of < 18%
of the variables within the formula minus the number on the last existential level
(if one exists). These numbers were experimentally determined to perform best.

This AMD system provides significantly more performance for message pass-
ing (with respect to latency and throughput) than a distributed system such as

518 M. Lewis et al.

Table 1. PaQuBE: Performance Scaling

Solver #CC/s #SC/s #SP #PS Time Speedup

QuBE 1P 0 0 1.00 227 63052.91 1.00
PaQuBE 2P 38.10 40.40 3.47 242 48387.99 1.34
PaQuBE 4P 79.45 73.78 8.86 262 33592.96 1.89
PaQuBE 8P 109.87 102.92 18.05 266 31797.71 1.98
PaQuBE 16Pns — — 40.71 272 31805.73 1.98
PaQuBE 16P 157.09 137.99 38.21 274 27857.26 2.26

a grid that is connected by Ethernet. On a larger cluster, PaQuBE’s knowledge
sharing would have to be scaled down accordingly with the bandwidth avail-
able. However, on our AMD system, we do have the issue that multiple cores on
one processor must share that processor’s memory bus. On our Sun Fire X4440
server, each of the four AMD Opteron 8356 processors has its own memory bus,
so we can run 4 PaQuBE clients (one client on each processor) before we run
into memory bus contention issues. When running the 16P case, the 4 cores
on each processor must share the processor’s memory bus. This unfortunately
affects the scaling of the algorithm in the > 4P cases. Fortunately, PaQuBE’s
MPI architecture can seamlessly adapt to both multicore workstations and grids,
allowing it to leverage the advantages that each type of parallel system provides.

In Table 1 and 2 we compare the performance of the sequential solver QuBE to
that of PaQuBE running on 2, 4, 8, and 16 slaves (marked as 2P/4P/8P/16P).
To do this, we selected the benchmarks from qbflib for which QuBE, the se-
quential solver, needed between 10 and 600 seconds. We then added the next
few incrementally harder benchmarks from each family to see if PaQuBE could
also solve more instances. In total, over 20 different benchmark families were
tested. These families are shown in column one of Table 2. For benchmarking,
each version of the solver was run once on the complete list of benchmarks.
Each version was given 600 seconds to solve each instance, and in all the tables,
the columns titled #CC/s and #SC/s represent Conflict Clauses and Solution
Cubes shared per second, while #SP represents the number of subproblems that
were generated on average.

First, Table 1 clearly shows the advantage of running PaQuBE on more pro-
cessors. Column 6, labelled T ime, shows the real world time used to solve all
283 instances (unsolved instances are included with the timeout value of 600
seconds), and shows that PaQuBE provides good speedup from 1P to 16P , in
terms of time as well as in terms of the number of problems solved (#PS). The
best performance scaling is from 1P to 4P . As we move on to the 8P and 16P
cases, performance increases, but it does not scale as nicely as the 1P to 4P case.
This can be seen in both the speedup column, as well as when comparing how
much information was exchanged between the slaves. For example, while the
number of #CC/s and #SC/s scale linearly from 2P to 4P , resulting in almost
exactly twice the amount of information exchanged, the difference from 4P to
16P case is only double even though the number of processors were quadrupled.

PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing 519

Table 2. PaQuBE: Benchmark Family Performance

Family #Inst. 2P × 4P × 16P × 16P Solver
#SP #CC/s #SC/s CPU U.%

Abduction 13 1.32 9.89 7.7 33.4 423.3 0 94
BMC 12 1.18 1.07 1.35 225.8 1192.02 15.23 99
Cond. Pl. 2 2.12 2.71 2.46 51 112.61 0 96
counter 1 1.5 1.73 1.04 128 177.22 5.48 99
Ev-Pr-*-lg 7 1.01 11.86 11.97 9 27.89 11.28 88
FPGA PFS 1 1.96 8.71 22.13 44 168.41 0 95
irqlkeapcite 1 2.57 5.1 6.04 34 0 0 14
k * n 16 1.14 1.16 2.73 13.3 90.76 0.72 96
k * p 18 1.25 1.57 1.54 35.7 36.99 13.98 95
katz 2 10.67 56.14 55.65 35.5 371.01 32.72 94
logn 1 1.37 1.79 1.58 21 74.48 0 95
sakallah 43 1.23 1.51 1.51 48.5 3.2 519.04 98
Scholl-Becker 7 1.33 1.4 1.44 31.7 254.68 0 98
Sorting Netw. 15 0.6 1.19 3.61 42.3 478.2 599.33 83
Szymanski 4 1.13 1.7 1.66 19 0 33.14 76
terminator 21 1 2.51 192.8 14.6 0.8 156.46 63
tipfixdiameter 32 2.36 2.69 3.11 34 140.6 114.12 94
tipfixpoint 79 1.36 1.71 1.44 21.7 91.63 0.61 99
TOILET 5 4.78 9.71 9.74 17.6 20.55 0 95
wmiforward 3 4.49 7.8 2.53 44.3 0 9.2 23

Total 283 1.52 3.01 3.06 38.2 157.09 137.99 97

This is mainly due to bus contention on each processor as was briefly described
earlier. In any case, even with the current AMD architecture, we are still able to
increase performance all the way up to 16P . The largest increase however, was
not in time, but in problems solved. With 16P we solved 47 more instance than
the 1P case. Even more exciting, was the fact that we solved 13 problems that
had not been solved by any solver at the last QBF competition.

Next, as was also shown in [14], the low number of subproblems generatedmeans
that the SQLS’s limitations do not limit the performance of the solver as there is
rarely a need to generate lots of subproblems. Furthermore, the column labeled
CPU U.% from Table 2, which shows the CPU utilisation time, adds additional
support to this argument as the average CPU utilisation was 97%. Simply put,
this means on average, only 3% of the time was a CPU idle, waiting for a sub-
problem. Table 1 also includes PaQuBE 16Pns. This is PaQuBE with knowledge
sharing disabled, demonstrating the impact of knowledge sharing. As can be seen,
knowledge sharing improves the 16P case by almost 16%, even though we have an
overhead of sending 2820k messages compared to the no sharing 16P case.

Next, Table 2 takes a closer look at each benchmark family. The first two
columns contain the benchmark family name (Family) and how many instances
from that family were included (#Inst.). This table then shows the speedup
for the 2P/4P/8P/16P cases. For the 16P case it also includes the number of

520 M. Lewis et al.

subproblems generated, and conflict clauses and solution cubes shared on bench-
mark family basis. This is interesting as PaQuBE’s scaling performance on dif-
ferent benchmark classes is substantial. On families such as katz, Ev-Pr-*-lg,
and Abduction the performance is excellent, but on families such as BMC and
k * n there is no performance increase at all. There are two main reasons for
poor performance on certain benchmarks. First, there are benchmarks that for
instance use existentially quantified variables to produce subproblems, but in
which all subproblems are satisfiable. This results in each PaQuBE client need-
lessly searching a satisfiable subproblem, when only one satisfiable subproblem
needs to be searched. Thankfully, with intelligent conflict clause and solution
cube sharing, each PaQuBE client can still learn from one another, thus min-
imising this redundant work. Secondly, on some benchmarks, the solver is mostly
on decision level 0 during the evaluation (e.g. irqlkeapcite and wmiforward).
This means that no subproblems can be generated, resulting in many processors
being idle. The low CPU utilisation then results in lower parallel performance.
Fortunately, these are the only two benchmark families that suffer from this. Re-
garding the number of conflict clauses and solution cubes shared, Table 2 shows
that moderate sharing provides the best speedup. Problems that share too much
or not enough don’t scale as well. However, on the vast majority of benchmarks,
good speedup is obtained.

With respect to benchmarks like terminator and katz, in which we achieve
super linear speedup, this is basically attributed to the fact that one of the 16
clients received a subproblem that produced a conflict that showed that the
entire problem was unsatisfiable. This again is an advantage of a parallel solver.
Decision heuristics are not perfect, and by adding more clients, we have a better
chance of sending the solver to a more fruitful part of the search space.

Table 3. PaQuBE: Benchmark Family Performance

Category # 2P 4P 8P 16Pns 16P

SAT 195 1.35 1.89 1.98 1.86 2.01
∃ ∀ 185 10 1.39 0.77 1.90 1.54 1.94 3.75 1.86 1.85 1.97 3.92

UNSAT 88 1.22 1.91 2.00 2.27 2.96
∃ ∀ 59 29 1.50 1.02 1.69 2.21 1.71 2.45 1.28 14.88 1.73 14.18

Table 3 shows the impact of our approach on instances that are satisfiable
(SAT) or unsatisfiable (UNSAT). It also divides each of these results into two
separate categories. Mainly, problems that start with ∃ or ∀ quantification levels.
These variables are the most likely to be used as splitting variables. It also shows
how many problems belong to each set (labeled #). This table shows that while
UNSAT problems scale better than SAT , problems that start with universally
quantified variables scale even better (both in the SAT and UNSAT case). Also,
it can be seen when comparing 16Pns to 16P , sharing seems to help on all types
of instances.

Lastly, as can be seen from all the results presented here, good speedup can
be obtained on QBF problems using parallel algorithms. However, this general

PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing 521

statement is benchmark related as certain problems benefit more than other
from this parallel approach.

5 Conclusion and Future Work

In this paper we introduced the parallel QBF solver PaQuBE. It is based on the
state-of-the-art QBF solver QuBE, which according to the last QBF competi-
tion is significantly faster than other sequential solvers. The new parallel solver
PaQuBE, not only matches the performance of QuBE, but solves 47 more bench-
marks and reduces the solving time of families by over 3 times when running with
16 clients, including 13 instances never before solved at the QBF competition,
making it the fastest general purpose QBF solver we know of. Lastly, because of
its flexible architecture, it can easily scale from 1P to 16P to take full advantage
to today’s and tomorrow’s multicore processors.

In the future, we plan to push PaQuBE’s scaling limits by testing it on an
even larger cluster, currently being installed at the University of Genova. This
cluster will contain multiple, multicore IBM servers connected by an Infiniband
network (20Gb/s) with over 40 processors in total when installed later this year.
Using the PaQuBE work presented here as a solid foundation, we will hopefully
be able to solve larger and even more interesting problems in the near future.

Acknowledgment

The authors would like to thank the German DAAD and the Italian AIT for their
support (Vigoni). Furthermore, this work was partly supported by the German
Research Council (DFG) as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR
14 AVACS). See www.avacs.org for more information.

References

1. Herbstritt, M., Becker, B.: On Combining 01X-Logic and QBF. In: Moreno Dı́az,
R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739,
pp. 531–538. Springer, Heidelberg (2007)

2. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005, vol. 3569, pp. 408–414. Springer, Heidelberg
(2005)

3. Rintanen, J.: Constructing conditional plans by a theorem prover. Journal of Arti-
ficial Intelligence Research 10, 323–352 (1999)

4. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem proving.
Communication of ACM 5(7), 394–397 (1962)

5. Gent, I.P., Rowley, A.G.: Solution learning and solution directed backjumping re-
visited. Technical Report APES-80-2004, APES Research Group (February 2004),
http://www.dcs.st-and.ac.uk/~apes/apesreports.html

http://www.dcs.st-and.ac.uk/~apes/apesreports.html

522 M. Lewis et al.

6. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence
Research (JAIR) 26, 371–416 (2006)

7. Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Information and Computation 117(1), 12–18 (1995)

8. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified Boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

9. Giunchiglia, E., Marin, P., Narizzano, M.: An effective preprocessor for QBF pre-
reasoning (2008)

10. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: An efficient QBF solver.
In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213.
Springer, Heidelberg (2004)

12. Giunchiglia, E., Marin, P., Narizzano, M.: 24. In: Reasoning with Quantified
Boolean Formulas. Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 761–780. IOS Press, Amsterdam (2009)

13. Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover
and its application to quasigroup problems. J. Symb. Comput. 21(4-6), 543–560
(1996)

14. Lewis, M., Schubert, T., Becker, B.: QMiraXT – A Multithreaded QBF Solver.
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen (January 2009)

15. Yu, Y., Malik, S.: Validating the result of a quantified boolean formula (QBF)
solver: theory and practice. In: Tang, T.A. (ed.) ASP-DAC, pp. 1047–1051. ACM
Press, New York (2005)

16. Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate
Quantified Boolean Formulae. In: Proc. AAAI (2000)

17. Biere, A.: Resolve and expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

18. Lonsing, F., Biere, A.: Nenofex: Expanding nnf for QBF solving. In: Büning, H.K.,
Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg
(2008)

19. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)

20. Gent, I.P., Hoos, H.H., Rowley, A.G.D., Smyth, K.: Using stochastic local search
to solve quantified Boolean formulae. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833,
pp. 348–362. Springer, Heidelberg (2003)

21. Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg
(2007)

22. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proc. AAAI, pp. 255–
260 (2007)

23. Chrabakh, W., Wolski, R.: Gridsat: A chaff-based distributed sat solver for the grid.
In: SC 2003: Proceedings of the 2003 ACM/IEEE conference on Supercomputing,
Washington, DC, USA, p. 37. IEEE Computer Society, Los Alamitos (2003)

24. Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT Solving. In: ASP Design
Automation Conf., Yokohama, Japan (January 2007)

PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing 523

25. Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate
Quantified Boolean Formulae. In: Proceedings of the 7th Conference on Artificial
Intelligence (AAAI 2000) and of the 12th Conference on Innovative Applications
of Artificial Intelligence (IAAI 2000), July 30-3, pp. 285–290. AAAI Press, Menlo
Park (2000)

26. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

27. Snir, M., Otto, S., Walker, D., Dongarra, J., Huss-Lederman, S.: MPI: The Com-
plete Reference. MIT Press, Cambridge (1995)

28. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satis-
fiability library (QBFLIB) (2001), www.qbflib.org

www.qbflib.org

c-sat: A Parallel SAT Solver for Clusters

Kei Ohmura and Kazunori Ueda

Dept. of Computer Science and Engineering, Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract. Parallelizing modern SAT solvers for clusters such as Be-
owulf is an important challenge both in terms of performance scalability
and stability. This paper describes a SAT Solver c-sat, a parallelization
of MiniSat using MPI. It employs a layered master-worker architecture,
where the masters handle lemma exchange, deletion of redundant lem-
mas and the dynamic partitioning of search trees, while the workers do
search using different decision heuristics and random number seeds. With
careful tuning, c-sat showed good speedup over MiniSat with reasonably
small communication overhead on various clusters. On an eight-node
cluster with two Dual-Core Opterons on each node (32 PEs), c-sat ran
at least 23 times faster than MiniSat using 31 PEs (geometric mean; at
least 31 times for satisfiable problems) for 189 large-scale problems from
SAT Competition and two SAT-Races.

1 Introduction

Most modern solvers for propositional satisfiability problems (SAT) employ
DPLL algorithms, non-chronological backtracking, conflict-driven learning and
restart [14]. The cutting-edge performance has been obtained by careful design
decisions in data representation (e.g., two-literal watching) and heuristics (on
decision variables, restarts, etc.). We believe that a high-performance parallel
solver for tens of processing elements should both (i) exploit ideas from fast
sequential algorithms and (ii) achieve good parallel speedup. There have been
numerous proposals of parallel solvers (e.g., [1][4][5][6][8][9][13]; see [11] for a sur-
vey), but most of them focused on individual techniques evaluated using rather
limited classes of benchmark problems and/or on multicore or share-memory
platforms. Comprehensive performance study on larger-scale parallel computing
environments has not been reported yet for award-winning solvers. Because of
the heavy-tailed behavior and enormous variance in the characteristics of indi-
vidual problems, a small number of benchmark problems (which may well exhibit
drastic superlinear speedup) may not represent other problems we have at hand.

This paper reports our SAT solver c-sat, a parallelization of MiniSat using
MPI, designed to run efficiently on clusters with tens of processing elements
(PEs) connected by Ethernet. Computing environments of this scale are of great
importance because they are significantly more powerful than current single
multicore machines and can still be found, configured, or assembled easily. The
main objective and contribution of this work is to show that careful paralleliza-
tion of the state-of-the-art SAT solver attains good scalability with reasonably

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 524–537, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

c-sat: A Parallel SAT Solver for Clusters 525

small communication overhead on various clusters. Variance of performance in
each run is another important concern in parallel SAT solving, but c-sat showed
reasonable performance stability.

2 Parallel SAT Solver: c-sat

We describe the basic design and implementation of c-sat. We chose MiniSat [3]
(v1.14.1) as the base of c-sat since it was the fastest open-source solver available
when the present work started. It is now a classic solver, but in our evaluation,
its performance is quite competitive with that of MiniSat 2.0, the latest open-
source version. c-sat is written in C (3500 lines) and uses MPI because of its
availability on diverse platforms.

2.1 Layered Master-Worker Architecture

The solver c-sat employs both cooperative parallelism (dynamic partitioning
of search space based on work stealing) and competitive parallelism (search of
the same search space using different heuristics and parameters), both of which
are empowered by lemma exchange. The combination was studied also in [2],
but to support the efficient exchange of lemmas and subtrees, c-sat employs a
three-tiered master-worker model (Fig. 1) Each worker maintains its own clause
database and works on subtrees received from its master, exchanging lemmas
with the master. The principle of c-sat’s master-worker communication is that it
is always initiated by each worker at its own convenience. Another key decision
is to have a grandmaster layer to reduce communication bottleneck and ensure
scalability, based on our initial experiences with the two-tiered architecture that
worked poorly on clusters with tens of PEs. The grandmaster deals with lemma
exchange only, while masters handle partitioning as well. The frequency and the
amount of global communication can be tuned depending on the platform and
independently of local communication under individual masters.

ChilChildChiMasterMaster

Worker Worker Worker Worker

Grandmaster

lemma exchange & work sharing

lemma exchange

Fig. 1. The three-layer architecture of c-sat

526 K. Ohmura and K. Ueda

2.2 Decision Heuristics

Each PE chooses decision variables (variables whose values are guessed next)
using either of the two versions of VSIDS (Variable State Independent Decaying
Sum) heuristics assigned to it: One is the MiniSat version that assigns an activity
to each variable and selects a variable with the highest activity, where variables
contributing to recent conflicts are considered active. It also chooses variables
randomly with probability 0.02 to cope with the heavy-tailed behavior. The other
version assigns an activity to each literal as in the original VSIDS and makes the
highest-activity literal false, and is again combined with the 2% random choice.
Preliminary experiments showed that the latter version works at least as well as
the former, which implies that using both will contribute to performance and
stability. Different workers are given different seeds for the 2% random choices
to ensure diversity.

Hereafter we refer to the first heuristics as VSIDS and the second as LIT.

2.3 Dynamic Partitioning of Search Trees

Workers belonging to the same master work on different parts of a search tree
using the guiding path technique [13]. To minimize communication and house-
keeping overhead, a worker communicates the values of decision variables only.
A worker receiving a path replays unit propagation to reach the branching point.
The replay is justified by the highly optimized unit propagation. The length of
guiding paths communicated is limited in order to avoid excessive replaying. We
made sure that the limit value 5 is large enough to keep all workers busy.

Each worker employs non-uniform heuristics to explore different parts of a
search tree, since they may be engaged in overlapping pieces of work. Upon
restart of the first worker, the master removes those paths that have become
irrelevant, while the other workers keep working until they send lemmas and are
notified of restart in exchange.

2.4 Lemma Exchange

Exchanging lemmas learned by individual workers may drastically reduce the
search space. To minimize the rediscovering of lemmas, lemmas should be ex-
changed frequently. However, the choice and the amount of lemmas exchanged
and the frequency of exchange should be carefully designed to balance the util-
ity of lemmas and communication overhead. Lemmas could be chosen based
on their activities or their lengths. In the latter approach, typical effect of the
limit length on performance is given in Fig. 2. The figure shows the existence
of the appropriate “zone” of the limit value; too much lemma exchange would
increase both communication and internal processing such as unit propagation.
However, the appropriate zone depends on individual problems: Figure 3 shows
the average length of lemmas learned in the course of search, where the x-axis is
the number of restarts triggered. The figure exhibits enormous difference in the

c-sat: A Parallel SAT Solver for Clusters 527

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16 18 20 22

ru
nt

im
e

(s
ec

)

limit lemma length

runtime
communication time

Fig. 2. Maximal length of exchanged lemma vs. execution time and communication
time (goldb heqc dalumul.cnf (unsatisfiable), 31 PEs, Cluster A of Table 1)

length of lemmas and its change in the course of execution for different prob-
lems. Thus we have decided to adaptively determine the limit length based on
the minimum and the average lengths of unexchanged lemmas. The limit length
takes the number of workers into account as well.

In c-sat, lemma exchange works as follows. Each worker sends lemmas to its
master whenever it learns the next 100 new lemmas. The master, in exchange,
sends the other workers’ lemmas to the worker, and at the same time it exchanges

 1

 4

 16

 64

 256

 1024

 4096

 2 4 6 8 10 12 14 16 18 20 22 24 26 28

av
g.

 le
m

m
a

le
ng

th

number of restarts

Fig. 3. Change of the length of learned lemmas in 100 different problems from
SAT-Race 2006

528 K. Ohmura and K. Ueda

unexchanged lemmas with the grandmaster. The worker checks the received
lemmas for their satisfiability and if a conflicting clause is found, it backtracks
to the level at which the clause becomes a unit clause. Each master and the
grandmaster may remove lemmas that have been sent to all their partners.

Lemmas are thus distributed to other workers via its master and possibly via
its grandmaster. A worker may learn lemmas that are the same as, or subsumed
by, lemmas learned by others. The chance of learning redundant lemmas will
increase as the number of workers increases. Since the detection and the removal
of redundant lemmas are costly operations, only the grandmaster tries to reduce
redundancy. Whenever new lemmas are sent from a master, the grandmaster
uses the technique of [12] to check for their redundancy with respect to existing
lemmas before adding them to the clause database.

3 Experimental Results

We made extensive experiments on c-sat using two clusters listed in Table 1, of
which Cluster A was used for full evaluation, while Cluster B was for public use
and we were able to use up to 31 nodes and less total execution time.

We tested a total of 286 problems: 100 problems from SAT-Race 2006, 116
problems chosen from SAT 2007 Competition, and 70 problems from SAT-Race
2008. The problems from SAT 2007 Competition were those from the Industrial
Track whose sequential execution time exceeded 120 seconds. Problems inherited
from past contests have been eliminated from the problem sets of the 2007 and
2008 editions.

Regarding the configuration of the masters-worker model, preliminary eval-
uation on Cluster A showed good performance on average when each master
managed five workers. Accordingly, the main evaluation on Cluster A was con-
ducted using one grandmaster, five masters and 25 workers (31 PEs in total).

3.1 Preliminary Evaluation

Before conducting the main evaluation, we made several preliminary experiments
to evaluate our design choices using Cluster A (but possibly using less PEs) on

Table 1. Clusters used for experiments

cluster CPU/node nodes PEs memory network
A 2x Dual-Core AMD Opteron 2.0GHz 8 32 4GB/node GigE
B 1x Intel Core2 Duo 2.13GHz 58 116 4GB/node GigE

cluster OS C compiler MPI
A CentOS 4.4 GCC 3.4.6 MPICH2-1.0.8
B Debian 4.0 GCC 4.1.2 MPICH2-1.0.8

c-sat: A Parallel SAT Solver for Clusters 529

Table 2. Number of problems solved and the total execution time under VSIDS

random seed ±0 −2 −1 +1 +2 Min.
solved (SAT) 27 30 28 27 29 37

solved (UNSAT) 36 35 36 38 38 38
solved 63 65 64 65 67 75

total runtime (SAT) 26271s 23167s 25785s 24687s 22747s 14368s
total runtime (UNSAT) 32065s 31021s 31460s 32099s 30367s 28579s

total runtime 58336s 54188s 57245s 56785s 53115s 42947s

Table 3. Number of problems solved and the total execution time under LIT

random seed ±0 −2 −1 +1 +2 Min.
solved (SAT) 34 28 26 29 30 37

solved (UNSAT) 39 38 39 40 39 41
solved 73 66 65 69 69 78

total runtime (SAT) 20559s 22796s 26518s 24993s 26868s 14409s
total runtime (UNSAT) 30173s 30594s 31170s 29710s 31105s 27480s

total runtime 50732s 53390s 57688s 54703s 57973s 41889s

100 problems from SAT-Race 2006. Due to the variance in the timing of interpro-
cess communication, parallel solvers can exhibit erratic performance behavior.
Therefore we ran each problem three times, and regarded those problems solved
in all runs as “solved” within the time limit.

Decision Heuristics. The variance of sequential execution time due to different
heuristics and random seeds is shown in Table 2 (VSIDS) and 3 (LIT). Each table
shows the performance with five different random seeds (“±0” standing for the
original seed). The rightmost column “Min.” chooses the fastest average case
of the five seeds for each problem. The “# solved ((UN)SAT)” rows show the
numbers of (un)satisfiable problems solved within 1200 seconds, respectively. We
counted the execution time of unsolved problems as 1200 seconds here.

The “−2” to “+2” columns reveal that comparing the two heuristics under
the default seeds (“±0”) doesn’t make much sense. The rightmost columns show
that simply running five sequential SAT solvers in parallel using different seeds
will increase the number of solved problems.

Lemma Exchange. We next evaluated the effect of lemma exchange using
a version of c-sat with one master and five workers (6 PEs; no grandmaster).
Table 4 repeats the numbers from previous tables (VSIDS and LIT without
lemma exchange), and adds the numbers from c-sat with different heuristics.
The columns VSIDS+LIT show the results with two workers using VSIDS and
three using LIT. The table shows a significant contribution of lemma exchange.

530 K. Ohmura and K. Ueda

Table 4. The effect of lemma exchange with 6 PEs

heuristics VSIDS VSIDS LIT LIT VSIDS+LIT VSIDS+LIT
lemma exchange no yes no yes no yes
solved (SAT) 37 38 37 37 39 40

solved (UNSAT) 38 41 41 45 42 46
solved 75 79 78 82 81 86

total runtime (SAT) 14368s 13896s 14409s 13569s 17879s 14289s
total runtime (UNSAT) 28579s 24090s 27480s 20490s 23399s 20499s

total runtime 42947s 37986s 41888s 34059s 41278s 34788s

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

du
pl

ic
at

io
n

of
 le

m
m

as
 (

%
)

problems

VSIDS
LIT

VSIDS+LIT

Fig. 4. Proportion of duplicate lemmas in all learned lemmas (for selected problems)

With lemma exchange, VSIDS solved four problems not solved by LIT, and LIT
solved six problems not solved by VSIDS. Of those problems, VSIDS+LIT solved
eight problems and demonstrated the effect of performance stabilization (recall
that the numbers of solved problems in the table count consistently successful
runs only). The performance of VSIDS+LIT for individual problems lied between
that of VSIDS and that of LIT rather consistently. This was not specific to the
particular solver configuration (6 PEs); we observed the same phenomenon using
13 PEs (one grandmaster, two masters and ten workers). We also observed that
combining different heuristics may not improve the performance; for instance the
combination of VSIDS and random heuristics caused performance degradation
for most problems, demonstrating the importance of combining different and
competitive heuristics.

The effect of combining different heuristics on the reduction of duplicate lem-
mas is shown in Fig. 4. Positive effect was observed for almost all problems, and
duplication was well controlled just by employing different seeds.

c-sat: A Parallel SAT Solver for Clusters 531

Table 5. Cooperative vs. competitive parallelism

dynamic partitioning no (5 PEs) yes (5 PEs) no (13 PEs) yes (13 PEs)
solved (SAT) 40 40 40 41

solved (UNSAT) 46 47 52 52
solved 86 87 92 93

total runtime (SAT) 14289s 11495s 9195s 8288s
total runtime (UNSAT) 20499s 18367s 13718s 12909s

total runtime 34788s 29862s 22913s 21198s

We also measured the effect of eliminating redundant lemmas using 13 PEs
and observed 14% speedup for satisfiable problems. The speedup was rather
small for unsatisfiable problems, though.

Finally, we note some statistics of lemma exchange made by the “winning”
worker that found a solution first or nonexistence of a solution first. For the
SAT-Race 2006 problems, lemma exchange took place 6.8 times per second,
the winning worker received 340 clauses per exchange, and the size of clauses
exchanged was 5.5 literals, all on average. The total number of lemmas received
was 13% of the problem size (geometric mean), though there was enormous
variance in this ratio.

Dynamic Partitioning of Search Trees. Comparison between cooperative
parallelism (dynamic partitioning) and competitive parallelism with lemma ex-
change was made using two configurations: 6 PEs (one master) and 13 PEs (two
masters) (Table 5). Solvers with dynamic partitioning performed consistently
better on clusters with this scale. However, the speedup could be marginal on
machines with more communication overhead, and dynamic partitioning is best
treated as an option that can be switched off.

3.2 Main Evaluation and Comparison with Sequential SAT

Given the encouraging results of the preliminary evaluation, we made extensive
evaluation of c-sat using 31 PEs of Cluster A (one grandmaster, five masters and
25 workers) and the 286 problems mentioned in the beginning of this section.
To allow fair comparison with the original MiniSat, parameters including the
interval of restarts were kept unchanged. Because an important objective of
parallel SAT is to solve large problems, the time limit of each problem was
extended to 7200 seconds.

The results are shown in Table 6. The two numbers in the c-sat column show
the number of problems solved by at least one of three runs (left) and the num-
ber of problems solved by all three runs (right). Total runtime means average
execution time taken to solve all problems solved by all three runs of c-sat. For
those problems solved only by c-sat, we re-ran MiniSat for up to 28800 seconds
to calculate a better lower bound of the total sequential execution time.

All problems solved by MiniSat were solved by c-sat. Of 247 problems solved
by either run of c-sat, 243 were solved by all of the three runs. The small

532 K. Ohmura and K. Ueda

Table 6. Number of problems solved within 7200s and the total execution time

MiniSat c-sat (31 PEs)
solved (SAT) 80 106 / 103

solved (UNSAT) 106 141 / 140
solved 186 247 / 243

total runtime (SAT) >564691s 21039s
total runtime (UNSAT) >712627s 51978s

total >1277318s 73016s

 1

 4

 16

 64

 256

 1024

 4096

 0 2000 4000 6000 8000 10000 12000 14000

sp
ee

du
p

ra
tio

runtime of Minisat

SAT
UNSAT

Fig. 5. Performance ratio between c-sat and MiniSat

difference between the two numbers shows the stability effect of using many
PEs; with smaller clusters and SMPs, we have experienced much more variance.

Figure 5 shows the performance ratio between c-sat and the original MiniSat,
where the x-axis shows the execution time of MiniSat. The figure plots 189
problems whose sequential execution time exceeded 120 seconds. The samples
on the x = 14400 lines are those whose sequential time exceeded 14400 seconds.
The figure shows large speedup for both satisfiable and unsatisfiable problems,
particularly for large-scale problems. Superlinear speedup was quite common.
The geometric means of the speedup ratio are >31 times for satisfiable problems
and >19 times for unsatisfiable problems. Note that arithmetic means, which
are inappropriate measures, would be much higher.

Figures 6 and 7 show the stability of execution time for each problem whose c-sat
execution time exceeded 120 seconds. Each bar shows the lowest, the average and
the highest values of three runs. While the execution time of unsatisfiable prob-
lems was quite stable (the higher variance observed for some of heavy problems

c-sat: A Parallel SAT Solver for Clusters 533

 0

 500

 1000

 1500

 2000

 2500

 3000

ru
nt

im
e

(s
ec

)

SAT problems

Fig. 6. Variance of execution time (SAT)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

ru
nt

im
e

(s
ec

)

UNSAT problems

Fig. 7. Variance of execution time (UNSAT)

may possibly be due to the underlying platform rather than the problem it-
self), the execution time of satisfiable problems had much more variance. This is
because the scheduling of inter-PE communication affects the timing of lemma
exchange. Taming the performance variance of satisfiable problems seems to
have intrinsic difficulty; the only possible solution would be to make more use of
randomization, namely more restarts and more competitive parallelism.

We also evaluated communication overhead. Figure 8 shows how much of the
wall-clock execution time of the “winning” worker that found a solution first (or
nonexistence of a solution first) was spent for lemma exchange. Smaller prob-
lems had higher communication overhead in general, but even including them,
the average overhead was 9.8%. Communication overhead was almost negligible
in solving large problems using 31 PEs. We also measured the communication
overhead of dynamic partitioning, but it was even smaller (< 1%).

534 K. Ohmura and K. Ueda

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

co
m

m
un

ic
at

io
n

tim
e

/ r
un

tim
e

(%
)

runtime

Fig. 8. Time spent on lemma exchange by the winning worker

3.3 Effect of Preprocessing and Comparison with Parallel SAT

The evaluation of the previous section deliberately excluded preprocessing (CNF
minimization) to focus on the parallel speedup of the core algorithm. Never-
theless, the effect of preprocessing on parallel performance is of great concern,
and whether c-sat outperforms other parallel solvers would be another point of
interest. This section outlines our additional evaluation, in which the time limit
was set to 1200s for each problem.

Firstly, we built minimized CNF files for all the 286 problems using the pre-
processor of MiniSat 2.0, and tested them using MiniSat 1.14 and c-sat (31 PEs).
Preprocessing improved the execution time, but the improvement varied widely
among individual problems. The parallel speedup was not reduced by preprocess-
ing: for the 149 preprocessed problems whose MiniSat execution time exceeded
120s and whose c-sat execution time didn’t exceed 1200s, the geometric mean of
parallel speedup was >31 (SAT), >17 (UNSAT) and >22 (overall).

It is quite difficult to make quantitative comparison between different par-
allel solvers designed to run on different platforms (due to architectural differ-
ences, performance variances, etc.), but our experiments gave us the following
observations.

SAT-Race 2008 reports the performance of three parallel solvers on four cores
[10]. To compare the reported performance with ours, we first measured the
performance ratio between the two platforms using the 2007 version of Min-
iSat. Taking the ratio (the SAT-Race machine being 1.8 times faster rather
consistently) into account, it is safe to say that c-sat (i.e., with no tuning of
the sequential core but with 31 PEs) with sequential preprocessing solves more
problems consistently than ManySat, the winner of the SAT-Race, and will be
2-3 times faster than ManySat. Of the five benchmark suites used in SAT-Race
2008 (excluding the Mixed Suite), c-sat performed best at the Mironov-Zhang

c-sat: A Parallel SAT Solver for Clusters 535

Table 7. Number of problems solved within 1200s by Cluster B and the total runtime

MiniSat 13PEs 25PEs 37PEs 49PEs 61PEs
solved (SAT) 46 75 75 79 79 80

solved (UNSAT) 60 84 89 91 91 95
solved 106 159 164 170 170 175

total runtime (SAT) >198573s 24905s 19009s 15995s 15235s 11028s
total runtime (UNSAT) >181108s 29846s 20641s 20318s 17320s 12535s

total >379682s 54751s 39650s 36313s 32555s 23563s

Suite in comparison with ManySat (6.5× faster), and then at the Post Suite
(3.1× faster). It outperformed ManySat to the least degree (2.1× faster) for
the Manolios Suite. Interestingly, the performance characteristics of c-sat were
quite close to those of ManySat and quite different from those of pMiniSat and
MiraXT, reflecting the solver design.

Comparison with PMSat [4] turned out to be quite difficult because of many
parameters/options available. We ran PMSat with 31 PEs with 8 basic options
(four methods of assumption generation, each with or without lemma exchange)
on 15 problems whose MiniSat execution time ranged from 180s to 908s (SAT)
and 518s (UNSAT). The performance of PMSat was highly setting-dependent as
reported in [4]. It outperformed c-sat on some SAT problems under some settings,
but it seemed difficult to determine the optimal setting in advance. In contrast,
c-sat behaved much more stably, and consistently solved all the problems tested,
showing its relative strength in UNSAT problems.

3.4 Scalability

It is important to evaluate parallel software using different platforms to find out
any platform-dependent peculiarities.

We used Cluster B (with more processors) to evaluate the scalability of c-
sat, using the same configuration (i.e., five workers per master). Although the
both clusters connect their nodes using gigabit Ethernet and are equipped with
exactly the same version of MPICH, Cluster B showed poorer and less stable
performance in internode communication even for micro-benchmark problems.
With the same configuration as used in Section 3.2 (31 PEs), the communication
overhead on Cluster B was around 40% for the SAT-Race 2006 problems as
opposed to 10% on Cluster A; the higher overhead was ascertained also with
a wall clock. To beat the overhead, we switched off dynamic partitioning and
ran 216 problems from SAT-Race 2006 and SAT 2007 Competitions (we did
not—though still plan to—use SAT-Race 2008 due to the limited availability of
Cluster B). The results are shown in Table 7 and Fig. 9.

In spite of the higher communication overhead, c-sat showed parallel speedup
up to 61 PEs. Table 8 shows speedup for problems solved by c-sat within 1200
seconds. The numbers are not directly comparable with the numbers obtained
from Cluster A (Fig. 5) due to different time limits on both MiniSat and c-sat

536 K. Ohmura and K. Ueda

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

ru
nt

im
e

(s
ec

)

number of problems

MiniSat
c-sat (13PEs)
c-sat (25PEs)
c-sat (37PEs)
c-sat (49PEs)
c-sat (61PEs)

Fig. 9. Execution time with different degree of parallelism (Cluster B)

Table 8. Parallel speedup with Cluster B

MiniSat 13PEs 19PEs 25PEs 31PEs 37PEs 43PEs 49PEs 55PEs 61PEs
SAT 1 16 21 24 22 30 30 23 36 33

UNSAT 1 7 9 10 12 15 15 15 19 19
total 1 11 14 15 16 21 21 18 26 25

and the different sets of benchmark problems. However, by recalculating and
summarizing the numbers of Fig. 5 by using the same time limits, we made sure
that Cluster B with 61 PEs showed better parallel speedup than Cluster A with
31 PEs. Finally, the average overhead of lemma exchange (in total runtime) was
39%, but it was only 10% for problems that took more than 120 seconds.

4 Conclusion

We have designed and implemented a cluster-oriented parallel SAT solver c-sat
based on MiniSat, and evaluated its performance using a large number of prob-
lems. Through several design decisions (on the overall architecture, search and
lemma exchange) and tuning, which were both based on a number of preliminary
experiments, we obtained at least 31-fold speedup (geometric mean) for satisfi-
able problems and at least 19-fold speedup for unsatisfiable problems using 31
PEs located on 8 compute nodes connected by gigabit Ethernet. Thus the cluster
computing of SAT can be quite efficient (in terms of parallel speedup) and be
used to address hard problems without being limited by the current multicore
technology. The advantage of c-sat is readily applicable to enhancing the perfor-
mance of existing bounded model checkers and SAT-based automated planners.

c-sat: A Parallel SAT Solver for Clusters 537

Better stability of performance is another advantage of large-scale solvers. Mes-
sage passing is considered less efficient than shared-memory, but c-sat realized
effective parallel processing with less than 10% of communication overhead for
non-small problems.

Our parallelization have deliberately inherited the basic algorithm, heuristics
and various parameters of sequential MiniSat and have attained speedup by the
tuning of the parallelization part. The same technique should be applicable to
other sequential, cutting-edge SAT solvers.

Many things remain to be done in the context of parallel processing, which
include: (i) combination with finer-grain parallelism and coarser-grain paral-
lelism (such as algorithm portfolio [7]), (ii) automatic and adaptive tuning of
parameters, (iii) using parallelism to ensure the quality of lemmas, and (iv)
application to variations of SAT.

References

1. Blochinger, W., Sinz, C., Küchlin, W.: Parallel Propositional Satisfiability Check-
ing with Distributed Dynamic Learning. Parallel Computing 29, 969–994 (2003)

2. Blochinger, W.: Towards Robustness in Parallel SAT Solving. In: Proc. ParCo
2005, John von Neumann Institute for Computing, pp. 301–308 (2006)

3. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Gil, L., Flores, P., Silveira, L.M.: PMSat: a Parallel Version of MiniSAT. JSAT 6,
71–98 (2008)

5. Hamadi, Y., Jabbour, S., Sais, L.: ManySat: Solver Description. Technical Report
MSR-TR-2008-83, Microsoft Research (2008)

6. Hyvärinen, A., Junttila, T., Niemelä, I.: Incorporating Learning in Grid-Based
Randomized SAT Solving. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA
2008. LNCS, vol. 5253, pp. 247–261. Springer, Heidelberg (2008)

7. Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A Compet-
itive and Cooperative Approach to Propositional Satisfiability. Discrete Applied
Mathematics 154(16), 2291–2306 (2006)

8. Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT Solving. In: Proc. 12th
Asia and South Pacific Design Automation Conference, pp. 926–931 (2007)

9. Plaza, S., Kountainis, I., Andraus, Z., Bertacco, V., Mudge, T.: Advanced and In-
sights into Parallel SAT Solving. In: Proc. 15th Int. Workshop on Logic & Synthesis
(IWLS 2006), pp. 188–194 (2006)

10. SAT-Race 2008 Results (2008),
http://baldur.iti.uka.de/sat-race-2008/results.html

11. Singer, D.: Parallel Resolution of the Satisfiability Problem: A Survey. In: Talbi,
E.-G. (ed.) Parallel Combinatorial Optimization, ch. 5. Wiley, Chichester (2006)

12. Zhang, H.: On Subsumption Removal and On-the-Fly CNF Simplification. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005, vol. 3569, pp. 482–489. Springer, Heidelberg
(2005)

13. Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a Distributed Propositional Prover
and ItsApplication toQuasigroupProblems.J.Symb.Comput.21(4),543–560(1996)

14. Zhang, L., Malik, S.: The Quest for Efficient Boolean Satisfiability Solvers. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 17–36. Springer,
Heidelberg (2002)

http://baldur.iti.uka.de/sat-race-2008/results.html

Author Index

Ansótegui, Carlos 427
Argelich, Josep 161
Aśın, Roberto 167
Atserias, Albert 114

Bacchus, Fahiem 412
Bailleux, Olivier 181
Balint, Adrian 284
Becker, Bernd 509
Belov, Anton 258
Berthold, Timo 441
Beyersdorff, Olaf 51, 65
Biere, Armin 237, 398
Bonet, Maŕıa Luisa 4, 427
Boufkhad, Yacine 181
Bubeck, Uwe 391

Cabiscol, Alba 161
Castelluccia, Claude 244
Chebiryak, Yury 18
Chen, Jingchao 298
Creignou, Nadia 363

Darwiche, Adnan 341
Daudé, Hervé 363
Dilkina, Bistra 73

Egly, Uwe 363

Fichte, Johannes Klaus 114

Gableske, Oliver 284
Giunchiglia, Enrico 509
Goldberg, Eugene 147
Gomes, Carla P. 73
Goultiaeva, Alexandra 412

Haim, Shai 312
Haller, Leopold 18
Han, Hyojung 209
Heinz, Stefan 441
Henn, Michael 284
Heule, Marijn J.H. 223
Hsu, Eric I. 377

Iser, Markus 356
Iverson, Vicki 412

Janičić, Predrag 326
Jin, HoonSang 195
Johannsen, Daniel 80
Johannsen, Jan 128

Kim, Hyondeuk 195
Kleine Büning, Hans 391
Kojevnikov, Arist 32
Kroc, Lukas 447
Kroening, Daniel 18
Kulikov, Alexander S. 32

Larrosa, Javier 453
Levy, Jordi 427
Lewis, Matthew 509
Li, Chu Min 467
Liffiton, Mark H. 481
Lonsing, Florian 398
Lynce, Inês 161

Manquinho, Vasco 495
Manyà, Felip 161, 467
Marić, Filip 326
Marin, Paolo 509
Marques-Silva, Joao 495
McIlraith, Sheila A. 377
Meier, Arne 51
Mohamedou, Nouredine 467
Müller, Sebastian 65

Narizzano, Massimo 509
Nieuwenhuis, Robert 1, 167, 453
Nikolić, Mladen 326
Nohl, Karsten 244

Ohmura, Kei 524
Oliveras, Albert 167, 453

Pfetsch, Marc E. 441
Pipatsrisawat, Knot 341
Planes, Jordi 467, 495
Porschen, Stefan 86

540 Author Index

Razgon, Igor 80
Rodŕıguez-Carbonell, Enric 167, 453
Rossignol, Raphaël 363
Roussel, Olivier 181

Sabharwal, Ashish 73, 447
Sakallah, Karem A. 481
Samer, Marko 45
Schaafsma, Bas 223
Schmidt, Tatjana 86
Schubert, Tobias 509
Selman, Bart 447
Sinz, Carsten 356
Skvortsov, Evgeny S. 265
Somenzi, Fabio 195, 209
Soos, Mate 244
Sörensson, Niklas 237
Speckenmeyer, Ewald 86
St. John, Katherine 4
Stachniak, Zbigniew 258
Szeider, Stefan 276

Thomas, Michael 51
Thurley, Marc 114
Traxler, Patrick 101

Ueda, Kazunori 524

Van Gelder, Allen 141
van Maaren, Hans 223
Vardi, Moshe Y. 2
Veith, Helmut 45
Vollmer, Heribert 51

Wahl, Thomas 18
Wahlström, Magnus 80
Walsh, Toby 312

Yaroslavtsev, Grigory 32

Zhao, Xishun 391

	Title Page
	Preface
	Organisation
	Table of Contents
	1. Invited Talks
	SAT Modulo Theories: Enhancing SAT with Special-Purpose Algorithms
	Symbolic Techniques in Propositional Satisfiability Solving
	References

	2. Applications of SAT
	Efficiently Calculating Evolutionary Tree Measures Using SAT
	Introduction
	Hybridization Networks and Agreement Forests
	Methods
	Encoding
	Data
	Results
	Discussion and Conclusion
	References

	Finding Lean Induced Cycles in Binary Hypercubes
	Introduction
	Preliminaries
	Computing Lean Induced Cycles
	A SAT-Encoding of Induced Cycles with Shunned Nodes
	Computing Lean Induced Cycles Using a SAT Solver

	Classification of Induced Cycles
	Identifying Equivalence Classes Using Coordinate Sequences
	Optimizations
	Evaluation

	Conclusion
	References
	Appendix

	Finding Efficient Circuits Using SAT-Solvers
	Introduction
	General Setting
	Using SAT-Solvers for Finding Small Circuits
	Representing Circuits as CNFs
	Residue Number Encodings

	New Upper Bounds for MOD_{3}
	Empirical Studies
	Further Directions
	References

	Encoding Treewidth into SAT
	Introduction
	Treewidth
	The Encoding
	Conclusion
	References

	3. Complexity Theory
	The Complexity of Reasoning for Fragments of Default Logic
	Introduction
	Preliminaries
	Boolean Clones and the Complexity of the Implication Problem
	Default Logic
	The Complexity of Default Reasoning
	The Extension Existence Problem
	The Credulous and the Sceptical Reasoning Problem

	Conclusion
	References

	Does Advice Help to Prove Propositional Tautologies?
	Introduction
	Proof Systems with Advice – and without
	OptimalProofSystems
	Simplifying the Advice
	Conclusion
	References

	4. Structures for SAT
	Backdoors in the Context of Learning
	Introduction
	Preliminaries
	Backdoor Sets for Clause Learning SAT Solvers
	Experimental Results
	References

	Solving SAT for CNF Formulas with a One-Sided Restriction on Variable Occurrences
	Introduction
	SAT for CNF Formulas with Unique Minor Literals
	SAT of CNF Formulas with at Most d Minor Literals
	Further Generalization
	References

	On Some Aspects of Mixed Horn Formulas
	Introduction
	Classical NP-Complete Problems Encoded as MHF-SAT
	Some NP-Complete Subclasses of MHF
	Algorithms for SAT of Further Mixed Horn Classes
	References

	Variable Influences in Conjunctive Normal Forms
	Introduction
	Upper Bounds on Total Influence and Applications
	Related Work: PPZ and Its Extension
	Background: Optimal Low Total Influence

	Notation
	Variable Influences and Expectations
	Conjunctive Normal Forms

	Upper Bound on Total Influence
	Calculating Variable Influences
	A Special Case of a Conjecture of Kahn and Kalai
	References

	5. Resolution and SAT
	Clause-Learning Algorithms with Many Restarts and Bounded-Width Resolution
	Introduction
	Preliminaries
	Algorithm and Resolution Width
	Definition of the Algorithm
	Runs of the Algorithm
	Restart Policy, Learning Scheme, and Branching Strategy
	Resolution Width

	Experiments on Tseitin Formulas
	Results

	Future Work
	References

	An Exponential Lower Bound for Width-Restricted Clause Learning
	Introduction
	Preliminaries
	The Ordering Principle
	Negative Calculus
	Cyclic Clauses
	Proof of the Lower Bound
	Implication Graph Formulas
	Conclusion
	References

	Improved Conflict-Clause Minimization Leads to Improved Propositional Proof Traces
	Introduction
	Conflict Clauses and Conflict Graphs
	Conflict Clause Minimization in MiniSat 2.0
	New Minimization Procedure
	Experimental Results
	References

	Boundary Points and Resolution
	Introduction
	Basic Definitions
	Basic Properties of Boundary Points
	Basic Propositions
	Elimination of Boundary Points by Adding Resolvents
	Boundary Points and Clause Redundancy

	Resolution Proofs and Boundary Points
	Resolution Proof as Boundary Point Elimination
	SBR Metric and Proof Redundancy

	Equivalence Checking Formulas
	Building Equivalence Checking Formulas
	Short Proofs for Equivalence Checking Formulas

	Experimental Results
	Some Background
	Conclusions and Directions for Future Research
	References

	6. Translations to CNF
	Sequential Encodings from Max-CSP into Partial Max-SAT
	Introduction
	Encodings from Max-CSP into Partial Max-SAT
	Standard Encodings
	Regular Encodings

	Sequential Encodings
	Experimental Results
	References

	Cardinality Networks and Their Applications
	Introduction
	Preliminaries
	Half Merging and Half Sorting Networks
	Half Merging Networks
	Half Sorting Networks

	Cardinality Networks
	Simplified Merging Networks
	K-Cardinality Networks

	Application to SAT Solving and Extensions
	Evaluation
	Conclusions and Further Work
	References

	New Encodings of Pseudo-Boolean Constraints into CNF
	Introduction
	Definitions and Notations
	Unary Representation and Cardinality Constraints
	Global and Local Polynomial Watchdog Encoding Schemes
	Polynomial Watchdog
	Global Polynomial Watchdog
	Local Polynomial Watchdog
	Implementation

	Related Work
	Synthesis and Perspectives
	References

	Efficient Term-ITE Conversion for Satisfiability Modulo Theories
	Introduction
	Preliminaries
	Term-ITE Conversion
	Two Methods for Term-ITE Conversion
	Term-ITE Conversion with Cofactors

	Simple Preprocessing
	Algorithm
	Related Work
	Experimental Results
	Conclusions
	References

	7. Techniques for Conflict-Driven SAT Solvers
	On-the-Fly Clause Improvement
	Introduction
	Preliminaries
	On-the-Fly Simplification Based on Resolution
	Application to Preprocessors
	Experimental Results
	Conclusions
	References

	Dynamic Symmetry Breaking by Simulating Zykov Contraction
	Introduction
	Preliminaries
	The Satisfiability Problem
	The k-Coloring Problem
	Zykov Contraction Algorithms

	MergeClauses
	Transforming Conflict Clauses
	Implementation
	Optimizations
	Proof of Correctness of Merge Conflict Clauses

	Results
	Medium Sized Random Graphs
	DIMACS Benchmarks

	Conclusions and Future Research
	References

	Minimizing Learned Clauses
	Introduction
	Minimization
	Experiments
	Conclusion
	References

	Extending SAT Solvers to Cryptographic Problems
	Introduction
	Background
	Stream Ciphers
	SAT Solvers
	Algebraic Cryptanalysis

	Adapting the SAT Solver
	XOR Support
	Gaussian Elimination
	Dynamic Behavior Analysis

	Adapting the Cipher Representation
	Logical Circuit Representation
	Generating the Logical Circuit Representation
	Optimizing the Representation of LFSRs
	Optimizing the Representation of Non-linear Functions

	Implemented Attacks
	Crypto-1 and HiTag2
	Bivium

	Conclusions
	References

	8. Solving SAT by Local Search
	Improving Variable Selection Process in Stochastic Local Search for Propositional Satisfiability
	Introduction
	Selecting Candidate Variables
	Literal Commitment Strategy
	Experimental Evaluation
	Related Work and Final Remarks
	References

	A Theoretical Analysis of Search in GSAT
	Introduction
	Definitions
	MainResult
	Conclusion and Future Work
	References

	The Parameterized Complexity of k-Flip Local Search for SAT and MAX SAT
	Introduction
	Preliminaries
	CNF Formulas and Truth Assignments
	Parameterized Complexity

	W-Hardness
	Fixed-Parameter Tractability
	References

	9. Hybrid SAT Solvers
	A Novel Approach to Combine a SLS- and a DPLL-Solver for the Satisfiability Problem
	Introduction
	Related Work
	Preliminary Study
	Search Space Partition (SSP)

	Explaining the Construction and Use of Search Space Partitions
	hybridGM
	The SAT Solvers Used for the Hybridization
	{\it gNovelty+}
	{\it March_ks}

	Empirical Study
	Soft- and Hardware
	The Benchmark Formulae
	Results

	Conclusions and Future Work
	References

	Building a Hybrid SAT Solver via Conflict-Driven, Look-Ahead and XOR Reasoning Techniques
	Introduction
	Embedding XOR Reasoning into Conflict-Driven DPLL
	Variant of Conflict-Driven DPLL
	A Hybrid SAT Solver
	Various Optimizations
	Restart Strategies
	Clause Learning Database Maintenance

	Empirical Evaluation
	Conclusions
	References

	10. Automatic Adaption of SAT Solvers
	Restart Strategy Selection Using Machine Learning Techniques
	Introduction
	Background
	$LMPick$: A Restart-Strategy Selector
	Restart Strategies Portfolio
	Supervised Machine Learning
	Feature Vector
	Operation of the Solver

	Results
	Experiment Settings
	Benchmarks
	Restart Strategy Portfolio Performance

	Conclusions and Future Work
	References

	Instance-Based Selection of Policies for SAT Solvers
	Introduction
	Background
	Methodology
	Experiments and Evaluation
	Testing Hypotheses
	Exploitation Phase

	Related Work
	Conclusions and Future Work
	References

	Width-Based Restart Policies for Clause-Learning Satisfiability Solvers
	Introduction
	Preliminaries
	Resolution Proofs
	Modern Clause-Learning SAT Solvers
	A Width-Based Algorithm for SAT

	Existing and Width-Based Restart Policies
	Existing Restart Policies
	Width-Based Restart Policy

	Potential Benefits of Width-Based Policies
	Adjusting Width Limits
	Experimental Results
	Related Work
	Conclusions
	References

	Problem-Sensitive Restart Heuristics for the DPLL Procedure
	Introduction
	Problem-Sensitive Restart Heuristics
	Experimental Evaluation
	Related Work and Conclusion
	References

	11. Stochastic Approaches to SAT Solving
	{\sf (1,2)-QSAT}: A Good Candidate for Understanding Phase Transitions Mechanisms
	Introduction
	Theoretical Results
	Definition of the Problem and Main Result
	Pure Snakes
	Dominant Pure Snakes at the Phase Transition

	Experimental Results
	The Threshold for Small Values of m
	Numerical Estimates of the Probability of Satisfiability for Critical {\sf (1,2)-QCNF} Formulas
	Where the Hard Instances Are

	Conclusion
	References

	VARSAT: Integrating Novel Probabilistic Inference Techniques with DPLL Search
	Introduction
	Background
	Definitions
	Probabilistic Methods for Estimating Bias
	Practical Design Considerations
	Branching Strategy
	Deactivation Threshold
	Decimation Block Size
	Integrating Learned Clauses
	Bias Estimation Technique

	Empirical Performance
	Conclusions and Future Work
	References

	12. QBFs and Their Representations
	Resolution and Expressiveness of Subclasses of Quantified Boolean Formulas and Circuits
	Introduction
	Extensions of Unit Resolution
	Structure of Resolvents and Circuits
	Conclusion
	References

	A Compact Representation for Syntactic Dependencies in QBFs
	Introduction
	Motivation

	Preliminaries
	Theoretical Background
	Practical Application
	A Tree-Shaped Representation of \leadsto
	Dependency Computation by Connection-Forests
	A Graph Representation of $D^{\rm std}$

	Experimental Results
	Conclusion
	References

	Beyond CNF: A Circuit-Based QBF Solver
	Introduction
	Background
	QBF

	A Circuit-Based Solver
	Propagation
	Don’t Care Propagation
	Clause Learning
	Cube Learning

	Related Work
	CCDNF
	Don’t Care Literals
	Dual CNF and DNF
	Negation Normal Form

	Experimental Results
	Conclusions and Future Work
	References

	13. Optimisation Algorithms
	Solving (Weighted) Partial MaxSAT through Satisfiability Testing
	Introduction
	Preliminaries
	A Weighted Partial MaxSAT Algorithm
	Another Partial MaxSAT Algorithm
	Experimental Results
	References

	Nonlinear Pseudo-Boolean Optimization: Relaxation or Propagation?
	Introduction
	Problem Definition
	Handling of Nonlinearities
	Computational Results
	References

	Relaxed DPLL Search for MaxSAT
	Introduction
	Using Relaxed DPLL as a Heuristic for MaxSAT
	Experimental Results
	References

	Branch and Bound for Boolean Optimization and the Generation of Optimality Certificates
	Introduction
	Preliminaries
	Abstract Branch and Bound
	{\tt DPLL_{BB}} Procedure
	{\tt DPLL_{BB}} Example

	Certificates of Optimality
	Generation of k-Lower-Bound Certificates

	Instances of {\tt DPLL_{BB}} and Lower Bounding Procedures
	Linear Cost Functions
	Max-SAT

	Conclusions
	References

	Exploiting Cycle Structures in Max-SAT
	Introduction
	Preliminaries
	RelatedWork
	Underestimation Component
	Inference Component

	Cycle Structures and Lower Bounds
	Heuristics for Applying MaxSAT Resolution in Cycle Structures
	Experimental Results and Analysis
	Conclusions
	References

	Generalizing Core-Guided Max-SAT
	Introduction
	Preliminaries
	UseofCoresinMax-SAT
	Using Cores to Find MCSes
	Algorithm
	Completeness/Correctness Proof

	Experimental Results
	Conclusion
	References
	Proofs

	Algorithms for Weighted Boolean Optimization
	Introduction
	Preliminaries
	Maximum Satisfiability
	Pseudo-Boolean Optimization
	Translations between MaxSAT and PBO
	Unsatisfiability-BasedMaxSAT

	Unsatisfiability-BasedWeighted MaxSAT
	Weighted Boolean Optimization
	Unsatisfiability-BasedWBO
	Other Algorithms forWBO

	Results
	Related Work
	Conclusions and Future Work
	References

	14. Distributed and Parallel Solving
	PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing
	Introduction
	QBF Problem/Solver Overview
	Sequential QBF Solver
	Parallel QBF Solver
	Current Sequential QBF Solvers
	Previous Parallel QBF Solver Work

	PaQuBE Design Overview
	General Properties
	Initialization
	Single Quantification Level Scheduling
	Knowledge Sharing

	Experimental Results
	Conclusion and Future Work
	References

	{\sf c-sat}: A Parallel SAT Solver for Clusters
	Introduction
	Parallel SAT Solver: {\sf c-sat}
	Layered Master-Worker Architecture
	Decision Heuristics
	Dynamic Partitioning of Search Trees
	Lemma Exchange

	Experimental Results
	Preliminary Evaluation
	Main Evaluation and Comparison with Sequential SAT
	Effect of Preprocessing and Comparison with Parallel SAT
	Scalability

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

