
A.A. Ozok and P. Zaphiris (Eds.): Online Communities, LNCS 5621, pp. 153–161, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Automatic Generation of Non-verbal Behavior for
Agents in Virtual Worlds: A System for Supporting

Multimodal Conversations of Bots and Avatars

Werner Breitfuss1, Helmut Prendinger2, and Mitsuru Ishizuka3

1 University of Tokyo , 7-3-1 Hongo, Bunkyo-ku,
Tokyo, 113-8656, Japan

werner@mi.ci.i.u-tokyo.ac.jp
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo, 101-8430, Japan
helmut@nii.ac.jp

3 University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo, 113-8656, Japan

ishizuka@i.u-tokyo.ac.jp

Abstract. This paper presents a system capable of automatically adding ges-
tures to an embodied virtual character processing information from a simple
text input. Gestures are generated based on the analysis of linguistic and contex-
tual information of the input text. The system is embedded in the virtual world
called second life and consists of an in world object and an off world server
component that handles the analysis. Either a user controlled avatar or a non
user controlled character can be used to display the gestures, that are timed with
speech output from an Text-to-Speech system, and so show non verbal behavior
without pushing the user to manually select it.

Keywords: Embodied Virtual Characters, Animated Agent Systems, Multimodal
Output Generation, Multimodal Presentations, Virtual Worlds.

1 Introduction

Virtual agents represent a powerful human-computer interface, as they can embody
behavior that a human may identify with [10], this ability may encourage users to
engage in a more natural and immersive interaction and establish bonds with them
[4].This paper describes an automatic non-verbal behavior generation system for
virtual agents using linguistic and contextual information retrieved from text. It al-
lows us to transform text into an agent behavior script enriched by eye gaze and con-
versational gesture behavior. The agents’ gaze behavior is informed by theories of
human face-to-face gaze behavior. Gestures are generated based on the analysis of
linguistic and contextual information of the input text. The aim of our work is to gen-
erate non-verbal behavior automatically for conversations utilizing virtual agents, so
that the user can focus on typing the text, which is then just feed into the system. A
salient feature of our system is that we support behavior generation not only for the

154 W. Breitfuss, H. Prendinger, and M. Ishizuka

role of the speaking agent, but also for listening agents, who might use backchannel
behavior in response to the speaker agent. The increasing popularity of virtual worlds
pushes the need for virtual characters either controlled directly by the user, called
avatars, or controlled by a script, called bots.

This system can be used to provide natural gestures for both types and since all be-
haviors are generated automatically, there is no extra effort the user would have to
contribute to increase the naturalness of the characters behavior and so provides a
convenient method to have multimodal conversations in virtual environments. The
speech is generated automatically by a plug-in [3] that uses Microsoft’s SAPI to trans-
form text messages in Second Life into speech output at the clients machine, Second
Life own Voice over IP client can be used to relay that speech output back in world. So
we are able to provide a multimodal conversations and dialogues in a 3d interactive
environment that doesn’t encumber the user with extra workload.

In the next part, the paper discusses related research, while section 3 describes the
behavior generation and section 4 focuses on the application using it. Section 5 gives
a brief future outlook and concludes the paper.

2 Related Research

The existing character agent systems already support the automated generation of
some behaviors, such as automatic lip-synchronization most of this systems that focus
on single agents , one of the first ones to do so was the BEAT system [2] it generates
synthesized speech and synchronized non-verbal behavior for a single animated agent.
It uses plain text as input, which is then transformed into animated behavior. First,
text is annotated with contextual and linguistic information, based on which different
(possibly conflicting) gestures are suggested. Next, the suggested behaviors are proc-
essed in a ‘filtering’ module that eliminates gestures that are incompatible. In the final
step, a set of animations is produced that can be executed, after necessary adoptions,
by an animation system. The system described in [8] generates both the language and
deictic gestures of a robot-like virtual character for giving directions to a user.

A different approach, based on machine learning, is suggested in [7]. It was used in
the COHIBIT system, where the author first has to provide a script containing the
actions for two virtual characters. In the next step the author writes simple gesture
rules using his or her expert knowledge. Using this corpus of annotated actions the
system can learn new rules. In the third step the system suggests the most appropriate
gestures to the author, which are, after resolving conflicts and filtering, added to the
already existing ones. Finally it produces a script with the gesture behavior of both
virtual characters. This work differs from ours in the sense that it uses input from the
user making supporting taking some workload of him, but the generation is not
entirely automatically as in our approach.

Many of the rules used in our system are derived from works of psychologists and
linguists. Heylen [5] investigated the many different functions of gaze in conversation
and its importance for the design of believable virtual characters. The gaze behavior
of our agents is also informed by the empirically founded gaze models in [6, 9, 12].
Kendon [6] analyzed gaze behavior based on two-person dialogues and found that
gaze is used to regulate the exchange between the speaker and listener. In [12] evalu-
ates gaze behavior in multiparty environments, where four-person groups discussed
current-affair topics in face-to-face meetings.

 Automatic Generation of Non-verbal Behavior for Agents in Virtual Worlds 155

3 Behavior Generation

The Behavior generation in our system operates on the utterance level, for which cer-
tain rules are defined. The input we use thus consists of a simple text line. Based on
contextual and linguistic information of the text, the behavior for the speaking and the
listening agents is suggested. We do not only apply one layer of rules but also a second
layer based on keyword and phrase spotting and a third layer, which is using iteration
to align suggested gestures to each other. Also many of the gestures have a certain
possibility of occurrence, which adds a random factor, so that the behavior of the ges-
turing character doesn’t become redundant which would make the conversation less
natural.

As eye gaze is one of our main features, we use a set of rules and algorithms to
generate the appropriate patterns for both speaking and listening agent. The relation-
ship between eye gaze, theme/rheme, and turn-taking was the focus in many psycho-
linguistic studies, we used those results to define an algorithm for controlling the gaze
behavior of our two different roles.

Gesture generation is designed similar to gaze generation. Former studies say that
50% of the gestures humans use in a conversation are simple beat gestures. In accord
with that finding, the standard gesture we use is a single beat, which is suggested
whenever there appears a new word in the utterance. In the next step we identify
words that can be played out by gestures that are more specific than the beat gesture.
E.g., when the sentence contains the adjective “big”, an iconic gesture (“show size”)
will be suggested, a gesture where our agents holds both hands with a certain distance
between each other in front of his body. The information which gesture can be associ-
ated with what word is stored in a XSL based database, a typical entry is depicted by
figure 1, all entries have the attributes priority and type of the gesture.

<xsl:templatematch= "//W[
.//@LEM='cu' or .//@LEM='bye' or
.//@LEM='goodbye' or .//@LEM='bye bye']">
 <gesture priority="3" type="GOODBYE">
 <xsl:copy>
 <xsl:apply-templates />
 </xsl:copy>
 </gesture>
</xsl:template>

Fig. 1. Entry for the goodbye gesture

To show a small example we take the sentence “This is a small example how to
draw” and present the output of our system for the speaking agent (figure 2) and the
listening agent(figure 3). The root node of the tree is always an utterance followed by
a speech pause between the theme and rheme of the sentence. The nodes “Look
away” at the beginning of the sentence and “Look at listener” define the gaze behav-
iour which is suggested by our algorithm (for further details on the gaze generation
see [1]).

156 W. Breitfuss, H. Prendinger, and M. Ishizuka

Fig. 2. A typical behavior tree for a speaking character

The gesture behaviour is generated according to dedicated gesture generation rules
of the Behaviour Generation module. In this example, a beat gesture is selected to
accompany the word “This”, an iconic gesture (for describing something small) is
suggested to co-occur with the phrase “small example” and a open-arms gesture along
with the words “how to”.

The behavior tree of the listener agent is generated similarly to that of the speaker
agent. It is based also on the output from the Language Tagging module of the
speaker agent, but applies listener behavior generation rules instead of speaker rules.
Again, we start with root node “UTTERANCE”. During the speaker’s speech pause,
no behavior for the listener agent is defined. The listener’s gaze behavior is added
similar to the speakers i.e. the listener is looking at the speaker when the utterance
begins. Since the listener agent is paying attention to the speaker, it continues to look
at the speaker also in the “rheme part” of the utterance. Thereafter, appropriate ges-
tures are suggested for the listener agent. In our system, a head nod is a basic gesture
type for the listener and appears often to signalize attention, so it is added whenever a
basic speaker gesture like a simple beat occurs, for more complex gestures like a
deictic gestures instead of adding a head node we adopt the gaze. This makes the
listener behavior more natural and increases the overall communication quality be-
tween the two roles.

The last module combines the speaker and listener tree by adding the actions of
both agents for every utterance into one MPML3D structure called “task”. The
MPML Script contains parallel and synchronized actions which can be started and
ended at the beginning, middle, or end of a certain word. First we add all the actions

 Automatic Generation of Non-verbal Behavior for Agents in Virtual Worlds 157

Fig. 3. A typical behavior tree for a speaking character

that should occur before the speaker starts to talk, mostly gaze behavior, like looking
away from the speaker and idle gestures for the listener.

The next action that is added is speaking itself. In the following step, we add the
gaze behavior, which has to be aligned with the appropriate words. Gaze is imple-
mented by having the head turn to a certain direction. As the last level we add the
gesture for the speaking agent and the listening agent.

4 Applications

The System itself consists of two parts one is the server part, where all of the text
analysis is done and the client part that actually controls the agent and displays its
behavior. The architecture of our system on the server side, as already mentioned,
operates on three modules, a language module, the actual behavior generation mod-
ule, and a module that generates a displayable script (MPML3D) and/or the messages
that is sent back to the Second Life client . For this we choose a modular pipelined
architecture to support future extensions. The code of the system is written in Java,
and the XML format is used to represent and exchange data between modules.

The client side, consists of an object in Second Life containing the needed gestures
in form of predefined animations and scripts that handle the communication as well as
the activation of the animations. The scripts are written in the official Second Life
scripting language, LindenScript.

158 W. Breitfuss, H. Prendinger, and M. Ishizuka

1234-678 BEAT_TWO:5 POINT_LEFT:12 16

Fig. 4. A typical message from the server sent to the client

4.1 Server Side

The input for our analysis can either be a single text line forming a single string,
which is taken from the chat message in Second Life, that the user enters, or a prede-
fined dialogue script , depending whether the system is used for the instant messaging
and so controlling an avatar or to generate a MPML-SL script to control bots. In the
first case the interface between the Second Life Client and our Server is a simple Java
Servlet that passes messages between both Systems. First when the message arrives it
is analyzed like we described in the previous chapter, after that, since we only display
a pair of gestures, the most fitting gestures are selected. For selection we use a priority
system, where beat gestures are counted as the once with the least priority and meta-
phoric gestures with the highest , since they transport more meaning, the system also
takes into account how often a gesture occurs in the utterance and adopts its priority
accordingly. After the selection, the message to the client side is composed, it consists
of the overall word count of the utterance, the gesture pair together with the index of
the word at which they should be displayed (figure 4). The information of the timing
is derived from the treelike structure we use for generation, and resembles the speaker
behavior, since we have no control over other avatars in this scenario, the listener
behavior is disregarded.

4.2 Client Side – AuGe System

In the first case the used avatar has to wear our AuGe Bands, an band like object
generated in Second Life, once a chat message is typed in and the user hits the enter
button , our object detects the new message and sends it to the Java Servlet which
passes it on to the server. After that the system output is sent back to the users client
and the new message is processed by the script inside the gesture bands. As shown in
figure 4 the message contains 3 main parts.

At first we have the avatar ID to prevent other gesture bands in the proximity to
accidently start the same gestures on their avatar. The second part consists of two
gestures, the name of the gesture and timing information after the ”:” which is the
index of the word on which the animation should start. We decided to use only two
gestures, one for the THEME and one for the RHEME part, or if a longer text is typed
containing multiple sentences the two gestures with the highest priority since more
gestures are troublesome as the animations often get delayed over overlay due to
unpredictable lag or graphical issues on the user’s side.

The last part is the word count of the whole text, and is used to time the lip move-
ment, our system doesn’t provide perfect lip synchronization, however since no lip
movement looks very unnatural, we use a facial animation which opens and closes the
mouth in a loop.

4.3 Client Side – MPML3D-SL System

Different to the AuGe Bands, we have a full script beforehand and no real time proc-
essing is necessary. Another big difference in this case is that we use non player

 Automatic Generation of Non-verbal Behavior for Agents in Virtual Worlds 159

Fig. 5. Two virtual characters using AuGe Bands

Fig. 6. Two virtual characters controlled by MPML3D-SL

160 W. Breitfuss, H. Prendinger, and M. Ishizuka

controlled characters also called bots , so there is no interference with a user, also
multiple character can be controlled at once , in case of our automatic behavior gen-
eration system we have a speaking agent and a listening agent. These bots have to be
legal Second Life accounts, which have to be generated before hand, also a certain
object has to be attached to them, it is called speech cube and is used for storing and
playing the sound files according to the speech acts of the script. Once the character is
all set up, the automatically generated script can be loaded using our MPML3D-SL
player. The player consists of a backend, handling the script and a frontend that is
actually controlling the bot. The frontend interacts directly with the Second Life serv-
ers at Linden Labs using a public API. (for more information on MPML3D-SL please
refer to 11) This offers a better control of the characters which is more precise in
terms of timing of gestures and speech output and also enables us to more actions like
walking or sending text via the chat function. Figure 6 shows two virtual characters
presenting information about the correct use of a drug.

5 Conclusion

In this paper we described a method to enrich communication in a virtual environment
like the metaverse second life by adding gestures. We designed a system that is capa-
ble of processing the information in a text message associating non verbal behavior in
form of gestures and animating an user controlled avatar in real-time. Our system
addresses the problem of populating virtual worlds with “life”, such as agents acting
in the roles of guides, clerks or sales staff. It can be used to easily add naturally acting
life-like virtual characters to virtual spaces. The added believable nonverbal behaviors
can improve the effectiveness of communication in those virtual worlds and provide a
more immersive experience for users. And so help to make the emptiness of many
virtual worlds a bit more lively and make conversations more enjoyable.

Future work will focus on improving the timing between gestures, lip movement
and speech output, a crucial part of further enhancing the naturalness of our virtual
characters. As well as adding more precise deictic gestures to our gesture repertoire,
to refer to objects in a 3 dimensional world.

References

1. Breitfuss, W., Prendinger, H., Ishizuka, M.: Automatic generation of gaze and gestures for
dialogues between embodied conversational agents. Int’l J. of Semantic Computing 2(1),
71–90 (2008)

2. Cassell, J., Vilhjálmsson, H., Bickmore, T.: BEAT: the Behavior Expression Animation
Toolkit. In: Proceedings of SIGGRAPH 2001, pp. 477–486 (2001)

3. E.V.A. - Essential Voicechat Advancement by Jarek Dejavu (24.02.2009),
http://www.shambles.net/pages/learning/ict/sltools/

4. Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating Rapport with Virtual Agents.
In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA
2007. LNCS, vol. 4722, pp. 125–138. Springer, Heidelberg (2007)

5. Heylen, D.: Head gestures, gaze and the principles of conversational structure. Interna-
tional Journal of Humanoid Robotics 3(3), 241–226 (2006)

 Automatic Generation of Non-verbal Behavior for Agents in Virtual Worlds 161

6. Kendon, A.: Some functions of gaze-direction in social interaction. Acta Psychologica 26,
22–63 (1967)

7. Kipp, M.: Creativity meets automation: Combining nonverbal action authoring with rules
and machine learning. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.)
IVA 2006. LNCS, vol. 4133, pp. 230–242. Springer, Heidelberg (2006)

8. Kopp, S., Tepper, P., Cassell, J.: Towards integrated microplanning of language and iconic
gesture for multimodal output. In: Proceedings of the Int. Conf. on Multimodal Interfaces
2004, pp. 97–104. ACM Press, New York (2004)

9. Peters, C., Pelachaud, C., Bevacqua, E., Mancini, M.: A model of attention and interest us-
ing gaze behavior. In: Proceedings of 5th International Conference on Intelligent Virtual
Agents 2005, pp. 229–240 (2005)

10. Reeves, B., Nass, C.: The media equation: How people treat computers, television and new
media like real people and places. CLSI Publications, Stanford (1996)

11. Ullrich, S., Bruegmann, K., Prendinger, H., Ishizuka, M.: Extending MPML3D to Second
Life. In: Prendinger, H., Lester, J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI),
vol. 5208, pp. 281–288. Springer, Heidelberg (2008)

12. Vertegaal, R., Weevers, I., Sohn, C., Cheung, C.: Gaze-2: conveying eye contact in Group
video conferencing using eye-controlled camera direction. In: Proceedings of the SIGCHI
Conference on Human factors in Computing Systems (CHI 2003), pp. 521–528. ACM
Press, New York (2003)

	Automatic Generation of Non-verbal Behavior forAgents in Virtual Worlds: A System for SupportingMultimodal Conversations of Bots and Avatars
	Introduction
	Related Research
	Behavior Generation
	Applications
	Server Side
	Client Side – AuGe System
	Client Side – MPML3D-SL System

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

