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Abstract. This tutorial discusses the suitability of Markovian models to describe
IP network traffic that exhibits peculiar scale invariance properties, such as self-
similarity and long range dependence. Three Markov Modulated Poisson Pro-
cesses (MMPP), and their associated parameter fitting procedures, are proposed
to describe the packet arrival process by incorporating these peculiar behaviors
in their mathematical structure and parameter inference procedures. Since an
accurate modeling of certain types of IP traffic requires matching closely not
only the packet arrival process but also the packet size distribution, we also
discuss a discrete-time batch Markovian arrival process that jointly characterizes
the packet arrival process and the packet size distribution. The accuracy of
the fitting procedures is evaluated by comparing the long range dependence
properties, the probability mass function at each time scale and the queuing
behavior corresponding to measured and synthetic traces generated from the
inferred models.

Keywords: Long range dependence, self-similarity, time scale, Markov Modu-
lated Poisson Process, packet arrival (size) process.

1 Introduction

The growing diversity of services and applications for IP networks has been driving
a strong requirement to make frequent measurements of packet flows and to describe
them through appropriate traffic models. Several studies have already shown that IP
traffic may exhibit properties of self-similarity and/or long-range dependence (LRD)
[1,2,3,4,5], peculiar behaviors that have a significant impact on network performance.
However, matching LRD is only required within the time-scales of interest to the system
under study [6,7]: for example, in order to analyze queuing behavior the selected traffic
model only needs to capture the correlation structure of the source up to the so-called
critical time-scale or correlation horizon, which is directly related to the maximum
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buffer size [5,8,9]. One of the consequences of this result is that more traditional traffic
models such as Markov Modulated Poisson Processes (MMPPs) can still be used to
model traffic exhibiting LRD [10, 11, 12, 13]. However, providing a good match of the
LRD characteristics through an accurate fitting of the autocovariance tail is not enough
for accurate prediction of the queuing behavior [14]. In general, an accurate prediction
of the queuing behavior requires detailed modeling of the first-order statistics, not just
the mean, and for certain types of network traffic it demands the incorporation of time-
dependent scaling laws [15, 16, 17].

This tutorial discusses the suitability of Markovian models, based on MMPPs, for
modeling IP traffic. Traffic modeling is usually concerned with the packet arrival process,
aiming to fit its main characteristics. In order to describe the packet arrival process,
we will present three traffic models that were designed to capture self-similar behavior
over multiple time scales. The first model is based on a parameter fitting procedure
that matches both the autocovariance and marginal distribution of the counting process
[18]. The MMPP is constructed as a superposition of L two-state MMPPs (2-MMPPs),
designed to match the autocovariance function, and one M-MMPP designed to match
the marginal distribution. Each 2-MMPP models a specific time scale of the data. The
second model is a superposition of MMPPs, where each MMPP describes a different time
scale [19,20]. The third model is obtained as the equivalent to an hierarchical construction
process that, starting at the coarsest time scale, successively decomposes MMPP states
into new MMPPs to incorporate the characteristics offered by finner time scales [21].
Both models are constructed by fitting the distribution of packet counts in a given number
of time scales. For all three traffic models, the number of states is not fixed a priori but
is determined as part of the inference procedure. The accuracy of the different models
will be evaluated by comparing the probability mass function (PMF) at each time scale,
as well as the packet loss ratio (PLR) corresponding to measured traces (exhibiting LRD
and self-similar behavior) and traces synthesized according to the proposed models.

It is known that the accurate modeling of certain types of IP traffic requires matching
closely not only the packet arrival process but also the packet size distribution [22, 23].
In this way, we also present a discrete-time batch Markovian arrival process (dBMAP)
[24, 25, 26] that jointly characterizes the packet arrival process and the packet size
distribution, while achieving accurate prediction of queuing behavior for IP traffic
exhibiting LRD behavior. In this dBMAP, packet arrivals occur according to a dMMPP
and each arrival is further characterized by a packet size with a general distribution that
may depend on the phase of the dMMPP. This allows having a packet size distribution
closely related to the packet arrival process, which is in contrast with other approaches
[22, 23] where the packet size distribution is fitted prior to the matching of the packet
arrival rates.

2 Notions of Self-similarity and Long-Range Dependence

Consider the continuous-time process Y (t) representing the traffic volume (e.g. in
bytes) from time 0 up to time t and let X(t) = Y (t) − Y (t− 1) be the corresponding
increment process (e.g. in bytes/second). Consider also the sequence X(m)(k) that is
obtained by averaging X(t) over non-overlapping blocks of length m, that is
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X(m)(k) =
1
m

m∑

i=1

X((k − 1)m+ i), k = 1, 2, ... (1)

The fitting procedure that are presented in this work are based on the aggregated
processes X(m)(k).
Y (t) is exactly self-similar when it is equivalent, in the sense of finite-dimensional

distributions, to a−HY (at), for all t > 0 and a > 0, where H (0 < H < 1) is
the Hurst parameter. Clearly, the process Y (t) can not be stationary. However, if Y (t)
has stationary increments then again X(k) = X(1)(k) is equivalent, in the sense of
finite-dimensional distributions, to m1−HX(m)(k). This illustrates that a traffic model
developed for fitting self-similar behavior must preferably enable the matching of the
distribution on several time scales.

Long-range dependence is associated with stationary processes. Consider now that
X(k) is second-order stationary with variance σ2 and autocorrelation function r(k).
Note that, in this case, X(m)(k) is also second-order stationary. The process X(k) has
long-range dependence (LRD) if its autocorrelation function is non-summable, that is,∑

n r(n) = ∞. Intuitively, this means that the process exhibits similar fluctuations
over a wide range of time scales. Taking for instance the October Bellcore trace, that is
publicly available [1], it can be seen from Figure 1 that the fluctuations over the 0.01,
0.1 and 1s time scales are indeed similar.

Equivalently, one can say that a stationary process is LRD if its spectrum diverges at
the origin, that is f(v) ∼ cf |v|−α, v → 0. Here, α is a dimensionless scaling exponent,
that takes values in (0, 1); cf takes positive real values and has dimensions of variance.
On the other hand, a short range dependent (SRD) process is simply a stationary process
which is not LRD. Such a process has α = 0 at large scales, corresponding to white
noise at scales beyond the so-called characteristic scale or correlation horizon. The
Hurst parameter H is related with α by H = (α+ 1)/2.

There are several estimators of LRD. In this paper we use the semi-parametric
estimator developed in [27], which is based on wavelets. Here, one looks for alignment
in the so-called Logscale Diagram (LD), which is a log-log plot of the variance
estimates (yj) of the discrete wavelet transform coefficients representing the traffic
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Fig. 1. LRD processes exhibit fluctuations over a wide range of time scales (Example: trace pOct)
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process, against scale (j), completed with confidence intervals about these estimates
at each scale. It can be thought of as a spectral estimator where large scale corresponds
to low frequency. The main properties explored in this estimator are the stationarity
and short-term correlations exhibited by the process of discrete wavelet transform
coefficients and the power-law dependence in scale of the variance of this process.
Traffic is said to be LRD if, within the limits of the confidence intervals, the log of
the variance estimates fall on a straight line, in a range of scales from some initial value
j1 up to the largest one present in data and the slope of the straight line, which is an
estimate of the scaling exponent α, lies in (0, 1).

There is a close relationship between long-range dependent and self-similar pro-
cesses. In fact, if Y (t) is self-similar with stationary increments and finite variance then
X(k) is long-range dependent, as long as 1

2 < H < 1. The process X(k) is said to be
exactly second-order self-similar (1

2 < H < 1) if

r (n) = 1/2
[
(n+ 1)2H − 2n2H + (n− 1)2H

]
(2)

for all n ≥ 1, or is asymptotically self-similar if

r (n) ∼ n−(2−2H)L(n) (3)

as n → ∞, where L(n) is a slowly varying function at infinity. In both cases
the autocovariance decays hyperbolically, which indicates LRD. Any asymptotically
second-order self-similar process is LRD, and vice-versa.

3 Background on Markovian Models

The dBMAP stochastic process may be regarded as an Markov random walk whose
additive component takes values on the nonnegative integers, IN0. Thus, we say that a
Markov chain (Y, J) = {(Yk, Jk), k ∈ IN0} on the state space IN0 × S is a dBMAP if

P (Yk+1 = m, Jk+1 = j|Yk = n, Jk = i) =

{
0 m < n

pij qij(m− n) m ≥ n
(4)

where P = (pij)i,j∈S is a stochastic matrix and, for each pair (i, j) ∈ S2, qij =
{qij(n), n ∈ IN0} is a probability function over IN0, and we let Q(n) = (qij(n))i,j∈S .
This implies, in particular that J is a Markov chain, called the Markov component or
phase of (Y, J) and S is the set of modulating states or the phase set. When the dBMAP
(Y, J) is used to model an arrival process, Yk may be interpreted as the total number of
arrivals until instant k. (X, J) is also a dBMAP, where Xn represents the total number
of packets that arrive until instant n.

An important particular case of the dBMAP is the dMMPP. We say that the process
(Y, J) on the state space IN0 × S is a dMMPP with parameters (P, Λ), where
P = (pij)i,j∈S is a stochastic matrix and Λ = (λij)i,j∈S = (λi1{i=j})i,j∈S is a
diagonal matrix with nonnegative entries (i.e., λi ≥ 0, i ∈ S), if it is a dBMAP with
parametrization (P, {Q(n), n ∈ IN}), where

qij(n) = e−λj
λn

j

n!
(5)
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for i, j ∈ S and n ∈ IN ; i.e., qij = {qij(n), n ∈ IN0} is the probability function of
a Poisson random variable with mean λj . Thus a dMMPP is a dBMAP for which the
number of arrivals in a given instant of time is only a function of the current phase of
the dBMAP and when the process is in phase j the number of arrivals at an instant has
a Poisson distribution with mean λj ; the parameter λj may be null, in which case no
arrivals occur in phase j. So, (Y, J) is a dMMPP with set of modulating states S and
parameter (matrices) P and Λ, and write

(Y, J) ∼ dMMPPS(P,Λ) (6)

where Λ = (λij) = (λiδij). The matrix P is the transition probability matrix of the
modulating Markov chain J , whereas Λ is the matrix of Poisson arrival rates. If S has
cardinality r, we say that (Y, J) is a dMMPP of order r (dMMPPr). The stationary
distribution of J is denoted by π = [π1 π2, . . . πr].

The superposition of independent dMMPPs is still an dMMPP. More precisely, if
(Y (l), J (l)) ∼ dMMPPrl

(P(l), Λ(l)), l = 1, 2, . . . , L, are independent, then their
superposition (Y, J) = (

∑L
l=1 Y

(l), (J (1), J (2), . . . , J (L))) is a dMMPPS(P, Λ),
where S = {1, 2, . . . , r1} × . . .× {1, 2, . . . , rL},

P = P(1) ⊗ P(2) ⊗ . . .⊗ P(L) (7)

and
Λ = Λ(1) ⊕ Λ(2) ⊕ . . .⊕ Λ(L) (8)

with ⊕ and ⊗ denoting the Kronecker sum and product, respectively.

4 M2L-MMPP - A Second-Order Self-similar Model

This section describes a parameter fitting procedure, based on MMPPs, that matches
both the autocovariance and the marginal distribution of the counting process, leading
to accurate estimates of queuing behavior for network traffic exhibiting LRD behavior.
This work was firstly published in [18] and was also motivated by the need to keep
the number of states of the MMPP at a minimum in order to reduce the complexity
associated with the calculation of the performance metrics of interest.

Matching simultaneously the autocovariance and marginal distribution of the count-
ing process is a difficult task since every MMPP parameter influences both charac-
teristics. With the purpose of achieving some degree of decoupling when matching

+....... ...

L 2-dMMPPs

)1(
1λ

)1(
1

+Lλ )1(
2

+Lλ

)1(
1

+
−

L
Mλ )1( +L

Mλ

)1(
2λ )(

1
Lλ )(

2
Lλ

Fig. 2. Superposition of an M-dMMPP and L 2-dMMPP models
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these two statistics, the proposed MMPP, (X, J) ∼ M2L-dMMPP, is constructed as a
superposition of L independent 2-dMMPPs, (X(l), J (l)) ∼ dMMPP2(P(l), Λ(l)), l =
1, 2, . . . , L, that capture the autocovariance function of the increments of the arrival
process and one M -dMMPP, (X(L+1), J (L+1)) ∼ dMMPPM (P(L+1), Λ(L+1)), that
approximates the distribution of the increments of the arrival process. This superposi-
tion step is graphically illustrated in Figure 2. In this approach L and M are not fixed a
priori but instead are computed as part of the fitting procedure.

Let us define the increment processes Y (1), Y (2), . . . , Y (L+1) and Y associated to
X(1), X(2), . . . , X(L+1), and X , respectively:

Y
(l)
k = X

(l)
k+1 −X

(l)
k , l = 1, 2, . . . , L+ 1 (9)

and

Yk = Xk+1 −Xk (10)

for k = 0, 1, . . .. Note that Yk is the (total) number of arrivals at sampling interval k
and Y (l)

k is the number of arrivals that are due to the l-th arrival process, so that, in
particular,

Yk =
L+1∑

l=1

Y
(l)
k , k = 0, 1, 2, . . . . (11)

Moreover, Y (1), Y (2), . . . , Y (L+1), and Y , are stationary sequences.
In order to characterize the marginal distributions of the L 2-dMMPPs processes,

Y (1), Y (2), . . . , Y (L), theM -dMMPP, Y (L+1), and the resulting process, Y , we denote
by {fl(k), k = 0, 1, 2, . . .}, l = 1, 2, . . . , L + 1, and {f(k), k = 0, 1, 2, . . .}, their
(marginal) probability functions, respectively. As the univariate distributions of Y (1),
Y (2), . . . , Y (L+1) are mixtures of Poisson distributions, we denote the probability
function of a Poisson random variable with mean μ by {gμ(k), k = 0, 1, 2, . . .}, for

μ ∈ [0,+∞), so that gμ(k) = e−μ μk

k! , k = 0, 1, 2, . . .. For l = 1, 2 . . . , L, the marginal

distribution of Y (l) (that is, the distribution of Y (l)
k , for k = 0, 1, . . .) is a mixture of two

Poisson distributions with means λ(l)
1 and λ(l)

2 and weights π(l)
1 and π(l)

2 , respectively.
Thus the probability functions of Y (l), l = 1, 2, . . . , L, are given by

fl(k) = π
(l)
1 g

λ
(l)
1

(k) + π
(l)
2 g

λ
(l)
2

(k), k = 0, 1, 2, . . . (12)

and their autocovariance functions are

γ
(l)
k = Cov (Y (l)

0 , Y
(l)
k ) = π

(l)
1 π

(l)
2 |λ(l)

2 − λ
(l)
1 |2 ekcl , k = 0, 1, 2, . . . (13)

where cl = ln (1 − p
(l)
12 − p

(l)
21 ). Note that, in particular, the autocovariance functions of

Y (1), Y (2), . . . , Y (L) exhibit an exponential decay to zero.
As we want the M -dMMPP to approximate the distribution of the increments of

the arrival process but to have no contribution to the autocovariance function of the
increments of the M2L-dMMPP, we choose to make J (L+1) a Markov chain with no
memory whatsoever. This is accomplished by choosing
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P(L+1) =

⎡

⎢⎢⎢⎣

π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M

π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M

. . . . . . . . . . . .

π
(L+1)
1 π

(L+1)
2 . . . π

(L+1)
M

⎤

⎥⎥⎥⎦ (14)

The probability function of Y (L+1) is given by

fL+1(k) =
M∑

j=1

π
(L+1)
j g

λ
(L+1)
j

(k), k = 0, 1, 2, . . . (15)

and the autocovariance function of Y (L+1) is null for all positive lags; i.e.,

γ
(L+1)
k = Cov (Y (L+1)

0 , Y
(L+1)
k ) = 0, k ≥ 1. (16)

Taking into account (11), it follows that the probability function of Y is given by:

f(k) = (f1 ∗ f2 ∗ . . . ∗ fL+1) (k) =

=
∑2

j1=1

∑2
j2=1 . . .

∑2
jL=1

∑M
jL+1=1

(∏L+1
l=1 π

(l)
jl

)
g∑L+1

l=1 λ
(l)
jl

(k) (17)

where * denotes the convolution of probability functions and the autocovariance
function is given by

γk = Cov (Y0, Yk) =
L+1∑
l=1

Cov
(
Y

(l)
0 , Y

(l)
k

)

=
∑L

l=1 π
(l)
1 π

(l)
2 |λ(l)

2 − λ
(l)
1 |2 ekcl , k = 1, 2, . . .

(18)

The inference procedure is illustrated in the flow diagram of Figure 3 and can be divided
in four major steps.

A. Approximation of the empirical autocovariance by a weighted sum of exponen-
tials and identification of the time scales
Our approach approximates the autocovariance by a large number of exponentials and
then aggregates exponentials with a similar decay into the same time-scale, which
is close to the approaches considered in [10, 13, 28] (Figure 4). As a first step, we
approximate the empirical autocovariance by a sum of K exponentials with real
positive weights and negative real time constants. We chose K as

√
kmax, where kmax

represents the number of points of the empirical autocovariance. This is accomplished
through a modified Prony algorithm [29]. The Prony algorithm returns two vectors,
a = [a1, ..., aK ] and b = [b1, ..., bK , ], which correspond to the approximating function

CK (a, b) =
K∑

i=1

aie
−bik, k = 1, 2, 3, ... (19)

At this point we identify the components of the autocovariance that characterize the
different time-scales by defining L different time-scales in which the autocovariance
decays, bi, i = 1, ...,K , fall in the same logarithmic scale. The components of the
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Fig. 3. Flow diagram of the inference procedure of the M2L-MMPP model

decays that belong to the same traffic scale are aggregated in one component with the
following parameters:

αl =
il+1−1∑

k=il

ak and βl = −

il+1−1∑
k=il

akbk

αl
. (20)

where bil
and bil+1−1 correspond to the first and last decay of the time scale. These

parameters are used to fit the autocovariance function of the 2-dMMPP Y (l), since

αl = d2
l π

(l)
1 π

(l)
2 and βl = cl (21)

where π(l)
i , i = 1, 2 corresponds to the steady-state probabilities of Y (l), dl = |λ(l)

2 −
λ

(l)
1 | and βl = ln(1− p

(l)
1 2− p

(l)
2 1, i.e., the fitted autocovariance function of Y1 +Y2 +

. . .+ YL is
L∑

l=1

αle
kβl , k = 1, 2, . . . . (22)
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Fig. 4. Approximation of the autocovariance function

B. Inference of the M-dMMPP probability function and of the L 2-dMMPP
parameters
The relation between the probability functions of the 2-dMMPPs, the M -dMMPP and
the M2L-dMMPP is defined by (17). In order to simplify the deconvolution of fL+1(k)
and fl(k), l = 1, ..., L, we consider that the Poisson arrival rate is zero in one state
of each 2-dMMPP source; that is, λ(l)

1 = 0 and λ(l)
2 = dl, for l = 1, ..., L. From

(21), it follows that dl =
√

αl

π
(l)
1 π

(l)
2
, l = 1, 2, . . . , L. The probability function of the

M -dMMPP, fL+1, is fitted jointly with the parameters π(l)
1 , l = 1, ..., L, through the

following constrained minimization process:

min
{π

(l)
1 , l=1,...,L},{fL+1(k), k=0,1,...}

∑

k

|oe(k)| (23)

where
oe(k) = fe(k) −

(
f̂1 ⊕ ...⊕ f̂L ⊕ fL+1

)
(k) (24)

subject to (21) and

0 < π
(l)
1 < 1, l = 1, 2, . . . , L, fL+1(k) > 0, k = 0, 1, . . . ,

and
∑+∞

k=0 fL+1(k) = 1.
(25)

with fe denoting the empirical probability function of the data. We denote by f̂L+1 the
fitted probability function of the M-dMMPP. Note that π(l)

1 is not allowed to be 0 or
1 because, in both cases, the lth 2-dMMPP would degenerate into a Poisson process.
The constrained minimization process given by (23)–(25) is a non-linear programming
problem and in general, it is computationally demanding to obtain the global optimal
solution. Accordingly, to solve this problem we consider two approximations: (i) we
make π(l)

1 = π
(l+1)
1 , l = 1, . . . , L−1 and (ii) restrict the range of possible π(l)

1 solutions
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to be discrete and such that π(l)
1 = 0.001k, k = 1, . . . , 999. Then a search process is

used to find the minimum value of the objective function.
At this point all parameters of the 2-dMMPPs, Y (1), Y (2), . . . , Y (L), have been

determined and their corresponding 2-dMMPP matrices can be constructed in the
following way:

P(l) =

[
1 − π

(l)
2 (1 − eβl) π

(l)
2 (1 − eβl)

π
(l)
1 (1 − eβl) 1 − π

(l)
1 (1 − eβl)

]
(26)

Λ(l) =
[
0 0
0 dl

]
(27)

C. Inference of the M-dMMPP parameters
The next step is the inference of the number of states and Poisson arrival rates of
the M -dMMPP from f̂L+1. To do this, we infer f̂L+1 as a weighted sum of Poisson
probability functions, i.e., as the probability function of a finite Poisson mixture with an
unknown number of components. The matching is carried out through an algorithm that
progressively subtracts a Poisson probability function from f̂L+1, which is described in
the flowchart of Figure 5. We represent the ith Poisson probability function, with mean
ϕi, by gϕi(k). We define h(i)(k) as the difference between f̂L+1(k) and the weighted
sum of Poisson probability functions at the ith iteration. Initially, we set h(1)(k) =
f̂L+1(k). In each step, we first detect the maximum of h(i)(k). The corresponding
k-value, ϕi = [h(i)]−1

(
maxh(i) (k)

)
, will be considered the ith Poisson rate of

the M-dMMPP. We then calculate the weights of each Poisson probability function,
wi = [w1i, w2i, ..., wii], through the following set of linear equations:

f̂L+1(ϕl) =
i∑

j=1

wjigϕj (ϕl), l = 1, ..., i. (28)

This assures that the fitting between f̂L+1(k) and the weighted sum of Poisson
probability functions is exact at ϕl points, for l = 1, 2, . . . , i. The final step in each
iteration is the calculation of the new difference function

h(i) (k) = f̂L+1 (k) −
i∑

j=1

wjigϕj (k). (29)

The algorithm stops when the maximum of h(i)(k) is lower than a pre-defined
percentage of the maximum of f̂L+1(k) and M is made equal to i. After M has been

determined, the parameters of the M-dMMPP, {(π(L+1)
j , λ

(L+1)
j ), j = 1, 2, . . . ,M},

are then set equal to

π
(L+1)
j = wjM and λ

(L+1)
j = ϕj . (30)

D. M2L-dMMPP model construction
Finally, the M2L-dMMPP process can be constructed using equations (7) and (8), where
Λ(L+1), P(L+1),Λ(i) and P(i), i = 1, ..., L, were calculated in the last two steps.
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Fig. 5. Algorithm for calculation of the number of states and Poisson arrival rates of the
M-dMMPP

4.1 Efficency Results

In [18] the efficiency of this fitting procedure was evaluated by applying it to trace UA, a
trace of IP traffic measured at University of Aveiro (UA) that is representative of Internet
access traffic produced within a University campus environment. The UA trace was
measured on July 10th, 2001, between 10.15am and 3.08pm, and comprises 20 millions
packets with a mean rate of 1138 packets/s and a mean packet size of 557 bytes. This
trace exhibits LRD behavior, which was confirmed by applying the method described
in [27] (Figure 7). The sampling interval of the counting process was considered as 0.1
seconds, so octave j corresponds to 0.1 × 2j seconds.

The performance of this fitting procedure (and all the others that will be described in
the next sections) was evaluated using several evaluation criteria: (i) comparing both the
probability and autocovariance functions of the packet arrival counts obtained with the
fitted dMMPPs (theoretical) and with the original data traces; (ii) analyzing queuing
behavior by comparing the PLR obtained, through trace-driven simulation, with the
original data traces and simulated traces generated from the fitted dMMPPs (Figure 6).
The results of trace driven simulation for the fitted traces were based on 10 replicas.
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The empirical autocovariance function was fitted by two exponentials with param-
eters α = [1.00 × 102 6.87 × 101] and β = [−6.91 × 10−5 −1.28 × 10−2]. With a
resulting 12-states dMMPP, the fitting of the probability and autocovariance functions
is very good (Figures 8 and 9, respectively), which reveals itself sufficient to get a
very close matching of the PLR curve (Figure 10). The considered service rates are 685
KBytes/s and 629 KBytes/s, corresponding to link utilizations of ρ = 0.9 and ρ = 0.98,
respectively. Both the original and the fitted traces exhibit LRD, with estimated Hurst
parameters of Ĥ = 0.952 and Ĥ = 0.935, respectively.
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5 Distributional Self-similar Models

This section proposes two traffic models, based on dMMPPs, designed to capture self-
similar behavior over multiple time scales by fitting the empirical distribution of packet
counts at each time scale. The number of time scales, L, is fixed a priori and the time
scales are numbered in an increasing way, from l = 1 (corresponding to the largest time
scale) to l = L (corresponding to the smallest time scale).

5.1 Superposition Model

This model was firstly proposed in [19] and is based on the superposition of dMMPPs,
where each dMMPP represents a specific time scale. Figure 11 illustrates the construc-
tion methodology of the dMMPP for the simple case of three time scales and two-
state dMMPPs in each time scale. The dMMPP associated with time scale l is denoted
by dMMPP(l) and the corresponding number of states by N(l). The flowchart of the
inference procedure is represented in Figure 12 where, basically, the following three
steps can be identified.

A. Computation of the data vectors (corresponding to the average number of
arrivals per time interval) at each time scale
Having defined the time interval at the smallest time scale, Δt, the number of time
scales, L, and the level of aggregation, a, the aggregation process starts by computing
the data sequence corresponding to the average number of arrivals in the smallest time
scale,D(L)(k), k = 1, 2, . . . , N . Then, it calculates the data sequences of the remaining
time scales, D(l)(k), l = L − 1, ..., 1, corresponding to the average number of arrivals
in intervals of length Δta(L−l). This is given by

D(l)(k) =

⎧
⎨

⎩
Ψ

(
1
a

a−1∑
i=0

D(l+1)(k + iaL−l−1))

)
, k−1

aL−l ∈ IN0

D(l)(k − 1), k−1
aL−l /∈ IN0

(31)

scale 1
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Fig. 11. Construction methodology of the superposition dMMPP model
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where Ψ(x) represents round toward the integer nearest x. Note that all data sequences
have the same lengthN and thatD(l)(k) is formed by sub-sequences of aL−l successive
equal values; these sub-sequences will be called l-sequences. The empirical distribution
of D(l)(k) will be denoted by p̂(l) (x).

Figure 13 illustrates the aggregation process for the particular case of considering
only three time scales and an aggregation level of a = 2. The top part of the picture
corresponds to the finest time scale (scale 3) and represents the number of arrivals
per sampling interval. At time scale 2, the Figure represents the average number of
arrivals per time interval of length 2Δt, while at time scale 1 it represents the average
number of arrivals per time interval of length 4Δt, since the aggregation level is equal
to 2.
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B. For all time scales (going from the largest to the smallest one), calculation of
the corresponding empirical PMF and inference of a dMMPP that matches the
resulting PMF
Each dMMPP will be inferred from a PMF that represents its contribution to a particular
time scale. For the largest time scale, this PMF is simply the empirical one. The traffic
components due to time scale l, l = 2, ..., L, are obtained through deconvolution of the
empirical PMFs of this and the previous time scales, i.e., f̂ (l)

p (x) = [p̂(l)⊗−1p̂(l−1)](x).
However, this may result in probability mass at negative arrival rates for the dMMPP(l),
which will occur whenever min

{
x : p̂(l−1) (x) > 0

}
< min

{
x : p̂(l) (x) > 0

}
. To

correct these results, the dMMPP(l) will be fitted to

f̂ (l) (x) = f̂ (l)
p (x+ e(l)) (32)

where e(l) = min
(
0,min

{
x : f̂ (l)

p (x) > 0
})

, which assures f̂ (l) (x) = 0, x < 0.

The additional factors that are now introduced will be removed in the final step of the
inference procedure.

The number of states, N(l), and the parameters of the dMMPP(l), {(π(1)
j , λ

(1)
j ), j =

1, 2, . . . , N(1)}, that adjusts the empirical PMF f̂ (l) (x) are calculated using the same
procedure described in step 3 of the M2L-dMMPP inference procedure.

The next step consists of associating one of the dMMPP(l) states with each time
interval of the arriving process. Recall that the data sequences aggregated at time scale
l have aL−l successive equal values called l-sequences. The state assignment process
considers only the first time interval of each l-sequence, defined by i = aL−l(k − 1) +
1, k ∈ IN, i ∈ E(l), where E(l) represents the set of time intervals associated with
dMMPP(l). The state that is assigned to l-sequence i is calculated randomly according

to the probability vector θ(l) (i) =
{
θ
(l)
1 (i) , . . . , θ(l)N(l)

(i)
}

, with

θ(l)n (i) =
g

λ
(l)
n

(
D(l)(i)

)

∑N(l)
j=1 gλ

(l)
j

(
D(l)(i)

) (33)
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for n = 1, ..., N(l), where λ(l)
j represents the Poisson arrival rate of the jth state of

dMMPP(l), and gλ (y) represents a Poisson probability distribution function with mean
λ. The elements of this vector represent the probability that the state j had originated
the number of arrivals D(l)(k) at time interval k from time scale l.

After this step, we infer the dMMPP(l) transition probabilities, p(l)
od , with o, d =

1, ..., N(l), by counting the number of transitions between each pair of states. If n(l)
od

represents the number of transitions from state o to state d of the dMPPP(l), then

p
(l)
od =

n
(l)
od∑N(l)

m=1 n
(l)
om

, o, d = 1, ..., N(l) (34)

The transition probability and the Poisson arrival rate matrices of the dMMPP(l) are
then given by

P(l) =

⎡

⎢⎢⎢⎢⎣

p
(l)
11 p

(l)
12 . . . p

(l)
1N(l)

p
(l)
21 p

(l)
22 . . . p

(l)
2N(l)

. . . . . . . . . . . .

p
(l)
N(l)1

p
(l)
N(l)2

. . . p
(l)
N(l)N(l)

⎤

⎥⎥⎥⎥⎦
(35)

Λ(l) =

⎡

⎢⎢⎢⎣

λ
(l)
1 0 . . . 0
0 λ

(l)
2 . . . 0

. . . . . . . . . . . .

0 0 . . . λ
(l)
N(l)

⎤

⎥⎥⎥⎦+ e(l)I (36)

The diagonal matrix of the steady-state probabilities is designated by Π(l).
Figure 14 schematically illustrates the main steps of the construction process for the

superposition model, considering only the first two time scales. As was previously said,
the empirical PMF corresponding to the largest time scale (scale 1) is estimated and
the dMMPP that best adjusts it is inferred. For the next immediate scale (scale 2), the
empirical PMF is estimated and then it is deconvolved from the PMF corresponding to
time scale 1. The dMMPP that describes the contribution of time scale 2 for the arrival
process is calculated based on the PMF that results from this deconvolution operation.

C. Calculation of the final dMMPP through the superposition of the dMMPPs
inferred for each time scale
The equivalent dMMPP process is constructed using equations (7) and (8), where
matrices P(l) and Λ(l) , l = 1, ..., L, were calculated in the last subsection. Besides,
the additional factors introduced in 32 must be removed. Thus, the final Λ(l) will be
given by

Λ = Λ −
L∑

l=2

e(l) · I (37)

where I is the identity matrix.



114 A. Nogueira et al.

scale 1

inference of a 
dM M PP

scale 2

0 5 10 15 20
0

0.05

0.1

0.15

0.2

)(ˆ )2( xp

0 5 10 15 20
0

0.05

0.1

0.15

0.2

)(ˆ )1( xp

assigning intervals to 
states

)1(
11p

)1(
22p

)1(
12p

)1(
21p

)1(
1λ

)1(
2λ

( )1dM M PP

( )2dM M PP

)2(
1λ )2(

2λ
)2(

11p )2(
22p

)2(
12p

)2(
21p

(x)p(x)  p(x)f      )(-)()(
p

1122 ˆˆˆ ⊗=

inference of a 
dM M PP

Fig. 14. Procedure for calculating the empirical PMFs and inferring the partial dMMPPs of the
superposition model

5.2 Hierarchical Model

This model was firstly presented in [21] and is constructed using an hierarchical
procedure, that successively decomposes dMMPP states into new dMMPPs, thus
refining the traffic process by incorporating the characteristics offered by finer time
scales (Figure 15). The procedure starts at the largest time scale by inferring a dMMPP
that matches the empirical PMF corresponding to this time scale. As part of the
parameter fitting procedure, each time interval of the data sequence is assigned to a
dMMPP state; in this way, a new PMF can be associated with each dMMPP state. At
the next finer time scale, each dMMPP state is decomposed into a new dMMPP that
matches the contribution of this time scale to the PMF of the state it descends from. In
this way, a child dMMPP gives a more detailed description of its parent state PMF. This
refinement process is iterated until a pre-defined number of time scales is integrated.
Finally, a dMMPP incorporating this hierarchical structure is derived.

The construction process of the hierarchical model can be described through a tree
where, except for the root node, each tree node corresponds to a dMMPP state and each
tree level to a time scale. A dMMPP state will be represented by a vector indicating
the path in the tree from its higher level ancestor (i.e. the state it descends from at the
largest scale, l = 1) to itself. Thus, a state at time scale l will be represented by some
vector s = (s1, s2, ..., sl) , si ∈ IN . Each dMMPP will be represented by the state that
generated it (i.e. its parent state), that is, dMMPPs will represent the dMMPP generated
by state s. The root node of the tree corresponds to a virtual state, denoted by s = ∅,
that is used to represent the dMMPP of the largest time scale, l = 1. This dMMPP will
be called the root dMMPP. Thus, the dMMPP states in the tree are characterized by
s = (s1, s2, ..., sl) , l ∈ IN , with si+1 ∈ {1, 2, . . . , Nsi]

}
, i = 0, 1, . . . , l− 1; here, sj]

denotes the sub-vector of s given by (s1, s2, ..., sj), with j < |s|, and s0] = ∅, where
|s| denotes the length of vector s. Note that, using this notation, a vector s can either
represent state s or the dMMPP generated by s. Besides, the time scale of dMMPPs is
|s| + 1.
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Fig. 15. Construction methodology of the hierarchical dMMPP model

Finally, let Es denote the set of time intervals associated with state s, i.e., with
dMMPPs. Using this notation, the set associated with dMMPP∅ will be E∅ =
{1, 2, ..., N}, where N is the number of time intervals at the smallest time scale.
Starting from E∅, the sets Es are successively partitioned at each time scale in a
hierarchical fashion. Thus, if states s and t are such that |s| = |t| = l and s �= t,
then Es ∩ Et = ∅ and

⋃
s:|s|=l

Es = E∅. Moreover, if state s is a parent of state t, that

is t = (s, j), then Et ⊆ Es and
⋃

j=1,...,Ns

E(s,j) = Es.

The inference procedure is represented schematically in the flowchart of Figure 16,
where the following three main steps can be identified.

A. Computation of the data vectors (corresponding to the average number of
arrivals per time interval) for each time scale
This step is equal to the one described for the superposition model.

B. For all time scales (going from the largest to the smallest one), calculation of
the corresponding empirical PMF and inference of a dMMPP that matches the
resulting PMF
Each dMMPP will be inferred from a PMF that represents its contribution to a particular
time scale. For the largest time scale, this PMF is simply the empirical one, but for
all other time scales l, l = 2, ..., L, the PMF represents the contribution of the time
scale to the PMF of its parent state. The contribution of a dMMPP at time scale l
generated from state s corresponds also to the deconvolution of empirical PMFs, but
now calculated over the set of time intervals Es, at this time scale l = |s| + 1 and
the previous time scale l − 1 = |s|, i.e., f̂s

p (x) =
[
p̂s,|s|+1 ⊗−1 p̂s,|s|] (x), where

p̂s,l represents the PMF obtained from the data sequence Dl(k), k ∈ Es. Note that the
two empirical PMFs are obtained from the same set of time intervals but aggregated at
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different levels. Once again, these operations may result in probability mass at negative
arrival rates for the dMMPPs, which will occur whenever min

{
x : p̂s,|s| (x) > 0

}
<

min
{
x : p̂s,|s|+1 (x) > 0

}
. These results must be corrected using equation 32, with (l)

replaced by s.
The number of states, Ns, and the parameters of the dMMPPs, {(πs

j , λ
s
j ), j =

1, 2, . . . , Ns}, that adjusts the empirical PMF f̂s (x) are calculated using the same
procedure described in step 3 of the M2L-dMMPP inference procedure.

The next step consists of associating one of the dMMPPs states with each time
interval of the arriving process. The set of time intervals associated with dMMPPs is
Es and the goal here is to partitionEs into subsets E(s,j), j = 1, ..., Ns. Now, the state
assignment process considers only the first time interval of each l-sequence, defined by
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Fig. 17. Procedure for calculating the empirical PMFs and inferring the partial dMMPPs of the
decomposition model

i = aL−(|s|+1)(k − 1) + 1, k ∈ IN, i ∈ Es. The state that is assigned to l-sequence i is
calculated randomly according to the probability vector θs (i) =

{
θs
1 (i) , . . . , θs

Ns
(i)
}

,
with

θs
n (i) =

gλs
n

(
D|s|+1(i)

)
∑Ns

j=1 gλs
j

(
D|s|+1(i)

) (38)

for n = 1, ..., Ns.
The dMMPPs transition probabilities, ps

od, o, d = 1, ..., Ns, are calculated through
equation 34 with (l) replaced by s. In this way, the transition probability and the Poisson
arrival rate matrices are also given by equations 35 and 36, respectively.

Figure 17 schematically illustrates the main steps of the construction process for the
decomposition model, considering only the first two time scales. For the largest time
scale (scale 1), the empirical PMF is estimated and the dMMPP that best adjusts it is
inferred (dMMPP∅). Each time interval of the data sequence is then assigned to each
dMMPP state and the next step consists on estimating the empirical PMFs associated to
each state. For the next immediate scale (scale 2), the empirical PMFs associated to each
state will also be estimated and then they are deconvolved from the PMFs corresponding
to time scale 1 and to the same states. The dMMPPs that describe the contribution of
time scale 2 for the arrival process are calculated based on the PMFs that result from
these deconvolution operations.
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C. Calculation of matrices Λ and P of the dMMPP that incorporates the hierar-
chical structure
In this step we have to construct a dMMPP equivalent to the tree structure of dMMPPs
derived in previous steps. The goal is to incorporate in the model the level of detail
given by the finer time scale, so the equivalent dMMPP will have a number of states
equal to the number of states in smallest time scale of the tree structure, L. These can
be identified by s = (s1, s2, ..., sL); each state is associated with its ancestor states
si+1] = (s1, s2, ..., si+1), i = 0, 1, . . . , L− 1 of the dMMPPsi] .

Thus, the states of the equivalent dMMPP will have Poisson rates which are the sum
of the Poisson rates of its ancestors in the tree structure, i.e.,

λs =
L−1∑

j=0

λ
s j]
sj+1 (39)

The transition between each pair of states is determined by the shortest path in
the tree structure, going through the root dMMPP, that joins the two states. Any
pair of states descend from one or more common dMMPPs. The first one, at the
time scale with higher l, will be denoted by s ∧ t = (s1, s2, ..., sk) where k =
max {i : sj = tj , j = 1, 2, ..., i}.

We first consider the case of s �= t. The probability of transition from s to t, ps,t, is
given by the product of three factors. The first factor accounts for the time scales where
s and t have the same associated states and is given by

φs,t =

⎧
⎨

⎩

|s∧t|−1∏
j=0

p
s j]
sj+1,sj+1 , |s ∧ t| �= 0

1, |s ∧ t| = 0
(40)

The second factor accounts for the transition in the time scale where s and t are asso-
ciated to different states of the same dMMPP, which corresponds to ps∧t

s|s∧t|+1,t|s∧t|+1
.

The third factor accounts for the steady-state probabilities of states associated to t in
the time scales that are not common to s and is given by

ψs,t =
L−1∏

j=|s∧t|+1

π
t j]
tj+1

(41)

where an empty product is equal to one.
Finally, for s �= t,

ps,t = φs,tp
s∧t
s|s∧t|+1,ts∧t+1

ψs,t (42)

In case s = t, it is simply
ps,t = φs,t (43)

5.3 Efficiency Results

These fitting procedures were applied to the Kazaa trace, a trace measured at the
backbone of a Portuguese ISP network characterizing the downstream traffic from 10
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Fig. 18. PMF at the smallest time scale,
Kazaa
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Fig. 19. PMF at the intermediate time scale,
Kazaa
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Fig. 20. PMF at the largest time scale,
Kazaa
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Fig. 21. Packet loss ratio versus buffer size,
Kazaa

users of the file sharing application Kazaa. The Kazaa trace was measured on October
18th 2001, between 10.26pm and 11.31pm, and comprises 1 million packets with
a mean rate of 131140 packets/s and a mean packet size of 1029 bytes. This trace
exhibits self-similar characteristics and three different time scales were considered:
0.1s, 0.2s and 0.4s. Larger aggregation levels were also considered, with good fitting
results. Both fitting approaches were able to capture the traffic LRD behavior and the
agreement between the PMFs corresponding to the original and dMMPP fitted traces,
for the smallest, intermediate and largest time scales, was very good, as can be seen
from figures 18, 19 and 20. These results were achieved with resulting dMMPPs having
about 288 states in the superposition model and 38 states in the hierarchical model.

Considering queuing performance, Figure 21 shows that PLR behavior is very well
approximated by the equivalent dMMPPs for both utilization ratios (ρ = 0.7 and ρ =
0.8). However, as the utilization ratio increases the deviation slightly increases, because
the sensitivity of the metrics variation to a slight difference in the compared traces is
higher. Thus, the proposed fitting approaches provide a close match of the PMFs at
each time scale and this agreement reveals itself sufficient to drive a good queuing
performance in terms of packet loss ratio.

The computational complexity of both fitting methods is small. This complexity, as
well as the number of states of the resulting dMMPPs, is directly related to the level
of accuracy used to approximate the empirical PMFs at each time scale by weighted
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sums of Poisson probability functions. The performance of both inference procedures
is very similar. Thus, it is not easy to recommend one of approaches over the other
based solely on their associated performances. One argument that clearly favors the
hierarchical approach is that the numbers of states of the resulting dMMPPs are smaller
than the corresponding numbers for the superposition approach. This may be due to the
fact that in the hierarchical approach and as the time scale increases, dMMPPs are fitted
to successively smaller sets of intervals whose arrivals characteristics tend to increase
in homogeneity and, thus, tend to have associated a smaller number of states than the
dMMPP fitted through the superposition approach for the same time scale. However,
the contribution of each time scale for the characterization of the aggregate traffic
characteristics is interpreted in an easier and more natural way through the superposition
approach. Note also that, for the same number of states, a smaller number of dMMPPs
and corresponding parameters tend to be needed to compute the final dMMPP using the
superposition approach than using the hierarchical approach.

6 Joint Characterization of Packet Arrivals and Packet Sizes -
dBMAP

The dBMAP jointly characterizes the packet arrival process and the packet size
distribution, being able to achieve an accurate prediction of the queuing behavior for
IP traffic exhibiting LRD behavior. In this process, that was firstly presented in [30],
packet arrivals occur according to a dMMPP (that can be any one of the previously
described models) and each arrival is further characterized by a packet size with a
general distribution that may depend on the phase of the dMMPP (Figure 22). This
construction process allows having a packet size distribution closely related to the
packet arrival process, and is in contrast with the approach followed by [22] where
the packet size distribution is fitted prior to the matching of the packet arrival rates.

Lets consider that the packets have independent sizes, with the size of packets
arriving in phase i having probability function qi = {qi(n), n ∈ IN}. If we let (X, J)
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Fig. 22. Construction methodology of the BMAP model



Markovian Modelling of Internet Traffic 121

denote the dMMPP, on the state space IN0 × S and having parametrization (P, Λ), that
models the packet arrival process, then the byte arrival process (Y, J) is a dBMAP, on
the state space IN0 × S, satisfying equation 4 with

qij(n) =
+∞∑

l=0

e−λj
λl

j

l!
q
(l)
j (n) (44)

for i, j ∈ S and n ∈ IN0, where q(l)j denotes de convolution of order l of qj . Thus,
(Y, J) is a dBMAP on the state space IN0 × S, such that, for n,m ∈ IN0,

P (Yk+1 = m+ n, Jk+1 = j|Yk = m, Jk = i) = pij

+∞∑

l=0

e−λj
λl

j

l!
q
(l)
j (n) (45)

which we express by saying that (Y, J) has type-II parametrization (P, Λ, {qi, i ∈ S}).
S is the phase set of the (Y, J) dBMAP.

The packet size characterization is carried out in an independent way for each state
of the inferred dMMPP and involves two steps: (i) association of each time slot to one
of the dMMPP states and (ii) inference of a packet size distribution for each state of
the dMMPP. In the first step, we scan all time slots of the empirical data. A time slot
in which k packet arrivals were observed is randomly assigned to a state, according
to the probability vector θ (k) = {θ1 (k) , . . . , θNB (k)}, where θi (k) represents the
probability that the observed k packet arrivals were originated in state i and NB is the
number of states of the dMMPP. This is given by

θi (k) =
πi gλi (k)

∑NB

j=1 πj gλj (k)
(46)

where λj represents the Poisson packet arrival rate of the dMMPP and πj the
corresponding steady-state probability (as stated before, gλ (y) represents a Poisson
probability distribution function with mean λ).

The inference of the packet size distribution in each state resorts to histograms.
The inference of each histogram uses only the packets that arrived during the time
slots previously associated with the state for which we are inferring the packet size
distribution. Note that some low-probability states may have no packets associated with
them, making impossible the packet characterization specifically for these states. We
associate a packet size distribution to these states that considers all data packets, i.e.,
the packet size distribution unconditioned on the dMMPP states. The histograms result
in the packet size distributions qi = {qi(n), n ∈ IN}, for i = 1, 2, ..., NB.

6.1 Efficiency Results

Reference [30] evaluated the efficiency of a dBMAP where the packet arrival process
was modelled using the M2L-dMMPP described in section 4 and the packet size process
was modelled using the procedure described in section 6. The UA trace was also used
to assess the efficiency of this traffic model, so the results of applying the M2L-dMMPP
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Fig. 23. Packet size distribution, UA Fig. 24. Packet loss ratio versus buffer size,
UA

fitting procedure to the packet arrival process were already presented in section 4. The
packet size distribution is essentially bimodal with two pronounced peaks around 40 and
1500 bytes, presenting also non negligible values at 576 and 885 bytes. There was an
excellent agreement between the original and fitted packet size distributions (Figure23),
leading to a good match between the original and fitted distributions of the bytes/s
processes.

For the dBMAP, four types of input traffic are considered in the trace-driven simu-
lation: (i) the original trace, (ii) a trace generated according to the fitted dBMAP, (iii)
a trace where the arrival instants were generated according to the fitted dMMPP arrival
process and the packet size according to the unconditional packet size distribution of the
fitted dBMAP and (iv) a trace where the arrival instants were also generated according
to the fitted dMMPP arrival process but the packet size is fixed and equal to the average
packet size of the original trace. In order to analyze queuing behavior, we considered
a queue with a service rate of 700 Kbytes/s, corresponding to a link utilization of
ρ = 0.90, and varied the buffer size from 10 Kbytes to 60 Mbytes. As it can be
observed in Figure 24, there is a close agreement between the curves corresponding
to the original trace and to the trace generated according to the fitted 12-dBMAP, for all
buffer size values. In contrast, for the other two curves corresponding to traces where the
packet size is fitted independently of the packet arrival process, significant deviations
are obtained. Thus, detailed modeling of the packet size and of the correlations with the
packet arrivals is clearly required.

7 Conclusion

Accurate modeling of certain types of IP traffic involves the description of the packet
arrival process and the packet size distribution. This tutorial discussed the suitability
of Markovian models to describe traffic that exhibits self-similarity and long range
dependence behaviours. Three traffic models, based on MMPPs, were designed to
describe the packet arrival process by capturing the self-similar behavior over multiple
time scales: the first model is based on a parameter fitting procedure that matches
both the autocovariance and marginal distribution of the counting process and the
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MMPP is constructed as a superposition of L two-state MMPPs, designed to match
the autocovariance function, and one M-MMPP designed to match the marginal
distribution. The second model is a superposition of MMPPs, where each MMPP
describes a different time scale of the packet arrival process. The third model is obtained
as the equivalent to an hierarchical construction process that, starting at the coarsest
time scale, successively decomposes MMPP states into new MMPPs to incorporate the
characteristics offered by finner time scales. For all three traffic models, the number of
states is not fixed a priori but is determined as part of the inference procedure. In order
to closely match not only the packet arrival process but also the packet size distribution a
dBMAP was also presented and discussed: packet arrivals occur according to a dMMPP
and each arrival is further characterized by a packet size with a general distribution that
may depend on the phase of the dMMPP. This allows having a packet size distribution
closely related to the packet arrival process. The accuracy of the proposed models was
evaluated by comparing the probability mass function at each time scale, as well as the
packet loss ratio corresponding to measured traces and to traces synthesized according
to the proposed models. The accuracy analysis was based on traffic traces exhibiting
LRD and self-similar behaviors.
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