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Abstract. This paper is a tutorial on RESTART, a widely applicable acceler-
ated simulation technique for estimating rare event probabilities. The method is 
based on performing a number of simulation retrials when the process enters 
regions of the state space where the chance of occurrence of the rare event is 
higher. The paper analyzes its efficiency, showing formulas for the variance of 
the estimator and for the gain obtained with respect to crude simulation, as well 
as for the parameter values that maximize this gain. It also provides guidelines 
for achieving a high efficiency when it is applied. Emphasis is placed on the 
choice of the importance function, i.e., the function of the system state used for 
determining when retrials are made. Several examples on queuing networks  
and ultra reliable systems are exposed to illustrate the application of the guide-
lines and the efficiency achieved. 
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1   Introduction 

Performance requirements of broadband communication networks and ultra reliable 
systems are often expressed in terms of events with very low probability. Probabilities 
of the order of 10-10 are often used to specify packet losses due to traffic congestion or 
system failures. Analytical or numerical evaluation of these probabilities is only pos-
sible for a very restricted class of systems. Simulation is an effective alternative, but 
acceleration methods are necessary because crude simulation requires prohibitive 
execution time for accurate estimation of very low probabilities. 

One such method is importance sampling; see [1] for an overview. The basic idea 
behind this approach is to alter the probability measure governing events so that the 
formerly rare event occurs more often. A drawback of this technique is the difficulty 
of selecting an appropriate change of measure since it depends on the system being 
simulated. Researchers have, therefore, focused on finding good heuristics for particu-
lar types of models. 
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Another method is RESTART (REpetitive Simulation Trials After Reaching 
Thresholds). Let us roughly define the ‘importance’ of a state as the chance of the 
process entering the rare set after it has been in this state (a more precise definition of 
importance will be provided later). RESTART introduces a nested sequence of sets of 
states Ci (C1 ⊃ C2 ⊃ ... ⊃ CM), which determines a partition of the state space Ω into 
regions 1+− ii CC ; the higher the value of i, the higher the importance of the states of 

regions 1+− ii CC . A more frequent occurrence of the formerly rare event is achieved 

by performing a number of simulation retrials each time the process enters a set Ci . 
The retrials finish when they exit set Ci. Note that while in crude simulation the proc-
ess spends most of its time in low importance regions, in RESTART simulation an 
oversampling is made in high importance regions to balance the time spent by the 
process in all the regions.  

The sets Ci are defined by comparing the value taken by a function of the system 
state, the importance function, with certain thresholds. The application of this method 
for particular models requires the choice of a suitable importance function. The suit-
able importance function for a model is not as dependent on particular features of the 
model as the suitable change of measure required when importance sampling is ap-
plied. The paper shows formulas of the importance function for estimating overflow 
probabilities in Jackson and non-Jackson networks, and also for the study of highly 
dependable systems. 

RESTART has a precedent in the splitting method described in [2]. Splitting also 
defines importance regions and performs retrials, but these are not made in the same 
way. They are only made the first time the process enters each set Ci, and they do not 
finish when they exit set Ci, but continue until the end of the simulation. Conse-
quently, as indicated in [3], oversampling is performed not only in high importance 
regions, but also in low importance regions that are visited after the higher importance 
ones, leading to a loss of efficiency. This feature has limited its use to the simulation 
of processes in which a negligible amount of time is spent in low importance regions 
visited after the higher importance ones. This amount of time is only negligible in 
simulations made by means of short replicas, e.g., regenerative simulations of very 
simple systems, or short transient simulations. 

RESTART was introduced by Bayes, A. J. in 1970 [4]. Villén-Altamirano, M. and 
Villén-Altamirano, J. coined in 1991 the name RESTART [5] and made a theoretical 
analysis that yields the variance of the estimator and the gain obtained with one 
threshold. The analysis was extended for multiple thresholds in 1994 [6]. The papers 
also derive optimal values of the parameters (thresholds and the number of retrials). 
By using these results, guidelines can be derived for optimizing the importance  
function and the parameter values. This analysis led to efficient applications of  
RESTART. While few applications with poor gains [4] or even failures [7] were  
reported before 1991, a large number of applications with dramatic gains have subse-
quently been reported. Examples of these applications are [8], [9], [10], [11], [12], 
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], 
[29], [30], [31], [32], [33] and [34].  

The rest of the paper is organized as follows. Section 2 describes the method and 
Section 3 proves the unbiasedness of the estimator. Section 4 is devoted to show the 
efficiency of RESTART. Exact formulas for the variance of the estimator and the gain 
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obtained are presented, as well as values for thresholds and the number of retrials that 
maximize the gain. Section 5 provides guidelines for an effective application of  
RESTART. It shows how the formula of the gain can be expressed as an ideal gain 
divided by four factors, which can be considered inefficiency factors. Guidelines are 
given to reduce each of the factors. Special emphasis is placed on the most critical 
factor, the one related to the chosen importance function. Section 6 exposes several 
examples on queuing networks and ultra reliable systems to illustrate the application of 
the guidelines and the efficiency achieved. Finally, conclusions are stated in Section 7. 

2   Description of RESTART 

Consider the simulation of a stochastic process Z = (Z(t), t ≥ 0), with discrete state 
space and either discrete or continuous parameter. The process may be Markovian or 
non-Markovian. As in any simulation, regardless of the use of RESTART, Z(t) is 
simulated by means of a Markovian process X(t) which includes, in addition to the 
state variables of Z(t), those needed to determine Z(t1) for t1>t. These additional state 
variables include: 

− The time of occurrence of any future event1 that has already been scheduled at 
or before time t; 

− The part of the history of the process that has to be incorporated into the system 
state at t to make X(t) Markovian. 

For a given process Z(t), different ways of implementing the simulation model may 
lead to different processes X(t). Although RESTART may be applied for any process 
X(t), the application can be more efficient if X(t) is defined following the guidelines 
given in Section 5.6. In the rest of the paper it is assumed that the process X(t)  
is given. 

Let Ω denote the state space of X(t). A nested sequence of sets of states Ci, 
( )MCCC ...21 ⊃⊃  is defined, which determines a partition of the state space Ω into 

regions 1+− ii CC ; the higher the value of i, the higher the importance of the region 

1+− ii CC . These sets are defined by means of a function ℜ→ΩΦ  : , called the  

importance function. Thresholds Ti  (1 ≤ i ≤ M) of Φ are defined such that each set Ci 
is associated with iT≥Φ . 

The probability Pr{A} of the rare set A can be defined in many ways. For example, 
in a transient simulation, it can be defined as the probability that the system enters the 
rare set at least once in a given time interval. It is also often defined, both in transient 
and steady-state simulations, either as the probability of the system being in a state of 
the set A at a random instant or at the instant of occurrence of certain events denoted 
reference events. An example of a reference event is a packet arrival. If the rare set is 
a buffer being full, we are not usually interested in the probability of the buffer being 
full at a random instant but at a packet arrival. RESTART can be applied in all these 

                                                           
1 In this paper the term event refers to a simulation event, i.e., an instantaneous occurrence that 

may change the state Z. The system state resulting from the change will be called system state 
at the event.  
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cases. However, for simplicity, the notation will only refer to the last definition. 
Analogously, the probability Pr{Ci} of set Ci is defined as the probability of the sys-
tem being in a state of the set Ci at a reference event. 

A reference event at which the system is in a state of the set A or set Ci is referred 
to as an event A or event Ci, respectively. Two additional events, iB  and iD , are 

defined as follows: 

iB  : event at which iT≥Φ  having been iT<Φ  at the previous event;  

iD  : event at which iT<Φ  having been iT≥Φ  at the previous event. 

RESTART works as follows:  

• A simulation path, called main trial, is performed in the same way as if it were  
a crude simulation. It lasts until it reaches a predefined "end of simulation"  
condition. 

• Each time an event B1 occurs in the main trial, the system state is saved, the 
main trial is interrupted, and 11 −R  retrials of level 1 are performed. Each retrial 

of level 1 is a simulation path that starts with the state saved at B1 and finishes 
when an event D1 occurs.  

• After the 11 −R  retrials of level 1 have been performed, the main trial continues 

from the state saved at B1. Note that the total number of simulated paths [ )11, DB , 

including the portion [ )11, DB  of the main trial, is R1. Each of these R1 paths is 

called a trial [ )11, DB . The main trial, which continues after D1, leads to new sets 

of retrials of level 1 if new events B1 occur. 
• Events B2 may occur during any trial [ )11, DB . Each time an event B2 occurs, an 

analogous process is set in motion: 12 −R  retrials of level 2, starting in B2 and 

finishing in D2, are performed, leading to a total number of R2 trials ),[ 22 DB . 

The trial [B1, D1), which continues after D2, may lead to new sets of retrials of 
level 2 if new events B2 occur. 

• In general, Ri trials [ )ii DB ,  (1 ≤ i ≤ M) are performed each time an event Bi  

occurs in a trial [ )11, −− ii DB . The number Ri is constant for each value of i. 

• A retrial of level i also finishes if it reaches the "end of simulation" condition 
before the occurrence of event Di. The term trial [ )ii DB , , often used in the rest 

of the paper, indistinctively refers to a complete or to a prematurely finished 
trial [ )ii DB , . 

• In case that the process up crosses more than one threshold in a time step, it 
must be taken into account that several events Bi (with different values of i) si-
multaneously occur. If, for instance, an event at which 1+≥Φ iT  occurs having 

been iT<Φ  at the previous event, this event is both an event Bi and an event 

Bi+1. As it is an event Bi, Ri-1 retrials of level i have to be performed starting in 
this event Bi/Bi+1 and finishing when an event Di occurs. As the referred event is 
also an event Bi+1 we have to consider that an event Bi+1  has occurred in each of  
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the Ri trials [ )ii DB , , thus ( )11 −+ii RR  retrials of level i+1 have also to be per-

formed, all of them starting in the referred event Bi/Bi+1 and finishing when an 
event Di+1 occurs.  

Figure 1 illustrates a RESTART simulation with M = 3, R1 = R2 = 4, R3 = 3, in which 
the chosen importance function Φ also defines set A as Φ ≥ L. Bold, thin, dashed and 
dotted lines are used to distinguish the main trial and the retrials of level 1, 2 and 3, 
respectively. 
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Fig. 1. Simulation with RESTART 

Note that the oversampling made by RESTART in the region 1+− ii CC  (CM if  

i = M) is given by the accumulative number of trials: 

∏
=

=
i

j
ji Rr

1

 (1 ≤ i ≤ M) .  

Thus, for statistics taken on all the trials, the weight assigned to the occurrence of an 
event when it occurs in the region 1+− ii CC  (CM if i = M) must be 1/ri.  

Although sets Ci must be usually chosen satisfying MCA ⊂ , there are applications 

where a higher efficiency is achieved if MCA ⊄  (see [13], [16], [38]). For simplicity 

the formulas shown in this paper for the variance of the estimator and for the gain 
obtained only apply to the case in which MCA ⊂ . Formulas for the variance of  

the estimator for the general case in which either MCA ⊂  or MCA ⊄  are provided  

in [36]. 
The “end of simulation” condition or the condition for the start or the end of a 

simulation portion (as e.g., the initial transient phase or a batch of a batch means simula-
tion or a replica of a transient simulation) may be defined in the same way as in crude 
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simulation. For example, the condition may be that a predefined value of the simulated 
time or of the number of simulated reference events is reached. These conditions hold for 
a trial when the sum of the time (or of the number of reference events) simulated in the 
trial and in all its predecessors reaches the predefined value. 

Some more notations: 

• R0 = 1, r0 = 1, C0 = Ω, CM+1 = A ; 
• )10(/ +≤≤≤ MhiP ih : probability of the set Ch at a reference event, knowing 

that the system is in a state of the set Ci at that reference event. As Ch ⊂ Ci,  
{ } { }ihih CCP PrPr= ; 

• /iMiA PP 1/ += ; 

•  { }APPP A/M Pr0/01 === + ; 

•  NA: total number of events A that occur in the simulation (in the main trial or in any 
retrial); 

• 0
AN : number of events A that occur in the main trial; 

• )1(0 MiNi ≤≤ : number of events Bi that occur in the main trial; 

•  N: number of reference events simulated in the main trial; 
•  ai  (1 ≤ i ≤ M): expected number of reference events in a trial [Bi, Di);    
•  Xi (1 ≤ i ≤ M ): random variable indicating the state of the system at an event Bi; 
• )1( Mii ≤≤Ω : set of possible system states at an event Bi; 

• )1(*
/ MiP

iXA ≤≤ : importance of state Xi, defined as the expected number of 

events A in a trial [Bi, Di) when the system state at iB is Xi. Note that *
/ iXAP is 

also a random variable which takes the value *
/ ixAP when Xi = ix ; 

• ( )MiP iA ≤≤∗ 1/ : expected importance of an event Bi : 

[ ] )(/
*

/
*

/ ixAXAiA xdFPPEP
i

ii ∫Ω
∗== ,  

where F(xi) is the distribution function of Xi. Note that ][][ 00*
/ iAiA NENEP =  and 

that iAiiA PaP /
*

/ = ;  

• ( ) ( ):1/ MiPV
iXA ≤≤∗ variance of the importance of an event Bi : 

( ) ( ) ( )2*2**
iAXAXA PPEPV

ii
−⎥⎦

⎤
⎢⎣
⎡= .  

3   Unbiasedness of the Estimator 

The estimator of the probability of the rare set A in a RESTART simulation depends 
on how this probability has been defined. For the definition adopted in this paper, the 
estimator for P is in the general case, in which either MCA ⊂ or MCA ⊄ : 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

M

i i

Ai
N r

N
P

0

1ˆ , (1) 

where NAi is the number of events A occurred in the set 1+− ii CC  (CM if i = M) in any 

trial and N takes a fixed value, which controls the “end of simulation” condition. Note 
that the weight assigned to NAi is 1/ri given that NAi includes events occurred in all the 
trials, while the weight given to N is 1 since N only includes the reference events 
occurred in the main trial. In the case that MCA ⊂  formula (1) becomes: 

M

A

rN

N
P =ˆ . (2) 

The unbiasedness of the estimator is proved in (35) for the case in which MCA ⊂ and 

in (36) for the general case. Let us see here the proof made in (35) for MCA ⊂ . It is 

made by induction: the estimator of P in a crude simulation is NNP A /ˆ 0= , which is 

an unbiased estimator. As the crude simulation is equivalent to a RESTART simula-

tion with 0=M , and formula (2) becomes NNP A /ˆ 0=  for 0=M , the estimator of P 

in a RESTART simulation is unbiased for 0 thresholds. Thus, it is enough to prove 
that if it is unbiased for M-1 thresholds, it is also unbiased for M thresholds.  

Consider a simulation with M thresholds (T1 to TM). If the retrials of level 1 (and 
their corresponding upper-level retrials) are not taken into account, we have a simula-

tion with M-1 thresholds (T2 to TM ). Let NA and P̂  denote the number of events  

A and the estimator of P respectively in the simulation with M thresholds, and 1−M
AN  

and 1ˆ −MP  the number of events A and the estimator of P in the simulation with M-1 
thresholds.  

Define αm as the random variable which indicates the sum of the number of events 
A occurring in the mth trial [B1, D1) performed from each event B1 of the simulation 
counting all the events A occurring in the corresponding upper-level retrials. Note 
that, among the R1 trials [B1, D1) performed from each event B1 in the M threshold 
simulation, only the one being a portion of the main trial belongs to the M – 1 thresh-
old simulation. Assigning m = 1 to this trial: 

∑
=

− ==
1

1
1

1 ;
R

m
mA

M
A NN αα .  

As the R1 trials [B1, D1) made from each event B1 start with identical system  

state, [ ] [ ] ][...
121 REEE ααα === . Thus, as R1 is constant, [ ] [ ]1

1
−= M

AA NERNE and 

consequently: 

[ ] 1

1

1 2

ˆ ˆ .
M
A MA

M M

i i
i i

E NE N
E P E P P

N R N R

−
−

= =

⎡ ⎤⎣ ⎦⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦
∏ ∏
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This proves that P̂ is also unbiased in a RESTART simulation with M thresholds. 
It is important to apply the same “end of simulation” condition to the main trial and 

to all the trials, as explained in Section 2. Otherwise the formula 
[ ] [ ] ][...

121 REEE ααα ===  would not be satisfied and thus the estimator would not be 

unbiased. 

4   Efficiency of RESTART 

The efficiency of an acceleration method is determined by the computational time 
required for estimating a certain rare event probability P with a given width of the 
confidence interval. As the width of the confidence interval depends on the variance 
of the estimator, formulas of this variance, ( )PV ˆ , are shown in Section 4.1 and of the 

cost (in computational time) of the simulation in Section 4.2. In Section 4.3 the costs 
incurred by a RESTART simulation and by a crude simulation for estimating a same 
rare event probability with the same width of the confidence interval are compared to 
derive the efficiency gain obtained with the application of RESTART. As the effi-
ciency gain depends on the number of thresholds and on the number of retrials used in 
the RESTART simulation, the values of these parameters that optimize the gain are 
shown in Section 4.4.  

4.1   Variance of the Estimator 

The variance of the estimator for the case in which MCA ⊂  was derived in [35] and 

for the general case in which the condition MCA ⊂ is not necessarily satisfied in [36]. 

Let us present here the formula of the variance when MCA ⊂ as well as the main 

steps followed in [35] to derive it. The variance of the estimator is also derived by 
induction: first a formula is derived for 0 thresholds (crude simulation) and general-
ized for M thresholds; then it is proved that if the generalized formula holds for M-1 
thresholds, it also holds for M thresholds. 

Variance for 0 Thresholds (Crude Simulation). In a crude simulation the variance 
of the estimator is given by: 

( ) ( )
[ ] N

PK

NE

NV

N

P

N

NV

N

N
VPV A

A

AAA ===⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0

0

2

00

)ˆ( ,  

where ( ) [ ]00
AAA NENVK = . In simulations defined with a constant time duration t, 

KA is the index of dispersion on counts, IDC(t), of the process of occurrence of events 
A for the time t simulated. In any case, KA is a measure of the autocorrelation of the 
process of occurrence of events A. If the process is uncorrelated, KA is close to 1 (ex-
actly, PK A −= 1 ).  

The definition of KA also applies to a RESTART simulation, where 0
AN  is the 

number of events A in the main trial. 
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Variance for M Thresholds. The variance of P̂ in a RESTART simulation with M 
thresholds is given by: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+= ∑

=

M

i i

iiAi

M

A

r

RPs

rN

PK
PV

1

/ )1(1
)ˆ( , (3) 

with: 

[ ]( )
[ ]0

0

/

1

A

iA

iAA
i

NE

NEV

PK
s

χ
=  (1 ≤ i ≤ M) ,   (4) 

where ⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛=

0

,...,,, 210 iN
iiiii XXXNχ , 0

iN  being the random variable indicating the 

number of events Bi occurred in the main trial of a simulation randomly taken and 

),...,,(
021 iN

iii XXX  being the vector of random variables describing the system states 

at those events Bi. A further development of formula (4) is shown later to gain insight 
on si. 

The formula provided for 0 thresholds is an application of formula (3) to the case 
of M = 0 (where rM = r0 = 1). Let us now see that if formula (3) holds for M-1 thresh-
olds it also holds for M thresholds. 

Consider the two related M-1 and M threshold simulations described in Section 3. 

The variance of the estimator in the M-1 threshold simulation )ˆ( 1−MPV  and in the M 

threshold simulation )ˆ(PV  can be written as: 

[ ]( ) [ ])ˆ(ˆ)ˆ( 1
1

1
11 χχ −−− += MMM PVEPEVPV  .  (5) 

( ) ])ˆ([]ˆ[)ˆ( 11 χχ PVEPEVPV += .

 

(6) 

An intuitive explanation of formulas (5) and (6) is that the variance )ˆ(PV  for both  

M-1 and M threshold simulations can be considered to be the result of two contribu-
tions, reflected by the two terms of each of these formulas: 

• The first term reflects the variance associated with the set of events B1 occurred 
in the simulation. As the number of retrials made in B1 does not affect this vari-
ance, the first term of the two formulas is equal for both crude and RESTART 
simulation. 

• The second term  reflects the variance of the number of events A occurred when 
the set of events B1 is given. As this variance is reduced by performing retrials 
in B1, the second term is R1 times smaller for the M threshold simulation than for 
the M-1 threshold simulation. 

This intuitive reasoning, which is confirmed in a rigorous way in [35], leads to:  
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[ ] [ ]( )
1

1
1

ˆˆ χχ −=⎟
⎠
⎞⎜

⎝
⎛ MPEVPEV . (7) 

[ ] ( )[ ]1
1

1
1

ˆ1
)ˆ( χχ −= MPVE

R
PVE . (8) 

Note that, as )ˆ( 1−MPV  does not depend on χ1, an increment of the first term of for-

mula (5) due to a different χ1 leads to a decrement of the same value of the second 
one. Consequently an increment of the first term of formula (6) leads to a decrement 
R1 times smaller of the second one. It means that a greater variance of the importance 
at events B1 makes less efficient the application of RESTART. An explanation of this 
fact is that a greater variance of the importance at events B1 leads to a higher correla-
tion between trials made from a given B1 and, as the retrials made from a given B1 are 
less effective if they are correlated, the application of RESTART is less efficient. The 
same applies to a great variance of the importance at events Bi for any other given 
value of i.  

Starting with the formula of )ˆ( 1−MPV , obtained by adapting formula (3) to the 

case of M-1 thresholds numbered from 2 to M, and using formulas (5), (6), (7) and 

(8), formula (3) for the variance of the estimator )ˆ(PV  is derived in [35].  

Analysis of Factors. is . In order to gain insight on factor si, formula (4) of this factor 

has been further developed in [35], leading to:  

)1(
)(

)(
'

2*
/

*
/

Mi
P

PV
K

K

a
s i

iA

XA
i

A

i
i

i ≤≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= γ , (9) 

where ][)(' 00
iii NENVK =  (1 ≤ i ≤ M) and:                                 

( )[ ]
[ ]

( )
( )*

/

*
/

1
0

0,0
21

i

i

XA

XAm

m i

i
i

PV

PACV

NE

mNMaxE∑
∞

=

−
+=γ     (1 ≤ i ≤ M),  

( )*
/ iXAm PACV  being the autocovariance of *

/ iXAP  at lag m. 

Let us analyze formula (9): 

− Factor iK ' : This factor is a measure of the autocorrelation of the process of the 

occurrence of events Bi in the main trial. If the process is uncorrelated, iK '  is 

close to 1 (exactly, iii aPK 0/1' −= ). In most applications, the process has a 

weak positive autocorrelation and iK '  is slightly greater than 1. 

− Factor γi: If the random variables Xi were independent all the covariances 

( )*
/ iXAm PACV  would be zero and thus γi = 1. In general, γi is a measure of the 

dependence of the importance of the system states Xi of events Bi occurring in 
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the main trial. In most practical applications, there may be some dependence  
between system states of close events Bi but this dependence is negligible for 
distant events Bi. Thus γi is usually close to 1 or at least of the same order of 
magnitude as 1.  

− Ratio ( ) ( )2//
∗∗

iAXA PPV
i

: It greatly depends on the chosen importance function 

and may have an important impact on the efficiency of RESTART. An ideal 
choice of the importance function and of the process X(t) would lead  

to ( ) 0
1/ =∗

XAPV  and thus AKKs 11 = , which is around 1 in many applications. 

Thus values of 11 >>s  could indicate inefficiency in the application of  

RESTART due to an improper choice of the importance function. 

4.2   Simulation Cost 

Let us define the cost C of a simulation as the computational time required for the 
simulation, taking as time unit the average computational time per reference event in 
a crude simulation of the system. With this definition of time unit, the cost of a crude 
simulation with N reference events is C = N. 

In a RESTART simulation, the average cost of a reference event is always greater 
as overheads are involved in the implementation of RESTART: (1) for each event, an 
overhead mainly due to the need to evaluate the importance function and to compare 
it with the threshold values, and (2) for each retrial, an overhead mainly due to the 
restoration of event Bi (which includes to restore the system state at Bi and, as ex-
plained in Section 5.6, to re-schedule the scheduled events). To account for these 
overheads, the average cost of a reference event in a RESTART simulation is inflated 
(1) by a factor ye > 1 in any case and (2) by an additional factor 1>riy  if the refer-

ence event occurs in a retrial of level i.   
Using the above definition of time unit, the average cost per reference event is 

eyy =0  in the main trial and yi = ye yri  (1 ≤ i ≤ M) in a retrial of level i. As the ex-

pected number of reference events in the retrials of level i of a RESTART simulation 
(with N reference events in the main trial) is ( )110/ −− iii RrPN , the expected cost of the 

simulation is: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+= ∑

=
− 1

1
10/0 i

M

i
iii RrPyyNC . (10) 

Remark: Factors yi affect the simulation cost when it is measured in terms of required 
computational time, but not when it is measured in terms of number of events to be 
simulated. In this case iy = 1  (0 ≤ i ≤ M) . 

4.3   Simulation Gain with RESTART 

A measure of the efficiency for computing P̂  is given by the relative confidence-

normalized cost, RCNC, which is defined as 2)ˆ( PPVC . To compare the RCNC of 
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several estimators is equivalent to comparing the computational costs for a fixed rela-
tive width of the confidence interval. RCNC is equal to PK A in crude simulation, 

given that )ˆ(PV = KA P/N and C = N, and can be obtained from formulas (3) and (10) 

in RESTART simulation. 
The gain G obtained with RESTART can be defined as the ratio of the RCNC with 

crude simulation to the RCNC with RESTART. Defining s0 = 0, 11 =+Ms and yM+1 =0 

the following formula of the gain is obtained: 
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4.4   Quasi-Optimal Parameters 

To maximize the gain G in formula (11), factors si and yi must be minimized and 
optimal values for Pi/0 (or equivalently Pi+1/i) and ri need to be derived. Let us focus in 
this section on the optimal values of Pi+1/i and ri. These optimal values, that are func-
tion of si and yi, have been derived in [35]. However, in a practical application, the 
values of si and yi are difficult to evaluate. Therefore, approximations of the optimal 
values of Pi+1/i and ri that are independent of si and yi and given by simple expressions 
are recommended. As these approximations of the optimal parameters provide a gain 
close to that obtained with the optimal ones they are called quasi-optimal parameters. 
These parameters have also been derived in [35] assuming that the product si+1 ui takes 
the same value for every i (0 ≤ i ≤ M) and that the same occurs for the product yi vi+1. 
With these assumptions, quasi-optimal parameters maximizing the gain have been 
derived from (11) in these three steps: 

1. For fixed values of Pi+1/i, quasi-optimal values of ri are derived. For deriving 
them the derivative of the gain in formula (11) with respect to ri is made equal 
to zero for Mi ≤≤1 and the resulting system of equations is solved. The solu-
tion obtained is: 

)1(
1

1/10/

Mi
PP

r
ii

i ≤≤=
+

. (12) 

In practice, as the number of retrials Ri must be integer, a value close to that 
given by (12) that satisfies this restriction must be chosen for ri  

2. For these values of ri quasi-optimal values of Pi+1/i for a fixed number of thresh-
olds are derived. For this purpose, ri is substituted in (11) by the second term of 
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(12) and P1/0 by ∏
=

+

M

i
iiPP

1
1 . The derivative of the resulting expression of the 

gain with respect to Pi+1/i is made equal to zero for Mi ≤≤1 , obtaining 

011 PP ii =+ . It means that for a fixed number of thresholds "quasi-optimal" gain 

is obtained when all the probabilities Pi+1/i have the same value, which is: 

)0(1

1

/1 MiPP M
ii ≤≤= +

+ . (13) 

3. For these values of ri and Pi+1/i quasi-optimal value of M is derived. Substituting 
also (13) in (11), we can observe that the larger the value of M, the greater the 
gain. Thus Pi+1/i must be as close as possible to 1, i.e., the thresholds must be set 
as close as possible. In practice, there are two limitations on how close the 
thresholds can be set: one is due to the values that Φ can take when it is a dis-
crete function; the other is due to the restrictions on the value of Ri derived from 
the chosen thresholds. This value must be an integer number greater than one, 
given that Ri = 1 means that Ti is not really a threshold. 

The quasi-optimal gain, obtained when ri and Pi+1/i are given by (12) and (13) respec-
tively and M tends to infinite, is given by: 

( )( ) ( )( )0ln1ln

1

yPyAVGPsAVGP
G

+−+−
= , (14) 

where ( )sAVG  and ( )yAVG  are the arithmetical means of si and yi ( )Mi ≤≤1   

respectively.  

5   Guidelines for an Effective Application of RESTART  

The quasi-optimal gain given by formula (14) assumes that quasi-optimal parameters 
are used. In practice, quasi-optimal parameters are not possible: the importance func-
tion may be discrete and it prevents from setting thresholds with iiP /1+ very close to 1; 

even when the importance function is continuous it is not possible to set infinite 
thresholds, as mentioned above; moreover, the evaluation of ri is based on an estima-
tion of 0/iP . Although this estimation can be made by means of pilot runs, there will 

be always some error in the estimation and thus ri will not be exactly the quasi-
optimal one. In addition the resulting Ri has to be rounded to an integer number. This 
section studies how the gain is affected by the errors and limitations in the setting of 
the optimal parameters as well as by the computer overhead produced by the imple-
mentation of RESTART and by the chosen importance function. Section 5.1 defines 
four factors reflecting the influence of these features in the gain and Sections 5.2 to 
5.6 analyze each of the factors and provide guidelines for reducing them.  

5.1   Factors Affecting the Efficiency of RESTART 

As indicated in [35]. the general formula of the gain (formula (11)) can be re-written 
as follows: 
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The term ( )( )21ln1 +− PP  can be considered the ideal gain, which matches with the 

quasi-optimal gain (formula (14)) when si = 1 ( )Mi ≤≤1  and yi = 1 ( )Mi ≤≤0 . 

Factors fV, fO, fR and fT, all of them equal to or greater than 1 (with the exception of fV 
which could be smaller than 1 in some cases), can be considered inefficiency factors 
that reduce the actual gain with respect to the ideal one. Each factor reflects: 

• fV: inefficiency due to the variance of the importance of the systems states at 
each Bi which in its turn is due to the non-optimal choice of the Markovian 
process X(t) used for simulating the original process Z(t) (see Section 2) and/or 
the non-optimal choice of the importance function; 

• fO: inefficiency due to the computer overhead produced by the implementation 
of RESTART; 

• fR: inefficiency due to the non-optimal choice of the number of retrials; 
• fT: inefficiency due to the non-optimal choice of the thresholds. 

Note that the ideal gain ( )( )21ln1 +− PP  takes very high values, e.g., 4.6.103 for 
610−=P , 7107.1 ⋅  for 1010−=P  and 10101.9 ⋅  for 1410−=P . Assuming a computa-

tional time of 0.1 msec. per reference event, to estimate these probabilities with crude 
simulation would require a computational time of 11 hours, 13 years and 127 millen-
nia respectively. Applying RESTART these times are reduced, assuming that the ideal 
gain is achieved, to 9, 23 and 44 secs. respectively. In practice these times will be 
greater due to the inefficiency factors but, if these factors take moderate values, the 
resulting computational time may be low even though their values are not close to 1. 

5.2   Analysis and Guidelines to Reduce Factor Rf  

Let ηi denote the ratio of the actual value of ri to its quasi-optimal value riqo given by 
(12), and ηmax and ηmin the maximum and minimum values of ηi respectively:  
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( ) 1;1 0 =≤≤= ηη Mi
r

r

iqo

i
i .  

( )i
Mi

ηη
≤≤

=
0

max max ; ( )i
Mi

ηη
≤≤

=
0

min min .  

Based on left-hand formula (17) and on this notation, the following bound of fR is 
derived in [35]: 

min

max

η
η≤Rf . (18) 

This bound allows providing guidelines for assigning values to ri taking into account 
that Ri must be integer. For given thresholds, (assuming that a value has already been 
assigned to ri-1) the value that must be assigned for ri is: ri = ri-1 Ri where 

1−= iiqoi rrR  (rounded). Ri must be rounded to its integer part ⎣ ⎦iR  or to ⎣ ⎦ 1+iR  

depending on which alternative leads to the minimum value of ( )iiMax ηη 1, . 

Formula (18) also indicates that the impact on the gain of a non-optimal choice of 
ri due to errors in the estimation of 0/iP  is moderate if the errors are not very large; 

thus a rough estimation of 0/iP  may be sufficient for this purpose.  

5.3   Analysis and Guidelines to Reduce Factor Tf  

Based on right-hand formula (17), the following bound of fT is derived in [35]: 

( )
( )2
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min
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1

P

PP
fT

−
≤ , (19) 

where: 

( )ii
Mi

PMinP /1
0

min +
≤≤

= .  

The value of fT is moderate even for values of Pmin far from 1. For example, 
04.1≤Tf  for Pmin = 0.5, 53.1≤Tf  for Pmin = 0.1 and 62.4≤Tf  for Pmin = 0.01. It 

means that the impact on the gain of a discrete importance function is moderate ex-
cept in the case that the thresholds have to been set very far each other. 

Consequently the following guidelines may be provided for setting thresholds: if 
the importance function is continuous, thresholds should be set at a distance given by 

5.0/1 =+ iiP , given that it leads to Ri = 2 without need of rounding while fT is only 

1.04. If the importance function is discrete and the probability ratio of consecutive 
values of Φ is greater than 0.5, thresholds that lead to Ri = 2 with minimum rounding 
should be set. If the probability ratio of consecutive values of Φ is smaller than 0.5, a 
threshold should be set for each value of Φ. 
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5.4   Analysis and Guidelines to Reduce Factor Of   

According to right-hand formula (16), factors fO is a weighted mean of yi ( )Mi ≤≤0 , 

all the weights being positive. Thus, the following bound of fO can be defined: 

( )i
Mi

O yMaxf
≤≤

≤
0

.  

Factor fO reflects the inefficiency due to the overhead produced by the implementation 
of RESTART, as explained in Section 4.2. The value taken depends on the system 
characteristics. For example, it is higher when the system state is described by many 
variables because it increases the overhead needed for restoring the system state at Bi. 

Factor fO can be reduced by the use of hysteresis, which reduces the number of 
events Bi in the simulation and by following some programming guidelines for reduc-
ing the overhead per event Bi. The use of hysteresis consists in defining for each 
threshold Ti an additional threshold ii TT <′  and extending the retrials of level i until 

iT ′<Φ  (see, e.g., [37]). Guidelines to reduce the overhead per event Bi are explained 

in [37]. They are:  

• To perform memory dump for saving or restoring the state at Bi instead of copy-
ing the system variables one by one; 

• To perform a joint scheduling of all the pending events with negative exponen-
tially distributed time of occurrence. When several of these events are pending 
to occur in the simulation, there are two programming options: to schedule all of 
them or to schedule only the one which will first occur. This second option is 
recommended when RESTART is used because it reduces the number of events 
simultaneous scheduled in the simulation and thus the number of them that, ac-
cording to Section 5.6, must be re-scheduled at the beginning of each retrial. 

Note that fO is equal to 1 when the efficiency is measured in terms of the number of 
simulated events. 

5.5   Analysis of Factor Vf  

According to left-hand formula (16), factor fV is a weighted mean of 
( )11 +≤≤ Misi , all the weights being positive. Thus, the following bound of fV  can 

be defined: 

( )i
Mi

V sMaxf
11

   
+≤≤

≤ .  

As explained in Section 4.1, the term that may motivate a high value of si and thus of 

fV is the variance of the importance of the system states at events Bi, ( )∗
iXAPV /  or more 

precisely, the ratio ( ) ( )2//
∗∗

iAXA PPV
i

. This ratio does not only depends on the chosen 

importance function but also on the characteristics of the process X(t). The optimal 
importance function Φ is that for which each threshold Ti of Φ defines an importance 
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Ii such that, for any system state x, ( ) ixAi IPTx ≥⇔≥Φ *
/ . This importance function 

usually leads to very low values of ( ) ( )2//
∗∗

iAXA PPV
i

 and thus of si and fV. Neverthe-

less, if the process X(t) may skip from a state to another of much higher importance, 
the importance of the events Bi may be much higher than Ii. For this type of processes 
si may take a high value even when the optimal importance function is chosen. 

In order have a more meaningful bound of fV the following bound of si has been  
derived in [3]:  

( ) ( )Mi
P

Q

K

KMaxa
s

iA

iA

A

iii
i ≤≤

′
≤

∗
1

,
*

/γ , (20) 

where ∗
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the following bound for si is derived in [3]: 
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Note that bound (20) is a particular case of bound (21) for βi tending to infinity. 
Bound (21) is less restrictive because it does not require βi tending to infinity (which 

implies a bounded ∗
iXAP / ) but it only requires βi > 2. 

5.6   Guidelines to Reduce Factor Vf  

As explained in Section 5.5, the value of factor fV depends on the variance of the im-
portance at events Bi. To reduce this variance, all the states xi at events Bi must have 
similar importance; this is achieved by: 

• Using a good importance function Φ, i.e., a function for which all the states on 
the threshold boundary Φ = Ti have similar importance. 

• Reducing importance skipping, that is, avoiding that the process X(t) may skip 
from a given state to another of much higher importance. Importance skipping 
may cause some events Bi to be far from the threshold boundary, thus having 
importance much higher than other events Bi on (or close to) the boundary. 
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We have treated in previous sections the way of optimizing RESTART for a given 
X(t). However, for a given Z(t), the process X(t) may be different depending on how 
the simulation model is implemented. The extent of importance skipping is deter-
mined by the process X(t), as explained below. Thus, a proper choice of the process 
X(t) and the importance function Φ can reduce the factor fV and hence increase the 
efficiency of RESTART. Let us see how to choose X(t) and how to choose the impor-
tance function. 

Guidelines for the Choice of X(t). As explained in Section 4.1, to reduce the 
variance of the importance at events Bi for a given threshold i leads to reduce the 
correlation among trials made from a given Bi and vice versa. Although any one of 
these two reductions may be used as a criterion for selecting a proper process X(t), 
both of them are used in this section to reinforce the reasoning.  

As indicated in [3], when a simulation event occurs some random decisions may 
have to be taken, i.e., the values of some system variables (e.g., the number of packets 
in an arriving burst or the time scheduled for the occurrence of a future event) may 
have to be randomly determined. The definition of the process X(t) depends on the 
way these random decisions are taken during the simulation, which determines the 
extent of importance skipping and correlations among trials [Bi, Di). Therefore, X(t) 
also impacts the efficiency of RESTART, as shown in [38]. Let us illustrate this by 
using some examples. 

Let us consider the two following options for determining the random number of 
packets in a burst that arrives at a queue: (a) to determine the entire length of the burst 
at the arrival of the first packet, and (b) to determine at the arrival of each packet 
whether it is the last packet or there are more packets in the burst. In option (b) X(t) 
includes the number of packets in the burst arrived so far while in option (a) also 
includes the number of remaining (yet to arrive) packets in the burst.  

Note that in option (a) only one random decision is made at the beginning of the 
burst, while in option (b) a number of sequential random decisions are made (condi-
tioned on the number of packets in the burst arrived so far), one at the arrival of each 
packet in the burst. Clearly, the process X(t) evolves at large increments in option (a), 
which may cause large importance skipping. On the other hand, in option (b) the 
process X(t) evolves at small increments, which reduces importance skipping. There-
fore, option (b) is recommended in a simulation in which RESTART is applied. 

Also, note that X(t) is Markovian in both options, since it contains sufficient infor-
mation to execute the simulation of the system. However, in option (a) some future 
events are scheduled before they actually happen, while in option (b) no future events 
are scheduled unless necessary to continue the simulation. In the application of  
RESTART, option (a) will cause more sharing of future events (and hence more corre-
lation) among trials made from a given Bi. This reinforces the reason given above for 
justifying why option (b) is favored over option (a) in the application of RESTART. 

An alternative way of implementing option (b) is to determine the burst length at 
the arrival of the first packet (as in option (a)) and to determine it again at the arrival 
of each new packet by randomly generating the remaining burst length (conditioned 
on the number of packets arrived so far). This implementation of option (b) is equiva-
lent to the previous one because it yields the same process X(t).  
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Let us now consider the scheduling of future events in the simulation of a G/G/1 
queue, where the rare set is defined as the queue length q(t) greater than a certain 
threshold. If the times of occurrence of next arrival, tNA, and of next service comple-
tion, tNC , are scheduled only once at the previous arrival and at the start of the current 
service, respectively, then X(t) = (q(t), tNA -t, tNC -t). This is similar to option (a) of the 
previous example: X(t) includes the times of already scheduled future (arrival and 
service completion) events, which could cause importance skipping (e.g., when a high 
value is randomly assigned to tNC -t). It also increases correlation among trials [Bi, Di) 
due to sharing of future events. This can be avoided by using the process X(t) = (q(t), 
t- tPA, t- tCS) to simulate the system, where tPA and tCS are the times of the previous 
arrival and the start of the current service, respectively. This is similar to option (b) in 
the previous example. Here, arrival and service completion events can be rescheduled 
(conditioned on the elapsed times, t- tPA and t- tCS, respectively) at the occurrence of 
every event. However, to avoid unnecessary overhead, it is sufficient to reschedule 
only at events Bi, at the beginning of each retrial. This rescheduling minimizes the 
sharing of future events by different trials from the same event Bi and hence reduces 
the correlation among them, which improves the efficiency of RESTART. 

Guidelines for the Choice of the Importance Function. Once the variables required 
to describe X(t) have been determined, an importance function, which is a function of 
these variables, must be chosen. With a proper importance function all the states on 
each of the threshold boundaries Φ = Ti have similar importance, and thus, if 
importance skipping is small, all the states iix Ω∈  also have similar importance for 

any i. It leads to small values of ( )∗
iXAPV /  and thus also si for any i, and consequently 

to a small value of fV.  
In [20] it was pointed out that “the most challenging work for future research is to 

find and implement an efficient algorithm to determine good importance functions for 
defining thresholds”.  

In the case of one-dimensional systems, the choice of the importance function is 
straightforward, because the threshold boundary has only one state. Without impor-

tance skipping, this state is also the only state of iΩ  and thus ( ) 0/ =∗
iXAPV . 

Also, for multidimensional systems, small values of si and thus of fV are achieved if 
all the states iix Ω∈  have similar importance, but this condition is not strictly neces-

sary. States iix Ω∈  with moderate probability of occurrence may have much lower 

importance than the most frequent ones without leading to high values of ( )∗
iXAPV /  

and si : consider that ∗
ixAP /  is bounded and that the ratio of the probability of H

iΩ , the 

set of states iix Ω∈  with importance ∗
ixAP /  close to its supreme *

/ iAQ , to the prob-

ability of the whole set iΩ  is appreciable (greater than, say, 0.2 or 0.3). Then *
/ iAP , 

the mean importance of states iix Ω∈ , is close to the mean importance of states 
H
iix Ω∈  (and thus also close to the supreme *

/ iAQ ). Consequently, the ratio 
*

/
*

/ iAiA PQ  is small and, according to formula (30), si is small. 
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In [43] it was stated that “in the case of multidimensional state spaces, good 
choices of the importance function for splitting are crucial, and are definitely non-
trivial to obtain in general”. It is non-trivial because an exact analytical evaluation of 
the importance of the states is not possible in most cases. Thus a combination of ap-
proximate analytical formulas, heuristic reasoning and feedback from simulation 
results must be used to choose an appropriate importance function.  

An approach that can be used in queuing networks is to assume that the importance 
function is a linear combination of the queue lengths of the network nodes: 

∑
∀

=Φ
i

iiQa . Several procedures can be used to assign values to the coefficients ai: 

−  First of all, one of the coefficients can be made equal to 1 without loss of  
generality.  

− If the network has few nodes, e.g., only two nodes or three nodes and, thus, only 
one or two coefficients, the simplest solution is to perform pilot runs to test sev-
eral values of the coefficients and to choose the values for which the application 
is more efficient. For saving computational time of the pilot runs, they can be 
made for system parameter values for which the rare event is not so rare, given 
that the results obtained usually apply to the parameter values of interest.  

− By means of heuristic reasoning the number of coefficients that have to be ad-
justed may be reduced. E.g., the coefficients can be made equal to zero for the 
nodes for which its queue length has not impact on the occurrence of the rare 
event or it is guessed that the impact is small. Another example is to assign the 
same value to coefficients corresponding to queue lengths with the same or 
similar impact on the occurrence of the rare event.  

− If possible, approximate analytical formulas may be derived to roughly estimate 
the importance of some states. From these formulas the coefficient values may 
be evaluated by equating the importance function of states with the same impor-
tance. An alternative to this approach is to estimate the importance of some 
states by means of pilot runs.  

− If values have been assigned to some of the coefficients, interpolation or ex-
trapolation based on heuristic reasoning may be used to assign values to the  
remaining ones.  

− All the assumptions or approximations made for assigning values can be 
checked by means of pilot runs (that usually can be made for system parameter 
values for which the rare event is not so rare). These pilot runs can also be used 
to introduce correction factors to a set of coefficients, previously obtained,  
to improve them. This approach may also be used when the set of parameters 
obtained for a model are going to be applied to another similar model. 

Observe that the approximations are allowed for deriving the importance function 
because they could affect the efficiency of the method, but they do not affect the cor-
rectness of the estimates. 

In the networks with few nodes the number of coefficients to be assigned is smaller 
but the values assigned to them could be more critical due to the strong dependency 
that usually exists among the nodes. However in more complex networks, though the 
number of coefficients is larger the accuracy of the values assigned to them is not so 
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critical, as it is shown in the examples of Section 6. This fact may compensate the 
difficulty that complex networks could have due to the need of assigning many coef-
ficient values. As we will see in Section 6, the two-queue Jackson tandem network 
was simulated in [41] defining the rare set as Lq ≥2  and choosing the importance 

function 2q=Φ . This importance function Φ led to a large value of Vf  and, as  

reported in [41], to a very low efficiency. However in the multistage ATM switch 
studied in [16] an equivalent importance function led to a high efficiency. This switch 
has three stages of 88×  switching elements (SE), eight of them in each stage. Each 
SE is an output buffered switch with eight separated buffers of size K. The rare set is 
defined as the overflow of a buffer of the third stage. The importance function Φ is 
defined as the queue length q of the buffer under study. An importance function 
equivalent to that used in the previous example was successful, despite the greater 
complexity of the system. This is because the cells in the buffers in the second stage 
do not need to go to the buffer under study in the third stage, but can go to any of the 
64 buffers of this stage instead. As a result, the queue lengths of the buffers of the first 
or second stage have a small impact on the future queue length of a buffer of the third 
stage. Although the importance function used in [16] could be improved taking into 
account the queue length of the other queues (as will be seen in Section 6) the  
dependencies in this complex system are weak enough to be ignored without a sig-
nificant impact on the efficiency achieved. In the two-queue tandem network, its 
simplicity notwithstanding, the dependence is strong and cannot be ignored. 

In reliability problems, an importance function defined as a linear combination of 
variables representing the state of each component (1= failure, 0= operational) is not 
appropriate. The effect of the failure of a component is different depending which 
other components have also failed and this type of dependencies cannot be taken into 
account with a linear function of the states of the components. It is better in this case 
to obtain, based on some heuristic reasoning, a formula of the importance function 
that take into account these dependencies. In Section 6.3, a function of the states of 
the components obtained heuristically is proposed as importance function. Although 
the proposed importance function works well in all the cases studied, there are some 
cases in which it could be improved because, as indicated in that section, the proposed 
function does not account for all the features of the system state that may impact on 
the occurrence of the rare event. A possibility to improve it could be to obtain heuris-
tically another function of the system state variables that accounts for those features 
of the system state that are not taken into account by the previous function. The final 
importance function could be a linear combination of the two functions. Thus the 
approach proposed for queuing networks consisting in the choice of an importance 
function built as a linear combination of variables of the system state could be gener-
alized to the choice of a linear combination of functions of the system state.  

6   Application Examples 

Several examples on Jackson and non-Jackson queuing networks and on ultra reliable 
systems are shown in this section to illustrate the application of the guidelines given 
in Section 5 and the efficiency obtained. For evaluating the goodness of an applica-
tion and its possibility of improvement, it is not only interesting to observe the  
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required computational time but also the gain obtained and the values of the ineffi-
ciency factors. Section 6.1 explains how we can estimate the gain and the factors fV 
and fO. Factors fR  and fT  may be estimated by its bounds given by formulas (18) and 
(19) respectively. 

In all the runs, the simulation length was adjusted to have a relative half width of 
the 95% confidence interval (relative error) equal to 10%. The interval width was 
evaluated using the batch means method. The experiments of the two-queue Jackson 
tamdem network were run on a Sun Ultra 5 workstation and the remainig ones on a 
Pentium(R) D CPU 3.01 GHz. 

6.1   Jackson Networks 

First we will see how to obtain the importance function for two-queue tandem net-
works by assigning the coefficient values of the linear combination of queue lengths 
by means of tests made with pilot runs. Then general Jackson networks are studied. 
As the method of assigning by means of pilot runs is not practicable when the number 
of nodes is large, the importance function is derived by means of approximate   ana-
lytical formulas.  

Two-Queue Jackson Tandem Network. In this network customers with Poisson 
arrival enter the first queue and, after being served, enter the second one. The mean 
arrival rate is λ  and the service time is exponentially distributed in each queue with 

mean service rates 1μ  and 2μ , respectively. The load at each queue is 

)2,1( == iii μλρ . The buffer space at each queue is assumed to be infinite. The 

system state Z(t) is given by ( )21,qq , where qi is the number of customers at queue i. 

If rescheduling is made, the system state X(t) is also given by ( )21,qq . This model has 

received considerable attention in the rare event literature, e.g., [14], [17], [19], [22], 
[39], [40], [41] and [42].  

The difficulty of applying accelerated simulation techniques arises when the first 
queue is the bottleneck and the rare set definition is related to the value of q2. In order 
to cope with a difficult case the loads tested were 5.01 =ρ  and 33.02 =ρ . 

The network was studied in [3] for the following three definitions of the rare set A: 
LQQ ≥+ 21 ; LQ ≥2  and ( ) LQQ ≥21,min . 

In these examples thresholds and number of retrials were determined in a similar 
manner to that explained later for general Jackson networks. 

Rare Set Defined as LQQ ≥+ 21 . For this definition of the rare set, the most "natural" 

importance function is Φ 21 QQ += . Let us analyze if this function is appropriate. 

Assume that 60=L  and 30=iT . The possible states at an event iB  are (0,30), 

(1,29), (2,28), ..., (29,1), (30,0). The importance of each of these states is different. 
The higher the value of Q1 (for 3021 =+ QQ ), the higher the importance of the state, 

given that a customer at Q1 has to be served by both servers before leaving the sys-
tem, while a customer at Q2 has to be served only at the second one. Thus the supreme 

*
/ iAQ  is the importance of state (30,0). But, given that the first queue is the bottleneck, 
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the states with high value of Q1 and low value of Q2 have the highest probability. As 

these states have an importance close to the supreme, { }i
H
i ΩΩPr  is high. Thus 

21 QQ +=Φ  seems to lead to moderate values of si and therefore, also fV. Simulation 

results confirm that this qualitative reasoning is valid: probabilities up to 10-66 were 
accurately estimated with less than 40 minutes of computational time. The very low 
values of fV (smaller than 1.02) show that the choice of 21 QQ +=Φ  is appropriate and 

that the application is very close to the optimal one.  
Let us see how to estimate the gain obtained and the values of factors fV and fO. The 

gain in events or the gain in time with respect to a crude simulation is estimated as 
follows: in a crude simulation with 14L = , thus 41.22 10P −= × , and the same re-
maining conditions, the number of reference events (arrivals in this case) and the 

computational time are measured. As ( )ˆ
AV P K P N=  the measured values are ex-

trapolated for the value of L for which we want to estimate the factors, e.g., 220, un-
der the assumption of KA taking the same value. The gain is the ratio between these 
extrapolated values and those measured in the simulation with RESTART. A gain in 
events equal to 3.4•1061 and a gain in events equal to 5.0•1060  are obtained. Then we 
compare the measured gain with the theoretical one derived from formula (15). If we 
assume fV = 1 and fO = 1 in (15), we obtain for L = 220 a gain equal to P =3.46•1061 
(taking and ri given by formulas (13) and (12) respectively and thus taking fR = 1 and 

fT equal to its bound (19) evaluated for Pmin = ( )11 −LP ). We see that the theoretical 
gain (for fV = 1, fO = 1) is 1.02 times the actual gain in events. Given that the gain in 
events is not affected by the factor fO , the value 1.02 can be taken as an estimate of fV 
for 220=L . Finally, the factor fO can be estimated as the ratio between the gain in 
events and the gain in time. It leads to f sub O = 6.8. 

Rare Set Defined as LQ ≥2 . The simplicity of the system allows for simulating it by 

means of regenerative simulations and splitting, as in [40] and [41]. In [41] the chosen 
importance function is 2Q=Φ . Let us consider that L and an intermediate threshold 

Ti take the values 30=L  and 15=iT . At an event iB , 152 =q  but 1Q  can take any 

value. It is clear that the probability of reaching A ( 302 ≥Q ) from an event iB  at 

which 15,0 21 == QQ  is very different from that of reaching A from an event iB  

with, say, 15,60 21 == QQ . The supreme *
/ iAQ  is given by the limit of the impor-

tance of state (Q1, 15) when Q1 tends to infinity. The probability of states (Q1, 15) 
with high value of Q1 is much smaller than that of states with small value of Q1, and 

thus { }i
H
i ΩΩPr  is very small. Therefore this chosen function Φ leads to a large 

value of is  and, as reported in [41], to a low efficiency.  

It is clear that in the definition of Φ, 1Q  must be accounted for, since its value can 

affect the future evolution of 2Q . Some weight, albeit smaller than the weight given 

to 2Q , must be given to 1Q . Along this line of reasoning, we tested 1 2aQ QΦ = + , 

with 10 ≤≤ a . Pilot simulations for 20=L  with several values of a were run to 
determine the appropriate value of the coefficient a. The required computational times 
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for a = 0.8, 0.7, 0.6, 0.5 and 0.4 were 48, 23, 15, 27 and 70 seconds, respectively. The 
value a = 0.6 is chosen, as it provides the best results.  

Probabilities of the order of 10-29 and of 10-67 were accurately estimated with 7 and 
200 minutes of computational time, respectively. Although the values of fV (3.1 and 
11.2 respectively) are not so small as in the previous case, they are moderate enough 
to accurately estimate very low probabilities at a reasonable computational time. 
These low values of fV indicate that the application is close to the optimal one.  

Rare Set Defined as ( ) LQQMin ≥21, . For this case, the function Φ was defined in 

[40] as ( )21, QQMin=Φ . This definition of Φ leads to high values of fV and, as re-

ported in that paper, low efficiency. For 20=iT  (with L > 20), possible states at iB  

are (100, 20), (20, 20) and (20, 100). The importance of, say, states (100, 20) or (20, 

100) is much higher than that of state (20, 20). The supreme *
/ iAQ  is given by the 

limit of the importance of either state (20+j, 20) or state (20, 20+j) when j tends to 
infinity. The states with highest probability are (20+j, 20) or (20, 20+j) for low values 

of j. Consequently { }i
H
i ΩΩPr   is very low. Thus this definition of Φ does not seem 

to be appropriate.  
For LQ ≤1  and LQ ≤2 , we proposed to define Φ as a linear function of 1Q  and 

2Q : 21 QaQ +=Φ . As the relative importance of the states depends on the system 

parameters, the appropriate value of the coefficient a may be greater, equal or smaller 
than 1 depending on the load values. Extending this definition for LQ >1  or LQ >2  

does not appear to be appropriate: as the rare set is defined as LQ >1  and LQ >2 , 

when 1Q  or 2Q  exceeds L we must give a lower weight to this excess. This effect 

may be taken into account by introducing a coefficient 1<b  in the definition of the 
importance function:  

1 2

if
, where .

( ) if
i i

i
i i

Q q L
a

L b Q L q L

≤⎧
Φ = Φ + Φ Φ = ⎨ + − >⎩

 (22) 

We tested the importance function (22) using pilot runs with a = 1 and different val-

ues of b. The best results were obtained for b = 0.6. Probabilities of the order of 3210−  
and of 10-63 were accurately estimated with 7 and 72 minutes of computational time, 
respectively. 

The low values of fV (3.5 and 6.7, respectively) show that the application is very ef-
ficient and close to the optimal one. As the results were good enough, we did not 
investigated the improvement that could be obtained with other values of a. 

This case was also studied in [19] by means of RESTART. They used the impor-
tance function 21 5.1 QQ +=Φ . It led to values of fV (estimated by us based on their 

reported results) between 45 and 62 times the values reported in [3]. These results 
may be due to the fact that, in contrast to our approach, a lower weight was not given 
to Qi-L when Qi exceeds L.  

In [40] the values of fV are much higher. From their reported results, we have esti-
mated a value of fV =1600 for L = 10. It is difficult to estimate fV for larger values of L 
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because, as they claimed, the failure of their approach resulted in the underestimation 
of P and its relative error. Anyway this value of fV is very huge and the tendency ob-
served indicates that they must be much higher for higher values of L.  

General Jackson Networks. Formulas for obtaining effective importance functions 
were provided for two-stage Markovian networks with any number of nodes in each 
stage in [25] and extended to general Jackson networks with any number of nodes in 
[32]. Jobs arrivals and departures are allowed in all the nodes. After being served in 
node l, jobs can go to any node m with probability lmp  or they can leave the network 

with probability 0lp . The steady-state probability of the number of jobs exceeding a 

level at a target node, LQtg ≥ , was estimated. 

Some approximations and assumptions were needed to derive the formulas of the 
importance function. First, it was assumed that the importance function is a linear 
function of the queue length of the nodes placed at a distance from the target node 
smaller than 3. Thus the queue length of a node was considered in the importance 
function only if the jobs leaving the node go directly to the target node (distance 1) or 
through only one intermediate node (distance 2). Then it was evaluated the 
importance of the extreme (also called boundary) states when the process enters sets 
Ci ∀i, that is, the system states at which only one queue is not empty. Finally, for 
calculating the coefficients of Qi for each i in the importance function it was equated 
the importance of the extreme state corresponding to the target queue with the impor-
tance of each of the other extreme states. The goodness of the importance functions 
derived in the paper with such approximations was supported by the efficiency 
achieved in the simulations  

The formula obtained for the two-queue Jackson tandem network with 1 2ρ ρ>  and 

the rare set defined as 2q L≥  was: 1
1 2

2

ln

ln
Q Q

ρ
ρ

Φ = + . For the loads above considered 

for this example the importance function given by the formula is: 1 20.63Q QΦ = + . 

Slightly better results were obtained with this formula than with the importance func-
tion 1 20.6Q QΦ = +  obtained heuristically. 

Let us denote K the number of nodes with distance 1 and H the number of nodes 
with distance 2, for any value of K and H. Jobs with independent Poisson arrivals 
enter each node from the outside with arrival rates 1 , 1, ,i i Hγ = …  to the nodes with 

distance 2, 2 , 1, ,j j Kγ = …  to the nodes with distance 1 and tgγ  to the target node. 

The total arrival rates to each node (arrivals from the outside + arrivals from the other 
nodes) are denoted by: 1 , 1, ,i i Hλ = … , 2 , 1, ,j j Kλ = …  and tgλ , respectively.  The 

service times of all the nodes are assumed to be exponentially distributed with service 
rates 1 , 1, ,i i Hμ = … , 2 , 1, ,j j Kμ = …  and tgμ , respectively. The buffer space in each 

queue is assumed to be infinite. Let us observe that When there are not nodes at a 

distance greater then 2, 1 1 1 2
1 1

, 1, ,
H K

i i l li j ji tg tgi
l j

p p p i Hλ γ λ λ λ
= =

= + + + =∑ ∑ … . Analogous 
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equations are obtained for 2 , 1, ,j j Kλ = …  and tgλ . The loads of the nodes are 

1 1 1 , 1, ,i i i i Hρ λ μ= = … , 2 2 2 , 1, ,j j j j Kρ λ μ= = …  and tg tg tgρ λ μ= , respectively. 

A general formula of the importance function valid for any Jackson network was 
derived in [32]. A simplified version of this formula (also given in that paper) that 
matches with the general one in almost all cases is the following: 

( ) ( )*

1 1 2 2
1 1

ln ln
1, 1,

ln ln

H K
tg tgi tg tgj

i i j j tg
i jtg tg

Min Q Min Q Q
ρ ρ ρ ρ

α α
ρ ρ

⊥

= =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪Φ = + +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∑ ∑ , 

 

(23) 
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*  and tgi tgjρ ρ ⊥  are, approximately, the loads of the target queue when a node i at dis-

tance 2 from the target node or a node j at distance 1, respectively, are not empty. It is 
more difficult to get insight of the meaning of 1 2and i jα α  without following the 

derivation of formula (23). Nevertheless, the formulas are easy to apply because all 
their terms are parameters of the system. 

Test Cases. Several simulation experiments on Jackson networks with different to-
pologies and loads were conducted in [32]. The rare set A was defined in most cases 
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as 70tgQ ≥ , where Qtg is the number of customers at the target node. The steady state 

probability of A was of the order of 10-34 in those examples. The reason for simulating 
such small probabilities is to show the goodness of the importance functions obtained 
in the paper, given that if it is possible to estimate accurately such small probabilities 
with short or moderate computational time, it will take much less time to estimate 
more realistic probabilities.  

Thresholds Ti were set for every integer value of Φ between 2 (in some cases 3) 
and a number varying between 71 and 75 depending on the case being simulated. 
Observe that, as L=70, the rare set A is not included in CM given that  

( )1i iA C C φ+∩ − ≠  if 70≥iT .  Pilot runs (one or two for each case) were made to set 

the number of retrials. We proceeded as following: we set (for example) the thresh-
olds 2, 3, 4, … , 74 and we made a pilot simulation. This simulation derived the opti-
mal number of retrials according to formula (12) following the guidelines given in 
Section 5.2 for rounding to integer values. If the derived value of the number thresh-
old (in the pilot simulation) of retrials from a threshold was 1 was 1, such threshold 
was eliminated. If the number of retrials from the last threshold was greater than 5, an 
additional threshold was set. The number of retrials Ri finally was 2 or 3 in all cases.  

Although it is not possible to simulate all the Jackson networks to prove that the 
importance function given by formula (23) is always effective, test cases that a priori 
could have some difficulties were selected in [32]. If the importance function is effec-
tive for these cases, it is supposed that it will be also effective for most Jackson net-
works. The systems simulated were the following:  

• a two-queue Jackson tandem network;  
• a three-queue Jackson tandem network;  
• a three-stage network with 4 nodes in the first and second stage and 1 or 2 

nodes in the third stage;  
• a Jackson network with 7 nodes with 2 nodes at distance 1 from the target 

node, and 4 nodes at distance 2 from the target node.  
• a Jackson network with 7 nodes with 2 nodes at distance 1 but with 2 nodes 

at distance 3 from the target node, 2 nodes at the target node. distance 2 and 
2 nodes at distance 3. 

• a large Jackson network with 15 nodes: 4 of them at distance 3 from the tar-
get node, 5 at distance 2 and 5 at distance 1. 

• a 2-node Jackson network with strong feedback: jobs departing any of the 
two nodes join the other node with a probability of 0.8. 

• a six-queue Jackson tandem network, in which the first 5 nodes have the 
same load (2/3) and the last (target) node has a lower load (1/3). This case 
and the two first ones are networks for which the dependency of the target 
queues on the queue length of the other queues is very high because all the 
customers of the other queues have to go to the target queue. 

In all the networks, except the last one, probabilities of the order of 10-34 were esti-
mated with short or moderate computational time with the importance function given 
by formula (23). For the six-queue Jackson tandem network thirty minutes of compu-
tational time was needed to estimate a probability of the order of 10-15 with that  
importance function (that does not take into account the queue length of the first 3 
nodes). The importance function was improved heuristically giving the weights  
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provided by the formula for the last 3 nodes and lower extrapolated weights to the 
nodes that are farther from the target node. With this importance function, which 
accounts for the dependence of the target node on all the nodes, an accurate estima-
tion of the same probability was obtained with 10 minutes of computational time. 

The results obtained in [32] show that the worst cases are networks with very high 
dependencies, in which  the target queue has a much lower load than the other queues, 
and that the best cases are usually the most complex networks with a high number of 
nodes because there are usually weak dependencies in these cases. Although the im-
portance function given by formula (23) can be improved for some specific networks, 
it seems to be good enough for estimating very low probabilities with short or moder-
ate computational times for most (perhaps all) Jackson networks. 

In order to illustrate the results of the simulations made in [32], those corres-
ponding to a Jackson network with 7 nodes (with 2 nodes at distance 3 from the target 
node) will be reproduced here. 

Jobs from the outside arrive at any node of the network at a rate 1, 1, ,7.i iγ = = …  

After being served in each node, a job leaves the network with probability 0.2. 
Otherwise the job goes to another node in accordance to the following transition 
matrix: 

 

 1 2 3 4 5 6 tg 

1 0.2 0.2 0.2 0.2 0 0 0 

2 0.2 0.2 0.2 0.2 0 0 0 

3 0.1 0.1 0.1 0.1 0.2 0.2 0 

4 0.1 0.1 0.1 0.1 0.2 0.2 0 

5 0.1 0.1 0.1 0.1 0 0.1 0.3 

6 0.1 0.1 0.1 0.1 0.1 0 0.3 

tg 0.1 0.1 0.1 0.1 0.1 0.1 0.2 

Let observe that jobs that leave nodes 1 or 2 have to visit nodes 3 or 4 and nodes 5 
or 6 before entering the target node. We wished to check whether to ignore the impact 
of the queue lengths of the nodes at a distance greater than two on the queue length of 
the target node is a reasonable approximation. The results are summarized in Table 1. 

For each group of loads of the nodes, three importance functions were used. The 
first one is given by formula (23), that is, without considering the queue lengths of 
nodes 1 and 2 placed at a distance 3 (a = 0 in the table). The second one also takes 
into account nodes 1 and 2. The values of their coefficients (called a in the table) were 
derived with the same methodology used to derive formula (23). The third importance 
function only takes into account the target node and the nodes that are at distance 1 
from it (a = b = 0). 

The best results were obtained with the second importance function, the function 
that takes into account the number of jobs in the seven nodes. However, the impor-
tance function given by formula (23) leads to very effective results: probabilities of 
the order of 10-34 were obtained with less than 10 minutes of computational time and 
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the values of factor fV, though slightly greater than those obtained with the other im-
portance function, are very small. Consequently, it does not seem that it worth further 
complicating the importance function by taking into account the nodes that are at 
distance greater than 2 from the target node. Nevertheless, though it is not necessary 
in almost all the cases, if we want to improve the importance function taking into 
account more queue lengths in the function, it can be done deriving the coefficients of 
those nodes with the same methodology used to derive formula (23) or heuristically 
giving the weights provided by the formula to the nodes at distance lower than 3 and 
lower weights to the nodes that are farther from the target node. The results are much 
worse when using the third importance function, which only accounts for the target 
node and the nodes that are at distance 1 from the target node.  

Table 1. Results for Jackson networks. Relative error = 0.1. Rare set probability: 

( ) 3470 3.13 10tgP Q −≥ = ⋅ . 0.3322tgρ = . 
2 4 6

1 3 5
i j k tg

i j k

a Q b Q c Q Q
= = =

Φ = + + +∑ ∑ ∑ . 

P̂  ρi ρj ρk a b c 
Time 

(minutes)
fV 

3.1·10-34 
3.2·10-34 
3.3·10-34 
3.1·10-34 
3.0·10-34 
2.9·10-34 
3.3·10-34 
3.1·10-34 
3.0·10-34 

0.62 
0.62 
0.62 
0.47 
0.47 
0.47 
0.31 
0.31 
0.31 

0.51 
0.51 
0.51 
0.51 
0.51 
0.51 
0.31 
0.31 
0.31 

0.41 
0.41 
0.41 
0.41 
0.41 
0.41 
0.31 
0.31 
0.31 

0 
0.07 

0 
0 

0.09 
0 
0 

0.15 
0 

0.31 
0.31 

0 
0.31 
0.31 

0 
0.51 
0.51 

0 

0.47 
0.47 
0.47 
0.47 
0.47 
0.47 
0.61 
0.61 
0.61 

9.6 
7.5 
518 
5.2 
4.2 
207 
3.3 
3.0 
6.1 

3.6 
2.7 
204 
1.7 
1.4 
55 
1.1 
1.0 
2.4 

6.2   Non-Jackson Networks 

The importance function given by formula (23) has been derived equating the impor-
tance of one extreme state with the importance of each of the other extreme states. It 
is interesting to see whether the importance of the extreme states are affected in a 
similar manner when the interarrivals and/or services times are not exponentially 
distributed and, as a consequence, whether the importance function derived for Jack-
son networks fits for other networks.  

In [44] networks with Poisson arrivals and Erlang service times were studied. Two 
of the networks above mentioned were analyzed: the three-queue tandem network and 
the first one of the two networks with seven nodes. In the first model, the service time 
at each node follows an Erlang distribution with shape parameter equal to α (2 or 3). 
Initially, the chosen importance function was 1 2 3aQ bQ QΦ = + +  evaluated accord-

ing to formula (23). Then, the coefficients a and b of Φ were multiplied by a correc-
tion factor k, the same for both coefficients. The tested values of k were 0.6, 0.7, 0.8 
and 0.9.  

We observed that the best value of k was between 0.6 and 0.9, depending on the 
case. We also observed that for α = 2, the value of k is closer to 1 than for α = 3.  
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As the coefficient of variation of Pearson of the Erlang distribution is 1 α , it seems 

that the more similar is this coefficient to that of the exponential distribution, the 
closer is the importance function to that given by the formula. It is also observed that 
lower values of the loads of the two first nodes lead to importance functions closer to 
those derived for the exponential distribution. Probabilities of the order of 10-15 were 
estimated with computational times between 0.4 and 21.8 minutes. 

The values of factor fO are much greater than those obtained in [32] for the same 
network but with exponential service times. The reason is that rescheduling is 
straightforward only for the exponential distribution due to the memoryless property 
of this model. Rescheduling service times of any other distribution is more time 
consuming. We can proceed as follows: a random value of the whole service time of a 
job is obtained. If that value is greater than the service time at the current time, the 
remaining service time of the job is obtained as the difference between the two 
amounts. Otherwise a new random value is obtained and so on. This procedure has 
the problem that the number of iterations is very huge when the actual service time is 
much larger than the mean service time, and it greatly increases factor fO .As resched-
uling is made to improve factor fv but it is not strictly necessary, if after a fix number 
of trials, e.g., 50, the random value of the whole service time is always lower than the 
service time at the current time, the service time is not rescheduled. In this way factor 
fO is significantly reduced and, as only 1 or 2% of the scheduled times are not re-
scheduled, the impact on fV is negligible. Nevertheless, even with this improvement of 
the procedure, the value of factor fO with Erlang service times is around four times 
greater than with exponential times for estimating a probability of the order of 10-15. 

Low or at least moderate values of factor fV were obtained in all the cases. It shows 
that the application is not far from the optimal, at least for the tested cases. We 
observe that the worst results (greatest computational times and greatest values of 
factor fV) were obtained when 3 2 1ρ ρ ρ< < , but even in these cases the computational 

times are moderate (21.8 minutes). The importance functions given by formula (23) 
lead to greater computational times, although these times are also moderate in all the 
cases, except in the case 3 2 1ρ ρ ρ< < , in which the computational time was greater 

than one day.  
The second network studied in [44] is a network with 7 nodes with 2 nodes at 

distance 1 from the target node, and 4 nodes at distance 2, with Poison arrivals and 
Erlang service times.  

The computational times needed for estimating probabilities of the same order of 
magnitude (10-15) is much lower than in the previous network. The results are better in 
this network due to the weaker dependence between the queue lengths.  

In the three cases of α = 2 the best results were obtained with the importance 
function given by formula (23), while for α = 3 the best results were obtained with 
coefficients of nodes at distance 1 and 2 around 10% lower than those given by 
formula (23), that is, with a correction factor k = 0.9. Nevertheless, very good results 
were also obtained without any correction factor. The very low values of fV achieved 
(less than 1.7 in the six cases studied) show that the application is very close to the 
optimal one, at least for the tested cases. 

In [34] the simulation study made in [44] was extended in a twofold direction. On 
the one hand it was also simulated two additional above mentioned networks: the 
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large network with 15 nodes and the network with 2 nodes and very strong feedback,  
On the other hand we used hyperexponential and Erlang distribution for modelling the 
interarrival and/or service times. 

In this paper a better method for improving formula (23) (formula derived for 
Jackson networks) is applied for non-Markovian networks: instead of multiplying 
some coefficients by a correction factor obtained heuristically, we also use formula 
(23) but the actual loads used in the formulas are substituted by “effective loads”, 

defined as the loads eρ  such that { } ( )Pr
neQ n ρ≥ = . For Jackson networks for a 

certain value of n. the “effective load” matches the actual load.  
For the three-queue tandem network and for the network with 2 nodes and strong 

feedback, the efficiency obtained is much higher using effective loads than using 
actual loads. However similar efficiency is obtained using “effective loads” and actual 
loads (that is, using formula (23) without any correction) with the more complex 
networks of 7 and 15 nodes because the effective loads are similar to the actual loads 
in these networks. Overflow probabilities lower than those needed in practical 
problems (around 10-15) were accurately estimated within short computational work. 
The worst results were obtained when the dependence of the target queue on the 
length of the other queues is very high (as occurs in a tandem network) and the load 
of the target queue is much lower than the others. For the worst case, less than 17 
minutes of computational times were needed for estimating a probability of the order 
of 10-15 . In some of the cases the probability was estimated in less than one minute. 

6.3   Ultra Reliable Systems 

This section provides a simple importance function that can be useful for RESTART 
simulation of models of many highly dependable systems. Some examples from the 
literature illustrate the application of this importance function. 

We consider generalized Machine Repairman Models. These models consist of 
multiple types of components with any number of components of each type, where 
each component can be in one of the following states: operational, failed, spare or 
dormant. An operational component becomes dormant if its operation depends upon 
the operation of other components and those components fail. General lifetime distri-
butions and different failure rates can be specified for the operational, spare and  
dormant states. Dependencies among components and failure propagation (e.g., the 
failure of a component causes some other components to fail with given probabilities) 
are allowed. There is a set of repair services which repair failed components accord-
ing to a general distribution and to some service discipline. The system is operational 
if certain combinations of components are operational. The concern is estimation of 
transient measures, such as system unreliability or unavailability at a given instant, 
and steady-state measures, such as steady-state unavailability and mean time between 
failures.  

In a general system there are minimal cut sets with different cardinality. In a bal-
anced system, where all the components have the same probability to fail, it is more 
probable that a system failure is due to the failure of all the components of a minimal 
cut set with the lowest cardinality. The “distance” to the system failure is related with 
the number of components that remain operational in the cut set with lowest the number 
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of operational components. For this reason the importance function (at an instant t) is 
defined as: 

( ) ( )t cl oc tΦ = −  , (24) 

where cl is the cardinality of the minimal cut set with the lowest cardinality and oc(t) 
is the number of components that are operational at time t in the cut set with the  
lowest number of operational components. Thresholds Ti of Φ can be defined at 1, 2, 
… , 1−cl . For example, consider the network in Fig.2 that contains 8 links and 7 
nodes. The system operates as long as there exists a path along operating links  
between node A and node B. 
 

 
 

Fig. 2. Network with low redundancies 

There are 4 minimal cut sets with 2 links: ( ) ( ) ( ) ( )1,7 , 1,8 , 6,7 , 6,8 ,  and 8 minimal 

cut sets with 3 links: ( ) ( )2,3,7 , , 3,4,8 .…  In this network 2cl =  and we can define 

one threshold. The process is in the region C1 (that is, 1( )t TΦ ≥ ) if at least one com-

ponent of any of the 4 cut sets with cardinality 2 or at least 2 components of any of 
the 8 cut sets with cardinality 3 are failed. As only one threshold can be defined, fac-
tor fT would be high if the 8 links would be highly reliable. 

The same importance function can be used for many unbalanced systems. The lar-
ger the difference among failure rates of the components, the greater the value of 
factor fV. If the system is so unbalanced that factor fV takes a very great value and, as a 
consequence, it is unfeasible to estimate the probability of interest within a reasonable 
computational effort, the importance function must be improved.  

A limitation of the RESTART methodology for simulating highly-reliable systems 
is the difficulty to define thresholds close enough so that the probability of reaching 
the next threshold is reasonably large and, thus, close to the optimal. For this reason, 
L’ecuyer et al. [43] pointed out that this methodology is not appropriate for this type 
of systems and Xiao et al. [45] suggested that “importance splitting is hard to be 
adopted for dependability estimation of non-Markov systems, because thresholds 
function is hard to be presented under this situation”. However, as it will be shown in 
the examples, probabilities up to the order of 10-16 can be accurately estimated within 
a reasonable computational effort.  

We will describe three examples, two of them taken from [27] and the other one 
from [33]. Example 1, taken from [27] is the network of Fig.3 originally presented in 
[46], where it was simulated using importance sampling. The network contains 56 
links, classified in 3 types, and a total of 107 components. Each type A link contains 

8 
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three identical components and fails when two components fail. Type B links contain 
one component. Each type C link contains two identical components and fails when 
one component fails. The mean lifetime is different for each type of component. The 
system operates as long as there exists a path along operating links between node 1 
and node 20. There are 5 repair-persons, and repairs make components as good as 
new. Upon completing a repair, a repair-person selects the next component to repair 
randomly over the failed components in the network. 

 

 
 
 
    
 
 

Fig. 3. Network with redundancies 

The system unreliability was estimated for different small values of intervals (0, te). 
Simulations were made assuming first a Markovian model, that is assuming that  
component lifetimes and repair times are exponentially distributed, and second as-
suming that component lifetime distributions are Raleigh (Weibull distribution with 
shape parameter equal to 2) and that repair time distributions are Erlang with shape 
parameter equal to 3. The minimal cut sets are defined on the links (not on the com-
ponents). The importance function was given by formula (24). As 4cl =  three  
intermediate thresholds could be defined.  

Probabilities up to the order of 10-11 could be accurately estimated within short or 
moderate computational time. Nevertheless a high value of factor fV was observed 
because, for a given value of i, the states at events Bi with more importance have 
smaller probability to occur, see Section 5.6. The system states at events Bi with more 
importance are those in which operational links have greater probability to fail. It is 
more unlikely that the operational links of a minimal cut set are those with greater 
probability to fail because it requires a previous failure of the other links of the same 
minimal cut set, which have lower probability to fail. As commented above, for un-
balanced systems the factor fV can take high values.  

The models with exponential lifetimes and service times were exactly the same 
models simulated in [46] with importance sampling, and the estimates of the steady-
state unavailability are very close in both cases. For simulating the Weibull-Erlang 

Type A links: (1,2), (1,3), (1,4), (1,5), (16,20), (17,20), (18,20), and (19,20) 
Type B links: (2,3), (3,4), (4,5), (6,7), (7,8), (9,10), (10,11), (11,12), (13,14), 
(14,15), (16,17), (17,18), and (18,19). 
All other links are type C. 
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models with RESTART the same procedure as for the Markovian models could be 
used given that the same importance function is valid in both cases. With importance 
sampling only results for the Markovian case have been obtained, because the analyti-
cal study required for applying importance sampling to non-Markovian systems with 
significant redundancies is very complicated. 

Example 2 of [27] is a computing system originally presented in [47], where it was 
studied using importance sampling, and also studied in many papers thereafter, e.g., 
[48]. A block diagram of the balanced version of the computing system considered is 
shown in Fig. 4. 

 
 
 
  
 
 
 
 
 
 
 
 

Fig. 4. Block diagram of a computing system 

The system is composed of two types of processors each having passive redun-
dancy 2; two types of disk controllers, each having active redundancy 2; and six sets 
of disk clusters, each having four disks. When a processor of one type fails, it causes a 
processor of another type to fail also with probability 0.01. The lifetime of all the 
components is assumed to be exponentially distributed with failure rates of proces-
sors, controllers, and disks of 1/2000, 1/2000, and 1/6000 per hour, respectively. It is 
assumed that each type of component can fail in one of two modes which occur with 
equal probability. The repair rates for all mode 1 and all mode 2 failures are 1 per 
hour and 0.5 per hour, respectively. There is a single repairman who fixes failed com-
ponents in a random-order service. The system is defined to be operational if all data 
are accessible to both processor types, which means that at least one processor of each 
type, one controller of each type, and 3 out of 4 disk units in each of the 6 disk clus-
ters are operational. This system was also studied in [27] with redundancy 3, i.e. the 
system has 3 processors and 3 controllers of each type and 5 disks in each cluster and 
it is necessary that 3 components of a type fail to have system breakdown, and with 
redundancy 4. 

Probabilities of the order of 10-11 were estimated within reasonable computational 
times because the system is close to be balanced. It corroborates that the importance 
function ( ) ( )t cl oc tΦ = −  works quite well with balanced systems. Unlike with im-

portance sampling, the simulation with RESTART of the same system but with higher 
redundancy does not require additional analytical effort.  

 

Disk cluster 1…Disk cluster 3  Disk cluster 4…Disk cluster 6 

  Disk 
  Controllers 

 Processors   
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There are two main ways in which a system may be made highly dependable in a 
cost-effective manner. The first is to use components that are “highly reliable” and 
have “low” built-in redundancies in the system. The second is to build “significant” 
redundancies in the system and use components that are just “reliable” instead of 
“highly reliable.” Unlike with importance sampling, RESTART usually works better 
with higher redundancies (for estimating probabilities of the same order of magni-
tude) because it is possible to set more effective thresholds and thus have a lower 
value of factor fT. In this sense, they could be considered complementary methods. 

Example 3, taken from [33], studies dependability estimation for a consecutive-k-
out-of-n: F repairable system with (k-1)-step Markov dependence. The system fails if 
and only if k or more consecutive components have failed. Exponential or Weibull 
distributions were considered for the lifetime of components and lognormal distribu-
tion for the repair time of a failed component. If there are h (h < k) consecutive failed 
components that precede the component i, the residual lifetime of component i will 
have failure rates that are greater as h increases. There is one repairman who gives 
priority to the most critical components. This model is an extension of that introduced 
in [45] to the case of non-exponential component lifetimes. 

The importance function given by formula (24) was also used for simulating this 
system. In this model there are (n-k+1) minimal cut sets. As all of them have the same 
cardinality (k), the definition of the importance function can be expressed as: “the 
number of components that are down at in the cut set with greatest number of failed 
components”. The main differences between the importance, / iA XP∗ , of the system 

states xi at events Bi states are: i) whether the failed components of the cut set are 
consecutive or not, given that the importance is greater if the failed components of the 
cut set (with greatest number of failed components) are consecutive. And ii) the total 
number of components in the systems that are down when the process enters each set 
Ci. The greater is that number, the greater is the importance of the system state. It 
seems that the difference between the importance of these states could be relatively 

small. Thus, the variance ( )/ iA XV P∗  could be small. Simulation results corroborated 

this conjecture: the estimated values of factor fV were very low in all the cases and 
unreliabilities up to the order of 10-16 and steady-state unavailabilities up to the order 
of 10-14 were accurately estimated with short computational effort (13 and 12 minutes, 
respectively). 

In contrast with importance sampling, RESTART is not so dependent on particular 
features of the system and allows general component lifetime distributions and other 
generalizations of the model. Although the importance function depends on the sys-
tem being simulated, the same importance function can be applied to different models 
without additional analytical effort regardless of the level of redundancy, the number 
of repairmen and of whether the model is Markovian in nature or not. This feature 
could extend the use of RESTART for dependability estimation to many other  
systems. The importance function given by formula (24) seems to lead to good simu-
lation results, at least for balanced systems. 

For very unbalanced systems the factor fV, related with the chosen importance 
function, can take high values. Further investigation is needed for improving the im-
portance function if it is unfeasible to estimate the probability of interest within a 
reasonable computational effort. 
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7   Conclusions  

The method RESTART for accelerating rare event simulations has been presented.  
The paper, mainly based on the research activity of the authors, has described the 
method, has proved the unbiasedness of the estimator and has shown the formula of 
its variance. Then the formula of the gain has been obtained and quasi-optimal values 
for thresholds and the number of retrials that are easy to use in practical applications 
and lead to a gain close to the optimal one have been derived. 

The paper has analyzed the factors that can affect the efficiency of RESTART and 
has focused on the most critical factor, the one related to the variance of the importance 
of the states that the system can have when each threshold is hit. As this variance de-
pends on the chosen importance function, guidelines have been provided for the choice 
of a suitable importance function. The applications of these guidelines has been illus-
trated with several examples on queuing networks and ultra reliable systems.  

In the queuing network examples, simulations of different types of Jackson and 
non-Jackson networks with different loads of the nodes were shown. The formula  
of the importance function, initially derived for Jackson networks by combining heu-
ristic arguments with analytical results, could be easily adapted to non-Jackson  
networks. Buffer overflow probabilities much lower than those needed in practical 
problems have been accurately estimated within reasonable computational work. It 
has been shown that the efficiency of RESTART often improves with the complexity 
of the systems because the dependence of the target queue on the queue length of the 
other queues is weaker.  

In the examples on ultra reliable systems, an importance function obtained heuris-
tically has been applied to the estimation of transient and steady-state reliability 
measures of different systems. The same importance function has resulted to be valid 
in all these models regardless of the type of system, the level of redundancy, the num-
ber of repairmen and of whether the model is Markovian or non-Markovian.  

The examples have shown that efficient applications of RESTART can be achieved 
though the importance function has been obtained heuristically or using analytical 
formulas derived with rough approximations. It has also been shown that an impor-
tance function derived for a system may be used, sometimes with small modifications, 
to other systems of the same family or to other time distributions. These two features 
make easier the use of RESTART and lead to a wide applicability of the method.  
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