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1 Introduction

The desire to confront random quantities is probably as old as probability theory
itself; in this line of reasoning, Bawa [4] traces the origins of stochastic ordering or
dominance in the works of J. Bernoulli in 1713, Ars Conjectardi. However, it has
been mainly in the last decades that stochastic ordering has progressively became
to be recognized as an important tool in the area of applied stochastic processes,
as illustrated, e.g, in the bibliographies of Bawa [4], Levy [31], and Mosler and
Scarsini [39]. The most popular approaches used to establish stochastic ordering
results are: coupling constructions (Lindvall [35]; and Thorisson [50]), sample-
path approaches (El-Taha and Stidham [13]; and Stoyan [48]) and some pure
analytic results (Kijima [26]; and Shaked and Shanthikumar [44]).

The rich history of applications of stochastic ordering is also made clear, e.g.,
in Shaked and Shanthikumar [44], which specifically expands on the applications
of stochastic ordering in the areas of statistical inference, risk theory, economics,
biology, scheduling, operations research, queueing theory, and reliability theory,
and reinforced by Arnold [1], Cabral Morais [38], van Doorn [52], Joe [23], Kijima
and Ohnishi [27], Lindvall [35], Marshall and Olkin [36], Müller and Stoyan [40],
Stoyan [48], Szekli [49], Thorisson [50], and Tong [51]. A reflection of the rele-
vance of stochastic ordering in applications is the significative number of fairly
recent books on stochastic processes that have included as chapters or parts of
the book stochastic ordering concepts and results, e.g., Baccelli and Brémaud [3],
Kijima [26], Kulkarni [29], Last and Brandt [30], and Ross [43].

Semi-Markov processes (SMPs) and the related Markov renewal processes
(MRPs) have a well established theory (see, e.g., Çinlar [9], Kulkarni [29], and
Limnios and Oprişan [33]) and have many applications (see, e.g., Asmussen [2];
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Disney and Kiessler [11]; and Janssen and Limnios [22]). The latter fact is easily
understood if we note that SMPs and MRPs are basically in a one-to-one cor-
respondence and, moreover, SMPs generalize both discrete-time Markov chains
(DTMCs) and continuous-time Markov chains (CTMCs), whereas MRPs gener-
alize renewal processes and the so called Markovian arrival processes. Thus, the
stochastic ordering of SMPs has broad impact in applied stochastic processes.

The analysis of SMPs and MRPs started to be developed in the 1950’s by
important probabilists, namely: Levy [32], Smith [45,46], Pyke [41,42], Feller [14],
and Çinlar [7,8]. However, explicit references to the stochastic comparison of
SMPs appeared only several years later, with the work of Sonderman [47] in the
usual (in distribution) stochastic ordering sense.

In the tutorial we will review the literature on the stochastic ordering of SMPs
in the usual stochastic ordering sense, as well as in the level-crossing stochastic
ordering sense, recently proposed by A. Irle and J. Gani [21] and investigated by
its proponents and the authors of this tutorial. A process X is said to be smaller
than Y in the usual sense if there are copies X̂ and Ŷ (i.e., processes with the
same distributions as the original ones) of the processes X and Y defined on a
common probability space such that their trajectories are ordered in the almost
sure sense. Similarly, a process X is said to be smaller in level-crossing than Y if it
takes X stochastically longer than Y to exceed any given level. As illustrated by
Irle and Gani [21], the level-crossing ordering of stochastic processes in the usual
sense is (strictly) weaker than the usual stochastic ordering of the processes.

We will start in Section 2 with the presentation of the definition of MRPs and
SMPs and present in Section 3 procedures to simulate such processes. Then, in
sections 4 and 5, we briefly review the main results on the stochastic compar-
ison of SMPs in the usual and in the level-crossing stochastic ordering senses,
respectively. We will follow the sample-path approach, which is useful for simu-
lating pairs of stochastically ordered processes, and will address only SMPs with
totally ordered state spaces.

2 Markov Renewal and Semi-Markov Processes

In this section, we provide the definitions of a Markov Renewal process (MRP)
and of a semi-Markov process (SMP). We relate these two types of processes and
give their characterizations in terms of their associated: (transition distribution)
kernel, embedded (transition) kernel, and (failure) rate kernel. We start with the
definition of MRP [cf., e.g., [9] or [29]].

2.1 Markov Renewal Processes

Definition 1. We say that a bivariate process (Z, S) = (Zn, Sn)n∈N is a MRP
with (countable) phase space I and kernel Q = (Qt)t∈R+ , where Qt = (Qij(t))i,j∈I

is a family of sub-distribution functions such that
∑

j∈I Qij(t) is a distribution
function, for all i ∈ I, if it is a Markov process on I ×R+ such that S0 = 0 and
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Qij(t) = P (Zn+1 = j , Sn+1 − Sn ≤ t|Zn = i, Sn = s)

for all n ∈ N, i, j ∈ I and s, t ∈ R+.

MRPs are used, e.g., in the modelling of arrival processes to queueing networks,
where S models the network arrival epochs and Z models the influence of en-
vironmental factors in the structure of the interarrival times. In this context,
Qij(t) denotes the probability that, given that after an arrival the process is in
phase i, the next arrival will put the process in phase j and will take place within
t time units. From the definition of MRP it follows that this last event does not
depend on the last arrival epoch, i.e.,

Qij(t) = P (Zn+1 = j , Sn+1 − Sn ≤ t|Zn = i) .

Embedded kernel characterization. Another natural characterization of a
MRP is through its embedded kernel, which separates the embedded transition
probabilities from the distributions of the holding times in states between transi-
tions. From the definition of MRP, it follows that if (Z, S) is a MRP with kernel
Q, then Z is a discrete time Markov chain (DTMC) with one-step transition
probability matrix P = Q(∞) with

pij = Qij(∞) = P (Zn+1 = j|Zn = i)

denoting the probability that if the previous phase transition leads the process
to phase i the phase process will next move to phase j.

On the other hand, conditional to the next phase being j, i.e., given that the
process makes a transition from phase i to phase j, then the amount of time the
process stays in phase i before moving to phase j has distribution function

F(i,j)(t) = P (Sn+1 − Sn ≤ t|Zn = i, Zn+1 = j) =
Qij(t)
Qij(∞)

where, by convention, we let F(i,j)(t) = 1, for all t ∈ R+, whenever pij = 0. It
thus follows that

Qij(t) = pij F(i,j)(t) , t ∈ R+

for all i, j ∈ I, and we say that the MRP (Z, S) has embedded kernel (P, F ),
where P = (pij)i,j∈I is a stochastic transition probability matrix and F =
(F(i,j))i,j∈I is a matrix of distribution functions of nonnegative random variables
such that if pij = 0, then F(i,j)(t) = 1, t ∈ R+. Thus, a MRP is completely
characterized by its embedded kernel.

Rate kernel characterization. Alternatively to the previous characteriza-
tions, a MRP may also be characterized via its failure rate kernel. Consider a
MRP W with phase space I and kernel Q such that the sub-distributions Qij(t)
are absolutely continuous. Then, q = (qt)t∈R+ with qt = (qij(t))i,j∈I such that

qij(t) =
dQij(t)

dt
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is called the density kernel of W , and qi(t) =
∑

j∈I qij(t) denotes the density of
the time needed for a transition from phase i to take place. Moreover, letting

rij(t) =
qij(t)

1 − ∑
l∈I Qil(t)

then R = (Rt)t∈R+ , with Rt = (rij(t))i,j∈I , is called the failure rate kernel of W
and

ri(t) =
∑

j∈I

rij(t) =
qi(t)

1 − ∑
l∈I Qil(t)

denotes the failure rate at time t of the time needed for a transition from phase
i to take place.

In this case, as ri(t) characterizes qi(t) through qi(t)= ri(t) exp
{
− ∫ t

0 ri(s) ds
}

[cf., e.g., [24]], it immediately follows that rij(t) characterizes qij(t) through

qij(t) = rij(t) exp
{

−
∫ t

0

ri(s) ds

}

, i, j ∈ I, t ∈ R+. (1)

Thus, the MRP W is completely characterized by its failure rate kernel.

2.2 Semi-Markov Processes

We now introduce the definition of a SMP in terms of its usual characterizations.

Definition 2. A process W = (Wt)t∈R+ is a SMP with countable state space I
and (admitting) kernel Q (embedded kernel (P, F ); failure rate kernel R) if

Wt = Zn , Sn ≤ t < Sn+1 (2)

for some MRP (Z, S) with phase space I and kernel Q (embedded kernel (P, F );
failure rate kernel R).

The most common description of the evolution of an SMP is through its embed-
ded kernel. An SMP with embedded kernel (P, F ) and initial probability distri-
bution vector p evolves as follows. The process starts in phase i with probability
pi, and afterwards changes from phase to phase according to the transition prob-
ability matrix P . It moves to phase k after entering phase j, with probability
pjk, independently of previous phase changes. After deciding the next phase to
visit, say k, from phase j, the process stays in phase j before making the transi-
tion to phase k a random holding time, independent of previous holding times in
phases and phase transitions, having distribution function F(j,k)(t). If the SMP
has kernel Q, then pjk = Qjk(∞) and F(j,k)(t) = Qjk(t)/pjk case pjk > 0.

We end the section noting that given a SMP W with state space I, the process
(Zn, Sn)n∈N with

(Z0, S0) = (W0, 0) and

{
Sn+1 = inf{t ≥ Sn : Wt �= Wt−}
Zn+1 = WSn+1
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for n ∈ N, is a MRP with phase space I. In particular, if Q ((P, F ); R) denotes
the kernel (embedded kernel; failure rate kernel) of (Zn, Sn)n∈N, then W admits
the kernel (embedded kernel; failure rate kernel) Q ((P, F ); R), called the natural
kernel of W .

Conversely, if (Z, S) is a MRP with phase space I and kernel Q (embedded
kernel (P, F ); failure rate kernel R), then the process W with

Wt = Zn , Sn ≤ t < Sn+1

is a SMP with state space I and kernel Q (embedded kernel (P, F ); failure rate
kernel R).

3 Simulation of Semi-Markov Processes

Having introduced the usual characterizations of a SMP, we proceed to describe
a procedure to simulate (generate) a SMP with countable totally ordered state
space I, order isomorphic to a subset of integers, and a given parametrization. For
that, let F−1 denote the generalized inverse function of a distribution function
F , i.e.,

F−1(u) = inf{t : F (t) ≥ u}, for u ∈ [0, 1]

with the convention that inf ∅ = +∞. Moreover, to simplify the writing and
avoid extra notation for the associated distribution functions, if p denotes a
probability vector and Z denotes a random variable or distribution, like the
exponential distribution with rate λ, Exp (λ), then we let p−1 and Z−1 denote
the generalized inverse functions of the distribution function associated to p and
Z, respectively.

The generalized inverse function is in the base of the standard method to
simulate copies of random variables with prescribed distributions. In fact, if U is
a uniform random variable on (0, 1), Unif(0, 1), and F is an arbitrary distribution
function, then F−1(U) is a random variable with distribution function F , i.e.,

U ∼ Unif(0, 1) =⇒ F−1(U) ∼ F. (3)

At this point, it is important to note that, given two distribution functions F
and G, then

F (t) ≥ G(t), t ∈ R =⇒ F−1(u) ≤ G−1(u), u ∈ (0, 1). (4)

This fact ([49], Lemma C) is of paramount importance in the simulation of
stochastic ordered random variables and processes.

We proceed to address the simulation of a SMP from its embedded kernel.

3.1 Simulation via Embedded Kernel

To simulate a SMP W with state space I and embedded kernel (P, F ) it suffices
to simulate a MRP (Z, S) with phase space I and embedded kernel (P, F ) and
then obtain W = (Wt)t∈R from
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Wt = Zn , Sn ≤ t < Sn+1.

In turn, to simulate a MRP (Z, S) with state space I and embedded kernel
(P, F ), it suffices to simulate a DTMC Z with state space I and a sequence
S = (Sn)n∈N in such a way that Z has associated transition probability matrix
P and, conditional to Zn = i and Zn+1 = j, the time interval between the n-th
and the n + 1-th phase transitions Hn+1 = Sn+1 − Sn has distribution F(i,j)(·)
and is independent of (Zk, Sk)k<n. In fact, this procedure leads to a sequence
(Z, S) = (Zn, Sn)n∈N for which

Qij(t) = P (Zn+1 = j, Sn+1 − Sn ≤ t|Zn = i)
= P (Zn+1 = j|Zn = i)P (Sn+1 − Sn ≤ t|Zn = i, Zn+1 = j)
= pij F(i,j)(t)

that is, to a MRP with embedded kernel (P, F ).
For that, let (Un)n∈N and (Vn)n∈N be two sequences of independent uniform

random variables on (0, 1), defined on independent probability spaces Λ1 =
(Ω1,F1,P1) and Λ2 = (Ω2,F2,P2), respectively, and construct (Z, S) on the
product space Λ = Λ1 × Λ2 as follows.

For ω = (ω1, ω2) ∈ Ω, use (Un(ω1))n∈N to construct Z(ω1) on Λ1 from

Z0(ω1) = p−1(U0(ω1))

Zn+1(ω1) = [pZn(ω1)·]
−1(Un+1(ω1)), n ∈ N

where p denotes the initial phase probability vector. At the same time, use the
sequences (Zn(ω1))n∈N and (Vn(ω2))n∈N+ to generate the time intervals between
state transitions H(ω) = (Hn(ω))n∈N+ , making

Hn+1(ω) =
[
F(Zn,Zn+1)(ω1)

]−1 (Vn+1(ω2)), n ∈ N. (5)

Finally, obtain the renewal sequence S(ω) by setting S0(ω) = 0 and

Sn+1(ω) = Sn(ω) + Hn+1(ω), n ∈ N.

By construction and in view of (3):

• Z0 has probability vector p.
• Zn+1|Zn = i has probability vector pi·, for n ∈ N.
• [Hn+1|Zn = i, Zn+1 = j] has distribution function F(i,j)(·), for n ∈ N.

As in addition, for each n∈ N, (Un+1, Vn+1) is independent of {U0, (Um, Vm)m≤n}
it follows that, given Zn, (Zn+1, Sn+1 − Sn) is independent of (Zk, Sk)k<n and,
thus, the process (Z, S) is a MRP with embedded kernel (P, F ).

The previous procedure leads to the algorithm presented in Fig. 1 for the
simulation of an SMP with initial phase probability vector p and embedded
kernel (P, F ).
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Input: Independent sequences of independent Unif(0, 1) random variables
(Un)n∈N and (Vn)n∈N and N ∈ N+

Z0 := p−1(U0), S0 := 0

for n = 0, 1, . . . , N − 1 do

Zn+1 := [pZn·]−1(Un+1)

Sn+1 = Sn + [F(Zn,Zn+1)]
−1(Vn+1)

end for
Output: Wt := Zn for Sn ≤ t < Sn+1, 0 ≤ n < N

Fig. 1. Simulation of an SMP with initial phase probability vector p and embedded
kernel (P, F )

3.2 Simulation via Rate Kernel

In a similar manner, to simulate a SMP W with failure rate kernel R it suffices
to simulate a MRP (Z, S) with failure rate kernel R and then obtain W from

Wt = Zn , Sn ≤ t < Sn+1.

The simulation of a MRP (Z, S) with failure rate kernel R is fairly different
from the simulation based on the embedded kernel. In this case, it is generated a
Poisson process with rate modulated by the state of the process and, conditional
to the fact that after the last Markov renewal epoch the MRP moved or stayed
in phase i, it is taken into account the failure rate in phase i to decide if the next
Poisson arrival epoch will make part or not of the random sequence S. Then, if
so, it is decided what the next phase will be with a procedure which assures that,
if an event takes place t units of time after the transition instant to phase i then
the next phase will be j with probability rij(t)

λi
, where λi denotes the Poisson

uniformization rate in phase i. The following lemma will be useful for such a
construction.

Lemma 1. Let J be an ordered set, order-isomorphic to some bounded or
unbounded interval of Z, i be an element of J , β = (βj)j∈J be a sub-stochastic
vector, and U be a uniform random variable on (0, 1). Then, the random
variable

Failure(i, β, U) =

{
1 U /∈

]∑
k≤i βk, 1 − ∑

k>i βk

]

0 otherwise
(6)

is a Bernoulli random variable with parameter
∑

k∈J βk. In addition, if we let
β(i) denote the probability vector obtained from β making

β
(i)
j =

{
βj j �= i

1 − ∑
l �=i βl j = i

, j ∈ J (7)

and let Fβ(i)(·) be its associated distribution function, then the random variable
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NewState(i, β, U) = F−1
β(i)(U) (8)

takes values on J and has probability function β(i).

To simulate a MRP (Z, S) with initial phase distribution p and failure rate kernel
R, with bounded failure transition rate from each phase of the MRP, as before, let
(Un)n∈N and (Vn)n∈N be two sequences of independent uniform random variables
on (0, 1), defined on independent probability spaces Λ1 = (Ω1,F1,P1) and Λ2 =
(Ω2,F2,P2), and construct (Z, S) on the product space Λ = Λ1 × Λ2 as next
described.

The sequence (Vn)n∈N along with the consecutive phases of the phase process
Z are used to simulate on Λ a sequence of arrival epochs of a modulated Poisson
process (Tm)m∈N with rate vector λ = (λi)i∈I such that

λi ≥ sup
t

ri(t)

where λi denotes the modulated Poisson rate in phase i, so that the MRP and the
associated Poisson process are inter-dependent. On the other hand, the sequence
(Un)n∈N along with the Failure procedure, defined in Lemma 1, are used to decide
whether or not these potential renewal epochs correspond to effective failure time
instants and should be included as real renewal epochs. In case the answer is
affirmative, the NewState procedure, defined in Lemma 1, is used to generate
the phases associated to the Poisson arrival epochs.

Specifically, for ω = (ω1, ω2) ∈ Ω, generate the initial phase and time from

Z0(ω) = p−1(U0(ω1)) and S0(ω) = 0

and, let Ẑ0(ω) = Z0(ω) and T0(ω) = 0. Then, starting with n = 0, proceed
recursively for m ∈ N+ as follows, where at the end of the cycle m will denote
the index of the epoch of the uniformizing Poisson process corresponding to
Sn+1. Generate new arrival epochs of the uniformizing Poisson process, letting

Tm(ω) = Tm−1(ω) +
[
Exp(λZn(ω))

]−1 (Vm(ω2))

until
Failure(Zn(ω), rZn(ω)·(Tm(ω) − Sn(ω))/λZn(ω), Um(ω1)) = 1,

in which case we consider that a new phase change takes place Tm(ω) − Sn(ω)
instants after the previous renewal epoch Sn(ω).

In this case, add the time Tm(ω) to the Markov renewal time sequence, and
determine the new phase Zn+1(ω) of the Markov renewal phase sequence, i.e.,

Sn+1(ω) = Tm(ω)
Zn+1(ω) = NewState(Zn(ω), rZn(ω)·(Tm(ω) − Sn(ω))/λZn(ω), Um(ω1))

and, finally, increment n by one unit.
As shown in [15], the previous procedure guarantees that the generated process

is a MRP with failure rate kernel R. This follows since, in view of Lemma 1,



Stochastic Ordering of Semi-Markov Processes 401

Input: Independent sequences (Un)n∈N and (Vn)n∈N of independent Unif(0, 1)
random variables, a set of nonnegative numbers λ = (λi) such that λi ≥
supt ri(t), and N ∈ N+

Z0 := p−1(U0)
S0 := 0, T0 := 0
n := 0, m := 0
while (n < N) do

do
m := m + 1
Tm := Tm−1 + [Exp(λZn)]−1(Vm)

until (Failure(Zn, rZn·(Tm − Sn)/λZn , Um) = 1)
Sn+1 := Tm

Zn+1 := NewState(Zn, rZn·(Sn+1 − Sn)/λZn , Um)
n := n + 1

end while
Output: Wt := Zn for Sn ≤ t < Sn+1, 0 ≤ n < N

Fig. 2. Simulation of an SMP with initial phase probability vector p and rate kernel R

conditional to the fact that an event of the Poisson process takes place t =
Tm − Sn units of time after the last transition epoch, Sn, at which the MRP is
in phase Zn = i, then a failure occurs at that instant with probability ri(t)/λi,
in which case (Zn+1, Sn+1) = (j, Tm) = (j, Sn + t) with probability rij(t)/ri(t).

The presented procedure leads to the algorithm presented in Fig. 2 for the
simulation of a MRP with initial phase probability vector p and rate kernel R.

4 Usual Stochastic Ordering of Semi-Markov Processes

In this section we present the main results for the comparability of two SMPs in
the usual stochastic ordering sense. For this purpose, we start with the definition
of stochastic ordering of random vectors and stochastic processes, in the usual
stochastic ordering sense (c.f., e.g., [44] or [40]).

Definition 3. Given two real-valued random vectors X = (X1, X2, . . . , Xn) and
Y = (Y1, Y2, . . . , Yn) whose components take values on an ordered set J , we say
that X is stochastically smaller than Y in the usual sense, written X ≤st Y , if
and only if

P(X ∈ U) ≤ P(Y ∈ U), for all increasing sets1 U in Jn.

Roughly speaking, we say that a random vector X is stochastically smaller than
a random vector Y , in the usual sense, if X is less likely than Y to take large
values, where by large we mean values in any increasing set.
1 Given an ordered set J , U ⊆ Jn is called an increasing set if x ∈ U and x ≤ y implies

that y ∈ U , with ≤ denoting the componentwise ordering for vectors.



402 F. Ferreira and A. Pacheco

For the particular case of two real-valued random variables X and Y , the
previous definition specializes into

X ≤st Y ⇐⇒ P(X ≥ x) ≤ P(Y ≥ x), x ∈ R

as the upper sets of R are the intervals of the form [u,∞) or (u,∞), u ∈ R.
For the sake of simplicity, throughout the paper, order relation symbols will be

applied indistinctively to compare random variables or their associated distribu-
tion functions, i.e., X ≤st Y is equivalent to FX ≤st FY , for random variables
X and Y , with FX and FY denoting the distribution functions of X and Y ,
respectively.

An important property of the usual stochastic order is that it is closed un-
der convolutions [40]. That is, given sequences of independent random variables
{Xm, 1 ≤ m ≤ n} and {Ym, 1 ≤ m ≤ n}, for a positive integer n, then

[Xm ≤st Ym, 1 ≤ m ≤ n] =⇒
n∑

m=1

Xm ≤st

n∑

m=1

Ym. (9)

For finite measure vectors, i.e., nonnegative vectors with finite sum of their
entries, we have the following definition.

Definition 4. Given two finite measure vectors a = (ai)i∈I and b = (bi)i∈I with
indices on a countable ordered set I, then we say that a is smaller than b in the
usual ordering sense, written a ≤st b, if

∑

j≥k

aj ≤
∑

j≥k

bj , k ∈ I. (10)

In this case, if a and b are probability vectors we say that a is stochastically
smaller than b, in the usual sense.

If X and Y are discrete random variables with support in the same ordered set
I, with respective probability vectors pX and pY , then X ≤st Y ⇐⇒ pX ≤st pY .

The usual stochastic ordering of two stochastic processes establishes the
stochastic ordering of all their finite dimensional distributions, as follows.

Definition 5. Given two stochastic processes X = (X(t))t∈R+ and Y =
(Y (t))t∈R+ with common partially ordered state space (I,≤), then the process
X is said to be stochastically smaller than Y in the usual stochastic ordering
sense, written X ≤st Y , if and only if

(X(t1), X(t2), . . . , X(tn)) ≤st (Y (t1), Y (t2), . . . , Y (tn))

for all n ∈ N+ and t1, t2, . . . , tn ∈ R+.

Alternative characterizations of the usual stochastic ordering, useful to establish
stochastic ordering results in various applications, have been proposed in the
literature [cf., e.g., [25,26,40]].
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Theorem 1. Given two stochastic processes X and Y with common partially
ordered state space (I,≤), the following conditions are equivalent to X ≤st Y :

(i) For all n ≥ 1, t1, t2, . . . , tn ∈ R+, and non-decreasing real function f ,

E[f(X(t1), X(t2), . . . , X(tn))] ≤ E[f(Y (t1), Y (t2), . . . , Y (tn))].

(ii) There exists X̂ =st X and Ŷ =st Y defined on a common probability space
such that

P(X̂(t) ≤ Ŷ (t), for all t ≥ 0) = 1.

(iii) There exists a coupling (X̂, Ŷ ) of X and Y with support on {(x, y) ∈ E×E :
x ≤ y}.

As will be seen further, characterization (ii), establishing that the usual stochas-
tic order of two stochastic processes is equivalent to the pathwise comparability
of some equivalent versions of these processes, was a key tool in the derivation
of the main results presented throughout this tutorial paper.

Sufficient conditions for the stochastic ordering in the usual sense of two SMPs
were established by Sonderman [47].

Theorem 2 (Sonderman [47, Theorem 3.2]). For W = X, Y , let W be a
SMP with ordered phase space I, order-isomorphic to some subset of Z, initial
probability vector pW and failure rate kernel RW = (RW (t))t∈R+ , with RW (t) =
(rW

ij (t))i,j∈I . Then, X ≤st Y if the initial phase distributions and the failure
rates satisfy

pX ≤st pY

and, for all s, t ∈ R+ and i ≤ j,
∑

k≤n

rX
ik(s) ≥

∑

k≤n

rY
jk(t), n < i, (11)

and ∑

k≥n

rX
ik(s) ≤

∑

k≥n

rY
jk(t), n > j. (12)

A proof of the previous result, specially tailored for the simulation of path-
wise ordered equivalent versions of the involved SMPs, can be found in [15].
There, under the conditions of Theorem 2, copies of the SMPs to be com-
pared with ordered sample-paths are constructed in a common probability space.
Namely, a coupling (X�, Y �) of (X, Y ) such that X� ≤ Y � is constructed in the
following way.

Let (Un)n∈N+ and (Vn)n∈N+ denote two sequences of independent uniform
random variables on (0, 1), defined on independent probability spaces Λ1 =
(Ω1,F1,P1) and Λ2 = (Ω2,F2,P2), respectively. Construct the processes X�

and Y � on the product probability space (Ω,F ,P) = Λ1 × Λ2, simulating two
MRPs (ZX , SX) and (ZY , SY ) with failure rate kernel RX and RY in such a
way that the construction of X� and Y � from
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W �
t = ZW

n , SW
n ≤ t < SW

n+1, W = X, Y (13)

leads to X�
t (ω) ≤ Y �

t (ω), for all t ∈ R+ and ω ∈ Ω.
For that, generate the potential transitions epochs on both MRPs through a

common doubly stochastic Poisson process with rate modulated by the phases
of the two processes. Namely, whenever X� is in phase i and Y � is in phase j,
use for uniformization rate a value λij such that

λij ≥ 2 sup
t

max{rX
i (t), rY

j (t)}. (14)

Specifically, for ω = (ω1, ω2) ∈ Ω, generate the initial phases and times from

ZW
0 (ω) = [pW ]−1(U0(ω1)) and SW

0 (ω) = 0, W = X, Y. (15)

Then, starting with T0(ω) = 0, ẐW
0 (ω) = ZW

0 (ω) and nW = 0, W = X, Y ,
proceed recursively for m ∈ N+ as follows. First let

λ� = λZX
nX

(ω) ZY
nY

(ω)

denote the uniformization rate for the phase vector (ZX
nX

(ω), ZY
nY

(ω)) and let

Tm(ω) = Tm−1(ω) + [Exp(λ�)]−1 (Vm(ω2))

ẐX
m (ω) = NewState(ZX

nX
(ω), rX

ZX
nX

(ω)·(Tm(ω) − SX
nX

(ω))/λ�, Um(ω1))

ẐY
m(ω) = NewState(ZY

nY
(ω), rY

ZY
nY

(ω)·(Tm(ω) − SY
nY

(ω))/λ�, Um(ω1)).

In sequence, for each W = X, Y for which

Failure(ZW
nW

(ω), rW
ZW

nW
(ω)·(Tm(ω) − SW

nW
(ω))/λ�, Um(ω1)) = 1 (16)

i.e., for which the time Tm(ω) is a transition epoch of ZW , include the time Tm(ω)
and the phase ẐW

m (ω) as a new pair of the sequence (ZW , SW ) by making

SW
nW +1(ω) = Tm(ω) and ZW

nW +1(ω) = ẐW
m (ω)

and let nW = nW + 1.
Finally, for W = X, Y , construct the SMP W � from

W �
t (ω) = ẐW

m (ω), Tm(ω) ≤ t < Tm+1(ω) (17)

for m ∈ N, which is equivalent to generate W � from

W �
t (ω) = ZW

n (ω), SW
n (ω) ≤ t < SW

n+1(ω)

for n ∈ N.
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By construction, for W = X, Y the MRP (ZW , SW ) has failure rate kernel RW

and thus the generated SMP W � is such that W � =st W . In addition, as for each
pair of states (i, j) such taht ẐX

m (ω) = i ≤ j = ẐY
m(ω) the uniformization rates

are selected with the guaranty that
∑

k �=i
rX

ik(s)
λij

≤ 0.5 and
∑

k �=j

rY
jk(t)

λij
≤ 0.5,

from conditions (11)-(12) it follows that

NewState(i, rX
i· (s)/λij , u) ≤ NewState(j, rY

j· (t)/λij , u)

for s, t ∈ R+ and u ∈ (0, 1). Thus, the generation of the next transitions from a
common uniform generator guarantee that ẐX

m+1(ω) ≤ ẐY
m+1(ω), for all ω ∈ Ω.

As such, by induction on m and in view of (17), the proposed construction leads
to two SMPs X� and Y � such that X�

t (ω) ≤ Y �
t (ω), for all ω ∈ Ω and t ∈ R+.

The decribed procedure leads to the algorithm of Fig. 3 to simulate, in a
common probability space, two st-ordered SMPs X and Y with initial probability
vectors pX and pY , and failure rate kernels RX and RY , respectively, under the
conditions of Theorem 2.

Input: Independent sequences of independent Unif(0, 1) random variables
(Un)n∈N and (Vn)n∈N, a nonnegative matrix λ = (λij)i,j∈I such that λij ≥
2 supt max{rX

i (t), rY
j (t)}, and a positive value TMAX

nX := nY := 0; T0 := 0, m := 0

ZX
0 := [pX ]−1(U0); ZY

0 := [pY ]−1(U0)

while
(
min{SX

nX
, SY

nY
} < TMAX

)
do

λ� = λZX
nX

ZY
nY

do
m := m + 1
Tm := Tm−1 + [Exp(λ�)]−1(Vm)

until (Failure(ZX
nX

, rX
ZX

nX
·(Tm − SX

nX
)/λ�, Um) = 1 or

Failure(ZY
nY

, rY
ZY

nY
·(Tm − SY

nY
)/λ�, Um) = 1)

for W = X, Y do
if (Failure(ZW

nW
, rW

ZW
nW

·(Tm − SW
nW

)/λ�, Um) = 1) then

ZW
nW +1 := NewState(ZW

nW
, rW

ZW
nW

·(Tm − SW
nW

)/λ�, Um)

SW
nW +1 := Tm

nW := nW + 1
end if

end for
end while
Output: Xt := ZX

l for SX
l ≤ t < SX

l+1, 0 ≤ l < nX

Yt := ZY
l for SY

l ≤ t < SY
l+1, 0 ≤ l < nY

Fig. 3. Simulation of two st-ordered CTMCs, under the conditions of Theorem 2
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4.1 Usual Stochastic Ordering of CTMCs

For the particular case of two CTMCs, Sonderman’s result specialize into the
earlier derived Kirstein’s [28] sufficient conditions for the stochastic ordering in
the usual sense of two CTMCs.

Corollary 1 (Kirstein [28]). Let X and Y be CTMCs with ordered state space
I, order isomorphic to a subset of Z, initial probability vectors pX and pY , and
(infinitesimal) generator matrices QX and QY , respectively. Then X ≤st Y
provided that

pX ≤st pY (18)

and ∑

m≥n

qX
im ≤

∑

m≥n

qY
jm, for all i ≤ j and (n ≤ i or n > j). (19)

In fact, for CTMCs, the failure rate at time t of the time needed for a transition
from phase i to phase j to take place does not depend on t, i.e., rij(t) = rij , for
all t ∈ R+. As a consequence, Sonderman’s conditions (11)-(12) are equivalent
to conditions (19) since

qW
ij =

{
rW
ij j �= i

−∑
l �=i rW

il j = i
, W = X, Y.

Under the conditions of Corollary 1, the simulation of st-ordered uniformizable
CTMCs can be done in a simpler manner. In fact, it suffice to uniformize both

Input: Independent sequences of independent Unif(0, 1) random variables
(Un)n∈N and (An)n∈N+ , and a positive value TMAX

λ := sup
i∈I

2{qX
i , qY

i , 1}

P X̄ := I +
QX

λ
; P Ȳ := I +

QY

λ

X̄0 := [pX ]−1(U0); Ȳ0 := [pY ]−1(U0)

T0 := 0; n := 0

while (Tn < TMAX) do

X̄n+1 := [pX̄
X̄n·]

−1(Un+1)

Ȳn+1 := [pȲ
Ȳn·]

−1(Un+1)

Tn+1 := Tn + [Exp(λ)]−1(An+1)

n := n + 1
end while

Output: X�
t := X̄l for Tl ≤ t < Tl+1, 0 ≤ l < n

Y �
t := Ȳl for Tl ≤ t < Tl+1, 0 ≤ l < n

Fig. 4. Simulation of two st-ordered CTMCs, under the conditions of Corollary 1
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chains at a common uniformization rate, and then simulate transitions in both
chains from a common sequence of independent uniform generators and, at same
time, use another independent sequence of independent uniform generators to
simulate the holding times in states before transitions on both chains from an-
other common generator, as presented in the algorithm of Figure 4, where I
denotes de identity matrix of an appropriate dimension.

The strongest generalization of such result was achieved by [37], who provides
the characterization of the usual ordering of CTMCs with partially ordered state
spaces in terms of conditions on their infinitesimal transition rates to upper sets.

5 Level-Crossing Ordering of Semi-Markov Processes

In this section we will focus on the comparability of SMPs in the level-crossing
ordering sense, which compares stochastic processes in terms of the times they
take to reach or exceed high levels. Specifically, a process X is said to be stochas-
tic smaller in level-crossing than Y if it takes X stochastically longer to reach
or exceed any given level than it does Y .

The analysis of this stochastic ordering for processes with common ordered
state spaces, order isomorphic to a subset of integers, was pioneered by A. Irle
and J. Gani motivated by problems of comparing random times for the detec-
tion of words. As remarked by these authors, the usual stochastic ordering was
too strong to be used in the envisaged context. As such, in their pioneering
work [21], times for detection of words were modelled as first passage times to
up-cross levels in skip-free to the right DTMCs2 and were directly compared in
the usual stochastic ordering sense. Specifically, [21, Theorem 4.1] shows that,
for two skip-free to the right DTMCs with common ordered state space, the
ordering in distribution of their transition probabilities for any common initial
state (which does not guarantee the usual stochastic ordering of the respective
DTMCs) implies the level-crossing ordering of the DTMCs.

Imposing extra stochastic ordering conditions on the holding times in states
before transitions Irle [20] established sufficient conditions for the level-crossing
ordering of skip-free to the right SMPs, paying particular attention to the order-
ing of uniformizable CTMCs and birth-and-death processes, along with Wiener
processes. These results were later improved by Ferreira and Pacheco [16,17] for
skip-free to the right DTMCs, SMPs and CTMCs with common ordered state
spaces. The lc-ordering analysis had further developments in [18] for general (i.e.,
non-skip-free to the right) DTMCs, SMPs and CTMCs with totally ordered state
spaces.

Hereafter we give an overview of the main results derived in these papers for
the level-crossing of two SMPs. For the sake of simplicity, the results will be
presented only in terms of the level-crossing ordering of stochastic processes in
2 We recall that a trajectory of a stochastic process with ordered state space I , order-

isomorphic to some bounded or unbounded interval of Z, is said to be skip-free to
the right if it does not have jumps up more than one level and the stochastic process
itself is skip-free to the right if its trajectories are almost surely skip-free to the right.
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the usual sense. As such, in the following, we just refer to level-crossing order-
ing instead of level-crossing ordering in the usual sense. Nevertheless, we note
that the results derived in [18] are valid in a general framework in which the
comparison of the passage times to up-cross levels may be made using, aside
the usual stochastic ordering, any integral stochastic order relation for positive
variables closed for convolution, which includes many important cases, such as
the Laplace transform and the increasing concave order [40,44].

5.1 Preliminaries

Let Γ be either the set of natural numbers N, positive integers N+ or real nonneg-
ative numbers R+. Given a set I, order isomorphic to a bounded or unbounded
interval of Z, and y ∈ I, we let Ī = I \ {sup I}, where sup I is the supremum of
set I, IA = I ∩ A denote the restriction of I to states in A, and I≤y = I(−∞,y]

denote the restriction of I to states smaller or equal to y.
Moreover, if W = (Wt)t∈Γ is a stochastic process with state space I, we let

SW
y denote the hitting time of the set of values greater or equal to y, i.e.,

SW
y = inf{t ∈ Γ : Wt ≥ y} = inf{t ∈ Γ : Wt ∈ I≥y}

where inf ∅ = +∞. Finally, to introduce the definition of level-crossing ordering
of stochastic processes, we let SW

x,y denote the hitting time of the set of values
greater or equal to y when departing from state x, i.e.,

SW
x,y = [inf{t ∈ Γ : Wt ≥ y}|W0 = x].

Definition 6. Let X = (Xt)t∈Γ and Y = (Yt)t∈Γ be stochastic processes with
ordered state space I. Then, the process X is said to be smaller in level-crossing
than Y , denoted X ≤lc Y , if, for any common initial state x, SY

x,y ≤st SX
x,y, for

all y ∈ I, i.e.,

X ≤lc Y ⇐⇒ SY
x,y ≤st SX

x,y, for all x, y ∈ I.

The next result, provided in [17, Theorem 1], asserts that stochastic processes
are stochastically monotone increasing in the level-crossing ordering sense with
respect to time-clock speed, i.e., if the time-clock speed of a process is increased,
then the resulting process is faster in level-crossing than the original process.

Theorem 3 (Ferreira and Pacheco [17, Theorem 1]). Given a stochastic
process X = (Xt)t∈R+ with ordered state space, the α-parameterized family of
processes {X(α) , α > 0} where X

(α)
t = Xαt, for t ∈ R+, denote the time-clock

speed change of X by factor α, is stochastically increasing in the level-crossing
ordering sense, i.e., X(α1) ≤lc X(α2), for all α1 ≤ α2.

Given a stochastic process W = (Wt)t∈Γ with ordered state space I, we let W≤y,
y ∈ I, denote the process W restricted to the state space I≤y in such a way that
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state y is made absorbing and all states of W greater or equal to y are collapsed
into state y, namely,

W≤y
t =

{
Wt t < SW

y

y t ≥ SW
y

.

Note that if W is a SMP with ordered state space I and y ∈ I, then W≤y is also
a SMP whose parameters are easily derived from the parameters of the original
process. With this notation, we consider the following definition.

Definition 7. Let � denote a property and W be a stochastic process with or-
dered state space I. Then, W has the lower-� property if and only if the process
W≤x has the � property, for all x ∈ I.

In the next two subsections, we present sufficient conditions and algorithms to
simulate level-crossing ordered SMPs, treating separately the cases where we
impose the condition of one of the processes involved in the comparison being
skip-free to the right and the case where we do not.

5.2 Level-Crossing Ordering of Skip-Free to the Right SMPs

As mentioned in the introduction, the pioneering result for the level-crossing
ordering of SMPs was provided in [20] and established sufficient conditions for
the level-crossing ordering of skip-free to the right SMPs, with the random times
to up-cross levels being compared in the usual stochastic ordering sense. Specif-
ically, using the characterization of an SMP via its embedded kernel, which
separates the embedded transition probabilities from the distributions of the
holding times in states between transitions, ([20], Theorem 2.1) establishes that
the level-crossing ordering of two skip-free to the right SMPs follows from the
ordering in distribution of their transition probabilities from common states,
and from the reversed order of the holding times in common states before the
processes make transitions.

Theorem 4 (Irle [20, Theorem 2.1]). Let X = (Xt)t∈R+ and Y = (Yt)t∈R+

be two lower-regular skip-free to the right SMPs with ordered state space I, order-
isomorphic to some bounded or unbounded interval of Z, and embedded kernel
(PX , FX) and (PY , FY ), respectively. Then X ≤lc Y provided that

pX
i· ≤st pY

i· , i ∈ I

and
FX

(a,b) ≥st FY
(c,d), a, b, c, d ∈ I.

By means of a sample-path based coupling approach [34], this result was later
improved in [16] by removing the stochastic ordering conditions involving the
transition probabilities from the highest state (if it exists), removing the lower-
regularity and the skip-free to the right properties of the faster of the two pro-
cesses (in level-crossing), and relaxing the conditions on the comparison of the
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times between transitions in X and Y (namely that FX
(a,b) ≥st FY

(c,d) for all
a, b, c, d ∈ I) to FX

(a,b) ≥st FY
(a,c) for all a ∈ Ī and b, c ∈ I, such that b ≤ c.

Theorem 5 (Ferreira and Pacheco [16, Theorem 4.1]). Let X = (Xt)t∈R+

and Y = (Yt)t∈R+ be two SMPs with ordered state space I, order-isomorphic to
some bounded or unbounded interval of Z, and embedded kernels (PX , FX) and
(PY , FY ), respectively, such that

pX
i. ≤st pY

i. , i ∈ Ī (20)

and
FX

(a,b) ≥st FY
(a,c) (21)

holds simultaneously for all a ∈ Ī and b, c ∈ I, with b ≤ c, such that pX
ab pY

ac > 0.
If the processes X is skip-free to the right and lower-regular, then X ≤lc Y .

To prove this result, the authors showed that, under the conditions of Theorem 5,
we may construct, in a common probability space, copies of the SMPs to be
compared with level-crossing ordered sample-paths, i.e., to construct

X� =st X, Y � =st Y, such that X� ≤lc Y �.

For that, using two independent sequences of independent uniform random vari-
ables, (Un)n∈N and (Vn)n∈N, the authors begin to simulate two DTMCs, X̂ and
Ŷ , (with common initial state) with transition probability matrices PX and PY ,
respectively, such that X̂ ≤lc Ŷ . The main idea of the proof consists in simulat-
ing Ŷ , the faster of the two DTMCs in level-crossing, in advance and to simulate
transitions in both chains from a common uniform generator only when the
slower of the two DTMCs, X̂ , reaches successively each one of the states visited
by Ŷ . Accordingly, they propose to first generate Ŷ using the standard procedure
to simulate a DTMC from a sequence of independent uniform random variables,
(Un)n∈N . Then, to simulate X̂ based on the generated sample path of Ŷ and the
skip-free to the right property of X : (a) whenever X̂ reaches the next state on
the sample path of Ŷ , the next transition in X̂ is simulated using the generator
previously used to simulate the transition from the next state in Ŷ ; and (b) any
other transition in X̂ is simulated from an independent sequence of independent
uniform random variables, (Vn)n∈N.

From the construction, as the embedded DTMCs at transition epochs of X
and Y satisfy the conditions (20), it readily follows that, whenever X̂ reaches the
next state on the sample path of Ŷ , the next transition will put X̂ in a smaller
state than the next state visited by Ŷ

X̂n = Ŷm =⇒ X̂n+1 =
[
pX

X̂n·

]−1

(p) ≤ Ŷm+1 =
[
pY

Ŷm·

]−1

(p), p ∈ (0, 1).

As a consequence, X̂ will need at least as many transitions as Ŷ to reach a state
greater or equal to any given desired state, so that X̂ ≤lc Ŷ .
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At the same time, they propose to use two other independent sequences of
independent uniform random variables, (An)n∈N and (Bn)n∈N, to simulate the
holding times in states before transitions on both processes (say (HX�

n )n∈N+

and (HY �

n )n∈N+) in the following way: (a) the holding times in states given the
next state visited for the two SMPs are computed from a common generator,
the sequence (An)n∈N, whenever the corresponding transitions in X̂ and Ŷ are
simulated from a common uniform generator, the sequence (Un)n∈N; and (b)
the holding times in any other state (of X�) are simulated from the sequence
(Bn)n∈N, i.e., the holding times in states given the next state visited in X� are
computed from the sequence (Bn)n∈N whenever the corresponding transitions in
X̂ are simulated from the sequence (Vn)n∈N. Finally, the SMPs X� and Y � are
obtained by letting, for W = X, Y ,

W �
t = Ŵn, for SW �

n ≤ t < SW �

n+1,

where SW �

0 = 0 and SW �

n+1 = SW �

n + HW �

n+1.
By construction, X� =st X , Y � =st Y and the lc-ordered DTMCs X̂ and Ŷ

are constructed in such a way that the sequence of states visited by X̂ until it
reaches a state greater or equal to any desired given state includes the sequence
of states visited by Ŷ to reach the same set of states. As the holding times of
X� and Y � in states when X� reaches successively the states visited by Y � are
simulated from a common uniform generator, from (21), we conclude that X�

spends at least as much time as Y � in each of the states visited by Y � before
reaching the desired set of states. As the usual stochastic order is closed for
convolution (9), it follows that SX�

l ≥ SY �

l , for all l ∈ I, i.e., X� ≤lc Y �.
Based in this procedure, the algorithm of Figure 5 simulates, under the con-

ditions of Theorem 5, two lc-ordered SMPs, X� and Y �, with common initial
probability vector p, and embedded kernels (PX , FX) and (PY , FY ) respectively.

As noted by the authors ([16], Theorem 4.2), the conditions (21) in Theo-
rem 5, on the stochastic ordering of the holding times between transitions, can
be further relaxed to

FX
(a,b) ⊕ FX

(b,b+1) ⊕ FX
(b+1,b+2) ⊕ . . . ⊕ FX

(min(c,a+1)−1,min(c,a+1)) ≥st FY
(a,c)

for all a ∈ Ī and b, c ∈ I, with b ≤ c, such that PX
ab

(∏min(c,a+1)
k=b+1 PX

k−1,k

)
PY

ac > 0,
with ⊕ denoting convolution. However, such a relaxation is paid at the cost of
obtaining conditions that are much more difficult to check.

5.3 Level-Crossing Ordering of General SMPs

The level-crossing ordering of general (i.e., non-skip-free to the right) SMPs was
addressed in [18]. Under stronger stochastic ordering conditions on the transition
probabilities departing from certain states and on the holding times in states
between transitions, the authors asserted the following result.



412 F. Ferreira and A. Pacheco

Input: Independent sequences of independent Unif(0, 1) random variables
(Un)n∈N, (Vn)n∈N, (An)n∈N+ and (Bn)n∈N+ , and a positive value TMAX

X̂0 := Ŷ0 := p−1(U0)
SX�

0 := SY �

0 := 0
k := 0
while (SY �

k < TMAX) do
k := k + 1
Ŷk := [pY

Ŷk−1·]
−1(Uk)

SY �

k := SY �

k−1 + [F Y
(Ŷk−1,Ŷk)

]−1(Ak)

end while
n := 0
m := 0
while (SX�

n ≤ TMAX) do
m := m + 1
n := n + 1
X̂n := [pX

X̂n−1·]
−1(Um)

SX�

n := SX�

n−1 + [F X
(X̂n−1,X̂n)

]−1(Am)

while
(
X̂n < Ŷm & SX�

n < TMAX
)

do

n := n + 1
X̂n := [pX

X̂n−1·]
−1(Vn)

SX�

n := SX�

n−1 + [F X
(X̂n−1,X̂n)

]−1(Bn)

end while
end while
Output: X�

t := X̂l for SX�

l ≤ t < SX�

l+1, 0 ≤ l < n

Y �
t := Ŷl for SY �

l ≤ t < SY �

l+1, 0 ≤ l < k

Fig. 5. Simulation of two lc-ordered SMPs under the conditions of Theorem 5

Theorem 6. Let X = (Xt)t∈R+ and Y = (Yt)t∈R+ be two SMPs with ordered
state space I, order-isomorphic to some bounded or unbounded interval of Z, and
embedded kernel (PX , FX) and (PY , FY ), respectively, such that X is lower-
regular. Then X ≤lc Y , if

pX
x. ≤st pY

y., for all x, y ∈ Ī , x ≤ y (22)

and
FX

(a,b) ≥st FY
(c,d) (23)

for all a, c ∈ Ī and b, d ∈ I, with a ≤ c, b ≤ d, and pX
ab pY

cd > 0.

This result was proved using a sample-path based coupling approach. The au-
thors showed how to simulate, under conditions (22)-(23) of Theorem 6, SMPs
X� and Y �, departing from the same state, such that X� =st X , Y � =st Y , and
X� ≤lc Y �.

The simulation in this case is quite simple as the DTMCs embedded at transi-
tion epochs and the holding times in states before transitions are generated in a
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synchronized manner. The copies of the DTMCs embedded at transition epochs,
X̂ and Ŷ , are simulated from an independent sequence of independent uniform
random variables, (Un)n∈N+ , making Ŵn = [PW

Ŵn·]
−1(Un) for W = X, Y . Simu-

lating the transitions on both processes from a common uniform generator, the
conditions (22) guarantee that, before Ŷ reaches the highest level: transitions
on X̂ departing from states smaller or equal to the ones from which Ŷ departs
on the same instant always put X̂ in states smaller or equal than the ones for
which Ŷ makes the transition, i.e.,

X̂n ≤ Ŷn =⇒ X̂n+1 = [PX
X̂n·]

−1(Un) ≤ [PY
Ŷn·]

−1(Un) = Ŷn+1.

Thus, when the DTMCs start from a common level, this procedure leads to
X̂n ≤ Ŷn, for all n ≤ inf{m ∈ N : Ŷm = sup I}, and consequently to X̂ ≤lc Ŷ .

At the same time, the sequences of holding times in states between transitions
for both processes, say (HX�

n )n∈N+ and (HY �

n )n∈N+ , are simulated from an inde-
pendent sequence of independent uniform random variables, (An)n∈N+ , making
HW �

n = [FW
(Ŵn−1,Ŵn)

]−1(An), for W = X, Y . Finally, the SMPs X� and Y � are
obtained by letting, for W = X, Y ,

W �
t = Ŵn, for SW �

n ≤ t < SW �

n+1,

where SW �

0 = 0 and SW �

n+1 = SW �

n + HW �

n+1.
By construction, X� =st X and Y � =st Y . In addition, before Ŷ reaches the

higher state, the embedded DTMCs X̂n and Ŷn are strictly ordered, then X̂ will
need at least as many transitions as Ŷ to reach a state greater or equal to any
given state. Since, in addition, the holding times in states before transitions are
simulated in both processes from a common uniform generator, then, from (4)
and (23), before Ŷ reaches the highest state: X� spends in each sucessive state
at least as much time as Y �. Thus, as the usual stochastic order is closed under
convolution (9), we necessarily have SX�

l ≥st SY �

l , for all l ∈ I, i.e., X� ≤lc Y �.
Based on the described procedure, the algorithm of Figure 6 simulates two lc-
ordered SMPs X� and Y �, with common initial probability vector p, under the
conditions of Theorem 6.

For SMPs with equal transitions probabilities other than the supremum of
the state space, we can relax the conditions (23) of Theorem 6, on the times
between state transitions, to conditions involving transitions between the same
state in both processes, establishing that an increase of the times between state
transitions of an SMP in the usual stochastic ordering sense gives rise to an
increase of the associated (upper) level-crossing times in the same sense, as next
stated.

Corollary 2 (Ferreira and Pacheco [18, Corollary 3]). Let X = (Xt)t∈R+

and Y = (Yt)t∈R+ be two SMPs with ordered state space I, order-isomorphic to
some bounded or unbounded interval of Z, and embedded kernels (PX , FX) and
(PY , FY ), respectively, such that X is lower-regular. Then X ≤lc Y if
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pX
i. =st pY

i. and FX
(i,j) ≥st FY

(i,j) (24)

for all i ∈ Ī, and for all i ∈ Ī and j ∈ I such that pX
ij > 0, respectively.

This result extends, to non-skip-free to the right SMPs, results for skip-free to
the right SMPs with common embedded transition probability matrices, with
respect to: the Laplace transform and the mean value order, in [10], and the
usual stochastic order, in [20].

Input: Independent sequences of independent Unif(0, 1) random variables
(Un)n∈N and (An)n∈N, and a positive value TMAX

X̂0 := Ŷ0 := p−1(U0)
SX�

0 := SY �

0 := 0
n := 0
while

(
min{SX�

n , SY �

n } < TMAX
)

do

n := n + 1
X̂n := [pX

X̂n−1·]
−1(Un)

Ŷn := [pY
Ŷn−1·]

−1(Un)

SX�

n := SX�

n−1 + [F X
(X̂n−1,X̂n)

]−1(An)

SY �

n := SY �

n−1 + [F Y
(Ŷn−1,Ŷn)

]−1(An)

end while
Output: X�

t := X̂k for SX�

k ≤ t < SX�

k+1, 0 ≤ k < n

Y �
t := Ŷk for SY �

k ≤ t < SY �

k+1, 0 ≤ k < n

Fig. 6. Simulation of two lc-ordered SMPs under the conditions of Theorem 6

5.4 Level-Crossing Ordering of CTMCs

A CTMC W with ordered state space I and generator matrix QW = (qW
ij )i,j∈I ,

whose corresponding transition rate from state i is qW
i = −qW

ii =
∑

j �=i qW
ij , may

be interpreted as an SMP with one-step embedded transition probability matrix
PW = (pW

ij )i,j∈I , where

pW
ij =

{
(1 − δij)

qW
ij

qW
i

qW
i > 0

δij qW
i = 0

with δ denoting the Kronecker delta function, i.e., δij = 1 if i = j and δij = 0
if i �= j, and holding times in state i exponentially distributed with rate qi,
regardless of the state visited at the next transition.

In view of the previous, the translation of Theorem 5 and Theorem 6 for the
level-crossing ordering of two CTMCs goes as follows.

Corollary 3. Let X and Y be CTMCs with state space I, order-isomorphic
to some bounded or unbounded interval of Z, vectors qX and qY of transition
rates from states, and embedded transition probability matrices PX and PY ,
respectively. Then X ≤lc Y if either
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(i) X is lower-regular, and

qX
i ≤ qY

j and pX
i· ≤st pY

j· , for all i, j ∈ Ī with i ≤ j. (25)

(ii) X is skip-free to the right and lower-regular, and

qX
i ≤ qY

i and pX
i· ≤st pY

i· , for all i ∈ Ī . (26)

As next stated, these results were further improved in [16,18] by means of an
adequate modulated adaptive uniformization of the CTMCs.

Theorem 7 (Ferreira and Pacheco ([16, Theorem 5.1], [18, Theorem
5])). Let X and Y be CTMCs with state space I, order-isomorphic to some
bounded or unbounded interval of Z, and generator matrices QX and QY , re-
spectively. Then X ≤lc Y if either

(i) X and Y are lower-regular and there exists a matrix β̄ = (βi,j)i,j∈Ī , with
entries in (0, 1], such that
∑

n≥m

qX
in ≤ βi,j

∑

n≥m

qY
jn, for all i, j ∈ Ī such that i ≤ j and (m ≤ i or m >j).

(27)
(ii) X and Y are lower-regular, X is skip-free to the right, and there exists a

vector ᾱ = (αi)i∈Ī , with entries in (0, 1], such that
∑

n≥m

qX
in ≤ αi

∑

n≥m

qY
in, for all i ∈ Ī and m ∈ I. (28)

Figure 7 presents two algorithms for the simulation of level crossing ordered
CTMCs: one for general CTMCs satisfying (i), and the other for the case in
which the slower CTMC is skip-free to the right and the CTMCs satisfy (ii).
Specifically, the algorithm presented on the left-hand side [right-hand side] of
Figure 7 simulates, under the conditions (i) [(ii)], two CTMCs X and Y such
that X ≤lc Y . Once again, these algorithms are proposed based on a sample-
path based coupling proofs of these results, provided in [16,18], of which we next
give a brief sketch.

The first construction uses two dependent modulated Poisson uniformization
processes with rates modulated by the states of the two processes at appropri-
ately chosen times, and generates independently the transitions in both processes
from a common generator sequence. Namely, if at the time of occurrence of the
nth event of the modulated Poisson uniformization process associated to X (Y )
the process X (Y ) goes to state i (j), then, the amounts of time X and Y stay
in states i and j until the next events take place in the modulated Poisson uni-
formization processes associated to X and Y are generated from a common gen-
erator and have exponential distributions with rates λX

ij and λY
ij , respectively,

such that λY
ij is greater or equal to 2 max

{
qY
j , qX

i /βij , 1
}

and λX
ij = βijλ

Y
ij ,

so that

0 < λX
ij = βijλ

Y
ij ≤ λY

ij , for all i ∈ Ī ∧ j ∈ I such that i ≤ j. (29)
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Moreover, the probability vectors of the state the processes X and Y go to after
those events occur are

p̂
(X,j)
i· = ei +

qX
i·

λX
ij

and p̂
(Y,i)
j· = ej +

qY
j·

λY
ij

respectively. Since, under conditions (i), we have λX
ij ≥ λY

ij and p̂
(X,j)
i· ≤st p̂

(Y,i)
j· ,

whenever i ≤ j < sup I, the conditions of Theorem 6 are satisfied, and thus the
procedure described guarantees that X ≤lc Y .

If, in addition, the slower CTMC is skip-free to the right, then instead of
comparing the upper sums of different rows of the generator matrices of the two
CTMCs, as (27) imposes, we may compare only the upper sums for the same
rows of the generator matrices of the two CTMCs, as stated in (28). In this
case, the procedure to simulate lc-ordered CTMCs is presented on the right-
hand side of Figure 7 and is based on two uniformizing Poisson processes with
state dependent rates modulated by the states of the process itself, such that,
whenever X (Y ) is in state i (j) the uniformizing Poisson process of X (Y ) has
rate βiλi (λj), where

λk = max{qY
k , qX

k /βk, 1}. (30)

The amounts of time X and Y stay in states i and j until the next events of the
corresponding modulated Poisson uniformization processes take place are gen-
erated from a common generator and have exponential distributions with rates
βiλi and λj , respectively, and the probability vectors of the state the processes
X and Y go to after those events occur are

p̂X
i· = ei +

qX
i·

βiλi
and p̂Y

j· = ej +
qY
j·

λj
.

Since, under conditions (ii), we have βiλi ≤ λi and p̂X
i· ≤st p̂Y

i· , for all i ∈ Ī, i.e.,
the conditions of Theorem 5 are satisfied, it follows that X ≤lc Y .

We end this section noting that, uniformizing the CTMCs X and Y with
two possibly different constant (i.e., non state-dependent) uniformization rates,
say αX and αY , respectively, such that α = αX/αY ≤ 1, then conditions (28)
specialize into

∃α ∈ (0, 1] :
∑

m≥n

qX
im ≤ α

∑

m≥n

qY
im, for all i ∈ Ī and n ∈ I.

This result was first achieved in ([17], Theorem 3.1) by observing that the level-
crossing ordering is stochastically monotone increasing with respect to time clock
speed-ups, and constitutes itself a first generalization of ([20], Corollary 2.1)
which establishes the same conclusion for two lower-uniformizable skip-free to
the right CTMCs with the constant α taking the value one.

It is important to note also that the sufficient conditions for the level-crossing
ordering of two general CTMCs are weaker but related to Kirstein’s (19) suf-
ficient conditions for the stochastic ordering of CTMCs in the usual sense. In
fact, if such conditions are valid for βi,j = 1, then the CTMCs, departing from
a common state, will be also ordered in the usual sense.
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Input: independent sequences of in-
dependent Unif(0, 1) random variables
(Un)n∈N and (An)n∈N+ , the matrix
(βij)i,j∈I , and a positive value TMAX

for (i, j ∈ I) do

λij := 2max{qY
i , qX

i /βij , 1}
p̂
(X,j)
i· := ei +

qX
i·

βijλij

p̂
(i,Y )
j· := ej +

qY
j·

λij

end for

ZX
0 := ZY

0 := p−1(U0)
SX

0 := SY
0 := 0

n := 0

while
(
min{SX

n , SY
n } < TMAX

)

n := n + 1

ZX
n :=

[

P̂
(X,ZY

n−1)

ZX
n−1·

]−1

(Un)

ZY
n :=

[

P̂
(Y,ZX

n−1)

ZY
n−1·

]−1

(Un)

SX
n := SX

n−1+[
Exp (βZX

n−1ZY
n−1

λZX
n−1ZY

n−1
)
]−1

(An)

SY
n := SY

n−1 +
[
Exp (λZX

n−1ZY
n−1

)
]−1

(An)

end while

Output:
Xt := ZX

k for SX
k ≤ t < SX

k+1, 0 ≤ k < n

Yt := ZY
k for SY

k ≤ t < SY
k+1, 0 ≤ k < n

Input: independent sequences of in-
dependent Unif(0, 1) random variables
(Un)n∈N, (Vn)n∈N+ , (An)n∈N+ and
(Bn)n∈N+ , the vector (βi)i∈I , and a
value TMAX

for (i ∈ I) do

λi := max{qY
i , qX

i /βi}
p̂X

i· := ei +
qX

i·
βiλi

p̂Y
i· := ei +

qY
i·
λi

end for
ZX

0 := ZY
0 := p−1(U0)

SX
0 := SY

0 := 0
k := 0

while (SY
k < TMAX)

k := k + 1

ZY
k :=

[
P̂ Y

ZY
k−1·

]−1

(Uk)

SY
k := SY

k−1 +
[
Exp(λZY

k−1
)
]−1

(Ak)

end while

SX
0 := 0, m := 0, n := 0

while (SX
n < TMAX)

m := m + 1
n := n + 1

ZX
n :=

[
P̂ X

ZX
n−1·

]−1

(Um)

SX
n :=SX

n−1 +
[
Exp(βZX

n−1
λZX

n−1
)
]−1

(Am)

while
(
ZX

n < ZY
m & SX

n < TMAX
)

n := n + 1

ZX
n :=

[
P̂ X

ZX
n−1·

]−1

(Vn)

SX
n := SX

n−1+
[
Exp(βZX

n−1
λZX

n−1
)
]−1

(Bn)

end while
end while
Output:
Xt := ZX

l for SX
l ≤ t < SX

l+1, 0 ≤ l < n
Yt := ZY

l for SY
l ≤ t < SY

l+1, 0 ≤ l < k

Fig. 7. Algorithm for the simulation of two lc-ordered CTMCs with initial probability
vector p, under conditions: (27), on the left-hand side; and, (28), on the right-hand
side
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5.5 Some Applications

As an illustration of the applicability of the results presented in the previous
section, we apply those results to Poisson shock models and birth-and-death
processes (with possible catastrophes) to derive sets of sufficient conditions for
the level-crossing ordering of such processes.

Level-crossing ordering of two birth-and-death processes with catas-
trophes. Let I be a subset of N, λ = (λi)i∈I , μ = (μi)i∈I and β = (βi)i∈I

be nonnegative vectors such that λsup I = 0 if I is bounded above and μinf I =
βinf I = 0, and C = (cij)i,j∈I be a lower-triangular stochastic matrix.

A (I, λ, μ, β, C) birth-and-death process with catastrophes (BDC process) is
a skip-free to the right CTMC with state space I and generator matrix Q, where

qij = βicij + μiδj,i−1 + λiδj,i+1, i �= j. (31)

In such processes, the nonnegative parameters λi, μi and βi are interpreted as the
birth, death and catastrophe rates of the process in state i. In addition, the matrix
C is seen as the catastrophe probability matrix with cij denoting the probability
that the state resulting from a catastrophe taking place in state i is j.

A direct application of Theorem 7 to BDC processes leads to the following
set of sufficient conditions for their level-crossing ordering.

Theorem 8. For W = X, Y , let W be an (I, λW , μW , βW , CW ) BDC process.
Then:

(i) X ≤lc Y provided that, for some vector ᾱ = (αi)i∈Ī with entries in (0, 1],
the following conditions hold

λX
i ≤ αiλ

Y
i ∧ μX

i ≥ αi μY
i ∧ βX

i ≥ αi βY
i , for all i ∈ Ī (32)

cX
i· ≤st cY

i· , for all i ∈ Ī . (33)

(ii) X ≤st Y provided that the following conditions hold

λX
j ≤ λY

j ∧ μX
i ≥ μY

m ∧ βX
i ≥ βY

m, for all j and i ≤ m (34)

cX
i· ≤st cY

j· , for all i, j ∈ Ī such that i ≤ j. (35)

Important types of catastrophe families are described, e.g., in [5] and [12].
These include: Binomial (p), 0 ≤ p ≤ 1; Geometric (p), 0 ≤ p ≤ 1; Uniform;
Deterministic(f), where f = (fi)i∈I is a vector such that fi ≤ i, for all i ∈ I;
and Total. Some details on the catastrophe probability matrices associated to
each of these types of catastrophe families are given in Table 1. In the following
we use the denotation of the type of catastrophe indistinctly of the associated
catastrophe probability matrix; thus we write, e.g., C = Binomial(p) whenever
C is the catastrophe probability matrix of Binomial(p) catastrophes.
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Table 1. Important types of catastrophe families

Type of catastrophe cij (0 ≤ j ≤ i)
∑k

j=0 cij (0 ≤ k ≤ i)

Binomial (p), p ∈ [0, 1]
(

i
j

)
pi−j(1 − p)j

∑k
j=0

(
i
j

)
pi−j(1 − p)j

Geometric (p), p ∈ [0, 1] piδj0 + (1 − p)pi−j1{j>0} pi−k

Uniform 1/(i + 1) (k + 1)/(i + 1)

Deterministic(f), 0 ≤ fi ≤ i δjfi 1{k≥fi}
Total δj0 1

Table 2. Some ordering relations associated to catastrophe probability matrices

CX CY cX
i· ≤st cY

i· CX ≤K CY

Binomial (p1) Binomial (p2) p1 ≥ p2 p1 ≥ p2

Geometric (p1) Geometric (p2) p1 ≥ p2 p1 ≥ p2

Binomial (p1) Geometric (p2) p1 ≥ p2 p1 ≥ p2

Uniform Uniform yes yes

Deterministic(fX ) Deterministic(fY ) fX
i ≤ fY

i fX ≤ fY and fX ↑
Total arbitrary yes yes

Table 2 presents some situations where the ordering relations (33) and (35)
involving catastrophe probability matrices hold, which are relevant for the use
of Theorem 8. Note that, in particular, binomial and geometric catastrophes [[5]
and [12]] are stochastically decreasing in the parameter and total catastrophes
[6] are the smallest catastrophes, in sense of both (33) and (35).

Nothe that, Theorem 8 (i) implies that BDC processes stochastically increase
in the level-crossing ordering sense as the catastrophe distribution in each state
increases stochastically in the usual sense. That is: BDC processes, X and Y ,
that share the birth, death and catastrophe rates but have different catastrophe
probability matrices, CX and CY , satisfy X ≤lc Y provided that cX

i· ≤st cY
i· for

all i ∈ Ī. Thus, e.g., BDC processes with binomial catastrophes stochastically
decrease in level-crossing with the catastrophe probability. Note also that if two
BDC processes, X and Y , have the same catastrophe probability matrix, it
suffices to show that (32) holds to conclude that X ≤lc Y .

Level-crossing ordering of two birth-and-death processes. Particular
consequences of Theorem 8 follow for the level-crossing ordering of birth-and-
death processes (BD processes), i.e., BDC processes (I, λ, μ, β, C) with null vec-
tor β (which we denote by (I, λ, μ, C) BD processes), thus turning irrelevant the
form of the catastrophe probability matrix C.

Corollary 4. For W = X, Y , let W be an (I, λW , μW ) BD process. If

λX
i ≤ αiλ

Y
i ∧ μX

i ≥ αi μY
i , for all i ∈ Ī (36)



420 F. Ferreira and A. Pacheco

for some vector ᾱ = (αi)i∈Ī with entries in (0, 1] , then X ≤lc Y . Moreover, if X
and Y are irreducible, with conditions (36) holding for αi = α, i ∈ Ī, for some
constant α ∈ (0, 1), then the same conclusion is obtained if (36) is replaced by

sup
i�=sup I

λX
i

λY
i

≤ α ≤ inf
i�=inf I,sup I

μX
i

μY
i

. (37)

We note that for irreducible BD processes both Kirstein’s conditions (19), for the
st-ordering, and Irle’s conditions, for the lc-ordering and derived in [20], given
respectively by

λX
i ≤ λY

i and μX
i ≥ μY

i , i ∈ Ī

and

λX
i + μX

i ≤ λY
i + μY

i and
μX

i

λX
i

≥ μY
i

λY
i

, i ∈ Ī ,

are not equivalent to (36).
As the number of customers in a M/M/s/c system [see, e.g., [19]] with arrival

rate η and death rate γ, where the system capacity c may be either finite or
infinite, can be seen as a BD processes on N having birth rates λi = η 1{0≤i≤c−1}
and death rates μi = γ min(i, s), Corollary 4 applies directly to derive sufficient
conditions for the level-crossing ordering of two M/M/s/c systems, as follows.

Corollary 5 (Ferreira and Pacheco ([17, Corollary 4.2])). For W = X, Y ,
let W denote the number of customers in an M/M/sW / cW system with arrival
rate λW and service rate μW . If cX ≤ cY and

λX

λY
≤ α ≤ μX

μY
min

(

1,
sX

sY

)

(38)

for some α ∈ (0, 1], then X ≤lc Y .
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Técnico - Technical University of Lisbon, Lisbon, Portugal (2007)

16. Ferreira, F., Pacheco, A.: Level-crossing ordering of semi-Markov processes and
Markov chains. Journal of Applied Probability 42(4), 989–1002 (2005)

17. Ferreira, F., Pacheco, A.: Level-crossing ordering of skip-free to the right continuous
time Markov chains. Journal of Applied Probability 42(1), 52–60 (2005)

18. Ferreira, F., Pacheco, A.: Comparison of level crossing times for Markov and semi-
Markov processes. Statistics and Probability Letters 77(2), 151–157 (2007)

19. Gross, D., Harris, C.M.: Fundamentals of Queueing Theory, 3rd edn. Wiley, Chich-
ester (1998)

20. Irle, A.: Stochastic ordering for continuous-time processes. Journal of Applied Prob-
ability 40(2), 361–375 (2003)

21. Irle, A., Gani, J.: The detection of words and an ordering for Markov chains.
Journal of Applied Probability 38A, 66–77 (2001)

22. Janssen, J., Limnios, N. (eds.): Semi-Markov Models and Applications. Kluwer,
Dordrecht (1999)

23. Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall,
London (1997)

24. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data.
Wiley, New York (1980)

25. Kamae, T., Krengel, U., O’Brien, G.L.: Stochastic inequalities on partially ordered
spaces. The Annals of Probability 5(6), 899–912 (1977)

26. Kijima, M.: Markov Processes for Stochastic Modeling. Chapman and Hall, London
(1997)

27. Kijima, M., Ohnishi, M.: Stochastic orders and their applications in financial op-
timization. Mathematical Methods of Operations Research 50(2), 351–372 (1999)

28. Kirstein, B.M.: Monotonicity and comparability of time-homogeneous Markov pro-
cesses with discrete state space. Mathematische Operations Forschung und Statis-
tik 7, 151–168 (1976)

29. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman and Hall,
London (1995)

30. Last, G., Brandt, A.: Marked Point Processes on the Real Line: The Dynamic
Approach. Springer, New York (1995)

31. Levy, H.: Stochastic dominance and expected utility: survey and analysis.
Management Science 38(5), 555–593 (1992)



422 F. Ferreira and A. Pacheco

32. Levy, P.: Processus semi-markoviens. In: Proceedings of the International Congress
of Mathematicians 1954, Amsterdam, vol. III, pp. 416–426. Erven P. Noordhoff
N.V., Groningen (1956)
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Lisbon, Portugal (2002)

39. Mosler, K., Scarsini, M.: Stochastic Orders and Applications: A Classified Bibliog-
raphy. Springer, Heidelberg (1993)

40. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
Wiley, Chichester (2002)

41. Pyke, R.: Markov renewal processes: definitions and preliminary properties. The
Annals of Mathematical Statistics 32, 1231–1242 (1961)

42. Pyke, R.: Markov renewal processes with finitely many states. The Annals of
Mathematical Statistics 32, 1243–1259 (1961)

43. Ross, S.M.: Stochastic Processes, 2nd edn. Wiley, New York (1996)
44. Shaked, M., Shanthikumar, J.G.: Stochastic Orders and Their Applications.

Academic Press, San Diego (1994)
45. Smith, W.L.: Regenerative stochastic processes. Proc. Roy. Soc. London. Ser.

A. 232, 6–31 (1955)
46. Smith, W.L.: Renewal theory and its ramifications. J. Roy. Statist. Soc. Ser. B 20,

243–302 (1958)
47. Sonderman, D.: Comparing semi-Markov processes. Mathematics of Operations

Research 5(1), 110–119 (1980)
48. Stoyan, D.: Comparison Methods for Queues and Other Stochastic Models. Wiley,

Chichester (1983)
49. Szekli, R.: Stochastic Ordering and Dependence in Applied Probability. Springer,

New York (1995)
50. Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York

(2000)
51. Tong, Y.L.: Probability Inequalities in Multivariate Distributions. Academic Press,

New York (1980)
52. van Doorn, E.A.: Stochastic Monotonicity and Queueing Applications of Birth-

Death Processes. Springer, New York (1981)


	Stochastic Ordering of Semi-Markov Processes
	Introduction
	Markov Renewal and Semi-Markov Processes
	Markov Renewal Processes
	Embedded kernel characterization.
	Rate kernel characterization.

	Semi-Markov Processes

	Simulation of Semi-Markov Processes 
	Simulation via Embedded Kernel
	Simulation via Rate Kernel

	Usual Stochastic Ordering of Semi-Markov Processes
	Usual Stochastic Ordering of CTMCs

	Level-Crossing Ordering of Semi-Markov Processes
	Preliminaries
	Level-Crossing Ordering of Skip-Free to the Right SMPs
	Level-Crossing Ordering of General SMPs
	Level-Crossing Ordering of CTMCs
	Some Applications

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




