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Abstract. The theory of large deviations refers to a collection of techniques for
estimating properties of rare events such as their frequency and most likely man-
ner of occurrence. Loosely speaking, LDT can be seen as a refinement of the
classical limit theorems of probability theory and it is useful when simulation
or numerical techniques become increasingly difficult as a parameter of interest
tends to its limit.

The first part of this tutorial deals with the behaviour of the empirical mean
of IID RVs, the most natural framework to introduce the basic concepts and the-
orems of LDT and to highlight their heuristic interpretation.

Then, the large deviation principle for the single server queue is presented
and its implications on network dimensioning are discussed. Finally, the tutorial
overviews the application of LDT to rare event simulation, for the choice of the
optimal change of measure in Importance Sampling.
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1 Introduction

In the framework of teletraffic engineering, many challenging issues have arisen in the
last two decades as a consequence of the fast growth of network service demand. The
search for global network architectures, which should handle heterogeneous applica-
tions and different quality of service (QoS) guarantees [1], has determined a widespread
interest for novel performance evaluation techniques, able to cope with the increasing
size (and complexity) of telecommunication systems. The need for new mathemati-
cal approaches is also related to the adoption of more sophisticated traffic models, the
so-called Long Range Dependent (LRD) processes, able to take into account the long
memory features of real traffic [2,3].

In case of stringent QoS requirements, network performance are determined by
events with a small probability of occurring, but with severe consequence when they
occur. Since these events are linked to large deviations from the normal behaviour of
the system, the so-called theory of large deviations (LDT) represents a natural candidate
for analysing rare events in large systems.

In a nutshell, LDT studies the tails of distributions of certain random variables. Since,
by definitions, probabilities of rare events are involved, it is also known as the theory
of rare events. As a matter of fact, LDT only applies to certain types of rare events,
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caused by a large number of unlikely things occurring together (conspiracy), rather
then a single event of small probability. For instance, winning a lottery is not a large
deviations event, since it is determined by a single trial that cannot be broken into more
than one sub-event [4].

Unlike classical limit theorems, LDT also provides a nice qualitative theory to un-
derstand rare events and the typical way they occur (most likely path ). Indeed, the
probability of a rare event is often reduced to a deterministic optimisation problem. If
a cost is assigned to each sample path that would cause the rare event, its probability
only depends on the cheapest path, i.e., on the cheapest way the event can happen. This
concept is described in [4] as the strong law of rare events: if there is a unique cheapest
path, then as the asymptotic parameter gets large, conditioned on the occurrence of the
rare event, with overwhelming probability the system followed the cheapest path for
any bounded interval of time before the rare event occurred.

This deeper insight into the system behaviour can be successfully employed, for in-
stance, to design proper control systems and to speed-up the simulation of rare events.
Indeed, a control affects the probability of the rare event iff it affects the cheapest path;
as a consequence, the time scale on which the control should operate is implicitly de-
termined by the most likely time of occurrence of the rare event. In the framework of
simulation, unlike crude Monte Carlo, the application of speed-up techniques generally
requires some additional information about the behaviour of the system, such as the one
provided (although in an asymptotic and eventually approximate form) by the LDT.

As pointed out by many authors [5], there is no real theory of large deviations and
often the same result may be reached in different (and apparently unrelated) ways.
Hence, as a whole LDT refers to a set of basic definitions, that by now are standard,
and a variety of tools for the analysis of small probability events in completely differ-
ent frameworks (such as statistical mechanics, information theory, parameter estimation
and traffic engineering, just to name a few application fields).

The aim of this tutorial, which is heavily based on [6], is to introduce the basic
LDT concepts, highlighting their heuristic interpretation from an engineering perspec-
tive and focusing on their applications (or, at least, on some of them) in the framework
of queueing systems and computer networks. In more detail, the rest of the paper is
organised as follows. Section 2 describes the key LDT principles, starting from simple
practical examples and generalising the results to more abstract frameworks. Then Sec-
tion 3 deals with the application of LDT to the single server queue, focusing on two
well-known asymptotic regimes: large-buffer and many-sources asymptotics, while a
few more advanced topics (queueing performance in presence of LRD traffic and LDT-
based changes of measures) are sketched in Section 4. Finally, hints on further readings
conclude the tutorial.

2 Basic LDT Results

The theory of large deviations is concerned with the asymptotic estimation of proba-
bilities of rare events. In its basic form, the theory considers the limit of normalisa-
tions of log P(An) for a sequence of events with asymptotically vanishing probability.
Although the topic may be traced back to the early 1900s (see [5] for more detailed
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historical notes, interpretations and references), its general abstract characterisation by
means of a large deviation principle was formalised only in 1966 by Varadhan [7], who
is considered one of the founders of the modern theory of large deviations, together
with Donsker (in the West) as well as Freidlin and Wentzell (in the East).

The following subsections will review the basic concepts that by now are standard,
starting from the case of independent, identically distributed (IID) random variables
(RVs) and introducing some more advanced tools (such as the large deviation princi-
ple and the contraction principle), which will be applied in the following to queueing
systems.

2.1 Large Deviations of IID RVs

Let us consider the most classical topic of probability theory, namely the behaviour of
the empirical mean of IID RVs. Before stating the general result (Cramér’s theorem),
let us consider some simple examples (see Chapter 2 in [6] for further details).

Sums of Standard RVs. Let Xi ∈ N (0, 1)1 and consider the empirical mean

Mn =
1
n

Sn where Sn =
n∑

i=1

Xi . (1)

Since Mn ∈ N (0, 1/n), it is easy to show that:

1. for any a > 0

lim
n→∞ P (Mn ≥ a) = 0 (Weak Law of Large Numbers) (2)

2. for any interval A

lim
n→∞ P

(√
nMn ∈ A

)
=

1√
2π

∫

A

e−
1
2 x2

dx (Central Limit Theorem) (3)

3. for any a > 0

P (Mn ≥ a) =
1√
2π

∫ ∞

a
√

n

e−
1
2 x2

dx (4)

and therefore

lim
n→∞

1
n

log P (Mn ≥ a) = −a2

2
, (5)

which is a typical large deviations result.

Roughly speaking, according to (3), the typical value of Mn is of the order of 1/
√

n,
but with small probability (of the order of e−n a2/2, as suggested by (5)), Mn takes
relatively large values.

It is well known from elementary probability theory that (2) and (3) remain valid as
long as {Xi} are IID RVs of zero mean and unit variance and can be easily modified

1 As usual, N (
μ, σ2

)
will denote a Gaussian RV with mean μ and variance σ2.
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in case of IID RVs with mean μ and variance σ2. Instead, as far as (5) is concerned,
the limit still exists (under quite general assumptions), but its value depends on the
specific distribution of Xi. This is precisely the content of Cramér’s theorem. In order
to understand the kind of approximations involved in LDT, it is useful to derive a result
similar to (5) in a slightly less trivial framework.

Sums of Bernoulli RVs. Let Xi ∈ B(p), i.e., P(Xi = 1) = p = 1 − P(Xi = 0); in
this case Mn can be seen as the proportion of heads in n independent tosses of a biased
coin, which has probability p of coming up heads. Suppose that n is large and consider
the probability that Mn exceeds a, for some a > p. Through direct calculation2 (for
notational convenience, suppose that na < n is an integer):

P (Mn ≥ a) =
n∑

j=na

(
n

j

)
pj(1 − p)n−j (Sn has a Binomial distribution)

≈
(

n

na

)
pna(1 − p)n(1−a) (Principle of the largest term)

=
n!

(na)! (n − na)!
pna(1 − p)n(1−a)

≈ 1√
2πn(1 − a)a

a−na (1 − a)−n(1−a) pna(1 − p)n(1−a)

≈
(

a

p

)−na (1 − a

1 − p

)−n(1−a)

= e
−n

(
a log

a

p
+ (1 − a) log

1 − a

1 − p

)

,

where the Stirling’s formula was used to approximate the binomial coefficient:

n! ≈ √
2πn nne−n .

Hence, an expression similar to (5) can be written also in case of Bernoulli RVs:

lim
n→∞

1
n

log P (Mn ≥ a) = a log
a

p
+ (1 − a) log

1 − a

1 − p

Δ= H(a; p) (6)

and H(a; p) is known as the relative entropy, or Kullback-Leibler divergence, of the
probability distribution (a, 1− a) with respect to the probability distribution (p, 1− p).

It is worth noticing that a single term in the sum is sufficient to determine its correct
exponential decay rate (in n). It turns out that this feature is characteristic of many
situations where LDT is applicable and is known as principle of the largest term, which
is often expressed in the probability context by the phrase “rare events occur in the most
likely way”.

2 It is straightforward to verify that the largest term in the sum corresponds to j = na.
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LDT Rate Function. The limit (5) depends on the specific distribution of Xi through
the so-called rate function Λ∗, which is defined as the Fenchel-Legendre transform of
the Cumulant Generating Function. Before stating the general LDT result for sums of
IID RVs, it is worth introducing the definition of rate function and its main properties.

Let Λ(θ) denote the Logarithmic Moment Generating Function or Cumulant Gener-
ating Function3 of a real-valued RV X , i.e.,

Λ(θ) Δ= log M(θ) = log E
(
eθX

)
(7)

where
M(θ) Δ= E

(
eθX

)
(8)

is the Moment Generating Function of X .
Let Λ∗(x) be the convex dual or Fenchel-Legendre transform of Λ(θ):

Λ∗(x) Δ= − log
(

inf
θ

e−θxM(θ)
)

= sup
θ

(θx − log M(θ)) = sup
θ

(θx − Λ(θ)) (9)

Figure 1 gives a graphical interpretation of the previous definition: Λ∗(x) is the smallest
amount by which the straight line x θ (with slope x) has to be pushed down so as to lie
below the graph of Λ(θ) ∀θ ∈ R.

θ

θ∗

Λ∗(x)
Λ(θ)

x θ

Fig. 1. Graphical interpretation [8] of the Fenchel-Legendre transform

The most relevant properties of Λ∗ are recalled (the corresponding proofs are given,
for example, in [5]) in the following:

1. Λ∗(x) is convex, i.e., ∀ λ ∈ [0, 1
]
:

Λ∗ (λx1 + (1 − λ)x2) ≤ λΛ∗(x1) + (1 − λ)Λ∗(x2)
3 Indeed, the cumulants of X are just the derivatives of Λ(θ) evaluated at θ = 0.
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2. Λ∗(x) is non-negative

3. Λ∗(x) has its minimum for x = μ
Δ= E(X) and Λ∗(μ) = 0

4. Λ∗(x) is lower semicontinuous, i.e., the level sets {x : Λ∗(x) ≤ α} are all closed
for α ∈ R

5. If the supremum in (9) is attained at a point θ∗ in the interior of the interval where
M(θ) is finite, then M(θ) is differentiable at θ∗, so that

Λ∗(x) = − log E

(
eθ∗(X−x)

)
= θ∗x − Λ(θ∗)

6. Let c be the greatest lower bound for a RV X , i.e.,

P (X < c) = 0 and P (X ≤ c + ε) > 0 ∀ ε > 0 .

Then
(a) Λ∗(x) = ∞ for x < c
(b) Λ∗(c) < ∞ ⇐⇒ P (X = c) > 0

Table 1 gives the expressions of Λ and Λ∗ for some common distributions, highlighting
the similarities with the preliminary examples reported in this section. For instance, in
the case of Bernoulli RVs, Λ∗(x) = H(x, p) and (6) justifies the name of rate function
given to Λ∗ in the LDT framework: indeed it is the function that specifies the rate of
convergence for the Weak Law of Large Numbers.

Cramér’s Theorem. Cramér’s theorem (1938) is the most general result for IID RVs,
stated in generic large deviations form.

Table 1. Examples of rate functions

X Λ(θ) = log E
(
eθX

)
Λ∗(x) = sup

θ∈R

(θx − Λ(θ))

N (μ, σ2) θμ + 1
2
θ2σ2 1

2 σ2
(x − μ)2

B(p) log
(
1 − p + peθ

)
⎧
⎨

⎩
x log

x

p
+ (1 − x) log

1 − x

1 − p
0 ≤ x ≤ 1

∞ otherwise

Exp(λ) log
λ

λ − θ

{
xλ − 1 − log (xλ) x > 0

∞ otherwise

Poisson(λ) λ
(
eθ − 1

)
⎧
⎪⎨

⎪⎩

λ + x
(
log x

λ
− 1
)

x > 0

λ x = 0

∞ otherwise
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Theorem 1 (Cramér’s theorem). Let Xi be IID (real valued) RVs and define

Sn =
n∑

i=1

Xi .

Let Λ(θ) denote the Logarithmic Moment Generating Function of Xi, i.e.,

Λ(θ) = log E
(
eθXi

)

and let Λ∗ be the convex conjugate of Λ:

Λ∗(x) Δ= sup
θ

(θx − Λ(θ)) . (10)

For all closed sets F ,

lim sup
n→∞

1
n

log P

(
Sn

n
∈ F

)
≤ − inf

x∈F
Λ∗(x) Upper Bound for closed sets (11)

and, for all open sets G,

lim inf
n→∞

1
n

log P

(
Sn

n
∈ G

)
≥ − inf

x∈G
Λ∗(x) Lower Bound for open sets (12)

i.e., for any set B ⊂ R:

− inf
x∈Bo

Λ∗(x) ≤ lim inf
n→∞

1
n

log P

(
Sn

n
∈ B

)

≤ lim sup
n→∞

1
n

log P

(
Sn

n
∈ B

)
≤ − inf

x∈B̄
Λ∗(x)

(13)

where Bo denotes the interior of B and B̄ its closure.

A complete proof of the theorem goes beyond the scope of this tutorial and can be
found, for instance, in [6] or, in a more general form, in [5]. However, it is quite useful
to draw here some general remarks:

1. In the theorem, no conditions, not even existence of the mean, are required for the
RVs Xi.

2. The Lower Bound (12) is local (the bound for open balls implies the bound for all
open sets) and its proof uses an exponential change of measure [9] argument, as in
Importance Sampling (more on Importance Sampling and LDT-based changes of
measures in section 4.2)

dμθ

dμ
(x) = eθx−Λ(θ) =

1
M(θ)

eθx (14)

where μ and μθ denote the law of the original and tilted RVs respectively.
In order to derive a bound on the probability that the sample mean Sn/n lies

in
(
x − δ, x + δ

)
we seek a tilt parameter θ∗ that makes the mean of the tilted
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distribution equal to x. From a heuristic point of view, this tilted RV captures the
idea of being close in distribution to Xi, conditional on having a value close to x.

Indeed, the tilted measure μθ identifies the most likely way by which the mean
of a large sample turns out to be close to x. More precisely, conditional on the
sample mean Sn/n being in

(
x−δ, x+δ

)
, the empirical distribution of X1, . . . , Xn

approaches μθ as n → ∞.
3. The Upper Bound (Chernoff’s Bound) holds for all closed sets F ⊂ R and all

n, not just on a logarithmic scale in the limit as n → ∞. This means that (11),
presented as a classical LDT upper bound, in case of sums of IID RVs can be
strengthened as follows:

1
n

log P

(
Sn

n
∈ F

)
≤ − inf

x∈F
Λ∗(x) . (15)

4. When the limit exists (i.e., limsup and liminf are equal), the Cramér’s Theorem
implies that

P

(
Sn

n
∈ B

)
≈ e

−n inf
x∈B

Λ∗(x)
. (16)

The last approximation highlights three important features of LDT:
(a) The asymptotic probability that the sample mean lies in B tends to zero expo-

nentially fast (in n).
(b) Λ∗ gives the exact (ignoring terms that are subexponential in n) decay rate

of the family of probabilities P (Mn ∈ B) and is commonly known as rate
function.

(c) The speed of convergence essentially depends on one point, denoted in the
following as x̂, the so-called dominating point of the set B, i.e., the point where
the rate function Λ∗(x) attains its infimum (principle of the largest term). For
instance, the three sets in fig. 2 (which refers to the sums of exponential RVs
with mean 1) have the same probability in the large deviations limit.

5. Since Cramér’s theorem only gives logarithmic asymptotics, (16) implies that

P

(
Sn

n
∈ B

)
= φ(n) e−nΛ∗(x̂)

for some subexponential (at ∞) function φ(·)

n−1 log φ(n) → 0 as n → ∞ .

For instance, φ(n) can be any polynomial function nα or even exp(n1−ε); this
means that the LDT approximation may be very inaccurate and better results are
sometimes available (for instance, the Bahadur-Rao exact asymptotics [10] for Nor-
mal RVs). On the other hand, in many cases LDT represents the only available
analytical tool for the analysis of complex systems.

6. Cramér’s theorem has a multivariate counterpart [5] dealing with the large devi-
ations of the empirical mean of IID random vectors Xi in R

d. In that case, the
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same dominating point

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5x

Λ∗(x)

Fig. 2. Application of Cramér’s theorem to sums of Exp(1) RVs

definition of the logarithmic cumulant generating function is the straightforward
generalisation of (7):

Λ(θ) Δ= log M(θ) = log E

(
e〈θ,Xi〉

)
, (17)

where

〈θ, x〉 =
d∑

j=1

θjxj

is the usual scalar product in R
d and xj denotes the jth component of x.

2.2 General Principles of Large Deviation Theory

The general theory of large deviations has a beautiful and powerful formulation due to
Varadhan [7], based on the so-called Large Deviation Principle (LDP), which leads to
asymptotic results similar to (13), but under more general conditions.

Let Sn be any sequence of RVs, not necessarily the partial sum of IID RVs. In gen-
eral, Cramér’s theorem cannot be invoked as is (for instance if the RVs are correlated,
as it often happens in computer networks); however, the “scaled” sequence4 Sn/n may
happen to show the same asymptotic behaviour proved for the partial sums of IID RVs.
In LDT terms, this means that the sequence Sn/n satisfies an LDP.

The following subsections introduce the definition of LDP (at first in R
d and then its

generalisation in Hausdorff spaces) and the main tools that can be used to build an LDP.

4 In some cases (see section 4.1 for a relevant application in the field of network performance)
it will be necessary to change the scaling factor and consider the sequences Sn/vn for an
adequate choice of the deterministic scaling factors vn.
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Large Deviations Principle in R
d. In its abstract formulation [5], the large deviation

principle characterises the limiting behaviour of a family of Borel probability measures
on a Hausdorff space in terms of a rate function.

As in [6], to make the concept more intuitive to non-specialists, preliminary defi-
nitions of rate function (not simply the convex conjugate of the Logarithmic Moment
Generating Function) and LDP are given in the framework of R

d-valued RVs.
In the following R

∗ will denote the extended real numbers, R
⋃ {∞}.

Definition 1 (Rate function). A function I : R
d → R

∗, is a rate function if

1. I(x) ≥ 0 for all x ∈ R
d

2. I is lower semicontinuous, i.e., the level sets
{
x : I(x) ≤ α

}
are all closed, for

α ∈ R

3. It is called a good rate function if in addition the level sets are all compact

The definition of lower semicontinuity implies that I is allowed to jump down, but not
to jump up; indeed, a function I is lower semicontinuous (according to a definition
equivalent to the previous one) iff

whenever xn → x lim inf
n→∞ I(xn) ≥ I(x) .

It is easy to verify, for instance, that Λ∗ in Cramér’s theorem is a good rate function,
where the term “good” has been introduced to highlight that some LDT results (such as
the widely used contraction principle) only hold if the rate function has this additional
property (i.e., if the level sets are not only closed, but also compact).

Definition 2 (Large Deviations Principle). Let (Xn, n ∈ N) be a sequence of RVs
taking values in R

d. Xn satisfies a large deviations principle in R
d with rate function I

if I is a rate function and, for any measurable set B ⊂ R
d

− inf
x∈Bo

I(x) ≤ lim inf
n→∞

1
n

log P (Xn ∈ B)

≤ lim sup
n→∞

1
n

log P (Xn ∈ B) ≤ − inf
x∈B̄

I(x)
(18)

where Bo denotes the interior of B and B̄ its closure.

For example, Cramér’s theorem states that the empirical mean Sn/n of IID RVs satisfies
an LDP with good rate function Λ∗ given by (10). Further examples of LDP will be
given in the following sections.

Gärtner-Ellis Theorem. The Gärtner-Ellis theorem defines under which hypotheses
the sequence Sn/n satisfies an LDP (for instance, an LDP can be derived for dependent
random processes, such as Markov chains and autoregressive processes) and says how
to calculate the corresponding rate function.

Roughly speaking, the generalisation of Cramér’s theorem to any sequence of RVs
mainly relies on the existence of a sufficiently “well-behaved” non trivial limiting scaled
cumulant generating function

Λ(θ) = lim
n→∞

1
n

log EeθSn (19)
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and, given the existence of the exponential moments of Sn, this essentially requires that
the autocorrelation of the increments of Sn decays sufficiently fast. For instance, this
result can be used to prove an LDP for a queue with a weakly dependent input flow [6].
To state the theorem properly (for sake of generality, for random vectors in R

d), it is
useful to recall the following definition:

Definition 3 (Essential smoothness). A convex function Λ : R
d → R

∗ is essentially
smooth if

1. (DΛ)o in non-empty
2. Λ(·) is differentiable throughout (DΛ)o

3. Λ(·) is steep, i.e., for any sequence θn in (DΛ)o which converges to a boundary
point of DΛ

lim
n→∞ |∇Λ(θn)| = +∞

where DΛ denotes the effective domain of Λ(·), i.e.,

DΛ =
{
θ : Λ(θ) < ∞}

Theorem 2 (Gärtner-Ellis Theorem). Let Sn be a sequence of random vectors in R
d

with cumulant generating functions:

Λn(θ) = log E

(
e〈θ,Sn〉

)
. (20)

Assume that:

1. The limiting scaled cumulant generating function

Λ(θ) = lim
n→∞

1
n

Λn(θ) (21)

exists in R
∗ for each θ ∈ R

d

2. Λ(θ) is finite in a neighbourhood of θ = 0, i.e., 0 ∈ (DΛ)o

3. Λ is essentially smooth and lower-semicontinuous.

Then, the sequence Sn/n satisfies an LDP in R
d with good rate function Λ∗

Λ∗(x) Δ= sup
θ∈Rd

(〈θ, x〉 − Λ(θ)) . (22)

To illustrate the meaning of the Gärtner-Ellis theorem, it is useful to consider the em-
pirical mean Sn/n of real-valued RV Xi, where

Sn = X1 + X2 + · · · + Xn ,

under different correlation structures (calculations may be found in [6]):

– IID RVs: it is trivial to prove that

Λn(θ) Δ= log EeθSn = n log EeθXi

and hence the rate function given by (22) coincides with (10). This explains why
the Gärtner-Ellis theorem is sometimes (for instance, in [6]) referred to as the gen-
eralised Cramér’s theorem.
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– Additive functionals of Markov chains: let
(
ξn, n ∈ N

)
be an irreducible Markov

chain, taking values in a finite set E with transition matrix P =
{
pij

}
. Let f be

a function from E to R and define Xn = f(ξn); finally, let Q(θ) denote the (non-
negative irreducible) E × E matrix whose {ij}-element is

qij(θ) = eθf(i) pij

and let ρ(θ) denote its spectral radius (Perron-Frobenius eigenvalue).
Then, Sn/n satisfies an LDP with

Λ(θ) = log ρ(θ) .

In queueing applications, this result is quite relevant, since it permits to identify
the rate function for Markov-modulated fluid sources (Sn/n represents the average
data rate over n time slots).

– Gaussian autoregressive processes: the samples Xi are defined by the (stable)
recursion

Xi =
r∑

k=1

akXi−k + εi i ∈ Z

where the εi are independent standard normal RVs. The covariance structure of
(Xi, i ∈ Z) is usually described through its Fourier transform

SX(ω) =
∞∑

k=−∞
E (X0 Xk) eiωk

which is called the power spectral density of the process. It is easy to show that
SX(ω) = |A(ω)|2, where

A(ω) Δ= 1 −
r∑

j=1

aje
iωj .

Then, Sn/n satisfies an LDP with rate function

I(x) =
x2

2SX(0)
.

It is worth mentioning that different Gaussian processes having the same power
spectral density at zero have the same rate function. The underlying assumption is
that SX(ω) is finite and differentiable on

[−π, π
]
. This basically requires that the

correlations decay sufficiently fast; for LRD processes the spectrum has a singular-
ity at zero and, to use LDT, it will require a different scaling in n (see section 4.1).

Large Deviations Principle in a Hausdorff space. In the study of queueing systems,
it is sometimes useful to consider the large deviations of the sample mean of random
processes (i.e., infinitely dimensional objects); for instance, Schilder’s theorem gives an
expression for the probability of the sample mean (which is now a path, i.e., a function
of time) of n IID Gaussian processes being in some set S. To include such results in
the general theory, it is necessary to rephrase the large deviation principle in a more
powerful way, making use of the classical abstract language of LDT.



Large Deviations and Queues 313

Definition 4 (Large Deviations Principle). Let (μn, n ∈ N) be a sequence of Borel
probability measures on a Hausdorff space X and let B be the Borel σ-algebra.
μn satisfies a large deviations principle on X with rate function I if I is a rate function
and, for all B ∈ B

− inf
x∈Bo

I(x) ≤ lim inf
n→∞

1
n

log μn (B)

≤ lim sup
n→∞

1
n

log μn (B) ≤ − inf
x∈B̄

I(x)
(23)

A few comments permit to better clarify the LDP concept in its general form:

1. If Xn is a sequence of RVs with distribution μn, then we may equivalently say that
the sequence Xn satisfies the LDP.

2. If X is a space of functions indexed by R or N, the LDP is usually called sample
path LDP.

3. If Xn satisfies an LDP in a regular Hausdorff space X with rate function I , and
with rate function J , then I = J (uniqueness of the rate function).

4. A set A ⊂ X is called an I-continuity set if

inf
x∈Ao

I(x) = inf
x∈Ā

I(x) .

For such a set (for instance, if X = R and I is continuous, then all intervals are
I-continuity sets), if it is measurable, then (23) becomes

lim
n→∞

1
n

log μn (A) = − inf
x∈A

I(x) . (24)

Starting from the existence of an LDP, it is possible to give a precise definition (see [6]
for the proof) of one of the most famous LDT results, the principle of the largest term.

Indeed, if I is a good rate function and A ⊂ X is closed, then the infimum is attained
at some x̂ ∈ A. This x̂ is the most likely way for an event A to occur, since I(x̂)
dominates in P (Xn ∈ A).

Theorem 3 (Rare events occur in the most likely way). Suppose Xn satisfies an LDP
with good rate function I , and C is a closed set with

inf
x∈C

I(x) = k < ∞ .

This infimum must be attained; suppose it is attained in Co and let B be a neighbour-
hood of

{
x ∈ C : I(x) = k

}
. Then

P (Xn /∈ B | Xn ∈ C) → 0 . (25)

The Contraction Principle. The contraction principle is one of the most useful tools
in LDT; indeed, once we have an LDP for one sequence of RVs, we can effortlessly5

5 At least in principle; in practise it might be quite difficult to establish the continuity of a given
function, and to compute the resulting rate function.
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establish LDPs for a whole other class of random sequences, obtained via continuous
transformations.

For example, in queueing applications, starting from the LPD for the arrival process,
if a quantity of interest can be written as a continuous function (in some Hausdorff
space) of the arrivals, then it will be possible to deduce an LDP for that quantity.

Theorem 4 (Contraction Principle). Let X be a Hausdorff space and suppose that
Xn satisfies an LDP in X with good rate function I , and that f : X → Y is a continuous
map to another Hausdorff space Y .
Then f(Xn) satisfies an LDP in Y , with good rate function

J(y) = inf
x∈X :f(x)=y

I(x) . (26)

Although the proof of the theorem is rather technical (mainly to prove that J is a good
rate function), it is easy to give a heuristic justification taking into account the basic
idea behind the LDT limits in the spirit of (16):

P (f(Xn) ≈ y) ≈ P
(
Xn ≈ f−1 ({y})) ≈

≈ e−n infx∈f−1({y}) I(x) = e−n infx:f(x)=y I(x)

Unfortunately, the hypotheses of the contraction principle are too restrictive for its ap-
plication in the framework of many flows scaling; hence in [6] a generalisation is given,
in which Yn is only exponentially equivalent to f(Xn) (i.e., the probability they differ
even by ε decays superexponentially for all ε > 0) and f is continuous only on the
subspace where the rate function is finite.

2.3 Sample Path Large Deviations

In many applications, interest lies in the probability that a path of a random process hits
a particular set; the LDT tools are to be developed in an infinitely dimensional frame-
work and quite often are rather abstract. For sake of brevity, only Gaussian processes
are considered in this section, since they represent a widely used model for aggregated
traffics [3].

More in detail, as an example of Sample Path LDT, the Schilder’s theorem (for Brow-
nian motion) is deeply discussed and then the result is extended to a wider class of
Gaussian processes.

Schilder’s Theorem. Schilder’s theorem analyses the most likely paths of a standard
Brownian motion B(t), while a sample path LDP for a generic random walk is given
by the Mogulskij’s theorem [5].

Before stating the theorem, it might be useful to recall the main properties of the
Brownian motion and the definition of absolutely continuous function.

Definition 5 (standard Brownian motion). A standard Brownian motion is charac-
terised by the following properties:
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– B(·) is Gaussian, i.e., its finite-dimensional distributions are multivariate normal
– B(t) ∈ N (0, t)
– B(0) = 0
– B(t) has independent increments, i.e., (B(t + u) − B(u)) is independent of B(u)

and
B(t + u) − B(u) ∈ N (0, t)

– B(·) has continuous sample paths

Definition 6 (Absolutely continuous function). A function f : [0, 1] → R is abso-
lutely continuous if for all ε > 0 there exists a δ > 0 such that for every finite collection
of non-overlapping intervals

{
[si, ti] , 1 ≤ i ≤ N

}

∑

1≤i≤N

(ti − si) < δ ⇒
∑

1≤i≤N

|f(ti) − f(si)| < ε

Theorem 5 (Schilder’s Theorem). Let (B(t), t ∈ [0, 1]) be a standard Brownian mo-
tion, taking values in C[0, 1], the space of continuous functions f : [0, 1] → R equipped
with the supremum norm:

‖f‖ = sup
0≤t≤1

|f(t)| .

Then
(
Bn(t) Δ= 1√

n
B(t), n ∈ R

+
)

satisfies a sample path LDP in C[0, 1] with good

rate function

I(f) =

⎧
⎨

⎩

1
2

∫ 1

0

ḟ(t)2dt if f is absolutely continuous and f(0) = 0

∞ otherwise
(27)

A heuristic argument, based on the Cramér’s theorem for Gaussian RVs, can lead to a
simple (and instructive) justification of (27). A rigorous proof of the theorem and its
extension to [0, T ] (for any T < ∞) can be found in [5].

Let ΠKΠKΠKf be the polygonalised version of f , i.e., the piecewise linear approximation
of f at n/K, (0 ≤ n ≤ K); then, assuming f(0) = 0 (otherwise the probability is
0 since, by definition, B(0) = 0; hence if f(0) �= 0, the corresponding rate function
should be I(f) = ∞)

P (Bn(·) ≈ f(·)) ≈ P (ΠKΠKΠKBn(·) ≈ ΠKΠKΠKf(·)) .

Since Bn(·) has independent increments, the latter can be written as

K−1∏

i=0

P

(
Bn

(
i + 1
K

)
− Bn

(
i

K

)
≈ f

(
i + 1
K

)
− f

(
i

K

))

and, taking into account that Bn(t) ∈ N (
0, t

n

)
,

K−1∏

i=0

P

(
N
(

0,
1

nK

)
≈ f

(
i + 1
K

)
− f

(
i

K

))
.
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Since in the LDT limit

P

(
N
(

0,
σ2

L

))
≈ e−L 1

2σ2 x2
,

it is easy to show that

1
n

log P (Bn(·) ≈ f(·)) ≈ −K

2

K−1∑

i=0

(
f

(
i + 1
K

)
− f

(
i

K

))2

= −1
2

K−1∑

i=0

1
K

(
f
(

i+1
K

)− f
(

i
K

)

1/K

)2

K→∞−−−−→ −1
2

∫ 1

0

ḟ(t)2 dt ,

which gives the expression of rate function I(f) when f(0) = 0:

I(f) =
1
2

∫ 1

0

ḟ(t)2dt .

The previous computations highlight that, at least informally, multivariate Cramér’s the-
orem can be seen as a special (finite-dimensional) case of Schilder’s theorem. Moreover,
it is worth noticing that the cost of a path f is exclusively determined by the derivative
along the path.

Generalised Schilder’s Theorem. In [11], Schilder’s theorem is extended to the gen-
eral case of a (non-trivial) centred Gaussian process A(t), with A(0) = 0 and stationary
increments. The variance function of A(·) is denoted by v(t); the standard Brownian
motion B(·) is only a special case, with v(t) = t, for which the resulting expressions
are relatively transparent (as shown in the previous section). A key role in the following
will be played by the covariance function of A(·):

Γ (s, t) = Cov (A(s), A(t)) =
1
2

(v(t) + v(s) − v(|t − s|)) . (28)

An intrinsic difficulty of the generalisation of Schilder’s theorem is that the rate function
I(·) cannot be given explicitly. The case of Brownian motion is an exception: indeed,
due to the independence of the increments, it was possible to derive an explicit formula
for I(f) (see the heuristic justification of the theorem). To state the general theorem,
it is necessary to introduce a path state Ω and a reproducing kernel Hilbert space R,
equipped with inner product 〈·, ·〉R and norm ‖·‖R.

The path space Ω is defined as

Ω =
{

ω : R → R, continuous, ω(0) = 0, lim
t→±∞

ω(t)
1 + |t| = 0

}

equipped with the norm

‖ω‖Ω = sup
t∈R

|ω(t)|
1 + |t| .
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A(·) can be realised on Ω under the assumption that v(·) increases slower than quadrat-
ically. For example, this is the case for fractional Brownian motion, one of the most rel-
evant LRD traffic models, which is characterised by v(t) = t2H , where 1/2 < H < 1
(see section 4.1 for a discussion on LRD and its implications on traffic engineering).

In addition to Ω, a central role is played by a linear subspace of Ω, which consists
of smoother functions than the typical paths of A(·) and which can be given a Hilbert
space structure. This space, the reproducing kernel Hilbert space R, is defined starting
from the set of functions

{
Γ (s, ·)}, equipped with the inner product

〈Γ (s, ·) , Γ (·, t)〉R = Γ (s, t) .

The space R is obtained by closing this set of functions with linear combinations, and
completing with respect to the norm

‖ω‖2
R = 〈ω, ω〉R .

The inner product definition generalises to the reproducing kernel property:

〈ω, Γ (s, ·)〉R = ω(s) ω ∈ R . (29)

To give a heuristic understanding of the space R, let us consider a centred Gaussian
distribution on R

d. In this case, the space R is R
d itself, but equipped with an inner

product such that the density of the distribution can be written as

f(x) = const · exp
(
−1

2
‖x‖2

R

)
.

Thus, minimising ‖·‖R corresponds to maximising the density.

Theorem 6 (Generalized Schilder’s Theorem). Let A(·) ∈ Ω be a (non trivial) cen-
tred Gaussian process, with variance function v(t).
Then

(
1√
n

A(·), n ∈ R
+
)

satisfies a sample path LDP in Ω with good rate function

I(f) =

⎧
⎨

⎩

1
2
‖f‖2

R if f ∈ R

∞ otherwise
(30)

In [10], the generalised Schilder’s theorem is written in terms of the sample-mean path

1
n

l∑

i=1

An(·)

of a sequence of IID centred Gaussian processes with variance function v(t). Infor-
mally, the theorem gives an expression for the probability of the sample-mean path
being in some set S (that represents a collection of paths):

P

(
1
n

n∑

i=1

Ai(·) ∈ S
)

≈ exp
(
−n inf

f∈S
I(f)

)
= exp

(
−n

2
inf
f∈S

‖f‖2
R

)
.
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Hence, the probability decays exponentially in n and the corresponding exponential
decay rate equals the minimum of I(f) over all f ∈ S.

The minimising f̂(·) corresponds to the most likely path in S. Conditional on the
sample-mean path being in the set S, with overwhelming probability this happens via a
path that is close to f̂ . In other words, as n → ∞

1
n

log P

(
1
n

n∑

i=1

Ai(·) ∈ S
)

→ −I
(
f̂
)

and the decay rate is fully dominated by the likelihood of the most likely element in S.
Unfortunately, finding the minimum of I(f) over all f ∈ S is, in general, a hard

variational problem. Indeed, the optimisation should be done over all paths in S (which
are infinitely dimensional objects), and, according to (29), the objective function I(f) is
only explicitly given if f can be written as a linear combination of covariance functions
Γ (s, ·).

3 Large Deviations for Queues

One of the primary issues in queueing theory is to analyse the (steady-state) buffer con-
tent distribution. This problem can be solved explicitly only in a few special cases, and
the goal of LDT is to get approximate estimations of the parameters of interest that are
sufficiently close to the actual values at least in some asymptotic conditions. In more
detail, two asymptotic scalings are usually considered: the large buffer regime and the
many-sources regime, and for both of them LDT permits to obtain logarithmic asymp-
totics. Although in the following only the overflow probability in stationary condition
will be considered, it is worth mentioning that LDT may be applied to estimate other
quantities such as the most likely way a queue became big, the exit probability, the
distribution of busy periods and even the way steady state is reached (see, as a compre-
hensive illustrative example, the analysis of the M/M/1 queue in [12]).

The main result in this section is the LDP for the single server queue, which, at least
under some restrictive hypotheses, can be established through direct calculation. More
general results are achieved making use of abstract LDT tools, such as the contraction
principle (in an adequately chosen Hausdorff space), once an LDP for the arrival process
is known.

3.1 The Single Server Queue

The evolution of a (FIFO) single server queue is described, in both continuous and
discrete time settings, by the Lindley’s recursion

Qn+1 = (Qn + Xn+1)
+ (31)

where x+ = max(0, x) and the interpretation of the different entities depends on the
specific settings.
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Server

Buffer
time

Cn Cn+1 Cn+2

Bn

An+1

Qn

Qn+1

Fig. 3. Continuous time version of Lindley’s recursion

In continuous time (see fig. 3), customers are labelled by the integers (Cn denotes
the nth arrival) and Xn+1 is the difference between the service time Bn of Cn and the
interarrival time An+1 between Cn and Cn+1; in this case Qn gives the waiting time of
Cn, i.e., the time spent in the queue before commencing service.

In discrete time (slotted time model) the interpretation of (31) is straightforward: Xn

is the difference between the amount of work An that arrives at the queue at time n (or,
more in general, during the interval

(
n − 1, n

)
) and the amount of work Cn that the

server can process at time n; hence, Qn represents the amount of work remaining in the
queue just after time n. In the following we shall adopt the latter interpretation, but most
of the results can be easily adapted to waiting time in the continuous time framework.

In the rather common case of constant rate server (which can be used, for instance,
to model a transmission line), Lindley’s recursion becomes

Qn+1 = (Qn + An+1 − C)+ (32)

Equation (32) may have different solutions, depending on boundary conditions (see
[6,10] and references therein for a detailed analysis). For example, let us consider the
queue size at time n = 0, subject to the boundary condition that the queue was empty
at n = −∞. It is easy to prove that

Q−∞
0 = sup

n≥0
Sn − Cn (33)

where Sn is the cumulative arrival process, i.e.,

Sn
Δ= A−n+1 + A−n+2 + · · · + A−1 + A0

and, by convention, S0 = 0. If the arrival process (An, n ∈ Z) is stationary, then Q−∞
0

has the same distribution as Q−∞
n for any n ∈ Z and this distribution is called the steady

state distribution of queue size. Moreover, if (An, n ∈ Z) is also ergodic and EA0 < C
(i.e., EX0 < 0), then the limit does not depend on the initial condition.
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In the following, (Xn, n ∈ Z) will be a stationary ergodic sequence of RVs with
EX0 < 0 (stability condition) and Q will denote the unique equilibrium distribution,
i.e., in case of constant rate server:

Q = sup
n≥0

Sn − Cn . (34)

In other word, the steady-state buffer content (a reflected additive recursion, which can
only assume non negative values) is distributionally equal to the supremum of a free
(i.e., nonreflected) process with negative drift (the supremum is non-negative!).

To conclude this overview on Lindley’s recursion, it is worth noticing that this frame-
work, although it has been developed for a slotted system, can be directly extended
(Reich’s theorem) to the steady-state queue length in continuous time

Q = sup
t≥0

A (−t, 0) − Ct ,

where A (s, t) denotes the amount of traffic offered to the system in
[
s, t
)
. Moreover, if

the arrival process is time reversible, then

Q = sup
t≥0

A (t) − Ct . (35)

3.2 LDT Asymptotics

Since LDT is an asymptotic theory, the solution of Lindley’s recursion is analysed in
some asymptotic conditions. In particular, two different regimes (large buffer and many
sources) are discussed in the next subsections, presenting the key results and highlight-
ing the ideas behind the proofs, which can be found in [6] together with illustrative
examples.

Large-buffer regime. In the large-buffer regime, traditionally the most investigated
limit (and not only in the field of LDT), the objective is to find asymptotic expansions
of the queue size complementary probability P (Q > q) for q → ∞.

In this section we will consider a (single server FIFO) queue with constant ser-
vice rate C and arrival process (At, t ∈ Z), At being the amount of work arriving at
time t. In [6] an LDP for queue size is derived, at first, under the assumption that the
At were IID and then weakening this assumption as in the Gärtner-Ellis theorem (see
section 2.2). For sake of brevity, here only the more general statement is given, followed
by some remarks on the proof and on the interpretation of the LDP.

Theorem 7 (LDP for queue size). Let (At, t ∈ Z) be a stationary random process,
with EA0 < C and let

Λt (θ) = log EeθSt .

Suppose that

1. the limit

Λ (θ) = lim
t→∞

1
t

Λt (θ) (36)

exists in R
∗ for each θ ∈ R
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2. Λ(θ) is essentially smooth, and finite in a neighbourhood of θ = 0
3. Λt (θ) is finite for all t whenever Λ(θ) < θC

Then, for q > 0:

lim
l→∞

1
l

log P

(
Q

l
> q

)
= −I(q) (37)

where

I(q) = inf
t∈R+

t Λ∗ (C + q/t)

= inf
t∈R+

sup
θ≥0

θ (q + Ct) − t Λ(θ)

= q sup {θ > 0 : Λ(θ) < θC}

(38)

Some remarks may be useful to better understand the theorem.

1. Equation (37) is usually written in a visually simpler equivalent form

lim
q→∞

1
q

log P (Q > q) = −I(1) (39)

The notation used in the theorem is “closer” to the standard formulation of an LDP.
In any case there are two differences:
(a) Upper and lower bounds happen to agree, so the theorem proves a limit.
(b) It is a restricted sort of LDP, since the theorem only concerns intervals

[
q, +∞)

and not general events.
2. The assumption that Λ(θ) is finite in a neighbourhood of the origin is necessary

to guarantee the exponential decay of the queue size complementary probability.
Completely different behaviours are associated to LRD traffic flows (section 4.1)
as well as to heavy-tailed distributions [13].

3. The lower bound is proved by estimating the probability that the queue overflows
over some fixed timescale. In other words, the approximation

P

(
sup

t
St − Ct ≥ q

)
≈ sup

t
P (St − Ct ≥ q) (40)

is justified (for large q) on a logarithmic scale.
4. The most likely time for the queue to fill up to some high level q is lt̂, where t̂ is

the optimising parameter for I(1) according to its definition in (38). Thus the most
likely rate for the queue to build up is 1/t̂ and does not depend on q.

5. Another interpretation of the theorem is that St−Ct is effectively a simple random
walk with negative drift, in that

P

(
sup

t
St − Ct ≥ q1 + q2

)
≈ P

(
sup

t
St − Ct ≥ q1

)
P

(
sup

t
St − Ct ≥ q2

)

for large q1 and q2. Thus, the (weak) dependence of the At is invisible at the macro-
scopic scale (although it does contribute to the value of I(1) through Λ(θ)).

6. If the service is a RV Ct, it is possible to apply the theorem to the random process
At − Ct (rather than to At) and set C = 0. Under the usual assumption of inde-
pendence between service and arrival processes, it is easy to show that (if the limits
exist)

Λ(θ) = ΛA(θ) + ΛC(−θ) .



322 M. Pagano

Many-sources regime. An important limitation of large-buffer regime is that it does
not give reasonably accurate results about overflow probability for small buffers, which
can be desirable in case of applications with stringent delay constraints. Moreover, it
might be useful to take into account that the input traffic can be often seen as the super-
position of many IID streams.

These thoughts has led to the interest for the so-called many-sources regime. In this
setting it is assumed that the number of source N grows large and, at the same time,
the queueing resources (buffer and bandwidth) are scaled accordingly. In more detail,
the buffer threshold is replaced by Nq and the service capacity by NC. Despite the fact
that the load remains constant, it is clear that the overflow probability decays to 0.

Let A
(i)
t denote the amount of work arriving from source i at time t. Assume that

1. for each i,
(
A

(i)
t , t ∈ Z

)
is a stationary sequence of RVs

2. these sequences are independent of each other and identically distributed.

If the total amount of work arriving at the queue in the interval
(−t, 0

]
is denoted by

SN
t , the queue length at time 0 is given by

QN = sup
t≥0

SN
t − NCt

and, in the spirit of LRD, we will consider the behaviour of P
(
QN ≥ Nq

)
as the num-

ber of sources becomes large.

Theorem 8 (LDP for queue size with many sources). Let S1
t be the amount of work

produced by a typical source in the interval
(−t, 0

]
with ES1

1 < C and let

Λt (θ) = log EeθS1
t .

Suppose that

1. the limit

Λ (θ) = lim
t→∞

1
t

Λt (θ) (41)

exists, and is finite and differentiable in a neighbourhood of the origin
2. for all t, Λt (θ) is finite for θ in a neighbourhood of the origin

Then

−I(q+) ≤ lim inf
N→∞

log P
(
QN > Nq

)

≤ lim sup
N→∞

log P
(
QN > Nq

) ≤ −I(q)
(42)

where
I(q) = inf

t∈N

Λ∗
t (q + Ct) = inf

t∈N

sup
θ∈R

θ (q + Ct) − Λt (θ) (43)
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It is interesting to point out a few differences with respect to the previous theorem:

1. Expression (42) involves both an upper and a lower bound, as in classical LDT
statements. If Λt(·) is continuous for each t, then the two bounds agree and we
obtain a straightforward limit.

2. Once again the proof makes use of the principle of the largest term and of the most
likely way in which the rare event may occur. However, in the many-sources limit,
the optimising t̂ is simply the most likely time to overflow and typically depends
on q in a non-linear way.

3. The assumption (41) is a way to control the distribution of S1
t for large t and is

needed to prove the upper bound (but not the lower bound), although it does not
appear in the result (I(q) depends only on Λt).

4. The previous condition does not allow for LRD sources; however, even in that case
the probability of large queues still decays exponentially in the number of sources
(but, as shown in section 4.1, a different scaling will be required in the definition of
the limit expression for Λ).

3.3 Continuous Mapping Approach

It is quite complicated to apply the previous approach (based on direct calculation of
the rate function for the overflow probability) to other queue parameters and to more
complex network scenarios. An interesting alternative is represented by the use of the
contraction principle, once the quantity of interest is expressed as a continuous function
of all random inputs. In this way it is possible to analyse different service disciplines
(priority queue, processor sharing), consider finite buffers and transient behaviours.

More in detail, let A denote any random influence on the network (in general it can
be seen as a vector of arrival and service processes). Many relevant quantities (such
as the queue size or the departure process at some queue) can be written as functions
f(A). In a nutshell, the continuous mapping approach consists of the following steps:

1. Consider a sequence of queueing networks indexed by L, in which the Lth network
has a vector of inputs AL, a version of A which is speeded up in time and scaled
down in space (the exact scaling depends on the specific framework).

2. Prove a sample path LDP for AL in some topological space.
3. Show that f is continuous on that space.
4. Use the contraction principle to derive an LDP for f(AL).
5. Simplify the resulting rate function (typically, the rate function for this LDP will be

given as the solution to a variational problem).

A big advantage of this procedure is that, once a sample path LDP is proved for AL, we
can obtain LDPs for different quantities, under the assumption that they can be written
as a continuous function of the inputs.

Another useful consequence of the application of the contraction principle is that we
can not only estimate the probability of a rare event, but also find the most likely path
to that event.
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Large-buffers revisited. In spite of its apparent simplicity, the continuous mapping
approach requires some technical work to identify the proper space in which f(A) is
actually continuous as well as to simplify the rate function. All these issues are deeply
analysed in [6], at first identifying proper continuous queueing maps and then analysing,
in two separate chapters, the two classical scaling regimes. Since the main goal of this
tutorial is to give an introduction to LDT for non specialists, we will simply focus on the
application of the contraction principle to derive an LDP for queues with large buffers.

In a single server queue with deterministic service rate C, the queue size at time 0
can be written as a function of the cumulative arrival process

Q0 = sup
t≥0

St − C · t Δ= f(A)

where A denotes the entire input process (St, t ≥ 0). Since it will be more convenient
to work in continuous time, we introduce its polygonalised version (with step 1), Ã =
Π1Π1Π1A, defined for t ∈ R

+. At this point it is meaningful to define the scaled processes:

ÃL(t) =
1
L

Ã(Lt) (44)

and the continuous-time version (Reich’s theorem) of the queue size function:

f̃(Ã) = sup
t∈R+

Ã(t) − C · t . (45)

It is easy to verify through direct substitution that

f̃(ÃL) = L−1f(A) = L−1Q0

and this means that
P

(
f̃(Ã) > b

)
= P (Q0 > Lb) . (46)

Let us assume that ÃL(t) satisfies an LDP in some topological space with good rate
function I , i.e.,

1
L

log P

(
ÃL ∈ B

)
≈ − inf

a∈B
I(a) . (47)

If f̃ is continuous on that space, then the contraction principle gives estimates for the
left hand side of (46) and hence for the overflow probability:

1
L

log P (Q0/L > b) ≈ −J(b) (48)

where
J(b) = inf

a:f(a)>b
I(a) . (49)

The expression of the rate function J justifies that the probability of a rare event can
be estimated by considering only the optimal manner for that event to occur. In other
words, the most likely way for the rare event {Q0 > Lb} to occur is when the in-
put process ÃL is close to the optimising a, which represents the most likely path to
overflow.



Large Deviations and Queues 325

In the previous discussion, we assumed the existence of a topological space in which
AL satisfies an LDP and on which f is continuous. As stated in [6] (where some in-
structive counterexamples are also shown), this involves a trade-off and, in general, the
selection of the proper topological space depends on the application. It turns out that
a suitable choice for the single server queue (and for many other systems) is the space
Cμ, defined as the set of continuous functions x : R

+ → R, for which x(0) = 0 and

lim
t→∞

x(t)
t + 1

= μ , (50)

equipped with the topology induced by the scaled uniform norm

‖x‖ = sup
t∈R+

∣∣∣∣
x(t)
t + 1

∣∣∣∣ . (51)

Indeed, the queue size function (45) is continuous on Cμ, where μ represents the mean
arrival rate (the polygonalised version of the cumulative arrival process corresponds to
x(t) in the definition (50)).

It is worth mentioning that in the many-sources regime it is necessary to work in
a larger space and use the extended version of the contraction principle. The problem
is related to the definition of the mean arrival rate in (50); without going into details
(see [6] for the definition of a “proper” space), a simple example is enough to highlight
the trouble. Indeed, let us consider N constant rate flows, where each rate is drawn
independently from N (

μ, σ2
)
; then the limit

lim
t→∞

SN
t

t + 1

is not necessarily μ, since it is a RV ∈ N (
μ, σ2/N

)
.

4 Applications of LDT to Networks

The results of the previous sections can be applied to more complex scenarios and
to general problems related to network dimensioning and planning. Just to show the
heterogeneous capabilities of LDT, two completely different issues will be addressed
in this section: the analysis of LRD traffic flows and the use of LDT to speed-up the
simulation of rare events through Importance Sampling, which is based on a change of
measure argument similar to the one employed in the proof of Cramér’s theorem.

4.1 Long Range Dependence and Large Deviations

In the early 1990s, researchers at AT&T [2] claimed, on the basis of a huge collection
of high-quality traffic measurements, that Internet traffic presents Long Range Depen-
dence. The main consequences were the search for new traffic models, able to take into
account this feature in a parsimonious way, and the analysis of queueing performance
under the new traffic paradigm. The first issue has led to the introduction of self-similar
(or, more in general, asymptotically self-similar) traffic models, among which the most
popular is fractional Brownian motion. The main drawback of these models is the lack
of analytical results for queueing performance; indeed, even in the case of a single
server queue, only asymptotic results are available.
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Basic definitions. For sake of completeness, we recall here the main definitions related
to Long Range Dependence and Self-similarity (see, for example, [14] for a complete
overview).

Definition 7 (Long Range Dependence). Let (Xn, n ∈ Z) be a second order station-
ary process with autocorrelation function ρ(k) and power spectral density SX(ω).
Xn is Long Range Dependent (LRD) iff (the following properties are all equivalent):

– ρ(k) decreases as a non summable power law when k tends to infinity

ρ(k) ∼ k−α as k → ∞ where 0 < α < 1

– SX(ω) diverges as an integrable power law near the origin

SX(ω) ∼ ω−β as ω → 0 where 0 < β < 1 and β = 1 − α

– The variance of the aggregated process decays more slowly than the sample size

Var

(
1
n

n−1∑

i=0

Xi

)
∼ n−α as n → ∞

One related phenomenon is self-similarity: roughly speaking, a dilated portion of the
sample path of a self-similar process cannot be (statistically) distinguished from the
whole. Indeed, self-similar processes have fluctuation at every time-scale, and the Hurst
parameter relates the size of fluctuations to their time-scale according to (52).

Definition 8 (Self-similarity for continuous time processes). Let (Yt, t ∈ R) be a
continuous time process. Yt is self-similar with self-similarity parameter H (Hurst pa-
rameter) iff

c−HYct
(d)
= Yt ∀ c > 0 (52)

i.e., if for any k ≥ 1, for any t1, t2, . . . , tk ∈ R and for any a > 0
(
Yat1 , Yat2 , . . . , Yatk

)
and

(
aHYt1 , a

HYt2 , . . . , a
HYtk

)

have the same distribution

Typically self-similar processes are used to characterise the cumulated workload over
a given time interval; in this framework the most popular and well-known self-similar
model, widely adopted [3] for its parsimonious structure, is fractional Brownian motion
(fBm).

Definition 9 (fractional Brownian motion). A standard fractional Brownian motion
(ZH(t), t ∈ R) with Hurst parameter H is characterised by the following properties:

– ZH(·) is Gaussian, i.e., its finite-dimensional distributions are multivariate normal
– ZH(t) ∈ N (

0, |t|2H
)

– ZH(·) has stationary increments, i.e., ZH(u + t) − ZH(u) ∼ ZH(t)
– ZH(0) = 0
– ZH(·) has continuous sample paths

From the above definition, it follows that Brownian motion is only a special case (for
H = 1/2) of fBm; in that case, the analysis was much simpler since the increments
were not only stationary, but also independent. Instead, for H �= 1/2 the increments of
ZH(t) are correlated and, if 1/2 < H < 1, they exhibit Long Range Dependence.
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Implications of LRD for Queues. Let X (s, t] = X(t) − X(s) denote the amount of
work arriving at a single server queue (with deterministic service rate C) in the time
interval

(
s, t
]
, where (X(t), t ∈ R) is a LRD process with drift μ (where μ < C to

assure the stability of the queue) and VarX(−t, 0] ∼ σ2t2H .
In the large-buffer regime (section 3.2), the LDP for the queue size basically states

that

lim
q→∞

1
q

log P (Q > q) = −δ (53)

with the underlying assumption of the existence of a sufficiently well-behaved limiting
cumulant generating function

Λ (θ) = lim
t→∞

1
t

Λt (θ) = lim
t→∞

1
t

log EeθX(−t,0] .

If the limit exists, then the Taylor-Maclaurin expansion implies that

VarX(−t, 0] ∼ tΛ′′(0) . (54)

This is not the case for LRD processes since VarX(−t, 0] ∼ σ2t2H . However, a
variant of (53) still holds when there is some sequence (vt, t ∈ N) taking values in R

+,
with vt/ log t → ∞, such that the limit

Λ (θ) = lim
t→∞

Λt (θvt/t)
vt

= lim
t→∞

1
vt

log EeθX(−t,0] vt/t (55)

exists, and is finite and differentiable in a neighbourhood of the origin. In that case, (54)
becomes

VarX(−t, 0] ∼ t2

vt
Λ′′(0) (56)

and a natural choice for LRD traffic is to put vt = t2(1−H). If, under this scaling, the
limit Λ(θ), defined by (55), exists and is well-behaved, then the queue size does not
decay exponentially; instead

lim
q→∞

1
q2(1−H)

log P (Q > q) = −δ (57)

where
δ = inf

t>0
t2(1−H) Λ∗ (C + 1/t) . (58)

The special case of Gaussian processes has been deeply investigated for the analytical
tractability and for the relevance in traffic modelling (the physical motivations and all
the underlying difficulties are discussed, for instance, in [10,15]) of such processes. In
that framework, logarithmic as well as exact asymptotics are known, although the latter
(which go beyond the LDT set-up) are much harder to obtain [16,17]. For instance, if
X(t) is an fBm with drift μ, variance parameter σ and Hurst parameter H , i.e.,

X(t) = μt + σZH(t) ,
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the LDP (57) can be rewritten as follows:

lim
q→∞

1
q2(1−H)

log P (Q > q) = −γ2/2 (59)

where

γ =
(C − μ)H

σ
κ and κ =

1
HH (1 − H)1−H

. (60)

Hence, as a function of q, P (Q > q) decays in a Weibullian way6 i.e., roughly as
exp

(−q2−2H
)

and if H ∈ (1/2, 1
)
, the decay is slower than exponential.

It is worth mentioning that the same asymptotic expression (called basic approxi-
mation in [11]) for the overflow probability can be obtained directly from the solution
of the Lindley’s recursion, taking into account the principle of the largest term (in the
spirit of approximation (40)) and the Chernoff bound (the optimising t̂ represents the
most likely time-scale of overflow). The application of the generalised Schilder’s theo-
rem (that gives the sample path LDP for a general Gaussian process and hence permits
to identify the most likely path to overflow) has been extended to heterogeneous traffic
flows (for Gaussian processes superposition means just adding the variance functions)
as well as to more complex queueing systems, such as priority queues, generalised pro-
cessor sharing schedulers [15] and tandem queues [18]. Such results, which could be
justified, at least in principle, invoking the contraction principle applied to the proper
continuous function f(A), are indeed quite accurate over the full range of buffer sizes
and even for quite high traffic levels [11].

4.2 LDT and Rare Event Simulation by Means of Importance Sampling

Importance Sampling (IS) is a popular technique devised to build unbiased estima-
tors not suffering from the smallness of the probability of interest. This is achieved by
changing the law of the process so that to favour the occurrence of the target rare event
and taking this change into account by reweighting the estimation according to the like-
lihood ratio, which, in measure-theoretic terms, is the Radon-Nikodym derivative of the
original law with respect to the new one [9].

The efficiency of an IS-based algorithm depends on the choice of a “proper” change
of measure to reduce the variance of the estimate. It is well known that the optimal
change of measure (zero-variance pdf) involves the knowledge of the probability we
want to estimate and therefore cannot be practically adopted. The issue is commonly
tackled by restricting potential IS measures to a parametric class and determining the
optimal change of measure within this restricted class7. The most common approach is
represented by the use of a so-called exponential change of measure (ECM), already
introduced in section 2.1 as a technique to prove the lower bound in Cramér’s theorem.

Roughly speaking, LDT states that a target rare set is most likely to be reached by
following the path f̂ that minimises the corresponding rate function. Thus, simulating

6 The exact asymptotics of P (Q > q), in which a crucial role is played by the so-called Pickands
constant, factorise into the same Weibullian term and a hyperbolic prefunction [10].

7 Since the topic requires by itself a complete tutorial, in the following only the basic ideas are
sketched; see [9] for all the relevant definitions.
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the system under the change of measure that favours that path is the quickest way to
reach the rare set. For random walks (and hence for the G/G/1 framework), the previous
heuristic idea is formally justified by the following theorem:

Theorem 9 (Siegmund, Lehtonen/Nyrhinen). An IS estimator for the probability that
a random walk with negative drift exceeds some positive level x is asymptotically op-
timal, iff it is built according to the ECM, where the twisting parameter θ∗ > 0 is
chosen such that Λ(θ∗) = 0, where Λ(·) denotes the cumulant generating function of
the increments.

In conclusion, the most likely way in which the random walk can cross level x is
by moving linearly at rate Λ′(θ∗), which is exactly the new drift associated to the
ECM (14). The previous theorem has a very nice interpretation for an M/M/1 queue:
under the optimal ECM, the arrival and service rates are simply twisted. Unfortunately
a similar result cannot be extended to Jackson queueing networks and, in general, state-
dependent heuristics are required [19].

Finally, it is worth noticing that, when the input traffic is fBm, a change of measure
based on the most likely path is not asymptotically efficient [20] even for the single
server queue. An intuitive explanation is that the main contribution to the asymptotics
of the second order moment of the IS estimator is determined by paths which give a
very small contribution to the overflow probability, but for which the likelihood ratio
is very large. Asymptotic optimality can be achieved by the use of more refined IS
techniques [21,22], but at the cost of a higher computational complexity. An alternative
approach, which retains the simplicity of ECM-based IS with a lower variance of the
estimates (although the algorithm is not asymptotically efficient), is the so-called Bridge
Monte-Carlo method, based on the idea of expressing the overflow probability in terms
of the bridge of the input process [23].

5 Conclusions

The theory of large deviations is a powerful tool for the analysis and simulation of rare
events. For lack of space and for its specific target, this tutorial could only introduce
some basic principles and show how the general ideas may be used in the framework of
computer networks. The interested reader (see also [4] for a more detailed review of the
literature) can find in [5] a general introduction to the theory and in [7] a condensed and
rigorous overview of the main results. A good compromise between general theory (in
the first part of the book) and applications (to performance evaluation in communica-
tion and computer architectures) is represented by [12], while [6], the key reference for
this tutorial, focuses on queueing systems. The book, starting from the elementary case
of IID arrivals, shows how abstract LDT theorems permit to extend the results to very
general scenarios and finally deals with more tangible concepts, such as effective band-
widths, scaling properties (which are used, for instance in [24], to analyse the effect
of TCP on network stability) and hurstiness, an LDP-oriented characterisation of Long
Range Dependence. Finally, [10] is not a book on large deviations, but the analysis of
Gaussian queues represents a natural framework to derive and heuristically justify some
of the main LDT results.
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