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Abstract. The integration of different types of traffic in packet-based
networks spawns the need for traffic differentiation. In this tutorial paper,
we present some analytical techniques to tackle discrete-time queueing
systems with priority scheduling. We investigate both preemptive (re-
sume and repeat) and non-preemptive priority scheduling disciplines.
Two classes of traffic are considered, high-priority and low-priority traf-
fic, which both generate variable-length packets. A probability generating
functions approach leads to performance measures such as moments of
system contents and packet delays of both classes.

1 Introduction

In recent years, there has been much research devoted to the incorporation of
multimedia applications in packet-based networks. Different types of traffic need
different Quality of Service (QoS) standards. For real-time applications, it is im-
portant that mean delay and delay-jitter are bounded, while for non real-time
applications, the throughput and loss ratio are the restrictive quantities. In or-
der to guarantee acceptable delay boundaries to delay-sensitive traffic (such as
voice/video), several scheduling schemes – for switches, routers, . . . – have been
proposed and analyzed, each with their own specific algorithmic and computa-
tional complexity. The most drastic in this respect is the strict priority schedul-
ing. With this scheduling, as long as delay-sensitive (or high-priority) packets are
present in the queueing system, this type of traffic is served. Delay-insensitive
packets can thus only be transmitted when no delay-sensitive traffic is present
in the system. As already mentioned, this is the most drastic way to meet the
QoS constraints of delay-sensitive traffic, but also the easiest to implement.

Within this tutorial paper, we focus on the analysis of queues with this pri-
ority scheduling discipline. We give an overview of the different types of priority
scheduling disciplines and, for the most part, we show and explain some tech-
niques to analytically analyze discrete-time queues with a priority scheduling
discipline. Assume packets arriving to a buffer (located in a switch, router, mul-
tiplexer, . . . ) being categorized in two distinct classes, the high-priority class and
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the low-priority class. In a queue with a priority scheduling discipline, the high-
priority packets are transmitted ahead of the low-priority packets, i.e., when a
server becomes available, a high-priority packet is always scheduled for trans-
mission. Only, when there are no high-priority packets in the buffer at that
time, a low-priority packet is selected for transmission. Priority scheduling dis-
ciplines come in two basic flavors, i.e., non-preemptive and preemptive. In the
former, transmission of a packet is never interrupted once it is in service. So, if
new high-priority packets arrive while a low-priority packet is served, they have
to wait until the low-priority packet leaves the server. In a queue with a pre-
emptive priority scheduling discipline on the other hand, those newly arriving
high-priority packets interrupt transmission of the low-priority packet in service.
Within the latter type of priority scheduling, two different strategies can be dis-
tinguished, depending on what happens when an interrupted low-priority packet
re-enters the server. If the packet can resume its service where it was interrupted,
i.e., when the part that was already transmitted before the interruption does not
have to be retransmitted again, it is called a preemptive resume priority schedul-
ing discipline. In a preemptive repeat priority scheduling on the other hand, the
packet has to be retransmitted completely after the interruption.

In the literature, there have been a number of contributions with respect to
priority scheduling. An overview of some basic priority queueing models in con-
tinuous time can be found in [1–3] and references therein. Discrete-time priority
queues with deterministic service times equal to one slot have been studied in
[4–16]. Khamisy and Sidi [4] analyze the system contents of the different classes,
for a queue fed by a two-state Markov-modulated arrival process. Takine et al.
[5] present the system content and delay for Markov-modulated high-priority
arrivals and geometrically distributed low-priority arrivals. Laevens and Bruneel
[6] analyze the system content and delay in the case of a multi-server queue. Choi
et al. [7] and Walraevens et al. [12, 15] analyze a priority queue with train ar-
rivals with resp. fixed, geometrically distributed and generally distributed train
lengths. Walraevens et al. [8] study the system content and packet delay, in the
special case of an output queueing switch with Bernoulli arrivals. Mehmet Ali
and Song [9] examine a priority queue with on-off sources. Van Velthoven et
al. [10] and Demoor et al. [13] tackle priority queues with finite (high-priority)
buffer space. Kamoun [11] analyzes a priority queue with service interruptions.
Finally, Walraevens et al. [14, 16] study the transient behavior and the output
process resp. of a priority queue. All these papers have a single-slot service time
in common; as a result no distinction has to be made between preemptive and
non-preemptive priority scheduling.

Continuous-time non-preemptive priority queues have been considered in
[17–26]. Discrete-time non-preemptive queues are the subject of [27–35]. Ru-
bin and Tsai [27] study the mean waiting time, for a discrete-time queue fed
by an i.i.d. arrival process. Hashida and Takahashi [28] analyze the packet de-
lay by means of a delay-cycle analysis. Takine et al. [29] and Takine [30] study
a discrete-time MAP/G/1 queue, using matrix-analytic techniques. Walraevens
et al. examine the system content [31] and the packet delay [32] in a two-class
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non-preemptive priority queue with i.i.d. number of per-slot arrivals and general
service times using generating functions. The results presented in section 3 are
largely based on the latter two papers. This analysis is furthermore extended
to a general number of classes in [33]. Maertens and al. [34] investigate the tail
behavior of the total content in a priority buffer. Finally, Demoor et al. [35]
analyze a priority queue with finite capacity for high-priority customers.

Continuous-time preemptive resume priority queues have been analyzed in
[36–47]. Discrete-time preemptive resume priority queues are the subject of
[48–53]. Walraevens et al. [49] and Ndreca and Scoppola [52] analyze a two-
class preemptive priority queue with geometric service times. Walraevens et al.
[50] study a priority queue with general high-priority service times and geometric
low-priority service times, while Lee [48] and Walraevens et al. [53] handle a two-
class priority queue with generally distributed service times for both classes. Van
Houdt and Blondia [51] analyze a three-class priority queue. Queues with a pre-
emptive repeat priority scheduling discipline are studied less frequently than their
non-preemptive and preemptive resume counterparts. Continuous-time models
are studied in [54, 55]. Discrete-time preemptive repeat priority queues are the
subject of [56–58]. Mukherjee et al. [56] study a preemptive repeat with re-
sampling scheduling of voice traffic over data traffic in a ring-based LAN. Re-
sampling, in this context, means that the length of a repeated service time is
not necessarily equal to the length of the first (interrupted) service time. It is
a new sample (with the same distribution). Walraevens et al. [57, 58] analyze
resp. the preemptive repeat priority queue with resampling and without resam-
pling. Queues with resampling and without resampling resp. are also known as
preemptive repeat different and preemptive repeat identical priority queues.

Finally, Hong and Takagi [59] and Kim and Chae [60] analyze priority models
which are combinations of non-preemptive and preemptive priority.

In this tutorial paper, we show some analytic techniques for analyzing the
performance of queues with a preemptive or non-preemptive priority scheduling
discipline. The analysis is largely based on the probability generating functions
(pgfs) approach. We discuss two main methods to analyze priority queues. In
the first method, a non-preemptive priority queue with two classes is analyzed.
The joint pgf of the system contents of both classes and the pgfs of the delays
of packets of both classes are calculated. Starting from these pgfs, it is shown
how moments and approximate tail probabilities are calculated. In the second
method, performance of low- and high-priority traffic is assessed separately in
the case of a preemptive priority scheduling discipline. Here, a single-class model
can be used to assess performance of the high-priority traffic as the preemptive
priority discipline implies that high-priority traffic perceives the system as one
without low-priority traffic. Low-priority traffic performance, on the other hand,
is assessed with a single-class model with service interruptions. From the point
of view of the low-priority class, the server is interrupted whenever high-priority
packets are served and is available otherwise. We obtain a stochastic model for
the perceived interruption process and present the analysis of the corresponding
queueing model with interruptions.
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So, queueing models with service interruptions are highly applicable for mod-
eling the low-priority class in priority queues. To end this introduction, we will
make a (short) literature overview of queueing models with service interruptions.
Continuous-time queues with service interruptions are the subject of (a.o.) two
recent papers [61, 62]. Research on discrete-time queues with service interrup-
tions dates back to the 70’s. Early papers include those by Hsu [63] and Heines
[64]. Both authors treat the single-server system with Bernoulli server inter-
ruptions and a Poisson arrival process. The former considers queue contents at
random slot boundaries whereas the latter considers queue contents at service
completion times. A single-server system with an i.i.d. arrival and a correlated
on/off server interruption process is treated in [65–67]. Woodside and Ho [66]
and Yang and Mark [67] model the on- and off-periods as a series of i.i.d. shifted
geometric random variables, whereas Bruneel [65] assumes that the series of
consecutive on- and off-periods share a common general distribution. The only
restriction in the latter contribution is that the common probability generating
function of the on-periods must be rational. Alternatively, correlation in the in-
terruption process is captured by means of a Markovian process by Lee [68]. In
a more general setting – that is, no assumptions are made regarding the nature
of the interruption process – relationships between queue contents at different
time epochs are derived by Bruneel [69].

Georganas [70] and Bruneel [71] treat multi-server systems with i.i.d. cus-
tomer arrival and server interruption processes. The latter extends the former
in the sense that it does not assume that all outputs are either available or not.
The delay analysis of the latter system is presented by Laevens and Bruneel
[72]. A multi-server system with a correlated interruption process is considered
by Bruneel [73]. The interruption process is modeled as an on/off process (ge-
ometrical on-periods). The number of available servers during the consecutive
on-slots, are modeled by means of an i.i.d. series of non-negative random vari-
ables whereas no servers are available during off-periods.

Some contributions also allow a certain degree of correlation in the arrival
process. Bruneel [74] assumes that both arrival and interruption processes are
on/off processes with geometric on- and off-periods. A stochastic number of
customers (an i.i.d. series) enters the system during arrival-on periods, whereas
no customers arrive in the system during arrival-off periods. The interruption
process is similar as the one analyzed by Yang and Mark [67] in the case of
uncorrelated arrivals. This interruption process is also considered by Ali et al.
[75] and by Kamoun [76]. The former authors assume that customer arrivals
stem from a superposition of two-state Markovian on-off sources, while the latter
author considers a so-called train-arrival process.

All the former discrete-time queueing models with service interruptions have a
fixed customer service time of a single slot in common. A queueing system where
customers have a fixed multiple-slot service-time, is considered by Inghelbrecht
et al. [77]. The interruption process is again similar as the one treated by Yang
and Mark [67]. The presence of multiple-slot service times and interruptions im-
plies that a packet’s transmission may be interrupted. The contribution considers
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both the case that the packet transmission is continued after the interruption
(CAI) and the case that transmission is repeated after the interruption (RAI).
These modes correspond to preemptive resume and preemptive repeat prior-
ity scheduling, discussed above, respectively. Interruption models with generally
distributed service times and a Bernoulli interruption process are considered by
Fiems et al. [78, 79]. In [78], results for the CAI and RAI transmission modes are
presented whereas some variants are considered in [79]. In particular we mention
the repeat after interruption with resampling mode (in which the service time of
an interrupted packet is resampled upon retransmission) and the partial repeat
after interruption mode (in which only part of the packet has to be retransmitted
after an interruption). The same authors consider CAI and RAI modes in the
case of a Markovian interruption process [80] and in the case of a renewal-type
interruption process [81]. The results presented in section 4 are based on the
latter contribution.

The remainder of this paper is outlined as follows. In the next section we
provide a more detailed description of the queueing model under consideration.
In sections 3 and 4, we analyze the priority system in the case of a non-preemptive
priority discipline and in the case of a preemptive priority discipline respectively.
Some conclusions are drawn in section 5.

2 Mathematical Model

We consider a discrete-time single-server queueing system with infinite buffer
space. Time is assumed to be slotted. There are two types of traffic arriving
in the system, namely packets of class 1 and packets of class 2. We denote the
number of arrivals of class j during slot k by E

(k)
j (j = 1, 2). Both types of

packet arrivals are assumed to be i.i.d. from slot-to-slot and are characterized by
the joint probability mass function e(m, n) � Pr[E(k)

1 = m, E
(k)
2 = n], and joint

probability generating function (pgf) E(z1, z2) � E[zE
(k)
1

1 z
E

(k)
2

2 ]. Notice that the
number of packet arrivals from different classes (within a slot) can be dependent.
If necessary for the analysis though, we will loosen this condition and assume
the number of arrivals of both classes in a slot mutually independent. Further,
we define the marginal pgfs of the number of arrivals of class 1 and class 2
during a slot by E1(z) � E[zE

(k)
1 ] = E(z, 1) and E2(z) � E[zE

(k)
2 ] = E(1, z)

respectively. We furthermore denote the arrival rate of class j (j = 1, 2) by
Ej = E′

j(1). The variance of the number of per-slot arrivals of class-j is given
by σ2

Ej
= E′′

j (1) − (E′
j(1))2 + E′

j(1).
The service times of the class-j packets are assumed to be i.i.d. and are char-

acterized by the probability mass function sj(m) � Pr[service of a class-j packet

takes m slots], m ≥ 1, and pgf Sj(z) =
∞∑

m=1
sj(m)zm, with j = 1, 2. We fur-

thermore denote the mean and variance of the service time of a class-j packet
by Sj = S′

j(1) and σ2
Sj

= S′′
j (1) − (S′

j(1))2 + S′
j(1). We define the arrival load

offered by class-j packets as ρj � EjSj (j = 1, 2). The total arrival load is then
given by ρT � ρ1 + ρ2.
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The system has one server that provides the transmission of packets. Class-1
packets are assumed to have priority over class-2 packets, and within one class the
service discipline is First Come First Served (FCFS). So, if there are any class-1
packets in the queue when the server becomes empty, the one with the longest
waiting time will be served next. If, on the other hand, no class-1 packets are
present in the queue at that moment, the class-2 packet with the longest waiting
time, if any, will be served next.

3 Non-preemptive Priority Queues

In this section, we analyze non-preemptive priority queues. We derive the joint
pgf of the system contents of both priority classes and calculate the pgfs of the
packet delays of both classes. From these pgfs, we show how to calculate moments
and (approximate) tail probabilities of the respective stochastic variables.

3.1 System Content at Service Initiation Epochs

To be able to analyze the system content at random slot boundaries and the
packet delays of both classes, we first analyze the system content at the beginning
of so-called start slots. These are slots at the beginning of which a packet (if
available) can enter the server. Note that every slot during which the system
is empty, is also a start slot. We denote the system content of class-j packets
at the beginning of the l-th start slot by U

(l)
s,j (j = 1, 2). Clearly, the set {U (l)

s,1,

U
(l)
s,2} forms a Markov chain, since the arrival process is i.i.d. and the buffer

solely contains entire messages at the beginning of start slots. If S(l) indicates
the service time of the packet that enters service at the beginning of start slot l
(which is - by definition - regular slot k) the following system equations can be
established:

1. If U
(l)
s,1 = U

(l)
s,2 = 0:

U
(l+1)
s,1 = E

(k)
1 , U

(l+1)
s,2 = E

(k)
2 .

The only packets present in the system at the beginning of start slot l + 1
are the packets that arrived during the previous slot, i.e., start slot l.

2. If U
(l)
s,1 = 0 and U

(l)
s,2 > 0:

U
(l+1)
s,1 =

S(l)−1∑

i=0

E
(k+i)
1 , U

(l+1)
s,2 = U

(l)
s,2 +

S(l)−1∑

i=0

E
(k+i)
2 − 1 .

The class-2 packet in service leaves the system just before start slot l + 1.
S(l) is characterized by probability mass function s2(m).

3. If U
(l)
s,1 > 0:

U
(l+1)
s,1 = U

(l)
s,1 +

S(l)−1∑

i=0

E
(k+i)
1 − 1 , U

(l+1)
s,2 = U

(l)
s,2 +

S(l)−1∑

i=0

E
(k+i)
2 .
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S(l) is characterized by probability mass function s1(m).

We assume that the system is stable, implying that the equilibrium condition

ρT < 1 is met. We define Us(z1, z2) � lim
l→∞

E
[

z
U

(l)
s,1

1 z
U

(l)
s,2

2

]

. Using the system

equations, we derive a functional equation for Us:

[z1 − S1(E(z1, z2))] Us(z1, z2) =
z1S2(E(z1, z2)) − z2S1(E(z1, z2))

z2
Us(0, z2)

+ z1
z2E(z1, z2) − S2(E(z1, z2))

z2
Us(0, 0) . (1)

It now remains for us to determine the unknown function Us(0, z2) and the
unknown parameter Us(0, 0). This can be done in two steps. First, we notice
that Us(z1, z2) must be analytic for all values of z1 and z2 such that |z1| < 1
and |z2| < 1. In particular, this should be true for z1 = Y (z2), with Y (z2) �
S1(E(Y (z2), z2)) and |z2| < 1, since it follows from (an extension of) Rouché’s
theorem [82] that z1 = S1(E(z1, z2)) has exactly one solution |Y (z2)| < 1 for all
such z2. Notice that Y (1) equals 1. The above implies that if we insert z1 = Y (z2)
in equation (1), where |z2| < 1, the left hand side of this equation vanishes. The
same must then be true for the right hand side, yielding

Us(0, z2) = Us(0, 0)
z2E(Y (z2), z2) − S2(E(Y (z2), z2))

z2 − S2(E(Y (z2), z2))
. (2)

The following expression for Us(z1, z2) can now be derived by combining equa-
tions (1) and (2):

Us(z1, z2) =Us(0, 0)
[

z1(z2E(z1, z2) − S2(E(z1, z2)))
(z1 − S1(E(z1, z2)))(z2 − S2(E(Y (z2), z2)))

+
S2(E(Y (z2), z2))(S1(E(z1, z2)) − z1E(z1, z2))
(z1 − S1(E(z1, z2)))(z2 − S2(E(Y (z2), z2)))

+
E(Y (z2), z2)(z1S2(E(z1, z2)) − z2S1(E(z1, z2)))

(z1 − S1(E(z1, z2)))(z2 − S2(E(Y (z2), z2)))

]

. (3)

Finally, in order to find an expression for Us(0, 0), we put z1 = z2 = 1 and use
de l’Hôpital’s rule in equation (3). Therefore, we need the first derivative of Y (z)
for z = 1 and this follows from its definition

Y ′(1) =S1(E1Y
′(1) + E2) =

E2S1

1 − ρ1
. (4)

We then obtain Us(0, 0):

Us(0, 0) =
1 − ρT

1 − ρT + E1 + E2

. (5)

Substituting the expression for Us(0, 0) in (3) gives a fully determined version
of Us(z1, z2).
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3.2 System Content at the Beginning of Arbitrary Slots

The system content of priority class j at the beginning of a slot k in steady
state is denoted by U

(k)
r,j (j = 1, 2). Define the steady-state joint pgf Ur(z1, z2) �

E[z
U

(k)
r,1

1 z
U

(k)
r,2

2 ]. In order to derive an expression for Ur(z1, z2), we condition on the
status of the server during slot k. There are three possibilities: the server can be
idle, a low-priority or a high-priority packet can be in service during slot k. The
server is idle during a slot if and only if the system was empty at the beginning
of the slot. On the other hand, if the server is busy during slot k, a class-j packet
is being served with probability ρj/ρT (j = 1, 2). We relate the system content
at the beginning of a random slot to the system content at the beginning of the
preceding start slot. The elapsed service time of the packet in service (if any)
during slot k is given by S̃. The system content at the beginning of slot k is a
superposition of the system content at the beginning of the last preceding start
slot and the arrivals during S̃, yielding

Ur(z1, z2) =Ur(0, 0) + (1 − Ur(0, 0))
{

ρ2

ρT

Us(0, z2) − Us(0, 0)
Us(0, 1) − Us(0, 0)

S̃2(E(z1, z2))

+
ρ1

ρT

Us(z1, z2) − Us(0, z2)
1 − Us(0, 1)

S̃1(E(z1, z2))
}

. (6)

Hereby is S̃j(z) (j = 1, 2) defined as the pgf of the elapsed service time of the
class-j packet in service at the beginning of slot k. It is shown in e.g. [83] that

S̃j(z) =
Sj(z) − 1
Sj(z − 1)

, (7)

for j = 1, 2. It now remains for us to determine the unknown parameter Ur(0, 0).
Keeping in mind that, if the server is idle during slot k, slot k is a start slot,
Ur(0, 0) can easily be found as follows:

Ur(0, 0) =Pr[U (k)
r,1 = U

(k)
r,2 = 0]

=Pr[U (l)
s,1 = U

(l)
s,2 = 0| slot k is a start slot] Pr[slot k is a start slot] ,

with start slot l the start slot directly preceding slot k. Conditioning on the
possibilities of a slot being a start slot, we find

Ur(0, 0) =Us(0, 0)
[

Ur(0, 0) +
1 − Ur(0, 0)

S1

ρ1

ρT
+

1 − Ur(0, 0)
S2

ρ2

ρT

]

= 1 − ρT .

(8)

Using equations (3), (5), (7) and (8) in (6), we derive a fully determined version
for Ur(z1, z2):

Ur(z1, z2) =(1 − ρT )
{

S1(E(z1, z2))(z1 − 1)
z1 − S1(E(z1, z2))

+
E(Y (z2), z2) − 1

E(z1, z2) − 1
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×
[

z1S2(E(z1, z2))(S1(E(z1, z2)) − 1)
(z1 − S1(E(z1, z2)))(z2 − S2(E(Y (z2), z2)))

+
z1z2(S2(E(z1, z2)) − S1(E(z1, z2)))

(z1 − S1(E(z1, z2)))(z2 − S2(E(Y (z2), z2)))

+
z2S1(E(z1, z2))(1 − S2(E(z1, z2)))

(z1 − S1(E(z1, z2)))(z2 − S2(E(Y (z2), z2)))

]}

. (9)

From the two-dimensional pgf Ur(z1, z2), we can easily derive expressions for the
pgfs of the system contents of high- and low-priority packets at the beginning of
an arbitrary slot - denoted by Ur,1(z) and Ur,2(z) respectively - yielding

Ur,1(z) � lim
k→∞

E
[
zU

(k)
r,1

]
= Ur(z, 1)

=
S1(E1(z))(z − 1)
z − S1(E1(z))

[

1 − ρT + E2
S2(E1(z)) − 1

E1(z) − 1

]

, (10)

Ur,2(z) � lim
k→∞

E
[
zU

(k)
r,2

]
= Ur(1, z)

=(1 − ρT )
S2(E2(z))(z − 1)

z − S2(E(Y (z), z))
E(Y (z), z) − 1

E2(z) − 1
. (11)

3.3 Packet Delay

The packet delay is defined as the total time period a tagged packet spends in
the system, i.e., the number of slots between the end of the packet’s arrival slot
and the end of its departure slot. We denote the steady-state delay of a tagged
class-j packet by Dj and its pgf by Dj(z) (j = 1, 2). Before deriving expressions
for D1(z) and D2(z), we first define some notions and stochastic variables we will
frequently use in this subsection. We denote the arrival slot of the tagged packet
by slot k. If slot k is a start slot, it is assumed to be start slot l. If slot k is not a
start slot on the other hand, the last start slot preceding slot k is assumed to be
start slot l. We denote the number of class-j packets that arrive during slot k,
but which are served before the tagged packet by Ẽ

(k)
j (j = 1, 2). Since we only

analyze the integer part of the delay, the precise time instant within the slot at
which the tagged packet arrives, is not important. Only the order of service of
all packets arriving in the same slot has to be specified. The class-1 packets will
be serviced before the class-2 packets, and within a class the order of service is
FCFS. We furthermore denote the service time of the tagged class-j packet by
Ŝj (j = 1, 2). We finally denote the service time and the elapsed service time of
the packet in service (if any) during the arrival slot of the tagged packet by S
and S̃ respectively. The latter random variable is the amount of service that the
packet being served has already received at the beginning of the tagged packet’s
arrival slot. Assume S and S̃ equal to 0 if no service is ongoing.
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Delay of High-Priority Packets. We have that the delay of a tagged class-1
packet - arriving during slot k - is given by

D1 = (S − S̃ − 1)+ +
U

(l)
s,1−1
∑

m=1

Š1,m +
S̃∑

i=1

E
(k−i)
1∑

m=1

S
(k−i)
1,m +

Ẽ
(k)
1∑

m=1

S
(k)
1,m + Ŝ1 ,

with (x)+ = max(x, 0), the S
(k)
1,m’s the service times of the class-1 packets that

arrived during slot k, but that are served before the tagged class-1 packet, the
S

(k−i)
1,m ’s (0 ≤ i ≤ S̃) the service times of the class-1 packets that arrived during

slot k − i, and with Š1,m the service times of the class-1 packets already in the
queue at the beginning of the ongoing service (thus without the possible packet
in service during slot k). We make the convention that a sum

∑k
m=l is 0 if k < l.

Using this equation and conditioning on the type of the packet that is in service
(no service, class 1 or class 2, we can derive an expression for D1(z):

D1(z) =Ẽ1(S1(z))S1(z)

⎧
⎪⎪⎨

⎪⎪⎩
1 − ρT + ρ2

S∗
2

(
E1(S1(z)))

z
, z

)

z

+ρ1
Us(S1(z), 1) − Us(0, 1)

(1 − Us(0, 1))S1(z)

S∗
1

(
E1(S1(z)))

z
, z

)

z

⎫
⎪⎪⎬

⎪⎪⎭

, (12)

with Ẽ1(z) � E[zẼ
(k)
1 ], S∗

2(x, z) � E[xS̃zS |U (l)
s,1 = 0, U

(l)
s,2 > 0] and S∗

1 (x, z) �
E[xS̃zS|U (l)

s,1 > 0]. The random variable Ẽ
(k)
1 can be shown to have the following

pgf (see e.g. [83]):

Ẽ1(z) =
E1(z) − 1
E1(z − 1)

. (13)

If a class-j packet is in service during slot k, S is characterized by the probability
mass function sj(m) (j = 1, 2). The conditional joint pgf of S̃ and S when a
class-j packet is in service has the following form:

S∗
j (x, z) =

Sj(xz) − Sj(z)
Sj(x − 1)

, (14)

with j = 1, 2. We now obtain the following expression for D1(z) from equation
(12) together with equations (3), (13) and (14):

D1(z) =
1

E1

S1(z)(z − 1)
z − E1(S1(z))

E1(S1(z)) − 1
S1(z) − 1

(

1 − ρT + ρ2
S2(z) − 1
S2(z − 1)

)

. (15)
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Delay of Low-Priority Packets. An expression for D2(z) is a bit more in-
volved. We tag a class-2 packet that enters the buffer during slot k (in steady
state). Let us refer to the packets in the system at the end of slot k, but that
have to be served before the tagged packet as the “primary packets”. So, basi-
cally, the tagged class-2 packet can enter the server, when all primary packets
and all class-1 packets that arrived after slot k (i.e., while the tagged packet is
waiting in the queue) are transmitted. In order to analyze the delay of the tagged
class-2 packet, the number of class-1 packets and class-2 packets that are served
between the arrival slot of the tagged class-2 packet and its departure slot is
important, not their precise service order. Therefore, we consider an equivalent
virtual system with an altered service discipline. We assume that, from slot k on,
the order of service for class-1 packets (those in the queue at the end of slot k and
newly arriving ones) is Last Come First Served instead of FCFS in the equiva-
lent system (the transmission of class-2 packets remains FCFS). So, a primary
packet can enter the server, when the system becomes free (for the first time)
of class-1 packets that arrived during and after the service time of the primary
packet that precedes it in the queue according to the new service discipline. Let
V

(i)
1,m denote the length of the time period during which the server is occupied

by the m-th class-1 packet that arrives during slot i and its class-1 “successors”,
i.e., the time period starting at the beginning of the service of that packet and
terminating when the system becomes free (for the first time) of class-1 packets
which arrived during and after its service time. Analogously, let V

(i)
2,m denote

the length of the time period during which the server is occupied by the m-th
class-2 packet that arrives during slot i and its class-1 “successors”. The V

(i)
j,m’s

(j = 1, 2) are called sub-busy periods, initiated by the m-th class-j packet that
arrived during slot i. We have the following general expression for D2:

D2 =(S − S̃ − 1)+ +
S−S̃−1∑

i=1

E
(k+i)
1∑

m=1

V
(k+i)
1,m +

2∑

j=1

Ẽ
(k)
j∑

m=1

V
(k)
j,m

+
2∑

j=1

S̃∑

i=1

E
(k−i)
j∑

m=1

V
(k−i)
j,m +

U
(l)
s,1−1
∑

m=1

V̌1,m +

U
(l)
2 −1

U
(l)
s,1=0

∑

m=1

V̌2,m + Ŝ2 ,

with the V̌j,m’s the sub-busy periods, initiated by the m-th class-1 packet already
in the queue at the beginning of start slot l and 1X the indicator function of X .
It is clear that the length of the sub-busy periods initiated by class-1 packets are
i.i.d. and thus have the same pgf V1(z). Also the length of the sub-busy periods
initiated by class-2 packets are i.i.d., and their pgf is denoted by V2(z). Using
the equation for D2 and conditioning on which class is being served, we derive
an expression for D2(z):

D2(z) =Ẽ(V1(z), V2(z))S2(z)

{

1 − ρT + ρ2
Us(0, V2(z)) − Us(0, 0)

(Us(0, 1) − Us(0, 0))V2(z)
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×
S∗

2

(
E(V1(z), V2(z))

zE1(V1(z))
, zE1(V1(z))

)

zE1(V1(z))
+

Us(V1(z), V2(z)) − Us(0, V2(z))
(1 − Us(0, 1))V1(z)

× ρ1

S∗
1

(
E(V1(z), V2(z))

zE1(V1(z))
, zE1(V1(z))

)

zE1(V1(z))

}

, (16)

with pgfs Ẽ(z1, z2) � E[zẼ
(k)
1

1 z
Ẽ

(k)
2

2 ], S∗
2 (x, z) � E[xS̃zS|U (l)

s,1 = 0, U
(l)
s,2 > 0] and

S∗
1 (x, z) � E[xS̃zS|U (l)

s,1 > 0]. The random variables Ẽ
(k)
1 and Ẽ

(k)
2 have the

following joint pgf (extension of a technique used in e.g. [83]):

Ẽ(z1, z2) =
E(z1, z2) − E1(z1)

E2(z2 − 1)
. (17)

The S∗
j (x, z)’s (j = 1, 2) are again given by equation (14). Finally, we have to

find expressions for V1(z) and V2(z). These pgfs satisfy the following relations:

Vj(z) = Sj(zE1(V1(z))) , (18)

with j = 1, 2. This can be understood as follows: when the m-th class-j packet
that arrived during slot i enters service, v

(i)
j,m consists of two parts: the service

time of that packet itself, and the service times of the class-1 packets that arrive
during its service time and of their class-1 successors. This leads to equation
(18). Equation (16) together with equations (3), (14) and (17) leads to:

D2(z) =
1 − ρT

E2

S2(z)(E(V1(z), V2(z)) − E1(V1(z)))
zE1(V1(z)) − E(V1(z), V2(z))

1 − zE1(V1(z))
1 − V2(z)

, (19)

with Vj(z) (j = 1, 2) implicitly given by equation (18).

3.4 Calculation of Moments

The functions Y (z), V1(z) and V2(z) can only be explicitly found in case of some
simple arrival and service processes. Their derivatives for z = 1, necessary to
calculate the moments of the system content and the packet delay, on the con-
trary, can be calculated in closed form. For example, Y ′(1) is given by equation
(4) and the first derivatives of Vj(z) for z = 1 are given by V ′

j (1) = Sj/(1− ρ1),
j = 1, 2. Now, we can calculate the mean values of the system contents and
packet delays of both classes by taking the first derivatives of the respective pgfs
for z = 1. We find

D1 =
S1

2
+

(σ2
E1

S1 + E
2

1σ
2
S1

)

2(1 − ρ1)E1

+
E2(σ2

S2
+ S2(S2 − 1))

2(1 − ρ1)
, (20)

D2 =
S2

2
+

σ2
E2

S2

2(1 − ρT )E2

+
E2σ

2
S2

2(1 − ρT )(1 − ρ1)
+

σ2
E1

S
2

1 + E1σ
2
S1

2(1 − ρT )(1 − ρ1)



Performance Analysis of Priority Queueing Systems in Discrete Time 215

− ρ1(S2 − 1)
2(1 − ρ1)

+
S1σE1E2

(1 − ρT )E2

. (21)

σE1E2 is the covariance of E1 and E2. We only showed the expressions for the
mean packet delay (as we will do throughout this paper), but the mean system
content can be found in a similar way. Alternatively, one can always use the
discretized version of Little’s law [84] to calculate the mean system content from
the mean packet delay. In a similar way, expressions for higher order moments can
be calculated by taking the appropriate derivatives of the respective generating
functions as well.

3.5 Tail Behavior

The tail distributions of system content and packet delay are often used to impose
statistical bounds on the guaranteed QoS for both classes, and are therefore
important performance measures. From the pgfs of the system contents and
packet delays of class-1 and class-2 packets derived in subsections 3.2 and 3.3,
approximations of the tail probabilities can be derived using complex contour
integration and residue theory. In order to determine the asymptotic behavior
of the tail distribution, the dominant singularity of the respective generating
function is important. We concentrate on the packet delay when no long-tail
behavior is encountered in numbers of per-slot arrivals or service times.

First, we concentrate on the class-1 packet delay. The dominant singularity
zH of D1(z) is a zero of z −E1(S1(z)) (see equation (15)) and this singularity is
a single pole. In the neighborhood of this pole, we can approximate D1(z) by

D1(z) ≈ K1

zH − z
, (22)

where K1 is found by taking the limit z → zH in (22). Using residue theory, we
find, for large enough n,

Pr[D1 = n] ≈ 1
E1

S1(zH)(zH − 1)[(1 − ρT )(zH − 1) + E2(S2(zH) − 1)]
zH(S1(zH) − 1)(E′

1(S1(zH))S′
1(zH) − 1)

z−n
H .

(23)

The tail behavior of the class-2 delay is a bit more involved, since it is not a priori
clear what the dominant singularity is of D2(z). This is due to the occurrence
of the function V1(z) in (19), which is only implicitly defined. First we take a
closer look at this function V1(z). The first derivative of V1(z) is given by

V ′
1(z) =

S′
1(zE1(V1(z)))E1(V1(z))

1 − zS′
1(zE1(V1(z)))E′

1(V1(z))
. (24)

Consequently, V1(z) has a singularity zB, where the denominator of V ′
1(z) be-

comes 0. Thus zBS′
1(zBE1(V1(zB)))E′

1(V1(zB)) = 1. Since V1(z) remains finite
in the neighborhood of zB, this singularity is not a simple pole. Application of
the results from [85] V1(z) is, in the neighborhood of zB, approximately given by
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V1(z) ≈ V1(zB) − KV

√
zB − z , (25)

with KV =

√
2E1(V1(zB))

zB[z2
B(E′

1(V1(zB)))3S′′
1 (zBE1(V1(zB))) + E′′

1 (V1(zB))]
, which can

be found by taking the limit z → zB of (25) and using (18). From equation (25),
it becomes obvious that zB is a square-root branch point of V1(z). V1(z) has thus
two real solutions when z < zB (the solution we are interested in is the one where
V1(z) < 1, if z < 1), which coincide at zB, and has no real solution when z > zB.
zB is also a branch point of D2(z). A second potential singularity zL of D2(z) on
the real axis is given by the positive zero of the denominator which is a zero of
zE1(V1(z))−E(V1(z), V2(z)). The tail behavior of the class-2 packet delay is thus
characterized by zL or zB, depending on which is the dominant (i.e., smallest)
singularity. It depends on the number of arrivals and service time distributions
which singularity dominates. Three types of tail behavior may thus occur, namely
when zL < zB, when zL = zB and when zL does not exist. In those three cases,
D2(z) can be approximated in the neighborhood of its dominant singularity by:

D2(z) ≈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K
(1)
2

zL − z
if zL < zB

K
(2)
2√

zB − z
if zL = zB

D2(zB) − K
(3)
2

√
zB − z if zL does not exist ,

where the constants K
(i)
2 (i = 1, 2, 3) can be found by investigation of the behav-

ior of D2(z) in the neighborhood of this dominant singularity. By using residue
theory once again (see [86] for more details), the asymptotic behavior of D2 is
given by

Pr[D2 = n] ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

K
(1)
2

zL
z−n

L if zL < zB

K
(2)
2√
zBπ

n−1/2z−n
B if zL = zB

K
(3)
2

2

√
zB

π
n−3/2z−n

B if zL does not exist .

The first expression shows geometric tail behavior, while the second and third
expressions show non-geometric tail behavior.

4 Preemptive Priority Queues

In this section, we consider the preemptive resume and preemptive repeat prior-
ity scheduling disciplines. For ease of analysis, we here additionally assume that
there is no correlation between the number of class-1 and class-2 packets arriving
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during the same slot, that is, E(z1, z2) = E1(z1)E2(z2). This assumption allows
us to study high-priority and low-priority performance separately by use of a
single-class queueing system. The influence of class-1 traffic on class-2 traffic can
be incorporated with interruptions.

The following subsection considers performance of class-1 traffic. The other
sections then focus on performance of class-2 traffic. In subsection 4.2, we deduce
an appropriate description of the interruption process perceived by class-2 traffic.
The analysis of this queueing system with interruptions is then presented in
subsections 4.3 to 4.5.

4.1 High-Priority Traffic

Preemptive priority implies that high-priority class-1 traffic is not influenced by
low-priority class-2 traffic. That is, a class-1 packet receives service as if there
is no low-priority traffic at all. Therefore, performance of the class-1 traffic can
be assessed by means of a standard queueing model without priorities. In par-
ticular, the assumed nature of arrival and service processes yields that class-1
traffic can be assessed by the GeoX/G/1 queueing model. This model is inves-
tigated by amongst others, Bruneel and Kim [83], by Takagi [87] and also by
Hunter [88]. Alternatively, we may also retrieve our results from the results in
the previous section by assuming that there is no class-2 traffic. That is, we
assume: E(z1, z2) = E1(z1). One easily verifies that the non-preemptive system
then reduces to a single-class system. Substitution of the former expression in
equations (10) and (15), then yields the pgf Ur,1(z) of the class-1 system content
at random slot boundaries,

Ur,1(z) = (1 − ρ1)
(z − 1)S1(E1(z))
z − S1(E1(z))

,

and the pgf D1(z) of the class-1 delay,

D1(z) =
1 − ρ1

E1

E1(S1(z)) − 1
z − E1(S1(z))

(z − 1)S1(z)
1 − S1(z)

,

respectively. The moment generating property of pgfs then yields e.g. following
expression for mean class-1 packet delay D1,

D1 =
ρ1 (1 − ρ1) + σ2

S1
E1

2
+ S1σ

2
E1

2(1 − ρ1)E1

. (26)

4.2 Interruption Process

Consider low-priority class-2 traffic. Low-priority traffic is only served whenever
there are no high-priority packets in the system. That is, a low-priority packet
perceives the server as one that alternates between an available state and a
blocked state. Slots during which no class-1 packets are served are called available
slots or A-slots. Similarly, slots during which a class-1 receives service are called
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blocked slots or B-slots. Contiguous periods of A-slots (B-slots) are referred to
as A-periods (B-periods). One may verify that due to the nature of the class-1
arrival process, the consecutive A-periods as well as the consecutive B-periods
constitute series of i.i.d. random variables.

If the high-priority queue is empty at the beginning of a slot, it remains empty
during the next slot if there are no arrivals. That is, an A-period continues dur-
ing the next slot with probability α = E1(0). This implies that the consecutive
A-periods share a common geometrical distribution. Let A(z) denote the corre-
sponding pgf, then we get, A(z) = (1−α)z/(1−αz). Let the sub-busy period of
a packet denote the number of slots between the first service slot of this packet
and the beginning of the slot where for the first time the number of packets in
the system is one less. Note that this definition of sub-busy period is essentially
the same as in the preceding section. Clearly, a sub-busy period consists of the
time the packet occupies the server (i.e., the packet length) and the sub-busy
periods of all class-1 arrivals during this time. That is,

V1 = S1 +
S1∑

i=1

E
(i)
1∑

j=1

Vij .

Here V1 denotes a random class-1 packet’s sub-busy period, S1 denotes this
packet’s length, E

(i)
1 denotes the number of arrivals during the i-th service slot

of this packet and Vij denotes the sub-busy period of the j-th arrival during
the i-th service slot of the packet. Due to the nature of the arrival process, the
sub-busy periods Vij ’s are independent random variables sharing the same pgf
of the sub-busy period V1. Some standard z-transform manipulations transform
the former equation into

V1(z) = S1(zE1(V1(z))) . (27)

The busy period of class-1 traffic – that is, the B-period for class-2 traffic – then
equals the sum of the sub-busy periods of all arrivals during a slot, given that
there is at least one arrival,

B(z) =
E1(V1(z)) − E1(0)

1 − E1(0)
.

The latter follows from the fact that a busy period starts with a non-empty
batch of packets arriving in an empty system.

Although equation (27) only provides an implicit expression for V1(z), it allows
to retrieve various moments by evaluation of the appropriate derivatives for z = 1
(as discussed in subsection 3.4). Therefore, one may retrieve moments of A- and
B-periods as well. In particular, mean lengths of A- and B-periods are given by,

A =
1

1 − α
, B =

ρ1

1 − ρ1

1
1 − α

.
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For preemptive resume priority scheduling, the transmission of the packet is
resumed after interruptions. We will therefore further refer to this scheduling
discipline as the continue after interruption mode (CAI). Similarly, as transmis-
sion is repeated in case of the preemptive repeat priority scheduling, we will
further refer to this mode as the repeat after interruption mode (RAI). Note
that the interruption process under investigation may find other applications as
well. B-periods are an abstraction for some kind of server unavailability which
does not necessary have to be linked with priority queueing models.

4.3 Effective Service Times

In a first step, we derive expressions for the pgfs of the effective service times of
packets. First of all, for ease of explanation, we assume that a packet exists of a
number of cells, where each cell needs 1 slot service time (so basically the number
of cells in a packet is equal to the number of slots in that packet’s service time).
The effective service time of an arbitrary packet is defined as the time period
elapsed (expressed in slots) between the beginning of the slot during which the
first cell of a packet enters the service unit, and the end of the slot during which
the last cell of the packet is served. In other words, the effective service time of
a packet includes the slots during which the server is interrupted, and in case of
RAI (preemptive repeat), the slots required for repeating service of certain cells.
Due to the nature of the output process and the packet length distributions, the
effective service times of consecutive packets also constitute a series of indepen-
dent positive random variables, with distributions only depending on the state
of the server – described by the availability of the server (A or B) together with
the number of remaining B-slots in case the server is unavailable – during the
slot preceding the start of the effective service time of the packet and on the
operation mode under consideration. This implies that once we know the pgfs
of the effective service times for the different operation modes, the evaluation of
the system under consideration reduces to the evaluation of an equivalent system
without server interruptions but with (state-dependent) service times given by
the effective service times.

Continue after Interruption. Recall that the continue after interruption
mode corresponds to the preemptive resume priority scheduling discipline. Let
tCAI
k,A (n) denote the probability that the effective service time of a packet of

length k (in cells) equals n slots given that the slot preceding the effective ser-
vice time is an A-slot. The continue after interruption mode is a memoryless
operation mode, in the sense that from a system point of view, once the first cell
of a packet of length k has been served, there is no difference between serving
the remaining k − 1 cells of this packet and servicing a new packet of length
k − 1. Therefore, conditioning on the state of the server during the first slot of
the effective service time yields,

tCAI
k,A (n) = αtCAI

k−1,A(n − 1) + (1 − α)
∞∑

j=1

b(j)tCAI
k−1,A(n − j − 1) , (28)
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for n ≥ k and for k > 1 whereas for n < k and k > 1 this probability equals 0.
Let T CAI

k,A (z) denote the conditional pgf corresponding to tCAI
k,A (n), then, using

standard z-transform manipulations, equation (28) easily transforms into,

T CAI
k,A (z) = (αz + (1 − α)zB(z))T CAI

k−1,A(z) , (29)

for k > 1. Clearly, equation (29) is also valid for k = 1 if one defines T CAI
0,A (z) = 1,

i.e., a zero-length packet requires no service time. Equation (29) then easily
yields explicit expressions for the effective service time of a packet conditioned
on the packet length and given that the server was available during the slot
preceding the effective service time. Summation over all possible packet lengths
with respect to their probabilities, then yields following expression for the pgf of
the effective service time of a random packet given that the server was available
during the slot preceding the effective service time,

T CAI
A (z) = S (αz + (1 − α)zB(z)) . (30)

Finally, taking the appropriate derivatives of (30) yields expressions for the var-
ious moments of the corresponding random variable.

Repeat after Interruption. The memoryless property that was used in the
previous section is not valid in case of RAI (preemptive repeat) as the server has
to completely repeat transmission of the packet after an interruption. Consider
an arbitrary slot that is part of a packet’s effective service time. We define the
remaining service time of a packet as the number of slots that are necessary to
complete transmission of a packet in case there would be no interruptions. It is
clear that in case of RAI (as opposed to CAI), the remaining service time for a
particular packet is not a decreasing function in time, as after an interruption
this value equals the packet length (in slots) again. Analogously, the remaining
effective service time is defined as the number of slots it will effectively take to
complete service (including interruptions and repetitions) at a certain point in
time during a packet’s effective service time.

Let tRAI
k,l,A(n) denote the probability that the remaining effective service time

of a packet of length k equals n slots given that the remaining service time
equals l slots and that the slot preceding the remaining effective service time
is an A-slot. Conditioning on the state of the server during the first slot of the
remaining effective service time then yields,

tRAI
k,l,A(n) = αtRAI

k,l−1,A(n − 1) + (1 − α)
∞∑

j=1

b(j)tRAI
k,k−1,A(n − j − 1) ,

for k, l > 1 and for n ≥ l, whereas the latter probability equals 0 for k, l > 1 and
n < l. Let T RAI

k,l,A(z) denote the corresponding conditional pgf, then

T RAI
k,l,A(z) = αzT RAI

k,l−1,A(z) + (1 − α)zB(z)T RAI
k,k−1,A(z) , (31)
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for k, l > 1. It is easy to verify that the latter equation remains valid for l = 1
by defining T RAI

k,0,A(z) = 1, i.e., if there are no more cells to send, the service
ends in the current slot with probability 1. The former equation is a first order
linear recursive equation and therefore easily solved. Substitution of l = k − 1
then determines the unknown function T RAI

k,k−1,A(z). In particular the pgf of the
complete effective service time conditioned on the length of the packet and the
state of the server during the slot preceding the effective service is then given by,

T RAI
k,k,A(z) =

(αz)k−1(1 − αz)(αz + (1 − α)zB(z))
1 − αz − (1 − αk−1zk−1)(1 − α)zB(z)

, (32)

for k > 1. One can easily verify that this expression remains valid for the trivial
case of single slot service times (k = 1). Summation over all possible packet
lengths (in slots) with respect to the packet length probabilities then yields the
pgf of the effective service time given that the server is available during the
preceding slot,

T RAI
A (z) =

∞∑

k=1

s2(k)T RAI
k,k,A(z) . (33)

Note that this expression is in general not explicit due to the infinite sum. The
moment-generating property of pgfs however, allows to determine the various
moments of the effective service time explicitly by evaluation of the appropriate
derivatives of the pgf for z = 1.

Remarks. Clearly, the server is not always available during the slot that pre-
cedes the effective service time. Therefore, let TB,m(z) denote the pgf of the
effective service time of a random packet given that the server is blocked during
the slot preceding the effective service and given that the server remains blocked
for another m slots after this slot (the server operates in one of the modes under
consideration).

Consider now the decomposition of the effective service time of a packet in
two components: the number of slots up to the first non-interrupted slot (i.e.,
the effective service of the first cell of the packet) and the remaining effective
service time. Both components are independent random variables. It is clear
that the first component (and its pgf) does not depend on the operation mode
whereas the second component does not depend on the state of the server during
the slot preceding the effective service as the last slot of the first component is
by definition an A-slot. Let XA(z) and XB,m(z) denote the pgfs of the first
component given the state during the slot preceding the effective service and
let Y(mode)(z) denote the pgf of the second component only depending on the
operation mode, then

TA(z) = XA(z)Y(mode)(z) , TB,m(z) = XB,m(z)Y(mode)(z) ,
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with

XA(z) = αz + (1 − α)zB(z) , XB,m(z) = zm+1 .

The former expression follows from the fact that the first cell is either trans-
mitted directly (with probability α) or immediately after a interruption (with
probability (1 − α)) in the case that the preceding slot is an A-slot. The latter
expression follows from the fact that the first cell of a packet is transmitted im-
mediately after the interruption in case the slot preceding the packet’s effective
service time is a B-slot followed by another m B-slots. Elimination of Y(mode)(z)
in the equations above then yields,

TB,m(z) =
zm

α + (1 − α)B(z)
TA(z) . (34)

Equations (30) and (33) also imply that whereas for CAI the n-th moment of the
effective service time depends on the moments of the underlying packet length
distribution up to and including order n, this is not the case for RAI. For the
latter operation modes, the n-th moment depends on the complete packet length
distribution. In particular the first moments of the effective service time given
that the slot preceding this effective service time is an A-slot, are given by,

T
CAI

A =
S2

σ
, (35)

T
RAI

A =
1
σ

α

1 − α

(

S2

(
1
α

)

− 1
)

, (36)

for CAI and RAI respectively. Here σ denotes the fraction of slots that the server
is available, that is,

σ =
A

A + B
=

1
1 + (1 − α)B

. (37)

Let us now assume the existence of all moments of the B-periods and assume
that α is nonzero. For CAI, the existence of the n-th moment of the packet
length in cells then implies the existence of the n-th moment of the effective
service time, whereas this is not the case for the RAI operation mode. Let RS2

denote the radius of convergence of the pgf S2(z), then, one can verify that for
RAI the n-th moment exists if α−n < RS2 and does not exist if α−n > RS2 . For
α−n = RS2 , the existence depends on the behavior of S2(z) and its derivatives
on their common radius of convergence. The additional condition for RAI also
implies, that for finite radii of convergence and given α, only a finite number of
moments exist. In particular, one can easily verify that for α ∈ (R−1

S2
, R

−1/2
S2

) the
respective effective service time distributions are heavy-tailed in case of RAI.

4.4 System Content

We now use the results of the preceding section to establish expressions for
the pgf of the class-2 system content – i.e., the number of packets present in
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the system – at packet departure times and at random slot boundaries. Since
the effective service time of a packet includes interruptions and possible service
repetitions of packets in case of RAI, results of the previous section allows a
unified analysis for both operation modes.

At Packet Departure Times. Let U
(n)
d,2 denote the class-2 system content at

the beginning of the slot following the departure slot of the n-th class-2 packet,
i.e., at the departure time of the n-th class-2 packet. For positive U

(n)
d , service

of the (n + 1)-th class-2 packet can start immediately as this packet is already
present in the system. Therefore, as the previous slot was an A-slot since there
was a class-2 packet departure, it will take TA slots to the next departure, where
TA denotes the random variable representing the effective service time of a class-
2 packet given its effective service is preceded by an A-slot, and whose pgf is
given by (30) or (33) depending on the operation mode under consideration. The
system content U

(n+1)
d,2 is then given by

U
(n+1)
d,2 = U

(n)
d,2 − 1 +

TA∑

j=1

E
(j)
2 , for U

(n)
d,2 > 0 , (38)

with E
(j)
2 the number of class-2 packets arriving in the system during the j-th

slot of the effective service time of the (n + 1)-th class-2 packet. If, on the other
hand, the class-2 buffer is empty after the departure of the n-th class-2 packet,
service of the next class-2 packet cannot start immediately. Let w denote the
first slot following the departure slot during which one or more packets arrive
in the system, and let E2,w and Θw denote the number of class-2 arrivals and
the state of the server during this slot respectively. As service of the (n + 1)-th
class-2 packet starts in the slot following slot w and its effective service time is
described by the random variable TΘw , U

(n+1)
d,2 is given by,

U
(n+1)
d,2 = E2,w − 1 +

TΘw∑

j=1

E
(j)
2 , for U

(n)
d,2 = 0 , (39)

with E
(j)
2 the number of packets arriving in the system during the j-th slot of

the effective service time of the (n + 1)-th packet. As the numbers of packets
arriving during consecutive slots constitute a series of i.i.d. random variables,
the common pgf of the E

(j)
2 ’s in (38) and (39) equals E2(z). Furthermore, as

the only distinction regarding the number of arrivals between a random slot and
the slot w is that we are certain there arrives at least one packet in the system
during slot w, the pgf of E2,w is given by

E2,w(z) =
E2(z) − E2(0)

1 − E2(0)
. (40)

Now, let qk,B,n denote the probability that the k-th slot following an A-slot is a
B-slot followed by another n B-slots, and let QB(x, z) =

∑∞
k=1

∑∞
n=0 qk,B,nxk zn
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denote the corresponding z-transform (note that this is not a pgf). Analogously,
let qk,A denote the probability that the k-th slot following an A-slot is an A-
slot and let QA(x) =

∑∞
k=1 qk,Axk denote the corresponding z-transform. Then,

conditioning on the number of slots since the last preceding A-slot yields,

qk,A = αqk−1,A +
k−1∑

j=1

b(j)qk−j−1,A ,

qk,B,n = (1 − α)
n+k∑

j=n+1

b(j)qk+n−j,A .

for k ≥ 1 and for n ≥ 0, whereas q0,A = 1 and q0,B,n = 0 for all n ≥ 0. Standard
z-transform manipulations then yield,

QA(x) =
αx + (1 − α)xB(x)

1 − αx − (1 − α)xB(x)
,

QB(x, z) = (1 − α)x(QA(x) + 1)
B(x) − B(z)

x − z
.

Due to the nature of the arrival process, slot w (i.e., the first slot with at least
one class-2 packet arrival after the departure of the n-th packet) is the k-th slot
(k ≥ 1) after the last departure slot with probability g(k),

g(k) = E2(0)k−1(1 − E2(0)) .

Furthermore, this slot is an A-slot (B-slot followed by n B-slots) with probability
qk,A (qk,B,n) as the server is available during the last slot of the effective service
time of the preceding packet. Summation over all possible values of k with respect
to the probabilities g(k) yields the probabilities γA and γB,n that the server is
available during slot w or remains unavailable for another n slots following slot
w respectively. Let ΓB(z) denote the z-transform of γB,n then,

⎧
⎪⎪⎨

⎪⎪⎩

γA =
1 − E2(0)

E2(0)
QA(E2(0)) ,

ΓB(z) =
1 − E2(0)

E2(0)
QB(E2(0), z) .

(41)

Now, assume the existence of a stationary distribution of the system contents,
i.e., Ud,2(z) = U

(k+1)
d,2 (z) = U

(k)
d,2 (z). From (34), (38) and (39), it then follows

that the pgf of the class-2 system content at departure times is given by,

Ud,2(z) =
Ud,2(0)TA(E2(z))

z − TA(E2(z))

{

γAE2,w(z) +
ΓB(E(z))E2,w(z)

α + (1 − α)B(E2(z))
− 1
}

, (42)

where TA(z) is given by (30) or (33) depending on the operation mode. The
unknown parameter Ud,2(0) in (42) can then be determined by applying the
normalization condition Ud,2(1) = 1, leading to

Ud,2(0) =
σ

E2γA

(1 − E2(0))
(
1 − E2TA

)
, (43)
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with TA given by (35) or (36) for CAI and RAI operation modes respectively
and with σ given by expression (37). Substitution of equations (41) and (43) into
(42) then yields the pgf of the steady-state class-2 system content at departure
times,

Ud,2(z) =
σ(1 − TAE2)

E2

E2(z)
QA(E2(z))

TA(E2(z))
TA(E2(z)) − z

.

Random Slot Boundaries. Let Ur,2(z) denote the pgf of the (stationary)
system content at random slot boundaries and assume that there are no bulk
arrivals (all arrivals occur at distinct epochs within slots). According to Bruneel
[89], the pgf of the system content at random slot boundaries then relates to the
pgf of the system content at arrival times Ua,2(z) as,

Ur,2(z) =
Ua,2(z)(z − 1)E2

E2(z) − 1
. (44)

Again under the assumption that there are no bulk arrivals, the system content
at arrival and departure times have the same distribution (see e.g. Kleinrock [90]
or Takagi [3]), or equivalently, Ua,2(z) = Ud,2(z), yielding,

Ur,2(z) =
Ud,2(z)(z − 1)E2

E2(z) − 1
. (45)

As both system content at random slot boundaries and system content at packet
departure times do not depend on the exact arrival epochs within the consecutive
slots, the former expression remains valid for systems with possible bulk arrivals.

Remarks. We assumed that the system under consideration reaches equilib-
rium. This is only the case if the buffer empties infinitely often during time, i.e.,
Ur(0) > 0, or equivalently, if the effective system load ρeff = TA E2 is less then
the number of servers,

ρeff < 1 . (46)

Substitution of (35) or (36) then yields explicit conditions for the existence of
the stationary distribution of the buffer contents for CAI and RAI respectively.
Note that for CAI ρeff = ρT , as there are no retransmissions. For RAI, we get
ρeff ≥ ρT as the effective load includes possible retransmissions.

The existence of a stationary distribution however does not imply the exis-
tence of moments of this distribution. Let us assume that all moments of the
given distributions (number of arrivals in a slot of both classes, length of the
packets of both classes) exist. Taking the first derivative of (42) or (45) reveals
that the mean system content in both cases depends on both mean and variance
of the effective service time, or in general, taking the appropriate derivatives
reveals that the n-th moment of the stationary system content is a function
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of the moments of the effective service times up to order (n + 1). This implies
that where for CAI – due to our initial assumptions – the equilibrium condition
guarantees a finite mean system content, this is not the case for RAI. In the
latter case, the n-th moment of the system content distribution is finite as long
as both the equilibrium condition and the condition for having a finite (n+1)th
moment of the effective service time for RAI are satisfied (cfr section 4.3).

4.5 Unfinished Work and Packet Delay

Let W
(k)
2 denote the unfinished class-2 work at the beginning of slot k, i.e., the

number of slots it would take to empty the class-2 buffer under the assumption
that there are no new class-2 packet arrivals. Note that this definition implies
that the unfinished work takes the interruptions and possible service repetitions
into account. Consider now the unfinished work W

(k+1)
2 at the beginning of slot

(k + 1). These random variables are related as,

W
(k+1)
2 = (W (k)

2 − 1)+ +
E

(k)
2∑

j=1

T (j) , (47)

where E
(k)
2 denotes the number of arriving class-2 packets in slot k and T (j)

denotes the effective service time of the j-th class-2 packet arriving in slot k.
The unfinished work at the beginning of slot (k + 1) equals the unfinished work
at slot k, diminished with the work done in slot k (if there is any) and augmented
with the additional work arriving in slot k. For each class-2 packet arriving in slot
k, an additional number of slots, equal to its effective service time is necessary
to completely empty the class-2 buffer.

If the class-2 buffer is not empty at the beginning of slot k, the effective service
times of all packets entering the system in slot k are preceded by an A-slot as the
server was available during the last slot of the preceding class-2 packet’s effective
service time. This is also the case for all but the first packet entering the system
during slot k if the system is empty at the beginning of slot k. The state of
the server preceding the first packet’s effective service time is an A-slot with
probability γA or a B-slot followed by another m B-slots with probability γB,m

as was shown in the previous section. Let W
(k)
2 (z) denote the pgf corresponding

with W
(k)
2 , then, from equation (47),

W
(k+1)
2 (z) = W

(k)
2 (0)

(

H(z) − E2(TA(z))
z

)

+ W
(k)
2 (z)

E2(TA(z))
z

,

with

H(z) = E2(0) + (E2(TA(z)) − E2(0))

(

γA +
∞∑

m=0

γB,m
TB,m(z)
TA(z)

)

.

Now, assume that the system reaches equilibrium – i.e., the equilibrium condition
(46) is satisfied – and let W2(z) denote the pgf of the stationary distribution, i.e.,
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W2(z) = W
(k)
2 (z) = W

(k+1)
2 (z). As an empty buffer implies zero unfinished work

and vice versa, i.e., W (0) = Ur(0), the pgf of the unfinished work in equilibrium
is given by,

W2(z) =
σ

γA
(1 − ρeff )

zH(z)− E2(TA(z))
z − E2(TA(z))

. (48)

Consider a particular (tagged) class-2 packet arrival. The packet delay D2 is
defined as the number of slots between the end of the arrival slot and the end
of the departure slot of this packet. Let W2,t denote the unfinished work at the
beginning of this packet’s arrival slot and let Ẽ2 denote the numbers of packets
arriving in the same slot but before the tagged packet, then,

D2 = (W2,t − 1)+ +
Ẽ2+1∑

j=1

T (j) , (49)

with T (j) the effective service time of the j-th packet arriving in the system in
the tagged packet’s arrival slot.

The pgf of the unfinished work at the beginning of the tagged packet’s arrival
slot is given by (48) due to the i.i.d. nature of the arrival process. Furthermore –
similar as equation (13) in the preceding section – the pgf Ẽ2(z) corresponding
to Ẽ2 is given by,

Ẽ2(z) =
E2(z) − 1
E2(z − 1)

. (50)

If the unfinished work W2,t is nonzero, all effective service times T (j) are preceded
by an A-slot as service of these packets starts immediately after service of the
preceding packet. This is also the case for all T (j) but T (1) when the queue
is empty at the beginning of the tagged packet’s arrival slot. For the latter,
the preceding slot is again either an A-slot or a B-slot followed by another m
B-slots with probability γA and γB,m respectively. Let D2(z) denote the pgf
corresponding to D2, from (48) to (50) then follows,

D2(z) =
σ

E2

(1 − ρeff )
z

QA(z)
E2(TA(z)) − 1
E2(TA(z)) − z

TA(z)
TA(z) − 1

. (51)

The moment-generating property of pgfs then allows the calculation of explicit
expressions for the moments of the class-2 packet delay. In particular mean class-
2 packet delay is given by,

D2 =
T Aσ2

E2

2E2(1 − ρeff )
+

E2σ
2
TA

2(1 − ρeff )
+ (1 − α)

σσ2
B

2
+

TA

2

− (1 − α)(1 − ασB)
B

2
, (52)

Here σ2
TA

and σ2
B are the variances of TA and a B-period respectively.



228 J. Walraevens, D. Fiems, and H. Bruneel

5 Conclusions

In this paper, we analyzed the high- and low-priority system content and packet
delay in a queueing system with a two-class priority scheduling discipline. Two
basic types of priority scheduling are analyzed, namely, non-preemptive and
preemptive priority scheduling. For each queueing system, a different analysis
method was used. A generating-functions-approach was adopted in both, which
led to closed-form expressions for some of the relevant performance measures.
The results could be used to analyze performance of buffers in a packet-based
networking context. Several extensions of the models and analyses are possible,
such as a general number of priority classes, correlation in the arrival process,
. . . .
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