
Weighted versus Probabilistic Logics�

Benedikt Bollig and Paul Gastin

LSV, ENS Cachan, CNRS, INRIA Saclay, France
{bollig,gastin}@lsv.ens-cachan.fr

Abstract. While a mature theory around logics such as MSO, LTL,
and CTL has been developed in the pure boolean setting of finite au-
tomata, weighted automata lack such a natural connection with (tem-
poral) logic and related verification algorithms. In this paper, we will
identify weighted versions of MSO and CTL that generalize the classical
logics and even other quantitative extensions such as probabilistic CTL.
We establish expressiveness results on our logics giving translations from
weighted and probabilistic CTL into weighted MSO.

1 Introduction

Connections between logic and classical automata theory have become indis-
pensable tools in the modeling and verification of computer systems. Usually, a
logical formula ϕ appears as a specification, a property that a system has to ful-
fill, whereas an automaton A represents a finite-state abstraction of the system
itself. Prominent examples of specification formalisms are monadic second-order
(MSO) logic [35], the μ-calculus [26], and the temporal logics LTL [31] and
CTL [11]. Two questions that naturally arise in this context are the satisfiability
problem (does there exist any model of ϕ?) and the model-checking problem (do
all behaviors of A satisfy ϕ?) [12].

Both logic and automata semantics give rise to a formal language that sep-
arates accepted from non-accepted behaviors. This corresponds to assigning a
truth value, taken from the boolean semiring, to a behavior. When it comes to
modeling and verifying quantitative systems, however, the value of a behavior is
not necessarily boolean but might, e.g., be a probability of acceptance or repre-
sent a reward. Classical automata theory and logic is not suited to account for
such subtleties. This led to various specialized extensions of finite automata (over
finite or infinite behaviors) such as probabilistic automata [36, 33], timed au-
tomata [1], or automata with energy constraints [6], each coming with dedicated
specification formalisms and approaches to related model-checking problems. In
the particular case of stochastic systems, the temporal logics PCTL [24] and
PCTL∗ [15] and corresponding model-checking techniques have been developed
to reason about probabilities of events.

A generic concept of adding weights to qualitative systems is provided by the
theory of weighted automata [27,28]. Unlike finite automata, which are based on
� Partially supported by projects ARCUS Île de France-Inde and ANR-06-SETIN-003

DOTS.

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 18–38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Weighted versus Probabilistic Logics 19

the boolean semiring, weighted automata build on more general structures such
as the natural or real numbers (equipped with the usual addition and multipli-
cation) or the probabilistic semiring. Hence, a weighted automaton associates
with any possible behavior a weight beyond the usual boolean classification of
“acceptance” or “non-acceptance”. Automata with weights have produced a well-
established theory and come, e.g., with a characterization in terms of rational
expressions, which generalizes a famous counterpart in the unweighted setting.
Equipped with a solid theoretical basis, weighted automata finally found their
way into numerous application areas such as natural language processing and
speech recognition [30], or digital image compression [14].

What is still missing in the theory of weighted automata is a satisfactory con-
nection with logic that could lead to a general approach to related satisfiability
and model-checking problems. A first step towards a logical characterization of
weighted automata has been made in terms of a weighted MSO logic captur-
ing the recognizable formal power series (i.e., the behaviors of finite weighted
automata) [16, 17]. This generalizes the classical equivalence of MSO logic and
finite automata [8,21]. While, however, in the qualitative setting, temporal logics
such as LTL and CTL appear as fragments of MSO logic and the μ-calculus, a
natural transfer of such an embedding to weighted automata is beyond the state
of the art. Let us mention here some promising works that deal with this issue.
In [7], Buchholz and Kemper propose valued computation-tree logic (CTL$) and
corresponding model-checking algorithms for weighted Kripke structures, but do
not address satisfiability and expressiveness issues. A weighted linear μ-calculus
on words was defined by Meinecke, who establishes its expressive equivalence
to certain ω-rational formal power series [29]. An extension towards branching
structures, the identification of temporal-logic fragments, and the definition of
a corresponding model-checking problem are left for future work.

Actually, only very few efforts have been made to establish a smooth connec-
tion of weighted automata with MSO and, in particular, temporal logics. We
do not aim at giving final solutions to these largely open questions, but will
propose a precise description of missing concepts. It is the aim of this paper to
identify a weighted MSO logic as well as linear-time and branching-time logics
that subsume, in a natural manner, existing quantitative logics. We will actually
study the relation between our new logics and the branching-time logics PCTL
and PCTL∗, thus putting an emphasis on probabilistic systems.

Outline. In Section 2, we settle some notation and introduce semirings and
weighted automata. Towards the end of that section, we identify probabilistic
automata as a special case, which can be embedded in our framework by us-
ing a specific semiring. Sections 3 and 4 present an extended weighted MSO
logic and, respectively, weighted versions of the temporal logics CTL and CTL∗.
They are all interpreted over unfoldings of weighted automata as introduced in
Section 2 and include as special cases PCTL and PCTL∗. In Section 5, we es-
tablish that our weighted temporal logic is expressible in our extended weighted
MSO, transferring the well-known qualitative counterpart to the weighted case.
It is also shown that the probabilistic logic PCTL can be embedded in weighted

20 B. Bollig and P. Gastin

MSO. We conclude with Section 6, in which we suggest several directions for
future work.

2 Preliminaries

Words. Let Σ be an alphabet, i.e., a nonempty finite set. The set of finite words
over Σ is denoted by Σ∗, the set of infinite words by Σω. Moreover, we let
Σ+ = Σ∗ \ {ε}, ε denoting the empty word, and Σ∞ = Σ∗ ∪Σω. For w ∈ Σ∞,
the length of w is denoted by |w| ∈ � ∪ {ω}. In particular, |ε| = 0, and |w| = ω
iff w ∈ Σω. Let w = a1a2 . . . ∈ Σ∞. For i ≤ |w|, we denote w[i] = a1 . . . ai the
prefix of w of length i, in particular, w[0] = ε. We denote by Pref(w) the set
of finite prefixes of w. Instead of u ∈ Pref(v), we also write u ≤ v. We write
u < v if, in addition, u �= v. The mapping Pref is extended to sets L ⊆ Σ∞

in the expected manner: Pref(L) =
⋃

w∈L Pref(w). We say that L ⊆ Σ∞ is
prefix-closed if Pref(L) ⊆ L.

Semirings. A semiring is a structure K = (K,⊕,⊗,0,1) where K is a set, 0
and 1 are constants, and ⊕ : K × K → K and ⊗ : K × K → K are binary
operations, called addition and, respectively, multiplication such that (K,⊕,0)
is a commutative monoid, (K,⊗,1) is a monoid, multiplication distributes over
addition, and 0 ⊗ k = k ⊗ 0 = 0 for every k ∈ K. We say that K is commutative
if ⊗ is commutative. Some popular semirings are the semiring of natural numbers
(�,+, ·, 0, 1) (with the usual addition and multiplication on natural numbers),
the 2-valued Boolean algebra B = ({0,1},∨,∧,0,1), and the tropical semiring
(� ∪ {∞},min,+,∞, 0). In this paper, we will focus on Prob = (�≥0,+, ·, 0, 1),
the probabilistic semiring, which will allow us to model probabilistic systems.1

The classical semirings work fine for finite trees. However, the trees that we
consider might in general be infinite. We will therefore deal with infinite sums
and products wrt. ⊕ and ⊗, respectively. Unfortunately, unlike finite sums and
products, they do not always have a value in the semiring at hand. However, we
can identify examples of infinite sums and products that are essential for our
purposes and that are always defined. For arbitrary semirings (K,⊕,⊗,0,1),
a (possibly uncountable) index set I, and ki ∈ K for i ∈ I, the sum

⊕
i∈I ki

is defined whenever ki �= 0 for only finitely many i. Similarly,
⊗

i∈I ki is de-
fined if ki �= 1 for finitely many i, assuming the semiring commutative or using
some total order on the index set I. Considering concrete semirings such as the
real numbers, a prominent infinite sum is the geometric series

∑
n∈�

1
2n . We

let its value be the limit limn→∞
∑

n∈�
1
2n = 2 of its partial sums, which is

therefore defined. An example of an undefined infinite sum over the real num-
bers is

∑
n∈�

1
n , whose value is not in �. We refer to the textbook [25] for a

comprehensive introduction into infinite series.
If not otherwise stated, K will, in the following, be an arbitrary semiring

(K,⊕,⊗,0,1) and Σ will be an alphabet.
1 Note that ([0, 1],max, ·, 0, 1) is sometimes considered as the probabilistic semiring as

its universe restricts to probabilities. It is, however, not suitable for our purposes,
as it neglects addition and, thus, does not allow one to model non-determinism.

Weighted versus Probabilistic Logics 21

Weighted Trees. The behavior of a non-quantitative finite-state system is of-
ten described as a (possibly infinite) tree-unfolding, whose paths constitute all
possible execution sequences of the system. When we move to the quantitative
setting where transitions come with weights from a semiring, then this unfolding
is equipped with weights as well, which gives rise to the following definition.

Definition 1. Let D be a nonempty finite set of directions. A weighted tree
(over D, K, and Σ) is a partial mapping t : D∗ ⇀ K × Σ such that dom(t) is
prefix-closed 2 and t(ε) = (1, a) for some distinguished element a from Σ.3

The set of trees overD, K, andΣ is denoted by Trees(D,K, Σ). We will, however,
simply write Trees if the parameters are understood. Let t ∈ Trees be a weighted
tree. It is convenient to split t into two partial mappings κt : D∗ ⇀ K and
�t : D∗ ⇀ Σ to extract from t(u) = (k, a) the values κt(u) = k and �t(u) = a.
Elements from dom(t) are called nodes of t. The empty word ε ∈ dom(t) is the
root. A node u is a leaf if it is maximal in dom(t) for the prefix ordering, i.e., if
uD∩dom(t) = ∅. If u is not a leaf, then it has some successors, which are nodes
of the form ud with d ∈ D. The set of leaves of t is denoted by Leaves(t). A
branch of t is a leaf or an infinite word whose finite prefixes are in dom(t). We
thus define Branches(t) to be Leaves(t)∪{u ∈ Dω | Pref(u) ⊆ dom(t)}. Tree t is
called finite if dom(t) is finite. Otherwise, it is called infinite. Note that we deal
with unordered trees of bounded degree: we do not fix a particular order on D,
and every node has at most |D| successors.

We sometimes manipulate subtrees or restrictions of trees that we define now.
For u ∈ dom(t), the subtree of t rooted at u is denoted by tu and given by
tu(w) = t(uw) for all w ∈ D+ (and indeed tu(ε) = (1, a)). Given a language
L ⊆ D∞, the tree t|L is the restriction of t to dom(t) ∩ Pref(L): t|L(u) = t(u)
if u ∈ dom(t) ∩ Pref(L), and t|L(u) is undefined otherwise. Alternatively, one
may extract a tree based on a language L ⊆ Σ∞ by keeping only those branches
whose labeling wrt. � is in Pref(L). Formally, we define

L̃ = {u ∈ D∗ | �t(u[1])�t(u[2]) · · · �t(u) ∈ Pref(L)}

and we are interested in t|L̃. When we further restrict the tree to branches that
end in nodes located at directions from a set D′ ⊆ D, then we obtain trees
t|L∩D∗D′(u) and t|L̃∩D∗D′(u) respectively.

Let us define a partial mapping κ̂ : Trees ⇀ K, which associates with a tree
its measure, a weight in the semiring K, if it exists. Intuitively, we sum over
the weights of every branch. The weight of a branch, in turn, is the product of
weights that are assigned to its nodes. So let, for t ∈ Trees ,

κ̂(t) =
⊕

u∈Branches(t)

⊗

v∈Pref(u)

κt(v) =
⊕

d∈D∩dom(t)

κt(d) ⊗ κ̂(td) .

2 Let dom(t) be the set of words u ∈ D∗ such that t(u) is defined.
3 The value of ε will actually not be relevant so that we assume a unique value (1, a).

22 B. Bollig and P. Gastin

a, 1

a, 1
3

a, 1
3

b, 1
3

a, 1
3

a, 1
3

b, 1
3

a, 2
3

b, 1
3

a, 2
3

b, 1
3

Fig. 1. A finite weighted tree over Prob, and {a, b}

Example 1. Figure 1 depicts a finite weighted tree t over Prob, and Σ = {a, b}.
The branches of t are its leaves. We have

κ̂(t|˜{aa}) =
1
3
· 1
3

+
1
3
· 1
3

+
1
3
· 2
3

=
4
9
.

Weighted Automata. In a weighted automaton, the values of a semiring that are
collected along a run of the automaton are multiplied, while values of runs are
summed-up.

Definition 2. A weighted automaton over K and Σ is a quadruple (Q, λ, μ, γ)
where Q is the nonempty finite set of states, μ : Σ → KQ×Q is the transition
weight function, and λ, γ ∈ Q → K provide weights for entering and leaving a
state, respectively.

Let A = (Q, λ, μ, γ) be a weighted automaton over K and Σ. For a ∈ Σ, μ(a) is
a (Q×Q)-matrix, and we let μ(a)p,q or also μ(p, a, q) refer to its (p, q)-entry. The
mapping μ uniquely extends to a monoid homomorphism Σ∗ → (KQ×Q, ·, id)
with unit matrix id where idp,p = 1 and idp,q = 0 if p �= q. The semantics of
A is given as a mapping [[A]] : Σ∗ → K called a formal power series. Namely,
for w ∈ Σ∗, one lets [[A]](w) = λ · μ(w) · γ with the usual matrix multiplication,
considering λ as a row and γ as a column vector.

In the following, we will make two assumptions on initial and final weights:

(1) there is q ∈ Q such that λ(q) = 1 and λ(q′) = 0 for all q′ ∈ Q \ {q}, and
(2) for all q ∈ Q, γ(q) ∈ {0,1}.
It is folklore that assuming (1) and (2) does not restrict generality, as any
weighted automaton A = (Q, λ, μ, γ) can be transformed into a weighted au-
tomaton A′ that satisfies (1) and (2) and such that [[A]](w) = [[A′]](w) for all
w ∈ Σ+. Note that the transformation does not necessarily preserve the weight
originally assigned to the empty word.

As we will, in the following, restrict to weighted automata that satisfy (1) and
(2), we can represent A as the tuple (Q, q0, μ, F) where the initial state q0 ∈ Q
is the unique state q with λ(q) = 1, and F = {q ∈ Q | γ(q) = 1} is the set of
final states.

Weighted versus Probabilistic Logics 23

q0

q1

a, 2
3

b, 1

a, 1
3

b, 1

a, 1
3

a, 2
3

q0

q1

a, 1
3

b, 1
3

a, 2
3

a, 1
3

b, 1
3

rPFA A1 gPFA A2

Fig. 2. Weighted automata over Prob

We will now define an alternative semantics and associate with a weighted
automaton A = (Q, q0, μ, F) its unfolding in terms of an infinite weighted tree
overD = Σ×Q, K, andΣ. Formally, the unfolding of A, denoted by tA, is defined
to be the tree t ∈ Trees(D,K, Σ) such that, for all u ∈ D∗ and (a, q), (a′, q′) ∈ D,
the following hold: κt((a, q)) = μ(q0, a, q), κt(u(a, q)(a′, q′)) = μ(q, a′, q′), and
�t(u(a, q)) = a. For every w ∈ Σ+, we have

[[A]](w) = κ̂
(
tA|{̃w}∩D∗(Σ×F)

)
.

Example 2. Consider Figure 2 depicting weighted automata A1 and A2 over
Prob and Σ. In all cases, q0 is both the initial state and the only final state. Miss-
ing values in A1 and A2 are supposed to be 0. For n ∈ �, we have [[A1]](abn) = 1

3
if n is even, and [[A1]](abn) = 2

3 if n is odd. The set [[A1]](Σ∗) = {0, 1
3 ,

2
3 , 1} is ac-

tually finite. This does not apply to [[A2]]. We have, e.g., [[A2]](a) = [[A2]](aa) = 1
3

and [[A2]](aaa) = 5
27 . Note that [[A2]](w) = 0 whenever w ends with the letter b.

Figure 1 depicts the unfolding of A2 up to depth 2, i.e., tA2
|D2 .

When we consider our examples to be probabilistic automata (see Definitions 3,
4), it will be evident to which extent all these values can be interpreted as
probabilities of acceptance.

Probabilistic Finite Automata. There is a wide range of automata models that
incorporate probabilities. We refer the reader to [36, 34] for an overview. Our
generic framework of weighted automata allows us to treat many of them in a
unified manner.

One basically distinguishes between reactive and generative probabilistic au-
tomata. Reactive models are input-driven: an action (from our alphabet Σ)
determines a probability distribution on the set of states. The next state of an
execution is then randomly drawn according to this distribution. In a genera-
tive model, the next state and the action are chosen according to a probability
distribution so that we might call the model probability-driven.

24 B. Bollig and P. Gastin

Definition 3. A reactive probabilistic finite automaton (rPFA) over Σ is a
weighted automaton (Q, q0, μ, F) over Prob and Σ such that, for every q ∈ Q
and a ∈ Σ, we have

∑
q′∈Q μ(q, a, q′) ∈ {0, 1}.4 In other words, we require that

μ(a) is a stochastic matrix for every action a ∈ Σ.

The semantics of an rPFA A = (Q, q0, μ, F) computes, for each word w ∈ Σ∗,
a probability of acceptance as defined directly in [33]. In the following sections,
we will consider mechanisms that allow us to extract from the formal power
series [[A]] a boolean language. We may, for example, be interested in the set
L = {w ∈ Σ∗ | [[A]](w) > p} of words whose probabilities exceed a given
threshold p ∈ [0, 1]. In general, L can be non-regular, unless p is an isolated
cut-point of [[A]] [33]. Moreover, it is in general undecidable if L is empty:

Theorem 1 (Rabin [33]). The following problem is undecidable:
Input: Alphabet Σ; rPFA A over Σ; p ∈ [0, 1].
Question: Is there w ∈ Σ∗ such that [[A]](w) > p ?

Definition 4. A generative probabilistic finite automaton (gPFA) over Σ is a
weighted automaton (Q, q0, μ, F) over Prob and Σ such that, for every q ∈ Q,
we have

∑
(a,q′)∈Σ×Q μ(q, a, q′) ∈ {0, 1}.5

Example 3. Let us reconsider our sample automata from Figure 2 (cf. Exam-
ple 2) and let w ∈ Σ∗. As A1 is an rPFA, the weight [[A1]](w) can be interpreted
as the probability of reaching a final state when w is used as a scheduling policy.
E.g., [[A1]](aab) = 2

3 . On the other hand, [[A2]](w) is the probability of executing
w and ending in a final state, under the precondition that we perform |w| steps.
Remember that, e.g., [[A2]](a) = [[A2]](aa) = 1

3 .

3 Extended Weighted MSO

A weighted MSO logic was proposed by Droste and Gastin [16, 17] in order to
extend Büchi’s and Elgot’s fundamental theorems [8, 21, 9] from the boolean
setting to the quantitative (weighted) one. This logic was designed in order
to obtain an equivalence between weighted languages (or formal power series)
generated by weighted automata and those definable in this weighted MSO logic.

Other quantitative logics have been introduced and studied, e.g., PCTL [24]
or PCTL∗ [15,10] which are probabilistic versions of the computation tree logic.
These logics are evaluated on probabilistic transition systems, which are nothing
4 Another common term for this model is simply probabilistic finite automaton [33].

When we neglect final states and consider the unfolding semantics rather than formal
power series, then rPFA essentially correspond to the classical model of a Markov
decision process (MDP) [32].

5 If Σ is a singleton set, then a gPFA can be understood as a discrete-time Markov
chain (DTMC). Otherwise, elements from Σ can be considered as sets of propositions
that hold in the target state of a corresponding transitions. Then, we actually deal
with a labeled DTMC [24].

Weighted versus Probabilistic Logics 25

but special instances of weighted automata as seen in Section 2. Hence, compar-
ing weighted MSO and these logics is a natural question. It is easy to observe
that these logics are uncomparable. Though formally correct, this answer is not
very satisfactory.

Our aim is to slightly extend the weighted MSO logic in order to obtain
classical quantitative logics such as PCTL and PCTL∗ as fragments. The crucial
quantitative aspect of these logics is the probability of the set of infinite paths
satisfying some linear time (LTL) property. We find it convenient to collect the
set of paths in the weighted tree which is the unfolding of the probabilistic
transition system. Hence, the models of our extended weighted MSO will be
weighted finite or infinite trees.

The original weighted MSO logic on finite words [16] has been extended to
various settings and in particular to finite trees [19] or infinite words [18] still
with the aim of obtaining weighted versions of Büchi’s and Elgot’s fundamental
theorems. These logics are also uncomparable with PCTL or PCTL∗.

The key construction which is missing from all above mentioned weighted
MSO logics is the possibility to transform a weighted formula into a boolean
one, e.g., by using some threshold mechanism. Hence, this will be the main
feature of our extension.

Our weighted MSO logic is based on a (finite) vocabulary C of symbols �� ∈ C
with arity(��) ∈ �. We always include negation ¬, disjunction ∨ and conjunc-
tion ∧ in the vocabulary. We may also include the equality predicate = and if
the semiring K is ordered we may use the less than predicate <. Each symbol
�� ∈ C is given a semantics [[��]] : Karity(��) → K. To comply with the original
weighted MSO, we interpret disjunction as addition [[∨]] = ⊕ and conjunction as
multiplication [[∧]] = ⊗. Depending on the semiring, the semantics of negation
may be only partially defined. In any case, it is at least defined on 0 and 1 and
exchanges these two values: [[¬]](0) = 1 and [[¬]](1) = 0. For the probabilistic
semiring, we may define negation on the interval [0, 1] by [[¬]](k) = 1 − k or we
can even make it totally defined with [[¬]](k) = max(0, 1 − k).

Definition 5. The syntax of our weighted MSO logic is given by the grammar

ϕ ::= k | κ(x) | Pa(x) | x ≤ y | x ∈ X |
| ��(ϕ1, . . . , ϕarity(��)) | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where k ∈ K, a ∈ Σ, x, y are first-order variables, X is a set variable and �� ∈ C.
We denote by MSO(K, Σ, C) the collection of all such formulas.

The original weighted MSO introduced in [16] is the fragment with C = {∨,∧}
and which does not use κ(x). In our extension, the semantics of existential and
universal quantifications will also be sums and products. In addition to the
symbols �� ∈ C whose semantics was already discussed, there is a new unary
operator κ(x) which gives the weight of the corresponding node in our models
which are weighted trees.

Formally, we fix t : D∗ ⇀K×Σ a weighted tree. Let V be a finite set of first-
order and second-order variables. A (V , t)-assignment σ is a function mapping

26 B. Bollig and P. Gastin

Table 1. Semantics of wMSO(K, Σ, C)

[[k]]V (t, σ) = k

[[κ(x)]]V (t, σ) = κt(σ(x))

[[Pa(x)]]V(t, σ) =

{
1 if �t(σ(x)) = a

0 otherwise

[[x ≤ y]]V(t, σ) =

{
1 if σ(x) ≤ σ(y)

0 otherwise

≤ is the prefix
ordering on dom(t)

[[x ∈ X]]V (t, σ) =

{
1 if σ(x) ∈ σ(X)

0 otherwise

[[��(ϕ1, . . . , ϕr)]]V(t, σ) = [[��]]([[ϕ1]]V(t, σ), . . . , [[ϕr]]V (t, σ)) if arity(��) = r

[[∃x.ϕ]]V (t, σ) =
⊕

u∈dom(t)

[[ϕ]]V∪{x}(t, σ[x→ u])

[[∃X.ϕ]]V (t, σ) =
⊕

U⊆dom(t)

[[ϕ]]V∪{X}(t, σ[X → U])

[[∀x.ϕ]]V (t, σ) =
⊗

u∈dom(t)

[[ϕ]]V∪{x}(t, σ[x→ u])

[[∀X.ϕ]]V (t, σ) =
⊗

U⊆dom(t)

[[ϕ]]V∪{X}(t, σ[X → U])

first-order variables in V to elements of dom(t) and second-order variables in V
to subsets of dom(t). If x is a first-order variable and u ∈ dom(t) then σ[x→ u]
is the (V ∪ {x}, t)-assignment which assigns x to u and acts like σ on all other
variables. Similarly, σ[X → U] is defined for U ⊆ dom(t).

As usual, a pair (t, σ) where σ is a (V , t)-assignment will be encoded using an
extended alphabet ΣV = Σ × {0, 1}V . More precisely, we will write a weighted
tree over ΣV as a pair (t, σ) : D∗ ⇀ K × ΣV where t is the projection over
K×Σ and σ is the projection over {0, 1}V . Note that dom(t) = dom(σ). Now, σ
represents a valid assignment over V if for each first-order variable x ∈ V , there
is exactly one node u ∈ dom(σ) such that σ(u)(x) = 1.

Let now ϕ ∈ wMSO(K, Σ, C). We denote as usual by Free(ϕ) the set of free
variables in ϕ. When Free(ϕ) ⊆ V , we give in Table 1 the inductive definition
of the semantics as a (partial) formal power series [[ϕ]]V : Trees(D,K, ΣV) ⇀K.
We simply write [[ϕ]] for [[ϕ]]Free(ϕ).

Note that the semantics of a formula may be only partially defined. This
may arise in particular if the semantics of some symbol in C is partially defined,
e.g., for negation. The other difficulty is with the semantics of existential and
universal quantifications.

First, if the semiring is not commutative we have to fix some order for the
products of the universal quantifications. In the sequel, we will only use commu-
tative semirings so this is not a problem. But it is also possible to deal with non

Weighted versus Probabilistic Logics 27

commutative products. For instance, we may use the hierarchical total ordering
≺ on the nodes u ∈ dom(t) for the definition of [[∀x.ϕ]]. With this linear order,
(dom(t),≺) is isomorphic to an initial segment of (�,≤). Hence, the characteris-
tic function of a subset U ⊆ dom(t) can be identified with a word in {0, 1}dom(t).
So the lexicographic order on words induces a total order on the powerset of
dom(t) which can be used to compute the product over U ⊆ dom(t).

Second, if the tree t is infinite, we are faced with infinite sums and infinite
products. We refer to Section 2 for a discussion on when this is well-defined.

A formula is boolean if it only takes values in {0,1} ⊆ K. We call bMSO
the boolean fragment of wMSO which consists of formulas using only constants
k ∈ {0,1} and symbols �� ∈ {¬,∧}, and which does not use κ(x) or existential
quantifications. It is easy to see that each formula ϕ ∈ bMSO takes only values
in {0,1} and for these formulas, the weighted semantics in K corresponds to the
classical boolean semantics in B. For convenience, we introduce macros for the
boolean versions of disjunction and existential quantifications:

ϕ1 ∨ ϕ2
def= ¬(¬ϕ1 ∧ ¬ϕ2) ∃x.ϕ def= ¬∀x.¬ϕ ∃X.ϕ def= ¬∀X.¬ϕ

These boolean formulas are a convenient alternative to the unambiguous formulas
introduced in [16]. We also use a boolean version of implication which is simply
defined by

ϕ1
+−→ ϕ2

def= ¬ϕ1 ∨ (ϕ1 ∧ ϕ2) .

This formula is also useful when ϕ1 is boolean but not necessarily ϕ2. Within
a universal quantification, it allows us to compute the product of weights given
by ϕ2 provided ϕ1 is satisfied (see Example 4 below). If ϕ1 is boolean, we have

[[ϕ1
+−→ ϕ2]]V(t, σ) =

{
[[ϕ2]]V(t, σ) if [[ϕ1]]V(t, σ) = 1
1 otherwise.

Note that the restricted form (x ∈ X) +−→ k for k ∈ K was introduced in [16,17]
for the same purpose.

Example 4. To exemplify weighted MSO, we study, as models, unfoldings of the
weighted automaton A2 over Prob andΣ = {a, b} from Figure 2 with set of states
Q = {q0, q1} and set of directions D = Σ × Q. We will, thus, define trees from
Trees(D,Prob, Σ) and formulas from MSO(Prob, Σ, {∨,∧,¬,≤}). Consider the
infinite weighted tree t1 = tA2 as well as the finite tree t2 = tA2

|D2 (see Figure 1).
We assume that roots are always labeled with (1, a).

For a start, let ϕ1 = ∃x.(Pb(x) ∧ (κ(x) > 0)). The semantics of ϕ1 is the
number of nodes that carry b in their labeling and have a positive weight. Though
we refer to the probabilistic semiring, formula ϕ1 has therefore nothing to do
with a probability. The value [[ϕ1]](t1) is not even defined, as it constitutes a
non-convergent infinite sum. On the other hand, [[ϕ1]](t2) = 4.

Now look at ϕ2 = ∀x.((Pa(x) ∧ (κ(x) > 0)) +−→ κ(x)) which multiplies the
positive values of all a-labeled nodes. We have [[ϕ2]](t1) = 0 (it is actually an

28 B. Bollig and P. Gastin

infinite product which converges to 0) and [[ϕ2]](t2) = 4
36 . Though the semantics

of ϕ2 is always in the range [0, 1], it can hardly be interpreted as a probability. In
Section 5, we will identify a syntactical fragment of MSO that is suited to speak
about probabilities and accounts for the probability space of branches (paths)
of a given tree. The next property will be expressible in this fragment.

Let us first assume a boolean macro formula pathto(X,x) stating that X
forms a finite branch in the tree starting at the root and ending in x. We omit the
precise definition, which is similar to the formula path(x,X) given in Section 5.
Now consider

ϕ3 = ∃X∃x.(pathto(X,x) ∧ Pb(x) ∧ ∀y.(y < x
+−→ Pa(x)) ∧ ∀y.(y ∈ X

+−→ κ(y)))

Indeed, [[ϕ3]] computes the probability of the set of branches that contain at
least one b. We have [[ϕ3]](t1) = 1 (note that [[ϕ3]](t1) is an infinite sum whose
partial sums converge to 1). Moreover, [[ϕ3]](t2) = 5

9 . In Section 4, we will define
a logic, called weighted CTL∗, whose specialization to Prob allows us to reason
about probabilities. We will show that MSO covers this fragment, by giving
corresponding formulas, which actually resemble the formula ϕ3: one considers
the sum over the value of paths that satisfy a given boolean property.

We show now that our weighted MSO is undecidable in general. This is obtained
for the probabilistic semiring Prob using the binary predicate less than even if
we use unweighted words instead of weighted trees as models.

The (general) satisfiability problem is defined as follows: given a sentence
ϕ ∈ wMSO(K, Σ, C), does there exist a weighted tree t ∈ Trees(D,K, Σ) such
that [[ϕ]](t) �= 0.

Proposition 1. The satisfiability problem for wMSO(Prob, Σ, {∨,∧,¬,≤}) is
undecidable.

This result is obtained with a reduction of the emptiness problem for reactive
probabilistic finite automata (rPFA). Hence, it also holds if we restrict to un-
weighted (finite) trees or to unweighted (finite) words.

Proof. Let C = {∨,∧,¬,≤} and let A = (Q, q0, μ, F) be a rPFA over Σ. By [16]
there is a sentence ϕ ∈ wMSO(Prob, Σ, {∨,∧,¬}) which does not use the unary
operator κ(x) such that for all unweighted words w ∈ Σ∗ we have [[ϕ]](w) =
[[A]](w). We may even assume that the formula ϕ is existential (i.e., of the form
∃X1 . . . ∃Xn.ψ) and is syntactically restricted (see [17]).

Now, let p ∈ [0, 1] and consider the weighted formula p < ϕ using the binary
predicate ≤. Then, for all unweighted words w ∈ Σ∗ we have [[p < ϕ]](w) �= 0 iff
[[p < ϕ]](w) = 1 iff [[A]](w) > p iff the automaton A with threshold p accepts a
nonempty language. By Theorem 1 we conclude that the satisfiability problem
wrt. (unweighted) words is undecidable for wMSO(Prob, Σ, {∨,∧,¬,≤}). Since
the formula ϕ does not use κ(x), whether we consider weighted or unweighted
words or trees does not make any difference. ��

Weighted versus Probabilistic Logics 29

4 Weighted CTL∗

We fix an ordered semiring K and a finite set Prop of atomic propositions. The
corresponding alphabet is Σ = 2Prop . As for wMSO we use a vocabulary C of
symbols that includes {¬,∨,∧,≤} with the semantics given in Section 3. In our
weighted CTL∗, we distinguish as usual state formulas and path formulas. The
path formulas are not quantitative so we call them boolean path formulas. The
state formulas are quantitative so we use the terminology weighted state (or
node) formulas. When a state formula only takes values in {0,1} we call it a
boolean state formula.

Definition 6. The syntax of wCTL∗(K,Prop, C) is given by the grammar

ϕ ::= k | κ | p | ��(ϕ1, . . . , ϕarity(��)) | μ(ψ)
ψ ::= ϕ | ψ ∧ ψ | ¬ψ | ψ SU ψ

where p ∈ Prop, k ∈ K, �� ∈ C, ϕ is a weighted state formula and ψ is a boolean
path formula.

Models forwCTL∗(K,Prop, C) areweighted trees t ∈ Trees(D,K, Σ). Forweighted
state formulasϕwealso have to fix a nodeu ∈ dom(t), and the semantics [[ϕ]](t, u) ∈
K is a value in the semiring. For boolean path formulas ψ we fix both a path w ∈
Branches(t) and a node u ≤ w on this path, and the semantics defines whether the
formula holds at node u on pathw, denoted t, w, u |= ψ. The semantics are defined
by induction on the formula: see Table 2 for weighted state formulas and Table 3
for boolean path formulas.We mayalso define the semantics ofwCTL∗(K,Prop, C)
formulas on weighted automata by using the associated unfolding which is a
weighted tree.

The semantics of μ(ψ), the measure of ψ, is always well-defined for finite trees.
But if we consider infinite trees, it may involve infinite sums or products which
are not always defined. We discuss below the special case of the probabilistic
semiring for which the natural semantics of μ(ψ) on infinite trees is given by
the probability measure on the sequence space. In this way, we will obtain the
probabilistic logics PCTL and PCTL∗ as framents of wCTL∗.

Table 2. Semantics of weighted state formulas in wCTL∗(K,Prop, C)

[[k]](t, u) = k

[[κ]](t, u) = κt(u)

[[p]](t, u) =

{
1 if p ∈ �t(u)

0 otherwise

[[��(ϕ1, . . . , ϕr)]](t, u) = [[��]]([[ϕ1]](t, u), . . . , [[ϕr]](t, u)) if arity(��) = r

[[μ(ψ)]](t, u) =
⊕

w∈Branches(t) | t,w,u|=ψ

⊗

v |u<v≤w
κt(v)

30 B. Bollig and P. Gastin

Table 3. Semantics of boolean path formulas in wCTL∗(K,Prop, C)

t, w, u |= ϕ if [[ϕ]](t, u) �= 0

t, w, u |= ψ1 ∧ ψ2 if t, w, u |= ψ1 and t, w, u |= ψ2

t, w, u |= ¬ψ if t, w, u �|= ψ

t,w, u |= ψ1 SU ψ2 if ∃u < v ≤ w : (t, w, v |= ψ2 and ∀u < v′ < v : t, w, v′ |= ψ1)

But first we derive some useful LTL modalities. As usual, the classical next
and until modalities can be obtained from the strict until:

Xψ
def= 0 SU ψ ψ1 U ψ2

def= ψ2 ∨ (ψ1 ∧ (ψ1 SU ψ2))

When dealing with probabilistic systems such as Markov chains, it is also con-
venient to have a bounded version of until. To this purpose, logics like PCTL or
PCTL∗ use formulas of the form ψ1 U≤n ψ2 for n ∈ �. The semantics is that ψ2

must hold within n time units and until then ψ1 should hold. We may view U≤n

or SU≤n as macros which are easily expressible using the next modality X.
The fragment wCTL of wCTL∗ consists only of state formulas and the ar-

bitrary μ(ψ) construct of wCTL∗ is restricted to μ(ϕ1 SU≤n ϕ2) where ϕ1 and
ϕ2 are (boolean) state formulas and n ∈ � ∪ {∞} (here SU≤∞ is the usual
unbounded strict until SU).

Example 5. Figure 3 depicts a gPFA A = (Q, q0, μ) over Σ = 2Prop with
Prop = {p, r}, and the initial part of its (infinite) unfolding t = tA. In both
pictures, transitions and, respectively, nodes that carry the weight 0 are omit-
ted. Moreover, inside every node u ∈ D∗ of t we have written the state reached
by the corresponding path.

Consider the quantitative state formula ϕ = μ(1SUr) ∈ wCTL. Table 2 allows
us to compute the semantics of ϕ for finite trees. For instance, [[ϕ]](t|D3) = 19

27 .
Note that the boolean formula ϕ > 4

9 is contained in the fragment PCTL defined
below.

q0

q1

{r}, 1
3

{p}, 1
6

{p}, 2
3

{r}, 5
6

∅, 1
q0

q0 q1

q0 q1 q0 q1

{p}, 2
3

{r}, 1
3

{p}, 2
3

{r}, 1
3

{p}, 1
6 {r}, 5

6

...
...

q0 q1

{p}, 2
3

{r}, 1
3

...
...

q0 q1

{p}, 1
6

{r}, 5
6

...
...

q0 q1

{p}, 2
3

{r}, 1
3

...
...

q0 q1

{p}, 1
6

{r}, 5
6

Fig. 3. gPFA A = (Q, q0, μ) over Σ = 2{p,r} and its unfolding tA,q0

Weighted versus Probabilistic Logics 31

For n ≥ 1, consider the formula ψn = μ(Xn(μ(X p) < μ(X r))) > 4
9 from

wCTL∗(Prob,Prop, {¬,∧,≤}). Formula ψn is neither in wCTL nor in PCTL∗

(defined below). Again, Tables (2,3) allow us to compute the semantics on finite
trees. For instance, the boolean formula μ(X p) < μ(X r) holds precisely in state
q1. We can check that for n < m we have [[ψn]](t|Dm) = 1 iff n ≥ 2.

Finally, using the semantics from Table 2, it is not clear how to compute [[ϕ]](t)
since we have to deal with an infinite sum of infinite products. A possibility is
to set [[ϕ]](t) = 0 since the infinite products all converge to 0. But this is not the
desired semantics which should measure the probability that r eventually holds.
Hence, we should obtain [[ϕ]](t) = 1.

Therefore, we extend below the semantics to infinite trees in a suitable way.
For finite trees, however, both semantics coincide.

We restrict to the probabilistic semiring Prob and to trees that are unfoldings of
generative probabilistic finite automata (gPFA). More precisely, we consider a
gPFA A = (Q,μ) over Σ = 2Prop (the initial state will be fixed later and final
states are irrelevant in the following). Usually, atomic propositions are associated
with states. Here they are associated with transitions which is a minor difference
as already noticed in Definition 4. We also assume that there are no deadlock,
i.e.,

∑
(a,q′)∈Σ×Q μ(q, a, q′) = 1 for all q ∈ Q. This is not a restriction since we

may always add a sink state.
Let tA,q ∈ Trees(D,Prob, Σ) be the full tree over D = Σ × Q obtained by

unfolding the gPFA A with initial state q ∈ Q (see definition in Section 2).
Since A is fixed, we simply write tA,q = tq. As they arise from a finite state
probabilistic system A the trees tq are regular. More precisely, for q ∈ Q and
u ∈ D∗, we define last(q, u) = q if u = ε and last(q, u) = q′ if u ∈ D∗(Σ × {q′}).
It is easy to check that the subtree tqu of tq rooted at u is in fact tlast(q,u).

The sequence probability space associated with A and initial state q ∈ Q is
(Dω,�, probq) where the Borel field � is generated by the basic cylinders sets
uDω with u ∈ D∗ and probq is the unique probability measure such that for a
basic cylinder uDω we obtain the probability of the finite path described by u:
if u = (a1, q1)(a2, q2) · · · (an, qn) and with q0 = q then

probq(uDω) =
n∏

i=1

μ(qi−1, ai, qi) =
∏

v∈Pref(u)

κtq(u) .

Any ω-regular set L ⊆ Dω is measurable [37]. More precisely, any ω-regular
language is a finite boolean combination of languages at the second level of
the Borel hierarchy. This is a consequence of McNaughton’s theorem showing
that ω-regular languages can be accepted by deterministic Muller automata.
Hence, they are finite boolean combinations of languages accepted by determin-
istic Büchi automata. Let F be the accepting set of states of a deterministic
Büchi automaton B and for n ∈ �, let Ln be the set of finite words whose run
on B visits F at least n times. Then the language accepted by B is

32 B. Bollig and P. Gastin

⋂

n≥0

⋃

w∈Ln

wDω

By the very definition of strict until, one sees that every LTL formula ψ is
first-order definable, hence defines an ω-regular language L(ψ) by [9]. Antoher
argument is to use classical translations from LTL formulas to Büchi automata. It
follows that L(ψ) is measurable and probq(L(ψ)) is well-defined for LTL formulas
ψ. Hence, we will be able to define the semantics of μ(ψ) using the probability
measure of the sequence space.

Formally, let q ∈ Q, u ∈ D∗ and ψ be a boolean path formula. We define

Lq
u(ψ) = {w ∈ uDω | tq, w, u |= ψ}

and
[[μ(ψ)]](tq , u) = problast(q,u)(u−1Lq

u(ψ))

where u−1L = {v ∈ D∞ | uv ∈ L} is the left quotient of L ⊆ D∞ by u ∈ D∗.
Recall that last(q, ε) = q and last(q, u) = q′ if u ∈ D∗(Σ × {q′}).

Using the remarks above, we can show by induction on the state formulas ϕ
and the boolean path formulas ψ in wCTL∗(Prob,Prop, C) that for all q ∈ Q and
u ∈ D∗, [[ϕ]](tq , u) only depends on last(q, u), and Lq

u(ψ) is measurable. Hence,
the semantics of μ(ψ) is well-defined.

Example 6. Let us continue the discussion started in Example 5. Using the prob-
abilistic semantics defined above for infinite trees, we obtain now

[[μ(1 SU r)]](t, ε) = probq0(D∗({{r}, {p, r}} ×Q)Dω) = 1

which is the probability that r eventually holds.

The probabilistic computation tree logic PCTL∗ [15] is a boolean fragment of
wCTL∗(Prob,Prop, {¬,∧,≤}) using the semantics defined above for μ(ψ). The
restriction is on state formulas which

– use only constants k ∈ {0,1} and symbols �� ∈ {¬,∧},
– which do not use κ,
– and use μ(ψ) only with comparisons of the form (μ(ψ) �� p) with �� ∈ {≥, >},
p ∈ [0, 1], and ψ a path formula.

A further restriction is PCTL introduced in [24] where only state formulas are
considered. Here the path formulas ψ used in (μ(ψ) �� p) are restricted to be of
the form ϕ1 SU≤n ϕ2 where ϕ1, ϕ2 are boolean state formulas and n ∈ �∪ {∞}.
Hence, PCTL is also a fragment of wCTL. Note that, if ϕ1, ϕ2 are boolean state
formulas and n ∈ � ∪ {∞} then

[[μ(ϕ1 U≤n ϕ2)]] = [[ϕ2 ∨ (ϕ1 ∧ ¬ϕ2 ∧ μ(ϕ1 SU≤n ϕ2))]] .

Weighted versus Probabilistic Logics 33

Table 4. Translation in bMSO of boolean path formulas in wCTL∗

ϕ(x,X) = (ϕ(x) �= 0)

ψ1 ∧ ψ2(x,X) = ψ1(x,X) ∧ ψ2(x,X)

¬ψ(x,X) = ¬ψ(x,X)

ψ1 SU ψ2(x,X) = ∃ z.(z ∈ X ∧ x < z ∧ ψ2(z,X) ∧ ∀y.((x < y < z)
+−→ ψ1(y,X)))

5 wCTL∗ Is a Fragment of wMSO

In this section, we will give a translation from wCTL∗ formulas to weighted MSO
formulas.

We start with path formulas ψ in wCTL∗. Implicitely, such a formula has two
free variables, the path (branch) on which the formula is evaluated and the cur-
rent node on this path. Naturally, the current node is a first-order variable and
the path in the tree can be described by the set variable consisting of all nodes
on this branch. So we associate with each path formula ψ ∈ wCTL∗(K,Prop, C)
a boolean MSO formula ψ(x,X) ∈ bMSO(K, Σ, C). The definition by induction
on the formula is given in Table 4. In this definition, we assume that the inter-
pretation of X is indeed a path. We make sure to define boolean formulas by
using ∃, ∨ and +−→ which were defined in Section 3.

Next, we turn to (weighted) state formulas ϕ ∈ wCTL∗. Here, the only implicit
free variable is the current node. Hence, we associate with each state formula
ϕ ∈ wCTL∗(K,Prop, C) a weighted MSO formula ϕ(x) ∈ bMSO(K, Σ, C). The
translation, which is indeed by induction on the formula, is given in Table 5. The
boolean formula path(x,X) states that X is a maximal path in the tree starting
from node x. To this aim, we use the boolean formula y � z which holds if z is
a successor (son) of y in the tree:

y � z
def= y < z ∧ ∀z′.¬(y < z′ < z) .

The translation of μ(ψ) given in Table 5 is valid when the models are finite
trees. For infinite trees, the set of paths is usually infinite and the semantics of
μ(ψ) would involve infinite products and sums that are not necessarily defined.

As explained in Section 4, it is crucial for applications to probabilistic systems
to be able to deal with infinite trees that arise as unfoldings of gPFA’s. So
we give below a translation of μ(ψ) to wMSO such that the infinite sums and
products involved in the semantics are always well-defined.

We deal with the fragment wCTL where the path formulas are restricted to
be of the form ϕ1 SU≤n ϕ2 where ϕ1 and ϕ2 are boolean state formulas and
n ∈ � ∪ {∞}. The translation in wMSO of μ(ϕ1 SU≤n ϕ2) is given in Table 6.
The boolean formula path≤∞(x,X) states that X is a path starting from x but
do not impose that X is maximal (contrary to the definition in Table 5). When
n ∈ �, the boolean formula path≤n(x,X) requires in addition that the path X
is of length at most n. Assuming that X is a path starting from x, the boolean

34 B. Bollig and P. Gastin

Table 5. Translation in bMSO of boolean path formulas in wCTL∗

k(x) = k

κ(x) = κ(x)

p(x) = ¬
∧

a∈Σ | p∈a
¬Pa(x)

��(ϕ1, . . . , ϕr)(x) = ��(ϕ1(x), . . . , ϕr(x)) if arity(��) = r

μ(ψ)(x) = ∃X.(path(x,X) ∧ ψ(x,X) ∧ ξ(x,X)

path(x,X) = x ∈ X

∧ ∀z.(z ∈ X
+−→ (z = x ∨ ∃ y.(y ∈ X ∧ y � z)))

∧ ¬∃ y, z, z′ ∈ X.(y � z ∧ y � z′ ∧ z �= z′)

∧ ∀y.((y ∈ X ∧ ∃ z.(y < z))
+−→ ∃ z.(z ∈ X ∧ y < z))

ξ(x,X) = ∀y.((y ∈ X ∧ x < y)
+−→ κ(y))

formula ψ(x,X) states that the path satisfies ϕ1 SUϕ2 and is minimal with this
property. In particular, such a path must be finite, even if n = ∞, since the
formula ¬(0SU1) means that there is no next state. Finally, the formula ξ(x,X)
computes the probability of the path.

Proposition 2. Let A = (Q,μ) be a gPFA, q ∈ Q. Let tq be the tree unfolding
of A starting from state q and let u ∈ D∗ = dom(tq) be a node. Let ϕ1, ϕ2 ∈
wCTL(Prob,Prop, C) be boolean state formulas and n ∈ � ∪ {∞}. Then,

[[
μ(ϕ1 SU≤n ϕ2)

]]
(tq, u) = problast(q,u)(u−1Lq

u(ϕ1 SU≤n ϕ2))

= [[μ(ϕ1 SU≤n ϕ2)]](tq , u)

The tree tq is infinite. Hence to prove this proposition we have to make sense
of the infinite products and sums that arise from the semantics of the wMSO
formula μ(ϕ1 SU≤n ϕ2) given in Table 6. So let X ⊆ D∗ = dom(tq). By definition
of ∃, ∨ and +−→, the semantics of the boolean formula path≤n(u,X)∧ψ(u,X) uses
(infinite) products of boolean values 0 and 1. Naturally, we define such (infinite)
products to be 0 if at least one factor is 0 and to be 1 otherwise. Hence, the
difficulty is only to make sense of the (infinite) sum associated with ∃X and of
the (infinite) product used for the semantics of ξ.

Proof (of Prop. 2). We use the notation introduced above. We simply denote by
L the language Lq

u(ϕ1 SU≤n ϕ2) introduced in Section 4:

L = {w ∈ uDω | tq, w, u |= ϕ1 SU≤n ϕ2} .
In this special case, the probability measure problast(q,u)(u−1L) is easy to com-
pute. To this aim, we introduce the language

Weighted versus Probabilistic Logics 35

K = {w ∈ uD+ | tq, w, u |= (ϕ1 ∧ ¬ϕ2) SU≤n (ϕ2 ∧ ¬(0 SU 1))}
We can easily check that K is prefix-free: w,w′ ∈ K and w ≤ w′ implies

w = w′. Moreover,
L =

⊎

w∈K
wDω

and this countable union is disjoint so that

problast(q,u)(u−1L) =
∑

w∈K
problast(q,u)(u−1wDω) =

∑

w∈K

∏

u<v≤w

κtq(v) .

For each w ∈ uD+, let Xw = {v ∈ D∗ | u ≤ v ≤ w}. Next, define the set
� = {Xw ⊆ D∗ | w ∈ K}. One can check that � is precisely the set of subsets
X ⊆ D∗ = dom(tq) such that the formula path≤n(u,X) ∧ ψ(u,X) holds:

[[path≤n ∧ ψ]](tq , u,X) =

{
1 if X ∈ �

0 otherwise.

Note that the infinite product used in the semantics of [[ξ]](u,X) is always well-
defined. Either it has only finitely many factors different from 1 (which is in
particular the case when X is finite) or it converges to 0. For each w ∈ K,
[[ξ]](u,Xw) computes the probability of path Xw:

[[ξ]](tq , u,Xw) =
∏

u<v≤w

κtq(v) .

For sets X /∈ �, we have [[path≤n ∧ ψ ∧ ξ]](tq , u,X) = 0 and we obtain

[[path≤n ∧ ψ ∧ ξ]](tq, u,X) =

{
[[ξ]](tq , u,X) if X ∈ �

0 otherwise.

Removing 0 terms in an infinite sum, we obtain
[[
μ(ϕ1 SU≤n ϕ2)

]]
(tq, u) = [[∃X.(path≤n ∧ ψ ∧ ξ)]](tq , u)

=
∑

X∈�
[[ξ]](tq , u,X)

=
∑

w∈K

∏

u<v≤w

κtq(v)

= problast(q,u)(u−1L) .

If n ∈ � then the sets K and � are finite and the sums above are finite. When
n = ∞, i.e., for the natural unbounded strict until, the sets K and � may be
infinite. For instance, this is the case with formula pSUr evaluated on the gPFA
of Figure 3 starting from state q0 where the sets K and � corresponds to the
infinite set of paths q∗0q1. But, as a consequence of the equalities above, the
infinite sums over K and � are well-defined with value in [0, 1]. ��

36 B. Bollig and P. Gastin

Table 6. Translation in bMSO of μ(ϕ1 SU≤n ϕ2) ∈ wCTL for n ∈ � ∪ {∞}

μ(ϕ1 SU≤n ϕ2)(x) = ∃X.(path≤n(x,X) ∧ ψ(x,X) ∧ ξ(x,X))

path≤∞(x,X) = x ∈ X

∧ ∀z.(z ∈ X
+−→ (z = x ∨ ∃ y.(y ∈ X ∧ y � z)))

∧ ¬∃ y, z, z′ ∈ X.(y � z ∧ y � z′ ∧ z �= z′)

if n ∈ �, path≤n(x,X) = path≤∞(x,X) ∧ ¬∃x0 . . . ∃xn.
(x0 ∈ X ∧ · · · ∧ xn ∈ X ∧ x < x0 < x1 < · · · < xn)

ψ = (ϕ1 ∧ ¬ϕ2) SU (ϕ2 ∧ ¬(0 SU 1))

ξ(x,X) = ∀y.((y ∈ X ∧ x < y)
+−→ κ(y))

6 Conclusion and Open Problems

In this paper, we have introduced wMSO, a weighted version of classical MSO
logic. It is interpreted over weighted trees, which naturally appear as unfoldings
of weighted automata. We showed that the satisfiability problem for wMSO is
undecidable. We then defined wCTL and wCTL∗ over weighted trees and gave
transformations of these logics into wMSO. For the probabilistic interpretation
of the path-quantifier operator μ(ψ), we restricted to a transformation of wCTL
into wMSO formulas.

Let us mention some directions for future work. We need to identify fragments
of our logic that come with a decidable satisfiability problem. A natural further
step is to tackle the model-checking problem: given a weighted formula ϕ and
a weighted automaton A, does [[ϕ]](tA) �= 0 hold? To find a solution, we might
borrow techniques used in the probabilistic setting for PCTL∗. Moreover, the
translation of wCTL∗ into wMSO remains to be done. For the probabilistic
semantics, such a translation might be based on techniques from [13] developed
for checking linear-time properties of probabilistic systems (see also [5] for an
overview).

It would be worthwhile to add the notion of a scheduler to wMSO to consider
unfoldings of (partially observable) MDPs or probabilistic Büchi automata [3,4],
which are essentially rPFA with a Büchi acceptance condition.

The expectation semiring, defined in [20], combines probabilities with expected
rewards. A transfer of our logics to this specific structure (possibly extended by
a discount operator) could provide a generic framework for reward models as
considered, e.g., in [23, 2].

A weighted μ-calculus has been defined in [22] to be interpreted over quanti-
tative Kripke structures. For the design of a weighted μ-calculus over branching
structures, one might benefit from ideas that led to a weighted μ-calculus over
words [29].

Weighted versus Probabilistic Logics 37

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Andova, S., Hermanns, H., Katoen, J.P.: Discrete-time rewards model-checked. In:
Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

3. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi
automata. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301.
Springer, Heidelberg (2008)

4. Baier, C., Größer, M.: Recognizing ω-regular languages with probabilistic au-
tomata. In: Proceedings of LICS 2005, pp. 137–146. IEEE Computer Society Press,
Los Alamitos (2005)

5. Bollig, B., Leucker, M.: Verifying qualitative properties of probabilistic programs.
In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Val-
idation of Stochastic Systems. LNCS, vol. 2925, pp. 124–146. Springer, Heidelberg
(2004)

6. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

7. Buchholz, P., Kemper, P.: Model checking for a class of weighted automata. Dis-
crete Event Dynamic Systems (to appear, 2009)

8. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

9. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
of the International Congress on Logic, Methodology and Philosophy, pp. 1–11.
Standford University Press (1962)

10. Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

12. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cam-
bridge (1999)

13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4), 857–907 (1995)

14. Culik, K., Kari, J.: Image compression using weighted finite automata. Computer
and Graphics 17(3), 305–313 (1993)

15. de Alfaro, L.: Formal verification of probabilistic systems. Technical report, Stan-
ford University, PhD thesis (1998)

16. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Com-
puter Science 380(1-2), 69–86 (2007); Special issue of ICALP 2005

17. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Kuich, W.,
Vogler, H., Droste, M. (eds.) Handbook of Weighted Automata. EATCS Mono-
graphs in Theoretical Computer Science. Springer, Heidelberg (to appear, 2009)

18. Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting.
In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 73–84. Springer,
Heidelberg (2007)

38 B. Bollig and P. Gastin

19. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theoretical
Computer Science 366(3), 228–247 (2006)

20. Eisner, J.: Expectation semirings: Flexible EM for learning finite-state transducers.
In: Proceedings of the ESSLLI workshop on finite-state methods in NLP (2001)

21. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98, 21–52 (1961)

22. Fischer, D., Grädel, E., Kaiser, L.: Model checking games for the quantitative μ-
calculus. Theory of Computing Systems (2009); Special Issue of STACS 2008

23. Größer, M., Norman, G., Baier, C., Ciesinski, F., Kwiatkowska, M., Parker, D.: On
reduction criteria for probabilistic reward models. In: Arun-Kumar, S., Garg, N.
(eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 309–320. Springer, Heidelberg (2006)

24. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

25. Knopp, K.: Theory and Application of Infinite Series. Dover Publications, New
York (1990); Republication of the second English edn. (1951)

26. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

27. Kuich, W., Salomaa, A.: Semirings, Automata and Languages. Springer, Heidelberg
(1985)

28. Kuich, W., Vogler, H., Droste, M. (eds.): Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)

29. Meinecke, I.: A weighted μ-calculus on words. In: Diekert, V., Nowotka, D. (eds.)
DLT 2009. LNCS, vol. 5583. Springer, Heidelberg (2009)

30. Mohri, M.: Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23(2), 269–311 (1997)

31. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS 1977, pp.
46–57. IEEE Computer Society Press, Los Alamitos (1977)

32. Puterman, M.L.: Markov Decision Processes. John Wiley & Sons, Inc., New York
(1994)

33. Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)
34. Segala, R.: Probability and nondeterminism in operational models of concurrency.

In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78.
Springer, Heidelberg (2006)

35. Thomas, W.: Languages, automata and logic. In: Salomaa, A., Rozenberg, G. (eds.)
Handbook of Formal Languages. Beyond Words, vol. 3, pp. 389–455. Springer,
Heidelberg (1997)

36. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and strati-
fied models of probabilistic processes. Information and Computation 121(1), 59–80
(1995)

37. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proceedings of FOCS 1985, pp. 327–338. IEEE, Los Alamitos (1985)

	Weighted versus Probabilistic Logics
	Introduction
	Preliminaries
	Extended Weighted MSO
	Weighted CTL*
	wCTL* Is a Fragment of wMSO
	Conclusion and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

