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Preface

Since 1993 the conference Developments in Language Theory (DLT) has been
held in Europe every odd year and, since 2002, outside Europe every even year.
The 13th conference in this series was DLT 2009. It took place in Stuttgart
from June 30 to July 3. Previous meetings occurred in Turku (1993), Magdeburg
(1995), Thessaloniki (1997), Aachen (1999), Vienna (2001), Kyoto (2002), Szeged
(2003), Auckland (2004), Palermo (2005), Santa Barbara (2006), Turku (2007),
and Kyoto (2008).

The DLT conference has developed into the main forum for language theory
and related topics. This has also been reflected in the high quality of the 70 sub-
missions received in 2009. Most submissions were reviewed by four Programme
Committee members and their sub-referees. The Programme Committee selected
the best 35 papers for presentation during the conference. These 35 papers are
also published in this proceedings volume. Members of the Programme Commit-
tee were not allowed to submit papers. The work of the Programme Committee
was organizedusing the EasyChair conference system, thanks to Andrei Voronkov.

The conference programme included five invited lectures. They were given
by Miko�laj Bojańczyk (Warsaw), Paul Gastin (Cachan), Tero Harju (Turku),
Christos Kapoutsis (Nicosia), and Benjamin Steinberg (Ottawa). We are grateful
to the invited speakers for accepting the invitation and presenting their lectures
and for their contributions to the proceedings.

The Informatik Forum Stuttgart provided a best paper award, which was
selected by the Programme Committee. The recipient was:

“Magic Numbers and Ternary Alphabet” by Galina Jiraskova.

The DLT conference was accompanied by the following satellite events:

– Workshop on “Automata and Algorithmic Logic”
– Festkolloquium on the occasion of the “65th birthday of Volker Claus”

The editors thank the authors of all submitted papers for considering DLT
2009 as an appropriate platform for presenting their work. Moreover, we would
like to thank the members of the Programme Committee for their professional
work in carefully reading and evaluating the submissions and selecting the best
contributions. We also thank all members of the Institute for Formal Methods
in Computer Science for their help. In particular, we thank Heike Photien and
Horst Prote for their great efforts.

Financial support for this conference was provided by the German research
foundation DFG and by the Universität Stuttgart. The association Informatik
Forum Stuttgart (infos e.V.) helped in the management of the conference and
donated the Infos Best Paper Award for DLT 2009. The assistance of these
societies is greatly acknowledged.

May 2009 Volker Diekert
Dirk Nowotka
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Powers of Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
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Factorization Forests

Miko�laj Bojańczyk

Warsaw University

Abstract. A survey of applications of factorization forests.

Fix a regular language L ⊆ A∗. You are given a word a1 · · ·an ∈ A∗. You are
allowed to build a data structure in time O(n). Then, you should be able to
quickly answer queries of the form: given i ≤ j ∈ {1, . . . , n}, does the infix
ai · · · aj belong to L?

What should the data structure be? What does quickly mean? There is natural
solution that uses a divide and conquer approach. Suppose that the language L
is recognized by a (nondeterministic) automaton with states Q. We can divide
the word in two halves, then into quarters and so on. The result is a binary tree
decomposition, where each tree node corresponds to an infix, and its children
divide the infix into two halves. In a bottom-up pass we decorate each node
of the tree with the set R ⊆ Q2 of pairs (source, target) for runs over node’s
corresponding infix. This data structure can be computed in time linear in the
length of the word. Since the height of this tree is logarithmic, a logarithmic
number of steps is sufficient to compute the set R of any infix (and the value of
R determines membership in L).

The goal of this paper is to popularize a remarkable combinatorial result of
Imre Simon [18]. One of its applications is that the data structure above can be
modified so that the queries are answered not in logarithmic time, but constant
time (the constant is the size of a semigroup recognizing the language).

So, what is the Simon theorem? Let α : A∗ → S be a morphism into a finite
monoid1. Recall the tree decomposition mentioned in the logarithmic divide and
conquer algorithm. This tree decomposes the word using a single rule, which
we call the binary rule: each word w ∈ A∗ can be split into two factors w =
w1 · w2, with w1, w2 ∈ A∗. Since the rule is binary, we need trees of at least
logarithmic height (it is a good strategy to choose w1 and w2 of approximately
same length). To go down to constant height, we need a rule that splits a word
into an unbounded number of factors. This is the idempotent rule: a word w
can be factorized as w = w1 · w2 · · ·wk, as long as the images of the factors
w1, . . . , wk ∈ A∗ are all equal, and furthermore idempotent:

α(w1) = · · · = α(wk) = e for some e ∈ S with ee = e.

1 Recall that a monoid is a set with an associative multiplication operation, and an
identity element. A morphism is a function between monoids that preserves the
operation and identity.

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 M. Bojańczyk

An α-factorization forest for a word w ∈ A∗ is an unranked tree, where each leaf
is labelled by a single letter or the empty word, each non-leaf node corresponds
to either a binary or idempotent rule, and the rule in the root gives w.

Theorem 1 (Factorization Forest Theorem of Simon [18]). For every
morphism α : A∗ → S there is a bound K ∈ N such that all words w ∈ A∗ have
an α-factorization forest of height at most K.

Here is a short way of stating Theorem 1. Let Xi be the set of words that have
an α-factorization forest of height i. These sets can be written as

X1 = A ∪ {ε} Xn+1 = Xn ·Xn ∪
⋃
e∈S
ee=e

(Xn ∩ α−1(e))∗ .

The theorem says that the chain X1 ⊆ X2 ⊆ · · · stabilizes at some finite level.

Let us illustrate the theorem on an example. Consider the morphism α : {a, b}∗ →
{0, 1} that assigns 0 to words without an a and 1 to words with an a. We will
use the name type of w for the image α(w). We will show how that any word
has an α-factorization forest of height five.

Consider first the single letter words a and b. These have α-factorization
forests of height one (the node is decorated with the value under α):

a

1

b

0

.

Next, consider words in b+. These have α-factorization forests of height two: one
level is for the single letters, and the second level applies the idempotent rule,
which is legal, since the type 0 of b is idempotent:

b

0

b

0

b

0

b

0

0

In the picture above, we used a double line to indicate the idempotent rule. The
binary rule is indicated by a single line, as in the following example:

a

1

b

0

b

0

b

0

b

0

0

1
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As the picture above indicates, any word in ab+ has an α-factorization forest of
height three. Since the word a needs height at most one, we conclude that all
words in ab∗ need height at most three. Since the type of ab+ is the idempotent
1, we can apply the idempotent rule to get a height at most four α-factorization
forest for any word in (ab∗)∗:

a

1

a

1

a

1

a

1

a

1

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

0 00

1

1

1

1

1

This way, we have covered all words in {a, b}∗, except for words in b+(ab∗)+.
For these, first use the height four factorization forest for the part (ab∗)+, and
then attach the prefix b+ using the binary rule.

A relaxed idempotent rule. Recall that the idempotent rule requires the word
w to be split into parts w = w1 · · ·wk with the same idempotent type. What if
we relaxed this rule, by only requiring all the parts to have the same type, but
not necessarily an idempotent type? We claim that relaxing the idempotent rule
would not make the Factorization Forest Theorem any simpler. The reason is
that in any finite monoid S, there is some power m ∈ N such sm is idempotent
for any s ∈ S. Therefore, any application of the relaxed rule can be converted
into a height logm tree with one idempotent rule, and a number of binary rules.

1 Proof of the Theorem

This section contains a proof of the Factorization Forest Theorem, based on
a proof by Manfred Kufleitner [12], with modifications suggested by Szymon
Toruńczyk. The proof is self-contained. Implicitly it uses Green’s relations, but
these are not explicitly named.

We define the Simon height ||S|| of a finite monoid S to be the smallest number
K such that for every morphism α : A∗ → S, all words in A∗ have an α-
factorization forest of height at most K. Our goal is to show that ||S|| is finite
for a finite monoid S. The proof is by induction on the number of elements in S.
The induction base, when S has one element, is obvious, so the rest of the proof
is devoted to the induction step.

Each element s ∈ S generates three ideals: the left ideal Ss, the right ideal sS
and the two-sided ideal SsS. All of these are submonoids and contain s. Elements
of S are called H-equivalent if they have the same left and right ideals. First, we
show a lemma, which bounds the height ||S|| based on a morphism β : S → T .
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We use this lemma to reduce the problem to monoids where there is at most
one nonzero two-sided ideal (nonzero ideals are defined later). Then we use the
lemma to further reduce the problem to monoids where H-equivalence is trivial,
either because all elements are equivalent, or because all distinct elements are
nonequivalent. Finally, we consider the latter two cases separately.

Lemma 1. Let S, T be finite monoids and let β : S → T be a morphism.

||S|| ≤ ||T || ·max
e∈T
ee=e

||β−1(e)||

Proof
Let α : A∗ → S be morphism, and w ∈ A∗ a word. We want to find an α-
factorization forest of height bounded by the expression in the lemma. We first
find a (β ◦ α)-factorization forest f for w, of height bounded by ||T ||. Why is f
not an α-factorization? The reason is that f might use the idempotent rule to
split a word u into factors u1, . . . , un. The factors have the same (idempotent)
image under β ◦ α, say e ∈ T , but they might have different images under
α. However, all the images under α belong to the submonoid β−1(e). Treating
the words u1, . . . , un as single letters, we can find an α-factorization for u1 · · ·un

that has height ||β−1(e)||. We use this factorization instead of the idempotent rule
u = u1 · · ·un. Summing up, we replace each idempotent rule in the factorization
forest f by a new factorization forest of height ||β−1(e)||. �
For an element s ∈ S, consider the two-sided ideal SsS. The equivalence relation
∼s, which collapses all elements from SsS into a single element, is a monoid
congruence. Therefore, mapping an element t ∈ S to its equivalence class under
∼s is a monoid morphism β, and we can apply Lemma 1 to get

||S|| ≤ ||S/∼s
|| · ||SsS|| .

When can we use the induction assumption? In other words, when does this
inequality above use smaller monoids on the right side? This happens when SsS
has at least two elements, but is not all of S. Therefore, it remains to consider
the case when for each s, the two-sided ideal SsS is either S or has either one
element s. This case is treated below.

At most one nonzero two-sided ideal. From now on, we assume that all two-sided
ideals are either S or contain a single element. Note that if SsS = {s} then s is
a zero, i.e. satisfies st = ts = s for all t ∈ S. There is at most one zero, which
we denote by 0. Therefore a two-sided ideal is either S or {0}.

Note that multiplying on the right either decreases or preserves the right ideal,
i.e. stS ⊆ sS. We first show that the right ideal cannot be decreased without
decreasing the two-sided ideal.

if SsS = SstS then sS = stS (1)

Indeed, if the two-sided ideals of s and st are equal, then there are x, y ∈ S with
s = xsty. By applying this n times, we get s = xns(ty)n. If n is chosen so that
(ty)n is idempotent, which is always possible in a finite monoid, we get
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s = xns(ty)n = xns(ty)n(ty)n = s(ty)n,

which gives sS ⊆ stS, and therefore sS = stS.
We now use (1) to show that H-equivalence is a congruence. In other words,

we want to show that if s, u are in H-equivalent, then for any t ∈ S, the elements
st, ut are H-equivalent and the elements ts, tu are H-equivalent. By symmetry,
we only need to show that st, ut are H-equivalent. The left ideals Sst, Sut are
equal by assumption on Ss = Su, so it remains to prove equality of the right
ideals stS, utS. The two-sided ideal SstS = SutS can be either {0} or S. In the
first case, st = ut = 0. In the second case, SsS = SstS, and therefore sS = stS
by (1). By the same reasoning, we get uS = utS, and therefore utS = stS.

SinceH-equivalence is a congruence, mapping an element to itsH-class (i.e. its
H-equivalence class) is a morphism β. The target of β is the quotient of S under
H-equivalence, and the inverse images β−1(e) are H-classes. By Lemma 1,

||S|| ≤ ||S/H|| · max
s∈S

β(ss)=β(s)

||[s]H||.

We can use the induction assumption on smaller monoids, unless: a) there is one
H-class; or b) all H-classes have one element. These two cases are treated below.

All H-classes have one element. Take a morphism α : A∗ → S. For w ∈ A∗, we
will find an α-factorization forest of size bounded by S. We use the name type of
w for the image α(w). Consider a word w ∈ A∗. Let v be the longest prefix of w
with a type other than 0 and let va be the next prefix of w after v (it may be the
case that v = w, for instance when there is no zero, so va might not be defined).
We cut off the prefix va and repeat the process. This way, we decompose the
word w as

w = v1a1v2a2 · · · vnanvn+1
v1, . . . , vn+1 ∈ A∗, a1 . . . , an ∈ A
α(v1), . . . α(vn+1) �= 0 α(v1a1), . . . , α(vnan) = 0.

The factorization forests for v1, . . . , vn+1 can be combined, increasing the height
by three, to a factorization forest for w. (The binary rule is used to append ai to
vi, the idempotent rule is used to combine the words v1a1, . . . , vnan, and then
the binary rule is used to append vn+1.) How do we find a factorization forest
for a word vi? We produce a factorization forest for each vi by induction on how
many distinct infixes ab ∈ A2 appear in vi (possibly a = b). Since we do not
want the size of the alphabet to play a role, we treat ab and cd the same way if
the left ideals (of the types of) of a and c are the same, and the right ideals of b
and d are the same. What is the type of an infix of vi? Since we have ruled out
0, then we can use (1) to show that the right ideal of the first letter determines
the right ideal of the word, and the left ideal of the last letter determines the left
ideal of the word. Since all H-classes have one element, the left and right ideals
determine the type. Therefore, the type of an infix of vi is determined by its first
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and last letters (actually, their right and left ideals, respectively). Consider all
appearances of a two-letter word ab inside vi:

vi = u0abu1ab · · ·abum+1

By induction, we have factorization forests for u0, . . . , um+1. These can be com-
bined, increasing the height by at most three, to a single forest for vi, because
the types of the infixes bu1a, . . . , buma are idempotent (unless m = 1, in which
case the idempotent rule is not needed).

There is one H-class.2 Take a morphism α : A∗ → S. For a word w ∈ A∗ we
define Pw ⊆ S to be the types of its non-trivial prefixes, i.e. prefixes that are
neither the empty word or w. We will show that a word w has an α-factorization
forest of height linear in the size of Pw. The induction base, Pw = ∅, is simple:
the word w has at most one letter. For the induction step, let s be some type in
Pw, and choose a decomposition w = w0 · · ·wn+1 such that the only prefixes of
w with type s are w0, w0w1, . . . , w0 · · ·wn. In particular,

Pw0 , s · Pw1 , s · Pw2 , . . . , s · Pwn ⊆ Pw \ {s} .

Since there is oneH-class, we have sS = S. By finiteness of S, the mapping t �→ st
is a permutation, and therefore the sets sPwi have fewer elements than Pw. Using
the induction assumption, we get factorizations for the words w0, . . . , wn+1. How
do we combine these factorizations to get a factorization for w? If n = 0, we use
the binary rule. Otherwise, we observe the types of w1, . . . , wn are all equal, since
they satisfy s · α(wi) = s, and t �→ st is a permutation. For the same reason,
they are all idempotent, since

s · α(w1) · α(w1) = s · α(w1) = s.

Therefore, the words w1, . . . , wn can be joined in one step using the idempotent
rule, and then the words w0 and wn+1 can be added using the binary rule.

Comments on the proof. Actually ||S|| = 3|S|. To get this bound, we need a
slightly more detailed analysis of what happens when Lemma 1 is applied (omit-
ted here). Another important observation is that the proof yields an algorithm,
which computes the factorization in linear time in the size of the word.

2 Fast String Algorithms

In this section, we show how factorization forests can be used to obtain fast
algorithms for query evaluation. The idea3 is to use the constant height of fac-
torization forests to get constant time algorithms.

2 Actually, in this case the monoid is a group.
3 Suggested by Thomas Colcombet.
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2.1 Infix Pattern Matching

Let L ⊆ A∗ be a regular language. An L-infix query in a word w is a query of
the form “given positions i ≤ j in w, does the infix w[i..j] belong to L?’

Below we state formally the theorem which was described in the introduction.

Theorem 2. Let L ⊆ A∗ be a language recognized by α : A∗ → S. Using an
α-factorization forest f for a word w ∈ A∗, any L-infix query can be answered
in time proportional to the height of f .

Note that since f can be computed in linear time, the above result shows that,
after a linear precomputation, infix queries can be evaluated in constant time.
The constants in both the precomputation and evaluation are linear in S.

Proof
The proof is best explained by the following picture, which shows how the type of
any infix can be computed from a constant number of labels in the factorization
forest:
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Below follows a more formal proof. We assume that each position in the word
contains a pointer to the leaf of f that contains letter in that position. We also
assume that each node in f comes with the number of its left siblings, the type
of the word below that node, and a pointer to its parent node.

In the following x, y, z are nodes of f . The distance of x from the root is
written |x|. We say a node y is to the right of a node x if y is not a descendant of
x, and y comes after x in left-to-right depth-first traversal. A node y is between x
and z if y is to the right of x and z is to the right of y. The word bet(x, y) ∈ A∗ is
obtained by reading, left to right, the letters in the leaves between x and y. We
claim that at most |x|+|y| steps are needed to calculate the type of bet(x, y). The
claim gives the statement of the theorem, since membership in L only depends
on the type of a word. The proof of the claim is by induction on |x|+ |y|.

Consider first the case when x and y are siblings. Let z1, . . . , zn be the siblings
between x and y. We use sub(z) for the word obtained by reading, left to right,
the leaves below z. We have

bet(x, y) = sub(z1) · · · sub(zn) .
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If n = 0, the type of bet(x, y) is the identity in S. Otherwise, the parent node
must be an idempotent node, for some idempotent e ∈ S. In this case, each
sub(zi) has type e and by idempotency the type of bet(x, y) is also e.

Consider now the case when x and y are not siblings. Either the parent of x
is to the left of y or x is to the left of the parent of y. By symmetry we consider
only the first case. Let z be the parent of x and let z1, . . . , zn be all the siblings
to the right of x. We have

bet(x, y) = sub(z1) · · · sub(zn) · bet(z, y)

As in the first case, we can compute the type of sub(z1) · · · sub(zn) in a single
step. The type of bet(z, y) is obtained by induction assumption. �
The theorem above can be generalized to more general queries than infix queries4.
An n-ary query Q for words over an alphabet A is a function that maps each
word w ∈ A∗ to a set of tuples of word positions (x1, . . . , xn) ∈ {1, . . . , |w|}n.
We say such a query Q can be evaluated with linear precomputation and constant
delay if there is an algorithm, which given an input word w:

– Begins by doing a precomputation in time linear in the length of w.
– After the precomputation, starts outputting all the tuples in Q(w), with a

constant number of operations between tuples.

The tuples will be enumerated in lexicographic order (i.e. first sorted left-to-right
by the first position, then by the second position, and so on).

One way of describing an n-ary query is by using a logic, such as monadic
second-order logic. A typical query would be: “the labels in positions x1, . . . , xn

are all different, and for each i, j ∈ {1, . . . , n}, the distance between xi and xj is
even”. By applying the ideas from Theorem 2, one can show:

Theorem 3. An query definable in monadic second-order logic can be evaluated
with linear precomputation and constant delay.

2.2 Avoiding Factorization Forests

Recall that the constants in Theorem 2 were linear in the size of the monoid S.
If, for instance, the monoid S is obtained from an automaton, then this can be
a problem, since the translation from automata (even deterministic) to monoids
incurs an exponential blowup. In this section, we show how to evaluate infix
queries without using monoids and factorization forests.

Theorem 4. Let L ⊆ A∗ be a language recognized by a deterministic automaton
with states Q. For any word w ∈ A∗, one can calculate a data structure in time
O(|Q| · |w|) such that any L-infix query can be answered in time O(|Q|).

It is important that the automaton is deterministic. There does not seem to be
any easy way to modify the construction below to work for nondeterministic
automata.
4 The idea for this generalization was suggested by Luc Segoufin.
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Let the input word be w = a1 · · · an. A configuration is a pair (q, i) ∈ Q ×
{0, . . . , n}, where i is called the position of the configuration. The idea is that
(q, i) says that the automaton is in state q between the letters ai and ai+1.
The successor of a configuration (q, i), for i < n, is the unique configuration on
position i + 1 whose state coordinate is obtained from q by applying the letter
ai+1. A partial run is a set of configurations which forms a chain under the
successor relation. Using this set notation we can talk about subsets of runs.

Below we define the data structure, show how it can be computed in time
O(|Q| · |w|), and then how it can be used to answer infix queries in time O(|Q|).

The data structure. The structure stores a set R partial runs, called tapes. Each
tape is assigned a rank in {1, . . . , |Q|}.

1. Each configuration appears in exactly one tape.
2. For any position i, the tapes that contain configurations on position i have

pairwise different ranks.
3. Let (q, i) be a configuration appearing in tape ρ ∈ R. The tape of its successor

configuration is either ρ or has smaller rank than ρ.

The data structure contains a record for each tape, which stores its rank as well
as a pointer to its last configuration. Each configuration in the word stores a
pointer to its tape, i.e. there is a two-dimensional array of pointers to tapes,
indexed states q and by word positions i. We have a second two-dimensional
array, indexed by word positions i and ranks j, which on position (i, j) stores
the unique configuration on position i that belongs to a tape of rank j.

Computing the data structure. The data structure is constructed in a left-to-right
pass through the word. Suppose we have calculated the data structure for a prefix
a1 · · · ai and we want to extend it to the prefix a1 · · ·ai+1. We extend all the tapes
that contain configurations for position i with their successor configurations. If
two tapes collide by containing the same configuration on position i+1, then we
keep the conflicting configuration only in the tape with smaller rank and remove
it from the tape with larger rank. We start new tapes for all configurations on
position i + 1 that are not successors of configurations on position i, and assign
to them ranks that have been freed due to collisions.

Using the data structure. Let (q, i) be a configuration. For a position j ≥ i, let
π be the run that begins in (q, i) and ends in position j. We claim that O(|Q|)
operations are enough to find the configuration from π on position j. How do
we do this? We look at the last configuration (p,m) in the unique tape ρ that
contains (q, i) (each tape has a pointer to its last configuration). If m ≥ j, then
ρ ⊇ π, so all we need to do is find the unique configuration on position j that
belongs to a tape with the same rank as ρ (this will actually be the tape ρ). For
this, we use the second two-dimensional array from the data structure. If m < j,
we repeat the algorithm, by setting (q, i) to be the successor configuration of
(p,m). This terminates in at most |Q| steps, since each repetition of the algorithm
uses a tape ρ of smaller rank.
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Comments. After seeing the construction above, the reader may ask: what is
the point of the factorization forest theorem, if it can be avoided, and the re-
sulting construction is simpler and more efficient? There are two answers to this
question. The first answer is that there are other applications of factorization
forests. The second answer is more disputable. It seems that the factorization
forest theorem, like other algebraic results, gives an insight into the structure of
regular languages. This insight exposes results, which can then be proved and
simplified using other means, such as automata. To the author’s knowledge, the
algorithm from Theorem 2 came before the algorithm from Theorem 4, which,
although straightforward, seems to be new.

3 Well-Typed Regular Expressions

In this section, we use the Factorization Forest Theorem to get a stronger version
of the Kleene theorem. In the stronger version, we produce a regular expression
which, in a sense, respects the syntactic monoid of the language.

Let α : A∗ → S be a morphism. As usual, we write type of w for α(w). A
regular expression E is called well-typed for α if for each of its subexpressions
F (including E), all words generated by F have the same type.

Theorem 5. Any language recognized by a morphism α : A∗ → S can be defined
by a union of regular expression that are well-typed for α.

Proof
By induction on k, we define for each s ∈ S a regular expression Es,k generating
all words of type s that have an α-factorization forest of height at most k:

Es,1 :=
⋃

a∈A∪{ε}
α(a)=s

a Es,k+1 :=
⋃

u,t∈S
ut=s

Eu,k ·Et,k ∪ (Es,k)+︸ ︷︷ ︸
if s = ss

.

Clearly each expression Es,k is well-typed for α. The Factorization Forests The-
orem gives an upper bound K on the height of α-factorizations needed to get all
words. The well-typed expression for a language L ⊆ A∗ recognized by α is the
union of all expressions Es,K for s ∈ α(L). �

3.1 An Effective Characterization of Σ2(<)

In this section, we use Theorem 5 to get an effective characterization for Σ2.
First, we explain what we mean by effective characterization and Σ2.

Let L be a class of regular languages (such as the class of finite languages, or
the class of star-free languages, etc.). We say L has an effective characterization
if there is an algorithm, which decides if a given regular language L belongs to
the class L. As far as decidability is concerned, the representation of L is not
important, here we use its syntactic morphism. There is a large body of research
on effective characterizations of classes of regular languages. Results are difficult
to obtain, but the payoff is often a deeper understanding of the class L.
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Often the class L is described in terms of a logic. A prominent example is
first-order logic. The quantifiers in a formula range over word positions. The
signature contains a binary predicate x < y for the order on word positions, and
unary a predicate a(x) for each letter a ∈ A of the alphabet that tests the label
of a position. For instance, the word property “the first position has label a”
can be defined by the formula ∃x

(
a(x)∧(∀y y ≥ x)

)
. A theorem of McNaughton

and Papert [14] says that first-order logic defines the same languages as star-free
expressions, and Schützenberger [16] gives an effective characterization of the
star-free languages (and therefore also of first-order logic).

A lot of attention has been devoted to the quantifier alternation hierarchy
in first-order logic, where each level counts the alterations between ∀ and ∃
quantifiers in a first-order formula in prenex normal form. Formulas that have
n − 1 alternations (and therefore n blocks of quantifiers) are called Σn if they
begin with ∃, and Πn if they begin with ∀. For instance, the language “nonempty
words with at most two positions that do not have label a” is defined by the Σ2
formula

∃x1∃x2∀y. (y �= x1 ∧ y �= x2) ⇒ a(y) .

Effective characterizations are known for levels Σ1 (a language has to be closed
under adding letters), and similarly for Π1 (the language has to be closed under
removing letters). For languages that can be defined by a boolean combination
of Σ1 formulas, an effective characterization is given by Simon [17]. The last
levels with a known characterization are Σ2 and Π2. For all higher finite levels,
starting with boolean combinations of Σ2, finding an effective characterization
is an important open problem.

Below, we show how the well-typed expressions from Theorem 5 can be used
to give an effective characterization of Σ2. The idea to use the Factorization
Forests Theorem to characterize Σ2 first appeared in [15], but the proof below
is based on [2]. Fix a regular language L ⊆ A∗. We say a word w simulates a
word w′ if the language L is closed under replacing w′ with w. That is, uw′v ∈ L
implies uwv ∈ L for any for any u, v ∈ A∗. Simulation is an asymmetric version
of syntactic equivalence: two words are syntactically equivalent if and only if
they simulate each other both ways.

Theorem 6. Let L ⊆ A∗ be a regular language, and α : A∗ → S be its syntactic
morphism. The language L can be defined in Σ2 if and only if

(*) For any words w1, w2, w3 mapped by α to the same idempotent e ∈ S
and v a subsequence of w2, the word w1vw3 simulates w1w2w3.

Although it may not be immediately apparent, condition (*) can be decided
when given the syntactic morphism of L. The idea is to calculate, using a fixpoint
algorithm, for each s, t ∈ S if some word of type s has a subsequence of type t.

The “only if” implication is done using a standard logical argument, and we
omit it here. The more difficult “if” implication will follow from Lemma 2. The
lemma uses overapproximation: we say a set of words K overapproximates a
subset K ′ ⊆ K if every word in K simulates some word in K ′.
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Lemma 2. Assume (*). Any regular expression that is well-typed for α can be
overapproximated by a language in Σ2.

Before proving the lemma, we show how it gives the “if” part in Theorem 6.
Thanks to Theorem 5, the language L can be defined as a finite union of well-
typed expressions. By Lemma 2, each of these can be overapproximated in Σ2.
The union of overapproximations gives exactly L: it clearly contains L, but
contains no word outside L by definition of simulation.

Proof (of Lemma 2)
Induction on the size of the regular expression. The induction base is simple. In
the induction step, we use closure of Σ2 under union and concatenation.

Union in the induction step is simple: the union of overapproximations for
E and F is an overapproximation of the union of E and F . For concatenation,
we observe that simulation is compatible with concatenation: if w simulates w′

and u simulates u′, then wu simulates w′u′. Therefore, the concatenation of
overapproximations for E and F is an overapproximation of E · F .

The interesting case is when the expression is F+. Since F is well typed, all
words in F have type, say e ∈ S. Since F+ is well-typed, e must be idempotent.
Let M be an overapproximation of F obtained from the induction assumption.
Let Ae be the set of all letters that appear in words of type e. As an overap-
proximation for F+, we propose

K = M ∪ M(Ae)∗M .

A Σ2 formula for K can be easily obtained from a Σ2 formula for M . Since every
word in F is built from letters in Ae, we see that K contains F+. To complete
the proof of the lemma, we need to show that every word in K simulates some
word in F+. Let then w be a word in K. If w is in M , we use the induction
assumption. Otherwise, w can be decomposed as w = w1vw3, with w1, w3 ∈ M
and v a word using only letters from Ae. By induction assumption, w1 simulates
some word w′

1 ∈ F and w3 simulates some word w′
3 ∈ F . Since simulation is

compatible with concatenation, w1vw3 simulates w′
1vw

′
3. Since e is idempotent,

each word in (Ae)∗ is a subsequence of some word of type e. In particular, v
is a subsequence of some word v′ of type s. By condition (*), w′

1vw
′
2 simulates

w′
1v

′w′
2 ∈ F+. The result follows by transitivity of simulation. �

Corollary 1. A language is definable in Σ2 if and only if it is a union of lan-
guages of the form

A∗
0a1A

∗
1 · · ·A∗

n−1anA
∗
n (2)

Proof
The “if” part is immediate, since each expression as in (2) can be described in
Σ2. The “only if” part follows by inspection of the proof of Lemma 2 where,
instead of a formula of Σ2, we could have just as well produced a union of
languages as in (2). �
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4 Transducers

The proof of the Factorization Forests Theorem also shows that factorization
forests can be computed in linear time. In this section we strengthen that state-
ment by showing that factorization forests can be produced by transducers.

A tree can be written as a word with matched parentheses. This idea can be
applied to factorizations, as shown by the following picture:

a

1

a

1

a

1

a

1

a

1

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

0 00

1

1

1

1

1

(((( (((( )))) ))))

To aid reading, we have removed the parentheses around individual letters (which
correspond to factorization forests of height 1).

We can therefore define the word encoding of a factorization as a word over
an extended alphabet A ∪ {(, )} that also contains an opening parenthesis, and
a closing one. We write wf for the word encoding of a factorization f . The
following lemma shows that factorizations can be calculated by a transducer.

Lemma 3. Fix a morphism α : A∗ → S and a height k ∈ N. There is a nonde-
terministic transducer Tk : A∗ → (A ∪ {(, )})∗, which produces on input w ∈ A∗

the word encodings of all α-factorizations of w of height at most k.

Proof
Induction on k. �
There are two problems with the transducer Tk.

The first is nondeterminism. For instance, we might want to use the trans-
ducer to find a factorization forest, and nondeterminism seems to gets in the
way. This particular problem with nondeterminism can be dealt with: as for any
nondeterministic transducer, one can compute (some) output in Tk(w) in time
proportional to the length of w times the number of states in Tk. (In particular,
assuming that the morphism α is fixed, we get a linear time algorithm for com-
puting an α-factorization.) However, nondeterminism turns out to be a serious
problem for applications to tree languages, as we will see later.

A second problem is that Tk has a lot of states. This is because the construction
of Tk, at least the easy inductive construction suggested above, gives a state space
that is exponential in k.
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A nice solution to this problem was proposed by Thomas Colcombet. He
shows that if the conditions on a factorization forest are relaxed slightly, then
the factorization can be output by a deterministic transducer with O(|S|) states.

What is the relaxation on factorizations? Recall the idempotent rule, which
allowed to split a word w into w = w1 · · ·wn as long as all the factors w1, . . . , wn

had the same idempotent type. This requirement could be stated as

α(wi) · α(wj) = α(wj) · α(wi) = α(wi) for all i, j ∈ {1, . . . , n}.

In other words, the type of any word wi absorbs the type of any other word wj ,
both on the left and on the right. In [5,6] Colcombet proposed a relaxed version
of this rule, where the type only absorbs to the right:

α(wi) · α(wj) = α(wi) for all i, j ∈ {2, . . . , n− 1}.

We will use the term forward Ramseyan rule for a rule that allows a split
w = w1 · · ·wn under the above condition. A factorization that uses the forward
Ramseyan rule instead of the idempotent rule is called a forward Ramseyan
factorization. Every factorization that uses the idempotent rule is a forward
Ramseyan factorization (since the condition in the forward Ramseyan rule is
weaker than the condition in the idempotent rule), but not vice versa.

Despite being more relaxed, in most cases the forward Ramseyan rules gives
the same results as the idempotent rule. Consider, for example, the infix problem
from Theorem 2. Suppose we have a word split w = w1 · · ·wn according the
forward Ramseyan rule, and that we know the values α(w1), . . . , α(wn). Suppose
that we want to calculate the type α(wi · · ·wj) for some i ≤ j ∈ {2, . . . , n− 1}.
Thanks to the forward Ramseyan rule, this type is

α(wi · · ·wj) = α(wi)α(wi+1)α(wi+2 · · ·wj) = α(wi)α(wi+2 · · ·wj) = · · · = α(wi) .

If we are interested in the case of i = 1 (a similar argument works for j = n),
then we first find the type α(w2 · · ·wj) and then prepend the type of α(w1).

The reason why Colcombet introduced forward Ramseyan factorizations is
that they can be produced by a deterministic transducer (we use the same en-
coding of factorizations as words over the alphabet AS).

Theorem 7 (Colcombet). Fix a morphism α : A∗ → S. There is a determin-
istic transducer Tk : A∗ → (A ∪ {(, )})∗, which produces, on input w ∈ A∗, the
word encoding of a forward Ramseyan factorization of w of height at most |S|.

We cite below two applications of this result. The first concerns trees, and the
second concerns infinite words.

Trees. Suppose we have a tree, and we want to calculate factorizations for words
that label paths in the tree. There are two difficulties, both related to the fact
that paths have common prefixes, as in the picture below:
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The first difficulty is that the combined length of all paths in the tree can be
quadratic in the number of nodes. The second difficulty is that the factoriza-
tions for two different paths may be inconsistent on their common prefixes.
Both of these difficulties are solved by using the deterministic transducer from
Theorem 7, and running it on each path, from root to leaf. Along these lines,
Theorem 7 was used in [4] to provide a linear time algorithm for evaluating
XPath queries on XML documents.

Infinite words. The transducer in Theorem 7 can also be used on an infinite
word w = a1a2 · · · . It also produces a forward Ramseyan factorization. The only
difference is that after some point, we will start to see an infinite sequence of
matched parentheses (..)(..)(..) · · · at the same nesting level (some of the initial
parentheses might remain open forever). This construction has been used in [6]
to determinize automata on infinite words (that is, convert a Büchi automaton
into an equivalent Muller automaton).

5 Limitedness

In this last section, we talk about limitedness of automata. This is the original
setting in which the Factorization Forests Theorem were used, so a discussion
of the theorem would be incomplete without mentioning limitedness. On the
other hand, the subject is quite technical (but fascinating), so we only sketch
the problem, and point the reader to the literature.

A distance automaton is a nondeterministic automaton where a subset of the
transitions is declared costly. The cost of a run ρ is the number of times it uses
the costly transitions. The cost of a word w ∈ A∗ is the minimal cost of a run
(from an initial to a finite state) over this word. If there is no run, the minimal
cost is ∞. The automaton is called limited if there is a finite bound on the cost
of all words.

We want an algorithm that decides if a distance automaton is limited. In other
words, we want to decide if the expression

max
w∈A∗

min
ρ∈runs(w)

cost(ρ)
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has a finite value. The difficulty of the problem comes from the alternation
between max and min. If the expression had been max max, the problem could
be decided by simply searching for a loop in the automaton that uses a costly
state. (In particular, the limitedness problem is straightforward for deterministic
automata.) If the expression had been min min or min max, the problem would
trivialize, since the value would necessarily be finite.

The limitedness problem is closely related to star height. The star height of
a regular expression is the nesting depth of the Kleene star. For instance, the
expression a∗ + b∗ has star height 1, while the expression ((a + b)∗aa)∗ has
star height 2, although it is equivalent to ε + (a + b)∗aa, which has star height
1. Complementation and intersection are not allowed in the expressions (when
complementation is allowed, we are talking about generalized star height). The
star height problem is to decide, given a regular language L and a number
k, if there exists an expression of star height k that defines L. This famous
problem was posed by Eggan [7], and was open for 25 years, until it was solved by
Hashiguchi [9]. An important technique in the star height problem is limitedness
of distance automata. Distance automata have been introduced by Hashiguchi
in [8], and the limitedness problem was also studied by Leung [13] and Simon [19].
The latter paper is the first important application of the Factorization Forests
Theorem.

The current state of the art in the star height problem is the approach of
Daniel Kirsten [10], who uses an extension of distance automata. The extended
model is called a distance desert automaton, and it extends a distance automaton
in two ways. First, a distance desert automaton keeps track of several costs
(i.e. if the cost is seen as the value of a counter, then there are several counters).
Second, the cost can be reset, and the cost of a run is the maximal cost seen at
any point during the run. The star height problem can be reduced to limitedness
of distance desert automata: for each regular language L and number k, one can
write a distance desert automaton that is limited if and only if the language L
admits an expression of star height k. In [10], Daniel Kirsten shows how to decide
limitedness for distance desert automata, and thus provides another decidability
proof for the star height problem.

Determinization is another important, and still open, problem for distance au-
tomata: decide if a distance automaton can be determinized or made unambigu-
ous (not always possible). Recently, Kirsten and Lombardy used factorization
forests to prove a special case, for polynomially ambiguous automata [11].

A related line of work was pursued in [3]. This paper considered a type of
distance desert automaton (under the name BS-automaton), which would be
executed on an infinite word. (The same type of automata was also considered
in [1], this time under the name of R-automata.) The acceptance condition in a
BS-automaton talks about the asymptotic values of the cost in the run, e.g. one
can write an automaton that accepts infinite words where the cost is unbounded.
The main contribution in [3] is a complementation result. This complementation
result depends crucially on the Factorization Forests Theorem.
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Abstract. While a mature theory around logics such as MSO, LTL,
and CTL has been developed in the pure boolean setting of finite au-
tomata, weighted automata lack such a natural connection with (tem-
poral) logic and related verification algorithms. In this paper, we will
identify weighted versions of MSO and CTL that generalize the classical
logics and even other quantitative extensions such as probabilistic CTL.
We establish expressiveness results on our logics giving translations from
weighted and probabilistic CTL into weighted MSO.

1 Introduction

Connections between logic and classical automata theory have become indis-
pensable tools in the modeling and verification of computer systems. Usually, a
logical formula ϕ appears as a specification, a property that a system has to ful-
fill, whereas an automaton A represents a finite-state abstraction of the system
itself. Prominent examples of specification formalisms are monadic second-order
(MSO) logic [35], the μ-calculus [26], and the temporal logics LTL [31] and
CTL [11]. Two questions that naturally arise in this context are the satisfiability
problem (does there exist any model of ϕ?) and the model-checking problem (do
all behaviors of A satisfy ϕ?) [12].

Both logic and automata semantics give rise to a formal language that sep-
arates accepted from non-accepted behaviors. This corresponds to assigning a
truth value, taken from the boolean semiring, to a behavior. When it comes to
modeling and verifying quantitative systems, however, the value of a behavior is
not necessarily boolean but might, e.g., be a probability of acceptance or repre-
sent a reward. Classical automata theory and logic is not suited to account for
such subtleties. This led to various specialized extensions of finite automata (over
finite or infinite behaviors) such as probabilistic automata [36, 33], timed au-
tomata [1], or automata with energy constraints [6], each coming with dedicated
specification formalisms and approaches to related model-checking problems. In
the particular case of stochastic systems, the temporal logics PCTL [24] and
PCTL∗ [15] and corresponding model-checking techniques have been developed
to reason about probabilities of events.

A generic concept of adding weights to qualitative systems is provided by the
theory of weighted automata [27,28]. Unlike finite automata, which are based on
� Partially supported by projects ARCUS Île de France-Inde and ANR-06-SETIN-003
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the boolean semiring, weighted automata build on more general structures such
as the natural or real numbers (equipped with the usual addition and multipli-
cation) or the probabilistic semiring. Hence, a weighted automaton associates
with any possible behavior a weight beyond the usual boolean classification of
“acceptance” or “non-acceptance”. Automata with weights have produced a well-
established theory and come, e.g., with a characterization in terms of rational
expressions, which generalizes a famous counterpart in the unweighted setting.
Equipped with a solid theoretical basis, weighted automata finally found their
way into numerous application areas such as natural language processing and
speech recognition [30], or digital image compression [14].

What is still missing in the theory of weighted automata is a satisfactory con-
nection with logic that could lead to a general approach to related satisfiability
and model-checking problems. A first step towards a logical characterization of
weighted automata has been made in terms of a weighted MSO logic captur-
ing the recognizable formal power series (i.e., the behaviors of finite weighted
automata) [16, 17]. This generalizes the classical equivalence of MSO logic and
finite automata [8,21]. While, however, in the qualitative setting, temporal logics
such as LTL and CTL appear as fragments of MSO logic and the μ-calculus, a
natural transfer of such an embedding to weighted automata is beyond the state
of the art. Let us mention here some promising works that deal with this issue.
In [7], Buchholz and Kemper propose valued computation-tree logic (CTL$) and
corresponding model-checking algorithms for weighted Kripke structures, but do
not address satisfiability and expressiveness issues. A weighted linear μ-calculus
on words was defined by Meinecke, who establishes its expressive equivalence
to certain ω-rational formal power series [29]. An extension towards branching
structures, the identification of temporal-logic fragments, and the definition of
a corresponding model-checking problem are left for future work.

Actually, only very few efforts have been made to establish a smooth connec-
tion of weighted automata with MSO and, in particular, temporal logics. We
do not aim at giving final solutions to these largely open questions, but will
propose a precise description of missing concepts. It is the aim of this paper to
identify a weighted MSO logic as well as linear-time and branching-time logics
that subsume, in a natural manner, existing quantitative logics. We will actually
study the relation between our new logics and the branching-time logics PCTL
and PCTL∗, thus putting an emphasis on probabilistic systems.

Outline. In Section 2, we settle some notation and introduce semirings and
weighted automata. Towards the end of that section, we identify probabilistic
automata as a special case, which can be embedded in our framework by us-
ing a specific semiring. Sections 3 and 4 present an extended weighted MSO
logic and, respectively, weighted versions of the temporal logics CTL and CTL∗.
They are all interpreted over unfoldings of weighted automata as introduced in
Section 2 and include as special cases PCTL and PCTL∗. In Section 5, we es-
tablish that our weighted temporal logic is expressible in our extended weighted
MSO, transferring the well-known qualitative counterpart to the weighted case.
It is also shown that the probabilistic logic PCTL can be embedded in weighted



20 B. Bollig and P. Gastin

MSO. We conclude with Section 6, in which we suggest several directions for
future work.

2 Preliminaries

Words. Let Σ be an alphabet, i.e., a nonempty finite set. The set of finite words
over Σ is denoted by Σ∗, the set of infinite words by Σω. Moreover, we let
Σ+ = Σ∗ \ {ε}, ε denoting the empty word, and Σ∞ = Σ∗ ∪Σω. For w ∈ Σ∞,
the length of w is denoted by |w| ∈ � ∪ {ω}. In particular, |ε| = 0, and |w| = ω
iff w ∈ Σω. Let w = a1a2 . . . ∈ Σ∞. For i ≤ |w|, we denote w[i] = a1 . . . ai the
prefix of w of length i, in particular, w[0] = ε. We denote by Pref(w) the set
of finite prefixes of w. Instead of u ∈ Pref(v), we also write u ≤ v. We write
u < v if, in addition, u �= v. The mapping Pref is extended to sets L ⊆ Σ∞

in the expected manner: Pref(L) =
⋃

w∈L Pref(w). We say that L ⊆ Σ∞ is
prefix-closed if Pref(L) ⊆ L.

Semirings. A semiring is a structure K = (K,⊕,⊗,0,1) where K is a set, 0
and 1 are constants, and ⊕ : K × K → K and ⊗ : K × K → K are binary
operations, called addition and, respectively, multiplication such that (K,⊕,0)
is a commutative monoid, (K,⊗,1) is a monoid, multiplication distributes over
addition, and 0 ⊗ k = k ⊗ 0 = 0 for every k ∈ K. We say that K is commutative
if ⊗ is commutative. Some popular semirings are the semiring of natural numbers
(�,+, ·, 0, 1) (with the usual addition and multiplication on natural numbers),
the 2-valued Boolean algebra B = ({0,1},∨,∧,0,1), and the tropical semiring
(� ∪ {∞},min,+,∞, 0). In this paper, we will focus on Prob = (�≥0,+, ·, 0, 1),
the probabilistic semiring, which will allow us to model probabilistic systems.1

The classical semirings work fine for finite trees. However, the trees that we
consider might in general be infinite. We will therefore deal with infinite sums
and products wrt. ⊕ and ⊗, respectively. Unfortunately, unlike finite sums and
products, they do not always have a value in the semiring at hand. However, we
can identify examples of infinite sums and products that are essential for our
purposes and that are always defined. For arbitrary semirings (K,⊕,⊗,0,1),
a (possibly uncountable) index set I, and ki ∈ K for i ∈ I, the sum

⊕
i∈I ki

is defined whenever ki �= 0 for only finitely many i. Similarly,
⊗

i∈I ki is de-
fined if ki �= 1 for finitely many i, assuming the semiring commutative or using
some total order on the index set I. Considering concrete semirings such as the
real numbers, a prominent infinite sum is the geometric series

∑
n∈�

1
2n . We

let its value be the limit limn→∞
∑

n∈�
1
2n = 2 of its partial sums, which is

therefore defined. An example of an undefined infinite sum over the real num-
bers is

∑
n∈�

1
n , whose value is not in �. We refer to the textbook [25] for a

comprehensive introduction into infinite series.
If not otherwise stated, K will, in the following, be an arbitrary semiring

(K,⊕,⊗,0,1) and Σ will be an alphabet.
1 Note that ([0, 1], max, ·, 0, 1) is sometimes considered as the probabilistic semiring as

its universe restricts to probabilities. It is, however, not suitable for our purposes,
as it neglects addition and, thus, does not allow one to model non-determinism.
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Weighted Trees. The behavior of a non-quantitative finite-state system is of-
ten described as a (possibly infinite) tree-unfolding, whose paths constitute all
possible execution sequences of the system. When we move to the quantitative
setting where transitions come with weights from a semiring, then this unfolding
is equipped with weights as well, which gives rise to the following definition.

Definition 1. Let D be a nonempty finite set of directions. A weighted tree
(over D, K, and Σ) is a partial mapping t : D∗ ⇀ K × Σ such that dom(t) is
prefix-closed 2 and t(ε) = (1, a) for some distinguished element a from Σ.3

The set of trees over D, K, and Σ is denoted by Trees(D,K, Σ). We will, however,
simply write Trees if the parameters are understood. Let t ∈ Trees be a weighted
tree. It is convenient to split t into two partial mappings κt : D∗ ⇀ K and
�t : D∗ ⇀ Σ to extract from t(u) = (k, a) the values κt(u) = k and �t(u) = a.
Elements from dom(t) are called nodes of t. The empty word ε ∈ dom(t) is the
root. A node u is a leaf if it is maximal in dom(t) for the prefix ordering, i.e., if
uD∩dom(t) = ∅. If u is not a leaf, then it has some successors, which are nodes
of the form ud with d ∈ D. The set of leaves of t is denoted by Leaves(t). A
branch of t is a leaf or an infinite word whose finite prefixes are in dom(t). We
thus define Branches(t) to be Leaves(t)∪{u ∈ Dω | Pref(u) ⊆ dom(t)}. Tree t is
called finite if dom(t) is finite. Otherwise, it is called infinite. Note that we deal
with unordered trees of bounded degree: we do not fix a particular order on D,
and every node has at most |D| successors.

We sometimes manipulate subtrees or restrictions of trees that we define now.
For u ∈ dom(t), the subtree of t rooted at u is denoted by tu and given by
tu(w) = t(uw) for all w ∈ D+ (and indeed tu(ε) = (1, a)). Given a language
L ⊆ D∞, the tree t|L is the restriction of t to dom(t) ∩ Pref(L): t|L(u) = t(u)
if u ∈ dom(t) ∩ Pref(L), and t|L(u) is undefined otherwise. Alternatively, one
may extract a tree based on a language L ⊆ Σ∞ by keeping only those branches
whose labeling wrt. � is in Pref(L). Formally, we define

L̃ = {u ∈ D∗ | �t(u[1])�t(u[2]) · · · �t(u) ∈ Pref(L)}

and we are interested in t|L̃. When we further restrict the tree to branches that
end in nodes located at directions from a set D′ ⊆ D, then we obtain trees
t|L∩D∗D′(u) and t|L̃∩D∗D′(u) respectively.

Let us define a partial mapping κ̂ : Trees ⇀ K, which associates with a tree
its measure, a weight in the semiring K, if it exists. Intuitively, we sum over
the weights of every branch. The weight of a branch, in turn, is the product of
weights that are assigned to its nodes. So let, for t ∈ Trees ,

κ̂(t) =
⊕

u∈Branches(t)

⊗
v∈Pref(u)

κt(v) =
⊕

d∈D∩dom(t)

κt(d)⊗ κ̂(td) .

2 Let dom(t) be the set of words u ∈ D∗ such that t(u) is defined.
3 The value of ε will actually not be relevant so that we assume a unique value (1, a).
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Fig. 1. A finite weighted tree over Prob, and {a, b}

Example 1. Figure 1 depicts a finite weighted tree t over Prob, and Σ = {a, b}.
The branches of t are its leaves. We have

κ̂(t|{̃aa}) =
1
3
· 1
3

+
1
3
· 1
3

+
1
3
· 2
3

=
4
9

.

Weighted Automata. In a weighted automaton, the values of a semiring that are
collected along a run of the automaton are multiplied, while values of runs are
summed-up.

Definition 2. A weighted automaton over K and Σ is a quadruple (Q, λ, μ, γ)
where Q is the nonempty finite set of states, μ : Σ → KQ×Q is the transition
weight function, and λ, γ ∈ Q → K provide weights for entering and leaving a
state, respectively.

Let A = (Q, λ, μ, γ) be a weighted automaton over K and Σ. For a ∈ Σ, μ(a) is
a (Q×Q)-matrix, and we let μ(a)p,q or also μ(p, a, q) refer to its (p, q)-entry. The
mapping μ uniquely extends to a monoid homomorphism Σ∗ → (KQ×Q, ·, id)
with unit matrix id where idp,p = 1 and idp,q = 0 if p �= q. The semantics of
A is given as a mapping [[A]] : Σ∗ → K called a formal power series. Namely,
for w ∈ Σ∗, one lets [[A]](w) = λ · μ(w) · γ with the usual matrix multiplication,
considering λ as a row and γ as a column vector.

In the following, we will make two assumptions on initial and final weights:

(1) there is q ∈ Q such that λ(q) = 1 and λ(q′) = 0 for all q′ ∈ Q \ {q}, and
(2) for all q ∈ Q, γ(q) ∈ {0,1}.

It is folklore that assuming (1) and (2) does not restrict generality, as any
weighted automaton A = (Q, λ, μ, γ) can be transformed into a weighted au-
tomaton A′ that satisfies (1) and (2) and such that [[A]](w) = [[A′]](w) for all
w ∈ Σ+. Note that the transformation does not necessarily preserve the weight
originally assigned to the empty word.

As we will, in the following, restrict to weighted automata that satisfy (1) and
(2), we can represent A as the tuple (Q, q0, μ, F ) where the initial state q0 ∈ Q
is the unique state q with λ(q) = 1, and F = {q ∈ Q | γ(q) = 1} is the set of
final states.
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Fig. 2. Weighted automata over Prob

We will now define an alternative semantics and associate with a weighted
automaton A = (Q, q0, μ, F ) its unfolding in terms of an infinite weighted tree
over D = Σ×Q, K, and Σ. Formally, the unfolding ofA, denoted by tA, is defined
to be the tree t ∈ Trees(D,K, Σ) such that, for all u ∈ D∗ and (a, q), (a′, q′) ∈ D,
the following hold: κt((a, q)) = μ(q0, a, q), κt(u(a, q)(a′, q′)) = μ(q, a′, q′), and
�t(u(a, q)) = a. For every w ∈ Σ+, we have

[[A]](w) = κ̂
(
tA|{̃w}∩D∗(Σ×F )

)
.

Example 2. Consider Figure 2 depicting weighted automata A1 and A2 over
Prob and Σ. In all cases, q0 is both the initial state and the only final state. Miss-
ing values in A1 and A2 are supposed to be 0. For n ∈ �, we have [[A1]](abn) = 1

3
if n is even, and [[A1]](abn) = 2

3 if n is odd. The set [[A1]](Σ∗) = {0, 1
3 ,

2
3 , 1} is ac-

tually finite. This does not apply to [[A2]]. We have, e.g., [[A2]](a) = [[A2]](aa) = 1
3

and [[A2]](aaa) = 5
27 . Note that [[A2]](w) = 0 whenever w ends with the letter b.

Figure 1 depicts the unfolding of A2 up to depth 2, i.e., tA2
|D2 .

When we consider our examples to be probabilistic automata (see Definitions 3,
4), it will be evident to which extent all these values can be interpreted as
probabilities of acceptance.

Probabilistic Finite Automata. There is a wide range of automata models that
incorporate probabilities. We refer the reader to [36, 34] for an overview. Our
generic framework of weighted automata allows us to treat many of them in a
unified manner.

One basically distinguishes between reactive and generative probabilistic au-
tomata. Reactive models are input-driven: an action (from our alphabet Σ)
determines a probability distribution on the set of states. The next state of an
execution is then randomly drawn according to this distribution. In a genera-
tive model, the next state and the action are chosen according to a probability
distribution so that we might call the model probability-driven.
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Definition 3. A reactive probabilistic finite automaton (rPFA) over Σ is a
weighted automaton (Q, q0, μ, F ) over Prob and Σ such that, for every q ∈ Q
and a ∈ Σ, we have

∑
q′∈Q μ(q, a, q′) ∈ {0, 1}.4 In other words, we require that

μ(a) is a stochastic matrix for every action a ∈ Σ.

The semantics of an rPFA A = (Q, q0, μ, F ) computes, for each word w ∈ Σ∗,
a probability of acceptance as defined directly in [33]. In the following sections,
we will consider mechanisms that allow us to extract from the formal power
series [[A]] a boolean language. We may, for example, be interested in the set
L = {w ∈ Σ∗ | [[A]](w) > p} of words whose probabilities exceed a given
threshold p ∈ [0, 1]. In general, L can be non-regular, unless p is an isolated
cut-point of [[A]] [33]. Moreover, it is in general undecidable if L is empty:

Theorem 1 (Rabin [33]). The following problem is undecidable:
Input: Alphabet Σ; rPFA A over Σ; p ∈ [0, 1].
Question: Is there w ∈ Σ∗ such that [[A]](w) > p ?

Definition 4. A generative probabilistic finite automaton (gPFA) over Σ is a
weighted automaton (Q, q0, μ, F ) over Prob and Σ such that, for every q ∈ Q,
we have

∑
(a,q′)∈Σ×Q μ(q, a, q′) ∈ {0, 1}.5

Example 3. Let us reconsider our sample automata from Figure 2 (cf. Exam-
ple 2) and let w ∈ Σ∗. As A1 is an rPFA, the weight [[A1]](w) can be interpreted
as the probability of reaching a final state when w is used as a scheduling policy.
E.g., [[A1]](aab) = 2

3 . On the other hand, [[A2]](w) is the probability of executing
w and ending in a final state, under the precondition that we perform |w| steps.
Remember that, e.g., [[A2]](a) = [[A2]](aa) = 1

3 .

3 Extended Weighted MSO

A weighted MSO logic was proposed by Droste and Gastin [16, 17] in order to
extend Büchi’s and Elgot’s fundamental theorems [8, 21, 9] from the boolean
setting to the quantitative (weighted) one. This logic was designed in order
to obtain an equivalence between weighted languages (or formal power series)
generated by weighted automata and those definable in this weighted MSO logic.

Other quantitative logics have been introduced and studied, e.g., PCTL [24]
or PCTL∗ [15,10] which are probabilistic versions of the computation tree logic.
These logics are evaluated on probabilistic transition systems, which are nothing
4 Another common term for this model is simply probabilistic finite automaton [33].

When we neglect final states and consider the unfolding semantics rather than formal
power series, then rPFA essentially correspond to the classical model of a Markov
decision process (MDP) [32].

5 If Σ is a singleton set, then a gPFA can be understood as a discrete-time Markov
chain (DTMC). Otherwise, elements from Σ can be considered as sets of propositions
that hold in the target state of a corresponding transitions. Then, we actually deal
with a labeled DTMC [24].
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but special instances of weighted automata as seen in Section 2. Hence, compar-
ing weighted MSO and these logics is a natural question. It is easy to observe
that these logics are uncomparable. Though formally correct, this answer is not
very satisfactory.

Our aim is to slightly extend the weighted MSO logic in order to obtain
classical quantitative logics such as PCTL and PCTL∗ as fragments. The crucial
quantitative aspect of these logics is the probability of the set of infinite paths
satisfying some linear time (LTL) property. We find it convenient to collect the
set of paths in the weighted tree which is the unfolding of the probabilistic
transition system. Hence, the models of our extended weighted MSO will be
weighted finite or infinite trees.

The original weighted MSO logic on finite words [16] has been extended to
various settings and in particular to finite trees [19] or infinite words [18] still
with the aim of obtaining weighted versions of Büchi’s and Elgot’s fundamental
theorems. These logics are also uncomparable with PCTL or PCTL∗.

The key construction which is missing from all above mentioned weighted
MSO logics is the possibility to transform a weighted formula into a boolean
one, e.g., by using some threshold mechanism. Hence, this will be the main
feature of our extension.

Our weighted MSO logic is based on a (finite) vocabulary C of symbols �� ∈ C
with arity(��) ∈ �. We always include negation ¬, disjunction ∨ and conjunc-
tion ∧ in the vocabulary. We may also include the equality predicate = and if
the semiring K is ordered we may use the less than predicate <. Each symbol
�� ∈ C is given a semantics [[��]] : Karity(�	) → K. To comply with the original
weighted MSO, we interpret disjunction as addition [[∨]] = ⊕ and conjunction as
multiplication [[∧]] = ⊗. Depending on the semiring, the semantics of negation
may be only partially defined. In any case, it is at least defined on 0 and 1 and
exchanges these two values: [[¬]](0) = 1 and [[¬]](1) = 0. For the probabilistic
semiring, we may define negation on the interval [0, 1] by [[¬]](k) = 1 − k or we
can even make it totally defined with [[¬]](k) = max(0, 1− k).

Definition 5. The syntax of our weighted MSO logic is given by the grammar

ϕ ::= k | κ(x) | Pa(x) | x ≤ y | x ∈ X |
| ��(ϕ1, . . . , ϕarity(�	)) | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where k ∈ K, a ∈ Σ, x, y are first-order variables, X is a set variable and �� ∈ C.
We denote by MSO(K, Σ, C) the collection of all such formulas.

The original weighted MSO introduced in [16] is the fragment with C = {∨,∧}
and which does not use κ(x). In our extension, the semantics of existential and
universal quantifications will also be sums and products. In addition to the
symbols �� ∈ C whose semantics was already discussed, there is a new unary
operator κ(x) which gives the weight of the corresponding node in our models
which are weighted trees.

Formally, we fix t : D∗ ⇀ K×Σ a weighted tree. Let V be a finite set of first-
order and second-order variables. A (V , t)-assignment σ is a function mapping
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Table 1. Semantics of wMSO(K, Σ, C)

[[k]]V (t, σ) = k

[[κ(x)]]V (t, σ) = κt(σ(x))

[[Pa(x)]]V(t, σ) =

{
1 if �t(σ(x)) = a

0 otherwise

[[x ≤ y]]V(t, σ) =

{
1 if σ(x) ≤ σ(y)
0 otherwise

≤ is the prefix
ordering on dom(t)

[[x ∈ X]]V (t, σ) =

{
1 if σ(x) ∈ σ(X)
0 otherwise

[[�	(ϕ1, . . . , ϕr)]]V(t, σ) = [[�	]]([[ϕ1 ]]V(t, σ), . . . , [[ϕr]]V (t, σ)) if arity(�	) = r

[[∃x.ϕ]]V (t, σ) =
⊕

u∈dom(t)

[[ϕ]]V∪{x}(t, σ[x → u])

[[∃X.ϕ]]V (t, σ) =
⊕

U⊆dom(t)

[[ϕ]]V∪{X}(t, σ[X → U ])

[[∀x.ϕ]]V (t, σ) =
⊗

u∈dom(t)

[[ϕ]]V∪{x}(t, σ[x → u])

[[∀X.ϕ]]V (t, σ) =
⊗

U⊆dom(t)

[[ϕ]]V∪{X}(t, σ[X → U ])

first-order variables in V to elements of dom(t) and second-order variables in V
to subsets of dom(t). If x is a first-order variable and u ∈ dom(t) then σ[x→ u]
is the (V ∪ {x}, t)-assignment which assigns x to u and acts like σ on all other
variables. Similarly, σ[X → U ] is defined for U ⊆ dom(t).

As usual, a pair (t, σ) where σ is a (V , t)-assignment will be encoded using an
extended alphabet ΣV = Σ × {0, 1}V . More precisely, we will write a weighted
tree over ΣV as a pair (t, σ) : D∗ ⇀ K × ΣV where t is the projection over
K×Σ and σ is the projection over {0, 1}V . Note that dom(t) = dom(σ). Now, σ
represents a valid assignment over V if for each first-order variable x ∈ V , there
is exactly one node u ∈ dom(σ) such that σ(u)(x) = 1.

Let now ϕ ∈ wMSO(K, Σ, C). We denote as usual by Free(ϕ) the set of free
variables in ϕ. When Free(ϕ) ⊆ V , we give in Table 1 the inductive definition
of the semantics as a (partial) formal power series [[ϕ]]V : Trees(D,K, ΣV) ⇀ K.
We simply write [[ϕ]] for [[ϕ]]Free(ϕ).

Note that the semantics of a formula may be only partially defined. This
may arise in particular if the semantics of some symbol in C is partially defined,
e.g., for negation. The other difficulty is with the semantics of existential and
universal quantifications.

First, if the semiring is not commutative we have to fix some order for the
products of the universal quantifications. In the sequel, we will only use commu-
tative semirings so this is not a problem. But it is also possible to deal with non
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commutative products. For instance, we may use the hierarchical total ordering
≺ on the nodes u ∈ dom(t) for the definition of [[∀x.ϕ]]. With this linear order,
(dom(t),≺) is isomorphic to an initial segment of (�,≤). Hence, the characteris-
tic function of a subset U ⊆ dom(t) can be identified with a word in {0, 1}dom(t).
So the lexicographic order on words induces a total order on the powerset of
dom(t) which can be used to compute the product over U ⊆ dom(t).

Second, if the tree t is infinite, we are faced with infinite sums and infinite
products. We refer to Section 2 for a discussion on when this is well-defined.

A formula is boolean if it only takes values in {0,1} ⊆ K. We call bMSO
the boolean fragment of wMSO which consists of formulas using only constants
k ∈ {0,1} and symbols �� ∈ {¬,∧}, and which does not use κ(x) or existential
quantifications. It is easy to see that each formula ϕ ∈ bMSO takes only values
in {0,1} and for these formulas, the weighted semantics in K corresponds to the
classical boolean semantics in B. For convenience, we introduce macros for the
boolean versions of disjunction and existential quantifications:

ϕ1 ∨ ϕ2
def= ¬(¬ϕ1 ∧ ¬ϕ2) ∃x.ϕ

def= ¬∀x.¬ϕ ∃X.ϕ
def= ¬∀X.¬ϕ

These boolean formulas are a convenient alternative to the unambiguous formulas
introduced in [16]. We also use a boolean version of implication which is simply
defined by

ϕ1
+−→ ϕ2

def= ¬ϕ1 ∨ (ϕ1 ∧ ϕ2) .

This formula is also useful when ϕ1 is boolean but not necessarily ϕ2. Within
a universal quantification, it allows us to compute the product of weights given
by ϕ2 provided ϕ1 is satisfied (see Example 4 below). If ϕ1 is boolean, we have

[[ϕ1
+−→ ϕ2]]V(t, σ) =

{
[[ϕ2]]V(t, σ) if [[ϕ1]]V(t, σ) = 1
1 otherwise.

Note that the restricted form (x ∈ X) +−→ k for k ∈ K was introduced in [16,17]
for the same purpose.

Example 4. To exemplify weighted MSO, we study, as models, unfoldings of the
weighted automatonA2 over Prob and Σ = {a, b} from Figure 2 with set of states
Q = {q0, q1} and set of directions D = Σ × Q. We will, thus, define trees from
Trees(D,Prob, Σ) and formulas from MSO(Prob, Σ, {∨,∧,¬,≤}). Consider the
infinite weighted tree t1 = tA2 as well as the finite tree t2 = tA2

|D2 (see Figure 1).
We assume that roots are always labeled with (1, a).

For a start, let ϕ1 = ∃x.(Pb(x) ∧ (κ(x) > 0)). The semantics of ϕ1 is the
number of nodes that carry b in their labeling and have a positive weight. Though
we refer to the probabilistic semiring, formula ϕ1 has therefore nothing to do
with a probability. The value [[ϕ1]](t1) is not even defined, as it constitutes a
non-convergent infinite sum. On the other hand, [[ϕ1]](t2) = 4.

Now look at ϕ2 = ∀x.((Pa(x) ∧ (κ(x) > 0)) +−→ κ(x)) which multiplies the
positive values of all a-labeled nodes. We have [[ϕ2]](t1) = 0 (it is actually an
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infinite product which converges to 0) and [[ϕ2]](t2) = 4
36 . Though the semantics

of ϕ2 is always in the range [0, 1], it can hardly be interpreted as a probability. In
Section 5, we will identify a syntactical fragment of MSO that is suited to speak
about probabilities and accounts for the probability space of branches (paths)
of a given tree. The next property will be expressible in this fragment.

Let us first assume a boolean macro formula pathto(X,x) stating that X
forms a finite branch in the tree starting at the root and ending in x. We omit the
precise definition, which is similar to the formula path(x,X) given in Section 5.
Now consider

ϕ3 = ∃X∃x.(pathto(X,x) ∧ Pb(x) ∧ ∀y.(y < x
+−→ Pa(x)) ∧ ∀y.(y ∈ X

+−→ κ(y)))

Indeed, [[ϕ3]] computes the probability of the set of branches that contain at
least one b. We have [[ϕ3]](t1) = 1 (note that [[ϕ3]](t1) is an infinite sum whose
partial sums converge to 1). Moreover, [[ϕ3]](t2) = 5

9 . In Section 4, we will define
a logic, called weighted CTL∗, whose specialization to Prob allows us to reason
about probabilities. We will show that MSO covers this fragment, by giving
corresponding formulas, which actually resemble the formula ϕ3: one considers
the sum over the value of paths that satisfy a given boolean property.

We show now that our weighted MSO is undecidable in general. This is obtained
for the probabilistic semiring Prob using the binary predicate less than even if
we use unweighted words instead of weighted trees as models.

The (general) satisfiability problem is defined as follows: given a sentence
ϕ ∈ wMSO(K, Σ, C), does there exist a weighted tree t ∈ Trees(D,K, Σ) such
that [[ϕ]](t) �= 0.

Proposition 1. The satisfiability problem for wMSO(Prob, Σ, {∨,∧,¬,≤}) is
undecidable.

This result is obtained with a reduction of the emptiness problem for reactive
probabilistic finite automata (rPFA). Hence, it also holds if we restrict to un-
weighted (finite) trees or to unweighted (finite) words.

Proof. Let C = {∨,∧,¬,≤} and let A = (Q, q0, μ, F ) be a rPFA over Σ. By [16]
there is a sentence ϕ ∈ wMSO(Prob, Σ, {∨,∧,¬}) which does not use the unary
operator κ(x) such that for all unweighted words w ∈ Σ∗ we have [[ϕ]](w) =
[[A]](w). We may even assume that the formula ϕ is existential (i.e., of the form
∃X1 . . . ∃Xn.ψ) and is syntactically restricted (see [17]).

Now, let p ∈ [0, 1] and consider the weighted formula p < ϕ using the binary
predicate ≤. Then, for all unweighted words w ∈ Σ∗ we have [[p < ϕ]](w) �= 0 iff
[[p < ϕ]](w) = 1 iff [[A]](w) > p iff the automaton A with threshold p accepts a
nonempty language. By Theorem 1 we conclude that the satisfiability problem
wrt. (unweighted) words is undecidable for wMSO(Prob, Σ, {∨,∧,¬,≤}). Since
the formula ϕ does not use κ(x), whether we consider weighted or unweighted
words or trees does not make any difference. ��
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4 Weighted CTL∗

We fix an ordered semiring K and a finite set Prop of atomic propositions. The
corresponding alphabet is Σ = 2Prop . As for wMSO we use a vocabulary C of
symbols that includes {¬,∨,∧,≤} with the semantics given in Section 3. In our
weighted CTL∗, we distinguish as usual state formulas and path formulas. The
path formulas are not quantitative so we call them boolean path formulas. The
state formulas are quantitative so we use the terminology weighted state (or
node) formulas. When a state formula only takes values in {0,1} we call it a
boolean state formula.

Definition 6. The syntax of wCTL∗(K,Prop, C) is given by the grammar

ϕ ::= k | κ | p | ��(ϕ1, . . . , ϕarity(�	)) | μ(ψ)
ψ ::= ϕ | ψ ∧ ψ | ¬ψ | ψ SU ψ

where p ∈ Prop, k ∈ K, �� ∈ C, ϕ is a weighted state formula and ψ is a boolean
path formula.

Models forwCTL∗(K,Prop, C) areweighted trees t ∈ Trees(D,K, Σ). Forweighted
state formulasϕwe alsohave tofix anodeu ∈ dom(t), and the semantics [[ϕ]](t, u) ∈
K is a value in the semiring. For boolean path formulas ψ we fix both a path w ∈
Branches(t) and a node u ≤ w on this path, and the semantics defines whether the
formula holds at node u on path w, denoted t, w, u |= ψ. The semantics are defined
by induction on the formula: see Table 2 for weighted state formulas and Table 3
for boolean path formulas.We may alsodefine the semantics ofwCTL∗(K,Prop, C)
formulas on weighted automata by using the associated unfolding which is a
weighted tree.

The semantics of μ(ψ), the measure of ψ, is always well-defined for finite trees.
But if we consider infinite trees, it may involve infinite sums or products which
are not always defined. We discuss below the special case of the probabilistic
semiring for which the natural semantics of μ(ψ) on infinite trees is given by
the probability measure on the sequence space. In this way, we will obtain the
probabilistic logics PCTL and PCTL∗ as framents of wCTL∗.

Table 2. Semantics of weighted state formulas in wCTL∗(K,Prop, C)

[[k]](t, u) = k

[[κ]](t, u) = κt(u)

[[p]](t, u) =

{
1 if p ∈ �t(u)
0 otherwise

[[�	(ϕ1, . . . , ϕr)]](t, u) = [[�	]]([[ϕ1 ]](t, u), . . . , [[ϕr ]](t, u)) if arity(�	) = r

[[μ(ψ)]](t, u) =
⊕

w∈Branches(t) | t,w,u|=ψ

⊗
v |u<v≤w

κt(v)
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Table 3. Semantics of boolean path formulas in wCTL∗(K,Prop, C)

t, w, u |= ϕ if [[ϕ]](t, u) �= 0

t, w, u |= ψ1 ∧ ψ2 if t, w, u |= ψ1 and t, w, u |= ψ2

t, w, u |= ¬ψ if t, w, u �|= ψ

t, w, u |= ψ1 SU ψ2 if ∃u < v ≤ w : (t, w, v |= ψ2 and ∀u < v′ < v : t, w, v′ |= ψ1)

But first we derive some useful LTL modalities. As usual, the classical next
and until modalities can be obtained from the strict until:

Xψ
def= 0 SU ψ ψ1 U ψ2

def= ψ2 ∨ (ψ1 ∧ (ψ1 SU ψ2))

When dealing with probabilistic systems such as Markov chains, it is also con-
venient to have a bounded version of until. To this purpose, logics like PCTL or
PCTL∗ use formulas of the form ψ1 U≤n ψ2 for n ∈ �. The semantics is that ψ2
must hold within n time units and until then ψ1 should hold. We may view U≤n

or SU≤n as macros which are easily expressible using the next modality X.
The fragment wCTL of wCTL∗ consists only of state formulas and the ar-

bitrary μ(ψ) construct of wCTL∗ is restricted to μ(ϕ1 SU≤n ϕ2) where ϕ1 and
ϕ2 are (boolean) state formulas and n ∈ � ∪ {∞} (here SU≤∞ is the usual
unbounded strict until SU).

Example 5. Figure 3 depicts a gPFA A = (Q, q0, μ) over Σ = 2Prop with
Prop = {p, r}, and the initial part of its (infinite) unfolding t = tA. In both
pictures, transitions and, respectively, nodes that carry the weight 0 are omit-
ted. Moreover, inside every node u ∈ D∗ of t we have written the state reached
by the corresponding path.

Consider the quantitative state formula ϕ = μ(1SUr) ∈ wCTL. Table 2 allows
us to compute the semantics of ϕ for finite trees. For instance, [[ϕ]](t|D3) = 19

27 .
Note that the boolean formula ϕ > 4

9 is contained in the fragment PCTL defined
below.
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Fig. 3. gPFA A = (Q, q0, μ) over Σ = 2{p,r} and its unfolding tA,q0
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For n ≥ 1, consider the formula ψn = μ(Xn(μ(X p) < μ(X r))) > 4
9 from

wCTL∗(Prob,Prop, {¬,∧,≤}). Formula ψn is neither in wCTL nor in PCTL∗

(defined below). Again, Tables (2,3) allow us to compute the semantics on finite
trees. For instance, the boolean formula μ(X p) < μ(X r) holds precisely in state
q1. We can check that for n < m we have [[ψn]](t|Dm) = 1 iff n ≥ 2.

Finally, using the semantics from Table 2, it is not clear how to compute [[ϕ]](t)
since we have to deal with an infinite sum of infinite products. A possibility is
to set [[ϕ]](t) = 0 since the infinite products all converge to 0. But this is not the
desired semantics which should measure the probability that r eventually holds.
Hence, we should obtain [[ϕ]](t) = 1.

Therefore, we extend below the semantics to infinite trees in a suitable way.
For finite trees, however, both semantics coincide.

We restrict to the probabilistic semiring Prob and to trees that are unfoldings of
generative probabilistic finite automata (gPFA). More precisely, we consider a
gPFA A = (Q,μ) over Σ = 2Prop (the initial state will be fixed later and final
states are irrelevant in the following). Usually, atomic propositions are associated
with states. Here they are associated with transitions which is a minor difference
as already noticed in Definition 4. We also assume that there are no deadlock,
i.e.,

∑
(a,q′)∈Σ×Q μ(q, a, q′) = 1 for all q ∈ Q. This is not a restriction since we

may always add a sink state.
Let tA,q ∈ Trees(D,Prob, Σ) be the full tree over D = Σ × Q obtained by

unfolding the gPFA A with initial state q ∈ Q (see definition in Section 2).
Since A is fixed, we simply write tA,q = tq. As they arise from a finite state
probabilistic system A the trees tq are regular. More precisely, for q ∈ Q and
u ∈ D∗, we define last(q, u) = q if u = ε and last(q, u) = q′ if u ∈ D∗(Σ × {q′}).
It is easy to check that the subtree tqu of tq rooted at u is in fact tlast(q,u).

The sequence probability space associated with A and initial state q ∈ Q is
(Dω,�, probq) where the Borel field � is generated by the basic cylinders sets
uDω with u ∈ D∗ and probq is the unique probability measure such that for a
basic cylinder uDω we obtain the probability of the finite path described by u:
if u = (a1, q1)(a2, q2) · · · (an, qn) and with q0 = q then

probq(uDω) =
n∏

i=1

μ(qi−1, ai, qi) =
∏

v∈Pref(u)

κtq(u) .

Any ω-regular set L ⊆ Dω is measurable [37]. More precisely, any ω-regular
language is a finite boolean combination of languages at the second level of
the Borel hierarchy. This is a consequence of McNaughton’s theorem showing
that ω-regular languages can be accepted by deterministic Muller automata.
Hence, they are finite boolean combinations of languages accepted by determin-
istic Büchi automata. Let F be the accepting set of states of a deterministic
Büchi automaton B and for n ∈ �, let Ln be the set of finite words whose run
on B visits F at least n times. Then the language accepted by B is
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⋂
n≥0

⋃
w∈Ln

wDω

By the very definition of strict until, one sees that every LTL formula ψ is
first-order definable, hence defines an ω-regular language L(ψ) by [9]. Antoher
argument is to use classical translations from LTL formulas to Büchi automata. It
follows that L(ψ) is measurable and probq(L(ψ)) is well-defined for LTL formulas
ψ. Hence, we will be able to define the semantics of μ(ψ) using the probability
measure of the sequence space.

Formally, let q ∈ Q, u ∈ D∗ and ψ be a boolean path formula. We define

Lq
u(ψ) = {w ∈ uDω | tq, w, u |= ψ}

and
[[μ(ψ)]](tq , u) = problast(q,u)(u−1Lq

u(ψ))

where u−1L = {v ∈ D∞ | uv ∈ L} is the left quotient of L ⊆ D∞ by u ∈ D∗.
Recall that last(q, ε) = q and last(q, u) = q′ if u ∈ D∗(Σ × {q′}).

Using the remarks above, we can show by induction on the state formulas ϕ
and the boolean path formulas ψ in wCTL∗(Prob,Prop, C) that for all q ∈ Q and
u ∈ D∗, [[ϕ]](tq , u) only depends on last(q, u), and Lq

u(ψ) is measurable. Hence,
the semantics of μ(ψ) is well-defined.

Example 6. Let us continue the discussion started in Example 5. Using the prob-
abilistic semantics defined above for infinite trees, we obtain now

[[μ(1 SU r)]](t, ε) = probq0(D∗({{r}, {p, r}} ×Q)Dω) = 1

which is the probability that r eventually holds.

The probabilistic computation tree logic PCTL∗ [15] is a boolean fragment of
wCTL∗(Prob,Prop, {¬,∧,≤}) using the semantics defined above for μ(ψ). The
restriction is on state formulas which

– use only constants k ∈ {0,1} and symbols �� ∈ {¬,∧},
– which do not use κ,
– and use μ(ψ) only with comparisons of the form (μ(ψ) �� p) with �� ∈ {≥, >},

p ∈ [0, 1], and ψ a path formula.

A further restriction is PCTL introduced in [24] where only state formulas are
considered. Here the path formulas ψ used in (μ(ψ) �� p) are restricted to be of
the form ϕ1 SU≤n ϕ2 where ϕ1, ϕ2 are boolean state formulas and n ∈ �∪ {∞}.
Hence, PCTL is also a fragment of wCTL. Note that, if ϕ1, ϕ2 are boolean state
formulas and n ∈ � ∪ {∞} then

[[μ(ϕ1 U≤n ϕ2)]] = [[ϕ2 ∨ (ϕ1 ∧ ¬ϕ2 ∧ μ(ϕ1 SU≤n ϕ2))]] .
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Table 4. Translation in bMSO of boolean path formulas in wCTL∗

ϕ(x,X) = (ϕ(x) �= 0)

ψ1 ∧ ψ2(x,X) = ψ1(x,X) ∧ ψ2(x, X)

¬ψ(x,X) = ¬ψ(x, X)

ψ1 SU ψ2(x,X) = ∃ z.(z ∈ X ∧ x < z ∧ ψ2(z, X) ∧ ∀y.((x < y < z) +−→ ψ1(y,X)))

5 wCTL∗ Is a Fragment of wMSO

In this section, we will give a translation from wCTL∗ formulas to weighted MSO
formulas.

We start with path formulas ψ in wCTL∗. Implicitely, such a formula has two
free variables, the path (branch) on which the formula is evaluated and the cur-
rent node on this path. Naturally, the current node is a first-order variable and
the path in the tree can be described by the set variable consisting of all nodes
on this branch. So we associate with each path formula ψ ∈ wCTL∗(K,Prop, C)
a boolean MSO formula ψ(x,X) ∈ bMSO(K, Σ, C). The definition by induction
on the formula is given in Table 4. In this definition, we assume that the inter-
pretation of X is indeed a path. We make sure to define boolean formulas by
using ∃, ∨ and +−→ which were defined in Section 3.

Next, we turn to (weighted) state formulas ϕ ∈ wCTL∗. Here, the only implicit
free variable is the current node. Hence, we associate with each state formula
ϕ ∈ wCTL∗(K,Prop, C) a weighted MSO formula ϕ(x) ∈ bMSO(K, Σ, C). The
translation, which is indeed by induction on the formula, is given in Table 5. The
boolean formula path(x,X) states that X is a maximal path in the tree starting
from node x. To this aim, we use the boolean formula y � z which holds if z is
a successor (son) of y in the tree:

y � z
def= y < z ∧ ∀z′.¬(y < z′ < z) .

The translation of μ(ψ) given in Table 5 is valid when the models are finite
trees. For infinite trees, the set of paths is usually infinite and the semantics of
μ(ψ) would involve infinite products and sums that are not necessarily defined.

As explained in Section 4, it is crucial for applications to probabilistic systems
to be able to deal with infinite trees that arise as unfoldings of gPFA’s. So
we give below a translation of μ(ψ) to wMSO such that the infinite sums and
products involved in the semantics are always well-defined.

We deal with the fragment wCTL where the path formulas are restricted to
be of the form ϕ1 SU≤n ϕ2 where ϕ1 and ϕ2 are boolean state formulas and
n ∈ � ∪ {∞}. The translation in wMSO of μ(ϕ1 SU≤n ϕ2) is given in Table 6.
The boolean formula path≤∞(x,X) states that X is a path starting from x but
do not impose that X is maximal (contrary to the definition in Table 5). When
n ∈ �, the boolean formula path≤n(x,X) requires in addition that the path X
is of length at most n. Assuming that X is a path starting from x, the boolean
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Table 5. Translation in bMSO of boolean path formulas in wCTL∗

k(x) = k

κ(x) = κ(x)

p(x) = ¬
∧

a∈Σ | p∈a

¬Pa(x)

�	(ϕ1, . . . , ϕr)(x) = �	(ϕ1(x), . . . , ϕr(x)) if arity(�	) = r

μ(ψ)(x) = ∃X.(path(x,X) ∧ ψ(x,X) ∧ ξ(x,X)

path(x, X) = x ∈ X

∧ ∀z.(z ∈ X
+−→ (z = x ∨ ∃ y.(y ∈ X ∧ y � z)))

∧ ¬∃ y, z, z′ ∈ X.(y � z ∧ y � z′ ∧ z �= z′)

∧ ∀y.( (y ∈ X ∧ ∃ z.(y < z)) +−→ ∃ z.(z ∈ X ∧ y < z) )

ξ(x, X) = ∀y.((y ∈ X ∧ x < y) +−→ κ(y))

formula ψ(x,X) states that the path satisfies ϕ1 SUϕ2 and is minimal with this
property. In particular, such a path must be finite, even if n = ∞, since the
formula ¬(0SU1) means that there is no next state. Finally, the formula ξ(x,X)
computes the probability of the path.

Proposition 2. Let A = (Q,μ) be a gPFA, q ∈ Q. Let tq be the tree unfolding
of A starting from state q and let u ∈ D∗ = dom(tq) be a node. Let ϕ1, ϕ2 ∈
wCTL(Prob,Prop, C) be boolean state formulas and n ∈ � ∪ {∞}. Then,[[

μ(ϕ1 SU≤n ϕ2)
]]
(tq, u) = problast(q,u)(u−1Lq

u(ϕ1 SU≤n ϕ2))

= [[μ(ϕ1 SU≤n ϕ2)]](tq , u)

The tree tq is infinite. Hence to prove this proposition we have to make sense
of the infinite products and sums that arise from the semantics of the wMSO
formula μ(ϕ1 SU≤n ϕ2) given in Table 6. So let X ⊆ D∗ = dom(tq). By definition
of ∃, ∨ and +−→, the semantics of the boolean formula path≤n(u,X)∧ψ(u,X) uses
(infinite) products of boolean values 0 and 1. Naturally, we define such (infinite)
products to be 0 if at least one factor is 0 and to be 1 otherwise. Hence, the
difficulty is only to make sense of the (infinite) sum associated with ∃X and of
the (infinite) product used for the semantics of ξ.

Proof (of Prop. 2). We use the notation introduced above. We simply denote by
L the language Lq

u(ϕ1 SU≤n ϕ2) introduced in Section 4:

L = {w ∈ uDω | tq, w, u |= ϕ1 SU≤n ϕ2} .

In this special case, the probability measure problast(q,u)(u−1L) is easy to com-
pute. To this aim, we introduce the language
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K = {w ∈ uD+ | tq, w, u |= (ϕ1 ∧ ¬ϕ2) SU≤n (ϕ2 ∧ ¬(0 SU 1))}
We can easily check that K is prefix-free: w,w′ ∈ K and w ≤ w′ implies

w = w′. Moreover,
L =

⊎
w∈K

wDω

and this countable union is disjoint so that

problast(q,u)(u−1L) =
∑
w∈K

problast(q,u)(u−1wDω) =
∑
w∈K

∏
u<v≤w

κtq(v) .

For each w ∈ uD+, let Xw = {v ∈ D∗ | u ≤ v ≤ w}. Next, define the set
� = {Xw ⊆ D∗ | w ∈ K}. One can check that � is precisely the set of subsets
X ⊆ D∗ = dom(tq) such that the formula path≤n(u,X) ∧ ψ(u,X) holds:

[[path≤n ∧ ψ]](tq , u,X) =

{
1 if X ∈ �
0 otherwise.

Note that the infinite product used in the semantics of [[ξ]](u,X) is always well-
defined. Either it has only finitely many factors different from 1 (which is in
particular the case when X is finite) or it converges to 0. For each w ∈ K,
[[ξ]](u,Xw) computes the probability of path Xw:

[[ξ]](tq , u,Xw) =
∏

u<v≤w

κtq(v) .

For sets X /∈ �, we have [[path≤n ∧ ψ ∧ ξ]](tq , u,X) = 0 and we obtain

[[path≤n ∧ ψ ∧ ξ]](tq, u,X) =

{
[[ξ]](tq , u,X) if X ∈ �
0 otherwise.

Removing 0 terms in an infinite sum, we obtain[[
μ(ϕ1 SU≤n ϕ2)

]]
(tq, u) = [[∃X.(path≤n ∧ ψ ∧ ξ)]](tq , u)

=
∑
X∈�

[[ξ]](tq , u,X)

=
∑
w∈K

∏
u<v≤w

κtq(v)

= problast(q,u)(u−1L) .

If n ∈ � then the sets K and � are finite and the sums above are finite. When
n = ∞, i.e., for the natural unbounded strict until, the sets K and � may be
infinite. For instance, this is the case with formula pSUr evaluated on the gPFA
of Figure 3 starting from state q0 where the sets K and � corresponds to the
infinite set of paths q∗0q1. But, as a consequence of the equalities above, the
infinite sums over K and � are well-defined with value in [0, 1]. ��
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Table 6. Translation in bMSO of μ(ϕ1 SU≤n ϕ2) ∈ wCTL for n ∈ � ∪ {∞}

μ(ϕ1 SU≤n ϕ2)(x) = ∃X.(path≤n(x, X) ∧ ψ(x,X) ∧ ξ(x,X))

path≤∞(x, X) = x ∈ X

∧ ∀z.(z ∈ X
+−→ (z = x ∨ ∃ y.(y ∈ X ∧ y � z)))

∧ ¬∃ y, z, z′ ∈ X.(y � z ∧ y � z′ ∧ z �= z′)

if n ∈ �, path≤n(x, X) = path≤∞(x,X) ∧ ¬∃x0 . . . ∃xn.

(x0 ∈ X ∧ · · · ∧ xn ∈ X ∧ x < x0 < x1 < · · · < xn)

ψ = (ϕ1 ∧ ¬ϕ2) SU (ϕ2 ∧ ¬(0 SU 1))

ξ(x, X) = ∀y.((y ∈ X ∧ x < y) +−→ κ(y))

6 Conclusion and Open Problems

In this paper, we have introduced wMSO, a weighted version of classical MSO
logic. It is interpreted over weighted trees, which naturally appear as unfoldings
of weighted automata. We showed that the satisfiability problem for wMSO is
undecidable. We then defined wCTL and wCTL∗ over weighted trees and gave
transformations of these logics into wMSO. For the probabilistic interpretation
of the path-quantifier operator μ(ψ), we restricted to a transformation of wCTL
into wMSO formulas.

Let us mention some directions for future work. We need to identify fragments
of our logic that come with a decidable satisfiability problem. A natural further
step is to tackle the model-checking problem: given a weighted formula ϕ and
a weighted automaton A, does [[ϕ]](tA) �= 0 hold? To find a solution, we might
borrow techniques used in the probabilistic setting for PCTL∗. Moreover, the
translation of wCTL∗ into wMSO remains to be done. For the probabilistic
semantics, such a translation might be based on techniques from [13] developed
for checking linear-time properties of probabilistic systems (see also [5] for an
overview).

It would be worthwhile to add the notion of a scheduler to wMSO to consider
unfoldings of (partially observable) MDPs or probabilistic Büchi automata [3,4],
which are essentially rPFA with a Büchi acceptance condition.

The expectation semiring, defined in [20], combines probabilities with expected
rewards. A transfer of our logics to this specific structure (possibly extended by
a discount operator) could provide a generic framework for reward models as
considered, e.g., in [23,2].

A weighted μ-calculus has been defined in [22] to be interpreted over quanti-
tative Kripke structures. For the design of a weighted μ-calculus over branching
structures, one might benefit from ideas that led to a weighted μ-calculus over
words [29].
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Abstract. This is a survey on some undecidable problems on integer
matrices. The proofs of these results employ special instances, called
Claus instances, of the Post Correspondence Problem. The presentation
is based on the article Halava et al. “Undecidability bounds for integer
matrices using Claus instances” (Internat. J. Foundations of Comput.
Sci. 18, 2007, 931–948).

1 Introduction

We give a short survey on undecidable decision problems on small dimensional
matrices with integer entries. We have neglected to mention here many results
from literature, for recent ones see, for instance, [1,2,3,10,11,13].

We express the Post Correspondence Problem (PCP, for short) in its morphi-
cal form. An instance of the PCP is a pair (g, h) of morphisms g, h : A∗ → B∗

for finite alphabets A and B. The set of the solutions of an instance (g, h),

E(g, h) = {w ∈ A+ | g(w) = h(w)} ,

is also called the equality set of the instance.

Problem 1 (PCP). Given an instance (g, h), does it have a solution, i.e., is the
equality set E(g, h) nonempty?

Example 1. Let h, g : A∗ → A∗ for A = {a, b, c} be defined by

g(a) = a , g(b) = bb , g(c) = bc ,
h(a) = ab , h(b) = bb , h(c) = c .

In this example, we have E(g, h) = (b+ ∪ ab∗c)+.

Let e(g, h) denote set of all minimal solutions in E(g, h), i.e., those solutions
w that are not proper prefixes of other solutions. In general, the equality set
E(g, h) is a free semigroup, if it is nonempty. Indeed, if v, vu ∈ E(g, h) with
u �= ε, then also u ∈ E(g, h), and therefore every solution of (g, h) is a unique
concatenation of minimal solutions. Then E(g, h) = e(g, h)+.

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 39–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Small Instances

The Busy Beaver Problem for PCP consists of instances (g, h) ∈ PCP(n, k),
where n is the size (of the domain alphabet A) and k = maxa∈A{ |g(a)|, |h(a)| }
is the length of the instance. Up to isomorphism, the set PCP(n, k) of instances
is finite, and thus solvability is decidable for these instances.

Problem 2. For small values of n and k, compute

M(n, k) = max{m | ∃(g, h) ∈ PCP(n, k)
with a shortest solution of length m}.

Example 2. Waldmann and Lorentz gave the following hard instance in PCP(3, 3)
with the shortest solution w of length |w| = 75 :

g(0) = 0, g(1) = 1, g(2) = 011,
h(0) = 1, h(1) = 011, h(2) = 0.

see, http://www.theory.informatik.uni-kassel.de/~stamer/pcp/
pcpcontest_en.html .

In 1982 Ehrenfeucht, Karhumäki and Rozenberg [9] and in 1981 Pavlenko [17],
independently, proved that if the size of an instance of the PCP is two, i.e., the
domain alphabet A is binary, then the PCP is decidable. Let PCP(n) denote the
Post Correspondence Problem for instances of size n.

Theorem 1 (Ehrenfeucht et al.; Pavlenko 1981–82). PCP(2) is decidable.

Theorem 2 (Matiyasevich, Sénizergues 2005). PCP(7) is undecidable.

Problem 3. The decidability status of PCP(n) is open for 3 ≤ n ≤ 6.

For the length of the instances, we have

Theorem 3 (Halava et al. 2008). The PCP is undecidable for instances of
length at most 2.

This result is based on the undecidability of the words problem for small semi-
groups. The Cĕıtin semigroup S7 has a presentation in five generators Γ =
{a, b, c, d, e} and seven relations: S7 = 〈a, b, c, d, e | R〉, where R consists of

ac = ca, ad = da, bc = cb, bd = db ,

eca = ce, edb = de, cca = ccae .

The word problem for S7 is the problem to determine whether two words
u, v ∈ Γ ∗ satisfy u = v in S7, that is, whether there exists a finite sequence u =
u1, u2, . . . , un = v such that for i = 0, 1, . . .n−1, ui = xiαiyi and ui+1 = xiβiyi,
where αi = βi is a relation in R for each i.

Theorem 4 (Cĕıtin 1958). The word problem is undecidable for S7.

One then reduces the Cĕıtin semigroup to a new semigroup where both sides of
the relations u = v have length at most 2.

http://www.theory.informatik.uni-kassel.de/~stamer/pcp/
pcpcontest_en.html
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3 Claus Instances

A semi–Thue system is a pair T = (Σ,R) where R is a set of relations, called
the rules, on words: R ⊆ Σ∗ ×Σ∗. We write u −→T v, if there are words u1 and
u2 such that

u = u1xu2 and v = u1yu2 where (x, y) ∈ R.

Let −→∗
T be the reflexive and transitive closure of the relation →.

An instance of the individual word problem consists of a semi-Thue system T
and a word w0 and we ask, for input words w, whether or not w −→∗

T w0 holds.

Theorem 5 (Matiyasevich, Sénizergues 2005). There exists a 3-rule semi-
Thue system with undecidable individual word problem.

The reduction from semi-Thue systems to the PCP is due to Claus [8].
For simplicity, and without restriction, we concentrate on instances (g, h)

where g, h : Σ∗ → Γ ∗ for the binary alphabet Γ = {a, b}. Let also

d = aba and A = ab2b∗a.

An instance (g, h) is called a Claus instance if g, h : Σ∗ → (abb∗a)∗, where

Σ = {b1, b2, . . . , bn}

and

h(bi) ∈ (dA)∗ with h(bn) = dd,

g(bi) ∈ (Ad)∗ with g(b1) = d and g(bn) ∈ (Ad)+d.

The following lemma is straightforward, see [8,13].

Lemma 1. Let (g, h) be a Claus instance. Then e(g, h) ⊆ b1Σ
∗bn.

Theorem 6 (Claus 1980). Suppose there exists a k-rule semi-Thue system
with an undecidable individual word problem. Then the PCP is undecidable for
Claus instances of size k + 4.

Claus’s construction. Let T = (Γ,R) be a semi–Thue system with Γ = {a, b}
and R = {t1, t2, . . . , tk} where ti = (ui, vi) is encoded by ϕ, i.e., ui, vi ∈ A∗.
Note that a2 is not an image of ϕ. Let w,w0 ∈ {a, b}∗.

Let �d, rd : {a, b}∗ → (abb∗a)∗ be the desynchronizing morphisms defined by

�d(x) = dx and rd(x) = xd (x ∈ {a, b})

and for new letters c an e, let Δ = {a, b, c, e}, and let

h, g : (Δ ∪R)∗ → {a, b}∗

be defined in Table 1.
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Table 1. The instance (g, h) for the semi-Thue system T

g(x) = rd(x) h(x) = �d(x) for both x ∈ {a, b}
g(ti) = rd(ui) h(ti) = �d(vi) for ti ∈ R
g(c) = d h(c) = �d(wa2)
g(e) = rd(a2w0)d h(e) = dd

The instance (g, h) is a Claus instance with the prefix and suffix markers
b1 = c and bn = e, for n = k + 4. By Lemma 1, e(g, h) ⊆ c(Γ ∪R)∗e.

Now, see details in [8,13], a minimal solution of (g, h) is necessarily of the
form

cw1a
2w2a

2 · · · a2wme where wi ∈ (Δ∗R)∗ and (1)
wi −→∗

T wi+1 for i = 1, 2, . . . ,m− 1.

When Theorem 6 is applied to Theorem 5, we have

Theorem 7. The PCP is undecidable for Claus instances of size n = 7.

We also obtain the following stronger result [11], where we have one variable
word as an input. In the presentation of this result, we use PCP in the “word
format” instead of morphisms.

Theorem 8 (HHH). Let Γ = {a, b}. There exist a word v1 ∈ Γ ∗ and six pairs

(u2, v2), (u3, v3), . . . , (u7, v7) ∈ Γ ∗ × Γ ∗

such that it is undecidable whether for a given word u1 ∈ Γ ∗,

u1ui2ui3 . . .uimu7 = v1vi2vi3 . . . vimv7

for some indices 2 ≤ i2, i3, . . . , im ≤ 6. Moreover, the instance (g, h), where
h(bi) = ui and g(bi) = vi for i = 1, 2, . . . , 7, is a Claus instance.

The following theorem gives a morphic form of the undecidability of the modified
PCP on seven letters.

Theorem 9. It is undecidable whether an instance (g, h) of the PCP, where
h, g : {b1, b2, . . . , b7}∗ → Γ ∗, has a solution b1wb7 with w ∈ {b2, b3, . . . , b6}∗.

4 Matrix Problems

There are many simply formulated undecidable problems for sets of 3×3 integer
matrices. The first of these results was proved by Paterson [16] using a clever
coding techniques. In this section we shall state several problems on finitely
generated matrix semigroups the proofs of undecidability of which employ Claus
instances.

Let M1,M2, . . . ,Mk ∈ Zn×n be integer matrices, and denote by

〈M1,M2, . . . ,Mk〉 = {Mi1Mi2 . . .Mim | m ≥ 1 and 1 ≤ i1, i2, . . . , im ≤ k}

the semigroup generated by them.
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Zeros in corners. Let Δ = {a1, a2, a3} and Γ = {a2, a3} be fixed alphabets.
Also, let

σ(ai1ai2 · · · aik
) =

k∑
j=1

ij3k−j and σ(ε) = 0. (2)

Then σ(uv) = 3|v|σ(u)+σ(v). We use Paterson’s morphism γ : Δ∗×Δ∗ → N3×3

to represent pairs of words by nonnegative integer matrices:

γ(u, v) =

⎛⎝ 3|u| 0 0
0 3|v| 0

σ(u) σ(v) 1

⎞⎠ . (3)

Lemma 2. The monoid morphism γ satisfies γ(u1u2, v1v2) = γ(u1, v1)γ1(u2, v2).
It is doubly injective: if γ(u1, v1)31 = γ(u2, v2)31, then u1 = u2, and if γ(u1, v1)32 =
γ(u2, v2)32, then v1 = v2.

Consider then the following matrix A together with its inverse A−1,

A =

⎛⎝1 0 1
1 1 0
0 0 1

⎞⎠ and A−1 =

⎛⎝ 1 0 −1
−1 1 1
0 0 1

⎞⎠ .

Define γ′ : Δ∗×Δ∗ → N3×3 by γ′(u, v) = Aγ(u, v)A−1. The matrices γ′(u, v) and
γ(u, v) are similar and thus also γ′ is injective. We have γ′(u1, v1)γ′(u2, v2) =
γ′(u1u2, v1v2). Furthermore, by the above, for all words u, v ∈ Δ∗, we have

(γ′(u, v))11 = 3|u| + σ(u)− σ(v). (4)

Using Theorem 8 on Clause instances, we have

Theorem 10 (HHH). There is a semigroup S generated by six 3 × 3-integer
matrices such that it is undecidable for matrices N ∈ Z3×3 whether there exists
M ∈ S with (NM)11 = 0.

Corollary 1. It is undecidable for matrix semigroups M generated by seven
3× 3-integer matrices whether M contains a matrix M with M11 = 0.

Vector reachability. As an example, we give a construction in the next theorem.

Theorem 11 (HHH). Given a semigroup S ⊆ Z3×3 generated by 6 matrices
and two vectors u,v ∈ Z3. It is undecidable whether or not there exists a matrix
M ∈ S such that u ·M = v.

Proof (Sketch). We use the following special matrix

A =

⎛⎝ 1 −1 0
−1 1 0
0 0 0

⎞⎠ .



44 T. Harju

Let (g, h) be a Claus instance for g, h : {b1, b2, . . . , b7}∗ → Δ∗ where Δ =
{a1, a2, a3} and let {a, b} = {a2, a3}. Let the first vector u be defined by

u = (σ(h(b1)), σ(g(b1)), 1),

where σ is given in (2). Define Mi = γ(h(bi), g(bi)), for i = 2, 3, . . . , 7, and let
S = 〈M2, . . . ,M6,M7A〉. Note that, for all words in Δ∗,

(σ(u1), σ(v1), 1)γ(u2, v2) = (σ(u1u2), σ(v1v2), 1).

Therefore for w = bj1 · · · bjk
∈ {b2, . . . , b6}∗

uMj1 · · ·Mjk
M7A = (5)

(σ(h(b1wb7))− σ(g(b1wb7)), σ(g(b1wb7))− σ(h(b1wb7)), 0).

Now (g, h) has a solution if and only if there exists M ∈ S such that u ·M =
(0, 0, 0). We omit the proof of this claim.

The mortality problem. It is a long standing open problem whether the mor-
tality problem is decidable for finitely generated semigroups S ⊆ Z2×2, see [19].
However, Paterson [16] showed that the case for dimension three is undecidable.
From the above techniques

Theorem 12 (HHH). There is a fixed semigroup S ⊆ Z3×3 generated by 6
matrices such that it is undecidable for a matrix A there exists M ∈ S with
AM = 0.

Corollary 2. In particular, the mortality problem (i.e., whether the zero matrix
belongs to the semigroup) is undecidable for semigroups generated by seven 3×3
integer matrices.

Using results of [6] and [4], we obtain by Theorem 12 has the following corollary.

Theorem 13. The mortality problem is undecidable for two matrices of dimen-
sion 21.

Freeness problem. Recall that a semigroup S is free if there exists a subset
G of S that generates S freely: every element of S has a unique factorisation
over G.

It was proved by Klarner, Birget and Satterfield [14] that the freeness problem
is undecidable for finitely generated matrix semigroups S ⊆ N3×3. The proof
given in Cassaigne, Harju and Karhumäki [5] gives a better bound 18 on the
number of matrices. The proof is based on instances of the mixed PCP.

Problem 4 (Mixed PCP). Given two morphisms g, h : Σ∗ → Δ∗ determine
whether there exists a word w = a1 . . .ak with ai ∈ Σ and k ≥ 1, such that

g1(a1)g2(a2) . . . gk(ak) = h1(a1)h2(a2) . . .hk(ak), (6)

where, for each i, hi and gi are in {g, h} and, for some j, hj �= gj .
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Lemma 3. The Mixed PCP is undecidable for Claus instances of size 7.

The next proof is from [5] .

Theorem 14. It is undecidable whether a semigroup S ⊆ N3×3 generated by 14
matrices is free.

Proof. Let (g, h) be an instance of the Mixed PCP where, without loss of gen-
erality, g, h : Σ∗ → Σ∗. Let S = 〈X〉 for X = {(a, h(a)), γ(a, g(a)) | a ∈ Σ}.
Let M1, . . . ,Mp, N1, . . . , Nq be in X , where Mt = γ(ait , hit(ait)) and Ns =
γ(bjs , gjs(bjs)) with hit , gjs ∈ {h, g} and ait , bjs ∈ Σ, for t = 1, 2, . . . , p and
s = 1, 2, . . . , q. By the definition of γ,

M1 . . .Mp = N1 . . .Nq in S

iff (M1 . . .Mp)3,1 = (N1 . . .Nq)3,1 and (M1 . . .Mp)3,2 = (N1 . . .Nq)3,2, which,
by injectivity of σ, is equivalent to

ai1 . . .aip = bj1 . . . bjq and hi1(ai1) . . .hip(aip) = gj1(bj1) . . . gjq(bjq).

Thus S is not free if and only if the instance (g, h) of the Mixed PCP has a
solution.

Diagonal matrices. It was show by Bell and Potapov in [2] that it is un-
decidable whether a diagonal matrix belongs to a finitely generated semigroup
S ⊆ Z4×4. Using Claus instances the bound 30 on the number of generators was
reduced to 14 in [11]. The proof employs free groups.

Finally, we mention the following result, where In denotes identity matrix of
dimension n.

Theorem 15 (HHH). Let k ∈ Z with |k| > 1. It is undecidable for the matrix
kI4 and a matrix semigroup R ⊆ Z4×4 generated by 12 matrices whether or not
kI4 ∈ R.

The decidability status of following problems remain open.

Problem 5 (Identity matrix). Given a finitely generated semigroup S ⊆ Zn×n,
does In belong to S?

Problem 6 (Diagonal matrix). Given a finitely generated semigroup S ⊆ Zn×n,
does there exists any diagonal matrix in S?
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Size Complexity of Two-Way Finite Automata
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Abstract. This is a talk on the size complexity of two-way finite au-
tomata. We present the central open problem in the area, explain a
motivation behind it, recall its early history, and introduce some of the
concepts used in its study. We then sketch a possible future, describe a
natural systematic way of pursuing it, and record some of the progress
that has been achieved. We add little to what is already known—only
exposition, terminology, and questions.

A problem. On the tape of a Turing machine (tm) lies an input of the form:

(1)

That is, each non-blank symbol is a two-column graph with the same, constant
number of nodes per column. The question that the machine has to answer is the
following: In the multi-column graph produced by identifying adjacent columns

does there exist a path from (a node of) the leftmost column to (a node of)
the rightmost one? For example, in the above graph such paths exist (can you
discover one?) and the answer should be “yes”.

Perhaps it looks a bit strange that an entire graph fits in one tape cell. But
this is not an issue. It is just that the input alphabet of this tm is a bit large: if
each column has h nodes, then this alphabet consists of 2(2h)2 symbols/graphs.

How hard is this problem? How much time/space will the tm need in order to
solve it? Very little. Our problem is, in fact, regular. An easy way to prove this
is to solve it with a two-way nondeterministic finite automaton (2nfa)—recall
that 2nfas solve exactly the regular problems [22,23,26]. Here is how:

We start on the leftmost symbol. We nondeterministically guess a node in the
left column of that symbol, and “focus” on it. From then on, we only remember
which node of the current symbol we focus on, and repeat: nondeterministically
guess one of the arrows out of the focused node, and make its destination the
new focus. If we ever focus on a node in the rightmost column, we accept.

(2)

To implement this simple algorithm, a 2nfa will need at most 2h states.

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 47–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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An alternative, more direct, but slightly more complicated way to prove the
regularity of our problem is to solve it with a standard (one-way) deterministic
finite automaton (1dfa). Here is how:

We start on the leftmost symbol. We always move right. At each step, we
remember for the nodes of the left column of the current symbol the following:
(i) for each of them, whether it is reachable from the leftmost column via a
path that lies entirely to our left, and (ii) for each pair (u, v) of them, whether
v is reachable from u via a path that lies entirely to our left. On reaching a
blank symbol, we accept iff the answer in (i) is “yes” for at least one node.

To implement this algorithm, a 1dfa will need at most 2h+h2
states.

So, no matter which of the two algorithms it chooses to implement, our tm
will solve the problem in linear time and zero space. Notice, however, the huge
blow-up in the number of states that it is going to need if it decides not to use
nondeterminism: instead of 2h states, it will need more than 2h2

. And this is
not due to lack of ingenuity in designing the deterministic algorithm: it can be
proved that no other 1dfa can do with significantly fewer states. That is, the
blow-up is unavoidable. So, if, e.g., each column has 16 nodes, then drawing
the states of the 2nfa can be done on 1 page and in 1 minute, whereas drawing
the states of the 1dfa would need more matter than we can see in the universe
and would finish long after the sun has burnt out.1 Nondeterminism wins.

But this comparison is unfair, one complains. The nondeterministic algorithm
was allowed to use a two-way head, but the deterministic algorithm was not. For
a fair comparison, the deterministic automaton should also be two-way; i.e., it
should be a two-way deterministic finite automaton (2dfa). The more powerful
head will probably help it solve the problem with much fewer states.

Good point. So, let’s see. How would a 2dfa solve the problem? One’s first
attempt would probably be some kind of depth-first search inside the multi-
column graph. But this doesn’t work: it needs a stack of visited nodes which can
grow arbitrarily large, and thus cannot fit in any finite number of states—let
alone a small one. One would not give up so easily, though: sure, out-of-the-box
depth-first search doesn’t work, but certainly some other, cleverer version of
graph exploration does. No it doesn’t. To use significantly fewer states than the
1dfa, the 2dfa must do more than simply explore the graph [14]; it must use its
bidirectionality both within the input [28] and at the two ends of the input [25];
and it must trace at least a linear (with respect to the input length) number of
different trajectories [12].

In fact, nobody knows whether the minimum number of states in a 2dfa that
solves our problem is closer to the 2h of the 2nfa or closer to the 2h2

of the 1dfa.
The best known lower bound is Ω(h2) [4] and the best known upper bound is
2O(h2) [26]. At this “exponential” level of ignorance, the correct question is:

Can a 2dfa solve problem (1) with p(h) states, for some polynomial p? (Q)

and is wide open. But, right now, it is probably some other question that mostly
bothers you—a meta-question:

Who cares? (Q)
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Determinism v Nondeterminism. A central theme in the theory of compu-
tation is the comparison between deterministic and nondeterministic computa-
tions. Most characteristic in this theme is, of course, the p v np question, a special
case of the following, more general question about the time used by deterministic
and nondeterministic Turing machines (dtms and ntms):

Can dtms always stay at most polynomially slower than ntms? (Qt)

Less prominent, but also very important, is the l v nl question, a special case of
the following, more general question about the space used by Turing machines :

Can dtms always use at most linearly more space than ntms? (Qs)

Despite the richness and sophistication of our theory around these questions, it
is probably fair to say that our progress against their core has been slow. This
has led some to suspect that the same elusive idea may lie at the center of all
problems of this kind, little affected by the particulars of the underlying compu-
tational model and resource. If this view is correct, then a possibly advantageous
approach is to study restricted models of computation.

For an extreme example, consider tms whose heads neither turn nor write.
Is nondeterminism essential there? Before pondering the question, we should
specify the resource under consideration. Under these restrictions, tms are just
one-way finite automata. So, neither time nor space is interesting, as both 1dfas
and 1nfas use linear time and zero space.2 Instead, observation confirms that in
this case it is the size of the machines, as expressed by the number of states, that
reveals the nondeterministic advantage. So, the analogue to (Qt) and (Qs) is:

Can 1dfas always stay at most polynomially larger than 1nfas? (Q1)

The answer is well-known to be “no” [20]. E.g., the promise problem(
{αi | α ⊆ [h] and i ∈ α} , {αi | α ⊆ [h] and i ∈ [h]− α}

)
(3)

of checking whether a set α of numbers from 1 to h contains a number i (α and i
given in this order), needs only h states on 1nfas but at least 2h states on 1dfas.

Hence, in this first example, the restrictions were so strong that the resulting
question was easy to answer. Backing up a bit, we may now consider tms whose
heads cannot write (but can turn). Such machines are essentially identical to
two-way finite automata. As before, observation confirms size as the resource
that reveals the nondeterministic advantage, and the question

Can 2dfas always stay at most polynomially larger than 2nfas? (Q2)

is our new analogue to (Qt) and (Qs).
One might expect that (Q2) is as easy as (Q1). After all, it is again about

finite automata. How hard can a question about finite automata be? Automata
have been studied extensively since the 1950’s and the answers to most inter-
esting questions about them are already in the textbooks, right? Not really.
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Fig. 1. An analogy between p vnp and l vnl and 2d v 2n

Such a claim may be fair only if it refers to computability questions about finite
automata. In contrast, complexity questions about finite automata have been
addressed only sporadically and by relatively few researchers. Many interesting
and hard questions about them remain wide open. Question (Q2) is one of them.

Research on (Q2) is supported by an elegant theory that mirrors the the-
ory of np-completeness that was developed around (Qt) and the theory of nl-
completeness that was developed around (Qs) (Fig. 1). Proposed by Sakoda and
Sipser [24] in 1978, the theory starts with the class 2d of all families of regular
problems that can be solved by 2dfas of polynomially growing size

2d :=
{
(Lh)h≥1

∣∣∣ there exist 2dfas (Mh)h≥1 and polynomial p such that
Mh solves Lh with at most p(h) states, for all h

}
, (4)

and the class 2n, defined for 2nfas in a similar manner. For example, if Ch is
problem (1) when each column has h nodes, then our discussion in the previous
section proves that the family C := (Ch)h≥1 is in 2n, and (Q) is asking whether
it is also in 2d. Moreover, the question

2d = 2n ? (Q′)

is easily seen to be equivalent to (Q2) in the special case of families of 2nfas
whose sizes grow polynomially.

Sakoda and Sipser went on to introduce appropriate reductions between prob-
lem families, the so-called homomorphic reductions, proved that 2d is closed
under them, and identified a particular family in 2n that is complete with
respect to them. That family was exactly C, the family whose 5th member
is (1), and this is exactly how they named it—a pretty boring name, we’ll call
it two-way liveness instead.3 Thus, (Q) is equivalent to (Q′); it is a concrete
version of the 2d v 2n problem, in the same sense that the questions

Can a dtm solve satisfiability in p(n) time, for some polynomial p?
Can a dtm solve reachability in lg

(
p(n)

)
space, for some polynomial p?

(where n is the input length) are concrete versions of p v np and l vnl (Fig. 1).
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So, to return to our meta-question (Q): One reason why one may want to
care about (Q) is that it can be seen as a “microscopic version” of our big
questions on the power of nondeterminism, p v np and l vnl, a question that
is simultaneously complex enough to seem relevant and simple enough to seem
tractable. Conceivably, by answering (Q) we might get to understand aspects of
nondeterminism which are currently inaccessible through the big questions.

In addition, the connection to l vnl is more than simply conceptual. In 1977
Berman and Lingas [1] proved that, if l = nl then (in our terminology), for
a polynomial p and all h, some p(h)-state 2dfa decides two-way liveness h

correctly on every p(h)-long input. Hence, if we can answer (Q) in the negative
using only polynomially long instances, then we can also prove l �= nl—an excit-
ing connection, which should nevertheless be received with reserve: establishing
a negative answer via exponentially long strings appears to be hard already.

Much like p v np and l v nl, most people believe that 2d �= 2n, as well.

A stronger conjecture. The possibility 2d �= 2n had actually been conjectured
earlier than [24,1] and more strongly. In a 1973 manuscript [25], J. Seiferas had
conjectured that sometimes a 2nfa can stay super-polynomially smaller than
all 2dfas even without turning its head. That is, he had conjectured that even
1nfas can solve problems with super-polynomially fewer states than 2dfas.

Seiferas went on to suggest a few such problems. In one of them, the input
alphabet is all sets of numbers from 0 to h− 1. E.g., if h = 8, then the string

{1,2,4}∅{4}{0,4}{2,4,6}{4}{4,6}∅{3,6}∅{2,4}{5,7}{0,3}{4,7}∅{4}∅{4}{0,1}{2,5,6}{1} (5)

is an input. A substring α0α1 · · ·αl of sets forms a block if the first set contains
the number of sets after it, i.e., if α0 � l. The question is: Can the input be
separated into blocks? E.g., the answer for (5) is “yes” because of the separation

{1,2,4}∅{4} {0,4}{2,4,6}{4}{4,6}∅ {3,6}∅{2,4}{5,7} {0,3} {4,7}∅{4}∅{4}{0,1}{2,5,6}{1}

where indeed the first set in each substring contains the number of sets after it
in the substring, as indicated by boldface. In contrast, the answer for the string
{1,2,7}{4}{5,6}∅{3,6}{2,4,6} is “no”, as there is (easily) no way to break it into blocks.
Seiferas called the set of all separable strings Lh—another boring name, we’ll
call it separabilityh instead, and let separability := (separabilityh)h≥1.

Solving this problem nondeterministically is straightforward and cheap. A
1nfa can implement the following algorithm with only h states:

We scan the input from left to right. At the start of each block, we read the first
set. If it is empty, we just hang (in this nondeterministic branch). Otherwise,
we nondeterministically select from it the correct number of remaining sets in
the block. We then consume as many sets, counting from that number down.
When the count reaches 0, we know the block is over and a new one will follow.
In the end, we accept if the input and our last count-down finish together.

(6)

Seiferas conjectured that, in contrast, no 2dfa can solve separabilityh with
p(h) states, for any polynomial p.4
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Fig. 2. (a) 1n in the map of 2d v 2n. (b) Symbols from the alphabet of one-way
liveness 5; (c) the multi-level graph they define; in bold: a live path; (d) the same
graph, “flattened” for the purposes of the reduction to separability9; dashed vertical
lines distinguish the four columns; in grey: the extra nodes and arrows; in bold: a path
connecting the extra nodes; also shown: the blocks defined by this path.

Sakoda and Sipser agreed with this stronger conjecture. In their terminology,
this could be written as 2d � 1n, where the class 1n is defined as in (4) but for
1nfas (Fig. 2a). They also identified a problem family that is 1n-complete with
respect to homomorphic reductions: the restriction of two-wayliveness to
symbols/graphs with only left-to-right arrows. They called that restriction B—
names were really boring in the 70’s, we’ll call it one-way liveness (Fig. 2bc).
Of course, completeness implied that 2d � 1n ⇐⇒ one-wayliveness �∈ 2d.
Hence, unlike Seiferas’ witness, which was proposed based only on intuition,
theirs was guaranteed to confirm the conjecture iff the conjecture was true.

Still, Seiferas’ intuitively suggested candidate turned out to be 1n-complete,
as well [24].5 We already saw why it is in 1n (Alg. 6), so let us also see why it is
1n-hard. For this, it is enough to homomorphically reduce one-wayliveness to
separability. This means (see [24] for the formal details) to provide a system-
atic way g of replacing each symbol a from the alphabet of one-wayliveness h

and the endmarkers �,� with a string g(a) over the alphabet of separabilityq(h)
so that, for each instance w = a1 · · · al of one-wayliveness h, performing all
replacements preserves membership across the problems:

w ∈ one-wayliveness h ⇐⇒ g(�)g(a1) · · · g(al)g(�) ∈ separabilityq(h) ;

here, q must be a polynomial. What g should we use? Here is an idea.

Consider any multi-level graph (Fig. 2c). Imagine “flattening” it by toppling
each column to the left, so that its topmost node becomes leftmost (Fig. 2d).
Then, an arrow from the ith node of a column to the jth node of the next
column spans 2 + (h − i) + (j − 1) nodes: its source, its target, all nodes
below/after its source, and all nodes above/before its target. We add to this
graph two extra nodes, one on the left, pointing at all nodes of the leftmost
column, and one on the right, pointed at by all nodes of the rightmost column.

Clearly, the resulting graph contains a path connecting the two extra nodes iff
the original graph contains a live path. Moreover, every such path naturally
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separates the nodes into groups: each arrow in the path defines the group of
all nodes spanned by it, except for its target (Fig. 2d).

We are now ready to produce an instance of separability. We replace each node
u with a set of numbers that describe the arrows departing from u. Each arrow
is described by the number of nodes between u and its target. E.g., in Fig. 2d,
the bold arrow out of the left extra node is described by 2, the extra node
itself is replaced by {0, 1, 2, 3, 4}, and the full graph gives rise to the instance

{0,1,2,3,4}∅{4}{4}{4}{4}{4,6}∅{3,6}∅{2,4}{5,7}{7}∅{4}∅{4}{3}{2}{1}{0} .

(No set describes the right extra node.) Notice the numbers in bold: they
represent the bold arrows of Fig. 2d; and they separate the sets into blocks, in
the same way that the bold arrows separate the nodes into groups!

Formally, for each symbol/graph a, we define g(a) := α1α2 · · ·αh where

αi :=
{

(h− i) + (j − 1)
∣∣∣ a contains an arrow from the ith node of the
left column to the jth node of the right column

}
;

we also set g(�) := {0, 1, . . . , h− 1} and g(�) := {h− 1} · · · {1}{0}. All numbers
involved are from 0 to 2h− 2, so the result is an instance of separability2h−1,
so q(h) = 2h−1. A careful proof can easily be extracted from these observations.

Most attempts to prove 2d �= 2n have actually focused on confirming this
stronger conjecture. The lower bounds mentioned in the introductory section for
two-way liveness [14,28,25,12] were actually proved for one-way liveness.

A pause. The first goal of this talk so far has been to acquaint the reader
with the study of the size complexity of two-way finite automata: the central
open question in the area, a motivation behind it, some history, some termi-
nology. Has this goal been achieved for you? Test yourself by answering the
following questions: What is 1d? How does it compare to 1n? How does it relate
to separability? How does it relate to two-way liveness? 6 (for the answers)

The second goal of this talk so far has been to convince with examples that the
important word in its title is not “Automata”, but “Complexity”. Automata the-
ory is strongly associated with computability questions (“Can such-and-such an
automaton recognize language such-and-such?”) and with formal language the-
ory. In contrast, this talk examines complexity questions (“I know such-and-such
an automaton can solve problem such-and-such, but how efficient can it be?”)
and is closer to computational complexity theory: we discuss “algorithms” (that
happen to run on automata) and “problems” and “reductions” and “complexity
classes”and “completeness”. Furhtermore, we don’t necessarily care about au-
tomata or size; we just use this model and resource in the hope of improving our
understanding of the properties of general computation.

At this point we are also ready to address a possible complaint: How come
we call this “size complexity”? Since we are counting states, shouldn’t we call
it “state complexity”? The best measure of the size of an automaton, goes the
complaint, is the number of bits needed to write down its transition function.
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For a 2nfa with σ input alphabet symbols and s states, this is 2σs2 bits.7 So,
whenever the symbols greatly outnumber the states, “size” (as number of bits)
and “number of states” are hugely different. E.g., the 2nfa implementing Alg. 2
has 2h states, but its size is 2 ·2(2h)2·(2h)2 = 2Θ(h2), already close to that of the
best known equivalent 2dfa; so, 2d v 2n is about “number of states”, not “size”!

This argument is misleading. To see why, let binarytwo-way liveness be
defined over the binary alphabet and differ from two-way liveness only in that
each two-column graph is now encoded in (2h)2 bits. The new problem is still in
2n, again by Alg. 2—it’s just that the implementation will now need O(h4) states,
so as to locate the start/end of each graph and the bit representing each arrow,
by counting. The new problem is also 2n-complete, by a homomorphic reduc-
tion from two-way liveness—just replace each graph with its binary encoding.
So, 2d v 2n is also equivalent to questions of constant alphabet, where “number
of states” and “size” are polynomially related. There, removing nondeterminism
causes a super-polynomial blow-up either in both measures or in neither, making
it safe to use either one. In short, large alphabets are “abbreviations” that allow
us to focus on the combinatorial core of a problem. They can always be replaced
by small alphabets, where “number of states” and “size” are interchangeable.

So, our use of the term “size complexity” is not wrong. Moreover, it seems
advantageous to prefer this term whenever our question about the least upper
bound for the blow-up in the number of states is only whether it is polynomial or
not. The term “state complexity” may then be reserved for the finer part of our
studies where, after having answered the polynomiality question, we go on to find
the asymptotic behavior of the bound or, for even greater detail, its exact value;
then, “number of states” may behave differently from “size” (as number of bits
in description) and/or other measures (e.g., “number of transitions”).

A theory to develop. In sharp contrast with tm time/space complexity, where
a plethora of complexity classes have been introduced and studied since the 70’s
[21,29], the study of 2fa size complexity has been progressing very slowly and
has stayed focused mostly on 2d v 2n. Figure 3a sketches a map of some tm time
complexity classes for three primary modes of computation: determinism, alter-
nation, and randomization.8 Figure 3b shows what the analogous map should be
for 2fas and size. The key to the analogy is that the time bound f(n) for tms
(where n is the input length) becomes the size bound f(h) for 2fas (where h is
the family index). More specifically, if X is a mode of computation and F is a
class of functions, then the tm time complexity class{

L
∣∣∣ there exist Xtm M and f ∈ F such that M solves L using
at most f(n) steps, for all n and all n-long positive instances

}
(7)

corresponds to the 2fa size complexity class{
(Lh)h≥1

∣∣∣ there exist 2Xfas (Mh)h≥1 and f ∈ F such that
Mh solves Lh using at most f(h) states, for all h

}
. (8)

Let’s explore the similarities and differences between these two maps.
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56 C.A. Kapoutsis

Determinism. If X is determinism and F is all polynomial functions, then (7)
and (8) define p and 2d, respectively. If F is all exponential functions (2p(n), for
polynomial p), then dtms define exp, while 2dfas define the class of problem
families that are solvable with at most exponentially many states—we propose
the name 22d. Similarly, if F is all doubly-exponential functions, we get eexp
and 222d

(again, a proposed name); and so on, for higher exponentials. When F
becomes all elementary functions, we get the union of all these classes on each
side; for dtms, this is elementary; for 2dfas, we propose the name e2d. Further
up, decidable problems is the tm class when F is all recursive functions; for the
corresponding 2fa class, we propose the name r2d. Finally, if F is all functions,
we get all semi-decidable problems and all families of regular problems.

The deterministic size complexity classes are all closed under complement—
below the elementary bounds, this is non-trivial [27,9]. In addition, the well-
known strict hierarchy

p � exp � eexp � · · · � elementary � decidable � semi-decidable

maps to a hierarchy that is also strict:

2d � 22d � 222d

� · · · � e2d � r2d � regular.

Inclusions are trivial.9 Strictness follows from the fact that the minimum number
of states on a 2dfa solving the unary singleton problem {0x} is x+1 [2].10 So, for
an appropriately selected f , the family ({0f(h)})h≥1 can witness any of the above
differences; e.g., to show e2d � r2d, just let f be recursive but non-elementary.

Alternation. If X is alternation and F is all polynomial functions, then we arrive
at alternating tms (atms) of polynomial time and the class ap. In studying
this class, people have distinguished subclasses of problems by restricting the
maximum number of runs of existential and universal steps that the atm may
perform throughout a computation. Fixing this number to a particular i ≥ 0, we
get the two classes Σip and Πip, depending on whether the first run consists of
existential or universal steps, respectively. This way, p = Σ0p = Π0p, np = Σ1p,
conp = Π1p, and the infinite polynomial-time hierarchy rises above them, which
may or may not be strict. Equivalently, one can think of Σip as the problems
that are solvable in polynomial time by a ntm with access to an oracle for a
problem in Σi−1p, namely as npΣi−1p; and of Πip as all their complements, namely
as conpΣi−1p. Then, the class Δip can also be considered, defined analogously
but with a dtm, namely as pΣi−1p. By the definitions and a few relatively easy
observations, we end up with the well-known relationships:

np Σ2pp⊆np ∩ conp ⊆
⊆

⊆
⊆ Δ2p⊆ Σ2p ∩ Π2p

⊆
⊆

⊆
⊆ · · · ⊆ ph⊆ap⊆exp

conp Π2p
(9)

where ph is the union of all restricted classes.
Analogous complexity classes can be considered for 2fas and size—we pro-

pose11 the names 2Σi and 2Πi for the ith level of the hierarchy, 2h for the union
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of all levels, and 2a for all problem families solvable by alternating 2fas (2afas)
with polynomially many states. E.g., a problem family should be in 2Σi iff its hth
member can be solved by a small (p(h)-state, for some polynomial p) 2afa that
performs ≤ i runs of existential and universal steps per computation, starting
with existential ones. This way, 2d = 2Σ0 = 2Π0, 2n = 2Σ1, and co2n = 2Π1.

It should also be possible to work with the oracle-based definition. E.g., a
problem family should be in the class 2Δ2 = 2d2n if its hth member can be
solved by a small 2dfa that has access to an oracle which responds to any
question that can be answered by a small 2nfa executed on the same input.
This way, the join two-way liveness �� two-way liveness, defined as12

Given an instance w of two-way liveness check that
either w has even length and is live or it has odd length and is dead.

is in 2Δ2 by the straightforward algorithm

We scan the input once to check whether its length is even. We return to the
leftmost symbol and call the oracle to check whether the input is live. If the
two checks returned the same result, we accept; otherwise, we reject.

but is not known to be in 2n ∪ co2n (if it were, then we could disprove13 the
conjecture 2n �= co2n). Similarly, one can define 2n2n, co2n2n, etc. However,
some work is necessary in order to clarify these definitions: one should describe
how exactly oracle calls work14 and compare with the earlier definitions (is 2Σi =
2n2Σi−1?). Such work is beyond the purposes of this exploratory exposition.

In the end, after appropriate fine-tuning, we should probably be able to pro-
duce a situation similar to the one in (9):

2n 2Σ22d⊆2n ∩ co2n ⊆
⊆

⊆
⊆ 2Δ2 ⊆2Σ2 ∩ 2Π2

⊆
⊆

⊆
⊆ · · · ⊆ 2h⊆2a⊆222d

co2n 2Π2

Note that, for a tight analogy with (9), the last inclusion should be ap ⊆ 22d.
But this seems not to known. The listed inclusion follows from [18].15

Randomization. If X is randomization, we need to clarify what it means for
a probabilistic tm (ptm) or probabilistic 2fa (2pfa) M to solve a problem L.
Depending on what we want to model, this can be done in different ways:

two-sided error : To model all nontrivial probabilistic algorithms, we require that
a cut-point λ ∈ (0, 1) distinguishes between positive and negative instances:
each w ∈ L is accepted w.p. > λ and each w �∈ L is accepted w.p. < λ.
Then, the completeness c(n) of M is the smallest acceptance probability
over positive n-long instances; and the soundness s(n) of M is the largest
acceptance probability over negative n-long instances. Hence, the cut-point
separates completeness and soundness: s(n) < λ < c(n), for all n. The
difference c(n)− s(n) is the isolation of the cut-point.

two-sided error of bounded probability: To model all practical probabilistic algo-
rithms (i.e., those allowing us to efficiently extract statistically reliable an-
swers by sampling and majority vote), we further require that the isolation
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of the cut-point is significant in the length of the input: c(n)− s(n) ≥ 1
r(n) ,

for some polynomial r and all n.
one-sided error of bounded probability: To model all MonteCarlo algorithms, we

further require that M never errs on negative instances, namely s(n) = 0.
(“zero-sided”) error of zero probability: To model all LasVegas algorithms, we

require that M always halts with either the correct answer or no answer at
all and that, for all n and all n-long instances, the probability of it returning
an answer is significant (≥ 1

r(n) , for some polynomial r).

The tm time complexity classes that correspond to these requirements when F
is all polynomial functions are pp, bpp, rp, and zpp, respectively. For the 2fa
size complexity analogues, we propose16 the names 2p, 2p2, 2p1, and 2p0—and call
the corresponding automata 2pfas, 2p2fas, 2p1fas, and 2p0fas.

Still, some further clarifications are necessary.
i. Isolation: In the bounded-error models, we require that the cut-point isola-

tion be significant in the input length (≥ 1
r(n) for some polynomial r). This way,

given the probabilistic machine and an n-long input w, one can extract from the
machine a statistically reliable answer about w efficiently (in time polynomial
in n). This is true irrespective of whether the machine is a standalone ptm M
or a member Mh of a 2p2fa-family. In the latter case, however, we must require
that the isolation be significant in h as well (or else we may lose the connections
to tm space complexity—via theorems à la Berman and Lingas [1]). Hence, for
2p2 and 2p1 we require that the cut-point isolation of Mh on n-long instances is
≥ 1

r(h,n) , for some polynomial r and all h, n. Similarly, for 2p0 we require that
Mh returns an answer w.p. ≥ 1

r(h,n) .
ii.Time complexity: In contrast to deterministic and alternating 2fas, where

accepting computations are always at most linearly longer than the input, a
probabilistic 2fa may very well run much slower: when finite, its expected run-
ning time may be exponential in the input length. Hence, to describe efficient
computation, our complexity classes must also require that the expected time is
polynomial in n—and also in h, for reasons similar as above. E.g., 2p2 must be{

(Lh)h≥1

∣∣∣∣∣ there exist 2p2fas (Mh)h≥1 and polynomials p, q such that
Mh solves Lh using at most p(h) states and q(h, n) steps
on average, for all h and all n and all n-long instances

}
,

and similarly for the other classes. Still, the case of polynomial size but expo-
nential expected time is not uninteresting. To discuss such “small but slow”
algorithms, we propose the names 2px, 2p2x, 2p1x, and 2p0x, respectively.

iii.Fineness of distributions: A probabilistic 2fa can be coin-flipping, if the
probability of each transition is either 0 or 1

2 or 1; or rational, if rational transition
probabilities are allowed; or real, if real transition probabilities are allowed. To
describe discrete efficient computation, we must assume that our complexity
classes have been defined based on automata of the first kind. Still, one can
prove that every rational 2fa has an equivalent coin-flipping 2fa that is at most
linearly larger and slower. Hence, redefining our classes on the basis of rational
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automata would not affect them. Finally, to discuss the variant classes that we
get when we let all 2fas be real, we propose the names real-2p0, real-2p1x, etc.

iv.Regularity: It is easy to see that 2p0fas and 2p1fas can solve only regular
problems. In contrast, 2p2fas can solve only regular problems iff we restrict their
expected time to be polynomial [5,7], and 2pfas can solve non-regular problems
even with polynomial expected time [5]. Hence, in order to keep all members of
every family in our classes regular, the definitions of 2p2x, 2p, 2px must include
the explicit requirement that “each Lh is regular”.

With these clarifications, we are ready to list some known facts. First of all,
the well-known relationships

p ⊆ zpp = rp ∩ corp ⊆ rp ⊆ bpp ⊆ pp

translate directly (by the definitions and an easy fact) to the relationships

2d ⊆ 2p0 = 2p1∩ co2p1⊆ 2p1⊆ 2p2⊆ 2p,

and similarly for the *x classes; also, we clearly have 2p0⊆ 2p0x, 2p1⊆ 2p1x, etc.
Moreover, it can be proved (using the ideas of [19]) that the freedom to be slow
allows Monte Carlo and LasVegas automata to simulate nondeterminism:

2p1x = 2n and thus 2p0x = 2p1x ∩ co2p1x = 2n ∩ co2n.

Finally, we also know (by the theorems of [5, Sect. 6]) that small& fast 2p2fas
can be simulated by large 2dfas, but not by small ones:17

2d � 2p2⊆ 22d

but small& slow 2p2fas may even need non-recursively larger 2dfa simulators:

2p2x �⊆ r2d ,

i.e., no recursive function can upper bound the size of the simulating 2dfas.

Programmatic access. Although some of the open questions posed by the
diagram of Fig. 3b are certainly hard, none seems to be hopeless. Moreover, each
of them can be approached via three other questions of gradually decreasing
difficulty: the corresponding questions for sweeping, rotating, and one-way au-
tomata (Fig. 4). A 2fa is sweeping (sfa: sdfa, snfa, etc.) if its head can turn
only on the end-markers, so that each computation is a series of one-way scans
of alternate directions; it is rotating (rfa: rdfa, rnfa, etc.) if its head can only
move right or jump from the right end-marker to the left one, so that each com-
putation is a series of rightward scans; and it is one-way (1fa: 1dfa, 1nfa, etc.)
if its head moves always right, in a single rightward scan.

So, e.g., if the full 2d v 2n problem seems hard, we can step back and study the
relationship between determinism and nondetermism for sfas first: Can sdfas
always stay at most polynomially larger than snfas? Or, introducing the classes
sd and sn (as in (4) but for sdfas and snfas), we can ask the restriction:

sd = sn ?
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Fig. 4. The full range: two-way, sweeping, rotating, and one-way automata

If this is still hard, we can attack the even simpler question for rdfas and rnfas:

rd = rn ?

for rd and rn defined analogously. Finally, our last retreat is the one-way case:

1d = 1n ?

These same simplifying steps can be made in the study of any relationship in
Fig. 3b. Typically, solving the one-way case is indeed a lot easier than all other
cases. Then, a serious boost of ideas is required for the rotating case; here, an
indispensible lower-bound technique is Sipser’s “generic strings” method [28], in
which one studies the behavior of the automaton on inputs that are long enough
to minimize a carefully chosen measure.18 The sweeping case is then relatively
easy; one just needs to carefully exploit symmetry. Finally, moving from the
sweeping to the two-way case is currently beyond our reach, in general.

Another natural restriction one can focus on is that of unary automata. For
each class C in Fig. 3b, one can consider the class unary-C that is defined identi-
cally to C but for unary automata. For example, one can ask:

unary-2d = unary-2n ?

Although a lot simpler, the unary case can still be highly demanding. Moving
from it to the multi-symbol case is currently again beyond our reach, in general.

Some facts. When our questions are asked for the restricted models, as opposed
to full-fledged 2fas, the diagram of Fig. 3b changes as in Fig. 5. More specifically:

For sfas (Fig. 5s), we have confirmed that nondeterminism beats determinism:
sd � sn [28],19 which directly implies 2sd � 2sn, 22sd

� 22sn

, etc. In fact, we even
know that in the series of trivial inclusions

sd
1

⊆ sp0
2

⊆ sp0x = sp1x ∩ cosp1x = sn ∩ cosn
3

⊆ sn ,

both 3 and at least one of 1, 2 are strict [15,13]. That one of 1, 2 is strict fol-
lows from the fact that sd �= sp0x—i.e., slow LasVegas behavior beats determin-
ism [15].20 Note that, although we can confirm the strictness of neither inclusion,
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we do know that 2 is strict in the special case where the fast sp0fas must run in
linear expected time (as opposed to arbitrary polynomial) [17]. That inclusion 3
is strict follows from the fact that sn �= cosn—i.e., nondeterminism is not closed
under complement [13].21 Note that this easily implies that sn ∪ cosn � sΔ2,
as well.22 The remaining relationships in Fig. 5s hold for the same reasons as
for 2fas. Note that there is no arrow to indicate sp2 � sn, as the witness of [5,
Thm 6.2.1] for 2p2 � 2n needs the full bidirectionality of the 2p2fa.

The diagram for rfas (Fig. 5r) is identical to that for sfas, for essentially the
same reasons. Typically, a theorem for the sweeping case comes with a proof that
is stronger than the statement (as indicated in the Notes) and, in fact, implies
the theorem for the rotating case. In addition, sometimes small rfas already
have all the power of small sfas (e.g., rn = sn, rp2x = sp2x, rpx = spx [15]),
and thus a theorem for either case implies the same for the other one.

The diagram for 1fas (Fig. 51) is not very different. Once again, we know
that each one of the trivial inclusions 1d ⊆ 1n ∩ co1n ⊆ 1n, co1n ⊆ 1Δ2 is strict
[24, §4.1].23 But now, of course, there are no probabilistic classes for exponential
expected time. In addition, we know that 1d = 1p0—i.e., LasVegas behavior is
no more powerful than determinism [11].

Finally, for unary 2fas (Fig. 5u) important differences exist. First, a sub-
exponential upper bound is known for the increase in size when removing nonde-
terminism [8]. So, starting at exponential size, nondeterminism is not essential:24

unary-22d = unary-22n, unary-222d

= unary-222n

, etc.

Second, nondeterminism is closed under complement [9]:

unary-2n = unary-co2n ,

which implies that slow LasVegas behavior is as powerful as nondeterminism:

unary-2p0x = unary-2p1x ∩ unary-co2p1x = unary-2n ∩ unary-co2n = unary-2n ,

Overall, the evidence in the unary case is that nondeterminism offers no signif-
icant advantage over determinism, which contrasts with what we know for the
one-way, rotating, and sweeping cases and what we believe for the two-way case.

Conclusion. This has been a semi-formal talk on the size complexity of two-
way finite automata. In the first half, we presented a central open problem
and the main concepts in the area, explained a motivation, and recalled some
early history. In the second half, we sketched where the area is heading for, if
it is to mimic the development of Turing machine time/space complexity. We
expressed all our statements in terms of size complexity classes (rather than the
commoner “trade-off” vocabulary) and proposed names where necessary—all
in continuation and in the style of the Sakoda-Sipser framework [24]. We then
described how each open question may be approached via restrictions to the
unary alphabet or to the sweeping, rotating, or one-way input head. Finally, we
expressed in this framework some of the progress that has been achieved so far.
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Our exposition has tried to be welcoming and informative, rather than rigorous
or complete, and it represents this author’s perspective on the subject.

The diagram of Fig. 3b remains, for the most part, unexplored: an open ques-
tion lies behind any line that is not an arrow, and behind any pair of classes
with no upward path between them. To a lesser but still great extent, the
same is true of the diagrams of Fig. 5. A few of these questions may have al-
ready been answered—in which case this author offers his apologies for not
knowing/realizing it. Other questions will be relatively easy, especially in cases
where the corresponding question for tm complexity has been answered. Still,
the (many) remaining questions will be hard, although certainly not impossible.

In studying these questions one will probably need to choose appropriate def-
initions where necessary (e.g., for oracle-2fas), identify new complete problems
(e.g., for 2Σi, 2a), introduce new types of reductions (e.g., more powerful than
the homomorphic ones), explore connections with time/space complexity (e.g.,
by extending the Berman-Lingas theorem [1]), add other modes of computation
into the picture (e.g., interaction, the quantum mode), and more.

Much like the questions themselves, some of the ideas for answering them
may come directly from answers that have already been given to corresponding
questions in tm time/space complexity (e.g., inductive counting was borrowed
from the proof of nl = conl to help prove unary-2n = unary-co2n [9]). By
testing these ideas in new settings, we can explore their limits and deepen our
understanding of their power (e.g., inductive counting appears inadequate for
showing 2n = co2n; and it will eventually prove so, if the conjecture 2n �= co2n is
true). In turn, this may help us arrive at extensions or completely new techniques,
hopefully advancing our understanding of tm complexity as well.
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16. Kapoutsis, C., Královič, R., Mömke, T.: On the size complexity of rotating and
sweeping automata. In: Proceedings of the International Conference on Develop-
ments in Language Theory, pp. 455–466 (2008)
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Notes

1Assuming that the observable universe contains 1080 atoms, the sun runs out of
fuel in 10 billion years, and drawing 1 state takes 1 atom and 1 picosecond.

2By now the reader has probably picked up our naming conventions. But, for one last
time, let’s just make sure: “1nfa” means one-way nondeterministic finite automaton.

3The “liveness” part of the name hints at the behavior of problem instances under
extension: A path from the leftmost to the rightmost column is called live; an instance
that contains live paths is called live, as well; an instance that contains no live paths
is called dead. Now think of what happens when we prepend or append extra sym-
bols/graphs to an instance: if the instance is live, it may remain live or become dead;
in contrast, if the instance is dead, it will remain dead—a most tight analogy. The
“two-way” part hints at the fact that paths may grow in either direction.

4In fact, his conjecture was even stronger: that the minimum number of states in a
2dfa solving separabilityh is exactly 2h—as it is for 1dfas.

5One can also prove the same for all other candidate witnesses that he proposed.
6By analogy to 2d (and 2n and 1n), 1d is the class of problem families that can

be solved by families of 1dfas of polynomially growing size. The formal definition is
as in (4) but for 1dfas. We have 1d ⊆ 1n (trivially) and 1d �= 1n (e.g., the problem
family implicit in (3) is in 1n − 1d). Overall, 1d � 1n, and thus also 1d � 2n (since
1n ⊆ 2n). Since separability is 1n-complete, we know separability �∈ 1d. Since
two-way liveness is 2n-complete, we know two-way liveness �∈ 1d. (Here we are
using the fact that 1d is closed under homomorphic reductions.)

7For each direction d (left, right), input symbol a, and pair of states (p, q), we need
1 bit saying whether being at p and reading a causes the automaton to jump to q and
move its head in the d direction.

8One could also include here one more map for tm space complexity and/or augment
all maps with interaction [6], parallelism, the quantum mode, etc. But time complexity
and the three primary modes are enough to make our point.

9In fact, [26] implies that even 2n ⊆ 21d, 22n ⊆ 221d

, etc.
10In fact, x + 1 states are sufficient even for a 1dfa; and they are necessary even for

a 2nfa [2, Fact 5.2].
11Here, we follow the Sakoda-Sipser two-symbol naming convention: one symbol for

the head mode, one more for the transition function mode—as in “2d”, “1n”, etc.
12See [24, §4.1] for a similar join, witnessing that 2d � 1n ∪ co1n. Also, see Note 3

for what it means for an instance of two-way liveness to be live/dead.
13Proof : Suppose the join is in 2n ∪ co2n. W.l.o.g., assume it is in 2n (if in co2n,

work similarly but with even lengths). Let M be a small 2nfa solving the join. Using
M , we can construct a small 2nfa M ′ solving two-way liveness. Here is how: We
scan the input w once to check the parity of its length. If odd, we just simulate M
on w—and thus end up accepting iff w is dead. If even, we simulate M on rw, where
r is the two-column graph that contains all (2h)2 arrows—since rw is of odd length,
we end up acepting iff rw is dead, and thus iff w is dead. It should be clear that M ′

can indeed implement this algorithm, and thus solves two-way liveness with roughly
twice as many states as M . This implies two-way liveness ∈ 2n, and thus co2n = 2n.

14How does the oracle read a query? Is the query always the entire input of the 2fa,
is it some portion of the input, or is it produced from the input by a small two-way
transducer? How does the 2fa read the oracle’s answer?

15In fact, [18, Thm 4.2.1] proves that even 221d

contains 2a.
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16Again, we follow the Sakoda-Sipser naming convention: “p” means “probabilistic”
and the index counts the sides of bounded error or, if the error is unbounded, is absent.

17In fact, [5] proves much more: Thm 6.1 says that even real-2p2 ⊆ 21d (small & fast
2p2fas can be simulated by large 2dfas even when they are real and even when the
2dfas are actually one-way) and Thm 6.2 says that even 2n � 2p2 (small 2dfas cannot
simulate every small & fast 2p2fa even if they are allowed to use nondeterminism).

18The method was first applied to deterministic (rotating/sweeping) automata [28],
then also to nondeterministic ones [13] and to probabilistic ones [17]. For other appli-
cations to deterministic automata, see [14,15,16].

19In fact, [28] proves that even sd � 1n.
20In fact, [15] proves that even sd � 1n ∩ co1n.
21In fact, [13] proves that even cosn � 1n.
22In [13], the witness for sn � cosn is one-way liveness. So, consider the join

one-way liveness �	 one-way liveness. As in Note 13, we can easily prove that (i) the
join is in sdsn and (ii) if it were in sn∪cosn, we would have one-way liveness ∈ cosn.

23For the strictness of 1n ∪ co1n ⊆ 1Δ2, consider the join Tn used in [24, §4.1].
24In fact, [8] implies that even unary-2sd ⊇ unary-22n, unary-22sd ⊇ unary-222n

, etc.
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Abstract. In this paper, we establish the Černý-Pin conjecture for au-
tomata with the property that their transition monoid cannot recognize
the language {a, b}∗ab{a, b}∗. For the subclass of automata whose tran-
sition monoids have the property that each regular J -class is a subsemi-
group, we give a tight bound on lengths of reset words for synchronizing
automata thereby answering a question of Volkov.

1 Introduction

In 1964 Černý conjectured that any n-state synchronizing automaton has a reset
word of length at most (n− 1)2. Despite years of intensive work [2–6, 8, 12, 18,
19, 27, 28, 34–37, 39, 41–43], the best known upper bound is n3−n

6 , due to
Pin [29] based on a non-trivial result of Frankl from extremal set theory; see
also [20]. Černý, himself, showed that (n− 1)2 is the best one can hope for [8].
Pin generalized the conjecture as follows [28]. Suppose (Q,Σ) is an automaton
such that some word w ∈ Σ∗ acts on Q as a transformation of rank r. Then
he proposed that there should be a word of length at most (n− r)2 acting as a
rank r transformation. This generalized conjecture was disproved by Kari [18].
However, there is a reformulation of the Pin conjecture that is still open (and that
was interpreted by Rystsov as being the Pin conjecture [35]). This conjecture is
sometimes known as the Rank conjecture or the Černý-Pin conjecture. It states
that if r is the minimal rank of a transformation in the transition monoid of an
n-state automaton (in which case we say the automaton has rank r), then there
is a word of length at most (n− r)2 that acts as a transformation of rank r. The
case r = 1 is the Černý conjecture.

This paper is a contribution to this form of the Černý-Pin conjecture. To
state our main result, we recall the notion of a variety of finite monoids [13].
A variety of finite monoids is a class of finite monoids closed under taking
finite products, submonoids and homomorphic images [13]. There is a bijection
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between varieties of finite monoids and varieties of languages [13]. Recall that
the variety DS [1, 32], introduced by Schützenberger [38], consists of all finite
monoids whose regular J -classes are subsemigroups. The variety EDS consists
of all monoids whose idempotents generate a submonoid belonging to DS. For
example, this variety contains all monoids with commuting idempotents. It is
known that EDS is the largest variety of finite monoids that does not contain
the syntactic monoid of the language {a, b}∗ab{a, b}∗ and that a monoid belongs
to EDS if and only if it cannot recognize the language {a, b}∗ab{a, b}∗ (cf. [32,
Chapter 7]). We show that, for an n-state automaton of rank r whose transition
monoid belongs to EDS, there is a word of length at most (n− r)(n− r + 1)/2
which acts as a transformation of rank r. This bound is tight for this class
since Rystsov gave an example of an n-state synchronizing automaton whose
transition monoid has commuting idempotents and whose minimal length reset
word has length n(n−1)/2 [34]. As most papers just focus on the original Černý
conjecture, this result gives the widest class of monoids for which the more
general Černý-Pin conjecture is known to hold.

We also give a tight bound of n − 1 on the length of reset words for n-state
synchronizing automata with transition monoid in the pseudovariety DS [1,
32], improving the result of [2] and answering a question of Volkov [43]. Our
techniques are a continuation of the representation theoretic approach to the
Černý conjecture initiated in [2, 6, 39], and also are an elaboration on an idea
of Rystsov [35].

The key notion in this paper is that of a mortality function for a finite mon-
oid S. A mortality function measures the lengths of zero words under matrix
representations of S. We estimate mortality functions by reducing to the case of
irreducible representations and using the theory of Munn, Ponizovsky, Rhodes
and Zalcstein [9, 15, 23, 24, 33]. These results are then applied to a particu-
lar representation coming from an automaton. The paper ends with a universal
mortality function that relies on the effective solution to the Burnside problem
for matrix semigroups [7, 14, 17, 22, 25, 40].

A journal version of this paper is under preparation that extends the results to
a much more general class of automata, which is a bit more technical to define.

2 Mortality Functions

In this paper, all monoids are assumed finite except free monoids and full matrix
monoids. We use Σ∗ to denote the free monoid on a set Σ. If Σ is a generating
set for a monoid S, we will abuse notation and not distinguish between w ∈ Σ∗

and the element of S represented by w. All actions of monoids are on the right.
Denote by N the set of positive integers. By a representation of a monoid S of
degree n, we mean a monoid homomorphism ϕ : S → Mn(Q) where Mn(Q) is
the monoid of n×n matrices over the field of rational numbers Q. If v ∈ Qn and
s ∈ S, then vϕ(s) will be abbreviated to vs.

Definition 2.1 (Mortality function). Let S be a monoid. By a mortality
function for S, we mean a function f : N → N such that, for all representations
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ϕ : S →Mn(Q) of degree n with 0 ∈ ϕ(S) and all generating sets Σ of S, there
is a word w ∈ Σ∗ of length at most f(n) so that ϕ(w) = 0.

The terminology mortality comes from [26]. The reader is referred to [10, 11] for
basic notions and definitions from representation theory. Notice that a mortality
function is non-decreasing since if ϕ : S → Mn(Q) is a representation with 0 ∈
ϕ(S) and ψ : S → Q is the degree 1 representation sending the group of units of S
to 1 and all other elements to 0, then ϕ⊕ψ has degree n+1 and contains 0, so from
this it follows that f(n) ≤ f(n+ 1). Also note that f(n) = |S| − 1 is a mortality
function for S and so we are really interested in mortality functions with “good”
constants, rather than in asymptotics. Most of the time we are interested in
degrees that are significantly smaller than |S|. Also, we want mortality functions
that are valid for whole classes of monoids and not just for a single monoid. We
remark that if ϕ : S → T is an onto homomorphism and f is a mortality function
for S, then f is also a mortality function for T .

There is a connection between mortality under matrix representations and
the Černý-Pin problem due to Rystsov [35]. To state the Černý-Pin conjecture,
we need a few definitions. The rank of a transformation is the size of its image.
An automaton (Q,Σ) has rank r if r is the minimal rank of an element of its
transition monoid S. Notice that the set of elements of minimal rank in S is
an ideal and hence contains the minimal ideal. We now state the Černý-Pin (or
Rank) conjecture.

Conjecture 2.2 (Černý-Pin). An automaton of rank r has a word of length at
most (n− r)2 representing a transformation of rank r.

The Černý conjecture is the special case when r = 1; the general statement is a
variation on a conjecture of Pin. An automaton of rank 1 is called synchronizing
and a word representing a transformation of rank 1 is often termed a reset word.

A function f : N → N is called superadditive if, for all m,n ∈ N, one has that
f(m) + f(n) ≤ f(m + n). We are mostly interested in superadditive mortality
functions. The following is a variant on a result of Rystsov [35].

Proposition 2.3. Let (Q,Σ) be an n-state automaton of rank r with transition
monoid S. Let f be a supperadditive mortality function for S. Then there is a
word w ∈ Σ∗ of length at most f(n− r) so that |Qw| = r.

Proof. Without loss of generality, assume Q = {1, . . . , n}. Linearize the action
of S on Q to a matrix representation ϕ : S →Mn(Q) by setting eis = eis where
e1, . . . , en is the standard basis for Qn.

Assume first that S acts transitively on Q, that is, the automaton (Q,Σ) is
strongly connected. If X ⊆ Q, let X denote the characteristic vector of X . Let C
be the set of images of rank r elements of S. Notice that S acts on C . Indeed, the
elements of rank r in S form an ideal and so if t ∈ S has rank r, then |Qts| = r
for all s ∈ S and so Qt ∈ C implies Qts ∈ C . Let V be the subspace of Qn

spanned by the elements X − Y such that X,Y ∈ C . It is easy to see that V
is S-invariant. We claim that V s = 0, for s ∈ S, if and only if s has rank r.
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First note that if s has rank r, then for any X ∈ C one has Xs = Qs since both
sets have size r. Thus (X − Y )s = 0. For the converse, suppose that s has rank
greater than r. Let X ∈ C and choose q ∈ Qs\Xs. Choose p ∈ Q so that ps = q
and let Y ∈ C such that p ∈ Y . Such a Y exists as S acts transitively on Q.
Then (X − Y )s �= 0 since Xs has 0 in the q-coordinate while Y s has 1 in this
coordinate.

Next we show that dimV ≤ n − r. First of all let s ∈ S have rank r and
let P1, . . . , Pr be the equivalence classes of the kernel of s. Since these sets are
disjoint, it is immediate that their characteristic vectors are linearly independent.
Let W be the subspace spanned by the Pi, i = 1, . . . , r. Then dimW = r and
hence dimW⊥ = n − r. Suppose now that X ∈ C . Since |Xs| = |X | = r, it
follows that |X ∩ Pi| = 1 all i. In other words, X · Pi = 1 for all i. Thus if
X,Y ∈ C , then X − Y ⊥ Pi, for all i. We conclude that V ⊆ W⊥ and hence
dimV ≤ n− r. The result now follows in the transitive case.

Now suppose that S does not act transitively on Q. The S-invariant subsets of
Q are ordered by inclusion. Let C1, . . . , C� be the minimal S-invariant subsets of
Q, that is, the minimal strongly connected components of the automaton (Q,Σ).
Then the Ci are disjoint and S acts transitively on each Ci by minimality. First
suppose that Q = C1 ∪ . . . ∪C�. Let ni = |Ci| and let ri be the rank of (Ci, Σ).
Plainly n = n1 + · · ·+n� and, moreover, one easily verifies that r = r1 + · · ·+ r�

(consider an element of the minimal ideal of S). Since the transition monoid of
(Ci, Σ) is a quotient of S, it admits f as a mortality function. It now follows
from the previous case that we have, for each i, a word wi of length at most
f(ni − ri) with |Ciwi| = ri. Then w = w1 · · ·w� represents a transformation
of Q of rank r and the length of w is at most

∑�
i=1 f(ni − ri) ≤ f(n − r) by

superadditivity.
Next suppose that C = C1∪· · ·∪C� �= Q. Since C contains all the minimal S-

invariant subsets, it is easy to see that qS∩C �= ∅ for all q ∈ Q\C. Consequently,
the set {s ∈ S | Qs ⊆ C} is a non-empty ideal of S and hence contains the
minimal ideal. Thus r is also the rank of (C,Σ). Indeed, if s ∈ S belongs to the
minimal ideal, then Qs ⊆ C and hence Qs = Qs2 ⊆ Cs (the equality Qs = Qs2

follows from minimality of the rank of s).
Now S acts by partial transformations on X = Q\C by restriction; moreover,

the elements of the minimal ideal of S act via the empty transformation by the
above paragraph. Thus by linearizing this partial transformation action of S on
X , we obtain a representation ρ : S →M|X|(Q) with 0 ∈ ρ(S). Hence there is a
word w of length at most f(n− |C|) representing the empty transformation on
X , i.e., so that Qw ⊆ C. Because the transition monoid of (C,Σ) is a quotient
of S, it has f as a mortality function, so by the previous case there is a word u
of length at most f(|C| − r) so that |Cu| = r. Then r ≤ |Qwu| ≤ |Cu| = r so
wu represents a transformation of rank r. Since f is superadditive,

|wu| ≤ f(n− |C|) + f(|C| − r) ≤ f(n− r)

as required. ��
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It is natural to try to obtain a mortality function for S by reducing to the
case of an irreducible representation: a representation of S is called irreducible
if there are no proper, non-zero S-invariant subspaces. To do this, we need to
deal with composition series.

Lemma 2.4. Let ϕ : S →Mn(Q) be a representation and let

0 = Vk ⊆ Vk−1 ⊆ · · · ⊆ V0 = Qn

be a tower of S-invariant subspaces. Suppose that, for i = 0, . . . , k− 1, there are
elements si ∈ S with Visi ⊆ Vi+1. Then ϕ(s0s1 · · · sk−1) = 0.

Proof. Straightforward induction shows that V0s0 · · · si ⊆ Vi+1, from which the
result follows as Vk = 0. ��

The above lemma lets us enact our reduction to the case of irreducible
representations.

Proposition 2.5. Let f : N → N be a superadditive function and suppose that,
for all irreducible representations ρ : S → Md(Q) with 0 ∈ ρ(S) and for all
generating sets Σ of S, there exists w ∈ Σ∗ so that |w| ≤ f(d) and ρ(w) = 0.
Then f is a mortality function for S.

Proof. Let ϕ : S → Mn(Q) be a representation so that 0 ∈ ϕ(S) and fix a
generating set Σ for S. Let 0 = Vk ⊆ Vk−1 ⊆ · · · ⊆ V0 = Qn be a com-
position series for Qn, that is, an unrefinable tower of S-invariant subspaces.
Let ρi : S → End(Vi/Vi+1) be the associated irreducible representation. Since
0 ∈ ϕ(S), it follows immediately that 0 ∈ ρi(S). Thus, by assumption, we can
find words wi, for 0 ≤ i ≤ k − 1, with Viwi ⊆ Vi+1 and |wi| ≤ f(di) where di is
the dimension of Vi/Vi+1. Now d0 + · · ·+dk−1 = n and ϕ(w0w1 · · ·wk−1) = 0 by
Lemma 2.4. Since f is superadditive, |w0w1 · · ·wk−1| ≤ f(d0) + · · ·+ f(dk−1) ≤
f(n). This completes the proof. ��

It was proved in [2] that if S ∈ DS, ϕ : S → Mn(Q) is an irreducible represen-
tation with 0 ∈ ϕ(S) and Σ is a generating set of S, then there is an element of
Σ which is mapped to the zero matrix. Since the function f(n) = n is superad-
ditive, it now follows from Proposition 2.5 that f(n) = n is a mortality function
for S. Putting it all together, we obtain:

Theorem 2.6. Let S be a monoid in DS. Then f(n) = n is a mortality function
for S. Hence, if (Q,Σ) is a synchronizing automaton with transition monoid in
DS, then it has a reset word of length at most n− 1 and moreover this bound is
tight. More generally, if (Q,Σ) is an automaton of rank r with transition monoid
in DS, then there is a word w ∈ Σ∗ of length at most n− r so that |Qw| = r.

Proof. In light of Proposition 2.3, the argument before the theorem statements
proves everything except the tightness. For tightness, just use an n-state counter-
free automaton over a unary alphabet. ��
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The above theorem generalizes Rystsov’s result for the case of commutative
monoids [34] and answers a question raised by Volkov [43]. The following lemma
is due to Rystsov [34] and will be used later to obtain our main result.

Lemma 2.7. Let S be a monoid acting by partial transformations on an n el-
ement set and suppose that some element of S acts as the empty function. Let
Σ be a generating set for S. Then there is a word w ∈ Σ∗ of length at most
n(n + 1)/2 acting as the empty function.

Rystsov shows in [34] that the bound in the above lemma is tight. The monoid
in his example is an inverse semgroup.

3 The Structure of Monoids in EDS

We briefly recall here some structural results concerning monoids in EDS. The
reader is referred to [32, Appendix A] or [1, 9, 21] for the basic structure theory
of finite monoids. Let us denote by Reg(S/J ) the set of regular J -classes
of a monoid S. We write Js for the J -class of s and use similar notation for
L -classes and R-classes.

Let J be a regular J -class of a monoid S. Then there is an isomorphism
J0 ∼= M 0(G,A,B,C) of the principal factor J0 with a Rees matrix semigroup
with sandwich matrix C : B × A → G0 [9, 21, 32] where G is the maximal
subgroup of J , A is the set of R-classes of J and B is the set of L -classes of
J . It follows from Graham’s Theorem [16] (cf. [32, Theorem 4.13.34]) that S
belongs to EDS if and only if, for each regular J -class J of S, we can always
choose the sandwich matrix C to have a block diagonal form

C =

⎡⎢⎢⎢⎢⎣
C1 0 · · · 0

0 C2 0
...

... 0
. . . 0

0 · · · 0 Cr

⎤⎥⎥⎥⎥⎦ (3.1)

where each Ci is a matrix over G (with no zero entries). We define r to be the
rank of J , which we denote by rk(J). It can be defined independently of the
Rees matrix representation in the following way. Continuing to denote the set of
L -classes of J by B, define an equivalence relation on B by setting L1 ∼L L2
if, for all R-classses R of J , one has R ∩ L1 contains an idempotent if and only
if R ∩ L2 contains an idempotent. Observing that Cba �= 0 if and only if the
H -class b ∩ a contains an idempotent, it follows that r is the number of blocks
of the partition associated to ∼L. (The journal version of this article will define
the rank of a regular J -class for arbitrary finite monoids.)

The monoid S acts by partial functions on the right of J by right multi-
plication, where rs is undefined if r ∈ J , s ∈ S, but rs /∈ J . Moreover, it is
easy to see that s acts as the empty function on J if and only if Js �J J . In-
deed, if Js �J J , trivially s acts as the empty function. Conversely, if usv ∈ J
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with u, v ∈ S1, then since J is regular we can find an idempotent e so that
eusv = usv ∈ J . Thus eu, eus ∈ J and so the action of s on eu ∈ J is defined.
Define an equivalence relation ≡ on J by putting s ≡ t if Ls ∼L Lt. Denote by
[r] the ≡-class of r.

Proposition 3.1. There is a well defined action of S on J/≡ by partial func-
tions given by

[r]s =

{
[rs] rs ∈ J

undefined else.

Moreover, s ∈ S acts as the empty function on J/≡ if and only if Js �J J .

Proof. Let us begin with the following claim.

Claim. Suppose t1 ≡ t2. Then, for all x ∈ J , one has t1x ∈ J if and only if
t2x ∈ J .

Proof. If E(J) denotes the set of idempotents of J , then standard finite semi-
group theory [1, 9, 21, 32] yields

t1x ∈ J ⇐⇒ Lt1 ∩Rx ∩E(J) �= ∅
⇐⇒ Lt2 ∩Rx ∩E(J) �= ∅
⇐⇒ t2x ∈ J.

��

Suppose now that t1 ≡ t2 and let s ∈ S. We first establish that t1s ∈ J if and
only if t2s ∈ J . Indeed, if t1s ∈ J , we can find an idempotent e ∈ E(J) so that
t1se = t1s ∈ J by regularity of J . Thus se ∈ J and so by the claim t2se ∈ J ,
whence t2s ∈ J . The reverse implication is proved in an identical manner.

Next assume that t1s, t2s ∈ J . We establish that if R′ is an R-class of J , then

R′ ∩ Lt1s ∩ E(J) �= ∅ ⇐⇒ R′ ∩ Lt2s ∩E(J) �= ∅.

Suppose that e ∈ R′ ∩ Lt1s is an idempotent. Then t1se = t1s ∈ J and se ∈ J .
Thus the claim implies t2se ∈ J . It follows that R′ ∩ Lt2s contains an idempo-
tent. The reverse implication is proved in the same fashion. We conclude that
the action of S on J/{≡} is well defined. Verifying the axioms of an action is
straightforward and left to the reader.

By the definition of the action, it is clear that s ∈ S acts as the empty function
on J/≡ if and only if it acts as the empty function on J . The final statement
now follows from the discussion before the proposition. ��

The above proposition is valid for regular J -classes of any monoid, not just
those in EDS. However, one can verify that S ∈ EDS if and only if the above
action is by partial injective functions for each regular J -class J . Since we do
not need this result, we do not prove it here.

The following proposition will be used to estimate mortality bounds for mon-
oids in EDS.
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Proposition 3.2. Let S ∈ EDS and suppose that J is a regular J -class of S
other than the minimal ideal. Given a generating set Σ for S, there is a word
w ∈ Σ∗ of length at most rk(J)(rk(J) + 1)/2 so that Jw �J J .

Proof. The result follows from applying Lemma 2.7 to the action of S on J/≡
by partial functions and using Proposition 3.1. ��

4 A Mortality Function for EDS

We begin with some basic facts concerning the representation theory of mon-
oids. We take a minimalist approach, stating exactly what we need in order to
prove our main result. Details can be found in [9, 15, 24, 30, 33]. To fix nota-
tion, if S is a monoid, we use Irr(S) to denote the set of equivalence classes of
irreducible representations of S. The reader should verify that every irreducible
representation of a group is by invertible maps.

Let S be a monoid. Fix a maximal subgroup GJ for each regular J -class J
of S. Then the theory of Munn and Ponizovsky says that Irr(S) is in bijec-
tion with

∐
J∈Reg(S/J ) Irr(GJ ). Following Munn, if ρ∗ is the irreducible rep-

resentation of S corresponding to an irreducible representation ρ of GJ , then
the J -class J is called the apex of ρ∗. Suppose that d is the degree of ρ. Let
C : B×A→ G0

J be the sandwich matrix for J and denote by ρ⊗C the d|B|×d|A|
matrix obtained by applying ρ entrywise to C (where we take ρ(0) to be the d×d
zero matrix). The following result can be extracted from [33] and [9, Chapter 5];
see also [30] and [31, Chapter 15] for a summary without proofs or [15, 23] for
module-theoretic statements and proofs.

Theorem 4.1 (Munn, Ponizovsky). Suppose that S is a finite monoid. Let
ρ∗ : S → Mn(Q) be an irreducible representation with apex J corresponding to
an irreducible representation ρ : GJ →Md(Q) of the maximal subgroup of J . Let
C : B ×A→ G0

J be the sandwich matrix of J . Then:

1. The degree of ρ∗ is the rank of the matrix ρ⊗ C;
2. For s ∈ S, one has ρ∗(s) = 0 if and only if Js �J J .

Now we are ready to prove that f(n) = n(n + 1)/2 is a superadditive mortality
function for monoids in EDS.

Theorem 4.2. Let S ∈ EDS. Then f(n) = n(n + 1)/2 is a superadditive mor-
tality function for S.

Proof. It is routine to verify that f is superadditive. Thus it suffices to consider
irreducible representations by Proposition 2.5. So let ϕ : S → Mn(Q) be an
irreducible representation with 0 ∈ ϕ(S) and let Σ be a generating set for S.
Let J ∈ Reg(S/J ) be the apex of ϕ; note that J is not the minimal ideal of S.
Suppose that ϕ = ρ∗ where ρ : GJ → Md(Q) is an irreducible representation of
the maximal subgroup GJ of J . Putting r = rk(J), we can find by Proposition 3.2
a word w of length at most r(r + 1)/2 with Jw �J J and hence with ϕ(w) = 0
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by Theorem 4.1. It thus suffices to prove that r ≤ n. Since S ∈ EDS, we can
place C in the block form (3.1) where the Ci are matrices over GJ (with no zero
entries). Then evidently,

ρ⊗ C =

⎡⎢⎢⎢⎢⎣
ρ⊗ C1 0 · · · 0

0 ρ⊗ C2 0
...

... 0
. . . 0

0 · · · 0 ρ⊗ Cr

⎤⎥⎥⎥⎥⎦ .

Since ρ(g) is invertible for all g ∈ G, it now follows that the rank of ρ⊗ C is at
least r. But this rank is the degree n of ϕ by Theorem 4.1. This completes the
proof of the theorem. ��

We can now resolve the Černý-Pin conjecture for automata with transition mon-
oid in EDS.

Corollary 4.3. Every synchronizing automaton with transition monoid in EDS
has a reset word of length at most n(n − 1)/2 and this bound is sharp. More
generally, if (Q,Σ) is an automaton of rank r whose transition monoid is in
EDS, then there is a word of length at most (n− r)(n− r + 1)/2 representing a
transformation of rank r.

Proof. The upper bound is a direct consequence of Proposition 2.3 and Theo-
rem 4.2. The sharpness follows from an example of Rystsov [34] of an n-state
synchronizing automaton whose transition monoid has commuting idempotents
with shortest reset word of length n(n− 1)/2. ��

5 A Universal Mortality Function

It is natural to ask whether there is a single function that is a mortality function
for every finite monoid.

Definition 5.1 (Universal mortality function). A universal mortality
function is a function f : N → N which is a mortality function for all finite
monoids.

It is not a priori clear that there exist universal mortality functions. In fact, a
famous result of Paterson [26] asserts that it is undecidable whether the monoid
generated by a finite collection of 3×3 integer matrices contains the zero matrix
and so there can be no ‘universal’ mortality function if one lifts the restriction on
finiteness. A result proved independently by Mandel and Simon [22] and by Ja-
cob [17] (see also [7, Chapter IX]) easily implies that one can find a simultaneous
mortality function for all finitely generated monoids with at most k generators
for any given k. But this is not good enough for our purposes.



76 J. Almeida and B. Steinberg

We use the methods from the solution of the Burnside problem for matrix
semigroups [7, 14, 25, 40] to establish the existence of a universal mortality
function. More precisely, we show that the function f : N → N given by

f(n) =

{
1 n = 1
(2n− 1)n2 − 1 n > 1

(5.1)

is a superadditive universal mortality function. The journal version of the paper
will contain a slightly better bound.

The proof of the following elementary proposition is left to the reader.

Proposition 5.2. The function f from (5.1) is superadditive.

So to prove that f is a universal mortality function, it suffices to consider irre-
ducible representations. Let us say that a submonoid S of Mn(Q) is irreducible
if the inclusion map S ↪→Mn(Q) is an irreducible representation.

Recall that a subalgebra A ⊆ Mn(Q) is said to be irreducible if the only
A-invariant subspaces of Qn are {0} and Qn. An algebra is simple if it has no
ideals. We shall need the following well-known result (cf. [9, Theorem 5.7]) going
back to Burnside.

Theorem 5.3. An irreducible subalgebra of Mn(Q) is simple.

If a ∈Mn(Q), then tr a denotes the trace of a. Our next lemma relies on a little
bit of algebraic number theory.

Lemma 5.4. Let a ∈Mn(Q) have finite order, that is, |〈a〉| <∞. Then tr a ∈ Z
and | tr a| ≤ n. Moreover, if | tr a| = n, then a is invertible.

Proof. By assumption, am = am+k for some m, k > 0. Thus the minimal poly-
nomial of a divides xm(xk − 1) and so each non-zero eigenvalue is a kth-root
of unity. Thus tr a is an algebraic integer, being a sum of algebraic integers.
But tr a ∈ Q and hence tr a ∈ Z as the rational algebraic integers are precisely
the integers. Suppose λ1, . . . , λn are the complex eigenvalues of a listed with
multiplicity. Then

| tr a| =
∣∣∣∣∣

n∑
i=1

λi

∣∣∣∣∣ ≤
n∑

i=1

|λi| ≤ n

since each λi is zero or a root of unity. Moreover, if | tr a| = n, then no λi = 0
and so a is invertible. ��
The following lemma uses traces to bound mortality. The essential idea goes
back to Burnside [10]. We use the well-known and easy to prove fact that if S is
a monoid with n elements generated as a monoid by a set Σ, then each element
of S can be represented by a word of length at most n− 1.

Lemma 5.5. Let Σ ⊆ Mn(Q) be such that S = 〈Σ〉 is a finite irreducible
submonoid, 0 ∈ S and S \ {0} contains a singular matrix. Let J be the apex
of the irreducible representation S ↪→ Mn(Q) and let G be a maximal subgroup
of J . Suppose that |{tr g | g ∈ G} ∪ {0}| = m. Then there is a word w ∈ Σ∗ of
length at most mn2 − 1 mapping to the zero matrix in S.
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Proof. Let A be the subalgebra of Mn(Q) spanned by S; then A is irreducible
and hence simple by Theorem 5.3. Let I = J ∪ {0}; it is the unique 0-minimal
ideal of S as a consequence of Theorem 4.1. The span of I is a non-zero ideal of A
and hence A, being simple, is spanned by I. Thus there exists a basis {s1, . . . , sd}
for A consisting of elements of J ; note that d = dim A ≤ n2.

Consider now the trace form (a, b) �→ tr(ab) on A. The associativity of mul-
tiplication in A and the linearity of the trace functional immediately yield that
the trace form is a (symmetric) bilinear form on A. Since the identity matrix In

is in S ⊆ A and tr In = n, it follows that the trace form is not identically 0 on A.
Thus the radical of the trace form is a proper ideal of A, and hence zero by the
simplicity of A. Thus the trace form is non-degenerate on A. Consequently, if
a ∈ A, then a is determined by the d rational numbers tr(asi), for i = 1, . . . , d.

In particular, consider s ∈ S. Then ssi ∈ I, for i = 1, . . . , d. Let

A = {tr g | g ∈ G} ∪ {0}.

We claim that tr(ssi) ∈ A. This is evident if ssi = 0. If ssi ∈ J , but not in a
maximal subgroup, then (ssi)2 = 0 and hence tr(ssi) = 0 (since it has only 0
as an eigenvalue). Finally, suppose ssi belongs to some maximal subgroup of J .
Then we can find by Green-Rees Theory [32, Appendix A] elements x, x′ ∈ J so
that xx′x = x, x′xx′ = x′, x′xssi = ssi and xssix

′ ∈ G. Then

tr(ssi) = tr(x′xssi) = tr(xssix
′) ∈ A

establishing the claim. As a consequence, tr(ssi) takes on at most m = |A| values
for s ∈ S and so S has at most md elements. Thus there is a word w ∈ Σ∗ of
length at most md − 1 representing 0 in S. As d ≤ n2, this provides the desired
result. ��

We are now ready to prove the main theorem of this section.

Theorem 5.6. The function f from (5.1) is a universal mortality function.

Proof. Because f is superadditive, it suffices by Proposition 2.5 to show that if
Σ ⊆ Mn(Q) is such that S = 〈Σ〉 is a finite irreducible submonoid and 0 ∈ S,
then there exists a word w ∈ Σ∗ with |w| ≤ f(n) and w = 0 in S. If S \ {0}
contains only invertible elements, then 0 ∈ Σ and there is nothing to prove. So
assume that S contains non-zero singular matrices (and hence n > 1).

Let J be the apex of S ↪→Mn(Q) and let G be a maximal subgroup of J . Then
since S is finite and G consists of singular matrices, it follows from Lemma 5.4
that {| tr(g)| | g ∈ G} ∪ {0} ⊆ {0, . . . , n − 1} and hence has at most 2n − 1
elements. Thus Lemma 5.5 yields the desired result. ��

This leaves open an obvious question:

Question 5.7. Is there a polynomial universal mortality function? How about an
exponential one?
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Rystsov [35] conjectured that n2 would be a universal mortality function,
but he also conjectured this bound should hold over all finite fields, which is
impossible given the undecidability of matrix mortality for integer matrices [26].
However, the best known lower bound to our knowledge is n2 coming from the
lower bound for the Černý problem.

Let us prove that for aperiodic monoids, we can find a better mortality func-
tion than (5.1). Recall that a monoid is aperiodic if all its maximal subgroups are
trivial. The journal version of this paper deals with further classes of monoids.

Theorem 5.8. The superadditive function k(n) = 2n2−1 is a mortality function
for all aperiodic monoids.

Proof. Routine computation shows that k is superadditive. So it suffices by
Proposition 2.5 to deal with irreducible representations ρ : S →Mn(Q). Without
loss of generality we may assume that S is an irreducible aperiodic submonoid
of Mn(Q) and ρ is the inclusion. If S \ {0} contains only invertible elements,
then 0 ∈ Σ and there is nothing to prove. So assume that S contains non-zero
singular matrices (and hence n > 1).

Let J be the apex of ρ and let G be a maximal subgroup of J ; then G = {e}
where e is an idempotent. Set V = Qn. Then tr e = dimV e. But the theory of
Munn and Ponizovsky implies that the restriction of the action of G to V e gives
an irreducible representation of G [9, 15, 30, 33]. Since G is the trivial group,
this implies dimV e = 1 and so tr e = 1. Thus |{tr g | g ∈ G} ∪ {0}| = 2 from
which Lemma 5.5 yields the desired result. ��
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Abstract. Černý’s conjecture asserts the existence of a synchronizing
word of length at most (n − 1)2 for any synchronized n-state determin-
istic automaton. We prove a quadratic upper bound on the length of a
synchronizing word for any synchronized n-state deterministic automa-
ton satisfying the following additional property: there is a letter a such
that for any pair of states p, q, one has p · ar = q · as for some integers
r, s (for a state p and a word w, we denote by p · w the state reached
from p by the path labeled w). As a consequence, we show that for any
finite synchronized prefix code with an n-state decoder, there is a syn-
chronizing word of length O(n2). This applies in particular to Huffman
codes.

1 Introduction

Synchronized automata are deterministic and complete finite-state automata
admitting a synchronizing word, that is a word which takes each state of the
automaton to a single special state. Černý conjecture claims that each n-state
synchronized automaton has a synchronizing word of length at most (n−1)2 [5].
An extension of this conjecture due to Pin [12,14] was shown to be false by Kari
[9]. The conjecture has been shown to be true for particular classes of automata
like the class of circular automata by Dubuc [6] (see also [13]). A n(n − 1)/2
upper bound has been obtained by Trahtman [17,19] for aperiodic automata.
This upper bound was improved to n(n + 1)/6 by Volkov [20] (see also [21]).

In a previous note [1], the first author gave a proof of a quadratic bound for
circular automata which is simpler than the one given in [6]. Nevertheless, it does
not allow one to get the tight (n − 1)2 bound. The proof uses rational series.

The formulation of the problem in terms of rational series is also used in [1] to
provide a simple proof of a result from Kari [10] which proves Černý’s conjecture
for automata with an underlying Eulerian graph.

Later, the result on circular automata was generalized by Carpi and
d’Alessandro to a larger class called strongly transitive automata [4]. Their proof
uses rational series as in [1]. They use the same methods to generalize the result
of Kari to unambiguous automata.

In this paper, we prove the existence of a quadratic upper bound for the length
of a synchronizing word for a class of finite automata called one-cluster. This

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 81–90, 2009.
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82 M.-P. Béal and D. Perrin

means that, for some letter a, there is only one cycle with all edges labeled by a.
The proof is an extension of the argument of [1] and uses again rational series.

The class of one-cluster automata contains in particular the automata associ-
ated with finite prefix codes. We thus obtain the existence of a quadratic bound
on the length of a synchronizing word for a finite maximal synchronized prefix
code. This applies in particular to Huffman codes.

Let us mention two recent results connected to our work (we thank Hugo
Vaccaro for pointing out these references to us). First, it is proved in [8] that
almost all finite maximal prefix codes are synchronizing. Next, in [3], it is proved
that a finite maximal synchronized prefix code with n codewords of maximal
length h has a synchronizing word of length O(nh log n). This bound is not
comparable with Indeed, since log n ≤ h ≤ n−1, one has n(log n)2 ≤ nh logn ≤
n2 log n.

2 Automata and Series

Let A be a finite alphabet and A∗ be the set of finite words drawn from the
alphabet A, the empty word ε included. A (finite) automaton A over some (finite)
alphabet A is composed of a finite set Q of states and a finite set E of edges
which are triples (p, a, q) where p, q are states and a is a symbol from A called
the label of the edge. Note that we do not specify a set of terminal states and
that, for this reason, our automata are sometimes called semi-automata.

An automaton is deterministic if, for each state p and each letter a, there is
at most one edge starting in p and labeled with a. It is complete deterministic
if, for each state p and each letter a, there is exactly one edge starting in p and
labeled with a. This implies that, for each state p and each word w, there is
exactly one path starting in p and labeled with w. We denote by p · w the state
which is the end of this unique path.

An automaton is irreducible if its underlying graph is strongly connected.
A synchronizing word of a deterministic complete automaton is a word w such

that for any states p, q, one has p ·w = q ·w. A synchronizing word is also called a
reset sequence or a magic sequence, or also a homing word. An automaton which
has a synchronizing word is called synchronized (see an example on the right
part of Figure 1).

1 2

3 4

1 2

3 4

Fig. 1. Two complete deterministic automata labeled on A = {a, b}. A thick plain
edge is an edge labeled by a while a thin dashed edge is an edge labeled by b. The
automaton on the left is not synchronized. The one on the right is synchronized; for
instance, the word aaa is a synchronizing word.
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Let A = (Q, E) be a complete deterministic automaton. For any word u ∈ A∗,
we denote by Mu the transition matrix of the action of u on the states Q. It is
defined by:

(Mu)pq =

{
1 if p · u = q,

0 otherwise.

Note that if u, v are two words, we have

Muv = MuMv.

We define the rank of a word u as the cardinality of Q · u. Note that since the
automaton is complete deterministic, this rank is non null, and that a word is
synchronizing if and only if his rank is 1.

A circular automaton is a deterministic complete automaton on the alphabet
A such that there is a letter a of A which induces a circular permutation of the
states, i.e. such that Ma is a circular permutation matrix.

We shall consider the set of non commutative formal series with coefficients
in a ring K (with K = Z or K = Q), which are applications from A∗ to K. If S
is such a series, the image of a word u of A∗ by S is denoted by 〈S, u〉 and called
the coefficient of u in S.

As an example, the series S on {a, b}∗ with coefficients in Z defined by 〈S, u〉 =
|u|a − |u|b maps a word u ∈ {a, b}∗ to the difference between the number of
occurrences of a and b in u.

A K-linear representation of dimension d of a series S is a triple (λ, μ, γ)
where λ ∈ K1×d, μ is a morphism from A∗ to Kd×d, and λ ∈ Kd×1, such that

〈S, u〉 = λμ(u)γ.

A series s is K-rational if it has a K-linear representation. Its rank on K is
the minimal dimension of all its linear representations.

For example, the series S defined on {a, b}∗ by 〈S, u〉 = |u|a − |u|b is rational
of rank 2. The triple (λ, μ, γ) defined by

λ =
[
1 0
]
, μ(a) =

[
1 1
0 1

]
, μ(b) =

[
1 −1
0 1

]
, γ =

[
1
0

]
is a Z-linear representation of S of dimension 2.

Černý’s conjecture gives an upper bound on the size of a shortest synchroniz-
ing word in a synchronized automaton.

Conjecture 1 (Černý 1964). A synchronized n-state deterministic complete au-
tomaton has a synchronizing word of length at most (n − 1)2.

The conjecture was proved by Dubuc for circular automata.

Proposition 1 (Dubuc 1998). A circular synchronized n-state deterministic
complete automaton has a synchronizing word of size at most (n − 1)2.
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3 One-Cluster Automata

In the sequel A = (Q, E) denotes an n-state deterministic and complete automa-
ton over an alphabet A. We fix a particular letter a ∈ A.

Let R be the subgraph of the graph of A made of the edges labeled by a. The
graph R is a disjoint union of connected component called a-clusters. Since each
state has exactly one outgoing edge in R, each a-cluster contains a unique cycle,
called an a-cycle, with trees attached to the cycle at their root. For each state p
of the a-cluster, we define the level of p as the distance between p and the root
of the tree containing p. If p belongs to the cycle, its level is null. The level of
the automaton is the maximal level of its states.

A one-cluster automaton with respect to a letter a is a complete deterministic
automaton which has only one a-cluster. Equivalently, an automaton is one-
cluster if it satisfies the following condition: for any pair of states p, q, one has
p · ar = q · as for some integers r, s.

Note that a one-cluster automaton whose level is null is circular.
Let C be a cycle of A and P be a subset of C. A word u is said to be P -

augmenting if
card(Pu−1 ∩ C) > card(P ),

where we denote Pu−1 = {q ∈ Q | q · u ∈ P}.
We now prove the existence of a quadratic upper bound on the size of a

shortest synchronizing word in a synchronized automaton.

Proposition 2. Let A be a synchronized n-state deterministic complete au-
tomaton. If A is one-cluster, then it has a synchronizing word of length at most
1 + 2(n − 1)(n − 2).

We prove the proposition for irreducible automata. The case of reducible au-
tomata easily reduces to this one. Let A = (Q, E) be a deterministic complete
and irreducible n-state automaton.

Since Černý’s conjecture is proved for circular automata, we may assume that
the level � of the automaton is greater than or equal to 1.

Let C be the a-cycle and let m be the length of C. Let P be a subset of C.
Note that a word u is a P -augmenting word if and only if

C Mu P t > CP t,

where P, C denote the characteristic row vectors of the sets P, C. Indeed,

C Mu P t =
∑

r∈C,s∈P

(Mu)rs = card{r ∈ C | r · u ∈ P} = card(Pu−1 ∩ C).

Similarly, CP t = card(P ).
We denote by S the series defined by:

〈S, u〉 = C MuP t − C P t,

By definition, one has 〈S, u〉 > 0 if and only if u is a P -augmenting word.
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Lemma 1. The series S has rank on Q at most n.

Proof. The series S is Z-rational since it is the difference of two Z-rational series
(the second one is actually a constant). It has the following linear representation
(λ, μ, γ) with λ ∈ Z1×2n, μ : A∗ → Z2n×2n, λ ∈ Z2n×1,

λ = (C,−C), μ(u) =
[
Mu 0
0 I

]
, γ =

[
P t

P t

]
,

since 〈S, u〉 = λμ(u)γ. The rank of S on Q is bounded above by the dimension
of the Q-vector space generated by the row vectors (CMu,−C). This space is
included in the vector space generated by the vectors (CMu −C,0) and the row
vector (C,−C), where 0 is the null column vector of size n. Thus the rank of S
is at most equal to the dimension of the vector space V generated by the vectors
C(Mu − I), plus one. We now show that the dimension of V is at most n − 1.
Since the automaton A is complete deterministic, for any u ∈ A∗, Mu1 = 1,
where 1 is the column vector with coefficients 1 of size n. This implies that
C(Mu − I) · 1 = 0. Thus the vectors of V are orthogonal to the vector 1. The
dimension of V is thus at most n− 1. This proves that the rank of S on Q is at
most n.

We denote by T the Z-rational series defined by

〈T, u〉 = 〈S, ua�〉,

where � denotes the level of the automaton A. If (λ, μ, γ) is a Q-linear represen-
tation of S of dimension n, then (λ, μ, μ(a�)γ) is a representation of T . Thus the
rank of T on on Q is at most n.

Lemma 2. For any subset P of C such that P �= ∅ and P �= C, there is a
P -augmenting word of length at most 2(n − 1) + �.

Proof. Since A is synchronized and irreducible, there is a synchronizing word u
such that Q ·u is a single state r belonging to P . Let k be a positive integer such
that km ≥ �, where m is the length of the cycle C. We have Q · uakm−�a� =
r · akm = r. Hence uakm−�a� also a synchronizing word focusing to r. Let R
denote the characteristic row vector of r. Since q · u = r for all q ∈ Q and since
C has m elements, we have CMu = mR. Moreover, since r ∈ C, RMam = R.
We have

〈T, uakm−�〉 = 〈S, uakm〉
= CMuakmP t − CP t

= CMuMakmP t − CP t

= mRMakmP t − CP t

= mRP t − CP t

= m − card(P ) �= 0.

As a consequence T is non null.
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Since T has rank at most n on Q, there is a word v of length at most n − 1
such that 〈T, v〉 �= 0 (see [7, p. 145] or [15, p. 492 corollaire 4.19]).

If there is word v of length at most n − 1 such that 〈T, u〉 > 0, then va� is
a P -augmenting word and the claim is proved. Otherwise, there is a word v of
length at most n − 1 such that 〈T, v〉 < 0.

Since � is the level of A, the vector CMua� is a linear combination of elements
of C and the sum of its coefficients is equal to m.

We have

m−1∑
i=0

〈T, uai〉 =
m−1∑
i=0

〈S, ua�ai〉 =
m−1∑
i=0

C(Mua�ai − I)P t,

= (
m−1∑
i=0

CMua�Mai −
m−1∑
i=0

C)P t,

= (CMua�(
m−1∑
i=0

Mai) − mC)P t,

= (
∑
r∈C

rMua�

m−1∑
i=0

Mai − mC)P t,

= (
∑
r∈C

C − mC)P t = 0.

Indeed, for any r in C, the state q = r · va� is in C and for any state q in C, the
row of index q of the matrix

∑m−1
i=0 Mai is the row vector C.

As a consequence, there is a word w of length at most n + m − 2 such that
〈T, w〉 > 0. Hence there is a P -augmenting word of length at most n+m−2+ �.

Thus, in all cases, there is a word of length at most n + m − 2 + � which is
P -augmenting.

To prove Proposition 2, we show that A has a synchronizing word of length at
most 1 + 2m(n − 2). Indeed, let P1 be reduced to an arbitrary state of C. If
P1 = C (that is to say if m = 1), then Q ·a� ⊆ P1, and thus a� is a synchronizing
word.

Otherwise, by Lemma 2, there exists a word u1 of length at most n+m−2+�
which is P1-augmenting. Set P2 = P1u

−1
1 ∩ C. If P2 �= C, there is a word u2 of

length at most n+m− 1+ � which is P2-augmenting, and so on. In this way, we
build a sequence u1, . . , ut−1 of words and a sequence P1, . . , Pt of sets of states,
with t ≤ m − 1, such that, for 1 ≤ i < t,

– ui is a Pi-augmenting word of length at most n + m − 1 + �;
– Pi+1 = Piu

−1
i ∩ C;

– Pt = C.

Then the word a�ut−1 . . u1 is a synchronizing word of length at most � + (m −
1)(n + m − 2 + �). Indeed, Q · a�ut−1 . . u1 ⊆ C · ut−1 . . u1 ⊆ Pt−1 · ut−2 . . u1 ⊆
. . P2 · u1 ⊆ P1.
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Since m ≤ n − � and m ≤ n − 1, we have

� + (m − 1)(n + m + � − 2) ≤ � + (m − 1)(2n − 2)
≤ n − m + 2mn − 2n − 2m + 2
≤ 2mn− n − 3m + 2
= (n − 2)(2m − 1) + m

≤ 1 + 2m(n − 2) ≤ 1 + 2(n − 1)(n − 2),

which completes the proof.

4 Application to Finite Prefix Codes

In this section we show how the previous result can be applied to the automaton
associated to a finite prefix code.

A prefix code on the alphabet A is a set X of words on A such that no element
of X is a prefix of another word of X .

A prefix code is maximal if it is not contained in another prefix code on the
same alphabet. As an equivalent definition, a prefix code X is maximal if for
any word u in A∗ has a prefix in X or is a prefix of a word of X .

For a deterministic automaton A and an initial state i, the set XA of labels
of first return paths from i to i is a prefix code. If the automaton is complete,
the prefix code is maximal.

Conversely, for any finite prefix code X , there exists a deterministic automaton
A such that X = XA. Moreover, the automaton A can be supposed to be
irreducible. If X is a maximal prefix code, the automaton A is complete.

The automaton A can be chosen as follows. The set of states is the set Q of
prefixes of the words of X . The transitions are defined for p ∈ Q and a ∈ A by
p · a = pa if pa is a prefix of a word of X , and by p · a = ε if pa ∈ X . This
automaton, denoted AX is a decoder of X . Let indeed α be a one-to-one map
from a source alphabet B onto X . Let us add an output label to each edge of
AX in the following way. The output label of (p, a, q) is ε if q �= ε and is equal
to α−1(pa) if q = ε. With this definition, for any word x ∈ X∗, the output label
of the path i

x−→ i is the word α−1(x).
Let us show that, as a consequence of the fact that X is finite, the automaton

A is additionally one-cluster with respect to any letter.
Indeed, let a be a letter and let C be the set of states of the form i · aj . For

any state q, there exists a path i
u−→ q

v−→ i. We may suppose that i does not
occur elsewhere on this path. Thus uv ∈ X . Since X is a finite maximal code,
there is an integer j such that uaj ∈ X . Then q ·aj = i belongs to C. This shows
that A is one-cluster with respect to a.

A maximal prefix code X is synchronized if there is a word x ∈ X∗ such that
for any word w ∈ A∗, one has wx ∈ X∗. Such a word x is called a synchronizing
word for X .

Let X be a synchronized prefix code. Let A be an irreducible deterministic
automaton with an initial state i such that XA = X . The automaton A is
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synchronized. Indeed, let x be a synchronizing word for X . Let q be a state of
A. Since A is irreducible, there is a path i

u−→ q for some u ∈ A∗. Since x is
synchronizing for X , we have ux ∈ X∗, and thus q · x = i. This shows that x is
a synchronizing word for A.

Conversely, let A be an irreducible complete deterministic automaton. If A is
a synchronized automaton, the prefix code XA is synchronized. Indeed, let x be
a synchronizing word for A. We may assume that q · x = i for any state q. Then
x is a synchronizing word for X .

Proposition 3. Let X be a maximal synchronized prefix code with n codewords
on an alphabet of size k. The decoder of X has a synchronizing word of length
at most O((n)2).

Proof. The automaton AX is one-cluster. The number N of its states is the
number of prefixes of the words of X . Thus N = (n−1)/(k−1) since a complete
k-ary tree with n leaves has (n − 1)(k − 1) internal nodes. By Proposition 2,
there is a synchronizing word of length at most 1 + 2(N − 1)(N − 2), whence
O((n)2).

Example 1. Let us consider the following Huffman code X = (00+01+1)(0+10+
11) corresponding to a source alphabet B = {a, b, c, d, e, f, g, h, i} with a proba-
bility distribution (1/16, 1/16, 1/8, 1/16, 1/16, 1/8, 1/8, 1/8, 1/4). The Huffman
tree is pictured in the left part of Figure 2 while the decoder automaton AX is
given in its right part. The word 010 is a synchronizing word of AX .

When the lengths of the codewords in X are not relatively prime, the au-
tomaton AX is never synchronized (see Example of Figure 3). When the lengths
of the codewords in X are relatively prime, the code X is not necessarily syn-
chronized. However, there is always another Huffman code X ′ corresponding to
the same length distribution which is synchronized by a result of Schützenberger
[16]. One can even choose X ′ such that the underlying graph of AX and AX′

are the same. This is a particular case of the road coloring theorem of due to
Trahtman [18] (see also [2]). The particular case corresponding to finite prefix
codes was proved before in [11].

a b d e

4c 7f g h

3 6 8i

2 5

1

4 7

3 6 8

2 5

1

Fig. 2. A synchronized Huffman code X on the left and its decoder AX on the right
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1

Fig. 3. A non synchronized Huffman code X on the left and its decoder on the right.
The automaton on the right is not synchronized. Indeed, for any word w, the set of
states reachable by w is either {1, 3}, {2, 4}, {1, 5}, {1, 6}, {2, 7} or {2, 8}.

Our result guarantees that the Huffman decoder has a synchronizing word of
length at most quadratic in the number of nodes of the Huffman tree.
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C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)



Regular Languages Definable by Majority
Quantifiers with Two Variables

Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid�

Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13, D-72076 Tübingen
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Abstract. In this paper we consider the class of all regular languages
definable by the extended majority quantifier and the order predicate but
using only two variables. The main part of the paper is the presentation of
a geometric method which is used to show that a given regular language
cannot be defined by such formulas. Applying this method we can give
a necessary condition in terms of an equation as well as an upper and
a lower bound for the corresponding class of monoids. As a consequence
we obtain that FO + MAJ2[<] does not contain FO + MOD2[<].

1 Introduction

Understanding the relation of the classes TC0 and NC1 is a fundamental problem
in the theory of low level complexity classes. While it is well known that TC0

is contained in NC1, it is an open problem whether these two classes coincide.
Methods developed so far have not succeeded to separate these classes although
there is a promising three-way correspondence between circuits, algebra and
logic (see [1], [2]). Barrington [3] proved that the word problem of any finite
non-solvable group is complete for NC1; thus regular languages play a key role
in deciding this question. Moreover, it was recently shown in [4] that it is even
sufficient to show that the word problem of such a group cannot be recognized
by TC0 circuits of almost linear size. Summing up: For a separation result one
can concentrate on the regular languages of this subclass.

In this paper we consider the regular languages in a natural subclass of
the logic class corresponding to TC0 circuits of linear size (see [5]), namely
the class of all regular languages definable by the extended majority quanti-
fier and the order predicate but using only two variables, which we denote by
MÂJ2[<] ∩REG.

We first show that this class forms a language variety and thus has a corre-
sponding monoid variety, which we denote by Maj2. Unfortunately we cannot
give a complete algebraic description of Maj2 but we present non-trivial upper
and lower bounds for it. The main contribution of this paper is an elemen-
tary geometric method based on the MÂJ2[<]-formula of the language. We use
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this method to show that a given language is not contained in MÂJ2[<], al-
lowing us to present an upper bound in terms of algebra without using deeper
algebraic background. As a consequence of the upper bound we obtain that
FO + MOD2[<] is not a subset of MÂJ2[<] ∩ REG, while in the unrestricted
case FO + MOD[<] ⊆ MÂJ[<] ∩REG.

Structure of the paper: We start by giving the necessary background in logic
and algebra, and state our results in Section 3. These are proved using a geo-
metric method presented in Section 4. We conclude with a discussion on how
our results fit in the general connections between logic and algebra.

2 Background in Logic and Algebra

We give a short introduction to logic over words and refer to the book of Straub-
ing [1] for details and background.

Logic: Let V be a finite set of variables, a V-structure is a string:
w = (w1,V1)(w2,V2) . . . (wn,Vn) ∈ (Σ × 2V)∗, where the Vi, 1 ≤ i ≤ n are
pairwise disjoint and

⋃n
i=1 Vi = V . For an alphabet Σ and a set of free variables

V we denote the set of all V-structures by Σ∗ ⊗ V . We use wx=i to denote a
V-structure such that x ∈ Vi. We denote by |w| the length of w.

We define now the syntax of a MÂJ-formula describing a language over an
alphabet Σ. We will consider only the order predicate and monadic predicates.
For two variables x, y the atomic formulas are either x < y, Pk(x) for a numerical
predicate Pk, or Qa(x) for a ∈ Σ. Recall that the truth value of a numerical pred-
icate depends only on the length of the word and the positions of the variables,
but not on the word itself.

Further we define the set of extended majority formulas recursively as follows:
All atomic formulas are formulas and if ϕ and ψ are formulas then (i) ϕ∧ψ, (ii)
ϕ∨ψ are formulas. For a formula ϕ we have that ¬ϕ is a formula and finally for
a variable x and formulas ϕ1, . . . , ϕc we let Mâj x 〈ϕ1, . . . , ϕc〉 be a formula.

As usual we use the notions of free and bound variables. A variable is bound
if it occurs in the scope of a quantifier, else it is a free variable.

Let ϕ be a formula whose variables are all contained in V . For w ∈ Σ∗ ⊗ V
we define inductively w |= ϕ as follows: w |= Qa(x) iff w contains a letter (a, S)
such that x ∈ S. w |= x < y iff there are two letters (ai, Si), (aj , Sj) with i < j
and x ∈ Si and y ∈ Sj . To each monadic predicate Pk we have assigned a subset
P I

k ⊆ N2, called the interpretation and w |= Pk(x) iff x ∈ Si and (i, |w|) ∈ P I
k .

Finally we define what it means that w |= Mâj x 〈ϕ1, . . . , ϕc〉: Let wx=i be
defined by (w1,V ′

1) . . . (wn,V ′
n), where V ′

j := Vj \{x} for j �= i and V ′
i := Vi∪{x}.

With the help of this definition we say that w |= Mâj x 〈ϕ1, . . . , ϕc〉 iff the

following holds: 0 <
∑|w|

i=1
∑c

j=1

{
+1, wx=i |= ϕj

−1, wx=i |= ¬ϕj
.

For a set P of numerical predicates we denote by MÂJ[<,P ] the set of all
extended majority formulas with numerical predicates in P and the order predi-
cate. By MÂJ2[<,P ] we denote the subset of MÂJ[<,P ] formulas, that are built
using only two variables (which can be reused).
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We want to point out that the extended majority quantifier coincides with
the normal majority quantifier when quantifying over a single subformula, i.e.
w |= Mâj x 〈ϕ〉 ⇐⇒ w |= Maj x ϕ. The language described by ϕ is L(ϕ) =
{w ∈ Σ∗ ⊗ V | w |= ϕ}. Finally we define how formulas describe a language
L ⊆ Σ∗. Let ϕ be a majority formula with no free variable. Then for w ∈ Σ∗ we
say w |= ϕ iff (w1, ∅) . . . (w|w|, ∅) |= ϕ. This means we identify words in Σ∗ with
V-structures Σ∗ ⊗ ∅ in a natural way.

Algebra: Although the aim in this paper is the study of an algebraic counter-
part of a special logic class, we need only a very limited amount of algebraic
background. We use mainly that certain language classes correspond to certain
monoid classes, and that the latter can be described via so-called identities,
namely equations being valid for every monoid in the class (see below for a def-
inition). We assume the reader to be acquainted with the very basic concepts of
semigroup theory (such as monoid, morphism, divisor, direct product) and recall
only a few definitions. We refer the interested reader to [6] and [7] for a com-
prehensive algebraic background; a short survey which includes all the necessary
facts about monoids and emphasizes the connection to logic is [2], a detailed
description of the triangle circuit classes, logic and algebra can be found in [1].

Let M be a finite monoid; recall that M recognizes a language L iff there
is a subset A ⊂ M and a morphism h : Σ∗ → M such that L = h−1(A). To
each regular language we can naturally assign a finite monoid M(L), namely the
smallest monoid recognizing L; this monoid is called the syntactic monoid of L.
Unfortunately, this assignment is neither one-to-one nor onto, but by Eilenberg’s
theorem there is a natural bijection between varieties1 of regular languages and
pseudovarieties2 of finite monoids.

Recall that an element e ∈ M is idempotent iff e2 = e, and that for each
element x ∈ M there exists a natural number i such that xi is idempotent; we
use the notation xω to denote ω(x) where ω : M → M is the operation mapping
each element x to its idempotent power.

Dealing with varieties of monoids we mainly use the description via identities
– i.e. equations being valid for every monoid in the variety – in our proofs and
give now a list of monoid varieties playing a crucial role in the meeting point
between algebra, logic and formal languages. Again, the interested reader is
referred to [2]: G = �xω = 1� is the class of all finite groups; A = �xω+1 = xω� is
the class of all finite aperiodic monoids, i.e. finite monoids containing no groups;
Ab = �xω = 1, xy = yx� is the class of all finite Abelian groups. Further (ordered
by inclusion) SL = �xy = yx, x2 = x�; DA = �(xyz)ωy(xyz)ω = (xyz)ω�;
DO = �(xy)ω(yx)ω(xy)ω = (xy)ω� and DS = �((xy)ω(yx)ω(xy)ω)ω = (xy)ω�.

Another important algebraic concept is that of the block product, and there
is a crucial connection between taking the block product and nesting quanti-
fiers in logic (this is introduced as the block product/substitution principle in

1 A class of languages closed under Boolean operations, left and right quotients and
inverse morphism between free monoids.

2 A class of monoids closed under taking finite direct products and division; as usual
we will write here variety instead of pseudovariety to ease notation.
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[8]). Before giving the definition it should be noted that we mainly need the
block product for standard argumentations, but not for the heart of the paper,
namely the geometric method. Let (M,+), (N, ·) be two monoids. The block
product M � N is the monoid over the set MN×N × N with the multiplica-
tion (f1, n1)(f2, n2) = (f1n2 + n1f2, n1 · n2), where we have an action of N on
MN×N given by (nfn′)(x, y) = f(x ·n, n′ ·y). For two varieties V,W the variety
V � W is the smallest variety containing all monoids M � N , where M ∈ V
and N ∈ W. A variety of this form is the variety DA � G which can also
be characterized as follows ([9, Proof of Lemma 15]): For two idempotents e, f
where e, f, ef are in the same D-class3 we have ef is also an idempotent.

We will also deal with the class Ab of all finite monoids containing only
Abelian groups and the class Gsolv of all finite solvable groups, where the latter
can be ignored by all readers not familiar with the algebraic theory of languages.

Recall that we have the following connections to logic [10]: SL corresponds
to FO1; Ab corresponds to MOD1[<]; Gsolv corresponds to MOD2[<] and
DA � Gsolv corresponds to FO + MOD2[<].

3 Results

In this paper we study the languages in MÂJ2[<] ∩ REG. We first show that
this class forms a language variety (Theorem 1) and thus has a corresponding
monoid variety by Eilenberg’s theorem which we denote by Maj2. Unfortunately
we cannot give a complete description of Maj2 (although we can do it for some
subclasses of Maj2, see Corollary 1) but we present non-trivial upper and lower
bounds for this class (Theorem 2 and Theorem 3). As a consequence of Theorem
3 we further obtain separation results of some logic classes (Corollary 2).

Theorem 1. The languages described by MÂJ2[<] formulas form a variety of
languages. In particular, the languages in MÂJ2[<] ∩ REG form a variety of
languages.

For stating the lower bound we define the general n-wheel bicycle language,
a generalization of the bicycle language , as follows: let n ≥ 2, then a word
w ∈ {a, b}∗ is in the n-wheel bicycle language iff for all prefixes w′ of w holds
0 ≤ #a(w′) − #b(w′) < n. Note that this can also be seen as the subset of the
Dyck language with one pair of parentheses where the number of unmatched
parentheses is at most n − 1. We denote the syntactic monoid of this language
by Bn. Now let X be the smallest variety containing Bn, for all n ≥ 2, and define
Y as the smallest variety containing Ab and being closed under block product
of X to the right, i.e. if M1 ∈ Y and M2 ∈ X, then M1 � M2 ∈ Y.

Theorem 2. If L is a language with M(L) ∈ Y, then L is definable by a
MÂJ2[<]-formula, i.e. Y ⊆ Maj2.

3 Elements x, y of a finite monoid M are in the same D-class iff they are in the same
J-class, i.e. iff MxM = MyM .
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The proof is omitted. It can be easily given using the block product/substitution
principle (see e.g. [2]). Loosely speaking one has to make clear how to check if
the prefix (or suffix, respectively) of a word is in the generalized n-wheel bicycle
language with a formula in MÂJ2[<] with a bounded variable.

Although the results of the previous two theorems might be of interest the
proof methods are quite common. This is not the case for the following result
that establishes a strict upper bound. Here the proof uses a new method based on
geometric intuition to show a language is not definable in MÂJ2[<]. This method
works also whenever the considered varieties are given in terms of equations, and
we use it to give an upper bound for Maj2.

Theorem 3. If L is a regular language definable in MÂJ2[<], then M(L) ∈
(DA � G) ∩ Ab, moreover Maj2 is strictly contained in (DA � G) ∩ Ab.

It seems reasonable to improve the upper bound, in fact we conjecture that
Maj2 coincides with Y. Although the algebraic characterization is not complete
we have consequences in logic which in particular lead to a separation of the
corresponding logic classes (see Corollary 2).

Though the upper and lower bound do not coincide, we can give a complete
characterization if we focus on special subclasses of the regular languages:

Corollary 1 (Algebra Corollary)
– Maj2 ∩ G = Ab,
– Maj2 ∩ DS = DO ∩ Ab.

The upper bound given above is somewhat odd since it shows that the majority
quantifier behaves differently than quantifiers considered more frequently like
FO, MOD, GROUP. The following corollary shows that the usual inclusion,
which is preserved for these quantifiers when considering restrictions, is not valid
for the case of majority logic:

Corollary 2 (Logic Corollary)

– MÂJ2[<] ∩REG � MÂJ3[<] ∩REG,
– MÂJ2[<] ∩REG �⊇ FO + MOD2[<],
– MÂJ2[<] ∩REG � FO + MOD[<].

4 Geometry

We start with the following question: Given a MÂJ2[<] formula ϕ of quantifier
depth one with one free variable x, and two words w1, w2; for which positions does
ϕ have the same value? Formally how can we describe the tuples (w1, i, w2, i

′)
such that (w1)x=i |= ϕ ⇐⇒ (w2)x=i′ |= ϕ?

For the sake of simplicity we will only consider words over the binary alphabet,
although all proofs also work over an arbitrary finite alphabet.

One idea, which allows us to use geometry in the proof, is to interpret words
as paths in a plane. To state this correspondence as well as the following results
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we need some technical definitions which are mostly induced by the situation in
R2.

When speaking of a vector we refer to an element in N0 × N0, and for two
vectors x = (x1, x2) and y = (y1, y2) we define x ≤ y iff x1 ≤ y1 and x2 ≤ y2.
Further we call two vectors x = (x1, x2) and y = (y1, y2) adjoint iff |x1 − y1| +
|x2 − y2| = 1.

For a word w ∈ {a, b}∗ we denote by #a(w) (#b(w)) the number of a’s (b’s)
in w and by #(w) the vector (#a(w),#b(w)). For 1 ≤ i ≤ |w| we use w<i (w≤i)
to denote the prefix of w of length i− 1 (of length i) and analogously w>i and
w≥i to denote the suffix of length i− 1 (of length i).

We can identify a word w of length |w| = n with #w = (na, nb) with a path
in N0 × N0 from (0, 0) to (na, nb). We do this by taking the sequence of vectors
v0, v1, . . . vn, where v0 = (0, 0) and vi = #(w≤i). Note that this implies vi−1 ≤ vi

and vi−1 and vi are adjoint for 1 ≤ i ≤ n. On the other hand, we can assign to
each sequence of vectors v0, v1, . . . vn with v0 = (0, 0) and vn = (na, nb) a unique
word w with #w = (na, nb) if the following holds: For 1 ≤ i ≤ na + nb we have
vi−1 ≤ vi and vi−1 and vi are adjoint.

Derived from the geometric view we define for constants α, β, γ the i-th point
of a path w to be in the half-plane H(α, β, γ) iff

α#a(w<i) + β#b(w<i) + γ > 0. (∗)

Finally we need the definition of an interval in N0×N0. For vectors v = (v1, v2)
and v′ = (v′1, v

′
2) with v ≤ v′ we define the interval [v, v′] to be the set of

all vectors u with v ≤ u ≤ v′. The size of the interval is given by the tuple
(v′1 − v1, v

′
2 − v2).

As mentioned above our aim is to develop a method to show a language is not
definable in MÂJ2[<]. In order to determine which words cannot be distinguished
by a MÂJ2[<] formula we associate to each formula and to each tuple (na, nb)
a finite set of half-planes.

We begin by looking at some examples. Given the MÂJ2[<]-formula ϕ(x) =
Mâj y Qa(y), assume that we have a word w with (na, nb) = #(w), then wx=i |=
ϕ ⇐⇒ na > nb. So this formula depends only on the absolute number of a’s
and b’s in the word, not the order of the letters nor the position i of x.

Thus we look at a more complicated example. Let ϕ(x) = Mâj y Qa(y)∧y < x,
then wx=i |= ϕ iff #a(w<i) > #a(w≥i) + nb. We can rewrite this formula to
2 · #a(w<i) − na − nb > 0.

Now let ϕ(x) be any extended majority formula of depth 1, we will show that
we can determine the truth-value of ϕ(x) for x = i by checking the letter at
position i and evaluating a fixed set of inequalities of the form α ·#a(w<i) + β ·
#b(w<i) + γ > 0.

In the general case the formula ϕ(x) is a Boolean combination of formu-
las of the form Mâj y 〈ϕ1, . . . , ϕl〉, where each ϕk is a Boolean combination of
Qa(x), Qb(x), Qa(y), Qb(y), x < y, y < x. First we look at the case ϕ(x) =
Mâj y 〈ϕ1, . . . , ϕl〉. Depending on the letter wi, we will give now a finite set of
inequalities of the form above. Let us assume that wi = a. Then Qa(x) is true
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and Qb(x) is false hence we may assume that each ϕk is a Boolean combination
of Qa(y), Qb(y), x < y, y < x. We can rewrite each of these formulas as a disjunc-
tion of the formulas Qa(y)∧ y < x,Qa(y)∧ y > x, Qb(y)∧ y < x,Qb(y)∧ y > x.
Note we assumed wi = a, so we do not need formulas of the form Qa(y)∧ y = x
or Qb(y) ∧ y = x, since they can replaced by true or false.

By definition wx=i |= Mâj y 〈ϕ1, . . . , ϕl〉 iff

0 <

|w|∑
j=1

l∑
k=1

{
+1, wx=i,y=j |= ϕk

−1, wx=i,y=j |= ¬ϕk
.

Since the ϕk’s are of the form described above, the value of ϕk |= wx=i,y=j

depends only on the letter at position j and whether j is smaller than/bigger
than/equal to i. Thus we can split the sum corresponding to these conditions and
obtain integers αp, βp, αs, βs, γ∗, acting as weights, such that wx=i |=
Mâjy〈ϕ1, . . . , ϕl〉 iff αp#a(w<i)+βp#b(w<i)+αs#a(w>i)+βs#b(w>i)+γ∗ > 0.

Since we assumed that wi = a, the number of a’s in the suffix #a(w>i) =
na − 1 − #a(w<i) and #b(w>i) = nb − #b(w<i). Thus we let α = αp − αs,
β = βp − βs, γ = γ∗ + (αs + 1) · na + βs · nb, and obtain the inequality α ·
#a(w<i) + β · #b(w<i) + γ > 0.

Analogously we find an inequality in the case wi = b. Thus to decide if wx=i |=
ϕ we need to check the letter at position i and the two inequalities found as above.

Now if ϕ is an arbitrary extended majority formula of depth 1 we might
have more than two inequalities, since we allow finite Boolean combinations of
the formulas considered above. But in any case this only leads to finitely many
inequalities. Since each of these inequalities describes a half-plane we get:

Lemma 1. Let ϕ be a formula in MÂJ2[<] of depth one with one free variable
x. Then there is a constant c ∈ N such that for all na, nb ∈ N there exist half-
planes h1, . . . , hc with the following property: For v, w ∈ Σ∗ with #(v) = #(w) =
(na, nb) and 1 ≤ i, j ≤ na+nb holds: If vi = wj and #(v≤i) ∈ hl ⇔ #(w≤j) ∈ hl

for all 1 ≤ l ≤ c, then vx=i |= ϕ ⇔ wx=j |= ϕ.

a

w1

(0, 0)

(na, nb)

w2

b

i

i′

The paths of two words and positions for some sample half-planes

In particular if the paths of two words v, w with #(v) = #(w) differ only in an
interval that is contained in the same half-planes, then for all positions i, j such
that #(v≤ i),#(w≤j) are in the interval we have: vx=i |= ϕ ⇐⇒ wx=j |= ϕ if
vi = wj .

In order to apply the argument above we first show that for fixed numbers
c, n′

a, n
′
b we can always find na, nb such that for any c half-planes we can find an
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interval of size (n′
a, n

′
b) where all points are contained in exactly the same set of

half-planes.

Lemma 2. Given the natural numbers c, n′
a, n

′
b, and an interval of size at least

(2c ·n′
a, 2

c ·n′
b), for every set {h1, . . . , hc} of half-planes, we can find a subinterval

of size (n′
a, n

′
b) that is contained in exactly the same half-planes.

Proof. We split the interval into four quadrants each of size (2c−1n′
a, 2c−1n′

b) and
pick a half-plane. Since a line can only intersect three quadrants at most there
is one quadrant that is completely contained in the half-plane or completely
outside. By induction on the number of half-planes we get the result.

Main idea: We have now developed the necessary tools to present our main
lemma used to prove a language being not in MÂJ2[<]. The intuition behind
this technique is the following: Pick ϕ in MÂJ2[<], and find the finite set of half-
planes corresponding to all subformulas of depth 1 of ϕ. For sufficiently large
words we can find an interval of any desired size, that is completely contained
in exactly the same set of half-planes. Take two words w1, w2 that differ only
in that interval, i.e. have a common prefix and suffix. Then the truth value of
every subformula of depth 1 of ϕ with the free variable x pointing to a position i
inside the interval, depends only on the letter at position i. Thus the subformula
can be replaced by the Q predicate if the free variable points to a position inside
the interval. Doing induction on the depth of the formula we show that a given
language is recognized by a given formula of depth d if and only if a certain
subset of the language (consisting of all words with special prefixes and special
suffixes) is recognized by a certain formula of depth one. The problem is now
how to handle the prefixes and the suffixes.

More detailed: Assume we have a formula ϕ that recognizes a language L, and
ψ1, . . . , ψc are the subformulas of depth 1 of ϕ. We assume each of ψk has a free
variable x. By Lemma 2 we can find an interval that is contained in the same set
of half-planes corresponding to the formulas ψ1, . . . , ψc. Fix a prefix that leads to
the interval, and a suffix from the end of the interval to the end of the rectangle.
If the free variable x is assigned to a position inside the interval the truth value
of each ψk(x) is either constant or equivalent to Qa(x) or Qb(x). Ignoring the
way we handle the prefix and suffix positions, we could replace the subformulas
ψk(x) by true, false, Qa(x), or Qb(x), and thus get a formula of lower depth that
“inside the interval” recognizes the same language as ϕ. Iterating this leads to
a formula of depth one.

The difficulty of this approach is to find suitable prefixes and suffixes, such
that the languages restricted to the words with the common prefix and suffix are
still “hard” enough. Note that the choice of prefixes/suffixes heavily depends on
the considered language. As we will see later, for group languages we have a big
choice while for the bicycle language our choice is very limited.

Before finally stating our main lemma we need some more notation. Given
two languages L1 and L2 with L1 ∩ L2 = ∅, we say ϕ separates L1 from L2 iff
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for all w ∈ L1 ∪L2 : w |= ϕ ⇐⇒ w ∈ L1. Note that this definition says nothing
about words that are neither in L1 nor L2. For k ∈ N we set

Dkn = {w ∈ {a, b}∗ | #a(w) = kn,#b(w) = n}
and Dk =

⋃
n Dkn. Since in the following proofs we will choose prefixes and

suffixes depending on the number of a’s and b’s, we will intersect the language
with Dk – for a suitable k – to ensure that the number of a’s and b’s is determined
by the length of the word. We will use D instead of Dk if k is understood or if
the assertion is true for any k ∈ N.

Given two families of words p = (pn)n∈N and s = (sn)n∈N and a language
L ⊆ Dk = D we define pLs = {w ∈ L | ∃w′ : w = p|w|w′s|w|}, we require
here that (kn, n) − #(pnsn) → (∞,∞) for n → ∞. So we take the language
L and consider only words that have a certain prefix and suffix depending on
the length of the word. To ease dealing with the prefix and suffix families we
introduce some numerical predicates that help in the induction. We say a unary
numerical predicate u(x) is good for p, s iff u(x) is constant for all assignments
x = i if |pn| < i ≤ n− |sn|. So the good predicates allow us to check the prefix
and the suffix, while they do not help to recognize L. Lemma 1 remains true
in the presence of good predicates iff the compared words have the same prefix
and suffix. By a simple computation one obtains that we have only to modify
the constant γ in equation (∗) for the half-planes.

The following lemma can be seen as induction step (when doing induction on
the depth of the formula): Assume we have two languages L̃1 and L̃2 that for
every word length n have already a fixed prefix pn and suffix sn and we assume
that we can separate them by an extended majority formula. We show that we
can extend the prefix by p′n and the suffix by s′n such that the languages with
the new prefix pp′ = (pnp

′
n)n and suffix s′s = (s′nsn)n can be separated by an

extended majority formula of lower depth. We show that we have a certain choice
of extending the prefix and suffix by restricting the extension to sets of certain
words Pn, Sn. Recall, that in the geometric interpretation for fixed word length
n the prefix leads to a certain interval, in which the innermost formulas depend
only on the letter at the position the free variable points to; similar, the suffix
can be seen as a path from the end of this interval to (kn, n).

Lemma 3. Let L1, L2 ⊆ D = Dk be two languages, and p = (pn)n, s = (sn)n

be two families of words. Let U be a set of good predicates for p, s, and ϕ be a
formula in MÂJ2[<,U ] of depth d > 1 that separates p(L1)s from p(L2)s.

Further let (Pn)n and (Sn)n be a family of languages such that there is a family
(In)n of intervals with growing size such that for every point v ∈ In, there is a
word p̄n ∈ Pn, s̄n ∈ Sn such that #(pnp̄n) = v and #(s̄nsn) = (kn, n) − v.

Then there are two families of words p′ = (p′n)n, s
′ = (s′n)n with p′n ∈ Pn,

s′n ∈ Sn and pnp
′
ns

′
nsn ∈ D, such that pp′(L1)s′s can be separated from pp′(L2)s′s

by a formula ϕ′ of depth d−1 in MÂJ2[<,U ′], where U ′ is a set of good predicates
for pp′, s′s.

Proof. By assumption there is a family of intervals with growing size which we
denote by (In)n. Also for each n we denote the set of half-planes corresponding
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to the innermost formulas of ϕ by (Hn)n. By Lemma 2 we can find a family of
intervals (I ′n)n with size (n′

a, n
′
b) where n′

a = kn′
b with I ′n ⊆ In and every point

in I ′n is in exactly the same half-planes of Hn. Since the size of (In)n grows
arbitrary we can assume the same for (I ′n)n, again by Lemma 2.

By the condition above we have a path p′n ∈ Pn from (0, 0) to the beginning
of the interval I ′n. Also we have a path s′n ∈ Sn from the end of the interval I ′n
to (kn, n). Because #(pnp

′
ns

′
nsn) = (kn, n) − (n′

a, n
′
b) where (n′

a, n
′
b) is the size

of I ′n we know that pnp
′
ns

′
nsn ∈ D.

Now we know that all innermost formulas ψ(x) for words in pp′(L1 ∪ L2)s′s
depend only on the length of the word and the position of x and the letter at the
position of x. In particular they are constant except for the common prefix and
suffix. Hence we can find good predicates for pp′, s′s such that we can replace
the innermost formulas of ϕ by a Boolean combination of these predicates and
the Q predicates to obtain a formula ϕ′ of lower depth.

The condition pnp
′
ns

′
nsn ∈ D in the lemma above ensures that for all w′ with

pnp
′
nw

′s′nsn ∈ pp′(L1 ∪L2)s′s we have w′ ∈ D. We need this in order to use the
lemma in the inductions below.

It turns out that the previous lemma is not applicable for certain languages,
like the bicycle (ab)∗ (or generalizations of it, which can be seen as finite counter
languages), where we have only very limited freedom in choosing the prefix
and suffix, without making the remaining language trivial. On the other hand,
languages like this, more detailed the languages in the class X defined in Section
3, seem to be the only languages we cannot handle with our method. So, since
these languages can be described in MÂJ2[<]we conjecture that we in fact have
equality, i.e. Maj2 = Y.

Lemma 3 is our main tool to prove our results. We will first show that all
groups definable are Abelian:

Lemma 4. Let G ∈ Maj2 be a group, then G is Abelian.

Proof. Assume by contradiction that G is non-Abelian, but G ∈ Maj2, so there
is a language with syntactic monoid G that is recognized by a formula ϕ in
MÂJ2[<]. Pick two elements ga, gb of the group with gagb �= gbga. Let h : Σ∗ → G
be defined by h(a) = ga, h(b) = gb, and L1 = h−1(gagb)∩D, L2 = h−1(gbga)∩D
for D = D1. Let o = |G| denote the order of G.

We will apply Lemma 3 in the induction, so we suppose we have a family of
prefixes p and of suffixes s with pn ∈ (a∗(bo)∗)∗a∗b∗, sn ∈ a∗b∗(a∗(bo)∗)∗ for all
n. For the formula ϕ that separates L1, L2 without prefixes and suffixes we can
pick pn = sn = ε for all n. This yields our induction basis. By contradiction we
assume to have a formula ϕ that separates p(L1)s from p(L2)s.

Suppose ϕ has depth 1. We pick the word length n ≡ 2 mod o such that
n− |pnsn| > 2o + 2 (note that this is possible since we can find an interval I of
arbitrary size by Lemma 2). Then pn = ax1(bo)y1ax2(bo)y2ax3 . . . (bo)yc−1axcbyc ,
sn = by′

1ax′
1(bo)y′

2ax′
2 . . . (bo)y′

c′ax′
c′ , for suitable natural numbers xi, x

′
i, yi, y

′
i, c, c

′

depending on n. We can find natural numbers r1, . . . , r4 such that for

w1 = pnb
or1−ycaor2−

∑
xiabaor3−

∑
x′

ibor4−y′
1sn,
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w2 = pnb
or1−ycaor2−

∑
xibaaor3−

∑
x′

ibor4−y′
1sn,

holds w1 ∈ L1 and w2 ∈ L2; but w1 |= ϕ ⇐⇒ w2 |= ϕ, by Lemma 1;
contradiction.

Now we assume that ϕ has depth > 1. We will apply Lemma 3. Let I be the
growing set of intervals In determined by #(pn)+(0, o) and (n, n)−#(sn)−(0, o).
This family is a growing family of intervals since (n, n)−#(pnsn) → (∞,∞) for
n → ∞. Also we choose the set of prefixes Pn = bo−ra∗b∗, where r = yc mod o.

Similarly we choose the set of suffixes Sn = b∗a∗bo−t, where t = y′1 mod o.
We apply the previous lemma and get a formula ϕ′ that separates pp′(L1)s′s
from pp′(L2)s′s. We need to show that pnp

′
n ∈ (a∗(bo)∗)∗a∗b∗ and s′nsn ∈

a∗b∗(a∗(bo)∗)∗, but this is clear by the choice of Pn and Sn.

Applying Lemma 3 we can now give an identity, which is fulfilled by all monoids
in Maj2. This is used later to show that the class Maj2 is contained in DA � G.

Lemma 5. Let M ∈ Maj2 then ∀x, y ∈ M : (xyω)ω(yωx)ω = ((xyω)ω(yωx)ω)ω.

Proof. Pick any M that does not fulfill this property, then there are x, y in
M such that: (xyω)ω(yωx)ω �= ((xyω)ω(yωx)ω)ω . We assume y = yω then the
inequality is equivalent to (xy)ω(yx)ω �= (xy)ω(yx)ω(xy)ω(yx)ω . Further we can
modify the right side (xy)ω(yx)ω(xy)ω(yx)ω = (xy)2ω−1yxxy(yx)2ω−1, since
yy = y. We get the equation (xy)2ω−1xyyx(yx)2ω−1 �= (xy)2ω−1yxxy(yx)2ω−1.
Now the proof is similar to the previous lemma, show that the xyyx can be
replaced by yxxy for suitable prefix and suffix.

Again we apply our main lemma to show that a certain language that is definable
by a FO+MOD formula of depth 2 is not recognizable by a monoid in Maj2.

Lemma 6. Let R = ((aa)∗b)∗(aa)∗, then the syntactic monoid of R is not con-
tained in Maj2.

Proof. Let P = ((aa)∗b∗)∗a∗, S = (b∗(aa)∗)∗. In order to prove the result we
need to show that the languages L1 = ((aa)∗b∗)∗(aa)∗aab(aa)∗(b∗(aa)∗)∩D3 and
L2 = ((aa)∗b∗)∗(aa)∗aba(aa)∗(b∗(aa)∗)∩D3 cannot be separated by a MÂJ2[<]
formula. The proof is the same as in Lemma 4.

Now we can prove the upper bound, i.e. that Maj2 � (DA � G) ∩ Ab:

Proof (Proof of Theorem 3). Let M /∈ DA � G. Then there are idempotents
e, f ∈ M in one D-class such that ef is in the same D-class but not an idempo-
tent. Since e, f, ef are in the same D-class, there are s, t such that e = efs and
tef = f . It follows fs = te. Let y = (fs)ω and x = ef . But then Lemma 5 fails,
since (xyω)ω(yωx)ω = ef is not an idempotent. It follows that Maj2 ⊆ DA � G.
Since a subgroup of a monoid M is always a divisor of M we know by Lemma
4 that Maj2 ⊆ Ab and we obtain Maj2 ⊆ DA � G ∩Ab.

We know R is not describable by MÂJ2[<], hence the syntactic monoid of
R is not in Maj2 but it is in SL � Ab ⊂ DA � G. Thus we can conclude
Maj2 � (DA � G) ∩ Ab.
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5 Discussion

The main achievement of this paper is the development of a method based on
geometric intuition to show that a given language is not in MÂJ2[<]. We think
this method is promising in several ways. First of course, it allows to cope with
majority logic and we think it should be applicable to every regular language
outside MÂJ2[<]. Additionally this method can be applied whenever a variety
is given in terms of equations as demonstrated in Lemma 5 and it should be
possible to extend it to non-regular languages, too. As a result we obtained that
FO + MOD2[<] is not a subclass of MÂJ2[<].

Our motivation was to study the regular languages in MÂJ2[<]. We have
shown that these languages form a variety and hence have an algebraic counter-
part by Eilenberg’s theorem. We have not been able to give an exact characteri-
zation but our current knowledge of this class leads us to our conjecture that the
target variety is Y, a variety built from Abelian groups and natural generaliza-
tions of the bicycle monoid. To our information Y has not been characterized in
other terms which is one obstacle to obtain a better upper bound. Any further
knowledge about this variety or varieties between Y and our upper bound, for
example in terms of equations, could be helpful to obtain improvements.

Another direction of research might be to see if our method can be applied
to other logic classes as well. Since it makes not much use of algebra this might
lead to simpler proofs of known results in this area.

Acknowledgments. We thank Pascal Tesson for valuable discussions on the
delicate behavior of varieties of monoids.
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Université Paris VII, 2 Place Jussieu, 75221 Paris - France
cc@liafa.jussieu.fr
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Abstract. We study the problem of testing whether a context-free lan-
guage is included in a fixed set L0, where L0 is the language of words
reducing to the empty word in the monoid defined by a complete string
rewrite system. We prove that, if the monoid is cancellative, then our
inclusion problem is polynomially reducible to the problem of testing
equivalence of straight-line programs in the same monoid. As an appli-
cation, we obtain a polynomial time algorithm for testing if a context-free
language is included in a Dyck language (the best previous algorithm for
this problem was doubly exponential).

Introduction

In this paper we analyze problems of this kind: given a fixed language L0, to de-
cide whether the language LG generated by a context-free grammar is contained
in L0. It is known that the class of context-free grammars generating languages
L0 for which the problem is decidable is not recursive ([7]). This problem is unde-
cidable even for some deterministic context-free language L0, while it turns out
to be decidable if L0 is superdeterministic ([6]); in this case a doubly exponential
time algorithm has been shown.

Since the class of superdeterministic languages includes the AFDL (Abstract
Family of Deterministic Languages) closure of Dyck languages, it is decidable
if a context-free grammar generates a language which is included in a Dyck
language, i.e., the language of well-parenthesized expressions over a fixed but
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been studied by Knuth in [8], while a doubly exponential algorithm for the
general case can be deduced from an algorithm proposed in [1].

In this work, we exhibit a class of languages L0 for which the inclusion problem
can be solved efficiently. In particular, given a fixed complete string rewrite
system, we study the problem of verifying whether a context-free language is
included in the set L0 of words which reduce to the empty word. We prove
that, if the string rewrite system is complete and defines a cancellative monoid,
then the problem polynomially reduces to testing the compressed equivalence
problem on the monoid, i.e., whether two straight-line programs evaluate the
same element of the monoid. Straight-line programs are a flexible compressed
representation of strings; the compressed equivalence problem has been deeply
studied, in particular in the case of 2-homogeneous and 2-monadic string rewrite
systems ([11]). In the case of 2-homogeneous string rewrite systems, equivalence
is solvable in polynomial time if and only if the rewrite system is N -free, unless
P=NP ([11]).

By applying the previous results, we obtain a polynomial algorithm for testing
inclusion in the case L0 belongs to a class of languages that extends that of
“Dyck-like” languages. This result also extends to the noncancellative monoids
defined by N-free 2-homogeneous string rewrite systems; on the other hand, for
2-homogeneous non N-free rewrite systems, the inclusion problem is at least
coNP-hard.

Furthermore, we study the more general case of complete unitary string
rewrite systems ([3]), that is, systems for which all rules are of the form u → 1,
and prove that the inclusion of a regular language in a regular set over the
generated monoid can be tested again in polynomial time.

1 Definitions

Given an alphabet Σ, the free monoid it generates is denoted by Σ∗ and the
unit, or empty word is denoted by 1. A context-free grammar is a quadruple G =
(Σ,S, P,N) where N is the finite alphabet of nonterminals which is disjoint from
the alphabet Σ of terminal letters, S ∈ N is the axiom and P ⊆ N×(N ∪Σ)∗ is
the finite set of productions or rules. A rule is usually written in the form X → α.
The smallest relation over (N ∪Σ)∗ containing → which is invariant under right
and left concatenation is denoted by ⇒ and its reflexive and transitive closure
by ∗⇒. The language generated by the grammar G is the set LG of all words
w ∈ Σ∗ such that S

∗⇒w holds.
A grammar is in Chomsky’s normal form if its rules are of the form X → Y Z

or of the form X → a where X,Y, Z are nonterminals and a is a terminal.
Such a grammar generates a context-free language which does not contain the
empty word. Since a language L ⊆ Σ∗ is context-free if and only if L \ {1} so
is, there is no loss of generality to restrict the study to context-free languages
not containing the empty word (also called ε-free in the literature). In other
words, the expression “Given a context-free language” means in our context
that the language is given by some grammar in Chomsky’s normal form. It is
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convenient to enumerate the nonterminals X0, . . . , Xn and to assume that X0
is the axiom. Furthermore, as usual, we assume that all nonterminals appear in
some derivation of a word of the language, i.e., for all Xi ∈ N there exist a word
w ∈ LG and a derivation of the form X0

∗⇒αXiβ
∗⇒w.

A straight-line program (SLP) is a restricted context-free grammar G =
(Σ,S, P,N) such that:

– for every X ∈ N , there exists exactly one production of the form (X,α) ∈ P
for α ∈ (N ∪Σ)∗, and

– there exists a linear order ≺ on the set of nonterminals N such that X ≺ Y
whenever there exists a production of the form (X,α) ∈ P for α ∈ (N ∪
Σ)∗Y (N ∪Σ)∗.

Every SLP S obviously generates a single word, denoted by eval(S). In our work,
we will always use SLPs in Chomsky’s normal form. The size g(S) of a SLP S is
defined as the number of nonterminal symbols appearing in it. Since g(S) could
be logarithmic with respect to the length of eval(S), SLPs are considered as
a compression encoding comparable to Lempel-Ziv encoding ([14]). For several
well known string problems solvable in polynomial time, the compressed version
has been studied, that is, the complexity of the same problem was analyzed when
the input is given in a compressed form ([5,9,12,13,14]).

Let Σ be a finite alphabet. A semi-Thue system (or string rewrite system) is a
pair of generators and relators 〈Σ;R〉 where R is a finite subset of Σ∗×Σ∗. The
pair 〈Σ;R〉 is a monoid presentation; it defines the monoid M(R) which is the
quotient of Σ∗ by the congruence ∼R generated by the relators R. The canonical
morphism φR maps Σ∗ onto M(R) by assigning to every word its congruence
class. We use the same notation when we apply it to subsets and, more generally,
to n-tuples of subsets. A pair (u, v) ∈ R is also denoted by u = v.

The methodology introduced by Knuth in the seventies requires, whenever
possible, to define a ordering of the free monoid which is invariant under right
and left concatenation and to orient each relator (u, v) as u → v if u is greater
than v. Once oriented, such a pair can be considered as a rewrite rule, also
called reduction rule with the purpose that each occurrence of u in a word can
be replaced by an occurrence of v. A word containing no occurrence of a left
handside is called reduced, otherwise it is reducible. We still denote by →R the
closure of the set of reduction rules relative to right and left concatenation and by
→∗

R its transitive closure. If the ordering thus defined is complete, i.e., it has the
property of finite termination and of confluence, [4], each word x is equivalent to
a unique reduced word denoted by RedR(x), also simply written Red(x) when R
is understood. Furthermore, this reduced word depends on the equivalence class
only, and we say that it is its normal form. In this case, two words x, y ∈ Σ∗ are
congruent, i.e., x∼R y, if and only if Red(x) =Red(y).

Given a fixed complete string rewrite system, we are interested in the following
decision problem
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Inclusion Problem for 〈Σ;R〉
Instance: a grammar G in Chomsky normal form.

Question: does LG ⊆ φ−1
R (1) hold?

In this work, we show that, if the monoid M(R) is cancellative, this problem
is polynomially reducible to the compressed version of an equality problem:

Compressed-Equality Problem for 〈Σ;R〉
Instance: two SLPs S1 and S2 with eval(S1), eval(S2) ∈ Σ∗.

Question: does φR(eval(S1)) = φR(eval(S2)) hold?

2 Rewrite Systems Defining Cancellative Monoids

A monoid M is said to be cancellative if xy = xz implies y = z and yx = zx
implies y = z, for every x, y, z ∈ M . In this section, we prove that, if 〈Σ;R〉
defines a cancellative monoid M(R), then Inclusion Problem for 〈Σ;R〉 is
polynomially reducible to Compressed-Equality Problem for 〈Σ;R〉.

Now, let m = |Σ| and consider a system of equations whose solutions are
n-vectors of elements in the semiring 〈2Σ∗

,∪, ·〉 or in the semiring 〈2M ,∪, ·〉
accordingly

Xi =
⋃

0≤j,k≤n−1

α
(i)
j,kXjXk ∪

⋃
1≤�≤m

β
(i)
� a� (1)

where a� are constant singletons and α
(i)
j,k and β

(i)
� have values ∅ or 1.

When the Xi’s are interpreted as subsets in Σ∗, the component X0 of the
least fixed point of (1) is the context-free language generated by the grammar
whose productions are Xi → XjX� with α

(i)
jk �= ∅ and Xi → a� with β

(i)
� �= ∅.

Therefore, we will not distinguish between systems of equations and systems of
productions.

Lemma 1. Consider a grammar G in Chomsky normal form as in (1) and a
cancellative rewrite system 〈Σ,R〉. Assume that φR(LG) = {1}. Then, the im-
ages φR(Xi) of all components are singletons and satisfy Equation (1) interpreted
in the quotient monoid M(R). Conversely, if there exist elements yi ∈ φR(Xi)
such that the n-tuple (y0, y1, . . . , yn−1) with y0 = 1 satisfies the system (1) in-
terpreted in M(R), then φR(LG) = {1}.

Proof. Consider the graph whose vertices are the nonterminal symbols of G and
there is an edge (X,Y ) where X → Y Z or X → ZY . We perform a breadth-first
visit starting from the axiom and verify by induction that, when visiting (X,Y ),
we have that φR(Y ) is a singleton.

Indeed, this is true if X is the axiom, by definition. Now, consider the rule
Xi → XjXk and assume without loss of generality that the visited edge is
(Xi, Xj). Since φR(Xi) ⊇ φR(Xj)φR(Xk) holds and since M(R) is cancellative,
the induction hypothesis that φR(Xi) is a singleton implies that so is φR(Xj).
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Let us prove the converse. First observe that the image in the morphism φR

of the least (in the subset ordering) solution of the system (1) in the power set of
Σ∗ is the least solution of the system when interpreted in the power set of M(R).
Indeed, let τ :

(
2Σ∗)n →

(
2Σ∗)n

and σ :
(
2M
)n →

(
2M
)n be the transformations

defined by the system (1) when interpreted in
(
2Σ∗)n

and
(
2M
)n respectively

and observe that these transformations are monotone and continuous. The least
solution of the system in

(
2Σ∗)n

is the subset
⋃

k→∞ τk(∅). Now we have

φR

( ⋃
k→∞

τk(∅)
)

=
⋃

k→∞
φR(τk(∅))

Because of equality φRτ = σφR between the two composed mappings and of the
equality φR(∅) = ∅ we finally obtain

φR

( ⋃
k→∞

τk(∅)
)

=
⋃

k→∞
σk(φR(∅)) =

⋃
k→∞

σk(∅)

as claimed.

The previous Lemma has the following interesting consequence.

Theorem 1. In the case of a cancellative complete rewrite system 〈Σ,R〉,
Inclusion Problem for 〈Σ,R〉 is polynomially reducible to Compressed-
Equality problem for 〈Σ,R〉.

Proof. (Outline) In view of the previous Lemma, the condition φR(LG) = {1}
can be tested in two steps.

First step: To every nonterminal Xi of G, we assign a SLP Φi representing a
word wi, chosen as explained below.

Second step: We check whether or not the n-tuple (w0, . . . , wn−1) satisfies the
following conditions:
– w0 ∼R 1;
– for all productions Xi → XjXk (resp. Xi → a�), wi ∼R wjwk (resp.

wi ∼R a�)). These conditions are not verified on the words, but through
SLPs representing the words.

We now explain how we choose the SLPs Φi representing the words wi. Denote
by h(Xi) the minimal height of a derivation tree with root labelled by Xi. If
h(Xi) = 1, then take as Φi an arbitrary production rule of the form Xi → wi

in the grammar G. More generally, if h(Xi) > 1, there exist two non-terminals
Xj , Xk such that h(Xi) > h(Xj), h(Xk) and Xi → XjXk is a production of G.
Then recursively choose wjwk as the word wi represented by the SLP obtained
by considering the production Xi → XjXk along with the productions of the
two SLPs Φj and Φk, representing wj and wk.

From a complexity viewpoint, considering the grammar size as the size of
the input, the first step can be executed in polynomial time, while the second
requires to call the SLPs equality test in M(R) a polynomial number of times.
This proves the result.
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Example 1. Fix the monoid M presented by 〈{a, ā, b, b̄}; {(aā, 1), (bb̄, 1)}〉 and
let φ : {a, ā, b, b̄}∗ → M be the canonical morphism.

Consider the language L ⊂ {a, ā, b, b̄}∗ defined by the grammar in Chomsky’s
Normal Form with axiom X0 whose productions are:

X0 → X3X1/X4X2/1, X3 → a, X5 → ā,
X1 → X0X5, X4 → b, X6 → b̄,
X2 → X0X6.

We are interested in establish if L is contained in the preimage of 1 in M . The
set of SLPs described in the proof of Theorem 1 is presented in the following
table. Last row contains the evaluations of the SLPs:

Φ6 Φ5 Φ4 Φ3 Φ2 Φ1 Φ0

X6 → b̄ X5 → ā X4 → b X3 → a X0 → 1 X0 → 1 X0 → 1
X6 → b̄ X5 → ā
X2 → X0X6 X1 → X0X5

b̄ ā b a b̄ ā 1

Once the table is available, the following equalities must be verified:

eval(Φ0) = eval(Φ3Φ1), eval(Φ3) = a,
eval(Φ0) = eval(Φ4Φ2), eval(Φ4) = b,
eval(Φ0) = 1, eval(Φ5) = ā,
eval(Φ1) = eval(Φ0Φ5), eval(Φ6) = b̄,
eval(Φ2) = eval(Φ0Φ6),

where ΦjΦs is intended as the SLP representing eval(Φj)eval(Φs). Since each of
these equalities holds, L ⊆ φ−1(1).

Theorem 1 can be applied to obtain an upper bound to the Inclusion Prob-
lem complexity for those cancellative monoids whose Compressed-Equality
Problem complexity is known. This is the case of 2-homogeneous rewrite sys-
tems, introduced in [2], that will be discussed in the next section.

3 Unitary Confluent Systems

A presentation 〈Σ;R〉 is unitary if R is composed of elements of the form (u, 1).
We study the case where R can be oriented as a confluent and therefore complete
system.

First of all, observe that for all unitary rewrite systems, the set of words
which can be reduced to the empty word is generated by a context-free grammar
with a unique nonterminal S whose productions are of the form S → 1 and
S → Sa1Sa2 · · ·SapS where (a1a2 · · ·ap, 1) ∈ R. Hence, Inclusion Problem
for unitary rewrite systems is a special case of the general inclusion problem for
context-free grammars (see for example [7,6]).
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Before studying more specifically the so-called 2-homogeneous case, we prove
a result for the general case. Consider the following problem:

Regular Set Inclusion Problem

Input: a regular language L ⊆ Σ∗, a unitary rewrite system 〈Σ,R〉 and a regular
subset X ⊆ M(R).

Question: does φR(L) ⊆ X hold?

Theorem 2. Regular Set Inclusion Problem is solvable in polynomial
time.

Proof. We briefly sketch how one can check the inclusion φR(L) ⊆ X efficiently.
Since each equivalence class has a unique normal form, the previous inclusion is
equivalent to saying that the set of normal forms of all elements in L is included
in the set of normal forms which are representatives of an element of X . By
definition of a regular set in the quotient M(R), we may suppose that X is
given by a finite automaton which recognizes for each element x ∈ X and only
for elements in X , a word representing this element. It thus suffices to show
that the set of normal forms is an effective regular language. Indeed, if L is
a regular language recognized by a finite automaton, augment it by adding,
as long as possible, a transition from state q to state p labeled by the empty
word whenever there exists a path from q to p labeled by a left handside of a
rule. This procedure can be easily executed in polynomial time with respect to
the size of the automaton and the size of the presentation of the monoid. The
set of its normal forms is the intersection of the language recognized by this
augmented automaton with the regular set of words containing no occurrence of
a left handside of a rewrite rule. The inclusion problem consists thus of checking
the inclusion RedR(L) =RedR(φ−1(X)).

3.1 2-Homogeneous Rewrite Systems

A unitary rewrite system is said to be 2-homogeneous if every left-hand member
of R is in Σ2. In [2] it is shown that every 2-homogeneous rewrite system is
equivalent to a 2-homogeneous confluent rewrite system 〈Θ,R〉. In addition,
Lohrey ([10]) proved that, for such a presentation, it is always possible to define
a partition Θ = Σ �Δ � Γ and an involution ¯ : Σ → Σ with

{(aā, 1) | a ∈ Σ} ⊆ R ⊆ {(aā, 1) | a ∈ Σ} ∪ {(ab, 1) | a ∈ Δ, b ∈ Γ}.

A rewrite system is called N -free if it is 2-homogeneous and ac, ad, bc ∈
dom(R) implies that bd ∈ dom(R), for every a, b ∈ Δ and c, d ∈ Γ . This means
that the graph determined by nodes in Δ ∪ Γ and edges {(a, b) ∈ Δ× Γ | ab ∈
dom(R)} is the disjoint union of complete bipartite graphs. In this case, we can
rewrite Θ as

Θ = Σ ∪
⋃

1≤i≤k

Δi ∪
⋃

1≤i≤k

Γi (2)



110 A. Bertoni, C. Choffrut, and R. Radicioni

and R as

R = {(aā, 1) | a ∈ Σ} ∪ {(ab, 1) | a ∈ Δi, b ∈ Γi, 1 ≤ i ≤ k}. (3)

In this construction, for each i, Δi ∪ Γi are the nodes of a complete bipartite
graph. Moreover, if the sets Δi and Γi are all singletons, then the rewrite system
is cancellative.

Particularly important cases are:

– The free group reduction〈
a1, . . . , am, a−1

1 , . . . , a−1
m ;

⋃
1≤i≤m

(aia
−1
i , 1) ∪ (a−1

i ai, 1)

〉
.

– The Dyck reduction ([1])〈
a1, . . . , am, ā1, . . . , ām;

⋃
1≤i≤m

(aiāi, 1)

〉
;

in this case, φ−1
R (1) is the Dyck set on {a1, . . . , am, ā1, . . . , ām}.

Lemma 2. Let 〈Θ,R〉 be a N -free rewrite system having |Δi| = |Γi| = 1 for
1 ≤ i ≤ n. Then, Inclusion Problem for 〈Θ,R〉 is solvable in polynomial
time.

Proof. It is known that, in the case of a N -free rewrite system 〈Σ,R〉, Com-
pressed Equality Problem for 〈Σ,R〉 is solvable in polynomial time ([11]).
Hence, by Theorem 1, the result is straightforwardly proved.

We now show how to extend this result to the general case of N -free rewrite
systems. Consider a presentation 〈Θ;R〉 defined by the conditions (2) and (3).
We introduce two symbols δi and γi for each Δi and Γi, respectively, and consider
the alphabet

Θ′ = Σ ∪
⋃

1≤i≤k

{δi, γi} (4)

and the relation R′ over Θ′ defined by the same relators as those of Eq. (3) for
Σ and the relators

δiγi = 1, for 1 ≤ i ≤ k.

We denote by ∼R′ the congruence induced by R′ on Θ′∗ and by π the morphism
from Θ∗/ ∼R to Θ′∗/ ∼R′ leaving every element of Σ invariant and mapping all
elements of Δi to δi and all elements of Γi to γi.

Theorem 3. Inclusion Problem for 〈Σ,R〉 is solvable in polynomial time
whenever 〈Σ,R〉 is N -free.
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Proof. Let the input of the problem be the context-free grammar G in Chomsky’s
normal form. Then, it suffices to prove that φ(LG) = 1 if and only if φ(π(LG)) = 1.

We prove by induction on the length of the words that w ∼R 1 implies
π(w) ∼R′ 1. As the system of rewriting rules is confluent, the relation w ∼R 1
implies that we may write w = w1uw2 where u = aa or u = aa with a ∈ Σ or
u = δγ with δ ∈ Δi and γ ∈ Γi, for some i. The former case is trivial, so we
assume the latter holds. Take the image by π:

π(w) = π(w1)π(δ)π(γ)π(w2) = π(w1)δiγiπ(w2) ∼R′

π(w1)π(w2) = π(w1w2) ∼R′ 1.

Conversely if π(w) ∼R′ 1, then π(w) = π(w1)vπ(w2) with v = aa or v = aa with
a ∈ Σ or v = δiγi for some i. In this case, v = π(u), where u = δγ with δ ∈ Δi

and γ ∈ Γi for some i. Hence, w ∼R w1w2, which completes the proof.

Now we turn to the simplest non N -free presentation, to wit the presentation
〈Σ;R〉 where Σ = {a, b, c, d} and R is defined by the relators

ac → 1, bc → 1, and ad → 1, (5)

while bd �∈ dom(R). In order to give a lower bound to the complexity of Inclu-
sion Problem for 〈Σ;R〉 in the case M(R) is non N -free, we consider the
following compressed string problem

Compressed 1-Equality Problem for 〈Σ;R〉
Input: an SLP S with eval(S) ∈ Σ∗.

Question: does φR(eval(S)) = 1 hold?

Since a SLP is a special case of context-free grammar, such a problem is
obviously a special case of Inclusion Problem for 〈Σ;R〉. This means that
the complexity of Inclusion Problem for 〈Σ;R〉 lies between the complexity
of Compressed 1-Equality Problem and that of Compressed Equality
Problem for the same rewrite system.

In [11, Theorems 5.2, 5.4], Compressed 1-Equality Problem for non N -
free is proved to be coNP-complete. Hence, the following straightforwardly fol-
lows

Remark 1. If 〈Σ;R〉 is non N -free, then Inclusion Problem for 〈Σ;R〉 is at
least coNP-Hard.

4 Conclusions

We studied some conditions for which the inclusion problem for context-free
languages is decidable in polynomial time. We showed that verifying whether
all the words of a context-free language are mapped to the empty word in a
cancellative monoid can be reduced to testing the equality of two SLPs in the
same monoid. This result solves the inclusion problem for the 2-homogeneous
rewrite systems, for which there exists a polynomial solution if the system is
N -free, while, in the other case, the problem is at least coNP hard.
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In the more general case of complete unitary rewrite systems, we proved that
the inclusion of a regular language in a regular set over the generated monoid is
solvable in polynomial time.

An open problem on 2-homogeneous rewrite systems is to study the precise
complexity of Inclusion Problem in the non N -free case; moreover, it would
be interesting to identify complete unitary rewrite systems for which Inclusion
Problem is solvable in polynomial time.
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968–972]. Building on their work, we analyze in this paper the complexity
of natural variations on the problem. While some of them are NP-hard,
others are shown to be efficiently decidable. Using some combinatorial
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lengths of cycles in such graphs and periods of avoiding words, resulting
in a tight bound for periods of avoiding words. We also prove that Avoid-
ability can be solved in polynomial space, and reduces in polynomial
time to the problem of deciding the avoidability of a finite set of partial
words of equal length over the binary alphabet. We give a polynomial
bound on the period of an infinite avoiding word, in the case of sets of
full words, in terms of two parameters: the length and the number of
words in the set. We give a polynomial space algorithm to decide if a
finite set of partial words is avoided by a non-ultimately periodic infinite
word. The same algorithm also decides if the number of finite words of
length n avoiding a given finite set of partial words grows polynomially
or exponentially with n.

1 Introduction

A set of (full) words X over a finite alphabet A is called unavoidable if every
two-sided infinite word over A has a factor in X (when a word w has no factor
in X , we say that w avoids X); otherwise X is called avoidable. Consequently,
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unavoidable set contains a finite one. An alternate characterization of a finite
unavoidable set is that every periodic two-sided infinite word has a factor in X
[1]. Among other topics, the cardinality of such sets has been investigated [1]. If
we take, for example, one element from each of the conjugacy classes {aa}, {bb}
and {ab, ba} of the set of length two words over the alphabet {a, b}, then we
build an unavoidable set. Note that there is at least one element from each class
in an unavoidable set of words of length two since we can construct an infinite
word whose factors of length two all belong to the same class. This observation
can be generalized, so that any unavoidable set of words of length m over a
k-letter alphabet contains at least as many words as there are conjugacy classes.
In [2], it was proved that this bound is sharp (see [3] for a simpler proof).

A set of partial words X over a finite alphabet A is called unavoidable if every
two-sided infinite full word over A has a factor compatible with a member of X .
Partial words are sequences that may contain some “holes,” denoted by “�’s,”
that match any letter of the alphabet (we also say that � is compatible with any
letter of the alphabet). Unavoidable sets of partial words were introduced in [4]
where the number theoretic problem of classifying such sets of size l ≥ 2 over a
k-letter alphabet with k ≤ l was initiated.

Efficient algorithms to determine if a finite set of full words is unavoidable
are well known [1]. For example, we can check whether there is a loop in the
finite automaton of Aho and Corasick [5] recognizing A∗ \ A∗XA∗. These same
algorithms can be used to decide if a finite set of partial words X is unavoidable
by determining the unavoidability of X̂, the set of all full words compatible with
an element of X . Indeed, by the definition of X̂, a two-sided infinite word w has
a factor in X̂ if and only if that factor is compatible with a member of X . Thus
the infinite words which avoid X ⊂ A∗

� are exactly those which avoid X̂ ⊂ A∗,
and X ⊂ A∗� is unavoidable if and only if X̂ ⊂ A∗ is unavoidable. However this
incurs a dramatic loss in efficiency, as each partial word u in X can contribute
as many as |A||H(u)| elements to X̂ (H(u) denotes the set of holes of u).

In [6], it was proved that testing the unavoidability of a finite set of partial
words is much harder to handle than the similar problem for full words. Indeed,
it turns out that the problem of deciding whether a finite set of partial words
over a k-letter alphabet where k ≥ 2 is unavoidable is NP-hard (the complexity
class of those decision problems that are at least as hard as any problem that
can be solved by a non-deterministic Turing machine in polynomial time), which
is in contrast with the well known feasability results for unavoidability of a set
of full words [7, Chapter 7.4] (note that the case k = 1 is trivial).

The enumeration problem for words of length n avoiding a finite set of full
words has been studied by several authors. For example, Kobayashi [8] presented
a matrix-theoretic approach to this problem; Goulden and Jackson [9] describe
another method. A set of words L is of polynomial growth if there exists a poly-
nomial p(n) such that the number of words in L of length n is at most p(n) for
all n ≥ 0. The set L is of exponential growth if there exists a real number r > 1
such that for infinitely many n ≥ 0, the number of words in L of length n is at
least rn. Over any fixed alphabet, the set of finite words avoiding any given finite
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set of partial words can be of either polynomial growth or exponential growth;
no intermediate growth is possible. This is a consequence of previous work on
the avoidability of sets of full words (see [8] for example).

The contents of our paper is as follows: In Section 2, we review basic concepts
on partial words and discuss previous work on avoidability of sets of such words.
In Section 3, we analyze the complexity of natural variations on the problem
of deciding avoidability of sets of partial words. While some of them are shown
to be NP-hard, others are shown to be efficiently decidable. We establish a
correspondence between lengths of cycles in de Bruijn graphs and periods of
avoiding words, resulting in a bound for periods of avoiding words. We also
show that the problem of deciding the avoidability of a finite set of partial words
over an alphabet of size k ≥ 2 can be solved in polynomial space, and reduces
in polyomial time to the problem of deciding the avoidability of a finite set of
partial words of equal length over the binary alphabet. In Section 4, we give a
polynomial bound on the period of an avoiding word, in the case of sets of full
words, in terms of two parameters: the length and the number of words in the
set. In Section 5, we give a polynomial space algorithm to decide if a finite set of
partial words is avoided by a non-ultimately periodic infinite word over a fixed
alphabet. Our algorithm also decides if the number of words of length n avoiding
a given finite set of partial words grows polynomially or exponentially with n.
We also apply the probabilistic method to show that if a set X of partial words is
not too large, the number of words of length n avoiding X grows exponentially.
Finally in Section 6, we conclude with some remarks.

2 Preliminaries

Throughout this paper A is a fixed non-empty finite set called an alphabet whose
elements we call letters. A word of length n over A is a finite sequence of elements
of A. We denote by A∗ (respectively, An) the set of finite words (respectively,
the set of words of length n) over A. For u ∈ A∗, we write |u| for the length of
u. Under the concatenation operation of words, A∗ forms a free monoid whose
identity is the empty word which we denote by ε.

A two-sided infinite word w is a function w : Z → A. A finite word u is a factor
of w if there exists some i ∈ Z such that u = w(i) · · ·w(i+ |u|−1). For a positive
integer p, w has period p, or w is p-periodic, if w(i) = w(i + p) for all i ∈ Z. If
w has period p for some p, then we call w periodic. If v is a non-empty finite
word, then we denote by vZ the unique two-sided infinite word w with period
|v| such that v = w(0) · · ·w(|v| − 1). A one-sided infinite word w is a function
w : N → A. It is ultimately periodic if it can be written as w = uvvvv · · · for
some finite words u and v, where v is non-empty.

A partial word (or pword) u of length n over an alphabet A can be defined
as a function u : [0..n − 1] → A�, where A� = A ∪ {�}, and will be written as
u(0)u(1) · · ·u(n − 1). For 0 ≤ i < n, if u(i) ∈ A, then i belongs to the domain
of u, denoted D(u); otherwise, i belongs to the set of holes of u, denoted H(u).
Whenever H(u) is empty, we say that u is a full word. We refer to an occurrence
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of the symbol � as a hole. We denote by A∗
� the set of all partial words over A

with an arbitrary number of holes. We denote the set of all factors of u by F (u).
Two partial words u and v of equal length are compatible, denoted u ↑ v,

if u(i) = v(i) whenever i ∈ D(u) ∩ D(v). If X is a set of partial words, we
denote by X̂ the set of all full words compatible with an element of X . The
partial word u is contained in v, denoted u ⊂ v, if |u| = |v| and u(i) = v(i)
for all i ∈ D(u). Two partial words u and v are conjugate if there exist partial
words x, y such that u ⊂ xy and v ⊂ yx. It is well-known that conjugacy on full
words is an equivalence relation, but it is not such a relation on partial words
[10]. If a partial word u can be written as u = u1�u2� · · ·un−1�un, then the set
{u1a1u2a2 · · ·un−1an−1un | a1, a2, . . . , an−1 ∈ A} is called a partial expansion
on u (note that u1, u2, . . . , un are partial words that may contain holes, and also
note that u ⊂ v for every member v of a partial expansion on u).

A two-sided infinite word w over A avoids X ⊂ A∗
� if no factor of w is an

element of X̂. We say that X is unavoidable if no two-sided infinite word over
A avoids X . Previous work shows that Avoidability is NP-hard. In [6], it is
proved that determining if a finite set of partial words over an alphabet of size
k ≥ 2 is avoidable or not is much harder to handle than the similar problem for
full words. This is done by using a reduction from the 3SAT problem, known to
be NP-complete. We refer the reader to Reference [4] that gives an algorithm,
that will be used in some of the proofs, for deciding Avoidability based on
reductions from a set X to a set Y that maintain avoidability: factoring, prefix-
suffix, hole truncation, and expansion. A set X ⊂ A∗

� is unavoidable if and only
if X can be reduced to {ε} by these reductions.

3 Complexity of Avoidability Problems

In this section, we discuss natural variations on the problem of deciding avoid-
ability of sets of partial words. While some of them are NP-hard, others are
shown to be efficiently decidable. We establish a correspondence between lengths
of cycles in de Bruijn graphs and periods of avoiding words. We also show that
the problem of deciding the avoidability of a finite set of pwords over a k-letter
alphabet can be solved in polynomial space, and reduces in polynomial time to
the problem of deciding the avoidability of such a set over the binary alphabet.

Testing if a word avoids a finite set can be done using Lemma 1 which we
will implicitly use when proving membership in certain complexity classes in the
following results concerning restricted Avoidability.

Lemma 1. Given a finite word v, the problem of deciding if the infinite periodic
word vZ avoids a finite set of partial words can be solved in polynomial time.

Theorem 1. The problem of deciding the avoidability of a finite set of partial
words, such that each element has at most two defined positions, is NP-hard.

Proof. Our proof proceeds by reduction from the Directed Hamiltonian Circuit
problem, one of Karp’s original twenty-one NP-complete problems [11]. In the
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Directed Hamiltonian Circuit problem, we decide whether a given digraph has
a Hamiltonian circuit. Given a graph G = (V,E), we construct a set X of
partial words, where each element has at most two defined positions, such that
X is avoidable if and only if G has a Hamiltonian circuit. Our alphabet is
V = {v1, v2, . . . , vn} and the set X is composed of the following three parts: (1)
{vivj | (vi, vj) /∈ E}, (2) {vi�n−1vj | vi �= vj}, and (3) {vi�jvi | 0 ≤ j < n− 1}.

For the forward implication, suppose there exists a Hamiltonian circuit in G,
say (u1, u2, . . . , un, u1). We claim that w = (u1u2 · · ·un)Z avoids X . Indeed, w
avoids Part (1) of X because each (ui, ui+1) ∈ E for 0 < i < n and (un, u1) ∈
E. Part (2) is avoided because w is n-periodic. Part (3) is avoided because
consecutive occurrences of the same letter are separated by n−1 other letters. For
the reverse implication, suppose there exists a two-sided infinite word w which
avoids X . To avoid Part (3), consecutive occurrences of the same letter must be
separated by at least n−1 other letters. To avoid Part (2), w(i) = w(i+n) for all
i ∈ Z, so w must be n-periodic. From our previous observations, this period must
be of the form u1u2 · · ·un, where each ui is distinct. Finally, to avoid Part (1),
(ui, ui+1) ∈ E where 0 < i < n and (un, u1) ∈ E. Therefore, (u1, u2, . . . , un, u1)
is a Hamiltonian circuit in G. ��

The following proposition shows membership in NP of the problem defined in
Theorem 1 over a binary alphabet.

Proposition 1. The problem of deciding the avoidability of a finite set of partial
words over the binary alphabet, such that each element has at most two defined
positions, can be solved in non-deterministic polynomial time.

The next theorem shows that another natural variation (see, for example, [3]),
constant length sets, on the problem of deciding avoidability is NP-hard.

Remark 1. When we consider constant length sets of partial words, we implicitly
require that neither the first or last position in any of the words be a hole.

Theorem 2. The problem of deciding the avoidability of a finite set of partial
words of equal length over an alphabet of size k ≥ 2 is NP-hard.

Proof. We present a reduction from the NP-hard unrestricted Avoidability
problem. Given a finite set X of partial words over a k-size alphabet A, we
construct a set X ′ of pwords of equal length as follows. Let l denote the maxi-
mum length of the words in X . Then X ′ is formed by the following two parts:
{u�l−|u|−1a | u ∈ X, |u| < l, a ∈ A} and {u | u ∈ X, |u| = l}. We show that X ′ is
avoided by the same words as X . Consider for any u ∈ X where |u| < l the set
X ′

u = {u�l−|u|−1a | a ∈ A} which has the same avoidability as Y ′
u = {u�l−|u|}

because an Expansion operation on Y ′
u results in X ′

u. Furthermore, a Hole Trun-
cation operation on Y ′

u results in the set {u}. Therefore, X ′
u is avoided by the

same words as {u}. By our construction of X ′, clearly X ′ is avoided by the same
words as X . Therefore, X is avoidable if and only if X ′ is avoidable. Finally, we
note that the length of the description of X , that is ‖X‖ =

∑
x∈X |x|, satisfies

‖X ′‖ < ‖X‖lk, and so this reduction runs in polynomial time. ��
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A tractable variation is provided in the next theorem. As a direct corollary,
combining the two restrictions presented in the previous two theorems results in
a problem which can be efficiently decided.

Theorem 3. The problem of deciding the avoidability of a finite set X of partial
words, where for some positive integer p every element x ∈ X is defined at
position 0 ≤ i < |x| if and only if p divides i, can be solved in polynomial time.

Corollary 1. The problem of deciding the avoidability of a given finite set of
partial words of equal length n, where each element has at most two defined
positions (by Remark 1, each element has the form a�n−2b), can be solved in
polynomial time.

Another natural variation of Avoidability is presented in the next theorem.

Theorem 4. The problem of deciding whether a finite set of partial words is
avoided by a word of length l is strongly NP-complete.

Using de Bruijn graphs, well known to be Hamiltonian and Eulerian, Theorem 5
will give a bound on periods of avoiding words by establishing a correspondence
between them and lengths of cycles in such graphs. The de Bruijn graph of order
m over a k-size alphabet A, denoted G(m, k), is the digraph (V,E) defined as
follows: For m ≥ 1, V = Am and E = {(z, z′) | z′ = σ(z, a)}, where we denote
by σ(z, a) the word z′ of length m such that for some b ∈ A, za = bz′ (here
b = z(0), z′(0) = z(1), z′(1) = z(2), . . ., z′(m− 2) = z(m− 1), z′(m− 1) = a).

Theorem 5. If a finite set of partial words of length m over an alphabet A is
avoidable, then it is avoided by a word of period at most |A|m.

Proof. Let X be a finite avoidable set of pwords of length m. Consider the
subgraph G = (V,E) of G(m, k) induced by the set {u | u �↑ x for all x ∈ X}.
Essentially, incidence in G corresponds to transitions in the automaton of Aho
and Corasick [5]. We claim that there exists a cycle in G of length p if and only
if there exists an infinite word with period p which avoids X . Consider any cycle
C in G of length p. Construct the word vC formed by concatenating the first
letters of each vertex along the cycle. By our construction of G, no subword of
(vC)Z of length p is compatible with any word in X . Therefore, the infinite word
(vC)Z of period p avoids X . Now suppose there exists a cycle C in G of length
greater than |V |. Then, by the pigeonhole principle, C is not simple, and so we
can find a simple cycle C′ of length at most |V |. Therefore, since |V | ≤ |A|m,
there exists an infinite word with period at most |A|m that avoids X . ��
Theorem 6. The problem of deciding the avoidability of a finite set of partial
words of equal length can be solved in polynomial space.

Proof. We apply the bound found in Theorem 5 to obtain a polynomial space
algorithm which decides the avoidability of a finite set X of partial words of
length m over alphabet A. Algorithm 1 searches for a cycle in the graph defined
in Theorem 5 without constructing the graph. The correctness of this algorithm
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Algorithm 1. Deciding Avoidability in Polynomial Space
1: Non-deterministically select a word w of length m
2: Set z = w, i = 0
3: while i < |A|m do
4: Increment i
5: Non-deterministically select a letter a ∈ A
6: Set z = σ(z, a)
7: If ∃x ∈ X such that z ↑ x, reject
8: If z = w, accept
9: Reject

can be proved with the loop invariant that, at iteration i, there is a path of length
i from w to z. So if there is a cycle in G, then there is a cycle with at most |A|m
vertices and our algorithm will accept. If there is no cycle, then there is no path
from w to w of length at least 1 and our algorithm will reject. Because our
algorithm stores only two words of length m and a counter of length m log |A|,
it uses O(m) non-deterministic space, and so, by Savitch’s theorem [12], only
O(m2) deterministic space, which is polynomial in the input’s length. ��

Generalizing to arbitrary sets, we get the following corollary.

Corollary 2. Avoidability is in PSPACE.

We now consider reducing Avoidability to the binary alphabet.

Theorem 7. The problem of deciding the avoidability of a finite set of partial
words over an alphabet of size k > 2 reduces in polynomial time to the problem of
deciding the avoidability of a finite set of partial words over the binary alphabet.

Proof. Given a finite set X of partial words over alphabet A = {a1, a2, . . . , ak},
we construct a set X ′ of partial words over the alphabet B = {0, 1} such that X ′

is avoidable if and only if X is avoidable. At a high level, our reduction encodes
each symbol in a binary representation and delimits adjacent encodings with a
special binary word. Let l = �log2 |A|� be the length of an encoding, d = 101
be the delimiting word, and define the sets S = {00, 11} and T = B3 \ {101}.
Finally, define the function b : A� → Sl ∪ (��)l to be such that b(ai) equals the
binary representation of the natural number i − 1, where each bit is replaced
with two copies of itself, and b(�) = (��)l. We now describe the elements in X ′:

1. First, add every word of length 2l+3 which does not contain 101 as a factor
in order to ensure that any avoiding infinite word has 101 as a factor.

2. Second, for each t ∈ T , add 101(��)lt. To avoid these words, every occurrence
of 101 in an infinite word must be followed by another 101 after 2l other bits.

3. Third, for each 0 ≤ i < l, add the words 101(��)i01 and 101(��)i10. This
forces avoiding words to have only valid binary representations (that is,
words from Sl) between consecutive pairs of 101.

4. Fourth, for each word u0u1 · · ·um−1 ∈ X , where each ui ∈ A�, add to X ′

the word 101b(u0)101b(u1) · · · 101b(um−1) which enforces a bijection between
words which avoid X and words which avoid X ′.
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5. Finally, for each |A| < i ≤ 2l, add the corresponding binary representation
of i−1 where each bit is replaced with two copies of itself. This ensures that
every factor of length 2l delimited by 101 corresponds to a symbol in A.

Suppose some infinite word w = (w0w1 · · ·wn−1)Z avoids X . Then clearly the
word w′ = (101b(w0)101b(w1) · · · 101b(wn−1))Z avoids X ′. Next, suppose that
some infinite word w′ avoids X ′. Then, to avoid the first part, w′ must have 101 as
a factor. Additionally, to avoid the second part, following every occurrence of 101
in w′ there must be another occurrence of 101 in w′ after 2l other bits. Further-
more, to avoid the third part, these bits must come in pairs. Moreover, to avoid
the last part, these 2l bits must form a binary representation of some symbol in
A. So one period of our word must be of the form 101b(u0)101b(u1) · · · 101b(un−1)
for some ui ∈ A�. Finally, to avoid the fourth part, (u0u1 · · ·un−1)Z must avoid
X . Note that all but the fourth part of X ′ are functions of only the size of the
alphabet. Because the alphabet is constant, these sets are constant with respect
to the input. Therefore, because the fourth part grows linearly with respect to
X , this reduction can be performed in polynomial time. ��

Theorem 7 shows that problems of deciding avoidability of sets over alphabets
of sizes at least two are equivalent with respect to polynomial time reductions;
that is, they are all in the same complexity class. A more rigorous analysis of
the space complexity of our reduction, in conjunction with Theorem 1, provides
an alternate proof of the NP-hardness of the general problem.

Corollary 3. Avoidability is NP-hard.

Proof. The problem of deciding the avoidability of a finite set of partial words
over an alphabet of size k ≥ 2 is NP-hard. Indeed, we prove that the reduction
from the Directed Hamiltonian Circuit problem followed by the reduction to the
binary alphabet is polynomial time, and therefore suffices to show the avoidabil-
ity problem NP-hard. The reduction in Theorem 1 uses O(|V |3) space, while
the reduction in Theorem 7 uses O(|A|2 + |X | log |A|) space. Because A = V ,
the composition of these reductions uses O(|V |2 + |V |3 log |V |) = O(|V |3 log |V |)
space. As both are polynomial time, so is their composition. This concludes the
proof when k = 2. As in [6], for k > 2, we simply forbid the other letters,
a3, . . . , ak, of the alphabet by including them in the set. ��

Additionally, Theorem 7 shows that if every finite avoidable set of partial words
over some alphabet of size k is avoided by an infinite word with a period bounded
by a polynomial in the size of the set, then so is every finite avoidable set over an
alphabet of any size. Moreover, by applying Theorem 2, we can reduce all these
avoidability problems to the problem of deciding the avoidability of a finite set
of partial words of equal length over the binary alphabet. In the next section, we
exploit properties of these reduced sets to present some partial results towards
a polynomial bound on the period of an avoiding word.
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4 Polynomial Bound on Periods of Avoiding Words

In the previous section, we reduced the problem of deciding the avoidability of
a finite set of partial words over an alphabet of size k ≥ 2 to the problem of
deciding the avoidability of a finite set of partial words of equal length over
the binary alphabet. This reduction simplifies our problem significantly, most
notably by allowing us to consider only two parameters when establishing a
bound on the shortest period of an avoiding word: the length of the words in the
set and the number of elements in the set.

The following theorem establishes a bijection from simple cycles to subset-
minimal cycles in de Bruijn graphs (a cycle C in a graph G is subset-minimal if
there does not exist a shorter cycle D such that every vertex in D is also in C).

Theorem 8. Let G(m, k) be the de Bruijn graph of order m over an alphabet of
size k. There exists a bijection from simple cycles in G(m, k) to subset-minimal
cycles in G(m + 1, k) which preserves cycle length.

The first corollary gives the lengths of the longest subset-minimal cycles in de
Bruijn graphs, the second, which strengthens Theorem 5, provides a tight bound
for periods of avoiding words, and the third is a negative result on polynomially
bounded periods.

Corollary 4. Let G(m, k) be the de Bruijn graph of order m over an alphabet
of size k. The length of the longest subset-minimal cycle in G(m, k) is km−1.

Corollary 5. If a finite set of partial words of length m over a k-letter alphabet
is avoidable, then it is avoided by a word with period at most km−1. Furthermore,
for every m, a finite set of partial words of length m over a k-letter alphabet exists
such that the smallest period of an infinite word which avoids the set is km−1.

Corollary 6. No polynomial function p of m exists such that all avoidable sets
of partial words of length m over a k-letter alphabet are avoided by an infinite
word with period at most p(m).

In short, if there exists a polynomial function p from a set of n partial words of
length m over a k-letter alphabet to an upper bound on the shortest period of
an infinite word which avoids the set, then p is a function of both n and m.

Conjecture 1. If a set of n partial words of length m over a k-letter alphabet is
avoidable, it is avoided by an infinite periodic word with period at most mn.

The following propositions present some positive results towards verifying Con-
jecture 1.

Proposition 2. Conjecture 1 is true when n ≤ 2.

We note that proving Conjecture 1 is much more difficult for sets of partial words
than for sets of full words, as we must consider how many fewer elements are
needed in a set of partial words. Consequently, the following result is restricted
to sets of full words. For positive integers m and k, let c(m, k) be the number of
conjugacy classes of words of length m over a k-letter alphabet.
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Proposition 3. Conjecture 1 is true for sets of full words.

Proof. We show that every avoidable set X of n full words of length m over a
k-letter alphabet is avoided by an infinite word of period at most mn. We first
claim that c(m, k) ≥ km

m . This follows because there are km words of length m
and each conjugacy class has at most m elements. We now consider two possible
cases: First, suppose n < km

m . Then because n < c(m, k), some conjugacy class
is not represented in X ; that is, there exists some word v of length m such that
for all u ∈ [v] and x ∈ X , u �= x. Therefore, the word vZ of period m avoids X .
Now, suppose n ≥ km

m . By Corollary 5, X is avoided by an infinite word with
period at most km−1. The result follows since mn ≥ km > km−1. ��

The difficulty in proving this bound for sets where n ≥ c(m, k) arises from
a tenuous balance in the constructing sets of smallest cardinality which are
avoidable, yet avoided only by words with large periods. In particular, it was
shown in [3] that for every m and k, there exists an unavoidable set of words
of length m over an alphabet of size k having c(m, k) elements. And so, in
proving this bound when n ≥ c(m, k), our task is complicated by the existence
of unavoidable sets.

5 Sets Avoidable by Aperiodic Infinite Words

We now consider the problem of determining whether or not there is a non-
ultimately periodic infinite word avoiding a given set of partial words.

Theorem 9. There is a polynomial space algorithm to decide if a finite set of
partial words over a k-letter alphabet is avoided by a non-ultimately periodic
infinite word. Equivalently, there is a polynomial space algorithm to decide if the
number of finite words of length n that avoid a finite set of partial words over a
k-letter alphabet grows polynomially or exponentially with n.

Proof. Suppose we are given a finite set X of partial words over a k-letter al-
phabet. Let us first perform the transformation of X to X ′ as described in the
proof of Theorem 2. The set X ′ consists of partial words of the same length m,
and the words avoiding X ′ are exactly the words avoiding X .

Let G(m, k) be the de Bruijn graph of order m and let G be the subgraph of
G(m, k) induced by the set {u | u �↑ x for all x ∈ X ′}. It is clear that there is a
non-ultimately periodic word avoiding X ′ if and only if G contains two distinct
directed cycles C1 and C2 such that there is a directed path P1 from C1 to C2
and a directed path P2 from C2 to C1. Similarly, the number of finite words of
length n that avoid X ′ grows exponentially with n if and only if there exist C1,
C2, P1, and P2 as described above.

To determine the existence of C1, C2, P1, and P2, we apply a variation of
Algorithm 1. We only describe the changes required to Algorithm 1. Instead of
non-deterministically choosing a single word w, we instead choose two distinct
words w and v of length m. We then non-deterministically search for cycles in



On the Complexity of Deciding Avoidability of Sets of Partial Words 123

G from w to w and from v to v of lengths at most km, just as in Algorithm 1.
Using the same technique, we non-deterministically search for paths P1 from w
to v and P2 from v to w in G, where P1 and P2 have length at most km. This
non-deterministic algorithm uses only O(m) space, so there is an equivalent
deterministic algorithm that runs in O(m2) space by Savitch’s theorem [12]. ��

Our next theorem uses the probabilistic method and is therefore non- construc-
tive. Let A1, . . . , An be events in a probability space. A graph G = (V,E) is a
dependency graph if V = {1, . . . , n} and for all i, Ai is mutually independent of
all the Aj ’s for which there is no edge {i, j} ∈ E.

Lemma 2 ([13], Lemma 19.1). Let G = (V,E) be a dependency graph for
events A1, . . . , An in a probability space. Suppose that the maximum degree of G
is d and that there is a real number p for which Pr[Ai] ≤ p for all i = 1, . . . , n.
If 4pd ≤ 1, then Pr[∩Ai] ≥ (1 − 2p)n > 0.

We use the above result, known as Lovász Local Lemma (symmetric version),
to prove that if a set X of partial words is not too large, the number of finite
words of length n avoiding X grows exponentially.

Theorem 10. Let X be a set of pwords of length m ≥ 2 with at most h < m

holes over an alphabet A of size k ≥ 2. If |X | ≤ km−h

4(2m−1) , then for n ≥ 1, there are

at least
[
k
(
1 − 1

4m−2

)]n
words of length n over A that avoid X. Furthermore,

there is a non-ultimately periodic infinite word over A that avoids X.

Proof. Let n be an arbitrary positive integer and let w be a random word of
length n over A. For i = 1, . . . , n, let Ai denote the event that w contains a
factor compatible with a partial word in X at position i− 1. Let p = |X|

km−h , so
that for all i, Pr[Ai] ≤ p. To apply the local lemma we may take d = 2m−1, since
there can be at most 2m−1 overlapping pairs of occurrences of factors of length
m in w. Observe that for |X | ≤ km−h

4(2m−1) , we have p = |X|
km−h ≤ 1

4(2m−1) , so that
4pd ≤ 1. By the local lemma, with probability at least (1− 2p)n ≥ (1− 1

4m−2 )n,
w contains no factor compatible with a partial word in X . There are therefore
at least

[
k
(
1 − 1

4m−2

)]n
words of length n that avoid X . Since k,m ≥ 2, we

have k(1 − 1
4m−2 ) > 1, so the number of words of length n that avoid X grows

exponentially with n. We conclude by observing that by our discussion in the
proof of Theorem 9, there are exponentially many words of length n avoiding X
if and only if there is a non-ultimately periodic infinite word avoiding X . ��

6 Conclusion and Open Problems

In this paper, we have established the membership of Avoidability in PSPACE,
have reduced Avoidability to constant length sets over the binary alphabet,
have formulated a conjecture about polynomially bounding periods of infinite
avoiding words and have proven it for the special case of sets of full words,
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have given a polynomial space algorithm that determines if a given finite set of
partial words is avoided by a non-ultimately periodic infinite word and that also
determines if the number of finite words of length n avoiding the given set grows
polynomially or exponentially with n, and have also applied the probabilistic
method to show that if a set of partial words is not too large, the number of
finite words of length n avoiding it grows exponentially. However, membership
of Avoidability in NP remains open. A World Wide Web server interface
has been established at www.uncg.edu/cmp/research/unavoidablesets3 for
automated use of a program that when given as input a finite set of partial words
over a given alphabet will output the shortest period of an infinite avoiding word
in case the set is avoidable.
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Abstract. A famous theorem of Kuratowski states that, in a topological
space, at most 14 distinct sets can be produced by repeatedly applying
the operations of closure and complement to a given set. We re-examine
this theorem in the setting of formal languages, where closure is either
Kleene closure or positive closure. We classify languages according to
the structure of the algebra they generate under iterations of comple-
ment and closure. There are precisely 9 such algebras in the case of
positive closure, and 12 in the case of Kleene closure. We study how
the properties of being open and closed are preserved under concatena-
tion. We investigate analogues, in formal languages, of the separation
axioms in topological spaces; one of our main results is that there is a
clopen partition separating two words if and only if the words do not
commute. We can decide in quadratic time if the language specified by
a DFA is closed, but if the language is specified by an NFA, the problem
is PSPACE-complete.

1 Introduction

In 1922, Kuratowski proved that, if S is any set in a topological space, then at
most 14 distinct sets can be produced by repeatedly applying the operations of
topological closure and complement to S [11,7]. Furthermore, there exist sets
achieving this bound of 14 in many common topological spaces. There is a large
and scattered literature on Kuratowski’s theorem, most of which focuses on
topological spaces; an admirable survey is the paper of Gardner and Jackson [8].
For the analogous result on relations, see [9].

The basic properties of closure systems and a version of Kuratowski’s theorem
in a general setting are presented in Section 2; this version can be found in
Hammer [10]. Our point of view most closely matches that of Peleg [13], who
briefly observed that Kleene and positive closure are closure operators, and hence
Kuratowski’s theorem holds for them.

Positive and Kleene closures are discussed in Section 3. In Section 4 we recon-
sider Kuratowski’s theorem in the context of formal languages, where closure is
replaced by Kleene closure or positive closure. We describe all possible algebras
of languages generated by a language under the operations of complement and
closure. We classify languages according to the structure of the algebras they
generate, and give a language of each type (Theorems 5 and 7).
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In Section 5 we study how the properties of being open and closed are pre-
served under concatenation. In Section 6 we investigate analogues, in formal
languages, of the separation axioms in topological spaces; one of our main re-
sults (Theorem 14) is that there is a clopen partition separating two words if and
only if the words do not commute. In Section 7 we show that we can decide in
quadratic time if the language specified by a DFA is closed, but if the language
is specified by an NFA, the problem is PSPACE-complete.

Because of space limitations, some proofs are omitted or only sketched. For
more complete versions, see [2,3].

2 Closure Systems and Kuratowski’s Theorem

We recall the definitions and properties of closures in general. Let S be a set
which we call the universal set. An operator � operating on a set X ⊆ S will be
denoted by X�. Then a mapping � : 2S → 2S is a closure operator if and only
if it satisfies the following, for all subsets X and Y of S:

X ⊆ X� (� is extensive);
X ⊆ Y implies X� ⊆ Y � (� is isotone);

X�� = X� (� is idempotent).
(1)

A pair (S,� ) satisfying (1) is a closure system. The complement S \X of a set
X ⊆ S is denoted X−. The set X� is the closure of X . We say X is closed if
X = X�. Also, X is open if its complement is closed, and X is clopen if it is
both open and closed. The interior of X , denoted X◦, is defined to be X−�−.

Note the duality between � and ◦: X◦ = X−�− and X� = X−◦−. This
duality also applies to (1), since we have

X ⊇ X◦ (◦ is intensive);
X ⊆ Y implies X◦ ⊆ Y ◦ (◦ is isotone);

X◦◦ = X◦ (◦ is idempotent).
(2)

Moreover, it is equivalent to define (S,� ) via an interior operator satisfying (2).
We now list some fundamental properties of closure systems.

Proposition 1. The intersection of an arbitrary family of closed sets is closed.

Proposition 2. For X ⊆ S, the following are identical: (a) X�; (b)
⋂
{Y ⊆ S :

Y ⊇ Xand Y is closed}; (c) {a ∈ S : for all open Y ⊆ S, a ∈ Y implies Y ∩ X �=
∅}; (d) X−◦−.

Proposition 3. Let X,Y ⊆ S. Then the following hold:

(a) X� is closed.
(b) (X ∪ Y )� = (X� ∪ Y �)�.
(c) (X ∩ Y )� ⊆ X� ∩ Y �.

Duals of Propositions 1–3 also hold [2]. For example, the union of an arbitrary
family of open sets is open.
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We now state two versions of Kuratowski’s theorem. The first [11] is equivalent
to Kuratowski’s original result generalized to an arbitrary closure system, not
necessarily topological:

Theorem 1. Let (S,�) be a closure system, and let X ⊆ S. Starting with X,
apply the operations of closure and complement in any order, any number of
times. Then at most 14 distinct sets are generated. Also, any X ⊆ S satisfies

X�−�−�−� = X�−�. (3)

A closure operator � preserves openness if X� is open for all open sets X , or
equivalently, if Y ◦ is closed for all closed sets Y . Hence if � preserves openness,
then X�◦ and X◦� are clopen for all sets X . We will see later that the positive
closure of languages preserves openness.

In 1983, Peleg [13] defined a closure operator to be compact if it satisfies
Eq. (4) below. He showed that at most 10 different sets are generated if � is
compact, and proved that � preserves openness if and only if it is compact. The
following theorem is a modified version of Peleg’s result:

Theorem 2. Let (S,�) be a closure system such that � preserves openness,
and let X ⊆ S. Starting with X, apply the operations of closure and complement
in any order, any number of times. Then at most 10 distinct sets are generated.
Also, any X ⊆ S satisfies

X�−�−� = X�−�−. (4)

3 Positive and Kleene Closures of Languages

We deal now with closures in the setting of formal languages. Our universal set
is Σ∗, the set of all finite words over a finite non-empty alphabet Σ. We consider
two closure operators: positive closure and Kleene closure. For L ⊆ Σ∗, we define
L− = Σ∗ \ L, L+ =

⋃
i≥1 L

i, and L∗ =
⋃

i≥0 Li.

Proposition 4. Positive closure and Kleene closure are both closure operators.

We note, importantly, that the positive and Kleene closures are not topological
(the union of two closed languages is not necessarily closed). As a counterexam-
ple, observe that (aa)+ ∪ (aaa)+ � (aa∪ aaa)+, as a5 belongs to the right-hand
side but not the left. Consequently, languages do not form a topology under
positive or Kleene closure.

A language is positive-closed if it is a closed set under positive closure. It
is positive-open if its complement is positive-closed. The terms Kleene-closed,
and Kleene-open are defined similarly. The positive interior of a language L is
L⊕ = L−+−; the Kleene interior is L� = L−∗−.

Proposition 5. Let L ⊆ Σ∗. The following are equivalent:

(a) L is positive-closed.
(b) L ∪ {ε} is Kleene-closed.
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(c) L = L+.
(d) L = M+ for some M ⊆ Σ∗.
(e) For all u, v ∈ L, we have uv ∈ L.

The dual of Proposition 5 also holds [2]. For example, (a) L is positive-open is
equivalent to (e) For all u, v ∈ Σ∗ such that uv ∈ L, we have u ∈ L or v ∈ L.

In algebraic terms, L ⊆ Σ∗ is a semigroup if uv ∈ L for all u, v ∈ L. Propo-
sition 5 states that a language is positive-closed if and only if it is a semigroup.
Also, L ⊆ Σ∗ is Kleene-closed if and only if it is a monoid. We verify that if L
is positive-closed, then so are L \ {ε} and L ∪ {ε}. So there is an obvious 2-to-1
mapping between positive-closed and Kleene-closed languages—positive-closed
languages may or may not contain ε, and Kleene-closed languages must.

Since positive closure and Kleene closure are so similar, we restrict our atten-
tion to positive closure from this point on. This allows us to state our theorems
more elegantly, as we need not worry about ε. For the remainder of this article,
a language is closed if it is positive-closed, open if it is positive-open, and clopen
if it is both positive-closed and positive-open.

Example 1. Clopen languages: Let Σ be an alphabet and let Σ1, Σ2 ⊆ Σ. For
w ∈ Σ∗, let |w|1 (respectively, |w|2) denote the number of distinct values of i for
which w[i] ∈ Σ1 (respectively, w[i] ∈ Σ2). Suppose k ≥ 0. Then L = {w ∈ Σ∗ :
|w|1 < k|w|2} is clopen.

To prove this, let u, v ∈ L. Then |u|1 < k|u|2 and |v|1 < k|v|2. But |uv|1 =
|u|1 + |v|1 < k|u|2 + k|v|2 = k|uv|2, so uv ∈ L, and thus L is closed. By a similar
argument, we can prove that L− = {w ∈ Σ∗ : |w|1 ≥ k|w|2} is closed. Thus L is
clopen. �

Example 2. Open languages: A language L is prefix-closed if and only if for every
w ∈ L, each prefix of w is in L. We analogously define suffix-closed, subword-
closed, and factor-closed languages. Here by subword, we mean an arbitrary
subsequence, and by factor, we mean a contiguous subsequence. For any L ⊆ Σ∗,
if L is prefix-, suffix-, factor-, or subword-closed, then L is open.

For prefix-closed languages, we show that L satisfies the dual of Proposi-
tion 5 (e), which states that uv ∈ L implies u ∈ L or v ∈ L. Let w ∈ L
and suppose w = uv. Then u ∈ L if L is prefix-closed, so our characterization
holds and L is open. The proof is similar if L is suffix-closed. Since factor- and
subword-closed languages are also prefix-closed, the claim holds. �

Example 3. Closed languages: Left ideals (satisfying L = Σ∗L), right ideals
(L = LΣ∗), two-sided ideals (L = Σ∗LΣ∗), or languages of the form L =⋃

a1···an∈L Σ∗a1Σ
∗ · · ·Σ∗anΣ

∗, all satisfy L = L+, and so are positive closed. �

In the 1970’s, D. Forkes proved Eq. (3) with the Kleene closure as �, and the
first author then proved that Eq. (4) holds when � is positive closure. (They
were both unaware of [11].) Peleg [13] proved this over a wider class of operators.
Here, we state an equivalent fact: positive closure preserves openness.
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Theorem 3. Let L ⊆ Σ∗ be open. Then L+ is open.

Proof. This follows from the facts that Eq. (4) holds for positive closure, and
that Eq. (4) is equivalent to compactness. �

By arguments similar to those in the proof of Theorem 2, we may conclude:

Corollary 1. Let L ⊆ Σ∗. Then L+⊕ and L⊕+ are clopen. Moreover, if L is
open, then L+ is clopen, and if L is closed, then L⊕ is clopen.

The converses of the above results are false; for example, there exist languages
such as {a, aaaa} which are not open, but have clopen closures. We discuss such
possibilities extensively in the next section. For now, we give a characterization
of the languages with clopen closures and clopen interiors.

Theorem 4. Let L ⊆ Σ∗.

(a) L+ is clopen iff there exists an open language M with L ⊆ M ⊆ L+.
(b) L⊕ is clopen iff there exists a closed language M with L ⊇ M ⊇ L⊕.

Proof. We prove only (a); (b) can be proved using a similar argument. The
forward direction of (a) is trivial since we can take M = L+. For the converse,
we note that L ⊆ M implies L+ ⊆ M+ by isotonicity, and M ⊆ L+ implies
M+ ⊆ L++ = L+ by isotonicity and idempotency. Thus M+ = L+, and since
M+ is the closure of an open language, it is clopen and the result follows. �

4 Kuratowski’s Theorem for Languages

For any language L, let A(L) be the family of all languages generated from L by
complementation and positive closure. Since positive closure preserves openness,
Theorem 2 implies that A(L) contains at most 10 languages. As we shall see,
this upper bound is tight. Moreover, there are precisely 9 distinct finite algebras
(A(L),+ ,− ). Since the languages in A(L) must occur in complementary pairs,
there can only exist algebras containing 2, 4, 6, 8, or 10 distinct languages.
We will provide a list of conditions that classify languages according to the
structure of (A(L),+ ,− ), and thus completely describe the circumstances under
which |A(L)| is equal to 2, 4, 6, 8, or 10.

We will also explore Kleene closure, where there are subtle differences. Let
D(L) be the family of all languages generated from L by complementation and
Kleene closure. Kleene closure does not preserve openness, since Kleene-closed
languages contain ε and Kleene-open languages do not. Therefore we must fall
back to Theorem 1, which implies that D(L) contains at most 14 languages, and
we will show that this bound is also tight. There are precisely 12 distinct finite
algebras (D(L),∗ ,− ). We shall describe these algebras by relating them to those
in the positive case.

In a sense, our results are the formal language analogue of topological results
obtained by Chagrov [5] and discussed in [8]. Peleg [13] noted the tightness of
the bounds of 10 and 14 in the positive and Kleene cases, but went no further.
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4.1 Structures of the Algebras with Positive Closure

We may better understand the structure of A(L) by first analyzing a related
algebra of languages. Let B(L) be the family of all languages generated from
L by positive closure and positive interior, and let C(L) = {M : M− ∈ B(L)}
be their complements. Recall that the closure of an open language is clopen
and the interior of a closed language is clopen by Corollary 1. Since the closure
and interior operators are idempotent on the clopen languages L+⊕ and L⊕+,
it follows that B(L) = {L,L+, L+⊕, L⊕, L⊕+}. Of course, these five languages
may not all be distinct; we will address this later. At the moment, we provide
the following proposition, which demonstrates that it suffices to analyze the
structure of B(L) to determine the structure of A(L).

Proposition 6. Let L ⊆ Σ∗. Then A(L) = B(L) ∪ C(L), and the union is
disjoint.

Proof. Clearly A(L) ⊇ B(L) ∪ C(L), since any language generated from L by
closure, interior, and complement can be generated using only closure and com-
plement, by the identity L⊕ = L−+−. To prove the reverse inclusion, we let
M ∈ A(L). Then there is some string of symbols z ∈ {+,−}∗ such that M = Lz.
We constuct a string z′ ∈ {+,−,⊕}∗ by starting with z and repeatedly re-
placing all instances of −+ by ⊕− and all instances of −⊕ by +−, until no
such replacements are possible. Since L−+ = L⊕− and L−⊕ = L+−, we have
M = Lz′

. However, in producing z′, we effectively shuffle all complements to the
right. Consequently, the operation performed by z′ is a series of positive closures
and interiors followed by an even or odd number of complements. Hence either
M ∈ B(L) or M ∈ C(L), and thus A(L) = B(L) ∪ C(L).

We now prove that B(L) ∩ C(L) = ∅. We assume otherwise to obtain a
contradiction; B(L) must then contain some complementary pair of languages M
and M−. We note that L⊕ ⊆ L⊕+ by extensivity, L⊕ ⊆ L ⊆ L+ by intensivity
and extensivity, and L⊕ ⊆ L+⊕ by isotonicity, and hence L⊕ ⊆ M for all
M ∈ B(L). Thus for two languages in B(L) to be complements, L⊕ must be
empty. Then L contains no strings of length 1, and hence L+ and L+⊕ do not
either. But then no language in B(L) contains a string of length 1, and thus no
pair of languages in B(L) are complements, and we have our contradiction. �

Proposition 6 implies that |A(L)| = 2|B(L)|, and moreover that there is an exact
1-to-2 correspondence between the languages in B(L) and A(L): each language
in B(L) can be associated with itself and its complement. Hence the algebra
(A(L),+ ,− ) can be constructed by simply merging the two algebras (B(L),+ ,⊕ )
and (C(L),+ ,⊕ ) and adding the complement operator. Thus we have reduced the
problem of describing all algebras (A(L),+ ,− ) to the simpler task of describing
the algebras (B(L),+ ,⊕ ). Before we proceed, we need to exclude a possible case
via the following:

Lemma 1. Suppose L ⊆ Σ∗. If L+ and L⊕ are both clopen, then L must be
open or closed.
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Proof. Seeking a contradiction, we assume that both L+ and L⊕ are clopen but
L is neither open nor closed. If L is not open, then L \ L⊕ is non-empty.

Let w be the shortest word in L\L⊕. Consider M = L⊕∪{w}. It must not be
open, because if it were, we would have M ⊆ L⊕ by the dual to Proposition 2.
Then the dual of Proposition 5 (e) must fail to hold for some word in M . But it
holds for all words in L⊕ and thus must fail for w. Then there exist non-empty
words x and y with xy = w, but x /∈ M and y /∈ M . Then neither x nor y is
in L⊕.

By our assumption that L+ is open, the fact that w ∈ L+ implies that either
x ∈ L+ or y ∈ L+. Without loss of generality, suppose that x ∈ L+. Then x
is the concatenation of a list of words from L; we write x = u1u2 · · ·un with
ui ∈ L for all 1 ≤ i ≤ n. Then |ui| ≤ |x| < |w| for all i, and thus ui ∈ L⊕ for all
i by our definition of w as the shortest word in L \ L⊕. However, x is then the
concatenation of a list of words from L⊕ and is thus an element of L⊕+, which
is L⊕ since we assumed L⊕ was closed. This is a contradiction since x /∈ L⊕. �

Finally, we characterize the 9 possible algebras (B(L),+ ,⊕ ). Table 1 classifies all
languages according to the structures of the algebras they generate and gives an
example of each type. Here, we briefly explain our analysis. Clearly B(L) = {L}
if and only if L is clopen, giving Case (1). If L is open but not closed, then
B(L) = {L,L+} since L+ must then be clopen. Similarly, if L is closed but
not open, then B(L) = {L,L⊕}. These situations yield Cases (2) and (3). We
henceforth assume that L is neither open nor closed, and thus L, L⊕, and L+

are all different. The remaining cases depend on the values of L⊕+ and L+⊕.
Both must be clopen, so neither can equal L. Lemma 1 proves that L⊕ and L+

cannot both be clopen. If neither L⊕ nor L+ are clopen, then we have Case (8) if
L⊕+ and L+⊕ are equal, and Case (9) if they are not. The remaining cases occur
when one of L+ and L⊕ is clopen and the other is not. If L+ is clopen and L⊕

is not, then we get Case (4) if L⊕+ = L+ and Case (6) otherwise. Analogously,
if L⊕ is clopen and L+ is not, then we get Case (5) if L+⊕ = L⊕ and Case (7)
otherwise.

We see that if (B(L),+ ,⊕ ) has algebraic structure (2), then (C(L),+ ,⊕ ) has
structure (3). Thus we shall say that Case (3) is the dual of Case (2). By exam-
ining the conditions under which each case holds, we can easily see that Cases
(4) and (5) are also duals, as are Cases (6) and (7). Cases (1), (8), and (9) are
self-dual. This notion is useful in constructing the algebra (A(L),+ ,− ); we con-
nect an instance of (B(L),+ ,⊕ ) to its dual structure in the obvious way via the
complement operator. Figure 1 gives an example of this for Case (6).

In summary, we have proven

Theorem 5. Start with any language L, and apply the operators of positive
closure and complement in any order, any number of times. Then at most 10
distinct languages are generated, and this bound is optimal. Furthermore, Table 1
classifies languages according to the algebra they generate and gives a language
generating each algebra.
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Fig. 1. Construction of A(L), Case (6): (a) (B(L),+ ,⊕ ), Case (6); (b) (B(L),+ ,⊕ ),
Case (7), the dual of Case (6) obtained by interchanging + with ⊕, and “open” with
“closed”; (c) (C(L),+ ,⊕ ), that is, (B(L),+ ,⊕ ), Case (7), with elements renamed as
complements of those of Case (6); (d) A(L) constructed from B(L) and C(L)

In the unary case, we obtain the following:

Theorem 6. Start with any unary language L, and apply the operators of pos-
itive closure and complement in any order, any number of times. Then at most
6 distinct languages are generated, and this bound is optimal. Furthermore, pre-
cisely cases (1) through (5) in Table 1 are possible for a unary language.

Note that all the example languages are regular. Hence Theorems 5 and 6 also
hold for any regular language and any regular unary language, respectively.

4.2 Structures of the Algebras with Kleene Closure

As we did in the positive case, first we restrict ourselves to closure and interior.
Let E(L) be the family of all languages generated from L by Kleene closure and
Kleene interior, and let F (L) = {M : M− ∈ E(L)} be their complements. Our
next results relate D(L) and E(L) to A(L) and B(L). Our discussion involves
both closure operators, so we will be explicit about which closure properties we
are invoking (although the word clopen will still mean positive-clopen). We first
claim the following, which can be proven in the same manner as Proposition 6:

Proposition 7. Let L ⊆ Σ∗. Then D(L) = E(L) ∪ F (L), and the union is
disjoint.
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Table 1. Classification of languages by the structure of (B(L),+ ,⊕ )

Case Necessary and Sufficient Conditions |B(L)| |A(L)| Example Dual
(1) L is clopen. 1 2 a∗ (1)
(2) L is open but not closed. 2 4 a (3)
(3) L is closed but not open. 2 4 aaa∗ (2)
(4) L is neither open nor closed;

L+ is clopen and L⊕+ = L+.
3 6 a ∪ aaaa (5)

(5) L is neither open nor closed;
L⊕ is clopen and L+⊕ = L⊕.

3 6 aa (4)

(6) L is neither open nor closed;
L+ is open but L⊕ is not closed;
L⊕+ �= L+.

4 8 a ∪ abaa (7)

(7) L is neither open nor closed;
L⊕ is closed but L+ is not open;
L+⊕ �= L⊕.

4 8 (a ∪ b)∗ \ (a ∪ abaa) (6)

(8) L is neither open nor closed;
L⊕ is not closed and L+ is not open;
L+⊕ = L⊕+.

4 8 a ∪ bb (8)

(9) L is neither open nor closed;
L⊕ is not closed and L+ is not open;
L+⊕ �= L⊕+.

5 10 a ∪ ab ∪ bb (9)

Next, we give a way of relating E(L) to B(L). We recall that L∗ = L+∪{ε} and
L� = L⊕ \ {ε}. Consequently, E(L) ⊆

⋃
M∈B(L){M ∪ {ε},M \ {ε}}. We now

know enough to explicitly determine D(L) in the following case:

Proposition 8. Let L ⊆ Σ∗ be clopen. Then D(L) = {L ∪ {ε}, L \ {ε}, L− ∪
{ε}, L− \ {ε}}.

Since the operations of positive closure and positive interior preserve the presence
or absence of ε in a language, we may also note that if ε ∈ L, then all languages
in B(L) contain ε, and conversely if ε /∈ L, then no language in B(L) contains ε.
For M ∈ E(L), we write φ(M) to denote either M∪{ε} or M \{ε}, whichever lies
in B(L). We note that φ(M), φ(M ∪ {ε}), and φ(M \ {ε}) are equal. Moreover,
we note that φ(M∗) = φ(M)+ and φ(M�) = φ(M)⊕; φ can therefore be thought
of as a homomorphism from E(L) to B(L). Consequently, E(L) ⊆ {M : φ(M) ∈
B(L)}. We use this idea and the classifications of Table 1 to determine all possible
algebras (E(L),∗ ,� ). As we shall see, there are precisely 12 distinct algebras,
each containing at most 14 elements.

We have seen what happens in Case (1) when L is clopen; two algebras are
possible depending on whether ε ∈ L or not, and we refer to these as Cases
(1a) and (1b) respectively. We next examine Cases (2) and (3), in which L is
not clopen but is open or closed. Suppose L is open but not clopen, and hence
B(L) = {L,L+}. Then L∗ is clopen and thus E(L∗ = {L∗, L∗ \ {ε}}. Since
E(L∗) ⊆ E(L) we thus have {L,L∗, L∗ \{ε}} ⊆ E(L) ⊆ {M : φ(M) ∈ {L,L+}}.
Therefore, we have two cases; either one or both of L \ {ε} and L ∪ {ε} may
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be in E(L), depending on whether or not L� = L. If ε /∈ L, then L� = L
and thus E(L) = {L,L∗, L∗ \ {ε}}. If ε ∈ L, then L� = L \ {ε} and thus
E(L) = {L,L \ {ε}, L∗, L∗ \ {ε}}. We refer to these situations as Cases (2a) and
(2b) respectively.

Similar possibilities occur when L is closed but not clopen. If ε ∈ L then
E(L) = {L,L�, L� ∪ {ε}}. If ε /∈ L then L∗ = L ∪ {ε} and thus E(L) =
{L,L ∪ {ε}, L�, L� ∪ {ε}}. We refer to these situations as Cases (3a) and (3b)
respectively.

We now turn to Cases (4)–(9), when L is neither closed nor open.

Lemma 2. Let L ⊆ Σ∗ be neither open nor closed. Then

E(L) = {L} ∪ {M ∪ {ε} : M ∈ B(L) and M closed}
∪ {M \ {ε} : M ∈ B(L) and M open}.

Proof. Clearly L ∈ E(L). We claim that no other language M with φ(M) = L
can be in E(L). If we suppose otherwise, then such an M must be generated
by taking the Kleene closure or interior of some other language in E(L). This
would imply that M is open or closed, which is impossible since φ(M) = L and
L is neither open nor closed.

For each remaining M ∈ B(L) \ {L}, we wish to show that M ∪ {ε} ∈ E(L)
if and only if M is closed, and M \ {ε} ∈ E(L) if and only if M is open. Let
M ∈ B(L)\{L} be generated by some non-empty sequence S of positive closures
and positive interiors. If we replace each positive closure by a Kleene closure and
each positive interior by a Kleene interior, then we obtain a sequence S′ that
generates some M ′ ∈ E(L) with φ(M ′) = M . Now M ′ contains ε if and only if
the last operation in S′ was a Kleene closure. If M is closed, we may append a
final positive closure to any such S to obtain one in which the last operation is a
closure. Conversely, if there exists an S whose last operation is a closure, then M
must be closed. Thus there exists an M ′ ∈ E(L) containing ε with φ(M ′) = M
if and only if M is closed. By a similar argument, there exists an M ′ ∈ E(L) not
containing ε with φ(M ′) = M if and only if M is open. The result follows. �

Lemma 2 allows us to describe the structure of the algebra (E(L),∗ ,� ) in Cases
(4) through (9). Algebra E(L) contains M∪{ε} for all closed M in B(L), M \{ε}
for all open M in B(L), and both for all clopen M in B(L).

We classify the 12 distinct algebras in Table 2. The conditions are identical to
those found in Table 1; the only differences lie in Cases (1), (2), and (3), where
the initial presence or absence of ε can affect the structure of the algebra.

We now summarize our results for the Kleene case:

Theorem 7. Start with any language L, and apply the operators of Kleene clo-
sure and complement in any order, any number of times. Then at most 14 dis-
tinct languages are generated, and this bound is optimal. Furthermore, Table 2
describes the 12 algebras generated by this process, classifies languages according
to the algebra they generate, and gives a language generating each algebra.



Closures in Formal Languages and Kuratowski’s Theorem 135

Table 2. Classification of languages by the structure of (E(L),∗ ,� )

Case Necessary and Sufficient Conditions |E(L)| |D(L)| Example Dual
(1a) L is clopen; ε ∈ L. 2 4 a∗ (1b)
(1b) L is clopen; ε /∈ L. 2 4 a+ (1a)
(2a) L is open but not clopen; ε ∈ L. 3 6 a ∪ ε (3a)
(2b) L is open but not clopen; ε /∈ L. 4 8 a (3b)
(3a) L is closed but not clopen; ε /∈ L. 3 6 aaa∗ (2a)
(3b) L is closed but not clopen; ε ∈ L. 4 8 aaa∗ ∪ ε (2b)
(4) L is neither open nor closed;

L+ is clopen and L⊕+ = L+.
4 8 a ∪ aaa (5)

(5) L is neither open nor closed;
L⊕ is clopen and L+⊕ = L⊕.

4 8 aa (4)

(6) L is neither open nor closed;
L+ is open but L⊕ is not closed;
L⊕+ �= L+.

6 12 a ∪ abaa (7)

(7) L is neither open nor closed;
L⊕ is closed but L+ is not open;
L+⊕ �= L⊕.

6 12 (a ∪ b)∗ \ (a ∪ abaa) (6)

(8) L is neither open nor closed;
L⊕ is not closed and L+ is not open;
L+⊕ = L⊕+.

5 10 a ∪ bb (8)

(9) L is neither open nor closed;
L⊕ is not closed and L+ is not open;
L+⊕ �= L⊕+.

7 14 a ∪ ab ∪ bb (9)

Theorem 8. Start with any unary language L, and apply the operators of pos-
itive closure and complement in any order, any number of times. Then at most
8 distinct languages are generated, and this bound is optimal. Furthermore, pre-
cisely cases (1a) through (5) in Table 2 describe the 8 possible algebras that can
be generated from a unary language by this process.

5 Closure Operators and Concatenation

We note that the concatenation of two closed languages need not be closed, and
that the concatenation of two open languages need not be open. For example,
consider the languages L = {a}+ and M = {b}+ for a, b ∈ Σ, which are both
clopen (under positive closure). Then ab ∈ LM but abab /∈ LM , so LM is not
closed. Additionally, ab ∈ LM , but neither a nor b is in LM , so LM is not open.
However, we do have several results regarding cases when the concatenation of
closed or open languages must be closed or open.

Here, we deal mainly with positive closure, but most of our theorems have
obvious analogues for the Kleene closure. However, the presence or absence of ε
can be crucial when dealing with concatenation of languages, so we mention a
few exceptional cases where the choice of positive or Kleene closure is important.



136 J. Brzozowski, E. Grant, and J. Shallit

Theorem 9. Let L,M ⊆ Σ∗.

(a) Suppose L is positive-closed, and let k be a positive integer. Then Lk ⊆ L
and Lk is positive-closed.

(b) Suppose L is Kleene-closed, and let k be a positive integer. Then Lk = L.
(c) Suppose L and M are positive-closed (respectively, Kleene-closed) and satisfy

LM = ML. Then LM is positive-closed (respectively, Kleene-closed).
(d) Suppose L and M are positive-closed (respectively, Kleene-closed) unary lan-

guages. Then LM is positive-closed (respectively, Kleene-closed).

Proof. (a) If L is positive-closed then L = L+, and Lk ⊆ L+ = L. Also, for
k > 1, LkLk = Lk−1Lk+1 ⊆ Lk−1L = Lk and Lk is positive-closed.

(b) If L is Kleene-closed, then Lk = (L∗)k ⊆ (L∗)∗ = L∗ = L, and L ⊆ L∗ =
(L∗)k.

(c) For positive closure, LMLM = LLMM ⊆ LM ; hence LM is positive-closed.
(d) This is a special case of part (c), since unary languages commute. �
Theorem 10. Let L,M ⊆ Σ∗. Suppose L and M are positive-closed (respec-
tively, Kleene-closed) and such that L ∪M is positive-closed. Then

(a) LM is positive-closed (respectively, Kleene-closed).
(b) More generally, consider the semigroup of languages {L,M}+ generated by L

and M . Let W ∈ {L,M}+. Then W is positive-closed (respectively, Kleene-
closed) when considered as a language over Σ.

Proof. (a) It suffices to show that (LM)k ⊆ LM ; we do this by induction on k.
For k > 1, (LM)k ⊆ L(L∪M)(L∪M)M(LM)k−2 ⊆ L(L∪M)M(LM)k−2 =
(LLM ∪ LMM)(LM)k−2 ⊆ LM(LM)k−2 = (LM)k−1 ⊆ LM.

(b) The cases where W = Lk or W = Mk are proven by Theorem 9, so we
may assume that W contains at least one L and one M (when considered
as a word in {L,M}+.) This implies that either LM or ML is a factor
of W . Without loss of generality suppose that LM is a factor of W . Let
W = W1W2 · · ·WkWk+1 · · ·Wn where Wi ∈ {L,M} for all i, and specifically
Wk = L and Wk+1 = M . Now, to prove that W is closed, we let u, v ∈ W
be words in Σ∗. We show that uv ∈ W . Let u = u1 · · ·un and v = v1 · · · vn

where ui, vi ∈ Wi for all i. Consider x = uk+1 · · ·unv1 · · · vk, a factor of uv.
We see that x ∈ (L ∪M)+. But since L ∪M is positive-closed, (L ∪M)+ =
L ∪ M , and hence either x ∈ L or x ∈ M . If x ∈ L, then ukx ∈ L = Wk

by closure of L and thus uv = u1 · · ·uk−1(ukx)vk+1 · · · vn ∈ W1 · · ·Wn =
W . If x ∈ M , then xvk+1 ∈ M = Wk+1 by closure of M and thus uv =
u1 · · ·uk(xvk+1)vk+2 · · · vn ∈ W1 · · ·Wn = W . So we must have uv ∈ W
in either case, and thus W is closed. For the Kleene-closed case, we again
simply note that if ε ∈ L and ε ∈ M , then ε ∈ W . �

Theorem 11. Let L and M be open.

(a) Suppose ε ∈ L and ε ∈ M . Then LM is open.
(b) Suppose ε /∈ L and ε /∈ M . Then LM is open if and only if L = ∅ or M = ∅.
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(c) LL is open if and only if ε ∈ L or L = ∅.
(d) If neither L nor M is empty and ε ∈ L∪M but ε /∈ L∩M , then we may or

may not have LM open, even in the unary case.

Proof. (a) Let ab ∈ LM where a ∈ L and b ∈ M . Let ab = uv for some words
u and v. To prove that LM is open, we must show that either u ∈ LM or
v ∈ LM . We have two cases: either u is a prefix of a, or v is a suffix of b.
If u is a prefix of a, let a = ux, so ab = uxb and hence v = xb. Since L
is open, applying Proposition 5 (b) to a ∈ L implies that either u ∈ L or
x ∈ L. If u ∈ L, then, since ε ∈ M , we have u = uε ∈ LM and we are done.
If x ∈ L, then v = xb ∈ LM and we are also done.
The case where v is a prefix of b is similar and relies on the fact that ε ∈ L.

(b) If L = ∅ or M = ∅, then LM = ∅, which is open. Conversely, if ε /∈ L, ε /∈ M ,
and neither L = ∅ nor M = ∅, then LM is non-empty but contains no words
of length 0 or 1 and is thus not open.

(c) This follows immediately from parts (a) and (b).
(d) If L = {ε, a, aaa, aaaaa} and M = {a} (which are both easily verified to

be open), then we have aaaaaa ∈ LM , but aaa /∈ LM , and thus LM is
not open. On the other hand, if L = {ε, a, aaa} and M = {a}, then LM =
{a, aa, aaaa}, which is clearly open. �

Theorem 12. Let L,M ⊆ Σ∗ both be clopen.

(a) If L ∪M = Σ∗, then LM is clopen.
(b) Suppose that L∪M = Σ∗ and consider the semigroup of languages {L,M}+

generated by L and M . Let W ∈ {L,M}+. Then W is clopen if and only if
W = ∅ or W contains at most one occurrence of a language which does not
contain ε.

(c) The converses of the above statements are false; indeed, it is possible that
LM is clopen, but L ∪M is not even positive-closed.

Proof. (a) From Theorem 10 (a) we have that LM is closed, since Σ∗ is closed.
To show that LM is open, let ab ∈ LM where a ∈ L and b ∈ M . Let ab = uv
for some words u and v. To prove that LM is open, we must show that either
u ∈ LM or v ∈ LM . There are two cases: either u is a prefix of a, or v is a
suffix of b.

Without loss of generality, we assume that u is a prefix of a and let a = ux,
so ab = uxb and hence v = xb. Since L is open, applying Proposition 5 (b)
to a ∈ L implies that either u ∈ L or x ∈ L. If x ∈ L, then v = xb ∈ LM and
we are done. Otherwise, we have x /∈ L, implying u ∈ L and x ∈ M since
L ∪ M = Σ∗. If ε ∈ M , u = uε ∈ LM and we are done. Otherwise, we have
ε /∈ M , and thus ε ∈ L since L∪M = Σ∗. In this case, we note that xb ∈ M
since x ∈ M , b ∈ M , and M is closed. Then εxb = v ∈ LM . So in all cases,
we have either u ∈ LM or v ∈ LM . Thus LM is open and hence is clopen.

(b) Let W = W1W2 · · ·Wn where Wi ∈ {L,M} for all i. By Theorem 10 (b), W
is closed. If each Wi contains ε, then W is open by repeated applications of
Theorem 11 (a) and is thus clopen.
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If there exist i and j with i �= j, ε /∈ Wi, and ε /∈ Wj , then W contains no
words of length 1, so either W = ∅ or W is not open (and thus not clopen).

Finally, we deal with the case where there exists a unique i such that
ε �∈ Wi. Suppose, without loss of generality, that Wi = M . Then W =
Li−1MLn−i. Since L ∪ M is Kleene-closed, it must contain ε, so ε ∈ L.
Thus Lk = L for all positive k by Theorem 9 (b), so we must have W = M ,
W = LM , W = ML, or W = LML. In the first case, W = M is known to be
clopen, and in the second and third cases, W is clopen by part (a). Thus we
must only consider the case where W = LML. We know that LM is clopen
by part (a). Furthermore, M ⊆ LM since ε ∈ L, so LM ∪ L ⊇ M ∪ L = Σ∗

and thus LM ∪L = Σ∗. Thus we can apply part (a) on LM and L, proving
that LML is clopen.

(c) As a counterexample, we let L = {ε} ∪ {w ∈ {a, b}∗ : |w|a < |w|b} and let
M = {ε} ∪ {w ∈ {a, b}∗ : |w|a > |w|b}, where by |w|c for a letter c, we mean
the number of occurrences of c in w. As we proved in Example 1, L and M
are both clopen. Furthermore, L and M both contain ε, so LM is open by
Theorem 11.

Next, we show that LM is closed. Let u, v ∈ LM , then let u = u1u2 and
v = v1v2, where u1, v1 ∈ L and u2, v2 ∈ M . We observe that |u1|a < |u1|b
and |v2|a > |v2|b. We examine the factor u2v1 and consider two cases. If
|u2v1|a ≥ |u2v1|b, then |u2v1v2|a > |u2v1v2|b and thus u2v1v2 ∈ M . Since
u1 ∈ L, we must then have uv = u1u2v1v2 ∈ LM . Similarly, if |u2v1|a ≤
|u2v1|b, then |u1u2v1|a < |u1u2v1|b and thus u1u2v1 ∈ L. Since v2 ∈ M , we
must then have uv = u1u2v1v2 ∈ LM . So in all cases, uv ∈ LM , and LM is
closed. Hence LM is clopen.

However, L∪M is not closed, since we have b ∈ L ⊆ L∪M and a ∈ M ⊆
L ∪M , but ba /∈ L ∪M . �

6 Separation of Words and Languages

Next, we discuss analogies of the separation axioms of topology in the realm of
languages. Although languages do not form a topology under Kleene or positive
closure, there are many interesting results describing when there exist open,
closed, and clopen languages that separate given words or languages. In most of
these theorems, we only consider words in Σ+, as ε is always a trivial case.

Lemma 3. Let w ∈ Σ+, and let L ⊆ Σ∗ be closed with w /∈ L. Then there
exists a finite open language M such that w ∈ M but M ∩ L = ∅,

Proof. We simply take M = L− ∩ {x ∈ Σ+ : |x| ≤ |w|}. This is clearly finite,
and is open by the dual to part (e) of Proposition 5. �

Theorem 13. Let u, v ∈ Σ+.

(a) There exists an open language L with u ∈ L and v /∈ L if and only if for all
natural numbers k, we have u �= vk.
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(b) If u �= v, then either there exists an open language L with u ∈ L and v /∈ L,
or there exists an open language L with u /∈ L and v ∈ L. (In other words,
all words are distinguishable by open languages.)

Proof. (a) For the forward direction, we note that if u = vk for some positive k,
then any open language containing u must contain v by Proposition 5 (b).
For the reverse direction, we apply Lemma 3 to u and {v}+, which is closed.

(b) Without loss of generality, let |u| ≤ |v|. This implies that, for all k, u �= vk,
and hence the claim follows from (a). �

We now recall a basic result from combinatorics on words (see, e.g., [12]). Recall
that a word w is primitive if it cannot be expressed in the form xk for a word x
and an integer k ≥ 2.

Lemma 4. Let u, v ∈ Σ+. The following are equivalent:

(1) uv = vu, that is, u and v commute.
(2) There exists a word x and integers p ≥ 1 and q ≥ 1 such that u = xp and

v = xq.
(3) There exists a word y and integers p ≥ 1 and q ≥ 1 such that y = up and

y = vq.
(4) u and v are each a power of the same primitive word.

Let u, v ∈ Σ+. Suppose there exists a clopen language L ⊆ Σ∗ with u ∈ L
and v /∈ L. We note that L− is also clopen whenever L is, and we call the pair
(L,L−) a clopen partition separating u and v.

Theorem 14. Let u, v ∈ Σ+. There exists a clopen partition separating u and
v if and only if u and v do not commute.

Proof. We handle the forward direction first. Suppose a clopen language L exists
with u ∈ L and v /∈ L. If u and v commute, then there exists a word x and
integers p and q such that u = xp and v = xq. In particular, this implies that
any open set containing u will also contain x, and any open set containing v will
also contain x. Then we must have both x ∈ L (since L is open and contains
u) and x ∈ L−, since L− is open and contains v. Thus we have a contradiction,
and u and v must not commute.

For the reverse direction, we proceed by induction on |u|+ |v|. We will apply
the induction hypothesis on words in various alphabets, so we make no assump-
tion that |Σ| is constant.

For our base case, suppose |u| + |v| = 2. If u and v do not commute, then
they must be distinct words of length 1, and thus the language {u}+ is a clopen
language separating u from v.

Suppose, as a hypothesis, that for some k ≥ 2, the result holds for all finite
alphabets Σ and for all u, v ∈ Σ+ such that 2 ≤ |u|+ |v| ≤ k. Now, given any Σ,
let u, v ∈ Σ+ be such that u and v do not commute and |u|+ |v| = k+1. Let Σu

and Σv, respectively, be the symbols that occur one or more times in u and v. If
Σu∩Σv = ∅, then Σ+

u is a clopen language containing u but not v, and our result
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holds. If not, suppose a ∈ Σu∩Σv. Let λu = |u|a
|u| and λv = |v|a

|v| be the respective
relative frequencies of a in u and v. If λu > λv, then {w ∈ Σ∗ : |w|a ≥ λu|w|}
is clopen (by Example 1) and contains u but not v, and we are done. Similarly,
if λu < λv, then {w ∈ Σ∗ : |w|a ≤ λu|w|} is a clopen language containing u but
not v. Thus it remains to show that the result holds when λu = λv.

Assume λu = λv = λ. If λ = 1, then u = ai and v = aj for some positive
integers i and j, and thus u and v commute, contradicting our original assump-
tion. Hence we must have 0 < λ < 1. Let n = |u|

gcd(|u|a,|u|) = |v|
gcd(|v|a,|v|) be the

denominator of λ when it is expressed in lowest terms. We must have n > 1
since λ is not an integer.

Next, we consider a new alphabet Δ with |Σ|n symbols, each corresponding to
a word of length n in Σ∗. We consider the bijective morphism φ mapping words
in Δ∗ to words in (Σn)∗ by replacing each symbol in Δ with its corresponding
word in Σn. Since n divides both |u| and |v|, there must then exist unique words
p, q ∈ Δ∗ such that φ(p) = u and φ(q) = v.

Our plan is now to inductively create a clopen language L over Δ which
contains p but not q, and then use this language to construct our clopen partition
over Σ separating u and v. We must check that p and q do not commute. If pq =
qp then we would have uv = φ(p)φ(q) = φ(pq) = φ(qp) = φ(q)φ(p) = vu, since φ
is a morphism. This is impossible since uv �= vu, so p and q do not commute. We
also have n|p|+ n|q| = |u|+ |v|. Since n > 1 implies |p|+ |q| < |u|+ |v| = k + 1,
the induction hypothesis can be applied to p and q. Thus there exists a clopen
language L ⊆ Δ∗ with p ∈ L and q /∈ L.

We now construct our clopen partition over Σ separating u and v. We in-
troduce some notation to make this easier. As usual, define φ(L) = {w ∈
Σ∗ : w = φ(r) for some r ∈ L}. Let A< = {w ∈ Σ∗ : |w|a < λ|w|} and let
A= = {w ∈ Σ∗ : |w|a = λ|w|}. Additionally, let A≤ = A< ∪ A=. It is easy to
verify that A<, A≤, and A= are all closed, and both A< and A≤ are open as
well. Finally, we let M = (φ(L)∩A=)∪A<. Since p ∈ L and q /∈ L, we must have
u ∈ φ(L) and v /∈ φ(L). Then since u and v are both contained in A= but not
A<, we must have u ∈ M and v /∈ M . We will now finish the proof by showing
that M is clopen.

We first show that M is closed. Let x, y ∈ M . We must show that xy ∈ M .
There are two cases to consider:

Case (A1): x, y ∈ (φ(L) ∩A=). We see that φ(L)φ(L) = φ(LL) ⊆ φ(L), so φ(L)
is closed. Then since A= is closed, φ(L) ∩ A= is the intersection of two closed
languages, and hence closed. Thus xy ∈ φ(L) ∩A= ⊆ M .
Case (A2): One or more of x or y is not in φ(L)∩A=. Without loss of generality,
suppose x /∈ φ(L)∩A=. Then x ∈ A<, so |x|a < λ|x|. Furthermore, y ∈ M ⊆ A≤,
so |y|a ≤ λ|y|. Adding these two inequalities yields |x|a + |y|a < λ|x| + λ|y|, so
|xy|a < λ|xy| and thus xy ∈ A< ⊆ M .

Lastly, we show that M is open. Let z ∈ M and suppose z = xy for some
x, y ∈ Σ+. We show that x ∈ M or y ∈ M . Again, we have two cases to consider:
Case (B1): z ∈ A<. Since A< is open, at least one of x or y is in A<. Since
A< ⊆ M , we are done.
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Case (B2): z ∈ φ(L)∩A=. If either x or y is in A<, then we are done, so assume
otherwise. Then |x|a ≥ λ|x| and |y|a ≥ λ|y|. But |xy|a = λ|xy|, so we must have
|x|a = λ|x| and |y|a = λ|y| and thus x, y ∈ A=. Then λ|x| and λ|y| must be
integers and hence n divides both |x| and |y|. Then there exist s, t ∈ Δ∗ such
that φ(s) = x and φ(t) = y. But since φ is a morphism, we must then have
φ(st) = φ(s)φ(t) = xy = z. But z in φ(L), so st ∈ L. Since L is open, we must
then have either s ∈ L or t ∈ L. Thus we must have either x = φ(s) ∈ φ(L) or
y = φ(t) ∈ φ(L). Then one of x or y is in φ(L) ∩A= ⊆ M .

Thus M is both closed and open, and the result follows by induction. �

Corollary 2. Let u, v ∈ Σ+. There exist non-intersecting finite open languages
L and M with u ∈ L and v ∈ M if and only if u and v do not commute.

Proof. As in the proof of Theorem 14, we note that if u and v commute, then
there is some x such that u = xp and v = xq, implying that every open language
containing u or v must contain x, and thus there is no open language containing
u but not v. If u and v do not commute, then by our theorem, let K be a clopen
language containing u but not v. We then take L = {w ∈ K : |w| ≤ |u|} and
M = {w ∈ K− : |w| ≤ |v|}. These are open by our Proposition 5 (b) since K
and K− are both open. �

We can also use Theorem 14 to extend the topological notion of connected com-
ponents to the setting of formal languages. We say that words u, v ∈ Σ+ are
disconnected if there exists a clopen partition separating u from v, and connected
otherwise. We write u ∼ v if u and v are connected, and note that ∼ is an equiv-
alence relation (indeed, this is the case when we consider the clopen partitions
created by any closure operator; it need not be topological). Since Theorem 14
implies that u ∼ v if and only if u = xp and v = xq for some integers p and q, it
follows that each connected component of Σ+ consists of a primitive word and
all of its powers. Connected components of other languages will simply consist
of collections of words sharing a common primitive root.

Note that connected components must be closed, but they need not be clopen.
In fact, the only clopen components of Σ+ are the languages {a}+ for each a ∈ Σ.

The following theorem holds for all closure operators that preserve opennness.

Theorem 15. If L,M ⊆ Σ∗ are disjoint and open, then L+ and M+ are dis-
joint.

Proof. If L∩M = ∅, then M ⊆ L−. Then by isotonicity, M+ ⊆ L−+ = L− since
L− is closed. But then L ⊆ M+−. Applying isotonicity again yields L+ ⊆ M+−+.
But M+ is the closure of an open language and is thus clopen, so M+− is also
clopen and thus M+−+ = M+−. Hence L+ ⊆ M+−, and it follows that L+ and
M+ are disjoint. �

Corollary 3. Let L,M ⊆ Σ∗ be closed and such that L ∪ M = Σ∗. Then
L⊕ ∪M⊕ = Σ∗.
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In our setting, it is not true that a single “point” x and a closed set S can be
separated by two open sets. As a counterexample, consider x = ab and y =
{aa, bb}∗. Furthermore, it is not true that that arbitrary disjoint sets, even ones
whose closures are disjoint, can be clopen separated. As an example, consider
{ab}∗ and {aa, bb}∗.

7 Algorithms

We now consider the computational complexity of determining if a given lan-
guage L is closed or open. Of course, the answer depends on how L is represented.

Theorem 16. Given an n-state DFA M = (Q,Σ, δ, q0, F ) accepting the regular
language L, we can determine in O(n2) time if L is closed or open.

Proof. We prove the result when L is positive-closed. For Kleene-closed, we have
the additional check q0 ∈ F . For the open case, we start with a DFA for L.

It is easy to verify that L(M)L(M) can be accepted by an NFA with 2n states,
and therefore the language (L(M))2 \ L(M) can be accepted by an NFA with
O(n2) states. For details of the construction, see [3]. �

From Proposition 5 (a), we know that L is not closed if and only if there exists
a word uv �∈ L such that u, v ∈ L. We call such a word a counterexample.

Corollary 4. If L is a regular language, accepted by a n-state DFA, that is not
closed, then the smallest counterexample is of length ≤ n2 + n− 1.

This O(n2) upper bound on the length of the shortest counterexample is matched
by a corresponding Ω(n2) lower bound:

Theorem 17. There exists a class of DFA’s Mn with 2n + 5 states, having the
following property: a shortest word x �∈ L(Mn) such that there exist u, v ∈ L(Mn)
with x = uv is of length n2 + 2n + 2.

Proof. It is easier to describe DFA M ′
n = (Q,Σ, δ, q0, F ) that accepts the com-

plement of L(Mn). In other words, we will show that a shortest word x ∈ L(M ′
n)

such that there exist u, v �∈ L(Mn) with x = uv is of length n2 + 2n + 2.
Let Q = {q0, q1, . . . , qn, r, p0, p1, . . . , pn, s, d}, let δ be given by Table 3, and let
F = {q0, q1, . . . , qn, p0, p1, . . . , pn, s}. The case n = 5 is shown in Fig. 2.

First, we observe that x = 10n−1110n2+n−11 is accepted by M ′
n, but neither

u = 10n−11 nor v = 10n2+n−11 is. Next, take any word x′ accepted by M ′
n. If

the acceptance path does not pass through r, then by examining the DFA we see

Table 3. Transition function δ(q, a) of M ′
n

a\q q0 q1 q2 . . . qn−1 qn r p0 p1 . . . pn−1 pn s d

0 d q2 q3 . . . qn q1 d p1 p2 . . . pn p0 d d

1 q1 s s . . . s r p0 d d . . . d s d d
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Fig. 2. Example of DFA Mn for n = 5. Unspecified transitions go to the dead state d.

that every prefix of x′ is also accepted. Otherwise, the acceptance path passes
through r. Again, we see that every prefix of x′ is accepted, with the possible
exception of the prefix ending at r. Thus either x′ is of the form 10in+n−1110k

for some i, k ≥ 0, or x′ is of the form 10in+n−1110j(n+1)+n1 for some i, j ≥
0. In both cases the prefix ending at r is 10in+n−11, so in the first case, the
corresponding suffix is 10k for some k ≥ 0, and this suffix is accepted by M ′

n. In
the latter case the corresponding suffix is 10j(n+1)+n1. This is accepted unless
j(n + 1) + n is of the form in + n − 1. If in + n − 1 = j(n + 1) + n, then by
taking both sides modulo n, we see that j ≡ −1 (mod n). Thus j ≥ n− 1. Thus
|x′| ≥ 1 + n− 1 + 1 + 1 + (n− 1)(n + 1) + n + 1 = n2 + 2n + 2. �

We now turn to the case where M is represented as an NFA or regular expression.
For the following theorem, we actually require the word w exhibited in the
theorem above to have length ≥ 2. However, this can easily be accomplished
via a trivial modification of the proof given in [1], since the word w encodes a
configuration of the Turing machine T .

Theorem 18. The following problem is PSPACE-complete: given an NFA M ,
decide if L(M) is closed.

Proof. First, we observe that the problem is in PSPACE. We give a nondeter-
ministic polynomial-space algorithm to decide if L(M) is not closed, and use
Savitch’s theorem to conclude the result.

If M has n states, then there is an equivalent DFA M ′ with N ≤ 2n states.
From Corollary 4 we know that if L = L(M) = L(M ′) is not closed, then there
exist words u, v with u, v ∈ L but uv �∈ L, and |uv| ≤ N2 +N −1 = 22n +2n−1.
We now guess u, processing it symbol-by-symbol, arriving in a set of states S
of M . Next, we guess v, processing it symbol-by-symbol starting from both q0
and S, respectively and ending in sets of states T and U . If U contains a state
of F and T does not, then we have found u, v ∈ L such that uv �∈ L. While
we guess u and v, we count the number of symbols guessed, and reject if that
number is greater than 22n + 2n − 1.
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To show that the problem is PSPACE-hard, we note that Δ∗ is closed, but
Δ∗ \ {w} for w with |w| ≥ 2 is not. With the aid of Lemma 10.2 of [1] we could
use an algorithm solving the problem of whether a language is closed to solve
the membership problem for polynomial-space bounded Turing machines. �

If L is not closed and is accepted by an n-state NFA, then a minimal-length
word uv, with u, v ∈ L but uv �∈ L, may be exponentially long. Such an example
is given in [6], where it is shown that for some constant c, there exist NFA’s
with n states such that a shortest word not accepted is of length > 2cn. We note
also that the problem of deciding, for a given NFA M , whether L(M) is open is
PSPACE-complete. The proof is similar to that of Theorem 18.
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Abstract. In this paper we investigate the periodic structure of rich
words (i.e., words having the highest possible number of palindromic
factors), giving new results relating them with periodic-like words. In
particular, some new characterizations of rich words and rich palindromes
are given. We also prove that a periodic-like word is rich if and only if
the square of its fractional root is also rich.

1 Introduction

In the study of the structural properties of finite or infinite words, a relevant
role is played by palindromes, i.e., words which can be read without distinction
from left to right or from right to left. Indeed, many important classes of words
enjoy remarkable properties regarding their palindromic factors.

A well-known example was given in [1]: any factor w of an episturmian word
has the maximum number of distinct palindromic factors (that is, |w|+1 counting
the empty word). Recently, such a property was also found in different contexts
(cf. [2,3]), so in [4] a more systematic study of rich words (words w having |w|+1
distinct palindromic factors) was initiated; more recent results on rich words can
be found in [5,6,7].

In this paper we study rich words in relation with other structural properties
of finite words, introduced by Carpi and the second author in [8,9] in the frame
of a suitable classification of words with respect to their periods.

In the next section we recall some basic definitions and notation. In Sect. 3
we deal with periodic-like words and prove some new results which are useful
for the sequel. In Sect. 4 we shall review some basic results on rich words. In
the last section we give our main results relating periodic-like and rich words.
In particular, we give a new characterization of rich palindromes, and we prove
that a palindrome (or a periodic-like word) is rich if and only if the square of its
fractional root is also rich.

� The work for this paper was partially supported by the Italian Ministry of Education
(MIUR) under the project PRIN 2007 “Proprietà combinatorie e strutturali nella
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2 Preliminaries

In the following, A will denote a finite alphabet and A∗ the free monoid of words
over A with the natural concatenation operation. The identity of A∗ is the empty
word ε. Any other word w of A∗ can be uniquely written as w = a1 · · ·an with
ai ∈ A for i = 1, . . . , n. The integer n, denoted by |w|, is called the length of w;
naturally one sets |ε| = 0.

A factor of w ∈ A∗ is any word u such that w = rus for some r, s ∈ A∗. If
r = ε (resp. s = ε) then u is a prefix (resp. suffix ) of w. If |r| = |s|, then u is a
median factor of w.

Two words u, v ∈ A∗ are conjugate if there exist α, β ∈ A∗ such that u = αβ
and v = βα. It is easy to see that u is a conjugate of v if and only if |u| = |v|
and u is a factor of v2.

The reversal of a word w = a1 · · · an, with ai ∈ A for 1 ≤ i ≤ n, is the word
w̃ = an · · · a1; one assumes ε̃ = ε. If w = w̃, then w is a palindrome. The set of
all palindromes of A∗ will be denoted by PAL. For any w ∈ A∗, w(+) denotes the
right palindromic closure of w, that is, the shortest palindrome having w as a
prefix. In a symmetric way, w(−) is the shortest palindrome having w as a suffix.

Let w = a1a2 · · · an be a non-empty word with a1, . . . , an ∈ A. A period of w
is any positive integer p such that for all i, j = 1, . . . , n,

i ≡ j (mod p) =⇒ ai = aj .

The minimal period of w is denoted by πw; the word w is called periodic if
2πw ≤ |w|. The fractional root of w is its prefix zw of length πw. For technical
convenience, we also set πε = 1 and zε = ε. A word w is called unbordered if
w = zw.

A right-infinite word over the alphabet A, called infinite word for short, is a
mapping x : N+ → A, where N+ is the set of positive integers. One can represent
x as

x = x1x2 · · ·xn · · · ,

where for any i > 0, xi = x(i) ∈ A. A (finite) factor of x is either the empty word
or any sequence u = xi · · ·xj with i ≤ j, i.e., any block of consecutive letters of
x. If i = 1, then u is a prefix of x. An infinite word x such that x = uuu · · · = uω

for some u ∈ A∗ is called periodic. The set of all infinite words over A is denoted
by Aω . We also set A∞ = A∗ ∪Aω .

Let w ∈ A∞. We denote respectively by Fact(w) and Pref(w) the sets of
factors and prefixes of w. A factor u of w is called right special (resp. left spe-
cial) if there exist two letters x, y ∈ A, x �= y, such that ux, uy ∈ Fact(w)
(resp. xu, yu ∈ Fact(w)). Any pair (λ, μ) ∈ A∗ × A∞ such that w = λuμ is
called an occurrence of u in w. An occurrence is internal if λ and μ are both
non-empty. The factor u is unioccurrent (or unrepeated) in w if u has exactly
one occurrence in w.

An infinite word x ∈ Aω is called episturmian (see [1]) if Fact(x) is closed
under reversal and x has at most one right special factor of each length. A
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Sturmian word can be defined as an aperiodic episturmian word on a binary
alphabet.

For all definitions and notation not explicitly given in the text, the reader is
referred to [10,11].

3 Periodic-Like Words

Let w be a non-empty word of A∗. Following the notation in [8], we denote by
h′

w (resp. k′
w) the longest repeated prefix (resp. suffix) of w. The word w is called

periodic-like if h′
w is not right special in w. Conventionally, the empty word ε is

also considered to be periodic-like. We denote by Hw (resp. Kw) the length of
the shortest unrepeated prefix (resp. suffix) of w. The following [8] holds:

Lemma 3.1. Let w be a non-empty periodic-like word. Then

1. h′
w has no internal occurrence in w,

2. h′
w = k′

w,
3. k′

w is not left special in w,
4. πw = |w| −Hw + 1 = |w| −Kw + 1,
5. w = zwh′

w.

Moreover, one can prove [8] that condition 1, as well as condition 3, is equivalent
to the condition of being periodic-like. If a palindrome w is periodic-like, then,
by definition, h′

w is a palindrome.
Let u be a non-empty factor of a finite or infinite word w. We recall (see for

instance [4]) that a complete return to u in w is any factor of w having exactly
two occurrences of u, one as a prefix and one as a suffix. Trivially, one has that
a factor v of w is a complete return to u if and only if v is a periodic-like word
having h′

v = u.

Example 3.2. Let w = aabcaa. The longest repeated prefix h′
w = aa is not right

special, so that w is periodic-like. We have k′
w = aa = h′

w, Hw = Kw = 3,
πw = 4, and zw = aabc.

For any non-empty word w, wf (resp. w�) denotes the first (resp. last) letter
of w.

Proposition 3.3. If w is periodic-like and its longest proper median factor is a
palindrome, then w is a palindrome.

Proof. Suppose that w = xuy with u ∈ PAL and x, y ∈ A. Since w is periodic-
like, h′

w is a prefix and a suffix of w, so that it begins with the letter x and
terminates with the letter y. We can write h′

w = xβ where β is a prefix of the
palindrome u. Therefore,

h′
w = xβ = β̃y .

If β = ε, then x = y. If β is non-empty, then β� = y and β̃f = x. Since β� = β̃f ,
one derives again y = x. Hence, w is a palindrome. ��
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We say that a word w is strongly periodic-like if all of its median factors are
periodic-like.

Example 3.4. The word w = aabbaa is strongly periodic-like. Indeed, all of its
median factors are periodic-like. On the contrary, the word aabcaa considered
in Example 3.2 is periodic-like but not strongly, since its median factor bc is
not periodic-like. Finally, the palindrome abcbaccabcba is periodic-like but not
strongly, as its median factor v = cbaccabc has h′

v = c which is right special in
v, so that v is not periodic-like.

Proposition 3.5. A strongly periodic-like word is a palindrome.

Proof. Let w be a strongly periodic-like word. The proof is by induction on the
length of w. The result is trivial when |w| ≤ 3. Indeed, the only periodic-like
words are the palindromes ε, x, xx, xyx with x, y ∈ A. Let us then write w as:

w = xuy

with x, y ∈ A. Since w is strongly periodic-like, u is strongly periodic-like and
|u| < |w|. By induction u ∈ PAL. By Proposition 3.3 one derives that w is a
palindrome. ��

For a word w ∈ A∗, we denote by Rw the minimal integer p such that w has
no right special factor of length p. We recall [12,13] that a word w is trapezoidal
if |w| = Rw + Kw. A finite word is called Sturmian if it is a finite factor of
a (standard) Sturmian word (cf. [11]). Notice that any finite Sturmian word is
trapezoidal, but not conversely. For example, the word aabb is trapezoidal, but
not Sturmian.

Proposition 3.6. A periodic-like trapezoidal word is Sturmian.

Proof. If w is periodic-like, then by Lemma 3.1, πw = |w| −Kw + 1. Since w is
trapezoidal, one has |w| = Rw + Kw, so that πw = Rw + 1. This implies that w
is Sturmian (see [14, Proposition 28]). ��

We observe that the converse of the preceding proposition does not hold. Indeed,
even though every finite Sturmian word is trapezoidal, not every finite Sturmian
word is periodic-like. For instance, w = aab is Sturmian (and hence trapezoidal),
but not periodic-like (since h′

w = a is right special).

4 Rich Words

Let w ∈ A∗ and denote by Sw the number of palindromic factors of w (including
the empty word). As proved in [1], Sw ≤ |w| + 1. A word w is said rich if
Sw = |w| + 1. We recall (cf. [4]) that the richness property is closed by factors,
as well as under the operations of reversal and palindromic closures.

An infinite word is called rich if all its factors are rich. Sturmian and epis-
turmian words (see, for instance, [15] for an overview), are well-studied families
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of infinite rich words; however, the richness property has been found in wider
contexts (cf. [2,3]). A general investigation on rich words was recently carried on
in [4,5,6,7].

The following characterization of rich words was first established in [1]:

Proposition 4.1. A word w ∈ A∞ is rich if and only if every prefix p of w has
a palindromic suffix which is unioccurrent in p.

A characterization of rich words in terms of complete returns to their palindromic
factors was given in [4, Theorem 2.14]:

Theorem 4.2. A word w ∈ A∞ is rich if and only if for each palindromic factor
u of w, every complete return to u in w is a palindrome.

As a consequence, we can easily derive the following:

Proposition 4.3. Let w ∈ A∞. The following conditions are equivalent:

1. w is rich.
2. For any factor v of w the longest palindromic prefix (or suffix) of v is unre-

peated in v.
3. For any periodic-like factor v of w the longest palindromic prefix (or suffix)

of v is unrepeated in v.

Proof. 1) ⇒ 2). Since w and its factor v are rich, if the longest palindromic prefix
(or suffix) α of v is repeated in v, then by Theorem 4.2 the complete return to
α in v is a palindrome. This contradicts the maximality of the length of α.

2) ⇒ 3). Trivial.
3) ⇒ 1). In view of Theorem 4.2, it is sufficient to show that any complete

return v to a palindrome in w is a palindrome. Such a v is then a periodic-like
factor of w with h′

v ∈ PAL. Since the longest palindromic prefix (or suffix) α of v
is unrepeated in v it follows that |α| > |h′

v|. If |α| < |v|, since h′
v is a palindromic

suffix (or prefix) of α, one would derive that h′
v has an internal occurrence in v

which is a contradiction. Hence, α = v, so that v is palindrome. ��

The following proposition summarizes two further useful results proved in [5].

Proposition 4.4. Let w ∈ A∞ be a rich word. For any v ∈ Fact(w), the fol-
lowing holds:

1. Any factor of w beginning with v and ending with ṽ, having no internal
occurrences of v nor of ṽ, is a palindrome.

2. If v /∈ PAL, then ṽ is a unioccurrent factor of any complete return to v in
w.

5 Main Results

Let us observe that in general a periodic-like word is not rich. For instance, the
word aabcaa is periodic-like but not rich. Conversely, there are rich words such
as abc and aabaaca which are not periodic-like. However, in the palindromic case
we have the following:
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Theorem 5.1. A word is a rich palindrome if and only if it is strongly periodic-
like.

Proof. Let w be a rich palindrome. The longest proper palindromic prefix α of w
occurs only as a prefix and as a suffix of w. In fact, if α had an internal occurrence
in w, there would exist a complete return to α, which would be a palindrome in
view of Theorem 4.2, and thus a proper palindromic prefix of w longer than α,
contradicting the maximality of |α|. Thus |α| ≤ |h′

w| so that h′
w has no internal

occurrence in w, that is w is periodic-like (and moreover h′
w = α). Since all

median factors of w are also rich palindromes, the “only if” part follows.
Conversely, suppose that w is strongly periodic-like. By Proposition 3.5, w is

a palindrome. If w = ε, then it is clearly rich, so let us suppose by induction
that w = aua with a ∈ A and u a rich palindrome. Since |u| = |w| − 2 and
Su = |u|+ 1, it suffices to show that h′

w is the only proper palindromic factor of
w which does not occur in u. Indeed, since w is a periodic-like palindrome, h′

w

is a palindrome, and in fact the longest proper palindromic prefix of w, as h′
w

cannot occur in u by Lemma 3.1. Any palindromic factor v of w with |v| < |h′
w|

must be a factor of u. This is trivial if v is not a prefix of w. If v is a prefix of
w, then v is a prefix and also a suffix of h′

w and hence a factor of u. ��

Let us observe that a different characterization of rich palindromes in terms of
palindromic and factor complexity was recently obtained in [6].

A rich word which is periodic-like (but not strongly) need not be a palindrome:
for instance, the word abacdcabac is rich and periodic-like.

Corollary 5.2. A palindrome is rich if and only if all its palindromic factors
are periodic-like.

Proof. If a palindrome is rich, then all its palindromic factors are rich. By Theo-
rem 5.1 it follows that they are periodic-like. Conversely, if all palindromic factors
of w are periodic-like, then all median factors of w will be periodic-like so that
w is strongly periodic-like and by Theorem 5.1, w is a rich palindrome. ��

We remark that there exist non-palindromic words whose palindromic factors
are all rich (and then periodic-like), but are not themselves rich. This is the
case, for instance, of the word w = abcab.

Corollary 5.3. All palindromic factors of an episturmian word are periodic-
like.

Proof. Any factor of an episturmian word is rich (cf. [1]), so that the result
follows from Theorem 5.1. ��

Remark 5.4. From the preceding corollary one has in particular that all palin-
dromic factors of Sturmian words are periodic-like. Moreover, in the case of
central Sturmian words, i.e., the palindromic prefixes w of all standard Stur-
mian words, one has that these words are semiperiodic [12], i.e., Rw < Hw. We
recall [9] that a semiperiodic word is periodic-like, whereas the converse is not
in general true.
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Remark 5.5. From the previous results one easily obtains that a trapezoidal
palindrome is Sturmian [6]. Indeed, any trapezoidal word is rich [6] so that the
result follows by Corollary 5.2 and Proposition 3.6.

Remark 5.6. Notice that the converse of Corollary 5.3 does not hold: indeed
there exist periodic-like finite Sturmian and episturmian words that are not
palindromes such as abab and abacab.

The following proposition holds:

Proposition 5.7. A word w ∈ A∞ is rich if and only if every periodic-like
factor v of w with h′

v ∈ PAL is strongly periodic-like.

Proof. If w is rich, then by Theorem 4.2 every periodic-like factor v of w with
h′

v ∈ PAL is a palindrome. Since v is rich, by Theorem 5.1 it is strongly periodic-
like. Conversely, suppose that every periodic-like factor v of w with h′

v ∈ PAL
is strongly periodic-like. By Proposition 3.5, v is a palindrome and the result
follows by Theorem 4.2. ��

Proposition 5.8. A word w ∈ A∗ is rich if and only if all palindromic factors
of w(+) are periodic-like.

Proof. If w is rich, then by [4, Proposition 2.6] the right palindrome closure w(+)

is rich. By Corollary 5.2, all palindromes in w(+) are periodic-like. Conversely,
if all palindromic factors of w(+) are periodic-like, one has by Corollary 5.2 that
w(+) is rich. Since w(+) begins with w and the richness property is closed by
factors one derives that w is rich. ��

Corollary 5.9. A word w ∈ A∗ is rich if and only if all palindromic factors of
w(−) are periodic-like.

Proof. It is sufficient to observe that w(−) = w̃(+) and that the richness property
is closed under reversal. ��

We recall (cf. [16]) that a word w is called symmetric if w ∈ PAL2. The following
result was proved in [4, Theorem 3.1].

Proposition 5.10. Let w ∈ A∗. Then the following conditions are equivalent:

1. w2 is rich,
2. wω is rich,
3. w is symmetric and all of its conjugates are rich.

A useful corollary of this proposition is:

Corollary 5.11. Let w ∈ A∗ and let zw be its fractional root. If z2
w is rich, then

w is rich.

Proof. If z2
w is rich, then by Proposition 5.10 the infinite word zω

w is also rich, so
that its prefix w is rich as well. ��
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It is worth noting that if the fractional root of a word w is rich, in general w need
not be rich itself. For example, the word w = abca is not rich even if zw = abc is
rich.

As an easy consequence of Corollary 5.11 we obtain:

Proposition 5.12. Let w be a finite periodic word. Then w is rich if and only
if z2

w is rich.

Proof. Suppose w is rich. Then z2
w is rich, since it is a prefix of w by the definition

of periodic word. The converse follows from Corollary 5.11. ��

Theorem 5.13. Let w be a palindrome. Then w is rich if and only if z2
w is rich.

Proof. Since w is a rich palindrome, by Theorem 5.1 it is periodic-like, so that
by Lemma 3.1 we can write:

w = zwh′
w = h′

w z̃w ,

where h′
w is the longest repeated prefix of w. Therefore, from the preceding

equation, by the classic lemma of Lyndon and Schützenberger (cf. [10]) there
exist words α and β and n ≥ 0 such that:

zw = αβ, z̃w = βα, h′
w = (αβ)nα .

Hence, as w ∈ PAL
w = (αβ)n+1α = (α̃β̃)n+1α̃ .

Since n ≥ 0 one has that α, β ∈ PAL.
If n > 0, then z2

w is a prefix of w, so that it is rich. If n = 0, then h′
w = α and

w = h′
wβh′

w .

We will show that any prefix p of z2
w has a unioccurrent palindromic suffix. This

is certainly true for |p| ≤ |w| by Proposition 4.1, since w is rich.
Suppose |p| > |w|. We can write p = wδ = h′

wβh′
wδ, with δ ∈ Pref (β). Since

β, h′
w ∈ PAL, the prefix p has the palindromic suffix δ̃h′

wδ. In fact, this suffix is
unioccurrent in p, since otherwise h′

w would have an internal occurrence in w,
which is absurd in view of Lemma 3.1. Thus z2

w is rich by Proposition 4.1.
The converse follows from Corollary 5.11. ��

We remark that if w is a non-palindromic rich word, in general z2
w may be not

rich, as in the case of w = abc = zw, which is rich whereas z2
w = abcabc is not.

Corollary 5.14. A word w ∈ A∗ is rich if and only if z2
w(+) is rich.

Proof. The proof is an immediate consequence of the preceding theorem together
with the fact that a word w is rich if and only if w(+) is rich. ��

We recall [16] that if a word w is a palindrome, then its fractional root zw is
symmetric. Moreover, zw = zw(+) if and only if zw is symmetric. Thus a more
general result than Theorem 5.13 is the following:



Rich and Periodic-Like Words 153

Theorem 5.15. Let w be a word such that zw is symmetric. Then w is rich if
and only if z2

w is rich.

Proof. It is enough to observe that zw ∈ PAL2 implies zw = zw(+) , so that
z2

w = z2
w(+) and the result follows from Corollary 5.14. ��

Example 5.16. Consider the rich word w = abacdcabac /∈ PAL, whose root zw =
abacdc ∈ PAL2. One easily verifies that z2

w is rich.

Corollary 5.17. Let w be an unbordered symmetric word. Then w is rich if and
only if w2 is rich.

Proof. Since w is unbordered and symmetric, we have w = zw ∈ PAL2. As
w2 = z2

w, the result follows from Theorem 5.15. ��

We remark that from the preceding corollary and Proposition 5.10, one has that
if w is a symmetric and unbordered rich word, then all conjugates of w are rich.

Theorem 5.18. Let w ∈ A∗ be a periodic-like word. Then w is rich if and only
if z2

w is rich.

Proof. If w is periodic and rich, then z2
w is rich by Proposition 5.12. Let us then

assume that w is not periodic. Since w is periodic-like and 2πw > |w|, we can
write

w = h′
wuh′

w

for some u �= ε. Let us set u = xu′ with x ∈ A and u′ ∈ A∗.
We prove that wx is periodic-like and rich, with zwx = zw. We can write

wx = h′
wxu′h′

wx .

We have that h′
wx = h′

wx; indeed if |h′
wx| > |h′

wx|, then h′
w would have an

internal occurrence in w, which is absurd since w is periodic-like. By Lemma 3.1
it follows that zwx = h′

wu = zw.
If h′

w ∈ PAL, then since w = h′
wxu′h′

w is rich and is a complete return to h′
w,

by Theorem 4.2 we obtain w ∈ PAL. This implies, by Theorem 5.13, that z2
w is

rich, so that its prefix wx is also rich.
Now let us suppose h′

w /∈ PAL. By Proposition 4.4, since w is rich and is
a complete return to h′

w, the word h̃′
w is an internal unioccurrent factor of w.

Hence w has a prefix γ which begins with h′
wx and ends with h̃′

w, and has no
other occurrences of h′

w or h̃′
w. By Proposition 4.4, γ is a palindrome, so that it

ends with xh̃′
w. We can then write

w = ξxh̃′
wξ′

for some ξ, ξ′ ∈ A∗. The suffix h̃′
wξ′ ends with h′

w and has no internal occurrences
of h′

w nor of h̃′
w, so that by Proposition 4.4 it is a palindrome. Thus the word

wx has the palindromic suffix

xh̃′
wξ′x = xξ̃′h′

wx ,
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which is unioccurrent because otherwise h′
w would have an internal occurrence

in w. Since w is rich, by Proposition 4.1 every prefix of w has a unioccurrent
palindromic suffix; hence all prefixes of wx have a unioccurrent palindromic
suffix, so that wx is rich by Proposition 4.1.

We have proved that wx is periodic-like and rich, with zwx = zw. By iterating
this argument, we eventually obtain that z2

w = wu is rich.
The converse follows from Corollary 5.11. ��

Remark 5.19. Since a rich palindrome is periodic-like by Theorem 5.1, the pre-
ceding theorem is an extension of Theorem 5.13. However, Theorem 5.13 is used
in the proof of Theorem 5.18.

As a consequence of Theorem 5.18 and of Proposition 5.10, one has that if w is
a periodic-like rich word, then its fractional root zw is symmetric.

In conclusion, we mention that the importance of considering rich periodic-
like words is also due to the fact that, as proved in [8], any word w can be
canonically decomposed in (overlapping) periodic-like factors w1, . . . , wn, with
the property that

πw =
n∑

i=1

πwi . (1)

Thus any rich word w can be canonically decomposed in rich periodic-like factors
wi (i = 1, . . . , n) having symmetric roots and satisfying (1).

Example 5.20. Let w be the rich word abaccabacabaadaab. Following [8], the
canonical decomposition of w in rich periodic-like words is given by (w1, w2, w3)
with

w1 = abaccabac , w2 = abacaba , w3 = abaadaab ,

whose minimal periods are respectively 5, 4, and 6. We have πw = 5+4+6 = 15,
and the roots zw1 = abacc, zw2 = abac, and zw3 = abaada are all symmetric.
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Abstract. This is a new applied development of trace theory to com-
pilation. Trace theory allows to commute independent program instruc-
tions, but overlooks the differences between control and data dependen-
cies. Control(C)-dependences, unlike data-dependences, are determined
by the Control Flow Graph, modelled as a local DFA. To ensure seman-
tic equivalence, partial commutation must preserve C-dependences. New
properties are proved for C-dependences and corresponding traces. Any
local language is star-connected with respect to C-dependences, hence
this trace language family is recognizable. Local languages unambigu-
ously represent traces. Within the family of local languages with the
same C-dependences, we construct the language such that instructions
are maximally anticipated. This language differs from the Foata-Cartier
normal form. Future directions for application of trace theory to program
optimization are outlined.

1 Introduction

This is a research on the application of trace theory to compilation. Optimiz-
ing compilers transform a program in many ways. Transformations which only
change the order of execution of instructions are known as rescheduling. In-
side compilers, the Control Flow Graph CFG representation carries the essential
information needed for performing program transformations. CFG nodes rep-
resent the instructions (such as assignments and predicates), and the arcs the
predecessor-successor relation. A CFG is conveniently viewed as a Deterministic
Finite Automaton (DFA) of the local [3] type. Program instructions interfere in
different ways, termed dependences.

The set of dependences for a program may be viewed as inducing
a partial ordering on the statements and predicates in the program
that must be followed to preserve the semantics of the original pro-
gram. Dependences arise as the result of two separate effects. First, a
[Data-]dependence exists between two statements whenever a variable
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appearing in one statement may have an incorrect value if the two state-
ments are reversed. . . . Second, a [Control(C)-]dependence exists between
a statement and the predicate whose value immediately controls the ex-
ecution of the statement [7].

Mazurkiewicz’s theory quite abstractly represents the program statements as
letters of an alphabet, and D-dependences by means of a binary relation. This
abstraction is realistic because a data-dependence, say of the Read-After-Write
type, is solely determined by the variables used or defined in the two statements,
and not by their position in the CFG. This allows to find a program (i.e. a model
in the logical sense) for any arbitrarily given data-dependence relation over the
alphabet.

On the other hand a C-dependence is a structural property of the program
CFG. If C-dependences are arbitrarily assigned, discrepancies may arise between
the real program and its idealization by means of trace theory. More precisely,
a C-dependence is generally neither symmetric nor reflexive; and, for a given
partially commutative alphabet and CFG, it may well be that no program exists
with the corresponding C-dependence relation.

Related work. A few formal studies of C-dependences exist such as [10], but
not oriented towards program transformation. We know of just one work [5] on
locally defined traces, investigating the word problem for certain program loops.
In looser sense, some similarity of objectives may be seen between our work and
the much more established line [8] investigating the application of asynchronous
automata to concurrent programs.

As we did not find any previous work useful to apply trace theory for program
optimization, we investigated how C-dependences constrain commutation. The
next simple example introduces the problem.

a : read (x, y);
b : if x > 0 goto c else goto d;

c : x = x − 1; goto e; d : x = x + 1; goto e;
e : print (y);

The runs are just {abce, abde}. Since instruction e is data-dependent only on a,
among the runs obtained by permuting independent instructions such as c and
e, we have {abec, abde}. Clearly the two sets represent the same trace language.
But strings of the latter set, when viewed as CFG paths, imply the existence
of path abdec, which violates the program semantics since both successors of
predicate b are executed! The inconsistency comes from overlooking an essen-
tial constraint: instruction rescheduling must ensure that the original and the
transformed program have the same C-dependences.

This paper sets a new rigorous framework for such program transformations,
combining and extending some basic results of trace and compilation theories.
The paper proceeds as follows. Sect. 2 contains basic definitions from com-
piler theory, and states simple but elsewhere non-available properties of post-
dominance and C-dependence relations. Sect. 3 specializes trace theory for C-
dependences. Any local language is star-connected with respect to
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C-dependences, hence this trace language family is recognizable. Moreover CFG
local languages unambiguously represent traces, and identity of traces implies
identity of C-dependences. Sect. 4 is a significant application: within the fam-
ily of local languages with the same C-dependences, we define and construct
the language such that instructions are maximally anticipated. This language
differs from the Foata-Cartier normal form, which in general is not a local lan-
guage. Sect. 5 lists future directions for application of trace theory to program
parallelization.

2 Basic Definitions and Properties

For the basic concepts of formal language and trace theory we refer primarily
to [6], for compiler theory to e.g. [2,1,9]. Let Σ be a finite alphabet. The set of
all strings over Σ is denoted by Σ∗, including the empty string, denoted by ε.
For any string x ∈ Σ∗, |x| denotes the length of x, x(i), with 1 ≤ i ≤ |x|, is the
i-th character of x, alph(x) denotes the set of letters present in x, and πΔ(x)
denotes the projection of x on a set Δ ⊆ Σ of letters.

In compilation and software engineering a program is often represented by a
control flow graph CFG, a single entry (i), single exit (t) directed graph G =
(Σ, E). Let pred(b), succ(b) denote the predecessors and successors of node b.
The following customary hypotheses will be tacitly assumed.

1. Each node has at most two successors. A node with two successors is a
predicate (or conditional instruction).

2. The successor of a node cannot be the node itself, i.e. the CFG has no self-
loops.

3. For any node b there exists a path from the i to b, and a path from node b
to t.

The definition of CFG is next rephrased within automata theory, using a re-
stricted type of DFA known as local automaton [3].

Definition 1. A Control Flow Automaton representing a CFG G = (Σ, E) is
a DFA A = (Q, Σ, δ, q0, F ) where the state set is Q = Σ, the initial and final
states are q0 = i, F = {t} , the graph of the transition function δ is such that
δ(p, b) = q if, and only if, p = a, q = b and a → b ∈ E. A recognizes a language
L(A). The corresponding language family is termed CFG family and denoted by
CFG.

A CFA defines a local language [3], and CFG is strictly included in the family of
local regular languages, because of the above restrictions on CFG. In particular,
a language in CFG is never empty and may not contain the empty string.

It is known that local automata are convenient visualized identifying the states
with terminals and omitting the transitions labels, as shown in figure 1.
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Fig. 1. Program, CFA, strict post-dominance tree, and C-dependence relations

In compiler theory two properties of a CFG play a major role: predominance
and postdominance. An instruction a post-dominates instruction b if, and only
if, after executing instruction b, instruction a is always executed.

Definition 2. Let A be a CFA, and let a �= b. The strict postdominance relation
"s⊆ Σ × Σ is

a "s b if, and only if, for any x ∈ L(A) : π{a,b}(x) ∈ {(a, b)∗a ∪ ε}

Then the postdominance relation " is obtained adding to "s the identity relation.
The immediate postdominance relation "i is

a "i b iff a "s b and a does not postdominate any other dominator of b

Similarly, instruction a strictly predominates instruction b if, and only if, before
executing instruction b, instruction a is always executed. The notation for pre-
dominance is a #s b. Postdominance and predominance are partial order reflexive
relations and more precisely tree partial orders.

The concept of an instruction depending on a predicate has been formalized
within compiler and software engineering research. Slightly different formulations
exist (e.g. [10]) and we follow [7,2,9]).

For a CFA A or CFG language L, let the sub-alphabet Σ2 ⊂ Σ contain the
letters having two successors, and let Σ1 = Σ \ Σ2. The letters in Σ2 represent
predicates.

Definition 3. For a CFG language L ⊆ Σ+ the ternary C-dependence relation
D3 ⊂ Σ×Σ2×Σ, pronounced as a is control dependent on b via c, is defined as

(a, b)c ∈ D3(L) if, and only if, (a " c) ∧ ¬(a "s b) ∧ c ∈ succ(b).

By erasing the third argument, we obtain the binary intermediate relation

D32(L) = {(a, b) | (a, b)c ∈ D3(L) for some c ∈ Σ}



160 S. Campanoni and S. Crespi Reghizzi

Then closing D32(L) by means of commutation and adding the identity relation,
we obtain the binary C-dependence relation

(a, b) ∈ D2(L) = {(a, b) | (a, b) ∈ D32(L) ∨ (b, a) ∈ D32(L) ∨ (a = b)}

Examples are shown in Figures 1 and 2. Notice that in the ternary relation a
may coincide with c or a may coincide with b, but b necessarily differs from c
because the successor relation is irreflexive. Intuitively, a is control dependent
on b via c when predicate b has a successor c such that, if c is executed then also
a is surely executed, but, if the other successor of b is taken, it is not certain that
a will be later executed. The intermediate binary relation is less informative; it
does not say which of the successors of the predicate is always followed by a.
Finally the binary relation is symmetric and reflexive, to be consistent with the
usual assumptions of trace theory.

Some properties of C-dependences are next stated, which are later needed.
Let A be a CFA and L ⊆ Σ∗ be its language.

Statement 1. The C-dependence relation D3(L) is empty iff Σ2 = ∅.

In other words, there no C-dependences if, and only if, the CFA graph has no
bifurcation. Notice that the “only if” part of the statement is not obvious.

Statement 2. Let b ∈ Σ2, with succ(b) = {a, d}. Then at least one of (a, b)a or
(d, b)d is in D3(L).

Proof. By contradiction, assume

∃a ∈ Σ such that |succ(a)| > 1 and ∀b ∈ succ(a) it is (b, a)b /∈ D3(L).

Since by definition of CFA, ∀b ∈ succ(a) it is b �= a, it follows that ∀b ∈ succ(a),
b postdominates a. Let now {b1, b2} = succ(a); but if b1 " a∧ b2 " a, then either
b1 " b2 or b2 " b1. Considering the case b1 " b2 (the other case is analogous),
any string w ∈ L containing b2 can be factorized as w = y1b2y2b1y3t, with b2
not occurring in y2 or in y3. But since b2 ∈ succ(a), there exists a string w1 ∈ L
such that w1 = x1ab2x2t, with b1 not occurring in x2. Hence b1 does not post-
dominate a, a contradiction. Moreover, Figure 1 provides an example where one
successor (t) of a predicate (b) is not control dependent on the predicate. ��

Thus (at least) one of the successors of a predicate is control dependent on it.
For a CFA, a circuit O = a1, a2, . . . , an is a sequence of states ai ∈ Σ, such

that for all positions but the last, ai+1 is in succ(ai) and a1 is in succ(an). A
node ai present in O, having a successor b ∈ succ(ai) not in O, is called an
exit from circuit O. An iterative factor of a language L is a string w such that
xw∗z ⊆ L, for some strings x and z. A circuit or iterative factor is simple if
all letters are distinct. Clearly for a CFG language a simple iterative factor is a
simple circuit of the CFA graph.

The next statement, informally presented in [7], characterizes the cases of
cyclicity of the C-dependence relation. The property immediately follows from
Lemma 1 of Section 3.
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Statement 3. The binary intermediate relation D32(L) contains a cycle if, and
only if, the graph of A contains a circuit. Moreover, when a CFA circuit has more
than one exit, the exit nodes exhibit mutual C-dependences.

For instance, consider a program loop such as the one in fig.1. Node b is the the
loop exit, and it is control dependent on itself. Notice that this statement does
not imply that a set of letters that make a loop within the graph of A, make a
loop within D32 as well.

The next statement relates C-dependence and pre-, post-dominance relations.
Statement 4. Let a, b ∈ Σ. If �c, d ∈ Σ such that (a, c) ∈ D32(L) and (b, d) ∈
D32(L), then the following two conditions are met: a # b∨b # a and a " b∨b " a.

3 Control Flow and Traces

This central section studies traces and C-dependences.
Let D ⊆ Σ × Σ be a symmetric and reflexive dependence relation, and its

complement be denoted by I and named the independence relation. The depen-
dence alphabet is the pair (Σ, D). The equivalence relation over Σ∗ induced by
I is denoted by ∼I . The free partially commutative monoid, i.e. the quotient
of Σ∗ by the congruence ∼I is denoted by M(Σ, I). For a string x ∈ Σ∗, the
equivalence class of x under ∼I is called a trace and denoted by [x]I . The map-
ping from strings to traces is denoted by ϕ: ϕ(x) = [x]I . For a string language
X ⊆ Σ∗, the mapping ϕ(L)) = {[x]I | x ∈ X} produces a trace language, also
denoted by [X ]I = ϕ(L). We use interchangeably I and its complement D, if
no confusion arises. The subscript I is dropped if the (in)dependence relation is
understood.

A trace or string is D-connected if its letters induce a connected subgraph of
the dependence graph; a language is D-connected if every sentence is so.

Given a trace language T over a trace monoid M(Σ, D), the family of all
languages L ⊆ Σ∗ such that [L]I = T is denoted by L(T ). Any language in L(T )
is a representative of T .

For a subset Δ ⊆ Σ and a binary relation D ⊆ Σ×Σ, the relation (or graph)
induced by Δ is D|Δ = D ∩ Δ2.

We refer to [6,4] for the notions of recognizable Rec, rational Rat, and un-
ambiguous trace language, and for the Foata-Cartier Normal Form.

Traces of CFG Languages

We consider a control-flowautomaton A0, recognizing the languageL0 = L(A0) ⊆
Σ∗, which is, as we know, a local regular language and more specifically a mem-
ber of the CFG language family. Let D3(A0) = D3(L0) be the C-dependence re-
lation and D2 its symmetric and reflexive embedding. Since we do not consider
data-dependences (except in Sect. 5), we may take the independence relation to be
I = (Σ × Σ) \ D2.

A regular expression is D-star-connected, if the star is used over D-connected
languages only. For a CFA, the definition becomes: if, for every circuit of the
DFA graph, the state labels are D2-connected.
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Definition 4. Let L0 be a language in CFG. The trace language [L0]D2(L0) is
called the trace language C-defined by L0. The family of CFG trace languages is

TCFG = {T | T is a trace language C-defined by L0, for some L0 in CFG}
The next technical Lemma will be used to prove that, for any CFG language,
the graph of the D32 relation is connected for every iterative factor.

Lemma 1. Let L ⊆ Σ∗ be a language in CFG and D32 = D32(L) be the in-
termediate binary C-dependence relation. Let w be a simple iterative factor with
W = alph(w). Then for every pair of letters a, e ∈ W such that e is an exit from
w, the graph D32 |W contains a (not necessarily directed) path, termed a D-path,
between a and e.

Proof. The proof is by induction. Let PATHSk, k ≥ 2, be the set of CFG paths
of length k contained in circuit w, and denote with EPATHSk the paths ending
in an exit node. We say EPATHSk has the D-connection property, if, for every
path z in EPATHSk, the graph D32 |alph(z) is connected1.

Induction base. For circuit w, let ab be a path in EPATHS2. Since b exits
from w, from the definition of control-dependence it follows that (a, b) ∈ D32 .
Thus EPATHS2 has the D-connection property.

Inductive hypothesis. From the induction base, we may assume that for
circuit w with |w| = k, the set EPATHSj has the D-connection property,
for all 2 ≤ j ≤ k − 1.

Induction step. We prove that EPATHSk has the D-connection property.
Let b1b2 . . . bk−1bk be a path in EPATHSk. Since the path x = b2 . . . bk−1bk

is in EPATHSk−1, it has the D-connection property. It suffices to show that
b1 is D-connected to a letter in alph(x), and we prove it for b2. Two cases
arise.
b2 postdominates b1. Since b2 is control-dependent on some letter in

{b2, . . . , bk−1bk}, from the definition of control-dependence it follows b1
is dependent on the same letter.

b2 does not post-dominate b1. Then b1 is a predicate with b2 as one of
its successors. From Statement 2 it follows that (b2, b1)b1 ∈ D3. ��

Clearly the property remains true for non-simple iterative paths. The next trace
language family inclusion follows immediately.

Theorem 1. The TCFG family is strictly included within the family Rec of
recognizable trace languages.

Proof. Inclusion follows from the fact [6] that a trace language T is recognizable,
if, and only if, there exists a regular language X ⊆ Σ∗ such that every iterative
factor of X is D-connected and T = [X ]. Moreover, the inclusion is strict: the
(finite) language R = {abc} with the dependence relation D = {(a, b)} is recog-
nizable, but D differs from the binary control relation D2(R), which is empty
(Statement 1). ��

1 We prefer to use the intermediate binary relation D32 instead of D2 because
it makes more perspicuous the arguments based on the properties of control-
dependences.
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Control Equivalent Automata

We have argued in the introduction that a CFG language, though equivalent
modulo the C-independence relation to a given language, may not correspond
to a semantically equivalent program. This fact is precisely stated in the next
theorem.

Theorem 2. Let L′ and L′′ be languages in CFG over the same ranked alphabet
Σ = Σ1∪Σ2. If the trace languages C-defined by the two languages are identical,
then the binary C-dependence relations are equal, in formula

if [L′]D2(L′) = [L′′]D2(L′′) then D2(L′) = D2(L′′)

but the converse implication does not hold.

In other words, for a given partition of the alphabet into predicates (Σ2) and
non-predicates, a trace language uniquely determines the C-dependence relation
for all CFG representatives. On the other hand, two CFG languages having
equal D2, may represent different trace languages and therefore, they are not
semantically equivalent when viewed as programs. For this reason, the theorem
calls for a new stronger concept of equivalence.

Definition 5. Let L0 = L(A0) be a language in CFG and let T0 = [L0]D2(L0) be
the C-defined trace language. The family LC(L0) ⊆ CFG includes the languages
L, such that D3(L) = D3(L0) and [L]D2(L0) = T0. The corresponding family
of CFG automata is denoted by AC(L0). The languages (or automata) in these
families are termed C-equivalent.

For a given CFG language, we are interested in studying C-equivalent languages,
having desirable properties. With the terminology of compilers, they can be
viewed as obtained by legal program transformations.

To conclude this part, we formalize a fact anticipated in the introduction: a
regular language, which represents the same trace as a CFG language L0, may
not even be in CFG.

Statement 5. Let L0 be a language in CFG and T0 its C-defined trace lan-
guage. The language family LC(L0) is strictly included within the family {R |
R is a regular language and [R]D3(L0) = T0}.

Proof. Weak inclusion is obvious. Strictness of inclusion follows from the example
in Sect. 1. The set L0 = {abce, abde} is in CFG, with D2(L0) = {(b, c), (b, d)}
(omitting the identity relation). The language R = {aebc, abde} defines modulo
D2(L0) the same trace language C-defined by L0, but it is not a local language,
hence not a CFG language. ��

Unambiguity

A natural question to ask concerns ambiguity. We recall a rational trace language
T is unambiguous if, there exists a regular language X such that T = [X ]I and for
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every trace t ∈ T , X contains exactly one representative for t. In that case we say
that language X unambiguously defines trace language T . Since all recognizable
trace languages are unambiguous, from Theor. 1 the same holds for the TCFG

family. The next statement solves the question whether every CFG language
unambiguously defines its trace language.

Theorem 3. Consider a language L in CFG, the C-defined trace language T ,
and the family LC(L) of CFG languages which C-define T . Every language in
this family unambiguously defines T .

Proof. It is based on Lemma 2 and Lemma 3. We show that for any distinct
strings w1, w2 ∈ L it is [w1]D2(L) �= [w2]D2(L). Assume by contradiction that
[w1]D2(L) = [w2]D2(L).

If D3(L) = ∅, from statement 1 it follows that each letter has at most one
successor, and, since the first letter must be i, |L| = 1, hence w1 = w2, a
contradiction.

It remains to analyze the case D3(L) �= ∅. Consider the longest common prefix
xa of the two strings w1 = xaby11 w2 = xacy21 with b �= c and y11, y21 ∈ Σ∗.

Since [w1]D2(L) = [w2]D2(L) implies πb(w1) = πb(w2)∧πc(w1) = πc(w2), letter
b must occur in y21 and letter c must occur in y11, hence the factorizations

w1 = xaby12cy13 w2 = xacy22by23

where y12, y13, y22, y23 ∈ Σ∗ ∧ c /∈ y12 ∧ b /∈ y22. Moreover, since w1 and w2 are
in the same trace, b and c are independent letters (i.e. (b, c) /∈ D32(L)).

From Lemma 3, it follows that ∀d ∈ y12, (c, d) /∈ D32(L) and ∀d ∈ y22, (b, d) /∈
D32(L). Moreover, from Lemma 2, we have c " b and b " c. Since the post-
dominance relation makes a tree over Σ, and c " b and b " c, then c = b.
Contradiction found. ��

Lemma 2. Let L ∈ CFG contain a sentence of the form xyaz, for a letter a,
and some strings x, z ∈ Σ∗, y ∈ Σ+. Then

∃c, d ∈ ya such that (a, c)d ∈ D3 if, and only if, ∃e ∈ ya such that ¬(a " e)

Proof. We provide the proof in two rounds.
∃c, d ∈ ya | (a, c)d ∈ D3 ⇒ ∃e ∈ ya | ¬(a " e) By contradiction, we suppose

that:
(∃c, d ∈ ya | (a, c)d ∈ D3) ∧ (�e ∈ ya | ¬(a " e))

Then it follows ∀e ∈ ya, (a " e). Since (a, c)d ∈ D3 follows that ¬(a " c) by
definition of D3. Since c ∈ ya∧∀e ∈ ya, (a " e) then a " c. Contradiction found.

∃c, d ∈ ya | (a, c)d ∈ D3 ⇐ ∃e ∈ ya | ¬(a " e) We provide the proof by induc-
tion.

Induction base. For the string ya, let the length of y be one and then y ∈ Σ.
Since a " a by definition of the pre-dominance relation, then the Lemma
becomes ¬(a " y) ⇒ (a, y)a ∈ D3 which is true by definition of D3.
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Inductive hypothesis. From the induction base, we may assume that for any
y with length equal to n − 1 the Lemma holds.

Induction step. We prove that for any y with length n, the Lemma holds.
We can write the string as xdy1az where y = dy1. If ¬(a " y1(1)), then by
the Inductive hypothesis, the Lemma holds. Then it suffices to consider the
case a " y1(1). Two cases arise:

– (¬(a " d)): by definition of D3 it follows (a, d)y1(1) ∈ D3 and then the
Lemma holds.

– (a " d): then �e ∈ ya | ¬(a " e) and then the Lemma holds.
��

Lemma 3. Let L0 be in CFG, and let w1, w2 ∈ L0 be sentences representing
the same trace t = [w1]D2 = [w2]D2 , such that for some letters a �= b ∈ Σ,
w1 = xax11bx12 and w2 = xbx21ax22, where x, x11, x12, x21 and x22 are possibly
empty strings. Then

– ∀e ∈ alph(x11) and ∀f ∈ Σ it is (b, e)f �∈ D3(L0);
– ∀e ∈ alph(x21) and ∀f ∈ Σ it is (a, e)f �∈ D3(L0).

Comment: consider a program represented by a CFA. Theor. 3 says that it is
impossible for a program to have two runs that are a permutation of each other.
Moreover this remains impossible for any program that is C-equivalent to the
original one.

4 Maximally Parallel Program

In this section we show how to transform a CFA into a semantically equivalent
one, and especially into the one with maximal parallelism. For the latter we
discuss its relation with the Foata-Cartier normal form of traces.

Ordering by Degree of Parallelism

To compare the degree of parallelism of programs, we introduce two different
binary relations over string languages that define the same trace language. We
need some definitions. A clique of the independence graph is a set of mutually
independent letters. The set of such cliques is denoted by ΣI . For a string s ∈ Σ∗

the clique decomposition is s = s1s2...sn where each si is a clique, and each sj ,
1 ≤ j < n contains a letter such that there exists a dependent letter in sj+1.
The string decomposition must be computed from left to right, thus ensuring its
uniqueness for any given string. The height of the string is height(s) = n.

Let L1 and L2 be string languages. We define an order relation ≥P on strings
s1 ∈ L1, s2 ∈ L2 representing the same trace. We say string s1 is more parallel
than s2, written s1 ≥P s2, if for their clique decompositions s1 = s1,1s1,2...s1,n

and s2 = s2,1s2,2...s2,m it is n ≤ m. This relation induces a partial order on
languages: L1 is more parallel than L2, written L1 ≥P L2, if for each string
s1 ∈ L1 and s2 ∈ L2 with [s1]D2(L1) = [s2]D2(L2) , it is s1 ≥P s2. The strict
relation >P is defined in the obvious way, using existential quantifier.
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Of two strings with equal height, one may place a certain letter in an earlier
clique than the other. This concept of greediness or anticipation is captured by
another order relation ≥G on strings s1 ∈ L1, s2 ∈ L2 representing the same
trace and having equal height. String s1 is greedier than s2, written s1 ≥G s2,
if for the clique decompositions s1 = s1,1s1,2...s1,n and s2 = s2,1s2,2...s2,n the
following condition holds. Let sign(|s1,i| − |s2,i|) be a symbol in {0, n, p}. Then
the sequence of signs is in 0∗p(n | p)∗. The ≥G naturally induces a partial order
on string languages.

We are especially interested in a language that is more parallel and greedy
than any other C-equivalent language.

Computing C-Equivalent Languages

We move into application, to present an algorithm for computing the set of C-
equivalent automata (vs Def. 5). After proving correctness and completeness of
the algorithm, we show how to construct the most parallel and greedy automaton.

Definition 6. Let A be a CFA with L(A) ⊆ Σ∗, and let D3 be the ternary
C-dependence relation. The following transformation of the graph of A is termed
“moving a letter b to a letter a”. Let j be a letter such that:

j "i b ∧ ∀p ∈ pred(j) | b # p (1)

The edges E′ of the CFG (Σ, E) of A become as following:

– Edel = {(p, d) | (d = a ∨ d = b ∨ d = j) ∧ (p, d) ∈ E}}
– Eadd = {(p, b) | (p, a) ∈ E} ∪ {(p, j) | (p, b) ∈ E} ∪ {(p, a) | (p, j) ∈ E}
– E′ = (E \ Edel) ∪ Eadd

Notice that a becomes the immediate postdominator of b; if b ∈ Σ2, the move
can shift other nodes which are transitive successors of b. Such a transformation
is called a legal move if the new automaton recognizes a language C-equivalent
to L(A).

Consider a CFA A and its graph. For each non-initial node a of the graph,
we define the guest set, Guest(a) ⊆ Σ \ {i, t}, which includes the letters b such
that:
∀c, d ∈ Σ, (a, c)d ∈ D3 ⇔ (b, c)d ∈ D3 ; ∀c ∈ Σ, (a, c) ∈ D32 ⇒ (a # c ⇔ b # c)
and ∃j such that condition 1 is met. The sets are computed from C-dependence
and pre-dominance relations. Since the latter can be computed in polynomial
time, the computation of guest sets is in the complexity class P .

The next technical Lemma will be used to prove that we can construct any
C-equivalent automaton by moving some letter from its current position in the
graph of A, to some node which has the letter as guest.

Lemma 4. Let L1 be a CFG language, the move of b to a is legal if, and only
if, b ∈ Guest(a).
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Theorem 4. Let A be the class of automata computed by applying one or more
legal moves to A, and L0 = L(A). Then A coincides with the class LC(L0).

The following statement characterizes the pre- and post-dominance properties
of guest letters, and will be used to compute the maximally greedy and parallel
automaton.

Statement 6. Let a, b ∈ Σ. If b ∈ Guest(a), i.e. a is a host of b, then the
following two relations hold: b # a ∨ a # b and b " a ∨ a " b.

Maximally Parallel and Greedy Control Flow Automaton

For a given CFA automaton A, we define the most parallel and greedy automaton,
Amax, as the CFA obtained by the following transformation.
For every letter b, legally move b to a letter a such that no other letter c, which
pre-dominates a, has b as guest, in formula: �c ∈ Σ such that b ∈ Guest(c)∧c # a.

Statement 7. Let L = L(A) be in CFG and Amax be defined as above. Then
L(Amax) is the most parallel and greedy language C-equivalent to L, i.e. it is:
∀L′ ∈ LC(L), L(Amax) >P L′ or L(Amax) ≥G L′.

Proof. Since each move applied is legal, i.e. b ∈ Guest(a), from Theor 4 it follows
that the automaton is C-equivalent to A. The proof of maximal greediness is
based on Stat. 6.

Foata-Cartier Normal form vs. Maximally Parallel Program

It is known that for a trace [x], the clique decomposition associated to the
Foata-Cartier normal form gives the most parallel and greedy form of x. The
next example proves that the set of such Foata-Cartier decompositions, in gen-
eral, is not C-equivalent to the given CFG language. Therefore it differs from
L(Amax), which has been proved to be the most parallel and greedy language
which preserves C-equivalence.

For L ∈ CFG we denote as AFoata the minimum DFA that recognizes the
Foata-Cartier normal forms of the strings in L. More precisely, since there is
more than one automaton AFoata, depending on the serialization of the letters
in an independence clique, we may assume that serialization complies with the
lexicographic order of the terminal alphabet.

Example 1. Let L be the CFG language recognized by the CFA A in Figure 2.
C-dependence and dominance relations and guest sets are also shown. Let the
letters be lexically ordered as listed: Σ = {i, a, b, c, d, e, t}. The Foata-Cartier
automaton and Amax are in Figure 3.
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L ∈ CFG
i {}

a {a}

f {f} b {b, e}

c {c} d {d}
e {e}

g {g}

t {}

Pre-dominator

tree of L

i

a

g f b t

c e d

C-dependence relations
D3 D32

(b, a)b (b, a)
(f, a)f (f, a)
(c, b)c (c, b)
(d, b)d (d, b)
(e, a)b (e, a)
(g, a)b (g, a)
(g, f)g (g, f)

Fig. 2. CFA with relations and guest sets

A(LF oata)

q0

q1

q2

q8 q3

q4

q9 q5

q6

q7

i

a

b

e

g

cd

t

f

g

t

t

A(LMax)

i

a

f e

b

c d

g

t

Fig. 3. Foata-Cartier automaton and maximally parallel and greedy automaton

The I-cliques present in the Foata-Cartier strings differ from the cliques in
L(Amax). Clearly AFoata is not C-equivalent to A, since it is not a local au-
tomaton. Moreover, this example shows that L(AFoata) ≥P L(Amax).

We summarize the above discussions and example in the following statement.

Statement 8. The automaton AFoata defines the maximally parallel and greedy
language L(AFoata). The automaton Amax defines the maximally parallel and
greedy C-equivalent language.

Technical remark: to achieve the Foata-Cartier parallelism, copies of the same
instruction have to be differentiated in order to re-obtain the local property of
the automaton. This is an ordinary transformation for compilers, that replicates
the same instructions at different addresses.

5 Conclusion

We have shown that program transformations consisting in instruction reschedul-
ing can be conveniently studied and actually implemented using results from
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trace theory, combined with concepts and methods of compiler theory. Control-
dependence and pre- post-dominance relations play an essential role in that.
The automata constructions described are efficient and have a potential for
compilation.

Of course data-dependences too must be considered for realistic applications.
It is an easy job to superimpose data- onto control constraints. Another straight-
forward development is to study a program transformation with the aim to
achieve uniform parallelism at all steps, instead of maximal greediness.

We believe that this effort for expressing program transformations by means of
a suitably enriched trace theory should be continued to cover other parallelizing
transformations done by compilers, such as speculative execution, loop unrolling
or software pipelining. Such developments are likely to need other algebraic
concepts, in particular partially inverse monoids.

Lastly, we observe that we have proved several properties for the traces rep-
resented by CFG languages, which are a subclass of local languages. It is not
known whether such properties still hold for the latter.

Acknowledgement. we would like to thank Massimiliano Goldwurm for critical
reading and suggestions.
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Abstract. In this paper, we study rational relations that are both left
and right synchronous. We show that these relations are boolean combi-
nations of almost length preserving relations, length comparing relations
and recognizable relations.

1 Introduction

We consider left (and right) synchronous rational relations. These relations are
realized by letter to letter transducers that read both words synchronously from
the left (or right), the shortest word being padded with an extra symbol at its
right (or left) end. These relations are intensively used in the theory of automatic
structures. Let us recall that a relational structure has an automatic presentation
if the elements of its domain can be named by finite strings in such a way that
the coded relations are realized by left (or right) synchronous transducers [4].
The closure properties of left (and right) synchronous relations imply that each
automatic structure has a decidable first-order theory.

The main result of this paper is a characterization of rational relations that are
both left and right synchronous. This natural question was raised by Sakarovitch
[5, Problem 6.2 (p. 659)]. It is easy to see that some simple classes of rational
relations only contain both left and right synchronous relations. For instance,
any recognisable relation is obviously both left and right synchronous. Let us
recall that a relation is recognizable if it is a finite union of product Ki × Li

where the Ki and Li are rational sets of words. Length preserving relations are
also both left and right synchronous. A relation is length preserving if it consists
of pairs (u, v) such that u and v have the same length. We say that a relation R is
almost length preserving if all the differences |u|− |v| for (u, v) in R are bounded
by some constant M . These relations were already considered in [3]. Finally,
each relation of the form {(u, v) | |u| ≤ |v| + M} for some constant M is also
both left and right synchronous. The main result is that any both left and right
synchronous relation is a boolean combination of such simple relations.

The proof of the main result is obtained through an intermediate characteri-
zation of both left and right synchronous relations. This characterization states
that a relation is left and right synchronous if and only if it fulfils the following
two conditions. First, it coincides with a recognizable relation for pairs (u, v)
of words with a great difference of lengths, that is

∣∣|u| − |v|
∣∣ greater that some

fixed threshold. Second, it coincides with an almost length preserving relation
for pairs (u, v) of words with a small difference.

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 170–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The question of the synchronous relations goes back to the paper of Elgot
and Mezei [2] about rational relations realized by finite automata, and to the
result of Eilenberg and Schützenberger [1], which states that a length preserving
rational relation of A∗ ×B∗ is a rational subset of (A×B)∗, or, equivalently, is
realized by a synchronous automaton.

The paper is organized as follows. Sect. 2 introduces the basic definitions of
rational relations and transducers. The left and/or right synchronous relations
are defined in Sect. 3 and the main result is stated in Sect. 4. Sect. 5 provides
the intermediate characterization that makes the proof easier. The proof of the
main result is finally completed in Sect. 6.

2 Preliminaries

In what follows, A and B denote finite alphabets. The free monoid A∗ is the set
of finite words or sequences of letters from A. The empty word is denoted by ε.
The length of a word u ∈ A∗ is denoted by |u|. A word u is a prefix of a word v
if there exists a word w such that v = uw.

In this paper, we study relations, that is, subsets of the product monoid
A∗ ×B∗.

A transducer (also known as a two-tape automaton) is a non-deterministic
automaton whose transitions are labeled by pairs of words. A transducer over
the monoid A∗ × B∗ is composed of a finite set Q of states, a finite set E ⊂
Q×A∗×B∗ ×Q of transitions and two sets I, F ⊆ Q of initial and final states.
A transition τ = (p, u, v, q) from p to q is denoted by p u|v−−→ q.

A path in a transducer T is a sequence

q0
u1|v1−−−→ q1

u2|v2−−−→ · · · un|vn−−−−→ qn

of consecutive transitions. The label of this path is the pair (u, v) where its input
label u is the word u1u2 · · ·un and its output label v is the word v1v2 · · · vn. Such
a path is denoted q0

u|v−−→ qn. This path is accepting if q0 is initial and qn is final.
The set accepted by the transducer is the set of labels of its accepting paths,
which is a relation R ⊆ A∗ ×B∗. We say that the relation R is accepted by the
transducer T .

A subset of A∗ ×B∗ is rational if it can be obtained from some finite subsets
using union, concatenation and star iteration. It is a consequence of Kleene’s
theorem that a subset of A∗ × B∗ is a rational relation if and only if it is the
relation accepted by some transducer.

By boolean operations, we mean union, intersection and complementation.
Therefore, we say that a class C of relations contained in A∗×B∗ is closed under
boolean operations if for any relation R and R′ in C, the three relations R ∪R′,
R∩R′ and (A∗×B∗)\R are also in C. We also say that a relation R is a boolean
combination of relations in C if R belongs to the smallest class containing C and
closed under boolean operations. For any two relations R,R′ ⊆ A∗ × B∗, the
product RR′ is defined by RR′ = {(uu′, vv′) | (u, v) ∈ R and (u′v′) ∈ R′}.
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3 Left and Right Synchronous Relations

A relation R ⊆ A∗×B∗ such that |u| = |v| holds for any pair (u, v) ∈ R is called
length preserving.

A transducer T is synchronous if for each transition p u|v−−→ q, the lengths of
the input and output labels satisfy |u| = |v| = 1. It is straightforward that a
relation accepted by a synchronous transducer is length preserving. By the result
of Eilenberg and Schütenberger [1], the converse also holds. Any rational length
preserving relation can be accepted by a synchronous transducer.

A synchronous transducer is actually an automaton over the product alphabet
A × B. As such, it can be made deterministic using the usual subset construc-
tion for finite automata. Therefore, we may always assume that synchronous
transducers are deterministic.

Let # be a padding symbol that does not belong to the alphabets A and B.
The left padding of a pair (u, v) of words over A and B is the pair (u, v#|u|−|v|)
if |v| ≥ |u| and the pair (u#|v|−|u|, v) otherwise. The left padding is called so
because the two words are left aligned. The right padding of (u, v) is defined
similarly but the shorter word is padded on the left. The left and right padding
of (u, v) are respectively denoted

−−−→
(u, v) and

←−−−
(u, v). For a relation R ⊆ A∗ ×B∗,

we respectively denote by −→
R and ←−

R the following two relations

−→
R = {−−−→(u, v) | (u, v) ∈ R} and ←−

R = {←−−−(u, v) | (u, v) ∈ R}.

A relation R ⊆ A∗ × B∗ is called left synchronous (respectively right syn-
chronous) if the relation −→

R (respectively ←−
R ) can be accepted by a synchronous

transducer over the alphabets A ∪ {#} and B ∪ {#}.
Since a synchronous transducer can be assumed to be deterministic, it follows

that the class of left (respectively right) synchronous relations is closed under
boolean operations.

The transducers are pictured in figures by graphs with labeled edges. Each
transition p u|v−−→ q is represented by an edge from p to q labeled by u|v. Initial
states are marked by a small incoming arrow and final states by a small outgoing
arrow.

Example 1. Let R be the set of pairs (u, v) such that u is a prefix of v. This
relation is left synchronous since the relation −→

R is accepted by the transducer
of Fig. 1. It can be easily proved that this relation is not right synchronous.

0 1
a|a
b|b

#|a
#|b #|a

#|b

Fig. 1. Left synchronous transducer for the prefix relation
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Example 2. Let A be the alphabet {a, b} and let R ⊂ A∗ × A∗ be the relation
defined by

R = {(u, u) | u ∈ A∗} ∪ {(u, v) | |u| > |v| and |u| ≡ |v| mod 2}.

This relation is left and right synchonous. It is left synchonous since −→
R is ac-

cepted by the transducer of Fig. 2. It is also right synchronous since a similar
transducer accepts ←−

R .

0 1 2 3

a|a
b|b

a|b
b|a

A|A

A|# A|#

A|#

Fig. 2. Left synchonous transducer for the relation R of Example 2

The aim of this paper is to characterize relations that are both left and right
synchronous.

4 Characterization

We now recall the definition of a class of very simple rational relations. A relation
R ⊆ A∗ ×B∗ is recognizable if there are two families K1, . . . ,Kn and L1, . . . , Ln

of rational subsets of A∗ and B∗ such that R =
⋃n

i=1 Ki × Li.

Example 3. Let R be the relation {(u, v) | |u| ≡ |v| mod 2}. This relation is
recognizable since it is equal to the following finite union of direct products of
rational languages.

R = (K0 ×K0) ∪ (K1 ×K1) where Ki = {u | |u| ≡ i mod 2}.

For each integer k ≥ 0, we define three relations Gk, Hk and Jk as follows.

Gk = {(u, v) ∈ A∗ ×B∗ | |v| − |u| ≤ −k},
Hk = {(u, v) ∈ A∗ ×B∗ | −k ≤ |v| − |u| ≤ k},
Jk = {(u, v) ∈ A∗ ×B∗ | k ≤ |v| − |u|}.

For each integer k ≥ 0, the equality Gk∪Hk∪Jk = A∗×B∗ holds. Note however
that the intersections are not empty since Gk ∩ Hk = {(u, v) | |v| − |u| = −k}
and Hk ∩ Jk = {(u, v) | |v| − |u| = k}. If k < k′, the three inclusions Gk ⊃ Gk′ ,
Hk ⊂ Hk′ and Jk ⊃ Jk′ are strict.

Note that a relation R is length preserving if R is contained in H0. We say
that a relation R ⊆ A∗ ×B∗ is almost length preserving if R is contained in Hk

for some integer k ≥ 0. If both relations R and R′ are almost length preserving,
the relations R ∪R′ and R ∩R′ are also rational and almost length preserving.
Furthermore if R is contained in Hk, the relation Hk \ R is also rational and
almost length preserving.
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0 1

2 3 4

1|ε
0|ε1|1

0|0
1|0

1|1

0|0

0|1
1|1

Fig. 3. Transducer for the division by 3 in base 2

Example 4. Let A be the alphabet {0, 1}. Let R ⊆ A∗ × A∗ be the set of pairs
(u, v) such that u is the binary expansion of some integer n and v is the binary
expansion of (n/3). This relation R is not length preserving since (11, 1) is in R
but it is almost length preserving since 1 ≤ |u|− |v| ≤ 2 holds for any pair (u, v)
of R. This relation is accepted by the transducer pictured in Fig. 3.

We say that a relation R is length comparing if R = Gk or R = Jk for some
integer k ≥ 0.

The following theorem is the main result of the paper. It gives a characteri-
zation of relations that are both left and right synchronous.

Theorem 1. A relation is both left and right synchronous if and only if it is a
boolean combination of recognizable relations, almost length preserving relations
and length comparing relations.

As already pointed out in Sect. 3, the class of left synchronous relations is closed
under boolean operations. It follows that the class of left and right synchronous
relations is also closed under boolean operations.

It is straightforward that recognizable relations, almost length preserving re-
lations and length comparing relations are both left and right synchronous.

It follows from the previous remarks that a boolean combination of recogniz-
able relations, almost length preserving relations and length comparing relations
is left and right synchronous. The rest of the paper is devoted to the proof of the
converse which is actually the interesting point. We show that any left and right
synchronous relation can be decomposed as a boolean combination of recogniz-
able relations, almost length preserving relations and length comparing relations.
We can already point out that this boolean combination will involve unions and
intersections but no complementation.

The proof of the converse is carried out in the following way. In the next
section, we introduce a family of properties Pk. As stated in Proposition 1,
these properties characterize the boolean combinations of recognizable relations,
almost length preserving relations and length comparing relations. Indeed, a
relation is such a combination if and only if it has Property Pk for some k.
This characterization is an intermediate step in the proof of the converse. In the
last section, we finally prove that any left and right synchronous relation has
Property Pk for some k.
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5 An Intermediate Characterization

We now introduce a family (Pk)k≥0 of properties. It will be proved in Proposi-
tion 1 that these properties characterize the boolean combinations of recogniz-
able relations, almost length preserving relations and length comparing relations.

Let k be a non-negative integer. We say that a relation R ⊆ A∗ ×B∗ has the
Property Pk if the following three properties are satisfied.

i) the relation R ∩Hk is rational,
ii) there is a recognizable relation K ⊆ A∗ ×B∗ such that R ∩Gk = K ∩Gk,
iii) there is a recognizable relation K ′ ⊆ A∗ ×B∗ such that R ∩ Jk = K ′ ∩ Jk.

We say that a relation R has Property P if it has the Property Pk for some
k ≥ 0.

We will see that Property (i) is satisfied by any left or right synchronous
relation but it is not satisfied by all rational relations as the following example
shows.

0

a|ε b|b ε|a

Fig. 4. Transducer for ((a, ε) + (b, b) + (ε, a))∗

Example 5. Let A be the alphabet {a, b}. Let R ⊆ A∗ × A∗ be the set of pairs
(u, v) such that |u|b = |v|b where |w|b denotes the number of occurrences of the
letter b in the word w. This relation is accepted by the transducer of Fig. 4. It
can be easily shown that, for any integer k ≥ 0, the intersection R ∩ Hk is not
rational.

Lemma 1. If a relation R ⊆ A∗ × B∗ has the Property Pk for some k ≥ 0,
then, it also the Property Pk′ for any k′ ≥ k.

Proof. Obviously Properties (ii) and (iii) are still satisfied for any k′ ≥ k since
Gk′ ⊆ Gk and Jk′ ⊆ Jk. For Property (i), the intersection R ∩ Hk+1 can be
decomposed as the union R1 ∪ R2 ∪ R3 where the relations R1, R2 and R3 are
defined as follows.

R1 = R ∩Hk,

R2 = K ∩ {(u, v) | |v| − |u| = −k − 1},
R3 = K ′ ∩ {(u, v) | |v| − |u| = k + 1}.

Relation R1 is rational since R has Property Pk. Relations R2 and R3 are both
rational as intersections of a rational relation with a recognizable relation.
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The following lemma is very easy to prove.

Lemma 2. For any fixed k, the class of relations having Property Pk is closed
under boolean operations.

Corollary 1. The class of relations having Property P is closed under boolean
operations.

Proof. A boolean combination of relations having Property P involves finitely
many relations. By lemma 1, there is an integer k such that each relation involved
in the boolean combination has PropertyPk. By the previous lemma, the boolean
combination has also Property Pk.

Proposition 1. A relation R ⊆ A∗×B∗ is a boolean combination of recognizable
relations, almost length preserving relations and length comparing relations if and
only if it has Property P.

Proof. It is easy to check that recognizable relations have Property Pk for any
integer k ≥ 0. A length comparing relation Gk or Jk has Property Pj whenever
j ≥ k. An almost length preserving relation R has Property Pk as soon as R is
contained in Hk. By the previous corollary, the class of relations having Prop-
erty P is closed under boolean operations. Therefore any boolean combination of
recognizable relations, almost length preserving relations and length comparing
relations has Property P .

If a relation R has Property Pk for some k ≥ 0, it can be decomposed as the
union R1 ∪R2 ∪R3 where the relations R1, R2 and R3 are defined as follows.

R1 = R ∩Gk = K ∩Gk,

R2 = R ∩Hk

R3 = R ∩ Jk = K ′ ∩ Jk

By definition, the relation R2 is rational and almost length preserving. Both
relations R1 and R3 are a intersection of a recognizable relation and a length
comparing relation. It follows that R is a boolean combination of recognizable
relations, almost length preserving relations and length comparing relations.

6 Proof of the Main Result

In this section we prove that any left and right synchronous relation has Prop-
erty Pk for some integer k. This result combined with Proposition 1 completes
the proof of Theorem 1. It shows that any left and right synchronous relation is
a boolean combination of recognizable relations, almost length preserving rela-
tions and length comparing relations. We first recall some elementary results on
congruences of finite index.
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6.1 Congruences

Let A be an alphabet. A congruence on A∗ is an equivalence relation on A∗

which is compatible with concatenation. This means that if x ∼ x′ and y ∼ y′

then xy ∼ x′y′. For an equivalence relation ∼, we denote by [w]∼ the equivalence
class of a word w. If the relation ∼ is a congruence on A∗, the quotient A∗/∼
is naturally endowed with a structure of monoid defined by [u]∼ · [v]∼ = [uv]∼.
In the proof we use the following results on congruences of finite index, that
is, with finitely many classes. It is a kind of pumping lemma which is a direct
consequence of the pigeon-hole principle.

Lemma 3. Let ∼ be a congruence on A∗ of finite index k. Any word w such
that |w| ≥ k can be factorized w = w1w2w3 such that w2 �= ε and w1w

n
2 w3 ∼ w

for any n ≥ 0.

Proof. Let w be the word a1 · · ·am where m ≥ k. Let us define a sequence
s0, . . . , sm of classes of ∼. Let s0 be the class [ε]∼ of the empty word and let si =
[a1 · · · ai]∼ for 1 ≤ i ≤ m. By the the pigeon-hole principle, there are two integers
0 ≤ i < j ≤ k such that si = sj . The words w1 = a1 · · · ai, w2 = ai+1 · · · aj and
w3 = aj+1 · · · am have the required properties. Indeed since w1w2 ∼ w1, one has
w1w

n
2 ∼ w1 for any n ≥ 0. It follows that w1w

n
2 w3 ∼ w1w3 ∼ w for any n ≥ 0.

Lemma 4. Let ∼ be a congruence on A∗ of finite index. There are two integers
� ≥ 0 and p ≥ 1 such that for any word w ∈ A∗ and any integer m ≥ �,
wm+p ∼ wm holds.

Proof. Since the congruence ∼ has finite index, there are for each class s of ∼
two integers �s and ps such that s�s+ps = s�s . By multiplying this last equality
by sm−�s , one gets that, for any m ≥ �s, sm+ps = sm holds. Let � be the sum
of the �s and p be the product of ps where s ranges over the classes of ∼. This
yields that sm+p = sm holds for any class s of ∼ and for any integer m ≥ �.
Since ∼ is a congruence, [wn]∼ is equal to [w]n∼ and the result follows easily.

Let w = w1w2w3 be a factorization of a word w such that w2 �= ε. For each
integer m, let us define an integer nm and two words p(m) and s(m) as follows.
We set nm = 0 if m < |w3| and nm = ((m− |w3|)/|w2|) otherwise. The integer
nm is thus the least non-negative integer n such that the length of wn

2 w3 is
greater than m. The words p(m) and s(m) are then the prefix and the suffix
of respective length nm|w2| + |w1w3| − m and m of the word w1w

nm
2 w3. By

definition, the product p(m)s(m) is equal to the word w1w
nm
2 w3.

Lemma 5. Let ∼ be a congruence of finite index and let w = w1w2w3 be a
factorization such that w2 �= ε. Let p(m) and s(m) be the words defined as above
for each integer m. There are two integers � ≥ 0 and q ≥ 1 such that both
relations p(m + q) = p(m) and s(m + q) ∼ s(m) hold for any m ≥ �.

Proof. For m ≥ |w3|, nm+|w2| is equal to nm + 1. It follows that the equality
p(m + |w2|) = p(m) holds for each m ≥ |w3|.
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By the previous lemma, there are two integers �0 ≥ 0 and q0 ≥ 1 such that
for any word w2 and any integer n ≥ �0, wn+p0

2 ∼ wn
2 . Let � and q be defined

by � = k + �0|w2| and q = q0|w2|. We claim that s(m + q) ∼ s(m) holds for any
m ≥ �.

For m ≥ |w3|, each word s(m) can be factorized s′(m)w3 where the word
s′(m) is the suffix of length m− |w3| of the word wnm

2 . For each m ≥ |w3|, the
word s′(m+ |w2|) is equal to s′(m)w2 and s′(m+ i|w2|) is then equal to s′(m)wi

2.
The following computation proves the claim.

s(m + q) ∼ s′(m + q)w3

∼ s′(m′ + (�0 + q0)|w2|)w3 where m′ = m− �0|w2| ≥ |w3|
∼ s′(m′)w�0+q0

2 w3

∼ s′(m′)w�0
2 w3 by definition of �0 and q0

∼ s′(m′ + �0|w2|)w3

∼ s(m)

Since � ≥ |w3| and q is a multiple of |w2|, the equality p(m + q) = p(m) also
holds for any m ≥ �. This completes the proof of the lemma.

6.2 Reductions

The following lemmas states that any left or right synchronous relation has
Property (i) of the Property Pk for any k ≥ 0. It is the first step in the proof
that a left and right synchronous relation has Property P .

Lemma 6. For any left (respectively right) synchronous relation R ⊆ A∗ ×B∗

and for any integer k, the relation R ∩Hk is rational.

0 1 2−1−2

A|B

A|# A|##|B#|B

Fig. 5. Synchronous transducer accepting H2

Proof. Since the class of left (respectively right) synchronous relations is closed
under intersection (actually under all boolean operations), it suffices to prove
that the relation Hk is left (respectively right) synchronous. We give a syn-
chronous transducer that accepts the relation −→

Hk. The set Q of states is the set
{−k, . . . , 0, . . . , k} of integers between −k and k. The initial state is 0 and all
states are final. The set of transitions is the set E defined by
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E = {0 a|b−−→ 0 | a ∈ A and b ∈ B}

∪ {i a|#−−→ i + 1 | a ∈ A and 0 ≤ i < k}

∪ {i #|b−−→ i− 1 | b ∈ B and − k < i ≤ 0}.

The transducer for k = 2 is pictured in Fig. 5.

The following lemma allows us to only consider pairs of the form (uw, v) for
some fixed word w.

Lemma 7. Let k be an integer and R ⊆ A∗ × B∗ be a relation. There is a
recognizable relation K such that R ∩ Gk = K ∩ Gk if and only if for each
word w ∈ A∗ of length k, there is a recognizable relation Kw such that

{(u, v) | (uw, v) ∈ R} ∩G0 = Kw ∩G0.

Proof. Suppose first that there exists some recognizable relation K such that
R ∩ Gk = K ∩ Gk. Let w be a fixed word of length k over A. Let Kw be the
relation defined by

Kw = {(u, v) | (uw, v) ∈ K}.
If K is recognizable, then Kw is also recognizable. Furthermore, the required
equality holds by definition of Kw.

Suppose conversely that for each word w of length k, there exists a recogniz-
able relation Kw with the required property. Define the relation K as follows.

K =
⋃

|w|=k

Kw(w, ε).

Since each relation Kw is recognizable, each relation Kw(w, ε) is also recog-
nizable. The relation K is then recognizable as a finite union of recognizable
relations. The equality R ∩Gk = K ∩Gk follows from the definition of K.

The following lemma allows us to only consider pairs (u, v) where v belongs to
some fixed class of a congruence of finite index.

Lemma 8. Let ≈ be a congruence on B∗ of finite index and R ⊆ A∗ ×B∗ be a
relation. There is a recognizable relation K such that R ∩ G0 = K ∩ G0 if and
only if for each class S of ≈, there is a recognizable relation KS such that

R ∩ (A∗ × S) ∩G0 = KS ∩G0.

Proof. Since ≈ is a congruence of finite index, each class S is a rational language
of B∗ and A∗ ×S is a recognizable relation. If there is a recognizable relation K
such that R∩G0 = K∩G0, then KS = K∩(A∗×S) is also recognizable relation
which obviously has the required property.

If there is conversely a relation KS for each class S, the relation K =
⋃

S KS is
still recognizable since there are finitely many S and it satisfies R∩G0 = K∩G0.
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We now finally come to core of the proof which shows a left and right syn-
chronous relation has Property P . By Lemma 6, a left synchronous relation has
Property (i) of the Property Pk for any k ≥ 0. It remains to show that a left
and right synchronous relation satisfies properties (ii) and (iii) of Property Pk

for some k ≥ 0. We only prove it for Property (ii). The result for Property (iii)
follows by symmetry.

Let R be a left and right synchronous relation. There is then a transducer L
accepting the relation −→

R and a transducer R accepting ←−
R . Without loss of

generality, we can assume that the transducer R is deterministic.
We first define an equivalence relation ∼ on A∗. Two words w and w′ satisfy

w ∼ w′ if for any pair (p, q) of states of L, there is in L a path from p to q
labeled by (w,#|w|) if and only if there is in L a path from p to q labeled by
(w′,#|w′|).

The equivalence relation ∼ has finite index since its number of classes is
bounded by 2n2

where n is the number of states of L. It can be easily verified
that the relation ∼ is actually a congruence on A∗. The quotient A∗/∼ is then
a finite monoid.

The following lemma captures the main property of the congruence ∼.

Lemma 9. Let u,w,w′ ∈ A∗ and v ∈ B∗ be words such that |u| ≥ |v| and
w ∼ w′. The pair (uw, v) belongs to R if and only if the pair (uw′, v) belongs
to R.

Proof. Suppose that (uw, v) belongs to R. Since R is accepted by L, there is
an accepting path i uw|v#k

−−−−−→ f where k = |uw| − |v| in the transducer L. Since
|u| ≥ |v|, this path can be decomposed

i
u|v#|u|−|v|
−−−−−−−→ q

w|#|w|
−−−−→ f.

Since w ∼ w′, there is also a path q w′|#|w′|
−−−−−→ f which yields the accepting

path

i
u|v#|u|−|v|
−−−−−−−→ q

w′|#|w′|
−−−−−→ f

labeled by the pair (uw′, v). This shows that (uw′, v) is also accepted by L and
belongs then to R. By symmetry, if (uw′, v) belongs to R, then (uw, v) belongs
then to R.

From now on, the integer k is fixed to the index of the congruence ∼. We claim
that the relation R has Property Pk for this integer k. By Lemma 7, it suffices
to prove that for each word w of length k, there is a recognizable relation Kw

such that {(u, v) | (uw, v) ∈ R}∩G0 = Kw ∩G0. From now on, we fix a word w
of length k.

By Lemma 3, the word w can be factorized w = w1w2w3 such that w2 �= ε and
w1w

n
2w3 ∼ w for any n ≥ 0. Given this factorization w = w1w2w3 with w2 �= ε,

the words p(m) and s(m) are defined as in Sect. 6.1. Lemma 5 gives then two
integers � and q such that both relations p(m + q) = p(m) and s(m+ q) ∼ s(m)
hold for any m ≥ �.
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We introduce a congruence ≈ on B∗ as the intersection of two congruences
≈1 and ≈2 that we now define.

The congruence ≈1 is defined as follows. Two words v and v′ satisfy v ≈1 v′

if v = v′ or |v| ≥ �, |v′| ≥ � and |v| ≡ |v′| mod q. Note that if the length of v is
less than k, the class of v is reduced to the singleton {v}. This is easy to verify
that the relation ≈1 is indeed a congruence of finite index. Its number of classes
is equal to n + q where n is the number of words over B of length less than k.
This number n is equal to k if |B| = 1 and to (|B|k − 1)/(|B| − 1) otherwise.

The congruence ≈2 is defined as follows. Two words v and v′ satisfy v ≈2 v′ if
for any pair (p, q) of states of R and any class S of ∼, there is a word u ∈ S such
that |u| = |v| and there is in R a path from p to q labeled by (u, v) if and only if
there is a word u′ ∈ S such that |u′| = |v′| and there is in R a path from p to q
labeled by (u′, v′). The equivalence relation ≈2 has finite index since its number
of classes is bounded by 2n2k where n is the number of states of R and k is the
index of ∼. It can be easily verified that the relation ≈2 is actually a congruence
on B∗.

The relation ≈ is finally defined by v ≈ v′ if and only if v ≈1 v′ and v ≈2 v′

for any v, v′ ∈ B∗. As an intersection of two congruences of finite index, the
relation ≈ is also a congruence of finite index.

By Lemma 8, it suffices to prove that for each class S of ≈, there is a recog-
nizable relation KS such that

{(u, v) | (uw, v) ∈ R} ∩ (A∗ × S) ∩G0 = KS ∩G0.

From now on, we fix a class S of ≈. We claim that there is a recognizable relation
of the form T ×S which has the required property. Note that the result is trivial
if S contains a single word v. In that case, the recognizable KS can be chosen
equal to T ×{v} where T is the set {u | (uw, v) ∈ R} which is obviously rational.
Therefore, we may assume that S is not a singleton class. By definition of ≈1,
any two words v and v′ in S satisfy |v| ≥ �, |v′| ≥ � and |v| ≡ |v′| mod q.

In order to prove the claim, we show that for any v, v′ ∈ S, the two sets
{u | (uw, v) ∈ R} and {u | (uw, v′) ∈ R} are equal. It suffices then to take KS

equal to {u | (uw, v) ∈ R} × S which is actually independent of the choice of v
in S.

By definition of the factorization w = w1w2w3, one has w1w
n
2 w2 ∼ w for any

n ≥ 0. By Lemma 9, for any pair (u, v) such that |u| ≥ |v|, the pair (uw, v)
belongs to R is and only if the pair (uw1w

n
2 w3, v) belongs to R. The idea is now

to choose n large enough such that the length of wn
2 w3 is greater than the length

of v. Recall that we have defined in Sect. 6.1 two words p(m) and s(m) for each
integer m ≥ 0. Recall also that the length of s(m) is equal to m and that the
product p(m)s(m) is equal to w1w

n
2 w3 for some n ≥ 0.

Furthermore, the two integers � and q given by Lemma 5 are such that p(m+
q) = p(m) and s(m + q) ∼ s(m) hold for any m ≥ �. For each word v ∈ B∗,
let us denote by p(v) and s(v) the words p(|v|) and s(|v|). The two words v and
s(v) have the same length. Since two words v and v′ in S satisfy |v| ≥ �, |v′| ≥ �
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and |v| ≡ |v′| mod q, both relations p(v) = p(v′) and s(v) ∼ s(v′) hold for any
v, v′ ∈ S.

Since p(v)s(v) is equal to w1w
n
2 w3 for some n ≥ 0, the pair (uw, v) belongs

to R if and only the pair (up(v)s(v), v) belongs to R. This is true if and only
if there is a path labeled by this pair in the transducer R. Suppose that such a
path exists. Since v and s(v) have the same length, this path can be factorized

i
u|#|u|
−−−−→ q

p(v)|#|p(v)|
−−−−−−−→ q′

s(v)|v−−−−→ f

where i is an initial state and f is a final state.
Since p(v) = p(v′) for any v′ ∈ S, there is also a path q p(v′)|#|p(v′)|

−−−−−−−−→ q′ in
the transducer R. Furthermore, since v ≈2 v′, there is also a path q′ u′|v′

−−−→ f
in R where |u′| = |v′| and u′ ∼ s(v). This shows that (up(v′)u′, v′) belongs
also to R. By Lemma 9, (up(v′)s(v′), v′) belongs also to R since |u| ≥ |v| and
u′ ∼ s(v) ∼ s(v′).

We have shown that if the pair (up(v)s(v), v) belongs to R, then the pair
(up(v′)s(v′), v′) belongs also to R. This proves the claim and completes the
proof that any left and right synchronous relation has Property P .
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Abstract. One of the particularities of information encoded as DNA
strands is that a string u contains basically the same information as
its Watson-Crick complement, denoted here as θ(u). Thus, any expres-
sion consisting of repetitions of u and θ(u) can be considered in some
sense periodic. In this paper we give a generalization of Lyndon and
Schützenberger’s classical result about equations of the form ul = vnwm,
to cases where both sides involve repetitions of words as well as their
complements. Our main results show that, for such extended equations,
if l ≥ 5, n, m ≥ 3, then all three words involved can be expressed in terms
of a common word t and its complement θ(t). Moreover, if l ≥ 5, then
n = m = 3 is an optimal bound. We also obtain a complete characteri-
zation of all possible overlaps between two expressions that involve only
some word u and its complement θ(u).

1 Introduction

This paper is a theoretical study of pseudoperiodic words, notion motivated by
the properties of information encoded as DNA strands for DNA computing pur-
poses. Informally, a word is pseudoperiodic if it consists of repeated occurrences
of another word and/or the image of that word under an antimorphic involution.
The notion of antimorphic involution is the mathematical formalization of the
Watson-Crick complementarity of DNA single strands, as detailed below.

DNA, in its single-stranded form, is a linear chain made up of four different
types of units, called nucleotides, and can thus be viewed to a first approximation
as a word over the four-letter alphabet {A,C,G, T }. A DNA single strand has an
orientation, with one end known as the 5’ end, and the other as the 3’ end, based
on their chemical properties. By convention, a word over the DNA alphabet
represents the corresponding DNA single strand in the 5’-3’ orientation. Another
crucial feature is the Watson-Crick (WK) complementarity: A is complementary
to T , and G is to C. Two complementary DNA single strands with opposite
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orientation will bind to each other by bonds between their individual bases to
form a helical DNA double strand. The Watson-Crick complementarity operation
is a fundamental bio-operation in DNA Computing experiments [1]. In this paper
we investigate the consequences of Watson-Crick complementarity on the notion
of periodicity of words.

Periodicity properties of words are among the main theoretical tools used in
pattern-matching algorithms, see e.g. [2] and [3]. Recall that a word u is called
periodic if there exists another word v, shorter than u, such that u is a prefix of
vi for some i ≥ 2. Moreover, the way in which a word can be decomposed, and
whether two words are powers of a common word are two questions which have
been widely investigated in language theory, see, e.g., [4] and [5]. However, when
dealing with DNA strands, note that a string u encodes the same information as
its complement, θ(u), where θ denotes the WK complementarity function or its
mathematical formalization as an antimorphic involution. In this context, e.g.,
the word umθ(u)n can be considered periodic, since it consists of repetitions of
the same information unit. (Other generalizations of the notion of periodicity
include, e.g., the “weak periodicity” of [6] whereby a word is called weakly peri-
odic if it consists of repetitions of words with the same Parikh vector. This type
of period was called abelian period in [7].) In [8] the Fine and Wilf Theorem –
one of the fundamental periodicity results on words, see e.g. [4] and [5] – was
extended to deal with expressions involving both a word and its image under an
antimorphic involution.

Here we extend another central periodicity result, due to Lyndon and Schü-
tzenberger, [9]. (See also [10] and Chap. 5 from [5] for some shorter proofs and
[11] and [12] for some other generalizations.) The original result states that, if
the concatenation of two periodic words vn and wm can be expressed in terms
of a third period u, i.e., ul = vnwm, for some n,m, l ≥ 2, then all three words
u, v, and w can be expressed in terms of a common word t, i.e., u, v, w ∈ {t}∗.

In our generalization, we consider repetitions involving both a word and its
image under θ, i.e., the equation α(u, θ(u)) = β(v, θ(v)) · γ(w, θ(w)) where
α(u, θ(u)) ∈ {u, θ(u)}l, β(v, θ(v)) ∈ {v, θ(v)}n, and γ(w, θ(w)) ∈ {w, θ(w)}m

with l, n,m ≥ 2. A conclusion of our main results is that, whenever l ≥ 5,
n,m ≥ 3 we have u, v, w ∈ {t, θ(t)}+ for some word t, i.e., all three words can
be expressed using a common word t and its image θ(t). Moreover, we provide
examples showing that, for any l ≥ 5, n = m = 3 is an optimal bound. In the
case when l = 3 or l = 4, the problem of finding optimal bounds remains open.
Our proofs are not generalizations of the methods used in the classical case,
since one of the main properties used therein, i.e., the fact that the conjugate of
a primitive word is still primitive, cannot be used here.

In our search for these bounds, we also obtain a characterization of all possible
overlaps of two expressions α(v, θ(v)), β(v, θ(v)) ∈ {v, θ(v)}+. In particular, we
show that, contrary to the classical case (when the two expressions involve only
a word v, but not its image under θ), the equality α(v, θ(v)) · x = y · β(v, θ(v))
with x and y shorter than v, does not always force a decomposition of v of the
form v ∈ {t, θ(t)}+ for some word t.
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The paper is organized as follows. In Sect. 2, we fix our terminology and recall
some known results. In Sect. 3, we provide the characterization of all possible
overlaps of the form α(v, θ(v)) · x = y · β(v, θ(v)) with α(v, θ(v)), β(v, θ(v)) ∈
{v, θ(v)}+ and x, y shorter than v. Finally, in Sect. 4 we provide our extension
of Lyndon and Schützenberger’s result.

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over
Σ, by ε the empty word, and by Σ+ the set of all nonempty finite words. The
catenation of two words u, v ∈ Σ∗ is denoted by either uv or u · v. The length of
a word w ∈ Σ∗, denoted by |w|, is the number of letters occurring in it. We say
that u is a factor (a prefix, a suffix, resp.) of v, if v = t1ut2 (v = ut2, v = t1u,
resp.) for some t1, t2 ∈ Σ∗. We denote by Pref(v) (resp. Suff(v)) the set of all
prefixes (resp. suffixes) of the word v. We say that two words u and v overlap if
ux = yv for some x, y ∈ Σ∗ with |x| < |v|. An integer p ≥ 1 is a period of a word
w = a1 . . . an, with ai ∈ Σ for all 1 ≤ i ≤ n, if ai = ai+p for all 1 ≤ i ≤ n− p.

A word w ∈ Σ+ is called primitive if it cannot be written as a power of
another word; that is, if w = un then n = 1 and w = u. For a word w ∈ Σ+, the
shortest u ∈ Σ+ such that w = un for some n ≥ 1 is called the primitive root of
the word w and is denoted by ρ(w). The following is a well-known property of
primitive words, see, e.g., [4], [5].

Proposition 1. Let u ∈ Σ+ be a primitive word. If u2 = xuy, then either x = ε
or y = ε.

A mapping θ : Σ∗ → Σ∗ is called an antimorphism if for any words u, v ∈ Σ∗,
θ(uv) = θ(v)θ(u). Moreover, a mapping θ : Σ∗ → Σ∗ is called an involution if,
for all words u ∈ Σ∗, θ(θ(u)) = u. An antimorphic involution is a mathematical
formalization of the WK complementarity of DNA single strands. Throughout
this paper we will assume that θ is an antimorphic involution on a given alphabet
Σ. A word w ∈ Σ∗ is called a θ-palindrome, or a pseudopalindrome if θ is not
specified, if w = θ(w) (see [13] and [14]).

The notions of periodic and primitive words were extended in [8] in the fol-
lowing way. A word w ∈ Σ+ is θ-periodic if w = w1 . . .wk for some k ≥ 2 and
words t, w1, . . . , wk ∈ Σ+ such that wi ∈ {t, θ(t)} for all 1 ≤ i ≤ k. Following
[14], in less precise terms, a word which is θ-periodic with respect to a given but
unspecified involutory morphism θ will be also called pseudoperiodic. The word
t in the definition of a θ-periodic word w is called a θ-period of w. We call a
word w ∈ Σ+ θ-primitive if it is not θ-periodic. The set of θ-primitive words is
strictly included in the set of primitive ones, see [8]; for instance, if we take a �= b
and θ(a) = b, θ(b) = a, then the word ab is primitive, but not θ-primitive. We
define the θ-primitive root of w, denoted by ρθ(w), as the shortest word t such
that w = w1 . . .wk for some k ≥ 1, wi ∈ {t, θ(t)} for all 1 ≤ i ≤ k, and w1 = t.
Note that if w is θ-primitive, then ρθ(w) = w.

We say that two words u and v commute if uv = vu. We can characterize the
commutation of two words in terms of primitive roots, see, e.g., [4], [5].
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Theorem 1. For u, v ∈ Σ∗, the following conditions are equivalent: i) u and
v commute; ii) u and v satisfy a nontrivial relation, i.e., a nontrivial equation
over two variables without constants; iii) u and v have the same primitive root.

Two words u and v are said to be conjugate if there exist words x and y such that
u = xy and v = yx. In other words, v can be obtained via a cyclic permutation
of u. The next known result, see, e.g., [4], [5], characterizes the conjugacy of two
words.

Theorem 2. Let u, v ∈ Σ+. Then, the following conditions are equivalent: i) u
and v are conjugate; ii) there exists a word z such that uz = zv; moreover, this
holds if and only if u = pq, v = qp, and z = (pq)ip, for some p, q ∈ Σ∗ and
i ≥ 0; iii) the primitive roots of u and v are conjugate.

The following periodicity result is due to Lyndon and Schützenberger, [9].

Theorem 3. If words u, v, w satisfy the relation ul = vnwm for some positive
integers l, n,m ≥ 2, then they are all powers of a common word, i.e., there exists
a word t such that u, v, w ∈ {t}∗.

The Fine and Wilf theorem, in its form for words, see [4], [5], illustrates another
fundamental periodicity property. It states that if two words u, v ∈ Σ∗, with
n = |u|, m = |v|, d = gcd(n,m), are such that if two powers ui and vj have a
common prefix of length at least n+m−d, then u and v are powers of a common
word, where gcd(n,m) denotes, as usual, the greatest common divisor of n and
m. Moreover, the bound n + m − d is optimal. The original result of Fine and
Wilf, [15], was formulated for sequences of real numbers.

This theorem was extended in [8] for the case when instead of dealing with
powers of two words ui and vj , we look at expressions over {u, θ(u)} and {v, θ(v)},
respectively. Its weaker version, which will be very useful, is presented as well.

Theorem 4 ([8]). Let u, v ∈ Σ+ be two distinct words with |u| > |v|. If there
exist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ hav-
ing a common prefix of length at least 2|u|+|v|−gcd(|u|, |v|), then ρθ(u) = ρθ(v).
Moreover, the bound 2|u| + |v| − gcd(|u|, |v|) is optimal.

Theorem 5 ([8]). Let u, v ∈ Σ+, α(u, θ(u)) ∈ u{u, θ(u)}∗, and β(v, θ(v)) ∈
v{v, θ(v)}∗ such that α(u, θ(u)) = β(v, θ(v)). Then ρθ(u) = ρθ(v).

The next two results, also from [8], will be very useful in our considerations.

Lemma 1 ([8]). For u, v ∈ Σ∗, if uv = θ(uv) and vu = θ(vu), then there exists
a word t ∈ Σ+ such that u, v ∈ {t, θ(t)}∗.

Lemma 2 ([8]). Let v ∈ Σ+ be a θ-primitive word. Then, θ(v)vx = yvθ(v) for
some words x, y ∈ Σ∗ with |x|, |y| < |v|, if and only if v = θ(v) and x = y = ε.
Similarly, vθ(v)v = xv2y for some x, y ∈ Σ∗ if and only if v = θ(v) and either
x = ε or y = ε.
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The following result will prove very useful in our future considerations.

Lemma 3. Let u ∈ Σ+ such that u = xz = zy for some x, y, z ∈ Σ+ with
x = θ(x) and y = θ(y). Then x, y, z, u ∈ {t, θ(t)}∗ for some t ∈ Σ+.

Proof. The equation u = xz = zy implies that x = pq, y = qp, and z = (pq)jp
for some p, q ∈ Σ∗ and j ≥ 0. Since x = θ(x) and y = θ(y), we have pq = θ(pq)
and qp = θ(qp). Then, Lemma 1 implies that there exists a word t ∈ Σ+ such
that p, q ∈ {t, θ(t)}∗. ��

3 Overlaps between θ-Primitive Words

It is well known that a primitive word v cannot occur nontrivially inside v2, see
Proposition 1. Thus, two expressions vi and vj , with i, j ≥ 1, cannot overlap
nontrivially on a sequence longer than |v|. A natural question is whether we can
have some nontrivial overlaps between two expressions α(v, θ(v)), β(v, θ(v)) ∈
{v, θ(v)}+, when v ∈ Σ+ is a θ-primitive word. In this section we completely
characterize all such nontrivial overlaps, and, moreover, in each case we also give
the set of all solutions of the corresponding equation.

We begin our analysis by giving two intermediate results.

Theorem 6. Let v ∈ Σ+ be a θ-primitive word and α(v, θ(v)), β(v, θ(v)) ∈
{v, θ(v)}+ such that α(v, θ(v)) · x = y · β(v, θ(v)), with x, y ∈ Σ+, |x|, |y| < |v|.
Then, v2 and θ(v)2 cannot occur simultaneously neither in α(v, θ(v)) nor in
β(v, θ(v)).

Proof. Suppose that both v2 and θ(v)2 occur in α(v, θ(v)); the case when they
both occur in β(v, θ(v)) is symmetric. Moreover, since θ is an involution, we can
suppose without loss of generality that v2 occurs before θ(v)2, thus implying
that v2θ(v) is a factor in α(v, θ(v)). Since v (resp. θ(v)) is primitive, the border
between any two consecutive v’s (resp. θ(v)’s) falls inside a θ(v) (resp. v), see
Fig. 1. Thus, v2θ(v) overlaps either with θ(v)v2 or with θ(v)vθ(v) or with θ(v)2v.

θ(v)

v v θ(v). . . . . .

. . . . . .
v2 or vθ(v) or θ(v)v

Fig. 1. The case when v2θ(v) is a factor in α(v, θ(v))

In all three cases the nontrivial overlap between vθ(v) and θ(v)v contradicts the
θ-primitivity of v, see Lemma 2. ��

Theorem 7. For a θ-primitive word v ∈ Σ+, let α(v, θ(v)), β(v, θ(v)) ∈
{v, θ(v)}+ such that α(v, θ(v)) · x = y · β(v, θ(v)) for some x, y ∈ Σ+ with
|x|, |y| < |v|. Then, for any i ≥ 1, neither vθ(v)iv nor θ(v)viθ(v) can occur
either in α(v, θ(v)) or in β(v, θ(v)).
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Proof. Suppose that vθ(v)iv occurs in α(v, θ(v)) for some i ≥ 1. We assumed that
x, y ∈ Σ+ and |x|, |y| < |v| so that the factor vθ(v)iv contains as a proper factor
γ(v, θ(v)) ∈ {v, θ(v)}i+1, i.e., there exist some p, q ∈ Σ+ such that vθ(v)iv =
pγ(v, θ(v))q. Due to Lemma 2 and θ(v) being primitive, γ(v, θ(v)) = vi+1. Now
we have vθ(v)iv = pvi+1q and hence vθ(v)v = pv2q. However, this contradicts
Lemma 2. All the other cases can be proved similarly. ��

As an immediate consequence of the previous two theorems, for a given θ-
primitive word v, if α(v, θ(v))·x = y ·β(v, θ(v)) with x, y ∈ Σ+, |x|, |y| < |v|, then
α(v, θ(v)) and β(v, θ(v)) can be only of the following types vi, viθ(v), vθ(v)i,
θ(v)i, θ(v)iv, or θ(v)vi for some i ≥ 1. The next result refines this characteriza-
tion further. However, due to space limitations, we omit its proof.

Theorem 8. Let v ∈ Σ+ be a θ-primitive word. Then, the only possible proper
overlaps of the form α(v, θ(v)) · x = y · β(v, θ(v)) with α(v, θ(v)), β(v, θ(v)) ∈
{v, θ(v)}+, x, y ∈ Σ+ and |x|, |y| < |v| are given in Table 1 (modulo a substitu-
tion of v by θ(v)) together with the characterization of their sets of solutions.

Table 1. Characterization of possible proper overlaps of the form α(v, θ(v)) · x =
y · β(v, θ(v)). For the last three equations, n ≥ 0, m ≥ 1, r, t ∈ Σ+ such that r = θ(r),
t = θ(t), and rt is primitive. Note that the 4th and 5th equations are the same up to
the antimorphic involution θ.

Equation Solution
vix = yθ(v)i, i ≥ 1 v = yp, x = θ(y), p = θ(p),

and whenever i ≥ 2, y = θ(y)
vx = yv v = (pq)j+1p, x = qp, y = pq for some p, q ∈ Σ+, j ≥ 0
vθ(v)x = yvθ(v), v = (pq)j+1p, x = θ(pq), y = pq, with j ≥ 0, qp = θ(qp)
vi+1x = yθ(v)iv, i ≥ 1 v = r(tr)n+mr(tr)n, x = (tr)mr(tr)n, y = r(tr)n+m

vθ(v)ix = yvi+1, i ≥ 1 v = (rt)nr(rt)m+nr, y = (rt)nr(rt)m, x = (rt)m+nr

vθ(v)ix = yviθ(v), i ≥ 2 v = (rt)nr(rt)m+nr, y = (rt)nr(rt)m, x = (tr)mr(tr)n

4 An Extension of Lyndon and Schützenberger’s Result

For u, v, w ∈ Σ+ and �, n,m ≥ 2, let us consider some expressions α(u, θ(u)) ∈
{u, θ(u)}�, β(v, θ(v)) ∈ {v, θ(v)}n, and γ(w, θ(w)) ∈ {w, θ(w)}m satisfying the
equation α(u, θ(u)) = β(v, θ(v)) · γ(w, θ(w)). We say that the triple (l, n,m) im-
poses θ-periodicity on u, v, w, (or shortly, imposes θ-periodicity), if the equation
α(u, θ(u)) = β(v, θ(v)) · γ(w, θ(w)) admits only solutions of the form u, v, w ∈
{t, θ(t)}∗ for some word t ∈ Σ+. Note that, if (l, n,m) imposes θ-periodicity,
then so does (l,m, n), and vice versa.

In the classical case of the equation ul = vnwm, Lyndon and Schützenberger’s
result (Theorem 3) states that any triple (l, n,m) with l, n,m ≥ 2 imposes
classical periodicity on u, v, w, with the same period. In this section we extend
this result by considering the more general equation α(u, θ(u)) = β(v, θ(v)) ·
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Table 2. Result summary for the extended Lyndon-Schützenberger equation

l n m θ-periodicity
≥ 6 ≥ 3 ≥ 3 YES Theorem 9

5 ≥ 5 ≥ 5 YES Theorem 10
5 4 ≥ 4 YES Theorem 12
5 3 ≥ 3 YES Theorem 13

≥ 3 2 ≥ 1 NO Examples 1 and 2

γ(w, θ(w)). Note that the fact that a certain triple (l, n,m) imposes θ-periodicity
does not imply that (l′, n′,m′) imposes θ-periodicity for l′ > l or n′ > n or
m′ > m.

The results of this section are summarized in Table 2. Overall, combining all
the results from this section we obtain that l ≥ 5, n ≥ 3, m ≥ 3 imposes θ-
periodicity on u, v, and w. In contrast, for l ≥ 3, once either n = 2 or m = 2,
(l, n,m) does not always impose θ-periodicity, see Examples 1 and 2. Therefore,
when l ≥ 5, (l, 3, 3) is the optimal bound. In the case when l = 2, l = 3, or l = 4,
the problem of finding optimal bounds is still open.

Example 1. Let Σ = {a, b} and θ : Σ∗ → Σ∗ be the mirror image defined as
θ(a) = a, θ(b) = b, and θ(w1 . . .wn) = wn . . .w1, where wi ∈ {a, b} for all
1 ≤ i ≤ n. Take now u = akb2a2k, v = θ(u)la2kb2 = (a2kb2ak)la2kb2, and
w = a2, for some k, l ≥ 1. Then, although θ(u)l+1ul+1 = v2wk, there is no word
t ∈ Σ+ with u, v, w ∈ {t, θ(t)}+, i.e., for any k, l ≥ 1, the triple of numerical
parameters (2l + 2, 2, k) is not enough to impose θ-periodicity.

Example 2. Consider again Σ = {a, b} and θ : Σ∗ → Σ∗ be the mirror image
defined in the previous example and take u = b2(aba)k, v = ulb = (b2(aba)k)lb,
and w = aba for some k, l ≥ 1. Then, although u2l+1 = vθ(v)wk, there is no
word t ∈ Σ+ with u, v, w ∈ {t, θ(t)}+, i.e., for any k, l ≥ 1, (2l + 1, 2, k) is not
enough to impose θ-periodicity.

The next two results analyze the cases when we have triples (l, n,m) with l ≥ 6
and n,m ≥ 3 and respectively (5, n,m) with n,m ≥ 5. The proof of Theorem 10
employs similar techniques as in Theorem 9, so we omit it here.

Theorem 9. Let u, v, w ∈ Σ+, n,m ≥ 3, l ≥ 6, ui ∈ {u, θ(u)} for 1 ≤ i ≤ l,
vj ∈ {v, θ(v)} for 1 ≤ j ≤ n, and wk ∈ {w, θ(w)} for 1 ≤ k ≤ m. If u1 . . .ul =
v1 . . . vn w1 . . .wm, then there exists a word t ∈ Σ+ such that u, v, w ∈ {t, θ(t)}+.

Proof. Let us suppose that |v1 . . . vn| ≥ |w1 . . .wm|; the other case is symmetric
and can be solved similarly. Then, |v1 . . . vn| ≥ 1

2 |u1 . . .ul| ≥ 3|u|, since l ≥
6. Since n ≥ 3, this means that u1 . . .ul and v1 . . . vn share a common prefix
of length larger than both 3|u| and 3|v|. Thus, we can apply Theorem 4, to
obtain that u, v ∈ {t, θ(t)}+ for some θ-primitive word t ∈ Σ+. Moreover, since
u1 . . .ul = v1 . . . vn w1 . . .wm, this implies w1 . . .wm ∈ {t, θ(t)}∗. Since t is θ-
primitive, Theorem 5 implies that also w ∈ {t, θ(t)}+. ��
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Theorem 10. Let u, v, w ∈ Σ+, n,m ≥ 5, ui ∈ {u, θ(u)} for 1 ≤ i ≤ 5, vj ∈
{v, θ(v)} for 1 ≤ j ≤ n, and wk ∈ {w, θ(w)} for 1 ≤ k ≤ m. If u1u2u3u4u5 =
v1 . . . vn w1 . . .wm, then there exists a word t ∈ Σ+ such that u, v, w ∈ {t, θ(t)}+.

The triple (5, n,m) also turns out to impose θ-periodicity for any n ≥ 4 and
m ≥ 7.

Theorem 11. Let u, v, w ∈ Σ+, n ≥ 4, m ≥ 7, ui ∈ {u, θ(u)} for 1 ≤ i ≤
5, vj ∈ {v, θ(v)} for 1 ≤ j ≤ n, and wk ∈ {w, θ(w)} for 1 ≤ k ≤ m. If
u1u2u3u4u5 = v1 . . . vn w1 . . .wm, then there exists a word t ∈ Σ+ such that
u, v, w ∈ {t, θ(t)}+.

Proof. Unless the border between vn and w1 falls inside u3, Theorem 4 concludes
the existence of such t. So, assume that the border falls inside u3. If the border
between u2 and u3 falls inside some vi except vn, then, due to Theorem 4, we
obtain u, v, w ∈ {t, θ(t)}+ for some t ∈ Σ+. Otherwise, we have that (n−1)|v| <
2|u|, which means |v| < 2

n−1 |u| ≤
2
3 |u|. Similarly, if the border between u3 and

u4 does not fall inside w1, we reach the existence of such t; otherwise |w| <
2

m−1 |u| ≤
1
3 |u|. Under the condition that vn and w1 straddle these respective

borders, the equation cannot hold because v and w are too short. ��
We already know from Example 2 that for any m ≥ 1, the triple (5, 2,m) is
not enough to impose θ-periodicity. So, we investigate next what would be the
optimal bound for the extension of the Lyndon and Schützenberger result when
the first parameter is 5. Note that, without loss of generality, we can assume
n ≤ m. Then, due to Theorem 10, all we have to investigate are the cases
(5, 3,m) for m ≥ 3 and (5, 4,m) for m ≥ 4. The next intermediate lemma will
be useful in the analysis of these cases.

Lemma 4. Let u ∈ Σ+ such that u = xy and y ∈ Pref(u) for some θ-palindrome
words x, y ∈ Σ+. If |y| ≥ |x|, then ρ(x) = ρ(y) = ρ(u).

Proof. We have u = xy = yz for some z ∈ Σ+ of the same length as x. The
length condition implies that x ∈ Pref(y). Since x = θ(x) and y = θ(y), this
means that x ∈ Suff(y) and hence z = x. So we have u = xy = yx, and hence x,
y, and u share their primitive root. ��
Unlike in the case of the original Lyndon-Schützenberger equation, the inves-
tigation of our extension entails the consideration of an enormous amount of
cases since for each variable ui, vj , wk we have two possible values. However,
in almost all cases, it is enough to consider the common prefix between u1 . . .ul

and v1 . . . vn or the common suffix between u1 . . .ul and w1 . . .wm to prove that
either the equation imposes θ-periodicity or the equation cannot hold.

Note that for the (5, 3,m) or (5, 4,m) extensions of the Lyndon-Schützenber-
ger equation, we only have to consider the case when the border between vn

and w1 is inside u3 because otherwise Theorem 4 imposes θ-periodicity. Also
even if the border is inside u3, if m|w| ≥ 2|u| + |w|, then we reach the same
conclusion. Moreover, we can assume that w is θ-primitive since otherwise we
would just increase the value of the parameter m. These observations justify the
assumptions which will be made in the following propositions.
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Proposition 2. Let u, v ∈ Σ+ such that v is a θ-primitive word, u1, u2, u3 ∈
{u, θ(u)}, and v1, · · · , v2m+1 ∈ {v, θ(v)} for some m ≥ 1. If v1 · · · v2m+1 is a
proper prefix of u1u2u3 and 2m|v| < 2|u| < (2m + 1)|v|, then u2 �= u1 and
v1 = · · · = v2m+1. Moreover, v1 = yp and u1u2 = (yp)2my for some y, p ∈ Σ∗

such that y = θ(y) and p = θ(p).

Proposition 3. Let u, v ∈ Σ+ such that v is θ-primitive, u1, u2, u3 ∈ {u, θ(u)},
and v1, · · · , v2m ∈ {v, θ(v)} for some m ≥ 2. If v1 · · · v2m ∈ Pref(u1u2u3) and
(2m − 1)|v| < 2|u| < 2m|v|, then either u1 �= u2 and v1 = · · · = v2m, with
v1 = yp and u1u2 = (yp)2m−1y for some y, p ∈ Σ∗ such that y = θ(y) and
p = θ(p), or u1 = u2, v1 = · · · = vm, and vm+1 = · · · = v2m = θ(v1), with
u1 = [r(tr)i(rt)i+jr]m−1r(tr)i(rt)j and v1 = r(tr)i(rt)i+jr for some i ≥ 0,
j ≥ 1, and r, t ∈ Σ∗ such that r = θ(r), t = θ(t), and rt is primitive.

These propositions show that if we suppose v to be θ-primitive, then the values
of u1, u2, u4, and u5 determine the values of v1, . . . , vn and w1, . . . , wm uniquely,
modulo a substitution of v by θ(v), or of w by θ(w). Thus, they decrease signif-
icantly the number of cases to be considered. Furthermore, the value of u3 may
put an additional useful restriction on v or w.

Lemma 5. Let u, v ∈ Σ+ such that v is a θ-primitive word, u1, u2, u3 ∈ {u, θ(u)},
and v1, · · · , vn ∈ {v, θ(v)} for some n ≥ 3. If v1 · · · vn ∈ Pref(u1u2u3), u1 �= u2,
u1 = u3, and (n− 1)|v| < 2|u| < n|v|, then |v| < 4

2n−1 |u|.

Proof. Since θ is an involution, we may assume without loss of generality that
u1 = u and v1 = v. Propositions 2 and 3 imply that v1 = · · · = vn = v.
Hence uθ(u) = vn−1x for some x ∈ Pref(v). Since uθ(u) is a θ-palindrome,
vn−1x = θ(x)θ(v)n−1 and this implies that x = θ(x) and v = yx for some
nonempty θ-palindrome y (see Fig. 2).

y x y

u
θ(u)

u

v v

θ(v) v

Fig. 2. Since u begins with v, y is a prefix of v

Since v ∈ Pref(u), we obtain that y ∈ Pref(v). If |x| ≤ |y|, then Lemma 4
leads to a contradiction with the θ-primitivity of v. Thus |y| < |x|, which implies
that |y| < 1

2 |v|. This means that |v| < 4
2n−1 |u| because |y| = n|v| − 2|u|. ��

All we did so far in studying the extended Lyndon-Schützenberger equation
u1 . . .u5 = v1 . . . vn w1 . . .wm was to consider either the common prefix of
v1 . . . vn and u1 . . .u5, or the common suffix of w1 . . .wm and u1 . . .u5. Next, we
combine them together and consider the whole equation. The following lemma
proves to be useful for our considerations.
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Lemma 6. Let u, v ∈ Σ+ such that v is a θ-primitive word, u1, u2, u3 ∈ {u, θ(u)}
and v1, · · · , vn ∈ {v, θ(v)} for some n ≥ 3. If v1 · · · vn = u1u2z for some
z ∈ Pref(u3), u1 = u2, and (n − 1)|v| < 2|u|, then v1 = xyx and z = x2

for some x, y ∈ Σ+ such that x = θ(x) and yx = θ(yx).

Proof. Just as before, we can assume that u1 = u2 = u and v1 = v. Propositions
2 and 3 imply that n must be even, so let n = 2m for some m ≥ 2, and
u = {r(tr)i(rt)i+jr}m−1r(tr)i(rt)i+j and v = r(tr)i(rt)i+jr for some r, t ∈ Σ∗

such that r = θ(r), t = θ(t), i ≥ 0, and j ≥ 1. By taking x = r(tr)i and y = (rt)j ,
we complete the proof. ��
Next, we prove that the triple (5, 4,m) imposes θ-periodicity for any m ≥ 4.

Theorem 12. Let u, v, w ∈ Σ+, u1, u2, u3, u4, u5 ∈ {u, θ(u)}, v1, v2, v3, v4 ∈
{v, θ(v)}, and w1, · · · , wm ∈ {w, θ(w)} for some m ≥ 4. If these words sat-
isfy u1u2u3u4u5 = v1v2v3v4 w1 · · ·wm, then u is not θ-primitive and u, v, w ∈
{t, θ(t)}+ for some t ∈ Σ+.

Proof. First note that we can assume that w is θ-primitive, since otherwise we
would just increase the numerical parameter m. If u is not θ-primitive, that is,
u ∈ {p, θ(p)}k for some θ-primitive word p ∈ Σ+ and k ≥ 2, then the equation
can be rewritten as p1p2 · · · p5k = v1v2v3v4w1 . . .wm, where pi ∈ {p, θ(p)} for
1 ≤ i ≤ 5k. But then, due to Theorem 9, we obtain that v, w ∈ {p, θ(p)}+.
Furthermore, we can assume that also v is θ-primitive. Indeed, if it is not, then
v ∈ {q, θ(q)}j for some θ-primitive word q and j ≥ 2. Then, the equation becomes
u1 . . .u5 = q1 . . . q4jw1w2 . . .wm, where qi ∈ {q, θ(q)} for 1 ≤ i ≤ 4j. But this
implies that u,w ∈ {q, θ(q)}+ due to Theorem 11. Since u and w are assumed to
be θ-primitive, u,w ∈ {q, θ(q)} and we have 5|q| < 4j|q|+m|q|, which contradicts
the fact that u, v, and w satisfy the equation u1 . . .u5 = q1 . . . q4jw1w2 . . .wm.
Even when v is θ-primitive, if m ≥ 7 then the same argument leads to the same
contradiction.

Now we will show that if u, v, and w are θ-primitive, then the equation
cannot hold for m ≤ 6. Since θ is an involution, we can assume that u1 =
u, v1 = v, and w1 = w. Let us start by supposing that u, v, and w satisfy
u1u2u3u4u5 = v1v2v3v4 w1 · · ·wm. Now, we have several cases depending on
where the border between v4 and w1 is located. If it is left to or on the border
between u2 and u3, then Theorem 4 implies that u,w ∈ {t, θ(t)}+ for some θ-
primitive word t ∈ Σ+, which further implies that also v ∈ {t, θ(t)}+. In fact,
u, v, w ∈ {t, θ(t)} because they are θ-primitive. Then |u1 . . .u5| = 5|t|, while
|v1v2v3v4w1 . . .wm| = (4 + m)|t| with m ≥ 4, which is a contradiction. The case
when the border between v4 and w1 is right to or on the border between u3 and
u4 will lead the contradiction along the same argument.

So let us suppose that |u1u2| < |v1v2v3v4| < |u1u2u3|. Note that under this
supposition, |v|, |w| < |u|. If m|w| ≥ 2|u| + |w| − 1, then u3u4u5 and w1 . . .wm

share a suffix long enough to impose the θ-periodicity onto u and w due to Theo-
rem 4. However, as explained before, this leads to a contradiction. This argument
also applies to u1u2u3 and v1v2v3v4. As a result, it is enough to consider the
case when 3|v| < 2|u| < 4|v| and (m− 1)|w| < 2|u| < m|w|.
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There are 16 cases to be considered depending on the values of u2, u3, u4, and
u5. Note that once these values are determined, the values of v1, v2, v3, v4 and
w1, · · · , wm are set uniquely due to Propositions 2 and 3. We number these cases
from 0 to 15 by regarding u2u3u4u5 as the 4-bit number based on the conversion
u → 0 and θ(u) → 1. For example, case 5 is u2u3u4u5 = uθ(u)uθ(u).

First, we consider the case 2, that is, uuuθ(u)u = v1 · · · v4 w1 · · ·wm. Since
3|v| < 2|u| < 4|v|, |v| < 2

3 |u|. Moreover, Lemma 5 implies that |w| < 4
2m−1 |u|.

Then 5|u|− (4|v|+m|w|) > 0 which contradicts the fact that u, v, and w satisfy
the given equation. The same arguments work for the cases when either u1u2u3 =
uθ(u)u (i.e., cases 8, 9, 10, 11), or u3u4u5 = uθ(u)u (i.e., cases 2, 10), or u3u4u5 =
θ(u)uθ(u) (i.e., cases 5, 13).

Secondly we consider the case 1, that is, uuuuθ(u) = v1 · · · v4w1 · · ·wm. Let
uux = v1 · · · v4, yuθ(u) = w1 · · ·wm for some x, y ∈ Σ+ such that u = xy. We
immediately obtain now, due to Lemma 6, that x = θ(x). Since x ∈ Pref(u3), this
means that x ∈ Suff(u5), which implies that wm ∈ Suff(x) or x ∈ Suff(wm). In
both cases, we obtain that u3u4u5 and wmw1w2 . . .wm share a common suffix of
length at least 2|u|+ |w|−1. Then we employ Theorem 4 to lead a contradiction.
Among the cases left to be investigated, the only one where we cannot apply
this technique is case 0.

Now, case 0 is u1 = u2 = u3 = u4 = u5 = u. Applying Propositions 2 and 3, we
have that m = 2k for some k ≥ 2, w1 = · · · = wk = w, wk+1 = · · · = w2k = θ(w),
v1 = v2 = v, and v3 = v4 = θ(v). Note that k ∈ {2, 3} since 4 ≤ m ≤ 6. Then,
Lemma 6 implies that u = xyxxy = (y′x′x′)k−1y′x′ = x2x′2, v = xyx, and
θ(w) = x′y′x′ for some x, y, x′, y′ ∈ Σ+ with x = θ(x), yx = θ(yx), x′ = θ(x′),
and x′y′ = θ(x′y′).

When k = 2, i.e., xyxxy = y′x′x′y′x′, we have three subcases depending on
the lengths of xy and y′x′. If |xy| < |y′x′|, then by looking at the two sides of the
equality xyxxy = y′x′x′y′x′, we obtain y′x′ = xyz = θ(z)xy and x = zx′θ(z) for
some z ∈ Σ+. Substituting x = zx′θ(z) into xyz = θ(z)xy we get z = θ(z), and
hence y′x′ = xyz = zxy. Thus, y′x′, xy, z ∈ {p}+ for some primitive word p. Let
z = pi and y′x′ = pj for some i, j ≥ 1. Then y′x′ = zxy and x = zx′z imply that
pj = p2ix′piy. Since p is primitive, we obtain that ρ(x′) = p, which contradicts
the θ-primitivity of θ(w) = x′y′x′. For the case when |xy| > |y′x′| we can use
similar arguments to reach a contradiction. Finally, if |xy| = |y′x′|, then x = x′,
which is a contradiction with the θ-primitivity of u since u = xxx′x′.

When k = 3, i.e., u = xyxxy = (y′x′x′)2y′x′, we first note that |xy| > |y′x′|
and |xyx| > |y′x′x′|. If |xy| ≥ |y′x′x′|, then, by the Fine and Wilf theorem,
ρ(xyx) = ρ(y′x′x′). Since xyx is strictly longer than y′x′x′, this means that
v = xyx is not primitive, which is a contradiction. Otherwise, i.e., |y′x′| <
|xy| < |y′x′x′|, let xy = y′x′z for some z ∈ Pref(x′). Since x′ = θ(x′), the
equation xyxxy = (y′x′x′)2y′x′ also implies that xy = θ(z)y′x′. Moreover, since
xy = y′x′z = θ(z)y′x′ and θ(z) ∈ Suff(x′), we obtain z = θ(z). Thus xy, y′x′, z ∈
{q}+ for some primitive word q ∈ Σ+, which, just as above, contradicts the θ-
primitivity of θ(w). ��
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The next result shows that also the triple (5, 3,m) imposes θ-periodicity for any
m ≥ 3. However, due to space limitations, we omit its proof.

Theorem 13. Let u, v, w ∈ Σ+, u1, u2, u3, u4, u5 ∈ {u, θ(u)}, v1, v2, v3
∈ {v, θ(v)}, and w1, · · · , wm ∈ {w, θ(w)} with m ≥ 3. If these words verify
the equation u1u2u3u4u5 = v1v2v3 w1 · · ·wm, then u is not θ-primitive and
u, v, w ∈ {t, θ(t)}+ for some t ∈ Σ+.
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Abstract. We show here how to construct a cellular automaton whose
asymptotic set (the set of configurations it converges to) is maximally
complex: it contains only configurations of maximal Kolmogorov com-
plexity. This cellular automaton hence exhibits the most complex
possible asymptotic behavior.

1 Introduction

Attractors are one of the key concepts in the study of dynamical systems. Dis-
crete complex systems have the same concern and their asymptotic behavior has
been the subject matter of many publications in theoretical computer science.

Cellular automata form the simplest of these complex systems and can pro-
duce complex behaviors from a finitely defined local transition rule. Many differ-
ent classifications have been proposed, several of which based on their asymptotic
behavior [2,4,8,12].

Litterature usually considers limit sets as attractors; they have many interest-
ing properties (topological and algorithmic). However they contain some tran-
sient configurations. In this article we work both on limit sets and on a tighter
definition: the asymptotic set. It was recently proved by Cervelle [3] that some cel-
lular automata have linearly complex asymptotic sets but the theoretical bound
on the complexity of two-dimensional cellular automata is quadratic. We show
here that an optimal quadratic bound can indeed be achieved.

Our construction is inspired by the proof of a complexity result on tilings of
the plane [5]. Nevertheless, there is a major difference: tilings are “static” models
and only linear complexity can be obtained. Taking advantage of the dynamical
aspect of cellular automata gives an improvement in the complexity to n2.

The article is organized as follows: Section 2 recalls some definitions and prop-
erties about cellular automata, asymptotic behavior and Kolmogorov complexity.
Section 3 states the main theorem and proves it by detailing the construction of
a cellular automaton of high complexity. Section 4 discusses possible extensions
and improvements of the result.

2 Definitions

Definition 1 (Cellular Automaton). A cellular automaton (CA) is a dis-
crete dynamical system defined by a quadruple A = (d,Q, V, δ) where d ∈ N is

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 195–206, 2009.
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the dimension of the CA, Q is a finite set called set of states, V ⊆ Zd is a finite
set called neighborhood and δ : QV → Q is the local transition function of the
automaton.

For a given automaton A = (d,Q, V = {v1, . . . , vn}, δ), we call configuration
any mapping C : Zd → Q. Elements of Zd are called cells. Given a configuration
C, we say that a cell c is in state q if C(c) = q. From the local function δ we
define a global function Δ : QZ

d → QZ
d

associating any configuration C with
the configuration C′ such that

∀x ∈ Zd,C′(x) = δ(C(x + v1), . . . ,C(x + vn))

In this article we mainly consider two-dimensional CA (d = 2). We work
on the Moore neighborhood (9 nearest neighbors), although the choice of the
neighborhood has little relevance to our construction.

Definition 2 (Spreading State). A CA A = (d,Q, V, δ) is said to have a
spreading state qs if, as soon as one of the neighbors of a cell is in state qs at
time t, then it becomes in state qs at time (t + 1).

Definition 3 (Asymptotic Set). The asymptotic set of a CA A is the union
of the accumulation points1 of all its orbits:

U(A) =
⋃

C∈QZd

⋂
n∈N

{Δi(C)}i≥n

Informally, a configuration C is in the asymptotic set of A if there is a configura-
tion C0 such that the orbit of C0 has infinitely many configurations that coincide
with C on arbitrarily large areas around the origin.

This definition is different from the standard definition of a limit set Λ(A) =⋂
n∈N Δn(QZ

d

). The limit set has nice topological properties (in particular it is
a closed set) but contains, in addition to all the asymptotic configurations, some
that disappear after some time2. The asymptotic set more accurately captures
the asymptotic behavior of the automaton.

In the sequel, we use the following two lemmas (the proofs are very straight-
forward from the definitions):

Lemma 1. There is always a uniform configuration in the asymptotic set of a
cellular automaton. Moreover, Δ(U) = U.

Lemma 2. If a cellular automaton has a spreading state �, the uniformly �
configuration is in the asymptotic set of the automaton. Moreover, the � state
does not appear in any other configuration of the asymptotic set.
1 We consider the usual topology induced by the Cantor distance: the distance between

two configurations C1 and C2 is 2−k where k = min{‖x‖ | C1(x) �= C2(x)}.
2 Consider for instance a one-dimensional CA with two states 0 and 1 for which each

cell takes the maximal of the states in its neighborhood. Finite segments of 0 disap-
pear over time but configurations of the form ω10n1ω have pre-images of any order
and are hence in the limit set.
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Definition 4 (Kolmogorov Complexity). Given a recursive function f , the
Kolmogorov complexity relative to f of a string x ∈ {0, 1}∗ is defined as Kf(x) =
min{|y| | f(y) = x} (it is infinite if the set {|y| | f(y) = x} is empty).

The idea is then to drop the recursive function f . This can be done by using
the founding Kolmogorov theorem: there exists a recursive function U (called
additively optimal) such that for any recursive function f , there is a constant
cf ∈ N such that for any string x ∈ {0, 1}∗ we have KU (x) ≤ Kf(x) + cf . The
Kolmogorov complexity of a string x is then denoted as K(x) = KU (x) for some
additively optimal U .

Informally, the Kolmogorov complexity of an object is its shortest possible
description (after choosing the description language). In the following we will
talk about Kolmogorov complexity of square patterns over a finite alphabet (not
necessarily {0, 1}). It is defined by choosing an encoding of these patterns into
words over {0, 1} and considering the Kolmogorov complexity of the resulting
encoding. The chosen encoding does not matter since it only affects the result
up to an additive constant.

We will use the following well known properties of the Kolmogorov complexity:

Proposition 1. There exists a constant c such that any string x has complexity
less than (|x|+c) and any square pattern of dimension n×n over a finite alphabet
Q has complexity at most (log2(|Q|).n2 + c).

For all ρ ∈ R it is possible to enumerate all strings x such that K(x) ≤ ρ.|x|.

Definition 5 (ρ-complexity). Given a constant ρ > 0, a square pattern of size
n× n on an alphabet Q is said to be ρ-complex if its Kolmogorov complexity is
greater than ρ.n2.

A configuration C ∈ QZ
2

of the plane is ρ-complex if there exists a constant
n0 such that all square patterns of size n× n for n ≥ n0 are ρ-complex.

Square patterns and configurations that are not ρ-complex are said to be
ρ-simple.

3 Main Theorem

This whole section is dedicated to the proof of the following theorem:

Theorem 1. For any constant 0 < ρ < 1 there exists a CA A whose asymp-
totic set contains infinitely many ρ-complex configurations and only one ρ-simple
configuration.

For practical and readability reasons, we will not give here a complete formal
proof of the theorem. We will instead describe the construction of a cellular
automaton that verifies the announced property and show how to solve the
different difficulties that arise. A good understanding of the main ideas should
be enough to convince the reader that a complete formal proof can indeed be
derived.
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Intuitively, for this constructed CA, all configurations of the asymptotic set
are complex, except the unavoidable constant one. Its limit set however has
more than these configurations as it can also have “hybrid” configurations that
are a reunion of complex areas (areas that can be extended into ρ-complex
configurations) and uniform areas.

3.1 Layered Structure

About Layers. The automaton will be described as a finite superposition of
“layers”. Saying that a cellular automaton has n layers means that its set of
states is the cartesian product of n finite sets of “sub-states” (Q = Q1 × Q2 ×
. . .×Qn). Layers evolve simultaneously. Some layers can work independently of
the others (the sub-state of a cell only depends on the corresponding sub-states
of its neighbors) while some will evolve differently according to what lies on the
other layers.

Layers are mainly used to simplify the description of a cellular automaton: we
sometimes need to perform different computations on the same set of cells, in
which case we use a layer for each of the computations. If there are only finitely
many computations to perform on each cell (and the bound is uniform) the set
of states of the automaton thus constructed by layers remains finite.

We use three main layers and a spreading state �. The set of states of the
automaton is therefore Q = {�}∪ (QB ×QR ×QC) where QB, QR and QC are
the finite sets of sub-states corresponding to each layer.

The Bitmap Layer. The first layer is a very simple one. It contains only one
bit (QB = {0, 1}) on each cell and this bit does not change when the automa-
ton evolves (except if the � state propagates over all layers of course). It is
nonetheless very important to our automaton because it is where the complex-
ity will be. The whole automaton will then be designed to search for ρ-simple
square patterns on this layer. If one is found then a � state will appear and the
configuration will not be in the asymptotic set.

Conversely, if none of the patterns is ρ-simple then no � state will appear and
there will be a configuration in the asymptotic set whose bitmap layer is the one
considered. Such a configuration is ρ-complex no matter what information lies
on the other layers.

The Robinson Layer. The second layer is a Robinson tiling. This means
that each cell of the automaton is associated to one of the Wang tiles of the
considered set. QR is therefore a set of Wang tiles. This layer does not change
over time either, but each cell checks locally the correctness of the tiling. If a cell
sees an error in its surrounding, a � state is generated and, as seen before, the
configuration is not in the asymptotic set. The asymptotic set can hence only
contain configurations for which the Robinson layer contains a valid tiling of the
plane. Because this layer does not change over time, we will use the properties
of the Robinson tiling to define square areas on which a computation can be
realized.
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The Computation Layer. This last layer is the one where the real compu-
tation takes place. It will use the squares of the Robinson layer to define areas
on which separate computations will enumerate ρ-simple patterns and look for
them on the bitmap layer. When a ρ-simple pattern is found, a spreading state
� is produced and the whole configuration is thus removed from the asymptotic
set.

3.2 The Robinson Hierarchy

Properties of the Robinson Tiling. Fully describing the construction of a
Robinson tiling and proving its properties is way beyond the scope of this article.
Extensive literature has been written on the subject and any reader unfamiliar
with the techniques but eager to learn more about it should refer to the books
and articles presented in the bibliography [10,6,1]. We will only focus on the
general properties of valid tilings without discussing how such properties are
enforced locally by a set of Wang tiles.

The construction we will be using here is the “strong Robinson tiling” pre-
sented in [9]. Using this construction we can add decorations to the tiles (we
“draw” lines on each tile) such that any valid tiling of the plane exhibits a self-
similar structure of squares of different sizes. More precisely, in such strong
Robinson tilings, all squares of a given size are aligned, while in the original
Robinson tiling, it is not always the case because of the degenerate case where
a fracture line appears.

Robinson Squares. The size of a square is the length of its sides. Any valid
tiling has squares of size 4n for all n. Squares of the same size are regularly
arranged on a grid (rows and columns of aligned squares). The space between
two adjacent squares of size 4n is exactly 4n. Moreover, grids of squares of
different sizes are placed the ones relatively to the others in such a way that
each square of size 4n+1 contains four squares of size 4n. Figure 1 illustrates a
portion of a valid Robinson tiling (filled and hatched areas should be ignored for
now).

Infinite Squares. An important property of the Robinson squares that we will
be using later is that each row and each column of the plane contains sides of
squares of exactly one size: two squares of different sizes cannot have aligned
sides and there are square sides on every row and column. A special case is when
all squares are placed in such a way that a line or column has no finite-sized
square side on it. In this case, an “infinite square” fills the empty row or column:
if there was only an empty column (or an empty row), a bi-infinite line goes
through it: it is the side of an infinite square. If both a line and a column are left
empty, two perpendicular semi-infinite lines form the angle of an infinite square.

Computation. Robinson squares will be required to perform some computa-
tional tasks. The computation will take place on the lower side of the square.
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For practical reasons, we will ignore squares that are too small to start a cor-
rect computation. We will therefore only consider squares of size greater than
s0 = 4k0 for some s0 that should be chosen after explaining the whole construc-
tion to see how much space a segment needs to correctly start its computation.
From now on, Robinson squares of size 4k0+n will be called squares of level n (or
simply n-squares). Squares of level 0 are the smallest ones that we will consider.

The Life Cycle of a Robinson Square. Each Robinson square (large enough
since we are ignoring the smaller ones) will perform a computation on its lower
segment. Because this segment is finite, the duration of a computation before
entering a loop is also limited. To make sure that each square does its verifi-
cation correctly, we will reset the whole computation periodically. To do so, we
implement a binary counter on the lower side of each square that starts on the
bottom left corner and grows towards the bottom right one. When the counter
reaches the bottom right corner of the square, a signal resets the counter and
the computation that takes place on the square.

Incrementation signals are sent by all bottom left angles of all Robinson
squares. Any Robinson square of size s will be reset by its counter after at most
2s+1 steps no matter what computation it was initially performing (if any). From
there we know that the square behaves as intended from a freshly initialized con-
figuration. The duration of a cycle is exponential in the size of the square, and
we will show that it is sufficient to perform the tasks that we need, which require
a polynomial time.

3.3 Reading the Bitmap Layer

Some cells of the plane are inside infinitely many Robinson squares. For this rea-
son we cannot allow each square of any possible size to access directly the bitmap
layer because this would lead to an unbounded number of competitive requests
on some cells. Instead, only the smallest considered Robinson squares (level 0)
will access directly the bitmap layer. All other squares will query recursively the
squares of lower level to obtain the required information.

Visibility and Responsibility. Let us define the visibility area of a Robinson
square of size s as the square surface of size 2s centered on it (see Figure 1).
Because of the regular arrangement of Robinson squares, for each k, any bit
of the bitmap layer is in the visibility area of exactly one k-square. Moreover,
the visibility area of a k-square is exactly the union of that of the 16 closest
(k − 1)-squares.

Visibility areas are very convenient because, at a given level, they form an
exact partition of the plane. They are, however, not sufficient for our purpose.

The problem comes from the special Robinson tilings described earlier that
contain some “degenerate” squares of infinite size. This means that in some cases,
some square patterns are not included in the visibility area of any finite Robinson
square.
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Fig. 1. The visibility area (grey) and the responsibility area (hatched) of two Robinson
squares

To solve this problem, we will have to widen the area over which a square
looks for simple patterns. We define the responsibility area of a Robinson square
of size s as the square surface of size 3s centered on it (see Figure 1). Of partic-
ular interest is the fact that the responsibility area of a k-square is exactly the
disjoint union of the visibility areas of the 36 closest (k − 1)-squares. Note that
responsibility areas of neighboring squares of the same level overlap, but it will
not be a problem because a given cell can be in at most 4 responsibility areas of
squares of the same level.

Communication Channels. All Robinson squares will need to read the bits
on the bitmap layer when looking for simple patterns in their responsibility
area. Because only 0-squares can access those bits directly, we have to set up a
communication system between squares of different levels.

The idea is that each time a k-square needs to know a bit value, it will ask
the corresponding (k−1)-square (the one whose visibility area contains the bit),
which will in turn ask a (k−2)-square, and so on until the request is finally made
to a 0-square that can directly access the bit and answer the query. Answers will
then be transmitted recursively to the upper levels so that the original k-square
can have the needed information.

A given Robinson square of any level can only request bits inside its respon-
sibility area. However, each request is addressed to the square whose visibility
area contains the bit, so after the first step of a recursive request, all subsequent
requests are made inside visibility areas only. It is enough that any given k-
square be able to request a bit to any of the 36 (k−1)-squares around itself. We
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Fig. 2. The communication channels used by a level k Robinson square to communicate
with the 36 closest level (k − 1) Robinson squares

will use communication channels (connected paths) from a square to another to
transmit queries and answers. What we need to ensure is that there is a global
upper bound on the number of communication channels that pass through a
given cell.

Since requests from a k-square are aimed at level (k − 1) squares, we will
make the corresponding channels along the lines and columns on which level
(k − 1) square sides lie. Figure 2 illustrates the communication channels used
by a k-square to communicate with the necessary (k− 1)-squares (the dark grey
areas are the computing segments of the squares).

Because Robinson squares of different levels cannot have aligned sides, a line or
column used in a channel network between a level k square and its surrounding
level (k − 1) squares will not be used for channels connecting other levels of
Robinson squares. As a consequence, any given cell of the plane lies on at most
two levels of communication channels. Moreover a cell is in the responsibility area
of at most 4 k-squares. These two last observations mean that a cell is on the
communication network of at most 8 different Robinson squares (of any level). If
we ensure that each Robinson square does at most one request at time, no more
than 8 requests can pass on a single cell at the same time so the communications
can be realized with a finite number of states.

Recursive Requests. We now have the necessary framework to explain in
details how a high level square of size s can obtain the value of a bit on its
responsibility area.

Coordinates of the required bits are considered relatively to the lower-left
corner of the responsibility area of a square if they were generated by the square
itself (during its computation it requires a given bit) and relatively to the lower
left corner of the visibility area otherwise (when the request comes from a higher
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level square). This might seem unnecessarily complicated but by doing so we will
only deal with positive coordinates and all modulo computations will be very
easy to perform. Simply consider that the coordinates are with respect to the
lowest and leftmost possible location of a bit.

All coordinates will be represented in binary form and we will assume that
coordinates are padded with 0 so that they all have the maximum length (coordi-
nates relative to the responsibility area are one bit longer than the ones relative
to the visibility area).

When a square knows the coordinates of the bit it requires, it has to determine
in which of the neighboring lower level squares’ area of visibility the bit is,
convert the coordinates relatively to that lower level square and send them to
it. All these operations are very easy to handle because lower level squares are
of size s/4, regularly arranged around the square of size s and their coordinate
system “coincides” with that of the larger square.

This means that the most significant bits directly determine which lower
square should be contacted, and the remaining bits represent the coordinates
of the bit relatively to this lower square’s visibility area. If the initial coordi-
nates are relative to the visibility area, the two most significant bits determine
which lower square to ask. If relative to the visibility area, the 3 first bits should
be considered.

From these bits, a path is created that indicates where the destination square
is. This path indicates how to travel through the communication network de-
scribed earlier, from square to square, to reach the destination. It is a word on
the aphabet {↑, ↓,→,←}. After the path has been determined (in constant time
since there are only finitely many possibilities), it is appended to the reduced
coordinates (coordinates relative to the lower level destination square), to form
a message that is sent through the communication network. This message is
written on several cells: one bit of the coordinates or one letter of the path per
cell.

When the destination square receives the message, it keeps the path, reads
the coordinates, converts them and sends the next request (to the lower level
square) the same way. When the answer to this request arrives, it can use the
path (interpreted backwards) to send back the result bit to the higher level
square.

Note that a given square will send at most one request at a time in a normal
behavior. If however it is reset while a request has been sent, a new one might
be sent. In this case the most recent request is the only one that is considered.

Request Time. We will denote by T (s) the maximum duration of a request
from a square of size s, that is the maximum number of time steps from the
time when the square has the coordinates of the bit it requires to the moment
when it receives the bit value. Coordinates handled by a square of size s are of
logarithmic size in s. According to what has been previously described, a request
is handled as follows:
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1. The square converts the coordinates, creates the path and message: O(log s)
2. The message is sent to the lower level square: O(s)
3. The lower level square requests the bit: T (s/4)
4. The bit is send back from the lower level square using the path: O(s).

There is however a slight complication: a given square can receive multiple re-
quests at the same time. If it is in the area of responsibility of multiple squares of
upper level, each of those can send a direct request. Each square also “produces”
its own requests (from its own computation) that it has to send. A Robinson
square can therefore handle up to 5 simultaneous requests.

In order not to exponentially increase this number, only one request is trans-
mitted to the lower level at a time, the others are delayed until the answer is
obtained. By using a “first in first out” ordering, we get T (s) ≤ 5(T (s/4)+O(s)).

Since requests from 0-squares are completed in constant time, we get T (s) =
O(s2). All requests are handled in quadratic time.

3.4 A Day in the Life of a Robinson Square

Now that we know how a Robinson square can get the values on the bitmap
layer, which is by far the most complicated task performed on the automaton,
let us have a look at the main computation.

The square’s task is to look for “simple” square patterns in its responsibility
area. The lower side of the Robinson square acts like a Turing machine with a
tape of finite size s.

The computation of a Robinson square consists merely in enumerating ρ-
simple patterns and, each time one is found, check that it does not appear in its
responsibility area. Checking if a pattern of size n×n appears in the responsibility
area of a square of size s can be done in time O(n2.s4) without any optimization
(roughly s2 possible positions for the pattern, each bit requires s2 steps).

Correctness of the Construction. Because looking for a pattern takes a
polynomial time in the size of both the Robinson square and the pattern, and
because each Robinson square has an exponential time to do the computation
before it is reset, for any ρ-simple square pattern all sufficiently large Robinson
squares will have enough time to produce it and search for it in their responsi-
bility area.

The Robinson tiling has the property that any finite set of cells is in the
responsibility area of an arbitrarily large Robinson square (hence the necessary
overlapping of the responsibility areas). This means that any ρ-simple square
pattern present on the bitmap layer will eventually be found by a large enough
Robinson square (one whose responsibility area contains the pattern). If this
pattern is of size larger than n0, a � state will appear and the configuration will
not appear in the asymptotic set. The construction therefore ensures that no
configuration containing a ρ-simple pattern of size larger than n0 on its bitmap
layer is in the asymptotic set of the automaton (except for the all � configuration
of course).
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3.5 Infiniteness of the Asymptotic Set

Up to this point we have proved that the asymptotic set of the described au-
tomaton contained no ρ-simple configuration other than the uniform � configu-
ration. It remains to be shown that the asymptotic set contains infinitely many
ρ-complex configurations. We will use the following lemma proved in [11]:

Lemma 3. For any 0 < ρ < 1, there exists a ρ-complex configuration over the
set of states {0, 1}.

Consider now the evolution of the automaton from an initial configuration con-
taining one of the complex configurations described in Lemma 3 on its bitmap
layer, a valid Robinson tiling on its Robinson layer and empty initial computa-
tions on all Robinson squares. From such a configuration, all Robinson squares
will properly perform their verification but none will find any simple pattern
of size more than n0. The automaton will evolve infinitely without producing
any � state, and its bitmap layer will never be changed. This means that for
each ρ-complex bitmap layer, there is a configuration in the asymptotic set of
our automaton with this exact bitmap layer. There are hence infinitely many
configurations in the asymptotic set. This completes the proof of Theorem 1.

4 Extensions

4.1 Optimality

For any 0 < ρ < 1, the described automaton can ensure that no square pattern of
size n ≥ n0 has complexity lower than ρ.n2. It is clear that quadratic complexity
is optimal but if the CA has N states the theoretical maximal complexity of a
square pattern is log2(N).n2. It is however possible to modify the construction
to approach this theoretical bound by increasing the alphabet on the bitmap
layer. If we use 2α letters on this layer, the Robinson layer does not change and
the computation layer only needs O(α) more states.

Producing the simple patterns is almost identical, requests on the bitmap
layer are done bit by bit (α requests for a single letter) so the overall test time
remains polynomial. Lemma 3 can be extended to larger alphabets and we can
therefore ensure a complexity of at least ρ.α.n2 for all sufficiently large square
patterns.

The number of states of this new automaton is N = NK .(NC + α).2α. Since
limα→∞ logN = α we can approach the optimal complexity as much as needed.

4.2 Other Dimensions

It might be possible to obtain a similar result in one dimension (with a linear
lower bound on the complexity of the patterns). A similarly layered construc-
tion could work but the Robinson structure and the communications are more
problematic. By using the “North-West deterministic” version of the Robinson
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tiling by Kari and Papasoglu [7] we can have a layer of the automaton on which
a Robinson structure appears on the space-time diagram. In this case the fi-
nite areas are constantly evolving (segments of increasing and decreasing size)
which makes the computation much harder to define and perform. We are cur-
rently working on a one-dimensional solution but the details have not yet been
completely solved and written.

As for higher dimensions, there are different ways to extend the Robinson
structure to finite cubes in such a way that any finite volume is in the visibil-
ity area of a cube (using three-dimensional substitution systems for instance).
Computations are performed as in the previous construction on a segment and
verifications can still be done in polynomial time.
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Abstract. We consider algorithms for approximating context–free
grammars by regular grammars, making use of Chomsky’s characteri-
zation of non–self–embedding grammars as generating regular languages
and a transformation by Mohri and Nederhof on sets of mutually re-
cursive nonterminals. We give an exposition of strongly regular gram-
mars and this transformation, and use it as a subprocedure to obtain
tighter regular approximations to a given context-free grammar. In an-
other direction, the generalization by a 1–lookahead extends Mohri and
Nederhof’s transformation by incorporating more context into the regu-
lar approximation at the expense of a larger grammar.

1 Introduction

The approximation of context-free languages with regular languages is a prob-
lem which has been extensively studied because of its importance in a number
of applications [6,5,4]. A general framework for the approximation of formal lan-
guages by regular languages was studied by Shallit [7]. We consider the case in
which a given context-free grammar is approximated from above by a regular
grammar.

The algorithms discussed here make use of a transformation introduced by
Mohri and Nederhof [4] as a subprocedure to provide tighter regular approxi-
mations. As in [4], the approximating grammar obtained is non–self–embedding.
Such grammars generate regular languages by a result of Chomsky [2].

We assume that the grammar is in appropriate normal form, although for
real-life problems discussed in [4] normal forms would already incur a quadratic
increase in the size of the grammar, and may not be desirable. The starting point
of normal forms is not a necessary assumption but simplifies the exposition: the
resulting regular grammars are easier to keep track of because of the simplicity
of their transition diagrams, for example.

We start with an exposition of the transformation of Mohri and Nederhof
[4] and then discuss its variants that which provide tighter regular approxima-
tions. Regular approximation by two cycle-breaking based methods is presented
in section 6 and approximation by 1–lookahead is discussed in section 7.
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2 Notation and Definitions

A context–free grammar (CFG) G is a 4–tuple G = (N,T, P, S), where N and T
are disjoint finite sets of nonterminals and terminals, respectively. P is a finite
set of productions (rules); each production is of the form A → α, where A is
a nonterminal and α is a string of symbols (sentential forms) from V ∗ where
V = N ∪ T . S is the start symbol. The relation → on N × V ∗ is extended to
a relation on V ∗ × V ∗ as usual. The transitive and reflexive closure of → is
denoted by →∗ . The language generated by an A ∈ N is {w ∈ T ∗ |A →∗ w}. The
language generated by G is L(G) = {w ∈ T ∗ |S →∗ w} . A context–free language
(CFL) is a language generated by a CFG. The number of rules in the grammar
G is denoted by |G|. We use the commonly used convention of denoting the set
of nonterminals in N by capital letters A,B,C, . . ., the set of terminals T with
a, b, c, . . ., strings of terminals in T ∗ with u, v, w, . . ., strings of nonterminals and
terminals in V ∗ by α, β, γ, . . .. The empty string is denoted by ε. Productions
with left-hand side A ∈ N are referred to as the rules of A or A-rules. The union
of rules of A ∈ M for M ⊆ N are the rules of M .

If all productions of G are of the form A → wB or A → w then G is called
a right–linear grammar. If all productions are of the form A → Bw or A → w
then G is a left–linear grammar. G is a regular grammar if it is either right–linear
or left–linear. Regular grammars characterize regular languages. In addition to
regular grammars, regular languages can be represented in many forms such
as finite automata (1NFA, 1DFA, 2NFA, 2DFA), and regular expressions, each
giving a different insight into the structure of the language. In the Chomsky hi-
erarchy of languages, context–free languages properly contain regular languages.
Thus context–free grammars can generate languages which are non–regular, and
in fact many languages of interest are context–free but non–regular.

A context–free grammar G is self–embedding (SE), if there exists a derivation
A →∗ αAβ, with both α, β non–empty. G is non–self–embedding (NSE) if it is
not self–embedding. By a result of Chomsky [2], any NSE grammar generates
a regular language. For more details on notation and basic properties of CFGs
and CFLs, the reader is referred to Hopcroft and Ullman [3].

3 Mohri and Nederhof’s Transformation

In this section we describe the transformation of Mohri and Nederhof [4]. First,
consider strongly regular CFGs which are defined as follows. Let , be the relation
defined on the set of nonterminals N of G by:

A,B ⇔ (∃α, β ∈ V ∗ s.t. A →∗ αBβ) ∧ (∃α, β ∈ V ∗ s.t. B →∗ αAβ) .

Note that α and β are not required to be nonempty. , defines an equivalence
relation on N , and partitions N into equivalence classes of nonterminals called
mutually recursive nonterminals. Strongly regular grammars are grammars in
which the rules of each set M of mutually recursive nonterminals are either all
left–linear or all right–linear. In determining whether a rule of M is right–linear
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or left–linear, the nonterminals that do not belong to M are treated as if they
are terminals. The class of languages generated by strongly regular grammars
coincide with the class of languages generated by NSE grammars and therefore
these languages are regular.

There are efficient algorithms to construct finite automata from strongly reg-
ular grammars. An offline construction was given by Nederhof in [6]. One may
also construct an alternative, compact representation of the regular language
generated, from which a finite automaton for it may be constructed, as shown
by Mohri and Pereira in [5]. Briefly, the algorithm is as follows:

1. Determine sets of mutually recursive nonterminals by computing the strongly
connected components of the graph of the grammar1.

2. Construct a the automaton K(M) for each equivalence class M of mutually
recursive nonterminals with unspecified initial state (in case M is right–
linear) or unspecified final states (in case M is left–linear). For any A ∈ M ,
the automaton N (A) accepting terminals generated from A can be obtained
from K(M).

3. For each input string w, obtain N (S) from the K(M) that satisfies S ∈
M . This automaton is then expanded in a lazy way by substituting other
automata N (A) for occurrences of A in N (S) that are encountered while
processing w.

In [4], Mohri and Nederhof describe a transformation that yields a strongly
regular grammar from a given context-free grammar: for each class of mutually
recursive nonterminals M such that the corresponding rules are not all right–
linear or not all left–linear with respect to the nonterminals of M , the following
transformation is applied:

1. For each nonterminal A ∈ M , introduce A′ /∈ N and add the production
A′ → ε to the grammar.

2. For each production of the form: A → α0B1α1B2α2 . . .Bmαm with m ≥ 0,
B1, . . . , Bm ∈ M,α0, . . . , αm ∈ (T ∪ (N −M))∗, replace it with

A → α0B1

B′
1 → α1B2

B′
2 → α2B3

...
B′

m−1 → αm−1Bm

B′
m → αmA′

If m = 0, this set of productions only contains A → α0A
′ .

1 The graph of the grammar has a node for each nonterminal, and an edge from node
A to node B iff B appears on the right hand side of a production having A on the
left hand side.
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All of the rules for M in the transformed grammar are right–linear. Therefore
the resulting grammar is strongly regular. We will refer to this transformation
as the MN-transformation, and the resulting regular approximation as the MN-
approximation. The MN-approximation L(G) is a superset of L(G).

Since we are interested in how well the resulting regular language approx-
imates the given one, we will consider the effect of the transformation on an
individual equivalence class of mutually recursive set of nonterminals.

Example 1. As an example of the MN-transformation, consider the grammar G
with productions

A → aBa

B → bA | b

in which A is the start state. This grammar generates the nonregular language
{(ab)nan | n > 0} . We can show that the MN-transformation approximates
this language by the regular language (ab)+a∗. In G, A and B form a mutu-
ally recursive set of nonterminals. The transformed grammar G′ consists of the
productions

A → aB

A′ → B′ | ε
B → bA | bB′

B′ → aA′ | ε .

The following derivation in G′ simulates the derivation of ababaa: A → aB →
abA → abaB → ababB′ → ababaA′ → ababaB′ → ababaaA′ → ababaa. For the
nonterminal B, the newly introduced nonterminal B′ serves two purposes:

1. It allows the termination of a derivation from B by replacing B with the
terminals that B derives. In our example, B → b in G is simulated using the
productions B → bB′, B′ → ε from G′.

2. Since the productions are all right–linear, it provides a mechanism to return
back to the branching point from the original production and continue the
derivation.

However, this last point also introduces ambiguities in the grammar. Nonterminal
pairs B and B′ mark the beginning and end of strings generated by B in the
original grammar. This can be used to compile the transformed grammar into a
finite-state transducer that outputs bracketed strings equivalent to parse trees
[4]. At the same time by making use of B′, it is possible to continue the derivation
from the right of B in a current sentential form by any production that has B on
its right hand side, not necessarily the next nonterminal in the sentential form
(see Example 5).

4 The Automaton for the MN-Approximation

Assume that N itself is a mutually recursive set of nonterminals. The structure
of the transition diagram of the automaton constructed from the right-linear
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grammar G′ in the standard way [3] allows us to quickly determine a regular
expression For the MN-approximation, especially when the given grammar is in
Chomsky Normal Form (CNF).

The transition diagram is organized as two rows of states where each state is
labeled with a nonterminal in G′, grouped as follows. (see Figure 1 (a) for the
automaton corresponding to G′ of Example 1.)

Fig. 1. (a) Automaton corresponding to the transformation of the grammar in
Example 1. (b) Transformed CNF rules A → BC | a.

– The nonterminals of the original grammar are represented in the upper part.
– The newly introduced nonterminals are represented in the lower part.
– The final states are the states in the lower part of the automaton.
– Every production of the type A → w induces a transition from the upper

part to the lower part. The transition from B to B′ in Figure 1 (a) that
comes from the rule B → b demonstrates this.

– For every production of the type A → α0B1α1B2α2 . . .Bmαm in G, the first
rule A → α0B1 in G′ induces a transition strictly within the upper part of
the automaton. The transition from A to B in Figure 1 (a) that comes from
the rule A → aBa in this way demonstrates this.

– The last production in B′
m → αmA′ in G′ induces a transition strictly within

the lower part of the automaton. The transition from B′ to A′ in Figure 1
(a) that comes from B′ → aA′ demonstrates this.

– All other intermediate productions in G′ induce transitions from the lower
part of the automaton to the upper part.

In CNF, the productions of G are of the form A → BC or A → a. Assuming
that A,B,C are all in the same set of mutually recursive nonterminals, the
transformation for the above mentioned rules yields:

A → B

B′ → C

C′ → A′

A → aA′ .
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The first production leads to an ε-transition in the upper part of the automaton.
The second production leads to an ε-transition from the lower part to the upper
part. The third production leads to an ε-transition within the lower part. Its
only productions of the fourth kind that actually derive all the terminals, and
they result in transitions from the upper part of the automaton to the lower
part. This is illustrated in Figure 1 (b).

5 NSE Grammars

We will assume for the rest of the discussion, that G is in CNF and that N is a
mutually recursive set.

Recall that G is SE if for some nonterminal A, there is a derivation A →∗ αAβ,
with both α, β non–empty. G is NSE if for any nonterminal A and a derivation
A →∗ αAβ, either α = ε or β = ε. In general, it is undecidable if a context–
free grammar generates a regular language [8], or even if L(G) = T ∗. However
whether a context–free grammar is NSE is decidable [1]. By Chomsky’s result,
if G is NSE then L(G) is regular. Of course this leaves open the possibility that
G is SE, but L(G) is nevertheless regular. The property A →∗ αAβ, with α, β �= ε
enables the grammar to generate terminal strings of the form uixvi. If u and v
are sufficiently complex, then the language has a counting property and cannot
be regular. Therefore the nature of the terminal strings derivable by the self-
embedding in G is the thin line that separates the decidable question of “Is G
NSE?” and the undecidable question of “Is L(G) regular?”.

We make use of some of the ideas from [1]. Define the edge-colored production
graph CP (G) for a grammar G by starting with the nonterminals as vertices.
Since G is in CNF, all productions are of the form: A → BC or A → a. In
CP (G), we are only concerned with productions of the form A → BC. For every
production A → BC, CP (G) has an edge from node A to node B colored l, and
an edge from A to C colored r. We note that in CP (G) self-loops are possible,
and if we ignore the colors on the edges, then the graph is strongly connected.
Also, an l-colored edge can arise from more than one rule, e.g. A → BC | BD.
Similarly for r-colored edges. Therefore the number of l-colored edges is not
necessarily equal to the number of r-colored edges.

Theorem 1. G is NSE iff all cycles in CP (G) are monochromatic.

Proof. Any derivation A1 →∗ αA1β in G corresponds to a cycle in CP (G). If the
cycle containing A1 is monochromatic with color l, then this a derivation is of
the form A1 → A2B2 → A3B3B2 → · · · → AkBkBk−1 · · ·B2 → A1B1Bk · · ·B2
with α = ε. Similarly, if the cycle containing A1 is monochromatic with color
r, then β = ε. Conversely, any cycle with an edge A1 → A2 colored l followed
by an edge A2 → A3 colored r gives a derivation of the form A1 → A2B2 →
B3A3B2 → · · · → αA1β where α starts with B3 and β ends with B2. Therefore
α, β �= ε, and G is SE.
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6 Regular Approximation by Cycle-Breaking

Rather than replacing the rules of the grammar with the appropriate approx-
imations, an alternative approach is to only use the approximation for non–
monochromatic cycles in CP (G), and leave the rest of the graph intact. We
present an example to demonstrate this approach.

Example 2. Let T = {a, b} and consider the CFG G:

A1 → A2A3 | b, A2 → A3A4, A3 → A4A5, A4 → A5A1, A5 → A1A2 | a . (1)

Applying the MN-transformation, the resulting regular grammar G′ is:

A′
1 → ε, A′

2 → ε, A′
3 → ε, A′

4 → ε, A′
5 → ε

A1 → bA′
1

A5 → aA′
5

A1 → A2, A′
1 → A2, A

′
1 → A′

4
A2 → A3, A′

2 → A3, A
′
2 → A′

5
A3 → A4, A′

3 → A4, A
′
3 → A′

1
A4 → A5, A′

4 → A5, A
′
4 → A′

2
A5 → A1, A′

5 → A1, A
′
5 → A′

3

(2)

To get a sense of the approximation, note that G is equivalent to the grammar

A1 → A5A1A5A5A1A5A1A5 | b
A5 → A1A5A1A5A5A1 | a ,

and in particular L(G) contains no word of length 2, 3, . . . , 7. The automaton
corresponding to G′ is shown in Figure 2. The language accepted is T+. Therefore

Fig. 2. The automaton for the grammar in Example 2
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Fig. 3. (a) Edge colored production graph CP (G) for the grammar in Example 2.
(b) Transformation of the grammar Gn of Example 4 generates T+.

the MN-approximation to L(G) is T+. We also note from Figure 2 that any
nonterminal Ai in this example generates T+.

For the approximation using cycle-breaking, we first construct CP (G). This
is shown in Figure 3 (a) for the grammar in Example 2. Using cycle-breaking,
it is possible to devise different regular approximations to L(G). We can use
the MN-approximation itself as a subroutine, for example. Alternatively, we
break non–monochromatic cycles by introducing a new nonterminal for each
edge eliminated. Depending on what we allow these new nonterminal to derive
in the new grammar, we obtain regular approximations that are supersets or
subsets of the given language. It is also possible to mix these two ideas.

We consider cycle-breaking by using the MN-transformation first, and then
describe cycle-breaking based on introduction of new nonterminals.

6.1 Cycle-Breaking Using the MN-Transformation

To eliminate an l-colored edge Ai → Aj in CP (G), we proceed as follows. Sup-
pose the Ai-productions of G the form Ai → AjAk are

Ai → AjAk1 |AjAk2 | · · · |AjAkt (3)

and G′ is the grammar obtained from G by the MN-transformation. Make a
fresh copy of G′ by relabeling each Ak by Bk where a distinct symbol B is is
used for every edge eliminated. G′

j be this grammar with start symbol Bj . We
replace the rules (3) with

Ai → BjAk1 | BjAk2 | · · · |BjAkt . (4)

Similarly, to eliminate an r-colored edge Ai → Aj , assume that the Ai-rules
of the form Ai → AkAj are

Ai → Ak1Aj | Ak2Aj | · · · | AktAj . (5)
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Let G′ be the grammar obtained from G by the MN-transformation. Make a
fresh copy of G′ by relabeling each Ak by Ck where a distinct symbol C is is
used for every edge eliminated. Let G′

j be this grammar with start symbol Cj .
Then we replace the rules (5) with

Ai → Ak1Cj |Ak2Cj | · · · |AktCj . (6)

Example 3. Let G be the grammar in Example 2. From Figure 3 (b), we see
that eliminating the r-colored edges A4 → A1, A5 → A2 and the l-colored edge
A5 → A1 are sufficient to make all cycles monochromatic in CP (G). Using the
above idea, we obtain the grammar

A1 → A2A3 | b
A2 → A3A4
A3 → A4A5
A4 → A5B1
A5 → D1C2 | a

together with three copies of the productions in (2), one each for nonterminal
B,C and D. From the automaton in Figure 2, we see that every nonterminal in
G′ derives T+. For this example, the grammar G′′ obtained by cycle-breaking
using the MN-transformation generates the language

(T ∗T 3 + aT ∗T )(T ∗T 2 + a)(T ∗T 3 + aT ∗T )2(T ∗T 2 + a) + b , (7)

which generates no word of length 2, 3, . . . , 7, and is strictly contained in the
MN-approximation.

The derivations in the NSE grammar obtained by breaking cycles by using the
MN-transformation can be simulated by the NM-transformation of the original
grammar. Thus

Theorem 2. The regular approximation G′′ produced by breaking all
non–monochromatic cycles of CP (G) using the MN-transformation is finer than
the MN-approximation G′ of G. In other words L(G) ⊆ L(G′′) ⊆ L(G′) .

How close is L(G′′) to L(G′)? The following example gives an idea.

Example 4. For n ≥ 3 and T = {a, b}, consider the grammar Gn with rules A1 →
A2A3 | b, A2 → A3A4, . . . , An−2 → An−1An, An−1 → AnA1, An → A1A2 | a.
Suppose we obtain G′′

n by breaking all l-colored cycles by the MN-transformation,
and let G′

n be grammar of the MN-transformation directly applied to Gn. Then
L(G′

n) = T+ regardless of n, whereas

L(G′′
n) =

{
(ε + T ∗Tm)b if n = 2m,

(ε + T ∗T n)(b + T ∗Tma) if n = 2m + 1 .

The grammar Gn and the approximations given above are considered in detail
next.
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6.2 Cycle-Breaking Using New Nonterminals

We can simplify the resulting grammar by bypassing the MN-transformation for
cycle-breaking. This done at some expense. We still have L(G) ⊆ L(G′′) but the
inclusion L(G′′) ⊆ L(G′) of Theorem 2 is lost.

To eliminate an l-colored edge Ai → Aj in CP (G) with new nonterminals,
we proceed as follows: Suppose the Ai-rules of G the form Ai → AjAk are
Ai → AjAk1 |AjAk2 | · · · |AjAkt .

1. Replace these by Ai → BjAk1 |BjAk2 | · · · |BjAkt .
2. Add the productions

Bj → BaBj , ∀a ∈ T,

Ba → a, ∀a ∈ T,

Bj → a, ∀a ∈ T,

where Bj and Ba, (a ∈ T ) are new nonterminals.

Elimination of an r-colored edge is done similarly. Call the resulting grammar
G′′. This creates no new non–monochromatic cycles, and the edge Ai → Aj in
CP (G) has been eliminated in CP (G′′). In effect, we are replacing the terminals
derivable from Aj for the Ai-rules that involve Aj , by terminals derivable from
Bj . We generously made Bj derive all of T+, so that the language generated by
G′′ is a superset of the language generated by G. We note that if it is possible
to make each Bj derive a regular language that is contained in what Aj derives
in G, then cycle-breaking gives a regular approximation to L(G) from below.

One obvious way to eliminate non–monochromatic cycles is to break all l-
colored edges in CP (G). For the example grammar G = G5, we can write the
resulting grammar (using T+ for any nonterminal that now derives only T+ to
simplify notation) by

A1 → T+A3 | b, A2 → T+A4, A3 → T+A5, A4 → T+A1, A5 → T+A2 | a

so that the approximating language is generated by A1 → (T+)5A1 | (T+)2a | b.
A regular expression for this language is

(ε + T ∗T 5)(b + T ∗T 2a) . (8)

For the same G, eliminating all r-colored edges from CP (G), we obtain the
grammar

A1 → A2T
+ | b, A2 → A3T

+, A3 → A4T
+, A4 → A5T

+, A5 → A1T
+ | a

which is equivalent to A1 → A1(T+)5 | a(T+)4 | b . Therefore the approximation
is given by the regular expression

(ε + T ∗T 5)(b + aT ∗T 4) . (9)

In either case, the resulting approximating language is properly contained in the
language (a + b)+ of the MN-approximation.
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To eliminate non–monochromatic cycles in CP (G), removing all l-colored
edges or all r-colored edges may be an overkill. It suffices to eliminate any
set of edges with the property that all the cycles in the resulting graph are
monochromatic. It would appear that the fewer edges we remove, the closer the
approximation is to the original language, because fewer nonterminals are made
to derive T+ instead of what they originally derive in G. However it is possible
that the we make more of an error when breaking a short cycle because T+

may be far from what each of the eliminated nonterminals for this cycle derives,
whereas eliminated edges on a long cycle may be each coming from nonterminals
that derive languages much closer to T+.

Continuing with Example 2, eliminating the r-colored edges A4 → A1, A5 →
A2 and the l-colored edge A5 → A1 are sufficient to make all cycles monochro-
matic in CP (G). The resulting grammar is

A1 → A2A3 | b, A2 → A3A4, A3 → A4A5, A4 → A5T
+, A5 → T+T+ | a .

This generates the language denoted by the regular expression in (7). The lan-
guage in (7) is obtained by eliminating 3 edges of CP (G) whereas the regular
expressions in (8) and (9) were both obtained by eliminating 5 edges. Now con-
sider the grammar Gn of Example 4.

Lemma 1. Let G = Gn be the grammar of Example 4. The regular language
L(G′′) obtained from G by eliminating l-colored edges in CP (G) is given by

(ε + T ∗Tm)b if n = 2m,

(ε + T ∗T n)(b + T ∗Tma) if n = 2m + 1 .

Proof. By repeated substitutions, we compute that the G′′ is equivalent to the
grammar

A1 → (T+)mA1 | b if n = 2m,

A1 → (T+)nA1 | (T+)ma | b if n = 2m + 1 ,

from which we obtain

((T+)m)∗b if n = 2m,

((T+)n)∗(b + (T+)ma) if n = 2m + 1 .

From the identities (T+)m = T ∗Tm and (T ∗Tm)∗ = ε + T ∗Tm, the regular
expressions in (1) follow.

A similar result can be obtained for the left-linear grammars constructed by
eliminating r-colored edges.

Remark: In the automaton M of the MN-transformation for the grammar Gn

of Example 4 contains ε-transitions from An to A1, and A′
n to A1; ε-paths from

A1 to An, and from A′
1 to An. Therefore the automaton in Figure 3 (b) sits inside

M , and the language accepted is L(G′) = T+. We have L(G) ⊆ L(G′′) ⊆ L(G′)
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where L(G) is the context-free language generated by the grammar G = Gn

of Example 4, L(G′) is the regular approximation from the MN-transformation
and L(G′′) is the regular approximation obtained by eliminating l-colored edges
from CP (G). Since L(G′) = T+ independently of n whereas L(G′′) is given as
in Lemma 1, the difference between the former approximation and the latter can
be made as large as we please.

7 Using a 1–Lookahead

In the MN-approximation, there is a certain memory in the rules carried by
symbols such as A′

i which allow us to continue parsing from where we left off. We
can remember more of the context of the branching by using a type of lookahead.
This removes some of the ambiguity and therefore result in a smaller regular
approximation, but it is at the cost of increasing the size of the new grammar.
Mohri and Nederhof’s grammar has size O(|G|). The approximating grammar
we obtain by eliminating all l-colored or all r-colored edges in CP (G) in cycle-
breaking is also O(|G|). The lookahead considered here has O(|G|2) productions,
as the approximating grammar construction in [6] (see also [4]). A k–lookahead
approximation will cost O(|G|k) nonterminals, probably an unrealistically large
bound of theoretical interest only.

For simplicity, in this section we consider the grammar to be in Greibach Nor-
mal Form (GNF). In GNF, all productions are of the form A → aA1A2 . . .An or
A → b. In 1–lookahead, we introduce new nonterminals for pairs of consecutive
nonterminals that appear on the right hand side of a production with nontermi-
nals. For a generic GNF production with a nonterminal right hand side, these
would be A12, A34, . . .. The idea is to preserve the memory of the production
from where a branch occurred so that the derivation can continue if the next
nonterminal is also present. This memory is at the odd indices only since we
do not remember A2A3, for example. We will demonstrate the 1–lookahead idea
with the help of an example.

Example 5. Let T = {a, b} and start with the following grammar G:

A1 → aA2A2 | a
A2 → bA2A1 | b

Straightforward MN-transformation results in the right-linear grammar

A′
1 → ε A′

2 → ε
A1 → aA′

1 A2 → bA′
2

A1 → aA2 A2 → bA2
A′

2 → A2 A′
2 → A1

A′
2 → A′

1 A′
1 → A′

2

(10)

In a leftmost derivation from A1, after the first A2 is processed, the end marker
A′

2 allows for the derivation to continue with A2, but also with A1. In the approxi-
mation with 1–lookahead we remember that the current A′

2 should be followed by
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processing A2 and not A1. This can be achieved by using the MN-transformation
in the following way. Start with the first production above and introduce new
nonterminals A22 and B2 to indicate that the continuation is by A2. We change
the original production A1 → aA2A2 by using A22 for the first A2 and using
B2 for the second A2 as A1 → aA22B2, and then apply the MN-transformation.
The first column in (10) is replaced by the rules

A′
1 → ε, A1 → aA′

1, A1 → aA22, A′
22 → B2, B′

2 → A′
1 . (11)

The second column of rules in (10) becomes

A′
22 → ε, A22 → bA′

22, A22 → bA22, A′
22 → A1, A′

1 → A′
22 . (12)

The new set of rules in (11) and (12) are the 1–lookahead transformation of the
production A1 → aA2A2 of the original grammar.

For the transformation of the the second production A2 → bA2A1 we intro-
duce two new nonterminals A21 and B1 to indicate that the continuation is by
A1. We change A2 → bA2A1 by using A21 instead of A2 and using B1 instead of
A1, and write A2 → bA21B1. Applying the MN-transformation to this has the
effect of replacing the the second column of (10) by the rules

A′
2 → ε, A2 → bA′

2, A2 → bA21, A′
21 → B1, B′

1 → A′
2 (13)

and replacing the first column of (10) by

B′
1 → ε, B1 → aB′

1, B1 → A21, A′
21 → A21, A′

21 → B′
1 . (14)

The rules in (13) and (14) are the 1–lookahead transformation of the production
A2 → bA2A1 of the original grammar.

Finally, we allow B1 and B2 derive the same sentential forms as A1 and A2
in the MN-approximation (10) by making copies of these rules using Bs for the
corresponding As:

B′
1 → ε B′

2 → ε
B1 → aB′

1 B2 → bB′
2

B1 → aB2 B2 → bB2
B′

2 → B2 B′
2 → B1

B′
2 → B′

1 B′
1 → B′

2 .

(15)

Let G′ denote the MN-transformation of the given CFG G and denote by G′′

the grammar obtained from G by the 1–lookahead transformation. Since any
derivation in the 1–lookahead grammar can be simulated by a derivation in the
original MN-transformation of G, we have

Theorem 3. Let G′ denote the MN-transformation of the CFG G and G′′ the
grammar obtained from G by the 1–lookahead transformation. Then L(G) ⊆
L(G′′) ⊆ L(G′) .

For the grammar G in Example 5, the MN-transformation G′ is given by (10).
In G′, A2 derives b(a+ b)∗ and the MN-approximation itself is given by L(G′) =
a(a+b)∗ . The 1–lookahead transformation gives the grammar G′′ with L(G′′) =
a + ab(a + b)∗ , which is properly contained in L(G′).
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8 Summary and Remarks

We considered the problem of approximation of a given context-free grammar by
a regular grammar while trying to preserve the structure of the original grammar
as much as possible. The algorithms considered are improvements on Mohri and
Nederhof’s original transformation and make use of the characterization of non–
self-embedding grammars as generating regular languages.

In the approximations based on cycle-breaking, we start with a grammar
in Chomsky normal form as input, and provide a regular grammar as output.
The language generated is a superset of the given language, and a subset of
the original Mohri and Nederhof approximation. We also consider a lookahead
transformation which starts with the Greibach normal form and produces a
regular grammar as its output. This approximation is also a superset of the
given language, and a subset of the Mohri and Nederhof approximation.
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Abstract. In this paper we prove that it is decidable whether the set
pow(L), which we get by taking all the powers of all the words in some
regular language L, is regular or not. The problem was originally posed by
Calbrix and Nivat in 1995. Partial solutions have been given by Cachat
for unary languages and by Horváth et al. for various kinds of expo-
nent sets for the powers and regular languages which have primitive
roots satisfying certain properties. We show that the regular languages
which have a regular power are the ones which are ’almost’ equal to their
Kleene-closure.

1 Introduction

Calbrix and Nivat defined the power pow(L) of a language L in a paper about
prefix and period languages of rational ω-languages [3]:

pow(L) = {wi | w ∈ L, i ≥ 1}.

It is easy to see that there are examples of regular languages L for which pow(L)
is regular, and examples for which pow(L) is not regular. Take, for instance, the
regular language ab∗ whose power is not even context-free. Calbrix and Nivat
posed the problem of characterizing those regular languages whose powers are
also regular, and to decide whether a given regular language has this property.
They conjectured that “rational languages such that their power is also rational
are ‘almost’ a union of rational subsemigroups of Σ∗ and the point is to give the
right sense to this almost”. Cachat [2] gave a partial solution to this problem
showing that for a regular language L over a one-letter alphabet, it is decidable
whether pow(L) is regular. Unfortunately Cachat’s result cannot be extended
to arbitrary alphabets since he translated unary languages into sets of natural
numbers to reach his solution. Horváth et al. [5] provided more partial results.
They looked at arbitrary alphabets and did a case analysis based on the primitive
roots of the regular languages in question. However, the case when L∩

√
L is not

regular and
√

pow(L) \ L is finite was left open, and thus a complete solution
to the original problem was not given. They also considered other exponent
sets instead of the whole set of natural numbers and an algorithm based on [2]
to decide whether the power of a regular language with finite primitive root
is regular or not. We will use the results of [5] (and [2] resp.) as part of the

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 221–227, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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decision procedure. There exist several other papers that study regular languages
containing powers of their words or consisting solely of non-primitive words,
see [4,6]. Recently Anderson et al. [1] presented a characterization of regular
languages consisting only of powers.
In this paper we characterize the regular languages whose power is also regular.
First we present a short overview of the notions and results needed to proceed
with the paper, and then we go on to solve the decidability problem posed by
Calbrix and Nivat by reducing it to decidable subproblems.

2 Preliminaries

In this section we briefly recall some definitions and known results needed
throughout the rest of the paper. Let Σ be a fixed finite nonempty alphabet. By
Σ∗ we mean the free monoid generated by Σ, that is the set of all words over
Σ. The empty word we denote by λ, and Σ+ = Σ∗ \ {λ}. A language over Σ is
a subset L of Σ∗. For a word p ∈ Σ∗, |p| denotes the length of p, and for a set
M , |M | denotes the cardinality of M . For a natural number k, pk denotes the
concatenation of k copies of the word p, and p0 = λ. As usual, p∗ denotes the
set {pk : k ≥ 0}, and p∗q the set {pkq : k ≥ 0}. For two words u, v ∈ Σ∗ and a
language L ⊆ Σ∗, by saying that u ≡ v(PL) we mean the following

xuy ∈ L if and only if xvy ∈ L for all x, y ∈ Σ∗.

For a word w ∈ Σ∗ the congruence class [w]PL consists of all words congruent
with w according to PL, that is [w]PL = {v ∈ Σ∗ | w ≡ v(PL)}. Since PL is a
congruence relation, Σ∗/PL = {[w] | w ∈ Σ∗} is a monoid, which is called the
syntactic monoid of L and denoted by Synt(L).
A non-deterministic finite automaton (NFA) is a quintuple A = {Σ,Q, I, F, σ}
with the usual conventions, i.e. Σ is the input alphabet, Q is the set of states,
I is the set of initial states, F is the set of final states and σ : Q × Σ → 2Q

is the transition function. We will use σ as an extended transition function
taking words as second arguments instead of only letters, interpreted as follows
σ(p, ab) = {q ∈ σ(q1, b) | q1 ∈ σ(p, a)}. A finite automaton is deterministic
(DFA) if I is a singleton and p, q ∈ σ(r, w) implies p = q.
When talking about regular languages we will often mean languages accepted by
some finite automaton or languages which are unions of some of the equivalence
classes of a congruence relation of finite index. As it is well known from Rabin
and Scott [8] these language classes are in fact the same. We note here that the
size of the syntactic monoid for a regular language L is at most 2|Q|2 , if Q is the
set of states of some NFA accepting L.

Definition 1. A word p is primitive if there is no word q �= p and no positive
integer n such that p = qn. We denote the language of all primitive words over
a given alphabet Σ by Q.

Definition 2. The (primitive) root of a word p ∈ Σ+ is the unique primitive
word q such that p = qn for some n ≥ 1.

√
p denotes the root of p. For a language

L,
√
L = {√p : p ∈ L ∧ p �= λ} is the root of L.
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The next result is known as the theorem of Fine and Wilf. Intuitively it tells
us how far two periodic events (strings) have to match in order to guarantee a
common period, that is to guarantee that the two sequences are ultimately the
same.

Theorem 1. Let x, y ∈ Σ∗, n = |x|, m = |y|, d = gcd(n,m). If two powers xp

and yq of x and y have a common left factor of length at least equal to n+m−d,
then x and y are powers of the same word.

The following is a well known theorem by Lyndon and Schützenberger.

Theorem 2. [7] If umvn = wk for non-empty words u, v, w and natural num-
bers m,n, k ≥ 2 then

√
u =

√
v =

√
w.

This is a basic property of words that will prove useful to us later on through
a theorem by Shyr and Yu, which we present here with a short proof to better
illustrate our argument.

Corollary 1. [9] Let u, v be primitive words such that u �= v. Then there is at
most one non-primitive word in u+v+.

Proof. Let w = umvn be non-primitive. Then either m = 1 or n = 1 by Theorem
2. So, by symmetry let uvn = wi for some primitive word w and i ≥ 2. We may
choose n to be minimal with that property. It is enough to show that all uvn+k

are primitive. By contradiction, suppose that uvn+k is not primitive for some
k ≥ 1, that is there exists some z ∈ Q and j ≥ 2 such that zj = uvn+k. It follows
that wivk = zj.

First consider the case k ≥ 2. Since i, j, k ≥ 2, we can apply the Lyndon-
Schützenberger theorem and get that

√
w =

√
v =

√
z, but then u = v, a

contradiction.
Now let us see the case k = 1. Non-primitivity is invariant to cyclic shifts, so

wi and zj being non-primitive gives us that vnu and vnuv are non-primitive too.
Hence there are words w1, z1 ∈ Q such that wi

1 = vnu and zj
1 = vnuv, moreover

|w1| = |w| and |z1| = |z|. From here zj
1 = wi

1v. As v is a prefix of wi
1, we have

that zj
1 has both periods |z1| and |w1|. Now we can apply the theorem of Fine

and Wilf and get that z1 = w1 = v. This means w = z = v and then u = v, a
contradiction again. ��

Corollary 2. For all words x, y, z ∈ Σ∗ with y �= λ with |√xyz| �= |√y|, there
is at most one non-primitive word in the language xy+z.

Proof. Suppose there exist numbers i, j ≥ 1 with i < j such that both xyiz and
xyjz are non-primitive. Non-primitivity is invariant to cyclic shifts, so zxyi and
zxyj are non-primitive too.

If zx is non-primitive then we can apply the Lyndon-Schützenberger theorem
on zxyj and get that

√
zx =

√
y. This would mean

√
zxy =

√
y and from here

|√xyz| = |√y|, a contradiction.
If zx is primitive then from Theorem 1 we have that only one of the words

zxyi and zxyj is non-primitive, contradicting our original assumption. ��
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3 The Power of a Regular Language

There are easy examples for non-trivial regular languages that do not have a
regular power. Besides the one mentioned in the introduction one could take
aaa(aa)∗ whose power {ak : k is not a power of 2} is not even context-free (in
particular, powers of regular languages are not semi-linear, in general).

In fact, as it turns out, it is quite difficult to come up with examples of
regular languages L with regular power other than the ones for which L = L∗ or
L = L∗\K, where either K is finite or K =

⋃
w∈S w∗ for some finite set of words

S. This seems to justify the conjecture formulated by Calbrix and Nivat cited
before. Hence, rather than trying to solve the case left open in [5] one might try
a new approach.

Indeed, as we will shortly see, we can give an equivalent criterion for a regular
language to have a regular power, i.e., we can now give sense to that ‘almost’.

Theorem 3. Let L be a regular language. Then pow(L) is regular if and only if
pow(L) \L is a regular language such that its primitive root is a finite language.

Proof. The class of regular languages is closed under union and taking the dif-
ference of two sets, therefore if pow(L) \ L is a regular language then so is
(pow(L) \ L) ∪ L = pow(L).

Now let us look at the ”only if” part. If pow(L) is regular then so is Ldiff =
pow(L) \ L. Note that Ldiff consists solely of non-primitive words. Let n be the
number of states of the minimal deterministic automaton accepting Ldiff . Now
suppose that

√
Ldiff is infinite. In this case there must be some w ∈ Ldiff such

that |
√
w| > n. On the other hand the pumping property of regular languages

tells us that w = xyz for some xz, y /∈ {λ} with |y| ≤ n such that xyiz ∈ Ldiff
for all i ≥ 0, so xyiz is non-primitive for all i. Corollary 2 says that in this case
|√xyz| = |√y| ≤ |y| ≤ n, contradicting the assumption |

√
w| > n. ��

Lemma 1. Let L be a regular language given by an NFA having n states. If
pow(L) is regular, then we have

pow(L) ⊆ L ∪ {
√
u

i | u ∈ L ∧ |u| ≤ max(n2,m) ∧ i ≥ 1},

where m is the size of Synt(L).

Proof. We have seen in Theorem 3 that pow(L) being regular means that it
has to be a subset of L ∪

⋃
u∈U u+ for some finite set U of words. We need

to prove that for every w ∈ Ldiff there is a u ∈ L such that w ∈
√
u

+ and
|u| ≤ max(n2,m).

Take the shortest u ∈ L such that w is a power of u. If |u| > max(n2,m) then
according to the pumping property of regular languages u can be written as xyz
for some y �= λ �= xz such that xyjz ∈ L for all j ≥ 0. Here we can distinguish
two cases.
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1. If |y| is a multiple of |√u| then |√u| ≤ n. As u ∈ √
u

+ ∩L we can apply the
pumping argument on powers of

√
u as if it was a unary language. If k is

the smallest number for which
√
u

k ∈ L then k ≤ n, or else there would be
some numbers p, q with p < q < k such that from the initial state we reach
the same state by reading

√
u

p or
√
u

q, and we could cut out
√
u

q−p from
the word. From here we get that there is a word

√
u

k ≤ n2 having the same
root as w.

2. We are left with the case when in any decomposition u = xyz, |y| is not a
multiple of |√xyz| and |u| > m. Then we find a decomposition u = xyz with
0 < |y| ≤ m and [xy] = [x] in Synt(L). This way we know that xyjz ∈ L,
for all j ≥ 1. As a consequence of Corollary 2 we also know that at most
one of these xyjz can be a non-primitive word. At the same time Ldiff has
finite root, hence for all but finitely many values of j, (xyjz)+ ⊆ L, so we
find some j such that xyjz ∈ L and xyjz is primitive and at the same time
(xyjz)+ ⊆ L . Due to [xy] = [x] in Synt(L) we can conclude (xyz)+ ⊆ L.
However, we supposed that w ∈ Ldiff is some power of xyz, a contradiction.

So for every w ∈ Ldiff there is some u ∈ L, with |u| ≤ max(n2,m) such that√
w =

√
u and this concludes the proof. ��

To make it easy to see why the latter half of the previous theorem can be checked
effectively, we should replace max(n2,m) with a bound depending only on the
number of states n of the automaton accepting L.

Remark 1. Let L be a regular language given by an NFA having n states. If
pow(L) is regular, then we have

pow(L) ⊆ L ∪ {ui | u ∈ L ∧ |u| ≤ 2n2 ∧ i ≥ 1},

where m is the size of Synt(L).

Proof. This is clear because n2 < 2n2
and the syntactic monoid is a divisor of

the monoid of Boolean n× n matrices, so Synt(L) has size at most 2n2
. ��

Let us recall the following result from the paper by Calbrix and Nivat about
languages which are equal to their power.

Lemma 2. [3] Let L be a regular language of Σ∗. Then pow(L) = L if and only
if there are regular languages (Li)1≤i≤n such that L =

⋃n
i=1 L

+
i .

The statement above is useful for testing if a language is equal to its power
or not, we only need to specify the languages Li for an effective construction.
Using the syntactic monoid of L gives us the tool we need. We can translate
pow(L) = L into the following statement involving the congruence classes of PL:⋃

u∈L

[u]+ ⊆ L =
⋃
u∈L

[u] ⊆
⋃

[u]+.

Given an automaton accepting L we can effectively construct its syntactic
monoid and from here we can effectively define the set of words in the class
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[u] for all u ∈ L. In the case of a regular language PL induces a finite number of
classes, so we can decide whether the equality holds or not. Hence, we can state
the following.

Proposition 1. For a regular language L it is decidable whether pow(L) = L
holds or not.

Now we are ready to proceed with the algorithm. Theorem 3 reduces the original
problem to an equivalent one of deciding whether the language, in some sense,
lacks only a “few” words to be equal to its power. Lemma 1 provides the means
to find those “few” missing words and after adding them to our starting language
Proposition 1 will tell us whether the result is a power or not, that is whether
the power of the original language is regular or not.

Theorem 4. For a regular language L it is decidable whether pow(L) is regular.

Proof. We propose the following algorithm:

1. Input: an NFA A = {Σ,Q, I, F, σ}.
2. Output: “YES”, if pow(L(A)) is regular, and “NO” otherwise.
3. U = ∅
4. FOR all words w ∈ L(A) shorter than 2|Q|2 :
5. —IF w∗ \ L(A) �= ∅ THEN:
6. ——IF pow((

√
w)∗ ∩ L(A)) is regular THEN add w to U

7. ——ELSE output ”NO”
8. compute the syntactic monoid for L′ = L(A) \

⋃
u∈U (

√
u)∗

9. IF L′ = pow(L′) then output “YES”
10. ELSE output “NO”

The enumeration of words in L(A) shorter than 2|Q|2 can be done in finite
time due to the length limit. The condition in line 5 can be checked effectively
too. First we have to perform the difference of two regular languages, then check
whether the result is empty or not. As it is stated in [5], the condition in line 6 can
be verified using Cachat’s algorithm ([2]), because (

√
w)∗ ∩ L(A) is isomorphic

to a unary language, which can be computed effectively. In step 8 we have to
compute the syntactic monoid for a regular language, which is the difference of
a regular language and the finite union of some regular languages, all effectively
presented. If a regular language L is equal to M ∪N for some regular languages
M and N , such that

√
M ∩

√
N = ∅, then from the closure properties of the

regular class we get that pow(L) is regular if and only if both pow(M) and
pow(N) are regular. Moreover, L and M being powers implies N being a power
as well. Therefore, in step 9 we only need to check whether a regular language
is equal to its power or not; by Proposition 1 this is decidable too. Hence, the
algorithm terminates after finitely many steps; however, the complexity is at
least exponential due to both Cachat’s algorithm and the exponential length
bound on the words we need to check in step 4. ��
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4 Conclusion

We managed to characterize regular languages that have regular power following
the conjecture of Calbrix and Nivat formulated in [3] and we gave an effective
albeit inefficient procedure to decide this property. Although the decision pro-
cedure is not a direct extension of previous results ([2,5]), Cachat’s algorithm is
needed in an essential step, which identifies those ”few words” in pow(L) missing
from L.
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Abstract. In the present paper, we study the existence of descriptive
patterns, i. e. patterns that cover all words in a given set through mor-
phisms and that are optimal in terms of revealing commonalities of these
words. Our main result shows that if patterns may be mapped onto words
by arbitrary morphisms, then there exist infinite sets of words that do
not have a descriptive pattern. This answers a question posed by Jiang,
Kinber, Salomaa, Salomaa and Yu (International Journal of Computer
Mathematics 50, 1994). Since the problem of whether a pattern is de-
scriptive depends on the inclusion relation of so-called pattern languages,
our technical considerations lead to a number of deep insights into the
inclusion problem for and the topology of the class of terminal-free E-
pattern languages.

1 On Patterns Descriptive of a Set of Strings

A pattern is a finite string that consists of variables taken from an alphabet X
and terminal symbols taken from an alphabet Σ. For any pattern α and any
word w over Σ, α is said to cover w if w can be obtained from α by substituting
the variables with appropriate strings of terminal symbols. Whenever α contains
several occurrences of the same variable, the substitution of variables needs to
be “uniform”, i. e. each of the occurrences must be replaced with the same word
over Σ. Therefore, and more formally, such a substitution is simply a terminal-
preserving morphism σ : (Σ∪X)∗ → Σ∗, i. e. a morphism that satisfies σ(a) = a
for every terminal symbol a in the pattern. For instance, the pattern α := xybxa
(where x, y are variables and a, b are terminal symbols) covers the word w1 :=
abababa since there is a substitution σ, given by σ(x) := ab and σ(y) := a,
satisfying σ(α) = w. In contrast to this, α does not cover, e. g., w2 := bbbbaa.

Due to the simplicity of the concepts involved, the above described notion of a
pattern is studied in a variety of fields of research. The present paper mainly deals
with two quite closely related approaches: Firstly, a pattern α over Σ∪X can be
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regarded as a generator of a formal language L(α), the so-called pattern language,
which simply comprises all words in Σ∗ that can be obtained from the pattern
by arbitrary substitutions. Secondly, for any given finite or infinite language
S, patterns can be used to approximate S; i. e., a pattern α is sought that is
consistent with S (which means that α covers all words in S or alternatively, in
terms of pattern languages, L(α) ⊇ S). The latter concept is motivated by the
fact that if a pattern is consistent with a language S, then this pattern reveals a
common structure of the strings in S. Hence, and since they are compact devices
that can be easily read and interpreted by humans, patterns can be very helpful
when commonalities of data represented by strings are analysed.

The characteristics of pattern languages have been intensively studied in the
past decades. Therefore, quite a number of basic properties of pattern languages,
e. g. regarding the usual decision problems for classes of formal languages, are
known (cf. the surveys by Mateescu and Salomaa [7] and Salomaa [11] and our
recent paper [4]). Furthermore, pattern languages have been a focus of inter-
est of inductive inference from the very beginning, investigating whether it is
possible to infer a pattern from the words in its pattern language (see Ng and
Shinohara [8]). It is quite remarkable that many of the corresponding results in
language theory and inductive inference differ for the two main types of pat-
tern languages that are normally considered, namely the NE -pattern language
of a pattern (introduced by Angluin [1]), which merely consists of those words
in Σ∗ that can be obtained from the pattern by nonerasing substitutions (i. e.
substitutions that do not replace any variables with the empty word), and the E -
pattern language (established by Shinohara [12]), which additionally comprises
those words that can be derived from the pattern by substituting the empty
word for arbitrary variables.

The problem of finding a consistent pattern for an arbitrary set S of strings
is often referred to as (string) pattern discovery, and many of its applications
are derived from tasks in bioinformatics (cf. Brazma et al. [2]). In contrast to
the inductive inference approach to pattern languages, where a pattern shall be
inferred that exactly describes the given language, string pattern discovery faces
the problem that S can typically have many consistent patterns showing very
different characteristics. For instance, both

α1 := xyxyx and α2 := xaby

are consistent with the language

S0 := {ababa, ababbababbab, babab},

and the pattern α0 := x is consistent with every set of strings, anyway. Hence,
the algorithms of string pattern discovery require an underlying notion of the
quality of a pattern in order to determine what patterns to strive for. With regard
to the above example set and patterns, it seems quite likely that one might not
be interested in a procedure outputting α0 when reading S0. Concerning α1 and
α2, however, it is, a priori, by no means evident which of them to prefer. Thus,
the definition of the quality of a pattern might often depend on the field of
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application where string pattern discovery is conducted. In addition to this, it
is a worthwhile goal to develop generic notions of quality of consistent patterns
that can inform the design of pattern discovery algorithms.

In this regard, the descriptiveness of patterns is a well-known and plausible
concept, that is also used within the scope of inductive inference (cf. Ng and
Shinohara [8]). A pattern δ is said to be descriptive of a given set S of strings
if there is no pattern α satisfying S ⊆ L(α) ⊂ L(δ). Intuitively, this means
that if δ is descriptive of S, then no consistent pattern for S provides a strictly
closer match than δ. Thus, although δ does not need to be unique (as to be
further discussed below), it is guaranteed that it is one of the most accurate
approximations of S that can be provided by patterns. While descriptiveness is
unquestionably an appropriate notion of quality of consistent patterns, it leads to
major technical challenges, as its application requires insights into the inclusion
problem for pattern languages, which is known to be undecidable in the general
case and still combinatorially involved for some major natural subclasses where
it is decidable. This aspect is crucial to the subsequent formal parts of our paper.

Since the definition of a descriptive pattern is based on the concept of pattern
languages, the question of whether NE- or E-pattern languages are chosen can
have a significant impact on the descriptiveness of a pattern. This is reflected
by the terminology we use: we call a pattern δ an NE-descriptive pattern if it is
descriptive in terms of its NE-pattern language and the NE-pattern languages
of all patterns in (Σ∪X)+; accordingly, we call δ E-descriptive if its descriptive-
ness is based on interpreting all patterns as generators of E-pattern languages.
In order to illustrate these terms, we now briefly discuss the descriptiveness of
the example patterns introduced above (though the full verification of our corre-
sponding claims is not always straightforward and might require certain tools to
be introduced later). If we deal with S0 and the patterns in the context of NE-
pattern languages, then it can be stated that both α1 and α2 are NE-descriptive
of S0, since no NE-pattern languages can comprise S0 and, at the same time,
be a proper sublanguage of the NE-pattern languages of α1 or α2. If we study
S0 in terms of E-pattern languages, it turns out that α1 is also E-descriptive of
S0, i. e. there is no pattern generating an E-pattern language that is consistent
with S0 and strictly included in the E-pattern language of α1. However, the
second NE-descriptive example pattern α2 is not E-descriptive of S0, since the
E-pattern language generated by

α3 := xababy

is a proper sublanguage of the E-pattern language of α2 and comprises S0.
The pattern α3, in turn, is even E-descriptive of S0, but not NE-descriptive,
since it is not consistent with S0 if we disallow empty substitutions. Exactly
the same holds for α4 := xbabay, which also is consistent with S0 if we allow
the empty substitution of variables, generates an E-pattern language that is
strictly included in the E-pattern language of α2 and is E-descriptive, but not
NE-descriptive of S0.

The present paper examines the basic underlying problem of descriptive pat-
tern discovery, namely the existence of such patterns; this means that we study
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the question of whether or not, for a given language S, there is a pattern that
is descriptive of S. To this end, four different cases can be considered: NE-
descriptive patterns of finite languages, NE-descriptive patterns of infinite lan-
guages, E-descriptive patterns of finite languages and E-descriptive patterns of
infinite languages. The problem of the existence of the former three types of
descriptive patterns is either trivial or has already been solved in previous pub-
lications. We therefore largely study the latter case, and our corresponding main
result answers a question posed by Jiang, Kinber, Salomaa, Salomaa and Yu [5].
Our technical considerations do not only provide insights into the actual topic
of our paper, but – due to the definition of descriptive patterns – also reveal
vital phenomena related to the inclusion of E-pattern languages and, hence, the
topology of class of terminal-free E-pattern languages. Due to the way the inclu-
sion of terminal-free E-pattern languages is characterised, this implies that we
have to deal with combinatorial properties of morphisms in free monoids.

2 Basic Definitions and Preparatory Technical
Considerations

This paper is largely self-contained. For notations not explicitly defined, Rozen-
berg and Salomaa [10] can be consulted.

Let N := {0, 1, 2, 3, . . .} and, for every k ≥ 0, Nk := {n ∈ N | n ≥ k}.
The symbols ⊆, ⊂, ⊇ and ⊃ refer to subset, proper subset, superset and proper
superset relation, respectively. The symbol ∞ stands for infinity. For an arbitrary
alphabet A, a string (over A) is a finite sequence of symbols from A, and λ stands
for the empty string. The symbol A+ denotes the set of all nonempty strings over
A, and A∗ := A+ ∪ {λ}. For the concatenation of two strings w1, w2 we write
w1 · w2 or simply w1w2. We say that a string v ∈ A∗ is a factor of a string
w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. If u1 = λ (or u2 = λ),
then v is a prefix of w (or a suffix, respectively). The notation |K| stands for the
size of a set K or the length of a string K; the term |w|a refers to the number
of occurrences of the symbol a in the string w. For any w ∈ Σ∗ and any n ∈ N,
wn denotes the n-fold concatenation of w, with w0 := λ.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗. Given morphisms g : A∗ → B∗ and h : B∗ →
C∗ (for alphabets A, B, C), their composition (h ◦ g) is defined by (h ◦ g)(w) :=
h(g(w)) for all w ∈ A∗. For every morphism h : A∗ → A∗ and every n ≥ 0, hn

denotes the n-fold iteration of h, i. e., hn+1 := (h ◦ hn), where h0 is the identity
on A∗.

A morphism h : A∗ → B∗ is said to be nonerasing if h(a) �= λ for all a ∈ A.
For any string w ∈ C∗, where C ⊆ A and |w|a ≥ 1 for every a ∈ C, the
morphism h : A∗ → B∗ is called a renaming (of w) if h : C∗ → B∗ is injective
and |h(a)| = 1 for every a ∈ C.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or:
letters) and X an infinite set of variables with Σ ∩X = ∅. We normally assume
{a, b, . . .} ⊆ Σ and {y, z, x0, x1, x2 . . .} ⊆ X . A pattern is a string over Σ ∪X , a
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terminal-free pattern is a string over X and a word is a string over Σ. The set
of all patterns over Σ ∪ X is denoted by PatΣ . For any pattern α, we refer to
the set of variables in α as var(α).

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) =
a for every a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called
a substitution. Let S ⊆ Σ∗; then we say that a pattern α is consistent with S if,
for every w ∈ S, there exists a substitution σ satisfying σ(α) = w.

Intuitively, the pattern language of a pattern α is the maximum set of words α
is consistent with. Formally, we consider two types of pattern languages, depend-
ing on whether we restrict ourselves to nonerasing substitutions: the NE-pattern
language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution},

and the E-pattern language LE,Σ(α) of α is given by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution}.

The term pattern language refers to any of the definitions introduced above. We
call a pattern language terminal-free if it is generated by a terminal-free pattern.

We now can introduce our terminology on the main topic of this paper, namely
the descriptiveness of a pattern. For any alphabet Σ and any language S ⊆ Σ∗, a
pattern δ ∈ PatΣ is said to be NE-descriptive (of S) provided that LNE,Σ(δ) ⊇ S
and, for every α ∈ PatΣ with LNE,Σ(α) ⊇ S, LNE,Σ(α) �⊂ LNE,Σ(δ). Analo-
gously, δ is called E-descriptive (of S) if LE,Σ(δ) ⊇ S and, for every α ∈ PatΣ
with LE,Σ(α) ⊇ S, LE,Σ(α) �⊂ LE,Σ(δ).

Obviously, the definition of a descriptive pattern is based on the inclusion
of pattern languages, which is an undecidable problem for both the full class
of NE-pattern languages and the full class of E-pattern languages (cf. Jiang et
al. [6], Freydenberger and Reidenbach [4]). A significant part of our subsequent
technical considerations, however, can be restricted to terminal-free E-pattern
languages, and here the inclusion problem is known to be decidable. This directly
results from the following characterisation:

Theorem 1 (Jiang et al. [6]). Let Σ be an alphabet, |Σ| ≥ 2, and let α, β ∈
X+ be terminal-free patterns. Then LE,Σ(α) ⊆ LE,Σ(β) if and only if there exists
a morphism h : X∗ → X∗ satisfying h(β) = α.

While Theorem 1 is a powerful tool when dealing with the inclusion of terminal-
free E-pattern languages, the examination of the descriptiveness of a pattern re-
quires insights into proper inclusion relations, and therefore we use some further
combinatorial results on morphisms in free monoids to give a more convenient
criterion that can replace the use of Theorem 1.

In accordance with Reidenbach and Schneider [9], we designate a terminal-
free pattern α ∈ X+ as morphically imprimitive if there is a pattern β ∈ X∗

satisfying the following conditions: |β| < |α| and there are morphisms g, h :
X∗ → X∗ such that g(α) = β and h(β) = α. Otherwise, α is morphically
primitive. Let α ∈ X+ be morphically primitive. A morphism h : X∗ → X∗ is
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said to be an imprimitivity morphism (for α) provided that |h(α)| > |α| and
there is a morphism g : X∗ → X∗ satisfying g(h(α)) = α. Referring to these
concepts, we now can give a characterisation of certain proper inclusion relations
between terminal-free E-pattern languages:

Lemma 1. Let Σ be an alphabet, |Σ| ≥ 2, α ∈ X+ a morphically primitive
pattern and h : X∗ → X∗ a morphism. Then LE,Σ(h(α)) ⊂ LE,Σ(α) if and only
if h is neither an imprimitivity morphism for, nor a renaming of α.

The proof for Lemma 1 is omitted due to space constraints.
The question of whether a given morphism is an imprimitivity morphism for

a pattern can be easily answered using the following insight:

Theorem 2 (Reidenbach, Schneider [9]). Let α ∈ X+ be a morphically
primitive pattern. Then a morphism h : X∗ → X∗ is an imprimitivity morphism
for α if and only if

1. for every x ∈ var(α), there exists an xh ∈ var(h(x)) such that |h(x)|xh
= 1

and |h(y)|xh
= 0 for every y ∈ var(α) \ {x}, and

2. there exists an x ∈ var(α) with |h(x)| ≥ 2.

Evidently, Lemma 1 can only be applied if there is a tool for checking whether a
terminal-free pattern is morphically primitive. This is provided by the following
characterisation:

Theorem 3 (Reidenbach, Schneider [9]). A pattern α ∈ X+ is morphically
primitive if and only if there is no factorisation α = β0 γ1β1 γ2β2 . . . βn−1 γnβn

with n ≥ 1, βk ∈ X∗ and γk ∈ X+, k ≤ n, such that

1. |γk| ≥ 2 for every k, 1 ≤ k ≤ n,
2. var(β0 . . .βn) ∩ var(γ1 . . .γn) = ∅ and
3. for every k, 1 ≤ k ≤ n, there exists an xk ∈ var(γk) such that |γk|xk

= 1
and, for every k′, 1 ≤ k′ ≤ n, if xk ∈ var(γk′) then γk = γk′ .

Thus, with Lemma 1, Theorem 2 and Theorem 3 we now have an appropriate
tool for deciding on particular proper inclusion relations between terminal-free
E-pattern languages.

3 Descriptive Patterns and Infinite Strictly Decreasing
Chains of Pattern Languages

Before we state and prove the main results of our paper, we discuss some simple
yet enlightening observations that establish a connection between descriptiveness
of patterns and infinite strictly decreasing chains of pattern languages over some
fixed alphabet, i. e. sequences (Li)i∈N of pattern languages satisfying, for every
j ∈ N, Lj ⊃ Lj+1. This aspect is already briefly mentioned by Jiang et al. [5].

Since, by definition, a descriptive pattern generates a smallest pattern lan-
guage comprising a language S, S does not have a descriptive pattern if and
only if no pattern language L satisfying L ⊇ S is smallest. Hence, the exis-
tence of a descriptive pattern essentially depends on the existence of a pattern
language that is not contained in an infinite strictly decreasing chain:
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Observation 1. Let Σ be an alphabet and S ⊆ Σ∗ a language. Then there is
no pattern that is NE-descriptive (or E-descriptive) of S if and only if, for every
pattern α with LNE,Σ(α) ⊇ S (or LE,Σ(α) ⊇ S, respectively) there is

– a sequence of patterns αi ∈ PatΣ, i ∈ N, satisfying, for every j ∈ N,
LNE,Σ(αj) ⊃ LNE,Σ(αj+1) (or LE,Σ(αj) ⊃ LE,Σ(αj+1), respectively) and
LNE,Σ(αj) ⊇ S (or LE,Σ(αj) ⊇ S, respectively), and

– an n ∈ N with LNE,Σ(αn) = LNE,Σ(α) (or LE,Σ(αn) = LE,Σ(α), respec-
tively).

Proof. Directly from the definition of an NE-descriptive (or E-descriptive)
pattern. ��

Thus, the question of whether there is a descriptive pattern for a language S re-
quires insights into the inclusion problem for pattern languages. As partly stated
in Section 2, this problem is undecidable in the general case, but it is decidable
for the class of terminal-free E-pattern languages (though combinatorially com-
plex and, according to Ehrenfeucht and Rozenberg [3], NP-complete).

In order to illustrate and substantiate Observation 1 and as a reference for
further considerations in Section 4, we now give some examples of strictly de-
creasing chains of pattern languages. We begin with a sequence of patterns that
has identical properties for both NE- and E-pattern languages:

Example 1. Let Σ be any alphabet. For every i ∈ N, we define αi := x2i

1 , i. e.
α0 = x1, α1 = x2

1, α2 = x4
1, α3 = x8

1 and so on. Evidently, for every j ∈ N, the
morphism h : {x1}+ → {x1}+, defined by h(x1) := x2

1, satisfies h(αj) = αj+1.
Since, for both NE- and E-pattern languages, the existence of such a morphism
is a sufficient condition for an inclusion relation (cf. Theorems 2.2 and 2.3 by
Jiang et al. [5]), LNE,Σ(αj) ⊇ LNE,Σ(αj+1) and LE,Σ(αj) ⊇ LE,Σ(αj+1) are
satisfied. In the given example, it is evident that all inclusions of NE-pattern
languages are strict. The same holds for the inclusion of E-pattern languages;
alternatively, for all but unary alphabets Σ, it is directly proved by Lemma 1
(using Theorem 2 and Theorem 3) given in Section 2. Hence, the sequence of
αi leads to an infinite strictly decreasing chain for NE-pattern languages as well
as for E-pattern languages. Nevertheless, the sequence of patterns is irrelevant
in the context of Observation 1, as the sets SNE :=

⋂∞
i=0 LNE,Σ(αi) and SE :=⋂∞

i=0 LE,Σ(αi), i. e. those languages all patterns are consistent with, are empty.

Our next example looks quite similar to Example 1, but here a difference between
NE- and E-pattern languages can be noted:

Example 2. Let Σ be an alphabet with |Σ| ≥ 2. For every i ∈ N, we de-
fine αi := x2i

1 y2, i. e. α0 = x1y
2, α1 = x2

1y
2, α2 = x4

1y
2, α3 = x8

1y
2 and so

on. Referring to the same facts as mentioned in Example 1, it can be shown
that the patterns again define one infinite strictly decreasing chain of NE-
pattern languages and another one of E-pattern languages. However, while the
set SNE :=

⋂∞
i=0 LNE,Σ(αi) again is empty, SE :=

⋂∞
i=0 LE,Σ(αi) now equals

LE,Σ(y2). Hence, we have a chain of E-pattern languages that are all consistent
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with a nonempty language. Nevertheless, LE,Σ(y2) obviously has a descriptive
pattern, namely δ := y2, and this of course holds for all infinite sequences of
patterns where SE equals an E-pattern language. Consequently, the existence of
a single infinite strictly decreasing chain of E-pattern languages Li satisfying,
for every i ∈ N, Li ⊇ S, does not mean that there is no E-descriptive pattern
for S. Furthermore, it is worth mentioning that we can replace SE with a finite
language and still preserve the above described properties of the αi and δ. For
Σ ⊇ {a, b}, this is demonstrated, e. g., by the language S := {aa, bb}, which
satisfies, for every i ∈ N, S ⊆ LE,Σ(αi) and has the E-descriptive pattern δ.

Our final example presents a special phenomenon of E-pattern languages, namely
the existence bi-infinite strictly decreasing/increasing chains of such languages:

Example 3. Let Σ be an alphabet with |Σ| ≥ 2. For every i ∈ Z, we define

αi :=

{
x2−i

1 if i is negative,
x2

1x
2
2 . . . x2

i+2 else.

Hence, for example, from i = −3 to i = 2 the patterns read α−3 = x8
1, α−2 = x4

1,
α−1 = x2

1, α0 = x2
1x

2
2, α1 = x2

1x
2
2x

2
3, and α2 = x2

1x
2
2x

2
3x

2
4. Using Theorem 3, it

is easy to show that all patterns are morphically primitive. Theorem 2 demon-
strates that all morphisms mapping an αk onto an αj , j < k, are not imprim-
itivity morphisms. Therefore we can conclude from Lemma 1 that LE,Σ(αj) ⊂
LE,Σ(αk) if and only if j < k. For the given patterns, SE :=

⋂∞
i=−∞ LE,Σ(αi)

is empty, but if we define, for every i ∈ Z, α′
i := y2αi, then these α′

i generate
a bi-infinite strictly decreasing/increasing chain of E-pattern languages where
SE :=

⋂∞
i=−∞ LE,Σ(α′

i) = LE,Σ(y2) is an E-pattern language.

Note that the example patterns given above are terminal-free merely for the sake
of convenience. They can be effortlessly turned into certain patterns containing
terminal symbols and still showing equivalent properties.

4 The Existence of Descriptive Patterns

In the present chapter we study the existence of patterns that are descriptive of
sets S of strings. According to our remarks in Section 1, four main cases can be
considered, depending on whether S is finite or infinite and whether NE- or E-
descriptiveness is examined. We focus on the existence of E-descriptive patterns
for infinite languages since, for the other three cases, answers are absolutely
straightforward or directly or indirectly provided by Angluin [1] and Jiang et
al. [5]. In order to give a comprehensive description and further explain some
of our formal concepts and statements we nevertheless also briefly describe the
known or trivial cases.

Using Observation 1, the question of the existence of NE-descriptive patterns
can be easily answered for all types of languages S. We begin with the case of
a finite S. Here, it is primarily necessary to observe that a word w can only be
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covered by a pattern α through nonerasing substitutions if α is not longer than
w. Hence, for any finite alphabet Σ and any word over Σ, there are only finitely
many NE-pattern languages over Σ covering this word; this property of a class
of languages is commonly referred to as finite thickness (cf. Wright [13]). Quite
obviously, the same holds for infinite alphabets Σ, since the number of different
terminal symbols that can occur in patterns covering w is limited by the number
of different terminal symbols in w. With regard to infinite sequences of patterns
(generating languages that all differ from each other) over a fixed alphabet, this
means that none of them can contain infinitely many patterns that cover, e. g.,
the shortest word in a given finite set of strings. This immediately shows that,
for every finite S, there exists an NE-descriptive pattern:

Proposition 1 (Angluin [1]). Let Σ be an alphabet and S ⊆ Σ+ a finite
language. Then there is a pattern δ ∈ PatΣ that is NE-descriptive of S.

Note that Angluin [1] does not explicitly state Proposition 1, but directly stud-
ies more challenging questions by introducing a procedure computing an NE-
descriptive pattern for any finite language S and examining the computational
complexity of the problem of finding such patterns for finite languages.

With regard to NE-descriptive patterns for infinite languages S, the same
reasoning as for finite languages S leads to the analogous result:

Proposition 2. Let Σ be an alphabet and S ⊆ Σ+ an infinite language. Then
there is a pattern δ ∈ PatΣ that is NE-descriptive of S.

Proof. Directly from Observation 1 and the finite thickness of the class of NE-
pattern languages. ��

A closer look at the underlying reasoning proving Propositions 1 and 2 reveals
that it does not need to consider whether any infinite sequence of patterns
leads to an infinite strictly decreasing chain of NE-pattern languages (as fea-
tured by Observation 1), but can be completely based on the concept of fi-
nite thickness. If we nevertheless wish to examine the properties of such chains,
then we can easily observe that, for every sequence of patterns αi, i ∈ N, with
LNE,Σ(αi) ⊃ LNE,Σ(αi+1), the set SNE :=

⋂∞
i=0 LNE,Σ(αi) necessarily is empty.

Hence, Examples 1 and 2 illustrate the only option possible.
With regard to E-descriptiveness, the situation is more complex. As shown

by Examples 2 and 3, the class of E-pattern languages does not have finite
thickness and there are even finite and infinite languages that are contained in
all E-pattern languages of an infinite strictly decreasing chain. Nevertheless, it
is known that every finite language has an E-descriptive pattern:

Theorem 4 (Jiang et al. [5]). Let Σ be an alphabet and S ⊆ Σ∗ a finite
language. Then there is a pattern δ ∈ PatΣ that is E-descriptive of S.

The proof for Theorem 4 given by Jiang et al. [5] demonstrates that for every
finite language S an upper bound n can be given such that, for every pattern
α consistent with S, there exists a pattern β satisfying |β| ≤ n and LE,Σ(β) ⊆
LE,Σ(α). So if, for any finite S, there is a sequence of patterns αi, i ∈ N, leading
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to an infinite strictly decreasing chain of E-pattern languages comprising S –
which implies that there is no upper bound for the length of the αi – then all
but finitely many of these patterns need to have variables that are not required
for generating the words in S. This phenomenon is illustrated by Example 2,
where only the subpattern y2 of all patterns is necessary in order to map the
patterns onto the words in SE.

In the proof for Theorem 4, the upper bound n equals the sum of the lengths
of the words in S. Thus, this method cannot be adopted when investigating
the existence of E-descriptive patterns for infinite sets of words. In fact, as to
be demonstrated below, we here need to consider two subcases depending on
the number of different letters occurring in the words of S. If the underlying
alphabet is unary, then the descriptiveness of a pattern is related to the inclusion
relation of E-pattern languages over this unary alphabet. The structure of such
E-pattern languages, however, is significantly simpler than that of E-pattern
languages over larger alphabets; in particular, the full class of these languages is
a specific subclass of the regular languages (namely the linear unary languages).
Therefore, and just as in the previous cases, it can be shown that, for every
sequence of patterns (αi)i∈N leading to a infinite strictly decreasing chain of E-
pattern languages over a unary alphabet, the language SE :=

⋂∞
i=0 LE,Σ(αi) is

empty. Referring to Observation 1, this directly leads to the following result:

Theorem 5. Let Σ be an alphabet, |Σ| = 1, and S ⊆ Σ∗ an infinite language.
Then there is a pattern δ ∈ PatΣ that is E-descriptive of S.

The proof for Theorem 5 is omitted due to space constraints.
In contrast to this, Example 2 demonstrates that, for alphabets with at least

two letters, there is an infinite strictly decreasing chain of E-pattern languages
such that the intersection of all these languages is nonempty. Since this inter-
section is an E-pattern language, Example 2 can nevertheless not be used to
establish a result that differs from those given for the other cases. In order to
answer the question of whether this holds true for all such chains, we now con-
sider a more sophisticated infinite sequence of patterns, that is defined as follows:

Definition 1. We define the pattern α0 := y2z2 and the morphism φ : X∗ →
X∗ (note that we assume X ⊇ {y, z, x0, x1, x2 . . .}) through, for every i ∈ N,

φ(xi) := xi+1, φ(y) := y2x1, φ(z) := x1z
2.

Then, for every i ∈ N, the pattern αi+1 is given by αi+1 := φ(αi) = φi(α0).

This means that, for example,

α1 = y2x1 y2x1 x1z
2 x1z

2,

α2 = (y2x1y
2x1x2) (y2x1y

2x1x2) (x2x1 z2x1z
2) (x2x1z

2x1z
2),

α3 = (y2x1y
2x1x2 y2x1y

2x1x2 x3) (y2x1y
2x1x2 y2x1y

2x1x2 x3)
(x3 x2x1z

2x1z
2 x2x1z

2x1z
2) (x3 x2x1z

2x1z
2 x2x1z

2x1z
2).

It can be shown that this sequence (αi)i∈N defines an infinite strictly decreasing
chain of E-pattern languages. Furthermore, if we define the morphism ψ : X∗ →
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X∗ through ψ(xi) := xi and ψ(y) := ψ(z) := x0, then, for every alphabet Σ with
|Σ| ≥ 2, LΣ :=

⋃∞
i=0 LE,Σ(ψ(αi)) satisfies LΣ ⊆

⋂∞
i=0 LE,Σ(αi). Finally, it can

be demonstrated that the sequence (αi)i∈N has a very particular property, since
for every pattern γ with LE,Σ(γ) ⊇ LΣ there exists an αi satisfying LE,Σ(γ) ⊇
LE,Σ(αi). Referring to Observation 1, this implies the main result of our paper:

Theorem 6. For every alphabet Σ with |Σ| ≥ 2 there is an infinite language
LΣ ⊂ Σ∗ that has no E-descriptive pattern.

The proof for Theorem 6 is omitted due to space constraints.
Consequently, when searching for descriptive patterns, the case of E-descrip-

tive patterns of infinite languages over alphabets of at least two letters is the
only one where the existence of such patterns is not always guaranteed. This
directly answers a question posed by Jiang et al. [5].

Finally, it can be shown that, while the proof of Theorem 6 is based on the
particular shape of the infinite union LΣ of E-pattern languages described above,
LΣ can be replaced by a language Lt

Σ which, for every pattern ψ(αi), i ≥ 0,
contains just a single word. In order to describe this insight more precisely, we
have to introduce the following concept:

Definition 2. A language L is called properly thin if, for every n ≥ 0, L con-
tains at most one word of length n.

Referring to this definition, we can strengthen Theorem 6 as follows:

Corollary 1. For every alphabet Σ with |Σ| ≥ 2, there is an infinite properly
thin language Lt

Σ ⊂ Σ∗ that has no E-descriptive pattern.

The proof for Corollary 1 is omitted due to space constraints.

5 Conclusions and Further Directions of Research

In the present paper, we have studied the existence and nonexistence of patterns
that are descriptive of a set of strings. We have explained that this question
is related to the existence of infinite strictly decreasing chains of pattern lan-
guages. Our main result has demonstrated that there exist infinite languages
over alphabets of at least two letters that do not have an E-descriptive pattern.

This insight leads to the question of characteristic criteria describing infinite
languages without an E-descriptive pattern. We have referred to one example
of such languages, namely a particular infinite union of E-pattern languages.
Although we have mentioned that an infinite properly thin language can be sub-
stituted for this union, we anticipate that only very special languages (and very
special infinite strictly decreasing chains of E-pattern languages) can be used for
the proof of our main result. Thus, we expect the nonexistence of E-descriptive
patterns to be a rare phenomenon. In addition to the said criteria, we consider it
worthwhile to further investigate the existence of efficient procedures finding de-
scriptive patterns of given languages (for those cases where descriptive patterns
exist). So far, this question has only been answered for NE-descriptive patterns
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of finite languages (see Angluin [1]), demonstrating that no such procedure can
have polynomial runtime (provided that P �=NP). We feel that a more pleasant
result might be possible for E-descriptive patterns.
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Abstract. A stateless k-head two-way deterministic finite automaton
(k-head 2DFA), has only one state, hence the designation stateless. Its
transitions depends solely on the symbols currently scanned by its k
heads, and in every such transition each head can move one cell left,
right, or remain stationary. An input, which is delimited by end markers,
is accepted if the machine, when started with all heads on the left end
marker, reaches the configuration where all the heads are on the right
end marker. The nondeterministic version is denoted by k-head 2NFA.

We prove that stateless (k+1)-head 2DFAs (resp., 2NFAs) are compu-
tationally more powerful than k-head 2DFAs (resp., 2NFAs), improving
a recent result where it was shown that (k + 4) heads are better than k
heads.

We also study stateless multihead pushdown automata in their two-
way and one-way, deterministic and nondeterministic variations and show
that for all these varieties, k + 1 heads allow more computational power
than k heads. Finally, we give some characterizations of stateless multi-
head finite and multihead pushdown automata.

1 Introduction

Stateless multihead finite automata are formal systems with no states (hence
can be regarded as just having one state) equipped with a tape and with several
reading heads. The operation of these systems only depends on the symbols
scanned by the heads. These automata were first investigated in [10] because
of their connection to certain aspects of membrane computing and P systems,
a subarea of molecular computing that was introduced in [6] (see also [7]). A
membrane in a P system consists of a multiset of objects drawn from a given
finite set of objects. The system has no global state (i.e., stateless) and works
on the evolution of objects.
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The stateless multihead automata in [10] were mainly studied with respect to
decision problems (e.g., emptiness). Later, hierarchies with respect to the number
of heads were established in [4], where it was shown that stateless (k + 1)-head
1DFAs (resp., 1NFAs) are computationally more powerful than stateless k-head
1DFAs (resp., 1NFAs), and stateless (k + 4)-head 2DFAs (resp., 2NFAs) are
computationally more powerful than stateless k-head 2DFAs (resp., 2NFAs). It
was left open in [4], whether the “k+4” in the latter result can be improved. In
this paper, we show that, indeed, stateless (k + 1)-head 2DFAs (resp., 2NFAs)
are computationally more powerful than stateless k-head 2DFAs (resp., 2NFAs).

We also look at stateless multihead pushdown automata in their two-way
deterministic, two-way nondeterministic, one-way deterministic, and one-way
nondeterministic versions (2DPDA, 2NPDA, 1DPDA, 1NPDA, respectively).
The operation of these machines are similar to multihead automata, except that
now, the transitions also depend on the stack.

Finally, we give some characterizations of stateless multihead finite and mul-
tihead pushdown automata.

Our proofs employ translational techniques like the ones in [3,5,8] but the
translations we use are much more complicated because of the absence of states
in the simulating systems.

2 Basic Definitions

Denote a two-way nondeterministic (deterministic) finite automaton by
2NFA (2DFA). Similarly denote the one-way variant by 1NFA (1DFA). We con-
sider stateless k-head 2NFAs and define them as pairs (Σ, δ) where:

Σ is an alphabet with �, � /∈ Σ, � is the left end marker and � is the right end
marker;

δ is a finite set of transitions of the form (a1, . . . , ak) → (d1, . . . , dk), where
ai ∈ Σ ∪ {�, �}, 1 ≤ i ≤ k, is the symbol read by the i-th head, while
di ∈ {l, s, r} tells where the i-th head is to be moved (l, s and r, stand for left,
stay and right, respectively).

If there is at most one transition for every combination of symbols a1, . . . ,
ak ∈ Σ ∪ {�, �}, we refer to such an automaton as a stateless k-head 2DFA. If
none of the transitions move any heads to the left, such an automaton is called
a stateless k-head 1NFA (1DFA).

For an input string w ∈ Σ∗, the machine works on a tape containing �w� and
start with all heads reading the left end marker �. At every step of the computa-
tion, the symbols a1, . . . , ak currently scanned by all k heads are considered, any
corresponding transition a1 . . . ak → d1 . . . dk ∈ δ is chosen, and each i-th heads
is moved according to di. The string is accepted if there exists a computation
resulting in all k heads reading the end marker �. As an example, the state-
less 2-head 1DFA with transitions (�, �) → (s, r), (�, a) → (s, r), (�, b) → (r, r),
(a, b) → (r, r), and (b, �) → (r, s) recognizes the language L = {anbn+1 | n � 0}.

Stateless multihead pushdown automata can be defined as stateless k-head
2NFA but with the set δ having elements of the form (a1, . . . , ak, Z) → (d1, . . . dk,
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γ), where Z is the symbol at the top of the pushdown stack, and γ ∈ Γ ∗, with Γ
the pushdown alphabet. (In this transition, Z is replaced by the string γ, with
the rightmost symbol of γ becoming the new top of the stack. If γ is the null
string, Z is popped from the stack.) We show that for all varieties of stateless
multihead pushdown automata, k + 1 heads are computationally more powerful
than k heads.

In this paper, when we say that a machine M can be simulated by another
machine M ′, we mean that there is an encoding of inputs for M to inputs for
M ′ such that an input w is accepted by M if and only if the encoding w′ of w
is accepted by M ′.

3 Stateless Multihead Two-Way Finite Automata

Our proofs involve “translations” (or reductions) to multihead automata with
states. A k-head 2NFA (2DFA) with states, is a tuple (Σ, δ, S, s0, sf ) where:

Σ is an alphabet with �, � �∈ Σ;
δ a finite set of transitions of the form (s, a1, . . . , ak) → (s′, d1, . . . , dk) with

s, s′ ∈ S, being the current and next state, respectively, a1, . . . , ak ∈ Σ ∪
{�, �} being the symbols currently read by the k heads, and d1, . . . , dk ∈
{l, s, r}k being the movements of the k heads;

S is a finite set of states;
s0 ∈ S is the initial state;
sf ∈ S is the final state.

Such an automaton starts on a tape containing �w� in initial state s0 with
all heads reading �. If the automaton is in state s, then a transition of the form
(s, a1, . . . , ak) → (s′, d1, . . . , dk) can be applied only if head i reads ai, 1 ≤ i ≤
k. As a consequence of the application of such a transition, the state of the
automaton changes into s′ and head i moves according to di. The automaton
accepts when it is in state sf with all heads reading �.

Definition 1. Let M1 = (Σ, δ, S, s0, sf ) be a k-head 2DFA with states such that
its transitions are of the form (x, a1, . . . , ak) → (y, d1, . . . , dk) where d1, d2 ∈
{l, r} and d3, . . . , dk ∈ {l, r, s}.

Given a string w = w1 . . .w|w| over Σ we define the string w′ = p1p2w over
Σ′ = Σ ∪ {qd1,d2

x,y , q′d1,d2
x,y , q̄d1,d2

x,y , q̄′d1,d2
x,y | (x, a1, . . . , ak)→(y, d1, . . . , dk)∈δ,

d1, d2 ∈ {l, r}}
with:

p1 = w1tw2t . . .w|w|t where t is the lexicographic ordering of trx,y for x, y ∈ S,
(x, a1, . . . , ak) → (y, d1, . . . , dk) ∈ δ, and
trx,y = q̄l,lx,y ql,lx,y q̄r,lx,y qr,lx,y qx,y ql,rx,y q̄l,rx,y qr,rx,y q̄r,rx,y;

p2 = w1t
′w2t

′ . . .w|w|t′ where t′ is the lexicographic ordering of tr′x,y for x, y ∈
S, (x, a1, . . . , ak) → (y, d1, . . . , dk) ∈ δ, and

tr′x,y = q̄′r,lx,y q′r,lx,y q̄′l,lx,y q′l,lx,y q′x,y q′l,rx,y q̄′l,rx,y q′r,rx,y q̄′r,rx,y.
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With lexicographic order we mean that, for instance, trx,y comes before trx′,y′

if and only if x < x′ or x = x′ and y ≤ y.

For a better understanding of the previous definition we add a very simple exam-
ple. Let M = (Σ, δ, S, s0, s2) be a k-head 2DFA with Σ = {a, b}, δ = {(s0, �) →
(s0, r), (s1, a) → (s1, r), (s1, b) → (s2, r)} and S = {s0, s1, s2}.

Assuming that s0 < s1 < s2, then by Definition 1, we have t = trs0,s1trs1,s1

trs1,s2 and t′ = tr′s0,s1
tr′s1,s1

tr′s1,s2
. If we then consider w = aab, then p1 = atatbt

and p2 = at′at′bt′.

Lemma 1. For k ≥ 2, any k-head 2DFA with states having the string w as input
can be simulated by a stateless k-head 2DFA having the string w′ as input, with
w′ as in Definition 1.

Proof. (Sketch) Let M1 = (Σ, δ, S, s0, sf ) be a k-head 2DFA with states such
that S = {1, . . . , |S|}, s0 = 1 and sf = |S|. In order to have a simpler proof we
assume that the transitions of M1 are of the form (x, a1, . . . , ak) → (y, d1, . . . , dk)
where d1, d2 ∈ {l, r} and d3, . . . , dk ∈ {l, r, s}. This assumption is not restrictive
as given M1, a 2DFA such that d1, d2 ∈ {l, r, s}, then it is always possible to
construct another 2DFA M ′

1 accepting the same language of M1 and such that
d1, d2 ∈ {l, r}. For each transition of M1 for which head 1 or head 2 does not
move, M ′

1 has two transitions: the corresponding head moves right and then back
to the left if the head was not on �; otherwise, it moves left and then right.

We define M2 = (Σ′, δ′), a stateless k-head 2DFA with

Σ′ = Σ ∪ {qd1,d2
x,y , q′d1,d2

x,y , q̄d1,d2
x,y , q̄′d1,d2

x,y | (x, a1, . . . , ak)→(y, d1, . . . , dk)∈δ,
d1, d2 ∈ {l, r}}.

Given a string w = w1 . . .w|w| over Σ we define the string w′ = p1p2w as in
Definition 1.

During a computation of M2 head 1 mainly reads p1, head 2 mainly reads
p2, while the remaining heads mainly read w. The computations of M2 can be
logically divided in three parts: initialization, simulation and termination.

Initialization. In the initial configuration all the heads of M2 read � in w′.
During initialization the heads move such that at the end of it:

head 1 reads qs0,y in the trs0,y coming after w1 in p1;
head 2 reads q′s0,y in the tr′s0,y coming after w1 in p2;
the remaining heads read a1 in w.

Simulation. The simulation of transitions of M1 starts and ends with head 1
and head 2 reading symbols of the kind qx,y and q′x,y, respectively, for x, y ∈ S.
This process is rather complex but it simply consists of the following. Let us
assume that p1 = w1t1w2t2w3t3w4 (we know that t1 = t2 = t3 = t but here we
need to refer to a specific t so we use subscripts to differentiate them) and that
head 1 reads qx,y in t2 for (x, a1, . . . , ak) → (y, d1, . . . , dk) ∈ δ. If d1 = r, then
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head 1 moves to the right until it reads qy,z in t3, if instead d1 = l, then head 1
moves to the left until it reads qy,z in t1. Head 2 moves in p2 in a similar fashion
depending on d2.

It should be clear that this process requires more than one transition in M2.
The strings trx,y and tr′x,y have substrings of pairs of symbols: one with a bar
and one without. As we will see, the barred symbols in p1 (p2) are used to
indicate that head 2 (head 1) passed to another t while scanning p2 (p1). The
superscripts (pairs or elements in {l, r}) indicate in which direction head 1 and
head 2 have to move.

Phase 1. The transition is simulated on the heads from 3 until k, while head 1
moves to read qd1,d2

x,y . Head 2 co-operates with head 1.

Phase 2. Let us assume that head 1 reads qd1,d2
x,y . When head 2 reads a symbol in

w, head 1 moves to read q̄d1,d2
x,y , then head 2 moves in direction d2 until it reads

q′d1,g
y,z (where g = l if d2 = r and g = r if d2 = l).

Phase 3. When head 2 reads q′d1,g
y,z the transitions in the present phase let head 1

to move in direction d1 until it reads a symbol in Σ. Because of the lexicographic
order during phase 3 the transitions in phase 2 cannot be applied.

Phase 4. Similarly to what performed by the transitions in phase 2, when head
1 reads a symbol in Σ and head 2 reads q′d1,g

y,z , the transitions in the present

phase let head 2 to move to read q̄′d1,g
y,z . Head 1 goes on moving in direction d1

until it reads qy,z.

Phase 5. When head 1 reads qy,z, then head 2 moves to read q′y,z.

Termination. When head 1 reads qx,sf
and head 2 reads q′x,sf

, then all the
heads move to the right until they read �. �

We were not able to prove a result similar to Lemma 1 for 2NFA due to the
following difficulty. In the proof of Lemma 1 the transitions in phase 2 let head 2
to ‘search’ for (the unique) q′d1,g

y,z while head 1 reads either qd1,d2
x,y or q̄d1,d2

x,y . When
this happens the transitions in phase 3 let head 1 to move while head 2 does not.
If a 2NFA tries to do a similar thing, then, as there can be several qd1,d2

x,y and
q̄d1,d2
x,y for different y in p1, then when head 2 reads q′d1,g

y,z (for a certain y) and
transitions in phase 3 are applied, then it can be that head 1 reads qd1,d2

x,y′ . In this
case the transitions in phase 2 can be applied again leading not to a simulation
of any transition in M1.

We did not succeed either to avoid such behaviour or to let the computation
of M1 to halt in a non accepting configuration when such behaviour occurs.

If the number of heads of M1 is at least 3, then a stateless 2NFA can simulate
a 2NFA with states.

Definition 2. Let M1 = (Σ, δ, S, s0, sf ) be a k-head 2DFA with states such that
its transitions are of the form (x, a1, . . . , ak) → (y, d1, . . . , dk) where d1, d2 ∈
{l, r} and d3, . . . , dk ∈ {l, r, s}.
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Given a string w = w1 . . .w|w| over Σ we define the string w′ = p1p2p3w over
Σ′ = {qd1,d2

x,y , q′d1,d2
x,y , q̄d1,d2

x,y , q̄′d1,d2
x,y | (x, a1, . . . , ak) → (y, d1, . . . , dk) ∈ δ,

d1, d2 ∈ {l, s, r}} ∪Σ ∪ {σ̄ | σ ∈ Σ}
with:

p1 and p2 as in Definition 1;
p3 = w1w̄1 . . .w|w|w̄|w|.

Lemma 2. For k ≥ 3, any k-head 2NFA with states having the string w as input
can be simulated by a stateless k-head 2NFA having the string w′ as input, with
w′ as in Definition 2.

We can now state the main results of this section:

Theorem 1. For k ≥ 2, stateless k-head 2DFAs are computationally more pow-
erful than stateless (k − 1)-head 2DFAs.

Proof. The case k = 2 is obvious, since the language {anbn+1 | n ≥ 0} can be
accepted by a stateless 2-head DFA but not by a stateless 1-head DFA, since
1-head DFAs (even with states) accept only regular sets.

Now let k ≥ 3. Let L1 be a language accepted a k-head 2DFA with states M1
but not by any (k − 1)-head 2DFA with states. Such a language exists [5]. Let
M2 be the stateless k-head 2DFA simulating M1 as described in Lemma 1. Let
L2 = L(M2). We claim that L2 cannot be accepted by a stateless (k − 1)-head
2DFA. Suppose not, i.e., L2 is accepted by a stateless (k − 1)-head 2DFA M3.
We can then construct from M3 a (k − 1)-head 2DFA M4 with states to accept
the original language L1 = L(M1) as follows.

When given �w�, M4 simulates the computation of M3 on �p1p2w�. But
since M4 is only given �w� it will use the finite-state control to keep track of
the movements of each head when each head “moves” into the segment p1p2.
Clearly, since p1 and p2 are fixed patterns, this can be done.

We get a contradiction, since L1 cannot be accepted by a (k− 1)-head 2DFA
with states. �
Similarly, since k-head 2NFAs with states are computationally more powerful
than (k − 1)-head 2NFAS (for k ≥ 2) [5], we have the following result using
Lemma 2. However, the case k = 3 is still open.

Theorem 2. Stateless k-head 2NFAs are computationally more powerful than
stateless (k − 1)-head 2NFAs for k = 2 and k ≥ 4.

We note that in the proof of Lemma 1 |Σ′| = |Σ|+16|δ|, where |δ| is the number
of transitions in δ, while |w′| = 18|δ||w| + |w| (as |p1| = |p2| = 9|δ||w|). If extra
heads are added, then the size of the alphabet Σ′ and the length of string w′ used
by a stateless 2DFA to simulate a k-head 2DFA with states can substantially
decrease.

Lemma 3. Let M1 = (Σ, δ, S, s0, sf ) be a k-head 2DFA with states where k≥ 1.
There is a stateless (k+1)-head 2DFA M2 = (Σ′, δ′) simulating M1 with |Σ′| =
|Σ|+4|δ|. The machine M2 can simulate M1 with input |w| using an input string
of length |w′| = 3|δ| + |w||δ| + |w|.
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Lemma 4. Let M1 = (Σ, δ, S, s0, sf ) be a k-head 2DFA with states where k≥ 1.
There is a stateless (k+ 2)-head 2DFA M2 = (Σ′, δ′) simulating M1 with |Σ′| =
|Σ|+ 4|δ|. The system M2 can simulate M1 with input |w| using an input string
of length |w′| = 4|δ| + |w|.

Finally, when the number of heads of the simulating stateless 2DFA is k + 3, we
have [4, Lemma 1]:

Lemma 5. Let M1 = (Σ, δ, S, s0, sf ) be a k-head 2DFA with states where k≥ 1.
There is a stateless (k+3)-head 2DFA M2 = (Σ′, δ′) simulating M1 with |Σ′| =
|Σ| + |δ|. The system M2 can simulate M1 with input |w| using an input string
of length |w′| = |δ| + |w|.

We do not know if the cardinality of Σ′ and the length of w′ in Lemmas 1, 3, 4
and 5 are optimal. Here we simply wanted to point out how the cardinality and
length decrease when we increase the number of heads.

4 Stateless Multihead Pushdown Automata

Let M be a k-head 2DPDA (two-way deterministic pushdown automaton) over
input alphabet Σ. An input to M is a tape of the form �w�, where w ∈ Σ∗

with � and � the left and right end markers. Let �w� = a1 · · · an. (Thus, n ≥ 2,
and a1 = � and an = �.) Let {1, · · · ,m} be the sets of states. Initially, the
stack contains B (the bottom of the stack) and all k heads are on a1 (i.e., on
�). The transitions of M are of the form (i, x1, · · · , xk, z) → (j, d1, · · · , dk, γ).
The transition means that when M is in state i, the heads H1, · · · , Hk read
x1, · · · , xk ∈ Σ ∪ {�, �}, and the top of the stack (TOS) is z, then M changes
state to j, moves head Hs in direction ds ∈ {l, s, r}, and replaces z with the
string γ. The tape w = a1 · · · an (actually, a2 · · · an−1, without the end markers)
is accepted if and only if M eventually reaches the configuration where all the
heads are on an (i. e., on �) and the stack is empty (there is no move on empty
stack). We assume that no head falls off the input tape.

The construction (translation) for multihead 2DFAs in the previous section
does not carry over to multihead 2DPDAs, since the contents of the stack cannot
be handled in that construction. Hence, we provide a different construction here
to show that stateless k-head 2DPDAs are more powerful than stateless (k− 1)-
head 2DPDAs for any k ≥ 2, and this result also holds for the nondeterministic
machines (2NPDAs). Note that for 2NFAs, we were not able to show that 3
heads are better than 2 heads.

We describe a stateless k-head 2DPDA M ′ simulating M . The input alphabet
of M ′ is Σ′ = Σ ∪{�, �,#}∪{il, ir | 1 ≤ i ≤ m}. The left and right end markers
of inputs to M ′ are now �′ and �′, respectively. Note that �, � are now considered
input symbols in Σ′.

Let p = 1l2l · · ·ml1r2r · · ·mr. For an input w = a1 · · ·an to M , let w′ =
�′a1pa2p · · ·anp#a1 · · · an�

′. We refer to w′ as the encoding of w. We construct
M ′ such that M accepts w if and only if M ′ accepts w′. For inputs to M ′ that
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are not valid encodings of inputs to M , we do not care. We now briefly describe
the operation of M ′ when given input w′ = �′a1pa2p · · ·anp#a1 · · · an�

′. For
convenience, we also call the heads of M ′, H1, · · · , Hk.

M ′ simulates the computation of M on w = a1 · · ·an on input w′ = �′a1pa2
p · · ·anp#a1 · · · an�

′ as follows.

1. While H1 remains on �′, heads H2, · · · , Hk are moved to #.
2. Then H1, · · · , Hk are moved right one cell. So now, H1 is on the first a1 and

H2, · · · , Hk are on the second a1 (directly to the right of #).

In what follows, H2, · · · , Hk will simulate the corresponding heads of M
on a1 · · · an. H1 will simulate H1 of M on the segment a1pa2p · · ·anp. For
convenience, let w1 = a1pa2p · · ·anp and w2 = a1 · · · an.

3. The current state i of M is stored on the TOS of M ′ along with the stack
symbol, as a pair (z, i).

4. At the beginning of each simulation step, H1 will be on some symbol at of
w1 and H2, · · · , Hk are on w2, and the TOS is some pair (z, i). (Initially, the
stack contains only (B, 1), where 1 is the initial state of M .)

5. If in the move, M ′ is supposed to replace (z, i) by (z1 · · · zr, j), r > 0, M ′

moves H2, · · · , Hk as in M and, depending on whether H1 is supposed to
move right, left, or remain stationary of at, M ′ does the following:
(a) moves H1 right and replaces the TOS (z, i) by (z1 · · · (zr, j

r);
(b) moves H1 left and replaces the TOS (z, i) by (z1 · · · (zr, j

l);
(c) does not move H1 but replaces the TOS (z, i) by (z1 · · · (zr, j).
Then, we consider three cases.

Case 1: TOS is (zr, j
r). Then H1 moves right until it reads at+1. It then

replaces the TOS (zr, j
r) by (zr, j), and continues the simulation of the

next step of M ;
Case 2: TOS is (zr, j

l). Then H1 moves left until it reads at−1. It then
replaces the TOS (zr, j

l) by (zr, j), and it continues the simulation of
the next step of M ;
Case 3: TOS is (zr, j). M ′ continues the simulation of the next step of
M .

6. If in the move, M ′ is supposed to replace (z, i) by (τ, j) (i.e., the stack is
popped), then M ′ moves H2, · · · , Hk as in M and, depending on whether H1
is supposed to move right, left, or remain stationary of at does the following:
(a) Moves H1 right and replaces the TOS (z, i) by (τ, jr);
(b) Moves H1 left and replaces the TOS (z, i) by (τ, jl);
(c) Moves H1 right and replaces the TOS (z, i) by (τ, js).
Again, we consider three cases:

Case 4: TOS is (τ, jr). Then H1 moves right until it reads jr. Then
it pops the stack. Let the new top be y. Then M ′ replaces y by (y, jr).
Then M ′ operates like Case 1;
Case 5: TOS is (τ, jl). Then H1 moves left until it reads jl. Then it pops
the stack. Let the new top be y. Then M ′ replaces y by (y, jl). Then M ′

operates like Case 2;
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Case 6: TOS is (τ, js). Then H1 moves right until it reads jr. Then
it pops the stack. Let the new top be y. Then M ′ replaces y by (y, jl).
Then M ′ operates like Case 2.

It follows that M ′ can simulate M provided the input to M ′ is well-formed
as described above.

Clearly, the above construction also works for nondeterministic machines, i.e.,
2NPDAs.

Theorem 3. For k ≥ 2, stateless k-head 2DPDAs are computationally more
powerful than stateless (k − 1)-head 2DPDAs.

Proof. Let L be a language accepted a k-head 2DPDA with states M but not by
any (k− 1)-head 2DPDA with states. Such a language exists [3]. Let M ′ be the
stateless k-head 2DPDA simulating M as described above. Let L′ = L(M ′). We
claim that L cannot be accepted by a stateless (k − 1)-head 2DPDA. Suppose
not, i.e., L′ is accepted by a stateless (k − 1)-head 2DPDA M ′′. We can then
construct from M ′′ a (k−1)-head 2DPDA M ′′′ with states to accept the original
language L = L(M) as follows.

When given a1 · · ·an, M ′′′ simulates the computation of M ′′ on �′a1p · · · anp#
a1 · · · an�

′. But since M ′′′ is only given a1 · · · an it will use the finite-state control
to keep track of the movements of each head when each head “moves” into the
segment �a1pa2p · · ·anp#. Clearly, since p is a fixed pattern, this can be done.
We omit the details. �

Similarly, since k-head 2NPDAs with states are computationally more powerful
than those with k-heads [3], we have:

Theorem 4. For k ≥ 2, stateless k-head 2NPDAs are computationally more
powerful than stateless (k − 1)-head 2NPDAs.

Turning now to the one-way varieties, consider the following language over the
alphabet {a, b,#,@}:

Lk = {u k(k−1)
2

#u k(k−1)
2 −1# . . . #u2#u1@v1#v2# . . . #v k(k−1)

2 −1#v k(k−1)
2

|

ui, vi ∈ {a, b}∗, ui = vi}.

It was shown in [11] that Lk can be accepted by a k-head 1DFA with states, but
cannot be accepted by any (k−1)-head 1NFA with states. Later in [1] it was shown
that, in fact, Lk cannot be accepted by any (k − 1)-head 1NPDA with states.

Recently, in [4], it was shown that a language L′
k, which is a “padded” version

of the language Lk, has the following properties:

1. L′
k can be accepted by a stateless k-head 1DFA, and therefore also by a

stateless k-head 1DPDA;
2. If L′

k can be accepted by a stateless (k − 1)-head 1NFA, then the unpadded
version Lk can be accepted by a (k−1)-head 1NFA with states, and therefore
also by a (k − 1)-head 1NPDA with states.
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In fact, following the argument in item 2 described in [4]), L′
k cannot be accepted

by (k − 1)-head 1NPDA with states.

Hence, L′
k can be accepted by a stateless k-head 1DFA (hence also by a stateless

k-head 1DPDA) but not by any stateless (k − 1)-head 1NPDA.

Theorem 5. There are languages accepted by stateless k-head 1DFAs that can-
not be accepted by stateless (k − 1)-head 1NPDAs.

Corollary 1. For k ≥ 2, stateless k-head 1DPDAs (resp., 1NPDAs) are com-
putationally more powerful than stateless (k − 1)-head 1DPDAs (resp.,
1NPDAs).

5 Characterizations

Clearly, any multihead 2DFA (resp., 2NFA, 2DPDA, 2NPDA) with n states can
be simulated by a corresponding stateless machine by adding log2n extra heads
to keep track of the states. Each head is positioned on the left end marker (to
represent 0) and the cell to its right (to represent 1). Thus, log2n heads can keep
track of n states.

Theorem 6. Let L be a language. Then the following statements are equivalent:

1. L is accepted by a stateless multihead 2NPDA.
2. L is accepted by a stateless multihead 2DPDA.
3. L is accepted by a multihead 2NPDA with states.
4. L is accepted by a multihead 2DPDA with states.
5. L is accepted by a deterministic TM in nc time for some constant c.

The above follows from [2], where the equivalence of items 3, 4, and 5 was shown.
One can also easily show the following:

Theorem 7. A language L can be accepted by stateless multihead 1DPDA (resp.,
1NPDA, 1DFA, 1NFA) if and only if it can be accepted by a multihead 1DPDA
(resp., 1NPDA, 1DFA, 1NFA) with states M with the following property: when
M enters a state, say q, it can remain in that state and move the heads (and
change the stack) but once it leaves q and it enters another state, say q′, then
M cannot reenter state q.

It is well known that multihead 2DFAs (resp., 2NFAs) are equivalent to log n
space-bounded deterministic (nondeterministic) Turing machines. Hence, we have:

Theorem 8. Stateless multihead 2DFAs (resp., 2NFAs) are equivalent to log n
space-bounded deterministic (resp., nondeterministic) Turing machines.

It is a long-standing open problem whether log n space-bounded deterministic
Turing machines are equivalent to log n space-bounded nondeterministic Turing
machines. Here we show:
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Theorem 9. If every language accepted by a stateless 3-head 2NFA can be ac-
cepted by a multihead 2DFA with states, then log n space-bounded deterministic
Turing machines are equivalent to log n space-bounded nondeterministic Turing
machines.

Proof. We will use the fact that this theorem is true when the 3-head 2NFA has
states [8]. (In fact, the result in [8] is already true for 2 heads.)

Let L1 be a language accepted by a 3-head 2NFA. Then, the language L2
(defined in the proof of Lemma 2) can be accepted by a stateless 3-head 2NFA.
If L2 can be accepted by a multihead 2DFA with states, then we can easily
construct a multihead 2DFA with states accepting L1.

The result follows. �

It would be interesting to know if the 3-head above can be reduced to 2-head.

6 Conclusion

We showed that stateless (k+1)-head 2DFA (resp., 2NFAs) are computationally
more powerful than k-head 2DFAs (resp., 2NFAS) for k ≥ 1 (resp., k = 1 and
k ≥ 3), improving recent results in [4]. We also proved similar results for stateless
multihead pushdown automata. Some interesting problems remain. For example,
we conjecture that stateless 3-head 2NFAs are computationally more powerful
than stateless 2-head 2NFAs, but we have no proof at this time.

We do not know if the relations between the number of heads, the size of
Σ′ and the length of w′ presented in Section 3 are optimal. We think that
such study, relating some features of the system to the size of the alphabet
used in the simulation and the length of the input string, is important and
that it is worth pursuing for other computing devices as well. We believe that
the precise relationships between these measures depend on the kind of data
structure (strings, multiset, sets, etc.) on which a system operates and on the
‘power’ of the transitions (rules, operation, etc.) used by the system.
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Abstract. We study expansions in non-integer negative base −β in-
troduced by Ito and Sadahiro [7]. Using countable automata associated
with (−β)-expansions, we characterize the case where the (−β)-shift is
a system of finite type. We prove that, if β is a Pisot number, then the
(−β)-shift is a sofic system. In that case, addition (and more generally
normalization on any alphabet) is realizable by a finite transducer.

1 Introduction

Expansions in integer negative base −b, where b � 2, seem to have been intro-
duced by Grünwald in [6], and rediscovered by several authors, see the historical
comments given by Knuth [8]. The choice of a negative base −b and of the al-
phabet {0, . . . , b− 1} is interesting, because it provides a signless representation
for every number (positive or negative). In this case it is easy to distinguish the
sequences representing a positive integer from the ones representing a negative
one: denoting (w.)−b :=

∑k
i=0 wk(−b)k for any w = wk · · ·w0 in{0, . . . , b − 1}∗

with no leading 0’s, we have N = {(w.)−b | |w| is odd}. The classical monotonic-
ity between the lexicographical ordering on words and the represented numer-
ical values does not hold anymore in negative base, for instance 3 = (111.)−2,
4 = (100.)−2 and 111 >lex 100. Nevertheless it is possible to restore such a
correspondence by introducing an appropriate ordering on words, in the sequel
denoted by ≺, and called the alternate order.

Representations in negative base also appear in some complex base number
systems, for instance base β = 2i where β2 = −4 (see [5] for a study of their
properties from an automata theoretic point of view). Thus, beyond the interest
in the problem in itself, the authors also wish the study of negative bases to be
an useful preliminar step to better understanding the complex case.

Ito and Sadahiro recently introduced expansions in non-integer negative base
−β in [7]. They have given a characterization of admissible sequences, and shown
that the (−β)-shift is sofic if and only if the (−β)-expansion of the number − β

β+1
is eventually periodic.

In this paper we pursue their work. The purpose of this contribution is to show
that many properties of the positive base (integer or not) numeration systems
extend to the negative base case, the main difference being the sets of numbers
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c© Springer-Verlag Berlin Heidelberg 2009
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that are representable in the two different cases. The results could seem not
surprising, but this study put into light the important role played by the order
on words: the lexicographic order for the positive bases, the alternate order for
the negative bases.

We start by a general result which is not related to numeration systems but
to the alternate order, and which is of interest in itself. We define a symbolic
dynamical system associated with a given infinite word s satisfying some prop-
erties with respect to the alternate order on infinite words. We design an infinite
countable automaton recognizing it. We then are able to characterize the case
when the symbolic dynamical system is sofic (resp. of finite type). Using this
general construction we can prove that the (−β)-shift is a symbolic dynamical
system of finite type if and only if the (−β)-expansion of − β

β+1 is purely periodic.
We also show that the entropy of the (−β)-shift is equal to log β.

We then focus on the case where β is a Pisot number, that is to say, an
algebraic integer greater than 1 such that the modulus of its Galois conjugates
is less than 1. The natural integers and the Golden Mean are Pisot numbers. We
extend all the results known to hold true in the Pisot case for β-expansions to
the (−β)-expansions. In particular we prove that, if β is a Pisot number, then
every number from Q(β) has an eventually periodic (−β)-expansion, and thus
that the (−β)-shift is a sofic system.

When β is a Pisot number, it is known that addition in base β — and more
generally normalization in base β on an arbitrary alphabet — is realizable by a
finite transducer [4]. We show that this is still the case in base −β.

2 Definitions and Preliminaries

2.1 Words and Automata

An alphabet is a totally ordered set. In this paper the alphabets are always finite.
A finite sequence of elements of an alphabet A is called a word, and the set of
words on A is the free monoid A∗. The empty word is denoted by ε. The set of
infinite (resp. bi-infinite) words on A is denoted by AN (resp. AZ). Let v be a
word of A∗, denote by vn the concatenation of v to itself n times, and by vω the
infinite concatenation vvv · · · . A word of the form uvω is said to be eventually
periodic. A (purely) periodic word is an eventually periodic word of the form vω .

A finite word v is a factor of a (finite, infinite or bi-infinite) word x if there
exists u and w such that x = uvw. When u is the empty word, v is a prefix of
x. The prefix v is strict if v �= x. When w is empty, v is said to be a suffix of x.

We recall some definitions on automata, see [2] and [13] for instance. An
automaton over A, A = (Q, A, E, I, T ), is a directed graph labelled by elements
of A. The set of vertices, traditionally called states, is denoted by Q, I ⊂ Q is
the set of initial states, T ⊂ Q is the set of terminal states and E ⊂ Q×A×Q is
the set of labelled edges. If (p, a, q) ∈ E, we write p

a→ q. The automaton is finite
if Q is finite. The automaton A is deterministic if E is the graph of a (partial)
function from Q×A into Q, and if there is a unique initial state. A subset H of
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A∗ is said to be recognizable by a finite automaton, or regular, if there exists a
finite automaton A such that H is equal to the set of labels of paths starting in
an initial state and ending in a terminal state.

Recall that two words u and v are said to be right congruent modulo H if,
for every w, uw is in H if and only if vw is in H . It is well known that H is
recognizable by a finite automaton if and only if the congruence modulo H has
finite index.

Let A and A′ be two alphabets. A transducer is an automaton T = (Q, A∗ ×
A′∗, E, I, T ) where the edges of E are labelled by couples in A∗×A′∗. It is said to
be finite if the set Q of states and the set E of edges are finite. If (p, (u, v), q) ∈
E, we write p

u|v−→ q. The input automaton (resp. output automaton) of such
a transducer is obtained by taking the projection of edges on the first (resp.
second) component. A transducer is said to be sequential if its input automaton
is deterministic.

The same notions can be defined for automata and transducer processing
words from right to left : they are called right automata or transducers.

2.2 Symbolic Dynamics

Let us recall some definitions on symbolic dynamical systems or subshifts
(see [10, Chapter 1] or [9]). The set AZ is endowed with the lexicographic order,
denoted <lex, the product topology, and the shift σ, defined by σ((xi)i∈Z) =
(xi+1)i∈Z. A set S ⊆ AZ is a symbolic dynamical system, or subshift, if it is shift-
invariant and closed for the product topology on AZ. A bi-infinite word z avoids
a set of word X ⊂ A∗ if no factor of z is in X . The set of all words which avoid
X is denoted SX . A set S ⊆ AZ is a subshift if and only if S is of the form SX

for some X .
The same notion can be defined for a one-sided subshift of AN.
Let F (S) be the set of factors of elements of S, let I(S) = A+ \ F (S) be the

set of words avoided by S, and let X(S) be the set of elements of I(S) which
have no proper factor in I(S). The subshift S is sofic if and only if F (S) is
recognizable by a finite automaton, or equivalently if X(S) is recognizable by a
finite automaton. The subshift S is of finite type if S = SX for some finite set
X , or equivalently if X(S) is finite.

The topological entropy of a subshift S is

h(S) = lim
n→∞

1
n

log(Bn(S))

where Bn(S) is the number of elements of F (S) of length n. When S is sofic,
the entropy of S is equal to the logarithm of the spectral radius of the adjacency
matrix of the finite automaton recognizing F (S).

2.3 Numeration Systems

The reader is referred to [10, Chapter 7] for a detailed presentation on these
topics. Representations of real numbers in a non-integer base β were introduced
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by Rényi [12] under the name of β-expansions. Let x be a real number in the
interval [0, 1]. A representation in base β (or a β-representation) of x is an infinite
word (xi)i�1 such that

x =
∑
i�1

xiβ
−i.

A particular β-representation — called the β-expansion — can be computed by
the “greedy algorithm” : denote by (y), �y� and {y} the lower integer part, the
upper integer part and the fractional part of a number y. Set r0 = x and let
for i � 1, xi = (βri−1), ri = {βri−1}. Then x =

∑
i�1 xiβ

−i. The digits xi are
elements of the canonical alphabet Aβ = {0, . . . , �β� − 1}.

The β-expansion of x ∈ [0, 1] will be denoted by dβ(x) = (xi)i�1. If x > 1,
there exists some k � 1 such that x/βk belongs to [0, 1). If dβ(x/βk) = (yi)i�1
then by shifting x = (y1 · · · yk.yk+1yk+2 · · · )β .

An equivalent definition is obtained by using the β-transformation of the unit
interval which is the mapping

Tβ : x .→ βx − (βx).

Then dβ(x) = (xi)i�1 if and only if xi = (βT i−1
β (x)).

If a representation ends in infinitely many zeros, like v0ω, the ending zeros
are omitted and the representation is said to be finite.

In the case where the β-expansion of 1 is finite, there is a special representation
playing an important role. Let dβ(1) = (ti)i�1 and set d∗β(1) = dβ(1) if dβ(1) is
infinite and d∗β(1) = (t1 · · · tm−1(tm − 1))ω if dβ(1) = t1 · · · tm−1tm is finite.

Denote by Dβ the set of β-expansions of numbers of [0, 1). It is a shift-invariant
subset of AN

β . The β-shift Sβ is the closure of Dβ and it is a subshift of AZ
β . When

β is an integer, Sβ is the full β-shift AZ
β .

Theorem 1 (Parry[11]). Let β > 1 be a real number. A word (wi)i�1 belongs
to Dβ if and only if for all n � 1

wnwn+1 · · · <lex d∗β(1).

A word (wi)i∈Z belongs to Sβ if and only if for all n

wnwn+1 · · · �lex d∗β(1).

The following results are well-known (see [10, Chapt. 7]).

Theorem 2. 1. The β-shift is sofic if and only if dβ(1) is eventually periodic.
2. The β-shift is of finite type if and only if dβ(1) is finite.

It is known that the entropy of the β-shift is equal to log β.

If β is a Pisot number, then every element of Q(β) ∩ [0, 1] has an eventually
periodic β-expansion, and the β-shift Sβ is a sofic system [1,14].

Let C be an arbitrary finite alphabet of integer digits. The normalization
function in base β on C

νβ,C : CN → AN
β
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is the partial function which maps an infinite word y = (yi)i�1 over C, such
that 0 � y =

∑
i�1 yiβ

−i � 1, onto the β-expansion of y. It is known [4] that,
when β is a Pisot number, normalization is computable by a finite transducer on
any alphabet C. Note that addition is a particular case of normalization, with
C = {0, . . . , 2(�β� − 1)}.

3 Symbolic Dynamical Systems and the Alternate Order

Define the alternate order ≺ on infinite words or finite words with same length
on an alphabet A:

x1x2x3 · · · ≺ y1y2y3 · · ·

if and only if there exists k � 1 such that

xi = yi for 1 � i < k and (−1)k(xk − yk) < 0.

This order was implicitely defined in [6].
Let A be a finite alphabet, and let s = s1s2 · · · be a word in AN such that

s1 = maxA and for each n � 1, s / snsn+1 · · · . Let

S = {w = (wi)i∈Z ∈ AZ | ∀n, s / wnwn+1 · · · }.

We construct a countable infinite automaton AS as follows (see Fig.1, where
[a, b] denotes {a, a+1, . . . , b} if a � b, ε else. It is assumed in Fig. 1 that s1 > sj

for j � 2.) The set of states is N. For each state i � 0, there is an edge i
si+1−→ i+1.

Thus the state i is the name corresponding to the path labelled s1 · · · si. If i is
even, then for each a such that 0 � a � si+1 − 1, there is an edge i

a−→ j, where
j is such that s1 · · · sj is the suffix of maximal length of s1 · · · sia. If i is odd,

then for each b such that si+1 + 1 � b � s1 − 1, there is an edge i
b−→ j where j

is maximal such that s1 · · · sj is a suffix of s1 · · · sib; and if si+1 < s1 there is one
edge i

s1−→ 1. By contruction, the deterministic automaton AS recognizes exactly
the words w such that every suffix of w is 0 s and the result below follows.

0 1 2 3
s1 s2 s3

[0, s1 − 1] s1

[s2 + 1, s1 − 1]

[0, s3 − 1]

s1

[s4 + 1, s1 − 1]

s4

Fig. 1. The automaton AS

Proposition 1. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s / wnwn+1 · · · } is
recognizable by the countable infinite automaton AS.
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Proposition 2. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s / wnwn+1 · · · } is
sofic if and only if s is eventually periodic.

Proof. The subshift S is sofic if and only if the set of its finite factors F (S)
is recognizable by a finite automaton. Given a word u of A∗, denote by [u]
the right class of u modulo F (S). Then in the automaton AS , for each state
i � 1, i = [s1 · · · si], and 0 = [ε]. Suppose that s is eventually periodic, s =
s1 · · · sm(sm+1 · · · sm+p)ω, with m and p minimal. Thus, for each k � 0 and each
0 � i � p − 1, sm+pk+i = sm+i.
Case 1: p is even. Then m + i = [s1 · · · sm+i] = [s1 · · · sm+pk+i] for every k � 0
and 0 � i � p − 1. Then the set of states of AS is {0, 1, . . . , m + p − 1}.
Case 2: p is odd. Then m + i = [s1 · · · sm+i] = [s1 · · · sm+2pk+i] for every k � 0
and 0 � i � 2p − 1. The set of states of AS is {0, 1, . . . , m + 2p − 1}.

Conversely, suppose that s is not eventually periodic. Then there exists an infi-
nite sequence of indices i1 < i2 < · · · such that the sequences sik

sik+1 · · · are all
different for allk � 1.Take anypair (ij, i�), j, � � 1. If ij and i� donot have the same
parity, then s1 · · · sij and s1 · · · si�

are not right congruentmodulo F (S). If ij and i�
have the same parity, there exists q � 0 such that sij · · · sij+q−1 = si�

· · · si�+q−1 =
v and, for instance, (−1)ij+q(sij+q − si�+q) > 0 (with the convention that, if
q = 0 then v = ε). Then s1 · · · sij−1vsij+q ∈ F (S), s1 · · · si�−1vsi�+q ∈ F (S),
but s1 · · · sij−1vsi�+q does not belong to F (S). Hence s1 · · · sij and s1 · · · si�

are
not right congruent modulo F (S), so the number of right congruence classes is in-
finite and F (S) is thus not recognizable by a finite automaton. �
Proposition 3. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s / wnwn+1 · · · } is
a subshift of finite type if and only if s is purely periodic.

Proof. Suppose that s = (s1 · · · sp)ω. Consider the finite set X = {s1 · · · sn−1b |
b ∈ A, (−1)n(b − sn) < 0, 1 � n � p}. We show that S = SX . If w
is in S, then w avoids X , and conversely. Now, suppose that S is of finite
type. It is thus sofic, and by Proposition 2 s is eventually periodic. If it is not
purely periodic, then s = s1 · · · sm(sm+1 · · · sm+p)ω, with m and p minimal, and
s1 · · · sm �= ε. Let I = {s1 · · · sn−1b | b ∈ A, (−1)n(b − sn) < 0, 1 � n � m} ∪
{s1 · · · sm(sm+1 · · · sm+p)2k sm+1 · · · sm+n−1b | b ∈ A, k � 0, (−1)m+2kp+n(b −
sm+n) < 0, 1 � n � 2p}. Then I ⊂ A+ \ F (S). First, suppose there exists
1 � j � p such that (−1)j(sj − sm+j) < 0 and s1 · · · sj−1 = sm+1 · · · sm+j−1.
For k � 0 fixed, let w(2k) = s1 · · · sm(sm+1 · · · sm+p)2ks1 · · · sj ∈ I. We have
s1 · · · sm(sm+1 · · · sm+p)2ksm+1 · · · sm+j−1 ∈ F (S). On the other hand, for n �
2, sn · · · sm(sm+1 · · · sm+p)2k is 1 than the prefix of s of same length, thus
sn · · · sm(sm+1 · · · sm+p)2ks1 · · · sj ∈ F (S). Hence any strict factor of w(2k) is
in F (S). Therefore for any k � 0, w(2k) ∈ X(S), and X(S) is thus infinite: S
is not of finite type. Now, if such a j does not exist, then for every 1 � j � p,
sj = sm+j , and s = (s1 · · · sm)ω is purely periodic. �
Remark 1. Let s′ = s′1s′2 · · · be a word in AN such that s′1 = min A and, for each
n � 1, s′ns′n+1 · · · / s′. Let S′ = {w = (wi)i∈Z ∈ AZ | ∀n, wnwn+1 · · · / s′}. The
statements in Propositions 1, 2 and 3 are also valid for the subshift S′ (with the
automaton AS′ constructed accordingly).
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4 Negative Real Base

4.1 The (−β)-Shift

Ito and Sadahiro [7] introduced a greedy algorithm to represent any real number
in real base −β, β > 1, and with digits in A−β = {0, 1, . . . , (β)}. Remark that,
when β is not an integer, A−β = Aβ .

A transformation on I−β =
[
− β

β+1 , 1
β+1

)
is defined as follows:

T−β(x) = −βx − (−βx +
β

β + 1
).

For every real number x ∈ I−β denote d−β(x) the (−β)-expansion of x.
Then d−β(x) = (xi)i�1 if and only if xi = (−βT i−1

−β (x) + β
β+1), and x =∑

i�1 xi(−β)−i. When this last equality holds, we may also write:

x = (.x1x2 · · · )−β .

Since for every x ∈ R\I−β there exists an integer k � 1 such that x/(−β)k ∈ I−β ,
the sequence d−β(x/(−β)k) = (yi)i�1 satisfies x = (y1 · · · yk.yk+1yk+2 · · · )−β .
Thus, allowing an opportune shift on the digits, every real number has a (−β)-
expansion.

We show that the alternate order ≺ on (−β)-expansions gives the numerical
order.

Proposition 4. Let x and y be in I−β. Then

x < y ⇐⇒ d−β(x) ≺ d−β(y).

Proof. Suppose that d−β(x) ≺ d−β(y). Then there exists k � 1 such that xi = yi

for 1 � i < k and (−1)k(xk − yk) < 0. Suppose that k is even, k = 2q. Then
x2q � y2q−1. Thus x−y � −β−2q +

∑
i�2q+1 xi(−β)−i−

∑
i�2q+1 yi(−β)−i < 0,

since
∑

i�1 x2q+i(−β)−i and
∑

i�1 y2q+i(−β)−i are in I−β . The case k = 2q + 1
is similar. The converse is immediate. �

Example 1. In base −2, 3 = (111.)−2, 4 = (100.)−2 and 111 ≺ 100.

A word (xi)i�1 is said to be (−β)-admissible if there exists a real number x ∈ I−β

such that d−β(x) = (xi)i�1. The (−β)-shift S−β is the closure of the set of (−β)-
admissible words, and it is a subshift of AZ

β .
Define the sequence d∗−β( 1

β+1 ) as follows:

– if d−β(− β
β+1 ) = d1d2 · · · is not a periodic sequence with odd period,

d∗−β(
1

β + 1
) = d−β(

1
β + 1

) = 0d1d2 · · ·



On Negative Bases 259

– otherwise if d−β(− β
β+1 ) = (d1 · · · d2p+1)ω,

d∗−β(
1

β + 1
) = (0d1 · · · d2p(d2p+1 − 1))ω.

Theorem 3 (Ito-Sadahiro [7]). A word (wi)i�1 is (−β)-admissible if and only
if for each n � 1

d−β(− β

β + 1
) / wnwn+1 · · · ≺ d∗−β(

1
β + 1

).

A word (wi)i∈Z is an element of the (−β)-shift if and only if for each n

d−β(− β

β + 1
) / wnwn+1 · · · / d∗−β(

1
β + 1

).

Theorem 3 can be restated as follows.

Lemma 1. Let d−β(− β
β+1 ) = d1d2 · · · and let

S = {(wi)i∈Z ∈ AZ
β | ∀n, d1d2 · · · / wnwn+1 · · · }.

If d−β(− β
β+1 ) is not a periodic sequence with odd period, then S−β = S.

If d−β(− β
β+1 ) is a periodic sequence of odd period, d−β(− β

β+1 ) = (d1 · · ·d2p+1)ω,
then S−β = S ∩ S′ where

S′ = {(wi)i∈Z ∈ AZ
β | ∀n, wnwn+1 · · · / (0d1 · · ·d2p(d2p+1 − 1))ω}.

Theorem 4. The (−β)-shift is a system of finite type if and only if d−β(− β
β+1)

is purely periodic.

Proof. If d−β(− β
β+1) is purely periodic with an even period, the result follows

from Theorem 3, Lemma 1 and Proposition 3. If d−β(− β
β+1 ) is purely periodic

with an odd period, the result follows from Theorem 3, Lemma 1, Proposition 3,
Remark 1, and the fact that the intersection of two finite sets is finite. �

By Theorem 3, Lemma 1, Proposition 2, Remark 1, and the fact that the inter-
section of two regular sets is again regular the following result follows.

Theorem 5 (Ito-Sadahiro [7]). The (−β)-shift is a sofic system if and only
if d−β(− β

β+1 ) is eventually periodic.

Example 2. Let G = 1+
√

5
2 ; then d−G(− G

G+1 ) = 10ω, and the (−G)-shift is a
sofic system which is not of finite type.
Let β = G2 = 3+

√
5

2 . Then d−β(− β
β+1) = (21)ω and the (−β)-shift is of finite

type: the set of minimal forbidden factors is X(S−β) = {20}.
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1

0

0

0

0

1

Fig. 2. Finite automata for the G-shift (left) and for the (−G)-shift (right)

Example 3. The automaton in Fig. 2 (right) recognizing the (−G)-shift is ob-
tained by minimizing the result of the construction of Proposition 1. Remark
that it is the automaton which recognizes the celebrated even shift (see [9]).

This example suggests that the entropy of the −β-shift is the same as the entropy
of the β-shift. Using results from Fotiades and Boudourides [3], we can prove
the following result.

Proposition 5. The entropy of the (−β)-shift is equal to log β.

4.2 The Pisot Case

We first prove that the classical result saying that if β is a Pisot number, then
every element of Q(β)∩ [0, 1] has an eventually periodic β-expansion is still valid
for the base −β.

Theorem 6. If β is a Pisot number, then every element of Q(β) ∩ I−β has an
eventually periodic (−β)-expansion.

Proof. Let Mβ(X) = Xd − a1X
d−1 − · · · − ad be the minimal polynomial of β

and denote by β = β1, . . . , βd the conjugates of β. Let x be arbitrarily fixed in
Q(β) ∩ I−β . Since Q(β) = Q(−β), x can be expressed as x = q−1∑d−1

i=0 pi(−β)i

with q and pi in Z, q > 0 as small as possible in order to have uniqueness.
Let (xi)i�1 be the (−β)-expansion of x, and write

rn = r(1)
n = r(1)

n (x) =
xn+1

−β
+

xn+2

(−β)2
+ · · · = (−β)n

(
x −

n∑
k=1

xk(−β)−k

)
.

Since rn = T n
−β(x) belongs to I−β then |rn| � β

β+1 < 1. For 2 � j � d, let

r(j)
n = r(j)

n (x) = (−βj)n

(
q−1

d−1∑
i=0

pi(−βj)i −
n∑

k=1

xk(−βj)−k

)
.

Let η = max{|βj| | 2 � j � d}: since β is a Pisot number, η < 1. Since xk � (β)
we get

|r(j)
n | � q−1

d−1∑
i=0

|pi|ηn+i + (β)
n−1∑
k=0

ηk

and since η < 1, max1�j�d{supn{|r
(j)
n |}} < ∞.

We need a technical result. Set Rn = (r(1)
n , . . . , r

(d)
n ) and let B the matrix

B = ((−βj)−i)1�i,j�d.
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Lemma 2. Let x = q−1∑d−1
i=0 pi(−β)i. For every n � 0 there exists a unique

d-uple Zn = (z(1)
n , . . . , z

(d)
n ) in Zd such that Rn = q−1ZnB.

Proof. By induction on n. First, r1 = −βx − x1, thus

r1 = q−1

(
d−1∑
i=0

pi(−β)i+1 − qx1

)
= q−1

(
z
(1)
1

−β
+ · · · + z

(d)
1

(−β)d

)

using the fact that (−β)d = −a1(−β)d−1 + a2(−β)d−2 + · · · + (−1)dad. Now,
rn+1 = −βrn − xn+1, hence

rn+1 = q−1

(
z(1)

n +
z
(2)
1

−β
+ · · · + z

(d)
n

(−β)d−1
− qxn+1

)
= q−1

(
z
(1)
n+1

−β
+ · · · + z

(d)
n+1

(−β)d

)

since z
(1)
n − qxn+1 ∈ Z. Thus for every n there exists (z(1)

n , . . . , z
(d)
n ) in Zd such

that

rn = q−1
d∑

k=1

z(k)
n (−β)−k.

Since the latter equation has integral coefficients and is satisfied by −β, it is also
satisfied by −βj , 2 � j � d, and

r(j)
n = (−βj)n

(
q−1

d−1∑
i=0

p̄i(−βj)i −
n∑

k=1

xk(−βj)−k

)
= q−1

d∑
k=1

z(k)
n (−βj)−k.

�

We go back to the proof of Theorem 6. Let Vn = qRn. The (Vn)n�1 have bounded
norm, since max1�j�d{supn{|r

(j)
n |}} < ∞. As the matrix B is invertible, for

every n � 1,

‖Zn‖ = ‖(z(1)
n , . . . , z(d)

n )‖ = max{|z(j)
n | : 1 � j � d} < ∞

so there exist p and m � 1 such that Zm+p = Zp, hence rm+p = rp and the
(−β)-expansion of x is eventually periodic. �

As a corollary we get the following result.

Theorem 7. If β is a Pisot number then the (−β)-shift is a sofic system.

The normalization in base −β is the function which maps any (−β)-represen-
tation on an alphabet C of digits of a given number of I−β onto the admissible
(−β)-expansion of that number.

Let C = {−c, . . . , c}, where c � (β) is an integer. Denote

Z−β(2c) =
{

(zi)i�0 ∈ {−2c, . . . , 2c}N
∣∣∣ ∑

i�0

zi(−β)−i = 0
}

.
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The set Z−β(2c) is recognized by a countable infinite automaton A−β(2c): the
set of states Q(2c) consists of all s ∈ Z[β] ∩ [− 2c

β−1 , 2c
β−1 ]. Transitions are of the

form s
e→ s′ with e ∈ {−c, . . . , c} such that s′ = −βs + e. The state 0 is initial;

every state is terminal.
Let Mβ(X) be the minimal polynomial of β, and denote by β = β1, . . . , βd the

conjugates of β. We define a norm on the discrete lattice of rank d, Z[X ]/(Mβ), as

||P (X)|| = max
1�i�d

|P (βi)|.

Proposition 6. If β is a Pisot number then the automaton A−β(2c) is finite
for every c � (β).

Proof. Every state s in Q(2c) is associated with the label of the shortest path
f0f1 · · · fn from 0 to s in the automaton. Thus s = f0(−β)n + f1(−β)n−1 +
· · · + fn = P (β), with P (X) in Z[X ]/(Mβ). Since f0f1 · · · fn is a prefix of a
word of Z−β(2c), there exists fn+1fn+2 · · · such that (fi)i�0 is in Z−β(2c). Thus
s = |P (β)| < 2c

β−1 . For every conjugate βi, 2 � i � d, |βi| < 1, and |P (βi)| <
2c

1−|βi| . Thus every state of Q(2c) is bounded in norm, and so there is only a
finite number of them. �

The redundancy transducer R−β(c) is similar to A−β(2c). Each transition s
e→ s′

of A−β(2c) is replaced in R−β(c) by a set of transitions s
a|b−→ s′, with a, b ∈

{−c, . . . , c} and a − b = e. Thus one obtains the following proposition.

Proposition 7. The redundancy transducer R−β(c) recognizes the set{
(x1x2 · · · , y1y2 · · · ) ∈ CN × CN

∣∣ ∑
i�1

xi(−β)−i =
∑
i�1

yi(−β)−i
}
.

If β is a Pisot number, then R−β(c) is finite.

Theorem 8. If β is a Pisot number, then normalization in base −β on any
alphabet C is realizable by a finite transducer.

Proof. The normalization is obtained by keeping in R−β(c) only the outputs
y that are (−β)-admissible. By Theorem 7 the set of admissible words is rec-
ognizable by a finite automaton D−β . The finite transducer N−β(c) doing the
normalization is obtained by making the intersection of the output automaton
of R−β(c) with D−β. �

Proposition 8. If β is a Pisot number, then the conversion from base −β to
base β is realizable by a finite transducer. The result is β-admissible.

Proof. Let x ∈ I−β , x � 0, such that d−β(x) = x1x2x3 · · · . Denote ā the signit
digit (−a). Then x1x2x3 · · · is a β-representation of x on the alphabet Ã−β =
{−(β), . . . , (β)}. Thus the conversion is equivalent to the normalization in base
β on the alphabet Ã−β , and when β is a Pisot number, it is realizable by a finite
transducer by [4]. �



On Negative Bases 263

Remark 2. In the case where the base is a negative integer, conversion from base
b to base −b is realizable by a finite right sequential transducer. In a forthcoming
paper we show that conversion from base β to base −β — with the result in
non-admissible form — is realizable by a finite left sequential transducer when
β is a Pisot number.
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Abstract. Let k ≥ 2 be an integer. An abelian k-th power is a word of
the form X1X2 · · ·Xk where Xi is a permutation of X1 for 2 ≤ i ≤ k. In
this paper, we consider crucial words for abelian k-th powers, i.e., finite
words that avoid abelian k-th powers, but which cannot be extended
to the right by any letter of their own alphabets without creating an
abelian k-th power. More specifically, we consider the problem of deter-
mining the minimal length of a crucial word avoiding abelian k-th powers.
This problem has already been solved for abelian squares by Evdokimov
and Kitaev [6], who showed that a minimal crucial word over an n-letter
alphabet An = {1, 2, . . . , n} avoiding abelian squares has length 4n − 7
for n ≥ 3. Extending this result, we prove that a minimal crucial word
over An avoiding abelian cubes has length 9n − 13 for n ≥ 5, and it has
length 2, 5, 11, and 20 for n = 1, 2, 3, and 4, respectively. Moreover, for
n ≥ 4 and k ≥ 2, we give a construction of length k2(n − 1) − k − 1 of
a crucial word over An avoiding abelian k-th powers. This construction
gives the minimal length for k = 2 and k = 3.

Keywords: pattern avoidance; abelian square-free word; abelian cube-
free word; abelian power; crucial word; Zimin word.

MSC (2000): 05D99; 68R05; 68R15.

1 Introduction

Let An = {1, 2, . . . , n} be an n-letter alphabet and let k ≥ 2 be an integer. A
word W over An contains a k-th power if W has a factor of the form Xk =
XX · · ·X (k times) for some non-empty word X . A k-th power is trivial if X is
a single letter. For example, the word V = 13243232323243 over A4 contains the
(non-trivial) 4-th power (32)4 = 32323232. A word W contains an abelian k-th
power if W has a factor of the form X1X2 · · ·Xk where Xi is a permutation of
X1 for 2 ≤ i ≤ k. The cases k = 2 and k = 3 give us (abelian) squares and cubes,
respectively. For instance, the preceding word V contains the abelian square
43232 32324 and the word 123 312 213 is an abelian cube. A word W is (abelian)
k-power-free if W avoids (abelian) k-th powers, i.e., if W does not contain any
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(abelian) k-th powers. For example, the word 1234324 is abelian cube-free, but
not abelian square-free since it contains the abelian square 234 324.

A word W is crucial with respect to a given set of prohibited words (or simply
prohibitions) if W avoids the prohibitions, but Wx does not avoid the prohibi-
tions for any letter x occurring in W . A minimal crucial word is a crucial word
of the shortest length. For example, the word W = 21211 (of length 5) is crucial
with respect to abelian cubes since it is abelian cube-free and the words W1 and
W2 end with the abelian cubes 111 and 21 21 12, respectively. Actually, W is a
minimal crucial word over {1, 2} with respect to abelian cubes. Indeed, one can
easily verify that there do not exist any crucial abelian cube-free words on two
letters of length less than 5.

Abelian squares were first introduced by Erdős [4], who asked whether or
not there exist words of arbitrary length over a fixed finite alphabet that avoid
patterns of the form XX ′ where X ′ is a permutation of X (i.e., abelian squares).
This question has since been solved in the affirmative in a series of papers from
1968 to 1992 (see [5,9,7] and also [2]). Problems of this type were also considered
by Zimin [10], who used the following sequence of words as a key tool.

The Zimin word Zn over An is defined recursively as follows: Z1 = 1 and
Zn = Zn−1nZn−1 for n ≥ 2. The first four Zimin words are:

Z1 = 1, Z2 = 121, Z3 = 1213121, Z4 = 121312141213121.

The k-generalized Zimin word Zn,k = Xn is defined as

X1 = 1k−1 = 11 · · · 1, Xn = (Xn−1n)k−1Xn−1 = Xn−1nXn−1n · · ·nXn−1

where the number of 1’s, as well as the number of n’s, is k− 1. Thus Zn = Zn,2.
It is easy to see (by induction) that each Zn,k avoids (abelian) k-th powers and
has length kn − 1. Moreover, it is known that Zn,k gives the length of a minimal
crucial word avoiding k-th powers.

However, much less is known in the case of abelian powers. Crucial abelian
square-free words (also called right maximal abelian square-free words) of expo-
nential length are given in [3] and [6], and it is shown in [6] that a minimal
crucial abelian square-free word over an n-letter alphabet has length 4n− 7 for
n ≥ 3.

In this paper, we extend the study of crucial abelian k-power-free words to
the case of k > 2. In particular, we provide a complete solution to the problem
of determining the length of a minimal crucial abelian cube-free word (the case
k = 3) and we conjecture a solution in the general case. More precisely, we show
that a minimal crucial word over An avoiding abelian cubes has length 9n− 13
for n ≥ 5 (Corollary 1), and it has length 2, 5, 11, and 20 for n = 1, 2, 3, and 4,
respectively. For n ≥ 4 and k ≥ 2, we give a construction of length k2(n−1)−k−1
of a crucial word over An avoiding abelian k-th powers (see Theorem 5). This
construction gives the minimal length for k = 2 and k = 3, and we conjecture
that this is also true for any k ≥ 4 and sufficiently large n. We also provide
a rough lower bound for the length of minimal crucial words over An avoiding
abelian k-th powers, for n ≥ 5 and k ≥ 4 (see Theorem 6).
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For a crucial word X over An, we let X = XiΔi where Δi is the factor of
minimal length such that Δii is a prohibition for i ∈ An. Note that we can
rename letters, if needed, so we can assume that for any minimal crucial word
X , one has

Δ1 ⊂ Δ2 ⊂ · · · ⊂ Δn = X

where “⊂” means (proper) right factor (or suffix). In other words, for each i =
2, 3, . . . , n, we have Δi = YiΔi−1 for some non-empty Yi. In what follows we will
use Xi and Yi as stated above. We note that the definitions imply:

X = XiΔi = XiYiΔi−1 = Xn−1Yn−1Yn−2 · · ·Y2Δ1,

for any i = 2, 3, . . . , n − 1. Furthermore, in the case of crucial words avoiding
abelian k-th powers, we write Δii = Ωi,1Ωi,2 · · ·Ωi,k, where the k blocks Ωi,j

are equal up to permutation, and we denote by Ω′
i,k the block Ωi,k without the

rightmost i.
Hereafter, we let �k(n) denote the length of a minimal crucial word over An

avoiding abelian k-th powers. The length of a word W is denoted by |W |, and
we denote by |W |x the number of occurrences of a letter x in W . The Parikh
vector of a word W over An is defined by

P(W ) := (|W |1, |W |2, . . . , |W |n).

Clearly, if W is an abelian k-th power, then |W |x ≡ 0 (mod k) for all letters x
occurring in W .

2 Crucial Words for Abelian Cubes

2.1 An Upper Bound for �3(n)

The fact that the 3-generalized Zimin word Zn,3 is crucial with respect to abelian
cubes already gives us an upper bound of 3n−1 for �3(n). In Theorem 1 (below)
we improve this upper bound to 3 · 2n−1 − 1. We then give a construction of a
crucial abelian cube-free word over An of length 9n− 13, which coincides with
the lower bound given in Theorem 3 of Sec. 2.2 for n ≥ 5.

Theorem 1. One has that �3(n) ≤ 3 · 2n−1 − 1.

Proof. We construct a crucial abelian cube-free word X = Xn iteratively as
follows. Set X1 = 11 and assume Xn−1 has been constructed. Then do the
following:

1. Increase all letters of Xn−1 by 1 to obtain X ′
n−1.

2. Insert 1 after (to the right of) each letter of X ′
n−1 and adjoin one extra 1 to

the right of the resulting word to get Xn.
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For example, X2 = 21211, X3 = 31213121211, etc. It is easy to verify that
|Xn| = 3 ·2n−1−1. We show by induction that Xn avoids abelian cubes, whereas
Xnx does not avoid abelian cubes for any x ∈ An. Both claims are trivially true
for n = 1. Now take n ≥ 2. If Xn contains an abelian cube, then removing
all 1’s from it, we would deduce that Xn−1 must also contain an abelian cube,
contradicting the fact that Xn−1 contains no abelian cubes.

It remains to show that extending Xn to the right by any letter x from An

creates an abelian cube. If x = 1 then we get 111 from the construction of Xn.
On the other hand, if x > 1 then we swap the rightmost 1 with the rightmost
x in Xx, thus obtaining a word where every other letter is 1; removing all 1’s
and decreasing each of the remaining letters by 1, we have Xn−1(x − 1), which
contains an abelian cube (by the induction hypothesis). ��

Remark 1. We observe that the “greedy” construction used in the proof of the
above theorem actually yields minimal crucial abelian cube-free words over An

of lengths 2, 5, 11 for n = 1, 2, 3, respectively (verified by exhaustive search).
For n = 4, one can also verify that a minimal crucial word avoiding abelian
cubes has length 20. For example, the word 41213124213121312211 is a minimal
crucial word with respect to abelian cubes.

A construction giving the best possible upper bound for n ≥ 5 can be easily
described by examples, and we do this below (for n = 4, 5, 6, 7; the construction
does not work for n ≤ 3). We also provide a general description. The pattern in
the construction is easy to recognize.

An optimal construction for crucial abelian cube-free words. The con-
struction of the word En for n = 4, 5, 6, 7 works as follows. We use spaces to
separate the blocks Ωn,1, Ωn,2, and Ω′

n,3 in En = Δn.

E4 = 34423311 34231134 3233411

E5 = 45534423311 45342311345 4323344511

E6 = 56645534423311 56453423113456 5432334455611

E7 = 67756645534423311 67564534231134567 6543233445566711

In general, the block Ωn,1 in En = Δn = Ωn,1Ωn,2Ω
′
n,3 is built by adjoining

the factors i(i+1)(i+1) for i = n−1, n−2, . . . , 2, followed by two 1’s. The block
Ωn,2 is built by adjoining the following factors: i(i+1) for i = n−1, n−2, . . . , 2,
followed by 11, and then the factor 34 · · · (n−1)n. Finally, the block Ω′

n,3 is built
by adjoining the factors (n−1)(n−2) · · ·32, then xx for 3 ≤ x ≤ n−1, followed
by n, and finally two 1’s.

We have En = Ωn,1Ωn,2Ω
′
n,3 where Ωn,3 = Ω′

n,3n, and by construction each
Ωn,i contains two 1’s, one 2, two n’s, and three x’s for x = 3, . . . , n − 1. That
is, for each i = 1, 2, 3, the Parikh vector of the block Ωn,i is given by P(Ωn,i) =
(2, 1, 3, 3, . . . , 3, 2). Hence, P(En) = (6, 3, 9, 9, . . . , 9, 5), and therefore |En| =
6 + 3 + 9(n− 3) + 5 = 9n− 13. Moreover, for all n ≥ 4, the word En is crucial
with respect to abelian cubes. We omit the proof of this latter fact since it is very
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similar to the proof of Theorem 5 (to follow), from which the fact can actually be
deduced by setting k = 3 (in view of Remark 4, later). Thus, a minimal crucial
word avoiding abelian cubes has length at most 9n− 13 for n ≥ 4. That is:

Theorem 2. For n ≥ 4, we have �3(n) ≤ 9n− 13.

Proof. Theorem 5 with k = 3. ��

2.2 A Lower Bound for �3(n)

If X = Δn is a crucial word over An with respect to abelian cubes, then clearly
the number of occurrences of each letter except n must be divisible by 3, whereas
the number of occurrences of n is 2 modulo 3. We sort in non-decreasing order the
number of occurrences of the letters 1, 2, . . . , n− 1 in X to get a non-decreasing
sequence of numbers (a1 ≤ a2 ≤ · · · ≤ an−1). Notice that ai does not necessarily
correspond to the letter i. We denote by a0 the number of occurrences of the
letter n. Also note that a0 can be either larger or smaller than a1. By definitions,
|X | =

∑n−1
i=0 ai.

For example, the abelian cube-free crucial word En of length 9n−13 in Sec. 2.1
has the following sequence of ai’s: (a0, a1, . . . , an−1) = (5, 3, 6, 9, . . . , 9). In this
subsection, we prove that this sequence cannot be improved for n ≥ 5, meaning
that, e.g., 5 cannot be replaced by 2, and/or 6 cannot be replaced by 3, and/or
9(’s) cannot be replaced by 3(’s) or 6(’s), no matter what construction we use to
form a crucial word. This is a direct consequence of Lemmas 2–5 (below) and is
recorded in Theorem 3. In the rest of this section we use, without explanation,
the following two facts that are easy to see from the definitions. For any letter
x in a crucial abelian cube-free word X over An:

1. |Δx|x ≡ 2 (mod 3) and |Δx|y ≡ 0 (mod 3) for any other letter y occurring
in X .

2. If x + 1 occurs in X , then we have Δx+1 = Yx+1Δx where |Yx+1|x+1 ≡ 2
(mod 3), |Yx+1|x ≡ 1 (mod 3), and |Yx+1|y ≡ 0 (mod 3) for any other letter
y occurring in X .

The following fact will also be useful.

Lemma 1. Suppose X is a crucial abelian cube-free word over An containing
letters x and y such that x < y < n and |X |x = |X |y = 6. Then Δx cannot
contain 5 occurrences of the letter x.

Proof. Suppose to the contrary that (under the hypotheses of the lemma) Δx

contains 5 occurrences of the letter x. Let A1 = YnYn−1 · · ·Yy+1 and A2 =
YyYy−1 · · ·Yx+1 so that X = A1A2Δx. Then |A1A2|x = 1 and |A1A2|y ≥ 3,
contradicting the fact that each of the blocks Ωn,1, Ωn,2, and Ω′

n,3 in X = Δn =
Ωn,1Ωn,2Ω

′
n,3 must each receive two x’s and two y’s.

Lemma 2. For a crucial abelian cube-free word X over An, the sequence of ai’s
cannot contain 3, 3. That is, (a1, a2) �= (3, 3).
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Proof. Suppose that x and y are letters such that x < y < n and |X |x =
|X |y = 3. Let A1 = YnYn−1 · · ·Yy+1 and A2 = YyYy−1 · · ·Yx+1 so that we have
X = A1A2Δx. Then we must have the following distribution of x’s and y’s in X :
|A1|y = 1, |A2|y = 2, |A2|x = 1, and |Δx|x = 2. However, we get a contradiction,
since each of the blocks Ωn,2 and Ω′

n,3 in X = Δn = Ωn,1Ωn,2Ω
′
n,3 must receive

one copy of x and one copy of y, which is impossible (no x can exist between
the two rightmost y’s). ��

Lemma 3. For a crucial abelian cube-free word X over An, the sequence of ai’s
cannot contain 6, 6, 6.

Proof. Suppose that x, y, z are three letters such that x < y < z < n and
|X |x = |X |y = |X |z = 6. Let A1 = YnYn−1 · · ·Yz+1, A2 = YzYz−1 · · ·Yy+1, and
A3 = YyYy−1 · · ·Yx+1 so that X = A1A2A3Δx. Then the minimal requirements
on the Ai are as follows: |A1|z ≥ 1, |A2|z ≥ 2, |A2|y ≥ 1, |A3|y ≥ 2, and
|A3|x ≥ 1. Moreover, applying Lemma 1 to x and y, we have |Δx|2 = 2. And
apply the same lemma to the letters y and z guarantees that A1A2 contains 4
y’s (in particular, Δx does not contain any y’s).

Looking at X = Δn = Ωn,1Ωn,2Ω
′
n,3, we see that for each i = 1, 2, 3, |Ωn,i|x =

|Ωn,i|y = |Ωn,i|z = 2. Thus, in A3, we must have the following order of letters:
x, y, y and the boundary between Ωn,2 and Ω′

n,3 must be between x and y in
A3. But then Δx entirely belongs to Ω′

n,3, so it cannot contain any z’s (if it
would do so, Δx would then contain 3 z’s which is impossible). On the other
hand, we must have |A3|z = 3 for Ω′

n,3 to receive 2 z’s. Thus, Δy contains 2
y’s, 3 z’s, and 3 x’s, which is impossible by Lemma 2 applied to the word Δy

with two letters occurring exactly 3 times each. (Alternatively, one can see, due
to the considerations above, that no z can be between the two rightmost x’s,
contradicting the structure of Δy). ��

Lemma 4. For a crucial abelian cube-free word X over An, the sequence of ai’s
cannot contain 3, 6, 6.

Proof. Suppose that x, y, and z are letters such that |X |x = 3 and |X |y =
|X |z = 6. We consider three cases covering all the possibilities up to renaming
y and z.

Case 1: z < y < x < n. One can see that Δy does not contain x, but it contains
at least 3 z’s contradicting the fact that each of the blocks Ωn,1, Ωn,2, and
Ω′

n,3 must receive 1 x and 2 z’s.
Case 2: x < z < y < n. We let A = YnYn−1 · · ·Yz+1 so that X = AΔz . All

three x’s must be in Δz , while A must contain at least 3 y’s contradicting
the fact that each of the blocks Ωn,1, Ωn,2, and Ω′

n,3 must receive 1 x and 2
y’s.

Case 3: z < x < y < n. We let A1 = YnYn−1 · · ·Yy+1, A2 = YyYy−1 · · ·Yx+1,
and A3 = YxYx−1 · · ·Yz+1 so that X = A1A2A3Δz . The minimal require-
ments on the Ai and Δz are as follows: |A1|y ≥ 1, |A2|y ≥ 2, |A2|x = 1,
|A3|x = 2, |A3|z ≥ 1, and |Δz|z ≥ 2. Now Δz cannot contain 3 y’s, for
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otherwise, considering the structure of Δx, it would not be possible to dis-
tribute x’s and y’s in a proper way. However, if A3 contains 3 y’s then, so as
not to contradict the structure of Δx (no proper distribution of y’s and z’s
would exist), Δx must contain 3 z’s, which contradicts to the structure of
X = Δn = Ωn,1Ωn,2Ω

′
n,3 (no proper distribution of y’s and z’s would exist

among the blocks Ωn,1, Ωn,2, and Ω′
n,3, each of which is supposed to contain

exactly 2 occurrences of y and 2 occurrences of z). Thus, there are no y’s in
Δx, contradicting the structure of Δn (no proper distribution of y’s and x’s
would exist among the blocks Ωn,1,Ωn,2, and Ω′

n,3). ��

Lemma 5. For a crucial abelian cube-free word X over An,

(a0, a1, a2, a3, a4) �= (2, 3, 6, 9, 9).

Proof. Suppose |X |n = 2 and assume that |X |t = 3 for some other letter t. If
t �= n−1, then all three occurrences of t are in Δn−1, whereas the two occurrences
of n are in Yn (recall that X = Δn = YnΔn−1). This contradicts the fact that
|Ωn,1|n = |Ωn,1|t = 1. Thus, t = n− 1 and |X |n−1 = 3.

Now, assuming x, y, and z are three letters, with x < y < z < n − 1,
occurring {6, 9, 9} times in X (we do not specify which letter occurs how many
times). Then, as in the proof of Lemma 3, we deduce that Δz belongs entirely
to the block Ω′

n,3. Moreover, the block Ω′
n,3 has {2, 3, 3} occurrences of letters

x, y, z (in some order). However, if x or y occur twice in Ω′
n,3, they occur twice

in Δz, contradicting the structure of Δz. Thus z must occur twice in Ω′
n,3, and

the letters x and y each occur 3 times in Ω′
n,3. But then it is clear that x and

y must each occur 3 times in Δz, contradicting the fact that x and z should be
distributed properly in Δz , by Lemma 2. ��

Theorem 3. For n ≥ 5, we have �3(n) ≥ 9n− 13.

Proof. This is a direct consequence of the preceding four lemmas, which tell
us that any attempt to decrease numbers in the sequence (5, 3, 6, 9, 9, . . . , 9)
corresponding to En will lead to a prohibited configuration. ��

Corollary 1. For n ≥ 5, we have �3(n) = 9n− 13.

Proof. The result follows immediately from Theorems 2 and 3. ��

Remark 2. Recall from Remark 1 that �3(n) = 2, 5, 11, 20 for n = 1, 2, 3, 4,
respectively. For instance, the word 42131214231211321211 is a minimal crucial
abelian cube-free word of length 20 (= 2 + 3 + 6 + 9). This can be proved using
similar arguments as in the proofs of the Lemmas 2–5.

3 Crucial Words for Abelian k-th Powers

3.1 An Upper Bound for �k(n) and a Conjecture

The following theorem is a direct generalization of Theorem 1 and is a natural
approach to obtaining an upper bound that improves kn − 1 given by the k-
generalized Zimin word Zn,k.
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Theorem 4. For k ≥ 3, we have �k(n) ≤ k · (k − 1)n−1 − 1.

Proof. We proceed as in the proof of Theorem 1, with the only difference being
that we begin with X1 = 1k−1 and put (k − 2) 1’s to the right of each letter
except for the last (k − 2) letters, after which we put (k − 1) 1’s instead. ��

We now proceed directly to the construction of a crucial abelian k-power-free
word Dn,k that we believe to be optimal.

A construction of a crucial abelian k-power-free word Dn,k, where
n ≥ 4 and k ≥ 2. As we shall see, the following construction of the word Dn,k

is optimal for k = 2, 3. We believe that it is also optimal for any k ≥ 4 and
sufficiently large n (see Conjecture 1).

As our basis for the construction of the word Dn,k, we use the following word
Dn, which is constructed as follows, for n = 4, 5, 6, 7. (As previously, we use
spaces to separate the blocks Ωn,1 and Ω′

n,2 in Dn = Δn.)

D4 = 34231 3231

D5 = 4534231 432341

D6 = 564534231 54323451

D7 = 67564534231 6543234561

In general, the first block Ωn,1 in Dn = Δn = Ωn,1Ω
′
n,2 is built by adjoining

the factors i(i + 1) for i = n − 1, n − 2, . . . , 2, followed by the letter 1. The
second block Ω′

n,2 is built by adjoining the factors (n − 1)(n − 2) · · · 432, then
34 · · · (n− 2)(n− 1), and finally the letter 1.

Remark 3. The above construction coincides with the construction given in [6,
Theorem 5] for a minimal crucial abelian square-free word over An of length
4n− 7. In fact, the word Dn can be obtained from the minimal crucial abelian
cube-free word En (defined in Sec. 2.1) by removing the second block in En and
deleting the rightmost copy of each letter except 2 in the first and third blocks
of En.

Now we illustrate each step of the construction for the word Dn,k using D4,3
as an example. The construction can be explained directly, but we introduce it
recursively, obtaining Dn,k from Dn,k−1 for n ≥ 4, and using the crucial abelian
square-free word Dn,2 := Dn as the basis. For n = 4, we have

D4,2 = Ω4,1Ω
′
4,2 = 34231 3231.

Assume that Dn,k−1 = Ωn,1Ωn,2 · · ·Ω′
n,k−1 is constructed and implement the

following steps to obtain Dn,k:

1. Duplicate Ωn,1 in Dn,k−1 to obtain the word

D′
n,k−1 = Ωn,1Ωn,1Ωn,2 · · ·Ω′

n,k−1.

For n = 4 and k = 3, D′
4,2 = 34231 34231 3231.
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2. Append to the second Ωn,1 in D′
n,k−1 the factor 134 · · ·n (in our example,

134; in fact, any permutation of {1, 3, 4, . . . , n} would work at this place)
to obtain Ωn,2 in Dn,k. In each of the remaining blocks Ωn,i in D′

n,k−1,
duplicate the rightmost occurrence of each letter x, where 1 ≤ x ≤ n − 1
and x �= 2. Finally, in the last block of D′

n,k insert the letter n immediately
before the leftmost 1 to obtain the word Dn,k. For n = 4 and k = 3, we have

D4,3 = 34423311 34231134 3233411,

where the bold letters form the word D′
4,2 from which D4,3 is derived.

We provide five more examples here, namely D5,3, D5,4, D4,4, D4,5, and D6,4,
respectively, so that the reader can check their understanding of the
construction:

45534423311 45342311345 4323344511;

455534442333111 455344233111345 453423111334455 43233344455111;

34442333111 34423311134 34231113344 3233344111;

34444233331111 34442333111134 34423311113344 34231111333444 3233334441111;

5666455534442333111 5664553442331113456 5645342311133445566 543233344455566111.

Remark 4. By construction, Dn,3 = En for all n ≥ 4.

Theorem 5. For n ≥ 4 and k ≥ 2, we have �k(n) ≤ k2(n− 1) − k − 1.

Proof. Fix n ≥ 4 and k ≥ 2. We have

Dn,k = Ωn,1Ωn,2 · · ·Ωn,k−1Ω
′
n,k

where Ωn,k = Ω′
n,kn, and by construction each Ωn,i contains (k−1) occurrences

of the letter 1, one occurrence of the letter 2, (k − 1) occurrences of the letter
n, and k occurrences of the letter x for x = 3, 4, . . . , n − 1. That is, for each
i = 1, 2, . . . , k, the Parikh vector of the block Ωn,i is given by

P(Ωn,i) = (k − 1, 1, k, k, . . . , k, k − 1), (1)

and hence P(Dn,k) = (k(k − 1), k, k2, k2, . . . , k2, k(k − 1) − 1). Thus,

|Dn,k| = k(k − 1) + k + k2(n− 3) + k(k − 1) − 1 = k2(n− 1) − k − 1.

We will now prove that Dn,k is crucial with respect to abelian k-th powers;
whence the result. The following facts, which are easily verified from the con-
struction of Dn,k, will be useful in the proof.

Fact 1. In every block Ωn,i, the letter 3 has occurrences before and after the
single occurrence of the letter 2.

Fact 2. In every block Ωn,i, all (k−1) of the 1’s occur after the single occurrence
of the letter 2 (as the factor 1k−1).



Crucial Words for Abelian Powers 273

Fact 3. For all i with 2 ≤ i ≤ k−1, the block Ωn,i ends with ni−1 and the other
(k−1− i+1) n’s occur (together as a string) before the single occurrence of the
letter 2 in Ωn,i. In particular, there are exactly k− 2 occurrences of the letter n
between successive 2’s in Dn,k.

Freeness: First we prove that Dn,k is abelian k-power-free. Obviously, by con-
struction, Dn,k is not an abelian k-th power (as the number of occurrences of
the letter n is not a multiple of k) and Dn,k does not contain any trivial k-th
powers, i.e., k-th powers of the form xk for some letter x. Moreover, each block
Ωn,i is abelian k-power-free. For if not, then according to the Parikh vector of
Ωn,i (see (1)), at least one of the Ωn,i must contain an abelian k-th power con-
sisting of exactly k occurrences of the letter x for all x = 3, 4, . . . , n− 1, and no
occurrences of the letters 1, 2, and n. But, by construction, this is impossible
because, for instance, the letter 3 has occurrences before and after the letter 2
in each of the blocks Ωn,i in Dn,k (by Fact 1).

Now suppose, by way of contradiction, that Dn,k contains a non-trivial abelian
k-th power, say P . Then it follows from the preceding paragraph that P overlaps
at least two of the blocks Ωn,i in Dn,k. We first show that P cannot overlap three
or more of the blocks in Dn,k. For if so, then P must contain at least one of the
blocks, and hence P must also contain all k of the 2’s. Furthermore, all of the 1’s
in each block occur after the letter 2 (by Fact 2), so there are (k−1)2 = k2−2k+1
occurrences of the letter 1 between the leftmost and rightmost 2’s in Dn,k. Thus,
P must contain all k(k − 1) = k2 − k of the 1’s. Hence, since Ω′

n,k ends with
1k−1, we deduce that P must end with the word

W = 23k−11k−1Ωn,2 · · ·Ωn,k−1Ω
′
n,k,

where |W |n = k, |W |3 = k(k − 1) + (k − 1) = k2 − 1, and |W |x = k(k − 1) for
x = 4, . . . , n− 1. It follows that P must contain all k2 of the 3’s. But then, since

Dn,k = (n− 1)nk−1 · · · 34k−1W

(by construction), we deduce that P must contain all k2 of the 4’s that occur
in Dn,k, and hence all k2 of the 5’s, and so on. That is, P must contain all k2

occurrences of the letter x for x = 3, . . . , n− 1; whence, since Dn,k begins with
the letter n− 1, we have P = Ωn,1Ωn,2 · · ·Ωn,k = Dn,k, a contradiction.

Thus, P overlaps exactly two adjacent blocks in Dn,k, in which case P cannot
contain the letter 2; otherwise P would contain all k of the 2’s, and hence would
overlap all of the blocks in Dn,k, which is impossible (by the preceding argu-
ments). Hence, P lies strictly between two successive occurrences of the letter
2 in Dn,k. But then P cannot contain the letter n as there are exactly k − 2
occurrences of the letter n between successive 2’s in Dn,k (by Fact 3). Therefore,
since the blocks Ωn,i with 2 ≤ i ≤ k − 1 end with the letter n, it follows that P
overlaps the blocks Ωn,1 and Ωn,2. Now, by construction, Ωn,1 ends with 1k−1,
and hence P contains k of the 2(k − 1) = 2k − 2 occurrences of the letter 1 in
Ωn,1Ωn,2. But then P must contain the letter 2 because Ωn,1 contains exactly
(k − 1) occurrences of the letter 1 (as a suffix) and all (k − 1) of the 1’s in Ωn,2
occur after the letter 2 (by Fact 2); a contradiction.
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We have now shown that Dn,k is abelian k-power-free. It remains to show
that Dn,kx ends with an abelian k-th power for each letter x = 1, 2, . . . , n.

Cruciality: By construction, Dn,kn is clearly an abelian k-th power. It is also
easy to see that Dn,k1 ends with the (abelian) k-th power Δ11 := 1k. Further-
more, for all m = n, n− 1, . . . , 4, we deduce from the construction that

Ωm,1 = (m− 1)mk−1Ωm−1,1,

Ωm,2 = (m− 1)mk−2Ωm−1,2m,

...
Ωm,k−2 = (m− 1)m2Ωm−1,k−2m

k−3,

Ωm,k−1 = m(m− 1)Ωm−1,k−1m
k−2,

Ω′
m,k = (m− 1)Ω′

m−1,k[1k−1]−1(m− 1)mk−21k−1,

where Ω′
m−1,k[1k−1]−1 indicates the deletion of the suffix 1k−1 of Ω′

m−1,k.
Consequently, for x = n−1, n−2, . . . , 3, the word Dn,kx ends with the abelian

k-th power Δxx where Δx is such that

Δx+1 = x(x + 1)k−1Δx with Δn := Dn,k.

��
Observe that |Dn,2| = 4n − 7 and |Dn,3| = 9n − 13. Hence, since Dn,k is a
crucial abelian k-power-free word (by the proof of Theorem 5), it follows from
[6, Theorem 5] and Corollary 1 that the words Dn,2 and Dn,3 are minimal crucial
words over An avoiding abelian squares and abelian cubes, respectively. That
is, for k = 2, 3, the word Dn,k gives the length of a minimal crucial word over
An avoiding abelian k-th powers. In the case of k ≥ 4, we make the following
conjecture.

Conjecture 1. For k ≥ 4 and sufficiently large n, the length of a minimal crucial
word over An avoiding abelian k-th powers is given by k2(n− 1) − k − 1.

3.2 A Lower Bound for �k(n)

A trivial lower bound for �k(n) is nk−1 as all letters except n must occur at least
k times, whereas n must occur at least k − 1 times. We give here the following
slight improvement of the trivial lower bound, which must be rather imprecise
though.

Theorem 6. For n ≥ 5 and k ≥ 4, we have �k(n) ≥ k(3n− 4) − 1.

Proof. Assuming that X is a crucial word over the n-letter alphabet An with
respect to abelian k-th powers (k ≥ 4), we see that adjoining any letter from An

to the right of X must create a cube as a factor from the right. In particular,
adjoining n from the right side leads to creating a cube of length at least 9n−13
(by Lemmas 2–5). This cube will be Ωn,k−2Ωn,k−1Ω

′
n,k in X and thus Ωn,i, for

1 ≤ i ≤ k − 1, will have length at least 3n− 4, whereas Ω′
n,k has length at least

3n− 5, which yields the result. ��



Crucial Words for Abelian Powers 275

4 Further Research

1. Prove or disprove Conjecture 1. Notice that the general construction uses a
greedy algorithm for going from k − 1 to k, which does not work for going
from n−1 to n for a fixed k. However, we believe that the conjecture is true.

2. A word W over An is maximal with respect to a given set of prohibitions if
W avoids the prohibitions, but xW and Wx do not avoid the prohibitions
for any letter x ∈ An. For example, the word 323121 is a maximal abelian
square-free word over {1, 2, 3} of minimal length. Clearly, the length of a min-
imal crucial word with respect to a given set of prohibitions is at most the
length of a shortest maximal word. Thus, obtaining the length of a minimal
crucial word we get a lower bound for the length of a shortest maximal word.

Can we use our approach to tackle the problem of finding maximal words
of minimal length? In particular, Korn [8] proved that the length �(n) of a
shortest maximal abelian square-free word over An satisfies 4n− 7 ≤ �(n) ≤
6n − 10 for n ≥ 6, while Bullock [1] refined Korn’s methods to show that
6n − 29 ≤ �(n) ≤ 6n − 12 for n ≥ 8. Can our approach improve Bullock’s
result (probably too much to ask when taking into account how small the
gap is), or can it provide an alternative solution?
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Abstract. We improve on some recent results on lower bounds for con-
version problems for regular expressions. In particular we consider the
conversion of planar deterministic finite automata to regular expressions,
study the effect of the complementation operation on the descriptional
complexity of regular expressions, and the conversion of regular expres-
sions extended by adding intersection or interleaving to ordinary regular
expressions. Almost all obtained lower bounds are optimal, and the pre-
sented examples are over a binary alphabet, which is best possible.

1 Introduction

It is well known that regular expressions are equally expressive as finite au-
tomata. In contrast to this equivalence, a classical result due to Ehrenfeucht
and Zeiger states that finite automata, even deterministic ones, can sometimes
allow exponentially more succinct representations than regular expressions [4].
Although they obtained a tight lower bound on expression size, their examples
used an alphabet of growing size.

Reducing the alphabet size remained an open challenge [5] until the recent
advent of new proof techniques, see [8,9,12]—indeed most of our proofs in this
paper rely on the recently established relation between regular expression size
and star height of regular languages [9]. Although this resulted in quite a few
new insights into the nature of regular expressions, see also [7,10,11], proving
tight lower bounds for small alphabets remains a challenging task, and not all
bounds in the mentioned references are both tight and cover all alphabet sizes.
In this work, we close some of the remaining gaps: in the case of converting
planar finite automata to regular expressions, we prove the bound directly, by
finding a witness language over a binary alphabet. For the other questions under
consideration, namely the effect of complementation and of extending regular
expression syntax by adding an intersection or interleaving operator, proceeding
in this way appears more difficult. Yet, sometimes it proves easier to find wit-
ness languages over larger alphabets. For this case, we also devise a new set of
encodings which are economic and, in some precise sense, robust with respect to
both the Kleene star and the interleaving operation. This extends the scope of
known proof techniques, and allows us to give a definitive answer to some ques-
tions regarding the descriptional complexity of regular expressions that were not
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Table 1. Comparing the lower bound results for conversion problems of deterministic
finite automata (DFA), regular expressions (RE), and regular expressions with addi-
tional operations (RE(·)), where ∩ denotes intersection, ¬ complementation, and x
the interleaving or shuffle operation on formal languages. Entries with a bound in Θ(·)
indicate that the result is best possible, i.e., refers to a lower bound matching a known
upper bound.

Conversion known results this paper with |Σ| = 2

planar DFA to RE 2Θ(
√

n) for |Σ| = 4 [9] 2Θ(
√

n) [Thm. 3]

22Ω(
√

n log n)
for |Σ| = 2 [9]¬RE to RE

22Ω(n)
for |Σ| = 4 [8]

22Θ(n)
[Thm. 6]

RE( ∩ ) to RE 22Ω(
√

n)
for |Σ| = 2 [7] 22Θ(n)

[Thm. 7]
22Ω(n/ log n)

[Thm. 14]RE( x ) to RE 22Ω(
√

n)
for |Σ| const. [7]

22Θ(n)
for |Σ| = O(n) [Thm. 8]

yet settled completely in previous work [5,7,8,9]; also note that these problems
become easy in the case of unary alphabets [5]. Our main results are summarized
and compared to known results in Table 1.

2 Basic Definitions

We introduce some basic notions in formal language and automata theory—for
a thorough treatment, the reader might want to consult a textbook such as [15].
In particular, let Σ be a finite alphabet and Σ∗ the set of all words over the
alphabet Σ, including the empty word ε. The length of a word w is denoted
by |w|, where |ε| = 0. A (formal) language over the alphabet Σ is a subset
of Σ∗.

The regular expressions over an alphabet Σ are defined recursively in the usual
way:1 ∅, ε, and every letter a with a ∈ Σ is a regular expression; and when r1
and r2 are regular expressions, then (r1 + r2), (r1 · r2), and (r1)∗ are also regular
expressions. The language defined by a regular expression r, denoted by L(r), is
defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, L(r1 + r2) = L(r1)∪L(r2),
L(r1 · r2) = L(r1) · L(r2), and L(r∗1) = L(r1)∗. The size or alphabetic width of a
regular expression r over the alphabet Σ, denoted by alph(r), is defined as the
total number of occurrences of letters of Σ in r. For a regular language L, we
define its alphabetic width, alph(L), as the minimum alphabetic width among
all regular expressions describing L.

Our arguments on lower bounds for the alphabetic width of regular languages
is based on a recent result that utilizes the star height of regular
1 For convenience, parentheses in regular expressions are sometimes omitted and the

concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: concatenation is performed before union, and star before both
product and union.
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languages [9]. Here the star height of a regular language is defined as follows:
for a regular expression r over Σ, the star height, denoted by h(r), is a struc-
tural complexity measure inductively defined by: h(∅) = h(ε) = h(a) = 0,
h(r1 · r2) = h(r1 + r2) = max (h(r1), h(r2)), and h(r∗1) = 1 + h(r1). The star
height of a regular language L, denoted by h(L), is then defined as the minimum
star height among all regular expressions describing L. The next theorem estab-
lishes the aforementioned relation between alphabetic width and star height of
regular languages [9]:

Theorem 1. Let L ⊆ Σ∗ be a regular language. Then alph(L) ≥ 2
1
3 (h(L)−1)−1.

The star height of a regular language appears to be more difficult to determine
than its alphabetic width, see, e.g., [13]. Fortunately, the star height can be
determined more easily for bideterministic regular languages: A DFA is bide-
terministic, if it has a single final state, and if the NFA obtained by revers-
ing all transitions and exchanging the roles of initial and final state is again
deterministic—notice that, by construction, this NFA in any case accepts the
reversed language. A regular language L is bideterministic if there exists a bide-
terministic finite automaton accepting L. For these languages, the star height
can be determined from the digraph structure of the minimal DFA: the cycle
rank of a digraph G = (V, E), denoted by cr(G), is inductively defined as fol-
lows: (1) If G is acyclic, then cr(G) = 0. (2) If G is strongly connected, then
cr(G) = 1 + minv∈V {cr(G− v)}, where G− v denotes the graph with the vertex
set V \{v} and appropriately defined edge set. (3) If G is not strongly connected,
then cr(G) equals the maximum cycle rank among all strongly connected com-
ponents of G. For a given finite automaton A, let its cycle rank, denoted by
cr(A), be defined as the cycle rank of the underlying digraph. Eggan’s Theorem
states that the star height of a regular language equals the minimum cycle rank
among all NFAs accepting it [3]. Later, McNaughton [18] proved the following:

Theorem 2 (McNaughton’s Theorem). Let L be a bideterministic language,
and let A be the minimal trim, i.e., without a dead state, deterministic finite au-
tomaton accepting L. Then h(L) = cr(A).

In fact, the minimality requirement in the above theorem is not needed, since
every bideterministic finite automaton in which all states are useful is already a
trim minimal deterministic finite automaton. Here, a state is useful if it is both
reachable from the start state, and if some final state is reachable from it.

3 Lower Bounds on Regular Expression Size

This section consists of three parts. First we show an optimal bound convert-
ing planar deterministic finite automata to equivalent regular expressions and
then we present our results on the alphabetic width on complementing regular
expression and on regular expressions with intersection and interleaving. While
the former result utilizes a characterization of cycle rank in terms of a cops and
robbers game given in [9], the latter two results are mainly based on star-height-
preserving morphisms.
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3.1 Converting Planar DFAs into Regular Expressions

Recently, it was shown that for planar finite automata, one can construct equiv-
alent regular expressions of size at most 2O(

√
n), for all alphabet sizes polynomial

in n [5]. This is a notable improvement over the general case, since conversion
from n-state deterministic finite automata to equivalent regular expressions was
shown to be of order 2Θ(n) in [9]. Also in [9], for alphabet size at least four a
lower bound on the conversion of planar deterministic finite automata to regular
expressions of 2Θ(

√
n) was proven. We improve this result to alphabets of size

two, using a characterization of cycle rank in terms of a cops and robber game
from [9].

Theorem 3. There is an infinite family of languages Ln over a binary alphabet
acceptable by n-state planar deterministic finite automata, such that alph(Ln) =
2Ω(

√
n).

Proof. By Theorems 1 and 2, it suffices to find an infinite family of bideterminis-
tic finite automata Ak of size O(k2) such that the digraph underlying Ak has cy-
cle rank Ω(k). The deterministic finite automata Ak witnessing the claimed lower

Fig. 1. A drawing of the graph G3. When
viewed as automaton A3, the solid (dashed,
respectively) arrows indicate a-transitions
(b-transitions, respectively).

bound are inspired by a family of
digraphs Gk defined in [16]. These
graphs each admit a planar drawing as
the union of k concentric equally di-
rected 2k-cycles, which are connected
to each other by 2k radial directed
k-paths, the first k of which are di-
rected inwards, while the remaining k
are directed outwards; see Figure 1
for illustration. Formally, for k ≥ 1,
let Gk = (V, E) be the graph with
vertex set V = { ui,j | 1 ≤ i, j ≤
k } ∪ { vi,j | 1 ≤ i, j ≤ k }, and
whose edge set can be partitioned
into a set of directed 2k-cycles Ci,
and two sets of directed k-paths Pi

and Qi with 1 ≤ i ≤ k. Here each Ci

admits a walk visiting the vertices
ui,1, ui,2, . . . , ui,k, vi,1, vi,2, . . . , vi,k in
order, each Pi admits a walk visiting the vertices u1,i, u2,i, . . . , uk,i in order,
and Qi admits a walk visiting the vertices vk,i, vk−1,i, . . . , vk,1 in order.

Fix {a, b} as a binary input alphabet. If we interpret the edges in Gk belonging
to the cycles Ci as a-transitions, the edges belonging to the paths Pi and Qi as b-
transitions, interpret the vertices as states and choose a single initial and a single
final state (both arbitrarily), we obtain a finite automaton Ak with O(k2) states
whose underlying digraph is Gk. It is easily observed that Ak is bideterministic;
thus it only remains to show that for the underlying digraph Gk the identity
cr(Gk) = Ω(k) holds.
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To this end, we use the cops and robber game characterization of graphs
having cycle rank k given in [9]. A game quite similar to the mentioned one is
studied in [16]; there a lower bound of k on the number of required cops on Gk

is proved. It is not hard to prove that the lower bound carries over and cr(Gk)
is at least k − 1. ��

3.2 Operations on Regular Expressions: Alphabetic Width of
Complementation

As noted in [5], the naive approach to complement regular expressions, of first
converting the given expression into a nondeterministic finite automaton, de-
terminizing, complementing the resulting deterministic finite automaton, and
converting back to a regular expression gives a doubly exponential upper bound
of 22O(n)

. The authors of [5] also gave a lower bound of 2Ω(n), and stated as an
open problem to find tight bounds. A doubly-exponential lower bound was found
in [8], for alphabets of size at least four. Their witness language is a 4-symbol
encoding of the set of walks in an n-vertex complete digraph. They gave a very
short regular expression describing the complement of the encoded set, and pro-
vided a direct and technical proof showing that the encoded language requires
large regular expressions, carefully adapting the approach originally taken by
Ehrenfeucht and Zeiger [4]. Resulting from an independent approach pursued by
the authors, in [9] a roughly doubly-exponential lower bound of 22O(

√
n log n)

was
given for the binary alphabet.

Now it appears tempting to encode the language from [8] using a star-height-
preserving morphism to further reduce the alphabet size, as done in [9] for a
similar problem. Unfortunately, the proof from [8] does not offer any clue about
the star height of the witness language, and thus we cannot mix these proof
techniques. At least, it is known [2] that the preimage of the encoded language
has large star height:

Theorem 4 (Cohen). Let Jn be the complete digraph on n vertices with self-
loops, where each edge (i, j) carries a unique label aij. Let Wn denote the set
of all walks ai0i1ai1i2 · · · air−2ir−1air−1ir in Jn, including the empty walk ε. Then
the star height of language Wn equals n.

To obtain a tight lower bound for binary alphabets, here we use a similar en-
coding as in [8], but make sure that the encoding is a star-height-preserving
morphism. Here a morphism ρ preserves star height, if the star height of each
regular language L equals the star height of the homomorphic image ρ(L). The
existence of such encodings was already conjectured in [3]. A full characterization
of star-height-preserving morphisms was established later in [14], which reads as
follows:

Theorem 5 (Hashiguchi/Honda). A morphism ρ : Γ ∗ → Σ∗ preserves star
height if and only if (1) ρ is injective, (2) ρ is both prefix-free and suffix-free,
that is, no word in ρ(Γ ) is prefix or suffix of another word in ρ(Γ ), and (3) ρ
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has the non-crossing property, that is, for all v, w ∈ ρ(Γ ) holds: If v can be
decomposed as v = v1v2, with v1, v2 �= ε, and w as w = w1w2, with w1, w2 �= ε,
such that both cross-wise concatenations v1w2 and w1v2 are again in ρ(Γ ), then
this implies v1 = w1 or v2 = w2.

Observe that the given lower bound matches the aforementioned upper bound
on the problem under consideration.

Theorem 6. There exists an infinite family of languages Ln over a binary al-
phabet Σ with alph(Ln) = O(n), such that alph(Σ∗ \ Ln) = 22Ω(n)

.

Proof. We will first prove the theorem for alphabet size 3, and then use a
star-height-preserving morphism to further reduce the alphabet size to binary.
Let W2n be the set of walks in a complete 2n-vertex digraph as defined in The-
orem 4. Let E = { aij | 0 ≤ i, j ≤ 2n − 1 } denote the edge set of this graph, and
let Σ = {0, 1, $}.

Now define the morphism ρ : E∗ → Σ∗ by ρ(aij) = bin(i) · bin(j) · bin(i) ·
bin(j)$, where bin(i) denotes the usual n-bit binary encoding of the number i.
To see that ρ is star-height-preserving, one has to verify the properties of Theo-
rem 5, which is an easy exercise. Our witness language for ternary alphabets is
the complement of the set Ln = ρ(W2n). To establish the theorem for ternary
alphabets, we give a regular expression of size O(n) describing the complement
of Ln; a lower bound of 22Ω(n)

then immediately follows from Theorems 1 and 4
since the morphism ρ preserves star height. As for the witness language given
in [8], our expression is a union of some local consistency tests: Every nonempty
word in Ln falls apart into blocks of binary digits of each of length 4n, separated
by occurrences of the symbol $, and takes the form

(bin(i0) bin(i1))2$ (bin(i1) bin(i2))
2 $ · · · $(bin(ir−1) bin(ir))2$.

Thus, word w is not in Ln if and only if we have at least one of the following
cases: (i) The word w has no prefix in {0, 1}4n$, or w contains an occurrence
of $ not immediately followed by a word in {0, 1}4n$; (ii) the region around the
boundary of some pair of adjacent blocks in w is not of the form bin(i)$ bin(i);
or (iii) some block does not contain the pattern (bin(i) bin(j))2, in the sense that
inside the block some pair of bits at distance 2n does not match. It is not hard
to encode these conditions into a regular expression of size O(n).

To further decrease the alphabet size to binary, we use the star height-
preserving morphism σ = {0 .→ a1b3, 1 .→ a2b2, $ .→ a3b1}, which already proved
useful in [9]. Then σ(Ln) has star height 2n and thus again has alphabetic width
at least 22Ω(n)

. For an upper bound on the alphabetic width of its complement,
note first that every word w that is in σ(Σ∗) but not in σ(Ln) matches the
morphic image under σ of the expression rn given above; and σ(rn) still has
alphabetic width O(n). The words in the complement of σ(Ln) not covered by
the expression σ(rn) are precisely those not in σ({0, 1, $}∗), and the comple-
ment of the latter set can be described by a regular expression of constant size.
The union of these two expressions gives a regular expression of size O(n) as
desired. ��
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3.3 Regular Expressions with Intersection and Interleaving

It is known that extending the syntax with an intersection operator can provide
an exponential gain in succinctness over nondeterministic finite automata. For
instance, in [6] it is shown that the set of palindromes of length n can be de-
scribed by regular expressions with intersection of size O(n). On the other hand,
it is well known that the number of states of a nondeterministic finite automaton
accepting Pn has Ω(2n) states [19]. Of course, it appears more natural to com-
pare the gain in succinctness of such extended regular expressions to ordinary
regular expressions rather than to finite automata. There a 22O(n)

doubly expo-
nential upper bound readily follows by combining standard constructions [7]. Yet
a roughly doubly-exponential lower bound of 22Ω(

√
n)

, for alphabets of growing
size, was found only recently in [8], and a follow-up paper [7] shows that this
can be reached already for binary alphabets. Here we finally establish a tight
doubly-exponential lower bound, which even holds for binary alphabets.

Theorem 7. There is an infinite family of languages Ln over a binary al-
phabet admitting regular expressions with intersection of size O(n), such that
alph(Ln) = 22Ω(n)

.

Proof. First, we show that the set of walks W2n ⊆ E∗ defined in Theorem 4
allows a compact representation using regular expressions with intersection. First
we define M = { ai,j · aj,k | 0 ≤ i, j, k ≤ 2n − 1 } and then observe that the set
Even of all nonempty walks of even length, i.e., total number of seen edges,
in the graph Jn can be written as Even = M∗ ∩ (E · M∗ · E), while the the
set Odd of all nonempty walks of odd length is Odd = (E · M∗) ∩ (M∗ · E).
Thus, we have W2n = Even∪Odd∪{ε}. This way of describing W2n appears to
be a long shot from our goal; it uses a large alphabet and does not even reach
a linear-exponential gain in succinctness over ordinary regular expressions—a
similar statement appears, already over thirty years ago, in [4]. In order to get
the desired result, we present a binary encoding τ that preserves star height and
allows a representation of the encoded sets τ(M) and τ(E) by regular expressions
with intersection each of size O(n). Let τ : E∗ → {0, 1}∗ be the morphism defined
by τ(ai,j) = bin(i) · bin(j) · bin(j)R · bin(i)R, for 0 ≤ i, j ≤ 2n−1. To see that τ
preserves star height, we have to check the properties given in Theorem 5, which
is an easy exercise. Thus, by Theorems 1 and 4, the set τ(W2n) has alphabetic
width at least 22Ω(n)

.
It remains to give expressions with intersection of size O(n) for the set τ(W2n).

Since τ(W2n) = τ(Even)∪τ(Odd)∪{ε}, the morphism commutes with concate-
nation, union, and Kleene star, and, being injective, also with intersection, it
suffices to give regular expressions with intersection for τ(E) and τ(M) of size
O(n). To this end, we we make use of an observation from [6], namely that the
sets of palindromes of length 2m admit regular expressions with intersection of
size O(m). A straightforward extension of that idea gives a size O(m+n) regular
expression with intersection for Sm,n = { vwvR ∈ {0, 1}∗ | |v| = m, |w| = n },
where m and n are fixed nonnegative integers.
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Finally, observe that the set τ(E) = {wwR ∈ {0, 1}∗ | |w| = 2n } is equal
to Sn,0 and that the set τ(M) can be written as { uvvRuRvwwRvR | |u| =
|v| = |w| = n }, or {0, 1}2n · Sn,n · {0, 1}3n ∩ τ(E) · τ(E). The latter set can be
described by a regular expression with intersection of size O(n) again, and the
proof is complete. ��

The interleaving of languages is another basic language operation known to pre-
serve regularity. Regular expressions extended with interleaving were first stud-
ied in [17], with focus on the computational complexity of word problems. They
also showed that regular expressions extended with an interleaving operator can
be exponentially more succinct than nondeterministic finite automata [17]. Very
recently, it was shown in [7] that regular expressions with interleaving can be
roughly doubly-exponentially more succinct than regular expressions: convert-
ing such expressions into ordinary regular expressions can cause a blow-up in
required expression size of 22Ω(

√
n)

, for constant alphabet size. This bound is
close to an easy upper bound of 22O(n)

that follows from standard constructions,
see, e.g., [7] for details. If we take alphabets of growing size into account, the
lower bound can be increased to match this trivial upper bound. The language
witnessing that bound is in fact of very simple structure.

Theorem 8. There is an infinite family of languages Ln over an alphabet of
size O(n) having regular expressions with interleaving of size O(n), such that
alph(Ln) = 22Ω(n)

.

Proof. We consider the language Ln described by the shuffle regular expression

rn = (a1b1)∗ x (a2b2)∗ x · · · x (anbn)∗

of size O(n) over the alphabet Γ = {a1, a2, . . . , an, b1, b2, . . . , bn}. To give a
lower bound on the alphabetic width of Ln, we estimate first the star height
of Ln. The language Ln can be accepted by a 2n-state partial bideterministic
finite automaton A = (Q, Σ, δ, q0, F ), whose underlying digraph forms a sym-
metric n-dimensional hypercube: The set of states is Q = {0, 1}n, the state
q0 = 0n is the initial state, and is also the only final state, i.e., F = {0n}. For
1 ≤ i ≤ n, the partial transition function δ is specified by δ(p, ai) = q and
δ(q, bi) = p, for all pairs of states (p, q) of the form (x0y, x1y) with x ∈ {0, 1}i−1

and y ∈ {0, 1}n−i. It can be readily verified that this partial deterministic finite
automaton is reduced and bideterministic. Therefore, the star height of Ln coin-
cides with the cycle rank of the n-dimensional symmetric Cartesian hypercube.
For a symmetric graph G, the cycle rank of G coincides with its (undirected)
elimination tree height, which is in turn bounded below by the (undirected)
pathwidth of G. Many structural properties of the n-dimensional hypercube are
known, and among these is the recently established fact [1] that its pathwidth
equals

∑n−1
i=0

(
i

�i/2�
)

= Θ(2n−1/2 log n), where the latter estimate uses Stirling’s

approximation. Using Theorem 1, we obtain alph(Ln) = 2Ω(2n−1/2 log n) = 22Ω(n)
,

as desired. ��
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For a similar result using binary alphabets, we will encode the above wit-
ness language in binary using a star-height-preserving morphism. Some extra
care has to be taken, however. The ideal situation one might hope for is to
find for each Γ = {a1, a2, . . . , an} a suitable star-height-preserving morphism
ρ : Γ ∗ → {0, 1}∗ such that ρ(x x y) = ρ(x) x ρ(y), for all x, y ∈ Γ ∗. This
aim however appears to be a bit too ambitious. In all cases we have tried, the
right-hand side of the above equation can contain words which are not even
valid codewords. In [7] this difficulty is avoided altogether by simulating regular
expressions with intersection by those with interleaving, using a trick from [17].
The drawback here is that the simulation takes place at the expense of introduc-
ing an extra symbol and polynomially increased size of the resulting expression
with interleaving. To overcome this difficulty, Warmuth and Haussler devised a
particular encoding [20], which they called shuffle resistant, that has the above
property once we restrict our attention to codewords. Inspired by a property of
this encoding proved later by Mayer and Stockmeyer [17, Prop. 3.1], we are led
to define in general a shuffle resistant encoding as follows:

Definition 9. An injective morphism ρ : Γ ∗ → Σ∗, for some alphabets Γ
and Σ, is shuffle resistant if ρ(L(r)) = L(ρ(r)) ∩ ρ(Γ )∗, for each regular ex-
pression r with interleaving over Γ .

The following is proved in [17, Prop. 3.1] for the encoding proposed by Warmuth
and Haussler in [20]:

Theorem 10. Let Γ = {a1, a2, . . . , an} and Σ = {a, b}. The morphism ρ :
Γ ∗ → Σ∗, which maps ai to ai+1bi is shuffle resistant.

Incidentally, this encoding also preserves star height. The drawback is, however,
that alph(h(r)) = Θ(|Σ| alph(r)), for r a regular expression with interleaving.
We now present a general family of more economic encodings, into alphabets of
size at least 3, that enjoy similar properties.

Theorem 11. Let Γ and Σ be two alphabets, and $ be a symbol not in Σ. If
ρ : Γ ∗ → (Σ ∪ {$})∗ is an injective morphism with ρ(Γ ) ⊆ Σk$, for some
integer k, then ρ is shuffle resistant.

Proof. We need to show that for each such morphism ρ, the equality ρ(L(r)) =
L(ρ(r)) ∩ ρ(Γ )∗ holds for all regular expressions r with interleaving over Γ .
The outline of the proof is roughly the same as the proof for Theorem 10 as
sketched in [17]. The proof is by induction on the operator structure of r, using
the stronger inductive hypothesis that

L(ρ(r)) ⊆ ρ(L(r)) ∪ E, with E = (ρ(Γ ))∗Σ≥k+1(Σ ∪ $)∗ (1)

Roughly speaking, the “error language” E specifies that the first error occurring
in a word in L(ρ(r)) but not in (ρ(Γ ))∗ must consist in a sequence of too many
consecutive symbols from Σ.

The base cases are easily established, and also the induction step is easy for
the regular operators concatenation, union, and Kleene star. The more difficult
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part is to show that if two expressions r1 and r2 satisfy Equation (1), then this
also holds for r = r1 x r2. To prove this implication, it suffices to show the
following claim:

Claim 12. For all words u, v in ρ(Γ )∗∪E and for each word z in u x v the follow-
ing holds: If both z ∈ (Σk$)∗ and u, v ∈ ρ(Γ )∗, then z ∈ ρ

(
ρ−1(u) x ρ−1(v)

)
.

Otherwise, z ∈ E.

Proof. We prove the claim by induction on the length of z. The base case with
|z| = 0 is clear. For the induction step, assume |z| > 0 and consider the prefix
y consisting of the first k + 1 letters of z. Such a prefix always exists if z is
obtained from shuffling two nonempty words from ρ(Γ )∗∪E. The cases where u
or v is empty are trivial. Observe first that it is impossible to obtain a prefix
in Σ<k$ by shuffling two prefixes u′ and v′ of the words u and v. Also, a prefix
in Σ>k always completes to a word z ∈ E. It remains to consider the case z
has a prefix y in Σk$. To obtain such a prefix, two prefixes u′ and v′ have to
be shuffled, with (u′, v′) ∈ (Σj) × (Σk−j$) or (u′, v′) ∈ (Σj$) × (Σk−j). But
since these are prefixes of words in ρ(Γ )∗ ∪ E, the index j can take on only the
values j = 0 and j = k. Thus, if y ∈ Σk$, then y is indeed in ρ(Γ ), and y is
obtained by observing exclusively the first k + 1 letters of u, or exclusively the
first k +1 letters of v. Hence at least one of the subcases y−1z ∈ (y−1u) x v and
y−1z ∈ u x (y−1v) holds. We only consider the first subcase, for the second one
a symmetric argument applies.

It is not hard to see that we can apply the induction hypothesis to this subcase:
Because y ∈ ρ(Γ ) and u ∈ ρ(Γ )∗∪E, the word y−1u is again in the set ρ(Γ )∗∪E.
Having furthermore |y−1z| < |z|, the induction hypothesis readily implies that
claimed statement also holds for the word z = y(y−1z). This completes the proof
of the claim. ��

Having established the claim, completing the proof of the statement L(ρ(r)) ⊆
ρ(L(r)) ∪ E is a rather easy exercise. ��

The existence of economic shuffle resistant binary encodings that furthermore
preserve star height is given by the next theorem—we omit the proof because of
limited space.

Theorem 13. Let Γ be an alphabet. There exists a morphism ρ : Γ ∗ → {0, 1}∗
such that (1) |ρ(a)| = O(log |Γ |), for every symbol a ∈ Γ , and (2) the morphism ρ
is shuffle resistant and preserves star height. ��

For regular expressions with interleaving we show that the conversion to ordinary
regular expressions induces a 22Ω(n/ log n)

lower bound for binary input alphabet.

Theorem 14. There is an infinite family of languages Ln over a binary al-
phabet admitting regular expressions with interleaving of size O(n), such that
alph(Ln) = 22Ω(n/ log n)

.
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Proof. Our witness language will be described by the expression

ρ(rn) = (ρ(a1)ρ(b1))∗ x (ρ(a2)ρ(b2))∗ x · · · x (ρ(an)ρ(bn))∗,

obtained by applying the morphism ρ from Theorem 13 to the expression rn

used in the proof of Theorem 8. This expression has size O(n log n), and to
prove the theorem, it will suffice to establish that L(ρ(rn)) has alphabetic width
at least 22Ω(n)

.
Recall from the proof of Theorem 8 that the star height of L(rn) is bounded

below by 2Ω(n). Since ρ preserves star height, the same bound applies to the
language ρ(L(rn)). By Theorem 1, we thus have

alph(ρ(L(rn))) = 22Ω(n)
. (2)

Unfortunately, this bound applies to ρ(L(rn)) rather than to L(ρ(rn)). At least,
as we know from Theorem 13 that ρ is a shuffle resistant encoding, these two
sets are related by

L(ρ(rn)) ∩ ρ(Γ )∗ = ρ(L(rn)), (3)

with Γ = {a1, b1, . . . , an, bn}.
To derive a similar lower bound on the language L(ρ(rn)), we use the up-

per bound 2O(n(1+log m)) from [11] on the alphabetic width of the intersection
for regular languages of alphabet width m and n, respectively, for m ≥ n. To
this end, let α(n) denote the alphabetic width of L(ρ(rn)). We show first that
α(n) > alph(ρ(Γ )∗). Assume the contrary. By Theorem 13, the set ρ(Γ )∗ ad-
mits a regular expression of size O(n log n). Assuming α(n) ≤ alph(ρ(Γ )∗), the
upper bound on the alphabetic width of intersection implies that ρ(L(rn)) =
L(ρ(rn))∩ ρ(Γ ∗) admits a regular expression of size 2O(n log2 n). But this clearly
contradicts Inequality (2). Thus, α(n) > alph(ρ(Γ )∗). Applying the upper bound
for intersection to the left-hand side of Equation (3), we obtain

alph(ρ(L(rn))) = alph(L(ρ(rn)) ∩ ρ(Γ ∗)) = 2O(n log n log α(n)). (4)

Inequalities (2) and (4) now together imply that there exist positive constants c1
and c2 such that, for n large enough, holds 22c1n ≤ 2c2n log n log α(n). Taking dou-
ble logarithms on both sides and rearranging terms, we obtain c1n−O(log n) ≤
log log α(n). Since the the left-hand side is in Ω(n), we thus have alph(L(ρ(rn))) =
α(n) = 22Ω(n)

, and the proof is complete. ��
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Abstract. We study the Monadic Second Order (MSO) Hierarchy over
infinite pictures, that is tilings. We give a characterization of existential
MSO in terms of tilings and projections of tilings. Conversely, we charac-
terise logic fragments corresponding to various classes of infinite pictures
(subshifts of finite type, sofic subshifts).

1 Introduction

There is a close connection between words and monadic second-order (MSO)
logic. Büchi and Elgot proved for finite words that MSO-formulas correspond
exactly to regular languages. This relationship was developed for other classes
of labeled graphs; trees or infinite words enjoy a similar connection. See [20,13] for
a survey of existing results. Colorings of the entire plane, i.e tilings, represent
a natural generalization of biinfinite words to higher dimensions, and as such
enjoy similar properties. We plan to study in this paper tilings for the point of
view of monadic second-order logic.

Tilings and logic have a shared history. The introduction of tilings can be
traced back to Hao Wang [21], who introduced his celebrated tiles to study the
(un)decidability of the ∀∃∀ fragment of first order logic. The undecidability of the
domino problem by his PhD Student Berger [3] lead then to the undecidability
of this fragment [5]. Seese [10,18] used the domino problem to prove that graphs
with a decidable MSO theory have a bounded tree width. Makowsky[12,15] used
the construction by Robinson [16] to give the first example of a finitely axiom-
atizable super-stable theory that is super-stable. More recently, Oger [14] gave
generalizations of classical results on tilings to locally finite relational structures.
See the survey [2] for more details.

Previously, a finite variant of tilings, called tiling pictures, was studied [6,7].
Tiling pictures correspond to colorings of a finite region of the plane, this region
being bordered by special ‘#’ symbols. It is proven for this particular model that
language recognized by EMSO-formulas correspond exactly to so-called finite
tiling systems, i.e. projections of finite tilings.

The equivalent of finite tiling systems for infinite pictures are so-called sofic
subshifts [22]. A sofic subshift represents intuitively local properties and ensures
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that every point of the plane behaves in the same way. As a consequence, there
is no general way to enforce that some specific color, say appears at least once.
Hence, some simple first-order existential formulas have no equivalent as sofic
subshift (and even subshift). This is where the border of # for finite pictures
play an important role: Without such a border, results on finite pictures would
also stumble on this issue.

We deal primarily in this article with subshifts. See [1] for other acceptance
conditions (what we called subshifts of finite type correspond to A-acceptance
in this paper).

Finally, note that all decision problems in our context are non-trivial : To
decide if a universal first-order formula is satisfiable (the domino problem, pre-
sented earlier) is not recursive. Worse, it is Σ1

1 -hard to decide if a tiling of the
plane exists where some given color appears infinitely often [9,1]. As a conse-
quence, the satisfiability of MSO-formulas is at least Σ1

1-hard.

2 Symbolic Spaces and Logic

2.1 Configurations

Let d ≥ 1 be a fixed integer and consider the discrete lattice Zd. For any finite
set Q, a Q-configuration is a function from Zd to Q. Q may be seen as a set
of colors or states. An element of Zd will be called a cell. A configuration will
usually be denoted C,M or N .

Fig. 1 shows an example of two different configurations of Z2 over a set Q of 5
colors. As a configuration is infinite, only a finite fragment of the configurations is
represented in the figure. The reader has to use his imagination to decide what
colors do appear in the rest of the configuration. We choose not to represent
which cell of the picture is the origin (0, 0) (we use only translation invariant
properties).

A pattern is a partial configuration. A pattern P : X → Q where X ⊆ Z2

occurs in C ∈ QZ
d

at position z0 if

∀z ∈ X, C(z0 + z) = P (z).

We say that P occurs in C if it occurs at some position in C. As an example
the pattern P of Fig 2 occurs in the configuration M but not in N (or more
accurately not on the finite fragment of N depicted in the figure). A finite pattern

M N

Fig. 1. Two configurations
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Fig. 2. A pattern P . P appears in M but presumably not in N

is a partial configuration of finite domain. All patterns in the following will be
finite. The language L(C) of a configuration C is the set of finite patterns that
occur in C. We naturally extend this notion to sets of configurations.

A subshift is a natural concept that captures both the notion of uniformity
and locality: the only description “available” from a configuration C is the finite
patterns it contains, that is L(C). Given a set F of patterns, let XF be the set
of all configurations where no patterns of F occurs.

XF = {C|L(C) ∩ F = ∅}

F is usually called the set of forbidden patterns or the forbidden language. A set
of the form XF is called a subshift.

A subshift can be equivalently defined by topology considerations. Endow the
set of configurations QZ

d

with the product topology: A sequence (Cn)n∈N of
configurations converges to a configuration C if the sequence ultimately agree
with C on every z ∈ Z2. Then a subshift is a closed subset of QZ

d

also closed by
shift maps.

A subshift of finite type (or tiling) correspond to a finite set F : it is the set
of configurations C such that no pattern in F occurs in C. If all patterns of F
are of diameter n, this means that we only have to see a configuration through
a window of size n to know if it is a tiling, hence the locality.

Given two state sets Q1 and Q2, a projection is a map π : Q1 → Q2. We
naturally extend it to π : QZ

d

1 → QZ
d

2 by π(C)(z) = π(C(z)). A sofic subshift of
state set Q2 is the image by some projection π of some subshift of finite type of
state set Q1. It is also a subshift (clearly closed by shift maps, and topologically
closed because projections are continuous maps on a compact space). A sofic
subshift is a natural object in tiling theory, although quite never mentioned
explicitly. It represents the concept of decoration: some of the tiles we assemble
to obtain the tilings may be decorated, but we forgot the decoration when we
observe the tiling.

2.2 Structures

From now on, we restrict to dimension 2. A configuration will be seen in this
article as an infinite structure. The signature τ contains four unary maps North,
South, East, West and a predicate Pc for each color c ∈ Q.

A configuration M will be seen as a structure M in the following way:

– The elements of M are the points of Z2.
– North is interpreted by NorthM((x, y)) = (x, y + 1), East is interpreted by

EastM((x, y)) = (x + 1, y). SouthM and WestM are interpreted similarly
– PM

c ((x, y)) is true if and only if the point at coordinate (x, y) is of color c,
that is if M(x, y) = c.
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As an example, the configuration M of Fig. 1 has three consecutive cells with
the color . That is, the following formula is true:

M |= ∃z, P (z) ∧ P (East(z)) ∧ P (East(East(z)))

As another example, the following formula states that the configuration has
a vertical period of 2 (the color in the cell (x, y) is the same as the color in the
cell (x, y + 2)). The formula is false in the structure M and true in the structure
N (if the reader chose to color the cells of N not shown in the picture correctly):

∀z,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P (z) =⇒ P (North(North(z)))
P (z) =⇒ P (North(North(z)))
P (z) =⇒ P (North(North(z)))
P (z) =⇒ P (North(North(z)))
P (z) =⇒ P (North(North(z)))

2.3 Monadic Second-Order Logic

This paper studies connection between subshifts (seen as structures as explained
above) and monadic second order sentences. First order variables (x, y, z, ...)
are interpreted as points of Z2 and (monadic) second order variables (X , Y , Z,
...) as subsets of Z2.

Monadic second order formulas are defined as follows:

– a term is either a first-order variable or a function (South, North, East, West)
applied to a term;

– atomic formulas are of the form t1 = t2 or X(t1) where t1 and t2 are terms
and X is either a second order variable or a color predicate;

– formulas are build up from atomic formulas by means of boolean connectives
and quantifiers ∃ and ∀ (which can be applied either to first-order variables
or second order variables).

A formula is closed if no variable occurs free in it. A formula is FO if no
second-order quantifier occurs in it. A formula is EMSO if it is of the form

∃X1, . . . , ∃Xn, φ(X)

where φ is FO. Given a formula φ(X1, . . . , Xn) with no free first-order variable
and having only X1, . . . , Xn as free second-order variables, a configuration M
together with subsets E1, . . . , En is a model of φ(X1, . . . , Xn), denoted

(M,E1, . . . , En) |= φ(X1, . . . , Xn),

if φ is satisfied (in the usual sense) when M is interpreted as M (see previous
section) and Ei interprets Xi.
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2.4 Definability

This paper studies the following problems: Given a formula φ of some logic, what
can be said of the configurations that satisfy φ? Conversely, given a subshift,
what kind of formula can characterise it?

Definition 2.1. A set S of Q-configurations is defined by φ if

S =
{
M ∈ QZ

2
∣∣∣M |= φ

}
Two formulas φ and φ′ are equivalent iff they define the same set of

configurations.
A set S is C-definable if it is defined by a formula φ ∈ C.

Note that a definable set is always closed by shift (a shift between 2 configura-
tions induces an isomorphism between corresponding structures). It is not always
closed: The set of { , }-configurations defined by the formula φ : ∃z, P (z) con-
tains all configurations except the all-white one, hence is not closed.

When we are dealing with MSO formulas, the following remark is useful:
second-order quantifiers may be represented as projection operations on sets of
configurations. We formalize now this notion.

If π : Q1 �→ Q2 is a projection and S is a set of Q1-configurations, we define
the two following operators:

E(π)(S) =
{
M ∈ (Q2)Z

2
∣∣∣∃N ∈ (Q1)Z

2
, π(N) = M ∧N ∈ S

}
A(π)(S) =

{
M ∈ (Q2)Z

2
∣∣∣∀N ∈ (Q1)Z

2
, π(N) = M =⇒ N ∈ S

}
Note that A is a dual of E, that is A(π)(S) = cE(π)(cS) where c represents

complementation.

Proposition 2.2

– A set S of Q-configurations is EMSO-definable if and only if there exists a
set S′ of Q′ configurations and a map π : Q′ �→ Q such that S = E(π)(S′)
and S′ is FO-definable.

– The class of MSO-definable sets is the closure of the class of FO-definable
sets by the operators E and A.

Proof (Sketch). We prove here only the first item.

– Let φ = ∃X,ψ be a EMSO formula that defines a set S of Q-configurations.
Let Q′ = Q× {0, 1} and π be the canonical projection from Q′ to Q.
Consider the formula ψ′ obtained from ψ by replacing X(t) by ∨c∈QP(c,1)(t)
and Pc(t) by P(c,0)(t) ∨ P(c,1)(t).
Let S′ be a set of Q′ configurations defined by ψ′. Then is it clear that
S = E(π)(S′). The generalization to more than one existential quantifier is
straightforward.
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– Let S = E(π)(S′) be a set of Q configurations, and S′ FO-definable by the
formula φ. Denote by c1 . . . cn the elements of Q′. Consider the formula φ′

obtained from φ where each Pci is replaced by Xi. Let

ψ = ∃X1, . . . , ∃Xn,

⎧⎪⎪⎨⎪⎪⎩
∀z,∨iXi(z)
∀z,∧i�=j(¬Xi(z) ∨ ¬Xj(z))
∀z,∧i

(
Xi(z) =⇒ Pπ(ci)(z)

)
φ′

Then ψ defines S. Note that the formula ψ constructed above is of the form
∃X1, . . . , ∃Xn(∀z, ψ′(z)) ∧ φ′. This will be important later. ��

Second-order quantifications will then be regarded in this paper either as
projections operators or sets quantifiers.

3 Hanf Locality Lemma and EMSO

The first-order logic has a property that makes it suitable to deal with tilings
and configurations: it is local. This is illustrated by Hanf’s lemma [8,4,11].

Definition 3.1. Two Q-configurations M and N are (n, k)-equivalent if for
each Q-pattern P of size n:

– If P appears in M less than k times, then P appears the exact same number
of times in M and in N

– If P appears in M more than k times, then P appears in N more than k
times

This notion is indeed an equivalence relation. Given n and k, it is clear that
there is only finitely many equivalence classes for this relation.

The Hanf’s local lemma can be formulated in our context as follows:

Theorem 3.2. For every FO formula φ, there exists (n, k) such that

if M and N are (n, k) equivalent, then M |= φ ⇐⇒ N |= φ

Corollary 3.3. Every FO-definable set is a (finite) union of some (n, k)-
equivalence classes.

This is theorem 3.3 in [7], stated for finite configurations. Lemma 3.5 in the same
paper gives a proof of Hanf’s Local Lemma in our context.

Given (P, k) we consider the set S=k(P ) of all configurations such that the
pattern P occurs exactly k times (k may be taken equal to 0). The set S≥k(P ) is
the set of all configurations such that the pattern P occurs more than k times.

We may rephrase the preceding corollary as:

Corollary 3.4. Every FO-definable set is a positive combination (i.e. unions
and intersections) of some S=k(P ) and some S≥k(P )
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Theorem 3.5. Every EMSO-definable set can be defined by a formula of the
form:

∃X1, . . . , ∃Xn,
(∀z1, φ1(z1, X1, . . . , Xn)

) ∧ (∃z1, . . . , ∃zp, φ2(z1 . . . zp, X1, . . . , Xn)
)
,

where φ1 and φ2 are quantifier-free formulas.

See [20, Corollary 4.1] or [19, Corollary 4.2] for a similar result. This result is an
easy consequence of [17, Theorem 3.2] (see also the corrigendum).

4 Logic Characterization of SFT and Sofic Subshifts

We start by a characterization of subshifts of finite type (SFTs, i.e tilings). The
problem with SFTs is that they are closed neither by projection nor by union.
As a consequence, the corresponding class of formulas is not very interesting:

Theorem 4.1. A set of configurations is a SFT if and only if it is defined by a
formula of the form ∀z, ψ(z) where ψ is quantifier-free.

Proof. Let P1 . . .Pn be patterns. To each Pi we associate the quantifier-free
formula φPi(z) which is true if and only if Pi appears at the position z. Then
the subshifts that forbids patterns P1 . . .Pn is defined by the formula:

∀z,¬φP1(z) ∧ · · · ∧ ¬φPn(z)

Conversely, let ψ be a quantifier-free formula. Each term ti in ψ is of the form
fi(z) where fi is some combination of the functions North, South,East and West,
each fi thus representing somehow some vector zi (fi(z) = z + zi). Let Z be the
collection of all vectors zi that appear in the formula ψ. Now the fact that ψ is
true at the position z only depends on the colors of the configuration at points
(z + z1), . . . , (z + zn), i.e. on the pattern of domain Z that occurs at position z.
Let P be the set of patterns of domain Z that makes ψ false. Then the set S
defined by ψ is the set of configurations where no patterns in P occurs, hence a
SFT. ��

Theorem 4.2. A set S is a sofic subshift if and only if it is definable by a
formula of the form

∃X1, . . . , ∃Xn, ∀z1, . . . , ∀zp, ψ(X1, . . . , Xn, z1 . . . zp)

where ψ is quantifier-free. Moreover, any such formula is equivalent to a formula
of the same form but with a single universal quantifier (p = 1).

Note that the real difficulty in the proof of this theorem is to treat the only
binary predicate, the equality (=). The reader might try to find a sofic subshift
corresponding to the following formula before reading the proof:

∀x, y,
(
P (x) ∧ P (East(y))

)
=⇒ x = y
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Proof. A sofic subshift being a projection of a SFT, one direction of the first
assertion follows from the previous theorem and proposition 2.2.

Let C be the class of formulas of the form:

∃X1, . . . , ∃Xn, ∀z1, . . . , ∀zp, ψ(X1, . . . , Xn, z1 . . . zpi)

Now we prove by induction on the number p of universal quantifiers that each
formula of C is equivalent to a formula with only one universal quantifier. There
is nothing to prove for p = 1. For p > 1, we rewrite the formula in conjunctive
normal form:

∃X1, . . . , ∃Xn, ∀z1, . . . , ∀zp, ∧iψi(X1, . . . , Xn, z1 . . . zp)

where ψi is disjunctive. This is equivalent to

∃X1, . . . , ∃Xn,∧i∀z1, . . . , ∀zp, ψi(X1, . . . , Xn, z1 . . . zp) ≡ ∃X1, . . . , ∃Xn,∧iηi

Now we treat each ηi separately. ψi is a disjunction of four types of formulas:

•Pc(f(x)) •¬Pc(f(x)) •f(x) = y •f(x) �= y

because terms are made only of bijective functions (compositions of North, South,
East, West). We may suppose the last case never happens: ∀x, y, zf(x) �= y ∨
ψ(x, y, z) is equivalent to ∀x, z, ψ(x, f(x), z). We may rewrite

ψi(z1 . . . zp) ≡ ε(zp) ∨ zp = f(zk1) ∨ · · · ∨ zp = f(zkm) ∨ θ(z1 . . . zp−1)

(we forgot the second-order variables to simplify notations).
We may suppose that no formula is of the form zp = zp. Now is the key

argument: Suppose that there are strictly more that m values of z such that
ε(z) is false. Then given z1 . . . zp−1 we may find a zp such that the formula
ε(zp) ∨ (zp = f(zk1)) ∨ · · · ∨ (zp = f(zkm)) is false. That is, if there are more than
m values of z so that ε(z) is false, then ∀z1, . . . , ∀zp−1, θ(z1 . . . zp−1) must be true.

As a consequence, our formula ηi is equivalent to the disjunction of the formula
∀z1, . . . , ∀zp−1, θ(z1 . . . zp−1) and the formula

∃S1, . . . , ∃Sm,

⎧⎨⎩
Ψi

∀z,∨iSi(z) ⇐⇒ ¬ε(z)
∀z1, . . . , ∀zp−1, S1(f(zk1)) ∨ · · · ∨ Sm(f(zkm)) ∨ θ(z1 . . . zp−1)

where Ψi express that Si has at most one element and is defined as follows:

Ψi
def
= ∃A, ∀x

{
A(x) ⇐⇒ A(North(x)) ∧A(East(x))

Si(x) ⇐⇒ A(x) ∧ ¬A(South(x)) ∧ ¬A(West(x))

Simplifying notations, our formula ηi is equivalent to

∀z1, . . . , ∀zp−1, θ(z1 . . . zp−1) ∨ ∃P1, . . . , ∃Pq∀z1, . . . , ∀zp−1, ζ(z1 . . . zp−1)
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which is equivalent to

∃X, ∃P1, . . . , ∃Pq∀z1, . . . , ∀zp−1,

⎧⎪⎪⎨⎪⎪⎩
X(z1) ⇐⇒ X(North(z1))
X(z1) ⇐⇒ X(East(z1))

X(z1) =⇒ θ(z1, . . . zp−1)
¬X(z1) =⇒ ζ(z1, . . . zp−1)

Now report this new formula instead of ηi to obtain a formula

∃X1, . . . , ∃Xn,∧i∃R1, . . . , ∃Rqi , ∀z1, . . . , ∀zp−1, θi(z1 . . . zpi , R1 . . .Rqi)

equivalent to

∃X1, . . . , ∃Xn, ∃R11, . . . , ∃Rkqk
, ∀z1, . . . , ∀zp−1, ∧iθi(z1 . . . zpi , Ri1 . . .Riqi)

We finally obtain a formula of C with p − 1 universal quantifiers, and we may
conclude by induction.

To finish the proof, a formula of C with 1 universal quantifier defines indeed a
sofic subshift (use the proof of theorem 4.1. to conclude that this formula defines
a projection of a SFT, hence a sofic subshift). ��

5 Separation Result

Theorems 3.5. and 4.2. above suggest that EMSO-definable subshifts are not
necessarily sofic. We will show in this section that the set of EMSO-definable
subshifts is indeed strictly larger than the set of sofic subshifts. The proof is
based on the analysis of the computational complexity of forbidden languages.
It is well-known that sofic subshifts have a recursively enumerable forbidden
language. The following theorem shows that the forbidden language of an MSO-
definable subshift can be arbitrarily high in the arithmetical hierarchy.

This is not surprising since arbitrary Turing computation can be defined via
first order formulas (using tilesets) and second order quantifiers can be used to
simulate quantification of the arithmetical hierarchy. However, some care must
be taken to ensure that the set of configurations obtained is a subshift.

Theorem 5.1. Let E be an arithmetical set. Then there is an MSO-definable
subshift with forbidden language F such that E reduces to F (for many-one
reduction).

Proof (sketch). Suppose that the complement of E is defined as the set of in-
tegers m such that ∃x1, ∀x2, . . . , ∃/∀xn, R(m,x1, . . . , xn) where R is a recursive
relation. We first build a formula φ defining the set of configurations representing
a successful computation of R on some input m,x1, . . . , xn. Consider 3 colors cl,
c and cr and additional second order variables X1, . . . , Xn and S1, . . . , Sn. The
input (m,x1, . . . , xn) to the computation is encoded in unary on an horizontal
segment using colors cl and cr and variables Si as separators, precisely: first an
occurrence of cl then m occurrences of c, then an occurrence of cr and, for each
successive 1 ≤ i ≤ n, xi positions in Xi before a position of Si. Let φ1 be the
FO formula expressing the following:
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1. there is exactly 1 occurrence of cl and 1 of cr and all Si are singletons;
2. starting from an occurrence cl and going east until reaching Sn, the only

possible successions of states are those forming a valid input as explained
above.

Now, the computation of R on any input encoded as above can be simulated via
tiling constraints in the usual way. Consider sufficiently many new second order
variables Y1, . . . , Yp to handle the computation and let φ2 be the FO formula
expressing that:

1. a valid computation starts at the north of an occurrence of cl;
2. there is exactly one occurrence of the halting state (represented by some Yi)

in the whole configuration.

We define φ by ∃X1, ∀X2, . . . , ∃/∀Xn, ∃S1, . . . , ∃Sn, ∃Y1, . . . , ∃Yp, φ1 ∧ φ2.
Finally let ψ be the following FO formula: (∀z,¬Pcl

) ∨ (∀z,¬Pcr). Let X be
the set defined by φ∨ψ. By construction, a finite (unidimensional) pattern of the
form clc

mcr appears in some configuration of X if and only if m �∈ E. Therefore
E is many-one reducible to the forbidden language of X .

To conclude the proof it is sufficient to check that X is closed. To see this, con-
sider a sequence (Cn)n of configurations of X converging to some configuration
C. C has at most one occurrence of cl and one occurrence of cr. If one of these
two states does not occur in C then C ∈ X since ψ is verified. If, conversely, both
cl and cr occur (once each) then any pattern containing both occurrences also
occurs in some configuration Cn verifying φ. But φ is such that any modification
outside the segment between cl and cr in Cn does not change the fact that φ is
satisfied provided no new cl and cr colors are added. Therefore φ is also satisfied
by C and C ∈ X . ��

The construction of the theorem gives the claimed separation result for subshifts
of EMSO if we choose E to be the set of non-halting Turing machines.

Corollary 5.2. There are EMSO-definable subshifts which are not sofic.

6 A Characterization of EMSO

EMSO-definable sets are projections of FO-definable sets (proposition 2.2). Be-
sides, sofic subshifts are projections of subshifts of finite type (or tilings). Pre-
vious results show that the correspondence sofic↔EMSO fails. However, we will
show in this section how EMSO can be characterized through projections of
“locally checkable” configurations.

Corollary 3.4. expresses that FO-definable sets are essentially captured by
counting occurrences of patterns up to some value. The key idea in the following
is that this counting can be achieved by local checkings (equivalently, by tiling
constraints), provided it is limited to a finite and explicitly delimited region. This
idea was successfully used in [7] in the context of picture languages: pictures are
rectangular finite patterns with a border made explicit using a special state
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(which occurs all along the border and nowhere else). We will proceed here quite
differently. Instead of putting special states on borders of some rectangular zone,
we will simply require that two special subsets of states Q0 and Q1 are present
in the configuration: we call a (Q0, Q1)-marked configuration any configuration
that contains both a color q ∈ Q0 and some color q′ ∈ Q1 somewhere. By
extension, given a subshift Σ over Q and two subsets Q0 ⊆ Q and Q1 ⊆ Q, the
doubly-marked set ΣQ0,Q1 is the set of (Q0, Q1)-marked configurations of Σ.
Finally, a doubly-marked set of finite type is a set ΣQ0,Q1 for some SFT Σ and
some Q0, Q1.

Lemma 6.1. For any finite pattern P and any k ≥ 0, S=k(P ) is the projection
of some doubly-marked set of finite type. The same result holds for S≥k(P ).

Moreover, any positive combination (union and intersection) of projections of
doubly-marked sets of finite type is also the projection of some doubly-marked
sets of finite type.

Theorem 6.2. A set is EMSO-definable if and only if it is the projection of a
doubly-marked set of finite type.

Proof. First, a doubly-marked set of finite type is an FO-definable set because
SFT are FO-definable (theorem 4.1.) and the restriction to doubly-marked con-
figurations can be expressed through a simple existential FO formula. Thus the
projection of a doubly-marked set of finite type is EMSO-definable.

The opposite direction follows immediately from proposition 2.2 and corol-
lary 3.4. and the lemma above. ��
At this point, one could wonder whether considering simply-marked set of finite
type is sufficient to capture EMSO via projections. In fact the presence of 2
markers is necessary in the above theorem: considering the set ΣQ0,Q1 where
Σ is the full shift QZ

2
and Q0 and Q1 are distinct singleton subsets of Q, a

simple compactness argument allows to show that it is not the projection of any
simply-marked set of finite type.

7 Open Problems

– Is the second order alternation hierarchy strict for MSO (considering our
model-theoretic equivalence)?

– One can prove that theorem 4.1. also holds for formulas of the form:

∀X1 . . . ∀Xn, ∀z, ψ(z,X1 . . .Xn)

where ψ is quantifier-free. Hence, adding universal second-order quantifiers
does not increase the expression power of formulas of theorem 4.1.. More
generally, let C be the class of formulas of the form

∀X1, ∃X2, . . . , ∀/∃Xn, ∀z1, . . . , ∀zp, φ(X1, . . . , Xn, z1, . . . , zp).

One can check that any formula in C defines a subshift. Is the second-order
quantifiers alternation hierarchy strict in C? On the contrary, do all formulas
in C represent sofic subshifts ?
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Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 441–454. Springer,
Heidelberg (1991)

20. Thomas, W.: Languages, Automata, and Logic. In: Thomas, W. (ed.) Handbook
of Formal Languages, Beyond Words, vol. 3. Springer, Heidelberg (1997)

21. Wang, H.: Proving theorems by pattern recognition ii. Bell system technical jour-
nal 40, 1–41 (1961)

22. Weiss, B.: Subshifts of finite type and sofic systems. Monatshefte für Mathe-
matik 77, 462–474 (1973)



Magic Numbers and Ternary Alphabet�

Galina Jirásková
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Abstract. A number α, in the range from n to 2n, is magic for n with
respect to a given alphabet size s, if there is no minimal nondeterministic
finite automaton of n states and s input letters whose equivalent minimal
deterministic finite automaton has α states. We show that in the case of a
ternary alphabet, there are no magic numbers. For all n and α satisfying
that n � α � 2n, we describe an n-state nondeterministic automaton
with a three-letter input alphabet that needs α deterministic states.

1 Introduction

At the 3rd Conference on Developments in Language Theory, Iwama, Kam-
bayashi, and Takaki [10] stated the question of whether there always exists a
minimal nondeterministic finite automaton (nfa) of n states whose equivalent
minimal deterministic finite automaton (dfa) has α states for all integers n and
α satisfying that n � α � 2n. The question has also been considered by Iwama,
Matsuura, and Paterson in [11], where a number Z with n � Z � 2n is called
“magic”, if there is no nfa of n states that needs Z deterministic states. In
these two papers it is shown that if α = 2n − 2k or α = 2n − 2k − 1, where
0 � k � n/2 − 2, or if α = 2n − k, where 2 � k � 2n − 2 and some coprimality
condition holds, then the number α is not magic. The authors defined corre-
sponding automata over a two-letter alphabet, and have mentioned that if we
allow more input symbols, the problem becomes easier.

In the case when the alphabet size is allowed to grow exponentially with n,
appropriate automata have been described for all values of n and α in [12]. It has
been shown that a 2n-letter alphabet would be enough, however, in this case,
automata were given implicitly. For a binary alphabet, all numbers from n to
n2/2 have been shown to be non-magic. The explicit constructions of automata
using n+2 input symbols have been presented by Geffert [6], who also considered
a binary case and proved that all numbers from n to 2n1/3

are non-magic.
The problem has been solved for a fixed four-letter alphabet by Jirásek,

Jirásková, and Szabari [14] by describing, for all n and α with n � α � 2n,
a minimal nondeterministic finite automaton of n states with a four-letter input
alphabet that needs α deterministic states. This means that in the case of a
four-letter alphabet, there are no magic numbers.
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Let us note that in the unary case, all numbers from e(1+o(1))·√n lnn to 2n are
magic since every n-state unary nfa can be simulated by an e(1+o(1))·√n ln n-state
dfa [15,4,7]. Moreover, it has been shown by Geffert [7] that there are much more
magic than non-magic numbers in the range from n to e(1±o(1))·(√n ln n) in the
unary case.

Here we continue this research and study a ternary case. We show that nei-
ther in this case do magic numbers exist, and give the explicit constructions
of appropriate automata with a three-letter input alphabet. Surprisingly, the
constructions and proofs are even easier than in the case of a four-letter alpha-
bet. The question of whether or not there are some magic numbers for a binary
alphabet remains open. Some partial results for the binary case have recently
been obtained by Matsuura and Saito in [16] and by the author in [13]. The first
paper shows that, with some exceptions, all numbers from 2n to 2n − 4n are
non-magic, while in the the second one, all numbers from n to 2n/3 are proved
to be non-magic in the binary case.

To conclude this section we mention two more related works. Magic numbers
for symmetric difference nfa’s have been studied by Zijl [20], and similar problems
for nonterminal complexity of some operations on context-free languages have
been investigated by Dassow and Stiebe [5].

2 Preliminaries

In this section, we give some basic definitions, notations, and preliminary results
used throughout the paper. For further details, we refer to [18,19].

Let Σ be a finite alphabet and Σ∗ the set of all strings over the alphabet
Σ including the empty string ε. The length of a string w is denoted by |w|. A
language is any subset of Σ∗. We denote the cardinality of a finite set A by |A|
and its power-set by 2A.

A deterministic finite automaton (dfa) is a quintuple M = (Q, Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite input alphabet, δ is the transition
function that maps Q × Σ to Q, q0 is the initial state, q0 ∈ Q, and F is the set
of accepting states, F ⊆ Q. In this paper, all dfa’s are assumed to be complete,
that is, the next state δ(q, a) is defined for each state q in Q and each symbol a
in Σ. The transition function δ is extended to a function from Q×Σ∗ to Q in a
natural way. A string w in Σ∗ is accepted by the dfa M if the state δ(q0, w) is
an accepting state of the dfa M . The language accepted by the dfa M, denoted
L(M), is the set of strings {w ∈ Σ∗ | δ(q0, w) ∈ F}.

A nondeterministic finite automaton (nfa) is a quintuple M = (Q, Σ, δ, q0, F ),
where Q, Σ, q0 and F are defined in the same way as for a dfa, and δ is the nonde-
terministic transition function that maps Q×Σ to 2Q. The transition function can
be naturally extended to the domain Q × Σ∗. A string w in Σ∗ is accepted by the
nfa M if the set δ(q0, w) contains an accepting state of the nfa M. The language
accepted by the nfa M is the set of strings L(M) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}.

Two automata are said to be equivalent if they accept the same language.
A dfa (an nfa) M is called minimal if all dfa’s (all nfa’s, respectively) that are
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equivalent to M have at least as many states as M . It is well-known that a dfa
M = (Q, Σ, δ, q0, F ) is minimal if (i) all its states are reachable from the initial
state, and (ii) no two of its different states are equivalent (states p and q are
said to be equivalent if for all strings w in Σ∗, the state δ(p, w) is accepting iff
the state δ(q, w) is accepting). Each regular language has a unique minimal dfa,
up to isomorphism. However, the same result does not hold for nfa’s.

Every nondeterministic finite automaton M = (Q, Σ, δ, q0, F ) can be con-
verted to an equivalent deterministic finite automaton M ′ = (2Q, Σ, δ′, q′0, F ′)
using an algorithm known as the “subset construction” [17] in the following way.
Every state of the dfa M ′ is a subset of the state set Q. The initial state of the dfa
M ′ is the set {q0}. The transition function δ′ is defined by δ′(R, a) =

⋃
r∈R δ(r, a)

for each state R in 2Q and each symbol a in Σ. A state R in 2Q is an accept-
ing state of the dfa M ′ if it contains an accepting state of the nfa M. We call
the automaton M ′ the subset automaton corresponding to the nfa M . Notice
that the subset automaton need not be minimal since some of its states may be
unreachable or equivalent.

To prove that an nfa is minimal we use a fooling-set lower-bound technique
[1,2,3,8,9]. After defining a fooling set, we recall the lemma from [2] describing
this lower-bound technique.

Definition 1. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is said to be
a fooling set for a regular language L if for every i and j in {1, 2, . . . , n},

(1) the string xiyi is in the language L, and
(2) if i �= j, then at least one of the strings xiyj and xjyi is not in L.

Lemma 1 ([2], Lemma 1). Let A be a fooling set for a regular language L.
Then every nfa for the language L needs at least |A| states. ��

The following lemma from [14] shows that each integer can be expressed as a
sum of powers of two decreased by one if, possibly, the smallest summand can
be taken twice. We will use this lemma later in our constructions.

Lemma 2 ([14], Lemma 2). Let k be a positive integer. Then for each integer
m such that 1 � m < 2k, one of the following three cases holds:

m = 2k − 1,

m = (2k1 − 1) + (2k2 − 1) + · · · + (2k�−1 − 1) + (2k� − 1),
m = (2k1 − 1) + (2k2 − 1) + · · · + (2k�−1 − 1) + 2 · (2k� − 1),

where 1 � � � k − 1, and k − 1 � k1 > k2 > · · · > k� � 1. ��

3 Main Results

The aim of this section is to show that in the case of a three-letter alphabet,
there are no magic numbers, which means that each value in the range from n
to 2n can be obtained as the size of the minimal dfa equivalent to a minimal
n-state nfa defined over a three-letter alphabet. Let us start with an example.
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Example 1. Consider the five-state nfa A5 with the input alphabet {a, b, c}
shown in Fig. 1. The automaton has states 0,1,2,3,4, of which state 4 is the
initial and the sole accepting state. On inputs a and b, each state i goes to state
i + 1, except for state 4 which goes to itself. Moreover, on input b, each state
goes to state 0. There is only one transition on input c, which goes from state 3
to state 4.

a,b a,b a,b

b

0 1 2b
a,b

a,b

c
b

bb

3 4

Fig. 1. The nondeterministic finite automaton A5

Consider the subset automaton A′
5 corresponding to the nfa A5. Fig. 2 shows

the dfa A′
5. To keep the figure transparent, we label the states of the dfa without

commas and brackets, and we omit transitions in some states.
We can see that state 4, by each string in {a, b}∗, goes to a subset containing

state 4. Moreover, each such subset is reachable from state 4 by a string over
{a, b}. We prove this property in a general case in Lemma 3.

Next, consider states {1}, {1, 2}, {1, 2, 3}, depicted by a red (grey) color in the
figure. Notice that from state {1}, seven subsets of {0, 1, 2, 3}, that is, subsets
not containing state 4, can be reached by a string over {a, b}. Three more subsets
can be reached from state {1, 2}, and one more subset is reachable from state
{1, 2, 3} (and even one more from state {0, 1, 2, 3}).

Thus, if we would like to have a five-state nfa requiring, for example,
1+16+7+3+1 = 28 deterministic states, let us call it B5,28, we can construct it
from the nfa A5 by adding transitions on symbol c from states 0, 1, and 2 to sub-
sets {1},{1, 2}, and {1, 2, 3}, respectively. The nondeterministic finite automaton
B5,28 is minimal since the set {(ε, ba3c), (b, a3c), (ba, a2c), (ba2, ac), (ba3, c)} is a
fooling set of size five for the language L(B5,28). Next, the empty string is ac-
cepted by the nfa B5,28 only from state 4, while the string a3−ic is accepted only
from state i for all i = 0, 1, 2, 3. This means that all reachable sets in the subset
automaton are pairwise inequivalent.

The following subsets are reachable in the subset automaton B′
5,28:

• the empty set,
• all subsets containing state 4 (16 subsets),
• state {0, 4} goes by c to state {1}, from which 7 subsets of {0, 1, 2, 3} can be

reached,
• state {1, 4} goes by c to state {1, 2}, from which 3 more subsets of {0, 1, 2, 3}

can be reached,
• state {2, 4} goes by c to a new subset {1, 2, 3},
• no other subset is reachable.

Hence the total number of reachable states is 1 + 16 + 7 + 3 + 1 = 28.
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Fig. 2. The deterministic finite automaton A′
5

If we would like to get a five-state nfa B5,17+7+7 requiring 31 deterministic
states, we would define 0 c−→ {1}, 1 c−→ {0, 1}, and 3 c−→ {4}, while in the case
of an nfa B5,17+7+3+3 requiring 30 deterministic states we would have 0 c−→ {1},
1 c−→ {1, 2}, 2 c−→ {0, 1, 2}, and 3 c−→ {4}. A problem could arise if we would
like to reach 17 + 7 + 3 + 1 + 1 states in the subset automaton, however, in this
case we will use 3 c−→ {0, 1, 2, 3} instead of 3 c−→ {4}, and the inequivalence still
will be guaranteed. In such a way, using Lemma 2, we can define a five-state nfa
B5,17+m that needs 17+m deterministic states for each m with 1 � m � 15. ��

Let us now generalize the above example. Our first aim is to define a ternary
k-state nondeterministic automaton Bk,β that needs β deterministic states, for
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each β greater than 2k−1. We will use these automata later in our constructions
to get the whole range of complexities from n to 2n.

To this aim define a ternary k-state nfa Ak = (Qk, {a, b, c}, δ, k − 1, {k − 1}),
where Qk = {0, 1, . . . , k − 1}, and for each i in Qk,

δ(i, a) =
{
{i + 1}, if 0 � i � k − 2,
{k − 1}, if i = k − 1,

δ(i, b) =
{
{0, i + 1}, if 0 � i � k − 2,
{0, k − 1}, if i = k − 1,

δ(i, c) =
{
{k − 1}, if i = k − 2,
∅, if i �= k − 2,

that is, on inputs a and b, each state i goes to state i + 1 except for state k − 1
which goes to itself. Moreover, on symbol b, each state also goes to state 0.
Transitions on input c are defined only in state k − 2, which goes to state k − 1
on c. The automaton Ak is depicted in Fig. 3.

...a,b a,b a,b a,b a,b
c

b a,b

0 1 2b
b

bb

k−1k−2

Fig. 3. The nondeterministic finite automaton Ak

Let A′
k = (2Qk , {a, b, c}, δ′, {k−1}, F ′) be the subset automaton corresponding

to the nfa Ak. Recall that the subset automaton contains all 2k states, some of
which are unreachable. Since the initial state k−1 of the nfa Ak goes to itself on
symbols a and b, and the only transition on c goes to state k − 1, all nonempty
subsets of Qk that do not contain state k − 1 are unreachable in the dfa A′

k. On
the other hand, let us show that all the other subsets are reachable.

Lemma 3. All subsets of Qk containing state k − 1 are reachable in the subset
automaton A′

k from the initial state k − 1 via a string over the binary alphabet
{a, b}. The empty set is reachable as well.

Proof. The empty set is reachable since transitions on c are not defined in
state k − 1. We prove by induction on the size of subsets that each subset
containing state k − 1 is reachable. The singleton {k − 1} is reachable since
it is the initial state of the subset automaton A′

k. Let 1 � t � k − 1 and
assume that each subset of size t containing state k − 1 is reachable via a
string over {a, b}. Let {i1, i2, . . . , it, k − 1} be a subset of size t + 1 such that
0 � i1 < i2 < · · · < it < k − 1. Then we have

{i1, i2, . . . , it, k − 1} = δ′({i2 − i1 − 1, i3 − i1 − 1, . . . , it − i1 − 1, k − 1}, bai1),
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where the latter set of size t is reachable via a string over {a, b} by the induction
hypothesis. Hence the subset {i1, i2, . . . , it, k − 1} is reachable, which completes
our proof. ��

If we look at the dfa A′
5 in our Example 1, see Fig. 2, like at a tree rooted in

state {0}, then all (accepting) states in the bottom row can be reached from the
initial state {4} by a string over {a, b}, and the empty set can be reached from
state {4} by c. Hence the dfa has 17 reachable states.

In a general case, the subset automaton A′
k has 2k−1 + 1 reachable states.

We now continue our constructions by adding new transitions on input c to get
nfa’s whose corresponding subset automata would have more reachable states.
As a result we will be able to construct an nfa requiring β deterministic states
for each β between 2k−1 + 1 and 2k.

To this aim consider states {1}, {1, 2}, {1, 2, 3}, . . . {1, 2, . . . , k−2} of the sub-
set automaton A′

k. Notice that {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ · · · ⊂ {1, 2, . . . , k − 2},
which is an important property that will be crucial in the proof of our main
result. Consider also subsets not containing state k−1 that can be reached from
these states via strings over {a, b}, and let us introduce some notation.

Let 1 � r � k − 2. Let

R0,0 = {R ⊆ {0, 1, . . . , k − 2} | R = δ′({0}, w) for some w in {a, b}∗},

R0,r = {R ⊆ {0, 1, . . . , k − 2} | R = δ′({0, 1, 2, . . . , r}, w) for some w in {a, b}∗},

R1,r = {R ⊆ {0, 1, . . . , k − 2} | R = δ′({1, 2, 3, . . . , r}, w) for some w in {a, b}∗},

that is, R0,0, R0,r, and R1,r are the systems of subsets that do not contain state
k − 1 and can be reached via strings over {a, b} from states {0}, {0, 1, 2, . . . , r},
and {1, 2, 3, . . . , r}, respectively. In our Example 1, see Fig. 2, we have
R1,2 =

{
{1, 2}, {0, 1, 2}, {2, 3}

}
and R0,3 =

{
{0, 1, 2, 3}

}
. We can see that in

this example, the systems R1,1, R1,2, and R1,3 are pairwise disjoint and contain
23 − 1, 22 − 1 and 21 − 1 states, respectively. Let us consider a general case.

Lemma 4. Let 1 � s � r � k − 2 and let R0,0, R0,r, and R1,r be the systems
of states defined above. Then we have:

(i) The size of the system R0,0 is 2k−1 − 1.
(ii) The size of the system R0,r and of the system R1,r is 2k−r−1 − 1.
(iii) The systems R1,s and R0,r are disjoint.
(iv) If s < r, then the systems R1,s and R1,r are disjoint.

Proof. The proof of the lemma proceeds in a similar way as in [14, Lemma 4].
We prove, by induction on �, that the set of states that are reachable from
states {1, 2, . . . , r} and {0, 1, 2, . . . , r} via strings over {a, b} of length �, with
0 � � � k − r − 2, are{

S ∪ {1 + �, 2 + �, . . . , r + �} | S ⊆ {0, 1, . . . , � − 1}
}
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and {
S ∪ {�, 1 + �, . . . , r + �} | S ⊆ {0, 1, . . . , � − 1}

}
,

respectively. Both states go to a state containing k−1 by every string over {a, b}
of length greater than k − r − 2. As a corollary, we get (iii) and (iv). Next, it
follows that

|R1,r| = |R0,r| = 1 + 2 + 4 + · · · + 2k−r−2 = 2k−r−1 − 1,

which proves the lemma. ��

Using the results of the above lemma we are now able to give, for each β between
2k−1 and 2k, a construction of a k-state nfa that needs β deterministic states.

Lemma 5. For all integers k and β such that 2k−1 + 1 � β � 2k, there exists a
minimal ternary k-state nfa Bk,β whose equivalent minimal dfa has β states.

Proof. If β = 2k−1 + 1, we set Bk,β = Ak, where Ak is the nfa defined on
page 305. The nfa is minimal since the set of pairs

A = {(ε, bak−2ca} ∪ {(baj, ak−2−jca) | 0 � j � k − 2}
is a fooling set of size k for the language L(Ak). Next, notice that the empty
string is accepted by the nfa only from state k − 1, while for each state i which
is less than k − 1, the string ak−2−ic is accepted only from state i. This means
that all reachable states of the corresponding subset automaton are pairwise
inequivalent. By Lemma 3, the subset automaton has 2k−1 + 1 reachable states.

If 2k−1 + 1 < β � 2k, then β = 2k−1 + 1 + m for an integer m such that
1 � m � 2k−1 − 1. By Lemma 2, one of the following three cases holds for m:

m = 2k−1 − 1 (1)
m = (2k1 − 1) + (2k2 − 1) + · · · + (2k�−1 − 1) + (2k� − 1) (2)
m = (2k1 − 1) + (2k2 − 1) + · · · + (2k�−1 − 1) + 2 · (2k� − 1) (3)

where 1 � � � k − 2, and k − 2 � k1 > k2 > · · · > k� � 1.
Construct a k-state nfa Bk,β = (Qk, {a, b, c}, δB, k − 1, {k − 1}) from the nfa

Ak by adding transitions on input c depending on m as follows:

• In the case of (1), add the transition on c from state 0 to {0}.
• In the case of (2), add transitions on c from state i−1 to {1, 2, . . . , k−ki−1}

for all i = 1, 2, . . . , �.
• In the case of (3), add the same transitions as in the case of (2), and, more-

over, add also the transition on c from state � to {0, 1, 2, . . . , k − k� − 1}. If
� = k − 2, that is, if m = (2k−2 − 1) + (2k−3 − 1) + · · ·+ 3 + 1 + 1, then the
transition on c from k − 2 to k − 1 is replaced with the transition on c from
k − 2 to {0, 1, . . . , k − 2}.

Notice that in all these cases the set A is a fooling set for the language L(Bk,β),
and so the nfa is minimal.

Next, in all cases, the empty string is accepted only from state k − 1, and for
each state i which is less than k − 1, the string ak−2−ic is accepted only from
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state i, except for the case of m = (2k−2 − 1)+ (2k−3− 1)+ · · ·+3+1+1, when
the string ak−2−ican−2ca is accepted only from state i (notice that in this case,
only state k− 2 goes to state 0 on input c). This means that all reachable states
of the corresponding subset automata are pairwise inequivalent.

Set rj = k − kj − 1 (1 � j � � + 1) and let R denote the system consisting of
the empty set and all subsets of {0, 1, . . . , k − 1} containing state k − 1. Let us
show that the following systems S1, S2, and S3 consist of all reachable subsets
of the subset automaton B′

k,β corresponding to the nfa Bk,β in cases (1), (2),
and (3), respectively (remind that the systems R0,r and R1,r are defined before
Lemma 4 on page 306):

S1 = R∪R0,0,

S2 = R∪R1,r1 ∪R1,r2 ∪ · · · ∪ R1,r�
,

S3 = R∪R1,r1 ∪R1,r2 ∪ · · · ∪ R1,r�
∪R0,r�

.

The empty set is reachable since no transitions on symbol c are defined in the
initial state k − 1. All subsets containing state k − 1 are reachable by Lemma 3.
In the case of (1), state {0, k − 1} goes to state 0 by c, and then all subsets in
R0,0 are reachable from state 0 by strings over {a, b}. In the case of (2), each
state {i− 1, k − 1}, 1 � i � �, goes by c to state {1, 2, . . . , k − ki − 1}, that is to
state {1, 2, . . . , ri}, from which all subsets in R1,ri can be reached by strings over
{a, b}. Similarly, in the case of (3), all subsets in R1,ri , 1 � i � �, are reachable,
and, moreover, in this case, state {�, k− 1} goes to state {0, 1, 2, . . . , r�}, and so
all subsets in R0,r�

are reachable as well.
To show that no other subsets are reachable it is enough to prove that each

set S in the system S1 (S2,S3) goes to a subset in this system by each of the
symbols a, b, c. This is quite straightforward for symbols a and b. In the case
of symbol c, it is important to notice that we have δB(k − 2, c) = {k − 1} or
δB(k − 2, c) = {0, 1, . . . , k − 2}, and δB(0, c) ⊂ δB(1, c) ⊂ · · · ⊂ δB(� − 1, c), and
in the case of (3), also δB(�−1, c) ⊂ δB(�, c). In the other states, transitions on c
are not defined. It follows that for each subset S of Qk, the set δB(S, c) is either
empty, or contains state k − 1, or is equal to δB(j, c) for the greatest integer j
in {0, 1, . . . , � − 1} (in {0, 1, . . . , �}, respectively) that is in S. In all three cases,
the set δ(S, c) is in S1 (S2,S3, respectively).

By Lemma 4, the systems R1,r1 ,R1,r2 , . . . ,R1,r�
, and R0,r�

are pairwise dis-
joint and

|R1,ri | = |R0,ri | = 2k−ri−1 − 1 = 2k−(k−ki−1)−1 − 1 = 2ki − 1.

Hence the subset automaton corresponding to the nfa Bk,β has 1 + 2k−1 + m
reachable and pairwise inequivalent states, and since 1+2k−1+m = β, our proof
is complete. ��

We are now able to prove our main result.

Theorem 1. For all integers n and α with n � α � 2n, there exists a minimal
nondeterministic finite automaton of n states with a three-letter input alphabet
whose equivalent minimal deterministic finite automaton has exactly α states.
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Proof. If α > 2n−1, then take the n-state nfa Bn,α given by Lemma 5. Otherwise,
let us find an integer k, 1 � k � n−1, such that n−(k−1)+2k−1 � α < n−k+2k.
Then

α = n − k + 1 + 2k−1 + m

for some integer m such that 1 � m < 2k−1. Denote β = 1 + 2k−1 + m, hence

α = n − k + β.

Construct an n-state nfa Cn,α from the k-state nfa Bk,β described in the proof
of Lemma 5 in the following way. First, add new states k, k + 1, . . . , n− 1. State
n− 1 will be the initial state, and state k − 1 will be the sole accepting state of
the nfa Cn,α. Add transitions on symbol b from state j to state j + 1 for each
state j which is greater than k−1. Add the transitions on symbols a and c from
state k to itself. The nfa Cn,α for α = n − k + 1 + 2k−1 is shown in Fig. 4.

...a,b a,b a,b a,b a,b
c

b a,b

0 1 2b
b

bb

k−1k−2

... kk+1n−1
b b b

b

a,c

Fig. 4. The nondeterministic finite automaton Cn,n−k+1+2k−1

Notice that the set of pairs of strings{
(bj , bn−k−3−jakcbbak−2ca) | 0 � j � n − k − 3

}
∪{

(bn−k−3akcb, bak−2ca)
}
∪
{
(bn−k−3akcbbai, ak−2−ica) | 0 � i � k − 2

}
is a fooling set of size n for the language L(Cn,α). Hence the nfa Cn,α is minimal.

Consider the corresponding subset automaton C′
n,α. Each of the singletons

{n−1}, {n−2}, . . . , {k−1} is reachable from the initial state {n−1} by a string
in b∗. Then, all β reachable states of the subset automaton B′

k,β are also reachable
in the dfa C′

n,α. Moreover, no other subset of {0, 1, . . . , n−1} is reachable. Hence
the dfa C′

n,α has n− k + β reachable states. Since n− k + β = α, it is enough to
show that no two different reachable states are equivalent. Two different subsets
of {0, 1, . . . , k − 1} can be distinguished by the same string as in the dfa B′

k,β .
If k � i < j � n − 1, then the string bi−k−1 distinguishes states {i} and {j}. If
S is a subset of {0, 1, . . . , k − 1} and k � i � n − 1, then the string bi−kakcb is
accepted from state {i} but not from state S. This concludes our proof. ��
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4 Conclusion

In this paper, we have shown that there are no magic numbers in the ternary
case. We have described a minimal n-state nondeterministic finite automaton
with a three-letter input alphabet that requires α deterministic states for all
integers n and α satisfying that n � α � 2n.

The question of whether there are some magic numbers in the binary case
remains open. However, after investigating the ternary case, we strongly con-
jecture that each value in the range from n to 2n can be reached as the size
of the minimal deterministic finite automaton equivalent to a minimal binary
nondeterministic finite automaton of n-states.
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The Pumping Lemma for Well-Nested Multiple
Context-Free Languages

Makoto Kanazawa�

National Institute of Informatics

Abstract. Seki et al. (1991) proved a rather weak pumping lemma for
multiple context-free languages, which says that any infinite m-multiple
context-free language contains a string that is pumpable at some 2m
substrings. We prove a pumping lemma of the usual universal form for
the subclass consisting of well-nested multiple context-free languages.
This is the same class of languages generated by non-duplicating macro
grammars and by coupled-context-free grammars.

1 Introduction

Call a string z in a language L k-pumpable (in L) if there are strings u0, . . . , uk

and v1, . . . , vk that satisfy the following conditions:

z = u0v1u1v2u2 . . .uk−1vkuk,

v1v2 . . . vk �= ε,

u0v
i
1u1v

i
2u2 . . .uk−1v

i
kuk ∈ L for every i ≥ 0.

In their paper introducing multiple context-free grammars, Seki et al. (1991)
proved a rather weak pumping lemma for multiple context-free languages, which
says that if L is an infinite m-MCFL, then some string in L is 2m-pumpable.
Despite its peculiarly weak existential form, this lemma is quite useful; for ex-
ample, it can be used to show that the language { an

1 . . . an
2m+1 | n ≥ 0 } over the

alphabet {a1, . . . , a2m+1} separates the (m + 1)-MCFLs from m-MCFLs.
As it happens, Seki et al.’s (1991) proof of their lemma was quite complex,

and by some quirk of fate a number of people were led to believe erroneously
that a pumping lemma of the more usual universal form has been established
for MCFLs: if L is an m-MCFL, all but finitely many strings in L are 2m-
pumpable. Radzinski (1991) appealed to it in his attempt to prove that the
language { abk1abk2 . . .abkn | n ≥ 1, k1 > k2 > · · · > kn > 0 } is not an
MCFL.1 As a matter of fact, it remains an open question to this day whether the
universal pumping lemma holds of all m-MCFLs (Kanazawa and Salvati 2007).
� I am grateful to Shoh Yamashita and Makoto Tatsuta for helpful discussions.
1 This language, considered by Radzinski (1991) in connection with the system of

Chinese number names, was shown to be non-semilinear by Michaelis and Kracht
(1997), so Radzinski’s (1991) claim that it is not an MCFL was correct, even though
his appeal to the universal pumping lemma for general MCFLs was not justified.

V. Diekert and D. Nowotka (Eds.): DLT 2009, LNCS 5583, pp. 312–325, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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This question is especially interesting in view of the fact that the class of m-
MCFLs is captured by a large number of different formalisms, including among
many others hyperedge replacement grammars (Engelfriet and Heyker 1991) and
deterministic tree-walking transducers (Weir 1992).

In this paper, we show that a universal pumping lemma holds for the subclass
of MCFLs generated by well-nested multiple context-free grammars. It is not
difficult to prove that well-nested MCFGs are equivalent to coupled-context-
free grammars (Hotz and Pitsch 1996) and to non-duplicating macro grammars
(Fischer 1968).

The principal difficulty in proving a pumping lemma for MCFLs lies in the
fact that pumpability of a derivation tree does not translate into pumpability of
its string yield. Consider a derivation tree that contains inside it a “pump”, i.e.,
a tree whose frontier consists of terminal nodes plus a single node marked by
the same nonterminal as the root. In the case of a CFG, the function of a pump
is to take a string and wrap two strings around it; its contribution to the string
yield of the whole derivation tree is simply insertion of two substrings into the
yield. Iterating the pump i times in the derivation tree results in insertion of i
consecutive copies of those substrings, leading to 2-pumpability. In the case of
an m-MCFG, in contrast, the function of a pump is to take a k-tuple of strings
(k ≤ m) and return another k-tuple. Each component of the original k-tuple
appears somewhere in the resulting k-tuple, but it may move into a different
component. If that happens, the effect of the presence of a pump is not merely
insertion of 2k substrings, but also involves shuffling of the substrings contributed
by the subtree below the pump.

Call a pump of an MCFG an even k-pump if it maps a k-tuple of strings
(x1, . . . , xk) to a k-tuple of the form (v1x1v2, . . . , v2k−1xkv2k). The presence of
an even k-pump inside a derivation tree leads to 2k-pumpability of its string
yield, but it is not generally true, even for well-nested MCFGs, that all but
finitely many derivation trees contain an even pump. Our strategy for proving
the universal pumping lemma for well-nested m-MCFGs is as follows. We show
by a series of transformations that for every well-nested m-MCFG G, the set of
strings that are the yields of derivation trees of G without even m-pumps is the
language of some well-nested (m − 1)-MCFG. Since well-nested 1-MCFGs are
just CFGs, this implies, by induction, that all but finitely many strings in the
language of G are 2m-pumpable.

2 Preliminaries

For m,n ∈ N (the set of natural numbers), we use the notation [m,n] to denote
{ i ∈ N | m ≤ i ≤ n }.

A ranked alphabet is a finite set Δ =
⋃

n∈N
Δ(n) such that Δ(i) ∩Δ(j) = ∅ for

i �= j. The rank of f ∈ Δ is the unique r such that f ∈ Δ(r). The set TΔ of trees
over a ranked alphabet Δ is the smallest set closed under the rule: f ∈ Δ(n)

and T1, . . . , Tn ∈ TΔ imply (fT1 . . .Tn) ∈ TΔ. We also use trees with holes,
which are represented by trees over a ranked alphabet Δ augmented with a set
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Y of variables. The notation TΔ(Y) denotes the set of trees over Δ ∪Y, where
the variables in Y have rank 0. We use expressions like T [y1, . . . ,ym] to denote
trees in TΔ(Y) whose variables are among y1, . . . ,ym, and write T [T1, . . . , Tm]
for the result of substituting T1, . . . , Tm for y1, . . . ,ym in T [y1, . . . ,ym]. A tree
T ∈ TΔ(Y) is a simple tree if each variable in Y occurs in T at most once.

We assume that the reader is familiar with the notion of recognizable set
of trees (see Comon et al. 2007 or Gecseg and Steinby 1997). The family of
recognizable sets is closed under Boolean operations.

3 Multiple Context-Free Grammars

A multiple context-free grammar (Seki et al. 1991) is a context-free grammar on
tuples of strings, and is a special kind of parallel multiple context-free grammar,
which in turn is a special kind of elementary formal system (Smullyan 1961,
Groenink 1997), a logic program on strings. We use the notation of elementary
formal systems, rather than Seki et al.’s (1991), to represent rules of MCFGs.

Let N be a ranked alphabet and Σ be an unranked alphabet. We assume
that we are given a fixed infinite supply X of variables ranging over strings. An
expression of the form B(t1, . . . , tr), where B ∈ N (r) and t1, . . . , tr are strings
over Σ ∪X , is called an atom over N,Σ. A rule over N,Σ is an expression

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn),

where

1. n ≥ 0,
2. B ∈ N (r) and Bi ∈ N (ri) for all i ∈ [1, n],
3. xi,j are pairwise distinct variables in X ,
4. t1, . . . , tr are strings over Σ ∪{ xi,j | i ∈ [1, n], j ∈ [1, ri] } such that each xi,j

occurs at most once in t1 . . . tr.

In a rule

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn),

the atom to the left of :− is called the head of the rule, and the sequence of
atoms to the right of :− is called the body. Each atom in the body is called a
subgoal. The symbol :− is omitted from a rule whose body is empty. Such a rule
is called a terminating rule.

A multiple context-free grammar (MCFG) is a 4-tuple G = (N,Σ, P, S), where

1. N is a ranked alphabet of nonterminals,
2. Σ is an (unranked) alphabet of terminals, disjoint from N ,
3. P is a finite set of rules over N,Σ, and
4. S ∈ N (1).

We say that G is an m-MCFG if the rank of nonterminals does not exceed m.2

2 The rank of a nonterminal is called its dimension by Seki et al. (1991).
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The language of G is L(G) = {w ∈ Σ∗ | "G S(w) }, where "G is defined by
the following inference schema:

"G B1(w1,1, . . . , w1,r1) . . . "G Bn(wn,1, . . . , wn,rn)
"G B(t1, . . . , tr)σ

where wi,j ∈ Σ∗, B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn) is a
rule in P , and σ is the substitution that sends xi,j to wi,j . If G is an m-MCFG,
L(G) is called an m-MCFL.

It is also convenient to extend the definition of "G as follows:

B(x1, . . . , xr) "G B(x1, . . . , xr)
Γ1 "G B1(x1,1, . . . , x1,r1)σ . . . Γn "G Bn(xn,1, . . . , xn,rn)σ

Γ1, . . . , Γn "G B(t1, . . . , tr)σ

In the second schema,B(t1, . . . , tn) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)
is a rule in P , and Γ1, . . . , Γn is a sequence of atoms with no repeated variables.

We call an MCFG G = (N,Σ, P, S) reduced if the following conditions hold
for each nonterminal B ∈ N (r):

– "G B(w1, . . . , wr) for some w1, . . . , wr ∈ Σ∗, and
– B(x1, . . . , xr) "G S(t) for some t ∈ (Σ ∪ {x1, . . . , xr})∗.

The following lemma can be shown by a familiar method:

Lemma 1. For every m-MCFG G = (N,Σ, P, S) such that L(G) �= ∅, there
exists a reduced m-MCFG G′ = (N ′, Σ, P ′, S) such that L(G) = L(G′), N ′ ⊆ N ,
and P ′ ⊆ P .

A rule is non-deleting if it satisfies the strengthened form of the fourth condition
on rules:

4′. t1, . . . , tr are strings over Σ ∪{ xi,j | i ∈ [1, n], j ∈ [1, ri] } such that each xi,j

occurs exactly once in t1 . . . tr.

A non-deleting MCFG is one whose rules are all non-deleting. Non-deleting
(m-)MCFGs are also known as (string-based) (m-)linear context-free rewriting
systems (LCFRSs) (Vijay-Shanker et al. 1987, Weir 1988). It is known that for
every m-MCFG G, there is a non-deleting m-MCFG G′ such that L(G) = L(G′)
(Seki et al. 1991).

We call a rule B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn) non-
permuting if it satisfies the following condition:

– there are no i, j, k such that 1 ≤ i ≤ n, 1 ≤ j < k ≤ ri, and t1 . . . tr ∈
(Σ ∪X)∗xi,k(Σ ∪X)∗xi,j(Σ ∪X)∗.

A non-permuting MCFG is one whose rules are all non-permuting. Non-deleting
non-permuting MCFGs correspond to what Villemonte de la Clergerie (2002a,
2002b) called ordered simple RCG and Kracht (2003) called monotone LCFRSs.
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Theorem 2 (Kracht 2003). For every m-MCFG G, there is a non-deleting
non-permuting m-MCFG G′ such that L(G) = L(G′).

Example 3. The following (non-deleting non-permuting) 2-MCFG generates
resp = { am

1 am
2 bn

1b
n
2a

m
3 am

4 bn
3b

n
4 | m,n ≥ 0 }:

S(x1y1x2y2) :− P (x1, x2), Q(y1, y2).
P (ε, ε). P (a1x1a2, a3x2a4) :− P (x1, x2).
Q(ε, ε). Q(b1y1b2, b3y2b4) :− Q(y1, y2).

We call a rule B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)
well-nested if it is non-deleting and non-permuting and satisfies the following
condition:

– there are no i, j, k, i′, j′, k′ such that 1 ≤ i, i′ ≤ n, i �= i′, 1 ≤ j < k ≤ ri,
1 ≤ j′ < k′ ≤ ri′ , and t1 . . . tr ∈ (Σ ∪X)∗xij(Σ ∪ X)∗xi′j′(Σ ∪X)∗xik(Σ ∪
X)∗xi′k′(Σ ∪X)∗.

We say that an MCFG G is well-nested if every rule of G is well-nested. A well-
nested MCFL is the language of some well-nested MCFG. Note that the grammar
in Example 3 is not well-nested, because the first rule is not well-nested.

Example 4. The following is an example of a well-nested 2-MCFG:

S(x1x2) :− A(x1, x2). A(ε, ε). A(ax1bx2c, d) :− A(x1, x2).

The well-nestedness constraint has been studied by Kuhlmann and Möhl
(2007a, 2007b) in the context of dependency grammars. Well-nested (m-)MCFGs
are essentially the same as coupled-context-free grammars (of rank m) (Hotz and
Pitsch 1996), and it can be shown that they are equivalent to non-duplicating
macro grammars (of rank m− 1) (Fischer 1968).3 It is known that well-nested
2-MCFGs are equivalent to tree-adjoining grammars (Joshi and Schabes 1997).

Although well-nestedness restricts the generative power of m-MCFGs for each
m (Seki and Kato 2008), almost all examples of m-MCFGs that have appeared
in the literature have an equivalent well-nested m′-MCFG for some m′ ≥ m. The
only exception we are aware of is the 3-MCFG Gex given by Michaelis (2009):

3 The equivalence between well-nested MCFGs and coupled-context-free grammars is a
special case of the equivalence between MCFGs and local unordered scattered context
grammars (Rambow and Satta 1999). Seki and Kato (2008) prove that all non-
duplicating macro grammars—which they call variable-linear macro grammars—
have equivalent MCFGs. The MCFGs constructed by their proof are well-nested.

The languages generated by non-duplicating macro grammars are the same as the
yield images of the tree languages generated by linear context-free tree grammars
(Kepser and Mönnich 2006).
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S(x1x2x3) :− B(x1, x2, x3). A(a, a, a). A(b, b, b).
A(x1a, x2a, ax3) :− A(x1, x2, x3). A(x1b, x2b, bx2) :− A(x1, x2, x3).

A(x1y1, y2x2, y3x3) :− B(x1, x2, x3), B(y1, y2, y3).
B(ε, [], ε). B(x1, x2, x3) :− A(x1, x2, x3). B(x1, [x2], x3) :− B(x1, x2, x3).

This non-well-nested 3-MCFG generates the following language:4

L(Gex) = {w1 . . .wnznwn . . . z1w1z0w
R
n . . .wR

1 |
n ≥ 1, wi ∈ {a, b}+ for 1 ≤ i ≤ n, and zn . . . z0 ∈ D∗

{[,]} }.

According to Staudacher (1993), this language is not an indexed language, which
implies that it does not have a non-duplicating macro grammar and hence is not
a well-nested MCFL.

In what follows, we will only consider MCFGs that are non-deleting and
non-permuting. By a “rule”, we will mean a rule that is non-deleting and non-
permuting.

4 Derivation Trees of Multiple Context-Free Grammars

We now give our definition of the notion of a derivation tree for an MCFG
G = (N,Σ, P, S). For this purpose, we view the set P of rules as a ranked
alphabet. A rule π of the form

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

belongs to P (n) (i.e., is treated as a symbol of rank n).
Let Y be a countably infinite set of variables. We use boldface letters y,yi,

to represent variables in Y, to distinguish them from variables in MCFG atoms,
for which we use xi,j , zi,j , yi, etc. We use simple trees in TP (Y) as terms in
statements of the form

Γ "G T : B(t1, . . . , tr),

where Γ is an expression of the form

y1 : C1(z1,1, . . . , z1,r1), . . . ,yp : Cp(zp,1, . . . , zp,rp).

The earlier system for deriving statements of the form Γ "G B(t1, . . . , tr), where
Γ is a sequence of atoms, is now augmented with trees from TP (Y) as follows:

y : B(x1, . . . , xn) "G y : B(x1, . . . , xn)
Γ1 "G T1 : B1(x1,1, . . . , x1,r1)σ . . . Γn "G Tn : Bn(xn,1, . . . , xn,rn

)σ
Γ1, . . . , Γn "G πT1 . . .Tn : B(x1, . . . , xr)σ

4 Here, D∗
{[,]} refers to the (one-sided) Dyck language over a single pair of brackets

[, ].
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In the second schema, π is the rule

B(x1, . . . , xr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn),

and the variables (including boldface ones) in Γ1, . . . , Γn have no repeated
occurrences.

A tree T ∈ TP is called a derivation tree if

"G T : B(w1, . . . , wr)

holds for some B ∈ N and w1, . . . , wr ∈ Σ∗. The nonterminal B is called the
type of T , and the tuple (w1, . . . , wr) is called its yield. Any derivation tree T
has a unique type and a unique yield, for which we write type(T ) and yield(T ),
respectively. A derivation tree is complete if it is of type S. We denote the set of
derivation trees of type B by DB

G . Note that DB
G is a recognizable (in fact, local)

subset of TP .
We call a simple tree T ∈ TP (Y) a non-terminating derivation tree if

Γ "G T : B(t1, . . . , tr)

holds for some Γ,B, t1, . . . , tr. Note that derivation trees are special cases of
non-terminating derivation trees. We call a non-terminating derivation tree T a
derivation tree context if

y : C(y1, . . . , yp) "G T : B(t1, . . . , tr)

holds of some y ∈ Y, C ∈ N (p) and B ∈ N (r).
It is easy to see that if T is a derivation tree and T ′ is a subtree of T , then T ′

is also a derivation tree. The same goes with non-terminating derivation trees.

Lemma 5. If Γ "G T : B(t1, . . . , tr) and y : B(x1, . . . , xr) "G U [y] :
C(u1, . . . , up), then Γ "G U [T ] : C(u1, . . . , up)σ, where σ is the substitution
that sends xi to ti for all i ∈ [1, r].

Lemma 6. Let T be a derivation tree of type B with yield (w1, . . . , wr). Suppose
that T ′ is a subtree of T such that type(T ′) = C and yield(T ′) = (v1, . . . , vp).
Then there is a derivation tree context U [y] and some t1, . . . , tr such that:

T = U [T ′],
y : C(y1, . . . , yp) "G U [y] : B(t1, . . . , tr),

(w1, . . . , wr) = (t1, . . . , tr)σ,

where σ is the substitution that maps yi to vi for i ∈ [1, p].

We call a derivation tree context U [y] a k-pump if U [y] �= y and there exist
B ∈ N (k) and t1, . . . , tk ∈ (Σ ∪ {x1, . . . , xk})∗ such that

y : B(x1, . . . , xk) "G U [y] : B(t1, . . . , tk).
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We say that a derivation tree T contains a k-pump U [y] if T = U ′[U [T ′]] for
some derivation tree T ′ and derivation tree context U ′[y].

A k-pump U [y] is even if there are v1, . . . , v2k ∈ Σ∗ such that

y : B(x1, . . . , xk) "G U [y] : B(v1x1v2, . . . , v2k−1xkv2k),

and it is a proper even k-pump if it moreover holds that

v1 . . . v2k �= ε.

Lemma 7. Let G be an MCFG and T be a complete derivation tree of G with
yield z. If T contains a proper even k-pump, then z is 2k-pumpable in L(G).

Example 4 (continued). Let π1, π2, π3 name the three rules of the grammar G in
Example 4. We have DS

G = {Ti | i ≥ 0 }, where

Ti = π1 (π2 . . . (π2︸ ︷︷ ︸
i times

π3 ) . . . )︸ ︷︷ ︸
i times

,

and

yield(Ti) =

{
ε if i = 0,
ai−1abc(bdc)i−1d if i ≥ 1.

Note that the derivation tree T1 contains an (uneven) 2-pump, but yield(T1) =
abcd is not 4-pumpable. For i ≥ 2, yield(Ti) = ai−1abc(bdc)i−1d is 2-pumpable,
but no matter which 2-pump one picks in Ti, the occurrences of symbols that
come from the 2-pump do not form contiguous substrings of yield(Ti) that can
be repeated.

Lemma 8. Let G = (N,Σ, P, S) be an MCFG. Then the set

{T ∈ DS
G | T contains an even k-pump }

is recognizable.

Let G = (N,Σ, P, S) and G′ = (N ′, Σ, P ′, S′) be m-MCFGs. A mapping
h : N ′ → N is a homomorphism from G′ to G if the following conditions hold:

– h(S′) = S.
– For every B′ ∈ N ′(r), h(B′) ∈ N (r).
– For every π′ ∈ P ′ of the form

B′(t1, . . . , tr) :− B′
1(x1,1, . . . , x1,r1), . . . , B

′
n(xn,1, . . . , xn,rn),

if B = h(B′) and Bi = h(B′
i) for i ∈ [1, n], then

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

is a rule in P . (We refer to this rule as h(π′).)
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Lemma 9. Let G and G′ be MCFGs such that there is a homomorphism from
G′ to G. If G is well-nested, then so is G′.

If h is a homomorphism from G′ to G and T ′ ∈ DB′
G′ , then we write h(T ′) for the

result of replacing occurrences of each rule π′ in T ′ by h(π′). Note that h(T ′)
must be a derivation tree in Dh(B′)

G that has the same yield as T ′.

Lemma 10. Let G = (N,Σ, P, S) be an m-MCFG. If K is a non-empty rec-
ognizable subset of DS

G, then there are an m-MCFG G′ = (N ′, Σ, P ′, S′) and a
homomorphism h from G′ to G such that

1. K = { h(T ′) | T ∈ DS′
G′ }.

2. If G is reduced, then G′ is reduced.

5 Unfolding

Let G = (N,Σ, P, S) be an m-MCFG. A rule

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

over N,Σ is a derivable rule of G if it holds that

B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn) "G B(t1, . . . , tr).

We call an MCFG G′ = (N ′, Σ, P ′, S′) conservative over G = (N,Σ, P, S) if
N ′ ⊆ N , S′ = S, and every rule in P ′ is a derivable rule of G. Clearly, “is
conservative over” is a transitive relation.

Lemma 11. Let G and G′ be MCFGs such that G′ is conservative over G.

1. If G is well-nested, then so is G′.
2. If G′ has an even m-pump, so does G.

Let π, π′ denote the following two rules:

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)
C(u1, . . . , us) :− C1(y1,1, . . . , y1,s1), . . . , Cp(yp,1, . . . , yp,sp),

where Bi = C (which implies ri = s). Then we denote by π ◦i π
′ the rule

B(t1, . . . , tr)σ :− B1(x1,1, . . . , x1,r1), . . . , Bi−1(xi−1,1, . . . , xi−1,ri−1),
C1(y1,1, . . . , y1,s1), . . . , Cp(yp,1, . . . , yp,sp),
Bi+1(xi+1,1, . . . , xi+1,ri+1), . . . , Bn(xn,1, . . . , xn,rn),

where σ is the substitution that sends xi,j to uj. Note that if π and π′ are rules
of an MCFG G, then π ◦i π

′ is a derivable rule of G.
Let G = (N,Σ, P, S) be an MCFG. Let π ∈ P be as above, and let π1, . . . , πk

be all the rules in P that have Bi in their head. The result of unfolding π
in G (at the i-th subgoal) is defined to be G′ = (N,Σ, P ′, S), where P ′ =
(P − {π}) ∪ { π ◦i πj | j ∈ [1, k] }. Clearly, G′ is conservative over G. The
following is familiar from logic programming (Tamaki and Sato 1984):

Lemma 12. Let G = (N,Σ, P, S) be an MCFG and π be a rule in P . If G′ is
the result of unfolding π in G at some subgoal, then L(G) = L(G′).
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6 Proof of the Main Theorem

We call a rule B(t1, . . . , tm) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn) of an
m-MCFG m-proper if there exists an i ∈ [1, n] such that ri = m and for all
j ∈ [1,m],

tj ∈ (Σ ∪X)∗xi,j(Σ ∪X)∗.

In this case we call this rule m-proper on the i-th subgoal.

Lemma 13. Let G be an m-MCFG that has no even m-pump. Then there is
an m-MCFG G′ that satisfies the following conditions:

– G′ is conservative over G,
– G′ has no m-proper rules, and
– L(G) = L(G′).

Proof. The desired grammar G′ may be obtained from G by repeatedly unfolding
m-proper rules. We omit the details. ��

Lemma 14. Let m ≥ 2 and let G be a well-nested m-MCFG without m-proper
rules. Then there is a well-nested (m− 1)-MCFG G′ such that L(G) = L(G′).

Proof. Define the m-degree of a rule to be the number of subgoals whose nonter-
minal is of rank m if the nonterminal in the head is of rank m, and 0 otherwise.
We repeatedly apply the following transformation to eliminate from G rules that
have m-degree > 0. Pick a rule π with m-degree > 0, if there is one. Modulo the
order of the subgoals, π is of the following form:

B(t1, . . . , tm) :− C(y1, . . . , ym), B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn).

Let f : {1, . . . ,m} → {1, . . . ,m} be the function such that yi occurs in tf(i) for
all i ∈ [1,m]. Since π is not m-proper, at least one of the following possibilities
must obtain:

Case 1. Either 1 < f(1) or f(m) < m. Suppose tf(1) = uy1v and tf(m) = u′ymv′.
Since π is well-nested,

B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

can be partitioned into Γ1, Γ2 so that xi,j occurs in

t1 . . . tf(1)−1uv
′tf(m)+1 . . . tm

if and only if Bi(xi,1, . . . , xi,ri) is in Γ1. Let p = f(m) − f(1) + 1, and let D be
a new nonterminal of rank p. Note p < m.
Case 1a. f(1) < f(m). We replace π by the following two well-nested rules:

B(t1, . . . , tf(1)−1, uz1, z2, . . . , zp−1, zpv
′, tf(m)+1, . . . , tm) :− Γ1, D(z1, . . . , zp).

D(y1v, tf(1)+1, . . . , tf(m)−1, u
′ym) :− C(y1, . . . , ym), Γ2.
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Case 1b. f(1) = f(m). Then tf(1) = tf(m) = uy1wymv′ for some w. We replace
π by the following two well-nested rules:

B(t1, . . . , tf(1)−1, uz1v
′, tf(m)+1, . . . , tm) :− Γ1, D(z1).

D(y1wym) :− C(y1, . . . , ym), Γ2.

Case 2. There is a k ∈ [1,m − 1] such that f(k + 1) − f(k) > 1. Suppose
tf(k) = uykv and tf(k+1) = u′yk+1v

′. Since π is well-nested,

B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

can be partitioned into Γ1, Γ2 so that xi,j occurs in

vtf(k)+1 . . . tf(k+1)−1u
′

if and only if Bi(xi,1, . . . , xi,ri) is in Γ1. Let p = f(k)+(m−f(k+1)+1), and let
D be a new nonterminal of rank p. Note p < m. We replace π by the following
two well-nested rules:

B(z1, . . . , zf(k)−1, zf(k)v, tf(k)+1, . . . , tf(k+1)−1, u
′zf(k)+1, zf(k)+2, . . . , zp)

:− D(z1, . . . , zp), Γ1.

D(t1, . . . , tf(k)−1, uyk, yk+1v
′, tf(k+1)+1, . . . , tm) :− C(y1, . . . , ym), Γ2.

In all cases, π is replaced by two new rules, and the m-degree of the first
rule is less than that of π and the m-degree of the second rule is 0 (since the
rank of D is p < m), so the transformation reduces the sum of the m-degrees
of the rules. It is also clear that the first rule is not m-proper, so the grammar
continues to be without m-proper rules. The generated language remains the
same because the original grammar can be obtained from the new grammar by
unfolding (Lemma 12).

The process of repeatedly applying this transformation must terminate af-
ter a finite number of steps, and every rule in the final grammar has rank m
nonterminals only in the head or only in the body (if any).

We can now eliminate all occurrences of rank m nonterminals in rule bodies
by unfolding. If a rule π has a rank m nonterminal C in the i-th subgoal, we
unfold π at that subgoal. Since any rule π′ that has C in the head has no rank
m nonterminal in the body, π ◦i π

′ has one fewer rank m nonterminals in the
body than π does. Thus, we can repeatedly apply this transformation, which
will terminate in a finite number of steps.

After this procedure, rank m nonterminals become useless, and we can simply
delete rules with rankm nonterminals in the head to obtain an (m−1)-MCFG. ��
Example 4 (continued). Applying the procedure of Lemma 14 to the grammar
G in Example 4 gives the following 1-MCFG:

S(ε). S(azcd) :− D(z). D(b). D(azcbd) :− D(z).

Theorem 15. Let m ≥ 1. For every well-nested m-MCFG G, all but finitely
many strings z ∈ L(G) are 2m-pumpable in L(G).
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Proof. Induction on m. The case m = 1 is just the pumping lemma for context-
free languages. Let m ≥ 2 and assume that the theorem holds for m− 1.

Let G = (N,Σ, P, S) be a well-nested m-MCFG. Without loss of generality,
we can assume that G is reduced. Let

K = {T ∈ DS
G | T does not contain an even m-pump }.

By Lemma 8, K is a recognizable subset of DS
G. By Lemma 10, there is a re-

duced well-nested m-MCFG G′ = (N ′, Σ, P ′, S′) such that L(G′) = {w ∈ Σ∗ |
"G T : S(w) for some T ∈ K } and no derivation tree in DS′

G′ contains an even m-
pump. Since G′ is reduced, it follows that G′ has no even m-pump. By Lemmas 13
and 14, there is a well-nested (m− 1)-MCFG G′′ such that L(G′) = L(G′′). By
induction hypothesis, there is a number p such that all strings z in L(G′′) with
|z| ≥ p are 2(m− 1)-pumpable.

Now assume z ∈ L(G) and |z| ≥ p. We show that z is 2m-pumpable. If
z ∈ L(G′′), then z is 2(m − 1)-pumpable, so a fortiori z is 2m-pumpable. Now
suppose z �∈ L(G′′) and consider a smallest complete derivation tree T of G with
yield z. Since z �∈ L(G′′), T contains an even m-pump U [y]:

T = U ′[U [T ′]].

Because of the minimality of T , the even m-pump U [y] must be proper (otherwise
U ′[T ′] is a smaller complete derivation tree for z). By Lemma 7, we conclude
that z is 2m-pumpable. ��

Example 16. Let D∗
{a,ā} be the Dyck language over {a, ā} generated by the fol-

lowing context-free grammar:

S → ε | TS T → aSā

Define Shuffle3(L1, L2, L3) to be

{ u1v1w1 . . .unvnwn | n ≥ 1, u1 . . .un ∈ L1, v1 . . . vn ∈ L2, w1 . . .wn ∈ L3 },

and consider the language L = Shuffle3(D∗
{a,ā}, D

∗
{b,b̄}, D

∗
{c,c̄}). Note that L is

semiliniear and satisfies Seki et al.’s pumping condition for 3-MCFLs. We do
not know whether L is a 3-MCFL, but we can use Theorem 15 to show that L
is not a well-nested 3-MCFL. Suppose that L is a well-nested 3-MCFL. Let

K = L ∩ a∗(āb)∗(b̄c)∗(c̄a)∗(āb)∗(b̄c)∗c̄∗

= { ai(āb)j(b̄c)k(c̄a)l(āb)m(b̄c)nc̄q |
i ≥ j ≥ k ≥ l ≤ m ≤ n ≤ q = i and i + l = j + m = k + n }.

From known facts about equivalent formalisms (Fischer 1968, Kepser and
Mönnich 2006, Seki and Kato 2008), the class of well-nested m-MCFLs is closed
under intersection with regular sets, so K must be a well-nested 3-MCFL. Note
that K still satisfies Seki et al.’s pumping condition for 3-MCFLs, and is also
semilinear. By Theorem 15, there is a number p such that all strings in K of
length ≥ p are 6-pumpable. Take

w = ap(āb)p(b̄c)p(c̄a)p(āb)p(b̄c)pc̄p ∈ K,
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which must have six substrings that can be pumped up and down. It is not hard
to see that each of the six substrings must lie entirely inside one of the seven
intervals [pi + 1, p(i + 1)] consisting of the (pi + 1)-th through the p(i + 1)-th
symbols of w (i = 0, . . . , 6), and yet each of the seven intervals must contain one
of the six substrings, a contradiction.

7 Conclusion

We have proved a pumping lemma for well-nested m-MCFGs, which, unlike Seki
et al.’s (1991) pumping lemma for general MCFGs, has the usual universal form.
The special case of this for m = 2 is already known (Palis and Shende 1995), but
the result is new for m ≥ 3. The only place in our proof where well-nestedness is
used is Lemma 14. While it is an open question whether this lemma holds of m-
MCFGs in general, it is easy to see that it holds of (not necessarily well-nested)
2-MCFGs. Thus we have

Theorem 17. For every 2-MCFG G, all but finitely many strings z ∈ L(G)
are 4-pumpable in L(G).
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Villemonte de la Clergerie, É.: Parsing MCS languages with thread automata. In:
Proceedings of the Sixth International Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+6), pp. 101–108 (2002a)

Villemonte de la Clergerie, É.: Parsing mildly context-sensitive languages with
thread automata. In: Proceedings of the 19th International Conference on
Computational Linguistics, pp. 1–7 (2002b)

Weir, D.: Linear context-free rewriting systems and deterministic tree-walking
transducers. In: Proceedings of the 30th Annual Meeting of the Association
for Computational Linguistics, pp. 136–143 (1992)

Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms.
Ph.D. thesis, University of Pennsylvania (1988)



The Support of a Recognizable Series over a
Zero-Sum Free, Commutative Semiring Is

Recognizable

Daniel Kirsten

University Leipzig, Institute for Computer Science,
Postfach 10 09 20, 04009 Leipzig, Germany
www.informatik.uni-leipzig.de/~kirsten/

Abstract. We show that the support of a recognizable series over a
zero-sum free, commutative semiring is a recognizable language. We also
give a sufficient and necessary condition for the existence of an effective
transformation of a weighted automaton recognizing a series S over a
zero-sum free, commutative semiring into an automaton recognizing the
support of S.

1 Introduction

One stream in the rich theory of formal power series deals with connections to
formal languages. To each formal power series, one associates a certain language,
called the support, which consists of all words which are not mapped to zero.

It is well-known that the support of some recognizable series is not always a
recognizable language. However, for large classes of semirings, it is known that
the support of a recognizable series is always recognizable, see [3, 8] for recent
overviews. These classes include all positive semirings (semirings which are both
zero-divisor free and zero-sum free), all finite, and more generally, all locally
finite semirings.

Wang introduced the notion of a quasi-positive semiring (that is, for every
k ∈ K \ {0}, � ∈ K, n ∈ N, it holds kn + � �= 0), and showed that the support of
some recognizable series over a commutative, quasi-positive semiring is always
a recognizable language [10]. Every quasi-positive semiring is zero-sum free by
definition.

In the present paper, we generalize Wang’s result to all zero-sum free, com-
mutative semirings. The proof relies on Dickson’s lemma.

Further, we examine under which assumptions we can effectively transform a
weighted automaton recognizing some series S over a zero-sum free, commutative
semiring into an automaton recognizing the support of S. For this, we introduce
the zero generation problem (see Section 3) and show that the decidability of the
zero generation problem is a sufficient and necessary condition for the existence of
such a transformation. Surprisingly, the computability of the semiring operations
is not related to the effectivity of the transformation.
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The paper is organized as follows: In Section 2, we deal with some prelimi-
naries. In Section 3, we present known results and the contribution of the paper.
To keep Section 3 as a succinct survey, the main proofs are shifted to Section 4.

2 Preliminaries

2.1 Notations

Let N = {0, 1, . . .}.
Let n ∈ N. Given some tuple x̄ ∈ Nn, we denote by xi the i-th component

of x̄ for i ∈ {1, . . . , n}. Given two tuples x̄, ȳ ∈ Nn, we denote x̄ ≤ ȳ if xi ≤ yi

for every i ∈ {1, . . . , n}. If x̄ ≤ ȳ and xi < yi for some i ∈ {1, . . . , n}, then we
denote x̄ < ȳ.

Given some subset M ⊆ Nn, we denote by Min(M) the set of all minimal tuples
of M , that is, Min(M) = {x̄ ∈ M | for every ȳ ∈ M, ȳ ≤ x̄ implies x̄ = ȳ}.

The following lemma is well-known in combinatorics, order theory, and com-
mutative algebra, see e.g. [5],

Lemma 1 (Dickson’s lemma). For every M ⊆ Nn, the set Min(M) is finite.

Given some x̄ ∈ Nn and some z ∈ N, we denote by (x̄)z the tuple defined by(
(x̄)z

)
i
= min{xi, z} for every i ∈ {1, . . . , n}.

Let Σ be some finite alphabet. We denote the empty word by ε. We denote
by |w| the length of some word w ∈ Σ∗. For every w ∈ Σ∗, a ∈ Σ, let |w|a be
the number of occurrences of the letter a in w.

A monoid (M, ·, 1) consists of a set M together with a binary associative
operation · and an identity 1.

We call some monoid (M, ·, 1) commutative if k� = �k for every k, � ∈ M.
We call some 0 ∈ M a zero, if k0 = 0k = 0 for every k ∈ M.
Given some monoid M, some m ∈ N, and s1, . . . , sm ∈ M, we denote by

〈s1, . . . , sm〉 the submonoid of M generated by s1, . . . , sm, that is, the smallest
monoid M′ ⊆ M satisfying s1, . . . , sm ∈ M′.

A semiring (K,+, ·, 0, 1) consists of a set K together with two binary opera-
tions + and · such that (K,+, 0) is a commutative monoid, (K, ·, 1) is a monoid
with zero 0, and (K, ·, 1) distributes over (K,+, 0).

We call some semiring (K,+, ·, 0, 1) commutative if (K, ·, 1) is a commutative
monoid.

We call K zero-divisor free if for every k, � ∈ K \ {0}, we have k� �= 0. We call
K zero-sum free if for every k, � ∈ K \ {0}, we have k + � �= 0. Semirings which
are zero-divisor free and zero-sum free are called positive semirings.

2.2 Weighted Finite Automata

We recall some notions on (weighted) automata and recommend [1, 2, 6, 4, 7, 9]
for overviews.

Let (K,+, ·, 0, 1) be a semiring. Mappings from Σ∗ to K are often called series.
We denote the class of all series from Σ∗ to K by K〈〈Σ∗〉〉.
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A weighted finite automaton (for short WFA) over K is a tuple [Q,E, λ, &],
where

– Q is a non-empty, finite set of states,
– E is a finite subset of Q×Σ × K ×Q, and
– λ, & : Q → K.

We call the tuples in E transitions. For every q ∈ Q, we call λ(q) resp. &(q)
the initial weight resp. accepting weight of q. We call states q ∈ Q which satisfy
λ(q) �= 0 (resp. &(q) �= 0) initial (resp. accepting) states.

Let A = [Q,E, λ, &] be a WFA. Let n ≥ 1. A path π of length n is a sequence

(q0, a1, s1, q1) (q1, a2, s2, q2) . . . (qn−1, an, sn, qn)

of transitions in E. We call the word a1 . . . an the label of π. We define σ(π) =
λ(q0) · s1 · s2 · · · · · sn · &(qn), the weight of π. For every state q ∈ Q, we assume
some path from q to q which is labeled with ε and weighted with 1.

For every p, q ∈ Q and every w ∈ Σ∗, we denote by p
w� q the set of all paths

with label w which start at p and end at q. Then, A defines a series |A| : Σ∗ → K
by

|A|(w) =
∑

p,q∈Q, π ∈ p
w� q

σ(π)

for every w ∈ Σ∗.
We call some series S : Σ∗ → K recognizable if S = |A| for some WFA A.
We define the support of some series S : Σ∗ → K as

supp(S) = {w ∈ Σ∗ |S(w) �= 0}.

An (unweighted) automaton is a tuple A = [Q,E, I, F ], where Q is a finite
set, E ⊆ Q×Σ ×Q, I ⊆ Q, and F ⊆ Q.

Let A = [Q,E, λ, &] be an automaton. Let n ≥ 1. A path π of length n is a
sequence

(q0, a1, q1) (q1, a2, q2) . . . (qn−1, an, qn)

of transitions in E. As above, we call a1 . . . an the label of π. We call π successful,
if q0 ∈ I and qn ∈ F . We denote by L(A) the language of A, that is, the language
consisting of all labels of successful paths.

3 Overview and Main Results

The supports of recognizable series are well-studied objects, see [3, 8] for recent
overviews.

It is well known that there are recognizable series S such that supp(S) is not
a recognizable language. A folklore example is the series S over the semiring of
the rational numbers (Q,+, ·, 0, 1) defined by S(w) = 2|w|a0.5|w|b − 0.5|w|a2|w|b.
For every w ∈ Σ∗, we have S(w) = 0 iff |w|a = |w|b. Hence,

supp(S) =
{
w ∈ Σ∗ ∣∣ |w|a �= |w|b

}
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which is not a recognizable language. Nevertheless, S is a recognizable series:
just consider the WFA, below.

1 21 1

a, 2 b, 0.5

−1 1

a, 0.5 b, 2

However, for a large class of semirings, the support of a recognizable series
is always a recognizable language. It is well known that this class includes all
positive semirings and all (locally) finite semirings [3, 8].

Moreover, Wang [10] defined the notion of a quasi-positive semiring: some
semiring K is called quasi-positive if for every k ∈ K\ {0}, � ∈ K, n ∈ N, it holds
kn + � �= 0. Every positive semiring is quasi-positive, and every quasi-positive
semiring is zero-sum free. However, there are zero-sum free semirings which are
not quasi-positive, e.g., matrices over (Q+,+, ·, 0, 1), and there are quasi-positive
semirings which are not positive, e.g., direct products of positive semirings [10].

Wang showed that for every recognizable series S over some commutative,
quasi-positive semiring, supp(S) is recognizable [10].

In the present paper, we generalize Wang’s result to all commutative, zero-
sum free semirings.

Further, we examine under which assumptions we can effectively construct
an automaton recognizing supp(S) from a WFA recognizing S. Surprisingly, the
computability of + or · is not related to the effectivity of the construction.
To achieve an effective construction, we introduce the zero generation problem
(for short ZGP):

Let M be some monoid with a zero. An instance of the ZGP consists of
two integers m,m′ ∈ N and s1, . . . , sm, s′1, . . . , s

′
m′ ∈ M. The ZGP means to

decide whether 0 ∈ s1 · · · sm · 〈s′1, . . . , s′m′〉, i.e., whether there exists some s ∈
〈s′1, . . . , s′m′〉 such that the product s1 · · · sm·s yields zero. The presentation of the
ZGP seems to be circumstantial, but we want to avoid using the computability
of the product in M.

We can show that the decidability of the ZGP of the monoid (K, ·, 1) is a
sufficient and necessary condition for the effectivity of the construction of the
automaton recognizing the support of some recognizable series.

To sum up:

Theorem 1. Let Σ be an alphabet and (K,+, ·, 0, 1) be a zero-sum free, com-
mutative semiring.

1. For every recognizable series S ∈ K〈〈Σ∗〉〉, supp(S) is a recognizable language.
2. Assume |Σ| ≥ 2. Given some WFA A over K, we can effectively construct

an automaton which recognizes supp(|A|) iff (K, ·, 1) has a decidable ZGP.

Clearly, the construction in (2) is also effective for |Σ| = 1. But if |Σ| = 1 we
cannot show that the decidability of the ZGP is a necessary condition.
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4 The Main Proof

4.1 Dickson’s Lemma and Computability

Throughout this section, let (M, ·, 1) be some commutative monoid with a zero
0 and let C = (c1, . . . , cn) ∈ Mn. We denote by � � : (Nn,+, (0, . . . , 0)) →
(M, ·, 1) the homomorphism defined by �x̄� = cx1

1 · · · cxn
n for every tuple x̄ =

(x1, . . . , xn) ∈ Nn.
We are interested in the set of all x̄ ∈ Nn satisfying �x̄� = 0, i.e., we are

interested in the set �0�−1.
Given some x̄ ∈ �0�−1 and some ȳ ∈ Nn satisfying x̄ ≤ ȳ, we have ȳ ∈ �0�−1.
By Lemma 1, the set Min(�0�−1) is finite. We denote by dg(C) the least non-

negative integer such that Min(�0�−1) is a subset of {0, . . . , dg(C)}n.

Lemma 2. For every x̄ ∈ Nn, we have �x̄� = 0 iff
�
(x̄)dg(C)

�
= 0.

Proof. We have “⇐”, since (x̄)dg(C) ≤ x̄.
We show “⇒”. Since x̄ ∈ �0�−1, there is some ȳ ∈ Min(�0�−1) satisfying ȳ ≤ x̄.

Let i ∈ {1, . . . , n}. If xi ≤ dg(C), then yi ≤ xi = ((x̄)dg(C))i. If xi > dg(C), then
yi ≤ dg(C) = ((x̄)dg(C))i by the definitions of dg(C) and (x̄)dg(C). Consequently,
ȳ ≤ (x̄)dg(C), and hence, (x̄)dg(C) ∈ �0�−1.

For the effectivity of our construction of the support automaton, it is very
important to compute dg(C) from a given tuple C. Assume that the ZGP is
decidable.

Given some m ≥ 1 and s1, . . . , sm ∈ M, we can decide whether s1 · · · sm = 0
by setting m′ = 1, s′1 = 1 and applying the algorithm for the ZGP.

Given some m′ ∈ N and s′1, . . . , s
′
m ∈ M, we can decide whether 0 ∈

〈s′1, . . . , s′m′〉 by setting m = 0 and applying the algorithm for the ZGP.

Lemma 3. If the ZGP is decidable in M, then we can effectively compute dg(C)
from C.

Proof. It suffices to show that for given n ∈ N, C = (c1, . . . , cn) ∈ Mn, and
z ∈ N, we can decide whether z < dg(C). The algorithm can then check for
increasing z ∈ {0, 1, 2, . . .} whether z < dg(C), and put out the least z which
does not satisfy z < dg(C).

So assume n,C, z as above. We want to show that z < dg(C) iff there exists
a tuple x̄ ∈ {0, . . . , z}n which satisfies the following properties:

1. We have xi = z for some i ∈ {1, . . . , n}.
2. We have �x̄� �= 0. Given C and x̄, it is decidable whether �x̄� �= 0 by the

decidability of the ZGP.
3. There is some ȳ ∈ Nn such that x̄ = (ȳ)z and �ȳ� = 0.

Given C and x̄, this condition is decidable as follows: Let m =
∑n

i=1 xi. Let
s1, . . . , sm be the list over M constructed by putting x1 times c1, x2 times
c2, . . . , and xn times cn. We have s1 · · · sm = �x̄�.
Let m′ ≥ 1 and s′1, . . . , s′m′ ∈ M be a list of the ci’s for the i ∈ {1, . . . , n}
satisfying xi = z.



The Support of a Recognizable Series over a Zero-Sum Free 331

Clearly, there exists some ȳ ∈ Nn such that ȳ = (x̄)z and �ȳ� = 0 iff
0 ∈ s1 · · · sm · 〈s′1, . . . , s′m′〉. The latter condition is decidable.

Assume z < dg(C). Choose some ȳ ∈ Min
(�0�−1

)
such that at least one entry

of ȳ equals dg(C). Let x̄ = (ȳ)z. It is easy to verify that x̄ satisfies (1) and (3),
above. Moreover, x̄ satisfies (2), since ȳ is chosen from Min

(�0�−1
)

and x̄ < ȳ.
Assume z ≥ dg(C). Let x̄, ȳ ∈ Nn such that (1) and (3) are satisfied. From

Lemma 2, it follows �(ȳ)dg(C)� = 0. Since dg(C) ≤ z, we have (ȳ)dg(C) ≤ (ȳ)z =
x̄, and hence, �x̄� = 0, i.e., x̄ does not satisfy (2).

An algorithm to decide whether z < dg(C) can check by brute force whether
there is some x̄ ∈ {0, . . . , z}n which satisfies (1), (2), and (3).

4.2 The Construction of a Support Automaton

Proof (Theorem 1). In the first part of the proof we prove (1) and “⇐” in (2).
Let S be the series computed by some WFA A = [Q,E, λ, &].
Let n ∈ N and C = (c1, . . . , cn) ∈ Kn such that

– for every (p, a, s, q) ∈ E, there is exactly one i ∈ {1, . . . , n} satisfying ci = s.
– for every q ∈ Q, there is exactly one i ∈ {1, . . . , n} satisfying λ(q) = ci, and

there is exactly one i ∈ {1, . . . , n} satisfying &(q) = ci.

We further assume that for every i ∈ {1, . . . , n}, ci occurs in A as a weight of
some transition or as some initial or accepting weight.

If the ZGP is decidable, we can effectively compute dg(C) by Lemma 3.
We construct an (unweighted) automaton As. The states of As are tuples

Qs = {0, . . . , dg(C)}n ×Q.
Some state (x̄, q) ∈ Qs is an initial state iff there exists some i ∈ {1, . . . , n}

such that

– xi = 1, λ(q) = ci, and
– for every j ∈ {1, . . . , n}, j �= i, we have xj = 0.

Consequently, �x̄� = λ(q).
The reader should be aware that there might exist states (x̄, q) ∈ Qs which are

not initial states although they satisfy the condition �x̄� = λ(q). For example,
if x1 = x2 = 1, x3 = · · · = xn = 0 and c1c2 = λ(q), then (x̄, q) is not an initial
state although �x̄� = λ(q). This restriction is due to the fact that �x̄� = λ(q) is
in general undecidable, even if the ZGP is decidable.

We denote the set of initial states by Is.
We define a partial mapping ⊕ : {0, . . . , dg(C)}n×K ��� {0, . . . , dg(C)}n. Let

x̄ ∈ {0, . . . , dg(C)}n and s ∈ K. We define x̄⊕s iff s occurs in C. So assume that
there is some unique i ∈ {1, . . . , n} such that ci = s. Let ȳ ∈ {0, . . . , dg(C)}n be
defined by

yj =

{
xj + 1 if j = i

xj if j �= i.

We define x̄⊕ s = (ȳ)dg(C).
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The key idea behind ⊕ is that given some m ∈ N, s1, . . . , sm ∈ K, the
operation

(· · · ((x̄ ⊕ s1) ⊕ s2) · · · ⊕ sm)

counts (up to dg(C)) the number of occurrences of the ci’s in the sequence
s1, . . . , sm.

Some state (x̄, q) ∈ Qs is an accepting state iff �x̄ ⊕ &(q)� �= 0. Using the
decidability of the ZGP, we can decide whether (x̄, q) is an accepting state. We
denote the set of accepting states by Fs.

Let (x̄, p), (ȳ, q) ∈ Qs and a ∈ Σ. The triple
(
(x̄, p), a, (ȳ, q)

)
is a transition in

Es iff there exists a transition (p, a, s, q) ∈ E such that x̄ ⊕ s = ȳ. We say that(
(x̄, p), a, (ȳ, q)

)
stems from (p, a, s, q) ∈ E.

Let As = [Qs, Es, Is, Fs]. We want to show L(As) = supp(S).
Let w ∈ L(As). There are (x̄0, q0) ∈ Is, (x̄|w|, q|w|) ∈ Fs, and some path

π ∈ (x̄0, q0)
w� (x̄|w|, q|w|) satisfying

�
x̄|w| ⊕ &(q|w|)

�
�= 0.

We denote the states of π by (x̄0, q0), (x̄1, q1), . . . , (x̄|w|, q|w|).
For j ∈ {1, . . . , |w|}, let tj ∈ E such that the j-th transition of π stems from

tj . Clearly, t1 · · · t|w| ∈ q0
w� q|w| is a path in A.

For every j ∈ {1, . . . , |w|}, let sj ∈ K be the weight of tj . For j ∈ {0, . . . , |w|},
let ȳj ∈ Nn be the tuple such that for every i ∈ {1, . . . , n}, yj,i is the number of
occurrences of ci among λ(q0), s1, . . . , sj . In particular ȳ0 = x̄0.

Let ȳ ∈ Nn such that for every i ∈ {1, . . . , n}, yi is the number of occurrences
of ci among λ(q0), s1, . . . , s|w|, &(q|w|). Clearly, �ȳ� is the weight of the path
t1 · · · t|w|.

By a straightforward inductive argument, we can show that for every j ∈
{0, . . . , |w|}, x̄j = (ȳj)dg(C), and x̄|w| ⊕ &(q|w|) = (ȳ)dg(C).

Since (x̄|w|, q|w|) ∈ Fs, we have
�
x̄|w|⊕&(q|w|)

�
�= 0, and hence,

�
(ȳ)dg(C)

�
�= 0.

By Lemma 2, we have �ȳ� �= 0, i.e., the weight of the path t1 · · · t|w| is different
from 0. Since K is zero-sum-free, we have w ∈ supp(|A|).

Thus, we have shown L(As) ⊆ supp(|A|). To show L(As) ⊇ supp(|A|), we
can proceed in the same way. We assume some w ∈ supp(|A|), some accepting
path t1 . . . t|w| with non-zero weight for w in A, and construct an accepting
path for w in As. For j ∈ {1, . . . , |w|}, denote tj = (qj−1, aj , sj , qj). Let x̄0 =
(0, . . . , 0)⊕λ(q0). For j ∈ {1, . . . , |w|}, let x̄j = x̄j−1⊕sj. We can argue as above
to show that the transitions

(
(x̄i−1, qi−1), aj , (x̄i, qi)

)
form an accepting path for

w in As. To sum up, L(As) = supp(|A|).
We have shown (1) and “⇐” in (2). It remains to show “⇒” in (2).
Assume two integers m,m′ ∈ N and s1, . . . , sm, s′1, . . . , s

′
m′ ∈ M.

Let w1, . . . , wm′ ∈ Σ∗ be mutually distinct, non-empty words of equal length.
We sketch the construction of a WFA A. It has just one initial and one

accepting state. The initial and accepting weights are 1. Let a be some letter
from Σ. There is one path from the initial to the accepting state. This path is
labeled with am. The transition weights along this path are s1, . . . , sm. For every
j ∈ {1, . . . ,m′}, we add a loop at the accepting state which is labeled with wj .
The first transition of the loop is weighted with s′j , the remaining transitions of
the loop are weighted with 1.
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For every n and i1, . . . , in ∈ {1, . . . ,m′}, we have

|A|(amwi1 . . .win) = s1 · · · sm · s′i1 · · · s
′
in

.

Moreover, we have supp(|A|) = am{w1, . . . , wm′}∗ iff 0 /∈ s1 · · · sm · 〈s′1 · · · s′m′〉.
Since we show “⇒” in (2), we can assume an effective construction of an

automaton As which recognizes supp(|A|). Hence, we can decide whether it holds
supp(|A|) = am{w1, . . . , wm′}∗, i.e., we can decide the ZGP.

References

[1] Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner, Stuttgart
(1979)

[2] Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-
graphs on Theoretical Computer Science, vol. 12. Springer, New York (1984)

[3] Berstel, J., Reutenauer, C.: Noncommutative rational series with applications
(prelimary electronic version ) (2009), http://www-igm.univ-mlv.fr/~berstel/

[4] Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Mono-
graphs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2009)

[5] Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer,
Heidelberg (2008)

[6] Kuich, W.: Semirings and formal power series. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, Word, Language, Grammar, vol. 1, pp.
609–677. Springer, Berlin (1997)

[7] Reutenauer, C.: A survey on noncommutative rational series. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 24, 159–169 (1996)

[8] Sakarovitch, J.: Rational and recognisable power series. In: [4], ch. 4 (2009)
[9] Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.

Texts and Monographs on Computer Science. Springer, New York (1978)
[10] Wang, H.: On rational series and rational languages. Theoretical Computer Sci-

ence 205(1-2), 329–336 (1998)

http://www-igm.univ-mlv.fr/~berstel/


A Game-Theoretic Characterization of Boolean
Grammars�

Vassilis Kountouriotis1, Christos Nomikos2, and Panos Rondogiannis1

1 Department of Informatics & Telecommunications
University of Athens, Athens, Greece

{bk,prondo}@di.uoa.gr
2 Department of Computer Science, University of Ioannina,

P.O. Box 1186, 45 110 Ioannina, Greece
cnomikos@cs.uoi.gr

Abstract. We obtain a simple, purely game-theoretic characterization
of Boolean grammars [A. Okhotin, Information and Computation, 194
(2004) 19-48]. In particular, we propose a two-player infinite game of
perfect information for Boolean grammars, which is equivalent to their
well-founded semantics. The game is directly applicable to the simpler
classes of conjunctive and context-free grammars, and it offers a promis-
ing new connection between game theory and formal languages.

1 Introduction

Boolean grammars were recently proposed by A. Okhotin [Okh04] as a general-
ization of context-free grammars. The main characteristic of Boolean grammars
is that they allow conjunction and negation to appear in the right hand sides of
rules. The resulting formalism has proven to be a very expressive one (see for
example [OJ07]), while retaining to a large extent the efficient parsing properties
of context-free grammars.

The theory of Boolean grammars is presently under rapid development. How-
ever, there exist many fundamental questions that still remain unanswered (see
[Okh06] for an exposition of the basic open problems of the field). The area
appears to be a quite intriguing one, since most of the problems remain unan-
swered even for the negation-free class (namely, for the class of conjunctive gram-
mars [Okh01]).

In this paper we contribute to this area of research by providing a simple,
purely game-theoretic characterization of the semantics of this type of grammars.
In particular, we propose a two-player infinite game of perfect information for
Boolean grammars, which is equivalent to their well-founded semantics [KNR06].
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The game we present has been inspired from a recent game-theoretic character-
ization of logic programs with negation [GRW08]. Actually, the present game is
more complicated than the one in [GRW08] since it involves string manipulation
by the two-players. A further contribution of our work is that it gives an alter-
native proof of correctness than the one derived in [GRW08]. More specifically,
the proof in [GRW08] proceeds in two steps: it first establishes the determi-
nacy of the logic programming game by using certain deep results from infinite
game theory (namely, the theory of Borel sets [Mosch80] and Martin’s Borel
Determinacy Theorem [Mar75]); subsequently, based on the determinacy result,
it establishes the equivalence of the game-semantics to the well-founded seman-
tics of logic programs. Our present proof establishes at the same time both the
determinacy of the game and its equivalence to the the well-founded semantics
(avoiding completely the use of Borel sets and Martin’s theorem).

The game characterization we propose has the advantage of being very simple
to understand and present, due to its anthropomorphic flavor. In this respect,
it appears to be easier to use than the corresponding well-founded approach
of [KNR06]. We believe that the new approach will offer more benefits when used
in order to prove the correctness of transformations on Boolean grammars, while
the well-founded approach will be more appropriate for computing (inductively)
the meaning of specific grammars.

The rest of the paper is organized as follows: Section 2 presents preliminary
material. Section 3 gives an informal explanation of the game and motivates it
by examples. Section 4 presents the basic notions regarding infinite games and
gives a precise formalization of the game. Section 5 proves the equivalence of the
game to the well-founded semantics of Boolean grammars. Section 6 contains
pointers to future work.

2 Preliminaries

In [Okh01] and [Okh04] A. Okhotin introduced the classes of conjunctive and
Boolean grammars respectively. Formally:

Definition 1. A Boolean grammar is a quadruple G = (Σ,N, P, S), where Σ
and N are disjoint finite nonempty sets of terminal and nonterminal symbols
respectively, P is a finite set of rules, each of the form

C → α1& · · ·&αm&¬β1& · · ·&¬βn (m + n ≥ 1, C ∈ N,αi, βi ∈ (Σ ∪N)∗)

and S ∈ N is the start symbol of the grammar. We will call the αi’s positive
literals and the ¬βi’s negative. A Boolean grammar is called conjunctive if all
its rules contain only positive literals.

The semantics of Boolean grammars is not straightforward due to the possible
existence in the rules of circularities through negation. To circumvent this prob-
lem, it has been proposed [KNR06] that the correct mathematical formulation
of the meaning of Boolean grammars should be based on three-valued formal
languages. Intuitively, given a three-valued language L and a string w over the
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alphabet of L, there are three-cases: either w ∈ L (i.e., L(w) = 1), or w �∈ L
(i.e., L(w) = 0), or finally, the membership of w in L is unclear (i.e., L(w) = 1

2 ).
Given this extended notion of language, it is now possible to interpret Boolean
grammars with negative circularities. For example, the meaning of the grammar
S → ¬S is the language which assigns to every string the value 1

2 . These ideas
are formalized in the rest of this section (our presentation follows [NR08]).

Definition 2. Let Σ be a finite non-empty set of symbols. Then, a (three-valued)
language over Σ is a function from Σ∗ to the set

{
0, 1

2 , 1
}
.

The following definition, which generalizes the familiar notion of concatenation
of languages, is also needed:

Definition 3. Let Σ be a finite set of symbols and let L1, . . . , Ln be (three-
valued) languages over Σ. We define the three-valued concatenation of the lan-
guages L1, . . . , Ln to be the language L such that:

L(w) = max
(w1,...,wn):
w=w1···wn

(
min

1≤i≤n
Li(wi)

)
The concatenation of L1, . . . , Ln will be denoted by L1 ◦ · · · ◦ Ln.

We can now define the notion of interpretation of a given Boolean grammar:

Definition 4. An interpretation I of a Boolean grammar G = (Σ,N, P, S) is a
function I : N →

(
Σ∗ →

{
0, 1

2 , 1
})

.

An interpretation I can be recursively extended to apply to expressions that
appear as the right-hand sides of Boolean grammar rules:

Definition 5. Let G = (Σ,N, P, S) be a Boolean grammar and I be an inter-
pretation of G. Then I can be extended to apply to expressions that appear as
the right-hand sides of Boolean grammar rules as follows:

– For the empty sequence ε and for all w ∈ Σ∗, it is I(ε)(w) = 1 if w = ε and
0 otherwise.

– Let a ∈ Σ be a terminal symbol. Then, for every w ∈ Σ∗, I(a)(w) = 1 if
w = a and 0 otherwise.

– Let α = α1 · · ·αn, n ≥ 1, be a sequence in (Σ∪N)∗. Then, for every w ∈ Σ∗,
it is I(α)(w) = (I(α1) ◦ · · · ◦ I(αn))(w).

– Let α ∈ (Σ ∪N)∗. Then, for every w ∈ Σ∗, I(¬α)(w) = 1 − I(α)(w).
– Let l1, . . . , ln be literals. Then, for every string w ∈ Σ∗, I(l1& · · ·&ln)(w) =

min{I(l1)(w), . . . , I(ln)(w)}.

We are particularly interested in interpretations that satisfy all the rules of a
given grammar:

Definition 6. Let G = (Σ,N, P, S) be a Boolean grammar and I an interpre-
tation of G. Then, I is a model of G if for every rule A → l1& · · ·&ln in P and
for every w ∈ Σ∗, it is I(A)(w) ≥ I(l1& · · ·&ln)(w).
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In the definition of the well-founded model, two orderings on interpretations play
a crucial role. Given two interpretations, the first ordering (usually called the
standard ordering) compares their degree of truth:

Definition 7. Let G = (Σ,N, P, S) be a Boolean grammar and I, J be two
interpretations of G. Then, we say that I / J if for all A ∈ N and for all
w ∈ Σ∗, I(A)(w) ≤ J(A)(w).

Among the interpretations of a given Boolean grammar, there is one which is
the least with respect to the / ordering, denoted by ⊥. It holds that for all A
and all w, ⊥(A)(w) = 0.

The second ordering (usually called the Fitting ordering) compares the degree
of information of two interpretations:

Definition 8. Let G = (Σ,N, P, S) be a Boolean grammar and I, J be two
interpretations of G. Then, we say that I /F J if for all A ∈ N and for all
w ∈ Σ∗, if I(A)(w) = 0 then J(A)(w) = 0 and if I(A)(w) = 1 then J(A)(w) = 1.

Among the interpretations of a given Boolean grammar, there is one which is
the least with respect to the /F ordering, denoted by ⊥F . It holds that for all
A and all w, ⊥F (A)(w) = 1

2 .
Given a set U of interpretations, we will write lub�U (respectively lub�F U)

for the least upper bound of the members of U under the standard ordering
(respectively, the Fitting ordering).

Consider a Boolean grammar G. Then, for any interpretation J of G we define
the operator ΘJ : I → I on the set I of all 3-valued interpretations of G.

Definition 9. Let G = (Σ,N, P, S) be a Boolean grammar, let I be the set of
all three-valued interpretations of G and let J ∈ I. The operator ΘJ : I → I is
defined as follows. For every I ∈ I, for all A ∈ N and for all w ∈ Σ∗:

1. ΘJ (I)(A)(w) = 1 if there is a rule A → l1& · · ·&ln in P such that, for all
positive li it is I(li)(w) = 1 and for all negative li it is J(li)(w) = 1;

2. ΘJ (I)(A)(w) = 0 if for every rule A → l1& · · ·&ln in P , either there exists
a positive li such that I(li)(w) = 0 or there exists a negative li such that
J(li)(w) = 0;

3. ΘJ (I)(A)(w) = 1
2 , otherwise.

An important fact regarding the operator ΘJ is that it is monotonic with respect
to the / ordering of interpretations:

Theorem 1. Let G = (Σ,N, P, S) be a Boolean grammar and let J be an in-
terpretation of G. Then, the operator ΘJ is monotonic with respect to the /
ordering of interpretations. Moreover, ΘJ has a unique least (with respect to /)
fixed point Θ↑ω

J which is defined as follows:

Θ↑0
J = ⊥

Θ↑n+1
J = ΘJ(Θ↑n

J )
Θ↑ω

J = lub�{Θ↑n
J | n < ω}
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We will denote by Ω(J) the least fixed point Θ↑ω
J of ΘJ . Given a grammar

G, we can use the Ω operator to construct a sequence of interpretations whose
ω-limit MG is a distinguished model of G:

Theorem 2. Let G = (Σ,N, P, S) be a Boolean grammar. Then, the operator
Ω(J) = Θ↑ω

J is monotonic with respect to the /F ordering of interpretations.
Moreover, Ω has a unique least (with respect to /F ) fixed point MG which is
defined as follows:

M0 = ⊥F

Mn+1 = Ω(Mn)
MG = lub�F {Mn | n < ω}

Theorem 3. Let G = (Σ,N, P, S) be a Boolean grammar. Then, MG is a model
of G (which will be called the well-founded model of G).

3 The Game for Boolean Grammars

Consider a Boolean grammar G = (Σ,N, P, S) and let A ∈ N and w ∈ Σ∗. We
describe at an intuitive level a two-person game ΓGw

A
which has the property

that w ∈ L(G) if and only if Player I has a winning strategy in ΓGw
A
; similarly,

w �∈ L(G) if and only if Player II has a winning strategy in ΓGw
A

In the game ΓGw
A
, Player I, who initially plays the role of the Believer, be-

lieves that the string w can be produced by the nonterminal A of the Boolean
grammar G. For this reason, he initiates the game by initially playing a pair
(A → l1& · · ·&lm, w), where A → l1& · · ·&lm is a rule in G. The intuitive expla-
nation behind this move is “I believe that w can be produced by A and I can prove
this by using this specific rule of the grammar”. Player II, who initially plays the
role of the Doubter, does not agree that w can be produced by nonterminal A.
So, her reply to the move of Player I is a pair of the form (li, w), where li is one
of the literals in the body of the rule that Player I has just played. The intuitive
explanation in this case is “I doubt that w can be produced from the rule you
have just played and I am going to convince you about this by showing that w
can not be produced from li”. It remains to specify the reaction of a player to a
move of the form (l, u), for some literal l and u ∈ Σ∗. We have to distinguish
the following subcases:

Case 1: l = B, where B is a nonterminal. Then, the player whose turn it is to
play, plays a pair (B → l1& · · ·&lm, u), where B → l1& · · ·&lm is a rule in G.
The intuitive explanation behind this move is identical to that specified in the
beginning of the previous paragraph for the first move in the game.

Case 2: l = ¬α, where α ∈ (Σ ∪N)∗. Then, the player whose turn it is to play,
must play the pair (α, u) as the next move. The intuitive reading here is : “I doubt
that u can be produced from α (and therefore I was right in my previous belief
that u can be produced by the rule that contains ¬α in its body)”. Therefore, the
significance of this rule is that when negation is encountered, the players swap
roles: the Believer now becomes a Doubter and vice versa.
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Case 3: l = α, where α contains at least one nonterminal and |α| ≥ 2. Then,
the player whose turn it is to play, partitions u into |α| parts (not necessarily
of the same size), and plays (α, π) where π is the partition just mentioned. The
intuition behind this rule is as follows: “I believe that u can be produced from α
and I can demonstrate this to you by partitioning u into |α| substrings such that
each symbol from α can produce the corresponding substring from u”. The other
player will then have to choose one of the symbols of the sequence α, say α(i),
together with the corresponding string from the partition π, say π(i), and play
the move (α(i), π(i)). The intuition now is: “I doubt that u can be produced from
α and I can demonstrate this to you by choosing a symbol α(i) from α and the
corresponding part π(i) from π such that α(i) does not produce π(i)”.

Case 4: l = u, i.e., the last move was of the form (u, u). Then, the player whose
turn it is to play, plays the move (#,#) to which there is no legal response. The
intuition here is “You have just doubted that u can be produced from u, which is
completely unreasonable and I have to end the game”.

Before we specify the rules for winning, losing and getting a tie, we motivate
the game with a few simple examples. Notice that a play of the game can be
formed by following the above rules. It is possible that at some point of the play,
one of the players has no legal move to play. It is also possible that the game
goes on forever with both players playing legal moves. These cases are illustrated
below:

Example 1. Consider the following grammar:

S → bbS & ¬bSb
S → a

Moreover, consider the string w = bba. The following is a possible play of the
game ΓGbba

S
:

Player I Player II
(S → bbS & ¬bSb, bba) (¬bSb, bba)

(bSb, bba) (bSb, 〈b, b, a〉)
(b, a)

Obviously, Player II can not find any legal move to continue the game. One can
easily see that Player I has a strategy that always “corners” Player II. As we
are going to see shortly, this means that the string bba belongs to the language
of the grammar.

Consider on the other hand the string abb and the corresponding game ΓGabb
S

.
The following is a possible play:

Player I Player II
(S → bbS & ¬bSb, abb) (bbS, abb)

(bbS, 〈a, ε, bb〉) (b, a)

In this case, Player I can not find any legal move to continue the game. It is
easy to see that Player II has a strategy that always “corners” Player I. As we
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are going to see shortly, this means that the string abb does not belong to the
language of the grammar. ��

Example 2. Consider the context-free grammar S → aS (which does not produce
any string). The following is a possible play of the game ΓGaa

S
:

Player I Player II
(S → aS, aa) (aS, aa)
(aS, 〈ε, aa〉) (S, aa)
(S → aS, aa) (aS, aa)

· · · · · ·
In this case the game goes on for ever. The winner of the play is Player II: if one
of the players manages to remain a doubter for ever, then this player wins (see
the rules just after the examples). ��

Example 3. Consider the Boolean grammar S → ¬S. The following is a possible
play of the game ΓGaa

S
:

Player I Player II
(S → ¬S, aa) (¬S, aa)

(S, aa) (S → ¬S, aa)
(¬S, aa) (S, aa)

· · · · · ·
In this case the game also goes on for ever. However, in this play the two players
swap roles (the Believer becomes a Doubter and vice versa) infinitely often. The
result of this play will be a tie. ��

We can now state more generally the criteria for winning, losing and obtaining a
tie. First of all, any player who has no legal move loses immediately. Furthermore,
if the game play is infinite and after a certain point one of the players remains
a doubter, this player wins. Finally, if during a play the two players swap roles
infinitely often, the result is a tie: intuitively, none of the players has managed
to get an advantage during this play, since they both engaged in circularities
through negation.

4 A Formalization of the Game

In this section we formalize the game we have just described. In particular, we
present some basic background on infinite games of perfect information, which
we then use in order to present the proposed game for Boolean grammars in a
formal way.

4.1 Infinite Games of Perfect Information

Infinite games of perfect information [GS53] are games that take place between
two players that we will call Player I and Player II. In such games there does
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not exist any “hidden information”: both players know all the moves that have
been played so far, and there are no simultaneous moves. The games are infinite
in the sense that they do not terminate at a finite stage and therefore in order to
derive the outcome of a play it may be necessary to examine its entire history.

Before defining perfect information games in a formal way, we need to intro-
duce some notation. Sequences (finite or infinite in length) will usually be de-
noted by s or x. A finite sequence of length k will be denoted by 〈s0, s2, . . . , sk−1〉
and the empty sequence by 〈〉. Given a non-empty set X , the set of all infinite
sequences of elements of X is denoted by Xω. A tree on X is a set R of finite
sequences of members of X such that if u ∈ R and v is a prefix of u, then v ∈ R.

During a perfect information game, the two players exchange moves from a
non-empty set X , called the set of moves. Initially, Player I chooses some x0 ∈ X ,
then Player II chooses x1 ∈ X , and so on. There also exists a set R of rules that
imposes restrictions on the moves of the two players. The rules are usually (see
for example [Mosch80]) modeled by a tree R on X : the game must proceed along
some branch of R, otherwise the first player who gets outside R looses. The rules
of the game will usually be defined by putting down restrictions on the choice of
xn that depend on the preceding moves x0, . . . , xn−1. The tree R is then obtained
as:

〈x0, . . . , xn−1〉 is a path in R ⇔ for each i < n, xi is allowed by the restrictions

Additionally, we assume the existence of a set D, called the set of rewards,
which models the potential profit that a player will have after winning the game.
Finally, we consider a function Φ, called the payoff function, which calculates the
reward that the winner of a play of the game will get. Usually, the definition of
Φ depends on the set of rules R in the sense that if during a play one of the
players first breaks the rules, then this should be reflected by the value that Φ
returns for that play. The above notions are formalized as follows:

Definition 10. An infinite game of perfect information is a quadruple Γ =
(X,R,D,Φ), where:

– X is a nonempty set, called the set of moves for Players I and II.
– R is a tree on X (usually implicitly specified by a set of rules) which imposes

restrictions on the moves of the two players.
– D is a linearly ordered set called the set of rewards, with the property that

for all S ⊆ D, lub(S) and glb(S) belong to D.
– Φ : Xω → D is the payoff function of the game.

Based on the set of moves X of a game, we define two sets StratI(Γ ) and
StratII(Γ ) which correspond to the set of strategies for Player I and Player
II respectively. A strategy σ ∈ StratI(Γ ) assigns a move to each even length
partial play of the game; similarly for τ ∈ StratII(Γ ) and odd length partial
plays.

Definition 11. Let Γ = (X,R,D,Φ) be a game. Define the set of strategies for
Player I and Player II respectively to be the sets:
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– StratI(Γ ) = (
⋃

n<ω X2n) → X

– StratII(Γ ) = (
⋃

n<ω X2n+1) → X

Definition 12. Let Γ be a game and let σ ∈ StratI(Γ ) and τ ∈ StratII(Γ ). We
define the following sequence:

s0 = σ(〈〉)
s2i = σ(〈s0, s1, . . . , s2i−1〉)

s2i+1 = τ(〈s0, s1, . . . , s2i〉)

A play of the game determined by the strategies σ and τ is the infinite sequence
〈s0, s1, s2, . . .〉. The si’s will be called the moves of the play.

Given two strategies σ ∈ StratI(Γ ) and τ ∈ StratII(Γ ), we will often write σ ' τ
for the play determined by these two strategies. Given a play s, we will say that
a player first breaks the rules in s if the first move in s that does not conform to
the rules of the game is played by that particular player. A play s will be called
legal if all its moves conform to the rules of the game. We should emphasize here
that since we are dealing with infinite games, we will insist that always a play
of the game is infinite. In other words, a play continues even after one of the
two players has broken the rules; however, the moves played after this point are
completely irrelevant with respect to the outcome of the play. Therefore, if one
of the players first breaks the rules during a play, then this particular player will
lose (no matter what moves are played afterwards).

Until now we have focused on particular plays of a game. We would like to
have a notion that gives us the outcome of the whole game provided that Player
I tries his best to maximize the result while Player II tries her best to minimize
it. Moreover, we would like that during this process, each player can decide for
his (her) best strategy, independently of the corresponding choice of the other
player. This idea is captured by determinacy:

Definition 13 (Determinacy). Let Γ = (X,R,D,Φ) be a game. Then Γ is
determined with value v if:

glbb∈B luba∈AΦ(a ' b) = luba∈Aglbb∈BΦ(a ' b) = v

Determinacy is a very important notion which is in general not straightforward
to establish. In fact, one can define infinite games that are not determined. For
the game we are considering here, we demonstrate its determinacy in Section 5.

Actually, for our game, one can intuitively understand what determinacy
means and be convinced that it indeed holds. Given a string w ∈ L(G), Player I
can design a strategy for proving this fact which succeeds against any strategy
of Player II (i.e., Player I doesn’t have to worry about how Player II is going
to try to reject the membership of w in L(G)). Symmetrically, given a string
w �∈ L(G), Player II can design a strategy for proving this fact which succeeds
against any strategy of Player I.
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4.2 A Formal Definition of the Game

Let G = (Σ,N, P, S) be a Boolean grammar, let A ∈ N and let w ∈ Σ∗.
We will define the perfect information game ΓGw

A
= (X,R,D,Φ). The following

preliminary definition will be used:

Definition 14. Let u ∈ Σ∗. Then, a partition π of u of length n, is a sequence
〈u1, . . . , un〉 such that ui ∈ Σ∗, 1 ≤ i ≤ n, and u1 · · ·un = u.

We will refer to the i-th element of a partition π as π(i). Similarly, given α ∈
(Σ ∪N)+, we will write α(i) for the i’th symbol of α.

The game ΓGw
A

can now be formally defined as follows:

R1. The first move of Player I is (A → l1& · · ·&lm, w), where A → l1& · · ·&lm
is a rule of G.

R2. If the previous move is (B → l1& · · ·&lm, u), then the next move is (li, u),
where 1 ≤ i ≤ m.

R3. If the previous move is (B, u), the next move is (B → l1& · · ·&lm, u), where
B → l1& · · ·&lm is a rule of G.

R4. If the previous move is (¬α, u), then the next move is (α, u). A move of this
form will be called a role-switch.

R5. If the previous move is (α, u), where α contains at least one nonterminal and
|α| ≥ 2, then the next move is of the form (α, π), where π is a partition of u
of length |α|.

R6. If the previous move is (α, π), then the next move is (α(i), π(i)), where
1 ≤ i ≤ |α|.

R7. If the previous move is (u, u), then the next move is (#,#).

We should repeat at this point that since we are dealing with infinite games,
a play continues even after one of the two players has broken the above rules.
However, the moves beyond this point will be irrelevant to the outcome of the
play. Notice also that there does not exist any legal response to the move (#,#);
after this move, the player whose turn it is to play, can only perform an illegal
move. Similarly, one can check that there does not exist any legal response to a
move of the form (u1, u2) where u1, u2 ∈ Σ∗ and u1 �= u2.

The rules given above, implicitly specify the tree R of the game. The strategies
of the two players are as defined in Definition 11. Consider now the set of rewards.
We define D = {0, 1

2 , 1}. In other words, a play of the game can be assigned the
value 0 (this means that Player II has won the play), the value 1 (Player I has
won), or the value 1

2 (the result is a tie). It remains to formally define the payoff
function. The following definitions are needed:

Definition 15 (True-play, False-play). Let G = (Σ,N, P, S) be a Boolean
grammar, w ∈ Σ∗ and A ∈ N , and let s be a play of the corresponding game
ΓGw

A
. Then, s is called a true-play if either Player II first breaks the rules in s

or s is a legal play that contains an odd number of role-switches. Similarly, s is
called a false-play if either Player I first breaks the rules in s or s is a legal play
that contains an even number of role-switches.
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The payoff function is defined as follows:

Φ(s) =

⎧⎨⎩
1, if s is a true-play
0, if s is a false-play
1
2 , otherwise

This completes the formal presentation of the game. It should be noted at this
point that since conjunctive and context-free grammars are subcases of Boolean
grammars, the game (actually in a simpler form) is also applicable to them.

5 Equivalence to the Well-Founded Semantics

There still remains a crucial issue that needs to be clarified in order for the game
for Boolean grammars to be “well-defined”. We still have not argued regarding
the determinacy of the game nor have we investigated the relationship of the
game to the well-founded semantics of Boolean grammars [KNR06]. For infinite
games that are win-lose (i.e., no ties), there exists a well-known result, namely
Martin’s theorem [Mar75], which can be used to establish determinacy in most
practical cases. In [GRW08], based on Martin’s theorem, a criterion is defined
that ensures that certain three-valued games are determined. This criterion pre-
supposes the use of the theory of Borel sets (see [GRW08] for details).

In the following, we circumvent the use of Martin’s theorem by demonstrating
at the same time both the determinacy of the game and its equivalence to the
well-founded model. Our new proof can also be adapted to work for the case of
logic programs.

Theorem 4. Let G = (Σ,N, P, S) be a Boolean grammar and MG be its well-
founded model. For every A ∈ N and w ∈ Σ∗, the game ΓGw

A
is determined with

value MG(A)(w).

Proof. (Outline) We start by defining a refinement Γ ′
Gw

A
of the standard game

ΓGw
A

for Boolean grammars. The idea is that since the well-founded model is
defined in stages [KNR06], we would like the refined game to possess a notion
of level as-well; this will help us establish the equivalence of the two semantic
approaches by using an induction on the level numbers.

In the refined game Γ ′
Gw

A
, the payoff of a given play will depend on the number

of role-switches that have taken place. Intuitively, given two true-plays (respec-
tively, false-plays) that have a different number of role-switches, we would like
the one that has the less number of such switches to result to a better payoff for
Player I (respectively, Player II). For this purpose, the new set D′ of rewards has
an infinite number of members in the form of pairs, that are ordered as follows:

(0, 0) < (0, 1) < · · · < (0, i) < · · ·︸ ︷︷ ︸
False Plays

<
1
2︸︷︷︸

Tie

< · · · < (1, i) < · · · < (1, 1) < (1, 0)︸ ︷︷ ︸
True Plays

Consider now a play of the game. If the play is a true-play (respectively false-
play), the payoff is going to be (1, i) (respectively (0, i)), where i is the number
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of role switches of the form (¬α, u) that have taken place in the maximum legal
initial part of the play, such that in the third move that follows the role-switch,
which is of the form (α(i), π(i)), α(i) in not a terminal symbol. Notice that a
role switch which is excluded by the previous statement, can only appear at the
final legal moves of a play.

Subsequently, we define a refinement M ′
G of MG as follows:

M ′
G(A)(w) =

⎧⎨⎩
(1, i), if Mi(A)(w) = 1

2 and Mi+1(A)(w) = 1
(0, i), if Mi(A)(w) = 1

2 and Mi+1(A)(w) = 0
1
2 , if MG(A)(w) = 1

2

Similarly to three-valued interpretations used in the definition of well-founded
semantics [KNR06], M ′

G can be extended to apply to literals (i.e., sequences of
terminal and non-terminal symbols and their negations) and conjunctions of
literals:

– For every α ∈ Σ ∪ {ε} and for every w ∈ Σ∗, M ′
G(α)(w) = (1, 0) if w = α

and M ′
G(α)(w) = (0, 0) otherwise.

– For every α = α1 · · ·αn ∈ (Σ ∪ N)∗ with n ≥ 2, and for every w ∈ Σ∗,
M ′

G(α)(w) = max (w1,...,wn):
w=w1···wn

(min1≤j≤n M ′
G(αj)(wj)).

– For every l = ¬α, with α ∈ (Σ ∪N)∗, and for every w ∈ Σ∗, if M0(α)(w) =
u �= 1

2 , then M ′
G(l)(w) = (1 − u, 0); otherwise, if M ′

G(α)(w) = (v, i), v ∈
{0, 1}, then M ′

G(l)(w) = (1 − v, i + 1); otherwise M ′
G(l)(w) = 1

2 .
– For every conjunction of literals of the form l1& . . .&ln and for every w ∈ Σ∗,

M ′
G(l1& · · ·&ln)(w) = min{M ′

G(l1)(w), . . . ,M ′
G(ln)(w)}.

In the above cases, min and max are defined with respect to the ordering we have
imposed on the domain of refined rewards D′. In order to prove the theorem it
suffices to demonstrate that for every A ∈ N and for every w ∈ Σ∗, the refined
game Γ ′

Gw
A

is determined with value M ′
G(A)(w). For this purpose, we need to

define a strategy σ̂ for Player I and a strategy τ̂ for Player II, which will help
us establish the determinacy of the game Γ ′

Gw
A

(as it will become clear later on,
these two strategies are the “best possible” ones for the two players).

We start by defining a strategy σ̂ for Player I. We specify the move of Player
I in all cases in which he may have more than one legal choices:
Case 1: The previous move is (B, u), with B ∈ N and u ∈ Σ∗. Then he plays a
move (R, u), where R = B → α1& · · ·&αm&¬β1& · · ·&¬βn is a rule in P such
that M ′

G(α1& · · ·&αm&¬β1& · · ·&¬βn)(u) = M ′
G(B)(u) selected as follows:

– if M ′
G(B)(u) = (1, i) and r > 0 is the least integer such that Θ↑r

Mi
(B)(u) = 1,

then R should have the property that for every j, 1 ≤ j ≤ m, Θ↑r−1
Mi

(aj)(u) =
1 and for every k, 1 ≤ k ≤ n, Mi(bk)(u) = 0.

– if M ′
G(B)(u) = (0, 0), then R is any rule with head B.

– if M ′
G(B)(u) = (0, i), with i > 0, and r > 0 is the least integer such that

Θ↑r
Mi−1

(B)(u) = 1
2 , then R should have the property that for every j, 1 ≤

j ≤ m, Θ↑r−1
Mi−1

(aj)(u) ≥ 1
2 and for every k, 1 ≤ k ≤ n, Mi−1(bk)(u) ≤ 1

2 .
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– if M ′
G(B)(u) = 1

2 , and r > 0 is the least integer such that Θ↑r
MG

(B)(u) = 1
2 ,

then R should have the property that for every j, 1 ≤ j ≤ m, Θ↑r−1
MG

(aj)(u) ≥
1
2 and for every k, 1 ≤ k ≤ n, MG(bk)(u) ≤ 1

2 .

Case 2: The previous move is (α, u), where α contains at least one element in
N and |α| ≥ 2. In this case, Player I plays (α, π), where π is a partition of u,
such that M ′

G(α(i))(π(i)) ≥ M ′
G(α)(u) for all i, which is selected by considering

analogous subcases as in Case 1 above.
Case 3: The previous move is (B → l1& · · ·&lm, w). If there exists a positive
li such that M ′

G(l1& · · ·&lm)(u) = M ′
G(li)(u), he plays (li, u). Otherwise, there

exists a negative literal lj such that M ′
G(l1& · · ·&lm)(u) = M ′

G(lj)(u) and he
plays (lj , w).
Case 4: The previous move is (α, π). In this case he selects an i such that
M ′

G(α(i))(π(i)) is minimum and plays (α(i), π(i)).

Using exactly the same selections for each case, we can define a strategy τ̂ for
Player II.

Now, we can demonstrate by an induction on i, that if M ′
G(A)(w) = (v, i),

v ∈ {0, 1}, then it holds that:

1. For every strategy τ of Player II, Φ(σ̂ ' τ) ≥ (v, i).
2. For every strategy σ of Player I, Φ(σ ' τ̂) ≤ (v, i).

Notice that, although the two players according to σ̂ and τ̂ react in exactly
the same way in every move, the inequalities have opposite directions due to
the fact that the roles of the two players are initially different. Using the above
inequalities we obtain:

(v, i) ≤ glbτ∈B Φ(σ̂ ' τ)
≤ lubσ∈A glbτ∈B Φ(σ ' τ)
≤ glbτ∈B lubσ∈A Φ(σ ' τ)
≤ lubσ∈A Φ(σ ' τ̂)
≤ (v, i)

which implies that the refined game Γ ′
Gw

A
is determined with value (v, i).

Using the fact that the determinacy result holds for every value (v, i), with
v ∈ {0, 1}, we can show that if M ′

G(A)(w) = 1
2 , then:

1. For every strategy τ of Player II, Φ(σ̂ ' τ) ≥ 1
2 .

2. For every strategy σ of Player I, Φ(σ ' τ̂) ≤ 1
2 .

which implies in an analogous way as before that the refined game Γ ′
Gw

A
is deter-

mined with value 1
2 . ��

6 Conclusions

We have presented an infinite game semantics for Boolean grammars and have
demonstrated that it is equivalent to the well-founded semantics of this type
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of grammars. The simplicity of the new semantics stems mainly from its an-
thropomorphic flavor. In this respect, it differs from the well-founded semantics
whose construction requires a more heavy mathematical machinery. We believe
that these two semantical approaches can be used in a complementary way in
the study of Boolean grammars. In our opinion, the game-theoretic approach
will prove useful in establishing the correctness of meaning-preserving transfor-
mations for Boolean grammars. The reasoning in such a case can proceed as
follows. Consider a Boolean grammar G and its transformed version G′. We can
verify that the meaning of a nonterminal A in G coincides with the meaning
of A in G′ if for every string w, Player i has a winning strategy in the game
ΓGw

A
iff Player i has a winning strategy in game ΓG′w

A
. On the other hand, the

well-founded semantics appears to be more useful in computing the meaning
of specific grammars. This is due to the iterative-inductive flavor of the well-
founded approach (see [NR08] for an example of an iterative computation of
the meaning of a Boolean grammar using a procedure that was inspired by the
well-founded construction).
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Abstract. We consider properties of the solution set of a word equation
with one unknown. We prove that the solution set of a word equation pos-
sessing infinite number of solutions is of the form (pq)∗p where pq is prim-
itive. Next, we prove that a word equation with at most four occurrences
of the unknown possesses either infinitely many solutions or at most two
solutions. We show that there are equations with at most four occurrences
of the unknown possessing exactly two solutions. Finally, we prove that a
word equation with at most 2k occurrences of the unknown possesses ei-
ther infinitely many solutions or at most 8 log k + O(1) solutions. Hence,
if we consider a class Ek of equations with at most 2k occurrences of the
unknown, then each equation in this class possesses either infinitely many
solutions or a constant number of solutions. Our considerations allow to
construct the first truly linear time algorithm for computing the solution
set of an equation in a nontrivial class of equations.

Keywords: combinatorics on words, word equations.

1 Introduction

The theory of word equations is a part of combinatorics on words [5,6] and
unification theory [1]. It has applications in graph theory [9], constraint logic
programming [8], artificial intelligence [4], and formal languages [2].

As in number theory the problems in this theory are simple to explain to a
nonexpert and difficult to solve. As an evidence of the difficulty of the prob-
lems in the theory of word equations is that not everything is known on word
equations with one unknown. Our paper deals with such equations. The satisfi-
ability problem for such equations can be solved in O(n log n) time where n is
the size of the equation [7]. For finite alphabets of fixed size it can be solved in
O(n + #X log n) time where #X is the number of occurrences of the unknown
X in the equation [3]. If #X = Θ(n), then the algorithm is not linear. It is still
not known whether there is a linear time algorithm for the problem.

Our main results deal with the structure of the solution set of an equation
with one unknown. The set is either finite or infinite. In [7] it was implicitely
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proved that in the former case it is of size at most 2 logn and in the latter case
it is a union of a finite set of size at most 2 logn and a set of the form (pq)+p
with pq-primitive and q nonempty. We improve the latter case by proving that
for such equations the solution set is of the form (pq)∗p with pq-primitive and q
nonempty. As an immediate effect of our considerations we obtain a linear time
algorithm independent on the size of the alphabet, for finding the solution set
of an equation which have infinitely many solutions.

It is quite elementary to find out that equations with at most three occur-
rences of the unknown can have only zero, one or infinitely many solutions, see
Example 1. We show an example of an equation with exactly four occurrences of
the unknown which has exactly two solutions. Next we prove that this number
is tight. Namely we prove that equations with at most four occurrences of the
unknown have either at most two solutions or infinitely many solutions.

At the end we consider equations with at most 2k occurrences of the unknown
and prove that they have either at most 8 log k+O(1) solutions or infinitely many
solutions. If we fix k, then this gives a constant which bounds the number of
solutions of an equation containing at most 2k occurrences of the unknown in
case it has finitely many solutions. Our considerations allow one to construct
the first linear time algorithm independent of the size of the alphabet, for the
satisfiability problem as well as to find the solution set of an equation for a
nontrivial class of equations.

2 Basic Notions

For two numbers p and q, gcd(p, q) denotes the greatest common divisor of p and
q. Let Σ be any set. The set Σ is called alphabet. The elements of Σ are called
letters. Sequences of letters are called words. The empty sequence is called the
empty word and is denoted by 1.

Let w be a word. The length of w is denoted by |w|. A prefix of w is a word
p such that w = ps, for some word s. If s �= 1, then p is called a proper prefix.
A suffix of w is a word s such that w = ps, for some word p. If p �= 1, then s is
called a proper suffix. A subword of w is a word u such that w = pus, for some
words p and s. Denote by w[i..j], for 1 ≤ i ≤ j ≤ |w| the subword of w which
starts at letter i in w and ends at letter j of w. The i-th letter of w is denoted
by w[i]. The prefix of w of length k is denoted by prefk (w). The suffix of w of
length k is denoted by suffk (w).

For a prefix p of w, we denote by p−1w the word s such that w = ps. Similarly,
for a suffix s of w, we denote by ws−1 the word p such that w = ps. For two words,
u, w, by u · · · = w · · · we mean that there are words u′, w′ such that uu′ = ww′.
Since it means that either u is a prefix of w or vice versa, we say then that the words
u and w are prefix comparable. Similarly, by · · ·u = · · ·w we mean that there are
two words u′ and w′ such that u′u = w′w. Since it means that either u is a suffix
of w or vice versa, we say then that the words u and w are suffix comparable.

For a word u and a positive integer k, by uk we mean a word which is a
repetition of the word u, k times. If k = 0, we define u0 = 1. We say that a word
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w is primitive, if it is not of the form uk, for any word u and k ≥ 2. A primitive
word u such that w = uk, for some k ≥ 1, is called the primitive root of w and
denoted by root(w). The function root is well-defined for nonempty words, since
such a word is unique.

By uω we mean a right infinite word which consists of the word u repeated
infinitely many times. Similarly, by ωu we mean a left infinite word which consists
of the word u repeated infinitely many times. A period of a word w is a prefix
u of w such that w is a prefix of uω. We call a period also the number |u|. We
say that a period u of a prefix of w breaks at position p of w if u is a period of
w[1..p − 1] and u is not a period of w[1..p]. The proof of the next well known
proposition can be found in [5,6].

Proposition 1 (Lemma by Fine & Wilf). Let u and v be periods of a word
w satisfying |u| + |v| ≤ |w|. Then the prefix p of w of length gcd(|u|, |v|) is also
a period of w.

We say that two words u and v commute if uv = vu. We say that words x and
y are conjugates, if there are words p, q such that x = pq and y = qp.

A reverse of a word w = w[1] · · ·w[k] is w[k] · · ·w[1].
A word equation e with one unknown X is an equation of the form

A0XA1X · · ·Ak = XB0XB1X · · ·Bl

where Ai, Bi ∈ Σ∗ and either Ak or Bl is the empty word. A solution of a word
equation is a word x such that A0xA1x · · ·Ak = xB0xB1x · · ·Bl. Observe that
always x is a prefix of Aω

0 .

Example 1. A word equation with one occurrence of X is of the form X = A0.
It has exactly one solution x = A0.

A word equation with two occurrences of X is either of the form XB0X = A0
or of the form A0X = XB0.

The length argument shows that the only possible length of a solution of the
first equation is 1

2 (|A0| − |B0|). Hence, it can have one or zero solutions. The
only possible solution is a prefix of appropriate length of A0.

The second equation is well known in combinatorics on words. It has either
zero or infinitely many solutions. In the latter case there are words p, q with pq-
primitive and q nonempty such that A0 = (pq)k, B0 = (qp)k. Then the solution
set is (pq)∗p. For any pair of words A0 and B0, there is at most one such pair
(p, q). Consequently, if pq is primitive and q nonempty, then the solution set of
the equation (pq)kX = X(qp)k is (pq)∗p.

The length argument shows that, if the number of occurrences of X on the left
hand side of the equation is different from the number of occurrences of X on
the right hand side, then there is at most one solution of such equation. In
particular, each equation with odd number of occurrences of X has either zero
or one solution. Hence, the only equations we consider next contain the same
number of occurrences of X on both sides of the equation.
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3 The Family of Equations u1Xu2X = Xv1Xv2

In this section we are interested in equations with finitely many solutions. As
we concluded in Section 2 the simplest interesting case of equations with at
most four occurrences of X are equations of the form u1Xu2X = Xv1Xv2
or u1Xu2Xu3 = Xv1X . We will prove that such equations have at most two
solutions and this boundary is sharp. Since all solutions are prefixes of the
same word, then the shortest solution is a prefix of all the other solutions.
Let this solution be x. Consider the equation u1xXu2xX = xXv1xXv2 (resp.
u1xXu2xXu3 = xXv1xX). It has the same number of solutions as the orig-
inal equation and, additionally X = 1 is a solution of it. This means that
we may restrict our considerations to equations such that X = 1 is a solu-
tion of them. Then, u1u2 = v1v2 (resp. u1u2u3 = v1). If u1w = v1, then
u2 = wv2, and the equation is of the form (u1X)w(v2X) = (Xu1)wX(v2) (resp.
(u1X)u2(Xu3) = (Xu1)u2(u3X)). These split into simpler equations with two
occurrences of X and either one or infinitely many solutions.

If u1 = v1w, then wu2 = v2 and the equation is of the form v1wXu2X =
Xv1Xwu2. Renaming the constant words we obtain the equations of the form
uvXwX = XuXvw. This is the family of equations we consider in this section.

Example 2. Consider the equation XbXcbbccbc = bcbbccbXcX . Since all solu-
tions are prefixes of (bcbbccb)ω it is easy to check that all solutions shorter than
6 are 1 and bc. All solutions of length at least 6 start with bcbbcc. Hence, the
original equation can be split so that the solutions satisfy Xbbcbbcc = bcbbccbX .
Hence, such solutions are of the form x = (bcbbccb)ibcbbcc. However, if we look
at the original equation we see that bc should be a suffix of x. Hence, there are
no such solutions.

Similarly we prove that the solution set of the equation XbXcbc = bcbXcX
is {1, bc}.

Lemma 1. If pq and p′q′ are primitive with q, q′ nonempty, and (pq)ip =
(p′q′)j

p′, and (pq)n
p = (p′q′)m

p′, where either i, j ≥ 2, or n �= i or m �= j,
then p = p′, q = q′, i = j and n = m.

Proof. Follows from Proposition 1.

In the following, the equation

XuXvw = uvXwX (1)

is assumed to have a finite solution set S = {s0 = 1, · · · , sk−1}, where si−1 is a
proper prefix and a proper suffix of si, for i = 1, · · · , k − 1. The solutions imply
the equalities, see Fig. 1

siuvi = uvsi and sivw = viwsi, (2)

where vi = pref |v| (siv) = suff |v| (vsi). On the other hand, a common solution s
of equations

Xuvi = uvX and Xvw = viwX (3)
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u v si w si

si u si v w

s′i vi s′′i

Fig. 1. The dependences between words si, s′i, s′′i , vi and other words. The letters in
the same columns are the same. The relative position of boundaries between words in
first two rows may be different.

is also a solution of (1), since susvw = suviws = uvsws. Moreover, we also get
the equalities

siu = us′i and s′′i w = wsi, (4)

where s′i = suff|si| (siu) = pref|si| (vsi) and s′′i = pref|si| (wsi) = suff|si| (siv),
and finally

s′ivi = vsi and siv = vis
′′
i . (5)

Observe, that all the words vi have the same length as v and |si| = |s′i| = |s′′i |,
for all i. By symmetry, we may assume, that |u| ≥ |w|.

Lemma 2. The length of any solution si of equation (1) is less than 2 |uv|.

Proof (sketch). Assume the contrary. By Lemma 1, the solution set then contains
an infinite set (pq)∗p.

Lemma 3. Word si, is the only solution for the equation pair (3).

Proof. Consequence of Lemma 1.

Corollary 1. If i �= j, then vi �= vj.

Corollary 2. Equation (1) has at most one solution of length at least |v| /2.

Proof. Assume, on the contrary, that |v| /2 ≤ |si|, for i < k − 1. But then

vi = pref�|v|/2� (siv) suff�|v|/2� (vsi)

= pref�|v|/2� (si+1v) suff�|v|/2� (vsi+1) = vi+1.

Lemma 4. For all i > 0, s′i �= si �= s′′i .

Proof. We may assume, on the contrary, that s′i = si, since the case s′′i = si is
symmetric. We get from equalities (5), that also s′′i = si. Thus, si, s

′
i, s

′′
i , u, w ∈

r+, for some primitive r. Hence, siusivw = uvsiwsi and also v ∈ r+. Hence, all
the words in r+ are solutions of (1), a contradiction.

Lemma 5. If k ≥ 3, then |s2| > |u| + |s1|.

Proof (sketch). Leaving from the counter assumption it is not hard to deduce
the contradiction that s′1 = s1.
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We use the following well known fact in combinatorics on words.

Observation 1. xnz = zyn, for some n ≥ 1 ⇐⇒ xz = zy

Our next lemma gives the necessary and sufficient condition for an equation to
have infinite number of solutions.

Lemma 6. The solution set S of (1) is infinite, iff uv commutes with vw.

Proof. If uv, vw ∈ z+, then any word s ∈ z∗ is a solution, since susvw =
suvws = uvsws. The proof for the other direction is more intriguing, but we do
not actually need this direction and omit the proof to save space.

Lemma 7. Let x and x′ be conjugates such that x �= x′. Then the word xx′ is
primitive.

Proof. This follows from Lyndon-Schützenberger lemma, see Observation 2.

A period of a word is called primitive if it is a primitive word.

Lemma 8. There is at most one non-empty solution si such that |si| ≤ |v|/2.

Proof. We have s′isiv = vsis
′′
i , see Fig. 1. Then (sis

′
i)(sivsi) = (sivsi)(s′′i si). By

Lemma 7, sis
′
i is primitive, and, consequently, the word sivsi has a primitive

period of length 2|si|. Suppose that s and t with |s| < |t| ≤ |v|/2 are solutions.
Then the word svs would have two primitive periods of lengths 2|s| and 2|t|,
since svs is a subword of tvt, which has a primitive period of length 2|t|. Also
|svs| ≥ 2|s| + 2|t|, and by Proposition 1, |s| = |t| raising a contradiction.

Summing this together we have at most one non-empty solution such that |x| ≤
|v|/2. Together with the empty solution and one possible solution of length at
least |v|/2 we have at most three solutions.

We proceed to show that |S| ≤ 2, by assuming the contrary and then gradually
closing the window of possible lengths for s2. We already know, that |s1| <
|v| /2 < |s2| < 2 |uv|. Thus, we have v = s′1s1t1 = t1s1s

′′
1 , v1 = s1t1s1, see Fig. 2.

Since s1 is a prefix and a suffix of s2 and |s1| ≤ |v| = |v2|, then, by (5), s1
is a prefix and a suffix of v2. Hence, v2 = s1t2s1, for some non-empty word t2
satisfying |t1| = |t2|.

By Lemma 4, Lemma 6 and Corollary 1 we know, that none of the three
conditions 1) s′1 = s1 (s′′1 = s1); 2) uv commutes with vw; and 3) t1 = t2 is
possible. The proofs of each one of the following lemmas start from a counter
assumption and then one of these three contradictions is deduced. Unfortunately,
we have to omit the rather technical proofs to save space.

Lemma 9. |s2| > 2 |s1|

Now, we may write s2 = s1γs1. Since us′2 = s2u and s1 is a suffix of s2, we
have that us′1 = s1u is a suffix of s′2, by Lemma 5. Thus, s′2 = s′1γ′s′1, for some
γ′. Symmetrically, s′′2 = s′′1γ′′s′′1 . Observe also, that since v = s′1s1t1 (resp. v =
t1s1s

′′
1 ) and v and s′2 are prefix comparable (resp. v and s′′2 are suffix comparable),

then s1 is a prefix of γ′s′1 (resp. a suffix of s′′1γ′′).
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t1

u v s1 w s1

s1 u s1 v w

s′1 v1 s′′1

Fig. 2. Illustration for dependencies between word t1 and words defined earlier

Lemma 10. |γ| > |t1|. Hence, |s2| > |v|.

Lemma 11. |γ| > |t1| + |s1|. Hence, |s2| > |v| + |s1|.

Lemma 12. |s2| > |uv|.

The next Lemma finally shows, that the assumption of three solutions is not
possible. It also improves Lemma 2.

Lemma 13. The length of any solution si of equation (1) is at most |uv|.

As an immediate consequence of our considerations we obtain.

Theorem 1. Each equation with at most four occurrences of X possesses either
at most two or infinitely many solutions. There are equations with at most four
occurrences of X which possesses exactly two solutions.

4 Infinite Solution Set

We will use several well known facts in combinatorics on words. The last one of
them is the famous Lyndon-Schützenberger lemma, see the proof in [5].

Observation 2. 1. Let u and v with |u| > |v| be two periods of a word w.
Then |u| − |v| is a period of v−1w.

2. If p is a period of w and p is primitive and p is a suffix of w, then w = pl,
for some l ≥ 1.

3. Let x be a prefix of yx′ where x′ is a prefix of x. Then y is a period of yx′.
4. Suppose xiy · · · = yjx · · · with i, j ≥ 1. Then x and y are powers of the same

word.
5. Suppose x and y satisfy a nontrivial identity. Then x and y are powers of

the same word. In particular, if x and y commute, then they are powers of
the same word.

6. If xnym = zk where n, m, k ≥ 2, then x, y and z are powers of the same
word.

Let e be a nontrivial equation to solve. We assume that equations in this sec-
tion contain infinitely many solutions. Then e is of the form A0XA1 · · ·AkX =
XB0XB1X · · ·Bk with k ≥ 0 and A0 �= 1 or of the form A0XA1 · · ·XAk =
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XB0X · · ·Bk−2X with k ≥ 2 and A0 �= 1. An equation in the first form is called
an equation of type (1). An equation in the second form is called an equation of
type (2).

An equation of type (1) can have a solution only if
∑k

i=0 |Ai| =
∑k

i=0 |Bi|.
An equation of type (2) can have a solution only if

∑k
i=0 |Ai| =

∑k−2
i=0 |Bi|.

The equation e can be split into two equations which are equivalent to e if for
some 0 ≤ l < k:

∑l
i=0 |Ai| ≤

∑l
i=0 |Bi|. Let l be the minimal one. Then the

equation of type (1) splits into two ones. The first one is A0XA1 · · ·XAlX =
XB0XB1 · · ·XBl−1XB′ where B′ is a prefix of Bl of length

l∑
i=0

|Ai| −
l−1∑
i=0

|Bi|.

The second equation is Al+1XAl+2X · · ·AkX = B′′XBl+1 · · ·XBk where Bl =
B′B′′. The equation of type (2) splits into two ones. The first one is

A0XA1 · · ·XAlX = XB0XB1 · · ·XBl−1XB′

where B′ is a prefix of Bl of length
∑l

i=0 |Ai| −
∑l−1

i=0 |Bi|. The second equation
is Al+1XAl+2X · · ·XAk = B′′XBl+1 · · ·Bk−1X where Bl = B′B′′.

The equation of type (2) can always be splitted. Additionally, for both types
of equations, the first equation of two cannot be splitted. Using this splitting
technique we can replace the equation e by an equivalent system of equations.
Each of these equations is of the form A0XA1 · · ·AkX = XB0XB1X · · ·Bk with
k ≥ 0 and satisfies additionally

∑l
i=0 |Ai| >

∑l
i=0 |Bi|, for 0 ≤ l < k. Such an

equation is called irreducible.
We want to prove that, if e has infinitely many solutions, then the solution set

is of the form r∗, for some primitive r, or of the form (pq)∗p, for some primitive
pq and nonempty p and q. Since each solution of e is a solution of all equations in
the system, each irreducible equation in the system has infinitely many solutions.
If we prove the theorem for irreducible equations, we prove the theorem for all
equations. Indeed, if |(p1q1)∗p1 ∩ (p2q2)∗p2| = ∞, for some pi, qi, where qi is
nonempty and piqi is primitive, then (p1q1)∗p1 = (p2q2)∗p2.

If k = 0, then there is nothing to prove. Assume then that k ≥ 1.
We define now elementary equations. An equation e is elementary if

l∑
i=0

|Ai| >

l−1∑
i=0

|Bi|, for each 0 ≤ l ≤ k.

Observe here that each irreducible equation is elementary but not vice versa.
Indeed, the equation aXbX = XaXb is elementary and not irreducible. It can
be split into two equations aX = Xa and bX = Xb.

Lemma 14. Assume that an elementary equation has infinitely many solutions
of the form ri where r is primitive. Then all words of the form ri, for i ≥ 0, are
solutions of the equation. Moreover A0 = rm, for some m ≥ 1 and Bk = rt, for
some t ≥ 1. Additionally, r is a prefix of Bir, for 0 ≤ i ≤ k, and, for 1 ≤ i ≤ k,
Bi−1r

j = rsAi, for some j, s > 0.
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Proof (sketch). Consider the words wi,l = A0r
iA1r

i · · ·Alr
i, for i ≥ 0 and 0 ≤

l ≤ k and ui,l = riB0r
i · · · riBl−1r

i, for i ≥ 0 and 0 ≤ l ≤ k. We have

|wi,l| − |ui,l| =
l∑

s=0

|As| −
l−1∑
s=0

|Bs|.

Observe here that this difference does not depend on i. Since the equation is
elementary wi,l is longer than ui,l, for all l.

It can be proved by induction on l that, for each i, ui,l is a prefix of wi,l and
u−1

i,l wi,l is of the form rs, for s ≥ 1. As we showed s does not depend on i. The
result then follows easily.

Lemma 15. Assume that an elementary equation has infinitely many solutions
of the form (pq)ip for nonempty p, q and primitive pq. Then all words of the
form (pq)ip, for i ≥ 0, are solutions of the equation. Moreover A0 = (pq)m, for
some m ≥ 1 and Bk = (qp)t, for some t ≥ 1. Additionally, for each 0 ≤ i ≤ k,
qp is a prefix of Bipq, and pq is a suffix of qpAi.

Proof (sketch). Let e be the equation. Make a substitution which replaces the
variable X by the word pX . New equation e′ is also elementary. The result
follows, when we apply Lemma 14 to e′.

Let e be an irreducible equation. Then |B0| < |A0|. Let B′ be a prefix of A0
of length |A0| − |B0|. We distinguish two types of equations: equations where
A0 = B0B

′ and equations where A0 �= B0B
′. The equations of the first type are

called of type r and the equations of the second type are called of type (p, q)
where r, p, q are nonempty words which will be determined later by A0 and
B0B

′.
We divide solutions of the equation e into two groups: long solutions and

short solutions. Long solutions are those which are not shorter than |B′|. Short
solutions are those which are shorter than |B′|. Since all solutions are prefixes
of Aω

0 , then long solutions start by B′. Hence they all satisfy A0X = XB0B
′

where B′ comes from the prefix of the X which stays in equation just to the
right of B0. If our equation has a long solution then A0 and B0B

′ are conjugates.
Hence, either B0B

′ = A0 = rm, for some primitive r and m ≥ 1, or A0 = (pq)m,
B0B

′ = (qp)m, for m ≥ 1 and some nonempty p, q such that pq is primitive. In
the former case the equation is of type r. In the latter case the equation is of
type (p, q).

As a result of our previous considerations we have

Lemma 16. Assume that the equation e has infinitely many solutions. If the
equation is of type r, then all words in r∗ are solutions for it. If the equation is
of type (p, q), then all words in (pq)∗p are solutions for it. In both cases there
are no other long solutions.

By Lemma 16 it is enough to prove that there are no short solutions except the
ones mentioned in the lemma.

In the following sub sections the meaning of B′, m, t, Ai, Bi are the same as
in this section.
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4.1 Equations of Type r

Theorem 2. Let e be an equation of type r with infinitely many solutions. Then
the solution set of e is r∗.

Proof (sketch). Observe first that, if x is a short solution, then xB0 is a proper
prefix of A0. Since the equation is of type r, we have rm = A0 = B0B

′ where
B′ is a prefix of rm. The proof gets divided into three cases depending on the
lengths of B0 and B′. First we show that if either |B0| ≥ |r|, or B0 �= 1 and
|B′| ≥ |r|, then the solution set is r∗.

In the second case 0 < |B0| < |r| and |B′| < |r|. Then either we get that x = 1
is the only short solution or we get the contradiction that r is not primitive. In
the last case we have B0 = 1. This time either the short solution is in r+, or it
turns out that x is a period of r, which implies the same contradiction that r is
not primitive.

4.2 Equations of Type (p, q)

We start by proving a corollary of Theorem 2.

Corollary 3. Let e be an equation of type (p, q) with infinitely many solutions.
Then all solutions of e which are not shorter than p form the set (pq)∗p.

Proof. Let e′ be an equation which can be obtained from e after replacing the
unknown X by the word Xp. Then e′ is splitted into a set of equations of type
pq with infinitely many solutions. Hence, the solution set of e′ is (pq)∗. Since
each solution of e which is not shorter than p is of the form xp, such solutions
form the set (pq)∗p.

By Corollary 3 it is enough to prove that there are no short solutions which are
shorter than p. To prove this we need a technical lemma. To save space we omit
its rather long proof.

Lemma 17. Let e be an equation of type (p, q) with infinitely many solutions.
Then the empty word is not a solution for e.

We use Lemma 17 to prove our main result of this section.

Theorem 3. Let e be an equation of type (p, q) with infinitely many solutions.
Then all solutions form the set (pq)∗p.

Proof (sketch). By Corollary 3 it is enough to prove that the equation e has
no solutions shorter than p. Suppose on the contrary, that a prefix of p, x with
|x| < |p|, is a solution of e. Replace in e each occurrence of X by xX obtaining
an equation e′. The equation e′ has infinitely many solutions and the empty
word is a solution of it. Now apply splitting to the equation e′. We obtain an
irreducible equation e′′ and another equation. It turns out that e′′ does not have
1 as its solution, a contradiction.
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5 A Family of Equations with Constant Number of
Occurrences of X

The following proposition was proved in [7].

Proposition 2. Let pq be primitive and p �= 1. Let e be an equation with one
unknown. Let Sol(e) be the solution set of the equation e. Let T = Sol(e)∩(pq)∗p.
Then either T = (pq)∗p = or T = (pq)+p or T ⊆ {p, (pq)ip} for some i ≥ 1.
Moreover, the set T can be found in linear time.

In [7], the following proposition was implicitely proved.

Proposition 3. Let e : sX... = XtX... be an equation with one unknown X
and let m be an integer. Then there are at most two solutions X = x such that
m/2 < |tx| ≤ m.

In [3], the following proposition was proved.

Proposition 4. O(log n) candidates for short solutions of an equation with one
unknown can be found in linear time independently of the size of the alphabet.
The candidates satisfy the constraint in Proposition 3.

Let Ek be the family of equations containing at most 2k occurrences of the
unknown X and possessing finitely many solutions. In this section we prove the
following theorem.

Theorem 4. If e ∈ Ek, then it possesses at most 8 log k + O(1) solutions. A
solution set of an equation in this class can be found in linear time.

Consider e ∈ Ek. If it is not irreducible, then it splits into irreducible equations,
each of which contains at most 2k occurrences of X . Hence, it is enough to
consider irreducible equations of the form

A0XA1 · · ·Ak−1X = XB0XB1 · · ·XBk−1.

Assume additionally that |Bk−1| ≥ |A0|, the other case being symmetric.
Denote by B(x) the word xB0xB1x · · ·xBk−2x. Similarly, denote by A(x) the

word xA1xA2 · · ·xAk−1x. We divide all solutions of e into two sets: the solutions
x such that |B(x)| ≤ |A0| and the solutions x such that |B(x)| > |A0|.

We omit the detailed proofs. The idea in both of these cases is first, using
Proposition 2, to find a length bound β, such that there is only one solution
with the length of at least β . Or alternatively β is a (partial) period of some Bl.
It could be a period of Bl or it might break somewhere inside Bl. In either case it
limits the number of solutions with at least this size to one. Last, another bound
α = β

kγ is found, and using Propositions 3 and 4 we can deduce, that there are
only 2γ log k solutions with length in range [α, β] and these can be checked in
linear time. We prove that there is no solution of length smaller than α. In the
second case we actually need another such pair (α′, β′) of bounds, before we are
done.

Our proof is constructive in the sense that we are able to find a solution set
of the equation in linear time.
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Abstract. Systems of equations of the form X = Y + Z and X = C, in
which the unknowns are sets of natural numbers, “+” denotes element-
wise sum of sets S +T = {m+n |m ∈ S, n ∈ T}, and C is an ultimately
periodic constant, have recently been proved to be computationally uni-
versal (Jeż, Okhotin, “Equations over sets of natural numbers with ad-
dition only”, STACS 2009). This paper establishes some limitations of
such systems. A class of sets of numbers that cannot be represented by
unique, least or greatest solutions of systems of this form is defined, and
a particular set in this class is constructed.

1 Introduction

Equations with languages as unknowns, or language equations, occur in for-
mal language theory quite often. In particular, finite automata and context-free
grammars can be regarded as systems of language equations with states or non-
terminal symbols as unknowns. A survey of various results on language equations
has recently been given by Kunc [6].

The first connection between language equations and Turing computability
was found by Charatonik [1], who established undecidability of testing whether
a given system of equations using concatenation and any Boolean operations has
no solutions. A decade later Okhotin [10] showed that this problem is actually
complete for recursively enumerable (r.e.) sets, while the families of languages
representable by unique, least and greatest solutions of such language equations
are exactly the recursive, the r.e and the co-r.e. sets, respectively.

Over time it was discovered that progressively simpler types of language equa-
tions possess computational universality. First it was shown [11] that systems
of equations ϕ(X) = ψ(X) remain computationally complete if the operations
in ϕ, ψ are restricted to union and concatenation. Kunc [5] has constructed
an ultimately small computationally universal language equation LX = XL,
where L is a finite constant, for which the greatest solution is non-recursive. Jeż
and Okhotin [3] extended computational completeness of language equations
ϕ(X) = ψ(X) (in which the operations are union and concatenation) to the
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case of a unary alphabet Σ = {a}. Recently, Jeż and Okhotin [4] proved that
these equations remain computationally universal if the only allowed operation
is concatenation, while the alphabet remains unary.

As formal languages over a unary alphabet can be regarded as sets of nat-
ural numbers, these language equations become equations over sets of num-
bers. The operation of concatenation accordingly represents addition of sets
S + T = {m + n | m ∈ S, n ∈ T }. The properties of sets of natural num-
bers under this operation is a common subject of studies ranging from additive
combinatorics [15] to computational complexity investigated by Stockmeyer and
Meyer [14] and McKenzie and Wagner [8].

The recent results of Jeż and Okhotin [3,4] show that equations over sets
of numbers with addition only can represent a certain encoding σ(S) of every
recursive (r.e., co-r.e.) set S by a unique (least, greatest, respectively) solution.
This encoding contains a number 16n + 13 if and only if n ∈ S, while the rest
of the numbers are defined by a simple pattern. A question remains, whether an
arbitrary recursive, r.e. or co-r.e. set of numbers can be specified by equations
using only addition without any encoding? This paper settles this question by
constructing a computationally easy set of numbers that is not representable.

Only two negative results of this kind are known for any nontrivial families
of equations over sets of numbers. Okhotin and Yakimova [13] constructed a
set of numbers not representable by systems of equations of the form Xi =
ϕi(X1, . . . , Xn) (1 � i � n), where ϕi contain addition and complementation.
Okhotin and Rondogiannis [12] established the limitations of one-variable equa-
tions X = ϕ(X) using addition, union and intersection, which correspond to
conjunctive grammars [9,2] with a single nonterminal symbol.

This paper starts with showing that the approach of Okhotin and Rondogian-
nis [12] based upon the density of sets is not applicable to unresolved equations of
the form ϕ = ψ: in Section 3 it is shown that these equations can represent both
dense and sparse sets. Then a new class of non-representable sets is proposed in
Section 4: these are sets that are both prime (in the sense of having no nontrivial
representations as sums) and fragile (meaning that every nontrivial sum with
another set is co-finite), and it is shown that no such set is representable by a
unique, least or greatest solution of any system using addition and ultimately
periodic constants. Finally, a particular fragile and prime set is constructed in
Section 5, which constitutes a non-representable example.

2 Systems of Equations

Let N = {0, 1, 2, . . .} be the set of natural numbers including 0, and let S, T ⊆ N
be its subsets. The sum of these sets is the set S +T = {m+ n |m ∈ S, n ∈ T }.

The subject of this paper are systems of equations of the form⎧⎪⎨⎪⎩
ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)

...
ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

(*)
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where the unknowns Xi are subsets of N and every expression ϕj , ψj is a sum
of variables and ultimately periodic constants. A solution of such a system is a
vector (S1, . . . , Sn) with Si ⊆ N, such that the substitution Xi = Si turns each
equation into an equality.

Define a partial order of componentwise inclusion on such vectors by
(S1, . . . , Sn) 4 (S′

1, . . . , S
′
n) if Si ⊆ S′

i for all i. For systems with multiple solu-
tions, there is sometimes the least or the greatest solution with respect to this
order.

If equations over sets of numbers may use, besides addition of sets, the oper-
ation of set-theoretic union, then the following result on representation of sets
by such equations is known:

Theorem 1 (Jeż, Okhotin [3]). For every recursive (r.e., co-r.e.) set S ⊆ N
there exists a system (*) with ϕj , ψj using singleton constants and the operations
of union and addition, which has a unique (least, greatest, respectively) solution
with X1 = S.

As a matching upper bound, unique (least, greatest) solutions of equations over
sets of numbers with any Boolean operations and addition are known to be
recursive (r.e., co-r.e., respectively), so this result precisely characterizes the
families of sets representable by solutions of such equations.

For systems of equations over sets of numbers with addition as the only op-
eration, a computational universality result was recently established by Jeż and
Okhotin [3]. The idea was to take any recursive (r.e., co-r.e.) set S and consider
its encoding: another set S′ with 16n+ 13 ∈ S′ if and only if n ∈ S. Then it was
proved that any system as in Theorem 1 (that is, with the operations of union
and addition) can be simulated by another system using addition only, which
manipulates such encodings of sets instead of the sets in their original form. This
encoding of sets is defined as follows.

Definition 1. For each S ⊆ N and i ∈ {0, 1, . . . , 15},

τi(S) = {16n + i | n ∈ S}.

For every set S ⊆ N, its encoding is the set

σ(S) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(S).

Note that the role of each number in this encoding depends upon its value
modulo 16: all numbers equal to 6, 8, 9 or 12 modulo 16 are always in σ(S), the
numbers equal to 13 modulo 16 represent the encoded set S, and 0 ∈ σ(S) is
the only extra number. Let us introduce some related terminology. For any set
S′ ⊆ N, the subset S′ ∩ τi(N) is called the ith track of S′. Track i is said to be
empty (full) if S′ ∩ τi(N) = ∅ (τi(N) ⊆ S′, respectively).

The first step of the construction used to establish computational complete-
ness of these equations is checking the encoding. A special equation is con-
structed, which has the set of solutions equal to the set of all valid encodings.
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Lemma 1 ([4]). A set X ⊆ N satisfies an equation

X + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}
τi(N + 1) ∪ {11}

if and only if X = σ(S) for some S ⊆ N.

Once it is ensured that all variables represent some sets encoded by σ, both the
addition and the union of the encoded sets can be represented by addition of
encodings as follows:

Lemma 2 ([4]). For all sets X,Y, Z ⊆ N,

σ(Y ) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X

σ(Y ) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X.

The given equations lead to the following general result on the expressive power
of equations using only addition:

Theorem 2 (Jeż, Okhotin [4]). For every recursive (r.e., co-r.e.) set S ⊆ N
there exists a system of equations⎧⎪⎨⎪⎩

ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

with ϕj , ψj using the operation of addition and ultimately periodic constants,
which has a unique (least, greatest, respectively) solution with Xi = σ(Si) for
some Si ⊆ N, of which S1 = S.

In plain words, every set that can theoretically be represented by equations over
sets of numbers, can be represented modulo a simple encoding. This leaves open
the question of whether all such sets can be represented as they are, without
using any encoding. A negative answer will be given as the main result of this
paper.

In the following, it is convenient to assume that a system has all equations
of the form X = Y + Z or X = C, where X,Y, Z are variables and C ⊆ N is
an ultimately periodic constant. Any system can be decomposed to this form by
adding auxiliary variables representing subexpressions.

3 Representation of Dense and Sparse Sets

In a recent paper on one-variable equations X = ϕ(X) using union, intersec-
tion and addition [12], two classes of sets non-representable by such equations
were identified. These were sparse sets growing faster than exponential, such as
{n! | n � 1}, as well as non-periodic dense sets whose complements grow faster
than linear. However, in the case of our equations it turns out that sets of both
forms can be represented, which will be demonstrated in this section.
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Definition 2. A set S ⊆ N is sparse (dense) if the limit limn→∞
|S∩{0,...,n−1}|

n
exists and equals 0 (1, respectively).

One can note that a set is dense if its complement is sparse.
The existence of representable non-periodic dense sets easily follows from the

calculations of Jeż and Okhotin [4].

Lemma 3. If S is a recursive (r.e., co-r.e.) set, then S′ = σ(S)+ σ(S)+ {0, 2}
is a set representable by a unique (least, greatest, respectively) solution. If S is
dense, then S′ is also dense.

Proof. The set σ(S) is representable according to Theorem 2, and so is the sum
σ(S) + σ(S) + {0, 2}. The form of such a sum has already been calculated [4,
Tbl. 3]:

S′ = τ13(S) ∪
⋃

i∈{0,2,6,8,9,10,11,12,14,15}
τi(N) ∪

⋃
i∈{1,3,4,5,7}

τi(N + 1).

The only numbers greater than 16 in the complement of S′ are of the form
16n + 13, where n /∈ S. If S is dense, it follows immediately that S′ is dense as
well. ��

For instance, according to this lemma, such a set as N \ ({16n2 + 13 | n � 0} ∪
{1, 3, 4, 5, 7}) is representable by a unique solution of a system.

Representing sparse sets requires a more elaborate construction on top of the
constructions of Theorem 2. It will now be proved that all recursive, r.e. and
co-r.e. sets of numbers can be represented by equations using a new encoding π :
2N → 2N, which is much simpler than the encoding σ used by Jeż and Okhotin [4],
and which in particular does not use any full tracks. The construction is based
upon the known equations for σ(S) [4].

Lemma 4. Assume 0 ∈ S. If S is a recursive (r.e., co-r.e.) set, then π(S) =
{0} ∪ τ15(S) is a set representable by a unique (least, greatest, respectively) so-
lution. Furthermore, if S is sparse, then π(S) is sparse as well.

Proof. The question is how to represent π(S) for a given S. By Theorem 2,
the set σ(S) is representable by a certain system of equations with a variable
X = σ(S). Let Y be a new variable. The goal is to construct two equations: one
equation with the set of solutions Y = π(Y0), for all Y0 ⊆ N with 0 ∈ Y0, will
check that Y represents a valid encoding of some set, while the other equation
should ensure that the sets X = σ(S) and Y = π(S) are encodings of the same
set S. The resulting system of equations will have Y = π(S) in its unique, least
or greatest solution.

The condition of Y being a valid encoding π(S) of some set S with 0 ∈ S is
represented by the following equation:

Y + (τ0(N) ∪ {1}) = τ0(N) ∪ {1} ∪ τ15(N)
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Let Y satisfy the equation. Then 0 ∈ Y , since 0 ∈ τ0(N) ∪ {1} ∪ τ15(N). For all
n ∈ Y \ {0} it holds that n, n + 1 ∈ τ0(N) ∪ {1} ∪ τ15(N). This can be the case
only if n ≡ 15 (mod 16). Furthermore 15 ∈ Y , because 15 ∈ τ0(N)∪{1}∪τ15(N).
It follows that Y = π(S) for some S with 0 ∈ S.

Conversely, let Y = π(S) and substitute this value into the equation as follows:

π(S) + (τ0(N) ∪ {1}) = ({0} ∪ τ15(S)) + (τ0(N) ∪ {1})
= τ0(N) ∪ {1} ∪ (τ15(S) + τ0(N)︸ ︷︷ ︸

=τ15(N)

) ∪ τ0(S + 1)︸ ︷︷ ︸
⊆τ0(N)

.

The third component of the last expression equals τ15(N) because 0 ∈ S, while
the fourth component is subsumed by τ0(N). Accordingly, the expression equals
τ0(N) ∪ {1} ∪ τ15(N), and hence the equation holds for Y .

The correspondence between the encodings σ and π is enforced by the follow-
ing equation:

X +
( ⋃

i∈{0,1,4,5,8,10,
11,12,13,14}

τi(N) ∪ {2}
)

= Y +
(
{0} ∪

⋃
i∈{1,...,14}\{3}

τi(N)
)

It is claimed that if X is a σ-encoding of some set and Y is a π-encoding of
some set, then they must be encodings of the same set. Formally, X = σ(X̂),
Y = π(Ŷ ) with 0 ∈ Ŷ is a solution of this equation if and only if X̂ = Ŷ .

Consider the left-hand side of the equation. Since 0 ∈ X , the tracks 0, 1, 4, 5,
8, 10, 11, 12, 13 and 14 in the sum are full. Track 2 is full for the reason that X
contains full track 6 and the constant set in the left-hand side contains full track
12, which sum up to τ6(N)+τ12(N) = τ2(N+1), while the number 2 also belongs
to the sum. Similarly, track 3 in the sum contains τ8(N) + τ11(N) = τ3(N + 1),
though the number 3 is not included in the sum, Tracks 6 and 9 are full in X , so
they are full in the sum also. Track 7 in the sum contains τ6(N)+ τ1(N) = τ7(N).
All tracks in the sum except 15 have been considered. The track 15 contains
the set X̂, since τ13(X̂) + {2} = τ15(X̂). Other tracks in X do not contribute
anything to track 15, since 15 − {0, 6, 8, 9, 12} = {3, 6, 7, 9, 15} and all these
tracks are empty in the other summand. These considerations yield:

X +
( ⋃

i∈{0,1,4,5,8,10,
11,12,13,14}

τi(N)∪ {2}
)

=
( ⋃

i∈{0,1,...,14}\{3}
τi(N)

)
∪ τ3(N + 1)∪ τ15(X̂).

Then consider the right-hand side. Since 0 ∈ Y , the tracks in {1, . . . , 14}\{3}
are full in the sum. Track 0 is full, since {15} + τ1(N) = τ0(N + 1) and the
number 0 is included. Track 3 is given by {15} + τ4(N) = τ3(N + 1). Finally,
τ15(Ŷ ) + {0} = τ15(Ŷ ) specifies the content of track 15. Combining these gives:

Y +
(
{0} ∪

⋃
i∈{1,...,14}\{3}

τi(N)
)

=
( ⋃

i∈{0,1,...,14}\{3}
τi(N)

)
∪ τ3(N + 1) ∪ τ15(Ŷ ).
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Since the sets in both sides are equal, the sets X̂ and Ŷ must be the same, and
so the claim about the correspondence of these two encodings σ and π has been
proved. Since σ(S) is representable for S ⊆ N with 0 ∈ S, so is π(S).

To complete the proof of the lemma, let S be sparse. Clearly, π(S) = {0} ∪
{16n + 15 | n ∈ S} is sparse as well. ��

For example, though this lemma does not prove that the exact set {n! |n � 1} is
representable, it asserts representability of a very similar sparse set π({n! | n �
1} ∪ {0}) = {0, 15} ∪ {16n! + 15 | n � 1}.

More generally, one can note that for every recursive, r.e. or co-r.e. set S, the
set π(S) grows asymptotically as fast as S, so, like in the case of equations with
union, intersection and addition with multiple variables [2, Thm. 6], sets with
any theoretically possible growth rate can be represented.

4 Prime and Fragile Sets

In this section a class of non-representable sets is introduced, which is defined
by the conditions of being prime and of being fragile. Prime sets of numbers
are defined in a usual sense, with respect to the monoid of sets with addition as
product.

Definition 3. A set S ⊆ N is prime if S = S1 + S2 implies S1 = {0} or
S2 = {0}.

Fragility of a set means that the sum of this set with any set containing at least
two elements is co-finite.

Definition 4. A set S ⊆ N is fragile if S+{n1, n2} is co-finite for all n1, n2 ∈ N
with n1 �= n2.

In other words, for every k � 1 there are only finitely many n ∈ N such that
n, n+k /∈ S. Assuming that S is not co-finite, this is equivalent to saying that the
difference between two consecutive numbers not in S tends to infinity. Clearly,
every fragile set is dense, but not vice versa: the set N \ {2n, 2n + 1 | n � 0} is
dense but not fragile.

There are no particular problems with representing prime sets or fragile sets by
these equations. A fragile set can be represented as in Lemma 3: note that if the
set S is fragile, then S′ = σ(S) + σ(S) + {0, 2} is fragile as well. Representable
prime sets are also known: in fact, all sets represented in Theorem 2 and in
Lemma 4 are prime:

Lemma 5. For every set S ⊆ N, the sets σ(S) and π(S) (with 0 ∈ S in the
latter case) are prime.

Proof. Let 0 ∈ S and suppose π(S) = X+Y for some X,Y ⊆ N. Then 0 ∈ X,Y .
Since 15 ∈ π(S), it has to be in one of X and Y , say X . If Y contains any number
n > 0, then n ∈ π(S), and thus n ≡ 15 (mod 16). But in this case 15 + n ≡ 14
(mod 16), and cannot be in π(S). So Y = {0} and π(S) is prime.

Proof for the primality of σ(S) is also straightforward, and is omitted. ��
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Note that the representable prime set σ(S) is not fragile, since it contains empty
tracks, while the representable fragile set σ(S) + σ(S) + {0, 2} is not prime by
construction. It is indeed the case that if a set is both prime and fragile, then it
is not representable.

Theorem 3. Let S be prime and fragile. Then it is not representable by a least
or a greatest solution of any system.

The idea of the proof is that for every solution with a prime and fragile compo-
nent X = S there exists a smaller solution, in which some number is excluded
from X , as well as a greater solution with one extra number in X . Exclusion
of a number from a prime and fragile component of a solution is done in the
following lemma.

Lemma 6. If a system has a solution with a component X = S, where S is a
prime and fragile set, then the system has a smaller solution with X = S \ {n0},
for some n0 ∈ S.

Proof. Assume without loss of generality that all equations in the system are
of the form X = Y + Z or X = C. Consider a solution, in which one of the
components is X0 = S, and possibly some other components have values of the
form Si = S+{i}: let them be denoted X1 = S1, . . . , Xm̂ = Sm̂ for some m̂ � 0,
and let Y1 = T1, . . . , Yn̂ = Tn̂ be the rest of the variables, whose values are
not of the form S + {i} for any i. It can be assumed that all components of the
solution are nonempty.

The smaller solution is defined as follows: Let k be the maximum of the
differences of the two smallest numbers in any V , with |V | � 2, that appears
in the solution. Since S is fragile, there is a number �, such that every pair of
missing numbers m,n /∈ S with n > m � � satisfies n − m > k. Let �′ � � be
such that {�′, �′ + 1, . . . , �′ + 2k} ⊆ S. Such �′ exists by the fragility of S.

The new solution is Xi = S′
i = (S \ {�′ + k}) + {i} for 0 � i � m̂ and Yj = Tj

for 1 � j � n̂. As compared to Si, one more number is missing from S′
i, but it

is different by at least k + 1 from any other missing number. Thus the above
property is inherited by S′

i: every pair m,n /∈ S′
i with n > m � � + i satisfies

n−m > k.
It has to be shown that the new solution satisfies the equations. Consider every

equation in the system. If none of the variables Xi are used in the equation, then
the new solution clearly satisfies it, since the variables Yj did not change their
values. So consider each equation containing an instance of some Xi; only three
cases are possible:

Claim 6.1. The equations that contain some Xi are of the form

1. Xi = Xi1 + Yj , with Tj = {i2} and i = i1 + i2,
2. Yj = Xi + Yj1 , with |Tj1 | � 2 or
3. Yj = Xi + Xi1 .
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Proof. Let Xi be on the left-hand side of the equation. The right-hand side of
this equation cannot be a constant, since S is not ultimately periodic. So the
equation is of the form Xi = U + V .

Then S + {i} is factorized as R1 +R2 for some sets R1, R2 ⊆ N. Let i1 and i2
be the smallest elements of R1 and R2, respectively. Then i1 + i2 is the smallest
element of S + {i}, which must be i, as 0 ∈ S by the primality of S. Therefore,
S is factorized as (R1 − i1) + (R2 − i2), and since S is prime, R2 − i2 = {0},
that is, R2 = {i2} and R1 = S + {i1} = Si1 . Then the equation is of the form
Xi = Xi1 + Yj , where Tj = {i2}.

If the equation is Yj = Xi + V , and if V = Yj1 , then it must be the case that
|Tj1 | � 2: otherwise, Tj1 = {i1} for some i1 ∈ N and Tj = Si + {i1} = Si+i1 ,
which contradicts the assumption that Tj /∈ {Si | 0 � i � m̂}.

The only case left is Yj = Xi + Xi1 . ��

So there are three cases to consider:

1. Let Xi be on the left-hand side of the equation, so that it is of the form
Xi = Xi1 + Yj . Then the solution is Si = Si1 + Tj with Tj = {i2} and
i = i1 + i2. The equality S′

i = S′
i1

+ {i2} holds by definition of the sets S′
i.

2. Let the equation be of the form Yj = Xi + Yj1 , with |Tj1 | � 2. The goal is
to show that S′

i + Tj1 = Si + Tj1 . Clearly, S′
i + Tj1 ⊆ Si + Tj1 . Consider any

number m + n with m ∈ Si and n ∈ Tj1 . If m �= i + �′ + k, then m ∈ S′
i

by the definition of S′
i and thus m + n ∈ S′

i + Tj1 . Let m = i + �′ + k and
let n1 < n2 be the two smallest numbers in Tj1 . Then n2 − n1 � k, by the
definition of k.

Consider two numbers m + n− n1 and m + n− n2. The former is clearly
greater than � + i, since n1 � n. For the latter number, note that n− n2 �
n−n1−k and thus m+n−n2 � (i+�′+k)+(n−n1−k) = i+�′+n−n1 � �+i.
Since both numbers are greater or equal to � + i and their difference is at
most k, it could not be the case that both of them are missing from S′

i.
Therefore, either (m+n−n1)+n1 ∈ S′

i +Tj1 or (m+n−n2)+n2 ∈ S′
i +Tj,

which proves that m + n is in S′
i + Tj1 .

3. Finally consider the case Yj = Xi + Xi1 . The solution is Tj = Si + Si1 . It is
to be shown that Tj = S′

i + S′
i1 . Obviously S′

i +S′
i1 ⊆ Si + Si1 . To prove the

converse, assume that m ∈ Si and n ∈ Si1 . If m ∈ S′
i, then the argument

used in the previous case applies, with S′
i1

instead of Tj1 . The case of n ∈ S′
i1

is handled symmetrically.
Suppose m /∈ S′

i and n /∈ S′
i1 . Then m = i + �′ + k and n = i1 + �′ + k.

Now m− 1 ∈ S′
i and n + 1 ∈ S′

i1
, so m + n = (m− 1) + (n + 1) ∈ S′

i + S′
i1

.
Thus Tj = S′

i + S′
i1

.

It follows that the system of equations is satisfied and the Lemma is proved. ��

The next lemma is in some sense symmetric to Lemma 6, as it allows augmenting
a prime and fragile component of any solution with an extra number. This, in
particular, shows that a greatest solution cannot contain components that are
both prime and fragile.
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Lemma 7. If a system has a solution with a fragile and prime component X =
S, then the system has a greater solution with X = S ∪ {n0}, for some n0 /∈ S.

Proof (sketch). As in the proof of Lemma 6, let the system of equations have
a solution X0 = S, X1 = S1, . . . , Xm̂ = Sm̂, Y1 = T1, . . . , Yn̂ = Tn̂, where
Si = S + {i} and Tj /∈ {Si | 0 � i � m̂}.

For every equation of the form Yj = Xi + V , where V is either a variable Xj

or a variable Yj with |Tj| � 2, the sum Si + V is co-finite as Si is fragile. Let k
be the least number with � ∈ Si + V for all � � k and let k0 be the maximum of
all k’s for all such equations. Let n0 � k0 and n0 /∈ S.

In the new solution this number n0 is added to S: Xi = S′
i = (S∪{n0})+{i} =

Si ∪ {n0 + i} and Yj = Tj for all applicable i and j. To see that this assignment
is a solution, only equations where some Xi occurs have to be considered, since
the rest stay as they were. As in the proof of the previous lemma, see Claim 6.1,
there are three cases to consider:

1. For an equation Xi = Xi1 + Yj the solution is Si = Si1 + Tj with Tj =
{i2} and i = i1 + i2. The equation is satisfied for the new solution as well:
(S ∪ {n0}) + {i} = (S ∪ {n0}) + {i1 + i2} = ((S ∪ {n0}) + {i1}) + {i2}.

2. In the case Yj = Xi + Yj1 with |Tj1 | � 2, note that, since n0 � k0, every
number greater or equal to n0 is in Tj by the choice of k0. Then S′

i + Tj1

equals

(Si∪{n0+i})+Tj1 = (Si+Tj1)∪({n0+i}+Tj1) = Tj∪({n0 + i} + Tj1)︸ ︷︷ ︸
⊆Tj

= Tj .

3. In the final case the equation is Yj = Xi+Xi1 . Again � ∈ Tj for every � � n0,
and S′

i + S′
i1

can be transformed as

(Si ∪ {n + i}) + (Si1 ∪ {n0 + i1}) =
= (Si + Si1)︸ ︷︷ ︸

=Tj

∪ (Si + {n0 + i1})︸ ︷︷ ︸
⊆Tj

∪ (Si1 + {n0 + i1})︸ ︷︷ ︸
⊆Tj

∪ ({n0 + i} + {n0 + i1})︸ ︷︷ ︸
⊆Tj

,

which equals Tj . ��

It has thus been shown that any set which is both prime and fragile is non-
representable by systems of equations. It remains to show that any such sets
exist. A set having both properties is constructed in the following section.

5 A Fragile Prime Set

In this section a prime and fragile subset of natural numbers is constructed. First
some concepts that are used in the construction are defined.

For a set X ⊆ N the infinite word w(X) = x0x1x2 · · · ∈ {0, 1}ω, where

xk =
{

1, if k ∈ X
0, if k /∈ X,

is called the characteristic word of X .
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The relation � between infinite words over {0, 1} defined by

x0x1x2 . . . � y0y1y2 . . . , iff xk � yk for all k ∈ N

is a partial order. It corresponds to set inclusion over subsets of N in the sense
that w(X) � w(Y ) if and only if X ⊆ Y , for X,Y ⊆ N. A similar relation is
defined for finite words of matching length as x1 . . .xn � y1 . . . yn if xi � yi for
each i.

A finite word w is a �-factor of a word v ∈ {0, 1}∗∪{0, 1}ω, if there are words
x, w′ and y, such that v = xw′y, |w′| = |w| and w � w′.

Let u = 100011110000 and vk = (1k0)2
k

for all k � 2, and consider a set S
defined by the characteristic word

w(S) = s = s0s1s2 · · · = uv2v3v4 · · · = 100011110000
∞∏

k=2

(1k0)2
k

.

It will now be proved that this has the desired properties.

Lemma 8. The set S is fragile and prime.

Proof. Fragility is obvious, since starting from vk the distance between any two
zeroes is at least k + 1.

To prove the primality of S, suppose that S = X +Y , for some X,Y ⊆ N. Let
w(X) = x = x0x1x2 . . . and w(Y ) = y = y0y1y2 . . . be the characteristic words
of X and Y .

Since S = X + Y , it holds that X + {k} ⊆ S for all k ∈ Y . This is equivalent
to 0kx � s. The characteristic word for S has 10001 as a prefix, so 0 and 4 are
the two smallest numbers in S. One of the sets, X or Y , must contain them
both. Let it be X , so that x begins with 10001.

If the factorization S = X+Y is nontrivial, then there is the smallest nonzero
number m ∈ Y . Then m,m + 4 ∈ S, and it is easy to see that m � 12: indeed,
by the form of u, there is no pair si = si+4 = 1 for 1 � i � 11. Consequently, u
is a prefix of x.

Now xi = si for i < m and 0mx = 0mu · · · � s. Since u = 100011110000, we
have sm+4 = sm+5 = sm+6 = sm+7 = 1. Then

m � 20 = |uv2v3| − 4, (1)

because v4 is the first of the words vk to have 1111 as a �-factor. Let the first
m symbols of x be

uv2 · · · vnv,

where n � 2 and vn+1 = vv′. It follows that uv2 · · · vn is a �-factor of v′vn+2,
since |uv2 · · · vn| = n · 2n+1 + 8 < (n + 3) · 2n+2 = |vn+2|. In particular, there
is a factor w of v′vn+2 with |w| = |vn| and vn � w. Since the distance between
consecutive occurences of zero in v′vn+2 is at most n+3, and |w| = (n+1) ·2n >
2(n+ 2)+ 1, it follows that w contains at least two occurrences of zero. If w has
a zero in some position, then vn has to have a zero in the same position. Since
the distance between consecutive zeroes is n + 1 in vn and n + 2 or n + 3 in w,
a contradiction is obtained. It follows that Y = {0} and S is prime. ��
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A fragile and prime set was constructed, witnessing that the class considered in
the previous section is not empty. Therefore, by Theorem 3, this set S is not
representable by equations with ultimately periodic constants and the operation
of addition. Since S is obviously recursive, and in fact computationally very easy,
this shows that these equations are less powerful than the equations equipped
with addition and union.
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Abstract. In this note we solve a problem left open in [2]: namely, we
show that the iterated superposition of a regular language is regular. The
proof of this result is based on two facts: (i) the iterated superposition
of a language equals the restricted iterated superposition of the same
language, (ii) the sequence formed by iteratively applying the restricted
superposition can be precisely defined. We then define the restricted
superposition distance between a word and a language and prove that
this distance can be computed in time O(n2f(n)), where the language is
accepted in time O(f(n)) in the RAM model. Finally, we briefly discuss
the necessity of the n2 factor for the classes of regular and context-free
languages.

1 Introduction

A DNA molecule consists of a double strand, each DNA single strand being
composed of nucleotides which differ from each other by their bases: A (adenine),
G (guanine), C (cytosine), and T (thymine). The two strands which form the
DNA molecule are kept together by the hydrogen bond between the bases: A
always bonds with T, while C bonds with G. This paradigm of Watson-Crick
complementarity is one of the main concepts used in defining the formal operation
of superposition investigated in [2].

Two other biological principles used as sources of inspiration in that paper
are those of annealing and lengthening DNA by polymerase, respectively. The
first principle refers to fusing two single stranded molecules by complementary
base pairing while the second one refers to adding nucleotides to one strand (in a
more general setting to both strands) of a double-stranded DNA molecule. The
former operation requires a heated solution containing the two strands which
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is cooled down slowly. The latter one requires two single strands such that one
(usually called primer) is bonded to a part of the other (usually called tem-
plate) by Watson-Crick complementarity and a polymerization buffer with many
copies of the four nucleotides that polymerase will concatenate to the primer by
complementing the template.

We now informally explain the superposition operation and how it can be
related to the aforementioned biological concepts. Let us consider the following
hypothetical biological situation: two single stranded DNA molecules x and y
are given such that a suffix of x is Watson-Crick complementary to a prefix
of y or a prefix of x is Watson-Crick complementary to a suffix of y, or x is
Watson-Crick complementary to a subword of y. Then x and y get annealed in a
DNA molecule with a double stranded part by complementary base pairing and
then a complete double stranded molecule is formed by DNA polymerase. The
mathematical expression of this hypothetical situation defines the superposition
operation. Assume that we have an alphabet and a complementary relation
on its letters. For two words x and y over this alphabet, if a suffix of x is
complementary to a prefix of y or a prefix of x is complementary to a suffix
of y, or x is complementary to a subword of y, then x and y bond together
by complementary letter pairing and then a complete double stranded word is
formed by the prolongation of x and y. Now both words, namely the upper one,
formed by the prolongation of x, and lower one, formed by the prolongation of y,
are considered to be the result of the superposition applied to x and y. Of course,
all these phenomena are considered here in an idealized way. For instance, we
allow polymerase to extend the shorter strand in either end (3’ or 5’ in DNA
biochemistry) as well as in both, despite that in biology almost all polymerase
extend in the direction from 5’ to 3’.

As shown in [2], this operation resembles some other operations on words:
sticking investigated in [5,3,9] (particular polyominoes with sticky ends are com-
bined provided that the sticky ends are Watson-Crick complementary), PA-
matching considered in [7] which is related to both the splicing and the an-
nealing operations, and the superposition operation introduced in [1] (two words
which may contain transparent positions are aligned one over the other and the
resulting word is obtained by reading the visible positions as well as aligned
transparent positions). The reader interested in related bio-inspired operations
is referred to [8] and [6].

In this work we propose a slightly different variant of the operation consid-
ered in [2]. It turns out that both operations coincide when they are applied to
a language. This variant allows us to solve a problem left open in [2]: namely, we
show that the iterated superposition of a regular language is regular. The proof
of this result is based on two facts: (i) a sort of normal form which implies that
the iterated superposition of a language equals the restricted iterated superpo-
sition of the same language, (ii) the sequence formed by iteratively applying the
restricted superposition can be precisely defined. We then define the restricted
superposition distance between a word and a language and prove that this dis-
tance can be computed in time O(n2f(n)), where the language is accepted in
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time O(f(n)) in the RAM model. Finally, we briefly discuss the necessity of the
n2 factor for the classes of regular and context-free languages.

2 Preliminaries

We assume the reader to be familiar with the fundamental concepts of formal
language theory and automata theory, particularly the notions of grammar and
finite automaton [10].

An alphabet is always a finite set of letters. For a finite set A let card(A)
denote the cardinality of A. The set of all words over an alphabet V is denoted
by V ∗. The empty word is written ε; moreover, V + = V ∗ \ {ε} or equivalently
V + = V V ∗. Given a word w over an alphabet V , let |w| denote the length of w.
If w = xyz for some x, y, z ∈ V ∗, then x, y, z are called prefix, subword, suffix,
respectively, of w.

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet
considered in this paper is a subset of Ω. In other words, Ω is the universe of the
languages in this paper, i.e., all words and languages are over alphabets that are
subsets of Ω. An involution over a set S is a bijective mapping σ : S −→ S such
that σ = σ−1. Any involution σ on Ω such that σ(a) �= a for all a ∈ Ω is said to
be here a Watson-Crick involution. Despite that this is nothing more than a fixed
point-free involution, we prefer this terminology since the superposition defined
later is inspired by the DNA lengthening by polymerase, where the Watson-Crick
complementarity plays an important role. Let · be a Watson-Crick involution
fixed for the rest of the paper. The Watson-Crick involution is extended to a
morphism from Ω∗ to Ω∗ in the usual way. We say that the letters a and a are
complementary to each other. For an alphabet V , we set V = {a | a ∈ V }. Note
that V and V can intersect and they can be, but need not be, equal. Remember
that the DNA alphabet consists of four letters, VDNA = {A, C, G, T }, which are
abbreviations for the four nucleotides and we may set A = T , C = G.

2.1 Non-iterated Superposition

Given two words x, y ∈ V + we define the following operations:

x 	 y = {uwv, uwv | x = uw, y = wv for some u, v ∈ V ∗, w ∈ V +}
x 
 y = {uwv, uwv | x = wv, y = uw for some u, v ∈ V ∗, w ∈ V +}
x�y = {uxv, y | y = uxv for some u, v ∈ V ∗}
x�y = {x, uyv | x = uyv for some u, v ∈ V ∗}.

Clearly, x 	 y = y 
 x and x�y = y�x for any pair of words x, y. Despite
this redundancy we prefer to work with these definitions because they allow a
simplification of the arguments we are to discuss.

We now define the superposition operation applied to the pair of words x, y ∈
V + as above, denoted by , as follows:

xy = (x 	 y) ∪ (x 
 y) ∪ (x�y) ∪ (x�y).
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The result of this operation applied to the two words x and y as above which
might be viewed as two single stranded molecules is the pair of words formed

by z and its complement z which form a double stranded molecule
z
z
. By this

operation, based on the Watson-Crick complementarity, we can generate a finite
set of words, starting from a pair of words, in which the contribution of a word to
the result need not be one subword, as happens in classical bio-operations of DNA
computing [8]. Note the difference between this operation and the superposition
operation defined in [2], where only the upper word is considered to be the result
of superposition.

We stress from the very beginning the mathematical character of the definition
proposed in [2]: nature cannot distinguish which is the upper or the lower strand
in the process of constructing a double stranded molecule from two single strands.
This drawback is avoided by the definition proposed here. Further, our model
reflects polymerase reactions in both 5’−→ 3’ and 3’−→ 5’ directions. Due to
the greater stability of 3’ when attaching new nucleotides, DNA polymerase can
act continuously only in the 5’−→ 3’ direction. However, polymerase can also
act in the opposite direction, but in short “spurts” (Okazaki fragments).

We extend this operation to languages by

L1L2 =
⋃

x∈L1,y∈L2

xy.

We write (L) instead of LL. It is plain that the superposition operation
proposed in [2] and that proposed here coincide when they are applied to a
language.

Note that superposition is not associative. Indeed, take the alphabet {a, b, a, b}
and the words x = ab, y = ba, z = aa. It is easy to see that (xy)z =
{abaa, abaa, aaba, aaba} while x(yz) = ∅.

2.2 Iterated Superposition

Given a language L we define the language obtained from L by unrestrictedly
iterated application of superposition. This language, called the unrestricted su-
perposition closure of L, is denoted by ∗

u(L) and defined by

0
u(L) = L,

i+1
u (L) = i

u(L) ∪ (i
u(L)), i ≥ 0,

∗
u(L) =

⋃
i≥0

i
u(L).

Clearly, ∗
u(L) is the smallest language containing L and closed under super-

position. More precisely, it is the smallest language K such that L ⊆ K and
(K) ⊆ K. In words, one starts with the words in L and applies superposition
iteratively to any pair of words previously produced. Note the lack of any re-
striction in choosing the pair of words. All the obtained words are collected in
the set ∗

u(L).
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We say that a family F of languages is closed under unrestrictedly iterated
superposition if ∗

u(L) is in F for any language L ∈ F .
We now recall from [2] another superposition closure of a language which

may be viewed as a “normal form” of iterated superposition. The restricted
superposition closure of L denoted by ∗

r(L) is defined in the following way:

0
r(L) = L,

i+1
r (L) = ((i

r(L))L) ∪ (i
r(L))

∗
r(L) =

⋃
i≥0

i
r(L).

Note the main difference between the unrestricted and restricted way of it-
erating superpositions. In the latter case, superposition takes place between a
word produced so far and an initial word only.

3 Iterated Superposition Preserves Regularity

Note that ∗
r(L) ⊆ ∗

u(L) for any language L. Surprisingly enough (remember
that  is not associative), we have an equality between the two superposition
closures of any language.

Theorem 1. [Normal Form Theorem][2] ∗
r(L) = ∗

u(L) for any language L.

This theorem allows us to use the notation ∗ when the way of iterating the
superposition does not matter. The problem of closure under iterated superpo-
sition of the class of regular languages was left open in [2]. We propose here an
affirmative answer to this question. To this aim, we need some preliminary re-
sults. The redundancy introduced in the definition of the superposition operation
turns out to be useful now. For two languages L1, L2 we define

(i) 
 (L1, L2) =
⋃

x∈L1,y∈L2

x 
 y,

(ii) 
0 (L1, L2) = L1,

(iii) 
i+1 (L1, L2) = 
 ((
i (L1, L2)), L2), i ≥ 0,

(iv) 
∗ (L1, L2) =
⋃
i≥0


i (L1, L2).

The language 	∗ (L1, L2) is defined analogously.

Lemma 1. For every language L and any integer k ≥ 1, the following relations
hold:

(k
r (L)\L) =

⋃
0≤n+m<k

	n (
m ((L), L), L) =
⋃

0≤n+m<k


n (	m ((L), L), L).



Some Remarks on Superposition 377

Proof. We prove the first relation only; the second one can be easily proved
analogously. It is plain that⋃

0≤n+m<k

	n (
m ((L), L), L) ⊆ ((k
r (L)) \ L).

Let w ∈ (k
r (L) \ L), we prove that w ∈ 	n (
m ((L), L), L) for some 0 ≤

n + m < k by induction on k. The assertion is immediately true for k = 1. A
simple observation makes the assertion true for k = 2 as well. Indeed, it is clear
that ((x�y) ∪ (x�y)) ⊆ (L) for any x ∈ (L) and y ∈ L.

Let w ∈ k+1
r (L) for some k ≥ 2; there exist x ∈ k

r (L) and y ∈ L such that
w ∈ xy. We distinguish four cases:

1. w ∈ x 	 y. By the induction hypothesis, x ∈ 	n (
m ((L), L), L) for some
0 ≤ n+m < k, hence w ∈ 	n+1 (
m ((L), L), L) with 0 ≤ n+1+m < k+1
holds.

2. w ∈ x 
 y. If x ∈ 	0 (
m ((L), L), L), then w ∈ 	0 (
m+1 ((L), L), L)
holds. Assume that x ∈ 	n (
m ((L), L), L) with n ≥ 1; it follows that
there exist u ∈ 	n−1 (
m ((L), L), L) and v ∈ L such that x ∈ u 	 v.
It further follows that {u, u} ⊆ n+m

r . As n + m < k, we infer that 

({u, u}, y) ⊂ k

r (L). Further, �({u, u}, y) ⊂ k
r (L) (see also the next item)

and w ∈ s 	 v for some s ∈ 
 ({u, u}, y). By the induction hypothesis,
s ∈ 	p (
q ((L), L), L) holds for some 0 ≤ p + q < k, therefore w ∈ 	p+1

(
q ((L), L), L) with 0 ≤ p + 1 + q < k + 1 holds as well.
3. w ∈ x�y. This case immediately leads to w ∈ k

r (L).
4. w ∈ x�y. This case immediately leads to w ∈ k

r (L) and we are done.
�

A direct consequence of this lemma is the following corollary.

Corollary 1. For every language L, the following relations hold:

∗
r(L) = 	∗ (
∗ ((L), L), L) ∪ L = 
∗ (	∗ ((L), L), L) ∪ L.

We still need one more result. We start with some additional notation. For
two words x, y we denote

x 	 1
2

y = {uwv | x = uw, y = wv for some u ∈ V ∗
1 , w ∈ V +

1 , v ∈ V ∗
2 }

x 
 1
2

y = {uwv | x = wv, y = uw for some u ∈ V ∗
2 , w ∈ V +

1 , v ∈ V ∗
1 }.

For two languages L1, L2 we define

(i) 
 1
2

(L1, L2) =
⋃

x∈L1,y∈L2

x 
 1
2

y,

(ii) 
0
1
2

(L1, L2) = L1,

(iii) 
i+1
1
2

(L1, L2) = 
 1
2

((
i
1
2

(L1, L2)), L2), i ≥ 0,

(iv) 
∗
1
2

(L1, L2) =
⋃
i≥0


i
1
2

(L1, L2).

The language 	∗
1
2

(L1, L2) is defined analogously.
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Lemma 2. For every language L the following relations hold:
1. 
∗

1
2

((L), L ∪ L) = 
∗ ((L), L).

2. 	∗
1
2

((L), L ∪ L) = 	∗ ((L), L).

Proof. We prove the first relation only; the second one can be shown analogously.
We first consider the inclusion 
∗

1
2

((L), L ∪ L) ⊆ 
∗ ((L), L).

Let w ∈ 
k
1
2

((L), L∪L); the inclusion immediately holds for k = 0. Assume

w ∈ 
k+1
1
2

((L), L ∪ L), there exist x ∈ 
k
1
2

((L), L ∪ L) and y ∈ (L ∪ L) such
that w ∈ x 
 1

2
y. If y ∈ L, then w ∈ 
∗ ((L), L) by the induction hypothesis.

If y ∈ L, then y ∈ L and w ∈ x 
 y which concludes the proof of this part as
soon as we note that x ∈ 
∗ ((L), L).

Conversely, let w ∈ 
k ((L), L). The converse inclusion holds for k = 0.
Assume w ∈ 
k+1 ((L), L); there exist x ∈ 
k ((L), L) and y ∈ L such that
w ∈ x 
 y. If w = uwv, where x = wv, y = uw, then w ∈ 
∗

1
2

((L), L ∪ L).

If w = uwv, where x = wv, y = uw, then w ∈ x 
 1
2

y. Since y ∈ L and
x ∈ 
k ((L), L), hence x ∈ 
∗

1
2

((L), L∪L) by the induction hypothesis. The
proof is now complete. �

Corollary 2. For every language L, the following relations hold:

∗
r(L) = 	∗

1
2

(
∗
1
2

((L), L∪L), L∪L)∪L = 
∗
1
2

(	∗
1
2

((L), L ∪L), L∪L) ∪L.

We are now ready to prove one of the main results of this note.

Theorem 2. ∗(L) is always regular for any regular language L. In other words,
the class of regular languages is closed under iterated superposition.

Proof. We start by recalling a result proved in [2], namely (L) is regular for
every regular language L. By the previous corollary, it suffices to prove that
	∗

1
2

(E, L ∪ L) is regular provided that E is regular.
Let L ⊆ V ∗ be a regular language; we assume that the deterministic finite

automaton A = (Q, V, δ, q0, F ) accepts L ∪ L. For every state q ∈ Q we de-
fine the regular language R(q) = (V ∪ V )∗{w | w ∈ V +, δ(q0, w) = q} ac-
cepted by the (not necessarily deterministic) finite automaton A(q) = (Q(q), V ∪
V , δ(q), s

(q)
0 , {s(q)

f }). Note that all automata A(q), q ∈ Q, have a single final state.
We now define the following left-linear grammar G = (N, V ∪ V ∪ {ZX | X ⊆

(Q(q) × Q(q)), q ∈ Q}, S, P ), where

N = {S} ∪ (
⋃
q∈Q

{[X, q], [X, q, q′] | X ⊆ (Q(q) × Q(q)), q′ ∈ Q})

∪(
⋃

q∈Q

{〈X, q〉, 〈X, q, q′〉 | X ⊆ (Q(q) × Q(q)), q′ ∈ Q}).

The set of productions P contains the following rules (each set of rules is
accompanied with some explanations):
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1. For every q ∈ Q, we add the complement of w as the suffix to the current word
provided that δ(q, w) ∈ F and the current word lies in R(q). We memorize
to check the last condition in the pair (s(q)

0 , s
(q)
f ) which must be completed

to obtain a non-deterministically guessed correct recognition.

S → [{(s(q)
0 , s

(q)
f )}, q] for all q ∈ Q, X ⊆ (Q(q) × Q(q))

[X, q] → [X, q, q′]a, if δ(q′, a) ∈ F, for all q, q′ ∈ Q, X ⊆ (Q(q) × Q(q))
[X, q, q′] → [X, q, q′′]a, if q′ ∈ δ(q′′, a), for all q, q′, q′′ ∈ Q, X ⊆ (Q(q) × Q(q))
[X, q, q] → X for all q ∈ Q, X ⊆ (Q(q) × Q(q)).

2. For every q ∈ Q, we add the complement of w as the suffix to the current
word provided that δ(q, w) ∈ F and the current word lies in R(q). Beside
memorizing to check the last condition in the pair (s(q)

0 , s
(q)
f ) as above we

simultaneously continue guessing the appropriate paths in all automata A(q′)

for q′ ∈ Q.

X → 〈X, q〉 for all q ∈ Q, X ⊆ (Q(q) × Q(q))
〈X, q〉 → 〈X ′, q, q′〉a, where

– δ(q′, a) ∈ F ,
– if (s(r), t(r) ∈ X for some r ∈ Q, then X ′ contains one pair (s(r), p(r))

such that t(r) ∈ δ(r)(p(r), a),

〈X, q, q′〉 → 〈X ′, q, q′′〉a, where

– δ(q′′, a) = q′,
– if (s(r), t(r) ∈ X for some r ∈ Q, then X ′ contains one pair (s(r), p(r))

such that t(r) ∈ δ(r)(p(r), a),

〈X, q, q〉 → X ∪ {(s(q)
0 , s

(q)
f )}.

3. X → ZX .

We claim 	∗
1
2

(E, L∪L) = s(L(G)), where s is a substitution s : (V ∪ V ∪ {ZX |
X ⊆ (Q(q) ×Q(q)), q ∈ Q})∗ −→ 2(V ∪V )∗ defined by s(a) = a for any a ∈ V ∪ V
and

s(ZX) = {w ∈ (V ∪ V )∗ | ∀q ∈ Q, ∀(s(q), t(q)) ∈ X, t(q) ∈ δ(q)(s(q), w)} ∩ E.

For s is a substitution by regular languages, it follows that the language 	∗
1
2

(E, L ∪ L) is regular. �
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4 Restricted Superposition Distance

In this section we discuss the following problem: Given a language L and a
word w ∈ ∗

r(L), compute the minimal value i such that w ∈ i
r(L). To this

aim, we first recall a well-known problem whose solution will be useful, namely
the so-called Range Minimum (Maximum) Query Problem: Given an array A
with entries over a totally ordered set can we preprocess A (i.e., produce some
additional data structures), such that we can answer efficiently queries like
RmQA(i, j) = argmini≤t≤jA[t] or RMQA(i, j) = argmaxi≤t≤jA[t]? In both
cases, when there is a tie, the leftmost possible value is returned. Harel and
Tarjan [4] proposed a solution for this problem such that, if A has n elements,
then the preprocessing is performed in time O(n) (and a data structure of size
O(n), called RmQ or RMQ, respectively, is produced), while the answer to any
query can be obtained in time O(1).

Note that in the following we will use the word “derivation” with the meaning
“application of the Watson-Crick superposition”.

Theorem 3. Let L be a language over the alphabet V accepted in time O(f(n))
on the RAM model, and w ∈ V ∗. One can compute the minimum value i such
that w ∈ i

r(L) in time O(|w|2f(|w|)).

Proof. Let i be the minimum value such that w ∈ i
r(L). It follows that there

exists the sequence w0, w1, . . . , wi, such that w0 ∈ L, wi = w, and wt ∈ (wt−1 ◦t

zt), where ◦t ∈ {	, 
, �, �} and zt ∈ L, for all t ∈ {1, . . . , i}. It is clear that both
wt and wt, for all t ≥ 1, can be obtained in t steps starting from w0. Without
loss of generality, we may assume that w0 is a subword of w. By Lemma 1,
we may further assume that ◦1 ∈ {	, 
, �, �} and ◦t =
, 2 ≤ t ≤ p, ◦t =	,
p + 1 ≤ t ≤ i, for some 1 ≤ p ≤ i. Note that no operation 
 or 	 is applied
when p = 1 or p = i, respectively. Moreover, by the proof of Lemma 1 we may
assume that ◦t =	 for all 2 ≤ t ≤ i provided that ◦1 =	.

We now focus our discussion on the way the words from L on which we
can apply these operations could be identified. The idea is quite simple, and it
corresponds to a greedy strategy: in the first step we identify all the subwords of
w that are words in L. Then, we add to these words all the subwords of w that
can be obtained from the words got in the first step using the � and � operations
together with their complements. Then, we try to obtain w starting from each of
these words, and compute the minimum number of operations needed to do this.
Consequently, we proceed as follows: if the current word is not a prefix of w, or
the complement of such a prefix, we choose a word from L which we can apply
the operation 
 to, such that at least one of the obtained words is a subword
of w and the length of this word is maximal among all the words that can be
obtained by applying the 
 operation to the current word.

If the current word is a prefix of w, then we choose a word from L which we
can apply the operation 	 to, such that at least one of the words we obtain is a
subword of w and the length of this word is maximal between all the words that
can be obtained by applying the 	 operation to the current word.
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It is plain that this strategy that is actually dynamic programming works
as the new current word is always a subword of w. In the following, we show
how this strategy can be implemented in time O(n2f(n)). If the input word w
belongs to ∗

r(L), then the algorithm outputs the minimal i such that w ∈ i
r(L),

otherwise it outputs ∞. Data structures used by the algorithm are:

– The 2-dimensional arrays M , C, T , CT , D and N , with |w| rows and
columns.

– The 1-dimensional arrays Left, Right, CLeft and CRight, with |w| posi-
tions. The values stored in these arrays are initially set to 0.

– The queue Q that is initially empty.

Algorithm 1
function Distance(w, L);
begin

n := |w|;
for l = 1 to n do

for i = 1 to n − l + 1 do

j = i + l − 1;
if w[i..j]∈L then M [i][j]=1; Right[i]=j, Left[j]= i;

Add ([i, j], 1, 0) to Q, D[i][j]=1;
endif

if w[i..j] ∈ L then C[i][j] = 1, CRight[i] = j, CLeft[j] = i;
endfor

endfor

if (D[1][n] = 1) then return 0;
for l = 1 to n do

for i = 1 to n − l + 1 do

j = i + l − 1;
CT [i][j] = max{C[i][j], CT [i − 1][j], CT [i][j − 1]};
T [i][j] = max{M [i][j], T [i − 1][j], T [i][j − 1]};
if (C[i][j] = 1 & T [i][j] = 1 & D[i][j] �= 1) then Add ([i, j], 1, 1), ([i, j],−1, 1) to Q,

N [i][j] = 1, D[i][j] = 1;
endif

if (M [i][j] = 1 & CT [i][j] = 1 & N [i][j] �= 1) then Add ([i, j],−1, 1) to Q,

N [i][j] = 1;
endif

endfor

endfor

Compute the RmQ data structures for the arrays Left, CLeft;

Compute the RMQ data structures for the arrays Right,CRight;

b = false

while (b = false & Q not empty) do

Extract ([i, j], x, k) from Q

if (x = 1 & i �= 1) then

t = RmQCLeft(i, j);
if D[t][j] �= 1 then Add ([t, j], 1, k + 1) to Q, D[t][j] = 1;
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if N [t][j] �= 1 then Add ([t, j],−1, k + 1) to Q, N [t][j] = 1;
endif

if (x = 1 & i = 1) then

t = RMQCRight(i, j);
if D[i][t] �= 1 then Add ([i, t], 1, k + 1) to Q, D[i][t] = 1;
if N [i][t] �= 1 then Add ([i, t],−1, k + 1) to Q, N [i][t] = 1;

endif

if (x = −1 & i �= 1) then

t = RmQLeft(i, j);
if D[t][j] �= 1 then Add ([t, j], 1, k + 1) to Q, D[t][j] = 1;
if N [t][j] �= 1 then Add ([t, j],−1, k + 1) to Q, N [t][j] = 1;

endif

if (x = −1 & i = 1) then

t = RMQRight(i, j);
if D[i][t] �= 1 then Add ([i, t], 1, k + 1) to Q, D[i][t] = 1;
if N [i][t] �= 1 then Add ([i, t],−1, k + 1) to Q, N [i][t] = 1;

endif

if (D[1][n] = 1) then b = true;

endwhile;

if (D[1][n] = 1) then find in Q the first tuple ([1, n], 1, i),∀i; return i;

else return ∞;

end.;

Informally, the algorithm works as follows:

– First, the subwords of w that are words from L are identified. If w[i..j] is
such a word then we insert the item ([i, j], 1, 0) in the queue Q. These are the
only words that can be obtained from a subword of w in 0 derivation steps.
Also, we use the arrays Left (and CLeft) to store the starting position in w
of the longest word from L (respectively L) ending on a certain position in
w, while the arrays Right (and CRight) are used to store the ending position
of the longest word from L (respectively L) starting on a certain position.

– Then, we identify the words that can be obtained from a subsequence of w
using a single application of the rules �, �: if w[i..j] can be obtained we add
([i, j],−1, 1) to Q, if w[i..j] can be obtained we add ([i, j], 1, 1) to Q.

– Finally, using the queue Q (in which the tuples ([i, j], x, k) are ordered in-
creasingly according to the value k), we try to obtain new words (actually,
the longest words) that can be derived from a subword of w, and still remain
subwords of w or w. Each time when a new item ([i, j], 1, k) is extracted from
Q we try to extend it as much as possible to the left (if i �= 1), or to the
right (if i = 1), and add items corresponding to the newly obtained words to
the queue. The same strategy is used in the case when an item of the form
([i, j],−1, k) is extracted from Q.

– The algorithm ends in two situations (i) no more words can be obtained and
w was not obtained yet, when it returns ∞, (ii) w was obtained, when it
returns the minimum number of derivation steps used to obtain this word.
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It is clear that the first two for cycles can be executed in O(n2f(n)) time, while
the next two ones can be executed in O(n2) time. Next, Q contains an item with
the first component [i, j] at most two times during the computation, thus the
maximum number of elements that may enter in Q is O(n2). Consequently, the
while cycle is executed at most O(n2) times and every computation done in this
cycle is executed in constant time. This shows that the overall time complexity
of the above algorithm is O(n2f(n)). The space needed by this algorithm is
O(n2S(n)), given that L is accepted by a RAM in O(f(n)) time and O(S(n))
space. �

It is clear that using some preprocessing which replaces the part of the algorithm
consisting of the first two for cycles we can obtain an overall complexity of O(n2)
time and O(n2) space for regular languages. In the case of context-free languages
we can obtain an overall complexity of O(n3) time, using the Cocke-Younger-
Kasami algorithm in the preprocessing phase, and O(n2) space.

As a corollary of the previous theorem we can state:

Theorem 4. The class P is closed under iterated superposition.
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Abstract. We define a weighted μ-calculus on finite and infinite words. Hereby,
the μ-calculus does not use conjunction and the weights are taken from semirings
satisfying certain completeness and continuity properties. For important semirings
like distributive complete lattices, the tropical and the probabilistic semiring, we
show that the formulas of the conjunction-free weighted μ-calculus define exactly
the class of omega-rational formal power series.

Introduction

Quantitative aspects of systems comprise such different concepts like time, probabili-
ties, capacities, and reasoning of several agents. Some give rise to multi-valued logics
where the semantic domain is not longer the two-valued Boolean algebra but a De Mor-
gan algebra. Several authors explored the model checking problem for multi-valued
Kripke structures and different temporal logics, see [15,3,12,18] for an incomplete list
of papers. Others considered quantitative games and model checking of a quantitative
μ-calculus with discount factors, see e.g.[13].

Another approach is the one of weighted automata. Thereby, weights are taken from
a semiring. A coincidence between weighted automata over finite words and rational
formal power series was shown by Schützenberger [20]. Weighted automata on infi-
nite words were explored first in recent years. To define and to characterize the behav-
ior of those automata the underlying semiring has either to meet several completeness
properties [11,10,9,7] or the automata work with discounting [8]. A characterization of
weighted automata by weighted MSO logic was first given in [5].

Here, we propose a weighted μ-calculus for the description of weighted systems over
finite and infinite words. Thereby, we hope to prepare the ground for weighted modal
and temporal logics which may turn out as a better specification language of weighted
systems. For Kripke structures the modal μ-calculus [16] has a central position between
automata and logics and a close relationship to temporal logics. One kind of Kripke
structures are finite and infinite words. For them, the classical μ-calculus defines exactly
the class of rational and ω-rational languages [19,1], see also [2].

Our weighted μ-calculus introduced in Section 2 allows for weighted modalities
(with weights from the semiring), disjunction, and least and greatest fixed point op-
erator. Negation is excluded because in general semirings elements do not have a com-
plement (in contrast to Boolean algebras). Conjunction exceeds the expressiveness of
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weighted automata and is, therefore, excluded. Thus it is different from other quantita-
tive μ-calculi which consider mostly very concrete weight structures and/or work with
discounting, cf. [13,4].

Our main result, Theorem 4.5, characterizes the expressiveness of the weighted
conjunction-freeμ-calculus over words exactly as the ω-rational formal power series. A
main obstacle towards this result is to find the necessary preconditions that have to be im-
posed on the underlying semiring. We started from the established concept of continuous
semirings, cf. [6]. But whereas continuous semirings are continuous just with respect to
the supremum, here, we need continuity also with respect to the infimum. Therefore, we
introduce dual-continuous semirings in Section 1. However, even then the characteriza-
tion of greatest fixed points by rational means does not succeed automatically. Therefore,
we fix the central Arden fixed point property (that is needed for the main result and which
is derived naturally from the Boolean setting) in Section 3 and show that this property is
satisfied by several important semirings: distributive complete lattices (covering e.g. the
fuzzy semiring and De Morgan algebras from multi-valued logics), the tropical semiring
with the two operations min and + which is useful for temporal aspects and optimiza-
tion, and the probabilistic semiring for probabilistic settings. However, it turns out that
for some common semirings like � with usual addition and multiplication the situation
is more complicated and we have to consider an unusual infinite product in this case.
Once established the Arden fixed point property, we adapt concepts presented in [2] to
our setting to show the characterization result in Section 4.

1 Semirings, Formal Power Series, and Fixed Points

Let A be an alphabet. Let A∗ and Aω be the sets of finite and infinite words, respectively,
and A∞ = A∗ ∪ Aω . We consider formal power series, i.e., mappings S : A∞ → �

where � = (K,⊕, ◦, �, �) is a semiring, i.e., a set K with two binary operations, called
addition⊕ and multiplication ◦, such that (K,⊕, �) is a commutative monoid, (K, ◦, �)
is a monoid, ⊕ distributes over ◦, � �= �, and � ◦ k = k ◦ � = � for every k ∈ K .

To define a μ-calculus semantics, we have to consider structures where least and
greatest fixed points of certain mappings exist.

1.1 Continuous and Dual-Continuous Semirings

Let ≤ be a partial order on K . A chain C ⊆ K is a totally ordered subset of K . D ⊆ K
is directed if for all k1, k2 ∈ D there is a k ∈ D such that k1 ≤ k and k2 ≤ k.
Following [6], a continuous semiring � is a semiring � = (K,⊕, ◦, �, �) together with
a partial order ≤ on K such that � ≤ k, each chain C ⊆ K has a supremum supC,
k ⊕ supC = sup(k ⊕ C), k ◦ supC = sup(k ◦ C), and supC ◦ k = sup(C ◦ k)
for all chains C and k ∈ K . An alternative but equivalent definition would use directed
sets instead of chains, cf. [6]. Note that in every continuous semiring � both addition
and multiplication are monotone operations. Now we equip a continuous semiring �
for every index set I and all families (ki ∈ K | i ∈ I) with generalized sums as follows∑

i∈I

ki = sup
{∑

i∈E

ki

∣∣∣ E finite, E ⊆ I
}

. (1)
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Fig. 1. Three De Morgan algebras from multi-valued logics

These sums are well-defined because {
∑

i∈E ki | E finite, E ⊆ I} is directed. For
posets K and K ′, a function f : K ′ → K is sup-continuous if for any chain C ⊆
K ′ such that supC exists, f(C) is a chain in K , has a supremum, and f(supC) =
sup f(C). Similarly, inf-continuity of f is defined. Continuity implies monotonicity.
For an index set I , let KI be ordered by the pointwise order.

Proposition 1.1. Let � be a continuous semiring. Then the generalized sums
∑

I :
KI → K as defined in (1) are sup-continuous for every index set I .

Now we consider not only the supremum but also the infimum.

Definition 1.2. � is a dual-continuous semiring, or a dc-semiring for short, if � is
continuous, each chain C ⊆ K has an infimum, k ⊕ inf C = inf(k ⊕ C), k ◦ inf C =
inf(k ◦ C), and inf C ◦ k = inf(C ◦ k) for all chains C and k ∈ K .

Note that the infimum of the empty chain is the greatest element 5 of � .

Example 1.3. The tropical semirings � = (� ∪ {∞},min,+,∞, 0) and �R = (�≥0 ∪
{∞},min,+,∞, 0)with the partial order r1 ≤ r2 if and only if min(r1, r2) = r2 (the
converse of the usual order) are dc-semirings.

Example 1.4. � = (� ∪ {−∞,∞},max,+,−∞, 0) together with the usual order is a
dc-semiring when we put for all n ∈ �∪{−∞,∞}: max(n,∞) = ∞ and −∞+n =
−∞. Generalized sums are given by sup.

Example 1.5. Distributive complete lattices with sup as addition and inf as multipli-
cation are dc-semirings. Instances are (� ∪ {∞},min,max,∞, 0), the fuzzy semiring
([0, 1], sup, inf, 0, 1), the powerset semiring (P(M),∪,∩, ∅,M) for any set M , or De
Morgan algebras which are common in multi-valued logics, cf. [3]. In Figure 1 on the
left the two-valued Boolean algebra � is shown. The intuition behind the Boolean alge-
bra in the middle is that two agents evaluate a proposition independently as either false
or true. The De Morgan algebra on the right is not a Boolean algebra anymore. Here, 1

2
expresses uncertainty.

Example 1.6. The probabilistic semiring 	 = ([0, 1],max, ·, 0, 1) together with the
usual order≤ is a dc-semiring.	 is isomorphic to the dc-semiring�R from Example 1.3
by f : 	 → �R with f(r) = ln 1

r for r > 0 and f(0) = +∞.

Example 1.7. The extended natural numbers �∞ = (� ∪ {∞},+, ·, 0, 1) constitute a
semiring when n + ∞ = ∞ for all n ∈ � ∪ {∞} and n · ∞ = ∞ for all n ∈ (� \
{0}) ∪ {∞}. Again, equipped with the usual order the extended natural numbers form
a dc-semiring. Generalized sums behave as follows:

∑
i∈I ki =

∑
i∈E⊆� ki whenever

E is finite and ki = 0 for all i ∈ � \ E, and
∑

i∈I ki = ∞ otherwise.
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1.2 Formal Power Series and Fixed Points

From now on let � be a dc-semiring. By � 〈〈A∞〉〉 we denote the collection of all formal
power series S : A∞ → � (similarly for � 〈〈A∗〉〉 and � 〈〈Aω〉〉). We put (S,w) =
S(w). The finitary series S ∈ � 〈〈A∗〉〉 can be understood as series from � 〈〈A∞〉〉 with
suppS = {w ∈ A∞ | (S,w) �= �} ⊆ A∗, and, similarly, for � 〈〈Aω〉〉.

Let S, T ∈ � 〈〈A∞〉〉. We define the sum S + T ∈ � 〈〈A∞〉〉 by (S + T,w) =
(S,w) ⊕ (T,w) for all w ∈ A∞. The Cauchy product S · T ∈ � 〈〈A∞〉〉 is given by
(S · T,w) =

∑(
(S, u) ◦ (T, v) | w = uv, u ∈ A∗, v ∈ A∞) for all w ∈ A∞. Let kw

(k ∈ K,w ∈ A∞) denote the series with (kw,w) = k and (kw, u) = � for u �= w. Let
�A∞ be the constant zero series. Most properties of � lift to series:

Proposition 1.8. Let � be a dc-semiring. Then (� 〈〈A∞〉〉,+, ·, �A∞ , �ε) together with
the pointwise order is a continuous semiring. Moreover, every chain in � 〈〈A∞〉〉 has an
infimum and the sum is inf-continuous.

Remark 1.9. Let A = {a, b} and L = bb{a, b}∗ ∪ {a}. Then L infn∈�(LnA∞) �=
infn∈�(LLnA∞). Hence, the Cauchy product is not inf-continuous, even for �, i.e., in
the setting of languages.

Theorem 1.10. Let � be a dc-semiring, S ∈ � 〈〈A∗〉〉, and S′ ∈ � 〈〈A∞〉〉. Then f :
� 〈〈A∞〉〉 → � 〈〈A∞〉〉 with f(T ) = S′ + ST is a sup-continuous mapping and admits
a least fixed point lfp(f) and a greatest fixed point gfp(f).

Let (f0, w) = � and (f0, w) = 5 for all w ∈ A∞. Put fα+1 = f(fα) and fα+1 =
f(fα) for all ordinals α and put fβ = supα<β fα and fβ = infα<β fα whenever β
is a limit ordinal. Then lfp(f) = fω = supi∈� fi and there is an ordinal ᾱ such that
gfp(f) = f ᾱ.

Remark 1.11. In contrary to the lfp(f), the approximants fα catch gfp(f) in general
in more than ω steps. This is due to the fact that the generalized sums and, hence, the
Cauchy product are not necessarily inf-continuous (already for �, see Remark 1.9).

2 Weighted Conjunction-Free μ-Calculus

We propose a weightedμ-calculus over finite and infinite words. Weights from a semiring
� are attached to modal operators, i.e., we express the property: “It is possible
to execute an action a with weight k” which is alike a transition of a weighted automaton.

2.1 Syntax

Let V be a set of countably many variables. Let x, y denote variables. The formulas ϕ
of the weighted conjunction-free μ-calculus or weighted ∧-free μ-calculus μC∨(A,� )
(for short μC∨ when A and � are understood) are defined as follows:

ϕ ::= kε | 〈a〉k x | 〈a〉k ϕ | ϕ ∨ ϕ | μx.ϕ | νx.ϕ

where k ∈ K , a ∈ A, and x ∈ V . Note that every x ∈ V is preceded by at least one
modality 〈a〉k which is due to technical reasons. Moreover, we add for every k ∈ � a
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constant term kε which will suggest termination (at a final state with weight k in terms
of automata). The variable x occurs free in ϕ if the occurrence of x is not bounded by
a μ- or ν-operator. The set free(ϕ) consists of those variables which have at least one
free occurrence in ϕ. A formula with no free variables is a sentence.

Remark 2.1. Contrary to Boolean algebras (or even to De Morgan algebras) there is no
notion of negation for general semirings, cf. [5]. Hence, we drop negation. Even if a
formula 〈a〉� ϕ says “an action a can be executed with weight � such that ϕ holds for
the a-successor” which is to state “there is no a-successor where ϕ holds”, this is not
a negation. This statement does not subsume the existence of a b-successor where ϕ
holds (in the case A = {a, b}) which would be part of the negated statement. Such an
existence has to be stated positively by a b-modality.

We also do exclude the universal box modality and conjunction. In the realm of
words (where we have only one successor) a box modality is not necessary. The use
of conjunction would be desirable but, in a weighted setting, it causes severe problems
concerning expressiveness. It will be discussed at the end of this paper.

2.2 Semantics

An interpretation is a mapping ι : V → � 〈〈A∞〉〉. For R ∈ � 〈〈A∞〉〉, the update of ι
at x with R is the mapping ι[x/R] where ι[x/R](x) = R and ι[x/R](y) = ι(y) for all
y �= x. Now, ι is extended to a semantical function σι : μC∨(A,� ) → � 〈〈A∞〉〉:

– σι(kε) = kε and σι(ψ1 ∨ ψ2) = σι(ψ1) + σι(ψ2),
– σι(〈a〉k x) = (ka) · ι(x) and σι(〈a〉k ψ) = (ka) · σι(ψ),
– for μx.ψ let f : � 〈〈A∞〉〉 → � 〈〈A∞〉〉 : R �→ σι[x/R](ψ), then σι(μx.ψ) = lfp(f),
– similarly, for νx.ψ we set σι(νx.ψ) = gfp(f).

Here, disjunction is interpreted as the sum of the semiring, cf. [5]. The modal operators
can be understood as weighted transitions which is formally defined by the Cauchy
product. We still have to show that σι is well-defined, i.e., that f is a monotone function.
By induction on ϕ we show (also cf. [2, Prop. 1.2.23])

Proposition 2.2. Let � be a dc-semiring. Then the semantic function σι is well-defined
for every interpretation ι. Moreover, σι(ϕ) = σι′(ϕ) if ι(y) = ι′(y) for all y ∈ free(ϕ).

Example 2.3. Consider � = (� ∪ {∞},min,+,∞, 0) from Example 1.3 and the for-
mula ϕ = μx.

(
〈a〉0 x∨〈b〉1 x∨〈c〉0 0ε

)
. By computing the approximations from Theo-

rem 1.10 we get1: f1 = 0.c, f2 = 0.ac+1.bc+0.c, and more generally (fn, w) = |w|b
if w ∈ {a, b}∗c and |w| ≤ n, and (fn, w) = ∞ otherwise. Thus, we get by lfp(f) =
supn∈� fn that (σ(ϕ), w) = |w|b if w ∈ {a, b}∗c and (σ(ϕ), w) = ∞ otherwise, i.e.,
ϕ defines the language {a, b}∗c and counts for those words the number of b’s.

3 Rationality and Fixed Points

As we will show in Section 4, the formulas of μC∨(A,� ) define exactly the ω-rational
series which we introduce next.

1 Here f = k.w + l.u means (f, w) = k, (f, u) = l, and (f, v) = ∞ for all other v.
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3.1 Rational and ω-Rational Series

Let S ∈ � 〈〈A∗〉〉 be proper, i.e., (S, ε) = �. Then for any w ∈ A∗ and i ∈ � we put
(Si, w) =

∑
w=w1...wi

(S,w1)◦ . . .◦ (S,wi), (S∗, w) =
∑

i∈�(Si, w) where S0 = �ε,
and S+ = SS∗. Due to the definition of the generalized sums in (1) we get:

Proposition 3.1. For a dc-semiring � and S ∈ � 〈〈A∗〉〉: S∗ = supn∈�
(∑n

i=0 S
i
)
.

Next we define the ω-iteration. For this to work we need a countable infinite product
in � which we introduce first. In general, the infinite product may be any function

∏
:

�
� → � such that

∏
i∈� ki = � if there is an i ∈ � with ki = �. A natural definition

of this product can be given under an additional assumption: If � is a dc-semiring
and � ≤ k ≤ � for all k ∈ � then the sequence of finite products (

∏n
i=0 ki)n∈� is

descending and we put the infinite product as

∏
i∈�

ki = inf
n∈�
( n∏
i=0

ki

)
. (2)

Let � be a dc-semiring with infinite product and let S ∈ � 〈〈A∗〉〉 be proper. The
ω-iteration Sω ∈ � 〈〈A∞〉〉 of S is defined by (Sω, w) = � for w ∈ A∗ and by

(Sω, w) =
∑

w=u0u1u2u3...
ui∈A+

∏
i∈�

(S, ui)

for all w ∈ Aω. Here, we add over all infinite decompositions of w ∈ Aω into finite
non-empty words, and take the countable infinite product of the (S, ui).

The class of rational formal power series is the smallest class Rat
(
� 〈〈A∗〉〉

)
of fini-

tary formal power series such that kε, ka ∈ Rat
(
� 〈〈A∗〉〉

)
for all k ∈ � and a ∈ A, and

which is closed under sum, Cauchy product, and Kleene star ∗ for proper series. The
class of ω-rational formal power series ωRat

(
� 〈〈A∞〉〉

)
is the least class such that

kε, ka ∈ ωRat
(
� 〈〈A∞〉〉

)
for all k ∈ � and a ∈ A, and which is closed under sum,

Cauchy product, as well as Kleene star ∗ and ω-iteration ω for finitary proper series.
The next proposition is folklore:

Proposition 3.2. The class of proper rational series is the least class containing the
monomials ka (k ∈ � , a ∈ A) which is closed under sum, Cauchy product, and itera-
tion +. Moreover, for every R ∈ Rat

(
� 〈〈A∗〉〉

)
there are a proper R′ ∈ Rat

(
� 〈〈A∗〉〉

)
and k ∈ � such that R = R′ + kε.

Next we give a characterization of ω-rational formal power series by rational series. It
was already noted in [8] in a more particular setting.

Lemma 3.3. For any S ∈ ωRat
(
� 〈〈A∞〉〉

)
there are a series R0 ∈ Rat

(
� 〈〈A∗〉〉

)
and

finitely many proper series Ri, Ti ∈ Rat
(
� 〈〈A∗〉〉

)
for i = 1, . . . , n such that

S = R0 +
n∑

i=1

RiT
ω
i .
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3.2 Calculation of Fixed Points

Now we turn to the concrete calculation of the least and greatest fixed point of f : T �→
S′ + ST where S′ ∈ � 〈〈A∞〉〉, S ∈ � 〈〈A∗〉〉 and whose existence is guaranteed by
Theorem 1.10 for � being a dc-semiring. The next theorem is well-known for formal
power series over finite words where S∗S′ is the unique fixed point, cf. [17]. Using the
approximations of Theorem 1.10 and Proposition 3.1, we obtain

Theorem 3.4. For a dc-semiring � , S′ ∈ � 〈〈A∞〉〉, S ∈ � 〈〈A∗〉〉, and f : � 〈〈A∞〉〉 →
� 〈〈A∞〉〉 with f(T ) = S′ + ST . Then lfp(f) = S∗S′.

Now we turn to the calculation of gfp(f). We denote by S′�A∗ and S′�Aω the restriction
of S′ to A∗ and Aω, respectively. Moreover, let �L denote the characteristic series of
L ⊆ A∞, i.e., the series with (�L, w) = � if w ∈ L and (�L, w) = � for w /∈ L.
Now consider the following functions for S′, T ∈ � 〈〈A∞〉〉 and S ∈ � 〈〈A∗〉〉: f : T �→
S′ + ST , g : T �→ S′�A∗ + ST , h : T �→ S′�Aω + ST , and l : T �→ ST and define the
respective approximants fα, gα, hα, and lα as in Theorem 1.10.

Lemma 3.5. Let � be a dc-semiring, S′ ∈ � 〈〈A∞〉〉, S ∈ � 〈〈A∗〉〉, and fα, gα, hα,
and lα as above. Then we have for every ordinal α: fα = gα + hα + lα.

Proof (sketch). For α = 0 and a successor ordinalα the assertion is straightforward. For
β a limit ordinal, we can show infα<β(hα +gα + lα) = supα<β hα + infα<β(gα + lα)
which proves the assertion for β. ��

The proof of the next result uses properness of S and Theorem 3.4.

Proposition 3.6. Let � be a dc-semiring. For gα and hα as defined above we have:

1. if (S, ε) = � then gα = S∗S′�A∗ for all α ≥ ω,
2. hα = S∗S′�Aω for all α ≥ ω.

Finally, we come to the calculation of lα which turns out most difficult.

Definition 3.7 (Arden fixed point property). Let � be a dc-semiring with infinite
products and l : � 〈〈A∞〉〉 → � 〈〈A∞〉〉 : T �→ ST . Then � has the Arden fixed
point property if gfp(l) = Sω for all proper S ∈ � 〈〈A∗〉〉.

Remark 3.8. Note that gfp(f) = Sω is equivalent to the existence of an ordinal β such
that lα = Sω for all α > β. It is known that in the setting of languages the Boolean
semiring � has the Arden fixed point property which is part of the well-known Arden’s
Lemma, cf. [2, L. 5.1.4]. Our above definition lifts the property from� to a more general
semiring setting and is, therefore, natural.

Theorem 3.9. Let � be a dc-semiring which allows for infinite products and has
the Arden fixed point property. Let S′ ∈ � 〈〈A∞〉〉, S ∈ � 〈〈A∗〉〉 be proper, and
f : � 〈〈A∞〉〉 → � 〈〈A∞〉〉 : T �→ S′ + ST . Then gfp(f) = S∗S′ + Sω.

Proof. There is an ordinal β such that fβ = gfp(f). By Lemma 3.5, fβ = gβ +hβ +lβ .
Applying the Arden fixed point property and Proposition 3.6, we get fβ = S∗S′�A∗ +
S∗S′�Aω + Sω = S∗S′ + Sω. ��
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A number of important dc-semirings have the Arden fixed point property.

Lemma 3.10. Every distributive complete lattice 
 = (
,∨,∧, 0, 1) with an infinite
product as defined by (2) has the Arden fixed point property.

Proof (sketch). The assumption is known for �. First we consider 
 = �
M for an

arbitrary set M , i.e., 
 is isomorphic to the powerset lattice of M . Then we show the
assumption by considering for every m ∈ M the mapping lm : Tm �→ SmTm where
Sm, Tm ∈ �〈〈A∞〉〉 are the mth projection of S and T . We get gfp(lm) = Sω

m by
Arden’s Lemma, and, altogether, gfp(l) = Sω. For an arbitrary distributive complete
lattice 
, we get by Birkhoff’s and Stone’s representation theorem that 
 is isomorphic
to a lattice of sets, i.e., a sub-lattice of �M for some set M (cf. [14, Thm. II.1.19]).
Hence, we can assume that all series considered take values in �M instead of � . ��

Lemma 3.11. � = (� ∪ {∞},min,+,∞, 0) and �R = (�≥0 ∪ {∞},min,+,∞, 0)
from Example 1.3 with an infinite product as defined by (2) have the Arden fixed point
property.

Proof (idea). Consider �R. For any fixed point T , w ∈ Aω with (T,w) �= ∞ (the case
(T,w) = ∞ is trivial), and an arbitrary δ > 0 we show that (Sω, w) < (T,w) + δ
where < is the usual order (the converse of the order on �R). We do so by constructing
inductively two sequences (ũi)i∈� and (ṽi)i∈� such that ũi ∈ A+ and ṽi ∈ Aω for
all i ∈ �, w = ṽ0 = ũ0ṽ1 . . . = · · · = ũ0ũ1ũ2 . . ., and (T, ṽi) + δ

2i+1 ≥ (S, ũi) +
(T, ṽi+1). Finally, we get Sω ≤ T . Since Sω is a fixed point, it is the greatest one with
respect to the order on �R. ��

Since the probabilistic semiring 	 is isomorphic to �R, we conclude

Lemma 3.12. The probabilistic semiring 	 = ([0, 1],max, ·, 0, 1) from Example 1.6
with infinite products as defined by (2) has the Arden fixed point property.

Now, consider the dc-semiring �∞ = (� ∪ {∞},+, ·, 0, 1) from Example 1.7. Here,
we cannot define the infinite product as in (2) because 1 is not the greatest element. A
natural definition would be the following:

∏
i∈� ni =

∏m
i=0 ni if ∀j > m : nj = 1,

it equals 0 if ∃j : nj = 0, and it equals ∞ otherwise. Let S = 1a. Then Sω = 1aω.
But gfp(l) = ∞aω. Hence, here Sω < gfp(l) and, therefore, �∞ with the above infi-
nite product does not have the Arden fixed point property. Another somehow artificial
product for �∞ is the following:∏

i∈�
ni = 0 if ∃j : nj = 0 and

∏
i∈�

ni = ∞ otherwise. (3)

Similarly, we define for the arctic semiring � = (�∪{−∞,∞},max,+,−∞, 0) from
Example 1.4 an infinite product as follows:∏

i∈�
ni = −∞ if ∃j : nj = −∞ and

∏
i∈�

ni = ∞ otherwise. (4)

With these infinite products we can show the Arden fixed point property:
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Lemma 3.13. The semirings �∞ = (� ∪ {∞},+, ·, 0, 1) from Example 1.7 with an
infinite product as defined in (3) and � = (� ∪ {−∞,∞},max,+,−∞, 0) from Ex-
ample 1.4 with an infinite product as defined in (4) have the Arden fixed point property.

Proof (sketch). Consider �∞. Then ∞�(supp S)ω = Sω. By calculating the approxima-
tions lα, one shows that (lα, w) = ∞ for all w ∈ (suppS)ω. If w /∈ (suppS)ω, then
one considers η : �∞ → � with 0 �→ 0 and k �→ 1 for k �= 0. We get η(lα, w) = 0 for
α sufficiently large. Hence, (lα, w) = 0. For � we conclude similarly. ��

4 Expressiveness of the Weighted ∧-Free μ-Calculus

4.1 Calculating the Semantics Explicitely

We had given a fixed point semantics for all ϕ ∈ μC∨. By Theorems 3.4 and 3.9 we
can calculate the fixed points of certain linear functions by the star and ω-iteration.
The functions defined by formulas ϕ ∈ μC∨ are of this kind as we will show next. To
state this result, we introduce the extended series semantics �ϕ� which will deal with
variables as pure wild-cards which remain in the semantics as symbols. Therefore, we
adopt the notion of extended languages as used by Arnold and Niwiński in [2]. More
precisely, an extended series is a pair 〈S, {(x, Sx) | x ∈ X}〉 where X ⊆ V is a finite
set of variables which may be empty, S ∈ � 〈〈A∞〉〉, and Sx ∈ � 〈〈A∗〉〉 a proper series
for every x ∈ X . We define the extended series semantics by induction:

if ϕ = kε, then �ϕ� = 〈kε, ∅〉,
if ϕ = 〈a〉k x, then �ϕ� = 〈�A∞ , {(x, ka)}〉

where �A∞ is the constant zero series,
if ϕ = 〈a〉k ψ, then �ϕ� = 〈(ka)T, {(x, (ka)Tx) | x ∈ X}〉

where �ψ� = 〈T, {(x, Tx) | x ∈ X}〉,
if ϕ = ψ1 ∨ ψ2, then �ϕ� = 〈S1 + S2, {(x, S1x + S2x) | x ∈ X1 ∪X2}〉

where �ψj� = 〈Sj , {(x, Sjx) | x ∈ Xj}〉 for j = 1, 2,1

if ϕ = μx.ψ, then �ϕ� = 〈T ∗
xT, {(y, Sy = T ∗

xTy) | y ∈ X \ {x}}〉
where �ψ� = 〈T, {(y, Ty) | y ∈ X}〉,

if ϕ = νx.ψ, then �ϕ� = 〈T ∗
xT + Tω

x , {(y, T ∗
xTy) | y ∈ X \ {x}}〉

where �ψ� = 〈T, {(y, Ty) | y ∈ X}〉.
Using extended series we can prove inductively by help of Theorems 3.4 and 3.9

Theorem 4.1. Let � be a dc-semiring with infinite products and the Arden fixed point
property. Let ϕ ∈ μC∨(� , A) with �ϕ� = 〈S, {(x, Sx) | x ∈ X}〉 and ι an interpreta-
tion. Then X = free(ϕ) and

σι(ϕ) = S +
∑
x∈X

Sxι(x).

Example 4.2. Consider again the formula ϕ = μx.
(
〈a〉0 x ∨ 〈b〉1 x ∨ 〈c〉0 ε

)
over the

tropical semiring � from Example 2.3. Now we get first �〈a〉0 x ∨ 〈b〉1 x ∨ 〈c〉0 ε� =

1 Here, we agree upon S1x = �A∗ if x /∈ X1, and S2x = �A∗ if x /∈ X2.
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0c, {(x, 0a+1b)}

〉
. Finally, we have �ϕ� =

〈
(0a+1b)∗(0c), ∅

〉
and thus

(
σ(ϕ), w

)
=

|w|b if w ∈ {a, b}∗c and ∞ otherwise.
For ϕ = νy.μx.

(
〈a〉0 y ∨ 〈b〉1 x ∨ 〈c〉0 ε

)
we get �ϕ� =

〈
((1b)∗(0a))∗(1b)∗(0c) +

((1b)∗(0a))ω, ∅
〉
. Hence, we have

(
σ(ϕ), w

)
= |w|b if w ∈ {a, b}∗c ∪ {b∗a}ω and

∞ otherwise. Again, we count the number of b’s but this time for finite words from
{a, b}∗c and also for infinite words from (b∗a)ω.

4.2 The Characterization Theorem

By the very definition of the extended series semantics we get

Proposition 4.3. Let � be a dc-semiring with infinite products and the Arden fixed
point property. Let ϕ ∈ μC∨(A,� ) with �ϕ� = 〈S, {(x, Sx) | x ∈ X}〉. Then S ∈
ωRat

(
� 〈〈A∞〉〉

)
and Sx ∈ Rat

(
� 〈〈A∗〉〉

)
for all x ∈ X .

Now we turn to the converse.

Proposition 4.4. Let � be a dc-semiring with infinite products and the Arden fixed
point property. Let X ⊆ V be finite, S ∈ ωRat

(
� 〈〈A∞〉〉

)
, and Sx ∈ Rat

(
� 〈〈A∗〉〉

)
be

proper for every x ∈ X . Then there is a formula ϕ ∈ μC∨(A,� ) with free(ϕ) = X
and �ϕ� = 〈S, {(x, Sx) | x ∈ X}〉.
Proof. By Proposition 3.2, every proper rationalS can be generated from the monomials
ka by a finite number of applications of sum, Cauchy product, and iteration +. First we
show that for every proper S ∈ Rat

(
� 〈〈A∗〉〉

)
and any variable x ∈ V there is a formula

ϕ with free(ϕ) = {x} and �ϕ� = 〈�A∞ , {(x, S)}〉. For S = ka we put ϕ = 〈a〉k x. If
S = S1 + S2 with �ϕj� = 〈�A∞ , {(x, Sj)}〉 for j = 1, 2, then we take ϕ = ϕ1 ∨ ϕ2.

Next let S = S1S2 where again �ϕj� = 〈�A∞ , {(x, Sj)}〉 for j = 1, 2. Now
we can define the substitution ϕ = ϕ1[x/ϕ2] such that free(ϕ) = {x} and �ϕ� =
〈�A∞ , {(x, S1S2)}〉 (we omit the technical details).

If S = S′+ with �ϕ′� = 〈�A∞ , {(x, S′)}〉 then we take ϕ = μy.(ϕ′′ ∨ ϕ′) where y
is some fresh variable and ϕ′′ = ϕ′[x/y]. Now we get �ϕ� = 〈T, {(x, S)}〉 with

T = S′∗(�A∞ + �A∞) = �A∞ and S = S′∗(�A∞ + S′) = S′+.

Hence, the first claim is proven. Next, we turn to the variable-free part of the extended
series. By the first claim we have for every proper T ∈ Rat

(
� 〈〈A∗〉〉

)
a formula ϕ with

�ϕ� = 〈�A∞ , {(x, T )}〉. Therefore, ψ = νx.ϕ has the semantics �ψ� = 〈Tω, ∅〉. Now
take η with �η� = 〈�A∞ , {(x,R′)}〉 for an arbitrary proper R′ ∈ Rat

(
� 〈〈A∗〉〉

)
. Again

we get with an appropriate substitution (again skipping the technicalities) η′ = η[x/ψ]
the semantics �η′� = 〈R′Tω, ∅〉. Finally, for η′′ = η[x/�ε] we have �η′′� = 〈R′, ∅〉.
By Proposition 3.2, there are for R ∈ Rat

(
� 〈〈A∗〉〉

)
a proper R′ ∈ Rat

(
� 〈〈A∗〉〉

)
and

k ∈ � such that R = R′ + kε. Hence, σ = η′′ ∨ kε has semantics 〈R, ∅〉. In view of
Lemma 3.3, for every S ∈ ωRat

(
� 〈〈A∞〉〉

)
there is a sentence ϕ ∈ μC∨(A,� ) with

�ϕ� = 〈S, ∅〉.
Let Sx ∈ Rat

(
� 〈〈A∗〉〉

)
be proper and ϕx a formula with extended series semantics

�ϕx� = 〈�A∞ , {(x, Sx)}〉 whose existence is guaranteed by the first claim. Then ψ =
ϕ ∨
∨

x∈X ϕx defines 〈S, {(x, Sx) | x ∈ X}〉. ��
Now we get immediately by Propositions 4.3, 4.4, and by Theorem 4.1



394 I. Meinecke

Theorem 4.5. Let � be a dc-semiring with infinite products and the Arden fixed point
property, A an alphabet, and S ∈ � 〈〈A∞〉〉. Then the following are equivalent:

1. S is ω-rational,
2. there is a sentence ϕ of the weighted ∧-free μ-calculus with �ϕ� = 〈S, ∅〉 and

σ(ϕ) = S.

A look on the proof of Proposition 4.4 shows that every ω-rational series is already the
component of the semantics of some formula where the greatest fixed point operator ν
alternates only once with the least fixed point operator μ. Moreover, if S is rational then
S can be already defined by a sentence without a greatest fixed point operator.

Remark 4.6. The equivalence between weighted Büchi automata and ω-rationality was
shown in [9, Thm. 30] for idempotent, o-complete, and infinitely distributive semirings.
Roughly speaking, o-complete semirings � have to be ordered as a complete lattice,
� ≤ k ≤ � for all k ∈ � , and both addition and multiplication commute with arbitrary
suprema and infima. Hence, every o-complete � is dual-continuous but not necessarily
vice versa. The other two conditions from [9, Thm. 30] are not needed for the result
on the μ-calculus. In this sense, our setting is more general. On the other side, we have
to guarantee the Arden fixed point property. Therefore, it is not clear how these two
classes of semirings relate exactly. However, distributive complete lattices, the tropical
semirings � and �R, and the probabilistic semiring are idempotent, o-complete, and
infinitely distributive. Hence, for these semirings a formal power series S is definable
in μC∨(A,� ) if and only if it is the behavior of some weighted Büchi automaton.

By results from [5] and [7] we get also an equivalence of weighted (Büchi) automata
and weighted MSO logic provided � is a distributive complete lattice.

Open Problems

A central concept for our results was the Arden fixed point property which we have
shown for some important semirings. Hereby, the non-continuity of the Cauchy product
with respect to infima is the major difficulty. However, it would be nice to find a uniform
proof of this property for a number of semirings or even a characterization of the class
of semirings possessing the Arden fixed point property.

Another point of interest is conjunction. For a weighted MSO logics, conjunction is
interpreted as the pointwise product of the respective semantics [5], i.e., (�ϕ∧ψ�, w) =
(�ϕ�, w)◦ (�ψ�, w). Then e.g. the semantics of the formula ϕ = μy.(0ε∨ [μx.(〈a〉1 x∨
0ε) ∧ 〈a〉0 y]) over the tropical semiring � is not ω-rational anymore (and here we do
not even use the ν-operator). However, we would suppose that for complete distributive
lattices the semantics stays within ω-rational series. For other semirings there may be
other fragments using conjunction which do not exceed ω-rationality. Another possible
approach could be an alternative semantics for conjunction, e.g. the infimum of the two
respective semantics, cf. [13]. For the tropical semiring �, this sounds reasonable. It has
to be clarified whether such a new approach would preserve ω-rationality.

A broader perspective is to establish a semiring-based weighted μ-calculus and tem-
poral logics as a specification language for weighted systems. Thereby, connections to
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other quantitative logics should be carefully explored and model checking techniques
should be established at least for certain classes of semirings.

Acknowledgement. The author would like to thank Paul Gastin and Manfred Droste
for some thought-provoking impulses.
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9. Droste, M., Püschmann, U.: On weighted Büchi automata with order-complete weights. Al-
gebra and Computation 17(2), 235–260 (2007)

10. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words. Izvestiya
VUZ. Matematika (2008)
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Abstract. Temporal logics are a well investigated formalism for the specifica-
tion and verification of reactive systems. Using formal verification techniques,
we can ensure the correctness of a system with respect to its desired behavior
(specification), by verifying whether a model of the system satisfies a temporal
logic formula modeling the specification.

From a practical point of view, a very challenging issue in using temporal logic
in formal verification is to come out with techniques that automatically allow
to select small critical parts of the system to be successively verified. Another
challenging issue is to extend the expressiveness of classical temporal logics, in
order to model more complex specifications.

In this paper, we address both issues by extending the classical branching-time
temporal logic CTL∗ with minimal model quantifiers (MCTL∗). These quantifiers
allow to extract, from a model, minimal submodels on which we check the speci-
fication (also given by an MCTL∗ formula). We show that MCTL∗ is strictly more
expressive than CTL∗. Nevertheless, we prove that the model checking problem
for MCTL∗ remains decidable and in particular in PSPACE. Moreover, differently
from CTL∗, we show that MCTL∗ does not have the tree model property, is not
bisimulation-invariant and is sensible to unwinding. As far as the satisfiability
concerns, we prove that MCTL∗ is highly undecidable. We further investigate the
model checking and satisfiability problems for MCTL∗ sublogics, such as MPML,
MCTL, and MCTL+, for which we obtain interesting results. Among the others,
we show that MPML retains the finite model property and the decidability of the
satisfiability problem.

1 Introduction

Temporal logics, which are a special kind of modal logics geared towards the descrip-
tion of the temporal ordering of events [Pnu77], have been adopted as a powerful tool
for specifying and verifying correctness of concurrent systems [Pnu81], as they allow
to express the temporal ongoing behavior of a system in a well-structured way.

Two possible views regarding the nature of time induce two different types of tem-
poral logics: linear and branching-time [Lam80]. In linear-time temporal logics, such
as LTL [Pnu77], time is treated as if each moment in time has a unique possible fu-
ture. Thus, linear temporal logic formulas are interpreted over linear sequences. In
branching-time temporal logics, such as CTL [CE81], CTL+, and CTL∗ [EH85], each

' Work partially supported by MIUR PRIN Project no.2007-9E5KM8.
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moment in time may split into various possible futures. Accordingly, the structures over
which branching temporal logic formulas are interpreted are infinite trees. Many impor-
tant parallel computer programs exhibit ongoing behavior that is characterized naturally
in terms of infinite execution traces, possibly organized into tree-like structures that re-
flect the high degree of nondeterminism inherent in parallel computation.

In formal system design, one of the most significant developments has been the dis-
covery of algorithmic methods for verifying temporal-logic properties of finite-state
systems [CE81, QS82]. In temporal-logic model checking, we verify the correctness of
a finite-state system with respect to a desired behavior by checking whether a labeled
state-transition graph, called Kripke structure, that models the system satisfies a tempo-
ral logic formula that specifies this behavior. Hence, the name model checking for the
verification method derived from this viewpoint. Since model checking has many prac-
tical applications (see [Eme90] for more motivations and background) it is important
to classify temporal logics according to the computational complexity of their model
checking problem. Indeed, the complexity for branching-time temporal logics is well
understood: for CTL, CTL+, and CTL∗ it is PTIME-COMPLETE, Δp

2-COMPLETE, and
PSPACE-COMPLETE, respectively.

From a practical point of view, a very challenging issue in using temporal logics in
formal specification and verification is to come out with automatic techniques that al-
low to select small critical parts of the system in order to restrict system verification to
them. This necessity is mainly due to the fact that in a concurrent setting, the system
under consideration is typically a parallel composition of many modules. Promising
approaches to restrict the verification techniques to subsystems of interest are assume
guarantee techniques [AL93], modular model checking [KV95, KV97], the exploita-
tion of partial order information [Pel96], localization reduction [Kur94], and semantic
minimization for eliminate unnecessary states from a system model [ECJB97]. Note
that all these approaches have in common the fact that the modularity of the sys-
tem is known in advance. Another important issue in system design and verification
is to look for new temporal logics that are more expressive than the classical ones.
In fact, although CTL∗ is a very powerful logic, there are several important but com-
plex properties that require a more powerful framework. To overcome this limitation,
several attempts have been carried out in literature in order to extend these logics by
introducing appropriate semantics or operators usually guided by embedded contexts
[AHK02, BLMV06, BMM09].

In this paper, we address both the above issues by introducing the branching-time
temporal logic MCTL∗. This logic is an extension of the classical branching-time tem-
poral logic CTL∗ with minimal model quantifiers, which allow to extract, given a model,
minimal and conservative submodels of it on which we successively check a given prop-
erty. The goal is to check local properties of system components in order to deduce the
global behavior of the entire one. Therefore, the introduced logic exploits the novel idea
of checking a particular module of a whole composition system while its single mod-
ules are not known in advance. In more details, MCTL∗ extends CTL∗ by also allowing
two special (minimal model) quantifiers: Λ and Ξ . These quantifiers allow to write
state formulas such as ϕ1 Λϕ2 and ϕ1 Ξϕ2, which respectively read as “all minimal and
conservative models of ϕ2 are models of ϕ1” and “there exists a minimal model of ϕ2
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that is model of ϕ1”, for suitable and well-found concepts of minimality and conser-
vativeness among Kripke structures. In accordance with this point of view, we call ϕ2

the submodel extractor, ϕ1 the submodel verifier, and our modular verification method
an extract-verify paradigm. Our choice of considering only minimal and conservative
submodels is justified by the fact that in this way we precisely select the parts of the
system that are actually responsible for the particular behavior of interest. For an ex-
ample of an application of the introduced logic see Example 1 in Section 3. It is worth
recalling that logics having the ability to modify the model under evaluation (and then
check the specification on the resulting part) have been also considered in other con-
texts. For example, we recall the arbitrary public announcement logic [FvD08] and the
sabotage modal logic [LR03]. However, the first allow to extract, according to a sub-
model extractor formula, submodels that do not necessarily satisfy the formula itself,
and the second does not extract submodels using a formula at all.

In this paper, we investigate MCTL∗ and its sublogics MCTL+, MCTL and MPML

(where M indicates the extension of the respective logics with minimal model quanti-
fiers) from a theoretical point of view. As far as the expressivity regards, we show that all
these logics are strictly more expressive than the corresponding classical ones. Unfor-
tunately, this power comes at a price. Indeed, we show that the satisfiability for MCTL

is highly undecidable. Moreover and differently from CTL, we have that introduced
logics neither have the tree model property nor are bisimulation-invariant, while they
all are sensible to unwinding. We also investigate succinctness and the model check-
ing problem for the introduced logics, from which we got interesting results. Among
the others, we show that MCTL is as succinct as MCTL+(differently from the classi-
cal case of CTL and CTL+). Moreover, as CTL+ [LMS01], both MCTL and MCTL+

have a Δp
2-COMPLETE (i.e., PTIMENPTIME) model checking. As far as we know, our re-

sult provides the second example, after CTL+, of Δp
2-COMPLETE problems in the field

of formal verification. Since for this class very few complete problems are known, we
believe that the obtained result is interesting as its own. Finally, we show that the propo-
sitional modal logic (PML) augmented with minimal model quantifiers (MPML) retains
both the finite model property and the decidability of the satisfiability problem.

2 Preliminaries

Given a set X of objects (numbers, words, etc.), we denote by |X| its cardinality,
called size of X, and by 2X the powerset of X. As special sets, we consider Z, N,
and N+ = N \ {0}, as respectively, the sets of relative, natural, and positive natural
numbers.

A Kripke structure K = 〈AP,W,R,L〉 is an ordered tuple, where AP is a set of atomic
propositions, W = dom(K ) is a non-empty set of worlds, R ⊆ W×W is a binary rela-
tion, and L : W �→ 2AP is the labeling function that maps each world to a set of atomic
propositions true in that world. We denote the size |K | of K by |W|+ |R|. An infinite
Kripke structure is a structure of infinite size. Now, let K ′ = 〈AP′,W′,R′,L′〉 be an-
other Kripke structure. We say that K ′ is a substructure of K , in symbols K ′ � K , iff
(i) AP′ ⊆ AP, (ii) W′ ⊆ W, (iii) R′ ⊆ R∩(W′ ×W′), and (iv) for all w ∈ W′, it holds that
L′(w) = L(w)∩AP′. Moreover, we say that K and K ′ are comparable iff (i) K � K ′

or (ii) K ′ � K holds, otherwise they are incomparable. For a set of structures S, we
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define the set of minimal substructures (antichain) minstructs(S) as the set consisting
of the �-minimal elements of S. I.e., it is the set containing all and only the structures
K ∈ S such that for all K ′ ∈ S, it holds that (i) K � K ′, or (ii) K ′ is not comparable
with K . Note that all structures in minstructs(S) are incomparable among them. A
structure K is minimal w.r.t. a set S (or simply minimal, when the context clarify the
set S) iff K ∈ minstructs(S). A set of structures S is minimal iff S = minstructs(S).

For sake of space, all other classical concepts of tree, path, set of maximal paths
paths(K ,w) of a structure K starting in a world w ∈ dom(K ), and unwinding UK

w of
K in w, are omitted (see [KVW00] for detailed definitions).

3 The Minimal Model Quantifiers Temporal Logic Extensions

In this section, we introduce an extension of the classical branching-time temporal logic
CTL∗ with minimal model quantifiers, which allow to extract minimal submodels on
which we successively check a given property. To formally define the extended logic,
we use the CTL∗ state and path formulas framework.

The full computation tree logic with minimal model quantifiers (MCTL∗, for short)
extends CTL∗ by further using two special quantifiers, the universal Λ and the existen-
tial Ξ ones. Informally, a model satisfies a state formula ϕ1 Λ ϕ2 iff all its minimal and
conservative submodels satisfying ϕ2 (ϕ2 is the submodel extractor) are also models
satisfying ϕ1 (ϕ1 is the submodel verifier). As in CTL∗, in MCTL∗ the two path quan-
tifiers A and E can prefix a linear time formula composed by an arbitrary combination
and nesting of the four linear temporal operators X (“effective next”), X̃ (“hypothetical
next”), U (“until”), and R (“release”). The formal syntax of MCTL∗ follows.

Definition 1. (Syntax) MCTL∗ state (ϕ) and path (ψ) formulas are built inductively
from AP using the following context-free grammar, where p ∈ AP:

1. ϕ ::= p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | ϕ Λ ϕ | ϕ Ξ ϕ | Aψ | Eψ,
2. ψ ::= ϕ | ¬ψ | ψ∧ψ | ψ∨ψ | Xψ | X̃ψ | ψUψ | ψR ψ.

The class of MCTL∗ formulas is the set of state formulas generated by the above gram-
mar. In addition, the simpler classes of MCTL+, MCTL, and MPML formulas are
obtained, respectively, by avoiding nesting of temporal operators, by forcing each tem-
poral operator occurring into a formula to be coupled with a path quantifier, and by
excluding from MCTL path formulas the until and release operators. ��
The length |ϕ| of a formula ϕ is defined inductively on the structure of ϕ in the classical
way, and by also considering |ϕ1 Λ ϕ2| and |ϕ1 Ξ ϕ2| to be equal to 1 + |ϕ1|+ |ϕ2|.

We now define the semantics of MCTL∗ w.r.t. a Kripke structure K . For a world
w ∈ dom(K ), we write K ,w |= ϕ to indicate that a state formula ϕ holds at w, and, for
a path π ∈ paths(K ), we write K ,π,k |= ψ to indicate that a path formula ψ holds on π
at position 0 ≤ k < |π|. Note that, the relation K ,π,k |= ψ does not hold for any point
k ∈ N, with k ≥ |π|. The semantics of state and path formulas involving ¬, ∧, and ∨,
the classical path quantifiers E and A, and the classical temporal operators is defined as
usual in CTL∗. Here we only give the semantics of the remaining part.

Definition 2. (Semantics) Given a Kripke structure K = 〈AP,W,R,L〉, a world w ∈
W, and two MCTL∗ state formulas ϕ1 and ϕ2 it holds:
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1. K ,w |= ϕ1 Λ ϕ2 iff for all K ′ ∈ minstructs(S(K ,w,ϕ2)) it holds that K ′,w |= ϕ1;
2. K ,w |= ϕ1 Ξ ϕ2 iff there is K ′ ∈ minstructs(S(K ,w,ϕ2)) such that K ′,w |= ϕ1;

where S(K ,w,ϕ) = {K ′ � K | w ∈ dom(K ′)∧∀K ′′ � K : K ′ � K ′′ → K ′′,w |= ϕ}

It is clear that, MCTL∗ (resp., MPML, MCTL, and MCTL+) formulas without minimal
model quantifiers are CTL∗ (resp., PML, CTL, and CTL+) formulas.

Let K be a Kripke structure and ϕ a MCTL∗ formula. Then, K is a model for ϕ,
denoting this by K |= ϕ, iff there is w ∈ dom(K ) such that K ,w |= ϕ. In this case, we
also say that K is a model for ϕ on w. A MCTL∗ formula ϕ is said satisfiable iff there
exists a model for it, moreover it is invariant on two Kripke structures K and K ′ iff
either K |= ϕ and K ′ |= ϕ or K �|= ϕ and K ′ �|= ϕ, i.e., K and K ′ agree on ϕ.

A Kripke structure K is conservative w.r.t. a formula ϕ iff, for all models K ′ ex-
tending K , i.e., with K � K ′, it holds that K ′ |= ϕ. Note that this concept of conserva-
tiveness is automatically embedded in the definition of S(K ,w,ϕ), since we consider
only models K ′ ∈ S(K ,w,ϕ) that, if extended, continue to satisfy the formula ϕ. To
better understanding the meaning and the importance of the conservativeness, consider
the Kripke structure K built by a chain of three states w0 → w1 → w2, in which the
final state w2 is the only one labeled by p. Moreover, consider the two submodels K ′

and K ′′ of K built, respectively, by w0 and w0 → w1. Clearly K ′ � K ′′ � K and, for
ϕ = EX̃F p, we have that K ′ |= ϕ, K ′′ �|= ϕ, and K |= ϕ. Hence, we have that K ′ satisfies
ϕ, but it is not conservative, since K ′′ (that extend K ′) does not satisfy ϕ.

For all state formulas ϕ1 and ϕ2 (resp., path formulas ψ1 and ψ2), we say that ϕ1 is
equivalent to ϕ2, formally ϕ1 ≡ ϕ2, (resp., ψ1 is equivalent to ψ2, formally ψ1 ≡ψ2) iff
for all Kripke structures K and worlds w ∈ dom(K ), it holds that K ,w |= ϕ1 iff K ,w |=
ϕ2 (resp., for all paths π ∈ paths(K ,w), it holds that K ,π,0 |= ψ1 iff K ,π,0 |= ψ2).

In the rest of the paper, we mainly consider formulas in existential normal form or in
positive normal form, i.e., formulas in which only existential (minimal model and path)
quantifiers occur or negation is applied only to atomic propositions, respectively. In fact,
it is to this aim that we have considered in the syntax of MCTL∗ both the connectives
∧ and ∨, the quantifiers Λ , Ξ , A and E, and the dual operators X̃ and R . Indeed, all
formulas can be converted in existential or positive normal form by using De Morgan’s
laws and the following equivalences, which directly follow from the semantics of the
logic. Let ϕ1 and ϕ2 be state formulas and ψ, ψ1, and ψ2 be path formulas, then it holds
that ¬(ϕ1 Λϕ2)≡¬ϕ1 Ξϕ2, ¬Aψ ≡ E¬ψ, ¬Xψ ≡ X̃¬ψ, and ¬(ψ1Uψ2)≡¬ψ1R¬ψ2.
In order to abbreviate writing formulas, we also use the boolean values t (“true”) and
f (“false”) and the path temporal operators F ψ ≡ t U ψ (“future”) and G ψ ≡ f R ψ
(“globally”). Moreover, note that the following equivalences also hold: E(ψ1 ∨ψ2) ≡
Eψ1 ∨Eψ2, X̃ψ ≡ X̃ f∨Xψ, ψ1R ψ2 ≡ (ψ2U (ψ1 ∧ψ2))∨Gψ2, X (ψ1 ∧ψ2) ≡ Xψ1 ∧
Xψ2, and G (ψ1 ∧ψ2) ≡ Gψ1 ∧Gψ2.

Example 1. (Arbiter system) Consider an arbiter system used to control a two-users
access to a shared memory location (see Figure 1 for a model K of it), where only the
resquest (r) and the acknowledge (a) signals are known. Suppose now that we want to
verify that the idle state i and the common request state 〈r1,r2〉 are unique w.r.t. the
order of user request or arbiter acknowledge. We can perform this check by applying
MCTL∗ model checking in the state i using a formula ϕ = ϕ1 ∧ϕ2, where ϕ1 = AG(i →



Branching-Time Temporal Logics with Minimal Model Quantifiers 401

r1

�� �������� i�� �� r2

��������

��
a1

��

���������
r1,r2

�����
���

�����
���

a2

���������

��
a1,r2

		�������������
K r1,a2



�������������

r1

��

i��

a1

��

��������
a2

��
a1,r2

��											
K1 r1,a2














r1

�������� i�� �� r2

�����
��

r1,r2

�����
���

a1,r2 K2

Fig. 1. A model of an arbiter system for shared memory locations and its submodels

X t)ΛE(F (a1 ∧XF i)∧F (a2 ∧XF i)) checks if the “acknowledge subsystem” reaches
the same idle state and ϕ2 = AG(r1 ∧r2 →X t)Λ(EX(r1 ∧X(r2 ∧X t))∧EX(r2 ∧Xr1))
checks if the common request state reached by the “request subsystem” is unique. For
two minimal and conservative submodels of ϕ1 and ϕ2 in K see K1 and K2 in Figure
1. Note that also their “mirror images” are submodels of ϕ1 and ϕ2.

One may note that the above check can not be achieved using a classical logic such as
CTL∗. Indeed, we may have a bisimilar model of K , with more idle or common request
states, in which no CTL∗ formula can check that these states are not unique. ��

By means of counterexamples, we show that the introduced extended logics are more
expressive than the corresponding classical ones. Indeed, since they can distinguish
among models that are invariant for the classical logics, as described in the previous
example. The result is reported in the following theorem.

Theorem 1. For MPML, MCTL, MCTL+, and MCTL∗ it holds that they (i) do not have
the tree model property; (ii) are neither invariant under unwinding nor under partial
unwinding; (iii) are not invariant under bisimulation; and (iv) are more expressive than
PML, CTL, CTL+, and CTL∗, respectively.

Proof. Item (i) To prove this item, we consider a formula with an existential minimal
model quantifier such that it requires to extract a graph submodel, which can not be
a tree, in order to be satisfied. Consider the MPML formula ϕ = ϕ1 Ξ ϕ2, where ϕ1 =
EX(β∧EXEXγ), ϕ2 = α∧EX(β∧EXδ)∧EX(γ∧EX(δ∧EXγ)), α = a∧b, β =¬a∧b,
γ = a∧¬b, and δ = ¬a∧¬b. This formula is satisfiable. In Figure 2 we show K1, K2,
K3, and K4 as the only minimal models of ϕ2, where only K1 is a tree and K3 and K4

are the only models of ϕ. Indeed, only K3 and K4 satisfy ϕ1. Since any model of ϕ must
include K3 or K4 as submodel, it follows that no tree model can satisfy ϕ. Since MPML

is a sublogic of MCTL, MCTL+, and MCTL∗ the thesis easily follows.
Item (ii) Suppose by contradiction that MPML is invariant under unwinding. Then,

for each satisfiable formula ϕ, since there exists a model K such that K ,w |= ϕ, it holds
that UK

w ,w |= ϕ. But UK
w is a tree, so each satisfiable formula has a tree model, but this

contradicts the previous item. To prove that this logic is also not invariant under partial
unwinding, consider the model K , built by a single world w with a loop relation on it,
and its “one step” unwinding K ′, formed by two worlds, w and v, linked together by a
relation and with a relation loop on the second one (see Figure 2). Moreover, consider,
the MPML formula ϕ = (EXEX t) Ξ (EX t). It holds that S(K ,w,EX t) = {K }, while
S(K ′,w,EX t) = {K ′,K ′′}, with K ′′ � K ′ and where K ′′ is equal to K ′ once the loop
on the last node is removed. It is easy to verify that K |= EXEX t, but K ′′ �|= EXEX t,
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Fig. 2. Minimal models of ϕ2 in item i and models of EX t in item ii of Theorem 1

so we have that only K is a model of ϕ. This shows that MPML is able to distinguish
between a model and one of its partial unwindings, thus the thesis follows.

Item (iii) Since an unwinding is a particular case of a bisimilarity relation, we have
also that MPML is not bisimilar, i.e., it is possible to express a MPML property satisfied
on a model K , but not on a bisimilar model K ′ of K .

Item (iv) This item follows from the fact that PML, CTL, CTL+, and CTL∗ are
invariant under bisimulation, while their extensions with minimal model quantifiers are
not. Therefore, the extended logics can characterize more models than the classical ones
and thus they are more expressive. ��

We now show that MPML has the strong finite model property. To this aim, we first
introduce some extra notations. For a Kripke structure K , by dep(K ) we denote the
maximal length of a path in the unwinding Uw

K , for all worlds w ∈ dom(K ). Moreover,
given a MPML formula ϕ, we denote by dep(ϕ) the depth of ϕ, i.e., the maximal num-
ber of nested occurrences of path quantifiers in ϕ, but those appearing in its submodel
verifiers. Formally, the depth function is inductively defined as follows: dep(p) = 0, for
p ∈ AP; dep(¬ϕ) = dep(ϕ); dep(ϕ1 ∧ϕ2) = dep(ϕ1 ∨ϕ2) = max{dep(ϕ1),dep(ϕ2)};
dep(ϕ1 Λ ϕ2) = dep(ϕ1 Ξ ϕ2) = dep(ϕ2); dep(Aψ) = dep(Eψ) = 1 + dep(ϕ), where
ψ = Xϕ or ψ = X̃ϕ. It is easy to see that dep(ϕ) = O(|ϕ|).

Theorem 2. MPML has the strong finite model property, i.e., each MPML satisfiable
formula ϕ has a finite model K with size |K | ≤ g(|ϕ|), where g is a recursive function,
and depth dep(K ) ≤ dep(ϕ).

In [EH85] it is shown that CTL+ is equivalent to CTL by using an exponential blow-up
translation. Also, in [Wil99] it is shown that this blow-up is unavoidable. In the next
theorem, we show that MCTL and MCTL+ are polynomially equivalent and then, as an
immediate corollary, we obtain that MCTL is exponentially more succinct than CTL.

Theorem 3. MCTL is polynomially equivalent to MCTL+.

Proof. (Sketch.) Given a MCTL+ formula ϕ we show that there exists a MCTL formula
ϕ′ equivalent to ϕ such that |ϕ′| = O(|ϕ|3).

W.l.o.g we assume that ϕ is in existential normal form (we recall that any MCTL+

formula can be linearly translated in this form). Moreover, due to classical formula
equivalences [EH85], we can also assume that ϕ has one E quantifier by recursively
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applying the translation algorithm to nested subformulas containing an E. So we can
assume that ϕ is of the form Eψ and ψ is a Boolean combination of subformulas of the
form ϕ′

iU ϕ′′
i , G ϕ1, X ϕ2, and X̃ f, where each ϕ′

i, ϕ′′
i , ϕ1 and ϕ2 are MCTL formulas

(found by recursive applications of the translation algorithm). In practice, this turns out
to use, as base case of the translation idea, the four equivalences listed below:

i) E(
∧n

i=1 ϕ′
iUϕ′′

i ∧Gϕ1 ∧ X̃ f) ≡ ∧n
i=1 ϕ′′

i ∧ϕ1 ∧EX̃ f;
ii) E(Gϕ1 ∧Xϕ2) ≡ ϕ1 ∧EX (ϕ2 ∧EGϕ1);
iii) E(

∧n
i=1 ϕ′

iUϕ′′
i ∧Gϕ1) ≡ ∨n

i=1( f ′i Ξ f ′′i );
iv) E(

∧n
i=1 ϕ′

iUϕ′′
i ∧Gϕ1 ∧Xϕ2) ≡

∧n
i=1 ϕ′′

i ∧ϕ1 ∧EX (ϕ2 ∧EGϕ1)∨
∨n

i=1( f ′i Ξ f ′′i );
where f ′i =

∧h,k �=i
1≤h<k≤n(EF (ϕ′′

h ∧EFϕ′′
k )∨EF (ϕ′′

k ∧EFϕ′′
h)) and f ′′i = E((ϕ′

i∧ϕ1)U (ϕ′′
i ∧

EGϕ1))∧
∧n

j=1; j �=i E(ϕ′
jU (ϕ′′

j ∧EFϕ′′
i )).

The first two equivalences, which do not contain the minimal model quantifier Ξ ,
are derivable by simply applying classical transformations. The proof of the last two,
instead, can be obtained by formally showing (by induction) that each model satisfying
the first member of an equivalence must satisfy also the second one and vice versa.
Here, we omit this part for the sake of space, while we give an intuition of the third
equivalence, which shows, as in the fourth one, how to avoid the exponential blow-up
incurred by the classical translation in CTL for the corresponding case.

The key step in the translation is the selection of the right submodel of the extractor
formula f ′′i , through the verifier formula f ′i , which must satisfy ϕ = E(

∧n
i=1 ϕ′

iU ϕ′′
i ∧

Gϕ1). If a model K satisfies ϕ in a world w ∈ dom(K ), for all K ′ ∈ minstructs(S(K ,
w,ϕ)) it holds that K ′ ∈ minstructs(S(K ,w, f ′′i )), for a given index i. Moreover, for
all paths π ∈ paths(K ′,w) such that K ′,π,0 |= ∧n

i=1 ϕ′
iU ϕ′′

i , we have that K ′,π,0 |=
F (ϕ′′

h ∧Fϕ′′
k ) or K ′,π,0 |= F (ϕ′′

k ∧Fϕ′′
h), for all indexes h and k, with h < k and h,k �= i.

Hence, it holds that K ′,w |= f ′i and then K ,w |= f ′i Ξ f ′′i .
Vice versa, consider a model K such that K ,w |= f ′i Ξ f ′′i , for a given index i. Then,

it holds that there exists a minimal model K ′ ∈ minstructs(S(K ,w, f ′′i )) such that
K ′,w |= f ′i . Now, suppose by contradiction that K ′,w �|= ϕ. Then there exist at least
three different and not directly connected parts K ′

1, K ′
2, and K ′

3, with K ′
1,K

′
2 ,K

′
3 � K ′,

and three paths π1 ∈ paths(K ′
1 ,w), π2 ∈ paths(K ′

2 ,w), and π3 ∈ paths(K ′
3 ,w), such that

each path formula ϕ′
jUϕ′′

j , with j �= i, is satisfied on just two of these paths. Then, each
formula E(ϕ′

jU(ϕ′′
j ∧EFϕ′′

i )) is satisfied in at least two ways in two different submodels
of K ′ and then there exists a submodel K ′′ � K ′, K ′′ �= K ′ such that K ′′,w |= f ′′i . So,
K ′ is not minimal, but this contradicts the assumption. Hence, K ′,w |= ϕ.

Finally, note that it is fundamental that minimal model quantifiers are conservative.
Otherwise, we could have a model K such that K ,w |= tΞEGϕ1 even if K ,w �|= EGϕ1.
This means that in the above discussion, we could have K ,w �|= ϕ, since there are no
paths satisfying Gϕ1, but K ,w |= f ′i Ξ f ′′i , for some i. ��
Corollary 1. MCTL is exponentially more succinct than CTL.

4 Model Checking

In this section, we solve the model checking for the introduced logics, showing that the
considered extract-verify paradigm retains the decidability of this problem.
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We start with a lemma that shows how to calculate a polynomial certificate for par-
ticular MCTL and MCTL∗ formulas. This result will be then useful to show the corre-
sponding upper bound results for the addressed model checking problems.

Lemma 1. Let K be a Kripke structure, w ∈ dom(K ) be a world and ϕ = ϕ1 Ξ ϕ2 be
a MCTL (resp., MCTL∗) formula, with ϕ1 and ϕ2 CTL (resp., CTL∗) formulas. Then,
there exists a polynomial certificate K ′ of the testing K ,w |= ϕ, which is verifiable in
PTIME (resp., PSPACE).

Proof. To check that the test K ,w |= ϕ is in NPTIME (resp., in PSPACE), we verify
that there exists a minimal and conservative submodel K ′ of K (the certificate of the
test) of polynomial size (since |K ′| ≤ |K |) satisfying ϕ2 in w such that K ′,w |= ϕ1. To
this aim, we split the verification procedure into the following four phases: (i) testing
of K ′,w |= ϕ2, (ii) checking the minimality of K ′, (iii) checking the conservativeness
for K ′, and (iv) testing of K ′,w |= ϕ1. The first and last items are easily achievable in
PTIME (resp., in PSPACE) by applying a classical CTL (resp., CTL∗) model checking
algorithm. Instead, to verify that K ′ is minimal w.r.t. the formula ϕ2, we check that for
all maximal and proper submodels K ′′ of K ′, it holds that K ′′,w �|= ϕ2. Now, note that
all models K ′′ are in number O(|K ′|) since each of them is obtained by removing only
one component from K ′. So, we deduce that also the check for minimality can be done
in PTIME (resp., in PSPACE). Finally, it remains to verify whether K ′ is conservative,
i.e., for all models K ′′, with K ′ � K ′′, it holds K ′′,w |= ϕ2. To do this, we can check
that, for all subformula ϕ′ of ϕ2 and for all worlds w∈ dom(K ′), it holds that K ′,w |= ϕ′

iff K ,w |= ϕ′. Since the number of all subformulas ϕ′ is polynomial in the size of ϕ2,
and thus in the size of ϕ, it follows that also the check for conservativeness is in PTIME

(resp., in PSPACE). To sum up, we have that to verify a certificate for the test K ,w |= ϕ
is in PTIME (resp., PSPACE), and therefore we have done with the proof. ��
Using the above result, we are now able to prove the following two theorems.

Theorem 4. MCTL∗ has a PSPACE-COMPLETE model checking problem.

Proof. For the lower bound, we recall that for CTL∗, which is a sublogic of MCTL∗,
the model checking problem is already PSPACE-HARD. We now proceed with the upper
bound. To this aim, let K be a Kripke structure and ϕ an MCTL∗ in existential normal
form, we construct a recursive algorithm that checks in PSPACE whether K ,w |= ϕ.

First of all, we enumerate all subformulas ϕ = ϕ′ Ξ ϕ′′ of ϕ and we associate to each
of them a fresh different atomic proposition. More formally, suppose that we have a
sequence (ϕ1, . . . ,ϕn) of such subformulas, then we associate to each ϕi the proposition
epi. Now, consider Θm as the set of all formulas ϕ = ϕ′ Ξ ϕ′′ subformulas of ϕ such that
ϕ′ contains just m and ϕ′′ contains at most m nested occurrences of the Ξ quantifier,
or vice versa. Also, consider Θ′

m as the set of formulas ϕ̃ obtained from each ϕ ∈ Θm

by replacing every occurrence of a minimal model quantifier, but the most external one,
with the relative atomic proposition. Note now that, for all m, each ϕ̃ ∈ Θ′

m is a MCTL∗

formula of the type ϕ̃ = ϕ′ Ξ ϕ′′, with ϕ′ and ϕ′′ CTL∗ formulas and that |Θ′
m|= O(|ϕ|).

Now, set K0 = K , we construct a sequence of Kripke structures Km such that, for
all ϕ̃ ∈ Θm and w ∈ dom(K ), epi ∈ Lm(w) iff Kn−1,w |= ϕ̃, where epi is the atomic
proposition relative to ϕ. The latter can be checked by applying the PSPACE procedure
of Lemma 1. Then, the result follows by recursively applying the above procedure. ��
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Theorem 5. MCTL and MCTL+ have a Δp
2-COMPLETE model checking problem.

Proof. First note that, since by Theorem 3 MCTL and MCTL+ are one into the other
polynomial reducible, MCTL+ simply extends CTL+with minimal model quantifiers,
and the latter has a Δp

2 -COMPLETE model checking problem [LMS01], we have that
MCTL has a Δp

2 -HARD model checking. What remains to show is that it is in Δp
2 . To

prove this, we use a variation of the deterministic algorithm of Theorem 4, which, in-
stead to call a PSPACE procedure to know if K ,w |= ϕ1 Ξ ϕ2 or not, call a NPTIME

oracle (in accordance with Lemma 1), which solve the check in a single step. Now,
since all other instructions of the algorithm are based on a classical CTL model check-
ing procedure that can be executed in PTIME, we easily obtain a Δp

2 model checking
procedure for MCTL. Moreover, by Theorem 3, it holds that a MCTL+ formula can be
polynomially translated into a MCTL one, so the thesis follows also for this logic. ��

Corollary 2. MPML has a Δp
2 model checking problem.

5 Satisfiability

In this section we study the satisfiability for the introduced logics. We show that for all
of them, but MPML, the question is undecidable. For MPML, we show decidability by
using a brute force procedure via strong finite model property [BdRV04]. The result is
reported in the following theorem.

Theorem 6. The satisfiability problem for MPML is decidable.

Proof. By Theorem 2, MPML has the strong finite model property w.r.t. a precise recur-
sive function g. So for a given MPML formula ϕ we can construct a non deterministic
Turing machine that, once the value of the function g(|ϕ|) is computed, it guesses a
model K of size at most equal to this value and then checks if it satisfies the formula
by applying the decidable model checking procedure given by Corollary 2. Since ϕ is
satisfiable iff it is satisfied on a model K of size at most g(|ϕ|) and the built machine
systematically examines all these kinds of models, the thesis easily follows. ��

In rest of this section, we show undecidability of the satisfiability problem for MCTL,
MCTL+, and MCTL∗through a reduction of a domino problem to it. This approach,
often used in undecidability proofs in logic (see for example [BS99]), is classically
known as “undecidability via tiling” [BdRV04].

The well-known domino problem, proposed for the first time by Wang [Wan61],
consists of placing a given number of tile types on an infinite grid, satisfying a prede-
termined set of constraints on adjacent tiles. Its standard version asks for a compatible
tiling of the whole plane Z×Z. However, as stated by Knuth [Knu68], a compatible
tiling of the first quadrant yields compatible tilings of arbitrary large finite rectangles,
which in turn yields a compatible tiling of the whole plane. Since the existence of a
solution for the original problem is known to be Π1

0-COMPLETE [Ber66, Rob71], we
have undecidable results (Π1

0-HARD) also for the above variants of the classical domino
problem. A formal definition of the N×N tiling problem follows.
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Definition 3. (Tiling System) A N×N tiling system D = (T ,H ,V ) is a structure
built on a non-empty set T of domino types and two horizontal and vertical matching
pairs H ,V ⊆ T 2. The domino problem asks for a compatible tiling of the first quadrant
(N×N) of the plane, which is a solution mapping τ : N2 �→ T such that, for all x,y ∈ N
with τ(x,y) = t, it holds that if τ(x + 1,y) = t ′, then (t,t ′) ∈ H , and if τ(x,y + 1) = t ′,
then (t,t ′) ∈ V . ��

In the literature, an extension of the above problem has been also introduced as the
recurrent domino problem. This problem, in addition to the tiling of the semiplane N×
N, asks whether there exists a distinguished tile type that occurs infinitely often in the
first row of the grid. This problem is known to be more complex of the classical one.
Indeed, it turns to be Σ1

1-COMPLETE [Har84]. The formal definition follows.

Definition 4. (Recurrent Tiling System) A N×N recurrent tiling system RD = (T ,
H ,V ,t∗) is a structure in which D = (T ,H ,V ) is a N×N tiling system and t∗ ∈ T is
a distinguished tile type. The recurrent domino problem asks for a solution mapping τ
such that the set of horizontal index {m | τ(m,0) = t∗} has an infinite cardinality. ��

By showing a reduction from the recurrent domino problem, we can prove in particular
that the satisfiability for the MCTL logic is Σ1

1-HARD. We achieve this reduction by
showing that a given recurrent tiling system RD can be “embedded” into a model KRD
of a particular formula ϕRD in such a way that ϕRD is satisfiable (i.e., it has a model) if
and only if RD allows for a compatible tiling. To this aim we extend the proof structure
used by Baader and Sattler [BS99]. For the sake of clarity, we split the reduction into
four tasks, as described as follows:

Task 1 - (Grid Specification): It is possible to represent a “square structure” of N×N,
which consists of points (x,y), (x + 1,y), (x,y + 1), and (x + 1,y + 1), in order to
yield a complete covering of the semi-plane via a repeating regular grid structure.
The basic idea is to use the minimal model quantifiers to force the horizontal suc-
cessor of (x,y + 1) and the vertical successor of (x + 1,y) to correspond to the
unique point (x + 1,y + 1), with the aim to represent a square structure model on
which to place the domino types. Formally, this can be expressed by using the fol-
lowing formula ϕGS, with α = a∧b, β = ¬a∧b, γ = a∧¬b, and δ = ¬a∧¬b:

ϕH(ϕ′) = (α → EX(γ∧ϕ′))∧ (β → EX(δ∧ϕ′))∧ (γ → EX(α∧ϕ′))∧ (δ → EX(β∧ϕ′));
ϕV (ϕ′) = (α → EX(β∧ϕ′))∧ (β → EX(α∧ϕ′))∧ (γ → EX(δ∧ϕ′))∧ (δ → EX(γ∧ϕ′));
ϕS = ϕV (ϕH(ϕV (t)))Ξ (ϕV (ϕH(t))∧ϕH (ϕV (ϕV (t))));
ϕUH = ϕH(ϕH(t)∧ϕV (t))Λ (ϕH (ϕH(t))∧ϕH (ϕV (t)));
ϕUV = ϕV (ϕH(t)∧ϕV (t))Λ (ϕV (ϕH(t))∧ϕV (ϕV (t)));
ϕA = ((α∨δ) → AX(β∨ γ))∧ ((β∨ γ) → AX(α∨δ));
ϕGS = ϕS ∧ϕUH ∧ϕUV ∧ϕA.

Task 2 - (Compatible Tiling): It is possible to express that a tiling is locally compati-
ble, i.e., the two horizontal (x + 1,y) and vertical (x,y + 1) points have admissible
domino types with respect to the (x,y) point. The idea here is to associate to each
domino type t ∈ T an atomic proposition Tt and express the horizontal and verti-
cal matching conditions via suitable object labeling. Note that these constraints are
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very easy to express. Indeed, they can be expressed in PML. Formally, we have:

ϕCT =
∨

i∈T
(Ti ∧

j �=i∧
j∈T

¬Tj ∧ϕH(
∨

(i, j)∈H
Tj)∧ϕV (

∨
(i, j)∈V

Tj)).

Task 3 - (Recurrent Tile): It is possible to assert that the distinguished tile type t∗ oc-
curs infinitely often on the first row of the semi-plane. This task can be easily
achieved by using the kind of recursion available in the basic logic CTL. By means
of this recursion, we can impose that the relative atomic proposition Tt∗ is satisfied
in an infinite number of worlds v ∈ dom(KRD), linearly reachable from the origin
w ∈ dom(KRD) of the grid. Formally, we have:
ϕRT = ϕV (¬ε)∧ (ε → ϕH(EF (ε∧Tt∗))).

Task 4 - (Global Reachability): Finally, it is possible to impose that the above three
conditions hold on all points in N×N. As for the recurrent tile condition, also this
task can be achieved by the simple recursion given by CTL. Formally, we have:
ϕGR = AG (ϕGS ∧ϕCT ∧ϕRT ).

We now give a formal proof of the undecidability, introducing the formula ϕRD who
assemble all the above concepts.

Theorem 7. The satisfiability problem for MCTL, MCTL+, and MCTL∗ is highly un-
decidable. In particular, it is Σ1

1-HARD.

Proof. To prove the undecidability of the logic, we show the equivalence between find
the solution of the recurrent tiling problem, with the distinguished tile type t∗, and the
satisfiability of the formula ϕRD = α∧ ε∧ϕGR.

Assume, for the direct reduction, that there exists a solution mapping τ. Then, we
can build a satisfying model K = 〈AP,W,R,L〉 that satisfies ϕRD as follows:

– AP = {a,b,ε}∪{Tt | t ∈ T };
– W = N×N;
– R = {((m,n),(m+1,n)) | m,n ∈ N}∪{((m,n),(m,n+1)) | m,n ∈ N};
– for all m,n∈N, it holds that: a∈L((m,n)) if n≡ 0 (mod 2), b∈L((m,n)) if m ≡ 0 (mod 2),

ε ∈ L((0,0)) and ε ∈ L((m,0)) if τ(m,0) = t∗, and Tt ∈ L((m,n)) if τ(m,n) = t.

It is easy to see that K |= ϕRD , since K ,(0,0) |= ϕRD .
Conversely, let K be a model such that there exists a world w ∈ dom(K ) such that

K ,w |= ϕRD . First, we show that K is a grid-like model and then that is possible to
construct a solution mapping τ from it. Indeed, since K ,w |= ϕRD , we have that for
all worlds v ∈ dom(K ) reachable from w, (i.e., (w,v) ∈ Rn, for some n ∈ N) it holds
that K ,v |= ϕGS and thus K ,v |= ϕS. Now, it is not difficult to see that K must contain
a square submodel in v (see proof of item (i) of Theorem 1 and structures K3 and K4

in Figure 1 for an example of models of ϕGS, where also holds that Ki,v |= α, for
i ∈ {3,4}). Moreover, K ,v |= ϕA, so there are only two kinds of successors for v, i.e.,
if K ,v |= α or K ,v |= δ then v has successor worlds u, with K ,u |= β or K ,u |= γ and
vice versa. Finally, since K ,v |= ϕUH ∧ϕUV , if K ,v |= α or K ,v |= δ, v has only one
successor u′ with K ,u′ |= β and only one successor u′′ with K ,u′′ |= γ and viceversa.
Now, it is clear that each world v reachable from w (including w itself) has only two
successors u′ and u′′, which have a common successor o. Hence, K is a grid-like model.
To extract a solution mapping τ from K is a routine task, so left to the reader. ��
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6 Conclusions

In this paper, we have introduced the branching-time temporal logic MCTL∗ as an ex-
tension of the classical branching-time temporal logic CTL∗ with minimal model quan-
tifiers. These quantifiers allow to extract minimal submodels of a system model (even
when the modularity of the system is not known in advance) on which we successively
check a given property of the introduced logic.

We have deeply investigated, from a theoretical point of view, MCTL∗ and some of
its sublogics. As far as the expressivity regards, we have showed that MCTL∗ is strictly
more expressive than CTL∗. Unfortunately, this power comes at a price. Indeed, the
satisfiability problem for MCTL∗, as well as for its sublogic MCTL, has been proved to
be highly undecidable. Moreover, MCTL∗ does not have the tree model property, it is
not bisimulation-invariant, and it is sensible to unwinding, opposed to CTL∗.

As good news, we have showed that the sublogic MPML of MCTL∗ retains both
the finite model property and the decidability of the satisfiability problem. Moreover,
we have showed that the model checking problem for MCTL∗ remains decidable and
in PSPACE. In more details and differently from CTL∗, the PSPACE upper bound we
provide is both in the size of the system and in the size of specification. Since for CTL it
is only PSPACE in the size of the formula, it is left as an open question whether this extra
complexity can be avoided. Anyway, although practical applications of MCTL∗ are not
in the target of this paper, we argue that the extra blow-up for MCTL∗should not have
any consequence in practical applications as it can be absorbed in classical symbolic
model checking algorithms, which are already exponential. Last but not least, we have
investigated succinctness and the model checking problems for MCTL+ and MCTL.
We have shown that, differently from the classical case of CTL and CTL+, MCTL is as
succinct as MCTL+. Moreover, as for CTL+, the model checking problem for MCTL

and MCTL+ is Δp
2-COMPLETE (i.e., PTIMENPTIME).

As future work, it would be worth investigating if the bisimulation-invariant frag-
ment of MCTL∗ (i.e., the set of formulae that agree on bisimilar Kripke structures) is
equally expressive as CTL∗. In other words, we would like to check whether there ex-
ists an MCTL∗ formula which does not distinguish bisimilar structures, but it is still not
expressible in CTL∗. Then, if such a fragment is not equivalent to CTL∗, it would be
also relevant to investigate the related decidability problems.

Acknowledgement. We wish to thank Moshe Y. Vardi for useful discussions and the
DLT 2009 referees for many helpful comments and suggestions.
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Abstract. We investigate the efficiency of simulations of storages by
several counters. A simulation of a pushdown store is described which
is optimal in the sense that reducing the number of counters of a sim-
ulator leads to an increase in time complexity. The lower bound also
establishes a tight counter hierarchy in exponential time. Then we turn
to simulations of a set of counters by a different number of counters. We
improve and generalize a known simulation in polynomial time and we
show a tight hierarchy result for machines working in the same polyno-
mial bound with an increasing number of counters. We also prove hier-
archies for machines with a fixed number of counters and with growing
polynomial time bounds.

1 Introduction

It is a classical result due to Minsky [6] that machines equipped with two coun-
ters are universal. Therefore adding more counters to such a machine does not
increase its power from a computability point of view. It may however influence
the efficiency of simulating other devices and accepting certain languages. While
the well-known simulation of a tape by two counters requires a double expo-
nential increase in time [8, Theorem 2.1 (3)], two pushdown stores (and thus a
tape) can be simulated by three counters with a single exponential overhead. For
a storage consisting of several counters Greibach has given an explicit polynomial
bound on the overhead of a simulation by three counters [2].

It is thus natural to ask how the complexity of these simulations is influenced
by increasing the number of counters of the simulator. Since storages like tapes
and queues can be simulated efficiently by pushdown stores, we will concentrate
on simulations of a single pushdown store or a set of counters by several counters.

When considering upper bounds on simulations it is interesting to show lower
bounds which might prove optimality of the simulations. The early work on
counter machines by Fischer et al. [1] and Laing [5] established counter hier-
archies for realtime recognition, thus showing that fewer counters never suffice
for a general simulation in realtime. For palindrome recognition an exponential
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lower bound was established in [1, Theorem 1.3]. It seems to be a much more
difficult task to separate counter machines having a polynomial, non-linear time-
bound. Greibach was only partially successful when she showed that adding s+1
counters increases the power of counter machines operating in time ns [2, The-
orem 3.3]. Intuitively the obstacle to a tighter separation is that in polynomial
time the counters have to store information in encoded form and the encoding
will cause overhead that requires adding more counters than in realtime in order
to obtain a separation.

Hromkovič and Schnitger compared the computational power of nondetermin-
ism, randomization, and determinism for polynomial time counter machines [4].

In the present work we will improve simulations of a pushdown store and
of many counters by few. We will also succeed in separating machines with a
growing number of counters in the same time bound and of machines with a
fixed number of counters and increasing time bounds.

2 Preliminaries

A k-counter machine is a device equipped with a deterministic finite control unit,
k counters, each capable of storing an integer, and a one-way input tape. The
set of states of the finite control unit is divided into disjoint sets of autonomous
states and polling states. In an autonomous state the next step is determined
by the current state and by the set of counters which contain zero, while in a
polling state the next step also depends on the symbol read from the input tape.
Each step may change the state of the control unit and alter the counters by
some bounded amount. Initially the machine starts in a designated initial state.
A computation consists of a sequence of steps. As in [2] we assume that the
input tape has an endmarker. An input is accepted if the machine falls off the
endmarker while entering a final state. The set of strings accepted by machine
M is denoted by L(M). Formal definitions of these concepts can be found in [1].

By Theorem 1.2 of [1] we may assume that the counter machines store only
non-negative integers on the counters and alter at most one counter by at most
one per step.

A machine M accepts in time t(n) if on input w ∈ L(M) the computation
of M terminates within t(|w|) steps, where |w| is the length of w. Machine M
operates in time t(n) if on every input w the computation of M terminates after
at most t(n) steps, it recognizes L in time t(n) if M operates in this time bound
and accepts exactly the strings in L. We denote the class of languages accepted
in time t(n) by r-counter machines by

r-CM DTIME(t(n)) = {L(M) | M is an r-counter machine
accepting in time t(n).}

Linear speed-up holds for super-linear, polynomial time-bounds. In contrast,
linear time and realtime (one step per input symbol) define different classes of
languages [1, Theorem 5.3].
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We will also consider the space used by a counter machine, which is the
maximum integer stored on any of its counters in the course of a computation.

The set of marked palindromes over a binary alphabet is

L = {xcxT | x ∈ {a, b}∗},

where xT denotes the reversal of x.
Next we will review some families of languages. The separation in [1] of counter

machines working in realtime is achieved with the help of the infinite family of
languages

Lk = {0m110m21 · · · 0mkβi0mi | 1 ≤ i ≤ k,

each mj ≥ 1, and each βi �∈ {0, 1}}.

Independently, Laing also separated machines with an increasing number of
counters [5]. His separating languages take the form

Mk = {w ∈ {a0, a1, . . . , ak}∗ | |w|a0 = |w|a1 = · · · = |w|ak
},

where |w|x denotes the number of symbols x in w.
Greibach [2] defined languages for m ≥ 0 in the following way:

L′
2m+1 = L ∩ (a+b+)ma+c{a, b}∗,

L′
2m+2 = L ∩ (a+b+)m+1c{a, b}∗.

Language L′
k is very similar to Lk, encoding k numbers as lengths of blocks.

But while for testing membership in Lk only one length has to be checked after
reading βi, in L′

k all blocks appear in reversed order after the symbol c.
The following family of languages Nk introduced in the present work has a

structure that deviates from the ones defined above:

Nk = {amubpcq$cqbpuT | m, p, q ≥ 1, u ∈ {0, 1}k log m}.

3 Results

Theorem 1. A sequence of t(n) operations on a pushdown store containing
symbols chosen from an alphabet of constant size m ≥ 2 can be simulated by a
machine with k + 1 ≥ 2 counters in time O(mt(n)/k).

Proof. The algorithm generalizes and strengthens the well-known simulation of
a tape by three counters, see e.g. [3, Theorem 8.14]. We improve the construction
by omitting the bottom symbol and encoding the pushdown contents in a less
wasteful manner. In order to take advantage of more than three counters of the
simulator, we encode the contents of the pushdown store on the first k counters
while the k+1-st counter serves as auxiliary storage. A problem that we have to
resolve is that the time bound (and thus the bound on the size of the pushdown
store) depends on the length of the input, which is not known before the last
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symbol has been consumed. Therefore the distribution of information on the
counters has to adapt to a growing input length.

The simulator M initializes counters 1 through k with a value of one, which
represents empty storages. Simulating a push operation of symbol ab with the
help of counter j is done as follows. Machine M initializes counter k+1 with zero
and repeatedly subtracts one from counter j while counter k + 1 is incremented
by m. When counter j reaches zero, number b− 1 is added to counter k + 1 and
then the count is transferred back to counter j. Simulating a pop operation with
the help of counter j is done in an analogous way by repeatedly subtracting m
and computing the remainder modulo m. Emptiness is indicated by the value
one. Notice that this explicit encoding of an empty storage allows us to utilize
all m-ary digits including zero.

The information is distributed among the counters by storing a symbol at
height i on the simulated pushdown store on counter ((i − 1) mod k) + 1. The
machine M can keep track of the currently used counter with the help of its
finite control.

An upper bound on the numbers stored is mt(n)/k+1. The maximum number
of steps is attained if only push operations are simulated and then the time
bound is O(mt(n)/k). ��
The above defined language L of palindromes with a marked center can be
accepted in an obvious way by a machine with a single pushdown store over a
binary alphabet in n steps. We therefore get:

Corollary 1. The language L can be recognized in O(2n/k) steps by a counter
machine with k + 1 counters.

In order to obtain a tight separation we will next show that at least one counter
of a deterministic machine with several counters has to store a “small” value at
certain points of the computation. Hence not all counters can be used to transfer
a lot of information across the input string.

Lemma 1. If a counter machine M has q states then immediately after reading
a prefix u of its input, the contents of at least one counter are bounded from
above by (q + 1) · |u|.

Proof. We show the lemma by induction on the length i of a prefix of the input
which M reads.

For i = 0 the machine is in its initial configuration with all counters empty
and therefore the lemma holds.

For i > 0 we distinguish two cases. If in the computation between reading
the prefix of length i− 1 and reading symbol i a counter becomes zero, then we
consider the last instance when this is true for some counter j. Since M eventually
consumes symbol i, there is a polling state in which symbol i is read. If M is
in this state when counter j is zero, then the counter reaches at most one and
the lemma holds. Otherwise in the first autonomous step counter j is necessarily
incremented. Each of the at most q − 1 autonomous states can appear at most
once after the first step and before reading symbol i, because otherwise M works
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in a loop with all counters non-zero by the assumption that no counter reaches
zero and M would not terminate. When M reads input symbol i it can increment
counter j again. We conclude that counter j stores at most (q + 1) ≤ (q + 1) · i.

In the other case no counter ever reaches zero between reading symbol i− 1
and symbol i. We make use of the induction hypothesis that at the beginning of
this portion of the computation at least one counter is bounded by (q+1)·(i−1).
By the same reasoning as in the other case this counter is incremented at most
q times (the step with some counter empty does not occur in this case). The
resulting bound is q + (q + 1) · (i− 1) ≤ (q + 1) · i. ��
Counter machines operating in realtime and having a growing number of counters
have been separated by Fischer et al. [1] and Laing [5] with the help of the
languages Lk and Mk defined above. Note that the alphabets of these languages
are growing with the levels being separated. In contrast we will now show a
separation with the help of a fixed and more natural language, namely the set
of marked palindromes.

Theorem 2. The language L of marked palindromes can be recognized in time
O(2n/k) by a counter machine with k+1 counters, but no counter machine with
k counters operating in time O(2n/k) can recognize L.

Proof. The upper bound is just Corollary 1. For the lower bound we assume that
a counter machine M with q states and k counters accepts L. For any two words
x, y ∈ {a, b}∗ with x �= y the machine has to be in different configurations after
processing them, since xcxT has to be accepted while ycxT should be rejected. If
b(n) is the maximum number stored in some counter of M after reading an input
string of length n, then an upper bound on the number of different configurations
is q · (b(n) + 1)k−1 · k · (q + 1) · n by Lemma 1. We conclude

q · (b(n) + 1)k−1 · k · (q + 1) · n ≥ 2n

and
b(n) = Ω(2n/(k−1)/n(k−1)).

Since 2n/(k−1) = 2n/k ·2n/k(k−1), we have that the lower bound on the maximum
number stored (and thus on the time complexity of M) grows faster than 2n/k.
Hence M cannot operate in time O(2n/k). ��
Remark: In the previous proof we have made use of the fact that a machine
recognizing L in a given time bound has to respect that bound also on input not
belonging to L. The proof of the weaker lower bound in [1, Theorem 1.3 (a)] is
based on accepted words only.

Greibach [2, Theorem 2.4] described a simulation of an r-counter machine ac-
cepting in space ns and time nt by a machine with three counters. We generalize
this to simulators with p ≥ 3 counters and obtain a better time bound (see also
[9, Theorem 20.4]).

Theorem 3. For p, r ≥ 3 and s, t ≥ 1 an r-counter machine accepting in space
ns and time nt can be simulated by a p-counter machine in space nrs/(p−2) and
time nrs/(p−2)+t.
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Proof. The idea is to encode the r counters being simulated as values stored on
p− 2 counters, while two counters serve as scratch memory.

The machine M with p counters stores the at most rs(log n+1) bits necessary
to encode the values of all r counters in p−2 sections of approximately the same
size. Let us call the r bits of equal significance in all counters being simulated
a group. The least significant bits are encoded on counter 1, while the most
significant bits are stored on counter p− 2. Initially all sections contain exactly
one group with all bits zero and another set bit marking the most significant
group. The effect of this initialization is that counters 1 through p−2 contain 2r.

An increment operation on counter i is simulated by a bit-wise increment of
the binary number encoded by the i-th bit of every group. If a carry propagates
to a not yet existing bit position in counter p− 2 because there are not enough
groups, a new group is allocated. Machine M keeps track of the new groups in
its finite control and as soon as this number becomes p − 2 it redistributes the
groups over the counters by shifting the p − 3 least significant groups out of
counter p−2, shifting in these groups (as the most significant ones) into counter
p− 3 while shifting out p− 4 groups and so forth until the last group is shifted
into counter 1. For these operations counters r−1 and r are available as auxiliary
storage. A decrement operation is carried out in a similar way, but without the
need to update the number of groups.

For the time complexity we note that a constant set of integers of size
O(2(rs log n)/(p−2)) = O(nrs/(p−2)) has to be be processed bit by bit, which is
possible in time O(nrs/(p−2)) per step, showing the claimed time bound. ��
By substituting wqr for r and (r+ 2) for p we obtain the following improvement
of [2, Theorem 2.4 (2)] (see also [9, Theorem 20.6]):

Corollary 2. For q, r, s, t ≥ 1 and w ≥ 2 a wqr-counter machine accepting in
space ns and time nt can be simulated by an (r + 2)-counter machine in space
nwqs and time nwqs+t.

Next we will consider separating counter machines with a polynomial time
bound. Laing’s language Mrs can be accepted by a machine with r + 2 counters
in time ns+1 by applying Theorem 3 to a realtime-machine with rs counters.
This however does not lead to an improved separation in general, since L′

rs can
be accepted by an (r + s)-counter machine within ns steps [2, p. 282]. Our next
result will however show the stronger statement that r + 2 counters suffice for
accepting Lrs+1 and L′

rs+1 in the same time bound.

Lemma 2. For r ≥ 3 and s ≥ 1 the languages Lrs−2s+1 and L′
rs−2s+1 defined

above can be accepted by r-counter machines in time ns.

Proof. The idea is to encode the length of blocks on the counters, where these
blocks consist of zeroes for Lrs−2s+1 and of equal symbols a or b for L′

rs−2s+1.
For r ≥ 4 the first (r− 3)s blocks are encoded in the following way. Counters

r− 2 through r serve as scratch memory. For 1 ≤ i ≤ (r − 3) blocks (i− 1)s+ 1
to is are encoded on counter i in binary by first storing the length of the block
on counter r − 2. Using the counter r − 1 the length is successively divided by
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two and the bits decoded are stored on counter i with the help of every s-th
bit. This requires division of counter i by two and temporarily storing the lower
bits on counter r with the help of a multiplication by two. Since a value of
size O(ns) is successively divided and multiplied by two, the time complexity is
also O(ns). Then another s − 1 blocks are encoded on counter r − 2 with the
technique from the proof of Theorem 3 using counters r − 1 and r as scratch.
Each of the at most n symbols requires one increment operation, which can be
done in time O(ns−1). This gives complexity O(ns). Finally the lengths of two
blocks are stored on counters r − 1 and r. The total number of blocks stored is
thus (r − 3)s + (s− 1) + 2 = rs− 2s + 1.

For decoding notice that for L′
rs−2s+1 after the symbol c blocks of identical

length as in the first portion of the input have to appear, only the order is
reversed. By applying the same technique as above the stored information can
be decoded and compared to the input. For Lrs−2s+1 this task is even easier,
since after symbol βi has been read only one of the counts has to be accessed
while all other counters become available as scratch memory. ��
With the help of our simulations we obtain the following improvement over [2,
Theorem 3.3 (2)] with respect to increasing time bounds.

Theorem 4. In time ns (s ≥ 1) machines with r ≥ 3 counters are less powerful
than machines with a time bound n2s+1. Formally:

r-CM DTIME(ns) � r-CM DTIME(n2s+1)

Proof. By the counting argument a machine with r counters cannot accept
Lrs−s+2 in time ns. In time n2s+1 this language can be accepted by the method
from the proof of Lemma 2 because r(2s + 1) − 2(2s + 1) + 1 ≥ rs− s + 2. ��
Greibach [2, Theorem 3.3] has shown, that for r, s ≥ 1

r-CM DTIME(ns) � (r + s + 1)-CM DTIME(ns).

Our improved upper and lower bounds on the languages Lk now yield an almost
tight separation.

Theorem 5. The language Lrs+1 cannot be accepted in time ns (s ≥ 1) by a
machine with r ≥ 1 counters, but can be accepted in the same time-bound by a
machine with r + 2 counters.

Proof. Lemma 2 shows the upper bound. By the usual counting argument and
Lemma 1 a machine with r counters can encode at most (r−1)s+1 = rs−s+1
blocks in time ns and thus cannot accept Lrs+1. ��
By considering a different family of languages we will next show a tight hierarchy
result for counter machines with the same polynomial time bound.

Theorem 6. In time ns (s ≥ 1) a machine with r ≥ 1 counters is less powerful
than a machine with r + 1 counters. Formally:

r-CM DTIME(ns) � (r + 1)-CM DTIME(ns)
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Proof. For r = 1 the languages accepted by r-counter machines are context-free,
while a 2-counter machine can accept {anbncn | n ≥ 0} in realtime.

We now show, that a machine M with r + 1 ≥ 3 counters can accept N(r−1)s
in time ns.

The machine M first reads the maximal prefix consisting of the symbol a
and stores its length m on counter 2. Then it repeatedly divides the contents
of counter 2 by two using counter 3 as scratch memory and counts the number
of iterations on counter 1. In this way M computes logm as the contents of
counter 1.

Then M encodes the following string u over {0, 1} on r−1 counters using the
technique from the proof of Theorem 1 with counter 2 as scratch memory, while
the length of u is checked to be (r − 1)s logm with the help of counter 1. After
encoding u counters 1 and 2 are used to store the numbers of b’s and c’s. After
reading the symbol $ the encoded information is compared with the input.

Now we show that no machine with r counters can accept N(r−1)s. By
Lemma 1 such a machine can reach O(n(r−1)s+1) configurations in at most ns

steps. For a given n we now consider all strings of the form an/4ubpcq with
u ∈ {0, 1}(r−1)s(logn−2) and p, q ≤ n/3. For n sufficiently large these strings
have length at most n. Clearly every machine accepting N(r−1)s has to be in
a unique configuration for every string. The number of these strings is at least
2(r−1)s(log n−2) · n/3 · n/3 = Ω(n(r−1)s+2). Thus no machine with r counters can
accept N(r−1)s. ��
Finally we consider languages over a single letter alphabet. In this setting the
combinatorial approach of the previous results fails. We can however apply a
separation result from the area of finite multihead automata over a single letter
alphabet, which is based on a diagonal argument combined with transformational
methods [7].

Theorem 7. In time ns (s ≥ 1) a machine with r ≥ 3 counters is less powerful
than a machine with r counters and time bound n2rs+10 for languages over a
single letter alphabet, or formally:

∃L ⊆ {0}∗ : L ∈
[
r-CM DTIME(n2rs+10) − r-CM DTIME(ns)

]
Proof. By Theorem 3 an r-counter machine accepting in time (and hence space)
ns can be simulated by an rs + 2-counter machine in space n. Monien showed
in [7, Theorem 3] that there is a tight hierarchy for two-way counter machines
with linear bounds on the counters. Therefore there is a machine M1 with rs+3
linear bounded counters which cannot be simulated with the help of rs+ 2 such
counters. A two-way input tape can be simulated with two additional linear
bounded counters that measure the distance of the simulated input head to the
endmarkers. We therefore obtain a language, which can be accepted by a one-
way counter-machine M2 with rs + 5 linear bounded counters. Note that the
bound on the number of configurations implies a time bound in O(nrs+5). Then
we simulate M2 according to Theorem 3 with the help of an r-counter automaton
M3 in time n2rs+10. Now L(M3) is a language accepted by an r-counter machine
in time n2rs+10 but not in time ns. ��
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4 Open Problems

The upper bounds reported in Theorem 1 through 3 carry over to nondeterminis-
tic machines, but the lower bounds depend on the determinism of the machines.

Although we have separated machines with an increasing number of coun-
ters working in polynomial time, the optimality of the simulation in Theorem 3
remains open. Also the separation in Theorem 7 can most likely be improved.
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Abstract. We aim to generalize Büchi’s fundamental theorem on the
coincidence of recognizable and MSO-definable languages to a weighted
timed setting. For this, we investigate subclasses of weighted timed au-
tomata and show how we can extend existing timed MSO logics with
weights. Here, we focus on the class of weighted event-recording automata
and define a weighted extension of the full logic MSOer(Σ) introduced
by D’Souza. We show that every weighted event-recording automaton
can effectively be transformed into a corresponding sentence of our logic
and vice versa. The methods presented in the paper can be adopted to
weighted versions of timed automata and Wilke’s logic of relative dis-
tance. The results indicate the robustness of weighted timed automata
models and may be used for specification purposes.

Introduction

Recently, the model of weighted timed automata has received much attention in
the real-time community as it can be used to model continuous consumption
of resources [2,3,5,4,11]. The goal of this paper is to generalize Büchi’s and
Elgot’s fundamental theorems about the coincidence of languages recognizable
by finite automata and languages definable by sentences in a monadic second-
order (MSO) logic [6,15] to weighted timed automata. For this, we introduce a
weighted timed MSO logic, which may be used for specifying quantitative aspects
of timed automata, e.g. how often a certain property is satisfied by the system.

In this paper, we focus on a weighted version of event-recording automata,
a subclass of timed automata introduced by Alur et al. [1]. Recent results on
event-recording automata include works on alternative characterizations using
regular expressions [7] and MSO logic [14], real-time logics [25,17], and infer-
ence/learning [16]. The main advantage of event-recording automata is that
they - as opposed to timed automata - always can be determinized. This sim-
plifies some of our constructions compared to the ones necessary for the class of
weighted timed automata.

Our work is motivated by recent works on weighted logics by Droste and
Gastin [8,10]. The authors introduce a weighted MSO logic for characterizing the
behaviour of weighted automata defined over a semiring. They extend classical
MSO logic with formulas of the form k (for k an element of the semiring), which
may be used to define the weight of a transition of a weighted automaton. They
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show that the behaviour of weighted automata coincides with the semantics of
sentences of a fragment of the logic. Recently, this result has been generalized
to weighted settings of infinite words [12], trees [13], pictures [20], traces [21],
texts [18] and nested words [19].

Here, we aim to generalize the result to a weighted timed setting. The basis
of our work is the MSO logic MSOer(Σ) introduced by D’Souza and used for the
logical characterization of event-recording automata [14]. We extend it with two
kinds of weighted formulas whose semantics correspond to the weights of edges
and locations, respectively, in weighted event-recording automata. For proving
a Büchi-type theorem we show that for every sentence ϕ in our logic there
is a weighted event-recording automaton whose behaviour corresponds to the
semantics of ϕ and vice versa.

For this, we use parts of the proofs presented by Droste and Gastin [10]. How-
ever, in the weighted timed setting we are faced with two new problems. First,
due to the weights assigned to locations, the Hadamard product, which is used
for defining the semantics of conjunction in our logic, does not preserve recog-
nizability. Second, there are formulas ϕ such that there are no weighted event-
recording automata whose behaviours correspond to the semantics of ∀x.ϕ and
∀X.ϕ, respectively. To overcome these problems, we define a suitable fragment
of our logic, for which, with the support of some new notions and techniques,
we are able to show the result.

1 (Weighted) Event-Recording Automata

Let Σ,� and �≥0 denote an alphabet, the natural numbers and the positive reals,
respectively. A timed word is a finite sequence (a1, t1)...(ak, tk) ∈ (Σ × �≥0)∗

such that the sequence t̄ = t1...tk of timestamps is non-decreasing. Sometimes
we denote a timed word as above by (ā, t̄), where ā ∈ Σ∗. We write TΣ∗ for the
set of timed words over Σ. A set L ⊆ TΣ∗ is called a timed language. With Σ
we associate a set CΣ = {xa|a ∈ Σ} of event-recording clock variables ranging
over �≥0. The variable xa measures the time distance between the current event
in a timed word and the last occuring a. Formally, given a timed word w =
(a1, t1)...(ak, tk), we let dom(w) be the set {1, ..., k} and define for every i ∈
dom(w) a clock valuation function γw

i : CΣ → �≥0 ∪ {⊥} by

γw
i (xa) =

⎧⎪⎨⎪⎩
ti − tj if there exists a j such that 1 ≤ j < i and aj = a,

and for all m with j < m < i, we have am �= a

⊥ otherwise.

We further use |w| to denote the length of w. We define clock constraints φ
over CΣ to be conjunctions of formulas of the form x = ⊥ or x ∼ c, where
x ∈ CΣ , c ∈ �, and ∼∈ {<,≤, =,≥, >}. We use Φ(CΣ) to denote the set of
all clock constraints over CΣ . A clock valuation γw

i satisfies φ, written γw
i |= φ,

if φ evaluates to true according to the values given by γw
i . An event-recording

automaton (ERA) over Σ is a tuple A = (S, S0, Sf , E), where
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– S is a finite set of locations (states)
– S0 ⊆ S is a set of initial locations
– Sf ⊆ S is a set of final locations
– E ⊆ S × Σ × Φ(CΣ) × S is a finite set of edges.

For w as above, we let a run of A on w be a finite sequence
s0

e1−→ s1
e2−→ ...

ek−→ sk of edges ei = (si−1, ai, φi, si) ∈ E such that γw
i |= φi for

all 1 ≤ i ≤ k. We say that a run r is successful if s0 ∈ S0 and sk ∈ Sf . We define
the timed language L(A) = {w ∈ TΣ∗| there is a successful run of A on w}. We
say that a timed language L ⊆ TΣ∗ is recognizable over Σ if there is an ERA A
over Σ such that L(A) = L.

Remark 1. The methods presented in this paper can easily be extended to event-
clock automata additionally equipped with event-predicting clock variables [1].

An ERA A is deterministic if |S0| = 1 and whenever (s, a, φ1, s1) and (s, a, φ2, s2)
are two different edges in A, then for all clock valuations γ we have γ �|= φ1 ∧ φ2.
A timed language is called deterministically recognizable over Σ if there is a
deterministic ERA over Σ recognizing it.

Proposition 1. [1] The class of recognizable timed languages is closed under
boolean operations and equal to the class of deterministically recognizable timed
languages.

We extend ERA to be equipped with weights taken from a commutative
semiring. For this, we let K be a commutative semiring, i.e., an algebraic
structure K = (K, +, ·, 0, 1) such that (K, +, 0) and (K, ·, 1) are commutative
monoids, multiplication distributes over addition and 0 is absorbing. As exam-
ples consider the semiring of natural numbers (�, +, ·, 0, 1), the Boolean semiring
({0, 1},∨,∧, 0, 1) and the tropical semiring (�≥0 ∪ {∞}, min, +,∞, 0). Further-
more, we let F be a family of functions from �≥0 to K. For instance, if K is the
tropical semiring, F may be the family of linear functions of the form μ(δ) = k · δ
mapping every δ ∈ �≥0 to a value k · δ in K (for some k ∈ �≥0). Given f1, f2 ∈ F ,
we define the pointwise product f18f2 of f1 and f2 by (f18f2)(δ) = f1(δ)·f2(δ).

A weighted event-recording automaton (WERA) over Σ, K and F is a
tuple A = (S, S0, Sf , E, C) such that (S, S0, Sf , E) is an ERA over Σ and
C = {CE} ∪ {Cs|s ∈ S} is a cost function, where CE : E → K assigns a weight
to each edge, and Cs ∈ F gives us the weight for staying in location s per time
unit for each s ∈ S. A WERA A maps to each timed word w ∈ TΣ∗ a weight in
K as follows: first, we define the running weight rwt(r) of a run r as above to
be
∏

i∈dom(w) Csi−1 (ti − ti−1) · CE(ei), where t0 = 0. The running weight of the
empty run is defined to be 1 ∈ K. Then, the behaviour ‖A‖ : TΣ∗ → K of A
is given by (‖A‖, w) =

∑
{rwt(r) : r is a successful run of A on w}. A function

T : TΣ∗ → K is called a timed series. A timed series T is said to be recognizable
over K, Σ and F if there is a WERA A over K, Σ and F such that ‖A‖ = T .

We define the function � : �≥0 → K by δ .→ 1 for every δ ∈ �≥0. In the
following, we fix a commutative semiring K and a family F of cost functions
from �≥0 to K containing �.
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For L ⊆ TΣ∗, the characteristic series 1L is defined by (1L, w) = 1 if w ∈ L,
0 otherwise. Notice that an ERA over Σ can be seen as a WERA over the
Boolean semiring, Σ and the family of constant functions. The timed series
recognized by such a WERA is the characteristic series 1L(A). However, due
to the determinizability of ERA, 1L(A) can also be recognized over arbitrary
semirings:

Lemma 1. If L ⊆ TΣ∗ is recognizable over Σ, then 1L is recognizable over K,
Σ and F .

Given timed series T , T1, T2 and k ∈ K, we define the sum T1 + T2, the Hadamard
product T1 8 T2 and the scalar products k · T and T · k pointwise, i.e., by (T1 +
T2, w) = (T1, w) + (T2, w), (T1 8 T2, w) = (T1, w) · (T2, w), (k · T , w) = k · (T , w)
and (T · k, w) = (T , w) · k respectively. If K is the Boolean semiring, + and 8
correspond to the union and intersection of timed languages, respectively.

Later in the paper, we need closure properties of recognizable timed series
under these operations. It can be shown in a straightforward manner that sum
and scalar products preserve recognizability of timed series.

Lemma 2. Recognizable timed series over K, Σ and F are closed under +, k·
and ·k (for k ∈ K).

In contrast to this, in general recognizable timed series are not closed under the
Hadamard product. We illustrate this in the next example.

Example 1. Let K = (�≥0 ∪ {∞}, min, +,∞, 0), Σ = {a} and F be the fam-
ily of linear functions C : �≥0 → �≥0. We define the WERA Ai over K, Σ
and F for each i = 1, 2 by Ai = ({pi, qi}, {pi}, {qi}, {(pi, a, true, qi)}, Ci) with
Ci

E((pi, a, true, qi)) = 0, Ci
qi(δ) arbitrary, C1

p1(δ) = 2 · δ and C2
p2(δ) = 3 · δ.

Let w ∈ TΣ∗. If w �= (a, t) for some t ∈ �≥0, then (‖Ai‖, w) = 0 for each
i = 1, 2 and thus (‖A1‖ 8 ‖A2‖, w) = 0. So let w = (a, t) for some t ∈ �≥0.
Then we have (‖A1‖ 8 ‖A2‖, w) = 2 · t + 3 · t = 5 · t. Clearly, this timed series
is recognizable over the family of linear functions. If K and F are as above, for
building a WERA recognizing the Hadamard product of the behaviours of two
given WERA, we can use the usual product automaton construction together
with defining a cost function such that the cost of each edge and location equals
the pointwise product of the costs of the two corresponding edges and locations
in the original WERA. This can be done since the pointwise product of each
pair of linear functions is a linear function and thus in F . However, this is not
always the case. For instance, assume that Ai are WERA over the semiring
(�≥0, +, ·, 0, 1). Then, we have (‖A1‖ 8 ‖A2‖, w) = 2 · t · 3 · t = 6 · t2. It can be
easily seen that there is no WERA A over the family F of linear functions such
that ‖A‖ = ‖A1‖ 8 ‖A2‖.

For this reason, we define the notion of non-interfering timed series. So for
i = 1, 2, let Ai = (Si, Si

0, S
i
f , Ei, Ci) be two WERA. We say that A1 and A2

are non-interfering if for all pairs (s1, s2) ∈ S1 × S2, whenever there is a run
from (s1, s2) into S1

f × S2
f , then C1

s1
= � or C2

s2
= �. Observe that this implies
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C1
s1

8 C2
s2

∈ F . This enables us to use a product automaton construction for
building a WERA recognizing ‖A1‖ 8 ‖A2‖. Also notice that the premise of
the condition is decidable for the whole class of weighted timed automata [2].
Two timed series T1 and T2 are non-interfering over K, Σ and F if there are
non-interfering WERA A1 and A2 over K, Σ and F with ‖Ai‖ = Ti for i = 1, 2.

Lemma 3. 1. If for all f1, f2 ∈ F we have f18f2 ∈ F , then recognizable timed
series over K, Σ and F are closed under 8.

2. If T1 and T2 are non-interfering over K, Σ and F , then T18T2 is recognizable
over K, Σ and F .

2 Weighted Timed MSO Logic

Next, we introduce a weighted timed MSO logic for specifying properties of
timed series. Our logic is an extension of the logic MSOer(Σ) introduced by
D’Souza, which we briefly recall here. Formulas of MSOer(Σ) are built induc-
tively from atomic formulas Pa(x), x = y, x < y, x ∈ X , �a(x) ∼ c using
the connectives ∨, ¬, ∃x. and ∃X., where x, y are first-order variables, X is a
second-order variable, a ∈ Σ, c ∈ � and ∼∈ {<,≤, =,≥, >} or (∼ c) = (= ⊥).
As usual, we may also use →, ↔, ∧, ∀x. and ∀X. as abbreviations. For-
mulas of MSOer(Σ) are interpreted over timed words. For this, we associate
with w = (a1, t1)...(ak, tk) the relational structure consisting of the domain
dom(w) together with the unary relations Pa = {i ∈ dom(w)|ai = a} and
�a(.) ∼ c = {i ∈ dom(w)|γw

i (xa) ∼ c} as well as the usual < and = relations
on dom(w). Now, for ϕ ∈ MSOer(Σ), let Free(ϕ) be the set of free variables,
V ⊇ Free(ϕ) be a finite set of first- and second-order variables, and σ be a
(V , w)-assignment mapping first-order (second-order, resp.) variables to elements
(subsets, resp.) of dom(w). For i ∈ dom(w), we let σ[x → i] be the assignment
that maps x to i and agrees with σ on every variable V\{x}. Similarly, we define
σ[X → I] for any I ⊆ dom(w). A timed word (ā, t̄) and a (V , (ā, t̄))-assignment
σ is encoded as timed word ((ā, σ), t̄) over the extended alphabet ΣV . A timed
word over ΣV is written as ((ā, σ), t̄), where ā is the projection over Σ and σ is
the projection over {0, 1}V . Then, σ represents a valid assignment over V if for
each first-order variable x ∈ V , the x-row of σ contains exactly one 1. In this
case, σ is identified with the (V , (ā, t̄))-assignment such that for every first-order
variable x ∈ V , σ(x) is the position of the 1 in the x-row, and for each second-
order variable X ∈ V , σ(X) is the set of positions with a 1 in the X-row. We
define NV = {((ā, σ), t̄) ∈ T (ΣV)∗|σ is a valid (V , (ā, t̄))-assignment}. The defi-
nition that ((ā, σ), t̄) satisfies ϕ, written ((ā, σ), t̄) |= ϕ, is as usual. We let
LV(ϕ) = {((ā, σ), t̄) ∈ NV |((ā, σ), t̄) |= ϕ}. The formula ϕ defines the timed lan-
guage L(ϕ) = LFree(ϕ)(ϕ). A timed language L ⊆ TΣ∗ is MSOer(Σ)-definable if
there exists a sentence ϕ ∈ MSOer(Σ) such that L(ϕ) = L.

Theorem 1. [14] A timed language L ⊆ TΣ∗ is MSOer(Σ)-definable if and
only if L is recognizable over Σ.
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Now, we turn to the logic MSOer(K, Σ,F), defined inductively as follows. The
atomic formulas are formulas of the form Pa(x), x = y, x < y, x ∈ X , �a(x) ∼ c
and their negations, where x, y, X, a, c,∼ are as above. Atomic formulas and for-
mulas of the form k and Cμ(x), where k ∈ K and μ ∈ F , can be combined using the
operators ∧, ∨, ∃x., ∀x., ∃X. and ∀X . Notice that we only allow to apply negation
to basic formulas. Let ϕ ∈ MSOer(K, Σ,F) and V ⊇ Free(ϕ). The V-semantics of
ϕ is a timed series [[ϕ]]V : T (ΣV)∗ → K. Let (ā, t̄) ∈ TΣ∗. If σ is a valid (V , (ā, t̄))-
assignment, [[ϕ]]V ((ā, σ), t̄) ∈ K is defined inductively as follows:

[[ϕ]]V ((ā, σ), t̄) = 1LV(ϕ)((ā, σ), t̄) if ϕ is atomic
[[k]]V((ā, σ), t̄) = k

[[Cμ(x)]]V((ā, σ), t̄) = μ(tσ(x) − tσ(x)−1)
[[ϕ ∨ ϕ′]]V((ā, σ), t̄) = [[ϕ]]V ((ā, σ), t̄) + [[ϕ′]]V((ā, σ), t̄)
[[ϕ ∧ ϕ′]]V((ā, σ), t̄) = [[ϕ]]V ((ā, σ), t̄) · [[ϕ′]]V((ā, σ), t̄)

[[∃x.ϕ]]V((ā, σ), t̄) =
∑

i∈dom((ā,t̄))

[[ϕ]]V∪{x}((ā, σ[x → i]), t̄)

[[∀x.ϕ]]V((ā, σ), t̄) =
∏

i∈dom((ā,t̄))

[[ϕ]]V∪{x}((ā, σ[x → i]), t̄)

[[∃X.ϕ]]V((ā, σ), t̄) =
∑

I⊆dom((ā,t̄))

[[ϕ]]V∪{X}((ā, σ[X → I]), t̄)

[[∀X.ϕ]]V((ā, σ), t̄) =
∏

I⊆dom((ā,t̄))

[[ϕ]]V∪{X}((ā, σ[X → I]), t̄)

For σ not a valid (V , (ā, t̄))-assignment, we define [[ϕ]]V ((ā, σ), t̄) = 0. We write
[[ϕ]] for [[ϕ]]Free(ϕ).

Remark 2. If we let K be the Boolean semiring, then MSOer(Σ) corresponds
to MSOer(K, Σ,F) as every formula in MSOer(Σ) is equivalent to a formula
where negation is applied to atomic subformulas only. Also, every such formula
ϕ ∈ MSOer(Σ) can be seen to be a formula of our logic.

Example 2. Consider the formula ϕ = ∃x. �a (x) < 2 and let w =
(a, 1.7)(b, 3.0)(a, 3.6)(a, 6.0). If we interpret ϕ as an MSOer(K, Σ,F)-formula
over the Boolean semiring or, equivalently, as an MSOer(Σ)-formula, we have
[[ϕ]](w) = 1. If on the other hand, we let K be the semiring over the natural
numbers with ordinary addition and multiplication, we have [[ϕ]](w) = 2, i.e., we
count the number of positions x in w where �a(x) < 2 is satisfied. Counting how
often a certain property holds gives rise to interesting applications in the field
of verification.

Let L ⊆ MSOer(K, Σ,F). A timed series T : TΣ∗ → K is called L-definable
if there is a sentence ϕ ∈ L such that [[ϕ]] = T . The goal of this paper is
to find a suitable fragment L of MSOer(K, Σ,F) such that L-definable timed
series precisely correspond to recognizable timed series over K, Σ and F , i.e.,
we want to generalize Theorem 1 to the weighted setting. It is not surprising
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that MSOer(K, Σ,F) does not constitute a suitable candidate for L since this is
already not the case in the untimed setting [9]. In the next section, we explain
the problems that occur when we do not restrict the logic and step by step
develop solutions resulting in the logic sRMSOer(K, Σ,F) for which we are able
to give the following Büchi-type theorem.

Theorem 2. A timed series T : TΣ∗ → K is recognizable over K, Σ and F if
and only if T is definable by some sentence in sRMSOer(K, Σ,F). The respective
transformations can be done effectively provided that the operations of K and F
are given effectively.

3 From Logic to Automata

In this section, we want to prove the direction from right to left in Theorem 2
and show that for every formula ϕ of our weighted timed MSO logic, [[ϕ]] is a
recognizable timed series. We do this similarly to the corresponding proof for
the classical setting [27], i.e., by induction over the structure of the logic.

For the induction base, we show that for every atomic formula ϕ in
MSOer(K, Σ,F) there is a WERA recognizing [[ϕ]]. For ϕ of the form Pa(x),
x = y, x < y, x ∈ X and its negations, this can be done as in the classical
setting [27]. In Fig. 1, we give the WERA recognizing the timed series [[ϕ]] for ϕ
being one of �a(x) ∼ c, k and Cμ(x).

(
Σ
1

)
/1

x(a

0) ∼ c

(
Σ
0

)
/1

(
Σ
0

)
/1

Σ/k

Σ/1

...
| {z }

k−times

μ

(
Σ
0

)
/1

(
Σ
1

)
/1

(
Σ
0

)
/1

(
Σ
0

)
/1

Fig. 1. WERA with behaviours [[�a(x) ∼ c]], [[k]] and [[Cμ(x)]]

For the induction step, we need to show closure properties of recognizable
timed series under the constructs of the logic. For disjunction and existential
quantification, we can give proofs very similar to the classical case (see Thomas
for the case of formal languages [26] or Droste and Gastin for the case of (un-
timed) series [9,10]). However, we will see that for the remaining operators of
our logic, we cannot give easy extensions of the classical proofs.

First of all, in Sect.1 we have seen that recognizable timed series in general
are not closed under the Hadamard product. Since the semantics of conjunction
is defined using the Hadamard product, this means that we have to restrict the
usage of conjunction. More precisely, we either have to require that F is such
that for all f1, f2 ∈ F we have f18f2 ∈ F , or we have to formulate a syntactical
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restriction implying that whenever two formulas ϕ1 and ϕ2 are combined by a
conjunction, then [[ϕ1]] and [[ϕ2]] are non-interfering.

Lemma 4. Let ϕ1, ϕ2 ∈ MSOer(K, Σ,F) such that [[ϕ1]] and [[ϕ2]] are recogniz-
able. Assume that whenever ϕ1 contains the subformula Cμ1(x1) and ϕ2 contains
Cμ2(x2), then x1, x2 are free in both ϕ1 and ϕ2, and either ϕ1 or ϕ2 is of the
form ψ ∧ ¬(x1 = x2) for some ψ ∈ MSOer(K, Σ,F). Then [[ϕ1]] and [[ϕ2]] are
non-interfering.

We give the intuition behind this lemma via an example. Consider the formula
Cμ1(x1) ∧ Cμ2 (x2) and let Ai be a WERA such that ‖Ai‖ = [[Cμi (xi)]] for each
i = 1, 2 (see Fig.2). We use s1 (s2, resp.) to denote the location in A1 (A2,
resp.) with cost function μ1 (μ2), resp.). We want to enforce that in the product
automaton of A1 and A2, from the pair (s1, s2) there is no run to a final location.
This is the case if from s1 and s2 no common letter can be read. Observe that
from s1 (s2, resp.) every outgoing edge is labeled with (a, σ) such that σ(x1) = 1
(σ(x2) = 1, resp.) for every a ∈ Σ. Hence, in the product automaton every
edge from (s1, s2) must be labeled with a letter of the form (a, σ) such that
σ(x1) = σ(x2) = 1 for every a ∈ Σ. By requiring x1 and x2 to refer to different
positions in a timed word, we can exclude that there is an edge from (s1, s2)
labeled with a letter of this form. This is done by conjoining the formula above
with ¬(x1 = x2).

Second, examples [10] show that unrestricted application of ∀x. and ∀X. do
not preserve recognizability. For instance, let K = (�, +, ·, 0, 1) be the semiring
of the natural numbers and F be the family of constant functions. We consider
the formula ϕ = ∀y.∃x.C�(x). Then we have [[ϕ]](w) = |w||w|. However, this
cannot be recognized by any WERA as this timed series grows too fast (see
[9] for a detailed proof which can also be applied to the timed setting). Similar
examples can be given for ∀X . Hence, we need to restrict both the usage of ∀x.
and ∀X. in our logic. We adopt the approach of Droste and Gastin [10].

For dealing with ∀X., the idea is to restrict the application of ∀X. to so-called
syntactically unambiguous formulas. These are formulas ϕ ∈ MSOer(Σ) such
that - even though interpreted over a semiring - the semantics [[ϕ]] of ϕ always
equals 0 or 11. We define the set of syntactically unambiguous formulas ϕ+ and
ϕ− for ϕ ∈ MSOer(Σ) inductively as follows:

1. If ϕ is of the form Pa(x), x < y, x = y, x ∈ X , �a(x) ∼ c, then ϕ+ = ϕ and
ϕ− = ¬ϕ.

2. If ϕ = ¬ψ then ϕ+ = ψ− and ϕ− = ψ+.
3. If ϕ = ψ ∨ ζ then ϕ+ = ψ+ ∨ (ψ− ∧ ζ+) and ϕ− = ψ− ∧ ζ−

4. If ϕ = ∃x.ψ then ϕ+ = ∃x.ψ+ ∧ ∀y.(y < x ∧ ψ(y))− and ϕ− = ∀x.ψ−

5. If ϕ = ∃X.ψ then ϕ+ = ∃X.ψ+ ∧ ∀Y.(Y < X ∧ ψ(Y ))− and ϕ− = ∀X.ψ−

where X < Y = ∃y.y ∈ Y ∧¬(y ∈ X)∧∀z.[z < y −→ (z ∈ X ←→ z ∈ Y )]+. No-
tice that for each ϕ ∈ MSOer(Σ) we have [[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ). Thus

1 Recall that every MSOer(Σ)-formula can also be seen as an MSOer(K, Σ,F)-formula
and may have a semantics different from 0 or 1; see e.g. Ex.2.
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the semantics of syntactically unambiguous formulas are recognizable by Theorem
1 and Lemma 1. Moreover, if ϕ is syntactically unambiguous, one can easily see
that also ∀X.ϕ is syntactically unambiguous and thus [[∀X.ϕ]] is recognizable.

Next, we explain how to deal with ∀x. The approach used by Droste and
Gastin [10] is to restrict the subformula ϕ in ∀x.ϕ to so-called almost unambigu-
ous formulas. Formulas of this kind can be transformed into equivalent formulas
of the form

∨
1≤i≤n ki ∧ ψ+

i for some n ∈ �, ki ∈ K and syntactically unam-
biguous formulas ψ+

i for each i ∈ {1, ..., n}. One can easily see that the series
corresponding to the semantics of such a formula has a finite image. Moreover,
closure properties of recognizable series under sum, Hadamard- and scalar prod-
ucts can be used to prove that the semantics of such a formula is recognizable by
a weighted automaton. Finally, this particular form of the formula is the base of
an efficient construction of a weighted automaton recognizing [[∀x.ϕ]]. Here, we
use a very similar approach. However, we have to redefine the notion of almost
unambiguous formulas a bit in order to include subformulas of the form Cμ(x).

Let x be a first-order variable. We say that a formula ϕ is almost unam-
biguous over x if it is in the disjunctive and conjunctive closure of syntactically
unambiguous formulas, constants k ∈ K and formulas Cμ(x) (for μ ∈ F), such
that Cμ(x) may appear at most once in every subformula of ϕ of the form
ϕ1 ∧ ϕ2. Using similar methods as in [10], one can show that every almost un-
ambiguous formala can be transformed into an equivalent formula of the form∨

1≤i≤n Cμi (x) ∧ ki ∧ ψ+
i for some n ∈ �, ki ∈ K, μi ∈ F and ψi ∈ MSOer(Σ)

for every i ∈ {1, ..., n}. Clearly, the semantics of formulas of this form is not
guaranteed to have a finite image. As a counter example consider for instance
the case where F is the family of linear functions. However, using Lemmas 2 and
3 as well as Theorem 1, one can prove that the semantics of every formula of this
form (and thus of every almost unambiguous formula over x) is recognizable. So
now assume that ϕ is almost unambiguous over x. The main challenge of this
paper was to prove that [[∀x.ϕ]] is recognizable. We were able to adapt the proof
proposed by Droste and Gastin to the timed setting by applying an additional
normalization technique to solve problems having their origin in formulas of the
form Cμ(x). The proof is rather technical and omitted here; for the details see
the full length version of this paper [23].

Finally, we define the fragment of MSOer(K, Σ,F) used in Theorem 2. A
formula ϕ ∈ MSOer(K, Σ,F) is called syntactically restricted if it satisfies the
following conditions:

1. Whenever ϕ contains a conjunction ϕ1 ∧ ϕ2 as subformula, ϕ1 contains the
subformula Cμ1(x1) and ϕ2 contains Cμ2(x2), then x1, x2 are free in both
ϕ1 and ϕ2, and either ϕ1 or ϕ2 is of the form ψ ∧ ¬(x1 = x2) for some
ψ ∈ MSOer(K, Σ,F).

2. Whenever ϕ contains ∀x.ψ as a subformula, then ψ is an almost unambiguous
formula over x.

3. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is a syntactically un-
ambiguous formula.
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We let sRMSOer(K, Σ,F) denote the set of all syntactically restricted formulas
of MSOer(K, Σ,F). Notice that each of these conditions can be checked for in
easy syntax tests. Hence, the logic sRMSOer(K, Σ,F) is a decidable fragment,
i.e., for each formula in MSOer(K, Σ,F) we can decide whether it is syntactically
restricted or not.

We want to give some final remarks on the correctness of the proof methods
described above. Although not explicitly mentioned in the individual steps, we
make use of renaming operations in the proofs for closure under the constructs of
our logic. For instance, we adopt the classical proof method for showing that the
application of ∃x. preserves the recognizability of the semantics of a formula ϕ
with Free(ϕ) = V by using a renaming π : ΣV → ΣV\{x} which erases the x-row
(see e.g. [26,10]). However, it is well-known that recognizable timed languages
are not closed under renaming [1]. We solve this problem using an approach
proposed by D’Souza [14] and consider so-called quasi-WERA. Timed languages
recognizable by quasi-WERA share the same closure properties as recognizable
timed languages, but additionally are closed under so-called valid renamings [14].
So, in the inductive proof described above, we actually show that the semantics
of every formula in our logic is recognizable by a quasi-WERA rather than a
WERA. Since quasi-WERA-recognizable timed series form a strict subclass of
recognizable timed series, we get the final implication. For the sake of simplicity,
we only mention this here; the correct proof can be found in [23].

4 From Automata to Logic
For the implication from left to right in Theorem 2, we extend the proof pro-
posed by Droste and Gastin to the timed setting, briefly explained in the
following. Let A = (S, S0, S, E, C) be a WERA. We choose an enumeration
(e1, ..., em) of E with m = |E| and assume ei = (si, ai, φi, s

′
i). We define

a syntactically unambiguous formula ψ(X1, ..., Xm) without any second-order
quantifiers describing the successful runs of A (where for each i ∈ {1, ..., m},
Xi stands for the edge ei). This can be done similarly to the classical set-
ting [26]. The guards of the edges in E can be defined by a formula of the
form ∀x.

∧
1≤i≤m

(
x ∈ Xi

+−→
∧

a∈Σ

(
∧

(xa∼c)∈φi

�a(x) ∼ c)
)

where ϕ
+−→ ψ is an ab-

breviation for ϕ− ∨ (ϕ+ ∧ ψ+). Then, for every non-empty timed word (ā, t̄) and
valid ({X1, ..., Xm}, (ā, t̄))-assignment σ, we have [[ψ(X1, ..., Xm)]]((ā, σ), t̄) = 1,
if there is a successful run of A on (ā, t̄), and [[ψ(X1, ..., Xm)]]((ā, σ), t̄) = 0, oth-
erwise. Notice that we need to use syntactically unambiguous formulas here in
order to avoid getting weights different from 1 or 0. Now, we “add weights” to
ψ to obtain a formula ξ whose semantics corresponds to the running weight of
a successful run of A on (ā, t̄) as follows:

ξ = ψ ∧
∧

ei∈E

∀x.
(
¬(x ∈ Xi) ∨ [x ∈ Xi ∧ Cμsi

(x) ∧ CE(ei)]
)
.

For the empty timed word ε, we define a formula ϕ = (‖A‖, ε) ∧ ∀x.¬(x ≤ x).
Finally, we let ζ = ∃X1...∃Xm.(ξ∨ϕ), and we obtain [[ζ]] = ‖A‖. Hence, we have
shown the second implication, which finishes the proof of Theorem 2.
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5 Conclusion

We have presented a weighted timed MSO logic, which is - at least to our knowl-
edge - the first MSO logic allowing for the description of both timed and quan-
titative properties. On the one hand, we provide the real-time-community with
a new tool, because sometimes it may be easier to specify properties in terms of
logic rather than by automata devices. On the other hand, the coincidence be-
tween recognizable and definable timed series, together with a previous work on
WERA concerning a Kleene-Schützenberger Theorem [22], shows the robustness
of the notion of WERA-recognizable timed series, as they can equivalently be char-
acterized in terms of automata, logics and rational operations. The same applies to
timed series recognizable by weighted timed automata, for which we were success-
ful in adapting the proofs presented in this paper using the relative distance logic
L←−d introduced by Wilke and his results concerning timed languageswith bounded
variability [28,24]. Notice that our result generalizes corresponding results on
ERA-recognizable languages as well as formal power series [14,10]. Also, we have
stated conditions for closure of recognizable timed seriesunder theHadamardprod-
uct, which corresponds to the intersection operation in the unweighted setting.
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6. Büchi, J.R.: On a decision method in restricted second order arithmetics. In: Nagel,
E., et al. (eds.) Proc. Intern. Congress on Logic, Methodology and Philosophy of
Sciences, pp. 1–11. Stanford University Press, Stanford (1960)

7. Dima, C.: Kleene theorems for event-clock automata. In: Ciobanu, G., Păun, G.
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Abstract. The investigation of the “clustering effect” of the Burrows-
Wheeler transform (BWT) leads to study the words having simple BWT,
i.e. words w over an ordered alphabet A = {a1, a2, . . . , ak}, with a1 <
a2 < . . . < ak, such that bwt(w) is of the form ank

k a
nk−1
k−1 · · · an1

1 , for
some non-negative integers n1, n2, . . . , nk. We remark that, in the case of
binary alphabets, there is an equivalence between words having simple
BWT, the family of (circular) balanced words and the conjugates of
standard words. In the case of alphabets of size greater than two, there
is no more equivalence between these notions. As a main result of this
paper we prove that, under assumption of balancing, the following three
conditions on a word w are equivalent: i) w has simple BWT, ii) w is
a circularly rich word, and iii) w is a conjugate of a finite epistandard
word.

1 Introduction

Michael Burrows and David Wheeler introduced in 1994 (cf. [5]) a reversible
transformation on words that turns out to be an extremely useful tool for tex-
tual data compression. Compression algorithms based on the Burrows-Wheeler
Transform (BWT) take advantage of the fact that the word output of BWT
shows a local similarity (occurrences of a given symbol tend to occur in clusters)
and then turns out to be highly compressible. In order to investigate such a
“clustering effect” of BWT it is interesting to consider the extremal case when
all occurrences of each letter make up a factor of the transform, i.e. the transform
produces a perfect clustering. Perfect clustering corresponds indeed to optimal
performances of some BWT-based compression algorithms.

So we consider the set S of the words w for which the BWT produces a
perfect clustering, i.e., the set of all words w over an ordered alphabet A =
{a1, a2, . . . , ak}, with a1 < a2 < . . . < ak, such that bwt(w) is of the form
ank

k a
nk−1
k−1 · · ·an2

2 an1
1 , for some non-negative integers n1, n2, . . . , nk. In the sequel

we refer to the elements of S as the words having simple Burrows-Wheeler trans-
form. Since two words that are conjugates have the same BWT, the set S is
invariant under conjugation, and then the notions and the results considered in
this paper could be perhaps better described in terms of circular words : a circu-
lar word corresponds indeed to a conjugacy class of a word. Remark further that
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the study of circular words is closely related to that of infinite periodic words. In
the case of a binary alphabet a complete characterization of the set S has been
given in [17], where it is proved (cf. also [11]) that the following three conditions
on a word w are equivalent: i) w is in S, ii) w is a conjugate of a standard
word, iii) w is (circularly) balanced. In the case of a three letters alphabet a
constructive characterization of the set S has been given in [23].

The set S and the notion of circularly balanced word (related to that of
balanced periodic infinite word) are well defined in an arbitrary finite alphabet.
We note that the notion of balanced periodic words over an alphabet of size
larger than two also appears in the statement of the Fraenkel conjecture (cf.
[8]). As a direct consequence of a result of Graham, one can prove that balanced
sequences on a set of letters having different frequencies must be periodic (cf.
[24]). The problem of characterizing balanced words over any alphabet has been
developed by Altman, Gaujal and Hordijk in [1] in the field of optimal routing
in queuing networks. Some combinatorial properties of balanced circular words
have been recently investigated in [16].

The notion of standard word is closely related to that of Sturmian sequence.
Numerous generalizations of Sturmian sequences have been introduced for an
alphabet with more than 2 letters. Among them, one natural generalization are
the episturmian sequences that are defined by using the palindromic closure
property of Sturmian sequences (cf. [7]). Here we consider some special prefixes
of episturmian sequences, that we call finite epistandard words: in the case of a
binary alphabet they correspond to the finite standard words.

Another notion, related to the previous ones, that has been recently intro-
duced is that of rich word : a word is rich if it contains the maximal number of
distinct palindromic factor (cf. [10]). Rich words appear in many different con-
texts: they include sturmian and episturmian words, and also other families of
words known in literature.

We remark that, in the case of alphabets of size greater than two, there is no
more equivalence between the set S, the family of (circular) balanced words and
the conjugates of epistandard words. However, as a main result of this paper
we prove that, under assumption of balancing, the following three conditions on
a word w are equivalent i) w is in S, ii) w is a circularly rich word, and iii)
w is a conjugate of a finite epistandard word. Apart its interest for the study
of optimal performances of BWT-based compression algorithms, our result is a
contribution to combinatorics of episturmian sequences and could provide new
insights on Fraenkel conjecture.

2 Preliminaries

Let A = {a1, a2, . . . , ak} be a finite ordered alphabet (with a1 < a2 < . . . < ak).
We denote by A∗ the set of words over A. Given a finite word w = b1b2 · · · bn ∈ A∗

with each bi ∈ A, the length of w, denoted |w|, is equal to n. By convention, the
empty word ε is the unique word of length 0. We denote by w̃ the reversal of
w, given by w̃ = bn · · · b2b1. If w is a word that has the property of reading the
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same in either direction, i.e. if w = w̃, then w is called a palindrome. A word
has the two palindrome property if it can be written as uv where u and v are
palindromes or empty.

We say that two words x, y ∈ A∗ are conjugate, if x = uv and y = vu for some
u, v ∈ A∗. Conjugacy between words is an equivalence relation over A∗. The
conjugacy class [x] of x ∈ An is the set of all words bibi+1 · · · bnb1 · · · bi−1, for
1 ≤ i ≤ n. A conjugacy class can also be represented as a circular word. Hence
in what follows we will use “circular word” and “conjugacy class” as synonyms.

A word w ∈ A∗ is primitive if w = uh implies w = u and h = 1. Recall that
(cf. [14]) every word u ∈ A∗ can be written in a unique way as a power of a
primitive word, i.e. there exists a unique primitive word w, called the root of u,
and a unique integer k such that u = wk.

If u is a word in A∗, we denote by uω the infinite word obtained by infinitely
iterating u, i.e. uω = uuuuu . . .. A word w ∈ Aω is ultimately periodic of period
n ∈ N if wi = wi+n∀i ≥ l and l ∈ N. If l = 1, then w is purely periodic. An
infinite word that is not ultimately periodic is said to be aperiodic.

A word v ∈ A∗ is said to be a factor (resp. a prefix, resp. a suffix ) of a word
w ∈ A∗ if there exist words x, y ∈ A∗ such that w = xvy (resp. w = vy, resp.
w = xv). A factor (resp. the prefix, resp. the suffix) is proper if xy �= ε (resp.
y �= ε, resp. x �= ε). A factor u of a finite or infinite word w is said to be left
special (resp. right special) in w if there exist at least two distinct letters a, b
such that au and bu (resp. ua, ub) are factors of w. For any finite or infinite
word w, F (w) denotes the set of all its factors. We say that F (w) is closed under
reversal if for any u ∈ F (w), ũ ∈ F (w). Moreover, if w is infinite, we denote by
Ult(w) the set of all letters occurring infinitely often in w. A factor of an infinite
word x is recurrent in x if it occurs infinitely often in x, and x itself is said to be
recurrent if all of its factors are recurrent in it. Given two palindromes w, v, we
say that v is a central factor of w if w = uvũ for some u ∈ A∗. The palindromic
right-closure w(+) of a finite word w is the (unique) shortest palindrome having
w as a prefix (see [6]). The iterated palindromic closure function [12], denoted by
Pal, is defined recursively as follows. Set Pal(ε) = ε and, for any word w and
letter x, define Pal(wx) = (Pal(w)x)(+).

A finite or infinite word is balanced if, for any two of its factors u, v with
|u| = |v|, we have

||u|a − |v|a| ≤ 1 for any letter a,

i.e. the number of a’s in each of u and v differs by at most 1. A finite word is
circularly balanced if all its conjugates are balanced. Let denote by B the set of
the circularly balanced finite words, so u ∈ B if and only if uω is balanced.

3 The Burrows-Wheeler Transform

The Burrows-Wheeler transform was introduced in 1994 by Burrows and
Wheeler [5] and represents an extremely useful tool for textual lossless data com-
pression. The idea is to apply a reversible transformation in order to produce a per-
mutation bwt(w) of an input sequence w, defined over an ordered alphabet A, so
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that the sequence becomes easier to compress. Actually the transformation tends
to group characters together so that the probability of finding a character close to
another instance of the same character is substantially increased. BWT transforms
a word w by lexicographically sorting all the n conjugates of w and extracting the
last character of each conjugate. The sequence bwt(w) consists of the concatenation
of these characters.We denote byM thematrixwhich consists of all conjugates ofw
lexicographically sorted. In the sequel we will refer to M as the “Burrows-Wheeler
matrix” of w. Moreover the transformation computes the index I, that is the row
of M containing the original sequence. For instance, suppose we want to compute
bwt(w) where w = abraca. Consider the Burrows-Wheeler matrix M in Figure 1.
The last column L of the matrix M represents bwt(w) = caraab and I = 2 since
the original sequence w appears in row 2.

The transform is reversible in the sense that, given bwt(w) and the index I, it is
possible to recover the original string w. Notice that if we except the index, all the
mutual conjugate words have the same Burrows-Wheeler Transform. Actually
the index has the only aim of denoting one representative in the conjugacy class.
However this index is not necessary for the construction of the matrix M from
the last column L.

The following lemma shows the relation of the BWT of a word and the BWT
of a power of the word itself (cf. [17]):

Lemma 1. Let u, v ∈ A∗ and let bwt(v) = b1b2 · · · bn, bi ∈ A, for i = 1, . . . , n.

1. If u = vd then bwt(u) = bd
1b

d
2 · · · bd

n.
2. If bwt(u) = bd

1b
d
2 · · · bd

n then there exists a conjugate u′ of u such that u′ = vd.

Now, we define the set S, as the set of the words w over a totally ordered alphabet
A = {a1, a2, . . . , ak}, with a1 < a2 < . . . < ak, for which

bwt(w) = ank

k a
nk−1
k−1 · · · an2

2 an1
1

for some non-negative integers n1, n2, . . . , nk.
Clearly, by Lemma 1 a word is in S if and only if its root is in S.
We recall that in the case |A| = 2, the set S has been characterized in [17]

where it is proved that the set S coincides with the set of power of conjugates of
standard words. In the case |A| = 3 a constructive characterization of the set S
has been given by Simpson and Puglisi in [23] and the case of a generic alphabet
has been also studied in [22].

The following result, proved in [22], provides a characterization of the words
in S in terms of the Burrows-Wheeler matrix M . We denote by R the matrix
obtained from M by a rotation of 180◦. Notice that the rows of R correspond to
the conjugates of w̃.

Theorem 1. A word w ∈ S if and only if M = R.

For instance, in Fig. 1, M and R are distinct and the word w = abraca does
not belong to S. We mention that a result equivalent of Theorem 1 has been
obtained, with a different proof, by Simpson and Puglisi [23, Theorem 4.3]. They
also derive the following corollary (cf. [23, Corollary 4.4]).

Corollary 1. Each conjugate of w ∈ S has the two palindrome property.
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M
a a b r a c
a b r a c a
a c a a b r
b r a c a a
c a a b r a
r a c a a b

R
b a a c a r
a r b a a c
a a c a r b
r b a a c a
a c a r b a
c a r b a a

Fig. 1. The matrix M and R of the sequence w = abraca

4 The Case of Two Letters Alphabets

In the case of two letters alphabet the elements of S are closely related to Stur-
mian words, that were introduced by Morse and Hedlund (cf. [18]). Sturmian
words can be defined in several different but equivalent ways (cf. [15, Chapter 2]).
Some definitions are “combinatorial” and others of “geometrical” nature. With
regard to the first type of definition a Sturmian word is a binary infinite word
which is not ultimately periodic, of minimal complexity. Alternatively Sturmian
words can be defined as the balanced infinite binary sequences. From the “geo-
metrical” point of view , the Sturmian words code discrete lines. In particular, a
Sturmian word can be defined by considering the intersections with a squared-
lattice of a semiline having a slope which is an irrational number. A vertical
intersection is denoted by the letter a, a horizontal intersection by b and the
intersection with a corner by ab or ba (cf. [15,17]). If the semiline starts from the
origin the corresponding Sturmian words is called characteristic. Characteristic
Sturmian words can be constructed by a family of finite words called standard
words, in the sense that every characteristic word is the limit of a sequence of
standard words (cf. [15]).

Let d1, d2, . . . , dn, . . . be a sequence of natural numbers, with di ≥ 0 and
di > 0 for i = 2, . . . , n, . . .. Consider the following sequence {sn}n≥0 of words
over the binary alphabet {a, b}: s0 = b, s1 = a, and sn+1 = sdn

n sn−1 for n ≥ 1.
The sequence {sn}n≥0 converges to a limit s that is a characteristic Sturmian
word. Moreover any characteristic Sturmian word is obtained in this way. The se-
quence {sn}n≥0 is called the approximating sequence of s and (d1, d2, . . . , dn, . . .)
is the directive sequence of s. Each finite word sn in the sequence is called
a standard word. It is univocally determined by the (finite) directive sequence
(d1, d2, . . . , dn−1). The following theorem proved in [17] (cf. also [11]) gives a com-
plete characterization of words over a binary alphabet having simple Burrows-
Wheeler transform.

Theorem 2. Let v a primitive word over the alphabet A = {a, b}. Then follow-
ing conditions are equivalent:

1. bwt(v) = bpaq with gcd(p, q) = 1;
2. v is a conjugate of a standard word;
3. v is circularly balanced.
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A characterization of words having simple Burrows-Wheeler transform in the
case of three letters alphabet has been given in [23]. Remark that for alphabet
of cardinality greater than two, the equivalence of 1 and 2 is no longer true.
Indeed there exist circularly balanced words that do not have simple BWT,
for instance v = ababc (in fact bwt(v) = cbaab) and there exist unbalanced
words having simple BWT, for instance u = acacbbc (in fact bwt(u) = cccbbaa).
Moreover, in order to study the relationship between the conditions 1, 2 and 3
in the case of larger alphabets, we need to extend the notion of (finite) standard
word.

5 Episturmian Words

A first generalization of Sturmian words to an arbitrary alphabet is the fa-
mily of Arnoux-Rauzy sequences (cf. [21,2]). Another generalization of Sturmian
sequences, which also is a slight generalization of Arnoux-Rauzy sequences, is
the set of infinite episturmian sequences. These sequences are not necessarily
balanced, nor are they necessarily aperiodic (cf. [7]). An infinite word t ∈ Aω

is episturmian if F (t) is closed under reversal and t has at most one right (or
equivalently left) special factor of each length. Moreover, an episturmian word
is standard if all of its left special factors are prefixes of it. Sturmian words are
exactly the aperiodic episturmian words over a 2-letter alphabet. For a recent
survey on the theory of episturmian words see [9].

Let us recall the definition given by Droubay, Justin and Pirillo (cf. [7]).

Definition 1. An infinite sequence s is standard episturmian if it satisfies one
of the following equivalent conditions:

i) For every prefix u of s, u(+) is also prefix of s.
ii) Every leftmost occurrence of a palindrome in s is a central factor of a palin-

dromic prefix of s.
iii) There exists an infinite sequence u1 = ε, u2, u3, . . . of palindromes and an

infinite sequence Δ(s) = x1x2 · · ·, xi ∈ A, such that un+1 = (unxn)(+) for
all n ≥ 1 and that all the un are prefixes of s.

Δ(s) is called the directive sequence of the standard episturmian sequence s.

Remark 1. An episturmian sequence s is periodic if and only if |Ult(Δ(s))| = 1
(see [13, Proposition 2.9]).

Contrary to the case of two letters alphabet, a standard episturmian sequence
over an alphabet of size greater than two is not in general balanced. In [20],
Paquin and Vuillon characterized the balanced episturmian words by classifying
these words into the three families, which we recall in the following theorem.

Theorem 3. Any balanced standard episturmian sequence s over an alphabet
A = {a1, a2, . . . , ak}, k ≥ 3, has a directive sequence, up to a letter permutation,
in one of the three following families of sequences:
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i) Δ(s) = am
1 akak−1 . . . a3(a2)ω where k ≥ 3 and m ≥ 1;

ii) Δ(s) = a1akak−1 . . . ak−�a1ak−�−1ak−�−2 . . . a3(a2)ω, where 0 ≤ � ≤ k − 4
and k ≥ 4;

iii) Δ(s) = a1akak−1 . . . a2(a1)ω where k ≥ 3.

As a direct consequence of Remark 1 and Theorem 3, one can prove the following
corollary.

Corollary 2. Any balanced standard episturmian sequence on 3 or more letters
is periodic.

5.1 Finite Epistandard Words

A standard episturmian sequence s can also be obtained by the Rauzy rules
(see [7, Theorem 8]), where if Δ(s) = ai1ai2ai3 · · · then the sequence of the
labels of the applied Rauzy rules is i1, i2, i3, . . .. We recall that a sequence
(Rn)n∈N of Rauzy k-tuples Rn = (A(1)

n , A
(2)
n , . . . , A

(k)
n ) is defined as follows:

R0 = (a1, a2, . . . , ak), Rn+1 is obtained from Rn by applying one of the Rauzy
rules, labelled 1, 2, . . . , k, with the rule i ∈ [1, k] defined by

A
(i)
n+1 = A

(i)
n

A
(j)
n+1 = A

(i)
n A

(j)
n for j ∈ [1, k]\{i}.

There exists a unique (infinite) sequence u such that every prefix of u is a
prefix of infinitely many of the A

(q)
n , n ∈ N, q ∈ [1, k]. So any Rauzy sequence

(Rn)n∈N defines an infinite standard episturmian sequence.

Definition 2. A word w ∈ A∗ is called finite epistandard if it is the element of
a k-tuples Rn, for some n ≥ 1.

It is easy to see that, in the case of binary alphabets, the notion of finite epistan-
dard word corresponds to the notion of (finite) standard word given in Section 4.
We observe that the notion of finite epistandard word is also connected to the
notion of epichristoffel word defined in [19].

Let us remark that a finite epistandard word is primitive. In the sequel we
will denote by EP the set of words that are a power of a conjugate of a finite
epistandard word. From previous construction and Remark 1 follows lemma
stated below.

Lemma 2. The sequence tω is a standard episturmian sequence if and only if t
is a finite epistandard word.

Theorem 3 can be restated in terms of finite epistandard words as follows:

Theorem 4. Any balanced standard episturmian sequence s over an alphabet
with 3 or more letters is of the form s = tω, where t is a finite epistandard word
that belongs to one of the following three families (up to letter permutation):

i) t = pa2, with p = Pal(am
1 akak−1 · · · a3), where k ≥ 3 and m ≥ 1;
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ii) t = pa2, with p = Pal(a1akak−1 · · · ak−�a1ak−�−1ak−�−2 · · · a3), where 0 ≤
� ≤ k − 4 and k ≥ 4;

iii) t = Pal(a1akak−1 · · ·a2), where k ≥ 3.

Proof. The three families of balanced finite epistandard word t are obtained
by applying one of the following Rauzy rules, corresponding to the directive
sequences in Theorem 3:

i) 1mk(k − 1) . . . 32, where k ≥ 3 and m ≥ 1;
ii) 1k(k − 1) . . . (k − �)1(k − � − 1)(k − � − 2) . . . 32, where 0 ≤ � ≤ k − 4 and

k ≥ 4;
iii) 1k(k − 1) . . . 21, where k ≥ 3.

t is the word A
(j)
r , where in the case i) r is m + k − 1 and j is equals to 2, in

the case ii) r is k + 1 and j is equals to 2 and in the case iii) r is k + 1 and j
is equals to 1. The infinite standard episturmian sequence s = tω is obtained by
applying infinitely often the last rules. ��

We observe that the sequences of the last family of Theorem 4 correspond to the
Fraenkel’s sequence. Fraenkel’s conjecture [8] is a well-known problem related to
balance that arose in a number-theoretic context. Fraenkel conjectured that, for
a fixed k ≥ 3, there is only one covering of Z by k Beatty sequences of the form
(	αn + β
)n≥1, where α, β are real numbers. A combinatorial interpretation
of this conjecture may be stated as follows (taken from [20]). Over a k-letter
alphabet with k ≥ 3, there is only one recurrent balanced infinite word, up to
letter permutation and shifts, that has mutually distinct letter frequencies. This
supposedly unique infinite word is called Fraenkel’s sequence and is given by
(Fk)ω where the Fraenkel words (Fi)i≥1 are defined recursively by F1 = a1 and
Fi = Fi−1aiFi−1 for all i ≥ 2. For further details see [10,20].

Recall that a word t is circularly balanced if the infinite word tω is balanced.
Thus the following corollary follows from Theorem 4 and Lemma 2.

Corollary 3. A finite epistandard word is circularly balanced if and only if it
belongs to one of the three families described in Theorem 4.

6 Rich Words

In [7], it was proved that any word w of length |w| contains at most |w|+1 distinct
palindromic factors (including the empty word). The episturmian sequences,
which include the Sturmian sequences, are “rich” in palindromes, in the sense
that they contain the maximum number of different palindromic factors. Specifi-
cally, in [7], it was proved that if an infinite word w is episturmian, then any
factor u of w contains exactly |u| + 1 distinct palindromic factors.

Glen et al. in [10] introduced and studied rich words, that constitute a new
class of finite and infinite words characterized by containing the maximal number
of distinct palindromes. More precisely, a finite word w is rich if it has exactly
|w| + 1 distinct palindromic factors. A word is rich if all of its factors are rich.
Rich words have been recently investigated in several papers (cf. [10,3,4]). In
particular, we mention some results from [10], that will be useful in the sequel.
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Theorem 5. Recurrent balanced rich infinite words are precisely the balanced
episturmian words.

Corollary 4. Recurrent balanced rich infinite words with mutually distinct letter
frequencies are Sturmian words or have the form given by Fraenkel’s conjecture.

Proposition 1. For a finite word w, the following properties are equivalent:

1. wω is rich;
2. w2 is rich;
3. w is a product of two palindromes and all of the conjugates of w (including

itself) are rich.

We say that a finite word w is circularly rich if the infinite word wω is rich. We
denote by R the set of the circularly rich words. The following key result relates
rich words and words having simple Burrows-Wheeler transform.

Theorem 6. If the word w belongs to S then w is circularly rich.

The proof makes use of the Theorem 1 and Corollary 1 (cf. [22] and [23]) and
of several properties of rich words proved in [10,3,4]. In fact by Corollary 1
each w ∈ S has the two palindrome property. Then, by the Property 3 of
Proposition 1, it suffices to prove that all the conjugates of w are rich.

In the proof, we use the characterization in [10], where a word x is rich if and
only if every suffix of x has a unioccurrent palindromic prefix (upp for short). If
x has a upp, say p, then p is the longest palindromic prefix of x.

So we prove, by induction on h (where 1 ≤ h ≤ |w|), that each factor of length
h of words in [w], or analogously each suffix of length h of a conjugate of w, is
rich. The result is clearly true if h ≤ 3, in fact it is easy to verify that all words
of length 3 or less are rich. Now suppose the statement is true for all factors of
length less than or equal to h, i.e. each factor u of [w] of length h is rich, and
we prove that each factor v of [w] of length h + 1 is rich. We can write v = bu,
with b ∈ A. If a is the last letter of u, we can write v = bu = bu′a, with a ∈ A
and u′ a factor of [w] of length h − 1. In [22], it was proved that if the words of
the form u′a and bu′ are rich (so u′a has a upp, say p, and bu′ has a upp, say
q) then |q| ≤ |p| + 2. Moreover, from the properties of rich words, it was proved
that, if either |q| > 1 and |p| ≤ |q| ≤ |p| + 2 or |q| < |p| and h − 1 ≤ |p| ≤ h,
then v is rich. Thus, it remains to prove the case where |q| < |p| < h − 1 and
|q| > 1 (case 1) and the case where |q| ≤ |p| and |q| = 1 (case 2). The proof of
such cases is long and complex, and cannot be reported here. It is obtained by
contradiction. Indeed, we show that if v = bu′a is not rich, then v contains two
occurrences of q and, in particular, q appears as suffix of v. So v = bu′b and u′

is not a palindrome (otherwise v is a palindrome too and the upp of itself). In
[22], it was proved that the condition that u′ is not a palindrome contradicts
the properties of the BW matrix M of a word w in S. For the complete proof
of Theorem 6 we refer to [22]. The following example shows that the converse of
Theorem 6 is false.

Example 1. The word w = ccaaccb is circularly rich, but bwt(w) = cacccba,
hence w /∈ S.
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7 Simple BWT over Alphabets of Size Greater Than Two

In this section, we prove the following relationship:

B ∩ R = B ∩ EP = B ∩ S.

We observe that the notions of epistandard, circularly balanced and circularly
rich word are invariant under letter permutation. On the contrary the property
that the word has simple BWT depends on the order of the alphabet. Hence the
equivalence that we state in the sequel between some of these notions holds true
up to letter permutation.

Theorem 7. Any conjugate of a word in one of the three families defined in
Theorem 4 belongs (up to letter permutation) to the set S.

Proof. We consider the words t of the three families in the form given in The-
orem 4, and the alphabet order a1 < a2 < . . . < ak. In three cases, by the
structure of t, we can determine the factor that follows each occurrence of let-
ters of A in each conjugate of t. Then we prove that the letters of the last column
L of Burrows-Wheeler matrix M of t are non-increasing.

Type i) : t = pa2, with p = Pal(am
1 akak−1 · · ·a3).

Each occurrence of letter ak is followed by factor am
1 aj with 1 < j < k. Each oc-

currence of letter ai, with 2 < i < k, is followed by factor Pal(am
1 ak · · · ai+1)aj ,

with 1 < j < i. The unique occurrence of letter a2 is followed by factor
Pal(am

1 ak · · ·a3). Finally, each occurrence of letter a1 is followed either by factor
ah
1aj (only in the case m > 1), with 1 ≤ h ≤ m − 1, or by the letter aj , with

2 ≤ j ≤ k.

Type ii): t = pa2, with p = Pal(a1akak−1 · · ·ak−�a1ak−�−1ak−�−2 · · ·a3).
Each occurrence of letter ak is followed by factor a1aj , with 1 ≤ j < k.
Each occurrence of letter ai, with k − � ≤ i ≤ k − 1, is followed by factor
Pal(a1ak · · · ai+1)aj , with 1 ≤ j < i. Each occurrence of letter ak−�−1 is
followed by factor Pal(a1ak · · · ak−�a1)aj , with 1 < j < k − � − 1. Each
occurrence of letter ai, with 2 < i < k − � − 1, is followed by factor
Pal(a1ak · · · ak−�a1ak−�−1 · · · ai+1)aj , with 1 < j < i. The unique occurrence
of letter a2 is followed by factor Pal(a1akak−1 · · · ak−�a1ak−�−1 · · ·a3). Finally,
each occurrence of letter a1 is followed either by factor Pal(a1ak · · · ak−�)aj ,
with 2 ≤ j ≤ k − � − 1, or by letter aj , with 2 ≤ j ≤ k.

Type iii): t = Pal(a1akak−1 · · · a2).
Each occurrence of letter ak is followed by factor a1aj , with 1 ≤ j < i, each
occurrence of letter ai, with 1 < i < k, is followed by factor Pal(a1ak · · · ai+1)aj ,
with 1 ≤ j < i. Finally, each occurrence of letter a1 is followed either by factor
Pal(a1ak · · · a3)a2 or by letter aj with 2 ≤ j ≤ k.

Clearly, in all cases, the smallest rows (in the lexicographic order) of M end
with ak; moreover the greatest rows end with a1. Hence the intermediate rows
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end with ai for 1 < i < k. Now we consider two conjugates t′ and t′′ of t, where
the last letter of t′, say ai, is greater than the last letter of t′′, say aj , where
1 < j < i < k. By the relation aj < ai we derive that t′ < t′′. Indeed, by
structure of t, the longest common prefix of t′ and t′′ is a palindromic factor
with ai+1 as central letter. Moreover such a factor is followed by a letter ah < ai

in t′ and by the letter ai in t′′. Since ah < ai, we obtain t′ < t′′. ��

We are now ready to prove the main result of the paper.

Theorem 8. Let A = {a1, a2, . . . , ak} be a totally ordered alphabet and let w ∈
A∗ be a primitive circularly balanced word over A. The following statements are
equivalent up to a letter permutation:

i) w belongs to S;
ii) w is a circularly rich word;
iii) w is a conjugate of a finite epistandard word.

Proof. i) ⇒ ii): it follows from the Theorem 6.
ii) ⇔ iii): it follows from Theorem 5 and Lemma 2.
iii) ⇒ i): it follows from Theorem 7 and Lemma 1. ��

Example 2. The circularly balanced word w = adacadabadacada belongs to S,
is a finite epistandard word and is circularly rich. ��

The following examples show that the notions coincide only under assumption
of balancing.

Example 3. The non-circularly balanced word w = bbbbbacaca belongs to S
(clearly it is circularly rich), but it is not a finite epistandard word. The non-
circularly balanced word w = (adac)2adab(adac)2ada(adac)2adab(adac) /∈ S and
it is a finite epistandard word. ��

The following example shows that there exist non-circularly balanced words
which belong to EP ∩ S.

Example 4. The non-circularly balanced word w = acabac is a finite epistandard
word and belongs to S. ��
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Abstract. We analyze Hmelevskii’s theorem, which states that the gen-
eral solutions of constant-free equations on three unknowns are express-
ible by a finite collection of formulas of word and numerical parameters.
We prove that the size of the finite representation is bounded by an ex-
ponential function on the size of the equation. We also prove that the
shortest nontrivial solution of the equation, if it exists, is exponential,
and that its existence can be solved in nondeterministic polynomial time.

1 Introduction

This work concerns the theory of word equations, which is a fundamental part
of combinatorics on words. It has connections to many other areas including
representation results of algebra, theory of algorithms and pattern matching.

Some remarkable results of this topic proved during the last few decades are
the decidability of the satisfiability problem for word equations, see [11], and
the compactness result of systems of word equations, see [1] and [6]. The first
result was improved to a PSPACE algorithm in [12]. The satisfiability problem
has been conjectured to be in NP [13].

In the case of constant-free word equations with only three unknowns im-
portant results have also been achieved. Hmelevskii [8] proved in 1970 that the
general solution of any such equation can be expressed as a finite formula on
word and numerical parameters. On the other direction Spehner [15,16] classi-
fied all sets of relations a given solution can satisfy. Both of these results have
only very complicated proofs. Another example of a challenging nature of word
problems is that the question of finding any upper bound for the maximal size
of independent system of word equations on three unknowns is still open, see [7]
and [3].

The result of Hmelevskii is well known, see e.g. [10], but the original presenta-
tion is very hard to read. A simplified proof using modern tools of combinatorics
on words has been given, together with a double exponential upper bound of the
size of the formula giving the general solution, see [9]. A complete write-up of
the results in [9] is in [14].
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In this paper we continue the work of analyzing Hmelevskii’s result. Based on
[9] and [14] we improve the bound of the size of the parametric solution to single
exponential, as well as prove that the length of the shortest nontrivial solution
is also exponential (if such a solution exists). This connects our work to the
satisfiability problem mentioned above, because Plandowski and Rytter proved
in [13] that there is a nondeterministic algorithm solving the problem in time
polynomial in n log N , where n is the length of the equation and N is the length
of the shortest solution. From this and our result it follows that the problem of
deciding if a constant-free equation on three unknowns has a nontrivial solution
is in NP.

2 Definitions

We begin by giving some definitions needed in this paper. A basic reference of
the subject is [2].

We assume that all word equations are constant-free unless otherwise stated.
Thus we consider word equations U = V , where U, V ∈ Ξ∗ and Ξ is the alphabet
of unknowns. A morphism h : Ξ∗ → Σ∗ is a solution of this equation, if h(U) =
h(V ). We also consider one-sided equations xU ⇒ yV . A morphism h : Ξ∗ → Σ∗

is a solution of this equation, if h(xU) = h(yV ) and |h(x)| ≥ |h(y)|.
A solution h is periodic, if there exists a t ∈ Σ∗ such that every h(x), where

x ∈ Ξ, is a power of t. Otherwise h is nonperiodic. Periodic solutions are easy
to find and represent, so in many cases it is enough to consider nonperiodic
solutions.

If a word u is a prefix of a word v, that is v = uw for some w, the notation
u ≤ v is used. If also u �= v, then u is a proper prefix and the notation u < v is
used.

Let w = a1 . . . an. Its reverse is wR = an . . . a1, and its length is |w| = n. The
number of occurrences of a letter a in w is denoted by |w|a.

If Σ = {a1, . . . , an}, then U ∈ Σ∗ can be denoted U(a1, . . . , an), and its image
under a morphism h can be denoted h(U) = U(h(a1), . . . , h(an)). If u ∈ Σ∗, then
the morphism a1 �→ u means the morphism, which maps a1 �→ u and ai �→ ai,
when i = 2, . . . , n.

Next we define the central notions of this paper: parametric words and para-
metric solutions.

We fix the alphabet of word parameters Δ and the set of numerical parameters
Λ. Now parametric words are defined inductively as follows:

(i) if a ∈ Δ ∪ {1}, then (a) is a parametric word,
(ii) if α and β are parametric words, then so is (αβ),
(iii) if α is a parametric word and i ∈ Λ, then (αi) is a parametric word.

The set of parametric words is denoted by P(Δ, Λ). The sets of parameters are
always denoted by Δ and Λ.

When there is no danger of confusion, unnecessary parentheses can be omitted
and notations like αiαj = αi+j and (αi)j = αij can be used. Then parametric
words form a monoid, if the product of α and β is defined to be αβ.



On the Complexity of Hmelevskii’s Theorem 445

If f is a function Λ → IN0 = {0, 1, 2, . . .}, we can abuse the notation and
use the same symbol for the function, which maps parametric words by giving
values for the numerical parameters with f : if a ∈ Δ ∪ {1}, then f((a)) = a;
if α, β ∈ P(Δ, Λ), then f((αβ)) = f(α)f(β); if α ∈ P(Δ, Λ) and i ∈ Λ, then
f((αi)) = f(α)f(i). A parametric word is thus mapped by f to a word of Δ∗.
This can be further mapped by a morphism h : Δ∗ → Σ∗ to a word of Σ∗. The
mapping h◦f is a valuation of a parametric word into Σ∗, and f is its valuation
to the set Δ∗.

We define the length of a parametric word: the length of 1 is zero; if a ∈ Δ,
then the length of a is one; if α, β ∈ P(Δ, Λ), then the length of αβ is the sum
of the lengths of α and β; if α ∈ P(Δ, Λ) � {1} and i ∈ Λ, then the length of αi

is the length of α plus one.
Next we define the height of a parametric word: if a ∈ Δ ∪ {1}, then the

height of a is zero; if α, β ∈ P(Δ, Λ), then the height of αβ is the maximum of
the heights of α and β; if α ∈ P(Δ, Λ) � {1} and i ∈ Λ, then the height of αi is
the height of α plus one. Parametric words of height zero can be considered to
be words of Δ∗.

A linear Diophantine relation R is a disjunction of systems of linear Diophan-
tine equations with lower bounds for the unknowns. For example,

((x + y − z = 0) ∧ (x ≥ 2)) ∨ ((x + y = 3) ∧ (x + z = 4))

is a linear Diophantine relation over the unknowns x, y and z. We are only
interested in the nonnegative values of the unknowns. If Λ = {i1, . . . , ik}, f is a
function Λ → IN0, and f(i1), . . . , f(ik) satisfy R, then the notation f ∈ R can
be used.

Let S be a set of morphisms Ξ∗ → Σ∗, Λ = {i1, . . . , ik}, hj a morphism from
the monoid Ξ∗ to parametric words and Rj a linear Diophantine relation, when
j = 1, . . . , m. The set {(hj , Rj) : 1 ≤ j ≤ m} is a parametric representation of
S, if

S = {h ◦ f ◦ hj : 1 ≤ j ≤ m, f ∈ Rj} ,

where h ◦ f runs over all valuations to Σ∗. The linear Diophantine relations
are not strictly necessary, but they make some proofs easier. A set can be pa-
rameterized, if it has a parametric representation. The length of the parametric
representation is the sum of the lengths of all hj(x), where j = 1, . . . , m and
x ∈ Ξ.

We conclude these definitions by saying that solutions of an equation can
be parameterized, if the set of its all solutions can be parameterized. A para-
metric representation of this set is a parametric solution of the equation. These
definitions can be generalized in an obvious way for systems of equations.

Example 2.1. The equation xz = zy has a parametric solution {(h1, R), (h2, R)},
where Δ = {p, q}, Λ = {i}, h1(x) = pq, h1(y) = qp, h1(z) = p(qp)i, h2(x) =
h2(y) = 1, h2(z) = p and R is the trivial relation satisfied by all functions
f : Λ → IN0.
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3 Remarks about Parametric Solutions

Next we make some remarks about parametric solutions to increase our under-
standing of them. The various claims made in this section are not needed in this
paper. The proofs can be found in [14].

A parametric solution was defined as a set {(hj , Rj) : 1 ≤ j ≤ m}. This solu-
tion can be written less formally as

x = h1(x), y = h1(y), z = h1(z), R1 or
...

x = hm(x), y = hm(y), z = hm(z), Rm,

if the unknowns are x, y, z. Actually, only one pair (h, R) is needed. For example,
if we have a parametric solution

x = α1, y = β1, z = γ1 or x = α2, y = β2, z = γ2,

we can replace it with

x = αi
1α

j
2, y = βi

1β
j
2 , z = γi

1γ
j
2 , i + j = 1,

where i and j are new parameters.
On the other hand, the linear Diophantine relations are not necessary either,

if we again allow many morphisms. We can get rid of the relations by replacing
every pair (h, R) with several morphisms h. This follows from article [4].

Example 3.1. Consider the periodic solutions of the equation xn = yz. They are

x = ti, y = tj , z = tk, ni = j + k.

We can replace j with nj′ + b and k with nk′ + c, where 0 ≤ b, c < n. Then
i = j′ + k′ + (b + c)/n. Only those pairs (b, c) for which b + c is divisible by n
are possible. Thus we get a representation

x = tj
′+k′

, y = tnj′ , z = tnk′
or

x = tj
′+k′+1, y = tnj′+1, z = tnk′+n−1 or

x = tj
′+k′+1, y = tnj′+2, z = tnk′+n−2 or

...

x = tj
′+k′+1, y = tnj′+n−1, z = tnk′+1,

where the parameters j′, k′ can now have any nonnegative values.

The periodic solutions of an equation on three unknowns can be represented with
just one morphism and without any Diophantine relations. This does not hold,
if instead of periodic solutions we consider all solutions. Indeed, a parametric
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solution for the equation xyxzyz = zxzyxy consists of at least three morphisms,
if linear Diophantine relations are not allowed. The next example gives the so-
lutions of this equation. We are not aware of any better lower bounds for the
maximal required number of morphisms in these kinds of parametric solutions.

Example 3.2. The solutions of the equation xyxzyz = zxzyxy are

x = p, y = q, z = 1 or x = p, y = q, z = pq or x = pi, y = pj , z = pk,

where p, q ∈ Σ∗ and i, j, k ≥ 0.

4 Basic Equations

Hmelevskii proved that every equation on three unknowns has a parametric solu-
tion, and the size of this solution was estimated to be at most double exponential
in [9]. Our first goal is to improve this bound to single exponential, and our sec-
ond goal is to prove that the shortest nontrivial solution is also of exponential
size. We need to refer to the theorems and proofs in [14]. Often these theorems
claim the existence of some object, while we need to know also something about
the size or structure of that object. Typically this information can be obtained
simply by examining the old proof, but this is not trivial. In these cases we state
the more precise form of the theorem, but do not repeat the proof.

In this section the new information is about the coefficients of some linear
Diophantine relations. This is necessary for our second goal.

Let α and β be parametric words. The pair (α, β) can be viewed as an equa-
tion, referred to as an exponential equation. The height of this equation is the
height of αβ. The solutions of this equation are the functions f : Λ → IN0 that
satisfy f(α) = f(β).

The following three theorems were proved in [14, Theorems 5.1, 5.2, 5.3] except
for the upper bounds of the sizes of the coefficients in the relation R. These
bounds, however, are easily obtained by examining the proofs. The latter two
theorems (especially the last one) are technical variations of the first one.

Theorem 4.1. Let E : α = β be an exponential equation of height one. There
exists a linear Diophantine relation R such that a function f : Λ → IN0 is a
solution of E if and only if f ∈ R. The sizes of the coefficients in R are of the
same order as the length of αβ.

Theorem 4.2. Let Λ = {i, j} and let s0, . . . , sm, t1, . . . , tm, u0, . . . , un and
v1, . . . , vn be parametric words of height at most one, with no occurrences of pa-
rameter j. Assume that i occurs at least in the words t1, . . . , tm and v1, . . . , vn.
Let α = s0t

j
1s1 . . . tjmsm and β = u0v

j
1u1 . . . vj

nun. Now there exists a linear
Diophantine relation R such that a function f : Λ → IN0 is a solution of the
exponential equations E : α = β if and only if f ∈ R. The sizes of the coefficients
in R are of the same order as the length of αβ.
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Theorem 4.3. Let Δ = {p, q}, Λ = {i, j, k} and a ≥ 2. Let α = (pqa)ip, β = q,
γ = (pqa)jp, or ⎧⎪⎨⎪⎩

α = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)i,

β = (pq)k+1p,

γ = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)j .

Let A, B ∈ {x, y, z}∗ and let h be the morphism mapping x �→ α, y �→ β, z �→ γ.
Now there exists a linear Diophantine relation R such that a function f : Λ → IN0
is a solution of the exponential equation E : h(A) = h(B) if and only if f ∈ R.
The sizes of the coefficients in R are of the same order as the length of h(A)h(B).

From now on we only consider equations with three unknowns. The alphabet of
unknowns is Ξ = {x, y, z}. The left-hand side of an equation can be assumed to
begin with x. We can also assume that x occurs on the right-hand side, but not
as the first letter.

Periodic solutions and solutions, where some unknown has the value 1, are
called trivial. These are easy to parameterize.

An equation is a basic equation, if it is a trivial equation U = U , where
U ∈ Ξ∗, if it has only trivial solutions, or if it is of one of the following forms,
where a, b ≥ 1, c ≥ 2 and t ∈ {x, z}:

B1. xay . . . = ybx . . . B6. xyz . . . = zyx . . .

B2. x2 . . . ⇒ yax . . . B7. xycz . . . = zycx . . .

B3. xyt . . . ⇒ zxy . . . B8. xyt . . . ⇒ zaxy . . .

B4. xyt . . . ⇒ zyx . . . B9. xyxz . . . ⇒ zx2y . . .

B5. xyz . . . = zxy . . .

The parameterizability of basic equations is quite easy to prove and was done
in [14, Theorem 6.2]. The O(n) bound for the coefficients in the linear Diophan-
tine relations follows from the bounds in Theorems 4.1, 4.2 and 4.3.

Theorem 4.4. Every basic equation has a parametric solution. The solution is
of length O(1) and the coefficients in the linear Diophantine relations are of size
O(n), where n is the length of the equation.

5 Length of the Parametric Solution

In this section we prove that the size of the parametric solution is exponential.
At the same time we improve some of the theorems in [14] so that they can be
used later to prove the existence of a nontrivial solution of exponential size.

First we define images of equations and some other related concepts. These
definitions are very important in the proof of Hmelevskii’s theorem.

An image of an equation xU(x, y, z) ⇒ V (y, z)xW (x, y, z) under the mor-
phism x �→ V kPx, where k ≥ 0, V = PQ and Q �= 1, is

xU(V kPx, y, z) ⇔ QPxW (V kPx, y, z).
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If V contains only one of y, z or if P = 1, the image is degenerated.
Equation E is reduced to the equations E1, . . . , En by an n-tuple of substitu-

tions, if E is of the form xU(x, y, z) ⇒ t1 . . . tkxV (x, y, z), where 1 ≤ n ≤ k and
t1, . . . , tk ∈ {y, z}, equation Ei is

xU(t1 . . . tix, y, z) ⇔ ti+1 . . . tkt1 . . . tixV (t1 . . . tix, y, z),

when 1 ≤ i < n, and equation En is

xU(t1 . . . tnx, y, z) = tn+1 . . . tkt1 . . . tnxV (t1 . . . tnx, y, z).

A sequence of equations E0, . . . , En is a chain, if Ei is an image of Ei−1 for all
i, 1 ≤ i ≤ n. Then En is an image of order n of E0. If every Ei is a degenerated
image, then the chain is degenerated and En is a degenerated image of order n.

The following lemma is the same as [14, Lemma 8.1].

Lemma 5.1. Let u, v, w ∈ Σ∗, 0 < |w| ≤ |u| and c ≥ 1. If

wuc+1v . . . = uc+1vu . . . or w(uv)cu2 . . . = (uv)cu2 . . . ,

then uv = vu.

The next lemma is a seemingly minor but essential improvement of [14, Lemma
8.2]: the number k in the lemma can be selected to be logarithmic instead of
linear with respect to the number |p − q|. This is what ultimately leads to an
exponential bound for the length of the parametric solution.

Lemma 5.2. Let E0 be the equation xyazyps . . . ⇒ zybxyqt . . . , where s, t ∈
{x, z} and a+p �= b+q. Let k be an even number such that 2(k−4)/2 ≥ 1+ |p−q|.
Let Ek be the equation xP ⇒ zQ and E0, . . . , Ek be a degenerated chain. Now
the solutions of Ek satisfying y �= 1 are also solutions of the equation xyazyb ⇒
zybxya.

Proof. Assume that Ei+1 is the image of Ei under the morphism fi : x �→
(zyb)cix, when i is even, and under the morphism fi : z �→ (xya)ciz, when i is
odd. Because f0(x) and f0(z) and thus f0(s) and f0(t) begin with z, the equation
Ek is of the form

xyazypr . . . ⇒ zybxyqr . . . , (1)

where

r = (fk ◦ · · · ◦ f1)(z) = (fk ◦ · · · ◦ f4)((((xya)c3zyb)c2xya)c1(xya)c3).

Let Fm = fm ◦ · · · ◦ f4. The words xya and zyb occur as factors of F4(xya) at
least once, and if they occur as factors of Fm(xya) at least 2(m−4)/2 times, they
occur as factors of Fm+2(xya) at least 2(m−2)/2 times. Thus, by induction, they
occur as factors of Fk(xya) at least 2(k−4)/2 times. If h is a solution of Ek, then

||h(xyazyp)| − |h(zybxyq)|| = |a + p − b − q||h(y)|
≤(a + b)|h(y)| + |p − q||h(y)| ≤ (1 + |p − q|)|h(xyazyb)|
≤2(k−4)/2|h(xyazyb)| ≤ |h(Fk(xya))|.
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Thus, by (1),
w((uc3v)c2u)c1uc3 . . . = ((uc3v)c2u)c1uc3 . . . ,

where u = h(Fk(xya)), v = h(Fk(zyb)) and |w| ≤ |u|. If w = 1, then h(xyazyp) =
h(zybxyq), which is not possible by the assumptions h(y) �= 1 and a + p �= b + q.
Thus it follows from Lemma 5.1 that uv = vu. It can be seen that u, v ∈
{h(xya), h(zyb)}∗, u ends with h(xya) and v ends with h(zyb). This means that
h(xya) and h(zyb) satisfy a nontrivial relation. It follows that they commute,
that is h(xyazyb) = h(zybxya). ��

The equations E1, . . . , En form a neighborhood of an equation E, if one of the
following conditions holds:

N1. E1, . . . , En form a complete set of θ-images of E (see [14]),
N2. E reduces to E1, . . . , En with an n-tuple of substitutions,
N3. E is the equation U = V , U and V begin with different letters, n = 2, and

E1 and E2 are equations U ⇒ V and V ⇒ U ,
N4. n = 1 and E is the equation U = V and E1 is the equation UR = V R,
N5. E is the equation SU = TV , |S|t = |T |t for all t ∈ Ξ, n = 1 and E1 is the

equation US = V T ,
N6. n = 1 and E1 is E reduced from the left or multiplied from the right,
N7. n = 1 and, with the assumptions of Lemma 5.2, E is the equation xP ⇒ zQ

and E1 the equation xyazybxP ⇒ zybxyazQ.

The first paragraph of the next theorem, proved in [14, Theorem 8.3], justifies
the definition of a neighborhood. The second paragraph can be deduced by
examining the rules in the definition of a neighborhood and, most importantly,
the definition of a complete set of θ-images.

Theorem 5.3. Let E be a word equation of length n and let E1, . . . , Em be its
neighborhood. If each Ei has a parametric solution of length at most c, then E
has a parametric solution of length O(mn26)c.

Compared to the parametric solutions of the equations Ei, the parametric
words in the parametric solution of E contain O(1) new numerical parameters,
the height of the parametric words can increase by O(1), and the coefficients of
the linear Diophantine relations are of the same size.

A directed acyclic graph, whose vertices are equations, is a tree of E, if the
following conditions hold:

(i) only vertex with no incoming edges is E,
(ii) all other vertices have exactly one incoming edge,
(iii) if there are edges from E0 to exactly E1, . . . , En, then these equations form

a neighborhood of E0.

The first paragraph of the next theorem is from [14, Theorem 8.4], and the
second paragraph follows from the second paragraph of Theorem 5.3 and from
Theorem 4.4.
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Theorem 5.4. Let E be a word equation of length n. If E has a tree of height
k, then all equations in the tree are of length O(n)27

k

. If each leaf equation in
this tree has a parametric solution of length at most c, then E has a parametric
solution of length O(n)52·27

k

c.
If the leaf equations are basic equations, the parametric words in the paramet-

ric solution of E contain O(k) numerical parameters, their height is O(k), and
the coefficients of the linear Diophantine relations are of size O(n)27

k

.

A tree in which all leaves are basic equations is a basic tree.
The old version of Lemma 5.2 was used in [14, Lemmas 9.3, 10.2]. By using

the improved version and making the corresponding small changes in the proof
of [14, Theorem 10.5] gives the following theorem.

Theorem 5.5. Every equation of length n with three unknowns has a basic tree
of height O(log n).

Now we can prove one of our main results. We note that it seems unlikely that
Hmelevskii’s methods would give a sub-exponential bound.

Theorem 5.6. Every equation of length n with three unknowns has a parametric
solution of length exp(nO(1)).

Proof. By Theorem 5.5, every equation has a basic tree of height O(log n). By
Theorem 4.4, the leaf equations have parametric solutions of bounded length.
Now from Theorem 5.4 it follows that E has a parametric solution of length
O(n)52·27

k

, where k = O(log n), that is of length exp(nO(1)). ��

6 Shortest Nontrivial Solution

Based on Theorem 5.6 we can prove that the shortest nontrivial solution is
of exponential length. However, this is not trivial. For example, if we have a
parametric word (piq)j , then by giving the value 1 for the numerical parameters
we get a short word, but the problem is that i = j = 1 does not necessarily
satisfy the linear Diophantine relation. Thus we need to estimate the size of the
minimal solution of the relation. We also need to make sure that the solution of
the word equation is indeed nontrivial.

Theorem 6.1. If an equation of length n with three unknowns has a nontrivial
solution, it has a nontrivial solution of length exp(nO(1)).

Proof. Consider an equation E : x . . . = y . . . and its parametric solution

{(hj , Rj) : 1 ≤ j ≤ m}

of length exp(nO(1)). If E has a nontrivial solution, it has a solution where x and
y begin with the same letter but z begins with a different letter. Let h ◦ f ◦ hj

be such a solution, where h ◦ f is a valuation. Now also f ◦hj is such a solution,
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and so is g ◦ hj , if g ∈ Rj maps exactly the same numerical parameters to zero
as f . Thus g ◦ hj is a nontrivial solution. We must select g so that this solution
is sufficiently short.

The lengths of the parametric words hj(t), where t ∈ {x, y, z}, are exp(nO(1)).
By Theorems 5.4 and 5.5, every occurrence of a word parameter in hj(t) appears
at most g(i1) . . . g(ik) times in g(hj(t)), where i1, . . . , ik are numerical parameters
and k = O(log n). Thus the length of g(hj(t)) is g(i1) . . . g(ik) exp(nO(1)).

The conditions for g are that it must be in Rj and it must map exactly the
same numerical parameters to zero as f . The latter condition can be handled by
adding either the equation i = 0 (if f(i) = 0) or the inequality i > 0 (if f(i) > 0)
to Rj for every i ∈ Λ. Inequalities i > c can be replaced with i = c + 1 + i′,
where i′ is a new variable. In this way we get a linear Diophantine relation R′

j ,
which is a disjunction of linear systems of equations. Because f ∈ R′

j , at least
one of these systems has a nonnegative integer solution.

According to [5], if a system of linear equations has a nonnegative integer
solution, then it has one of size O(lM), where l is the number of unknowns, M
is an upper bound for the r × r subdeterminants of the augmented matrix of
the system, and r is the rank of the system. Now r is at most l = O(log n). The
coefficients in the system are of exponential size by Theorems 5.4 and 5.5, so M =
exp(nO(1)). Thus there is a nonnegative integer solution of size exp(nO(1)). This
solution gives us a function g such that g(i1) . . . g(ik) exp(nO(1)) = exp(nO(1)).
This proves the theorem. ��

Now we consider the satisfiability problem. Constant-free equations have always
the solution, where every unknown gets the value 1, and usually they have also
other periodic solutions. The natural question is thus whether a constant-free
equation has a nontrivial solution. This can be easily reduced to the satisfiability
problem of equations with constants. In this way we get the result that the above-
mentioned question is in NP for equations on three unknowns.

Theorem 6.2. The existence of a nontrivial solution of a constant-free equation
on three unknowns can be decided in nondeterministic polynomial time.

Proof. The equation xU = yV , where U, V ∈ Ξ∗, has a nontrivial solution if
and only if it has a solution x = ax′, y = ay′, z = bz′, where a and b are different
letters and x′, y′, z′ ∈ Σ∗. So we are interested in the existence of a solution for
the equation obtained from xU = yV by replacing x with ax′, y with ay′ and z
with bz′, where x′, y′, z′ are now new unknowns. The length of this equation is
twice the length of the original equation.

There is a nondeterministic algorithm (see [13]) that solves the existence of
a solution for the last equation in time polynomial in n logN , where n is the
length of the equation and N is the length of the shortest solution. The claim
now follows from Theorem 6.1. ��
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Abstract. We develop a theory of (first-order) definability in the infix
partial order on words in parallel with a similar theory for the h-quasiorder
of finite k-labeled forests. In particular, any element is definable (provided
that words of length 1 or 2 are taken as parameters), the first-order theory
of the structure is atomic and computably isomorphic to the first-order
arithmetic. We also characterize the automorphism group of the structure
and show that any arithmetical predicate invariant under the automor-
phisms of the structure is definable in the structure.
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1 Introduction

Starting with the classical works of A. Tarski and A.I. Mal’cev, the study of
definability in natural structures became a central issue of logic and computation
theory. For computation theory, the study of structures on words and trees is the
most relevant. In particular, many deep facts on definability and (un)decidability
are known for finitely generated free semigroups and groups (see e.g. [Qu46,
Ma77, KM06] and references therein).

The study of natural quasiorders on words and trees is also a traditional
subject (see e.g. [Th90, Lo97, Ku06] and references therein) with several deep
and interesting definability and (un)decidability results.

In [KS07, KS07a, KSZ08, KS09] many results on definability in the quotient
structure (GFk;≤) of finite k-labeled forests with the h-quasiorder were estab-
lished. This line of research is parallel to the popular ongoing study of definability
in the degree structures of computability theory, because (GFk;≤) is isomorphic
to a natural initial segment of the Wadge degrees of k-partitions of the Baire
space [He93, Se07].
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In this paper we develop a similar complete definability theory for the struc-
ture (A∗;≤) where A∗ is the set of words over an arbitrary finite alphabet A
with at least two letters and ≤ is the infix partial order on A∗ defined as follows:
u ≤ v iff u is an infix of v, i.e. v = xuy for some x, y ∈ A∗. If x (resp. y) in
v = xuy may be chosen empty, u is called a prefix (resp. a suffix) of v.

We use some standard notation on words, in particular ε denotes the empty
word, xu = x · u denotes the concatenation of words x and u, |u| denotes the
length of a word u, |u|a denotes the number of occurrences of the letter a ∈ A
in the word u, A[m,n] denotes the set {u ∈ A∗ | m ≤ |u| ≤ n}. We identify
letters with the corresponding one-letter words. W.l.o.g. we may assume that
A = Ak = {0, . . . , k − 1} for some k ≥ 2.

For a given structure A of signature σ, a predicate on A is definable if it
is defined by a first-order formula of signature σ (in fact, this definition is not
completely precise; to get the well-known precise definition, one has to fix also
a suitable list of variables, as in the definition of the operator Γ in the next
section). A function on A is definable if its graph is definable. An element is
definable if the corresponding singleton set is definable. A structure is definable
if its universe and all signature predicates are definable.

Section 2 recalls some necessary facts from [KS09]. In Section 3 we show
that any element of A∗ is definable in the A[1,2]-expansion of (A∗;≤) (i.e. in
the expansion obtained by adding to the signature {≤} the constant symbols
denoting words of lengths 1 or 2) and characterize the automorphism group of
(A∗;≤). In Section 4 we establish an important technical coding result for the
A[1,2]-expansion of (A∗;≤). In Section 5 we establish our main definability results
for the infix order, in particular we show that any arithmetical predicate on A∗

which is invariant under the automorphisms of (A∗;≤) is definable in (A∗;≤).
The last result implies that the structure (ω; +, ·) is definable in (A∗;≤)

(which improves the result in [Qu46] that (ω; +, ·) is definable in (A∗; ·)) and
that the first-order theory FO(A∗;≤) of this structure is computably isomor-
phic to FO(ω; +, ·) (which improves the result in [Ku06] that FO(A∗;≤) is
undecidable). These results show that the infix partial order has the maximal
possible complexity with respect to definability and first-order theory which is
in contrast with the classical theorem of M. Rabin [Ra69] stating that the prefix
(and hence also the suffix) partial order has a decidable first-order (even monadic
second-order) theory.

In computability theory, people actively discuss several versions of the so
called biinterpretability conjecture stating that some structures of degrees of
unsolvability are biinterpretable (in parameters) with (ω; +, ·) (see e.g. [Ni00]
and references therein). The conjecture (which seems still open for the most
important cases) is considered as in a sense the best possible definability re-
sult about degree structures. This paper and the paper [KS09] show that some
natural structures on words and forests are biinterpretable (even without pa-
rameters) with (ω; +, ·). We believe that our methods could be applied for prov-
ing such kind of results for many other structures including those considered
in [Ku06].
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2 Preliminaries on Gandy Theorem and Definability

Here we recall notions and results from [KS09] which are frequently used below.
Along with first-order definability, we are interested in definability by formu-

las of special kind related to admissible set theory [Ba75, Er96]. Let σ be a finite
signature containing a binary relation symbol ≤ and possibly some other rela-
tional or constant symbols. RQ-Formulas of σ are constructed from the atomic
formulas according to the usual rules of first-order logic concerning ∧,∨,¬,→,
the usual rules for the (unbounded) quantification with ∀, ∃ and the following
additional formation rules for the bounded quantification: if ϕ is an RQ-formula
and x, y are variables then the expressions ∀x ≤ yϕ and ∃x ≤ yϕ are RQ-
formulas. As for the usual first-order formulas, any RQ-formula is equivalent to
a special RQ-formula (i.e., a formula without implications that has negations
only on the atomic formulas).

Δ0-Formulas of signature σ are constructed inductively according to the fol-
lowing rules: any atomic formula of signature σ is a Δ0-formula; if ϕ and ψ are
Δ0-formulas then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ) are Δ0-formulas; if x, y are
variables and ϕ is a Δ0-formula then ∀x ≤ yϕ and ∃x ≤ yϕ are Δ0-formulas.
Σ-Formulas of signature σ are constructed inductively according to the following
rules: any Δ0-formula is a Σ-formula; if ϕ and ψ are Σ-formulas then (ϕ∧ψ) and
(ϕ∨ψ) are Σ-formulas; if x, y are variables and ϕ is a Σ-formula then ∀x ≤ yϕ,
∃x ≤ yϕ and ∃xϕ are Σ-formulas.

A predicate on a σ-structure A is Δ0-definable (resp. Σ-definable) if it is
defined by a Δ0-formula (resp. by a Σ-formula). A predicate on A is Δ-definable
if both the predicate and its negation are Σ-definable.

Let P be an n-ary predicate symbol not in σ, ϕ an RQ-formula of signature
σ ∪ {P}, and x̄ = x1, . . . , xn a list of variables that includes all free variables
of ϕ. We say that P occurs positively in ϕ if ϕ is in negation normal form and
has no subformulas ¬P (y1, . . . , yn). For any n-ary predicate Q on a σ-structure
A, we denote by (A, Q) the expansion of A to the σ ∪ {P}-structure where P
is interpreted as Q. Then we can define the operator Γ = Γϕ,x̄ on the n-ary
predicates on A that sends any Q to the predicate

Γϕ,x̄(Q) = {(a1, . . . , an) | (A, Q) |= ϕ(a1, . . . , an)}.

A σ-structure A is bounded iff ≤ is a transitive directed relation (directed
means that for all x, y ∈ A there is z ∈ A with x, y ≤ z) and, for any Δ0-formula
ϕ, A |= ∀x ≤ t∃yϕ implies A |= ∃v∀x ≤ t∃y ≤ vϕ.

For a Σ-formula ϕ and a variable u not occurring in ϕ, let ϕu be the Δ0-
formula obtained from ϕ by substituting any occurrence ∃x of unbounded ex-
istential quantifier in ϕ by the corresponding bounded existential quantifier
∃x ≤ u. The next fact is essentially from [Er96].

Proposition 1. Let A be a bounded σ-structure and P an n-ary predicate sym-
bol that occurs positively in a Σ-formula ϕ with the free variables among x̄.

(i) The operator Γ is monotone, i.e., Q ⊆ R ⊆ An implies Γ (Q) ⊆ Γ (R).
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(ii) The operator Γ sends Σ-predicates to Σ-predicates.
(iii) The symbol P occurs positively in the Σ-formula ∃uϕu which is equivalent

to ϕ in A and hence induces the same operator Γ .

By Proposition 1(i) and Tarski fixed-point theorem, the operator Γ has the least
fixed point denoted by LFP (Γ ). In general, the least fixed points defined in this
way may be complicated. But for some structures A it turns out that the least
fixed point of any Σ-formula ϕ as above is a Σ-predicate (in this case we say
that A has the Gandy property). Let us recall a sufficient condition for A to
have the Gandy property established in [KS09].

We say that a σ-structure A admits a Δ-coding of finite sets if there is a
binary Δ-predicate E(x, y) on A such that E(x, y) implies x ≤ y for all x, y ∈ A
and, for all n < ω and x1, . . . , xn ∈ A, there is y ∈ A with

A |= ∀x(E(x, y) ↔ x = x1 ∨ · · · ∨ x = xn).

Informally, y is considered as a code of the set {x | E(x, y)}. The definition
requires the existence of at least one code for any finite subset of A, but does
not require that the code is unique.

Observe that, by the axiom of choice, there is a sequence {setn}n<ω of func-
tions setn : An → A which codes the finite sets in the sense that, for all n < ω
and x, x1, . . . , xn ∈ A we have: x1, . . . , xn ≤ setn(x1, . . . , xn) and E(x, setn

(x1, . . . , xn)) ↔ x ∈ {x1, . . . , xn} (in particular, set0 is an element of A such
that E(x, set0) is false for all x ∈ A).

We call a σ-structure A locally finite if {x | x ≤ y} is finite for each y ∈ A.
The next result is useful for understanding definability in some structures.

Theorem 1 ([KS09]). Let A be a bounded locally finite σ-structure that admits
a Δ-coding of finite sets and a Δ-definable copy of (ω;≤). Then A has the Gandy
property.

Recall that a structure A equipped with a numbering α (i.e., a surjection from
ω onto A) is arithmetical, if the equality predicate and all signature predicates
are arithmetical modulo α. Obviously, any definable predicate on an arithmetical
structure (A; α) is arithmetical (w.r.t. α) and invariant under the automorphisms
of A; we say that (A; α) has the maximal definability property if the converse is
also true, i.e., any arithmetical predicate invariant under the automorphisms of
A is definable.

Let again A be a countable σ-structure and let α be a numbering of A. We say
that the elements of (A; α) are uniformly Σ-definable if there is an arithmetical
sequence of unary Σ-formulas {ψn(v0)} such that ψn defines the element α(n)
in A for each n < ω.

Recall (cf. [Ho93, Ni00]) that a structure B of a finite relational signature τ is
biinterpretable with a structure C of a finite relational signature ρ if B is definable
in C (in particular, there is a bijection f : B → B1 on a definable set B1 ⊆ Cm

for some m ≥ 1 which induces an isomorphism on the τ -structure B1 definable
in C), C is definable in B (in particular, there is a similar bijection g : C → C1
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on a definable set C1 ⊆ Bn for some n ≥ 1), the function gm ◦ f : B → Bnm is
definable in B and the function fn ◦ g : C → Cmn is definable in C.

Theorem 2 ([KS09]). Let (A; α) be an arithmetical σ-structure with the uni-
formly Σ-definable elements such that A is bounded, locally finite and admits a
Δ-coding of finite sets and a Δ-definable copy (N ;�) of (ω;≤). Then A has the
maximal definability property and is biinterpretable with (ω; +, ·).

3 Defining Elements and Characterizing Automorphisms

The first main result of this section is the following

Theorem 3. The elements of A∗ are uniformly Σ-definable in the A[1,2]-expan-
sion of (A∗;≤).

Proof.1 For x, y ∈ A∗, let S(x, y) mean that x ∈ {ay, ya} for some a ∈ A. Since
S(x, y) is equivalent to y < x ∧ ¬∃z ≤ x(y < z < x), S is a Δ0-predicate.

We show by induction on |w| that any word w ∈ A∗ is Σ-definable in the
A[1,2]-expansion of (A∗;≤). For |w| ≤ 2 the assertion is obvious, so assume that
|w| ≥ 3 and consider the representation w = aw1b where a, b ∈ A and w1 ∈ A+.
By induction, the words u = w1b and v = aw1 are Σ-definable. Since for any
c ∈ A the word aac is Σ-definable (the case c = a is easy, and for c �= a we
have: x = aac iff S(aa, x), c ≤ x and ca �≤ x), it suffices to check that x = w is
equivalent to

S(x, u) ∧ S(x, v) ∧ ∃y(S(y, x) ∧ aac ≤ y) (1)

where c is the first letter of w1. Obviously, (1) is true for x = w, so it remains to
deduce x = w from (1). Let x satisfy (1). By first and second conjuncts in (1),
only the following four cases are possible: x = a1u = a2v for some a1, a2 ∈ A,
x = ub1 = vb2 for some b1, b2 ∈ A, x = a1u = vb1 for some a1, b1 ∈ A,
x = a1v = ub1 for some a1, b1 ∈ A.

In the first case we have a1w1b = a2aw1, hence w1b = aw1. Then a = b
(otherwise, w1 = aw2b for some w2 ∈ A∗, hence aw2bb = aaw2b and so w2b =
aw2 which yields an infinite sequence w1 > w2 > · · · , a contradiction) and
therefore x ∈ a∗. This shows that first and second conjuncts in (1) determine x
uniquely, hence x = w.

The second case is similar to the first one. In the third case we have x =
a1w1b = aw1b1, hence a1 = a, b = b1 and x = w.

In the forth case we have x = w1bb1 = a1aw1. An easy induction on |w1| shows
that b = a, b1 = a1, w1 = (a1a)na1 in case |w1| = 2n + 1 and b = a1, b1 = a,
w1 = (a1a)n+1 in case |w1| = 2n+2. Hence, x = (a1a)n+1a1 in case |w1| = 2n+1
and x = (a1a)n+2 in case |w1| = 2n + 2. By third conjunct in (1), aaa1 ≤ y for
some y with S(y, x). This implies that a = a1, x ∈ a∗ and hence x = w.

1 We thank an anonymous referee for sketching this proof which is shorter than our
original proof.
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Writing down (recursively) the explicit Σ-definitions of elements in the con-
structive proof above, we obtain a computable (hence arithmetical) sequence
{ψn(v0)} of Σ-formulas witnessing that the elements of A∗ are uniformly Σ-
definable (w.r.t. to the natural numbering of A∗). ��
Next we characterize the automorphism group Aut(A∗;≤) of the structure
(A∗;≤). We start with the following immediate corollary of the last theorem.

Corollary 1. Any automorphism of (A∗;≤) identical on A[1,2] is the identity
automorphism.

Let Sk denote the symmetric group on k elements {0, . . . , k − 1} and let A �
B denote that structures A and B are isomorphic. Since for k = 1 we have
(A∗

k;≤) � (ω;≤), Aut(A∗
k;≤) is the trivial one-element group. For k ≥ 2, along

with the identity automorphism e the group Aut(A∗
k;≤) has also some other

elements, in particular the reverse automorphism r defined by r(i1 · · · in) =
in · · · i1 for all n ≥ 0 and i1, . . . , in < k (note that r ◦ r = e).

Lemma 1. Let k ≥ 2 and let f be an automorphism of (A∗
k;≤) such that f(i) =

i and f(ij) = ji for all i, j < k. Then f = r.

Proof. The function f ◦ r is an automorphism of (A∗
k;≤) identical on A

[1,2]
k . By

Corollary 1, f ◦ r = e, hence f = f ◦ r ◦ r = r. ��

Theorem 4. For any k ≥ 2, Aut(A∗
k;≤) � Sk × S2.

Proof. The restriction map f �→ f |Ak
is easily seen to be a group homomorphism

from Aut(A∗
k;≤) onto Sk. We check that the kernel K of this homomorphism

coincides with {e, r}. Obviously, e, r ∈ K. Conversely, let f ∈ K, then f(i) = i for
all i < k. Since {01, 10} is the set of minimal elements in ({u ∈ A∗

k | 0, 1 < u};≤),
f(01) ∈ {01, 10}. We distinguish two cases.

Case 1. f(01) = 01. Then of course f(10) = 10. We show that in fact f(ij) = ij
for all i, j < k. For i = j this is obvious, so let i �= j. Assume first that 0 ∈ {i, j},
say 0 = i (the case 0 = j is treated similarly). As above, f(0j) ∈ {0j, j0}.
Toward a contradiction, suppose that f(0j) = j0. For the word w = 10j we have
10, 0j ≤ w, hence 10 = f(10) ≤ f(w) and j0 = f(0j) ≤ f(w). But |f(w)| = 3
(because any automorphism of (A∗

k;≤) obviously preserves the length of words),
hence f(w) cannot be above both 10, j0; a contradiction.

The case 1 ∈ {i, j} is symmetric, so it remains to consider the case 0, 1 �∈ {i, j}.
Since f(0i) = 0i and i ∈ {i, j}, f(ij) = ij by taking i in place of 1 in the above
argument. We have shown that f is identical on A

[1,2]
k . By Corollary 1, f = e.

Case 2. f(01) = 10. By the argument of case 1 one can show that in fact
f(ij) = ji for all i, j < k. By Lemma 1, f = r. This completes the proof of
equality K = {e, r}.

Let g �→ g̃ be the embedding of Sk into Aut(A∗
k;≤) defined by g̃(i1 · · · in) =

g(i1) · · · g(in) for all n ≥ 0 and i1, . . . , in < k (note that g̃|Ak
= g for each g ∈

Sk). Then S̃k = {g̃|g ∈ Sk} and K are subgroups of Aut(A∗
k;≤), S̃k ∩ K = {e},

and r commutes with any element of S̃k. Then each element of Aut(A∗
k;≤) is
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uniquely representable in the form g̃ ◦ h where g ∈ Sk and h ∈ K. Therefore,
Aut(A∗

k;≤) � S̃k × K. This completes the proof because S̃k � Sk and K � S2.
��

Remark. Note that Aut(A∗
k;≤) is slightly bigger than Aut(A∗

k; ·) � Sk.

4 Coding the Finite Sets

Here we establish the following important technical fact.

Theorem 5. For any k ≥ 2, the A
[1,2]
k -expansion of (A∗

k;≤) admits a Δ-coding
of finite sets.

We begin with defining some auxiliary predicates and functions on A∗
k and es-

tablishing necessary lemmas.
First note that for all distinct i, j < k the sets i∗, i∗j, ji∗, i∗j∗, ji∗j, and

similar sets with ∗ replaced by +, are Δ-definable (we use the notation in the
style of regular expressions). E.g., x ∈ ji+j iff x ∈ {i, j}∗, ji ≤ x, ij ≤ x, jj �≤ x
and iji �≤ x; by Theorem 3, ji+j is a Δ-set.

Define the binary Δ0-predicates S, L on A∗
k as follows: S(x, y) iff y < x and

¬∃z < x(y < z), L(x, y) iff x ≤ y and [x, y] = {z | x ≤ z ≤ y} is linearly ordered
under ≤. Note that x ≤ x1 ≤ y and L(x, y) imply L(x1, y) and that L(ε, x) iff
x ∈ i∗ for some i < k.

Lemma 2. Let x < y and y ∈ A∗
k has at least two distinct letters. Then L(x, y)

iff y = uxv for unique u, v ∈ A∗
k, and exactly one of u, v is empty. In particular,

if L(x, y) then x is a prefix or a suffix of y.

Proof. From right to left, the assertion is obvious. Conversely, let L(x, y), in par-
ticular y = uxv for some u, v ∈ A∗

k. First we check that one of u, v is necessarily
empty. Suppose the contrary, then ix = xj for some i, j < k. Then i = j (oth-
erwise, x = ix1j and ix1 = x1j, hence we obtain an infinite chain x > x1 > · · ·
which is a contradiction). Moreover, by a similar argument x ∈ i+. Since y has
two distinct letters, there is x1 having two distinct letters with x < x1 < y. By
the argument in parenthesis we obtain a contradiction. It remains to show that
x cannot be simultaneously a prefix and a suffix of y. Suppose the contrary. If
y = xux for some nonempty u ∈ A∗

k, one easily finds incomparable elements in
[x, y]. If there is no such u, x must contain distinct letters and xi is incomparable
with jx (where i, j < k satisfy y = xiv and y = wjx for some v, w ∈ A∗

k). ��
Let dl (resp. dr) be the unary function on A∗

k that deletes the first (resp. the
last) letter of a given nonempty word, and let dl(ε) = dr(ε) = ε.

Lemma 3. The functions dl and dr are Δ-definable.

Proof. By symmetry, it suffices to prove the assertion for dl, i.e. to show that the
graph w = dl(x) is a Σ-predicate. Simplifying notation, we stick to the crucial
particular case of binary alphabet Ak = {0, 1}. It suffices to check that w = dl(x)
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is equivalent to x = w = ε ∨ φ where φ is the conjunction of the Δ0-predicate
S(x, w) and disjunction of the following Σ-predicates:

w ∈ 0∗ ∧ x ∈ 0∗ ∪ 10∗, w ∈ 1∗ ∧ x ∈ 1∗ ∪ 01∗,
w ∈ 0+1 ∧ x ∈ 0+1 ∪ 10+1, w �∈ 0∗ ∪ 1∗ ∪ 0+1 ∧ ψ

where ψ is the following formula:

∃y, y1, t, z(S(y1, y) ∧ y1 ∈ 0∗ ∧ S(t, y) ∧ t ∈ 0∗1 ∧
y �≤ w ∧ y1 �≤ z ∧ L(y, z) ∧ L(t, z) ∧ L(w, z) ∧ L(x, z)).

In case w ∈ 0∗ ∪ 1∗ ∪ 0+1 the equivalence is obvious, so it remains to assume
w �∈ 0∗ ∪ 1∗ ∪ 0+1 and show that w = dl(x) is equivalent to ψ. Let n be the least
number with 0n �≤ w. From left to right, we distinguish two cases.

Case 1. x = 0w. Set z = 0nx, then z = 0n0w = 0n00l1w1 for some l ≥ 0 and
w1 ∈ k∗. Then the values y = 0n00l, y1 = y0 and t = y1 make formula ψ true.

Case 2. x = 1w. Set y = 0n, y1 = y0 and t = y1. If w ∈ 1A∗
k, set z = yx.

Then z = 0n111l0w1 for some l ≥ 0 and w1 ∈ k∗, hence ψ is true. Let now
w ∈ 0A∗

k. Since w �∈ 0∗ ∪ 1∗ ∪ 0∗1, either w = 00l10w1 or w = 00l11w1. Setting
z = y1x = 0n1100l10w1 in the first alternative and z = yx = 0n100l11w1 in the
second alternative, we see that ψ is true.

Conversely, let ψ be true and let y, y1, t, z be satisfying values, in particular
y = 0m for some m ≥ 1, y1 = y0 and t = y1. Since S(x, w), it suffices to show
that w is a suffix of x. Suppose the contrary, then x = wi for some i < k. Since
L(y, z) and L(t, z), by Lemma 2 y, t cannot both be suffixes of z, hence y is a
prefix of z. Since L(w, z), L(x, z) and neither w nor x can be a prefix of z, by
Lemma 2 both w, x are suffixes of z. Therefore, w is a suffix of x. ��
For any i < k, define the binary predicate Pi on A∗

k by

Pi(v, x) ↔ v ∈ i+ ∧ v ≤ x ∧ iv �≤ x ∧ ¬L(v, x) ∧ L(v, dl(x)) ∧ L(v, dr(x)).

Define also the binary predicate Q on A∗
k by

Q(v, x) ↔ v ∈ 1+0+∧v ≤ x∧1v �≤ x∧v0 �≤ x∧¬L(v, x)∧L(v, dl(x))∧L(v, dr(x)).

From Lemmas 2 and 3 it follows that Pi and Q are Δ-predicates with the fol-
lowing properties:

Lemma 4. (i) Let i < k, v, x ∈ A∗
k and x has at least two distinct letters. Then

Pi(v, x) iff v ∈ i+ and x = vx1v for some x1 ∈ A∗
k \ (iA∗

k ∪ A∗
ki) with v �≤ x1.

(ii) Q(v, x) iff v ∈ 1+0+ and x = vx1v for some x1 ∈ A∗
k \ (0A∗

k ∪ A∗
k1) with

v �≤ x1.

For any x ∈ A∗
k and s ≥ |x|+ 4, let x̃ = 01x0 and let ps(x) be the word in 0∗x̃0∗

that has exactly s zeros at the beginning and the end.

Lemma 5. For any x ∈ A∗
k and s ≥ |x| + 4, x̃ is the greatest element (under

≤) in the set of words z ∈ A∗
k \ (0∗1∗ ∪ 1∗0∗) that are below any of 1sps(x̃)1s,

1sx̃1s, 1s0x̃1s, 1sx̃01s.
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Proof. Obviously, x̃ satisfies all the conditions on z. It remains to check that
z ≤ x̃ for any z as in the formulation. Simplifying notation, we stick to the case
k = 2 and distinguish four cases depending on the first and the last letters of z.
If z ∈ 0A∗

k0 then z ≤ 1sx̃1s implies z ≤ x̃. Assume z ∈ 1A∗
k1 and fix an infix

embedding of z into 1sps(x̃)1s. If the first 1 of z is in the prefix 1s of 1sps(x̃)1s

then the last 1 of z has to be to the right of the prefix 0s of ps(x̃), hence |z|0 ≥ s.
This contradicts to z ≤ 1sx̃1s because the last word has at most |x| + 2 zeros.
A similar contradiction is obtained in case when the last 1 of z is in the suffix
1s of 1sps(x̃)1s. Hence, z ≤ ps(x̃) and therefore z ≤ x̃.

If z ∈ 1A∗
k0 then z = 11l00m1w0 for some l, m ≥ 0 and w ∈ A∗

k. Fix infix
embeddings of z in 1sx̃1s and 1s0x̃1s. Suppose that in both embeddings the first
1 of z is in the prefixes 1s, then it has the same position in both prefixes 1s,
hence the 1 before w in z also has the same position in any of 1sx̃1s, 1s0x̃1s. But
this is impossible because of the distinct number of zeros in 1sx̃1s and 1s0x̃1s

between those 1’s. Hence, in at least one of the embeddings the first 1 of z is in x̃
and therefore z ≤ x̃. The remaining case z ∈ 0A∗

k1 is symmetric to the previous
case. ��
Next we explain informally our coding of finite sets. We define set0() = ε and,
for n ≥ 1 and x1, . . . , xn ∈ A∗

k,

y = setn(x1, . . . , xn) = 1sc(x1) · · · c(xn)0s (2)

where s = max{|x1|, . . . , |xn|}+4 and c(x) = ps(x̃)1sx̃1s0x̃1sx̃01s. The minimal
infixes of y of the form 1s0sw1s0s coincide with the words 1sc(xi)0s for 1 ≤ i ≤ n,
and they may be recovered from y by Lemma 4(ii). The minimal infixes of
1sc(xi)0s of the form 1sw1s coincide with 1sps(x̃i)1s, 1sx̃i1s, 1s0x̃i1s, 1sx̃i01s,
and they may be recovered from 1sc(xi)0s by Lemma 4(i). From the words
1sps(x̃i)1s, 1sx̃i1s, 1s0x̃i1s, 1sx̃i01s we may recover x̃i by Lemma 5. Finally,
xi = dldldr(x̃i).

To realize this idea, we need one more lemma. Let f0, f1, g be the unary
functions on A∗

k defined as follows: fi(x) is the largest word in i∗ below x, and
g(x) = f1(x)f0(x). Note that if y is as in (2) then f0(y) = 0s, f1(y) = 1s and
g(y) = 1s0s. Since L(1m, 1m0n) and L(0n, 1m0n) we easily obtain

Lemma 6. The functions f0, f1, g are Δ-definable.

Proof of Theorem 5. We have to find a Δ-predicate E(x, y) with the properties
stated in Section 2. Let ∃maxt ≤ uR(t, . . .) abbreviate

∃t ≤ u(R(t, . . .) ∧ ¬∃t1 ≤ u(R(t1, . . .) ∧ t < t1)).

Let E(x, y) be the Δ-predicate

∃u ≤ y(Q(g(y), u) ∧ ∃maxt ≤ u(t �∈ (0∗1∗ ∪ 1∗0∗) ∧
∀z ≤ u(P1(f1(y), z) → t ≤ z) ∧ x = dldldr(t)).

From the remarks above it follows that if y is as in (2) then E(x, y) iff x ∈
{x1, . . . , xn}. ��
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5 Main Results

Now we are ready to establish the following main result of this paper.

Theorem 6. The A[1,2]-expansion of (A∗;≤) has the Gandy property, the max-
imal definability property and is biinterpretable with (ω; +, ·).

Proof. The expansion is clearly bounded and locally finite. By Theorem 3, the
elements of A∗ are uniformly Σ-definable. The structure (0∗;≤) is a Δ-definable
copy of (ω;≤). By Theorem 5, the expansion admits a Δ-coding of finite sets.
Thus all conditions of Theorems 1 and 2 are satisfied. Conclusions of these
theorems give the desired properties. ��
We formulate an immediate consequence of the main theorem:

Corollary 2. The structure (ω; +, ·) is definable in the A[1,2]-expansion of the
structure (A∗;≤). Therefore, the first-order theory of the A[1,2]-expansion of
(A∗;≤) is computably isomorphic to FO(ω; +, ·).

We conclude the paper with the complete characterization of the definable pred-
icates on (A∗;≤).

Theorem 7. For any k ≥ 2, the structure (A∗
k;≤) has the maximal definability

property.

Proof. Let S(x, y) denote the predicate “y < x and ¬∃z < x(y < z)” on A∗
k.

Let {va}a∈A
[1,2]
k

be distinct variables and let

ρ = ρ(v0, . . . , vk−1, v00, . . . , v0(k−1), . . . , v(k−1)0, . . . , v(k−1)(k−1))

be a formula of signature {≤} equivalent to the conjunction of the following
formulas:

S(vi, ε) for all i < k,
¬(vi = vj) for all distinct i, j < k,
S(vij , vi) ∧ S(vij , vj) for all i, j < k,
¬(vij = vji) for all distinct i, j < k,
∃x(S(x, vij) ∧ S(x, vjl)) for all pairwise distinct i, j, l < k.
Repeating the proof of Theorem 4 we see that ρ defines in (A∗

k;≤) the orbit
Orb(b̄) of the tuple

b̄ = (0, . . . , k − 1, 00, . . . , 0(k − 1), . . . , (k − 1)0, . . . , (k − 1)(k − 1))

(recall that Orb(b̄) = {f(b̄) | f ∈ Aut(A∗;≤)} where b̄ = (b0, . . . , bn) and
f(b̄) = (f(b0), . . . , f(bn)).

Let P (x̄), x̄ = (x1, . . . , xn), be an n-ary arithmetical predicate on A∗
k which

is invariant under the automorphisms of (A∗
k;≤). We have to show that P is

definable in (A∗
k;≤). W.l.o.g. we assume that variables x1, . . . , xn are distinct

from the variables va above. By Theorem 6, there is a formula φ(x̄) of signature
{≤, a}

a∈A
[1,2]
k

that defines P . Let φ1 be the formula of signature {≤} obtained
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from φ by substituting the variable va in place of the constant symbol a for
all a ∈ A

[1,2]
k . Finally, let θ be the formula obtained from ρ ∧ φ1 by existen-

tial quantification over the variables va for all a ∈ A
[1,2]
k . Then θ defines P

in (A∗
k;≤). ��

The last result implies definability in (A∗
k;≤) of many interesting predicates on

words, in particular of the subword partial order [Ku06]. We think that it would
be very complicated to write down an explicit “natural” first-order definition of
the subword partial order in (A∗

k;≤).
A proof similar to the proof of the last theorem establishes the following

strengthening of a result in [Ku06].

Corollary 3. The theory FO(A∗;≤) is computably isomorphic to FO(ω; +, ·).

From the last theorem and finiteness of any orbit Orb(b̄) we immediately obtain
the following important model-theoretic properties of (A∗;≤).

Corollary 4. The structure (A∗;≤) is atomic and minimal.
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Two-Sided Bounds for the Growth Rates
of Power-Free Languages

Arseny M. Shur

Ural State University

Abstract. The growth properties of power-free languages over finite
alphabets are studied. A method to obtain sharp two-sided bounds of
the growth rate of β-power-free languages for arbitrary rational number
β ≥ 2 is obtained. A table of the growth rates, calculated with the ab-
solute error less than 10−5 for different particular power-free languages,
is presented.

1 Introduction

The study of words and languages avoiding repetitions is one of the central
topics in combinatorics of words since the pioneering work of Thue [17]. For
a survey, see [3] and the references therein. A repetition is called avoidable on
the given alphabet, if there exist infinitely many words over this alphabet hav-
ing no repetition of this type. Thue proved that squares are avoidable on the
ternary alphabet, while cubes and overlaps are avoidable on two letters as well.
Integral powers, which are certainly the simplest repetitions, can be generalized
in several ways. Among such generalizations we mention patterns, abelian pow-
ers, relational powers, and, of course, fractional powers (represented by their
exponents), which are studied in this paper. An exponent of a word is the ratio
between its length and its minimal period. If β > 1 is a rational number, then
a word is called β-free (β+-free) if all its factors have exponents less than β
(respectively, at most β).

When a repetition is known to be avoidable, it is natural to calculate some
quantitative measure of its avoidability. If ρ denotes an avoidable repetition (or,
more generally, an avoidable property of words) over the alphabet Σ, then the
“size” of the language L(ρ) ⊆ Σ∗ of all words avoiding ρ is an appropriate
measure of avoidability of ρ. Such a size is given by combinatorial complex-
ity (or growth function) of L(ρ) which is defined as CL(ρ)(n) = |L(ρ) ∩ Σn|.
Brandenburg [4] showed that the combinatorial complexities of the language
of binary cube-free words and the language of ternary square-free words both
have exponential growth. Restivo and Salemi [13] proved that the combinato-
rial complexity of the language of binary overlap-free words grows polynomially.
Since then, many papers have appeared in this area, see, e.g., a survey [2] and
also [10,12], where some bounds of the order of growth for particular repetition-
free languages were obtained. But up to the very recent time there has been
no universal method for obtaining such bounds and no efficient algorithms for
computer-assisted studies.
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In our previous work [15,16] we developed a computationally efficient universal
algorithm for upper bounds of the order of growth of an arbitrary power-free
language L. More precisely, we estimate the growth rate of L which is defined by
α(L) = lim sup

n→∞
(CL(n))1/n. In this paper we show that the upper bound given

by this algorithm often implies a sharp lower bound. As a result, we obtain the
growth rates of many β-power-free languages with a very good precision.

The idea to obtain the lower bounds for the growth rates from the upper
bounds belongs to Kolpakov [10]. He was the first to obtain relatively good
lower bounds for the numbers of binary cube-free words and ternary square-
free words. But in Kolpakov’s method the amount of computation needed to
get the lower bound is much bigger than the one for the upper bound. As a
consequence, really sharp upper bounds can not be used to get lower bounds.
The main advantage of our method is that obtaining a lower bound from the
upper one needs a computation of nearly constant size. Thus, we can use better
upper bounds. As a result, we give, for example, bounds which are at least 100
times more precise than the bounds of [10] for the numbers of binary cube-free
words and ternary square-free words. The second advantage of our method is
its universality: we do not even need to know what language we are studying.
To obtain the lower bound it is enough to know the upper bound and some
parameter for which this upper bound was obtained.

We also mention the paper [1], where some lower bounds for the growth rates
of languages avoiding patterns are given. These bounds are derived from a purely
algebraic result by Golod. However, Golod’s result cannot be applied to the
growth rates of power-free languages.

After preliminaries we briefly recall our method for upper bounds and prove
the main result (Theorem 6) about the lower bound. The numerical results are
given in the last section.

2 Preliminaries

We recall necessary notation and definitions. For more background, see [6,7,11].

1. Words, languages, and automata. An alphabet Σ is a nonempty finite
set, the elements of which are called letters. Words are finite sequences of letters.
As usual, we write Σn for the set of all n-letter words and Σ∗ for the set of all
words over Σ, including the empty word λ. A word u is a factor (respectively
prefix, suffix) of the word w if w can be represented as v̄uv̂ (respectively uv̂, v̄u)
for some (possibly empty) words v̄ and v̂. A factor (respectively prefix, suffix) of
w is called proper if it does not coincide with w. The subsets of Σ∗ are called
languages (over Σ). A language is factorial if it is closed under taking factors of
its words.

A word w is forbidden for a language L if it is a factor of no word from L.
The set of all minimal (with respect to the factorization order) forbidden words
for a language is called the antidictionary of this language. A factorial language
is uniquely determined by its antidictionary, and is regular if the antidictionary
is also regular (in particular, finite).
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A word w ∈ Σ∗ can be viewed as a function {1, . . . , n} → Σ. Then a period of
w is any period of this function. The exponent of w is the ratio between its length
and its minimal period and is denoted by exp(w). The prefix of w whose length
is the minimal period of w is called the root of w. If β > 1 is a rational number,
then w is called β-free (β+-free) if all its factors have exponents less than β
(respectively, at most β). By β-free (β+-free) languages we mean the languages
of all β-free (respectively β+-free) words over a given alphabet. These languages
are obviously factorial and are also called power-free languages. Following [4],
we use only the term β-free, assuming that β belongs to the set of “extended
rationals”. This set consists of all rational numbers and all such numbers with a
plus; the number x+ covers x in the usual ≤ order. For the arithmetic operations
it will be enough to view x+ as the number (x+ 1

n ), where n is extremely large.
For example, the condition r ≤ k/2+ means just that r < k/2.

We use two basic properties of periodic words (see, e.g., [11]).

Theorem 1 (Lyndon, Schützenberger). If the equation xy = yz holds for
some words x, y, and z, then there exist words p �= λ and q such that x = pq,
z = qp, and y = (pq)np for some nonnegative integer n.

Theorem 2 (Fine, Wilf). If i and j are periods of a word u and |u| ≥ i+ j −
gcd(i, j), then gcd(i, j) is also a period of u.

We consider deterministic finite automata (dfa’s) with partial transition func-
tion. The language recognized by a dfa A is denoted by L(A). We view a dfa as
a digraph, sometimes even omitting the labels of edges. A trie is a dfa which is a
tree such that the initial vertex is its root and the set of terminal vertices is the
set of all its leaves. Only directed walks in digraphs are considered. For a dfa,
the number of words of length n in the language it recognizes obviously equals
the number of accepting walks of length n in the automaton. A dfa is consistent,
if each vertex is contained in some accepting walk.

2. Growth rates, digraphs, and linear algebra. For an arbitrary language
L, we are interested in the asymptotic behaviour of its combinatorial complexity
CL(n), more precisely, in the growth rate α(L) = lim sup

n→∞
(CL(n))1/n. For factorial

languages, lim sup can be replaced by lim [9].
A word w is right extendable (resp., extendable) in the language L if for any n L

contains a word wu such that |u| > n (resp., a word uwv such that |u|, |v| > n).
The set of all right extendable (resp., extendable) words is denoted by re(L)
(resp., e(L)). We use the following result of [14].

Theorem 3. For any factorial language L, α(e(L)) = α(re(L)) = α(L).

strongly connected component (scc) of a digraph G is a subgraph G′ maximal
with respect to inclusion such that there exists a walk from any vertex of G′ to
any other vertex of G′. A digraph is strongly connected, if it consists of a unique
scc. A trivial scc has one vertex and no edges.

The index of a digraph is the maximum absolute value of the eigenvalues of
its adjacency matrix. Recall some statements of the classical Perron-Frobenius
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Theorem. Note that an irreducible adjacency matrix is exactly the adjacency
matrix of a strongly connected digraph.

Theorem 4 (Perron, Frobenius). Let M be a nonnegative matrix, and α be
the maximum absolute value of an eigenvalue of M . Then
1) α is itself an eigenvalue of M and is simple if M is irreducible;
2) M has a nonnegative eigenvector corresponding to α (called the principal
eigenvector).

Growth rates of regular languages and indices of digraphs are closely connected.
Namely, if A is a consistent dfa, L = L(A), then α(L) equals the index of A. A
short proof of this fact can be found in [14].

3 Approximation of Power-Free Languages

3.1 Upper Bounds

An efficient universal method for obtaining upper bounds for the growth rates of
power-free languages was briefly described in [16]. The details are given in [15].
We recall the main steps of this method.

First, the target power-free language L is replaced by its m-approximation
Lm which is a regular language satisfying L ⊂ Lm. Namely, the antidictionary
of Lm is the finite set of all minimal forbidden words for L with roots of length
at most m. This finite antidictionary is built from the known parameters of L
by some optimized search algorithm and is stored as a trie.

Second, a consistent dfa recognizing the language Lm is constructed from the
obtained trie by a fast algorithm given in [5]. This algorithm is based on the
textbook Aho-Corasick algorithm for pattern matching and can be represented
as follows (the details of the linear-time and linear-space implementation are
omitted):

Algorithm CMR.
Input : trie T recognizing the finite antidictionary M .
Output : dfa A recognizing the factorial language L with the antidictionary M .
0. Associate each vertex in T with the word labeling the accepting walk ending
at this vertex.
1. Add all possible edges to T , following the rule:
the edge (u, v) with the label c should be added if

u is not terminal, and
u has no outgoing edge labeled by c, and
v is the longest suffix of the word uc which is a vertex of T .

2. Remove all terminal vertices and mark all remaining vertices as terminal to
get A.

On the final step of our method the growth rate of the language Lm is calcu-
lated. The efficiency of this calculation is guaranteed by the following theorem.
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Theorem 5 ([15,16]). There is an algorithm which, given a consistent dfa A
with N vertices and a number δ, 0 < δ < 1, calculates the growth rate of the
language L(A) ⊆ Σ∗ with the absolute error at most δ in time Θ(− log δ·|Σ|·N)
using Θ(− log δ·N) additional space.

The details of the calculating algorithm (we call it Algorithm S) can be found in
[15]. In practice, Algorithm S implemented on a modest PC processes automata
with about 108 edges in a few minutes. So, the possibilities to get sharp upper
bounds with the described method are very high. In the next subsection we show
that in many cases these upper bounds can be turned into two-sided ones.

3.2 Lower Bounds

The following theorem is the main theoretical result of this paper. It explains
how to use the number α(Lm) obtained by the method of previous subsection
to get the lower bound for α(L).

Theorem 6. Suppose that β ≥ 2, Σ is a finite alphabet, and L is the β-free
language over Σ. Further, let m ≥ 1 be an integer, Lm be the m-approximation
of L, Am be the dfa constructed by Algorithm CMR and recognizing Lm. If the
digraph Am has a unique nontrivial scc, then α(L) > γ for any number γ such
that γ + 1

γm−1(γ−1) ≤ α(Lm).

Remark 1. The calculation of α(Lm) by Algorithm S includes the partition of
Am into scc’s. Thus, we need no additional calculation to verify that Am satisfies
the required condition. We have no example of such a dfa with more than one
nontrivial scc and believe that the nontrivial scc is unique for all these dfa’s. Con-
jecture 1 below seems likely to hold and yields the uniqueness of the nontrivial
scc immediately.

Conjecture 1. Let L be a power-free language, u, v ∈ e(L). Then uwv ∈ e(L) for
some word w.

The proof of Theorem 6 requires a detailed study of the dfa Am. Recall that we
consider the vertices of Am as words. The notation u.w = v below indicates that
in Am the walk with the label w and the beginning u ends in the vertex v. The
first lemma collects some general properties of the dfa built by Algorithm CMR.
Then the main combinatorial lemma and an auxiliary algebraic result follow.
After this, we prove Theorem 6.

Lemma 1 ([5]). Let A be the automaton built by Algorithm CMR from a finite
antidictionary M . Then
1) each vertex of A is a proper prefix of a word from M ;
2) if a word w labels a walk in A which ends in some vertex u and |w| ≥ |u|,
then u is a suffix of w;
3) if λ.w = u in A, then u is the longest suffix of w which is a vertex of A.

Lemma 2. Suppose that a word w ∈ (Lm−L) has a suffix v which is a minimal
forbidden word with the period j. Then the vertex u = λ.w of the automaton Am

satisfies |u| < (β−1)j.
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Proof. The condition w ∈ Lm implies j > m. Further, each vertex u of the
automaton Am is a proper prefix of a minimal forbidden word with the root
of length at most m by definition and Lemma 1(1). Then u has period i ≤ m,
yielding |u| < βi < βj. By Lemma 1(2), u is a suffix of w. Hence, u is a suffix of v
by the last inequality. So, u has a period j also. Therefore, if |u| > j, then u has
two proper periods and Theorem 2 is applicable. Namely, if |u| ≥ i+j−gcd(i, j),
then gcd(i, j) is a period of u. Hence, the suffix u of length j is a proper power
of some word. Thus, j is not the minimal period of v and v is not a minimal
forbidden word. This contradiction yields

|u| < i + j − gcd(i, j). (1)

In particular, (1) implies the statement of the lemma for β ≥ 3.
In the case β = 2 one has v = rr for some word r. Hence, if |u| ≥ j then r

has a proper period i. Thus, the prefix and the suffix of r of length j−i coincide.
So, the word v contains a square in the middle and is not minimal. Therefore,
we have |u| < j, as required.

It remains to consider the case 2 < β < 3. We give the proof for the case
β ∈ Q. If β is a rational number with +, the argument is essentially the same.
We represent v in the form v = r′rr, where |r| = j and r′ is a suffix of r. Assume
that |u| ≥ (β−1)j and derive a contradiction. By (1), u is a proper suffix of rr.
Since j is a period of u, we put u = xyx, where yx = r, y �= λ. By assumption,
|xyx| ≥ (β−1)|yx|, yielding |x| ≥ (β−2)j and |x| ≥ β−2

3−β |y|. Two cases for the
period i are possible.

Case 1: |u| ≤ 2i. Then u = ztz and |zt| = i (the word t may be empty). Since
i < j, the mutual location of the parts of the word u looks as follows:

z t z

x y x

u =

Since x is a prefix and a suffix of the word z, we apply Theorem 1 to get the
words p �= λ and q such that x = (pq)np, z = (pq)n+1p for some integer n ≥ 0.
Then r = yx = qpt(pq)n+1p and hence the word rr contains the factor (pq)n+2p.
Since β < 3, we get n = 0, x = p, and the considered factor is xqxqx. From
the inequalities |q| < |z| − |x| < |y| and |x| ≥ β−2

3−β |y| we immediately have
exp(xqxqx) > β, contradicting the minimality of v.

Case 2: |u| > 2i. Then u = ztztz, |zt| = i, and t �= λ, because |u| < βi < 3i.
By (1), |x| < |zt|. On the other hand, |z| < (β−2)i < (β−2)j ≤ |x|. Thus, the
mutual location of the parts of the word u looks as follows:

z t z t z

x y x

u =
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Since z is a prefix and a suffix of the word x, we apply Theorem 1 to get the
words p �= λ and q such that z = (pq)np, x = (pq)n+1p for some integer n ≥ 0.
Moreover,

t = qpt′ = t′′pq (2)

for some words t′ and t′′. Then the word tzt has a factor (pq)n+2p, yielding
n = 0, x = pqp. Hence, u = pqpt′pqpt′p = pt′′pqpt′′pqp, r = yx = t′pqpt′p,
and the word rr has a factor s = pqpt′pt′p. By (2), one of the words pq, t′ is
a suffix of another one. If t′ is a suffix of pq, then the word s contains (t′p)3, a
contradiction with the minimality of v. Let t′ = t̄pq. Then s = xt̄xt̄x. Similar to
case 1, from the inequalities |y| > |t̄| and |x| ≥ β−2

3−β |y| we deduce that exp(s) > β.
A contradiction with the minimality of v is obtained again.

So, the assumption |u| ≥ (β−1)j leads to a contradiction. The lemma is
proved.

Lemma 3. Let G be a digraph with a unique nontrivial scc, and let x be the
principal right eigenvector of its adjacency matrix. Then the component [x]u of
this vector equals zero if and only if the nontrivial scc of G can not be attained
from the vertex u.

Proof. Suppose that A is the adjacency matrix of G, α ≥ 1 is its index, i.e.
Ax = αx. From Theorem 4(1) we conclude that α is a simple eigenvalue of A,
because the singleton graph has index 0. Then, by Theorem 4(2) we can assume
that x is a unique nonnegative right principal eigenvector of A.

Let u be a vertex of G, from which the nontrivial scc is unattainable. Then the
lengths of walks from u are bounded by a constant. Furthermore, if the longest
walk from u has length n, then the longest walks from the successors of u in
the digraph are of length at most n−1. Let us prove the equality [x]u = 0 by
induction on n. If n = 0, then a zero row corresponds to u in the matrix A.
Hence, [Ax]u = 0 and the inductive base holds. Now move to the inductive step
and take n > 0. Then [Ax]u =

∑
[x]v, where v runs over the set of successors

of u (taking the multiplicities of edges into account). By inductive hypothesis,
[x]v = 0. The statement is proved.

If [x]u = 0 for all vertices u of the nontrivial scc, then we can use the inductive
argument from the previous paragraph to show that [x]u = 0 for all vertices u of
G. But this is impossible by the definition of eigenvector. Hence, there is a vertex
u of the nontrivial scc such that [x]u > 0. Then [Ax]v > 0 for each predecessor
v of u. Since u can be attained from every vertex, from which the nontrivial scc
is attainable, we have [Ax]v > 0 for all such vertices by induction. The lemma
is proved.

Proof (of Theorem 6). Obviously, CL(n) = CLm(n) − CLm−L(n). Note that the
language Lm−L consists of the words containing minimal forbidden factors with
the roots of length strictly greater than m. Also note that CLm−L(n) = 0 for all
n < �(m+1)β�. We put Lu(n) = {w ∈ L ∩ Σn |λ.w = u}. Let Pu(n) = |Lu(n)|
and denote the row vector with the components Pu(n) by P (n). Further, let
Fu(n) = {wa ∈ (Lm − L) ∩ Σn |w ∈ L, a ∈ Σ, λ.wa = u}, Qu(n) = |Fu(n)|, and
let Q(n) be the row vector with the components Qu(n).
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Let us clarify the meaning of the sets Fu(n). Let w ∈ Lu(n). If u.a = v, then
the word wa belongs either to Lv(n+1), or to Fv(n+1). Hence, for any vertex u
one has

Pu(n+1) =
∑

(v,u) is an edge
Pv(n) − Qu(n+1). (3)

For vectors, (3) is replaced by

P (n+1) = P (n)A − Q(n+1), (4)

where A is the adjacency matrix of the automaton Am. The function CL(n) with
the growth rate α(L) equals the sum of all the components of the vector P (n)
or, in other words, the scalar product of P (n) and the vector 1 = (1, . . . , 1).
Hence, the growth rate of the scalar product of P (n) and any positive vector x
is also α(L). Moreover, if the sum of the components of P (n) over a subset X
of vertices has the growth rate α(L) as well, then we can take any nonnegative
vector, which is positive on X , as x.

By Theorem 3, α(L) = α(re(L)). Obviously, re(L) ⊆ re(Lm). It is also easy
to see that w ∈ re(Lm) if and only if the nontrivial scc of the automaton Am

is attainable from the vertex u = λ.w. Hence, to obtain a function with the
growth rate α(L) we can sum up the components of P (n) over the set of all such
vertices u. Using Lemma 3, we can take the right principal eigenvector of the
matrix A as x. The obtained function S(n) = P (n)x has the growth rate α(L),
and satisfies the following equality yielding from (4):

S(n+1) = P (n+1)x = P (n)Ax − Q(n+1)x = α(Lm)S(n) − Q(n+1)x. (5)

Now we give an upper bound for Qu(n+1). Consider a word w ∈ Fu(n+1)
which has a minimal forbidden suffix v with the period j, m < j ≤ n+1

β . Since
β ≥ 2, the word w ends with two equal blocks of length j. Hence, w is uniquely
determined by its own prefix w′ of length (n+1−j). By Lemma 2, the word u
occurs in v at least twice: as a suffix and also a period (i.e., j symbols) left from
this suffix. Note that both these occurrences are preceded by the same letter,
because the inequality |u| < (β−1)j is strict. Then the condition λ.w = u implies
λ.w′ = u by Lemma 1(3). Thus, w′ ∈ Lu(n+1−j). We proved that each element
of the set Fu(n+1) is uniquely determined by an element of exactly one of the
sets Lu(n+1−j), where m < j ≤ n+1

β . So we get

Qu(n+1) ≤
�n+1

β �∑
j=m+1

Pu(n+1−j).

Suppose that the number γ satisfies the condition

γj−1S(n+1−j) ≤ S(n) (6)

for all j = m+1, . . . , 	n+1
β 
. Then

Q(n+1)x ≤
�n+1

β �∑
j=m+1

S(n+1−j) ≤ S(n) ·
�n+1

β �∑
j=m+1

1
γj−1 < S(n)

1
γm−1(γ − 1)

. (7)
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From (5) and (7) we get

S(n+1) > S(n)
(

α(Lm) − 1
γm−1(γ − 1)

)
. (8)

Now suppose that γ satisfies the conditions of the theorem (thus, the expres-
sion in parenthesis in (8) is greater than γ). For all n < �(m+1)β� − 1 we have
Q(n+1) = 0, thus yielding the equation S(n+1) = α(Lm)S(n) and inequality
(6). Therefore, we get S(n+1) > γS(n) for all n by induction. Indeed, for the
inductive base we have S(n+1) = α(Lm)S(n) > γS(n) for all n < �(m+1)β�−1,
while (6) implies (8) for the inductive step. The result now follows.

Now let us study the behaviour of the function f(γ) = γ + 1
γm−1(γ−1) .

Proposition 1. In the interval (1, +∞), the function f(γ) has a unique mini-
mum and no maximum.

Proof. Since the derivative f ′(γ) = 1− mγ−m+1
γm(γ−1)2 exists in every point of (1, +∞),

the points of extremum of f are among zeroes of f ′. To find these zeroes we
should solve the equation

g(γ) = γm(γ−1)2 − m(γ−1) − 1 = 0. (9)

From (9) we obtain (γ−1) = m±
√

m2+4γm

2γm . Since γ > 1, only the plus sign in the

numerator is relevant. Hence, (γ−1) = m+
√

m2+4γm

2γm > m
γm . So, all zeroes of g in

(1, +∞) satisfy the inequality (γ−1) > m
γm , while this inequality implies that g′

is strictly positive:

g′(γ) = mγm−1(γ−1)2+2γm(γ−1)−m > mγm−1(
m

γm
)2+2γm(

m

γm
)−m > m > 0.

1 γ

f(γ)

α(Lm)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 1. The graph of f(γ). The γ-coordinate of the marked point is the best lower
bound for α(L).
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On the other hand, g′′(γ) > 0 in (1, +∞), and then g′(γ) is increasing in this
interval. Hence, the set {γ > 1 | g′(γ) > 0} is an interval itself. Since g is in-
creasing in the latter interval, g has a unique zero in the whole interval (1, +∞).
This zero is the point of minimum of the function f , because lim

γ→+1
f ′(γ) < 0

and lim
γ→+∞ f ′(γ) > 0.

By Proposition 1 and a couple of trivial observations, the graph of the function
f(γ) in the interval (1, +∞) looks like in Fig. 1. So, if the set {γ>1 | f(γ) ≤
α(Lm)} is nonempty, it is a closed interval. The rightmost point of this interval
can be easily found with any precision. This point is the best lower bound which
can be obtained by our method.

4 Numerical Results

In this section we present Table 1, which contains some of our results on the
growth rates of power-free languages. In all cases the growth rate is found with
the absolute error less than 10−5. For the binary alphabet we begin with the
(7/3)+-free language, because it is the minimal binary power-free language of
exponential growth [8]. (That is, for 2+ ≤ β ≤ 7/3 the growth rate of any binary
β-free language is 1.)

We also note that the considered lower bound is reasonably good in all cases
where it exists. If we take the ternary square-free language for example, then we
get no lower bound for m ≤ 20, and the bound γ = 1,2727, which is less than

Table 1. Two-sided bounds for the growth rates of power-free languages

|Σ| Exp m lower bound upper bound difference
2 (7/3)+ 64 1,22062891 1,2206448175 2·10−5

2 (5/2)+ 43 1,36629557 1,3663011100 6·10−6

2 3 36 1,45757319 1,45757728693 4·10−6

2 3+ 24 1,79512460 1,79512640867 2·10−6

2 4 21 1,82109999323 1,82109999324 1·10−11

2 4+ 20 1,92080153974 1,92080153975 1·10−11

3 2 54 1,30175907 1,3017618923 3·10−6

3 2+ 17 2,60587894 2,6058790806 2·10−7

3 3 16 2,70156143 2,7015616285 2·10−7

3 3+ 14 2,91192371 2,9119241945 5·10−7

4 2 18 2,62150791 2,6215080173 1·10−7

4 2+ 13 3,72849437 3,7284944228 5·10−8

5 2 14 3,73253856 3,7325385740 2·10−8

5 2+ 12 4,789850728 4,7898507379 1·10−8

6 2 13 4,791406948 4,7914069495 2·10−9

6 2+ 12 5,827732840 5,8277328410 1·10−9

7 2 13 5,8284660592 5,8284660593 1·10−10

7 2+ 12 6,8537249944 6,8537249945 1·10−10
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0,03 away from the actual value of α(L), for m = 21. With the further growth
of m the difference between the upper and lower bounds multiplicatively shrinks
down to 3·10−6 for m = 54 (see Table 1).

Remark 2. Slightly modifying the argument in the proof of Theorem 6 one can
get even sharper lower bound for the case β ≥ 4. Since |u| < 2j by Theorem 2, the
word w in this case is uniquely determined by its prefix of length n+1−2j. Then
the lower bound can be ontained from the inequality γ + 1

γ2m−1(γ2−1) ≤ α(Lm).
The corresponding numerical results are given in Table 1.

Remark 3. Table 1 suggests an interesting law: the growth rates of the k-ary 2+-
free language is quite close to the growth rate of the (k+1)-ary 2-free language,
and the difference between these growth rates tends to 0 very quickly as k grows.
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Abstract. We give a new proof for the decidability of the equivalence
for bounded length-degree transducers, a result established by Weber in
1992. Our proof relies on structural constructions that we have recently
introduced to decompose such transducers. The complexity of our proce-
dure is of triple exponential order, whereas the known bound is a tower
of exponentials of exponential height. Furthermore, our proof deals with
the more general family of transducers whose morphic image by some
nonerasing morphism is a k-valued transducer.

1 Introduction

In this communication we generalise a decidability result for transducers ob-
tained by Weber in [1] by using a structural construction we have introduced
in [2] to decompose a k-valued transducer into a union of k functional ones.

A transducer is an automaton with input and output which realises a rela-
tion between words; the image of a word is the set of outputs of the successful
computations reading this word. The supremum of the cardinalities of these
images is called the valuedness of the transducer. That this parameter is inter-
esting is evidenced by its remarkable connections with decidability questions.
For instance, the equivalence is undecidable for transducers [3] (and even for the
generalised sequential machines over a unary input or output alphabet [4,5]); but
Schützenberger showed in [6] that the equivalence is decidable for the transducers
where every image contains at most one word — the functional transducers.

We shall consider here the equivalence problem for a family of transducers
which contains more general transducers than the k-valued ones (and, in par-
ticular, the functional ones). A transducer is of length-degree k, where k is a
positive integer, if for every input word u, the number of distinct lengths in the
image of u is at most k. Clearly, a k-valued transducer, where every image has at
most k words, is of length-degree k. In [7], Weber showed that every bounded-
valued transducer can be decomposed into a union of unambiguous and func-
tional ones, and applied this decomposition to show that the equivalence for the
bounded-valued transducers is decidable in double exponential time. Next, these
two results have been generalised to the bounded length-degree transducers [8]:
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Theorem 1 (Weber 1992). Every transducer T of bounded length-degree can
be effectively decomposed into an exponential number of transducers1 of length-
degree 1 with size bounded by a double exponential on the size of T .

Theorem 2 (Weber 1992). Let T and U be transducers of bounded length-
degree, which realise the relations τ and γ, respectively. It is decidable whether
τ ⊆ γ in complexity of order of a tower of exponentials of exponential height.

The aim of the constructions we are going to describe is to extend Theorem 2
to a broader class of transducers with a better complexity.

Let us explain briefly Weber’s proof for Theorem 2. It relies on the decom-
position result stated in Theorem 1. The general idea is to establish an upper
bound for the length of a witness for the non-inclusion based on properties of
a decomposition of the transducers being compared. Then, the inclusion (thus,
the equivalence) can be tested by checking the outputs of the words with length
bounded by this witness. This upper bound is a tower of exponentials of ex-
ponential height (on the size of the transducers); it is affected by the number
of transducers constructed in the decomposition (which yields the exponential
height of this expression) and the size of these transducers. As observed in [8], a
first attempt to improve this complexity would be to obtain a decomposition of
transducers of length-degree k into exactly k transducers (instead of exponen-
tially many ones) of length-degree at most 1. The complexity in this case would
become a tower of k exponentials, that is, the height of this expression would be
a function of the valuedness instead of the size of the considered transducers.

In [2,9,10], we develop a complete reworking of the theory of k-valued rational
relations based entirely on structural constructions with automata. Concerning
decomposition, we present in [2] a construction to decompose a k-valued trans-
ducer into a union of k functional and unambiguous ones of single exponential
size, and explain how the same construction can be used to improve Theorem 1
and answer a more general question than the one posed by Weber in [8]:

Theorem 3 (Sakarovitch–de Souza 2008). Let τ : A∗ → B∗ be a finite
image rational relation and θ : B∗ → C∗ a morphism such that the composition
τθ is k-valued.2 Every transducer S realising τ can be effectively decomposed into
k transducers of single exponential size (on the number of states of S) whose
compositions with θ are functions.

Let us call a pair (T , σ) a morphic transducer. The bounded length-degree trans-
ducers are the morphic transducers such that σ is the length morphism and the
composition of (the behaviour of) T and σ is a bounded-valued relation.

Later, we showed in [10] that the equivalence for the k-valued transducers is
decidable in single exponential time by using our decomposition construction.
1 By “decomposed” we mean that the relation realised by the transducer is equal to

the union of the relations realised by the constructed ones.
2 We write functions and relations in postfix notation: xτ is the image of x by the rela-

tion τ and thus the composition of relations is written by left-to-right concatenation.
Let us recall that the rational relations are closed under composition [11].
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Here we improve Theorem 2 by showing that the equivalence for the morphic
bounded-valued transducers is decidable with a much smaller complexity:

Theorem 4. Let X and Y be transducers which realise the relations τ and γ, re-
spectively, and σ a nonerasing morphism3 such that the compositions τσ and γσ
are k-valued relations. It is decidable in triple4 exponential time on the number
of states of X and Y whether τ ⊆ γ.

Remark that in this statement σ cannot be any morphism. Otherwise, τ and γ
could be any rational relation: take for example the morphism which sends every
word to the empty word; τσ and γσ are of course functional. But, as we said,
the equivalence is undecidable for the entire family of transducers.

Part of our proof for Theorem 4 bears clear similarity with the decidability
procedure for k-valued transducers explained in [10]. In the latter, both trans-
ducers under inspection are at first decomposed into a union of functional and
unambiguous transducers by using the construction we have presented in [2]: the
lexicographic decomposition.5 Such decomposition allow us to tackle a simpler
situation. Here, our proof relies on the decomposition for the morphic k-valued
transducers stated in Theorem 3, the morphic decomposition. Both decompo-
sitions are based on covering of automata. Roughly speaking, a covering is an
expansion of the automaton where one can distinguish more easily between the
computations (see [12] for the formal definition); the decompositions are formed
by subautomata of a special covering we described in [2], the lexicographic cov-
ering. These coverings can be effectively constructed, and the number of states
in their useful parts is bounded by a single exponential (on the number of states
of the considered transducers). We recall both decompositions in Section 3.1.

The remaining of the proof is completely different from what we have done
for the k-valued transducers. In [10], we show how our construction to decide
the k-valuedness in polynomial time — the Lead or Delay Valuation — can be
used together with the decomposition we have just sketched to “see” whether
the transducers are equivalent. Such method does not hold anymore for the
more general case of morphic transducers. The main reason is that the morphic
1-valued transducers built in the morphic decomposition are not necessarily func-
tional (in spite of the fact that the compositions with θ are functional), whereas
our previous algorithm relies heavily on the fact that the transducers yielded by
the lexicographic decomposition are functional. Our approach is to show that,
for every successful computation of each of the transducers being compared, one
may find a compatible one (successful and with the same label) in the other
transducer such that the lag between them is bounded by some expression on
the size of the transducers. This is stated in Lemma 3; this bound is already of
double exponential order, and is established with two constructions of one of the
coverings described in [2]. Next, a new construction of the same covering allows
to test the compatibility property. The complete proof is discussed in Section 4.
3 Notions such as nonerasing morphism will be defined in the body of the paper.
4 A more precise expression is given in Theorem 6 at the end of the paper.
5 As the construction is coined in the journal version of [2].
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Maybe the complexity stated in our result is not the best one could hope, and
it is indeed matter for further development whether a more careful use of our
constructions may lead to a double or even single exponential time complexity.
On the other hand, Theorem 4 goes sufficiently far to show that these construc-
tions allow a considerable gain with respect to Theorem 2 — this is in fact what
we propose to illustrate here — in a more general setting.

Due to space constraints, the details of the proofs are omitted here, but are
planned to appear in a full paper together with a complete discussion of the
morphic decomposition theorem.

2 Preliminaries

We follow the definitions and notation in [11,13,14].
The set of words over a finite alphabet A (the free monoid over A) is denoted

by A∗, and the empty word by 1. For free monoids A∗ and B∗, a morphism from
A∗ into B∗ is a function σ : A∗ → B∗ compatible with the operation of A∗:
1σ = 1 and for every u, v ∈ A∗, (uv)σ = (uσ)(vσ). We say that σ is nonerasing
if Aσ ⊆ B+, that is, for every letter a ∈ A, aσ is different from the empty word.
Every morphism σ : A∗ → B∗ is completely defined by the images of the letters
in A, thus in order to present a morphism we can simply exhibit these images.

Let M be a monoid. An automaton A = 〈Q, M, E, I, T 〉 is a labelled directed
graph given by sets Q of states, I, T ⊆ Q of initial and final states, respectively,
and E ⊆ Q×M×Q of transitions labelled by M . It is finite if Q and E are finite.

A computation in A is a sequence of transitions c : p0
m1−−→ p1

m2−−→ . . .
ml−−→ pl,

also written c : p0
m1...ml−−−−−→ pl. The label of c is m1 . . . ml ∈ M , and c is a

successful computation if p0 ∈ I and pl ∈ T . The behaviour of A is the set
|||A||| ⊆ M of labels of successful computations. The behaviour of finite automata
over M coincide with the family RatM of the rational subsets of M [11].

If M is a free monoid A∗ and the labels of transitions are letters, then A is a
(boolean) automaton over A. If M is a product A∗×B∗, then every transition is
labelled by an input word u ∈ A∗ and an output one x ∈ B∗ and A is a transducer
realising a rational relation from A∗ to B∗. A transducer is unambiguous if
distinct successful computations have distinct labels.

The image of a word u ∈ A∗ by (the behaviour of) a transducer is the set
of outputs of successful computations which read u. The transducer is called
k-valued, where k is a positive integer, if, for every input word, the image has at
most k words. It is bounded-valued if there exists such an integer k.

We shall only consider transducers which are real-time: every transition is
labelled by a pair (a, K) formed by a letter a ∈ A and a set K ∈ RatB∗, and I,
T are functions from Q to RatB∗. By using classical constructions on automata,
every transducer can be transformed into a real-time one. For bounded-valued
transducers, we may suppose that every transition outputs a single word, and
that the image of every initial or final state is the empty word.6

6 A nondeterministic generalised sequential machine in some references.
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For computations c and d of a (real-time) transducer with the same label, their
lag, represented by 〈c, d〉, is the the maximal difference between the lengths of
outputs of prefixes of c and d with the same input (see [2] for details).

We shall make systematic use of product of (real-time) transducers, see [15]
for instance for details. Let us recall that in a product T1×. . .×T� of  transducers
over A∗×B∗, every computation is labelled by a word on A×B∗l, and projects
on  computations, one for each Ti, with the same input.

A morphism from an automaton B = 〈R, M, F, J, U 〉 to A = 〈Q, M, E, I, T 〉
is a pair of mappings, R → Q and F → E (both denoted by ϕ) which respect
adjacency of transitions and Jϕ ⊆ I, Uϕ ⊆ T . The image by ϕ of every successful
computation of B is a successful one in A with the same label, hence |||B||| ⊆ |||A|||.
The morphism is a covering if it is locally bijective. This implies a bijection
between the successful computations and thus |||B||| = |||A|||. See [12] for details.

3 Morphic Transducers

Let us start our discussion of Theorem 4 with some examples of morphic trans-
ducers and an overview of the morphic decomposition theorem (Theorem 3):

Definition 1. A morphic transducer is a pair M = (S, σ) where S is a (real-
time) transducer over A×B∗ and σ is a nonerasing morphism from B∗ to some
free monoid C∗. The morphic image of S is the transducer obtained by replacing
the output of every transition of S by its image by σ. The morphic behaviour of
M is the relation |||S|||σ — the composition of |||S||| and σ —, that is, the behaviour
of the morphic image of S (thus a relation from A∗ to C∗).

We say that M is k-valued if so does its morphic behaviour. We say that a
transducer S from A∗ to B∗ (a rational relation τ from A∗ to B∗) is morphic
k-valued if there exists a nonerasing morphism σ from B∗ to C∗ such that the
morphic transducer (S, σ) (the composition τσ) is k-valued.

As we shall see in the examples below, not every transducer S admits a noneras-
ing morphism σ such that |||S|||σ is k-valued. That is,

Proposition 1. The morphic k-valued rational relations form a proper subclass
of the rational relations.

Let us stress that given k-valued morphic transducers (X , σ) and (Y, γ), our aim
is to decide the equality of the behaviour of X and Y (which are not necessarily
k-valued) and not of the k-valued compositions |||X|||σ and |||Y|||γ. It should also be
clear that the morphisms σ and γ need to be known beforehand: we do not deal
with the question whether such morphisms can be constructed starting from the
transducers X and Y, or whether the morphic k-valuedness is decidable. Finally,
note that the equality of the relations |||X|||σ and |||Y|||γ does not imply that the
transducers X and Y are equivalent.

Example 1. As said in the introduction, every bounded-valued rational relation
is morphic bounded-valued (take for instance σ as the identity morphism), and
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the same is true for the rational relations of bounded length-degree: a bounded-
valued morphic transducer is obtained by taking the length morphism.

Example 2. The synchronous transducers and the α-synchronous ones intro-
duced in [16] are of bounded length-degree, and thus morphic bounded-valued.

Example 3. Every inverse of a nonerasing morphism is a morphic rational func-
tion (1-valued). Indeed, for a nonerasing morphism σ, the composition σ−1σ is
the identity function (on the domain of σ−1). Such inverses include relations
which are not of bounded length-degree. For instance, consider the nonerasing
morphism σ1 : {a, b}∗ → {a}∗ given by aσ1 = a and bσ1 = aa. For every an,
n ≥ 0, the lengths of the words in anσ−1

1 range from n to �n/2�. Thus, the
number of distinct lengths in the images of σ−1

1 is not bounded.

Example 4. Let us exhibit a rational relation which is not morphic k-valued
and thus show Proposition 1. Incidentally, we shall establish that the morphic
bounded-valued rational relations are not closed by union. Consider σ1 (the
morphism defined in Example 3) and let σ2 be the length morphism: for every
u in {a, b}∗, uσ2 = a|u|. We claim that the finite image relation γ = σ−1

1 ∪ σ−1
2

is not morphic bounded-valued, that is, for every nonerasing morphism θ from
{a, b}∗ to some C∗, the composition γθ cannot be bounded-valued. Indeed, if
|aθ| = |bθ|, then, for every an, the lengths of the words in an(γθ) range from
n to �n/2�, for the image by θ of words with distinct lengths in anσ−1

1 have
distinct lengths. Otherwise (if |aθ| �= |bθ|), the images of words in anσ−1

2 with
distinct numbers of occurrences of a have distinct lengths, and thus an(γθ) has
at least n words. We have shown that γθ cannot be bounded-valued.

3.1 The Morphic Decomposition Theorem

The morphic decomposition theorem we are going to outline (Theorem 3 in the
introduction) has been introduced in [2]. See also [17] for more details of the
proof. With the notation of morphic transducers, it can be restated as follows:

Theorem 5 (Sakarovitch–de Souza 2008). For every k-valued morphic
transducer M = (S, σ) with n states, one can construct effectively k functional
(1-valued) morphic transducers M = (X0, σ) , . . . , (Xk−1, σ) and morphisms (of
automata) ϕ(i) : Xi → S, 1 ≤ i ≤ k, where |||S||| = |||X1||| ∪ · · · ∪ |||Xk|||. Each Xi has
2O(h�k4nk+4) states, where  is the maximal length of the outputs of transitions
of S and h is the size of the output alphabet of S.

The proof starts with a lexicographic decomposition of the morphic image of S
(which is a k-valued transducer) into a union of k functional and unambiguous
transducers. The whole process is depicted in Figure 2. Before describing it,
let us say a word on the lexicographic decomposition of a k-valued transducer,
which is represented in Figure 1. It is based on covering of automata. Roughly
speaking, a covering of an automaton7 A is an “expansion” of A, a new and
7 Recall that transducers are automata of a certain kind.
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T VN

A ⋃
i B(i)

k

⋃
i Z(i)

π π

Fig. 1. Lexicographic decomposition of T : VN is an equivalent and input-k-ambiguous
transducer yielded by the lead or delay covering; A is the underlying input automaton
of VN ;

⋃
i B(i)

k is a decomposition of A given by multi-skimming covering;
⋃

i Z(i) is
the decomposition, which one obtains by “lifting” the outputs of T to

⋃
i B(i)

k

larger automaton, whose successful computations are in bijection with those of A
(details can be found in [12], where coverings are used systematically to produce
new proofs for some classical properties of transducers). In [2], we have presented
a general method for building coverings, which we call lexicographic coverings.
The idea is to put a lexicographic ordering on the computations (viewed as words
on the set of transitions). Next, the decomposition of a k-valued transducer
amounts to an adequate choice of k subautomata in the constructed coverings.
Two lexicographic coverings are used in our proof, as indicated in Figure 1: the
multi-skimming covering (for N-automata) and the lead or delay covering8 (for
transducers). A crucial step is the construction, with the latter covering, of the
transducer VN which is equivalent to T and input-k-ambiguous.

The first step of the morphic decomposition theorem is, as said, the con-
struction of a lexicographic decomposition of the morphic image of S — the
k-valued transducer T in Figure 2. Next, we show that it is possible to “stick”
the computations of T into the decomposition in order to obtain k new func-
tional transducers, not necessarily unambiguous, whose successful computations
project onto the successful computations of T . This operation of “sticking” is
based on Property 4.5 in [2]. Roughly speaking, it states that there exists an
integer K such that for every computation c in T , one can find a computation
d in at least one transducer of the decomposition with the same label and such
that their lag, 〈c, d〉, is bounded by K. This property is established by means of
a pumping argument which will also be useful in the next section to prove The-
orem 4. The details can be found in [17]. Finally, the output of each transition
of these new k functional transducers is replaced by the output of the projected
one in S (by the automata morphisms maintained along the construction). The
relabelled transducers form a morphic decomposition of S.

4 The Decidability Result

Our proof of Theorem 4 and the one we have given in [10] for the equivalence of
k-valued transducers share a common scheme: decompose both transducers and
test some condition on the successful computations of the obtained functional
8 “Lag separation covering” in [2].
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S T ⋃
0≤i<k Z(i)

⋃
0≤i<k W(i)

⋃
0≤i<k X (i)

σ

σ−1

Fig. 2. Decomposition of a morphic k-valued transducer S : T is the morphic image of
S obtained by relabelling the outputs of the transitions,

⋃
0≤i<k Z(i) is a lexicographic

decomposition of T ,
⋃

0≤i<k W(i) is the transducers obtained by “sticking” the compu-
tations of T into Z(0), . . . ,Z(k−1),

⋃
0≤i<k X (i) is the morphic decomposition obtained

from the W(i) by relabelling back the outputs of transitions

ones. But distinct constructions are used to perform the second step. In order
to explain our proof of Theorem 4, we shall at first discuss briefly the procedure
presented in [10], and move progressively towards the constructions needed here.

The Equivalence for the k-Valued Transducers. Our proof for the equiv-
alence of k-valued transducers combines the lexicographic decomposition (Sec-
tion 3.1) and the construction we have described in [9] to decide the k-valuedness
for transducers in polynomial time, the Lead or Delay Valuation. The decompo-
sition allows to reduce the problem to the simpler one of deciding the inclusion
of a functional transducer into a union of functional transducers. That is, the
equivalence (in single exponential time) is a consequence of the following lemma:

Lemma 1. Let Z(0), . . . ,Z(k−1) be a lexicographic decomposition of a k-valued
transducer. Let R be a functional transducer in the lexicographic decomposition
of another k-valued transducer. It is decidable in polynomial time ( on the size
of R,Z(0), . . . ,Z(k−1)) whether |||R||| ⊆ |||Z(0)||| ∪ · · · ∪ |||Z(k−1)|||.

This lemma is established in [10] with the Lead or Delay Valuation (LDV).
The LDV of a product T k+1 is a generalisation of the construction introduced
in [15] to characterise the functionality, the product of T 2 by the Lead or Delay
Action. Roughly speaking, it attributes to every state of T k+1 a set of differences,
words of the free group (over the output alphabet) which allows to compare pairs
of words. For instance, two words are equal if, and only if, their difference is the
empty word; see [9] for details. Then, it can be “read” in these differences whether
for every successful computation of T k+1 one can find at least two projections
with the same output — this is equivalent to say that T is k-valued.

Although some details of the Lead or Delay Valuation are delicate,9 the gen-
eral idea of our proof for Lemma 1 is quite natural. The algorithm tests compat-
ibility of computations. We say that two computations (in the transducers being

9 A complete explanation can be found in [18] and [17].
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compared) are compatible if both are successful and have the same label (the
same input and the same output). Clearly, the inclusion in Lemma 1 holds if, and
only if, for every successful computation of R, one can find a compatible one in
some Z(i). This test is performed on the cartesian product R×Z(0)×. . .×Z(k−1).
Every computation c in this product projects on k + 1 computation with the
same input, a R-projection (the projection on the first component, so, on R)
and the T -projections (the ones on some transducer in the decomposition). We
say that c is a full computation if its R-projection is a successful computation
and its T -projections contain all the successful computations in Z(0), . . . ,Z(k−1)

reading the same input. It is not difficult to see that the aforementioned com-
patibility condition is equivalent to say that in every full computation, one can
find at least one successful T -projection whose output is equal to the output of
the R-projection (that is, the difference of these two outputs is the empty word).
This can be “read” in the LDV of the product of R×Z(0)×. . .×Z(k−1) by the
action ◦μ : NQ×A∗ → NQ defined in Section 5 of [10]. Roughly speaking, the
accessible N-vectors in ◦μ “counts”, for every input word u, the number of suc-
cessful computations in Z(0), . . . ,Z(k−1) which reads u. This information allows
to distinguish the full computations of R×Z(0)×. . .×Z(k−1).

Another Way to Test the Equivalence. In order to introduce our proof for
Theorem 4, let us describe a construction which allows to test the equivalence of
k-valued transducers without the use of the LDV. The idea can be put in parallel
with a method to decide the equivalence of boolean automata A and B: |||A||| ⊆ |||B|||
if, and only if, for every accessible state (p, P ) of the cartesian product of A by
the determinised of B by the subset construction, A×Bdet, if p is final in A, then
P contains at least one final state of B. For k-valued transducers T and T ′, as
the outputs have to be taken into account, we need an additional property of the
computations: if |||T ||| ⊆ |||T ′|||, then there exists a constant K such that for every
successful computation c of T , there exists a compatible successful computation
d in T ′ such that 〈c, d〉 < K. This is made more precise in the lemma below:10

Lemma 2. Let (X , σ) and (Y, σ) be k-valued morphic transducers with at most
n states, where X and Y are transducers over A∗×B∗ and σ is a morphism from
B∗ to C∗. Let  be the maximal length of the outputs of the transitions of X and
Y, h the size of B, and s = max {|bσ| | b ∈ B }. Let R be the morphic image
of some transducer in a morphic decomposition of X , and W(0), . . . ,W(k−1)

the morphic images of a morphic decomposition of Y (see Figure 2). If |||R||| ⊆
|||W(0)|||∪· · ·∪|||W(k−1)|||, then, for every successful computation c of R, there exists
a compatible computation d in some W(i) such that〈c, d〉 ≤ 2O(hs�k5nk+4).

The proof of Lemma 2 is based on a pumping argument on the computations
of the product R×W(0)× . . .×W(k−1)×◦μ. The same argument has also been
used in [2] to establish properties of the lexicographic decomposition and the
morphic decomposition (Lemma 4.3 and Property 4.5, respectively). We say
that a computation in R×W(0) × . . .×W(k−1) ×◦μ reading u is full if its R-
projection is successful, and for every i, if u belongs to the domain of W(i),
10 If one replaces X and Y by T and T ′, respectively, and σ by the identity morphism.
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then the projection in W(i) is successful (note that, as W(i) is not necessarily
unambiguous, it can contain several successful computations reading u; but as
it is functional, all have the same output). The lemma states that every full
computation has a pair of compatible projections (one in R, other in some
W(i)) whose lag is bounded. The pumping argument reads as follows. If one
could find a full computation f where, for every pair of compatible projections,
the lag is greater than the claimed bound, then there would exist a factorisation
f = f1f2f3 and an integer r such that f2 is a circuit and the computation f1f

r
2f3

contains fewer pairs of compatible projections. Such factorisations would lead to
a computation having no pair of compatible projections, which contradicts the
hypothesis that |||R||| ⊆ |||W(0)|||∪ · · ·∪|||W(k−1)|||. The use of the action ◦μ is crucial:
it guarantees that f1f

r
2 f3 is also full, that is, no successful computation is lost.

Lemma 2 allows to show that one can “see” in a lead or delay covering of the
transducer U = R ∪ W(0) ∪ · · · ∪ W(k−1) whether |||R||| ⊆ |||W(0)||| ∪ · · · ∪ |||W(k−1)|||,
in the same way as the inclusion of boolean automata can be seen in A×Bdet.
Let M = 2O(hs�k5nk+4). Adopt any lexicographic ordering of the transitions of
U where every transition of W(0) ∪ · · · ∪ W(k−1) is smaller than those of R. Let
W be the restriction of the lead or delay covering of index M of U to the states
whose first component is a state of R. In W , the second component plays the role
of Bdet: every computation C of W ends in some state of form (r, v), where r is a
state of R, and v is a vector indexed by the states of U ; v stores the differences
(bounded by M) between the output of the projection of C on R and the outputs
of the computations in W(0) ∪· · ·∪W(k−1) with the same input. Then, it follows
from Lemma 2 that |||R||| ⊆ |||W(0)||| ∪ · · · ∪ |||W(k−1)||| if, and only if, in every final
state of W , there exists at least one final state t of W(0) ∪· · ·∪W(k−1) such that
vt (the position of index t in this vector) contains the empty word.

The number of states of a lead or delay covering of index N is exponential in
N and the number of states of the considered transducer (Property 3.10 in [2]).
Thus, the size of W (and the complexity of the algorithm we have just sketched)
is of double exponential order on the number of states of X and Y. For the
equivalence of morphic transducers we are going to explain, the triple exponential
complexity comes from the construction of three lead or delay coverings: one for
the morphic decomposition, two to test compatibility of computations.

The Equivalence for the Morphic Transducers. The first step of our proof
for Theorem 4 is the construction of morphic decompositions for X and Y, say
X (0), . . . ,X (k−1) and Y(0), . . . ,Y(k−1) respectively. Then, one can decide whether
|||X||| ⊆ |||Y||| by testing, for every Z in the decomposition of X , whether |||Z||| is
included in |||Y(0)|||∪· · ·∪|||Y(k−1)|||. As said in the introduction, the LDV cannot be
used to tackle this test as it has been used in [10]. The reason is that the condition
on full computations behind the procedure for k-valued transducers does not hold
anymore: it may well exist computations in Z×Y(0)×. . .×Y(k−1) having no pairs
of compatible projections even if |||Z||| is included in |||Y(0)|||∪· · ·∪|||Y(k−1)|||, for these
transducers are not necessarily functional. One could be tempted to investigate
the construction of the LDV on the morphic images of Z and Y(0), . . . ,Y(k−1),
say R and W(0), . . . ,W(k−1) respectively. But this does not work either, for
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|||R||| ⊆ |||W(0)||| ∪ · · · ∪ |||W(k−1)||| does not imply |||Z||| ⊆ |||Y(0)||| ∪ · · · ∪ |||Y(k−1)|||. So we
shall adapt Lemma 2 to establish that, if |||Z||| ⊆ |||Y(0)||| ∪ · · · ∪ |||Y(k−1)|||, then, for
every successful computation c of Z, there exists a compatible one d in some
Y(i) such that 〈c, d〉 is bounded by an expression on the size of X and Y.

At first, we need to adapt the definition of full computations: let c be a
computation in Z ×Y(0) × . . .×Y(k−1) reading u; let x be the output of its
projection on Z; we say that c is full if its projection on Z is successful and,
for every i, if u belongs to the domain Y(i), then the projection of c on this
transducer is also successful, and moreover outputs x if x ∈ u|||Y(i)|||.

Next, we shall adapt the bound 2O(hs�k5nk+4) stated in Lemma 2. This bound
does not seem to be adequate to reproduce the pumping argument with the
new definition of full computations. The reason is that the action ◦μ, which
counts the number of successful computations with the same input, tells nothing
about the outputs of the factorisations f1f

r
2 f3, and thus does not guarantee

that these constructed computations are full if f is. Our idea is to replace ◦μ

by a more powerful device, the lead or delay covering of index 2O(hs�k5nk+4)

of the transducer Z ∪ Y(0) ∪ · · · ∪ Y(k−1). Let V be the part of this covering
restricted to the accessible states whose first component is a state of Z. This
part is a covering of Z, and allows to retrieve, for every successful computation
c of Z, the differences (bounded by 2O(hs�k5nk+4)) between the output of c and
the outputs of the computations of Y(0), . . . ,Y(k−1) with the same input. Now,
we can derive a new bound by applying the pumping argument on the product
V×Y(0)×. . .×Y(k−1): the properties of the lead or delay covering V allows to show
that the computations f1f

r
2f3 are full. The number of states of V is a double

exponential: 22O(hs�k5nk+4)
. The same expression is used in order to produce the

factorisations f1f
r
2f3, thus we have (with the same notation of Lemma 2):

Lemma 3. Let V be the lead or delay covering of index 2O(hs�k5nk+4) of the
transducer Z ∪Y(0) ∪ · · ·∪Y(k−1). If |||Z||| ⊆ |||Y(0)||| ∪ · · · ∪|||Y(k−1)|||, then, for every
successful computation c of Z, there exists a compatible successful computation
d in some Y(i) such that 〈c, d〉 ≤ 22O(hs�k5nk+4)

.

The compatibility property stated in Lemma 3 can be verified, as the one in
Lemma 2, with the construction of a new lead or delay covering (of index

22O(hs�k5nk+4)
and for V ∪ Y(0) ∪ · · · ∪ Y(k−1)) followed by an easy inspection

of the differences stored in the final states of the covering. We can state our
main result with a more precise expression for the complexity:

Theorem 6. Let (X , σ) and (Y, σ) be k-valued morphic transducers with at
most n states, where X and Y are transducers over A∗×B∗ and σ is a morphism
from B∗ to C∗. Let  be the maximal length of the outputs of the transitions of
X and Y, h the size of B, and s = max {|bσ| | b ∈ B }. It is decidable in time

complexity 222O(hs�k5nk+4)

whether |||X||| = |||Y|||. ��

Acknowledgements. I am grateful to Jacques Sakarovitch for his encourage-
ment and the anonymous referees for their useful remarks.



On the Decidability of the Equivalence for a Certain Class of Transducers 489

References

1. Weber, A.: Decomposing a k-valued transducer into k unambiguous ones. RAIRO
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Abstract. It is shown that applying linear erasing to a Petri net lan-
guage yields a language generated by a non-erasing matrix grammar.
The proof uses Petri net controlled grammars. These are context-free
grammars, where the application of productions has to comply with a
firing sequence in a Petri net. Petri net controlled grammars are equiva-
lent to arbitrary matrix grammars (without appearance checking), but a
certain restriction on them (linear Petri net controlled grammars) leads
to the class of languages generated by non-erasing matrix grammars.

It is also shown that in Petri net controlled grammars (with final
markings and arbitrary labeling), erasing rules can be eliminated, which
yields a reformulation of the problem of whether erasing rules in matrix
grammars can be eliminated.

1 Introduction

A matrix grammar1 is a context-free grammar together with a finite set of se-
quences of its productions. Its derivations are restricted to those that are built
by concatenating these sequences.

Whether erasing rules can be eliminated, is an open question2 in the theory
of matrix grammars. In other words: is there an equivalent non-erasing matrix
grammar for every matrix grammar (with erasing rules)? In order to approach
this question, one can investigate language classes contained in MATλ (the
matrix languages generated with erasing rules) with respect to whether their
homomorphic images lie within MAT (the matrix languages generated without
erasing rules). That way, one either finds techniques that may be generalized to
MAT (proving that MAT = MATλ) or an example of a language in MAT that
has a homomorphic image outside of MAT (proving that MAT ⊂ MATλ).

Since the Parikh images of the Petri net languages3 and the matrix languages
coincide, the former have often been useful in the theory of matrix grammars.

1 In the following, by matrix grammars, we mean matrix grammars without appear-
ance checking.

2 In [1, p. 106], Theorem 2.1, the impossibility is claimed. However, the given references
do not contain a proof for this.

3 By Petri net languages, we mean those defined by final markings.
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For example, the decidability of the reachability problem for Petri nets implied
the decidability of the emptiness and thus the word problem for matrix gram-
mars. Also, a deep result from Petri net theory (see [2]) is the regularity of all
languages over one symbol, which implies the same for matrix languages. This
has been used to prove the properness of the inclusion MAT ⊂ MATac (where
MATac denotes the languages generated by non-erasing matrix grammars with
appearance checking). Furthermore, if one could show that arbitrary homomor-
phic images of Petri net languages are contained in MAT, this would imply an
interesting result on multiset grammars (see section 4 for details).

For these reasons, the author investigated which homomorphic images of Petri
net languages can be generated by non-erasing matrix grammars. The main
result proven in this article is that for every Petri net language L (generated by
a net without λ-transitions), if a homomorphism h is linear erasing on L, then
h(L) is contained in MAT.

The proof uses Petri net controlled grammars. These are context-free gram-
mars, where the derivation is regulated by a Petri net. This is done by associating
a production to every transition in the Petri net such that the firing of the tran-
sition leads to the application of the rule. This concept of Petri net controlled
grammars has been introduced by Dassow and Turaev [3,4]. Their main focus
was to compare the generative power depending on restrictions on the Petri nets,
the accepting rule and the type of labeling. Here, however, arbitrary Petri nets
with final markings and arbitrary labelings are considered.

In [3], it is shown that Petri net controlled grammars with erasing rules gen-
erate the same language class as arbitrary matrix grammars (in [5], the same
result is proven, only in different terms). It is then shown here that when we
restrict to so-called linear Petri net controlled grammars, their language class
coincides with MAT. The main result of the paper is then proven by showing
that for Petri net languages L (generated without λ-transitions) and a linear
erasing homomorphism h on L, the language h(L) is also generated by a linear
Petri net controlled grammar.

In this paper, it is also shown that in Petri net controlled grammars, erasing
rules can be eliminated. This answers a question open in [3,4] and yields a
reformulation of the question of whether erasing rules can be eliminated in matrix
grammars, see section 5 for details.

2 Definitions

A monoid is a set M together with an associative operation ! : M×M → M and
a neutral element e ∈ M . For a monoid M with the operation ! and m, m′ ∈ M ,
we write m " m′ iff there is an m′′ ∈ M such that m′ = m ! m′′. In this case,
m is called a prefix of m′.

For an alphabet Σ, we will write Σ∗ for the set of words over Σ. The empty
word is denoted by λ ∈ Σ∗. Together with the concatenation as its operation,
Σ∗ is a monoid. For a symbol x ∈ Σ and a word w ∈ Σ∗, let |w|x be the number
of occurrences of x in w. By |w|, we will refer to the length of w. For alphabets
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Σ, Γ and a language L ⊆ Σ∗, a homomorphism h : Σ∗ → Γ ∗ is called linear
erasing on L, iff there is a k ∈ N such that |w| ≤ k · |h(w)| for every w ∈ L. For
a language class C, the class of languages h(L), where L ∈ C and h is a linear
erasing homomorphism on L, is denoted by Hlin(C).

Furthermore, Σ⊕ denotes the set of multisets over Σ, i.e. Σ⊕ is the set of
mappings α : Σ → N. The operation + on Σ⊕ is defined by (α + β)(x) :=
α(x) + β(x) for all x ∈ Σ. Together with the neutral element 0, defined by
0(x) := 0 for every x ∈ Σ, Σ⊕ is a (commutative) monoid. For a multiset
μ ∈ Σ⊕, let ‖μ‖ :=

∑
x∈Σ μ(x). Here, ‖μ‖ is called the size of μ. For α " β,

let (β − α)(x) := β(x) − α(x). The operation $, however, is defined for all pairs
α, β ∈ Σ⊕: (β $ α)(x) := max{β(x) − α(x), 0}. The Parikh mapping is the
mapping Ψ : Σ∗ → Σ⊕ defined by Ψ(w)(x) := |w|x for all w ∈ Σ∗ and x ∈ Σ.

Definition 1 (Matrix grammar). A matrix grammar is a quadruple G =
(V, Σ, S, M), where V is a finite alphabet of nonterminal symbols, Σ is a finite
alphabet of terminal symbols, S ∈ V is the starting symbol and M is a finite set
of sequences of context-free productions over V and Σ, i.e. M = {m1, . . . , mn},
where mi = (A1 → w1, . . . , Ak(i) → wk(i)) and Aj ∈ V , wj ∈ (V ∪ Σ)∗ for
1 ≤ j ≤ k(i) and 1 ≤ i ≤ n. The productions are also called rules. The elements
of M are called matrices. For a rule A → w, A is called its left side and w its
right side. A rule whose right side is the empty word, is called erasing. A matrix
grammar is called non-erasing if it has either no erasing rule, or S → λ is its
only erasing rule and S does not appear on a right side.

For m ∈ M , m = (A1 → w1, . . . , Ak → wk), Aj ∈ V , wj ∈ (V ∪ Σ)∗, and
x, y ∈ (V ∪ Σ)∗, we write x =⇒m y iff there are words u0, . . . , uk ∈ (V ∪ Σ)∗,
α1, . . . , αk, β1, . . . , βk ∈ (V ∪ Σ)∗ such that x = u0, y = uk and uj−1 = αjAjβj,
uj = αjwjβj for all 1 ≤ j ≤ k.

For x, y ∈ (V ∪ Σ)∗, let x =⇒G y iff there is a matrix m ∈ M such that
x =⇒m y. Furthermore, let =⇒∗

G be the reflexive transitive closure of =⇒G.
Words w ∈ (V ∪ Σ)∗ with S =⇒∗

G w are called sentential forms. We can now
define the language generated by G:

L(G) := {w ∈ Σ∗ | S =⇒∗
G w}.

The class of languages generated by (non-erasing) matrix grammars is denoted
by MATλ (MAT).

Definition 2 (Labeled Petri net). A labeled Petri net is an octuple N =
(Σ, P, T, ∂0, ∂1, σ, μ0, F ), where Σ is a finite alphabet, P is a finite set of places,
and T is a finite set of transitions. ∂0, ∂1 : T⊕ → P⊕ are homomorphisms,
where ∂0(t) and ∂1(t) specifies the pre- or post-multiset, respectively, for every
transition t. σ : T → Σ ∪ {λ} is the labeling function, μ0 ∈ P⊕ is the initial
marking, and F ⊆ P⊕ is a finite set of final markings.

The elements of P⊕ will be called markings. A transition t ∈ T is called λ-
transition iff σ(t) = λ. A labeled Petri net without λ-transitions is called λ-free.
The binary relation −→t on Σ∗ × P⊕ is defined by (w, μ) −→t (w′, μ′) iff

w′ = wσ(t), ∂0(t) " μ, μ′ = (μ − ∂0(t)) + ∂1(t)
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for w ∈ Σ∗, x ∈ Σ and μ, μ′ ∈ P⊕. A firing sequence from (w, μ) to (w′, μ′) in
N is a word s ∈ T ∗, s = t1 · · · tn, ti ∈ T , such that

(w0, μ0) −→t1 (w1, μ1) −→t2 · · · −→tn (wn, μn),

where w0 = w, μ0 = μ, wn = w′, μn = μ′. We write (w, μ) −→N (w′, μ′) iff
there is a t ∈ T such that (w, μ) −→t (w, μ′). Then the language generated by N
is

L(N) := {w ∈ Σ∗ | ∃μ ∈ F : (λ, μ0) −→∗
N (w, μ)},

where −→∗
N is the reflexive transitive closure of −→N . Two labeled Petri nets

N, N ′ are called equivalent, iff L(N) = L(N ′). The class of languages generated
by (λ-free) labeled Petri nets is denoted by Lλ

0 (L0).

We will now define Petri net controlled grammars, which play a central role in
the proof of our main result.

Definition 3 (Petri net controlled grammar). A Petri net controlled gram-
mar (or shortly Petri net grammar) is a tuple G = (V, Σ, S, R, N), where V ,Σ,S
are defined as in matrix grammars, R ⊆ V × (V ∪ Σ)∗ is a set of context-free
productions, N = (R, P, T, ∂0, ∂1, σ, μ0, F ) is a labeled Petri net, whose alphabet
is the set R of productions. A Petri net grammar G is called non-erasing iff
either all the productions in R are non-erasing or S → λ is the only erasing rule
and S does not occur on any right side.

The derivation relation on (V ∪Σ)∗ ×P⊕ is defined by (w, μ) =⇒t (w′, μ′) iff
∂0(t) " μ, μ′ = (μ − ∂0(t)) + ∂1(t) and one of the following holds:

– σ(t) = A → u and there exist words α, β ∈ (V ∪ Σ)∗ such that w =
αAβ, w′ = αuβ,

– σ(t) = λ and w′ = w.

A pair (w, μ) ∈ (V ∪ Σ)∗ × P⊕ will be called a configuration, w its sentential
form and μ its marking. A firing sequence from (w, μ) to (w′, μ′) in G is a word
s ∈ T ∗, s = t1 · · · tn, ti ∈ T , such that

(w0, μ0) =⇒t1 (w1, μ1) =⇒t2 · · · =⇒tn (wn, μn),

where w0 = w, μ0 = μ, wn = w′, μn = μ′. We write (w, μ) =⇒G (w′, μ′) if there
is a t ∈ T such that (w, μ) =⇒t (w′, μ′). The generated language is defined as

L(G) := {w ∈ Σ∗ | ∃μ ∈ F : (S, μ0) =⇒∗
G (w, μ)},

where =⇒∗
G is the reflexive transitive closure of =⇒G. The class of languages

generated by (non-erasing) Petri net grammars will be denoted by PNλ (PN).

It is easily seen that these classes coincide with the classes PNλ(λ, t) and
PN(λ, t) in [3,4].

Later in this paper, we want to simulate Petri net grammars by non-erasing
matrix grammars. This is done by encoding the multiset μ from a configuration
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(w, μ) in the sentential form of the matrix grammar. However, the construction
requires that the size of the marking is at most linear in the length of the word
w of that configuration. Therefore, the notion of linear Petri net grammars will
be needed.

Definition 4. Let G = (V, Σ, S, R, N), N = (R, P, T, ∂0, ∂1, σ, μ0, F ), be a non-
erasing Petri net grammar, w ∈ L(G) \ {λ} and k ∈ N. A derivation

(w0, μ0) =⇒G (w1, μ1) =⇒G . . . =⇒G (wn, μn),

w0 = S, μn ∈ F , is called a k-derivation of w, iff wn = w and ‖μi‖ ≤ k · |wi|
for every 0 ≤ i ≤ n. The grammar G is said to be k-linear, iff for every w ∈
L(G) \ {λ} there is a k-derivation of w. G is called linear iff it is k-linear for
some k ∈ N. The class of languages generated by linear Petri net grammars will
be denoted by LinPN.

Note that the condition is only required for words w ∈ L(G)\{λ}. This is due to
the fact that we would otherwise require the final marking to be empty whenever
the empty word is derived. For our purposes, it is enough that the condition is
fulfilled for all but finitely many words from L(G), so we can exclude the empty
word.

3 Linear Petri Net Grammars and Matrix Grammars

The first step in the proof of Hlin(L0) ⊆ MAT is to show that linear Petri net
grammars are equivalent to non-erasing matrix grammars. That is, LinPN =
MAT. To simplify the construction, we need a normal form for labeled Petri
nets.

Lemma 1. For every labeled Petri net N = (Σ, P, T, ∂0, ∂1, σ, μ0, F ), there is
an equivalent one N ′ = (Σ, P ′, T ′, ∂′

0, ∂
′
1, σ

′, μ′
0, F

′), where

– μ′
0 ∈ P ′, F ′ ⊆ P ′,

– every reachable marking in F ′⊕ is already contained in F ′.
– the empty marking cannot be reached in N ′,
– N ′ is λ-free if N is λ-free,
– the normal form preserves linearity, i.e. if G = (V, Γ, S, R, N) is a linear

Petri net grammar, then G = (V, Γ, S, R, N ′) is too.

The proof is not difficult and therefore omitted due to space constraints.

Theorem 1. LinPN = MAT.

Proof. We begin with the inclusion LinPN ⊆ MAT. Let G = (V, Σ, S, R, N),
N = (R, P, T, ∂0, ∂1, σ, μ0, F ), be a k-linear Petri net grammar where N is in
the normal form of Lemma 1. We will construct a matrix grammar G′ such that
L(G) \ {λ} ⊆ L(G′) ⊆ L(G), i.e. L(G′) and L(G) coincide up to the word λ.
This suffices, for if λ ∈ L(G), it is easy to modify G′ so that it also generates λ.
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Therefore, we can assume that G does not contain the production S → λ (and
thus no erasing rule).

In the constructed matrix grammar, the marking of the simulated net will
have to be stored inside the sentential form. Therefore, it will have a set of
nonterminals that can store multisets up to a certain size:

V̄ := {(x, μ) | x ∈ V ∪ Σ, μ ∈ P⊕, ‖μ‖ ≤ k}.

Note that V̄ is finite. Every configuration (w, μ) ∈ (V ∪ Σ)∗ × P⊕ of the
Petri net grammar will be represented by a sentential form w′ ∈ V̄ ∗, w′ =
(x1, μ1) · · · (xn, μn), such that μ1 + · · ·+μn = μ and x1 · · ·xn = w. We will need
an embedding homomorphism ι : (V ∪Σ)∗ → V̄ ∗, that is defined by ι(x) := (x,0)
for every x ∈ V ∪ Σ.

We will now describe the matrices that simulate the firing of a transition and
the application of the corresponding context-free rule. In order to do that, we will
regard matrices as words over context-free productions and describe the matrices
as a set of words. For the sake of readability, we will only give the matrices for
one transition. The whole set of matrices is then obtained by constructing these
for every transition.

Let t ∈ T be a transition with pre-multiset ν0 = ∂0(t) and post-multiset
ν1 = ∂1(t). The set U of context-free productions will simulate the context-free
rule assigned to t. If t does not have a rule, i.e. σ(t) = λ, then U := {λ}. Now
consider the case σ(t) = A → u, A ∈ V , u ∈ (V ∪ Σ)+. Since |u| ≥ 1, we can
write u = xu′, x ∈ V ∪ Σ, u′ ∈ (V ∪ Σ)∗. Then U simulates the application of
A → u:

U := {(A, μ) → (x, μ)ι(u′) | μ ∈ P⊕, ‖μ‖ ≤ k}.

We also need rules to simulate the subtraction of the pre-multiset and the ad-
dition of the post-multiset of t. These are constructed separately for every place
p ∈ P :

Sp := {(y, μ) → (y, μ − p) | y ∈ V ∪ Σ, μ ∈ P⊕, ‖μ‖ ≤ k, μ(p) ≥ 1},
Ap := {(y, μ) → (y, μ + p) | y ∈ V ∪ Σ, μ ∈ P⊕, ‖μ + p‖ ≤ k}.

The set of matrices simulating the application of t and A → u is then

Mt := USν0(p1)
p1

· · ·Sν0(pn)
pn

Aν1(p1)
p1

· · ·Aν1(pn)
pn

,

where P = {p1, . . . , pn}. Since G is k-linear, every generated word has a deriva-
tion such that in every configuration, the marking can fit into the sentential form
in our simulation.

To complete the construction, we need productions that convert the multiset-
carrying symbols from V̄ to ordinary terminal symbols. Here, we make sure that
a pair (y, μ) ∈ V̄ can only be converted to y when μ = 0 or μ ∈ F . This implies
that a sentential form consisting solely of terminal symbols can only be derived
when a marking from F⊕ was reached in the simulated net. According to the
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normal form, this is the case iff a marking in F was reached. The remaining
productions are

M ′ := {(y,0) → y | y ∈ Σ} ∪ {(y, p) → y | y ∈ Σ, p ∈ F}.

The complete set of matrices is then M := M ′ ∪
⋃

t∈T Mt. The start symbol is
(S, μ0) ∈ V̄ . The matrix grammar is then G′ = (V̄ , Σ, (S, μ0), M).

For the direction MAT ⊆ LinPN, we only have to construct a Petri net
whose set of firing sequences that end in a final marking is of the form M∗,
where M is a finite set of words. This, however, can already be done by a finite
automaton and is therefore easy to realize in a net. ��

4 Linear Erasing in Petri Net Languages

In this section, it is shown that Hlin(L0) ⊆ LinPN = MAT. In other words, for
L ∈ L0 and a linear erasing homomorphism h on L, we have h(L) ∈ LinPN =
MAT. The result is stronger than L0 ⊆ MAT, since it is known that L0 is
strictly contained in Hlin(L0) (see, for example, Theorem 4 in [6]).

The techniques used in this proof may be used later to prove that homomor-
phic images of larger classes are contained in MAT. For example, it would be in-
teresting if one could show that Lλ

0 ⊆ MAT, for this would imply that the Parikh
images of MAT and MATλ coincide (it is known that Ψ(Lλ

0 ) = Ψ(MATλ), see
[2]) and therefore arbitrary multiset grammars are equivalent to monotone mul-
tiset grammars (see [7] for multiset grammars).

In order to verify the correctness of the construction, we will need a lemma. It
will be necessary to traverse the symbols of a word in an order that makes sure
that a certain resource is never used up. We will regard the set of integers as a
monoid with the addition as its operation. The consumption and production of
the resource are then given by a homomorphism ϕ : Σ∗ → Z. We are given a
word w such that ϕ(w) ≥ 0, i.e. after traversing the symbols of w in the order
given by w, there are still resources in the end. We, however, want to make sure
that they are never used up at any given time. The following lemma shows that
this is possible by decomposing w = uv and traversing first v and then u.

Lemma 2. Let ϕ : Σ∗ → Z a monoid homomorphism and w ∈ Σ∗ a word with
ϕ(w) ≥ 0. Then w admits a decomposition w = uv such that for every prefix z
of vu, we have ϕ(z) ≥ 0.

Proof. Let w = w1 · · ·wn, w1, . . . , wn ∈ Σ and choose j ∈ {1, . . . , n} such that
ϕ(w1 · · ·wj) is minimal. Then let u = w1 · · ·wj , v = wj+1 · · ·wn. For a prefix z
of vu, we distinguish two cases. If z is a prefix of v, say z = wj+1 · · ·wk. Then

ϕ(z) = ϕ(uz) − ϕ(u) = ϕ(w1 · · ·wk) − ϕ(w1 · · ·wj) ≥ 0

since ϕ(w1 · · ·wj) was minimal. If z = vz′ where z′ is a prefix of u, say z′ =
w1 · · ·wk. Then ϕ(z′) = ϕ(w1 · · ·wk) ≥ ϕ(w1 · · ·wj) = ϕ(u) because of the
choice of j. This implies

ϕ(z) = ϕ(vz′) = ϕ(v) + ϕ(z′) ≥ ϕ(v) + ϕ(u) = ϕ(uv) = ϕ(w) ≥ 0. ��
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In order to simplify the construction in the theorem, we need a further lemma to
state a closure property of MAT. For an alphabet Σ and x ∈ Σ, let δx : Σ∗ →
Σ∗ be the homomorphism satisfying δx(x) = λ and δx(y) = y for every y ∈ Σ,
y �= x. A homomorphism h : Σ∗ → Σ∗ is called single erasing on L ⊆ Σ∗ iff
there is an x ∈ Σ such that h = δx and |w|x ≤ 1 for every w ∈ L. A language
class C is called closed against single erasing iff h(L) ∈ C for every L ∈ C and
every single erasing homomorphism h on L.

Lemma 3. MAT is closed against single erasing.

The proof can easily be done using the closure of MAT against inverse homo-
morphism, non-erasing homomorphism, and union.

Theorem 2. Hlin(L0) ⊆ LinPN = MAT.

Proof. Let N = (Σ, P, T, ∂0, ∂1, σ, μ0, F ) be a labeled Petri net and h be a linear
erasing homomorphism on L = L(N). Since L0 is closed against non-erasing
homomorphisms, we can assume that h : Σ∗ → Σ∗ and there is an x ∈ Σ such
that h(x) = λ and h(y) = y for every y ∈ Σ, y �= x. The fact that h is linear
erasing on L implies that |w| ≤ k · |h(w)| for every w ∈ L.

Let a, b /∈ Σ be new symbols, Σ′ := Σ ∪ {a, b}. We will construct a lin-
ear Petri net grammar G such that δa and δb are single erasing on L(G) and
δa(δb(L(G))) = L, which implies that L ∈ MAT.

In order to guarantee that our constructed Petri net grammar will be linear,
we have to make sure that every word has a derivation where the size of the
marking is linear in the length of the sentential form in every step. Therefore,
we cannot just use the net N as the controlling net in the Petri net grammar.
It may create large markings without increasing the length of the sentential
form (note that, when N produces an x, the grammar would not enhance the
sentential form).

However, since we are constructing a Petri net grammar, a firing sequence of
N does not necessarily have to be simulated in the order it occurs in N . We will
see that it is possible to decompose any firing sequence s ∈ T ∗ of N in s = uv
such that, when simulating them in the order vu, we always have a long enough
sentential form so that the marking is linear in size.

The set of places will be P ′ := P ∪ P̄ ∪ P̂ , where P̄ := {p̄ | p ∈ P},
P̂ = {p̂ | p ∈ P} are sets of new places. We will need the embedding homomor-
phisms ῑ : P⊕ → P̄⊕, ι̂ : P⊕ → P̂⊕, defined by p �→ p̄ and p �→ p̂, respectively.
Every reachable marking in the grammar will be of the form α + β + γ, where
α ∈ P⊕, β ∈ P̄⊕, γ ∈ P̂⊕. During the simulation, the sentential forms will be of
the form w1Aw2B, where w1,w2 are the parts generated by u and v, respectively.
The simulation of u and v will be mostly independent of each other. The part
α will be the marking used to simulate u. Analogously, γ will be used to simu-
late v. In order to make sure that the marking from which v starts is a prefix
of the marking in which u ends, the former is stored in β. In the end, α and β
are synchronously reduced until β is 0 to guarantee the prefix relation. The set of



498 G. Zetzsche

final markings consists of exactly those where β is 0 and the sum of α and γ
corresponds to a final marking in N . We have four types of transitions:

T ′ :={Z(j)
t | t ∈ T, j ∈ {0, 1}} ∪ {rp | p ∈ P} ∪ {si,j | i, j ∈ {0, 1}}

∪ {Z(j)
t,κ | κ " ∂0(t), j ∈ {0, 1}}.

Here, Z
(j)
t,κ , Z

(j)
t , rp and si,j are new transitions. The transitions Z

(j)
t are used

to simulate u. The parameter j ∈ {0, 1} is used to decide whether this is the last
symbol added in u.

∂′
i(Z

(j)
t ) := ∂i(t), σ′(Z(j)

t ) :=

{
A → σ(t)Aja1−j if σ(t) �= x

λ if σ(t) = x

for i = 0, 1. The transitions Z
(j)
t,κ simulate v. They also guess the marking which

v starts from. Therefore, to simulate t, Z
(j)
t,κ (where κ " ∂0(t)) guesses that

∂0(t) − κ is subtracted from the current marking and κ is added to the initial
marking. The parameter j ∈ {0, 1} defines whether the generated symbol is the
last one:

∂′
0(Z

(j)
t,κ) := ι̂(∂0(t) − κ), ∂′

1(Z
(j)
t,κ) := ῑ(κ) + ι̂(∂1(t)),

σ′(Z(j)
t,κ) =

{
B → σ(t)Bjb1−j if σ(t) �= x

λ if σ(t) = x

Now the transitions rp are used to reduce the marking reached by u and the
initial marking of v synchronously: ∂′

0(rp) := p + p̄, ∂′
1(rp) := 0. The transitions

si,j create the sentential form Aia1−iBjb1−j, i, j ∈ {0, 1} depending on whether
the part u or v of the simulated firing sequence is empty (i = 1 iff |v| > 0 and
j = 1 iff |u| > 0).

∂′
0(si,j) := 0, ∂′

1(si,j) := 0, σ′(si,j) := S → Aia1−iBjb1−j .

The constructed Petri net grammar is then defined as G := (V, Σ′, S, R, N ′),
N ′ := (R, P ′, T ′, ∂′

0, ∂
′
1, σ

′, μ0, F
′), where V := {S, A, B}, R := σ′(T ′) and F ′ :=

{μ + ι̂(μ′) | μ, μ′ ∈ P⊕, μ + μ′ ∈ F}.
It is easily seen that δb and δa are single erasing on L(G) or δb(L(G)), respec-

tively. Hence, it remains to be shown that δa(δb(L(G))) = L(N), and that G is
indeed a linear Petri net grammar. Let

M := max{‖∂0(t)‖ + ‖∂1(t)‖ | t ∈ T },  := k · M.

First, we will show that L(N) ⊆ δa(δb(L(G))) and G is -linear, i.e. for every
w ∈ L(N) there is an -derivation in G of a word w′ such that δa(δb(w′)) =
w. Therefore, let s ∈ T ∗ be a firing sequence in N with σ(s) = w. Let the
homomorphism ϕ : T ∗ → Z be defined by ϕ(t) :=  − M if σ(t) �= x and
ϕ(t) := −M if σ(t) = x. Then, since |w| ≤ k · |h(w)| = k(|w| − |w|x), we have

ϕ(s) =  · (|w| − |w|x) − M · |w|
= k · M(|w| − |w|x) − M · |w|
= M · (k(|w| − |w|x) − |w|) ≥ 0.
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According to Lemma 2, there is a decomposition s = uv such that ϕ(z) ≥ 0 for
every prefix z of vu. Let u = u1 · · ·un, v = v1 · · · vm, ui, vj ∈ T . Furthermore,
let P = {p1, . . . , pf} and q, q′ ∈ {0, 1}, where q := 1 iff |v| > 0 and q′ := 1 iff
|u| > 0. We claim that there are κ, κi ∈ P⊕, 1 ≤ i ≤ m, such that

s′ := sq,q′ Z(1)
v1,κ1

· · ·Z(1)
vm−1,κm−1

Z(0)
vm,κm

Z(1)
u1

· · ·Z(1)
un−1

Z(0)
un︸ ︷︷ ︸

=:s′′

f∏
i=1

rκ(pi)
pi

,

is a firing sequence in G which corresponds to an -derivation of w. It is easily
seen that s′ generates a word w′ such that δa(δb(w′)) = w.

The multisets κ, κi ∈ P⊕ are obtained as follows. κi is always the part of the
pre-multiset of vi that is not present in the current marking in P̂⊕. In order
to make the firing of Z

(j)
vi,κi possible, it has as pre-multiset only ∂0(vi) − κi and

adds ῑ(κi) to the P̄⊕-part of the marking. This makes sure that this part of the
marking will be produced later while simulating u. Let ι̂(γi) be the P̂⊕-part of
the marking after firing Z

(j)
vi,κi . Now we can define κi and give a formula for γi

inductively:
κ1 := ∂0(v1), κi := ∂0(vi) $ γi−1.

γ0 = 0, γi = (γi−1 − (∂0(vi) − κi)) + ∂1(vi).

κ is the P̄⊕-part of the marking after the simulation of v. Therefore, κ :=
κ1 + · · · + κm.

Now we show that s′ corresponds to an -derivation. Since sq,q′ produces one
symbol in the sentential form and does not change the marking, the condition
for the -derivation is fulfilled after sq,q′ . Furthermore, since the transitions rp

do not increase the marking size, it suffices to show that the condition is satisfied
during the firing of s′′. Let

T̄ := {Z(j)
vi,κi

| 1 ≤ i ≤ m, j ∈ {0, 1}} ∪ {Z(j)
ui

| 1 ≤ i ≤ n, j ∈ {0, 1}}

and ρ : T̄ ∗ → Z be the homomorphism defined by ρ(t) :=  · g − ‖∂′
1(t)‖, where

g is the number of symbols t adds to the sentential form. If we can show that
ρ(z) ≥ 0 for every prefix z of s′′, then s′ indeed corresponds to an -derivation.
We will need the homomorphism τ : T̄ ∗ → T ∗, Z

(j)
vi,κi �→ vi, Z

(j)
ui �→ ui. It is

clear from the definition of ϕ that ρ(t) ≥ ϕ(τ(t)) for every t ∈ T̄ . Therefore,
ρ(z) ≥ ϕ(τ(z)) ≥ 0 for z " s′′, since τ(z) is then a prefix of vu. Hence, s′

corresponds to an -derivation.
The inclusion δa(δb(L(G))) ⊆ L(N) can now be done analogously by noting

that every derivation in G can be rearranged so that it corresponds to a firing
sequence in N in the same way as s′ corresponds to s. ��

It is known that there is a context-free language that is not contained in Lλ
0 (see

[6] and see [8] for the decidability of the reachability problem). This yields:

Corollary 1. Hlin(L0) ⊂ MAT.
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5 Petri Net Grammars with and without Erasing Rules

In this section, it is shown that PN = PNλ. This result sheds new light on the
open question of whether erasing rules can be eliminated in matrix grammars.
For on the one hand, we have PN = MATλ. On the other hand, it is well-
known (see, for example, [9]) that non-erasing matrix grammars are equivalent to
regularly controlled non-erasing context-free grammars. Therefore, the question
can be reformulated: Does it make a difference whether context-free grammars
without erasing rules are controlled by Petri nets or by finite automata?

Theorem 3. PN = PNλ.

Proof. Since PN ⊆ PNλ is clear from the definition, it suffices to show PNλ ⊆
PN. Let G = (V, Σ, S, R, N), N = (R, P, T, ∂0, ∂1, σ, μ0), be a (possibly erasing)
Petri net grammar. We construct a grammar G′ with L(G′) = L(G) \ {λ}. This
does not mean a loss of generality, since in the case λ ∈ L(G), it is easy to
modify G′ such that the start symbol can be rewritten to λ and that the start
symbol does not occur on the right side of a production.

The simulation will work as follows. Every configuration (w, μ) of G will be
represented by a configuration (w′, μ′) such that w has a decomposition w =
u1v1 · · ·unvn, u1, . . . , un ∈ (V ∪ Σ)∗, v1, . . . , vn ∈ V ∗, with w′ = u1 · · ·un and
μ′ = μ + ι(Ψ(v1 · · · vn)). Here, ι : V ⊕ → Q⊕ is the embedding homomorphism
ι : x �→ qx into the new set of places Q := {qx | x ∈ V }. In other words, w will
be split into two parts, one of which is the new sentential form and one of which
will be added (as a multiset) to the marking of the Petri net. The part that is
kept as a multiset is the part of w that will later be rewritten to λ. Note that
since these symbols are erased anyway, their order and position in the sentential
form is irrelevant and therefore they can be stored safely in a multiset.

For every transition t ∈ T with σ(t) �= λ, we will add a new set of transi-
tions. Here, the firing of such a new transition will simulate the firing of t. The
transitions t ∈ T with σ(t) = λ will be kept unchanged.

Let t ∈ T , σ(t) = A → w, A ∈ V , w ∈ (V ∪ Σ)∗. To construct the new
transitions, we need the finite set

Xt := {(u, ν) ∈ (V ∪ Σ)∗ × V ⊕ | w = u1v1 · · ·unvn,
u1, . . . , un ∈ (V ∪ Σ)∗, v1, . . . , vn ∈ V ∗,
u = u1 · · ·un, ν = Ψ(v1 · · · vn)}.

Now, for every (u, ν) ∈ Xt, we add a new transition st,u,ν . It will simulate t,
apply the production A → u, and add ι(ν) to the marking of the net. If u = λ, the
rule A → λ will be simulated by removing ι(A) from the marking and assigning
no production to st,u,ν . Therefore, we distinguish two cases.

– If |u| = 0, let σ′(st,u,ν) := λ and ∂′
0(st,u,ν) := ∂0(t) + ι(A).

– If |u| ≥ 1, let σ′(st,u,ν) := A → u and ∂′
0(st,u,ν) := ∂0(t).

In either case, in addition to the post-multiset of t, st,u,ν will deposit ι(ν):
∂′
1(st,u,ν) := ∂1(t) + ι(ν). The set of transitions in the new grammar is then

T ′ := {t ∈ T | σ(t) = λ} ∪ {st,u,ν | t ∈ T, σ(t) �= λ, (u, ν) ∈ Xt}.
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MATλ = PNλ = PN

Lλ
0 MAT = LinPN

Hlin(L0)

L0

Fig. 1. Relations between language classes

On {t ∈ T | σ(t) = λ}, the functions σ′, ∂′
0 and ∂′

1 coincide with σ, ∂0, ∂1,
respectively. As mentioned above, the set of places is extended by the new places
in Q: P ′ = P ∪ Q. The new grammar is then G′ = (V, Σ, S, R′, N ′), N ′ =
(R′, P ′, T ′, ∂′

0, ∂
′
1, σ

′, μ0, F ). ��

We conclude by summarizing the relations between the language classes in Figure
1. The lines (arrows) denote (proper) inclusions of the lower language classes
into the upper language classes. Those that are not directly connected are not
necessarily incomparable.
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