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Abstract. Memory logics are modal logics whose semantics is specified
in terms of relational models enriched with additional data structure to
represent memory. The logical language is then extended with a collec-
tion of operations to access and modify the data structure. In this paper
we study their satisfiability and the model checking problems.

We first give sound and complete tableaux calculi for the memory logic
ML(©k ,©r ,©e ) (the basic modal language extended with the operator ©r
used to memorize a state, the operator ©e used to wipe out the memory,
and the operator ©k used to check if the current point of evaluation is
memorized) and some of its sublanguages. As the satisfiability problem
of ML(©k ,©r ,©e ) is undecidable, the tableau calculus we present is non
terminating. Hence, we furthermore study a variation that ensures ter-
mination, at the expense of completeness, and we use model checking to
ensure soundness. Secondly, we show that the model checking problem
is PSpace-complete.

1 Memory Logics

In a number of recent papers [1,2,3,4] we have investigated a family of logics
that we call memory logics. These logics are related to both modal logics [5,6]
and hybrid logics [7], as well as other logics that intend to add some notion of
state to models [8,9,10,11,12].

Intuitively, memory logics are modal logics whose semantics is specified in
terms of first-order relational models enriched with additional data structure to
represent memory. The logical language is then extended with a collection of
operations to access and modify the data structure.

Formally, let M = 〈W, (Rr)r∈Rel, V 〉 be a relational structure where W is
a non empty domain; for each relation symbol r, Rr is a binary relation over
W ; and V : Prop → 2W is a valuation function that assigns subsets of W to
propositional symbols in Prop. We can extend this structure with a set S ⊆ W
which can be interpreted as a set of states that are ‘known’ to us, and which
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represent the current ‘memory’ of the model. Even in this simple setting we can
define the following operators:

〈W, (Rr)r∈Rel, V, S〉, w |= ©rϕ iff 〈W, (Rr)r∈Rel, V, S ∪ {w}〉, w |= ϕ,

〈W, (Rr)r∈Rel, V, S〉, w |= ©eϕ iff 〈W, (Rr)r∈Rel, V, ∅〉, w |= ϕ,
〈W, (Rr)r∈Rel, V, S〉, w |= ©k iff w ∈ S.

As it is clear from the definition above, the ‘remember’ operator ©r (a unary
modality) just marks the current state as being ‘known’ or ‘already visited’, by
storing it in our ‘memory’ S. The ‘erase’ operator ©e (also unary) wipes out the
memory. These are the operators we use to update the memory. On the other
hand, the zero-ary operator ©k (for ‘known’) queries S to check if the current
state has already been visited. Notice that the extension of S is dynamic and it
can vary during the evaluation of a formula.

Our original motivation to investigate memory logics was mainly theoretical:
we were looking for a modal language that included some kind of binding mech-
anism (notice that ©r effectively binds instances of ©k appearing in its scope),
but with a decidable satisfiability problem. The memory logic ML(©k ,©r ) (i.e.,
the basic modal language extended with only the ©k and ©r operators) was in-
troduced as a weakening of the operator ↓ from the hybrid logic HL(↓) (i.e., the
basic modal language extended with nominals and the ↓ binder [7]) known to
be undecidable. But, as we have shown in [2,3] , even though the language is
strictly less expressive than HL(↓), its satisfiability problem is still undecidable.

While working with the memory operators we realised that they provide an
interesting perspective on modalities and their interaction with models: they are
examples of operators that modify the model during evaluation, and in that sense
they are truly dynamic. They are examples of logical languages that could both
check conditions on the model, and modify the model accordingly. For example,
while evaluating the formula ©rψ in a model M, the ©r operator transforms M
into a new model M′ (by adding the current point of evaluation to the memory),
and ψ is then evaluated in M′. We could imagine other operators that modify M
in different ways: add states, change the valuation, modify accessibility relations,
etc. By investigating memory logics we want to understand the basic properties
of such languages. From this perspective, memory logics would be related to
other well-known logics. One example are dynamic epistemic logics [8], which
are languages used to model the evolution of the knowlege of epistemic agents
via updates to the model representing their epistemic state. Other approach
comes from temporal logics with explicit global clocks (for example, the logic
XCTL [9]), in which these clocks are accessed and controlled through logical
operators. We believe that by studying the memory logics family we will better
understand some of the basic notions and intuitions that all these languages have
in common.

In this article we investigate computational aspects of two classical reason-
ing tasks for memory logics. In Section 2 we develop sound and complete tableau
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calculi. As the satisfiability problem for ML(©k ,©r ) (and hence also the one
for ML(©k ,©r ,©e )) is undecidable – and given that the calculi are sound and
complete – the tableaux obtained by the application of the rules we provide might
be infinite. In Section 3 we restrict these calculi so that they always produce finite
tableaux, but at the expense of sacrificing completeness. For this restriction to
work, we will need to perform model-checking (over an induced model) and in
Section 4 we investigate the complexity of this task. Because ML(©k ,©r ,©e ) is
a fragment of first-order logic, we know that the problem is in PSpace [13]. We
will show that it actually is PSpace-complete.

2 Complete and Sound Tableau Calculi

In this section we will introduce a tableau calculus for ML(©k ,©r ,©e ) (as we will
explain below, we will actually propose calculi over two particularly interesting
classes of models, and discuss also calculi for some sublogics). To make the paper
self-contained, we start by introducing some notation and basic notions.

Definition 1 (Syntax). Let Prop = {p1, p2, . . . } (the propositional symbols)
and Rel = {r1, r2, . . . } (the relational symbols) be disjoint, countable infinite
sets. Forms, the set of formulas of ML(©k ,©r ,©e ) over signature 〈Prop,Rel〉, is
defined as:

Forms ::= p | ¬p | ©k | ¬©k | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈r〉ϕ | [r]ϕ | ©rϕ | ©eϕ,

where p ∈ Prop, r ∈ Rel and ϕ,ϕ1, ϕ2 ∈ Forms.
Given ϕ ∈ Forms we will write ϕ for the formula obtained by computing the

negated normal form of the negation of ϕ:

p = ¬p ©k = ¬©k ϕ1 ∧ ϕ2 = ϕ1 ∨ ϕ2 〈r〉ϕ = [r]ϕ ©rϕ = ©rϕ
¬p = p ¬©k = ©k ϕ1 ∨ ϕ2 = ϕ1 ∧ ϕ2 [r]ϕ = 〈r〉ϕ ©eϕ = ©eϕ

Sublogics of ML(©k ,©r ,©e ) are obtained by forbidding the use of certain op-
erators. For example, ML(©k ,©r ) is the logic obtained by restricting to formulas
in Forms not containing ©e .

Definition 2 (Semantics). Given a signature S = 〈Prop,Rel〉, a model for S
is a tuple 〈W, (Rr)r∈Rel, V, S〉, satisfying the following conditions: (i) W 
= ∅;
(ii) each Rr is a binary relation on W ; (iii) V : Prop → 2W is a labeling function;
and (iv) S ⊆W .

For any model M = 〈W, (Rr)r∈Rel, V, S〉, we will denote with M[w1, . . . , wn]
and M∅ the models 〈W, (Rr)r∈Rel, V, S ∪{w1, . . . , wn}〉 and 〈W, (Rr)r∈Rel, V, ∅〉
respectively.

Given the model M = 〈W, (Rr)r∈Rel, V, S〉 and w ∈W , the semantics for the
different operators is defined as follows:
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M, w |= p ⇐⇒ w ∈ V (p), p ∈ Prop
M, w |= ¬p ⇐⇒ w 
∈ V (p), p ∈ Prop
M, w |= ϕ ∧ ψ ⇐⇒ M, w |= ϕ and M, w |= ψ
M, w |= ϕ ∨ ψ ⇐⇒ M, w |= ϕ or M, w |= ψ
M, w |= 〈r〉ϕ ⇐⇒ there is w′ such that Rr(w,w′) and M, w′ |= ϕ
M, w |= [r]ϕ ⇐⇒ for all w′ such that Rr(w,w′), M, w′ |= ϕ
M, w |= ©rϕ ⇐⇒ M[w], w |= ϕ
M, w |= ©eϕ ⇐⇒ M∅, w |= ϕ
M, w |= ©k ⇐⇒ w ∈ S
M, w |= ¬©k ⇐⇒ w 
∈ S.

Definition 3 (Satisfiability and Validity). Let C be a class of models. We
say that ϕ is satisfiable in C if there is a model M ∈ C and a state w in the
domain of M such that M, w |= ϕ. We say that ϕ is valid in C if ϕ is not
satisfiable in C.

We will be mainly interested in using tableaux to characterize the set of valid
formulas over Call, the class of all models. But observe that to express several
structural properties of interest, it is natural to start with a model with no
previously remembered states.

For example, 〈W, (Rr)r∈Rel, ∅〉, w |= ©r 〈r〉©k if and only if R(w,w). That is,
satisfiability of ©r 〈r〉©k at w characterizes reflexivity of w whenever the initial
memory is empty. When the ©e operator is in the language, we can actually use
the formula ©e©r 〈r〉©k instead, which ensures that S is empty before evaluating
©r 〈r〉©k . That is, if C∅ is the class {M | M = 〈W, (Rr)r∈Rel, V, ∅〉} of models
with an empty memory, then ϕ is valid in C∅ iff ©eϕ is valid in Call. Or in other
words, we can use ©e to ‘internalize’ the class C∅.

Because we will discuss not only the full language ML(©k ,©r ,©e ), but also
some of its sublanguages, we’ll set up the tableau calculi so that they can be
used for satisfiability for both Call and C∅.

In Figure 1 we present the rules for a prefixed tableau calculus for the logic
ML(©k ,©r ,©e ). Prefixed tableaux for hybrid logics were investigated by Black-
burn and Bolander in [14]. The general approach and, in particular, the termi-
nation argument used in Section 3 are inspired by this paper.

A tableau in the calculus presented in Figure 1 is simply a wellfounded, finitely
branching tree in which edges represent applications of tableau rules in the usual
way and each node is labeled by an accessibility, equality or prefixed formula.

Definition 4 (Prefixed, accessibility and equality formulas). Let W =
{w1, w2, . . .} be an infinite, enumerable set of labels. Then 〈w,A〉C :ϕ is a prefixed
formula, where ϕ ∈ ML(©k ,©r ,©e ), C ∈ {Call, C∅}, w ∈ W and A is a finite
subset of W . Rr(w,w′) is an accessibility formula for r ∈ Rel, and w,w′ ∈ W .
w ≈ w′ is an equality formula for w,w′ ∈W .

Intuitively, in the prefix 〈w,A〉C , w is the label of the state where the formula
holds, C is the class of models we are working with (Call or C∅), and A is a set



Tableaux and Model Checking for Memory Logics 51

(∧)

〈w,A〉C :ϕ ∧ ψ
〈w,A〉C :ϕ

〈w,A〉C :ψ

(∨)
〈w,A〉C :ϕ ∨ ψ

〈w,A〉C :ϕ | 〈w,A〉C :ψ

(〈r〉)
〈w,A〉C :〈r〉ϕ
Rr(w,w

′)
〈w′, A〉C :ϕ

† ([r])

〈w,A〉C :[r]ϕ

Rr(w,w
′)

〈w′, A〉C :ϕ

(¬©k )
〈w,A〉C :¬©k
〈w, ∅〉C :¬©k

(©k )
〈w, {v1, . . . vk}〉C :©k

w ≈ v1 | · · · | w ≈ vk | 〈w, ∅〉C :©k

(©e )
〈w,A〉C :©eϕ
〈w, ∅〉C∅ :ϕ

(©r )
〈w,A〉C :©rϕ

〈w,A ∪ {w}〉C :ϕ

(repl)

〈w,A〉C :ϕ

w ≈∗ w′

〈w′, A[w 
→ w′]〉C :ϕ

‡

Clash Rules:

(⊥p)

〈w,A〉C1 :p

〈w,B〉C2 :¬p
⊥

(⊥©k )

〈w, ∅〉C :©k
〈w, ∅〉C :¬©k

⊥

(⊥¬©k )
〈w, {w} ∪ A〉C :¬©k

⊥
(⊥∅)

〈w, ∅〉C∅ :©k
⊥

Key:

† w′ is fresh.
‡ a ≈∗ b iff (a, b) occurs in the reflexive, symmetric and transitive closure of the relation

{(w,w′) | w ≈ w′appears in the current branch}. A[w 
→ w′] = A if w 
∈ A, and
(A− {w}) ∪ {w′} otherwise.

• C,C1, C2 are either Call or C∅.
• A,B are arbitrary finite set of labels.

Fig. 1. Tableau rules

of states that were explicitly remembered by evaluating a ©r operator in the
current branch. Since every prefixed formula is derived in finitely many steps,
A will always be a finite set. In the rest of this article we will refer to a tableau
that uses the rules presented in Figure 1 as a tableau for ML(©k ,©r ,©e ). The
intended interpretation of Rr(w,w′) is that the state denoted by w′ is accessible
from the state denoted by w by the interpretation of relation symbol r. Finally,
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the intended interpretation of an equality formula w ≈ w′ is that w and w′ label
the same state in a given branch.

We will use the term formula to denote either a formula of ML(©k ,©r ,©e ), a
prefixed formula, an accessibility formula, or an equality formula.

The rules are presented in the standard format: each rule has a name on the
left and is divided in an upper (the antecedent) and lower (the consequent) part.
Whenever there are formulas in a branch that match the antecedent, the rule can
be applied following the constraints specified for each rule. If the rule is applied,
the formulas of the consequent are added to the same branch, except in the case
of (∨) and (©k ), where several different branches are created.

The rules (〈r〉), (¬©k ), (©k ), (©e ), (©r ) and (repl) are called “prefix generating
rules”, since if a prefix is new to a branch, it must be introduced by one of these
rules. We impose two general constraints on the construction of a tableau:

– A prefix generating rule is never applied twice to a formula on a given branch.
– A formula is never added to a tableau branch where it already occurs.

A saturated tableau is a tableau in which no more rules can be applied that
satisfy the constraints. A saturated branch is a branch of a saturated tableau.
A branch of a tableau is called closed if it contains ⊥. Otherwise the branch is
called open. A closed tableau is one in which all branches are closed, and an open
tableau is one in which at least one branch is open.

(∧), (∨), (〈r〉) and ([r]) are classical rules of the basic modal logic tableau cal-
culus. The remaining ones are particular to memory logics. Rule (¬©k ) specifies
that at a label where A denotes the set of states that were explicitly remem-
bered, if the state w is not in the memory then w 
∈ A and (in particular) w
still is not memorized at the label with A = ∅. Rule (©k ) specifies that if w is in
the memory, then either it is one of the explicitly remembered states, or it is in
the initial memory, in which case ©k holds even with no explicitly remembered
states. Notice that the last branch of the application of this rule can be immedi-
ately closed in the case where C = C∅, due to the rule (⊥∅). Rule (©e ) wipes out
the explicitly remembered states and evaluates the satisfiability of the formula
in a model with no initial memory. Observe that the presence of the ©e modality
may force the calculus to switch from the evaluation over Call to that over C∅.

We will also consider variations and subsystems of the calculus of Figure 1
where only a subset of the rules are allowed, or additional constraints on the
rules are imposed (for example, to ensure termination). In such subsystems, a
tableau is of course simply a tableau in which only the rules in the subset can
be applied, considering the additional constraints.

We call a tableau calculus T sound for a language L respect to a class of
models C if whenever ϕ ∈ L is C-satisfiable, then every saturated tableau T with
root ϕ has an open branch. We say that it is complete if whenever ϕ ∈ L is not
C-satisfiable, then every saturated tableau T with root ϕ is closed.

Soundness of the calculus of Figure 1 follows from a simple inspection of the
rules. We devote the rest of this section to prove completeness. As usual, we will
show that given an open and saturated branch Γ , we can define a model MΓ
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that satisfies all the formulas that occur in the branch. To define the domain of
MΓ we first need the following definition.

Definition 5 (EqΓ ). Let Γ be an open and saturated branch of a tableau for
ML(©k ,©r ,©e ). EqΓ is the smallest equivalence relation extending {(w,w′) |
(w ≈ w′) ∈ Γ}.

Definition 6 (MΓ ). Let Γ be an open and saturated branch of a tableau for
ML(©k ,©r ,©e ). Define the induced model MΓ = 〈WΓ , (RrΓ )r∈Rel, VΓ , SΓ 〉 as:

WΓ = {w | w occurs in Γ}/EqΓ

RrΓ = {([w], [w′]) | Rr(w,w′) ∈ Γ}
VΓ (p) = {[w] | 〈w,A〉C :p ∈ Γ , for any A and C}
SΓ = {[w] | 〈w, ∅〉Call :©k ∈ Γ},

where [w] is the equivalence class of w in EqΓ .

Lemma 1. Let MΓ = 〈WΓ , (RrΓ )r∈Rel, VΓ , SΓ 〉 be the induced model for Γ ,
where Γ is an open and saturated branch of a tableau for ML(©k ,©r ,©e ).

1. 〈w, {v1, . . . vk}〉Call :ϕ ∈ Γ implies MΓ [[v1], . . . , [vk]], [w] |= ϕ.
2. 〈w, {v1, . . . vk}〉C∅ :ϕ ∈ Γ implies MΓ

∅ [[v1], . . . , [vk]], [w] |= ϕ.

Proof. We proceed by induction on ϕ.

Case ϕ := p. If 〈w, {v1, . . . , vk}〉Call :p ∈ Γ , then [w] ∈ VΓ (p) and, therefore,
MΓ [[v1], . . . , [vk]], [w], |= p. The case for C∅ is analogous.

Case ϕ := ¬p. Suppose 〈w, {v1, . . . , vk}〉C :¬p ∈ Γ . If MΓ [[v1], . . . , [vk]], [w] |=
p, it means that [w] ∈ VΓ (p) and hence 〈w,A〉C :p ∈ Γ (for some A and C),
but in that case rule (⊥p) applies and the branch would be closed. Again,
the case for C∅ is analogous.

Case ϕ := ©k . We consider all the different possibilities:
1. If 〈w, ∅〉Call :©k ∈ Γ , then [w] ∈ SΓ and, therefore, MΓ , [w] |= ©k .
2. If 〈w, ∅〉C∅ :©k ∈ Γ , then, by the (⊥∅) rule, ⊥ ∈ Γ which would contradict

the hypothesis that Γ is an open branch.
3. If 〈w, {v1, . . . vk}〉Call :©k ∈ Γ , with k > 0 then some consequent of the

(©k ) rule must occur in Γ too. If 〈w, ∅〉Call :©k ∈ Γ then we are done. So
let us assume that, on the contrary, w ≈ vi ∈ Γ for some i ∈ {1, . . . k}.
This implies that [w] = [vi], but since vi ∈ {v1, . . . vk}, we conclude that
MΓ [[v1], . . . , [vk]], [w] |= ©k .

4. The case when 〈w, {v1, . . . vk}〉C∅ :©k ∈ Γ , with k > 0 is analogous.
Case ϕ := ¬©k . We consider, again, all the distinct cases:

1. Let 〈w, ∅〉Call :¬©k ∈ Γ and let us assume, for the sake of contradic-
tion, that MΓ , [w] |= ©k . This means that [w] ∈ SΓ and, therefore,
〈w′, ∅〉Call :©k ∈ Γ , where [w] = [w′]. Since Γ is saturated, by the (repl)
rule we know that 〈w, ∅〉Call :©k ∈ Γ . But then rule (⊥©k ) applies and
⊥ ∈ Γ which makes Γ a closed branch.

2. Suppose 〈w, ∅〉C∅ :¬©k ∈ Γ . It is always the case that MΓ
∅ , [w] |= ¬©k .
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3. Let 〈w, {v1, . . . vk}〉Call :¬©k ∈ Γ , with k > 0, and suppose, for the sake
of contradiction, that MΓ [[v1], . . . , [vk]], [w] |= ©k . This opens two possi-
bilities. First, it could be the case that [w] ∈ SΓ , but that would mean
that 〈w, ∅〉Call :©k ∈ Γ and, because of the (¬©k ) rule, 〈w, ∅〉Call :¬©k ∈ Γ
and therefore we would have a clash by the (⊥©k ) rule.
Alternatively, it could be the case that [w] = [vi] for some i ∈ {1, . . . k}.
Since Γ is saturated, we conclude 〈vi, {v1, . . . vk}[w �→ vi]〉Call :¬©k ∈ Γ
using the (repl) rule. But observe that vi ∈ {v1, . . . vk}[w �→ vi] from
which rule (⊥¬©k ) applies and leads to a contradiction.

4. If 〈w, {v1, . . . vk}〉C∅ :¬©k ∈ Γ , with k > 0, we can simply use the argu-
ment for the case [w] = [vi] just above.

Case ϕ := ©rψ. Suppose 〈w, {v1, . . . vk}〉Call :©rψ ∈ Γ . By rule (©r ), we know
〈w, {v1, . . . vk, w}〉Call :ψ ∈ Γ . By inductive hypothesis, MΓ [[v1], . . . [vk], [w]],
[w] |= ψ, which implies MΓ [[v1], . . . [vk]], [w] |= ©rψ. C∅ is analogous.

Case ϕ := ©eψ. If 〈w, {v1, . . . vk}〉Call :©eψ ∈ Γ then, by rule (©e ), 〈w, ∅〉C∅ :ψ ∈
Γ and, by inductive hypothesis, MΓ

∅ , [w] |= ψ. Therefore, it follows that
M[[v1], . . . [vk]], [w] |= ©eψ. The case for C∅ is analogous.

The remaining boolean and modal cases are dealt with in the standard way.

Theorem 1. The tableau calculus for ML(©k ,©r ,©e ) is sound and complete for
both the classes Call and C∅.

More precisely, given ϕ ∈ ML(©k ,©r ,©e ), ϕ is satisfiable iff any saturated
tableau for ML(©k ,©r ,©e ) with root 〈w, ∅〉Call :ϕ has an open branch. An equiva-
lent result holds for the C∅ class, starting with a tableau with root 〈w, ∅〉C∅ :ϕ.

Proof. Soundness is trivial. Completeness is straightforward from Lemma 1: as-
sume that a formula ϕ ∈ ML(©k ,©r ,©e ) is not satisfiable in the class C while
there is a saturated tableau T with root 〈w, ∅〉C :ϕ and open branch Γ ; MΓ

satisfies ϕ and is in the class C which contradicts the assumption.

It is also straightforward to see that if we drop the (©e ) rule from the calculus,
then we can prove soundness and completeness for formulas in ML(©r ,©k ) (again
with respect to both classes Call and C∅).

Theorem 2. The tableau calculus of Figure 1 without the (©e ) rule is sound and
complete for ML(©r ,©k ) for both the classes Call and C∅.

3 Terminating Tableaux

In this section we will investigate some constraints that can be applied to the
tableau rules for ML(©k ,©r ,©e ) in order to ensure termination. The price we have
to pay is that the resulting calculus is not complete any more. More precisely,
it will be the case that some formula ϕ has a tableau with an open saturated
branch Γ whose induced model MΓ is not a model for ϕ. This means that we
cannot claim satisfiability of the root formula every time we obtain a saturated
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open tableau. In these cases, we will use a model checking algorithm to verify
whether MΓ is effectively a model for ϕ. If the model checking succeeds we can
then indeed answer sat, and we will answer not-known otherwise.

We begin this section defining the restricted tableau rules, and proving a ter-
mination result. After this we will formalize the connection with model checking.
In what follows, when a prefixed formula σ:ϕ occurs in a tableau branch Γ we
will write σ:ϕ ∈ Γ , and say that ϕ is true at σ on Γ or that σ makes ϕ true on
Γ . Also, given a prefix σ = 〈w,A〉C we will define Label(σ) = w and Set(σ) = A.

We will start by showing that by eliminating the (repl) rule one obtains a
terminating calculus.

Definition 7. Given a tableau branch Γ and a prefix σ, the set of true formulas
at σ on Γ , written TΓ (σ), is defined as TΓ (σ) = {ϕ | σ:ϕ ∈ Γ}.

Notice that accessibility and equality formulas are not included in TΓ (σ).

Lemma 2 (Subformula Property). Let T be a tableau with the prefixed for-
mula σ0:ϕ0 as root. For any prefixed formula σ:ϕ occurring on T, ϕ is a subfor-
mula of ϕ0.

Proof. This is easily seen by going through each of the tableau rules.

Lemma 3. Let Γ be a branch of a tableau, and let σ be any prefix occurring on
Γ . The set TΓ (σ) is finite.

Proof. Let σ0:ϕ0 denote the first formula on Γ (i.e., the root of the tableau).
From Lemma 2, we know that TΓ (σ) ⊆ {ϕ | ϕ is a subformula of ϕ0}, and
hence TΓ (σ) is finite.

Definition 8. Let T be a tableau. If a prefixed formula τ :ψ of T has been in-
troduced by applying one of the prefix generating rules except (repl) to a premise
σ:ϕ of T then we say that τ :ψ is generated by σ:ϕ, and we write σ : ϕ ≺ τ :ψ.

Now we define a measure for the complexity of a prefixed formula:

Definition 9. Let T be a tableau, σ:ϕ be a prefixed formula occurring on T and
let |ϕ| denote the length of the ϕ. We define

m(σ:ϕ) = 2|ϕ| + |Set(σ)|,

Lemma 4 (Decreasing length). Let T be a tableau with no application of the
(repl) rule. If σ:ψ ≺ τ :ϕ then m(σ:ψ) > m(τ :ϕ).

Proof. Assume σ:ψ ≺ τ :ϕ. We need to prove m(σ:ψ) > 2|ϕ|+ |Set(τ)|. τ :ϕ must
have been introduced by an application of either (〈r〉), ([r]), (©k ), (¬©k ), (©e ),
(©r ), (∧) or (∨).

In the case of (〈r〉), τ :ϕ must be introduced by applying the (〈r〉) rule to a
premise of the form σ:〈r〉ϕ. In the case of ([r]), τ :ϕ must be introduced by apply-
ing the ([r]) rule to a pair of premises of the form σ:[r]ϕ, Rr(Label(σ),Label (τ)).
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In both cases we see that τ :ϕ is introduced by applying a rule to a formula
σ:ψ where |ψ| > |ϕ| and where |Set(τ)| = |Set(σ)|. Thus we get m(σ:ψ) =
|Set(σ)| + 2|ψ| > |Set(τ)| + 2|ϕ|.

If τ :ϕ is introduced by (©k ) or (¬©k ) from σ:ψ, it is immediate that ϕ = ψ,
|Set(τ)| = 0 and also that |Set(σ)| > 0, because otherwise the application would
generate a prefixed formula already in the branch. Thus, m(σ:ψ) = |Set(σ)| +
2|ψ| > 0 + 2|ψ| = |Set(τ)| + 2|ϕ|. The case of (©e ) is clear as the length of the
set does not increase, and the length of the formula decreases. In the cases of
(∨) and (∧) the length of the formula is decreased while the set is preserved.

Finally, if τ :ϕ is introduced by the (©r ) rule from σ:ψ, we see that while the set
may be increased by one, the length of the formula is always decremented. Then
we have m(σ:ψ) = |Set(σ)|+ 2|ψ| > (|Set(σ)|+ 1)+ 2(|ψ| − 1) = |Set(τ)|+ 2|ϕ|.

Lemma 5 (Finite branching). Let Γ be a branch of a tableau. For any σ:ϕ ∈
Γ there is only a finite number of prefixed formulas τ :ψ ∈ Γ such that σ:ϕ ≺ τ :ψ.

Proof. For any given prefix σ the set TΓ (σ) is finite (Lemma 3), and for each
formula ϕ ∈ TΓ (σ) at most one new prefix has been generated from σ (by
applying a prefix generating rule to σ:ϕ). Thus ≺ is finitely branching.

Theorem 3. Fix a natural number n ≥ 0. Any tableau for ML(©k ,©r ,©e ) in
which the rule (repl) is applied at most n times per branch is finite.

Proof. We show that any branch Γ of the tableau is finite.
Notice first that σ0:ϕ0 has no ≺-predecessors, and that at most k ≤ n other

prefixed formulas of the tableau share the property of not having ≺-predecessors.
Intuitively, each of these k formulas were introduced in Γ by the (repl) rule and
hence cannot have been derived by ≺. We shall refer to these k + 1 formulas as
‘generating formulas’.

It is easy to see that each generating formula induces a connected component
in the graph of ≺. Then, every σ:ϕ ∈ Γ belongs to (at least) one of these
k + 1 connected components. As the function m decreases monotonously along
any path of each of the connected components (Lemma 4), all paths of the
component are finite.

By construction, there is a path between a generating formula and every node
of its connected component. Then the graph is weakly connected and every path
is finite. By König’s Lemma the connected component is either finite or has
infinite branching. As we know by Lemma 5 that it has finite branching, Γ must
be finite.

Since we limit the number of applications of (repl) to n, we may have a saturated
open tableau for ϕ whose induced model MΓ is not a model for ϕ (recall that
that we are taking into account the constraint on the number of applications of
(repl) when talking about saturation). This implies that it is no longer safe to
answer sat in these cases. But we can try to identify, given a formula ϕ, whether
MΓ is indeed a model for ϕ. The algorithm we propose is outlined as follows:
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1. Given a formula ϕ and a parameter n ≥ 0, build T , a saturated tableau
for ML(©k ,©r ,©e ) with root 〈w, ∅〉Call :ϕ using at most n applications of the
(repl) rule per branch.

2. If T is closed answer unsat.
3. Else, if T has an open branch Γ , compute the induced model MΓ .
4. If MΓ , [w] |= ϕ then answer sat.
5. Else, answer not-known.

Correctness of this algorithm is straightforward. Moreover, as we will show
in Section 4, ML(©k ,©r ,©e ) is a fragment of HL(↓), and therefore we can use a
model checking algorithm for HL(↓) to perform the step 4 in polynomial space.

Note that in the case the algorithm returns not-known, we can try refining
the result running the algorithm again with a bigger n reusing the previously
computed tableau, as the resulting tableau will be an extension to the previous
one. This method allows us to approximate increasingly to a solution to the
satisfiability problem of ML(©k ,©r ,©e ) in a controlled way.

4 Model Checking

In this section we will show that the complexity of the model checking prob-
lem for ML(©k ,©r ,©e ) is PSpace-complete (actually the result already holds for
ML(©k ,©r )). To prove the lower bound we reduce the PSpace-complete sat-
isfiability problem for Quantified Boolean Formulas (QBF) [15] to the model
checking problem of ML(©k ,©r ). To prove the upper bound, we show an equiv-
alent preserving translation from formulas of ML(©k ,©r ,©e ) to formulas of the
hybrid logic HL(↓) [7,16].

This high complexity contrasts with the linear complexity (in both formula
and model size) of model checking for the basic modal logic [17], and can be seen
as a strengthening of the result of PSpace-hardness of HL(↓) shown in [16] (in
the sense that ML(©k ,©r ) is a logic with strictly weaker expressive power than
HL(↓), but whose model checking problem is already PSpace-hard).

We start by giving a lower bound for ML(©k ,©r ). Since ML(©k ,©r ) is a
sublanguage of ML(©k ,©r ,©e ), the result also holds for ML(©k ,©r ,©e ).

Theorem 4. Model checking for ML(©k ,©r ) is PSpace-hard.

Proof. We prove it by giving a polynomial-time reduction of QBF-SAT, known
to be PSpace-complete [15], to the model checking problem of ML(©k ,©r ).

Let α be a QBF formula with propositional variables {x1, . . . xk}. Without
loss of generality, we assume that α has no free-variables and no variable is
quantified twice. One can build in polynomial time the relational structure
Mk = 〈W, {Rr}, V, S〉, over a signature with one relation symbol and propo-
sitions {p�, px1 , . . . pxk

}, where

V (pxi) = {wxi} for all i ∈ [1..k] S = ∅
V (p�) = {w�

x1
, w�

x2
, . . . w�

xk
} W = {w} ∪ {wxi , w

�
xi
, w⊥

xi
| i ∈ [1..k]}

Rr = {(w,wxi), (wxi , w
�
xi

), (w�
xi
, w), (wxi , w

⊥
xi

), (w⊥
xi
, w) | i ∈ [1..k]}.
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Fig. 2. Mk for k = 3

Figure 2 depicts Mk for k = 3. Let Tr be the following linear-time translation:

Tr(xi) := 〈r〉(pxi ∧ 〈r〉(p� ∧©k )) Tr(∃xi.α) := 〈r〉(pxi ∧ 〈r〉©r 〈r〉Tr(α))

Tr(¬α) := Tr(α) Tr(α ∧ β) := Tr(α) ∧ Tr(β)

It only remains to see that α is satisfiable iff Mk, w |= Tr(α) holds, but this is
relatively straightforward. Let us write v |=qbf α if valuation v : {x1, . . . xk} → 2
satisfies α. For a memory S ⊆ W , define vS : {x1, . . . xk} as “vS(xi) = 1 iff
w�

xi
∈ S”. Let β be any subformula of α; we will now show by induction on

β that 〈W,V,Rr, S〉, w |= Tr(β) iff vS |=qbf β whenever S satisfies i) if xi is
free in β, then w�

xi
∈ S or w⊥

xi
∈ S but not both, and ii) if xi is not free

in β then w�
xi


∈ S and w⊥
xi


∈ S. Observe that from here it will follow that
Mk, w |= Tr(α) iff v |=qbf α for any v (since α has no free variables) iff α is
satisfiable.

For the base case, vS |=qbf xi iff w�
xi

∈ S which implies (from the defini-
tion of Mk) 〈W,V,Rr, S〉, w |= Tr(xi). For the other direction, suppose now
that 〈W,V,Rr, S〉, w 
|= Tr(xi). This means that 〈W,V,Rr, S〉, w |= [r](¬pxi ∨
[r](¬p� ∨¬©k )) which implies 〈W,V,Rr, S〉, wxi |= [r](¬p� ∨¬©k ) which implies
〈W,V,Rr, S〉, w�

xi
|= ¬©k and, thus, w�

xi

∈ S. Therefore we have vS 
|=qbf xi.

Consider now the case β = ∃xi.γ. Since α has no rebound variables we
know w�

xi

∈ S and w⊥

xi

∈ S. We have vS |=qbf β iff vS [xi �→ 0] |=qbf γ

or vS [xi �→ 1] |=qbf γ iff vS∪{w⊥
xi

} |=qbf γ or vS∪{w�
xi

} |=qbf γ iff, by in-
ductive hypothesis, 〈W,V,Rr, S ∪ {w⊥

xi
}〉 |= Tr(γ) or 〈W,V,Rr, S ∪ {w�

xi
}〉 |=

Tr(γ) iff 〈W,V,Rr, S〉, w⊥
xi

|= ©r 〈r〉Tr(γ) or 〈W,V,Rr, S〉, w�
xi

|= ©r 〈r〉Tr(γ) iff
〈W,V,Rr, S〉, w |= 〈r〉(pxi ∧ 〈r〉©r 〈r〉Tr(γ)) iff 〈W,V,Rr , S〉, w |= Tr(∃xi.γ).

The boolean cases follow directly from the inductive hypothesis.

To see that ML(©k ,©r ,©e ) is in PSpace it is enough to show that any
ML(©k ,©r ,©e ) formula can be translated to an equivalent formula ofH(↓), whose
model checking problem is known to be PSpace-complete [16]. Recall that the
language of HL(↓) is the language of the basic modal logic extended with nomi-
nals and the ↓ binder (see [7] for details). Formulas of HL(↓) are also interpreted
over relational structures, but we need additionally an assignment function to
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interpret nominals and ↓. More formally, to evaluate a formula of HL(↓), we
need a relational structure M = 〈W, (Rr)r∈Rel, V 〉 (where W is a non empty
set, each Rr is a binary relation over W , and V is a valuation function), and an
assignment function g such that for any nominal i, g(i) ∈ W . Given a relational
structure M = 〈W, (Rr)r∈Rel, V 〉 and an assignment g, the semantic conditions
for the ↓ operator and the nominals is defined as

M, g, w |= i iff g(i) = w
M, g, w |= ↓i.ϕ iff M, g′, w |= ϕ where g′ is identical to g

except perhaps in that g′(i) = w.

The semantics for the other operators is the same as for the basic modal logic.
Formulas in which any nominal i appears in the scope of a binder ↓i are called
sentences.

In order to define a translation between ML(©k ,©r ,©e ) and HL(↓) we have
to find a mapping between the models of each logic. Since ML(©k ,©r ,©e )-
models may have a nonempty memory, we must introduce a shift in the sig-
nature of HL(↓)-models to encode this information. We will associate every
ML(©k ,©r ,©e )-model M = 〈W, (Rr)r∈Rel, V, S〉 over the signature 〈Prop,Rel〉
with the HL(↓)-model M′ = 〈W, (Rr)r∈Rel, V

′〉 over the signature 〈Prop ∪
{known},Rel,Nom〉, where V ′ is identical to V over Prop, and V ′(known) = S.

Theorem 5. Model checking for ML(©k ,©r ,©e ) is PSpace-complete.

Proof. We define the translation Tr, taking formulas of ML(©k ,©r ,©e ) over the
signature 〈Prop,Rel〉 to HL(↓) sentences over the signature 〈Prop ∪ {known},
Rel,Nom〉. Tr is defined for any finite set N ⊆ Nom and C ∈ {Call, C∅} as
follows:

TrN,C(p) = p p ∈ Prop

TrN,C(¬p) = ¬p p ∈ Prop

TrN,C(©k ) =
{

(
∨

i∈N i) ∨ known if C = Call∨
i∈N i if C = C∅

TrN,C(¬©k ) =
{

(
∧

i∈N ¬i) ∧ ¬known if C = Call∧
i∈N ¬i if C = C∅

TrN,C(ϕ1 ∧ ϕ2) = TrN,C(ϕ1) ∧ TrN,C(ϕ2)
TrN,C(ϕ1 ∨ ϕ2) = TrN,C(ϕ1) ∨ TrN,C(ϕ2)

TrN,C(〈r〉ϕ) = 〈r〉TrN,C(ϕ)
TrN,C([r]ϕ) = [r]TrN,C(ϕ)
TrN,C(©rϕ) = ↓i.TrN∪{i},C(ϕ) where i /∈ N .
TrN,C(©eϕ) = Tr∅,C∅(ϕ).

A simple induction shows that, given a formula ϕ ∈ ML(©k ,©r ,©e ), M, w |= ϕ
iff M′, g, w |= Tr∅,Call(ϕ) for any g.
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5 Conclusions, Related and Further Work

The family of memory logics has been introduced to investigate, in the simplest
possible set up, the idea of models with a dynamic state. From that perspective
they are closely related to Dynamic Epistemic Logics (DELs) as those discussed
in [8] and many others [9,10,11,12]. Compared to these domain-specific logics,
the goals of memory logics are humbler, focusing on developing a suitable proof
and model theory for logics whose semantics is defined using models that can
evolve during the evaluation of a formula. From a purely formal point of view
they are closer to hybrid logics. And the logic ML(©k ,©r ,©e ) that we investi-
gated in this paper is closely related, but expressively weaker, than the logic
HL(↓) [7].

It was already proved in [2,3] that the satisfiability problem of ML(©k ,©r ,©e )
was undecidable. In this paper we develop sound and complete tableau calculi
for ML(©k ,©r ,©e ) and ML(©k ,©r ) (Theorems 1 and 2) which, given the unde-
cidability result, are non terminating. By restricting the application of one of
the rules in the calculi we can obtain termination at the expense of completeness
(Theorem 3). To ensure soundness of this calculus we need to perform model
checking whenever we obtain an open branch. Theorem 4 shows that the model
checking problem for ML(©k ,©r ) is PSpace-complete.

To close the paper, we discuss how the tableau calculus for ML(©k ,©r ,©e )
could be extended to cover another interesting memory operator. Define the
forget operator ©f as follows:

M, w |= ©fϕ ⇐⇒ 〈W, (Rr)r∈Rel, V, S − {w}〉, w |= ϕ.

The ©f operator gives us a fine control on which elements we want to eliminate
from the memory of the model. Prefixes in the calculus for ML(©k ,©r ,©e ,©f )
will have to explicitly record forgotten worlds in a separate set (it is not enough
to simply eliminate them from the set of remembered labels). For example, the
rules for (©f ) and (©r ) would be

(©f )
〈w,R, F 〉C :©fϕ

〈w,R− {w}, F ∪ {w}〉C :ϕ
(©r )

〈w,R, F 〉C :©rϕ
〈w,R ∪ {w}, F − {w}〉C :ϕ

where R is the set of remembered states and F the set of explicitly forgotten
states. On the other hand, the rules for (©k ) and (¬©k ) would be

(©k )
〈w, {v1, . . . vk}, F 〉C :©k

w ≈ v1 | · · · |w ≈ vk | 〈w, ∅, F 〉C :©k
(¬©k )

〈w,R, {v1, . . . vk}〉C :¬©k
w ≈ v1 | · · · |w ≈ vk | 〈w,R, ∅〉C :¬©k

Notice the symmetry between the rules, which corresponds to the symmetry in
the semantic definition of ©r and ©f . Besides these changes, the tableau rules
and the completeness argument remain roughly the same.
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