

Lecture Notes in Artificial Intelligence 5607
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Martin Giese Arild Waaler (Eds.)

Automated Reasoning
with Analytic Tableaux
and Related Methods

18th International Conference, TABLEAUX 2009
Oslo, Norway, July 6-10, 2009
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Martin Giese
Arild Waaler
University of Oslo
Department of Informatics
P.O. Box 1080 Blindern, 0316 Oslo, Norway
E-mail: {martingi, arild}@ifi.uio.no

Library of Congress Control Number: 2009929055

CR Subject Classification (1998): I.2.3, F.4.1, I.2, D.1.6, D.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-02715-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02715-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12702633 06/3180 5 4 3 2 1 0

Preface

This volume contains the research papers presented at the International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2009) held July 6-10, 2009 in Oslo, Norway. This conference was
the 18th in a series of international meetings since 1992 (listed on page IX). It
was collocated with FTP 2009, the Workshop on First-Order Theorem Proving.

The Program Committee of TABLEAUX 2009 received 44 submissions from
24 countries. Each paper was reviewed by at least three referees, after which
the reviews were sent to the authors for comment in a rebuttal phase. After
a final intensive discussion on the borderline papers during the online meeting
of the Program Committee, 21 research papers and 1 system description were
accepted based on originality, technical soundness, presentation, and relevance.
Additionally, three position papers were accepted, which are published as a tech-
nical report of the University of Oslo. We wish to sincerely thank all the authors
who submitted their work for consideration. And we would like to thank the
Program Committee members and other referees for their great effort and pro-
fessional work in the review and selection process. Their names are listed on the
following pages.

In addition to the contributed papers, the program included three excellent
keynote talks. We are grateful to Patrick Blackburn (INRIA Nancy, France), Pe-
ter Jeavons (Oxford University Computing Laboratory, UK), and Pierre Wolper
(Université de Liege, Belgium) for accepting the invitation to address the confer-
ence. Two very good tutorials were part of TABLEAUX 2009: “The Theory of
Canonical Systems” (A. Avron and A. Zamansky, Tel-Aviv University, Israel),
and “LoTREC: Theory and Practice. Proving by Tableau Becomes Easier. . . ”
(Bilal Said and Olivier Gasquet, Université Paul Sabatier, Toulouse, France). We
would like to express our thanks to the tutorial presenters for their contribution.

In addition to FTP 2009, three workshops were held in conjunction with
TABLEAUX 2009:

– The workshop on “Tableaux Versus Automata as Logical Decision Meth-
ods,”organized by Valentin Goranko from the University of the Witwater-
srand, Johannesburg, South Africa

– The workshop on “Proofs and Refutations in Non-classical Logics,” orga-
nized by Roy Dyckhoff from the University of St Andrews, Scotland, UK and
Didier Galmiche from LORIA, Henri Poincaré University, Nancy, France

– The workshop “Gentzen Systems and Beyond,” organized by Kai Brünnler
from the University of Bern, Switzerland, and George Metcalfe from Van-
derbilt University, Nashville, USA

VI Preface

Abstracts of the workshop papers were published separately as a technical
report of the University of Oslo.

It was a team effort that made the conference so successful. We are truly
grateful to the Steering Committee members for their support. And we partic-
ularly thank the local organizers for their hard work and help in making the
conference a success: Terje Aaberge, Roger Antonsen, Roar Fjellheim, Chris-
tian M. Hansen, Bjarne Holen, Magdalena Ivanovska, Espen H. Lian, Martin
G. Skjæveland, Audun Stolpe, and Evgenij Thorstensen.

July 2009 Martin Giese
Arild Waaler

Organization

Program and Conference Chairs

Martin Giese University of Oslo, Norway
Arild Waaler University of Oslo, Norway

Program Committee

Peter Baumgartner NICTA, Canberra, Australia
Bernhard Beckert University of Koblenz-Landau, Germany
Christoph Benzmüller Saarland University, Saarbrücken, Germany
Marc Bezem University of Bergen, Norway
Torben Braüner Roskilde University, Denmark
Agata Ciabattoni TU Wien, Austria
Marta Cialdea Mayer University of Rome 3, Italy
Stéphane Demri CNRS, Cachan, France
Roy Dyckhoff University of St Andrews, Scotland, UK
Ulrich Furbach University of Koblenz-Landau, Germany
Didier Galmiche LORIA, Henri Poincaré University, Nancy,

France
Valentin Goranko University of the Witwatersrand,

Johannesburg, South Africa
Rajeev Goré Australian National University, Canberra,

Australia
Reiner Hähnle Chalmers University, Göteborg, Sweden
Ullrich Hustadt University of Liverpool, UK
Christoph Kreitz University of Potsdam, Germany
George Metcalfe Vanderbilt University, Nashville, USA
Neil V. Murray University at Albany - SUNY, USA
Nicola Olivetti Paul Cézanne University, Marseille, France
Jens Otten University of Potsdam, Germany
Nicolas Peltier LIG, Grenoble, France
Ulrike Sattler University of Manchester, UK
Viorica

Sofronie-Stokkermans MPI, Saarbrücken, Germany
Frank Wolter University of Liverpool, UK

VIII Organization

Additional Referees

W. Ahrendt
F. Baader
T. Bolander
D. Bresolin
J. Brotherston
K. Brünnler
R. Bubel
E. Rodriguez Carbonell
S. Cerrito
M. Dam
C. Fermüller
O. Gasquet
M. Gebser
G. De Giacomo
L. Giordano
A. Haas

J.U. Hansen
M. Horridge
D. Hovland
S. Jacobs
E. Broch Johnsen
B. Konev
H. Kurokawa
M. Lange
D. Larchey-Wendling
B. Motik
D. Méry
C. Obermaier
A. Orlandini
B. Pelzer
F. Poggiolesi
A. Polonsky

G.L. Pozzato
V. Risch
G. Sandu
A. Sangnier
K. Sano
L. Santocanale
T. Schneider
L. Strassburger
T. Studer
L. Tranchini
D. Tsarkov
D. Walther
C. Weidenbach
C.-P. Wirth
A. Zamansky

Steering Committee

Rajeev Goré
(President) Australian National University, Canberra,

Australia
Bernhard Beckert University of Koblenz, Germany

(Vice President)
Peter Baumgartner NICTA, Canberra, Australia
Marta Cialdea Mayer Universita degli studi Roma Tre, Italy
Chris Fermüller TU Vienna, Austria
Stéphane Demri Ecole Normale Supérieure de Cachan, France
Nicola Olivetti Université Paul Cézanne, Marseille

Sponsoring Institutions

The Norwegian Research Council
OLF, the Norwegian Oil Industry Association
Gaz de France SUEZ
DNV
Computas AS
The Dept. of Informatics at the University of Oslo
The City of Oslo

Organization IX

Previous Meetings

1992 Lautenbach, Germany
1993 Marseille, France
1994 Abingdon, UK
1995 St. Goar, Germany
1996 Terrasini, Italy
1997 Pont-à-Mousson, France
1998 Oisterwijk, The Netherlands
1999 Saratoga Springs, USA
2000 St. Andrews, UK

2001 Siena, Italy (part of IJCAR)
2002 Copenhagen, Denmark
2003 Rome, Italy
2004 Cork, Ireland (part of IJCAR)
2005 Koblenz, Germany
2006 Seattle, USA (part of IJCAR)
2007 Aix-en-Provence, France
2008 Sydney, Australia (part of

IJCAR)

Table of Contents

Presenting Constraints (Invited Talk) . 1
Peter Jeavons

On the Use of Automata for Deciding Linear Arithmetic
(Invited Talk, Abstract) . 16

Pierre Wolper

Comparative Concept Similarity over Minspaces: Axiomatisation and
Tableaux Calculus . 17

Régis Alenda, Nicola Olivetti, and Camilla Schwind

A Schemata Calculus for Propositional Logic . 32
Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

Tableaux and Model Checking for Memory Logics . 47
Carlos Areces, Diego Figueira, Daniel Goŕın, and Sergio Mera

Canonical Constructive Systems . 62
Arnon Avron and Ori Lahav

A Novel Architecture for Situation Awareness Systems 77
Franz Baader, Andreas Bauer, Peter Baumgartner, Anne Cregan,
Alfredo Gabaldon, Krystian Ji, Kevin Lee, David Rajaratnam, and
Rolf Schwitter

On the Proof Theory of Regular Fixed Points . 93
David Baelde

Decidability for Priorean Linear Time Using a Fixed-Point Labelled
Calculus . 108

Bianca Boretti and Sara Negri

A Tableau-Based System for Spatial Reasoning about Directional
Relations . 123

Davide Bresolin, Angelo Montanari, Pietro Sala, and Guido Sciavicco

Terminating Tableaux for the Basic Fragment of Simple Type
Theory . 138

Chad E. Brown and Gert Smolka

Modular Sequent Systems for Modal Logic . 152
Kai Brünnler and Lutz Straßburger

Abduction and Consequence Generation in a Support System for the
Design of Logical Multiple-Choice Questions . 167

Marta Cialdea Mayer

XII Table of Contents

Goal-Directed Invariant Synthesis for Model Checking Modulo
Theories . 173

Silvio Ghilardi and Silvio Ranise

Taming Displayed Tense Logics Using Nested Sequents with Deep
Inference . 189

Rajeev Goré, Linda Postniece, and Alwen Tiu

Sound Global State Caching for ALC with Inverse Roles 205
Rajeev Goré and Florian Widmann

A Tableau System for the Modal μ-Calculus . 220
Natthapong Jungteerapanich

Terminating Tableaux for Graded Hybrid Logic with Global Modalities
and Role Hierarchies . 235

Mark Kaminski, Sigurd Schneider, and Gert Smolka

Prime Implicate Tries . 250
Andrew Matusiewicz, Neil V. Murray, and Erik Rosenthal

Proof Systems for a Gödel Modal Logic . 265
George Metcalfe and Nicola Olivetti

Generic Modal Cut Elimination Applied to Conditional Logics 280
Dirk Pattinson and Lutz Schröder

Proof Search and Counter-Model Construction for Bi-intuitionistic
Propositional Logic with Labelled Sequents . 295

Lúıs Pinto and Tarmo Uustalu

Automated Synthesis of Tableau Calculi . 310
Renate A. Schmidt and Dmitry Tishkovsky

Tableaux for Projection Computation and Knowledge Compilation 325
Christoph Wernhard

Author Index . 341

Presenting Constraints

Peter Jeavons�

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, UK

peter.jeavons@comlab.ox.ac.uk

Abstract. We describe the constraint satisfaction problem and show
that it unifies a very wide variety of computational problems. We dis-
cuss the techniques that have been used to analyse the complexity of
different forms of constraint satisfaction problem, focusing on the alge-
braic approach, and highlight some of the recent results in this area.

1 A Menagerie of Problems

Computational problems from many different areas involve finding values for
variables that satisfy certain restrictions. In this paper we will attempt to show
that it is useful to abstract the general form of such problems to obtain a generic
framework known as the constraint satisfaction problem. Bringing the problems
into a common framework draws attention to common aspects that they all
share, and allows very general analytical approaches to be developed. We will
survey some of these approaches, and the results that have been obtained in the
later sections.

First, we collect a range of examples to begin to illustrate the breadth of
problems that can be included under the general description of “finding values
for variables that satisfy certain restrictions”. This general description leaves
open the question of whether the values are chosen from a set that is finite or
infinite, continuous or discrete, structured or unstructured. It also leaves open
the question of how the restrictions are specified.

Example 1.1 (Linear Equations). One very important class of restrictions are
those obtained by specifying a system of linear equations that must hold be-
tween certain subsets of the variables. To solve a system of simultaneous linear
equations we must find values for variables that satisfy a conjunction of restric-
tions of this type, such as:

2x1 − 8x3 + 5x7 = 3 ∧
x3 − 2x4 = 0 ∧

x2 + 2x5 + 2x6 + 3x7 = −2

The notion of a linear equation implicitly requires the set of values taken by the
variables to have some algebraic structure: it must be possible to add and sub-
tract multiples of these values in some way. The complexity of solving a system
of such equations naturally depends on the nature of this algebraic structure.
� This research was supported by EPSRC research grant EP/D032636.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 P. Jeavons

If the set of allowable values is a field, allowing addition, subtraction, multi-
plication and division, then the problem is solvable in polynomial time, by an
algorithm such as Gaussian elimination that manipulates the set of equations
into an equivalent but simpler set. The field in question may be infinite (such as
the rationals, Q) or finite (such as the Galois field of order p, GF(p)).

However, if the set of values is not a field, but a more restricted algebraic
structure, such as a ring or group then we cannot use Gaussian elimination, or
any algorithm that relies on using division, so the complexity is less obvious. For
the ring of integers, Z, or any other principal ideal domain, we can appeal to
Bézout’s identity to find a solution efficiently, but for non-negative integers, N,
the problem is easily shown to be be NP-complete, even if we allow at most 3
variables per equation [5].

For finite sets of possible values a more general version of this problem has
recently been studied using the algebraic approach to constraint satisfaction
in [32], and a complete complexity classification has been obtained.

Example 1.2 (Polynomial Equations). A more general class of problems can be
obtained by relaxing the requirement for the specified restrictions to be linear,
and instead allowing arbitrary polynomial equations, such as:

2x2
1 − 8x3x4 + 5x7 − 3 = 0 ∧

x3 − 2x4x5x7 = 0 ∧
x3

2x3x
2
5 + 2x3

5 + 2x2
6 + 3x7 + 2 = 0

The notion of a polynomial again implies that the set of values taken by the
variables has some algebraic structure: it must be possible to add, subtract and
multiply these values in some way. The set of all polynomials over a field or ring R
with variables x1, . . . , xn, together with the standard addition and multiplication
operations on polynomials, itself forms a ring, which is denoted R[x1, . . . , xn].

The complexity of solving a system of such equations naturally depends on the
structure of this ring of polynomials. For example, when R = Z we are seeking
integer solutions to a polynomial with integer coefficients, which is well-known
to be undecidable [34]. On the other hand, when R = C we can decide whether
a system of polynomials has any solutions by calculating a Gröbner Basis for
the system, which can be done in doubly-exponential time [1]. Moreover, if the
values for each individual variable are restricted to a finite set, by adding a
univariate polynomial in each individual variable to the system, then a Gröbner
Basis can be computed in singly-exponential time [30]. This approach is explored
in more detail in [30] in connection with solution techniques for general constraint
satisfaction problems over finite sets of values.

Example 1.3 (Linear Inequalities). Another general class of problems can be
obtained by moving from equations to inequalities, such as:

2x1 − 8x3 + 5x7 ≤ 3 ∧
x3 − 2x4 ≥ 0 ∧

x2 + 2x5 + 2x6 + 3x7 ≤ −2

Presenting Constraints 3

In this case the set of possible values must be an ordered set with sufficient
algebraic structure to be able to add multiples of values.

If the set of possible values is Q, then solving such a system is a sub-problem
of the Linear Programming problem: it is the problem of deciding if a linear
program is feasible. Since linear programming can be solved in polynomial time,
this problem is clearly polynomial. However, if the set of possible values is Z, then
this problem is equivalent to Integer Programming, and hence NP-complete
(unless the total number of variables is bounded, see [33]).

If the set of possible values is finite, then the general problem is NP-complete,
but some tractable special cases have been identified using the algebraic approach
to constraint satisfaction. For example, if each inequality is ≥ and has at most
one negative coefficient, then the system can be solved in polynomial time [29].

Example 1.4 (Disequalities). Another general class of problems can be obtained
by moving from inequalities to disequalities, such as:

2x1 − 8x3 + 5x7 �= 3 ∧
x3 − x4 �= 0 ∧

x2 + 2x5 + 2x6 + 3x7 �= −2

In this case, if the set of possible values is infinite, then a solution always exists,
so the problem is trivial. However, if the set of possible values is finite, with at
least 3 elements, then the general problem is NP-complete because we can use
a system of disequalities of the form xi − xj �= 0 to model an arbitrary Graph

Colouring problem [18].

2 The Constraint Satisfaction Problem - 3 Definitions

The problems discussed in the previous section arise in many different contexts,
and have been studied using a wide variety of ad hoc techniques, but they all have
the same logical form. If we fix a relational structure B = (D, R1, R2, . . .), where
the universe D is the set of possible values taken by our variables, and R1, R2, . . .
are relations over D, then each problem instance is given by a primitive positive
sentence, Φ, involving relation symbols for the relations in B, and the question is
simply whether Φ is true in B. A first-order formula is called primitive positive
over B if it is of the form

∃x1∃x2 . . . ∃xn ψ1 ∧ · · · ∧ ψm

where the ψi are atomic formulas, i.e., formulas of the form R(xi1 , . . . , xik
) where

R is a relation symbol for a k-ary relation from B.
Problems of this form are known as constraint satisfaction problems, and

they have been very extensively studied, especially during the past 10 years (see,
for example, [2,8,10,11,13,14,16,22,31]).

Definition 2.1. An instance of the constraint satisfaction problem (CSP) is
given by a primitive positive sentence, Φ, over a fixed relational structure, B.
The question is whether Φ is true in B.

4 P. Jeavons

This logical formulation of constraint satisfaction allows some classical com-
binatorial problems to be formulated very naturally.

Example 2.2 (Satisfiability). The standard propositional satisfiability problem
for ternary clauses, 3-Sat, consists in determining whether it is possible to satisfy
a Boolean formula given in CNF as a conjunction of ternary clauses.

This can be viewed as a constraint satisfaction problem by fixing the structure
B3SAT to be ({0, 1}, R1, . . . , R8), where the Ri are the 8 relations definable by
a single ternary clause. For example, the clause x ∨ ¬y ∨ ¬z can be written as
R1(x, y, z), where R1 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
An instance of 3-Sat corresponds to a primitive positive sentence over B3SAT

with a conjunct for each clause.

Example 2.3 (Graph Colouring). The standard Graph k-Colourability prob-
lem consists in determining whether it is possible to assign k colours to the vertices
of a given graph so that adjacent vertices are assigned different colours.

This can be viewed as a constraint satisfaction problem by fixing the struc-
ture BkCOL to be ({1, . . . , k}, �=), where �= is the binary disequality relation on
{1, . . . , k} given by {(i, j) : i, j ∈ {1, . . . , k}, i �= j}.

An instance of Graph k-Colouring corresponds to a primitive positive
sentence over BkCOL with a conjunct for each edge of the graph.

A related strand of research has been the development of programming lan-
guages to facilitate the expression of practical constraint satisfaction problems,
and software tools to solve such problems. This approach is known as constraint
programming [37].

In the field of constraint programming, a constraint satisfaction problem is
usually defined in a more operational way, as follows.

Definition 2.4. An instance of the constraint satisfaction problem (CSP) is
given by a triple (V, Δ, C), where V is a finite set of variables, Δ is a function
which maps each element of V to a set of possible values, called its domain,
and C is a finite set of constraints.

Each constraint c ∈ C is a pair, (σ, R), where σ = 〈 σ[1], σ[2], . . . , σ[r] 〉 is a
sequence of variables from V , called the scope, and R ⊆ Δ(σ[1])× · · · ×Δ(σ[r])
is a relation that defines the assignments to the variables in σ allowed by this
constraint.

A solution to a CSP instance is a function which maps each variable to a
value from its domain which is consistent with all of the constraints.

This formulation focuses attention on the variables, the domains and the
constraints; these are the key data structures in a software system for solving
constraint satisfaction problems. In this formulation the constraints are often
represented by oracles - black-box algorithms for a particular constraint type,
known as “propagators” [20,37], which communicate information with each other
during the search for a solution by modifying the domains of the variables.

Many real-world problems such as timetabling and scheduling, are captured
very naturally in this formulation, as well as classic combinatorial search prob-
lems and puzzles.

Presenting Constraints 5

Example 2.5 (Sudoku). In a Sudoku puzzle the aim is to fill in a 9 × 9 grid of
squares with the digits 1, . . . , 9 in such a way that each digit occurs exactly once
in each row, each column, and each of 9 specified 3 × 3 subgrids. Each specific
instance of the puzzle has a selection of grid entries already filled-in, and the
aim is to fill in the remaining entries.

One way to model this problem as a constraint satisfaction problem (V, Δ, C)
is to choose the set of variables V to be the 81 grid squares, and the function Δ
to give the pre-selected value on all filled grid squares, and the set {1, 2, . . . , 9}
on all other grid squares. The set C then contains 27 constraints, whose scopes
are the 9 rows, the 9 columns, and the 9 specified 3 × 3 sub-grids, and whose
relations are “all-different”.

By using specialised propagation algorithms for the “all-different” constraints,
combined with standard backtrack search, standard constraint solving software
tools are able to solve (generalised) Sudoku instances extremely efficiently [40].

It is easy to translate from our second formulation of the constraint satisfaction
problem (Definition 2.4) to our original formulation (Definition 2.1). To do this,
simply collect together all the possible values occurring in the domains given
by Δ into a single set D, and then collect together the relations over D that
occur in the constraints of C, to give a relational structure B with universe D.
The instance can then be written as a primitive positive sentence over B with a
conjunct R(σ[1], . . . , σ[r]) for each constraint (σ, R) of arity r.

In a given CSP instance there may be several constraints with the same con-
straint relation, but different scopes. If we collect together the scopes associated
with a particular constraint relation we get a set of tuples which is itself a rela-
tion, but a relation over the set of variables, V . If we do this for each constraint
relation occurring in our problem, we obtain a collection of such relations over
V , which can be viewed as a relational structure A with universe V . Note that
each relation E in A corresponds to a relation R in B of the same arity, and
vice versa. This is captured in standard algebraic terminology by saying that
the two relational structures, A and B are similar. Note also that a solution
to the original CSP instance is a mapping from V to D that maps any tuple
of variables related by a relation E in A to a tuple of values which are related
by the corresponding relation R in B. This is captured in standard algebraic
terminology by saying that a solution is a homomorphism from A to B.

These observations gives rise to our third alternative formulation of the con-
straint satisfaction problem.

Definition 2.6. An instance of the constraint satisfaction problem (CSP) is
given by a pair of similar relational structures A and B. The question is whether
there exists a homomorphism from A to B.

This clean algebraic formulation of constraint satisfaction was introduced by
Feder and Vardi [16] (and independently in [25]) and has turned out to be very
useful for the analysis of the complexity of different forms of the problem.

Example 2.7 (Graph Homomorphism). The standard Graph Homomorphism

problem consists in determining whether it is possible to map the vertices of a

6 P. Jeavons

given graph G to the vertices of another given graph H so that adjacent vertices
of G are mapped to adjacent vertices of H .

This can be viewed as a constraint satisfaction problem by viewing G and H as
similar relational structures, each with a single binary relation. A homomorphism
between these structures is precisely a mapping with the desired properties.

Example 2.8 (Graph Colouring). The standard Graph k-Colourability prob-
lem described in Example 2.3 can be viewed as the constraint satisfaction problem
which asks whether there is a homomorphism from the given graph G to the struc-
ture BkCOL, defined in Example 2.3, which corresponds to a complete graph on
k vertices.

This formulation of the problem makes it easy to see that the Graph k-
Colourability problem is a special case of Graph Homomorphism.

Example 2.9 (Clique). The standard k-Clique problem consists in determining
whether a given graph G has a clique of size k, that is, a set of k vertices which
are fully connected. This can be viewed as a constraint satisfaction problem
which asks whether there is a homomorphism from the complete graph on k
vertices to the given graph G.

This formulation of the problem makes it easy to see that k-Clique is a
special case of Graph Homomorphism.

3 Restricted Forms of CSP

It is clear from the examples in the previous sections that the general CSP is at
least NP-hard. This has prompted many researchers to investigate the ways in
which restricting the problem can reduce its complexity. We will call a restricted
version of the CSP tractable if there is a polynomial-time algorithm to determine
whether any instance of the restricted problem has a solution.

The algebraic formulation of the CSP, given in Definition 2.6, clearly identifies
two separate aspects of the specification of an instance: the source structure, A,
and the target structure, B.

Definition 3.1. Given classes of structures, A and B, we define the problem
CSP(A,B) to be the class of CSP instances (A,B), where A ∈ A and B ∈ B.

The source structure A specifies the scopes of the constraints in Definition 2.4,
so if we restrict the possible source structures that we allow in an instance, then
we are restricting the set of variables and the ways in which the constraints may
be imposed on those variables.

The target structure B specifies the constraint relations in Definition 2.4, so
if we restrict the possible target structures that we allow in an instance, then we
are restricting the set of possible values and the types of constraints that may
be imposed on those values.

If B is the class of all structures, we write CSP(A,−) in place of CSP(A,B). In
this case we impose no restriction on the type of constraint, but some restriction
on how the constraints may overlap. Such restrictions are known as structural

Presenting Constraints 7

restrictions, and have been widely studied [11,14,15,17,22,23,24,35]. One example
of a constraint satisfaction problem with restricted structure is the k-Clique

problem, described in Example 2.9, which is tractable for any bounded k, but
NP-complete if k is unbounded. In general, the structural restrictions that ensure
tractability are those that enforce a bound on some measure of width in the
class of source structures allowed [22] (although the picture is more complicated
if there is no fixed bound on the arity of the constraints [21]).

If A is the class of all structures, we write CSP(−,B) in place of CSP(A,B). In
this case we impose no restriction on the way the constraints are placed, but some
restriction on the forms of constraints that may be imposed. Such restrictions
are known as constraint language restrictions, and have also been widely stud-
ied [2,8,9,10,16,29,28]. One example of a constraint satisfaction problem with
restricted constraint language is the Graph k-Colourability problem, de-
scribed in Example 2.3, which is tractable when k ≤ 2, but NP-complete for
k ≥ 3. In the remainder of this paper we will focus on techniques to deter-
mine the complexity of the problems obtained by imposing constraint language
restrictions.

Of course it is possible to impose other kinds of restrictions on the CSP,
by restricting the possible pairs (A,B) that are allowed in instances in some
other way. Such restrictions are sometimes referred to as hybrid restrictions [36],
because they involve simultaneous restrictions on both the source structure and
the target structure. Hybrid restrictions have been much less widely studied,
although some interesting cases have recently been identified [12,38].

4 Constraint Languages, Expressive Power, and
Reductions

From now on we shall focus on problems of the form CSP(−,B). To simplify the
discussion, we shall assume that the class of structures B contains all structures
with universe D and relations chosen from L, for some fixed set D (with |D| ≥ 2)
and some fixed set L of relations over D. We will call D the domain and L the
constraint language for our problem, and we will write the problem as CSP(L),
rather than as CSP(−,B). Note that the domain D and the constraint language
L may each be either finite or infinite.

Different choices of constraint language L give rise to a wide range of different
problems, as the following examples indicate:

Example 4.1. If LLIN denotes the set of all relations defined by linear equa-
tions over Q, then CSP(LLIN) is the problem of solving linear equations over Q
described in Example 1.1.

Example 4.2. If LkCOL denotes the set {�=k} containing the single binary dise-
quality relation over the set {1, 2, . . . , k}, defined in Example 2.3, then
CSP(LkCOL) is the Graph k-Colourability problem described in
Example 2.3.

8 P. Jeavons

Example 4.3. If L3SAT denotes the set {R1, R2, . . . , R8} consisting of all rela-
tions over the set {0, 1} which are defined by a single ternary clause, as de-
scribed in Example 2.2, then CSP(L3SAT) is the 3-Sat problem described in
Example 2.2.

Example 4.4. If L1in3SAT denotes the set {T } containing the single relation
T = {〈 1, 0, 0 〉 , 〈 0, 1, 0 〉 , 〈 0, 0, 1 〉}, then CSP(L1in3SAT), corresponds precisely
to the One-In-Three Satisfiability problem [39], which is NP-complete.

Example 4.5. If LInterval denotes the set {R≤1} containing the single relation

R≤1 = {〈 a, b 〉 : a, b ∈ Q, a − b ≤ 1},

then one element of CSP(LInterval) is the CSP instance P , which has 4 con-
straints, {C1, C2, C3, C4}, defined as follows:

– C1 = (〈 v1, v2 〉 , R≤1);
– C2 = (〈 v2, v3 〉 , R≤1);

– C3 = (〈 v3, v2 〉 , R≤1);
– C4 = (〈 v3, v4 〉 , R≤1).

The structure of this problem is illustrated in Figure 1.

� � � �� ��
�

R≤1

R≤1

R≤1

R≤1

v1

v2

v3

v4

Fig. 1. The CSP defined in Example 4.5

Note that for any problem in CSP(L), the explicit constraint relations must be
elements of L, but there may be implicit restrictions on some subsets of the
variables for which the corresponding relations are not elements of L, as the
next example indicates.

Example 4.6. Reconsider the relation R≤1 and the instance P from Example 4.5.
Note that there is no explicit constraint in P on the pair 〈 v1, v3 〉. However, it is

clear that the possible pairs of values which can be taken by this pair of variables
are precisely the elements of the relation R≤2 = {〈a, b 〉 : a, b ∈ Q, a− b ≤ 2}.

Similarly, the pairs of values which can be taken by the pair of variables 〈 v1, v4 〉
are precisely the elements of the relation R≤3 = {〈a, b 〉 : a, b ∈ Q, a− b ≤ 3}.

Finally, note that there are two constraints on the pair of variables 〈 v2, v3 〉.
The possible pairs of values which can be taken by this pair of variables are
precisely the elements of the relation S = {〈a, b 〉 : a, b ∈ Q,−1 ≤ (a − b) ≤ 1}.

A natural way to capture these observations is to say that the relations
R≤2, R≤3 and S can all be “expressed” using the relation R≤1.

Presenting Constraints 9

Definition 4.7. A relation R can be expressed in a constraint language L if
there exists an instance P in CSP(L), and a list, s, of variables, such that the
solutions to P when restricted to s give precisely the tuples of R.

For any constraint language L, the set of all relations which can be expressed in
L will be called the expressive power of L, and will be denoted L+.

Example 4.8. By generalising the constructions given in Example 4.6, it is clear
that when L = {R≤1}, L+ contains all binary relations of the form

{〈 a, b 〉 : a, b ∈ Q, −n1 ≤ (a − b) ≤ n2}

where n1 and n2 are arbitrary positive integers, or ∞, as well as relations of all
other arities.

The next result is simple but fundamental: it shows that if we can express a
relation in a constraint language, then we can add it to the language without
changing the complexity of the associated class of problems.

Proposition 4.9 ([25]). For any constraint language L and any relation R
which can be expressed in L, CSP(L ∪ {R}) is reducible to CSP(L) in linear
time and logarithmic space.

Corollary 4.10. For any constraint language L, and any finite constraint lan-
guage L0, if L0 ⊆ L+, then CSP(L0) is reducible to CSP(L) in log space.

Hence the notion of expressive power provides a powerful general tool for finding
reductions, and hence comparing and analysing different forms of constraint
satisfaction problems over different constraint languages.

5 Calculating Expressive Power

Definition 4.7 states that a relation R can be expressed in a language L if there
is some problem in CSP(L) which imposes that relation on some of its variables.
Taking the logical view of the CSP given in Definition 2.1, this means that a
relation can be expressed in a language L if it can be defined by a primitive
positive formula over L. The question of what can be defined by a primitive pos-
itive formula is a fundamental question in universal algebra, and a useful answer
was obtained for relations over a finite domain in the 1960’s [19,6]. This result
was recently extended to relations over a countably infinite domain that are ω-
categorical1 [4]. The answer in both cases involves certain algebraic operations
known as polymorphisms, which are defined as follows:

Definition 5.1. An operation f : Dk → D is a polymorphism of an n-ary re-
lation R if the tuple (f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])) ∈ R for all choices
of tuples t1, . . . , tk ∈ R.
1 A countably infinite structure is called ω-categorical if all countable models of its

first-order theory are isomorphic. An important example is the structure (Q, <).

10 P. Jeavons

An operation f is said to be a polymorphism of a relational structure A if f is
a polymorphism of every relation of A. In fact, it can be shown that the k-ary
polymorphisms of a structure A are precisely the homomorphisms from Ak to
A for the product structure Ak.

Theorem 5.2 ([19,6,4]). Let A be a finite or ω-categorical structure. A rela-
tion R has a primitive-positive definition over A if and only if every polymor-
phism of A is a polymorphism of R.

For any constraint language L over a finite domain D, Theorem 5.2 tells us that
the expressive power of L is determined by the polymorphisms of L, which can
themselves be seen as solutions to a constraint satisfaction problem in CSP(L).

A straightforward consequence of this result is that, for any language over a
finite domain, there is a “universal construction” which can be used to determine
whether a relation is expressible in that language.

Definition 5.3. Let L be a set of relations over a finite set D.
For any natural number m > 0, the indicator problem for L of order m is

defined to be the CSP instance IP(L, m) with set of variables Dm, each with
domain D, and constraints {C1, C2, . . . , Cq}, where q =

∑
R∈L |R|m. For each

R ∈ L, and for each sequence t1, t2, . . . , tm of tuples from R, there is a constraint
Ci = 〈 si, R 〉 with si = 〈 v1, v2, . . . , vn 〉, where n is the arity of R and vj =
〈 t1[j], t2[j], . . . , tm[j] 〉 for j = 1 to n.

Note that for any set of relations L over a set D, IP(L, m) has |D|m variables,
and each variable corresponds to an m-tuple over D. A concrete example of an
indicator problem is given below, and more examples can be found in [27]. It is
shown in [28] that the solutions to IP(L, m) are precisely the polymorphisms of
L of arity m, and hence, by Theorem 5.2, we have:

Corollary 5.4. Let L be a set of relations over a finite set D, let R = {t1, . . . , tm}
be any relation over D, and let n be the arity of R.

The relation R can be expressed in the language L if and only if the tuples of R
are given by the solutions to IP(L, m) restricted to the variables2 v1, v2, . . . , vn,
where vj = 〈 t1[j], t2[j], . . . , tm[j] 〉 for j = 1 to n.

Example 5.5. Let L be the set containing the single binary relation, R×, over
the set D = {0, 1, 2}, defined as follows:

R× = {〈 0, 0 〉 , 〈 0, 1 〉 , 〈 1, 0 〉 , 〈 1, 2 〉 , 〈 2, 1 〉 , 〈 2, 2 〉}

The indicator problem for {R×} of order 2, IP({R×}, 2), has 9 variables and 36
constraints. The set of variables is

{〈 0, 0 〉 , 〈 0, 1 〉 , 〈 0, 2 〉 , 〈 1, 0 〉 , 〈 1, 1 〉 , 〈 1, 2 〉 , 〈 2, 0 〉 , 〈 2, 1 〉 , 〈 2, 2 〉},

and the set of constraints is
2 This list of variables is not always uniquely defined - re-ordering the elements of R

may give a different list, but the same result holds for all such lists.

Presenting Constraints 11

{ ((〈 0, 0 〉 , 〈 0, 0 〉), R×), ((〈 0, 0 〉 , 〈 0, 1 〉), R×), ((〈 0, 0 〉 , 〈 1, 0 〉), R×), ((〈 0, 0 〉 , 〈 1, 1 〉), R×),
((〈 0, 1 〉 , 〈 0, 0 〉), R×), ((〈 0, 1 〉 , 〈 0, 2 〉), R×), ((〈 0, 1 〉 , 〈 1, 0 〉), R×), ((〈 0, 1 〉 , 〈 1, 2 〉), R×),
((〈 0, 2 〉 , 〈 0, 1 〉), R×), ((〈 0, 2 〉 , 〈 0, 2 〉), R×), ((〈 0, 2 〉 , 〈 1, 1 〉), R×), ((〈 0, 2 〉 , 〈 1, 2 〉), R×),
((〈 1, 0 〉 , 〈 0, 0 〉), R×), ((〈 1, 0 〉 , 〈 0, 1 〉), R×), ((〈 1, 0 〉 , 〈 2, 0 〉), R×), ((〈 1, 0 〉 , 〈 2, 1 〉), R×),
((〈 1, 1 〉 , 〈 0, 0 〉), R×), ((〈 1, 1 〉 , 〈 0, 2 〉), R×), ((〈 1, 1 〉 , 〈 2, 0 〉), R×), ((〈 1, 1 〉 , 〈 2, 2 〉), R×),
((〈 1, 2 〉 , 〈 0, 1 〉), R×), ((〈 1, 2 〉 , 〈 0, 2 〉), R×), ((〈 1, 2 〉 , 〈 2, 1 〉), R×), ((〈 1, 2 〉 , 〈 2, 2 〉), R×),
((〈 2, 0 〉 , 〈 1, 0 〉), R×), ((〈 2, 0 〉 , 〈 1, 1 〉), R×), ((〈 2, 0 〉 , 〈 2, 0 〉), R×), ((〈 2, 0 〉 , 〈 2, 1 〉), R×),
((〈 2, 1 〉 , 〈 1, 0 〉), R×), ((〈 2, 1 〉 , 〈 1, 2 〉), R×), ((〈 2, 1 〉 , 〈 2, 0 〉), R×), ((〈 2, 1 〉 , 〈 2, 2 〉), R×),
((〈 2, 2 〉 , 〈 1, 1 〉), R×), ((〈 2, 2 〉 , 〈 1, 2 〉), R×), ((〈 2, 2 〉 , 〈 2, 1 〉), R×), ((〈 2, 2 〉 , 〈 2, 2 〉), R×) }.

This problem has 32 solutions, which may be expressed in tabular form as
follows:

Variables
〈 0, 0 〉 〈 0, 1 〉 〈 0, 2 〉 〈 1, 0 〉 〈 1, 1 〉 〈 1, 2 〉 〈 2, 0 〉 〈 2, 1 〉 〈 2, 2 〉

Solution 1 0 0 0 0 0 0 0 0 0
Solution 2 0 0 0 0 0 0 0 1 0
Solution 3 0 0 0 0 0 1 0 0 0
Solution 4 0 0 0 0 1 0 0 0 0
Solution 5 0 0 0 0 1 0 0 1 0
Solution 6 0 0 0 0 1 1 0 0 0
Solution 7 0 0 0 1 0 0 0 0 0
Solution 8 0 0 0 1 0 1 0 0 0
Solution 9 0 0 0 1 1 0 0 0 0
Solution 10 0 0 0 1 1 1 0 0 0
Solution 11 0 0 0 1 1 1 2 2 2
Solution 12 0 1 0 0 0 0 0 0 0
Solution 13 0 1 0 0 0 0 0 1 0
Solution 14 0 1 0 0 1 0 0 0 0
Solution 15 0 1 0 0 1 0 0 1 0
Solution 16 0 1 2 0 1 2 0 1 2
Solution 17 2 1 0 2 1 0 2 1 0
Solution 18 2 1 2 2 1 2 2 1 2
Solution 19 2 1 2 2 1 2 2 2 2
Solution 20 2 1 2 2 2 2 2 1 2
Solution 21 2 1 2 2 2 2 2 2 2
Solution 22 2 2 2 1 1 1 0 0 0
Solution 23 2 2 2 1 1 1 2 2 2
Solution 24 2 2 2 1 1 2 2 2 2
Solution 25 2 2 2 1 2 1 2 2 2
Solution 26 2 2 2 1 2 2 2 2 2
Solution 27 2 2 2 2 1 1 2 2 2
Solution 28 2 2 2 2 1 2 2 1 2
Solution 29 2 2 2 2 1 2 2 2 2
Solution 30 2 2 2 2 2 1 2 2 2
Solution 31 2 2 2 2 2 2 2 1 2
Solution 32 2 2 2 2 2 2 2 2 2

By Corollary 5.4, to verify that the relation R1 = {〈 0, 0 〉 , 〈 2, 2 〉} can be ex-
pressed in the language {R×}, we simply have to check that the restriction of
this set of solutions to the pair of (identical) variables 〈 0, 2 〉 and 〈 0, 2 〉 gives
precisely the tuples 〈 0, 0 〉 and 〈 2, 2 〉 of R1.

Conversely, to establish that the relation R2 = {〈 0, 0 〉 , 〈 0, 1 〉} cannot be ex-
pressed in the language {R×}, we simply observe that the restriction of this set of
solutions to the variables 〈 0, 0 〉 and 〈 0, 1 〉 gives the tuples 〈 0, 0 〉 , 〈 0, 1 〉 , 〈 2, 1 〉
and 〈 2, 2 〉, which are not all contained in R2. (The same result is obtained by
restricting to the variables 〈 0, 0 〉 and 〈 1, 0 〉.)

12 P. Jeavons

6 Complexity

The results presented above have led to some very general techniques to identify
reductions and hence determine the complexity of CSP(L).

Definition 6.1. A constraint language, L, is said to be tractable if CSP(L′)
can be solved in polynomial time, for each finite subset L′ ⊆ L.

A constraint language, L, is said to be NP-hard if CSP(L′) is NP-hard, for
some finite subset L′ ⊆ L.

It has recently been shown that any computational problem is polynomial-time
Turing equivalent to a problem of the form CSP(L) for some constraint language
L over an infinite domain D [3]. However, for any constraint language L over a
finite domain D, CSP(L) lies in the complexity class NP, because a solution can
be verified in polynomial time (assuming that membership in each relation of L
can be verified in polynomial time).

By Proposition 4.9, we can show that many languages are NP-complete by
simply showing that they can express some known NP-complete language.

Example 6.2. Recall the NP-complete language L1in3SAT described in Exam-
ple 4.4, consisting of a single relation T containing 3 tuples.

By Corollary 5.4, for any language L, and any two domain elements d0, d1,
if the solutions to IP(L, 3), restricted to the variables 〈 d1, d0, d0 〉 , 〈 d0, d1, d0 〉
and 〈 d0, d0, d1 〉 is equal to {〈 d1, d0, d0 〉 , 〈 d0, d1, d0 〉 , 〈 d0, d0, d1 〉}, then L can
express a relation isomorphic to T , and hence is NP-complete.

In particular, if IP(L, 3) has only 3 solutions then L is NP-complete.

Note that this provides a purely mechanical procedure to establish NP-
completeness of a constraint language, without having to design any specific re-
ductions, or invent any new gadgets or constructions, as the following example
illustrates.

Example 6.3. Reconsider the relation R× over {0, 1, 2}, defined in Example 5.5.
The language {R×} is clearly tractable, because any problem in CSP({R×})

has the trivial solution in which every variable takes the value 0.
However, if we consider the language L0 = {R×, R0}, where R0 = {〈 0, 1, 2 〉}

then we find that the indicator problem for L0 of order 3, IP(L0, 3), with 27
variables and 217 constraints, has only 3 solutions. Hence, L0 is NP-complete.

For any constraint language L, the indicator problem IP(L, 3) has at least 3
solutions (all 3 projection operations are always solutions). Hence the only way
that a language can fail to be NP-complete, is if it has additional solutions, or
in other words, additional polymorphisms.

Example 6.4. The language LLIN defined in Example 4.1 contains precisely
those relations with the ternary polymorphism f defined by f(x, y, z) = x−y+z.
In fact, having this single polymorphism is sufficient to ensure tractability for
any constraint language over a (finite or infinite) field [28,2].

Presenting Constraints 13

Example 6.5. Let L be any constraint language over the domain {0, 1}.
In this case CSP(L) corresponds exactly to the Generalised Satisfiability

problem [18], and it is known that L is NP-complete unless it falls into one of
the following 6 classes [39]:

Class 0a All relations contain the tuple 〈 0, 0, . . . , 0 〉.
Class 0b All relations contain the tuple 〈 1, 1, . . . , 1 〉.
Class Ia All relations can be defined using Horn clauses.
Class Ib All relations can be defined using anti-Horn clauses3.
Class II All relations can be defined using clauses with at most 2 literals.
Class III All relations can be defined using linear equations over Z2.

The indicator problem for L of order 3, IP(L, 3), has 8 variables, corresponding
to the 8 possible Boolean sequences of length 3. It has 256 possible solutions, cor-
responding to the 256 possible assignments of Boolean values to these 8 variables.

Amongst these 256 possible solutions, we can identify 6 distinguished assign-
ments as shown in the following table.

Variables
〈 0, 0, 0 〉 〈 0, 0, 1 〉 〈 0, 1, 0 〉 〈 0, 1, 1 〉 〈 1, 0, 0 〉 〈 1, 0, 1 〉 〈 1, 1, 0 〉 〈 1, 1, 1 〉

Class 0a - Constant 0 0 0 0 0 0 0 0 0
Class 0b - Constant 1 1 1 1 1 1 1 1 1
Class Ia - Horn 0 0 0 0 0 0 0 1
Class Ib - Anti-Horn 0 1 1 1 1 1 1 1
Class II - 2-Sat 0 0 0 1 0 1 1 1
Class III - Linear 0 1 1 0 1 0 0 1

It can be shown [26] that the language L falls into one of the 6 tractable
classes described above if and only if IP(L, 3) has the corresponding solution,
as shown in this table, and hence L has the corresponding polymorphism.

There has been considerable progress in identifying classes of polymorphisms
which are sufficient to ensure tractability (see [9] for a recent survey). The set
of polymorphisms of a constraint language is closed under composition, and can
be viewed as the set of term operations of an algebra [8]; some deep algebraic
ideas have been used to investigate the possible forms such a set can take [9],
leading to a number of intriguing new formulations of the following dichotomy
conjecture originally proposed in [16]:

Conjecture 6.6 ([8,9]). Let L be a constraint language over a finite domain, such
that L contains all unary constant relations. If L has a polymorphism, f , that sat-
isfies the identities f(y, x, x, . . . , x) = f(x, y, x, . . . , x) = . . . = f(x, x, . . . , x, y),
then it is tractable. Otherwise it is NP-complete.

Conjecture 6.6 is currently known to hold for domains of size 2 (Example 6.5)
and 3 [10,9] and for languages over any finite domain containing a single binary
symmetric relation [7] (see Example 2.7). Assuming that P �=NP, the condition
stated in the conjecture is known to be a necessary condition for tractability [9];
it remains to be shown whether it is always sufficient.
3 An anti-Horn clause is a disjunction of literals, with at most one negative literal.

14 P. Jeavons

References

1. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1993)

2. Bodirsky, M.: Constraint satisfaction problems with infinite templates. In:
Creignou, N., et al. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 196–
228. Springer, Heidelberg (2008)

3. Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complex-
ity. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 184–196.
Springer, Heidelberg (2008)

4. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous
templates. Journal of Logic and Computation 16, 359–373 (2006)

5. Bodirsky, M., Nordh, G., von Oertzen, T.: Integer programming with 2-variable
equations and 1-variable inequalities. Inf. Proc. Letters 109, 572–575 (2009)

6. Bodnarchuk, V., Kaluzhnin, L., Kotov, V., Romov, B.: Galois theory for Post
algebras. I. Cybernetics and Systems Analysis 5, 243–252 (1969)

7. Bulatov, A.: H-coloring dichotomy revisited. Theoretical Computer Sci-
ence 349(1), 31–39 (2005)

8. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

9. Bulatov, A., Valeriote, M.: Recent results on the algebraic approach to the CSP.
In: Creignou, N., et al. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp.
68–92. Springer, Heidelberg (2008)

10. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-
element set. Journal of the ACM 53(1), 66–120 (2006)

11. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for
constraint satisfaction problems. Journal of Computer and System Sciences 74,
721–743 (2007)

12. Cooper, M., Jeavons, P., Salamon, A.: Hybrid tractable CSPs which generalize
tree structure. In: ECAI 2008, Proceedings of the 18th European Conference on
Artificial Intelligence, Patras, Greece, July 21–25, 2008, pp. 530–534. IOS Press,
Amsterdam (2008)

13. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Con-
straint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and
Applications, vol. 7. Society for Industrial and Applied Mathematics, Philadelphia
(2001)

14. Dalmau, V., Kolaitis, P., Vardi, M.: Constraint satisfaction, bounded treewidth,
and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470,
pp. 310–326. Springer, Heidelberg (2002)

15. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelli-
gence 38, 353–366 (1989)

16. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing 28, 57–104 (1998)

17. Freuder, E.: A sufficient condition for backtrack-bounded search. Journal of the
ACM 32, 755–761 (1985)

18. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

Presenting Constraints 15

19. Geiger, D.: Closed systems of functions and predicates. Pacific Journal of Math-
ematics 27, 95–100 (1968)

20. Green, M., Jefferson, C.: Structural tractability of propagated constraints. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 372–386. Springer, Heidelberg
(2008)

21. Grohe, M.: The structure of tractable constraint satisfaction problems. In:
Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 58–72.
Springer, Heidelberg (2006)

22. Grohe, M.: The complexity of homomorphism and constraint satisfaction prob-
lems seen from the other side. Journal of the ACM 54, 1–24 (2007)

23. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: SODA
2006: Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algo-
rithm, pp. 289–298. ACM Press, New York (2006)

24. Gyssens, M., Jeavons, P., Cohen, D.: Decomposing constraint satisfaction prob-
lems using database techniques. Artificial Intelligence 66(1), 57–89 (1994)

25. Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical
Computer Science 200, 185–204 (1998)

26. Jeavons, P., Cohen, D.: An algebraic characterization of tractable constraints. In:
Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 633–642. Springer,
Heidelberg (1995)

27. Jeavons, P., Cohen, D., Gyssens, M.: A test for tractability. In: Freuder, E.C. (ed.)
CP 1996. LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)

28. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of
the ACM 44, 527–548 (1997)

29. Jeavons, P., Cooper, M.: Tractable constraints on ordered domains. Artificial In-
telligence 79(2), 327–339 (1995)

30. Jefferson, C., Jeavons, P., Green, M., van Dongen, M.: Representing and solving
finite-domain constraint problems using systems of polynomials. Technical Report
RR-07-08, Oxford University Computing Laboratory (2007)

31. Jonsson, P., Krokhin, A.: Recognizing frozen variables in constraint satisfaction
problems. Theoretical Computer Science 329(1-3), 93–113 (2004)

32. Larose, B., Zádori, L.: Taylor terms, constraint satisfaction and the complexity of
polynomial equations over finite algebras. International Journal of Algebra and
Computation 16, 563–582 (2006)

33. Lenstra, H.: Integer programming with a fixed number of variables. Mathematics
of Operations Research 8, 538–548 (1983)

34. Matijasevič, J., Robinson, J.: Reduction of an arbitrary Diophantine equation to
one in 13 unknowns. Acta Arithmeticae 27, 521–553 (1975)

35. Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences 7, 95–132 (1974)

36. Pearson, J., Jeavons, P.: A survey of tractable constraint satisfaction problems.
Technical Report CSD-TR-97-15, Royal Holloway, University of London (July
1997)

37. Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Program-
ming. Elsevier, Amsterdam (2006)

38. Salamon, A., Jeavons, P.: Perfect constraints are tractable. In: Stuckey, P.J. (ed.)
CP 2008. LNCS, vol. 5202, pp. 524–528. Springer, Heidelberg (2008)

39. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings 10th ACM
Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

40. Simonis, H.: Sudoku as a constraint problem. In: CP Workshop on Modeling and
Reformulating Constraint Satisfaction Problems, pp. 13–27 (2005)

On the Use of Automata for Deciding
Linear Arithmetic

Pierre Wolper

Université de Liège, Belgium

Abstract of Invited Talk

This talk presents a survey of automata-based techniques for representing and
manipulating linear arithmetic constraints. After introducing the basic concepts
used in this approach, both representing integer constraints by finite-word au-
tomata and real constraints by infinite-word automata is discussed. Various re-
sults about the construction of automata from constraints and about the specific
properties of automata representing arithmetic constraints are then presented.
Finally, it is shown how this approach leads to simple and natural decision pro-
cedures that are in some ways related to tableaux.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, p. 16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Comparative Concept Similarity over Minspaces:
Axiomatisation and Tableaux Calculus

Régis Alenda1, Nicola Olivetti1, and Camilla Schwind2

1 LSIS - UMR CNRS 6168,
Domaine Universitaire de Saint-Jérôme, Avenue Escadrille Normandie-Niemen,

13397 MARSEILLE CEDEX 20
regis.alenda@lsis.org, nicola.olivetti@univ-cezanne.fr

2 LIF - UMR CNRS 6166,
Centre de Mathématiques et Informatique,

39 rue Joliot-Curie - F-13453 Marseille Cedex13
camilla.schwind@lif.univ-mrs.fr

Abstract. We study the logic of comparative concept similarity CSL
introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev to cap-
ture a form of qualitative similarity comparison. In this logic we can
formulate assertions of the form "objects A are more similar to B than
to C". The semantics of this logic is defined by structures equipped with
distance functions evaluating the similarity degree of objects. We con-
sider here the particular case of the semantics induced by minspaces, the
latter being distance spaces where the minimum of a set of distances
always exists. It turns out that the semantics over arbitrary minspaces
can be equivalently specified in terms of preferential structures, typical of
conditional logics. We first give a direct axiomatisation of this logic over
Minspaces. We next define a decision procedure in the form of a tableaux
calculus. Both the calculus and the axiomatisation take advantage of the
reformulation of the semantics in terms of preferential structures.

1 Introduction

The logics of comparative concept similarity CSL have been introduced in [9]
to capture a form of qualitative comparison between concept instances. In these
logics we can express assertions or judgments of the form: "Renault Clio is more
similar to Peugeot 207 than to WW Golf". These logics may find an applica-
tion in ontology languages, whose logical base is provided by Description Logics
(DL), allowing concept definitions based on proximity/similarity measures. For
instance ([9]), the color "Reddish" may be defined as a color which is more
similar to a prototypical "Red" than to any other color (in some color model
as RGB). The aim is to dispose of a language in which logical classification
provided by standard DL is integrated with classification mechanisms based on
calculation of proximity measures. The latter is typical for instance of domains
like bio-informatics or linguistics. In a series of papers [9,11,5,10] the authors
propose several languages comprising absolute similarity measures and compar-
ative similarity operator(s). In this paper we consider a logic CSL obtained by

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 17–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 R. Alenda, N. Olivetti, and C. Schwind

adding to a propositional language just one binary modal connective ⇔ express-
ing comparative similarity. In this language the above examples can be encoded
(using a description logic notation) by:

(1) Reddish ≡ {Red} ⇔ {Green, . . . ,Black} ,
(2) Clio � (Peugeot207 ⇔ Golf) .

In a more general setting, the language might contain several ⇔Feature where each
Feature corresponds to a specific distance function dFeature measuring the simi-
larity of objects with respect to one Feature (size, price, power, taste, color...).
In our setting a KB about cars may collect assertions of the form (2) and others,
say:

(3) Clio � (Golf ⇔ Ferrari430) ,
(4) Clio � (Peugeot207 ⇔ MaseratiQP) ,

together with some general axioms for classifying cars:

Peugeot207 � Citycar ,
SportLuxuryCar ≡ MaseratiQP � Ferrari430 .

Comparative similarity assertions such as (2)–(4) might not necessarily be the
fruit of an objective numerical calculation of similarity measures, but they could
be determined just by the (integration of) subjective opinions of agents, answer-
ing, for instance, to questions like: "Is Clio more similar to Golf or to Ferrari
430?". In any case, the logic CSL allows one to perform some kind of reasoning,
for instance the following conclusions will be supported:

Clio � (Peugeot207 ⇔ Ferrari430) ,
Clio � (Citycar ⇔ SportLuxuryCar) .

and also Clio � (Citycar ⇔ SportLuxuryCar � 4Wheels) .
The semantics of CSL is defined in terms of distance spaces, that is to say

structures equipped by a distance function d, whose properties may vary accord-
ing to the logic under consideration. In this setting, the evaluation of A ⇔ B can
be informally stated as follows: x satisfies A ⇔ B iff d(x, A) < d(x, B) meaning
that the object x is an instance of the concept A ⇔ B (i.e. it belongs to things
that are more similar to A than to B) if x is strictly closer to A-objects than
to B-objects according to distance function d, where the distance of an object
to a set of objects is defined as the infimum of the distances to each object in
the set.

In [9,11,5,10], the authors have investigated the logic CSL with respect to
different classes of distance models, see [11] for a survey of results about de-
cidability, complexity, expressivity, and axiomatisation. Remarkably it is shown
that CSL is undecidable over subspaces of the reals. Moreover CSL over arbi-
trary distance spaces can be seen as a fragment, indeed a powerful one (including
for instance the logic S4u of topological spaces), of a general logic for spatial
reasoning comprising different modal operators defined by (bounded) quantified
distance expressions.

Comparative Concept Similarity over Minspaces 19

The authors have pointed out that in case the distance spaces are assumed to
be minspaces, that is spaces where the infimum of a set of distances is actually
their minimum, the logic CSL is naturally related to some conditional logics.
The semantics of the latter is often expressed in terms of preferential structures,
that is to say possible-world structures equipped by a family of strict partial
(pre)-orders ≺x indexed on objects/worlds [7,12]. The intended meaning of the
relation y ≺x z is namely that x is more similar to y than to z. It is not hard
to see that the semantics over minspaces is equivalent to the semantics over
preferential structures satisfying the well-known principle of Limit Assumption
according to which the set of minimal elements of a non-empty set always exists.

The minspace property entails the restriction to spaces where the distance
function is discrete. This requirement does not seem incompatible with the pur-
pose of representing qualitative similarity comparisons, whereas it might not be
reasonable for applications of CSL to spatial reasoning.

In this paper we contribute to the study of CSL over minspaces. We first show
(unsurprisingly) that the semantics of CSL on minspaces can be equivalently
restated in terms of preferential models satisfying some additional conditions,
namely modularity, centering, and the limit assumption. We then give a direct
axiomatization of this logic. This problem was not considered in detail in [11]. In
that paper an axiomatization of CSL over arbitrary distance models is proposed,
but it makes use of an additional operator. Our axiomatisation is simpler and
only employs ⇔. Next, we define a tableaux calculus for checking satisfiability
of CSL formulas. Our tableaux procedure makes use of labelled formulas and
pseudo-modalities indexed on worlds �x, similarly to the calculi for conditional
logics defined in [3]. Termination is assured by suitable blocking conditions. To
the best of our knowledge our calculus provides the first known practically-
implementable decision procedure for CSL logic.

2 The Logic of Comparative Concept Similarity CSL
The language LCSL of CSL is generated from a (countable) set of propositional
variables V1, V2, . . . ∈ Vp by ordinary propositional connectives plus ⇔:
A, B ::= ⊥ | Vi | ¬A | A � B | A ⇔ B (where Vi ∈ Vp).

The semantics of CSL introduced in [9] makes use of distance spaces in order
to represent the similarity degree between objects. A distance space is a pair
(Δ, d) where Δ is a non-empty set, and d : Δ × Δ → R≥0 is a distance function
satisfying the following condition:

(ID) ∀x, y ∈ Δ, d(x, y) = 0 iff x = y .

Two further properties are usually considered: symmetry and triangle inequality.
We briefly discuss them below.

The distance between an object w and a non-empty subset X of Δ is defined
by d(w, X) = inf{d(w, x) | x ∈ X}. If X = ∅, then d(w, X) = ∞. If for every
object w and for every (non-empty) subset X we have the following property

(MIN) inf {d(w, x) | x ∈ X} = min {d(w, x) | x ∈ X} ,

20 R. Alenda, N. Olivetti, and C. Schwind

we say that (Δ, d) is a minspace.
We next define CSL-distance models as Kripke models based on distance

spaces:

Definition 1 (CSL-distance model)
A CSL-distance model is a triple M = (Δ, d, .M) where:

– Δ is a non-empty set of objects.
– d is a distance on Δ (so that (Δ, d) is a distance space).
– .M : Vp → 2Δ is the evaluation function which assigns to each propositional

variable Vi a set VMi ⊆ Δ. We further stipulate:
⊥M = ∅ , (¬C)M = Δ − CM , (C � D)M = CM ∩ DM ,
(C ⇔ D)M =

{
w ∈ Δ

∣∣d(w, CM) < d(w, DM)
}

.

If (Δ, d) is a minspace, M is called a CSL-distance minspace model (or simply
a minspace model). We say that a formula A is valid in a model M if AM = Δ.
We say that a formula A is valid if A is valid in every CSL-distance model.

As mentioned above, the distance function might be required to satisfy the fur-
ther conditions of symmetry (SY M) (d(x, y) = d(y, x)) and triangular inequal-
ity (TR) (d(x, z) ≤ d(x, y) + d(y, z)). It turns out that CSL cannot distinguish
between minspace models which satisfy (TR) from models which do not. In con-
trast ([9]), CSL has enough expressive power in order to distinguish between
symmetric and non-symmetric minspace models. As a first step, we concentrate
here on the general non-symmetric case, leaving the interesting symmetric case
to further research.

CSL is a logic of pure qualitative comparisons. This motivates an alternative
semantics where the distance function is replaced by a family of comparisons
relations, one for each object. We call this semantics preferential semantics,
similarly to the semantics of conditional logics [8,7]. Preferential structures are
equipped by a family of strict pre-orders. We may interpret this relations as
expressing a comparative similarity between objects. For three objects, x ≺w y
states that w is more similar to x than to y.

The preferential semantics in itself is more general than distance model se-
mantics. However, if we assume the additional conditions of the definition 2, it
turns out that these two are equivalent (theorem 4).

Definition 2. We will say that a preferential relation ≺w over Δ:

(i) is modular iff ∀x, y, z ∈ Δ, (x ≺w y) → (z ≺w y ∨ x ≺w z) .
(ii) is centered iff ∀x ∈ Δ, x = w ∨ w ≺w x .
(iii) satisfies the Limit Assumption iff ∀X ⊆ Δ, X �= ∅ → min≺w(X) �= ∅ ,1

where min≺w(X) = {y ∈ X | ∀z(z ≺w y → z /∈ X)} .

1 We note that the Limit Assumption implies that the preferential relation is asym-
metric. On the other hand, on a finite set, asymmetry implies Limit Assumption.
Modularity and asymmetry imply that the relation is also transitive and irreflexive.

Comparative Concept Similarity over Minspaces 21

Modularity is strongly related to the fact that the preferential relations represent
distance comparisons. This is the key property to enforce the equivalence with
distance models. Centering states that w is the unique minimal element for its
preferential relation ≺w, and can be seen as the preferential counterpart of (ID).
The Limit Assumption states that each non-empty set has at least one minimal
element with respect to any preferential relation (i.e it does not contain an
infinitely descending chain), and corresponds to (MIN).

Definition 3 (CSL-preferential model). A CSL-preferential model is a triple
M = (Δ, (≺w)w∈Δ, .M) where:

– Δ is a non-empty set of objects (or possible worlds).
– (≺w)w∈Δ is a family of preferential relation, each one being modular, cen-

tered, and satisfying the limit assumption.
– .M is the evaluation function defined as in definition 1, except for ⇔:

(A ⇔ B)M =
{
w ∈ Δ
∣∣∃x ∈ AM such that ∀y ∈ BM, x ≺w y

}
.

Validity is defined as in definition 1.

We now show the equivalence between preferential models and distance minspace
models. We say that a CSL-preferential model I and a CSL-distance minspace
model J are equivalent iff they are based on the same set Δ, and for all formulas
A ∈ LCSL, AI = AJ .

Theorem 4 (Equivalence between CSL-preferential models and CSL-
distance models)

1. For each CSL-distance minspace model, there is an equivalent CSL-prefe-
rential model.

2. For each CSL-preferential model, there is an equivalent CSL-distance min-
space model.

Proof 1. ([9]): given I = (ΔI , d, .I) a CSL-distance minspace model, just define
a preferential model J by stipulating x ≺w y iff d(w, x) < d(w, y), and for all
propositional variables Vi, V Ji = V Ii . It is easy to check that ≺w is modular,
centered, and satisfies the limit assumption, and that I and J are equivalent.

2. Since the relation ≺w is modular, we can assume that there exists a ranking
function2 rw : Δ → R≥0 such that x ≺w y iff rw(x) < rw(y). Therefore,
given a CSL-preferential model J = (ΔJ , (≺w)w∈ΔJ , .J), we can define a
CSL-distance minspace model I = (ΔJ , d, .J), where the distance function
d is defined as follow: if w = x then d(w, x) = 0, and d(w, x) = rw(x)
otherwise. We can easily check that (i) I is a minspace because of the limit
assumption, and that (ii) I and J are equivalent; this is proved by induction
on the complexity of formulas.

2 See for instance [6], Lemma 14.

22 R. Alenda, N. Olivetti, and C. Schwind

(1) ¬(A ⇔ B) � ¬(B ⇔ A) (2) (A ⇔ B)→ (A ⇔ C) � (C ⇔ B)

(3) A � ¬B → (A ⇔ B) (4) (A ⇔ B)→ ¬B

(5) (A ⇔ B) � (A ⇔ C)→ (A ⇔ (B � C)) (6) (A ⇔ ⊥)→ ¬(¬(A ⇔ ⊥) ⇔ ⊥)

(Mon)
� (A→ B)

� (A ⇔ C)→ (B ⇔ C) (Taut) Classical tautologies and rules.

Fig. 1. CSMS axioms

We have mentioned the relation with conditional logics. These logics, originally
introduced by Lewis and Stalnaker [7,12], contain a connective A > B whose
reading is approximatively "if A were true then B would also be true"3. The idea
is that a world/state x verifies A > B if B holds in all states y that are most
similar to x that is:

x ∈ (A > B)M iff min≺x(AM) ⊆ BM .

The two connectives ⇔ are interdefinable as shown in [9]:

A > B ≡ (A ⇔ (A ∧ ¬B)) ∨ ¬(A ⇔ ⊥) ,

A ⇔ B ≡ ((A ∨ B) > A) ∧ (A > ¬B) ∧ ¬(A > ⊥) .

By means of this equivalence, an (indirect) axiomatization of ⇔ can be obtained:
just take an axiomatization of the suitable conditional logic (well known) and
add the definition above. On the other hand an axiomatisation of CSL over ar-
bitrary distance models is presented in [11], however it makes use of an extended
language, as we comment below. Moreover, the case of minspaces has not been
studied in details. Our axiomatisation is contained in fig. 1. The axioms (1) and
(2) capture respectively the asymmetry and modularity of the preference rela-
tions, whereas (3) and (4) are enforced by centering and the minspace property4.
By (5), we obtain that ⇔ distributes over disjunction on the second argument,
since the opposite direction is derivable. The axiom (6) is similar to axiom (33)
of the axiomatization in [11], it says that the modality ♦A ≡ A ⇔ ⊥ has the
properties of S5. Finally, the rule (Mon) states the monotonicity of ⇔ in the
first argument, a dual rule stating the anti-monotonicity in the second argument
is derivable as well.

The axiomatisation of CSL provided in [11] for arbitrary distance spaces
makes use of the operator ◦RA that, referring to preferential models, selects

3 To this regard, in alternative to the concept/subset interpretation mentioned so far,
the formula A ⇔ B may perhaps be read as "A is (strictly) more plausible than
B". This interpretation may intuitively explain the relation with the conditional
operator.

4 Observe that the minspace property (or Limit Assumption as it is called in condtional
logics.) in itself is not definable by any formula of CSL.

Comparative Concept Similarity over Minspaces 23

elements x for which min≺x(A) is non-empty. As observed in [11], an axioma-
tization of CSL over minspaces can then be obtained by just adding the axiom
◦RA ↔ (A ⇔ ⊥). However our axiomatization is significantly simpler (almost
one half of the axioms). We can show that our axiomatization is sound and com-
plete with respect to the preferential semantics, whence with respect to minspace
models (by theorem 4).

Theorem 5. A formula is derivable in CSMS iff it is valid in every CSL-
preferential model.5

3 A Tableaux Calculus

In this section, we present a tableau calculus for CSL, this calculus provides
a decision procedure for this logic. We identify a tableau with a set of sets of
formulas Γ1, . . . , Γn. Each Γi is called a tableau set6. Our calculus will make use
of labels to represent objects of the domain. Let us consider formulas (A ⇔ B)
and ¬(A ⇔ B) under preferential semantics. We have:

w ∈ (A ⇔ B)M iff ∃x(x ∈ AM ∧ ∀z(z ∈ BM → x ≺w z)) .

In minspace models, the right part is equivalent to:

w ∈ (A ⇔ B)M iff ∃u ∈ AM and ∀y(y ∈ BM → ∃x(x ∈ AM ∧ x ≺w y)) .

We now introduce a pseudo-modality �w indexed on objects:

x ∈ (�wA)M iff ∀y(y ≺w x → y ∈ AM) .

Its meaning is that x ∈ (�wA)M iff A holds in all worlds preferred to x with
respect to ≺w. Observe that we have then the equivalence:

Claim 1. w ∈ (A ⇔ B)M iff AM �= ∅ and ∀y(y /∈ BM or y ∈ (¬�w¬A)M) .

This equivalence will be used to decompose ⇔-formulas in an analytic way.
The tableau rules make also use of a universal modality � (and its negation).
The language of tableaux comprises the following kind of formulas: x : A, x :
(¬)�¬A, x : (¬)�y¬A, x <y z, where x, y, z are labels and A is a CSL-formula.
The meaning of x : A is the obvious one: x ∈ AM. The reading of the rules is
the following: we apply a rule

Γ [E1, . . . , Ek]

Γ1 | . . . | Γn

to a tableau set Γ if each formula Ei (1 ≤ i ≤ k) is in Γ . We then replace Γ with
any tableau set Γ1, . . . , Γn. As usual, we let Γ, A stand for for Γ ∪ {A}, where A
is a tableau formula. The tableaux rules are shown in figure Figure 2.
5 The full proofs of all results reported in this paper are contained in [1].
6 A tableau set corresponds to a branch in a tableau-as-tree representation.

24 R. Alenda, N. Olivetti, and C. Schwind

(T�) Γ [x : A � B]

Γ, x : A, x : B
(F�) Γ [x : ¬(A �B)]

Γ, x : ¬A | Γ, x : ¬B

(NEG)
Γ [x : ¬¬A]

Γ, x : A
(F1 ⇔)

Γ [x : ¬(A ⇔ B)]

Γ, x : �¬A | Γ, x : B | Γ, x : ¬A, x : ¬B

(T ⇔)(∗) Γ [x : A ⇔ B]

Γ, x : ¬�¬A, y : ¬B | Γ, y : B, y : ¬�x¬A
(F2 ⇔)(∗∗) Γ [x : ¬(A ⇔ B), x : ¬A, x : ¬B]

Γ, y : B, y : �x¬A

(F1�x)
Γ [z : ¬�x¬A]

Γ, x : ¬A | Γ, x : A

(T�x)(∗)
Γ [z : �x¬A, y <x z]

Γ, y : ¬A, y : �x¬A
(F2�x)(∗∗) Γ [z : ¬�x¬A, x : ¬A]

Γ, y <x z, y : A, y : �x¬A

(T�)(∗) Γ [x : �¬A]

Γ, y : ¬A, y : �¬A
(F�)(∗∗) Γ [x : ¬�¬A]

Γ, y : A

(Mod)(∗) Γ [z <x u]

Γ, z <x y | Γ, y <x u
(Cent)(∗ ∗ ∗) Γ

Γ, x <x y | Γ [x/y]

(*) y is a label occurring in Γ . (**) y is a new label not occurring in Γ . (***) x and y
are two distinct labels occurring in Γ .

Fig. 2. Tableau rules for CSL

Let us comment on the rules which are not immediately obvious. The rule
for (T ⇔) encodes directly the semantics by virtue of claim 1. However in the
negative case the rule is split in two: if x satisfies ¬(A ⇔ B), either A is empty,
or there must be an y ∈ B such that there is no z ≺x y satisfying A; if x
satisfies B then x itself fulfills this condition, i.e. we could take y = x, since x
is ≺x-minimal (by centering). On the other hand, if x does not satisfies B, then
x cannot satisfy A either (otherwise x would satisfy A ⇔ B) and there must
be an y as described above. This case analysis with respect to x is performed
by the (F1⇔) rule, whereas the creation y for the latter case is performed by
(F2 ⇔). We have a similar situation for the (F�x) rule: let z satisfy ¬�x¬A,
then there must be an y ≺x z satisfying A; but if x satisfies A we can take
x = y, since x ≺x z (by centering). If x does not satisfy A then we must create
a suitable y and this is the task of the (F2�x) rule. Observe that the rule does
not simply create a y ≺x z satisfying A but it creates a minimal one. The rule is
similar to the (F�) rule in modal logic GL (Gödel-Löb modal logic of arithmetic
provability) [2] and it is enforced by the Limit Assumption. This formulation
of the rules for (F⇔) and for (F�x) prevents the unnecessary creation of new
objects whenever the existence of the objects required by the rules is assured
by centering. The rule (Cent) is of a special kind: it has no premises (ie. it can
always be applied) and generates two tableau sets: one with Γ ∪{x <x y}, where

Comparative Concept Similarity over Minspaces 25

{x : A, x : ¬B, x : ¬(A ⇔ B)}

{x : A, x : ¬B, x : ¬(A ⇔ B)

x : �¬A}

(F1 ⇔)

{x : A, x : ¬B, x : ¬(A ⇔ B)

x : �¬A
x : ¬A}

(T�)

{x : A, x : ¬B, x : ¬(A ⇔ B)

x : B}

(F1 ⇔)

{x : A, x : ¬B, x : ¬(A ⇔ B)

x : ¬A}

(F1 ⇔)

Fig. 3. An example of tableau: provability of A � ¬B → (A ⇔ B)

x and y are two distinct labels occurring in Γ), and one where we replace x by
y in Γ , i.e. where we identify the two labels.

Definition 6 (Closed set, closed tableau). A tableau set Γ is closed if one
of the three following conditions hold: (i) x : A ∈ Γ and x : ¬A ∈ Γ , for any
formula A, or x : ⊥ ∈ Γ . (ii) y <x z and z <x y are in Γ . (iii) x : ¬�xA ∈ Γ .

A CSL-tableau is closed if every tableau set is closed.

In order to prove soundness and completeness of the tableaux rules, we introduce
the notion of satisfiability of a tableau set by a model.

Given a tableau set Γ , we denote by LabΓ the set of labels occurring in Γ .

Definition 7 (CSL-mapping, satisfiable tableau set)
Let M = (Δ, (≺w)w∈Δ, .M) be a preferential model, and Γ a tableau set. A CSL-
mapping from Γ to M is a function f : LabΓ −→ Δ satisfying the following
condition: for every y <x z ∈ Γ, we have f(y) ≺f(x) f(z) in M.

We say that Γ is satisfiable under f in M if x : A ∈ Γ implies f(x) ∈ AM.
A tableau set Γ is satisfiable if it is satisfiable in some CSL-preferential model
M under some CSL-mapping f . A CSL-tableau is satisfiable if at least one of
its sets is satisfiable.

We can show that our tableau calculus is sound and complete with respect to the
preferential semantics, whence with respect to minspace models (by theorem 4).

Theorem 8 (Soundness of the calculus). If a formula A ∈ LCSL is satisfi-
able with respect to preferential semantics then any tableau begining with {x : A}
is open.

The proof of the soundness is standard, and can be found in [1]. In order to show
completeness, we need the following definition:

Definition 9 (Saturated tableau set). We say that a tableau set Γ is satu-
rated iff it satisfies the following conditions:

26 R. Alenda, N. Olivetti, and C. Schwind

(T�) If x : A � B ∈ Γ then x : A ∈ Γ and x : B ∈ Γ .
(F�) If x : ¬(A � B) ∈ Γ then x : ¬A ∈ Γ or x : ¬B ∈ Γ .
(NEG) If x : ¬¬A ∈ Γ then x : A ∈ Γ .
(T ⇔) If x : (A ⇔ B) ∈ Γ then for all y ∈ LabΓ , either y : ¬B ∈ Γ and

¬�¬A ∈ Γ , or y : B and y : ¬�x¬A are in Γ .
(F ⇔) If x : ¬(A ⇔ B) ∈ Γ then either (i) x : �¬A ∈ Γ , or (ii) x : B ∈ Γ , or

(iii) x : ¬A and x : ¬B are in Γ and there exists y ∈ LabΓ such that y : B
and y : �x¬A are in Γ .

(T�x) If z : �x¬A ∈ Γ and y <x z ∈ Γ , then y : ¬A and y : �x¬A are in Γ .
(F�x) If z : ¬�x¬A ∈ Γ , then either (i) x : A ∈ Γ , or (ii) x : ¬A ∈ Γ and

there exists y ∈ LabΓ such that y <x z, y : A and y : �x¬A are in Γ .
(T�) If x : �¬A ∈ Γ , then for all y ∈ LabΓ , y : ¬A and y : �¬A are in Γ .
(F�) If x : ¬�¬A ∈ Γ , then there is y ∈ LabΓ such that y : A ∈ Γ .
(Cent) For all x, y ∈ LabΓ such that x �= y, x <x y is ∈ Γ .
(Mod) If y <x z ∈ Γ , then for all labels u ∈ LabΓ , either u <x z ∈ Γ , or

y <x u ∈ Γ .

We say that Γ is saturated with respect to a rule R iff Γ satisfies the correspond-
ing saturation condition for R of the above definition.

The following lemma shows that the preference relations <x satisfies the Limit
Assumption for an open tableau set.

Lemma 10 (See [1]). Let Γ be an open tableau set containing only a finite
number of positive ⇔-formulas x : A0 ⇔ B0, x : A1 ⇔ B1, x : A2 ⇔ B2, . . . ,
x : An−1 ⇔ Bn−1. Then Γ does not contain any infinite descending chain of
labels y1 <x y0, y2 <x y1, . . . , yi+1 <x yi,

Theorem 11. If Γ is an open and saturated tableau set, then Γ is satisfiable.

(Proof): Given an open tableau set Γ , we define a canonical model MΓ =
〈Δ, (≺w)w∈Δ, .MΓ 〉 as follows:

– Δ = LabΓ and y ≺x z iff y <x z ∈ Γ .
– For all propositional variables Vi ∈ Vp, VMΓ

i = {x | x : Vi ∈ Γ} .

MΓ is indeed a CSL-model, as each preferential relation is centered, modular,
and satisfies the limit assumption. The first two came from the rules (Cent) and
(Mod), and we have the latter by lemma 10.

We now show that Γ is satisfiable in MΓ under the trivial identity mapping,
i.e for all formula C ∈ LCSL: (i) if x : C ∈ Γ , then x ∈ CMΓ . (ii) if x : ¬C ∈ Γ ,
then x ∈ (¬C)MΓ .

Proof. We reason by induction on the complexity cp(C) of a formula C, where
we suppose that cp((¬)�¬A), cp((¬)�x¬A) < cp(A ⇔ B).

– if C = Vi, C ∈ Vp, x ∈ CMΓ by the definition of MΓ .
– For the boolean formulas, the proof is standard.

Comparative Concept Similarity over Minspaces 27

– if C = A ⇔ B: since Γ is saturated, for every y ∈ LabΓ we have either
x : ¬�¬A ∈ Γ and y : ¬B ∈ Γ , or y : B ∈ Γ and y : ¬�x¬A ∈ Γ . By
induction hypothesis, in the first case we get AMΓ �= ∅ and y /∈ BMΓ , and
in the second we have that y ∈ (¬�x¬A)MΓ which also entails AMΓ �= ∅.
Thus, by claim 1, we have x ∈ (A ⇔ B)MΓ .

– if C = ¬(A ⇔ B): by the saturation conditions, we have 3 cases.
(a) x : �¬A ∈ Γ . By application of the rule (T�), for all label y, y : ¬A ∈ Γ .
By our induction hypothesis, AMΓ = ∅, and so x ∈ (¬(A ⇔ B))MΓ .
(b) x : B ∈ Γ . By induction hypothesis, x ∈ BMΓ , and so x ∈ (¬(A ⇔
B))MΓ by axiom (4).
(c) x : ¬A, x : ¬B are in Γ , and there is a label y such that y : B, y : �x¬A
are in Γ . By induction hypothesis, we have y ∈ BMΓ and y ∈ (�x¬A)MΓ ,
so that by claim 1, we have x ∈ (¬(A ⇔ B))MΓ .

– if C = �y¬A, by saturation we have: for all z, if z <x∈ Γ then z : ¬A ∈ Γ
and z : �y¬A ∈ Γ . Then by induction hypothesis, we have that for all z, if
z ≺y x then z ∈ (¬A)MΓ which means that x ∈ (�y¬A)MΓ .

– if C = ¬�y¬A, by saturation we have either y : A ∈ Γ or y : ¬A ∈ Γ . In the
first case, since y �= x (or Γ would be closed by def 6-(iii)) and ≺y satisfies
centering we have y ≺y x, and by induction hypothesis, y ∈ AMΓ . Thus
x ∈ (¬�y¬A)MΓ . In the second case, by saturation there is z ∈ LabΓ such
that z <y x ∈ Γ , z : A ∈ Γ . By induction hypothesis and the definition of
≺y, we conclude that x ∈ (¬�y¬A)MΓ .

4 Termination of the Tableau Calculus

The calculus presented above can lead to non-terminating computations due to
the interplay between the rules which generate new labels (the dynamic rules
(F2 ⇔), (F�) and (F�x)) and the static rule (T ⇔) which generates for-
mula ¬�xA to which (F�x) may again be applied. Our calculus can be made
terminating by defining a systematic procedure for applying the rules and by
introducing appropriate blocking conditions. The systematic procedure simply
prescribes to apply static rules as far as possible before applying dynamic rules.
To prevent the generation of an infinite tableau set, we put some restrictions on
the rule’s applications. The restrictions on all rules except (F2 ⇔) and (F2�x)
are easy and prevent redundant applications of the rules. We call the restrictions
on (F2 ⇔) and (F2�x) blocking conditions in analogy with standard conditions
for getting termination in modal and description logics tableaux; they prevent
the generation of infinitely many labels by performing a kind of loop-checking.

To this aim, we first define a total ordering � on the labels of a tableau
set such that x � y for all labels x that are already in the tableau when y is
introduced. If x � y, we will say that x is older than y.

We define Box+
Γ,x,y as the set of positive boxed formulas indexed by x labelled

by y which are in Γ : Box+
Γ,x,y = {�x¬A | y : �x¬A ∈ Γ} and ΠΓ (x) as the set

of non boxed formulas labelled by x: ΠΓ (x) = {A | A ∈ LCSL and x : A ∈ Γ}.

28 R. Alenda, N. Olivetti, and C. Schwind

Definition 12
(Static and dynamic rules) We call dynamic the following rules: (F2 ⇔), (F2�x)
and (F�). We call static all the other rules.
(Rules restrictions)

1. Do not apply a static rule to Γ if at least one of the consequences is already
in it.

2. Do not apply the rule (F2 ⇔) to a x : ¬(A ⇔ B), x : ¬A, x : ¬B
(a) if there exists some label y in Γ such that y : B and y : �x¬A are in Γ .
(b) if there exists some label u such that u � x and ΠΓ (x) ⊆ ΠΓ (u).

3. Do not apply the rule (F2�x) to a z : ¬�x¬A, x : ¬A
(a) if there exists some label y in Γ such that y <x z, y : A and y : �x¬A

are in Γ .
(b) if there exists some label u in Γ such that u � x and ΠΓ (x) ⊆ ΠΓ (u).
(c) if there exists some label v in Γ such that v � z and v : ¬�x¬A ∈ Γ and

Box+
Γ,x,z ⊆ Box+

Γ,x,v.
4. Do not apply the rule (F�) to a x : ¬�¬A in Γ if there exists some label y

such that y : A is in Γ .

(Systematic procedure) (1) Apply static rules as far as possible. (2) Apply a
(non blocked) dynamic rule to some formula labelled x only if no dynamic rule
is applicable to a formula labelled y, such that y � x.

We prove that a tableau initialized with a CSL-formula always terminates pro-
vided it is expanded according to Definition 12.

Theorem 13. Let Γ be obtained from {x : A}, where A is a CSL-formula, by
applying an arbitrary sequence of rules respecting definition 12. Then Γ is finite.

Proof. Suppose by absurdity that Γ is not finite. Since the static rules (and also
the (F�) rule) may only add a finite of number of formulas for each label, Γ
must contain an infinite number of labels generated by the dynamic rules, either
(F2 ⇔) or (F2�x) (or both).

Let Γ contain infinitely many labels introduced by (F2 ⇔). Since the num-
ber of negative ⇔ formulas is finite, there must be one formula, say ¬(B ⇔
C), such that for an infinite sequence of labels x1, . . . , xi, . . ., xi : ¬(B ⇔
C) ∈ Γ . By blocking condition (2b) we then have that for every i, ΠΓ (xi) �⊆
ΠΓ (x1), . . . , ΠΓ (xi) �⊆ ΠΓ (xi−1). But this is impossible since each ΠΓ (xi) is fi-
nite (namely bounded by O(|A|)) and the rules are non-decreasing with respect
to ΠΓ (xi) (an application of a rule can never remove formulas from ΠΓ (xi)).

Let now Γ contain infinitely many labels introduced by (F2�x). That is to
say, Γ contains xi : ¬�yi¬B for infinitely many xi and yi. If all yi are distinct,
Γ must contain in particular infinitely many formulas x : ¬�yi¬B for a fixed x.
The reason is that xi : ¬�yi¬B may only be introduced by applying (T ⇔), thus
there must be infinitely many yi : B ⇔ C ∈ Γ . By the systematic procedure, the
rule (T ⇔) has been applied to a label x for every yi : B ⇔ C ∈ Γ generating
x : ¬�yi¬B for all yi. But then we can find a contradiction with respect to

Comparative Concept Similarity over Minspaces 29

blocking condition (3b) as in the previous case, since for each i we would have
ΠΓ (yi) �⊆ ΠΓ (y1), . . . , ΠΓ (yi) �⊆ ΠΓ (yi−1) . We can conclude that Γ cannot
contain xi : ¬�yi¬B, for infinitely many distinct yi and distinct xi. We are
left with the case Γ contains xi : ¬�y¬B for a fixed y and infinitely many xi.
In this case, by blocking condition (3c), we have that for each i, Box+

Γ,y,xi
�⊆

Box+
Γ,y,x1

, . . . , Box+
Γ,y,xi

�⊆ Box+
Γ,xi−1

. But again this is impossible given the fact
that each Box+

Γ,y,xi
is finite (bounded by O(|A|)) and that the rules are non-

decreasing with respect to the sets Box+
Γ .

To prove completeness, we will consider tableau sets saturated under blocking. A
tableau set Γ is saturated under blocking iff (a) it is build according to Definition
12 (b) No further rules can be applied to it. It is easy to see that if Γ is saturated
under blocking, it satisfies all the saturation conditions in Definition 9 except
possibly for conditions (F ⇔).(iii) and (F�x).(ii).

By the termination theorem, we get that any tableau set generated from an
initial set containing just a CSL formula, will be either closed or saturated under
blocking in a finite number of steps.

We now show that an open tableau set saturated under blocking can be ex-
tended to an open saturated tableau set, that is satisfying all conditions of defi-
nition 9. By means of theorem 8 we obtain the completeness of the terminating
procedure.

Theorem 14. If Γ is saturated and open under blocking, then there exists an
open and saturated set Γ ∗ such that ∀A ∈ LCSL, if x : A ∈ Γ then x : A ∈ Γ ∗.

Let Γ be an open and saturated set under blocking. We will construct the set Γ ∗

from Γ in three steps. First, we consider formulas z : ¬�x¬A which are blocked
by condition 3c (and not by 3b). We construct a set Γ1 from Γ which satisfies
the saturation condition (F�x) with respect to these formulas.

Step 1. For each formula z : ¬�x¬A ∈ Γ for which condition (F�x) is not
fulfilled and that is blocked only by condition 3c, we consider the oldest label
u that blocks the formula. Therefore, the formula u : ¬�x¬A is in Γ and it is
not blocked by condition 3c 7. Since z : ¬�x¬A is not blocked by condition 3b,
u : ¬�x¬A is not blocked for this condition either, and thus the rule (F2�x)
has been applied to it. Hence there exists a label y such that y : A, y : �x¬A
and y <x u are in Γ . We then add y <x z to Γ . We call Γ1 the resulting set.

Claim 2. (I) Γ1 is saturated, except for (Mod) and the formulas x : ¬(A ⇔ B)
and z : ¬�x¬A respectively blocked by condition 2b and 3b. (II) It is open.

The step 2 will now build a set Γ2 saturated with respect to (Mod) from Γ1.

Step 2. For each y <x z ∈ Γ , if Box+
Γ,x,z ⊂ Box+

Γ,x,y, then for each z0 such that
Box+

Γ,x,z0
= Box+

Γ,x,z we add y <x z0 to Γ1. We call Γ2 the resulting set.

7 If it was, let v older than u the label which causes the blocking. Then v will also block
u : ¬�x¬A, contradiction, as u is by hypothesis the oldest label blocking z : ¬�x¬A.

30 R. Alenda, N. Olivetti, and C. Schwind

Claim 3. (I) Γ2 is saturated except for the formulas x : ¬(A ⇔ B) and z :
¬�x¬A respectively blocked by condition 2b and 3b. (II) It is open.

We will now consider the formulas blocked by conditions 2b and 3b, and finally
build a set Γ3 saturated with respect to all rules from Γ2.

Step 3. For each label x such that there is a formula x : ¬(A ⇔ B) ∈ Γ or
z : ¬�x¬A ∈ Γ respectively blocked by condition 2b or 3b, we let u be the oldest
label which caused the blocking. We then construct the set Γ3 by the following
procedure:

1. we remove from Γ2 each relation <x, and all formulas v : ¬�x¬A and v :
�x¬A (v ∈ LabΓ).

2. For all label z ∈ LabΓ such that z �= x, we add x <x z.
3. For all labels z, v ∈ LabΓ such that z �= x, if v <u z ∈ Γ2, then we add

v <x z.
4. For each v : �u¬A ∈ Γ , if A ∈ ΠΓ (x) we then add v : �x¬A.
5. For each v : ¬�u¬A ∈ Γ such that v �= x, we add v : ¬�u¬A.
6. For each formula A ∈ ΠΓ (x), we add x : �xA.

Claim 4. (I) Γ3 is saturated with respect to all rules. (II) It is open.

We then let Γ ∗ = Γ3. It is easy to see that for all formulas A ∈ LCSL, if x : A ∈ Γ
then x : A ∈ Γ ∗, as none of these formulas are removed by the construction of Γ ∗.

The tableaux procedure described in this section gives a decision procedure
for CSL. To estimate its complexity, let the length of A, the initial formula, be n.
It is not hard to see that any tableau set saturated under blocking may contain
at most O(2n) labels. As matter of fact by the blocking conditions no more
than O(2n) labels can be introduced by dynamic rules F2 ⇔ and F2�x. Thus a
saturated set under blocking will contain most O(2n) tableau formulas. We can
hence devise a non deterministic procedure that guesses an open tableau set in
O(2n) steps. This shows that our tableau calculus gives a NExpTime decision
procedure for CSL. In light of the results contained in [9] our procedure is not
optimal, since it is shown that this logic is ExpTime complete. We will study
possible optimization (based for instance on caching techniques) in subsequent
work.

5 Conclusion

In this paper, we have studied the logic CSL over minspaces, and we have ob-
tained two main results: first we have provided a direct, sound and complete
axiomatisation of this logic. Furthermore, we have defined a tableau calculus,
which gives a decision procedure for this logic.

In [4], a tableau algorithm is proposed to handle logics for metric spaces
comprising distance quantifiers of the form ∃<aA and alike, where a is positive
integer (together with an interior and a closure operator). As observed in [11],
the operator ⇔ can be defined in a related logic that allows quantification on

Comparative Concept Similarity over Minspaces 31

the parameters in distance quantifiers. The methods proposed in [4] make use
of an elegant relational translation to handle distance quantifiers with fixed
parameters. However, it is not clear if they can be adapted to handle also the
concept similarity operator.

There are a number of issues to explore in future research. The decision pro-
cedure outlined in the previous section is not guaranteed to have an optimal
complexity, so that we can consider how to improve our calculus in order to
match this upper bound. Another issue is the extension of our results to sym-
metric minspaces, and possibly to other classes of models. Finally, since one
original motivation of CSL is to reason about concept similarity in ontologies,
and particularly in description logics, we plan to study further its integration
with significant languages of this family.

References

1. Alenda, R., Olivetti, N., Schwind, C.: Comparative concept similarity over
minspaces: Axiomatisation and tableaux calculus. Technical report (2009),
http://arxiv.org/abs/0902.0899

2. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge
(1993)

3. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-
based conditional logics: Pcl and its extensions. ACM Trans. Comput. Log. 10(3)
(2009)

4. Hustadt, U., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Automated reasoning
about metric and topology. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 490–493. Springer, Heidelberg
(2006)

5. Kurucz, A., Wolter, F., Zakharyaschev, M.: Modal logics for metric spaces: Open
problems. In: Artëmov, S.N., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C.,
Woods, J. (eds.) We Will Show Them (2), pp. 193–208. College Publications (2005)

6. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail. Arti-
ficial Intelligence 55, 1–60 (1992)

7. Lewis, D.: Counterfactuals. Basil Blackwell Ltd., Malden (1973)
8. Nute, D.: Topics in Conditional Logic. Reidel Publishing Company, Dordrecht

(1980)
9. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Comparative sim-

ilarity, tree automata, and diophantine equations. In: Sutcliffe, G., Voronkov, A.
(eds.) LPAR 2005. LNCS, vol. 3835, pp. 651–665. Springer, Heidelberg (2005)

10. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts
and similarity. J. Log. Comput. 17(3), 415–452 (2007)

11. Sheremet, M., Wolter, F., Zakharyaschev, M.: A modal logic framework for rea-
soning about comparative distances and topology (submitted, 2008)

12. Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical
Theory, American Philosophical Quarterly. Monograph Series, vol. 2, pp. 98–112.
Blackwell, Oxford (1968)

http://arxiv.org/abs/0902.0899

A Schemata Calculus for Propositional Logic

Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

LIG, CNRS/Grenoble INP,
Bâtiment IMAG C - 220, rue de la Chimie,

38400 Saint Martin d’Hères, France
Vincent.Aravantinos@imag.fr, Ricardo.Caferra@imag.fr,

Nicolas.Peltier@imag.fr

Abstract. We define a notion of formula schema handling arithmetic
parameters, indexed propositional variables (e.g. Pi) and iterated con-
junctions/disjunctions (e.g.

∧n
i=1 Pi, where n is a parameter). Iterated

conjunctions or disjunctions are part of their syntax. We define a sound
and complete (w.r.t. satisfiability) tableaux-based proof procedure for
this language. This schemata calculus (called stab) allows one to cap-
ture proof patterns corresponding to a large class of problems specified
in propositional logic. Although the satisfiability problem is undecidable
for unrestricted schemata, we identify a class of them for which stab

always terminates. An example shows evidence that the approach is ap-
plicable to non-trivial practical problems. We give some precise technical
hints to pursue the present work.

1 Introduction

The importance of schemata has been recognized in logic since the very beginning
(4th century B.C.) and they play a central role in modern mathematical logic: ax-
iom schemata, inference rules schemata, mathematical induction schema,. . . (see
an overview in [1]). The stoics already used modus ponens in its present form,
Aristotle and the stoics set out skeleton arguments (see e.g. [2]); all this shows
how early the notion of ‘schema’ came into logic.

From a methodological point of view, in order to use schemata in practice, the
first step is to try to characterize, as generally as possible, the features defining
a schema. In [1] a schema (or scheme) is a system with 2 components (or 3,
or 4 depending whether the underlying language and the set of instances are
explicitly mentioned or not) having as a first component a schema-template,
i.e. a syntactical construct containing “blanks”, “place holders”, “dummies” (or
other conventional terms) allowing to express several (possibly infinitely many)
expressions (including e.g. proof texts). The instances are the intended denoted
expressions, statements of another language. The second component of a schema
specifies constraints on how the blanks are to be filled.

Different forms of schemata have been used by authors, either in proposi-
tional logic (see e.g. [3]) or in first order logic to obtain results in proof theory,
in particular related to the number of proof lines (see e.g. [4,5,6,7]). Pragmat-
ically, schemata have been successfully used e.g. in solving open questions in

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 32–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Schemata Calculus for Propositional Logic 33

equivalential calculus (i.e. the field of formal logic concerned with the notion of
equivalence) with OTTER (see [8]).

Coming to automated deduction, though the notion of schema is recognized
as an important one, it deserves more applied works in our opinion. Sometimes
schemata are not sufficiently emphasized, e.g. in [9] a nice and deep analysis
about the challenge of computer mathematics is given. The authors overview the
state of the art (by describing and comparing most powerful existing systems in
use) but structuring proofs is not explicitly mentioned (maybe this feature can
be included in what they call “mathematical style” or “support reasoning with
gaps”). In our approach to schemata (see Section 2) it is clear that they can also
help to overcome one of the obstacles to the automation of reasoning pointed
out in [10], i.e. the size of deduction steps.

Problems (theorems) on finite domains can be specified in propositional logic.
Most of those (e.g. colouring graphs, Ramsey theory, digital circuits,...) are stated
in a “parameterized way”, the parameter being the size of the domain1. A typical
example is the pigeonhole problem which is parameterized by the number of
pigeons (Pi,j means that the pigeon i is in the hole j):⎛⎝ n∧

i=1

n−1∨
j=1

Pi,j

⎞⎠ ∧

⎛⎝n−1∧
k=1

∧
i�=j

(¬Pi,k ∨ ¬Pj,k)

⎞⎠
It contains iterations ranging on intervals depending on n. Such iterations are
ubiquitous in mathematical reasoning. They also frequently occur in constraint
programming specifications. If n is instantiated by a natural number then the
expression reduces to a propositional formula. Therefore each instance of this
schema can be (at least theoretically) solved in propositional logic. However,
proving that the schema is unsatisfiable (or satisfiable) for every instance of n is
much harder. This is even out of the scope of first-order logic (see
Theorem 1). These problems can be expressed in higher order logics but it is
well-known that such languages are less suitable for automation.

Therefore we investigate a particular form of schemata called iterations or
iterated schemata intended to partially capture the activity of specifying in finite
domains. Iterations are formulae’s conjunctions and disjunctions whose length
depends on an arithmetic parameter (e.g.

∨n
i=1 Pi). Such objects are part of the

syntax (instead of being part of the meta-language). We provide a tableaux-based
procedure for reasoning about such schemata. Obviously the proofs containing
iterated formulae usually rely on mathematical induction: the idea is to reduce
(by applying transformation rules) the problem to the same problem but in a
domain of smaller size.

We chose to concentrate on propositional formulae because propositional logic
is decidable, thus easier to handle than more expressive languages such as first-
order logic. Furthermore, formula schemata commonly appear in various appli-
cations of propositional logic, in particular when modeling a circuit (which often

1 To stay inside propositional logic’s expressive limits, bounded domains are assumed.

34 V. Aravantinos, R. Caferra, and N. Peltier

depends on an integer parameter, e.g. the number of bits) or specifying graph
properties (e.g. Ramsey’s theorem). A concrete example is given in Section 6.

To the best of our knowledge, there are no other works in this direction.
Of course, there exist term languages expressive enough to denote iteration
schemata as the one mentioned before: for instance the primal grammar [11]
f̂(n) → (P (n) ∨ f̂(n − 1)), f̂(0) → ⊥ denotes the iteration2 ∨n

i=1 Pi. However,
term schematisation languages do not allow to reason on such iterations.

Several procedures have been designed for proving inductive theorems (see e.g.
[14,15,16,17,18,19]). But most systems concentrate on universal quantification,
where we have to handle both iterated conjunctions (which can be interpreted as
universal quantification on a bounded domain) and iterated disjunctions (i.e. ex-
istential quantifications). Adding existential quantification in inductive theorem
proving is known to be a difficult problem.

Our work shares some similarities with the ones on Satisfiability Modulo The-
ory (see e.g. [20,21]). However, instead of extending propositional logic with some
(decidable) theories, we consider arithmetic indexes and bounded quantification
over these indexes. The obtained formulae are non ground since they contain
index variables. Clearly, the combination of these two lines of research deserves
to be investigated (to handle schemata of SMT problems).

The rest of the paper is structured as follows. In Section 2 we introduce a for-
mal language for reasoning on schemata (syntax and semantics). This extends
propositional logic by allowing indexed variables and disjunctions/conjunctions
ranging on intervals (with symbolic bounds). We show that the satisfiability
problem is only semi-decidable. In Section 3 we design a tableau procedure,
called stab (for schemata tableaux), for this language: we extend the usual
tableaux for propositional logic [22,23] to handle schemata symbolically (avoid-
ing systematic instantiation of the parameters). We prove its soundness and
completeness w.r.t. satisfiability (no refutationally complete procedure exists, as
shown in Section 2). In Section 4 we provide some useful extensions to stab. In
Section 5 we introduce a class of schemata for which stab always terminates,
yielding a decision procedure for this class. In Section 6 we show a simple ex-
ample of application. Section 7 contains a short conclusion and some lines of
future work.

Due to space restriction, detailed proofs are omitted.

2 Schemata of Propositional Formulae

2.1 Syntax

In all the following indexed propositions are written Pi, Pi,j , Pi,j,k, . . . and integer
variables are written i, j, k, . . . or n, p, q, . . . Schemata are denoted by S, S1, . . . ,
sets of schemata by S, interpretations by I,J . Tableaux are written T , T0, . . .
and nodes in a tableau α, β, . . .

2 It is worth mentioning that this iteration cannot be denoted by other term schema-
tisation languages [12,13] because the inductive context is not constant.

A Schemata Calculus for Propositional Logic 35

Definition 1 (Integer terms). Let V be an infinite set of integer variables.
The set of integer terms, written TN is the smallest set containing V, Z and s.t.
for all k ∈ Z, t1, t2 ∈ TN : t1 + t2 ∈ TN and k × t1 ∈ TN . For all t ∈ TN , Var(t)
is the set of variables that occur in t. A ground term is a term t s.t. Var(t) = ∅.

We consider linear integer terms for the sake of simplicity, more expressive arith-
metic expressions can be considered provided they belong to decidable classes.

Definition 2 (Indexed propositions). Let (Pk)k∈IN be a family of symbols.
For all k ∈ IN, P ∈ Pk, and t1, . . . , tk ∈ TN , Pt1,...,tk

is an indexed proposition.
t1, . . . , tk are the indices of Pt1,...,tk

. An indexed proposition Pt1,...,tk
s.t. t1, . . . ,

tk ∈ Z is called a propositional variable; a propositional variable or its negation
is a literal.

Definition 3 (Schemata). The set of formula schemata is the smallest set s.t.

– �, ⊥ are formula schemata.
– Each indexed proposition is a formula schema.
– If S1, S2 are schemata then S1∨S2, S1∧S2 and ¬S1 are formula schemata.
– If S is a formula schema, t1, t2 ∈ TN , and i is a variable, then

∧t2
i=t1

S and∨t2
i=t1

S are formula schemata (such schemata are called iterations).

Example 1.

S = Q1 ∧
n∧

i=1

⎛⎝Pi ∧
n+1∨
j=1

¬Qj ∨ Qj+1

⎞⎠ is a formula schema.

Q1, Pi, Qj and Qj+1 are indexed propositions.
∧n

i=1

(
Pi ∧
∨n+1

j=1 ¬Qj ∨ Qj+1

)
and
∨n+1

j=1 ¬Qj ∨ Qj+1 are the only iterations occurring in S.

A variable i is bound in S if S contains an iteration of the form Πb
i=aS′ (Π ∈

{
∨

,
∧
}), it is free (or is a parameter of S) if it occurs in S but not in the scope of

an iteration Πb
i=aS′. Substitutions on integer variables are defined as usual. We

write [t1/i1, . . . , tk/ik] for the substitution mapping resp. i1, . . . , ik to t1, . . . , tk.
We now assume that no variable of any schema S can be simultaneously free and
bound in S, and if Πb

i=aSi and Σd
j=cS

′
j (where Π, Σ ∈ {

∨
,
∧
}) are two distinct

iterations occurring in S then i and j are distinct. Such a schema is said rectified.

2.2 Semantics

Definition 4 (Semantics). An interpretation of the schemata language is a
function mapping every propositional variable to a truth value T or F and every
integer variable to an integer. Then the semantic �S�I of a propositional schema
in an interpretation I is inductively defined as:

36 V. Aravantinos, R. Caferra, and N. Peltier

– ���I = T, �⊥�I = F
– �Pt1,...,tk

�I = I(PI(t1),...,I(tk)) where the interpretation of arithmetic expres-
sions is defined as usual.

– �¬Φ�I = T iff �Φ�I = F.
– �Φ ∨ Φ′�I = T iff �Φ�I = T or �Φ′�I = T.
– �Φ ∧ Φ′�I = T iff �Φ�I = T and �Φ′�I = T.
– �
∨t2

i=t1
S�I = T iff there is an integer k s.t. I(t1) ≤ k ≤ I(t2) holds and

�S�J = T where J is s.t. J (i) = k and J (j) = I(j) for j �= i.
– �
∧t2

i=t1
S�I = T iff for every integer k s.t. I(t1) ≤ k ≤ I(t2) holds: �S�J = T

where J is defined the same way as for
∨

.

A schema S is satisfiable iff there is an interpretation I s.t. �S�I = T. Then I
is called a model of S.

It is trivially semi-decidable to know if a schema is satisfiable:

Proposition 1. The set of satisfiable schemata is recursively enumerable.

Proof. Let S be a schema. S is satisfiable iff there is a ground substitution σ
of the parameters of S s.t. Sσ is satisfiable. The set of ground substitutions is
enumerable. Moreover, Sσ can be easily turned into an equivalent propositional
formula (in the usual sense): as σ is ground, the bounds of the iterations in S are
always finite, thus they can be unfolded and replaced by standard conjunctions
or disjunctions. Thus it is decidable whether Sσ is satisfiable or not. ��

However this is not more than semi-decidable as shows the following result:

Theorem 1. The set of satisfiable schemata is not recursive.

Proof. (Sketch) The proof is by reduction to Post’s correspondence problem. Let
A = {c1, . . . , cK} be a finite alphabet and u1, . . . , uP and v1, . . . , vP two finite
lists of non-empty words over A. A solution is a sequence of indices (solk)k=1..N

s.t. N ≥ 1 and usol1 . . .usolN = vsol1 . . . vsolN . usol1 . . . usolN is called the solution
witness. We show how to encode any instance of the problem into a schema S so
that S is satisfiable iff this instance has a solution. More precisely we construct
S of parameter n s.t. for all N ∈ IN, S[N/n] is satisfiable iff there is a solution
of length N .

The lists u and v are easily encoded through indexed propositions as well
as the solution sequence sol. The main work is to schematise the fact that
the solution sequence is indeed a solution. For this, we introduce an indexed
proposition that checks if this is the case until the ith character of the solu-
tion witness. Checkw1,p1,w2,p2,i is this proposition, specified by induction on i:
if Checkw1,p1,w2,p2,i holds and if the character at position p′1 of the word usolw′

1

is equal to the character at position p′2 of the word vsolw′
2

and to the i + 1th

character of the solution witness then Checkw′
1,p′

1,w′
2,p′

2,i+1 holds. w′1, w
′
2, p

′
1, p

′
2

depend on both current positions in words from u and v. There are four possible
combinations. We just give one: if p1 is the last position of the word vsolw1

and
p2 is not the last position of vsolw2

then w′1 = w1 + 1, p′1 = 1, w′2 = w2 and

A Schemata Calculus for Propositional Logic 37

p′2 = p2 + 1 i.e. we go on to the first character of the next word in u and to the
next character of the current word in v. This is formally expressed by:

n∧
w1=1

n∧
w2=1

M∧
p1=1

M∧
p2=1

M×n∧
i=1

(Checkw1,p1,w2,p2,i ∧ LastCharUw1,p1

∧ ¬LastCharVw2,p2 ∧ Eqw1+1,1,w2,p1+1) ⇒ Checkw1+1,1,w2,p2+1,i+1

where M is the maximum of the lengths of all words in both lists (M is a
constant for a given instance of Post’s problem), LastCharUw,p is true iff p
is the position of the last character of usolw and Eqw1,p1,w2,p2 is true iff the
characters at respective positions p1, p2 in usolw1

, vsolw2
are equal.

All those schemata and the ones that remain to express the whole induction
are defined easily. We finally express that there is a rank where both sides are
equal and where both positions are the last of their respective words. ��

3 A Proof Procedure: stab

We provide now a set of block tableaux rules [22] that ensure completeness
w.r.t. satisfiability (we know from Theorem 1 that we cannot ensure refutational
completeness). Those rules are concise and natural, and, compared to the naive
procedure described in the proof of Proposition 1, stab is much more efficient
and terminates more often (see the end of Section 3.1). However, its main interest
is that it is much better suited for termination when dealing with unsatisfiable
schemata, as will be clear from the extensions defined in Section 4.

3.1 Inference Rules

stab works with both schemata and constraints on the parameters:

Definition 5 (Parameter constraints). The set of parameter constraints on
a schema S is the set of first-order formulae of atoms t1 • t2 where • ∈ {=, <, >
,≤,≥} and t1, t2 ∈ TN s.t. Var(t1) and Var(t2) contain only parameters of S.

Definition 6 (Tableau). A tableau is a tree T s.t. each node α occurring in
T is labeled by a set ST (α) containing schemata and parameter constraints.

As usual a tableau is generated from another tableau by applying some extension

rules. Let r =
P

C1 . . . Ck
be a rule where P denotes a set of schemata and

constraints, and C1, . . . , Ck denote the conclusions of the rule. Let α be a leaf of
a tree T . If a subset S of ST (α) matches P then we can extend the tableau by
adding k children to α, each of them labeled with Ciσ ∪ ST (α) \ S where σ is
the matching substitution. Notice that, with this definition, each leaf contains
all schemata and constraints in the branch. A leaf is closed iff its parameter
constraints are unsatisfiable (this can be detected using decision procedures for
arithmetic without multiplication see e.g. [24]). Rules of stab are defined as
follows:

38 V. Aravantinos, R. Caferra, and N. Peltier

Definition 7 (Extension rules). We assume (w.l.o.g) that schemata are in
negative normal form. The extension rules are:

– The usual rules of propositional tableaux:

(∧):
A ∧ B

A B
(∨):

A ∨ B

A B

– Rules proper to schemata (“iteration rules”)3:

(Iterated ∧):

∧b
i=a S

b ≥ a∧b−1
i=a S ∧ S[b/i]

b < a

�
(Iterated ∨):

∨b
i=a S

b ≥ a∨b−1
i=a S ∨ S[b/i]

– The closure rule adds the constraints needed for the branch not to be closed:

(Closure):
Pt1,...,tn ¬Ps1,...,sn

t1 �= s1 ∨ . . . ∨ tn �= sn

Generalising the iteration rules. The two rules on iterations could be more gen-
eral. Indeed we could define the following rules schema:∧b

i=a S
b ≥ a∧j−1

i=a S ∧ S[j/i] ∧
∧b

i=j+1 S
b < a
�

∨b
i=a S

b ≥ a∨j−1
i=a S ∨ S[j/i] ∨

∨b
i=j+1 S

where one has to specify how j is chosen. In the present paper j = b (then the
part Πb

i=j+1S of the iteration is empty, and thus removed). Other strategies are
possible (but in order to ensure soundness we must have a ≤ j ≤ b): one can
choose a term j allowing further applications of the closure rule e.g. if the branch
contains

∧2n
i=1 Pi and ¬Pn then the extension rule would apply with j = n (easily

automated). A third possibility is simply to add a new parameter j in which case
the constraint a ≤ j ≤ b must be added. Such a strategy even allows further
simplifications e.g. in the Iterated ∨ rule, if we know that S[j/i] holds we can
“cut” immediately the two (future) branches dealing with

∨j−1
i=a S and

∨b
i=j+1 S.

stab without the upcoming extensions is already better than the naive proce-
dure. First it terminates in some cases where the schema is unsatisfiable (whereas
the naive procedure never terminates in such a case, unless the schema is just
an unsatisfiable propositional formula). This is trivially the case for any schema∧n

i=1 F with n ≥ 1, where F is propositionally unsatisfiable. Second, it can find a
model much faster than the naive procedure. Consider e.g. (

∧10000
i=n P)∧(¬P ∨F)

where F is an unsatisfiable formula. In this case stab immediately finds the
model n > 10000 and P = F.
3 The right branch in the conclusion of the Iterated ∧ rule is required, e.g. to detect

that
∧n

i=1⊥ is satisfiable with n = 0, of course, the formula 	 could be removed.

A Schemata Calculus for Propositional Logic 39

3.2 Soundness and Completeness

Definition 8 (Tableau semantics). For every node α in a tableau T , ST (α) is
interpreted as the conjunction of its elements. T is satisfied in an interpretation
I if there exists a leaf α in T s.t. I |= ST (α). In such a case we write I |= T .

Lemma 1. If T ′ is a tableau obtained by applying one of the extension rules on
a leaf α of a tableau T then I |= ST (α) iff there exists a leaf β of T ′ s.t. β is a
child of α in T ′ and I |= ST ′(β) (i.e. the rules are sound and invertible).

Proof. (Sketch) By inspection of the extension rules. ��

A leaf is irreducible if no extension rule applies to it.

Lemma 2. If a leaf α in T is irreducible and not closed then T is satisfiable.

Proof. (Sketch) Let Φ be the set of arithmetic constraints in ST (α) and S def=
ST (α) \ Φ. As α is not closed Φ is satisfiable, let σ be a solution of Φ. All the
schemata in S are literals (otherwise decomposition rules apply) and cT (α) = 0
(otherwise the closure rule applies) where cT (α) is the number of pairs Pt1,...,tn ,
¬Ps1,...,sn ∈ ST (α) s.t. there is an interpretation I s.t. for all i ∈ [1..n], �ti�I =
�si�I . Hence S is a set of ground literals not containing two pairs of complemen-
tary literals. Thus ST (α)σ is satisfiable and by definition T is satisfiable. ��

Theorem 2 (Soundness). Let T be a tableau. If a tableau T ′ is obtained from
T by application of the extension rules, and if T ′ contains an irreducible and
not closed leaf then T is satisfiable.

Proof. This follows immediately from Lemmata 1 and 2. ��

We now prove that the procedure is complete w.r.t. satisfiability. Let I be an
interpretation and S a formula. We define mI(S) as follows:

– mI(F) def= 0 if F is a parameter constraint.
– mI(P) def= 1 if P is an indexed proposition or its negation, or P is � or ⊥.
– mI(S1 � S2)

def= mI(S1) + mI(S2) if � ∈ {∨,∧}.
– mI(Πb

i=aS) def= 2 if �b�I < �a�I
– mI(Πb

i=aS) def= l−k+2+Σl
j=kmJj (S) else, where Π ∈ {

∧
,
∨
}, k = �a�I , l =

�b�I and Jj is an interpretation defined exactly as I, except that �i�Jj

def= j.

If S is a set, then mI(S) def= {mI(S) | S ∈ S}. If T is a tableau and α is a
leaf in T then mI(α, T) def= (mI(ST (α)), cT (α)) where cT (α) is defined in the
proof of Lemma 2. This measure is ordered using the multiset and lexicographic
extensions of the usual ordering on natural numbers.

Lemma 3. Let I be an interpretation. Let T be a tableau. If T ′ is deduced from
T by applying an extension rule on a leaf α s.t. I |= ST (α), then for every child
β of α in T ′ s.t. I |= ST ′(β), we have mI(β, T ′) < mI(α, T).

40 V. Aravantinos, R. Caferra, and N. Peltier

Proof. (Sketch) All the rules except the iteration rule and the closure rule re-
place a formula by simpler ones, hence it is easy to see that mI(ST (α)) decreases.
The iteration rules replace an iteration of length l either by � or by a disjunc-
tion/conjunction of an iterated disjunction/conjunction of length l − 1, and a
smaller formula. Since l > l−1, mI(ST (α)) decreases. The closure rule does not
affect mI(ST (α)) but obviously decreases cT (α). ��
A derivation is a (possibly infinite) sequence of tableaux (Ti)i∈I s.t. I is either
[0..n] for some n ≥ 0, or IN and s.t. for all i ∈ I \ {0}, Ti is obtained from Ti−1
by applying one of the rules. A derivation is fair if there is i ∈ I s.t. Ti contains
an irreducible not closed leaf or if for all i ∈ I and every not closed leaf α in Ti

there is j ≥ i s.t. a rule is applied on α in Tj (i.e. no leaf can be “freezed”).

Theorem 3 (Completeness w.r.t. satisfiability). Let T0 be a satisfiable
tableau and let I be a model of T0. If (Tn)n∈I is a fair derivation then there
is k ∈ I and a leaf αk in Tk s.t. αk is irreducible and not closed.

Proof. By Lemma 1, for all i ∈ I, Ti contains a leaf αi s.t. I |= STi(αi). Let k ∈ I
s.t. mI(αk, Tk) is minimal (k exists since mI(αi, Ti) is well-founded). Assume a
rule is applied on αk in the derivation, on some tableau Tl. By Lemma 1 there
is a child β of αk s.t. I |= STl

(β). By Lemma 3 we have mI(β, Tl) < mI(αk, Tk)
which is impossible. Thus no rule is applied on αk. Since the derivation is fair,
αk is irreducible (or there is another leaf that is irreducible). ��

4 Extensions

stab is intuitive and complete for satisfiability but it rarely terminates. The
extensions significantly extend the class of formulae that stab is able to refute.

4.1 Infinite Iterations (Looping)

The reason for stab not to terminate is that an iteration is infinitely unfolded by
the iteration rules. Assume for instance that S is a propositional unsatisfiable
formula. Then starting from

∨n
i=1 S one could derive an infinite sequence of

formulae of the form
∨n−1

i=1 S, . . . ,
∨n−k

i=1 S, for every k ∈ IN. Detecting looping is
the most natural way to avoid this divergence: if, while extending the tableau,
we find a schema that has already been seen, e.g. up to a shift of arithmetic
variables, then there is no need to consider it a second time and we can stop the
procedure. This is a procedural view of an induction proof.

We give a first definition of looping, powerful enough to ensure termination
for the class of schemata considered in Section 5 (it is useless to look for the most
general definition which theoretically does not exist). We assume all parameters
are interpreted as positive integers. This can be specified by adding at the root
of the tableau the constraint n ≥ 0 for every parameter n.

Definition 9 (Looping). Let α, β be two nodes of a tableau T . Let n1, . . . ,nk

be the free variables of ST (α). Then β loops on α if there are p1, . . . , pk ∈ IN
s.t. one at least is positive and every model of ST (β) is a model of ST (α)[n1 −
p1/n1, . . . , nk − pk/nk].

A Schemata Calculus for Propositional Logic 41

When a leaf loops, it is treated as a closed branch (though it is not necessarily
unsatisfiable), we say that it is blocked. Notice that α and β may be on different
branches, thus looping may occur more often, allowing more simplifications.

Theorem 2 trivially remains true but the proof of Theorem 3 must be adapted:

Theorem 4 (Completeness w.r.t. satisfiability). Let T0 be a satisfiable
tableau and I be a model of T0. If (Tn)n∈I is a fair derivation then there ex-
ist k ∈ I and a leaf αk in Tk s.t. αk is irreducible and neither closed nor blocked.

Proof. (Sketch) We suppose there is only one parameter n for the sake of sim-
plicity and leave the general case to the reader. Let S′ be a leaf looping on a
node S. Assume w.l.o.g. that I be s.t. I(n) is minimal. Rather than repeating
the whole proof of Theorem 3, we only check that the addition of the new looping
rule does not destroy completeness (i.e. no model is missed). The only possibility
of missing a model would be to block a looping branch s.t. this makes us miss a
(lower) possibly irreducible and not closed branch. If I |= S′ then I |= S[n−k/n]
and hence J |= S where J is identical to I except that J (n) = I(n) − k. Thus
by Lemma 1, J is a model of the root i.e. for T0; as k > 0, this is a contradiction
with the fact that I is minimal. Thus I �|= S′. Hence I �|= S′′ for all children S′′

of S′ (by Lemma 1 converse), so indeed no model is missed. ��

To apply the looping rule in practice one has to compute the natural numbers
p1, . . . , pk and check that the implication holds. This problem is obviously unde-
cidable, but it is possible to define a stronger (decidable) relationship between
S and S′ ensuring that p1, . . . , pk exist. The underlying idea is the following: let
be S =

∨b
i=a Si and S′ =

∨d
j=c Sj . To check that S ⇒ S′, it is sufficient that

for all i ∈ [a..b] there is j ∈ [c..d] s.t. Si ⇒ Sj is verified. If Si, Sj are indexed
propositions then Si ⇒ Sj holds if i = j (so the above condition is equivalent to
[a..b] ⊆ [c..d]). Formally we inductively construct an arithmetic formula (without
multiplication) from the structure of both schemata for which we want to check
the looping. This can be seen as a form of subsumption between schemata.

Definition 10. Let S, S′ be two schemata or constraints. We inductively define
the arithmetic formula FS⇒S′ as follows:

– FS⇒S′
def= S ⇒ S′ if S, S′ are constraints.

– FS1∨S2⇒S′
def= FS⇒S′

1∧S′
2

def= FS1⇒S′ ∧ FS2⇒S′

– FS1∧S2⇒S′
1

def= FS⇒S′
1∨S′

2

def= FS1⇒S′ ∨ FS2⇒S′

– F∨b
i=a S⇒S′

def= FS⇒
∧

b
i=a S′

def= ∀i ∈ [a..b] · FS⇒S′

– F∧b
i=a S⇒S′

def= FS⇒
∨b

i=a S′
def= ∃i ∈ [a..b] · FS⇒S′

– F¬S⇒¬S′
def= FS′⇒S if S, S′ are non arithmetic atoms.

– Fpt1,...,tn⇒ps1,...,sn

def= (t1 = s1 ∧ . . . ∧ tn = sn)
– FS⇒S′

def= ⊥ otherwise.

Then checking that the looping rule is applicable between a leaf α and a node
α′ in a tableau T , amounts to checking that the arithmetic formula ∃p1, . . . , pk ·

42 V. Aravantinos, R. Caferra, and N. Peltier

p1, . . . , pk > 0∧∀n1, . . . , nk·FST (α)⇒ST (α′)[n1−p1,...,nk−pk] is valid (sets of schema-
ta are interpreted as conjunctions). This follows from Proposition 2 which is
proved by an easy induction on S, S′:

Proposition 2. Every model of both FS⇒S′ and S is a model of S′.

4.2 Purity Principle

The pure literal rule is standard in propositional theorem proving. It consists in
evaluating a literal L to � in a formula S (in nnf) if the complement of L does
not occur in S. Such a literal is called pure. It is well-known that this operation
preserves satisfiability and may allow many simplifications.

We show how to extend the pure literal rule to schemata. The conditions on
L have to be strengthened in order to take iterations into account. For instance,
if L = Pn and S contains

∨2n
i=1 ¬Pi then L is not pure in S, since ¬Pi is the

complement of L for i = n (and 1 ≤ n ≤ 2n). On the other hand P2n+1 may be
pure in S (since 2n + 1 �∈ [1..2n]).

Let S be a rectified schema. We write IC (S) for the conjunction of arithmetic
constraints of the form a ≤ i ∧ i ≤ b, s.t. S contains an iteration Πb

i=aSi.

Definition 11 (Pure literal). A literal Pt1,...,tn (resp. ¬Pt1,...,tn) is pure in S
if for every occurrence of a literal ¬Ps1,...,sn (resp. Ps1,...,sn) in S, the arithmetic
formula IC(S) ∧ t1 = s1 ∧ . . . ∧ tn = sn is unsatisfiable.

Proposition 3. Let L be a pure literal in a rectified schema S then S is satis-
fiable iff the schema obtained by substituting � to L in S is satisfiable.

The pure literal rule applies this substitution, it may ease the application of the
looping rule by removing redundant literals (see the proof of Theorem 5).

5 A Terminating Class

Termination cannot be ensured for schemata in general (Theorem 1). However
it can be guaranteed for some useful syntactic classes of schemata.

A schema S is flat if for every iteration Πb
i=aSi occurring in S, Si does not

contain any iteration (i.e. iterations cannot be nested in S). S is aligned on [a..b]
if all iterations occurring in S are of the form Πb

i=aSi. S is of limited propagation
if there are l1, l2 ∈ Z s.t. for every indexed proposition that occurs in an iteration
Πb

i=aSi, each of its indices is of the form i+c for some c ∈ [l1..l2]; l1, l2 are called
the propagation limits.

Definition 12. A schema is regular if it has a unique parameter n and if it is
flat, of limited propagation and aligned on [k..n − l] for some k, l ∈ IN.

Though being a simple class, regular schemata allow to specify, e.g. many param-
eterized circuits. The main limitation is that nesting of iterations is disallowed.
We consider the following strategy τ for applying the extension rules:

A Schemata Calculus for Propositional Logic 43

– The propositional extension rules, the looping, closure and pure literal rules
are applied as soon as possible on all leaves, with the highest priority.

– The iteration rules are applied only on iterations of maximal length (w.r.t.
the natural partial ordering on arithmetic expressions).

Theorem 5. τ terminates on every regular schema.

Proof. (Sketch) Let be l1, l2 ∈ Z, k, l ∈ IN and S a regular schema aligned
on [k..n − l], of propagation limits l1, l2. Assume that an infinite branch is con-
structed. By definition of the strategy, after some time, the m last ranks of every
iteration have been removed. Thus all the remaining iterations are of the form
Πn−l−m

i=k Si and we have the arithmetic constraint n − l − m − k + 1 ≥ 0, i.e.
n ≥ l + m + k − 1. Moreover, we assume that all the formulae occurring in the
branch at this step are irreducible by the first set of rules, hence they are either
literals or iterations.

Literals occurring in the branch, but not in the scope of an iteration, are either
literals of S or literals introduced by previous applications of the iteration rules.
The former are indexed by expressions of the form u × n + v for some u, v ∈ Z
and the latter by n − l − m + c, where i < m and c ∈ [l1 + 1..l2 + m].

If a literal is indexed by an expression u×n + v that is outside [k..n− l−m],
then it must be pure in every iteration, hence (by irreducibility w.r.t. the closure
rule) must be pure in the branch. However, if m is big enough then, by the above
arithmetic constraints, u× n + v cannot be in [k..n− l −m + l2] if u �= 0: if u is
negative, then it suffices to take m > (k−v)/u− l−k+1 to ensure u×n+v < k,
otherwise m ≥ l2− l− v ⇒ u×n+ v > n− l−m+ l2. Thus every literal indexed
by integer terms of this form may be removed by the pure literal rule.

Similarly literals indexed by expressions of the form n− l−m+c where c > l2
are deleted by the extension rules, thus we may assume that c ∈ [l1 + 1..l2].
Clearly, there is a finite number of such schemata up to a translation on n.
Hence the looping rule applies at some point in every branch, and τ terminates.

��

6 Example: The N-Bit Adder

We consider an n-bits adder circuit: such a circuit is the composition of n 1-bit
adders. The ith bit of each operand is written Ai (resp. Bi). Si is the ith bit of
the result, Ci+1 is carried over to the next bit and C1 = 0. We set the notations
Sumi

def= Si ⇔ (Ai⊕Bi)⊕Ci and Carryi
def= Ci+1 ⇔ (Ai∧Bi)∨(Ci∧Ai)∨(Ci∧Bi)

where ⊕ is the exclusive or. Then Adder
def=
∧n

i=1 Sumi∧
∧n

i=1 Carryi∧¬C1 with
the constraint n ≥ 1 schematises the adder circuit.

We aim at proving that A + 0 = A. A SAT-solver can easily refute this
formula for a fixed n (say n = 10). We prove it for all n ∈ IN. This simple
example has been chosen for the sake of readability and conciseness, notice that
commutativity or associativity of the n-bits adder could have been proven too.

We express the fact that the second operand is null:
∧n

i=1 ¬Bi, and the fact
that the result equals the first operand:

∧n
i=1 Ai ⇔ Si, which gives

∨n
i=1 Ai ⊕Si

44 V. Aravantinos, R. Caferra, and N. Peltier

by refutation. So we want to prove that Adder ∧
∧n

i=1 ¬Bi ∧
∨n

i=1 Ai ⊕ Si is
unsatisfiable. Notice that this schema is regular.

We sketch the corresponding tableau, using the conventions that closed leaves
(resp. blocked leaves looping on α) are marked by × (resp. �(α)). Sequences of
propositional (resp. iteration) extension rules are not detailed and represented
as thin (resp. thick) lines. Only new (w.r.t. the previous block) formulae are
presented in the blocks.

(1)

n ≥ 1
Vn

i=1 Sumi

Wn
i=1 Ai ⊕ Si

¬C1
Vn

i=1 Carryi

Vn
i=1 ¬Bi

n ≥ 1 ¬C1Vn−1
i=1 Sumi Sumn

An ⊕ SnVn−1
i=1 Carryi CarrynVn−1

i=1 ¬Bi ¬Bn

¬Sn Cn An ¬Bn

(2)

Sn Cn ¬An ¬Bn

(2’)

n ≥ 1 ¬C1Vn−1
i=1 Sumi SumnWn−1

i=1 Ai ⊕ SiVn−1
i=1 Carryi CarrynVn−1

i=1 ¬Bi ¬Bn

� (1)

(2)

n− 1 ≥ 1
Vn−2

i=1 Carryi

Carryn−1

n ≥ 2
(An−1 ∧ Bn−1) ∨ (Cn−1 ∧ An−1) ∨ (Cn−1 ∧ Bn−1)

An−1 ∧ Bn−1

×
Cn−1 ∧ An−1

Cn−1, An−1,¬Sn−1

� (2)

Cn−1 ∧ Bn−1

×

n ≥ 1 n− 1 < 1
Cn ¬C1

×

(2′) is very similar to (2).

Explanations. The first big step decomposes all the iterations. The branching is
due to

∨n
i=1 Ai ⊕Si: first we have An ⊕Sn, then

∨n−1
i=1 Ai ⊕Si. The right branch

loops after a few steps as all iterated conjunctions
∧n

i=1 . . . contain
∧n−1

i=1 . . .

A Schemata Calculus for Propositional Logic 45

The left one is extended by propositional rules (the reader can easily check that
Sumn, Carryn, An ⊕ Sn and ¬Bn indeed lead to the presented branches).

In (2) we start by decomposing all iterations a second time. Similarly to (1)
there is a branching due to

∨n−1
i=1 Ai ⊕ Si. We do not represent it as the second

branch loops similarly. So we consider only the case where we have An−2⊕Sn−2.
Iterations are aligned on [1..n− 1] so they all introduce the same constraints i.e.
either n− 1 ≥ 1 (first branch) or n− 1 < 1 (second branch). In the second case,
the introduced constraint implies that n = 1, thus Cn = C1 which closes the
branch. In the first case we decompose Carryn−1 and consider the various cases.
Two of them are trivially discarded as they imply Bn−1, whereas we have ¬Bi

for all i ∈ [1..n]. It only remains one case which is easily seen to loop on (2).

7 Conclusion

We presented the first (to the best of our knowledge) calculus for reasoning
on iterated schemata of propositional formulae. We proved that this calculus is
sound and complete (w.r.t. satisfiability). We identified a (reasonably expressive)
class of schemata for which it is a decision procedure.

In our opinion, this work opens a new research area with many lines of future
work. First an implementation is of course mandatory. Then the most natural
follow-up is to extend stab to first-order logic. The obtained language would
allow one to denote mathematical proofs using induction on natural numbers,
without having to use more expressive languages for which no proof procedures
are available. It would also be useful to identify other syntactic classes of propo-
sitional schemata for which stab terminates (as in Section 5, but allowing, for
instance, nesting of iterations). Such classes could be obtained by restricting the
form of the indices and/or the iteration patterns. Defining more powerful cases
of the looping rule could be useful to this purpose. Finally schemata naturally
arise in many symbolic computation procedures, particularly in programming
and symbolic computation. We believe that the ideas and techniques introduced
in the present paper could be reused in other domains, thus paving the ground
for a general framework for iteration schemata.

Acknowledgements. We thank the three anonymous referees for their thor-
ough reviews. Their remarks and suggestions have greatly contributed to improve
the quality of the paper.

References

1. Corcoran, J.: Schemata: the concept of schema in the history of logic. The Bulletin
of Symbolic Logic 12(2), 219–240 (2006)

2. Kneale, W., Kneale, M.: The development of logic. Clarendon Press, Oxford Uni-
versity Press (1986)

3. Baaz, M., Zach, R.: Short proofs of tautologies using the schema of equivalence. In:
Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 33–35.
Springer, Heidelberg (1994)

46 V. Aravantinos, R. Caferra, and N. Peltier

4. Parikh, R.J.: Some results on the length of proofs. Transactions of the American
Mathematical Society 177, 29–36 (1973)

5. Baaz, M.: Note on the generalization of calculations. Theoretical Computer Sci-
ence 224, 3–11 (1999)

6. Kraj́ıček, J., Pudlák, P.: The number of proof lines and the size of proofs in first
order logic. Archive for Mathematical Logic 27, 69–84 (1988)

7. Orevkov, V.P.: Proof schemata in Hilbert-type axiomatic theories. Journal of Math-
ematical Sciences 55(2), 1610–1620 (1991)

8. Wos, L., Overbeek, R., Lusk, E., Boyle, J.: Automated Reasoning, Introduction
and Applications, 2nd edn. McGraw-Hill, New York (1992)

9. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Philosophical
Transactions of the Royal Society A 363, 2351–2375 (2005)

10. Wos, L.: Automated Reasoning: 33 Basic Research Problems. Prentice-Hall, En-
glewood Cliffs (1988)

11. Hermann, M., Galbavý, R.: Unification of Infinite Sets of Terms schematized by
Primal Grammars. Theoretical Computer Science 176(1–2), 111–158 (1997)

12. Chen, H., Hsiang, J., Kong, H.: On finite representations of infinite sequences of
terms. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 100–114.
Springer, Heidelberg (1991)

13. Comon, H.: On unification of terms with integer exponents. Mathematical System
Theory 28, 67–88 (1995)

14. Boyer, R.S., Moore, J.S.: A computational logic. Academic Press, London (1979)
15. Bouhoula, A., Kounalis, E., Rusinowitch, M.: SPIKE, an automatic theorem

prover. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 460–462. Springer,
Heidelberg (1992)

16. Comon, H.: Inductionless induction. In: Robinson, A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, pp. 913–962. North-Holland, Amsterdam (2001)

17. Bundy, A., van Harmelen, F., Horn, C., Smaill, A.: The Oyster-Clam system. In:
Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 647–648. Springer, Heidelberg
(1990)

18. Stratulat, S.: Automatic ‘Descente Infinie’ Induction Reasoning. In: Beckert, B.
(ed.) TABLEAUX 2005. LNCS, vol. 3702, pp. 262–276. Springer, Heidelberg (2005)

19. Wirth, C.P., Becker, K.: Abstract notions and inference systems for proofs by
mathematical induction. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994.
LNCS, vol. 968, pp. 353–373. Springer, Heidelberg (1995)

20. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In:
Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfia-
bility. Frontiers in Artificial Intelligence and Applications, February 2009, vol. 185,
pp. 825–885. IOS Press, Amsterdam (2009)

21. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Information and Computation 183(2), 140–164 (2003)

22. Smullyan, R.M.: First-Order Logic. Springer, Heidelberg (1968)
23. Fitting, M.: First-Order Logic and Automated Theorem Proving. Texts and Mono-

graphs in Computer Science. Springer, Heidelberg (1990)
24. Cooper, D.: Theorem proving in arithmetic without multiplication. In: Meltzer,

B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–99. Edinburgh University
Press (1972)

Tableaux and Model Checking
for Memory Logics

Carlos Areces1, Diego Figueira2, Daniel Goŕın3, and Sergio Mera3,�

1 INRIA Nancy Grand Est, Nancy, France
areces@loria.fr

2 INRIA Saclay, ENS Cachan, LSV, France
figueira@lsv.ens-cachan.fr

3 Departamento de Computación, UBA, Argentina
{dgorin,smera}@dc.uba.ar

Abstract. Memory logics are modal logics whose semantics is specified
in terms of relational models enriched with additional data structure to
represent memory. The logical language is then extended with a collec-
tion of operations to access and modify the data structure. In this paper
we study their satisfiability and the model checking problems.

We first give sound and complete tableaux calculi for the memory logic
ML(©k ,©r ,©e) (the basic modal language extended with the operator ©r
used to memorize a state, the operator ©e used to wipe out the memory,
and the operator ©k used to check if the current point of evaluation is
memorized) and some of its sublanguages. As the satisfiability problem
of ML(©k ,©r ,©e) is undecidable, the tableau calculus we present is non
terminating. Hence, we furthermore study a variation that ensures ter-
mination, at the expense of completeness, and we use model checking to
ensure soundness. Secondly, we show that the model checking problem
is PSpace-complete.

1 Memory Logics

In a number of recent papers [1,2,3,4] we have investigated a family of logics
that we call memory logics. These logics are related to both modal logics [5,6]
and hybrid logics [7], as well as other logics that intend to add some notion of
state to models [8,9,10,11,12].

Intuitively, memory logics are modal logics whose semantics is specified in
terms of first-order relational models enriched with additional data structure to
represent memory. The logical language is then extended with a collection of
operations to access and modify the data structure.

Formally, let M = 〈W, (Rr)r∈Rel, V 〉 be a relational structure where W is
a non empty domain; for each relation symbol r, Rr is a binary relation over
W ; and V : Prop → 2W is a valuation function that assigns subsets of W to
propositional symbols in Prop. We can extend this structure with a set S ⊆ W
which can be interpreted as a set of states that are ‘known’ to us, and which
� S. Mera is partially supported by a grant of Fundación YPF.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 47–61, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

48 C. Areces et al.

represent the current ‘memory’ of the model. Even in this simple setting we can
define the following operators:

〈W, (Rr)r∈Rel, V, S〉, w |= ©rϕ iff 〈W, (Rr)r∈Rel, V, S ∪ {w}〉, w |= ϕ,

〈W, (Rr)r∈Rel, V, S〉, w |= ©eϕ iff 〈W, (Rr)r∈Rel, V, ∅〉, w |= ϕ,
〈W, (Rr)r∈Rel, V, S〉, w |= ©k iff w ∈ S.

As it is clear from the definition above, the ‘remember’ operator ©r (a unary
modality) just marks the current state as being ‘known’ or ‘already visited’, by
storing it in our ‘memory’ S. The ‘erase’ operator ©e (also unary) wipes out the
memory. These are the operators we use to update the memory. On the other
hand, the zero-ary operator ©k (for ‘known’) queries S to check if the current
state has already been visited. Notice that the extension of S is dynamic and it
can vary during the evaluation of a formula.

Our original motivation to investigate memory logics was mainly theoretical:
we were looking for a modal language that included some kind of binding mech-
anism (notice that ©r effectively binds instances of ©k appearing in its scope),
but with a decidable satisfiability problem. The memory logic ML(©k ,©r) (i.e.,
the basic modal language extended with only the ©k and ©r operators) was in-
troduced as a weakening of the operator ↓ from the hybrid logic HL(↓) (i.e., the
basic modal language extended with nominals and the ↓ binder [7]) known to
be undecidable. But, as we have shown in [2,3] , even though the language is
strictly less expressive than HL(↓), its satisfiability problem is still undecidable.

While working with the memory operators we realised that they provide an
interesting perspective on modalities and their interaction with models: they are
examples of operators that modify the model during evaluation, and in that sense
they are truly dynamic. They are examples of logical languages that could both
check conditions on the model, and modify the model accordingly. For example,
while evaluating the formula ©rψ in a model M, the ©r operator transforms M
into a new modelM′ (by adding the current point of evaluation to the memory),
and ψ is then evaluated inM′. We could imagine other operators that modifyM
in different ways: add states, change the valuation, modify accessibility relations,
etc. By investigating memory logics we want to understand the basic properties
of such languages. From this perspective, memory logics would be related to
other well-known logics. One example are dynamic epistemic logics [8], which
are languages used to model the evolution of the knowlege of epistemic agents
via updates to the model representing their epistemic state. Other approach
comes from temporal logics with explicit global clocks (for example, the logic
XCTL [9]), in which these clocks are accessed and controlled through logical
operators. We believe that by studying the memory logics family we will better
understand some of the basic notions and intuitions that all these languages have
in common.

In this article we investigate computational aspects of two classical reason-
ing tasks for memory logics. In Section 2 we develop sound and complete tableau

Tableaux and Model Checking for Memory Logics 49

calculi. As the satisfiability problem for ML(©k ,©r) (and hence also the one
for ML(©k ,©r ,©e)) is undecidable – and given that the calculi are sound and
complete – the tableaux obtained by the application of the rules we provide might
be infinite. In Section 3 we restrict these calculi so that they always produce finite
tableaux, but at the expense of sacrificing completeness. For this restriction to
work, we will need to perform model-checking (over an induced model) and in
Section 4 we investigate the complexity of this task. Because ML(©k ,©r ,©e) is
a fragment of first-order logic, we know that the problem is in PSpace [13]. We
will show that it actually is PSpace-complete.

2 Complete and Sound Tableau Calculi

In this section we will introduce a tableau calculus for ML(©k ,©r ,©e) (as we will
explain below, we will actually propose calculi over two particularly interesting
classes of models, and discuss also calculi for some sublogics). To make the paper
self-contained, we start by introducing some notation and basic notions.

Definition 1 (Syntax). Let Prop = {p1, p2, . . . } (the propositional symbols)
and Rel = {r1, r2, . . . } (the relational symbols) be disjoint, countable infinite
sets. Forms, the set of formulas of ML(©k ,©r ,©e) over signature 〈Prop, Rel〉, is
defined as:

Forms ::= p | ¬p | ©k | ¬©k | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈r〉ϕ | [r]ϕ | ©rϕ | ©eϕ,

where p ∈ Prop, r ∈ Rel and ϕ, ϕ1, ϕ2 ∈ Forms.
Given ϕ ∈ Forms we will write ϕ for the formula obtained by computing the

negated normal form of the negation of ϕ:

p = ¬p ©k = ¬©k ϕ1 ∧ ϕ2 = ϕ1 ∨ ϕ2 〈r〉ϕ = [r]ϕ ©rϕ = ©rϕ

¬p = p ¬©k = ©k ϕ1 ∨ ϕ2 = ϕ1 ∧ ϕ2 [r]ϕ = 〈r〉ϕ ©eϕ = ©eϕ

Sublogics of ML(©k ,©r ,©e) are obtained by forbidding the use of certain op-
erators. For example,ML(©k ,©r) is the logic obtained by restricting to formulas
in Forms not containing ©e .

Definition 2 (Semantics). Given a signature S = 〈Prop, Rel〉, a model for S
is a tuple 〈W, (Rr)r∈Rel, V, S〉, satisfying the following conditions: (i) W = ∅;
(ii) each Rr is a binary relation on W ; (iii) V : Prop → 2W is a labeling function;
and (iv) S ⊆ W .

For any model M = 〈W, (Rr)r∈Rel, V, S〉, we will denote with M[w1, . . . , wn]
and M∅ the models 〈W, (Rr)r∈Rel, V, S ∪{w1, . . . , wn}〉 and 〈W, (Rr)r∈Rel, V, ∅〉
respectively.

Given the model M = 〈W, (Rr)r∈Rel, V, S〉 and w ∈W , the semantics for the
different operators is defined as follows:

50 C. Areces et al.

M, w |= p ⇐⇒ w ∈ V (p), p ∈ Prop
M, w |= ¬p ⇐⇒ w ∈ V (p), p ∈ Prop
M, w |= ϕ ∧ ψ ⇐⇒ M, w |= ϕ and M, w |= ψ
M, w |= ϕ ∨ ψ ⇐⇒ M, w |= ϕ or M, w |= ψ
M, w |= 〈r〉ϕ ⇐⇒ there is w′ such that Rr(w, w′) and M, w′ |= ϕ
M, w |= [r]ϕ ⇐⇒ for all w′ such that Rr(w, w′), M, w′ |= ϕ
M, w |= ©rϕ ⇐⇒ M[w], w |= ϕ
M, w |= ©eϕ ⇐⇒ M∅, w |= ϕ
M, w |= ©k ⇐⇒ w ∈ S
M, w |= ¬©k ⇐⇒ w ∈ S.

Definition 3 (Satisfiability and Validity). Let C be a class of models. We
say that ϕ is satisfiable in C if there is a model M ∈ C and a state w in the
domain of M such that M, w |= ϕ. We say that ϕ is valid in C if ϕ is not
satisfiable in C.

We will be mainly interested in using tableaux to characterize the set of valid
formulas over Call, the class of all models. But observe that to express several
structural properties of interest, it is natural to start with a model with no
previously remembered states.

For example, 〈W, (Rr)r∈Rel, ∅〉, w |= ©r 〈r〉©k if and only if R(w, w). That is,
satisfiability of ©r 〈r〉©k at w characterizes reflexivity of w whenever the initial
memory is empty. When the ©e operator is in the language, we can actually use
the formula ©e©r 〈r〉©k instead, which ensures that S is empty before evaluating
©r 〈r〉©k . That is, if C∅ is the class {M | M = 〈W, (Rr)r∈Rel, V, ∅〉} of models
with an empty memory, then ϕ is valid in C∅ iff ©eϕ is valid in Call. Or in other
words, we can use ©e to ‘internalize’ the class C∅.

Because we will discuss not only the full language ML(©k ,©r ,©e), but also
some of its sublanguages, we’ll set up the tableau calculi so that they can be
used for satisfiability for both Call and C∅.

In Figure 1 we present the rules for a prefixed tableau calculus for the logic
ML(©k ,©r ,©e). Prefixed tableaux for hybrid logics were investigated by Black-
burn and Bolander in [14]. The general approach and, in particular, the termi-
nation argument used in Section 3 are inspired by this paper.

A tableau in the calculus presented in Figure 1 is simply a wellfounded, finitely
branching tree in which edges represent applications of tableau rules in the usual
way and each node is labeled by an accessibility, equality or prefixed formula.

Definition 4 (Prefixed, accessibility and equality formulas). Let W =
{w1, w2, . . .} be an infinite, enumerable set of labels. Then 〈w, A〉C :ϕ is a prefixed
formula, where ϕ ∈ ML(©k ,©r ,©e), C ∈ {Call, C∅}, w ∈ W and A is a finite
subset of W . Rr(w, w′) is an accessibility formula for r ∈ Rel, and w, w′ ∈ W .
w ≈ w′ is an equality formula for w, w′ ∈W .

Intuitively, in the prefix 〈w, A〉C , w is the label of the state where the formula
holds, C is the class of models we are working with (Call or C∅), and A is a set

Tableaux and Model Checking for Memory Logics 51

(∧)
〈w, A〉C :ϕ ∧ ψ

〈w, A〉C :ϕ
〈w, A〉C :ψ

(∨)
〈w, A〉C :ϕ ∨ ψ

〈w, A〉C :ϕ | 〈w, A〉C :ψ

(〈r〉)
〈w, A〉C :〈r〉ϕ

Rr(w, w′)
〈w′, A〉C :ϕ

† ([r])
〈w, A〉C :[r]ϕ
Rr(w, w′)
〈w′, A〉C :ϕ

(¬©k)
〈w, A〉C :¬©k
〈w, ∅〉C :¬©k

(©k)
〈w, {v1, . . . vk}〉C :©k

w ≈ v1 | · · · | w ≈ vk | 〈w, ∅〉C :©k

(©e)
〈w, A〉C :©eϕ

〈w, ∅〉C∅ :ϕ
(©r)

〈w, A〉C :©rϕ

〈w,A ∪ {w}〉C :ϕ

(repl)
〈w, A〉C :ϕ
w ≈∗ w′

〈w′, A[w �→ w′]〉C :ϕ
‡

Clash Rules:

(⊥p)
〈w, A〉C1 :p
〈w, B〉C2 :¬p

⊥
(⊥©k)

〈w, ∅〉C :©k
〈w, ∅〉C :¬©k

⊥

(⊥¬©k)
〈w, {w} ∪ A〉C :¬©k

⊥
(⊥∅)

〈w, ∅〉C∅ :©k
⊥

Key:

† w′ is fresh.
‡ a ≈∗ b iff (a, b) occurs in the reflexive, symmetric and transitive closure of the relation
{(w, w′) | w ≈ w′appears in the current branch}. A[w �→ w′] = A if w �∈ A, and
(A− {w}) ∪ {w′} otherwise.

• C, C1, C2 are either Call or C∅.
• A,B are arbitrary finite set of labels.

Fig. 1. Tableau rules

of states that were explicitly remembered by evaluating a ©r operator in the
current branch. Since every prefixed formula is derived in finitely many steps,
A will always be a finite set. In the rest of this article we will refer to a tableau
that uses the rules presented in Figure 1 as a tableau for ML(©k ,©r ,©e). The
intended interpretation of Rr(w, w′) is that the state denoted by w′ is accessible
from the state denoted by w by the interpretation of relation symbol r. Finally,

52 C. Areces et al.

the intended interpretation of an equality formula w ≈ w′ is that w and w′ label
the same state in a given branch.

We will use the term formula to denote either a formula of ML(©k ,©r ,©e), a
prefixed formula, an accessibility formula, or an equality formula.

The rules are presented in the standard format: each rule has a name on the
left and is divided in an upper (the antecedent) and lower (the consequent) part.
Whenever there are formulas in a branch that match the antecedent, the rule can
be applied following the constraints specified for each rule. If the rule is applied,
the formulas of the consequent are added to the same branch, except in the case
of (∨) and (©k), where several different branches are created.

The rules (〈r〉), (¬©k), (©k), (©e), (©r) and (repl) are called “prefix generating
rules”, since if a prefix is new to a branch, it must be introduced by one of these
rules. We impose two general constraints on the construction of a tableau:

– A prefix generating rule is never applied twice to a formula on a given branch.
– A formula is never added to a tableau branch where it already occurs.

A saturated tableau is a tableau in which no more rules can be applied that
satisfy the constraints. A saturated branch is a branch of a saturated tableau.
A branch of a tableau is called closed if it contains ⊥. Otherwise the branch is
called open. A closed tableau is one in which all branches are closed, and an open
tableau is one in which at least one branch is open.

(∧), (∨), (〈r〉) and ([r]) are classical rules of the basic modal logic tableau cal-
culus. The remaining ones are particular to memory logics. Rule (¬©k) specifies
that at a label where A denotes the set of states that were explicitly remem-
bered, if the state w is not in the memory then w ∈ A and (in particular) w
still is not memorized at the label with A = ∅. Rule (©k) specifies that if w is in
the memory, then either it is one of the explicitly remembered states, or it is in
the initial memory, in which case ©k holds even with no explicitly remembered
states. Notice that the last branch of the application of this rule can be immedi-
ately closed in the case where C = C∅, due to the rule (⊥∅). Rule (©e) wipes out
the explicitly remembered states and evaluates the satisfiability of the formula
in a model with no initial memory. Observe that the presence of the ©e modality
may force the calculus to switch from the evaluation over Call to that over C∅.

We will also consider variations and subsystems of the calculus of Figure 1
where only a subset of the rules are allowed, or additional constraints on the
rules are imposed (for example, to ensure termination). In such subsystems, a
tableau is of course simply a tableau in which only the rules in the subset can
be applied, considering the additional constraints.

We call a tableau calculus T sound for a language L respect to a class of
models C if whenever ϕ ∈ L is C-satisfiable, then every saturated tableau T with
root ϕ has an open branch. We say that it is complete if whenever ϕ ∈ L is not
C-satisfiable, then every saturated tableau T with root ϕ is closed.

Soundness of the calculus of Figure 1 follows from a simple inspection of the
rules. We devote the rest of this section to prove completeness. As usual, we will
show that given an open and saturated branch Γ , we can define a model MΓ

Tableaux and Model Checking for Memory Logics 53

that satisfies all the formulas that occur in the branch. To define the domain of
MΓ we first need the following definition.

Definition 5 (EqΓ). Let Γ be an open and saturated branch of a tableau for
ML(©k ,©r ,©e). EqΓ is the smallest equivalence relation extending {(w, w′) |
(w ≈ w′) ∈ Γ}.

Definition 6 (MΓ). Let Γ be an open and saturated branch of a tableau for
ML(©k ,©r ,©e). Define the induced model MΓ = 〈WΓ , (RrΓ)r∈Rel, VΓ , SΓ 〉 as:

WΓ = {w | w occurs in Γ}/EqΓ

RrΓ = {([w], [w′]) | Rr(w, w′) ∈ Γ}
VΓ (p) = {[w] | 〈w, A〉C :p ∈ Γ , for any A and C}
SΓ = {[w] | 〈w, ∅〉Call :©k ∈ Γ},

where [w] is the equivalence class of w in EqΓ .

Lemma 1. Let MΓ = 〈WΓ , (RrΓ)r∈Rel, VΓ , SΓ 〉 be the induced model for Γ ,
where Γ is an open and saturated branch of a tableau for ML(©k ,©r ,©e).

1. 〈w, {v1, . . . vk}〉Call :ϕ ∈ Γ implies MΓ [[v1], . . . , [vk]], [w] |= ϕ.
2. 〈w, {v1, . . . vk}〉C∅ :ϕ ∈ Γ implies MΓ

∅ [[v1], . . . , [vk]], [w] |= ϕ.

Proof. We proceed by induction on ϕ.

Case ϕ := p. If 〈w, {v1, . . . , vk}〉Call :p ∈ Γ , then [w] ∈ VΓ (p) and, therefore,
MΓ [[v1], . . . , [vk]], [w], |= p. The case for C∅ is analogous.

Case ϕ := ¬p. Suppose 〈w, {v1, . . . , vk}〉C :¬p ∈ Γ . If MΓ [[v1], . . . , [vk]], [w] |=
p, it means that [w] ∈ VΓ (p) and hence 〈w, A〉C :p ∈ Γ (for some A and C),
but in that case rule (⊥p) applies and the branch would be closed. Again,
the case for C∅ is analogous.

Case ϕ := ©k . We consider all the different possibilities:
1. If 〈w, ∅〉Call :©k ∈ Γ , then [w] ∈ SΓ and, therefore, MΓ , [w] |=©k .
2. If 〈w, ∅〉C∅ :©k ∈ Γ , then, by the (⊥∅) rule, ⊥ ∈ Γ which would contradict

the hypothesis that Γ is an open branch.
3. If 〈w, {v1, . . . vk}〉Call :©k ∈ Γ , with k > 0 then some consequent of the

(©k) rule must occur in Γ too. If 〈w, ∅〉Call :©k ∈ Γ then we are done. So
let us assume that, on the contrary, w ≈ vi ∈ Γ for some i ∈ {1, . . .k}.
This implies that [w] = [vi], but since vi ∈ {v1, . . . vk}, we conclude that
MΓ [[v1], . . . , [vk]], [w] |= ©k .

4. The case when 〈w, {v1, . . . vk}〉C∅ :©k ∈ Γ , with k > 0 is analogous.
Case ϕ := ¬©k . We consider, again, all the distinct cases:

1. Let 〈w, ∅〉Call :¬©k ∈ Γ and let us assume, for the sake of contradic-
tion, that MΓ , [w] |= ©k . This means that [w] ∈ SΓ and, therefore,
〈w′, ∅〉Call :©k ∈ Γ , where [w] = [w′]. Since Γ is saturated, by the (repl)
rule we know that 〈w, ∅〉Call :©k ∈ Γ . But then rule (⊥©k) applies and
⊥ ∈ Γ which makes Γ a closed branch.

2. Suppose 〈w, ∅〉C∅ :¬©k ∈ Γ . It is always the case that MΓ
∅ , [w] |= ¬©k .

54 C. Areces et al.

3. Let 〈w, {v1, . . . vk}〉Call :¬©k ∈ Γ , with k > 0, and suppose, for the sake
of contradiction, that MΓ [[v1], . . . , [vk]], [w] |= ©k . This opens two possi-
bilities. First, it could be the case that [w] ∈ SΓ , but that would mean
that 〈w, ∅〉Call :©k ∈ Γ and, because of the (¬©k) rule, 〈w, ∅〉Call :¬©k ∈ Γ
and therefore we would have a clash by the (⊥©k) rule.
Alternatively, it could be the case that [w] = [vi] for some i ∈ {1, . . .k}.
Since Γ is saturated, we conclude 〈vi, {v1, . . . vk}[w �→ vi]〉Call :¬©k ∈ Γ
using the (repl) rule. But observe that vi ∈ {v1, . . . vk}[w �→ vi] from
which rule (⊥¬©k) applies and leads to a contradiction.

4. If 〈w, {v1, . . . vk}〉C∅ :¬©k ∈ Γ , with k > 0, we can simply use the argu-
ment for the case [w] = [vi] just above.

Case ϕ := ©rψ. Suppose 〈w, {v1, . . . vk}〉Call :©rψ ∈ Γ . By rule (©r), we know
〈w, {v1, . . . vk, w}〉Call :ψ ∈ Γ . By inductive hypothesis, MΓ [[v1], . . . [vk], [w]],
[w] |= ψ, which implies MΓ [[v1], . . . [vk]], [w] |= ©rψ. C∅ is analogous.

Case ϕ := ©eψ. If 〈w, {v1, . . . vk}〉Call :©eψ ∈ Γ then, by rule (©e), 〈w, ∅〉C∅ :ψ ∈
Γ and, by inductive hypothesis, MΓ

∅ , [w] |= ψ. Therefore, it follows that
M[[v1], . . . [vk]], [w] |= ©eψ. The case for C∅ is analogous.

The remaining boolean and modal cases are dealt with in the standard way.

Theorem 1. The tableau calculus for ML(©k ,©r ,©e) is sound and complete for
both the classes Call and C∅.

More precisely, given ϕ ∈ ML(©k ,©r ,©e), ϕ is satisfiable iff any saturated
tableau for ML(©k ,©r ,©e) with root 〈w, ∅〉Call :ϕ has an open branch. An equiva-
lent result holds for the C∅ class, starting with a tableau with root 〈w, ∅〉C∅ :ϕ.

Proof. Soundness is trivial. Completeness is straightforward from Lemma 1: as-
sume that a formula ϕ ∈ ML(©k ,©r ,©e) is not satisfiable in the class C while
there is a saturated tableau T with root 〈w, ∅〉C :ϕ and open branch Γ ; MΓ

satisfies ϕ and is in the class C which contradicts the assumption.

It is also straightforward to see that if we drop the (©e) rule from the calculus,
then we can prove soundness and completeness for formulas inML(©r ,©k) (again
with respect to both classes Call and C∅).

Theorem 2. The tableau calculus of Figure 1 without the (©e) rule is sound and
complete for ML(©r ,©k) for both the classes Call and C∅.

3 Terminating Tableaux

In this section we will investigate some constraints that can be applied to the
tableau rules forML(©k ,©r ,©e) in order to ensure termination. The price we have
to pay is that the resulting calculus is not complete any more. More precisely,
it will be the case that some formula ϕ has a tableau with an open saturated
branch Γ whose induced model MΓ is not a model for ϕ. This means that we
cannot claim satisfiability of the root formula every time we obtain a saturated

Tableaux and Model Checking for Memory Logics 55

open tableau. In these cases, we will use a model checking algorithm to verify
whether MΓ is effectively a model for ϕ. If the model checking succeeds we can
then indeed answer sat, and we will answer not-known otherwise.

We begin this section defining the restricted tableau rules, and proving a ter-
mination result. After this we will formalize the connection with model checking.
In what follows, when a prefixed formula σ:ϕ occurs in a tableau branch Γ we
will write σ:ϕ ∈ Γ , and say that ϕ is true at σ on Γ or that σ makes ϕ true on
Γ . Also, given a prefix σ = 〈w, A〉C we will define Label(σ) = w and Set(σ) = A.

We will start by showing that by eliminating the (repl) rule one obtains a
terminating calculus.

Definition 7. Given a tableau branch Γ and a prefix σ, the set of true formulas
at σ on Γ , written TΓ (σ), is defined as TΓ (σ) = {ϕ | σ:ϕ ∈ Γ}.

Notice that accessibility and equality formulas are not included in TΓ (σ).

Lemma 2 (Subformula Property). Let T be a tableau with the prefixed for-
mula σ0:ϕ0 as root. For any prefixed formula σ:ϕ occurring on T, ϕ is a subfor-
mula of ϕ0.

Proof. This is easily seen by going through each of the tableau rules.

Lemma 3. Let Γ be a branch of a tableau, and let σ be any prefix occurring on
Γ . The set TΓ (σ) is finite.

Proof. Let σ0:ϕ0 denote the first formula on Γ (i.e., the root of the tableau).
From Lemma 2, we know that TΓ (σ) ⊆ {ϕ | ϕ is a subformula of ϕ0}, and
hence TΓ (σ) is finite.

Definition 8. Let T be a tableau. If a prefixed formula τ :ψ of T has been in-
troduced by applying one of the prefix generating rules except (repl) to a premise
σ:ϕ of T then we say that τ :ψ is generated by σ:ϕ, and we write σ : ϕ ≺ τ :ψ.

Now we define a measure for the complexity of a prefixed formula:

Definition 9. Let T be a tableau, σ:ϕ be a prefixed formula occurring on T and
let |ϕ| denote the length of the ϕ. We define

m(σ:ϕ) = 2|ϕ|+ |Set(σ)|,

Lemma 4 (Decreasing length). Let T be a tableau with no application of the
(repl) rule. If σ:ψ ≺ τ :ϕ then m(σ:ψ) > m(τ :ϕ).

Proof. Assume σ:ψ ≺ τ :ϕ. We need to prove m(σ:ψ) > 2|ϕ|+ |Set(τ)|. τ :ϕ must
have been introduced by an application of either (〈r〉), ([r]), (©k), (¬©k), (©e),
(©r), (∧) or (∨).

In the case of (〈r〉), τ :ϕ must be introduced by applying the (〈r〉) rule to a
premise of the form σ:〈r〉ϕ. In the case of ([r]), τ :ϕ must be introduced by apply-
ing the ([r]) rule to a pair of premises of the form σ:[r]ϕ, Rr(Label(σ),Label (τ)).

56 C. Areces et al.

In both cases we see that τ :ϕ is introduced by applying a rule to a formula
σ:ψ where |ψ| > |ϕ| and where |Set(τ)| = |Set(σ)|. Thus we get m(σ:ψ) =
|Set(σ)| + 2|ψ| > |Set(τ)|+ 2|ϕ|.

If τ :ϕ is introduced by (©k) or (¬©k) from σ:ψ, it is immediate that ϕ = ψ,
|Set(τ)| = 0 and also that |Set(σ)| > 0, because otherwise the application would
generate a prefixed formula already in the branch. Thus, m(σ:ψ) = |Set(σ)| +
2|ψ| > 0 + 2|ψ| = |Set(τ)| + 2|ϕ|. The case of (©e) is clear as the length of the
set does not increase, and the length of the formula decreases. In the cases of
(∨) and (∧) the length of the formula is decreased while the set is preserved.

Finally, if τ :ϕ is introduced by the (©r) rule from σ:ψ, we see that while the set
may be increased by one, the length of the formula is always decremented. Then
we have m(σ:ψ) = |Set(σ)|+ 2|ψ| > (|Set(σ)|+ 1)+ 2(|ψ| − 1) = |Set(τ)|+ 2|ϕ|.

Lemma 5 (Finite branching). Let Γ be a branch of a tableau. For any σ:ϕ ∈
Γ there is only a finite number of prefixed formulas τ :ψ ∈ Γ such that σ:ϕ ≺ τ :ψ.

Proof. For any given prefix σ the set TΓ (σ) is finite (Lemma 3), and for each
formula ϕ ∈ TΓ (σ) at most one new prefix has been generated from σ (by
applying a prefix generating rule to σ:ϕ). Thus ≺ is finitely branching.

Theorem 3. Fix a natural number n ≥ 0. Any tableau for ML(©k ,©r ,©e) in
which the rule (repl) is applied at most n times per branch is finite.

Proof. We show that any branch Γ of the tableau is finite.
Notice first that σ0:ϕ0 has no ≺-predecessors, and that at most k ≤ n other

prefixed formulas of the tableau share the property of not having ≺-predecessors.
Intuitively, each of these k formulas were introduced in Γ by the (repl) rule and
hence cannot have been derived by ≺. We shall refer to these k + 1 formulas as
‘generating formulas’.

It is easy to see that each generating formula induces a connected component
in the graph of ≺. Then, every σ:ϕ ∈ Γ belongs to (at least) one of these
k + 1 connected components. As the function m decreases monotonously along
any path of each of the connected components (Lemma 4), all paths of the
component are finite.

By construction, there is a path between a generating formula and every node
of its connected component. Then the graph is weakly connected and every path
is finite. By König’s Lemma the connected component is either finite or has
infinite branching. As we know by Lemma 5 that it has finite branching, Γ must
be finite.

Since we limit the number of applications of (repl) to n, we may have a saturated
open tableau for ϕ whose induced model MΓ is not a model for ϕ (recall that
that we are taking into account the constraint on the number of applications of
(repl) when talking about saturation). This implies that it is no longer safe to
answer sat in these cases. But we can try to identify, given a formula ϕ, whether
MΓ is indeed a model for ϕ. The algorithm we propose is outlined as follows:

Tableaux and Model Checking for Memory Logics 57

1. Given a formula ϕ and a parameter n ≥ 0, build T , a saturated tableau
for ML(©k ,©r ,©e) with root 〈w, ∅〉Call :ϕ using at most n applications of the
(repl) rule per branch.

2. If T is closed answer unsat.
3. Else, if T has an open branch Γ , compute the induced model MΓ .
4. If MΓ , [w] |= ϕ then answer sat.
5. Else, answer not-known.

Correctness of this algorithm is straightforward. Moreover, as we will show
in Section 4, ML(©k ,©r ,©e) is a fragment of HL(↓), and therefore we can use a
model checking algorithm for HL(↓) to perform the step 4 in polynomial space.

Note that in the case the algorithm returns not-known, we can try refining
the result running the algorithm again with a bigger n reusing the previously
computed tableau, as the resulting tableau will be an extension to the previous
one. This method allows us to approximate increasingly to a solution to the
satisfiability problem of ML(©k ,©r ,©e) in a controlled way.

4 Model Checking

In this section we will show that the complexity of the model checking prob-
lem for ML(©k ,©r ,©e) is PSpace-complete (actually the result already holds for
ML(©k ,©r)). To prove the lower bound we reduce the PSpace-complete sat-
isfiability problem for Quantified Boolean Formulas (QBF) [15] to the model
checking problem of ML(©k ,©r). To prove the upper bound, we show an equiv-
alent preserving translation from formulas of ML(©k ,©r ,©e) to formulas of the
hybrid logic HL(↓) [7,16].

This high complexity contrasts with the linear complexity (in both formula
and model size) of model checking for the basic modal logic [17], and can be seen
as a strengthening of the result of PSpace-hardness of HL(↓) shown in [16] (in
the sense that ML(©k ,©r) is a logic with strictly weaker expressive power than
HL(↓), but whose model checking problem is already PSpace-hard).

We start by giving a lower bound for ML(©k ,©r). Since ML(©k ,©r) is a
sublanguage of ML(©k ,©r ,©e), the result also holds for ML(©k ,©r ,©e).

Theorem 4. Model checking for ML(©k ,©r) is PSpace-hard.

Proof. We prove it by giving a polynomial-time reduction of QBF-SAT, known
to be PSpace-complete [15], to the model checking problem of ML(©k ,©r).

Let α be a QBF formula with propositional variables {x1, . . . xk}. Without
loss of generality, we assume that α has no free-variables and no variable is
quantified twice. One can build in polynomial time the relational structure
Mk = 〈W, {Rr}, V, S〉, over a signature with one relation symbol and propo-
sitions {p�, px1 , . . . pxk

}, where

V (pxi) = {wxi} for all i ∈ [1..k] S = ∅
V (p�) = {w�x1

, w�x2
, . . .w�xk

} W = {w} ∪ {wxi , w
�
xi

, w⊥xi
| i ∈ [1..k]}

Rr = {(w, wxi), (wxi , w
�
xi

), (w�xi
, w), (wxi , w

⊥
xi

), (w⊥xi
, w) | i ∈ [1..k]}.

58 C. Areces et al.

w

px1

p�

px2

p�

px3

p�

Fig. 2.Mk for k = 3

Figure 2 depicts Mk for k = 3. Let Tr be the following linear-time translation:

Tr(xi) := 〈r〉(pxi ∧ 〈r〉(p� ∧©k)) Tr(∃xi.α) := 〈r〉(pxi ∧ 〈r〉©r 〈r〉Tr(α))

Tr(¬α) := Tr(α) Tr(α ∧ β) := Tr(α) ∧ Tr(β)

It only remains to see that α is satisfiable iffMk, w |= Tr(α) holds, but this is
relatively straightforward. Let us write v |=qbf α if valuation v : {x1, . . .xk} → 2
satisfies α. For a memory S ⊆ W , define vS : {x1, . . .xk} as “vS(xi) = 1 iff
w�xi

∈ S”. Let β be any subformula of α; we will now show by induction on
β that 〈W, V, Rr, S〉, w |= Tr(β) iff vS |=qbf β whenever S satisfies i) if xi is
free in β, then w�xi

∈ S or w⊥xi
∈ S but not both, and ii) if xi is not free

in β then w�xi
∈ S and w⊥xi

∈ S. Observe that from here it will follow that
Mk, w |= Tr(α) iff v |=qbf α for any v (since α has no free variables) iff α is
satisfiable.

For the base case, vS |=qbf xi iff w�xi
∈ S which implies (from the defini-

tion of Mk) 〈W, V, Rr, S〉, w |= Tr(xi). For the other direction, suppose now
that 〈W, V, Rr, S〉, w |= Tr(xi). This means that 〈W, V, Rr, S〉, w |= [r](¬pxi ∨
[r](¬p� ∨¬©k)) which implies 〈W, V, Rr, S〉, wxi |= [r](¬p� ∨¬©k) which implies
〈W, V, Rr, S〉, w�xi

|= ¬©k and, thus, w�xi
∈ S. Therefore we have vS |=qbf xi.

Consider now the case β = ∃xi.γ. Since α has no rebound variables we
know w�xi

∈ S and w⊥xi
∈ S. We have vS |=qbf β iff vS [xi �→ 0] |=qbf γ

or vS [xi �→ 1] |=qbf γ iff vS∪{w⊥
xi
} |=qbf γ or vS∪{w�

xi
} |=qbf γ iff, by in-

ductive hypothesis, 〈W, V, Rr, S ∪ {w⊥xi
}〉 |= Tr(γ) or 〈W, V, Rr, S ∪ {w�xi

}〉 |=
Tr(γ) iff 〈W, V, Rr, S〉, w⊥xi

|= ©r 〈r〉Tr(γ) or 〈W, V, Rr, S〉, w�xi
|= ©r 〈r〉Tr(γ) iff

〈W, V, Rr, S〉, w |= 〈r〉(pxi ∧ 〈r〉©r 〈r〉Tr(γ)) iff 〈W, V, Rr , S〉, w |= Tr(∃xi.γ).
The boolean cases follow directly from the inductive hypothesis.

To see that ML(©k ,©r ,©e) is in PSpace it is enough to show that any
ML(©k ,©r ,©e) formula can be translated to an equivalent formula ofH(↓), whose
model checking problem is known to be PSpace-complete [16]. Recall that the
language of HL(↓) is the language of the basic modal logic extended with nomi-
nals and the ↓ binder (see [7] for details). Formulas of HL(↓) are also interpreted
over relational structures, but we need additionally an assignment function to

Tableaux and Model Checking for Memory Logics 59

interpret nominals and ↓. More formally, to evaluate a formula of HL(↓), we
need a relational structure M = 〈W, (Rr)r∈Rel, V 〉 (where W is a non empty
set, each Rr is a binary relation over W , and V is a valuation function), and an
assignment function g such that for any nominal i, g(i) ∈ W . Given a relational
structure M = 〈W, (Rr)r∈Rel, V 〉 and an assignment g, the semantic conditions
for the ↓ operator and the nominals is defined as

M, g, w |= i iff g(i) = w
M, g, w |= ↓i.ϕ iff M, g′, w |= ϕ where g′ is identical to g

except perhaps in that g′(i) = w.

The semantics for the other operators is the same as for the basic modal logic.
Formulas in which any nominal i appears in the scope of a binder ↓i are called
sentences.

In order to define a translation between ML(©k ,©r ,©e) and HL(↓) we have
to find a mapping between the models of each logic. Since ML(©k ,©r ,©e)-
models may have a nonempty memory, we must introduce a shift in the sig-
nature of HL(↓)-models to encode this information. We will associate every
ML(©k ,©r ,©e)-model M = 〈W, (Rr)r∈Rel, V, S〉 over the signature 〈Prop, Rel〉
with the HL(↓)-model M′ = 〈W, (Rr)r∈Rel, V

′〉 over the signature 〈Prop ∪
{known}, Rel, Nom〉, where V ′ is identical to V over Prop, and V ′(known) = S.

Theorem 5. Model checking for ML(©k ,©r ,©e) is PSpace-complete.

Proof. We define the translation Tr, taking formulas of ML(©k ,©r ,©e) over the
signature 〈Prop, Rel〉 to HL(↓) sentences over the signature 〈Prop ∪ {known},
Rel, Nom〉. Tr is defined for any finite set N ⊆ Nom and C ∈ {Call, C∅} as
follows:

TrN,C(p) = p p ∈ Prop

TrN,C(¬p) = ¬p p ∈ Prop

TrN,C(©k) =
{

(
∨

i∈N i) ∨ known if C = Call∨
i∈N i if C = C∅

TrN,C(¬©k) =
{

(
∧

i∈N ¬i) ∧ ¬known if C = Call∧
i∈N ¬i if C = C∅

TrN,C(ϕ1 ∧ ϕ2) = TrN,C(ϕ1) ∧ TrN,C(ϕ2)
TrN,C(ϕ1 ∨ ϕ2) = TrN,C(ϕ1) ∨ TrN,C(ϕ2)

TrN,C(〈r〉ϕ) = 〈r〉TrN,C(ϕ)
TrN,C([r]ϕ) = [r]TrN,C(ϕ)
TrN,C(©rϕ) = ↓i.TrN∪{i},C(ϕ) where i /∈ N .
TrN,C(©eϕ) = Tr∅,C∅(ϕ).

A simple induction shows that, given a formula ϕ ∈ML(©k ,©r ,©e),M, w |= ϕ
iff M′, g, w |= Tr∅,Call(ϕ) for any g.

60 C. Areces et al.

5 Conclusions, Related and Further Work

The family of memory logics has been introduced to investigate, in the simplest
possible set up, the idea of models with a dynamic state. From that perspective
they are closely related to Dynamic Epistemic Logics (DELs) as those discussed
in [8] and many others [9,10,11,12]. Compared to these domain-specific logics,
the goals of memory logics are humbler, focusing on developing a suitable proof
and model theory for logics whose semantics is defined using models that can
evolve during the evaluation of a formula. From a purely formal point of view
they are closer to hybrid logics. And the logic ML(©k ,©r ,©e) that we investi-
gated in this paper is closely related, but expressively weaker, than the logic
HL(↓) [7].

It was already proved in [2,3] that the satisfiability problem of ML(©k ,©r ,©e)
was undecidable. In this paper we develop sound and complete tableau calculi
for ML(©k ,©r ,©e) and ML(©k ,©r) (Theorems 1 and 2) which, given the unde-
cidability result, are non terminating. By restricting the application of one of
the rules in the calculi we can obtain termination at the expense of completeness
(Theorem 3). To ensure soundness of this calculus we need to perform model
checking whenever we obtain an open branch. Theorem 4 shows that the model
checking problem for ML(©k ,©r) is PSpace-complete.

To close the paper, we discuss how the tableau calculus for ML(©k ,©r ,©e)
could be extended to cover another interesting memory operator. Define the
forget operator ©f as follows:

M, w |= ©fϕ ⇐⇒ 〈W, (Rr)r∈Rel, V, S − {w}〉, w |= ϕ.

The ©f operator gives us a fine control on which elements we want to eliminate
from the memory of the model. Prefixes in the calculus for ML(©k ,©r ,©e ,©f)
will have to explicitly record forgotten worlds in a separate set (it is not enough
to simply eliminate them from the set of remembered labels). For example, the
rules for (©f) and (©r) would be

(©f)
〈w, R, F 〉C :©fϕ

〈w, R− {w}, F ∪ {w}〉C :ϕ
(©r)

〈w, R, F 〉C :©rϕ

〈w,R ∪ {w}, F − {w}〉C :ϕ

where R is the set of remembered states and F the set of explicitly forgotten
states. On the other hand, the rules for (©k) and (¬©k) would be

(©k)
〈w, {v1, . . . vk}, F 〉C :©k

w ≈ v1 | · · · |w ≈ vk | 〈w, ∅, F 〉C :©k
(¬©k)

〈w, R, {v1, . . . vk}〉C :¬©k
w ≈ v1 | · · · |w ≈ vk | 〈w, R, ∅〉C :¬©k

Notice the symmetry between the rules, which corresponds to the symmetry in
the semantic definition of ©r and ©f . Besides these changes, the tableau rules
and the completeness argument remain roughly the same.

Tableaux and Model Checking for Memory Logics 61

References

1. Areces, C.: Hybrid logics: The old and the new. In: Proc. of LogKCA 2007. San
Sebastian, Spain (2007)

2. Areces, C., Figueira, D., Figueira, S., Mera, S.: Expressive power and decidability
for memory logics. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Infor-
mation and Computation. LNCS, vol. 5110, pp. 56–68. Springer, Heidelberg (2008)

3. Areces, C., Figueira, D., Figueira, S., Mera, S.: Expressive power and decidability
for memory logics. Technical report, INRIA Nancy, Grand Est. (2008); Extended
version of [2]

4. Areces, C., Figueira, S., Mera, S.: Completeness results for memory logics. In:
LFCS 2009. LNCS, vol. 5407. Springer, Heidelberg (2009)

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

6. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics.
Elsevier, Amsterdam (2006)

7. Areces, C., ten Cate, B.: Hybrid logics. In: [6], pp. 821–868
8. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Kluwer

Academic Publishers, Dordrecht (2007)
9. Harel, E., Lichtenstein, O., Pnueli, A.: Explicit clock temporal logic. In: Proc. of

LICS 1990, pp. 402–413 (1990)
10. Plaza, J.: Logics of public communications. In: Proc. of 4th International Symp.

on Methodologies for Intelligent Systems, pp. 201–216 (1989)
11. van Benthem, J.: Logics for information update. In: Proc. of TARK 2001, pp.

51–67. Morgan Kaufmann Pub., San Francisco (2001)
12. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change.

Information and Computation 204(11), 1620–1662 (2006)
13. Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in rela-

tional databases. In: Proc. of 9th ACM Symp. on Theory of Computing, pp. 77–90
(1977)

14. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic and
Computation 17, 517–554 (2007)

15. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
16. Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application

to semistructured data). Journal of Applied Logic 4(3), 279–304 (2006)
17. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge

(1999)

Canonical Constructive Systems�

Arnon Avron and Ori Lahav

School of Computer Science, Tel-Aviv University, Israel
{aa,orilahav}@post.tau.ac.il

Abstract. We define the notions of a canonical inference rule and a
canonical constructive system in the framework of strict single-conclusion
Gentzen-type systems (or, equivalently, natural deduction systems), and
develop a corresponding general non-deterministic Kripke-style seman-
tics. We show that every constructive canonical system induces a class of
non-deterministic Kripke-style frames, for which it is strongly sound and
complete. This non-deterministic semantics is used to show that such a
system always admits a strong form of the cut-elimination theorem, and
for providing a decision procedure for such systems.

1 Introduction

The standard intuitionistic connectives (⊃,∧,∨, and ⊥) are of great importance
in theoretical computer science, especially in type theory, where they correspond
to basic operations on types (via the formulas-as-types principle and Curry-
Howard isomorphism). Now a natural question is: what is so special about these
connectives? The standard answer is that they are all constructive connectives.
But then what exactly is a constructive connective, and can we define other basic
constructive connectives beyond the four intuitionistic ones? And what does the
last question mean anyway: how do we “define” new (or old) connectives?

Concerning the last question there is a long tradition starting from [10] (see
e.g. [14] for discussions and references) according to which the meaning of a
connective is determined by the introduction and elimination rules which are
associated with it. Here one usually has in mind natural deduction systems of an
ideal type, where each connective has its own introduction and elimination rules,
and these rules should meet the following conditions: in a rule for some connective
this connective should be mentioned exactly once, and no other connective should
be involved. The rule should also be pure in the sense of [1] (i.e., there should
be no side conditions limiting its application), and its active formulas should be
immediate subformulas of its principal formula.

Unfortunately, already the handling of negation requires rules which are not
ideal in this sense. For intuitionistic logic this problem has been solved by not
taking negation as a basic constructive connective, but defining it instead in
terms of more basic connectives that can be characterized by “ideal” rules (¬ϕ

� This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No
809-06).

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 62–76, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Canonical Constructive Systems 63

is defined as ϕ →⊥). For classical logic the problem was solved by Gentzen
himself by moving to what is now known as Gentzen-type systems or sequential
calculi. These calculi employ single-conclusion sequents in their intuitionistic
version, and multiple-conclusion sequents in their classical version. Instead of
introduction and elimination rules they use left introduction rules and right
introduction rules. The intuitive notions of an “ideal rule” can be adapted to
such systems in a straightforward way, and it is well known that the usual
classical connectives and the basic intuitionistic connectives can indeed be fully
characterized by “ideal” Gentzen-type rules. Moreover: although this can be
done in several ways, in all of them the cut-elimination theorem obtains.

For the multiple-conclusion framework these facts were considerably general-
ized in [5,6] by defining “multiple-conclusion canonical propositional Gentzen-
type rules and systems” in precise terms. A constructive necessary and sufficient
coherence criterion for the non-triviality of such systems was then provided, and
it was shown that a system of this kind admits cut-elimination iff it is coherent. It
was further proved that the semantics of such systems is provided by two-valued
non-deterministic matrices (two-valued Nmatrices) — a natural generalization
of the classical truth-tables. In fact, a characteristic two-valued Nmatrix was
constructed for every coherent canonical propositional system. That work shows
that there is a large family of what may be called semi-classical connectives
(which includes all the classical connectives), each of which has both a proof-
theoretical characterization in terms of a coherent set of canonical (= “ideal”)
rules, and a semantic characterization using two-valued Nmatrices.

In this paper we develop a similar theory for the constructive propositional
framework. We define the notions of a canonical rule and a canonical system in
the framework of strict single-conclusion Gentzen-type systems (or, equivalently,
natural deduction systems). We prove that here too a canonical system is non-
trivial iff it is coherent (where coherence is a constructive condition, defined like
in the multiple-conclusion case). We develop a general non-deterministic Kripke-
style semantics for such systems, and show that every constructive canonical
system (i.e. coherent canonical single-conclusion system) induces a class of non-
deterministic Kripke-style frames for which it is strongly sound and complete.
We use this non-deterministic semantics to show that all constructive canoni-
cal systems admit a strong form of the cut-elimination theorem. We also use
it for providing decision procedures for all such systems. These results again
identify a large family of basic constructive connectives, each having both a
proof-theoretical characterization in terms of a coherent set of canonical rules,
and a semantic characterization using non-deterministic frames. The family in-
cludes the standard intuitionistic connectives (⊃,∧,∨, and ⊥), as well as many
other independent connectives.

2 Canonical Constructive Systems

In what follows L is a propositional language, F is its set of wffs, p, q, r denote
atomic formulas, ψ, ϕ, θ denote arbitrary formulas (of L), T, S denote subsets

64 A. Avron and O. Lahav

of F , and Γ, Δ, Σ, Π denote finite subsets of F . We assume that the atomic
formulas of L are p1, p2, . . . (in particular: {p1, p2, . . . , pn} are the first n atomic
formulas of L).

Definition 1. A Tarskian consequence relation (tcr for short) for L is a binary
relation � between sets of formulas of L and formulas of L that satisfies the
following conditions:

strong reflexivity: if ϕ ∈ T then T � ϕ.
monotonicity: if T � ϕ and T ⊆ T ′ then T ′ � ϕ.
transitivity (cut): if T � ψ and T, ψ � ϕ then T � ϕ.

Definition 2. A substitution in L is a function σ from the atomic formulas to
the set of formulas of L. σ is extended to formulas and sets of formulas in the
obvious way.

Definition 3. A tcr � for L is structural if for every substitution σ and every
T and ϕ, if T � ϕ then σ(T) � σ(ϕ). � is finitary if the following condition holds
for all T and ϕ: if T � ϕ then there exists a finite Γ ⊆ T such that Γ � ϕ. � is
consistent (or non-trivial) if p1 � p2.

It is easy to see (see [6]) that there are exactly two inconsistent structural tcrs in
any given language1. These tcrs are obviously trivial, so we exclude them from
our definition of a logic:

Definition 4. A propositional logic is a pair 〈L,�〉, where L is a propositional
language, and � is a tcr for L which is structural, finitary, and consistent.

Since a finitary consequence relation � is determined by the set of pairs 〈Γ, ϕ〉
such that Γ � ϕ, it is natural to base proof systems for logics on the use of such
pairs. This is exactly what is done in natural deduction systems and in (strict)
single-conclusion Gentzen-type systems (both introduced in [10]). Formally, such
systems manipulate objects of the following type:

Definition 5. A sequent is an expression of the form Γ ⇒ Δ where Γ and Δ
are finite sets of formulas, and Δ is either a singleton or empty. A sequent of the
form Γ ⇒ {ϕ} is called definite, and we shall denote it by Γ ⇒ ϕ. A sequent
of the form Γ ⇒ {} is called negative, and we shall denote it by Γ ⇒. A Horn
clause is a sequent which consists of atomic formulas only.

Note. Natural deduction systems, and the strict single-conclusion Gentzen-type
systems investigated in this paper, manipulate only definite sequents in their
derivations. However, negative sequents may be used in the formulations of their
rules (in the form of negative Horn clauses).

The following definitions formulate in exact terms the idea of an “ideal rule”
which was described in the introduction:
1 In one T � ϕ for every T and ϕ, in the other T � ϕ for every nonempty T and ϕ.

Canonical Constructive Systems 65

Definition 6

1. A canonical introduction rule is an expression of the form:

{Πi ⇒ Σi}1≤i≤m/ ⇒ �(p1, p2, . . . , pn)

where m ≥ 0, � is a connective of arity n, and for all 1 ≤ i ≤ m, Πi ⇒ Σi is
a definite Horn clause such that Πi ∪Σi ⊆ {p1, p2, . . . , pn}.

2. A canonical elimination rule2 is an expression of the form

{Πi ⇒ Σi}1≤i≤m/ � (p1, p2, . . . , pn)⇒

where m ≥ 0, � is a connective of arity n, and for all 1 ≤ i ≤ m, Πi ⇒ Σi is a
Horn clause (either definite or negative) such that Πi∪Σi ⊆ {p1, p2, . . . , pn}.

3. An application of the rule {Πi ⇒ Σi}1≤i≤m/ ⇒ �(p1, p2, . . . , pn) is any
inference step of the form:

{Γ, σ(Πi)⇒ σ(Σi)}1≤i≤m

Γ ⇒ �(σ(p1), . . . , σ(pn))

where Γ is a finite set of formulas and σ is a substitution in L.
4. An application of the rule {Πi ⇒ Σi}1≤i≤m/ � (p1, p2, . . . , pn) ⇒ is any

inference step of the form:

{Γ, σ(Πi) ⇒ σ(Σi), Ei}1≤i≤m

Γ, �(σ(p1), . . . , σ(pn)) ⇒ θ

where Γ and σ are as above, θ is a formula, and for all 1 ≤ i ≤ m: Ei = θ in
case Σi is empty, and Ei is empty otherwise.

Note. We formulated the definition above in terms of Gentzen-type systems.
However, we could have formulated them instead in terms of natural deduction
systems. The definition of an application of an introduction rule is defined in this
context exactly as above, while an application of an elimination rule of the form
{Πi ⇒ Σi}1≤i≤m/ � (p1, p2, . . . , pn) ⇒ is in the context of natural deduction
any inference step of the form:

{Γ, σ(Πi)⇒ σ(Σi), Ei}1≤i≤m Γ ⇒ �(σ(p1), . . . , σ(pn))
Γ ⇒ θ

where Γ , σ, θ and Ei are as above.

Here are some examples of well-known canonical rules:

2 The introduction/elimination terminology is due to the natural deduction context.
For the Gentzen-type context the names “right introduction rule” and “left introduc-
tion rule” might be more appropriate, but we prefer to use a uniform terminology.

66 A. Avron and O. Lahav

Conjunction. The two usual rules for conjunction are:

{p1, p2 ⇒ } / p1 ∧ p2 ⇒ and { ⇒ p1 , ⇒ p2} / ⇒ p1 ∧ p2

In the Gentzen-type context applications of these rules have the form:

Γ, ψ, ϕ ⇒ θ
Γ, ψ ∧ ϕ ⇒ θ

Γ ⇒ ψ Γ ⇒ ϕ
Γ ⇒ ψ ∧ ϕ

In natural deduction systems applications of the first have the form:

Γ, ψ, ϕ⇒ θ Γ ⇒ ψ ∧ ϕ
Γ ⇒ θ

The above elimination rule can easily be shown to be equivalent to the
combination of the two more usual elimination rules for conjunction.

Implication. The two usual rules for implication are:

{⇒ p1 , p2 ⇒} / p1 ⊃ p2 ⇒ and {p1 ⇒ p2} / ⇒ p1 ⊃ p2

In the Gentzen-type context applications of these rules have the form:

Γ ⇒ ψ Γ, ϕ ⇒ θ
Γ, ψ ⊃ ϕ ⇒ θ

Γ, ψ ⇒ ϕ
Γ ⇒ ψ ⊃ ϕ

In natural-deduction systems applications of the first have the form:

Γ ⇒ ψ Γ, ϕ ⇒ θ Γ ⇒ ψ ⊃ ϕ
Γ ⇒ θ

Again this form of the rule is obviously equivalent to the more usual one
(from Γ ⇒ ψ and Γ ⇒ ψ ⊃ ϕ infer Γ ⇒ ϕ).

Absurdity. In intuitionistic logic there is no introduction rule for the absurdity
constant ⊥, and there is exactly one elimination rule for it: {} / ⊥⇒ . In the
Gentzen-type context applications of this rule provide new axioms: Γ,⊥⇒ ϕ.
In natural-deduction systems applications of the same rule allow us to infer
Γ ⇒ ϕ from Γ ⇒⊥.

Semi-implication. Consider the “semi-implication” � with the following two
rules:3

{⇒ p1 , p2 ⇒} / p1 � p2 ⇒ and {⇒ p2} / ⇒ p1 � p2

In the Gentzen-type context applications of these rules have the form:

Γ ⇒ ψ Γ, ϕ⇒ θ
Γ, ψ � ϕ ⇒ θ

Γ ⇒ ϕ
Γ ⇒ ψ � ϕ

Again in natural-deduction systems applications of the first rule are equiva-
lent to MP for � (from Γ ⇒ ψ and Γ ⇒ ψ � ϕ infer Γ ⇒ ϕ).

3 This connective was introduced in [11] for different purposes.

Canonical Constructive Systems 67

From now on we shall concentrate on single-conclusion Gentzen-type systems
(translating our notions and results to natural deduction systems is easy).

Definition 7. A single-conclusion Gentzen-type system is called canonical if its
axioms are the sequents of the form ϕ⇒ ϕ, cut (from Γ ⇒ ϕ and Δ, ϕ⇒ ψ infer
Γ, Δ ⇒ ψ) and weakening (from Γ ⇒ ψ infer Γ, Δ ⇒ ψ) are among its rules,
and each of its other rules is either a canonical introduction rule or a canonical
elimination rule.

Definition 8. Let G be a canonical Gentzen-type system.

1. S �seq
G s (where s is a sequent and S is a set of sequents) if there is a

derivation in G of s from S.
2. The tcr �G between formulas which is induced by G is defined by: T �G ϕ

iff there exists a finite Γ ⊆ T such that �seq
G Γ ⇒ ϕ.

Proposition 1. T �G ϕ iff {⇒ ψ | ψ ∈ T } �seq
G ⇒ ϕ.

Proposition 2. If G is canonical then �G is a structural and finitary tcr.

The last proposition does not guarantee that every canonical system induces a
logic (see Definition 4). For this the system should satisfy one more condition:

Definition 9. A set R of canonical rules for an n-ary connective � is called
coherent if S1 ∪ S2 is classically inconsistent (and so the empty clause can be
derived from it using cuts) whenever R contains both S1/ � (p1, p2, . . . , pn) ⇒
and S2/ ⇒ �(p1, p2, . . . , pn).

Examples

– All the sets of rules for the connectives ∧,⊃,⊥, and � which were intro-
duced in the examples above are coherent. For example, for the two rules for
conjunction we have S1 = {p1, p2 ⇒ }, S2 = { ⇒ p1 , ⇒ p2}, and S1∪S2 is
the classically inconsistent set {p1, p2 ⇒ , ⇒ p1 , ⇒ p2} (from which the
empty sequent can be derived using two cuts).

– In [13] Prior introduced a “connective” T (which he called “Tonk”) with the
following rules: {p1 ⇒ } / p1Tp2 ⇒ and { ⇒ p2} / ⇒ p1Tp2. Prior then
used “Tonk” to infer everything from everything (trying to show by this that
rules alone cannot define a connective). Now the union of the sets of premises
of these two rules is {p1 ⇒ , ⇒ p2}, and this is a classically consistent set
of clauses. It follows that Prior’s set of rules for Tonk is incoherent.

Definition 10. A canonical single-conclusion Gentzen-type system, G, is called
coherent if every primitive connective of the language of G has in G a coherent
set of rules.

Theorem 1. Let G be a canonical Gentzen-type system. 〈L,�G〉 is a logic (i.e.
�G is structural, finitary and consistent) iff G is coherent.

68 A. Avron and O. Lahav

Proof. Proposition 2 ensures that �G is a structural and finitary tcr.
That the coherence of G implies the consistency of the multiple conclusion

consequence relation which is naturally induced by G was shown in [5,6]. That
consequence relation extends �G, and therefore also the latter is consistent.

For the converse, assume that G is incoherent. This means that G includes
two rules S1/ � (p1, . . . , pn) ⇒ and S2/ ⇒ �(p1, . . . , pn), such that the set of
clauses S1 ∪ S2 is classically satisfiable. Let v be an assignment in {t, f} that
satisfies all the clauses in S1 ∪ S2. Define a substitution σ by:

σ(p) =
{

pn+1 v(p) = f
p v(p) = t

Let Π ⇒ q ∈ S1 ∪ S2. Then �seq
G p1, . . . , pn, σ(Π)⇒ σ(q). This is trivial in case

v(q) = t, since in this case σ(q) = q ∈ {p1, . . . , pn}. On the other hand, if v(q) = f
then v(p) = f for some p ∈ Π (since v satisfies the clause Π ⇒ q). Therefore in
this case σ(p) = σ(q) = pn+1, and so again p1, . . . , pn, σ(Π) ⇒ σ(q) is trivially
derived from an axiom. We can similarly prove that �seq

G p1, . . . , pn, σ(Π) ⇒ pn+1
in case Π ⇒ ∈ S1 ∪ S2. Now by applying S1/ � (p1, . . . , pn) ⇒ and S2/ ⇒
�(p1, . . . , pn) to these provable sequents we get proofs in G of p1, . . . , pn ⇒
�(σ(p1), . . . , σ(pn)) and of p1, . . . , pn, �(σ(p1), . . . , σ(pn)) ⇒ pn+1. That �seq

G
p1, . . . , pn ⇒ pn+1 then follows using a cut. This easily entails that p1 �G p2,
and hence �G is not consistent. ��

Note. The last theorem implies that coherence is a minimal demand from any
acceptable canonical system G. It follows that not every set of such rules is
legitimate for defining constructive connectives - only coherent ones do (and
this is what is wrong with “Tonk”). Accordingly we define:

Definition 11. A canonical constructive system is a coherent canonical single-
conclusion Gentzen-type system.

The following definition will be needed in the sequel:

Definition 12. Let S be a set of sequents.

1. A cut is called an S-cut if the cut formula occurs in S.
2. We say that there exists in a system G an S-cut-free proof of a sequent s

from a set of sequents S iff there exists a proof of s from S in G where all
cuts are S-cuts.

3. ([2]) A system G admits strong cut-elimination iff whenever S �seq
G s, there

exists an S-cut-free proof of s from S.4

4 By cut-elimination we mean here just the existence of proofs without (certain forms
of) cuts, rather than an algorithm to transform a given proof to a cut-free one (for
the assumptions-free case the term “cut-admissibility” is sometimes used).

Canonical Constructive Systems 69

3 Semantics for Canonical Constructive Systems

The most useful semantics for propositional intuitionistic logic (the paradig-
matic constructive logic) is that of Kripke frames. In this section we generalize
this semantics to arbitrary canonical constructive systems. For this we should
introduce non-deterministic Kripke frames.5

Definition 13. A generalized L-frame is a triple W = 〈W,≤, v〉 such that:

1. 〈W,≤〉 is a nonempty partially ordered set.
2. v is a function from F to the set of persistent functions from W into {t, f}

(A function h : W → {t, f} is persistent if h(a) = t implies that h(b) = t for
every b ∈W such that a ≤ b).

Notation: We shall usually write v(a, ϕ) instead of v(ϕ)(a).

Definition 14. A generalized L-frame 〈W,≤, v〉 is a model of a formula ϕ if
v(ϕ) = λa ∈ W.t (i.e.: v(a, ϕ) = t for every a ∈ W). It is a model of a theory T
if it is a model of every ϕ ∈ T .

Definition 15. Let W = 〈W,≤, v〉 be a generalized L-frame, and let a ∈ W .

1. A sequent Γ ⇒ ϕ is locally true in a if either v(a, ψ) = f for some ψ ∈ Γ , or
v(a, ϕ) = t.

2. A sequent Γ ⇒ ϕ is true in a if it is locally true in every b ≥ a.
3. A sequent Γ ⇒ is (locally) true in a if v(a, ψ) = f for some ψ ∈ Γ .
4. W is a model of a sequent s (either of the form Γ ⇒ ϕ or Γ ⇒) if s is true

in every a ∈ W (iff s is locally true in every a ∈ W). It is a model of a set
of sequents S if it is a model of every s ∈ S.

Note. W is a model of a formula ϕ iff it is a model of the sequent ⇒ ϕ.

Definition 16. Let 〈W,≤, v〉 be a generalized L-frame. A substitution σ in L
satisfies a Horn clause Π ⇒ Σ in a ∈W if σ(Π) ⇒ σ(Σ) is true in a.

Note. Because of the persistence condition, a definite Horn clause of the form
⇒ q is satisfied in a by σ iff v(a, σ(q)) = t.

Definition 17. Let W = 〈W,≤, v〉 be a generalized L-frame, and let � be an
n-ary connective of L.

1. W respects an introduction rule r for � if v(a, �(ψ1, . . . , ψn)) = t whenever all
the premises of r are satisfied in a by a substitution σ such that σ(pi) = ψi

for 1 ≤ i ≤ n (The values of σ(q) for q ∈ {p1, . . . , pn} are immaterial here).
2. W respects an elimination rule r for � if v(a, �(ψ1, . . . , ψn)) = f whenever all

the premises of r are satisfied in a by a substitution σ such that σ(pi) = ψi

(1 ≤ i ≤ n).
5 Another type of non-deterministic (intuitionistic) Kripke frames, based on 3-valued

and 4-valued non-deterministic matrices, was used in [3,4]. Non-deterministic modal
Kripke frames were recently used in [9].

70 A. Avron and O. Lahav

3. Let G be a canonical Gentzen-type system for L. W is G-legal if it respects
all the rules of G.

Examples

– By definition, a generalized L-frame W = 〈W,≤, v〉 respects the rule (⊃⇒)
iff for every a ∈ W , v(a, ϕ ⊃ ψ) = f whenever v(b, ϕ) = t for every b ≥ a
and v(a, ψ) = f . Because of the persistence condition, this is equivalent
to: v(a, ϕ ⊃ ψ) = f whenever v(a, ϕ) = t and v(a, ψ) = f . Again by the
persistence condition, this is equivalent to: v(a, ϕ ⊃ ψ) = f whenever there
exists b ≥ a such that v(b, ϕ) = t and v(b, ψ) = f . W respects (⇒⊃) iff for
every a ∈ W , v(a, ϕ ⊃ ψ) = t whenever for every b ≥ a, either v(b, ϕ) = f
or v(b, ψ) = t. Hence the two rules together impose exactly the well-known
Kripke semantics for intuitionistic implication ([12]).

– A generalized L-frame W = 〈W,≤, v〉 respects the rule (�⇒) under the
same conditions it respects (⊃⇒). W respects (⇒�) iff for every a ∈ W ,
v(a, ϕ � ψ) = t whenever v(a, ψ) = t (recall that this is equivalent to:
v(b, ψ) = t for every b ≥ a). Note that in this case the two rules for � do
not always determine the value assigned to ϕ � ψ: if v(a, ψ) = f , and there
is no b ≥ a such that v(b, ϕ) = t and v(b, ψ) = f , then v(a, ϕ � ψ) is free to
be either t or f . So the semantics of this connective is non-deterministic.

– A generalized L-frame W = 〈W,≤, v〉 respects the rule (T ⇒) (see second
example after Definition 9) if v(a, ϕTψ) = f whenever v(a, ϕ) = f . It re-
spects (⇒ T) if v(a, ϕTψ) = t whenever v(a, ψ) = t. The two constraints
contradict each other in case both v(a, ϕ) = f and v(a, ψ) = t. This is a
semantic explanation why Prior’s “connective” T (“Tonk”) is meaningless.

Definition 18. Let G be a canonical constructive system.

1. S |=seq
G s (where S is a set of sequents and s is a sequent) iff every G-legal

model of S is also a model of s.
2. The semantic tcr |=G between formulas which is induced by G is defined by:

T |=G ϕ if every G-legal model of T is also a model of ϕ.

Again we have:

Proposition 3. T |=G ϕ iff {⇒ ψ | ψ ∈ T } |=seq
G ⇒ ϕ.

4 Soundness, Completeness, Cut-Elimination

In this section we show that the two logics induced by a canonical constructive
system G (�G and |=G) are identical. Half of this identity is given in the following
theorem:

Theorem 2. Every canonical constructive system G is strongly sound with re-
spect to the semantics of G-legal generalized frames. In other words:

Canonical Constructive Systems 71

1. If T �G ϕ then T |=G ϕ.
2. If S �seq

G s then S |=seq
G s.

Proof. We prove the second part first. Assume that S �seq
G s, andW = 〈W,≤, v〉

is a G-legal model of S. We show that s is locally true in every a ∈W . Since
the axioms of G and the premises of S trivially have this property, and the cut
and weakening rules obviously preserve it, it suffices to show that the property
of being locally true is preserved also by applications of the logical rules of G.

– First we deal with the elimination rules of G. Suppose Γ, �(ψ1, . . . , ψn) ⇒ θ is
derived from {Γ, σ(Πi)⇒ σ(Σi)}1≤i≤m1 and {Γ, σ(Πi)⇒ θ}m1+1≤i≤m, us-
ing the elimination rule r = {Πi ⇒ Σi}1≤i≤m/ � (p1, p2, . . . , pn)⇒ (where
Σi is empty for m1 + 1 ≤ i ≤ m, and σ is a substitution such that σ(pj) = ψj

for 1 ≤ j ≤ n). Assume that all the premises of this application have the re-
quired property. Let a ∈W . If v(a, ψ) = f for some ψ ∈ Γ or v(a, θ) = t,
then we are done. Assume otherwise. Then v(a, θ) = f , and (by the persis-
tence condition) v(b, ψ) = t for every ψ ∈ Γ and b ≥ a. Hence our assump-
tion concerning {Γ, σ(Πi)⇒ σ(Σi)}1≤i≤m1 entails that for every b ≥ a and
1 ≤ i ≤ m1, either v(b, ψ) = f for some ψ ∈ σ(Πi), or v(b, σ(Σi)) = t. This
immediately implies that every definite premise of the rule is satisfied in a
by σ. Since v(a, θ) = f , our assumption concerning {Γ, σ(Πi)⇒ θ}m1+1≤i≤m

entails that for every m1 + 1 ≤ i ≤ m, v(a, ψ) = f for some ψ ∈ σ(Πi). Hence
the negative premises of the rule are also satisfied in a by σ. SinceW respects
r, it follows that v(a, �(ψ1, . . . , ψn)) = f , as required.

– Dealing with the introduction rules is easier, and it is left for the reader.

The first part follows from the second by Propositions 1 and 3. ��

For the converse, we first prove the following key result.

Theorem 3. Let G be a canonical constructive system in L, and let S ∪ {s} be
a set of sequents in L. Then either there is an S-cut-free proof of s from S, or
there is a G-legal model of S which is not a model of s.

Proof. (outline) Assume that s = Γ0 ⇒ ϕ0 does not have an S-cut-free proof
in G. Let F ′ be the set of subformulas of S ∪ {s}. Given a formula ϕ ∈ F ′, call
a theory T ⊆ F ′ ϕ-maximal if there is no finite Γ ⊆ T such that Γ ⇒ ϕ has an
S-cut-free-proof from S, but every proper extension T ′ ⊆ F ′ of T contains such
a finite subset Γ . Obviously, if Γ ⊆ F ′, ϕ ∈ F ′ and Γ ⇒ ϕ has no S-cut-free-
proof from S, then Γ can be extended to a theory T ⊆ F ′ which is ϕ-maximal.
In particular: Γ0 can be extended to a ϕ0-maximal theory T0.

Now let W = 〈W,⊆, v〉, where:

– W is the set of all extensions of T0 inF ′ which are ϕ-maximal for some ϕ ∈ F ′.
– v is defined inductively as follows. For atomic formulas:

v(T , p) =
{

t p ∈ T
f p ∈ T

72 A. Avron and O. Lahav

Suppose v(T , ψi) has been defined for all T ∈ W and 1 ≤ i ≤ n. We let
v(T , �(ψ1, . . . , ψn)) = t iff at least one of the following holds:
1. There exists an introduction rule for � whose set of premises is satisfied

in T by a substitution σ such that σ(pi) = ψi (1 ≤ i ≤ n).
2. �(ψ1, . . . , ψn) ∈ T and there does not exist T ′ ∈W , T ⊆ T ′, and an elim-

ination rule for � whose set of premises is satisfied in T ′ by a substitution
σ such that σ(pi) = ψi (1 ≤ i ≤ n).6

First we prove that W is a generalized L-frame:

– W is not empty because T0 ∈W .
– That v is persistent is proved by structural induction.

Next we prove that W is G-legal:

1. The introduction rules are directly respected by the first condition in v’s
definition.

2. Let r be an elimination rule for �, and suppose all its premises are satisfied
in some T ∈ W by a substitution σ such that σ(pi) = ψi. Then neither of
the conditions under which v(T , �(ψ1, . . . , ψn)) = t can hold: the second by
definition, and the first because of G’s coherence.

It remains to prove that W is a model of S but not of s. For this we first prove
that the following hold for every T ∈W and every formula ψ ∈ F ′:

(a) If ψ ∈ T then v(T , ψ) = t.
(b) If T is ψ-maximal then v(T , ψ) = f .

(a) and (b) are proved together by a simultaneous induction on the complexity
of ψ. We omit the details here.

Next we note that (b) can be strengthened as follows:

(c) If ψ ∈ F ′, T ∈W and there is no finite Γ ⊆ T such that Γ ⇒ ψ has an
S-cut-free-proof from S, then v(T , ψ) = f .

Indeed, under these conditions T can be extended to a ψ-maximal theory T ′.
Now T ′ ∈W , T ⊆ T ′, and by (b), v(T ′, ψ) = f . Hence also v(T , ψ) = f .

Now (a) and (b) together imply that v(T0, ψ) = t for every ψ ∈ Γ0 ⊆ T0, and
v(T0, ϕ0) = f . Hence W is not a model of s. We end the proof by showing that
W is a model of S. So let ψ1, . . . , ψn ⇒ θ ∈ S and let T ∈ W , where T is ϕ-
maximal. Assume by way of contradiction that v(T , ψi) = t for 1 ≤ i ≤ n, while
v(T , θ) = f . By (c), for every 1 ≤ i ≤ n there is a finite Γi ⊆ T such that Γi ⇒ ψi

has an S-cut-free-proof from S. On the other hand v(T , θ) = f implies (by (a))

6 This inductive definition isn’t totally formal, since satisfaction by a substitution is
defined for a generalized L-frame, which we are in the middle of constructing, but
the intention should be clear.

Canonical Constructive Systems 73

that θ /∈ T . Since T is ϕ-maximal, it follows that there is a finite Σ ⊆ T such
that Σ, θ ⇒ ϕ has an S-cut-free-proof from S. Now from Γi ⇒ ψi (1 ≤ i ≤ n),
Σ, θ ⇒ ϕ, and ψ1, . . . , ψn ⇒ θ one can infer Γ1, . . . , Γn, Σ ⇒ ϕ by n + 1 S-cuts
(on ψ1, . . . , ψn and θ). It follows that the last sequent has an S-cut-free-proof
from S. Since Γ1, . . . , Γn, Σ ⊆ T , this contradicts the ϕ-maximality of T . ��

Theorem 4. (Soundness and Completeness) Every canonical constructive
system G is strongly sound and complete with respect to the semantics of G-
legal generalized frames. In other words:

1. T �G ϕ iff T |=G ϕ.
2. S �seq

G s iff S |=seq
G s.

Proof. Immediate from Theorems 3 and 2, and Propositions 1, 3. ��

Corollary 1. If G is a canonical constructive system in L then 〈L, |=G〉 is a
logic.

Corollary 2. (Compactness) Let G be a canonical constructive system.

1. If S |=seq
G s then there exists a finite S′ ⊆ S such that S′ |=seq

G s.
2. |=G is finitary.

Theorem 5.

1. (General Strong Cut Elimination Theorem) Every canonical construc-
tive system G admits strong cut-elimination (see Definition 12).

2. (General Cut Elimination Theorem) A sequent is provable in a canon-
ical constructive system G iff it has a cut-free proof there.

Proof. The first part follows from Theorem 4 and Theorem 3. The second part
is a special case of the first, where the set S of premises is empty. ��

Corollary 3. The following conditions are equivalent for a canonical single-
conclusion Gentzen-type system G:

1. 〈L,�G〉 is a logic (by Proposition 2, this means that �G is consistent).
2. G is coherent.
3. G admits strong cut-elimination.
4. G admits cut-elimination.

Proof. 1 implies 2 by Theorem 1. 2 implies 3 by Theorem 5. 3 trivially implies
4. Finally, without using cuts there is no way to derive p1 ⇒ p2 in a canonical
Gentzen-type system. Hence 4 implies 1. ��

74 A. Avron and O. Lahav

5 Analycity and Decidability

In general, in order for a denotational semantics of a propositional logic to be
useful and effective, it should be analytic. This means that to determine whether
a formula ϕ follows from a theory T , it suffices to consider partial valuations,
defined on the set of all subformulas of the formulas in T ∪ {ϕ}. Now we show
that the semantics of G-legal frames is analytic in this sense.

Definition 19. Let G be a canonical constructive system for L. A G-legal
semiframe is a triple W ′ = 〈W,≤, v′〉 such that:

1. 〈W,≤〉 is a nonempty partially ordered set.
2. v′ is a partial function from the set of formulas of L into the set of persistent

functions from W into {t, f} such that:
– F ′, the domain of v′, is closed under subformulas.
– v′ respects the rules of G on F ′ (e.g.: if r is an introduction rule for an

n-ary connective �, and �(ψ1, . . . , ψn) ∈ F ′, then v(a, �(ψ1, . . . , ψn)) = t
whenever all the premises of r are satisfied in a by a substitution σ such
that σ(pi) = ψi (1 ≤ i ≤ n)).

Theorem 6. Let G be a canonical constructive system for L. Then the seman-
tics of G-legal frames is analytic in the following sense: If W ′ = 〈W,≤, v′〉 is a
G-legal semiframe, then v′ can be extended to a function v so that W = 〈W,≤, v〉
is a G-legal frame.

Proof. Let W ′ = 〈W,≤, v′〉 be a G-legal semiframe. We recursively extend v′

to a total function v. For atomic p we let v(p) = v′(p) if v′(p) is defined, and
v(p) = λa ∈ W.t (say) otherwise. For ϕ = �(ψ1, . . . , ψn) we let v(ϕ) = v′(ϕ)
whenever v′(ϕ) is defined, and otherwise we define v(ϕ, a) = f iff there exists an
elimination rule r with �(p1, . . . , pn) ⇒ as its conclusion, and an element b ≥ a
of W , such that all premises of r are satisfied in b (with respect to 〈W,≤, v〉) by
a substitution σ such that σ(pj) = ψj (1 ≤ j ≤ n). Note that the satisfaction of
the premises of r by σ in elements of W depends only on the values assigned by
v to ψ1, . . . , ψn, so the recursion works, and v is well defined. From the definition
of v and the assumption that W ′ is a G-legal semiframe, it immediately follows
that v is an extension of v′, that v(ϕ) is a persistent function for every ϕ (so
W = 〈W,≤, v〉 is a generalized L-frame), and thatW respects all the elimination
rules of G. Hence it only remains to prove that it respects also the introduction
rules of G. Let r = {Πi ⇒ qi}1≤i≤m/ ⇒ �(p1, p2, . . . , pn) be such a rule, and
assume that for every 1 ≤ i ≤ m, σ(Πi) ⇒ σ(qi) is true in a with respect to
〈W,≤, v〉. We should show that v(a, �(ψ1, . . . , ψn)) = t.

If v′(a, �(ψ1, . . . , ψn)) is defined, then since its domain is closed under sub-
formulas, for every 1 ≤ i ≤ n and every b ∈ W v′(b, ψi) is defined. In this case,
our construction ensures that for every 1 ≤ i ≤ n and every b ∈W we have
v′(b, ψi) = v(b, ψi). Therefore, since for every 1 ≤ i ≤ m, σ(Πi)⇒ σ(qi) is locally
true in every b ≥ a with respect to 〈W,≤, v〉, it is also locally true with respect to
〈W,≤, v′〉. Since v′ respects r, v′(a, �(ψ1, . . . , ψn)) = t, so v(a, �(ψ1, . . . , ψn)) = t
as well, as required.

Canonical Constructive Systems 75

Now, assume v′(a, �(ψ1, . . . , ψn)) is not defined, and assume by way of con-
tradiction that v(a, �(ψ1, . . . , ψn)) = f . So, there exists b ≥ a and an elimination
rule {Δj ⇒ Σj}1≤j≤k/ � (p1, p2, . . . , pn)⇒ such that σ(Δj)⇒ σ(Σj) is locally
true in b for 1 ≤ j ≤ k. Since b ≥ a, our assumption about a implies that
σ(Πi) ⇒ σ(qi) is locally true in b for 1 ≤ i ≤ m. It follows that by defining
u(p) = v(b, σ(p)) we get a valuation u in {t, f} which satisfies all the clauses
in the union of {Πi ⇒ qi | 1 ≤ i ≤ m} and {Δj ⇒ Σj | 1 ≤ j ≤ k}. This
contradicts the coherence of G. ��

The following two theorems are now easy consequence of Theorem 6 and the
soundness and completeness theorems of the previous section:7

Theorem 7. Let G be a canonical constructive system. Then G is strongly
decidable: Given a finite set S of sequents, and a sequent s, it is decidable whether
S �seq

G s or not. In particular: it is decidable whether Γ �G ϕ, where ϕ is formula
and Γ is a finite set of formulas.

Proof. Let F ′ be the set of subformulas of the formulas in S∪{s}. From Theorem
6 and the proof of Theorem 3 it easily follows that in order to decide whether
S �seq

G s it suffices to check all triples of the form 〈W,⊆, v′〉 where W ⊆ 2F
′
and

v′ : F ′ → (W → {t, f}), and see if any of them is a G-legal semiframe which is
a model of S but not a model of s. ��

Theorem 8. Let G1 be a canonical constructive system in a language L1, and
let G2 be a canonical constructive system in a language L2. Assume that L2 is
an extension of L1 by some set of connectives, and that G2 is obtained from G1

by adding to the latter canonical rules for connectives in L2 − L1. Then G2 is
a conservative extension of G1 (i.e.: if all formulas in T ∪ {ϕ} are in L1 then
T �G1 ϕ iff T �G2 ϕ).

Proof. Suppose that T �G1 ϕ. Then there is G1-legal model W of T which
is not a model of ϕ. Since the set of formulas of L1 is a subset of the set of
formulas of L2 which is closed under subformulas, Theorem 6 implies that W
can be extended to a G2-legal model of T which is not a model of ϕ. Hence
T �G2 ϕ. ��

Note. In [7] (his famous response to [13]), Belnap suggested that the rules for a
connective � should be conservative, in the sense that if T � ϕ is derivable using
them, and � does not occur in T ∪ ϕ, then T � ϕ can also be derived without
using the rules for �. Now our notion of coherence provides an effective necessary
and sufficient criterion for checking whether a given set of canonical rules is
conservative in this sense. Moreover: Theorem 8 shows that a very strong form
of Belnap’s conservativity criterion is valid for canonical constructive systems,
and so what a set of canonical rules defines is system-independent.
7 The two theorems can also be proved directly from the cut-elimination theorem for

canonical constructive systems. We leave this to the full paper.

76 A. Avron and O. Lahav

6 Related and Further Works

There have been several works in the past on conditions for cut-elimination.
Except for [6], the closest to the present one is [8]. The range of systems dealt
with there is in fact broader than ours, since it deals with various types of
structural rules, while in this paper we assume the standard structural rules of
minimal logic. On the other hand, our coherence criterion is much simpler than
the reductivity criterion of [8], while our strong cut-elimination is stronger then
the reductive cut-elimination of [8]. Another crucial similarity is that both papers
use nondeterministic semantic frameworks (in [8] this is only implicit). However,
while we use the concrete framework of intuitionistic-like Kripke frames, variants
of the significantly more abstract phase semantics are used in [8].

Another difference is that unlike the present work, [8] treats also systems
which allow the use in derivations of negative sequents. Our next task is to
extend our framework and results so they apply to systems of this sort as well.

References

1. Avron, A.: Simple Consequence Relations. Information and Computation 92, 105–
139 (1991)

2. Avron, A.: Gentzen-Type Systems, Resolution and Tableaux. Journal of Auto-
mated Reasoning 10, 265–281 (1993)

3. Avron, A.: A Nondeterministic View on Nonclassical Negations. Studia Logica 80,
159–194 (2005)

4. Avron, A.: Non-deterministic Semantics for Families of Paraconsistent Logics. In:
Beziau, J.-Y., Carnielli, W., Gabbay, D.M. (eds.) Handbook of Paraconsistency.
Studies in Logic, vol. 9, pp. 285–320. College Publications (2007)

5. Avron, A., Lev, I.: Canonical Propositional Gentzen-Type Systems. In: Goré, R.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 529–544.
Springer, Heidelberg (2001)

6. Avron, A., Lev, I.: Non-deterministic Multiple-valued Structures. Journal of Logic
and Computation 15, 24–261 (2005)

7. Belnap, N.D.: Tonk, Plonk and Plink. Analysis 22, 130–134 (1962)
8. Ciabattoni, A., Terui, K.: Towards a Semantic Characterization of Cut-

Elimination. Studia Logica 82, 95–119 (2006)
9. Fernandez, D.: Non-deterministic Semantics for Dynamic Topological Logic. An-

nals of Pure and Applied Logic 157, 110–121 (2009)
10. Gentzen, G.: Investigations into Logical Deduction. In: Szabo, M.E. (ed.) The Col-

lected Works of Gerhard Gentzen, pp. 68–131. North Holland, Amsterdam (1969)
11. Gurevich, Y., Neeman, I.: The Logic of Infons, Microsoft Research Tech Report

MSR-TR-2009-10 (January 2009)
12. Kripke, S.: Semantical Analysis of Intuitionistic Logic I. In: Crossly, J., Dummett,

M. (eds.) Formal Systems and Recursive Functions, pp. 92–129. North-Holland,
Amsterdam (1965)

13. Prior, A.N.: The Runabout Inference Ticket. Analysis 21, 38–39 (1960)
14. Sundholm, G.: Proof theory and Meaning. In: Gabbay, D.M., Guenthner, F. (eds.)

Handbook of Philosophical Logic, vol. 9, pp. 165–198 (2002)

A Novel Architecture for Situation Awareness Systems

Franz Baader1, Andreas Bauer2,3, Peter Baumgartner2,3,
Anne Cregan3, Alfredo Gabaldon4, Krystian Ji3, Kevin Lee3,5,

David Rajaratnam3,5, and Rolf Schwitter6

1 Technische Universität Dresden, Germany
baader@tcs.inf.tu-dresden.de

2 Australian National University
Firstname.Lastname@anu.edu.au

3 National ICT Australia (NICTA�), Australia
Firstname.Lastname@nicta.com.au

4 New University of Lisbon, Portugal, Center for AI
ag@di.fct.unl.pt

5 University of New South Wales, Australia
6 Macquarie University, Australia

rolfs@ics.mq.edu.au

Abstract. Situation Awareness (SA) is the problem of comprehending elements
of an environment within a volume of time and space. It is a crucial factor in
decision-making in dynamic environments. Current SA systems support the col-
lection, filtering and presentation of data from different sources very well, and
typically also some form of low-level data fusion and analysis, e.g., recognizing
patterns over time. However, a still open research challenge is to build systems
that support higher-level information fusion, viz., to integrate domain specific
knowledge and automatically draw conclusions that would otherwise remain hid-
den or would have to be drawn by a human operator. To address this challenge,
we have developed a novel system architecture that emphasizes the rôle of formal
logic and automated theorem provers in its main components. Additionally, it fea-
tures controlled natural language for operator I/O. It offers three logical languages
to adequately model different aspects of the domain. This allows to build SA sys-
tems in a more declarative way than is possible with current approaches. From an
automated reasoning perspective, the main challenges lay in combining (existing)
automated reasoning techniques, from low-level data fusion of time-stamped data
to semantic analysis and alert generation that is based on linear temporal logic.
The system has been implemented and interfaces with Google-Earth to visual-
ize the dynamics of situations and system output. It has been successfully tested
on realistic data, but in this paper we focus on the system architecture and in
particular on the interplay of the different reasoning components.

1 Introduction

Situation Awareness (SA from now on) is concerned with the perception of elements in
the environment within a volume of time and space, the comprehension of their meaning

� NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 77–92, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

78 F. Baader et al.

Collect Data

Data Aggregation

Identify Entities

Alert Generation

Identify Behaviour

Semantic Analysis

Identify Relations

circle()

threat(,)

surveils(,)

Fig. 1. SAIL high-level system architecture

and the projection of their status in the near future [End95]. Having complete, accurate
and current SA is highly desirable for managing real-time dynamic systems including
military and emergency scenarios, air traffic control and other transport networks. Poor
SA is a key contributor to critical human errors, usually tracing back to cognitive over-
load or poor information transfer between operators.

According to Endsley’s model [End95], the levels of SA are perception, comprehen-
sion and projection. Currently, the challenge of integrating heterogeneous information
into a single composite picture of the environment at the semantic level of human com-
prehension and projection remains open. To address this challenge, we have developed
a novel system architecture and implemented a system as a part of the Situation Aware-
ness by Inference and Logic (SAIL) project. It provides functionality in three successive
tiers (Fig. 1) corresponding roughly to Endsley’s levels of SA.

Data Aggregation involves monitoring data sources (e.g. track data obtained from
radar) to identify entities of a situation and their low-level properties (e.g. that a
trajectory contains a circle). This corresponds to the perception level of SA.

Semantic Analysis involves interpretation and evaluation of the entities in conjunction
with background knowledge, producing an understanding of the overall meaning
of the identified entities: how they relate to each other, what kind of situation it is,
what it means in terms of one’s mission goals (e.g. that a fighter plane is threatening
some object). This corresponds to the comprehension level of SA.

Alert Generation involves monitoring and projecting how events may unfold over
time. Based on the interpretation of a situation, this functionality identifies pos-
sible evolutions of the current situation (e.g. of an aircraft currently surveilling a
border). If a potentially high-impact situation is recognised to arise, an alert is sent
to the operator. This relates to the projection level of SA.

We emphasize the role of declarative techniques in all three layers, each one realized
essentially by specification in a formal logic. This bears the advantage that we have a

A Novel Architecture for Situation Awareness Systems 79

precise semantics for each layer, defined in terms of formal logic rather than the imple-
mented behaviour of a specific set of tools. As formal semantics can be captured in an
abstract manner, our approach does not tie users to specific implementations. However,
to make the employed logics operational, we capitalize on the state of the art by utilizing
two of the latest available (tableau-based) reasoners, E-KRHyper [PW07] and Racer-
Pro [HM03]. We exploit E-KRHyper’s model-building abilities to deliver its result as a
description-logic ABox to RacerPro. One caveat here lies in the dynamic nature of our
application, which requires reasoning about data that changes over time. Unfortunately,
the currently available (first-order and description logic) reasoners do not offer suitable
services, so we solve this problem via a novel architecture, the SAIL architecture, that
utilizes a control component to invoke the reasoners in specific ways. Other important
aspects of SAIL concern the use of controlled natural language (CNL) as the primary
means of interaction with human operators, the integration of a public-domain GIS
system into E-KRHyper for basic geometrical calculations. The architecture has been
implemented in the SAIL system and tested successfully on realistic data. Although we
refer occasionally to the system, the focus of this paper is on its architecture.

1.1 Related Work

Several systems for SA have been developed that support the management of various in-
formation sources (sensor data, textual information, databases, etc.) for purposes such
as information exchange and graphical presentation to facilitate decision making. In-
formation retrieval techniques to filter and rank a potentially overwhelming stream of
information are often applied to facilitate this process. Typical examples of academic
prototypes, from the military domain, are [GHGJ+07, SRS+07]. However, such systems
lack capabilities that enable a deep, semantical modelling of the domain and drawing
conclusions on top of it. Therefore, information integration to assess and project a sit-
uation into the future still has to occur largely in the “heads of the decision makers”,
which leads to the Semantic Challenge in SA [NL05]. These issues are a recurring
theme in current SA research and attract considerable attention worldwide (see a recent
overview paper by domain experts [BKS+06]). It is not surprising that (in particular)
description logics [BCM+03] and corresponding reasoners have attracted a lot of at-
tention in the SA community. Although some SA tools, such as [SRS+07, GHGJ+07]
reportedly make use of description logic reasoners, it becomes clear that deep, seman-
tic reasoning is not yet implemented in a satisfying manner. Moreover, the cited reports
make little mention of the lower levels of the information fusion process; there is an
implicit, underlying assumption that low-level data, such as that provided by physical
sensors, is already in a semantically and syntactically well structured form, associat-
ing to real-world events the concrete objects, the time of occurrence, and data sources,
which may be stored in a database or ontology. However, how to actually obtain this
meta information is not detailed upon (cf. [MKL+05]). To the best of our knowledge,
no prior SA system has managed to use an integrated semantic approach based on log-
ical inference and reasoning, from the sensor-data level to the higher levels of situation
assessment, and beyond (e.g., impact assessment, projection into the future, etc.). This
is one of the key differences between our proposed system, whose functioning can be

80 F. Baader et al.

described largely based on formal logic, and the existing ones, which combine ad-hoc
representations with formal reasoning.

1.2 Running Example

We will use the scenario depicted in Fig. 2 as a running example to illustrate the various
components of the SAIL architecture. Our work is embedded in a project run in col-
laboration with the Defence Science and Technology Organisation (DSTO), Australia.
The scenario discussed here is a small excerpt from a scenario developed by DSTO and
NATO partners.

Suppose we are interested in monitoring a geographical region for potentially hos-
tile activity by a neighbouring country. Our system receives low-level track data from
electronic surveillance systems (e.g. radar) that combined with Geographic Information
System (GIS) data allow us to keep track of the movement of vehicles in the region. In
this scenario, radar data indicates that an aircraft takes off at 11:55 and travels at a
speed of 1.1 Mach (Fig. 2a). Another source of information to the system are natural
language reports from human witnesses in the region. These reports frequently contain
information that the other sources cannot deliver, such as the specific type of aircraft. In
our scenario, such a report indicates that an SU 24M was seen taking off from Becker-
Bender at 12:00.

Interacting with the system is a user issuing queries in (Controlled) Natural Lan-
guage. In this example, a submitted query is “What aircraft of Redland can reach a city
of Blueland?” (Fig. 2c). The SAIL system 1) uses its various sources of information to
speculate that the aircraft detected by radar and the aircraft described in the report are
the same; 2) uses what it knows about the detected SU 24M and general background
knowledge, such as aircraft capabilities (e.g. travel distance range), geographical in-
formation, and the types of aircraft used by different countries, to determine that the
detected SU 24M is Redland’s and that it is currently capable of reaching a city of
Blueland, and 3) includes it in the answer to the user’s query. Moreover, in this example
the SU 24M and any other aircraft that have been detected are monitored for aggressive
behavior. If an aircraft is determined to be aggressive, the system issues an alert.

OBJECT

11:55:07.295
493002N
275421W

STATUS: TAKING−OFF
SPEED: 1.1 MACH

GUNSHIP GREY/OLIVE DRAB/CHARCOAL
F/RF−111C/G

A8−132

The author is not responsible for any losses which may result from the use or

Distribution of this artwork as part of the xfig package, where xfig is part
of a commercially sold software package is permitted.

misuse of this material.
 © 1995, Carlo Kopp

(a) Surveillance systems (e.g.
radar) detect an aircraft taking
off at 11:55.

AREA

TYPE

POPULATION

REDLAND ID

LOCATION

MODEL

AREA

TYPE

POPULATION

REDLAND ID

LOCATION

MODEL

AREA

TYPE

POPULATION

REDLAND ID

LOCATION

MODEL

AREA

TYPE

POPULATION

REDLAND ID

LOCATION

MODEL

AREA

TYPE

POPULATION

REDLAND ID

LOCATION

MODEL

AREA

TYPE

POPULATION

REDLAND ID

LOCATION

MODEL

AREA

TYPE

POPULATION

REDLAND ID

LOCATION

AREA

TYPE

POPULATION

REDLAND ID

LOCATION

SOURCE ID 27982350
EYE−WITNESS OF EVENT
EVENT: TAKING−OFF

ID:

ORIGIN: Becker−Bender

REPORT 15D129
SOURCE ID 27982350
EYE−WITNESS OF EVENT
EVENT: TAKING−OFF

ID:

ORIGIN: Becker−Bender

REPORT 15D129
SOURCE ID 27982350
EYE−WITNESS OF EVENT
EVENT: TAKING−OFF

ID:

ORIGIN: Becker−Bender

REPORT 15D129
SOURCE ID 27982350
EYE−WITNESS OF EVENT
EVENT: TAKING−OFF

ID:

ORIGIN: Becker−Bender

REPORT 15D129
SOURCE ID 27982350
EYE−WITNESS OF EVENT
EVENT: TAKING−OFF

ID:

ORIGIN: Becker−Bender

REPORT 15D129
SOURCE ID 27982350
EYE−WITNESS OF EVENT
EVENT: TAKING−OFF

ID:

ORIGIN: Becker−Bender

REPORT 15D129
SOURCE ID 27982350
EYE−WITNESS OF EVENT
EVENT: TAKING−OFF

ID:

ORIGIN: Becker−Bender

REPORT 15D129
SOURCE ID 27982350
EYE−WITNESS OF EVENT
EVENT: TAKING−OFF

ID:

ORIGIN: Becker−Bender

REPORT 15D129

SU_24m
BECKER−BENDER

SU_24m
PNS−24M internal
navigation system

m42_US m42_US m42_US
BECKER−BENDER

SU_24m
PNS−24M internal
navigation system

BECKER−BENDER

SU_24m
PNS−24M internal
navigation system

SU_24m
BECKER−BENDER

SU_24m
PNS−24M internal
navigation system

m42_US m42_US m42_US
BECKER−BENDER

SU_24m
PNS−24M internal
navigation system

BECKER−BENDER

SU_24m
PNS−24M internal
navigation system

BECKER−BENDER

SU_24m
PNS−24M internal
navigation system

BECKER−BENDER

SU_24m
PNS−24M internal
navigation system

mp00:21 mp00:21 mp00:21 mp00:21 mp00:21 mp00:21 mp00:21

Mo.

12:00 pm

Mo.

(b) A witness reports seeing
an SU 24M taking-off from
Becker-Bender at 12:00.

Q: What aircraft of Redland
 can reach a Blueland city ?

KRUPALI

(c) A SAIL-system user sub-
mits the CNL query “What
aircraft of Redland can reach
a city of Blueland?”

Fig. 2. Example Scenario: multiple sources of information are fused and analysed in the detection
of a potentially hostile aircraft taking off

A Novel Architecture for Situation Awareness Systems 81

2 SAIL Architecture

Fig. 3 depicts the SAIL system architecture. SAIL takes two kinds of input: data streams
and eye-witness reports. Data streams provide time-stamped sensor data about aircraft,
ships, etc, giving their location, speed, acceleration and so on, shown as the boxes
SDi,SDi+1,SDi+2, In our scenario, new data arrives about every 0.33 seconds and
concerns about 30 objects. SAIL accumulates this information: at each time point i
the system stores data from previous time points SD j, for j ≤ i. For practical reasons
– to cope with the amount of data accumulating over time – SAIL supports a user-
configurable time window and abandons data time-stamped prior to that window. Eye-
witness reports are represented in a time-stamped relational way, similarly to the sensor
data. As they are originally expressed in a form of controlled natural language (CNL),
some preprocessing is needed to arrive at a relational form (cf. Sec. 2.4). The control
program presented in Algorithm 1 coordinates the processing of all that.

SDi SDi+1
SDi+2

Data Aggregation

(Rules/E-KRHyper)

ABoxj ABoxj+1 ABoxj+2

Alert generation

(LTL/BA)

Semantic Analysis

(Description Logics/RacerPro)

CNL generation

CNL AlertCNL Query

DB

CNL formalization

CNL assertion handler - CNL query handler

CNL generation

CNL Answer

...

CNL background

knowledge

(scenario/intelligence)

CNL formalization

GIS

...

Control program and reasoner interface

Fig. 3. SAIL system architecture. Abbreviations: GIS - GIS system, SDi - sensor data, LTL - linear
temporal logic, BA - Büchi automaton, CNL - controlled natural language.

82 F. Baader et al.

input: a TBox tbox, window size n
t ← 0;
for i← 0 to n−1 do /* initialize sensor data windows */

sd[i]← /0;
end
while true do

sd[t mod n]← await input data from CNL assertion handler;
user queries← read nRQL queries from CNL query handler;
SDt ←

⋃n−1
i=0 sd[i];

ABoxt ← InvokeDAModule(SDt);
t pt p answer← InvokeSAModule(tbox,ABoxt ,user queries);
data trace← InvokeSAModule(tbox,ABoxt);
send t pt p answer to CNL query handler;
send data trace to alert generation module;
t ← t +1;

end

Algorithm 1. Control procedure for query answering and data trace generation

The control procedure takes two arguments - a TBox tbox and a configurable win-
dow size n. There are two arrays sd and data trace. Each array is of size n and each
element in the array is initially set to an empty set. The main part of the procedure con-
sists of a while-loop that runs indefinitely. In each iteration, the procedure is blocked
until the next input arrives from the CNL assertion handler. It then proceeds by reading
user queries in nRQL format from the query handler. Positions of array sd are filled
with sensor data in sequence from index 0 to n−1 as t increments with each iteration.
It simply loops back to position (t mod n) if t > n, thus disregarding input data col-
lected at time point t−n. That is, we retain at most n time points of input data prior to
the current time point t.

Collected input data in the array sd are aggregated to form SDt . This data, together
with GIS and database information, are processed by the data aggregation module via
InvokeDAModule, to produce an ABox ABoxt marked with the current time point t.
This new ABox is loaded together with the input TBox tbox to the semantic analysis
module via InvokeSAModule for further processing, where user queries user queries
will be executed. The answer produced will be in TPTP format and is immediately
sent to the CNL query handler for conversion to CNL output. Similarly, a data trace
will be generated via InvokeSAModule for time point t which will be sent to the alert
generation module for further processing (as described in Sec. 2.3 below).

2.1 Data Aggregation

Data aggregation is the process of gathering information and expressing it in a sum-
mary form. With a wide enough time window, this allows to detect object properties
over time, like, for instance, to detect a “circle” in an object’s trajectory, or that a
certain object re-visits a certain point again and again. Eye-witness reports, initially
expressed in CNL, also feed into this layer. For instance, a CNL sentence like “An

A Novel Architecture for Situation Awareness Systems 83

SU 24M started from Eaglevista at 09:00” could be used to enrich information about a
previously unidentified object that it is an SU 24M.

The core component for data aggregation is the theorem prover E-KRHyper. E-
KRHyper is sound and complete for first-order logic with equality. It is an implementa-
tion of the E-hyper tableau calculus [BFP07]. E-KRHyper has been described in more
detail in [PW07].

E-KRHyper is invoked by the control program whenever the time window moves or
a new eye-witness report comes in. It then updates the data aggregated so far based on
the new information. E-KRHyper accepts if-then rules, of which first-order clause logic
is a special case.1 Rules are used to specify data aggregation in a declarative way. Here
are some examples, relevant to the event in Fig. 2a:

object_appears(Obj, Now) :- % An Object appears at the current time, Now.
current_time(Now), % Current time - supplied by control program
object(Obj, Now), % Get some Object existing at Now
previous_time(Now, T), % Previous time - supplied by control program
\+ object(Obj, T). % Check that Object was not there at T

take_off(Event, Obj, Now) :- % a new Event: an Object takes off Now
object_appears(Obj, Now),
in_air(Obj, Now), % in_air computed by GIS
concat([’ev_’,Obj,’_’,Now],Event). % creates unique Event id

The rules are applied in a bottom-up way to the sensor data and eye-witness reports
(after conversion into logical form by the CNL assertion handler) until a fixed point is
reached. A certain subset of the fixpoint is then extracted and passed on to the semantic
analysis layer.

To see how this works, assume that the appearance of the aircraft in Fig. 2a is repre-
sented as object(ac1, ’11:55’), and assume that in_air(ac1, ’11:55’) can be
established with the help of the GIS (see below) from the radar data. E-KRHyper then
derives the result take_off(’ev_ac1_11:55’, ac1, ’11:55’),2 which is passed on
to the semantic analysis layer with the help of rules with a head predicate “abox”:

abox(take_off(Event)) :- take_off(Event, Obj, Time).

Such rules specify concept assertions (like take_off(’ev_ac1_11:55’)) or role
assertions (like event_time(’ev_ac1_11:55’, ’11:55’) in the sense of description
logics. 3 As indicated in Fig. 3 by using indices j rather than i, the sequence of ABoxes

1 The syntax is similar to Prolog, but extends it by a logical-or operator “;” which means dis-
junction in the head of rules. E-KRHyper also supports stratified negation “\+” and evaluation
of arithmetic goals. These features are helpful for computations on timepoints and spatial dis-
tances. They are used locally inside the data aggregation layer and do not interfere with the
overall logic.

2 We use integers to represent time and writing time points as in ’11:55’ is just for readability
here. Names like ’ev ac1 11:55’ are obtained with a concat-atoms like built-in function.

3 A collection of such assertions, an ABox, specifies a theory in the sense of first-order logic.
Like any first-order theory an ABox may be incomplete, that is, it might entail a given first-
order sentence, like e.g. a concept instance is AWACS(o1), entail its negation, or neither of
them.

84 F. Baader et al.

ABox j,ABox j+1, . . . does not necessarily correspond to the time points of the sensor
data. This is, because it is neither necessary nor feasible to update the data aggregation
with the same rate as the sensor data come in. By default, a new ABox is computed
every second or when a new eye-witness report comes in.

Preserving information over time. Each ABox ABox j,ABox j+1, . . . represents infor-
mation for the time point “now”. Would ABoxes include their predecessors (as is the
case with the sensor data) then a massive frame problem is to be expected. However,
ABox assertions that are consistent with all later ABoxes can be kept without problems.
For instance, it might be useful to keep the “take off” event synthesized in the example
above until its object no longer exists. This can be realized by writing rules with special
predicate symbol reassert in the head:

reassert(take_off(Event, Obj, CreationTime)) :-
take_off(Event, Obj, CreationTime), current_time(Time),
object(Obj, Time). % reassert as long as its object exists

Like the abox predicate, the reassert predicate is interpreted by the control pro-
gram in a special way, by just feeding its extension in the current computed model into
the next invocation of E-KRHyper. This achieves the desired effect.

The formal meaning of this type of data aggregation can be given in a similar way
as for production system languages (cf. [Ras94]) and E-KRHyper merely serves as an
implementation of that. However, as pointed out above, this particular choice is not
mandatory. We have chosen E-KRHyper because of our familiarity with the system.
The use of equality reasoning is not crucial, but the ability to generate models in a
bottom-up manner is, in order to extract ABoxes from the computed models. Another
important detail is that the rules we use fall into a formula class that E-KRHyper is a
decision procedure for.

Databases and GIS. SAIL’s data aggregation layer also integrates databases and a
public-domain GIS. The (relational) databases here contain data about capabilities of
aircraft, ships, etc, such as maximum speed, range, and so on. As they are rather small,
instead of coupling a proper DBMS, we simply expressed the knowledge base directly
in E-KRHyper’s input language, as a set of facts.

The sensor data consists of spatial information about objects that are moving over
time. The computation of their properties will often involve spatial computations in
the GIS, numerical computations and database lookups. A simple example is to com-
pute whether a certain aircraft can reach a certain destination. This requires a database
query of the aircraft’s range, the aircraft’s time in the air, and the distance to the des-
tination. For that, it is useful to be able to compute basic spatial properties of objects,
such as whether an object is in air, within a certain region (for example, a country) or
targets some city. To this end, we have integrated the popular open source GDAL/OGR
GIS library into the SAIL data aggregation layer. The GIS utilises vector data about
geographic features, described in terms of geometric objects such as points, lines, and
polygons. The interface to the GIS is realized by special predicates and functions, which
can be used in rule bodies to invoke its services.

A Novel Architecture for Situation Awareness Systems 85

For example, determining whether a city can be reached by a given aircraft can be
performed by using a combination of builtins; first to define the geographic region that
the aircraft can reach, and then to test whether the city is within that region:

reachableCity(Aircraft, Range, City) :-
Reach is ogr_g_buffer(Aircraft, Range),
ogr_g_within(City, Reach).

2.2 Semantic Analysis

The semantic analysis layer is where situation assessment occurs. This component of
the system utilizes a logical description of domain properties at a conceptually higher-
level than what the data aggregation layer produces. While the data aggregation layer
generates assertions about, e.g., the location of objects, the semantic analysis layer at-
taches higher level meaning to the situation, e.g. whether the object is behaving ag-
gressively. In addition to the information coming from the data aggregation layer, the
semantic analysis layer has at its disposal a background knowledge base (an ontology)
containing information about the different aircraft, ships, and other vehicle types avail-
able to various countries, the capabilities of the vehicles, e.g. weapons, travel range; the
status of the relationship between countries, e.g. ally, neutral, hostile; and other simi-
lar domain background knowledge. The knowledge base also contains a collection of
definitions of events, e.g., move, fly, sail, depart, take off, etc, that is in part inspired
by the event-semantics used in the NLP community. From this knowledge base and the
information delivered by the data aggregation layer, the semantic analysis layer com-
putes, by logical reasoning, a deeper, more concise high-level description of the current
situation. In the following we give only a flavor of the concrete knowledge base with a
small example around “aggressive behavior”.

The particular representation and reasoning formalism used in this layer is descrip-
tion logics (DL) [BCM+03]. A typical DL knowledge base has two components: an
ABox and a TBox. ABox assertions are of the form C(x) or R(x,y), where C and R de-
note concept and role respectively, and x,y are individuals. Assertions are provided to
the semantic analysis layer as background information, as eye-witness reports or gen-
erated by the data aggregation layer. For example, the assertions below state two facts -
t1 being a physical object and t1 being a target of another object o1:

physical ob ject(t1) has target(o1,t1)

TBox axioms are of the form C � D or C
.= D. The former requires that every individ-

ual belonging to C also belongs to D. The latter equivalence axiom requires that both
C � D and D � C hold. TBox axioms are pre-defined in the semantic analysis layer.
They are combined with the ABoxes from the data aggregation layer to draw additional
inferences.

For example, the following axiom defines an aggressive object as an individual that
has a target of either a physical object or a space region:

aggressive
.= ∃has target.(physical ob ject� space region)

86 F. Baader et al.

It then follows that o1 is an aggressive object, aggressive(o1). Note that the axiom
above is defined as an equivalence, which means we are not only interested in the suffi-
cient condition for classifying an object as aggressive, but the sufficient and necessary
conditions. For example, suppose we discover the fact aggressive(o1) from an eye-
witness. The above axiom would infer that there is some unnamed object which is a
target of o1 and is either a physical object or a space region.

Also related to “aggressive” is the thematic role has target, which is used to rep-
resent the target in an aggression event. Like the concept aggressive, this role is also
non-primitive and is similarly defined in this layer in terms of other primitive concepts
and roles. Specifically, non-primitive roles are defined by means of rules in the DL
system language. For instance, the following rule defines has target:

(firerule (and (?EM move) (?EM ?Ag has_theme) (?Ag fighter)
(?Ag ?Org associated_with) (?Org s_blueland enemy_organization)
(?EM ?Y has_direction) (?Y s_blueland associated_with))

((related (new-ind aggr ?Ag ?Y) ?Y has_target)))

This rule can be read as follows: if there is a move event whose theme (agent), ?Ag, is
a fighter aircraft associated with an enemy organization of Blueland and ?Ag is moving
towards ?Y (a physical object or a space region) which is associated with Blueland, then
this agent ?Ag has ?Y as a target of aggression.

The connection between the data aggregation layer and the semantic layer is achieved
through primitive concepts/roles. Primitive concepts and roles are not fully defined in
DL, but are continuously populated by instances computed by the data aggregation
layer. The implementation of the rules filling the primitives needs to be sound wrt. their
intended meaning. Completeness, however, is not required and is generally impossible
to achieve (i.e., limited possibilities of observing the world). The DL reasoner can then
also deduce assertions involving defined concepts. The eye-witness reports may directly
yield assertions for defined concepts.

Implementation. Our implementation of the semantic analysis module utilizes Rac-
erPro [HM03]. RacerPro is invoked by the same control program that drives the data
aggregation layer. With RacerPro running in server mode, the control program loads the
TBox (i.e. the ontology) containing axioms defining high-level concepts like aggressive
and an ABox containing static background knowledge, then it enters into a loop. In each
iteration of the loop, the control program loads into RacerPro the most recent ABox pro-
duced by the data aggregation layer and then executes a number of DL rules, such as
the one above, that essentially extend the ABox with additional, inferred facts. Once
this is done, the reasoner has a full knowledge base and is ready for query processing.
Three classes of queries are issued to the reasoner: 1) Localization queries, which are
automatically issued by the control program and whose answer is used to display the
various objects currently being tracked on a Google-Earth interface. 2) User queries,
issued in CNL as described in Sec. 2.4 below. (It is also possible for a user to pose
queries directly in the language of the reasoner.) 3) Alert queries, which conceptually
belong to the Alert layer but are realized by description logic reasoning (See Sec. 2.3).

A Novel Architecture for Situation Awareness Systems 87

2.3 Alerts

In contrast to queries, whose answering is triggered by questions submitted by the user,
alerts are raised automatically by the SAIL system. For instance, the user may want
to be notified by the system whenever an aircraft crosses a predefined border or an
air corridor. In general, an alert describes a critical situation, whose occurrence should
be pointed out to the user immediately, without requiring additional interaction. An
alert can be created by formally specifying the critical situation in linear time temporal
logic (LTL) [Pnu77]. The reason for using temporal logic is that the occurrence of
a critical situation usually depends on the dynamic behaviour of objects. Single time
points are described by the ABoxes generated by the data aggregation layer of SAIL
and extended by the semantic analysis layer. These form the atomic propositions in
the LTL formulas, i.e., statements about the properties of named objects formulated
in terms of the concepts and roles occurring in the ontology. Once an alert is formally
specified, a monitor is created, which, based on the observations so far, decides whether
or not the alert should be raised.

From a formal point of view, an LTL formula ϕ specifying an alert defines a set Lϕ
of infinite “words”, where each letter in such a word can be seen as a description of the
actual state at a given time point. These words correspond to “good” behaviour, i.e., the
alert must be raised if the observed sequence of state descriptions does not belong to
Lϕ. To be more precise, at any given time point, we have only observed a finite prefix of
such an infinite sequence. Such a prefix is “bad” if it cannot be extended to an infinite
sequence that belongs to Lϕ, i.e., however the future behaviour looks like, we know that
it cannot become “good.” In this case, the alert must be raised. Conversely, the prefix is
“good” if all extensions belong to Lϕ. In this case, the system no longer needs a monitor
for this alert. If none of this is the case, then the system must continue monitoring.

Following an approach developed in the area of runtime verification [BLS06], the
monitor for an alert specified by ϕ is a finite state machine (FSM) with output (“alert”,
“shut down”, “continue”), which can be constructed from the Büchi automaton corre-
sponding to ϕ (i.e., accepting Lϕ).

As an example of an alert specification, consider the following critical situation. If
we detect that an enemy aircraft has taken off, and if this aircraft crosses our border, an
alarm signal should be raised. The following LTL formula is used to express this:

G(in air(p)⇒¬cross border(p) U landed(p)).

The temporal operator G asserts that the formula following it should hold at all future
time points, and the until-operator U asserts that the event cross border(p) does not
happen before landed(p) is observed. Note that this formula is parametrised with an
object name p. The idea is that it is instantiated by all the named objects that are in air.
In our running example, alerts are illustrated by monitoring for aggressive events with
the simple specification G(¬aggressive(e)).

Moreover, in our application, for all aircraft p, we keep track of the values of, say,
in air(p) such that we can, essentially, revert to a propositional representation of the
formula. From that, we automatically generate a FSM that reads a trace, which con-
sists of the different truth values of the propositions over time (and obtained via de-
scription logic reasoning), and returns in each state whether so far a good prefix was

88 F. Baader et al.

(-1, 1) (<empty>)(cross_p&&inair_p&&landed_p)(cross_p&&inair_p)(cross_p&&landed_p)(cross_p)(inair_p&&landed_p)(inair_p)(landed_p)

(0, 0)

(cross_p&&inair_p)

(cross_p&&landed_p)(cross_p)(inair_p&&landed_p)(landed_p)(<empty>)(cross_p&&inair_p&&landed_p)

(1, 1)

(inair_p)

(cross_p&&inair_p) (cross_p)

(cross_p&&inair_p&&landed_p) (cross_p&&landed_p) (inair_p&&landed_p) (landed_p)

(<empty>)(inair_p)

Fig. 4. FSM for G(in air(p)⇒¬cross border(p) U landed(p))

observed (i.e., “shut down”), a bad one (i.e., “alert”), or neither (i.e., “continue”).
Depending on the formula, not all the three different types of states may appear in
a generated FSM. For example, in the resulting FSM from the above formula de-
picted in Fig. 4, there is only one alert-state, indicated by the label (−1,1), and two
continue-states, indicated by the labels (0,0) and (1,1). The labels on the transitions
are such that only positively interpreted propositions appear, whereas negative inter-
pretations are implicit, for example, the label “inair p” asserts the following valuation,
{in air(p) = true,cross border(p) = f alse, landed(p) = f alse}. Note that the auto-
matically generated FSMs are always complete in the sense that for all possible Boolean
combinations of propositions there always exists a transition at each state. The transi-
tions in the FSMs can often be simplified, for efficiency reasons. For instance, if a state
has no outbound states but loops, we replace them with a single loop that is always
enabled irrespective of the truth values of the propositions.

Instead of a direct implementation, FSMs are realized by reduction to description
logic reasoning. This is done in a similar fashion as the encodings of LTL search control
for planning in [Gab03]. For each state S in the FSA, we introduce a concept CS into
the semantic analysis knowledge base. For each of these concepts, we construct a DL
formula by taking all the transitions (Si,ψi,S) in the FSM and building a corresponding
disjunction of the form

⊔
iCSi �ψi. This formula essentially defines the extent (set of

individuals in the corresponding state) of the concept CS in the next time point. Every
time a new ABox is loaded into the semantic analysis module, we use the current values
of the concepts CSi and recompute the value of CS by computing the answer to the query⊔

iCSi �ψi. This answer is then stored and loaded in the next time point so that the
current values of the state concepts are always available for computing the values in the
next time point. For example, for the formula above, we have three concepts C1,C2,C3

meant to contain objects in the corresponding three states. The formulas for updating the
concepts are, resp.: (C1�¬in air)� (C2� landed), (C2�¬landed�¬cross border)�
(C1� in air), C3� (C1�cross border)� (C2�cross border). A comprehensive formal
semantics of the alerts layer can also be given through a combination of DL and LTL as
described in [BGL08].

2.4 Controlled Natural Language (CNL) Interface

A computer-understandable controlled natural language (CNL) is an engineered subset
of a natural language designed to reduce ambiguity and vagueness that are inherent in

A Novel Architecture for Situation Awareness Systems 89

full natural language. Our controlled natural language is based on an unification-based
grammar similar to [FKK08, ST08] and relies on a neo-Davidsonian representation of
events, and a small number of thematic roles that are used to link these events with other
discourse entities (see [Par94] for an introduction).

The purpose of the CNL interface in the SAIL architecture is to allow humans who
are not trained in formal logic to add eye-witness reports to the system and to query the
DL knowledge base in CNL. This high-level interface abstracts away from primitive
and defined concepts and from the formal notation used to encode these concepts in the
knowledge base. Working with such an interface has the advantage that the user can
employ the familiar terminology of the application domain to interact with the system,
and we expect that this will reduce the cognitive load of the user considerably in a
situation awareness context.

Implementation. The CNL processor of the SAIL system consists of a controlled lex-
icon and a bi-directional grammar. It translates declarative sentences and questions
written in CNL into a formal representation in TPTP syntax [SS98], and it generates
answers and alert messages in CNL. (We have chosen TPTP syntax for ease of inter-
facing reasoners.) The kernel of the CNL grammar is built around declarative sentences
which have the following simple functional structure:

Subject + Predicate + [Object] + {Modifiers}

This functional pattern can be instantiated via a set of well-defined CNL constituents,
for example:

Subject: (Su 24M) Predicate: (reaches) Object: (Bendeguz) Modifier: (within
6 minutes).

Starting from this simple sentence pattern, more complex sentences can be built in
a systematic way using a number of constructors (for example coordinators and quan-
tifiers). The CNL processor is able to resolve anaphoric references during the parsing
process using the DL knowledge base. This results in a paraphrase that shows the user
how the anaphoric expressions were interpreted. As an example consider the following
eye-witness report:

SU 24M takes off from Becker-Bender at 09:00. The A50-1 takes off from Kru-
pali at 09:30.
The fighter (SU 24M) flies towards Bendeguz. The AWACS (A50-1) flies to-
wards Eaglevista.

Apart from a paraphrase, the CNL processor generates first a TPTP representation
for this eye-witness report. This representation is then translated further into a suitable
form to augment the existing information in the data aggregation layer.

The DL knowledge base can be queried in CNL. Questions usually have an inverted
word order but the processing of questions can be interpreted as a variation of the pro-
cessing of declarative sentences. Thus large parts of the same grammar can be used.
Here is an example of a typical wh-question:

What aircraft of Redland is able to reach a city of Blueland?

90 F. Baader et al.

The CNL processor translates this question into a TPTP formula and stores this formula
as a template for generating answers:

input_formula(sail,conjunctive_query,((
(? [A]: (named(A, s_redland) & (object(B, aircraft) &

property(B, associated_with, A)))) &
(? [C]: ((? [D]: (named(D, s_blueland) & (object(C, city) &

property(C, associated_with, D)))) &
(? [E]: (property(E, has_agent, B) & (poss(E) & (event(E, reach) &

(property(E, has_theme, C) & contemp(E, u)))))))))
=> answer(B))).

The TPTP formula is then translated into a conjunctive nRQL query [HM03]:

(retrieve (?1) (and (?1 aircraft) (?1 s_redland associated_with)
(?2 ?1 has_agent) (?2 reach) (?2 ?3 has_theme) (?3 city)
(?3 s_blueland associated_with)))

This query is sent to the DL reasoner, RacerPro, for question answering. RacerPro
returns the found instances. The CNL processor takes the stored TPTP formula and
transforms it into a representation for a declarative sentence using these instances, and
one or more complete sentences are generated as an answer.

3 Conclusions

We presented SAIL, a novel system architecture for situation awareness. It differs from
other approaches by emphasizing the role of formal logics and automated reasoning
systems. This supports a highly declarative approach to building situation awareness
systems. To our knowledge, SAIL is the first approach of this kind, and we see the un-
derlying approach of combining and extending available reasoners beyond their native
capabilities as our main contribution. A core feature of our architecture is that it enable
computation with data that changes over time, which is crucial for situation awareness
but not natively supported by the reasoners. Additional components of the implementa-
tion are a GIS-system, a controlled natural language interface and Google-Earth visual-
ization of trajectories and alerts.

We have implemented the SAIL system with the functionality described above. It
copes with data streams from a realistic scenario in real time. The raw sensor data
that feeds into the Data Aggregation layer arrives as a stream of time-stamped tuples
(T,Name,Ptfm,Alleg,Type,Lat,Long,Alt,VelX,VelY,VelZ,AccX,AccY,AccZ)
each describing a detected object’s position with real geo-coordinates, physically real
velocity and acceleration quantities, and, if known, its platform, allegiance (hostile,
friendly or neutral), and type. As mentioned in Section 2, the stream delivers such infor-
mation on about 30 objects approximately every 1/3sec. E-KRHyper’s rule base consists
of about 100 rules and ABoxes are generated at a rate of 2 ABoxes per “data-minute”,
where each ABox contains around 100-400 assertions. Each ABox is combined with
the background knowledge assertions and the background knowledge axioms to form a
single DL knowledge base. The background knowledge assertions are composed of 43

A Novel Architecture for Situation Awareness Systems 91

concept assertions and 28 role assertions. The background knowledge axioms are com-
posed of 18 concept definitions, 14 inclusion axioms (GCIs) and 4 disjointness axioms.
RacerPro is able to compute the result of each query in less than 2 real seconds.

As future work it would be interesting to consider applications in domains like air
traffic control or disaster management.

Acknowledgements. We thank the reviewers and our DSTO project partner for valuable
comments on earlier drafts of this paper.

References

[BCM+03] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

[BFP07] Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfen-
ning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 492–507. Springer, Heidelberg
(2007)

[BGL08] Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. In: Brewka,
G., Lang, J. (eds.) Procs. KR 2008. AAAI Press, Menlo Park (2008)

[BKS+06] Blasch, E., Kadar, I., Salerno, J., Kokar, M.M., Das, S., Powell, G.M., Corkill,
D.D., Ruspini, E.H.: Issues and challenges in situation assessment (level 2 fusion).
Journal of Advances in Information Fusion 1(2), 122–139 (2006)

[BLS06] Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-
Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer,
Heidelberg (2006)

[End95] Endsley, M.R.: Towards a theory of situation awareness in dynamic systems. Hu-
man Factors 37, 32 (1995)

[FKK08] Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge
Representation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008)

[Gab03] Gabaldon, A.: Compiling control knowledge into preconditions for planning in the
situation calculus. In: Procs. IJCAI 2003, Acapulco, Mexico (2003)

[GHGJ+07] Ghanea-Hercock, R.A., Gelenbe, E., Jennings, N.R., Smith, O., Allsopp, D.N.,
Healing, A., Duman, H., Sparks, S., Karunatillake, N.C., Vytelingum, P.:
Hyperion—next-generation battlespace information services. The Computer Jour-
nal 50(6), 632–645 (2007)

[HM03] Haarslev, V., Möller, R.: Racer: A core inference engine for the semantic web.
In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870.
Springer, Heidelberg (2003)

[MKL+05] Matheus, C.J., Kokar, M.M., Letkowski, J.J., Call, C., Baclawski, K., Hinman, M.,
Salerno, J., Boulware, D.: Lessons learned from developing SAWA: A situation
awareness assistant. In: FUSION 2005: 7th International Conference on Informa-
tion Fusion. IEEE, Los Alamitos (2005)

[NL05] Nowak, C., Lambert, D.: The semantic challenge for situation assessments. In: 8th
International Conference on Information Fusion, July 2005. IEEE, Los Alamitos
(2005)

[Par94] Parsons, T.: Events in the Semantics of English: A Study in Subatomic Semantics.
MIT Press, Cambridge (1994)

92 F. Baader et al.

[Pnu77] Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE, Los
Alamitos (1977)

[PW07] Pelzer, B., Wernhard, C.: System description: E- kRHyper. In: Pfenning, F. (ed.)
CADE 2007. LNCS, vol. 4603, pp. 508–513. Springer, Heidelberg (2007)

[Ras94] Raschid, L.: A semantics for a class of stratified production system programs. Jour-
nal of Logic Programming 21(1), 31–57 (1994)

[SRS+07] Smart, P.R., Russell, A., Shadbolt, N.R., Shraefel, M.C., Aktivesa, L.A.C.: A tech-
nical demonstrator system for enhanced situation awareness. The Computer Jour-
nal 50(6), 704–716 (2007)

[SS98] Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Jour-
nal of Automated Reasoning 21(2), 177–203 (1998)

[ST08] Schwitter, R., Tilbrook, M.: Meaningful Web Annotations for Humans and Ma-
chines using Controlled Natural Language. Expert Systems 25(3), 253–267 (2008)

On the Proof Theory of Regular Fixed Points

David Baelde

INRIA & LIX / École Polytechnique
david.baelde@ens-lyon.org

Abstract. We consider encoding finite automata as least fixed points in a proof-
theoretical framework equipped with a general induction scheme, and study
automata inclusion in that setting. We provide a coinductive characterization of
inclusion that yields a natural bridge to proof-theory. This leads us to generalize
these observations to regular formulas, obtaining new insights about inductive
theorem proving and cyclic proofs in particular.

1 Introduction

The automated verification of systems that have only finitely many possible behaviors
is obviously decidable, although possibly complex. More interestingly, many proper-
ties are still decidable in the much richer class where infinitely many behaviors can
be described by a finite number of states. There are several reasons for considering
these questions from a proof-theoretical angle. Obviously, proof-theory provides well-
structured proof objects that can be considered as verification certificates; the fact that
proofs can be composed by cut is of particular interest here. Taking the opposite point of
view, complex but decidable problems can also be good examples to test and illuminate
the design of rich logics.

In particular, we are interested in the treatment of finite-state behaviors in first-order
logic extended with least fixed points. While the finite behavior case is trivially han-
dled in the proof-theory of such logics, finite-state behaviors are not so well under-
stood. Finite behaviors can be treated by only unfolding fixed points on both positive
and negative positions. Applying an exhaustive proof-search strategy along these lines,
the Bedwyr system [14,2] provides a purely syntactic approach to model-checking. Al-
though simple, this strategy allows to treat complex problems like bisimulation for finite
π-calculus, thanks to the seamless integration of generic quantification [8,13]. In order
to deal with finite-state behaviors, a natural attempt is to detect cycles in proof-search
and characterize those which reflect a sound reasoning. Following that general idea,
tableau [5] and cyclic [10,12,4] proof systems have been explored under several angles.
These systems are simple, especially natural from a semantic point of view, but not
entirely satisfactory. Notably, they do not enjoy cut-elimination (except for the propo-
sitional framework of [10]) and, in the first-order, intuitionistic or linear cases, their
cut-free proofs are not expressive enough for capturing finite-state behaviors.

In this paper, we first study the proof-theoretical treatment of finite automata inclu-
sion, a central problem in model-checking, in a logic equipped with a general, explicit
induction principle. We translate a finite automaton, or rather the acceptance of a word

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 93–107, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

94 D. Baelde

by that automaton, as an interleaved least fixed point predicate, and show that our sim-
ple framework offers a natural support for reasoning about such complex expressions.
We then widen the scope of the discussion, investigating the completeness and the de-
cidability of our logic for a more general class of finite-state behaviors. Such work
can be rather technical, but we leverage the methodology and intuitions from the finite
automata setting, eventually obtaining new insights about cyclic proofs.

The rest of the paper is organized as follows: we present in Section 2 the sequent
calculus that we shall use, then study finite automata inclusion and its proof-theoretical
support in Section 3, and finally generalize the methodology to regular formulas in
Section 4. This work has been developed in Chapter 5 of the author’s thesis [1]; we
refer the reader to that document for complete proofs and more detailed discussions.

2 μMALL

We shall work with the logic μMALL [3,1], which is an extension of first-order linear
logic without exponentials (MALL) with equality and least and greatest fixed points.
The choice of linear logic might seem surprising, but we shall not use it as the logic
of resource management but rather as a constrained framework underlying traditional
reasoning. Indeed, we shall use the intuitionistic presentation of μMALL, which can
easily and safely be read as usual intuitionistic logic. The point is that our observations
will come out especially clearly in a linear framework. In this paper, we ignore greatest
fixed points and consider only a first-order term language.

In the following, terms are denoted by s, t; vectors of terms are denoted by s, t;
formulas (objects of type o) are denoted by P,Q, S ; term variables are denoted by x, y.
Finally, the syntactic variable B represents a formula abstracted over a predicate and n
terms (λpλx1 . . . λxn. Qpx1 . . . xn). We have the following formula constructors:

P ::= P ⊗ P | P ⊕ P | P� P | P & P | 1 | 0 | ⊥ | �
| ∃γx. P | ∀γx. P | s γ= t | μγ1...γn (λpλx. P)t

The syntactic variable γ represents a term type, e.g., nat, char, word. The quantifiers
have type (γ → o) → o and the equality has type γ → γ → o. The least fixed point
connective μ has type (τ → τ) → τ where τ is γ1 → · · · → γn → o for some arity
n ≥ 0. We shall almost always elide the references to γ, assuming that they can be
determined from context when it is important to know their value. Formulas with top-
level connective μ are called fixed point expressions and can be arbitrarily nested (which
correspond to successive inductive definitions such as lists of natural numbers μL. 1 ⊕
(μN. 1 ⊕ N) ⊗ L) and interleaved (which corresponds to mutually inductive definitions
such as arbitrarily branching trees μT. 1 ⊕ (μL. 1 ⊕ T ⊗ L)). The first argument of a
fixed point expression is called its body, and shall be denoted by B. In themselves, such
second-order expressions are called predicate operator expressions or simply operators.
We shall assume that all bodies are monotonic, i.e., the bound predicate variables occur
only positively in them.

We present the inference rules for μMALL in Figure 1. We omit the specification
of the judgment Σ
 t used in the right existential and left universal rules, expressing

On the Proof Theory of Regular Fixed Points 95

Propositional fragment

Σ;Γ, P, P′
 Q
Σ;Γ, P ⊗ P′
 Q

Σ;Γ
 P Σ;Γ′
 P′

Σ;Γ, Γ′
 P ⊗ P′
Σ;Γ
 P Σ;Γ′, P′
 Q
Σ;Γ, Γ′, P� P′
 Q

Σ;Γ, P
 Q
Σ;Γ
 P� Q

Σ;Γ, P
 Q Σ;Γ, P′
 Q
Σ;Γ, P ⊕ P′
 Q

Σ;Γ
 Pi

Σ;Γ
 P0 ⊕ P1

Σ;Γ, Pi
 Q
Σ;Γ, P0 & P1
 Q

Σ;Γ
 P Σ;Γ
 P′

Σ;Γ
 P & P′

First-order structure

Σ, x;Γ, Px
 Q
Σ;Γ,∃x.Px
 Q

Σ
 t Σ;Γ
 Pt
Σ;Γ
 ∃x.Px

Σ
 t Σ;Γ, Pt
 Q
Σ;Γ,∀x.Px
 Q

Σ, x;Γ
 Px
Σ;Γ
 ∀x.Px

{ Σθ;Γθ
 Pθ : θ ∈ csu(u
.
= v) }

Σ;Γ, u = v
 P Σ;Γ
 u = u

Fixed points

Σ;Γ, S t
 P x; BS x
 S x
Σ;Γ, μB t
 P

Σ;Γ
 B(μB)t
Σ;Γ
 μB t Σ; μB t
 μB t

Fig. 1. Intuitionistic presentation of first-order μMALL

that t is a well-formed term over the signature Σ. The initial identity rule is restricted to
fixed points. In the left rule for μ, which is induction, S is called the invariant and is a
closed formula of the same type as μB, of the form γ1 → · · · → γn → o. The treatment
of equality dates back to [6,11]. In the left equality rule, csu stands for complete set
of unifiers. Since we are only considering first-order terms in this paper, we have most
general unifiers and hence at most one premise to this rule — there is none when the
equality is absurd, i.e., non-unifiable. Thanks to the monotonicity condition, the cut rule
is admissible in μMALL [3], which implies the consistency of that system.

Example 1. We introduce the term type n for natural numbers, with two constants 0 : n
and s : n → n. We define nat of type n → o and hal f of type n → n → o as the fixed
points μBnat and μBhal f where:

Bnat
de f
= λNλx. x = 0 ⊕ ∃y. x = s y ⊗ N y

Bhal f
de f
= λHλxλh. (x = 0 ⊗ h = 0) ⊕ (x = s 0 ⊗ h = 0) ⊕

(∃x′∃h′. x = s (s x′) ⊗ h = s h′ ⊗ Hx′h′)

In the particular case of nat, the induction rule yields the usual induction principle:

Γ, S t
 P

 S 0 S y
 S (s y)

(BnatS)x
 S x
⊕ L,∃L,⊗ L,=L

Γ, nat t
 P

Notice that reasoning takes place on the fixed point formula nat, not on the type n which
could as well contain other irrelevant terms.

96 D. Baelde

Although it is constrained by linearity, μMALL is a very expressive logic. It is easy to
encode total runs of a Turing machine as a fixed point predicate, and hence provability
in μMALL is undecidable in general.

3 Finite State Automata

Definition 1 (Finite state automaton, acceptance, language). A non-deterministic fi-
nite state automatonA on the alphabet Σ is given by a tuple (Q, T, I, F) where Q is a
set whose elements are called states, T ∈ ℘(Q × Σ × Q) is a set of transitions and I
and F are subsets of Q, respectively containing the initial and final states. A state q0

is said to accept a word α1 . . . αn when there is a path q0q1 . . . qn where qn ∈ F and
each (qi−1, αi, qi) ∈ T. The language L(q) associated to a state is the set of words that
it accepts. That notion is extended to a collection of states by L(Q) := ∪q∈QL(q) and to
the automaton by L(A) := L(I).

In the following we shall not specify on which alphabet each automaton works, sup-
posing that they all work on the same implicit Σ, and α shall denote the letters of that
alphabet. We also talk about transitions, final and initial states without making explicit
the automaton that defines them, since it shall be recovered without ambiguity from the
states1. We write q→α q′ for (q, α, q′) ∈ T .

Definition 2 (α−1). For a language L and a set of states Q, we define α−1:

α−1L
de f
= {w : αw ∈ L} α−1Q

de f
= {q′ : q→α q′ for some q ∈ Q}

We finally come to the only non-standard definition

Definition 3 (Transitions between collections of states). For a collection of states Q
we write Q→α Q′ when Q′ ⊆ α−1Q.

We now propose a coinductive characterization of inclusion. Its interest is to allow the
transition from the (semantic) automata-theoretic inclusion to the (syntactic) inductive
proof of implication in μMALL. As far as we know, that characterization is as novel as
its purpose.

Definition 4 (Multi-simulation). A multi-simulation between two automata
(A, T, I, F) and (B, T ′, I′, F′) is a relation � ⊆ A × ℘(B) such that whenever
p�Q:

– if p is final, then there must be a final state in Q;
– for any α and p′ such that p→α p′ there exists Q′ such that Q→α Q′ and p′�Q′.

Proposition 1. L(p) ⊆ L(Q) if and only if p�Q for some multi-simulation�.

1 States are mere identifiers, and automata are in fact considered modulo renaming. Hence, when
several automata are considered we implicitly make the assumption that their sets of states are
disjoints (a sort of Barendregt convention), which indeed makes it possible to recover the
automaton from one of its states.

On the Proof Theory of Regular Fixed Points 97

Proof. If. Let � be a multi-simulation. We prove by induction2 on the word w that
whenever p�Q and w ∈ L(p), then w ∈ L(Q). It is true for ε by definition, as there must
be a final state in Q when p is final. If w = αw′ is in L(p) then we have some p′ such
that p →α p′, and by definition of multi-simulation there exists Q′ such that Q →α Q′
and p′�Q′. Since w′ ∈ L(p′) we obtain by induction hypothesis that w′ ∈ L(Q′) and
hence w ∈ L(Q). Only if. We show that language inclusion is a multi-simulation, which
follows immediately from the definition: if we have L(p) ⊆ L(Q) and p is final then
ε ∈ L(Q), hence one of the states of Q must be final; if p →α p′ then αL(p′) ⊆ L(Q),
that is L(p′) ⊆ α−1L(Q), and hence Q′ := α−1Q fits.

The inclusion is the greatest multi-simulation, the union of all multi-simulations. To
obtain an illustrative proof that a given p is included in Q, it is more interesting to look
at the least possible multi-simulation relating them.

A multi-simulation establishing L(p0) ⊆ L(Q0) can be obtained by iterating the
following transformation on the relation {(p0,Q0)}: for each (p,Q) and each p →α p′,
add (p′, α−1Q) to the relation. When a fixed point is reached, check the condition on
final states: if it holds the relation is a multi-simulation; if it does not there cannot
be any multi-simulation relating p0 and Q0. This simple technique generally gives a
smaller relation than inclusion, but it is still not the best.

Example 2. Consider the following two automata.

�������	p0
α �� �������	p1

α ��

β
��

�������	
������p2
������q0
α ��

α ��
��

��
��

������q1

β
��

α ��
��������������q2

�������	q′1

β

��

The state p0 is included in q0: if there is an even number of β transitions to make,
go to q1, otherwise go to q′1. The inclusion is also “proved” by the multi-simulation
� = {(p0, {q0}), (p1, {q1, q′1}), (p2, {q2})}. One can sense here the richness of the multi-
simulation technique, featuring the backwards aspect of proofs by induction.

Example 3. We finally show an example that hints at the upcoming generalization
of this discussion. Informally, we shall prove the totality of hal f (i.e., ∀x. nat x �
∃y. hal f x y) by relying on an informal encoding of the behavior of (λx. nat x) and
(λx∃h. hal f x h) as automata:

������ps
z

��

s
��

��������������pz
������qs
z

��

s

���
��

��
�
s
��

��������������qz

�������	q′′s

s
��

�������	q′s
z

���������	
������q′z

The following multi-simulation establishes that L(ps) ⊆ L(qs), i.e., hal f is total:

� = {(ps, {qs}), (ps, {q′s, q′′s }), (pz, {qz}), (pz, {q′z})}
2 The notion of multi-simulation extends naturally to labeled transition systems. In that case,

both finite and infinite trace inclusions would be multi-simulations. However, multi-simulation
only implies the inclusion of finite traces — which is shown by induction on the length of the
trace.

98 D. Baelde

We have exhibited a simple structure underlying inclusion of non-deterministic finite
automata, which expresses non-trivial reasoning. We are now going to move to the
(linear) logical world and exploit it.

3.1 Encoding Finite Automata in μMALL

We shall represent an automaton, or rather its acceptance predicate, in the logic
μMALL. A first possibility would be to encode one automaton as one fixed point tak-
ing both the state and the word as arguments: the resulting fixed point would be large
but simply structured. We are interested in a more structural approach, that erases the
names of states and translates each state of an automaton as one fixed point expression
in which other states are also expressed, in a complex interleaved way. Our interest is
to test the logic on this large class of interleaved fixed points, and then generalize our
observations to a wider class of fixed points.

The drawback of encoding to interleaved fixed points is that it forces a sequential
introduction of mutually inductive predicates, which forbids sharing. Graphically, that
sequentialization requires writing a graph as a tree (the syntax tree) plus looping edges
(predicate variables referring to fixed points). For example, the following transforma-
tion will essentially be applied when encoding pi as a μ-formula:

������pi
α ��

β ��
��

��
��
�������	pα

β
�� �������	
������p f

γ

		

�������	pβ
α

������

�
������pi
α ��

β ��
��

��
��
�������	pα

β
�� �������	
������p f

γ

		

�������	pβ α �� �������	
������p′f
γ

��

Taking the α transition from pi involves an unfolding of the μ formula, corresponding
to the left automaton below. It is different from the automaton corresponding to a direct
translation of state pα in the initial automaton, shown on the right below. But, the two
automata are bisimilar.

�������	pα
β

�� �������	
������p f
γ

��
������pi
α ��

β ��
��

��
��
�������	pα

β
�� �������	
������p f

γ

		

�������	pβ α �� �������	
������p′f
γ

��
∼ �������	pα

β
�� �������	
������p f

γ
��
������pi

α

		
β

�� �������	pβ

α

��

We now describe formally the translation. Note that it could be generalized to encode
mutually (co)inductive definitions into fixed points, and most observations made here
would still be relevant [1].

Definition 5 (Translation of automata into fixed points). Let A be a finite automa-
ton. We translate each of its states q into a fixed point predicate expression [q]∅ as
follows:

On the Proof Theory of Regular Fixed Points 99

[qi]Γ ≡
{

qi if qi ∈ Γ
μ
(
λqiλw.

{
w = ε : qi is final

}⊕{ ∃w′. w = αw′ ⊗ [q j]Γ,qiw′ : qi →α q j
})

This encoding is structural: it does not rely on the names of the defined atoms but
only reflects their structure. As we have shown in the previous examples, bisimilar
states might be identified, and structurally identical states might only have “bisimilar”
encodings.

Proposition 2 (Adequacy). Let A be a finite automaton. There is a bijection between
accepting paths starting at one of its state q and cut-free μMALL derivations of
 [q]w,
where w is the word induced by the path.

Our encoding does not only provide adequate representations, but also powerful ways of
reasoning about automata. The following deduction rule gives a very natural synthetic
reading of an automaton’s encoding.

Proposition 3. Let A be a finite automaton, and p one of its states. The following rule is
sound and invertible, where the states p′, p′′ are taken among those reachable from p:

{
 S p′ε : p′ final} {S p′′ x
 S p′ (αx) : p′ →α p′′} Γ, S 0t
 Q

Γ, [p]t
 Q

The rule is derived by repeatedly applying (asynchronous) rules on the state’s encoding.
The final clauses occur naturally. The transition clauses occur in two different ways,
depending whether the arc between two states is in the covering tree or is a looping arc.
Like the induction rule, this rule leaves the difficult choice of finding a correct invariant
for each state, and it is not invertible for all choices. A typical example is to use the
unfolded fixed points as invariants, which yields the invertible rule of case analysis.

Theorem 1 (Soundness and completeness). Let A and B be two automata, let p0 be
a state of A and Q0 a collection of states of B. Then L(p0) ⊆ L(Q0) if and only if
∀w. [p0]w� ⊕q∈Q0 [q]w is provable in μMALL.

Proof. The easy direction here is to conclude the inclusion from the provability of
the linear implication. It immediately follows from the adequacy of the encoding
and cut-elimination. For the other direction we use our characterization of inclusion.
Since L(p0) ⊆ L(Q0) there exists a multi-simulation � that relates them. We prove
[p0]w
 ⊕q∈Q0 [q]w by using the simultaneous induction rule shown above, with the
invariants S p given as follows by the multi-simulation:

S p := λx. &p�Q ⊕q∈Q [q]x

We have to build a proof of
 S pε for each terminal state p: we enumerate all p�Q
by introducing the &, then since � is a multi-simulation there must be a final state
q f ∈ Q, we select this disjunct and finally derive
 [q f]ε by selecting the final clause
in it.

We also have to build a derivation of S p′ x
 S p(αx) for each p →α p′. We intro-
duce again the & on the right, enumerating all p�Q, then by definition of the multi-
simulation there is a Q′ such that Q→α Q′ and p′�Q′, so we choose the corresponding

100 D. Baelde

&-conjunct on the left hand-side. We are left with ⊕q′∈Q′ [q′]x
 ⊕q∈Q [q](αx) which
corresponds exactly to Q →α Q′: for each q′ there is a q such that q →α q′. We trans-
late that by enumerating all q′ (introducing the left ⊕) and choosing the appropriate q
in each branch (introducing the right ⊕) and finally selecting the right clause in [q] to
establish [q′]x
 [q](αx).

Our representation of automata as fixed points is very satisfying: the derived induction
principle allows rich reasoning about acceptances, naturally reflecting the behavior of
an automaton. It fits perfectly with the notion of multi-simulation. This would be less
precise in the richer framework of intuitionistic logic: the encoding and adequacy re-
sult can be adapted straightforwardly, and the linear derivation built in the above proof
can be mimicked by a similar intuitionistic derivation to obtain the same theorem, but
new possible behaviors involving an additive treatment of the conjunction would be
irrelevant.

4 Regular Formulas

We obtained a completeness result for finite automata, based on the construction of
complex invariants from multi-simulations, which can be discovered automatically. It
is tempting to extend such a good property. In this section, we consider a notion of
regular formulas that is considerably richer than encodings of finite automata, in an
attempt to capture simple but useful properties such as totality of relations. Like finite
automata, regular formulas are finite systems of interdependent superficial constraints.
The main differences are that regular formulas deal with terms rather than words and
have an arbitrary arity. We shall see that the latter extension makes regular formulas
much more complex than finite automata.

While only the first letter of a word is checked when taking a transition in an au-
tomata, terms in regular formulas are matched against arbitrary patterns. In particular,
patterns can be trivial, which corresponds to ε-transitions.

Definition 6 (Patterns). A pattern C of type γ1, . . . , γn → γ′1, . . . , γ′m is a vector of m
closed terms3 pi : γ1, . . . , γn → γ′i , such that each of the n variables occurs at most
once in all (pi)i. The (pi) are called elementary patterns of C. A pattern is said to be
non-erasing when each of its input variables occurs in one of its elementary patterns.

We write Ct for denoting the vector resulting from the application of t to each el-
ementary pattern of C. For two vectors of terms of equal length n, t = t′ denotes the
formula t1 = t′1 ⊗ . . . ⊗ tn = t′n. The patterns C and C′ are said to be compatible when
the unification problem Cx = C′y has a solution.

A trivial pattern is a pattern which has no rigid structure, i.e., whose elementary
patterns are projections. Trivial patterns are denoted by ε. A particular case of trivial
pattern is the identity: we denote by In the pattern (λx.x1, . . . , λx.xn).

3 The pi are not first-order terms but they are only a technical device for presenting patterns. The
point is that they shall always be applied when occurring in formulas, hence yielding terms of
ground type γ′.

On the Proof Theory of Regular Fixed Points 101

Definition 7 (Pattern compositions). Let C and C′ be patterns of arbitrary type. Let
(pi)i≤m be the elementary patterns of C and (p′j) j≤m′ those of C′. We define (C,C′) to be
(λxy.p1x, . . . , λxy.pmx, λxy.p′1y, . . . , λxy.p′m′ y), which is still a pattern.

Assuming that C has type γ→ γ′, and C′ has type γ′ → γ′′, we define C′C to be the
pattern (λx.p′1(Cx), . . . , λx.p′m′(Cx)).

Definition 8 (Regular formula). We define the class of formulas RΓI/O, parametrized
by Γ (a set of predicate variables), I (a set of input term variables) and O (a set of
output variables). The regular formulas on a signature Σ are given by R∅∅/Σ .

RΓI/O ::= RΓI/O ⊕ RΓI/O | ∃y. RΓI,y/O | PΓI∪O

| O = C when I = ∅
| O′ = CI ⊗ PΓI∪O′′ when O′ and O′′ form a partition of O

PΓI ::= px | μ(λp.λx. RΓ,p∅/x)x where x is I in an arbitrary order

We say that a predicate P is regular when Px is regular over the signature x.

The syntactic definition of regular formulas is quite restrictive but suffices to capture
interesting examples. In particular, encodings of finite automata are regular formulas. In
the last clause of R, notice that the splitting of O allows that some unconstrained output
variables are passed to the recursive occurrence P. This allows direct encodings of ε-
transitions, without resorting to an artificial clause of the form λw. ∃w′. w = w′ ⊗ p′ w′
for copying the input variable to the output.

Notice that the fixed point subformulas of a regular formula do not have free term
variables. Hence, regular formulas can be seen as encodings of definitions [6,11,7,9]
allowing mutual inductive definitions.

Example 4. Both (λx. nat x) and (λx. ∃h. hal f x h) are regular predicates. The usual
specification of addition would also be regular, but not that of multiplication. It is also
not possible to encode automata with (unbounded) state, as it would require to pass
constructed terms to recursive occurrences of fixed points.

We now exhibit a fundamental property of regular formulas, which shall allow us to
abstract away from their tedious syntactic definition.

Proposition 4 (Fundamental property). Let P be a regular predicate. There is a finite
collection of (regular) predicates (Pi), called states of P, such that P0 is P and:

– Each Pix is provably equivalent to an additive disjunction of formulas of the form
∃y. x = Cy or ∃y. x = Cy ⊗ P jy:

∀x.
(
Pix� (∃y. x = Cy) ⊕ (∃y. x = C′y ⊗ P jy) ⊕ . . .)

When the first form occurs in the disjunction we say that Pi is C-final; when the
second one occurs we write Pi →C′ P j.

– The following rule is admissible:

{
 S iC : Pi C-final } { x; S jx
 S i(Cx) : Pi →C P j } Γ, S 0 t
 Q

Γ, Pt
 Q

102 D. Baelde

Proof. The finite decomposition in states comes from the fact that only finitely many
formulas can occur when exploring a regular formula by unfolding its fixed points,
except for the term parameters which are however decreasing in size. This is because the
unfoldings are only done superficially, as needed. A corollary of this is the decidability
of the provability of
 Pt, and more generally of
 ∃x. P(Cx).

For proving a regular formula P by induction on another regular formula Q, we need
to adapt the states of P so that their behavior is finitely defined for the transitions of Q,
which might be finer than those of P.

Definition 9 (Q-states). Let P and Q be regular predicates of the same type. We say
that P admits Q-states if there is a finite number of predicates (P′i) such that:

– P is equivalent to P′0;
– for each transition C of Q, each P′i of compatible type, P′i(Cx) is provably equiva-

lent to an additive disjunction of P′jx.

Theorem 2 (Internal completeness). Let P and Q be two regular predicates of same
type such that P admits Q-states, then { t :
 Qt } ⊆ { t :
 Pt } if and only if
x; Qx
 Px.

Proof. If we have a derivation of the implication we obtain the inclusion by cut-
elimination. For the other direction, we use a technique similar to the first part of the
proof of Proposition 1.

When P′ and Q′ are predicates of the same type, we simply write Q′ ⊆ P′ for
{ t :
 Q′ t } ⊆ { t :
 P′ t }. We shall build a derivation that uses the derived induction
rule on Q (Proposition 4). Consider the Q-states of P, called (P′i)i≤n. For each state Qi,
we form the conjunction of all unions of Q-states of P that contain Qi:

S i := &{ ⊕kP′ik : Qi ⊆ ⊕kP′ik }
We check that the (S i) are valid invariants for Q:

– For eachC-final Qi, we have by definition of S i an acceptance ofC in each conjunct,
which allows us to prove
 S iC.

– For each transition Qi →C Q j, we need to derive S jx
 S i(Cx). Our derivation
starts by a & rule which enumerates all conjuncts S of S i. Each S contains Qi by
definition of S i, and by definition of the Q-states there is another disjunction of
Q-state S ′ such that S ′x� S (Cx).
We observe that Q j is contained in S ′: If Q j accepts t then Qi accepts Ct, and so
does S ; By cutting this against the above equivalence we obtain that S ′ accepts t.
So we have S ′ in S j, and we select this conjunct on the left hand-side. We now have
to derive S ′x
 S (Cx) which is simply the other direction of the above equivalence.

As for the corresponding proof about finite automata, this proof yields a (naive) decision
procedure: there is only a finite number of invariants to try, and it is decidable to check
the final premises, as well as the transition premises since their form is very limited. As
for multi-simulation on automata, the full invariant considered in our proof of internal

On the Proof Theory of Regular Fixed Points 103

completeness is often unnecessarily large, but more economic techniques apply equally
well on Q-states.

Unfortunately, it is not always possible to obtain Q-states. We propose a partial pro-
cedure for computing them, then discuss in which cases it might fail.

Algorithm 11 (Partial procedure for computing Q-states) . Let P and Q be regular
predicates, and (Pi) be the states of P. We denote by P∗i a reordering of the arguments of
Pi, i.e., P∗i is (λ(xk)k. Pi(xσ(k))k) for some permutation σ. Note that the characterization
of states of Proposition 4, can be adapted to be of the form ∀x. (Pix � (x = C) ⊕
(∃y. x = C′y ⊗ ∃y′. P∗j yy′) ⊕ . . . where C′ is non-erasing. We shall use that form in the
proof below.

The algorithm generates Q-states of the form (λx. x = C) or (λx. ∃y. x = Cy ⊗
∃z. P∗j yz) for some state P j and a non-erasing pattern C. Strictly speaking, we need to
generalize slightly over that format in order to handle erasing transitions of Q: we al-
low extra vacuous abstractions at any position, but limit the total arity to not exceed that
of the transitions of C. This is shallow, and can be ignored in the following by consid-
ering the non-erasing restriction of a transition of Q, and adjusting the corresponding
decomposition afterwards.

We build a set of Q-states as the fixed point4 of the following transformation, starting
with the singleton λx. ∃y. x = y ⊗ P0y. The transformation consists in computing a
decomposition of the right form for each P′i of our tentative set of Q-states and each
transition CQ of Q, and adding the components of the decomposition to our collection:

– If P′i is of the form (λx. x = C) then P′i(CQx) is provably equivalent to some x = C′
if CQ and C are compatible, which degenerates into 1 when CQ = C and x is empty;
and it is equivalent to 0 if the patterns are incompatible. In both cases we have a
valid decomposition, empty in the second case.

– Otherwise, our Q-state P′ is of the form (λx. ∃y. x = Cy ⊗ ∃z. P∗i yz).
• If CQ and C are incompatible, P′(CQx) is simply equivalent to 0.
• If CQ has no rigid structure, it is enough to observe that P′(CQx)� P′∗(x).
• If C has no rigid structure, P′(CQx) is equivalent to ∃z. P∗i (CQx)z. The pred-

icate Pi is equivalent to its characterization as a state, i.e., the sum of all its
transitions and final patterns: Pix′� (⊕ j F jx′) ⊗ (⊕k Tkx′). We decompose
recursively5 each F∗j (CQx)z and T ∗k (CQx)z as a sum of Q-states, and manipu-
late the results to obtain a decomposition for P′(CQx).
Our P′(CQx) is equivalent to ∃z. ⊕k (P′′k xz), that is ⊕k ∃z. (P′′k xz). It remains
to adapt the disjuncts into well-formed Q-states. We only show how to treat the
case of a transition clause P′′k , the treatment of a final clause being a particular
case. We start with:

∃z. ∃y′. (x, z) = C′y′ ⊗ ∃z′. P∗j y
′ z′

Splitting C′ into (C′1,C′2) and y′ into (y′1, y
′
2) accordingly, we obtain:

∃y′1. x = C′1y′1 ⊗ ∃z∃y′2∃z′. z = C′2y′2 ⊗ P∗j y
′
1y′2 z′

4 The iteration might diverge, if there is no finite fixed point.
5 This recursive decomposition can loop if there is a cycle of trivial transitions in the states of P.

104 D. Baelde

Finally, we can remove the useless information about z, without loosing the
equivalence:

∃y′1. x = C′1y′1 ⊗ ∃y′2∃z′. P∗j y
′
1y′2 z′

• When CQ and C both have some rigid structure, then CQ x = Cy can be decom-
posed into x1 = C′y1 ⊗ y2 = C′Q x2, where x1, x2 (resp. y1, y2) is a partition
of x (resp. y). This decomposition is obtained by destructing the common rigid
structure of C and CQ, aggregating in C′ (resp. C′Q) the residual constraints
corresponding to branches where CQ (resp. C) becomes flexible first.
So we have an equivalence between P′(CQx) and:

∃y1y2. x1 = C′y1 ⊗ y2 = C′Qx2 ⊗ ∃z. P∗i y1y2 z

Or simply:
∃y1. x1 = C′y1 ⊗ ∃z. P∗i y1(C′Qx2)z

We recursively6 compute the decomposition of P∗i for the pattern (I|y1 |,C′Q,I|z|).
As before, we shall obtain a decomposition of P′ from that of P∗i . We detail the
case of transition clauses, for which we obtain a disjunct of the following form:

∃y1. x1 = C′y1 ⊗
∃z. ∃y′

1
∃y′

2
∃y′z. (y1, x2, z) = (C1y′

1
,C2y′

2
,Czy′z) ⊗ ∃z′. P∗j y

′
1
y′

2
y′z z′

We combine patterns:

∃y′
1
y′

2
. (x1, x2) = (C′(C1y′

1
),C2y′

2
) ⊗ ∃z. ∃y′z. z = C′zy′z ⊗ ∃z′. P∗j y

′
1
y′

2
y′z z′

And finally remove the constraint on hidden variables z, to obtain a decompo-
sition of the right form:

∃y′
1
y′

2
. (x1, x2) = (C′(C1y′

1
),C2y′

2
) ⊗ ∃y′z. ∃z′. P∗j y

′
1
y′

2
y′z z′

As is visible in the definition, several problems can cause the divergence of our algo-
rithm. We propose some constraints under which it terminates, but also show why it is
interesting in a more general setting.

Proposition 5. Let P be a regular predicate such that its states have an arity of at most
one, and there is no cycle of ε-transitions in it. Then it admits Q-states for any regular
Q. Hence the derivability of ∀x. Qx� Px is decidable, and holds whenever Q ⊆ P.

Proof. Algorithm 11 clearly returns valid Q-states when it terminates, and it is easy to
show that it does terminate under the assumptions on P. Hence, Theorem 2 applies.

A regular formula constrained as in the previous proposition is not much more than a
finite automaton: we have essentially shown that Theorem 1 is a particular case of the
results on regular formulas. A noticeable difference is the ε-acyclicity condition: there
is no difficulty in extending directly the work on finite automata to handle ε-transitions,
but handling ε-cycles in Algorithm 11 involves some extra technicalities [1].

6 This can create a loop if C′Q does not decrease, i.e., if C only has rigid structure on components
where CQ does not.

On the Proof Theory of Regular Fixed Points 105

Example 5. In Proposition 5, the condition on the arity of P is essential. We show a
simple binary example where our procedure diverges. Consider the regular predicates
P := μPλxλy. ∃x′∃y′. x = s2x′ ⊗ y = sy′ ⊗ Px′y′, and a predicate Q with a tran-
sition (λx′. sx′, λy. sy′). We compute the Q-states of P using Algorithm 11. We start
with P itself, and there is only one transition to consider: (λxy.sx, λxy.sy). This is a
rigid-rigid case, the decomposition of p (sx) (sy) yields ∃x′∃y′. x = sx′ ⊗ y = y′ ⊗
p x′ y′. This new Q-state has to be decomposed for the same transition, and we obtain
∃x′∃y′. x = s2 x′ ⊗ y = y′ ⊗ p x′ y′. The same pattern keeps applying, with information
accumulating on x, and new Q-states keep being generated.

Example 6. In Example 3, we gave an informal proof of the totality of hal f by see-
ing nat and hal f as finite automata. We can now avoid that step and obtain directly
a derivation. The states of H ≡ λx.∃h. hal f x h are H0 ≡ λx.∃h. hal f x h and
H1 ≡ λxλh. hal f x h. Its nat-states can be obtained by our procedure:

H′0 ≡ λx. ∃h. hal f x h H′2 ≡ λx. ∃p. x = sp ⊗ ∃h. hal f p h
H′1 ≡ λx. x = 0 H′3 ≡ λx. 1

Starting from H′0, and taking the successor transition of nat, we obtain H′1 and H′2
corresponding to the two transitions of H1 that are compatible with the successor. Fi-
nally, H′3 is obtained for the decomposition of all others against the zero transition.
Notice that it is crucial that our algorithm eliminates the information learned about h
as some constraints are applied on x, otherwise we could not obtain a finite number of
nat-states.

Applying the proof of completeness, we essentially obtain the following invariant of
nat, from which one can simply derive the totality of hal f :

S := λx. (∃h. hal f x h) & (x = 0 ⊕ ∃y. x = s y ⊗ ∃h. hal f y h)

4.1 Relationship to Cyclic Proofs

As said above, cyclic proofs are appealing from an automated reasoning perspective,
as they avoid the invention of invariants, but they are very weak. It is our hope that the
work presented in this paper eventually leads to useful theorem proving techniques
that would keep the practical aspect of cyclic proofs but be much more powerful,
in particular be complete for inclusions of automata, and still meaningful for regular
formulas.

On the particular problem of inclusion, cyclic proofs seem related to simulations,
associating one state with another. This is not enough for obtaining completeness. In
contrast to that, the proofs obtained from our completeness theorems use invariants that
express the less restrictive notion of multi-simulation, where one state can be related to
several. This offers an interesting trade-off between expressiveness and the subformula
property, since the invariants under consideration are still built from subformulas of the
goal (its states).

It is interesting to present our proofs in an extended cyclic style, which takes into
account failures and alternatives, as well as loops between alternatives. Consider the
following example, for which there is no cut-free cyclic proof:

106 D. Baelde

 even 0

∞
nat y
 odd y

nat y
 even (sy)
nat x
 even x ⊕

⊥

 odd 0

∞
nat y
 even y

nat y
 odd (sy)
nat x
 odd x

nat x
 even x ⊕ odd x

Establishing the correctness of such objects is not trivial, but we probably have most
of the tools at hand. It is indeed certainly related to the inclusion of nat in the underlying
automata:

� nat y
 odd y

��

nat y
 even y

��

⊥

nat x
 even x

s

��

0

�������������
nat x
 odd x

s

��
0

�������������

Our work on regular formulas shows that there are two main steps when proving an
implication of regular formulas ∀x. Px � Qx: first, one should obtain the P-states of
Q; then one should try to build invariants from those P-states. The first step might fail,
the second one is decidable. This can be interpreted very naturally in terms of proof-
search. The computation of the P-states would correspond to an exhaustive proof-search
for Px
 Qx, only unfolding fixed points and detecting loops. This is visible on the
previous example, as well as on the totality of hal f :

 hal f 0 H

 0 = 0
⊥

 sz = 0
nat y
 y = 0

nat y
 sy = s0 ⊗ H = 0 ⊕

⊥

 0 = sZ ⊗ . . .

∞
nat z
 hal f z H′

nat z
 sz = sZ ⊗ hal f Z H′

nat y
 y = sZ ⊗ hal f Z H′

nat y
 sy = s2Z ⊗ H = sH′ ⊗ hal f Z H′

nat y
 hal f (sy) H
nat x
 hal f x H

nat x
 ∃h. hal f x h

If that exploration terminates, the information about loops, failed and proved
branches can be checked for correctness. This second step, when successful, yields
a proof by explicit induction — it might also be possible to produce counter-examples
in case of failure. Theorem 2 can thus be read as the possibility to decide the provability
of any regular implication, as long as the exhaustive search space is finitely presentable.

5 Conclusion

We have shown that μMALL offers a natural framework for reasoning about automata,
in particular about inclusions. Our study lead to the coinductive characterization of in-
clusion as multi-similarity, and on the proof-theoretical side to an internal completeness
result for regular formulas. Finally, our work opened promising avenues for understand-
ing and extending cyclic proof techniques.

An obvious direction for future work is the implementation of the proof-search tech-
niques the we outlined above. But we should also consider extending our results to

On the Proof Theory of Regular Fixed Points 107

richer fragments of the logic. A natural next step in that direction would be to study
tree automata, and extend regular formulas accordingly. Going significantly further, we
have outlined in [1] a way to handle Büchi automata. It is challenging and raises several
important problems that are interesting in themselves for the understanding of the field.

Acknowledgments. The author is grateful to Luigi Santocanale, Alwen Tiu and espe-
cially Dale Miller for their advices, knowledge and insightful discussions.

References

1. Baelde, D.: A linear approach to the proof-theory of least and greatest fixed points. PhD
thesis, Ecole Polytechnique (December 2008)

2. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model
checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

3. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz, N.,
Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 92–106. Springer, Heidelberg (2007)

4. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: Beckert, B.
(ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)

5. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus. Acta Infor-
matica 27, 725–747 (1990)

6. Girard, J.-Y.: A fixpoint theorem in linear logic. An email posting to the mailing list lin-
ear@cs.stanford.edu (February 1992)

7. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theo-
retical Computer Science 232, 91–119 (2000)

8. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. on Computational
Logic 6(4), 749–783 (2005)

9. Momigliano, A., Tiu, A.: Induction and co-induction in sequent calculus. In: Berardi, S.,
Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 293–308. Springer, Hei-
delberg (2004)

10. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In: Nielsen, M.,
Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 357–371. Springer, Heidelberg
(2002)

11. Schroeder-Heister, P.: Rules of definitional reflection. In: Vardi, M. (ed.) Eighth Annual Sym-
posium on Logic in Computer Science, June 1993, pp. 222–232. IEEE Computer Society
Press, IEEE, Los Alamitos (1993)

12. Spenger, C., Dams, M.: On the structure of inductive reasoning: Circular and tree-shaped
proofs in the μ-calculus. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 425–
440. Springer, Heidelberg (2003)

13. Tiu, A.: Model checking for π-calculus using proof search. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 36–50. Springer, Heidelberg (2005)

14. Tiu, A., Nadathur, G., Miller, D.: Mixing finite success and finite failure in an automated
prover. In: Empirically Successful Automated Reasoning in Higher-Order Logics (ESHOL
2005), December 2005, pp. 79–98 (2005)

Decidability for Priorean Linear Time Using a
Fixed-Point Labelled Calculus

Bianca Boretti1 and Sara Negri2

1 Dept. of Electronics and Information, Polytechnic of Milan
2 Dept. of Philosophy, University of Helsinki

Abstract. A labelled sequent calculus is proposed for Priorean linear
time logic, the rules of which reflect a natural closure algorithm de-
rived from the fixed-point properties of the temporal operators. All the
rules of the system are finitary, but proofs may contain infinite branches.
Soundness and completeness of the calculus are stated with respect to a
notion of provability based on a condition on derivation trees: A sequent
is provable if and only if no branch leads to a ‘fulfilling sequent,’ the
syntactical counterpart of a countermodel for an invalid sequent. Decid-
ability is proved through a terminating proof search procedure, with an
exponential bound to the branches of derivation trees for valid sequents,
calculated on the length of the characteristic temporal formula of the
endsequent.

1 Introduction

What is commonly known as unary propositional linear time logic (LTL) is the
future-oriented reflexive version of Priorean linear time logic: Only the future
operators G, F and T are considered in unary LTL, and G and F have the
intuitive meanings of ‘it is and will always be the case’ and ‘it is or will be
the case’, respectively. LTL is known to be decidable [13]. Decidability has been
established by several authors [15], [6], [7] through 2-phase tableau systems: In
such systems, after the construction of the tableau graph, a second phase is
required in order to check whether every eventuality formula has been satisfied.

In [11] a tableau system has been proposed, in which the termination of proof
search can be determined locally, but the system covers only a limited fragment
of LTL. In [12] a decision procedure for the whole logic has been achieved through
a tableau calculus in which the second phase is incorporated into the rules by
annotating sets of formulas with history information. However, this system con-
tains a loop rule which hides a non-local closing condition: In fact, whereas the
rules of the system act top-down, the “the result part [...] is synthesized bottom-
up (from children to parents)” (p. 286), thus it is necessary to inspect previous
nodes in order to verify if there is a loop. In [4] there are local rules with history
annotation; Decidability of the calculus is not explicitly stated and would require
a similar non-local closing condition in the form of a loop check.

In [2] a labelled sequent calculus G3LT for reflexive Priorean linear time was
defined through the method of internalization of the possible world semantics

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 108–122, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Decidability for Priorean Linear Time 109

within the syntax of sequent calculi, as developed by the second author in [8,9].
The calculus has all the structural rules admissible, but it requires an infinitary
rule to the effect that between any two points there are only finitely many other
points. By replacing the infinitary rule with two weaker finitary rules a system
for non-standard discrete frames was obtained and a conservativity result for an
appropriate fragment of the original calculus proved.

In the present work, a labelled calculus G3LTcl is defined, the rules of which
are justified by a closure algorithm that exploits the fixed-point properties of
temporal operators, as proposed for example in [5]. All the rules of the system
G3LTcl are finitary, however, proofs generally require infinite descent in the
sense of [3]. Admissibility of cut for G3LTcl is not established syntactically but
as a consequence of completeness. This is unproblematic, because the calculus is
conceived as an instrument for establishing decidability of Priorean linear time.

Decidability is proved through a terminating proof search procedure: If a se-
quent is not a theorem of Priorean linear time logic, then root-first application of
the rules of G3LTcl leads, by the use of labels, to another sequent that supplies an
immediate and simple construction of a countermodel. If, on the other hand, we
start with a derivable sequent, a finite bound allows to truncate any potentially
infinite branch. This establishes at the same time a direct proof of completeness
with respect to Kripke semantics. The definition of proofs in G3LTcl is com-
pletely local, and termination is determined with no need of checking previous
parts of the derivation because every sequent keeps all the information required.

The calculus G3LTcl contains also past temporal operators and the decision
procedure is given in the strong form of an explicit bound on proof search, al-
though the absence of a global condition on derivations imposes an exponential
size on it. We remark, however, that the main purpose of this paper is not to
establish decidability, but to illustrate a very general method through its uni-
form application to linear temporal logic. Although a proof-theoretic approach
is followed, the use of labels permits to formalize model-theoretic arguments and
to obtain direct proofs of validity and completeness.

The paper is organized as follows: In Section 2 we give the definition of the
fixed-point proof system G3LTcl; In Section 3 we identify the proofs in the sys-
tem; We prove soundness in Section 4 and completeness in Section 5; Decidability
through termination of proof search is established in Section 6. For background,
and the treatment of Until and Since that have not been included here, we refer
to the first author’s Ph.D. thesis [1]. For a concise illustration of the general
method employed in this work, including the system G3LT, see [2].

2 A Fixed-Point Proof System

The presence of induction constitutes an intrinsic obstacle to the possibility
of establishing decidability of Priorean linear time logic through a terminating
proof-search procedure. In this paper, we present a labelled calculus G3LTcl

for Priorean linear time. All the rules are finitary, but proofs generally require
arguments by infinite descent in the sense of [3]. In a temporal frame for Priorean

110 B. Boretti and S. Negri

linear time, between any two points there are only finitely many other points,
therefore any model that appeals to an infinite increasing or decreasing sequence
of points between two instants can be ignored. The proof-theoretic counterpart
of that occurs, for example, when root-first applications of the rules do never
realize a future formula x : FB in the antecedent with a labelled formula y : B
and a finite chain x ≺ y0, . . . , yn ≺ y.

A particular class of sequents, which correspond to the syntactic counterparts
of countermodels for unprovable purely logical sequents (defined below), is iden-
tified and used for giving a sound and complete definition of proofs in G3LTcl.
Termination of proof search is then obtained thanks to the analogy of the rules
of the calculus to the algorithm that produces saturated subsets of formulas.

The basic idea is to formulate a labelled calculus G3LTcl from the fixed-point
properties of temporal operators:

GA ⊃⊂ TA & TGA FA ⊃⊂ TA ∨TFA

HA ⊃⊂ YA & YHA PA ⊃⊂ YA ∨YPA

In a standard proof of decidability for LTL, as given for example in [13], [14], [5],
a countermodel for an invalid sentence is constructed as a relational structure
where a saturated set of closure formulas Δ is the immediate successor of a
saturated set of closure formulas Γ if A ∈ Δ whenever TA ∈ Γ , and a fairness
condition is satisfied, namely that all the eventualities of the form FA are fulfilled
at some point. Here the notion of (≺-)saturated label (see Definitions 11, 12)
will be defined in order to identify the class of sequents which correspond to
countermodels for invalid sequents.

In initial sequents, φ is either an atomic formula or a formula prefixed by T
or Y. The propositional rules are identical to those of G3LT in [2]. Repetition of
the principal formula in the premisses of RGcl, LFcl, RHcl and LPcl is required
for the definition of fulfilling sequent (see Definition 19). If the flow of time is
linear and unbounded, the next-time operator T and the previous-time operator
Y satisfy the following, where x ≺ y means that x is the immediate predecessor
of y (or y the immediate successor of x):

x � TA iff for all y, x ≺ y implies y � A, iff for some y, x ≺ y and y � A
x � YA iff for all y, y ≺ x implies y � A, iff for some y, y ≺ x and y � A

In analogy with the rules for the quantifiers, the universal semantic explanation
for T and Y would give a variable condition in the right rule, whereas the
existential semantic explanation would give a variable condition in the left rule.
Because of linearity, both explanations are available, and the rules for T and
Y can conveniently be formulated in the form given in Table 1, which uses the
universal semantic explanation for the left rule and the existential explanation
for the right one. Thus, no variable condition is required.

The calculus G3LTcl does not permit syntactic cut elimination. This is because
the rules for T and Y are given in a non-harmonious way, that is, the left and
the right rules are justified by different semantical explanations. However, it is
precisely because of this particular choice of rules that the essential properties

Decidability for Priorean Linear Time 111

of G3LTcl hold. Also, we will show that the system without cut is complete, and
thus prove that G3LTcl is closed with respect to cut.

The notion of derivability in the calculus G3LTcl is defined in the standard
way: A derivation is an initial sequent, or an instance of L⊥, or is obtained by an
application of a logical or mathematical rule to the derivation(s) concluding its
premiss(es). In Section 3 we shall introduce a generalized notion of provability
in G3LTcl, which admits derivation trees with infinite branches.

Table 1. The rules of the calculus G3LTcl

Initial sequents and L⊥

x : φ, Γ ⇒ Δ, x : φ x : ⊥, Γ ⇒ Δ
L⊥

Fixed-point rules

x : TA, x : TGA, Γ ⇒ Δ

x : GA, Γ ⇒ Δ
LGcl

Γ ⇒ Δ, x : GA, x : TA Γ ⇒ Δ, x : GA, x : TGA

Γ ⇒ Δ, x : GA
RGcl

x : TA, x : FA, Γ ⇒ Δ x : TFA, x : FA, Γ ⇒ Δ

x : FA, Γ ⇒ Δ
LFcl

Γ ⇒ Δ, x : TA, x : TFA

Γ ⇒ Δ, x : FA
RFcl

x : YA, x : YHA, Γ ⇒ Δ

x : HA, Γ ⇒ Δ
LHcl

Γ ⇒ Δ, x : HA, x : YA Γ ⇒ Δ, x : HA, x : YHA

Γ ⇒ Δ, x : HA
RHcl

x : YA, x : PA, Γ ⇒ Δ x : YPA, x : PA, Γ ⇒ Δ

x : PA, Γ ⇒ Δ
LPcl

Γ ⇒ Δ, x : YA, x : YPA

Γ ⇒ Δ, x : PA
RPcl

Tomorrow and Yesterday rules

x ≺ y, y : A, x : TA, Γ ⇒ Δ

x ≺ y, x : TA, Γ ⇒ Δ
LT

x ≺ y, Γ ⇒ Δ, x : TA, y : A

x ≺ y, Γ ⇒ Δ, x : TA
RTcl

y ≺ x, y : A, x : YA, Γ ⇒ Δ

y ≺ x, x : YA, Γ ⇒ Δ
LY

y ≺ x, Γ ⇒ Δ, x : YA, y : A

y ≺ x, Γ ⇒ Δ, x : YA
RYcl

Mathematical rules:

y ≺ x, Γ ⇒ Δ

Γ ⇒ Δ
L-Ser

x ≺ y, Γ ⇒ Δ

Γ ⇒ Δ
R-Ser

Rules L-Ser and R-Ser have the condition that y is not in the conclusion.

A rule is height-preserving admissible if, whenever its premiss(es) is (are)
derivable, also its conclusion is derivable with the same bound on the derivation
height; A rule is height-preserving invertible if, whenever its conclusion is deriv-
able, also its premiss(es) is (are) derivable with the same bound on the derivation
height. The proofs of the following structural results are detailed in [1].

Proposition 1. Substitution of labels is height-preserving admissible in G3LTcl.
All the rules of G3LTcl are height-preserving invertible. Weakening and contrac-
tion are height-preserving admissible in G3LTcl.

Definition 2. In an instance of rule R-Ser (resp. L-Ser) with active formula
x ≺ y (resp. y ≺ x), the label x is called side label.

112 B. Boretti and S. Negri

Lemma 3. A derivation in G3LTcl can be transformed into a derivation with all
instances of R-Ser and L-Ser applied on side labels that appear in the conclusion
of the rule.

Root-first proof search can, without loss of generality, be restricted to mini-
mal derivations, that is, derivations which cannot be shortened through height-
preserving admissibility of contraction or other local modifications: In particular,
applications of rules that produce duplications of atoms when read from con-
clusion to premisses can be dispensed with by height-preserving admissibility of
contraction. The same holds if a duplication occurs modulo fresh replacement of
eigenvariables, so we have:

Lemma 4. In a minimal derivation in G3LTcl, rule R-Ser (resp. L-Ser) need
not be applied on a relational atom x ≺ y (resp. y ≺ x) if its conclusion contains
an atom x ≺ z (resp. z ≺ x) in the antecedent.

Lemma 5. The rules L-Ser and R-Ser permute up with respect to all the rules
of G3LTcl in case their eigenvariable is not contained in the active formula(s)
of the latter.

Lemma 6. On any branch of a minimal derivation in G3LTcl, a given temporal
rule with the repetition of the principal formula(s) in the premiss(es) need not
be applied more than once on the same formulas.

A purely logical sequent is a sequent that contains no relational atoms and in
which every formula is labelled by the same variable. Every purely logical se-
quent Γ ⇒ Δ with all its formulas labelled by x corresponds to a characteristic
formula ∧Γ x ⊃ ∨Δx, where Γ x = {A | x : A ∈ Γ}, and similarly Δx. With this
identification, the rules of the system G3LTcl, read root first, correspond to the
algorithm for producing the saturated subsets of closure formulas from a given
formula.

Definition 7. The set cl(A) of closure formulas of a formula A is defined in-
ductively as follows:

– B ∈ cl(A) for every subformula B of A;
– TB and TGB ∈ cl(A) if GB ∈ cl(A);
– TB and TFB ∈ cl(A) if FB ∈ cl(A);
– YB and YHB ∈ cl(A) if HB ∈ cl(A);
– YB and YPB ∈ cl(A) if HB ∈ cl(A).

Lemma 8. Let |A| be the number of subformulas of A. The cardinality of cl(A)
is linearly bounded by |A|, namely |cl(A)| ≤ 3 · |A|.

Proof. By induction on the length of A.

Corollary 9. The number of subsets of cl(A) is at most 23|A|.

The definition of a satured set of formulas is an extension of the classical defini-
tion, obtained for the temporal modalities from their fixed-point properties.

Decidability for Priorean Linear Time 113

Definition 10. A set S of formulas is saturated if the following conditions are
satisfied:

– ⊥ is not in S;
– For every formula B, it is not possible that both B and ¬B are in S;
– ¬¬B in S implies that B is in S;
– B&C in S implies that both B and C are in S;
– ¬(B&C) in S implies that either ¬B or ¬C is in S;
– B ∨C in S implies that B or C is in S;
– ¬(B ∨ C) in S implies both ¬B and ¬C are in S;
– B ⊃ C in S implies that either ¬B or C is in S;
– ¬(B ⊃ C) in S implies that both B and ¬C are in S;
– GB in S implies that both TB and TGB are in S;
– ¬GB in S implies that either ¬TB or ¬TGB is in S;
– FB in S implies that TB or TFB is in S;
– ¬FB in S implies that both ¬TB and ¬TFB are in S;
– HB in S implies that both YB and YHB are in S;
– ¬HB in S implies that either ¬YB or ¬YHB is in S;
– PB in S implies that YB or YPB is in S;
– ¬PB in S implies that both ¬YB and ¬YPB are in S.

The notions of saturated and ≺-saturated label in a sequent are then given as
follows:

Definition 11. A label x in Γ ⇒ Δ is saturated if the set Γ x∪Δx is saturated,
where Γ x{B | x : B ∈ Γ}, Δx = {B | x : B ∈ Δ}, and B ≡ ¬B if B = ¬C,
B ≡ C otherwise.

Definition 12. A label x in Γ ⇒ Δ is ≺-saturated if it is saturated and:

– x : TB in Γ (Δ) implies that, if x ≺ y is in Γ , then y : B is in Γ (Δ);
– x : YB in Γ (Δ) implies that, if y ≺ x is in Γ , then y : B is in Γ (Δ).

3 Proofs in G3LTcl

In this Section we shall define the proofs in G3LTcl through the identification of
a particular class of sequents, which can be considered finite syntactical coun-
terparts of countermodels for invalid sequents.

Given a purely logical sequent Γ ⇒ Δ, we start a proof search by applying
root-first the rules of G3LTcl for the propositional connectives and for G, F, H,
and P, whenever possible. When x becomes saturated, we apply once the rules
R-Ser and L-Ser with side label x, thus introducing new labels y and y′ and
the accessibility relations x ≺ y and y′ ≺ x. By Lemma 5 we are allowed to
postpone the application of the rules for seriality until no more logical rule can
be applied, and by Lemmas 3 and 4 we do not need to apply a seriality rule with
side label z, if z is not a label in the sequent or the antecedent already contains
an atom z ≺ z′ (resp. z′ ≺ z). Next, we apply the rules LT and RTcl (resp. LY

114 B. Boretti and S. Negri

and RYcl) on the formulas with T (resp. Y) as their outermost operator until
x becomes ≺-saturated. Note that by Lemma 6, we need not apply more than
once a temporal rule on the same principal formula(s). We repeat the procedure
with the formulas marked by y and y′. We continue as before with all the labels
possibly introduced by R-Ser and L-Ser, and so on. This procedure motivates
the following definition:

Definition 13. A pre-proof of a purely logical sequent in G3LTcl is a (possibly
infinite) tree obtained by applying root-first the logical and mathematical rules of
the calculus, whenever possible.

Before giving the definition of a proof in G3LTcl, we need some preliminary
notions. We shall construct the syntactic counterpart of a countermodel from
a failed proof search and therefore define syntactic entities through their corre-
spondence to a Kripke model for Priorean linear time.

Definition 14. A discrete linear temporal frame F = (K,≺K, <K) is a linearly
ordered set, with the order relation <K defined as the transitive closure of the
immediate successor relation ≺K, functional and unbounded in both directions.

Definition 15. Let F = (K,≺K, <K) be a discrete linear temporal frame. An
evaluation of atomic formulas in a frame is a map V : AtFrm → P(K), assigning
to any atom P the set of instants in which P holds. The standard notation
for k ∈ V(P) is k � P . Evaluations are extended to arbitrary formulas by the
following inductive clauses:

For all k ∈ K, it is not the case that k � ⊥ (abbr. k � ⊥);
k � A&B if k � A and k � B;
k � A ∨B if k � A or k � B;
k � A ⊃ B if k � A implies k � B;
k � GA (resp. k � HA) if for all k′, k <K k′ (resp. k′ <K k) implies k′ � A;
k � FA (resp. k � PA) if for some k′, k <K k′ (resp. k′ <K k) and k′ � A
k � TA (resp. k � YA) if for all k′, k ≺K k′ (resp. k′ ≺K k) implies k′ � A

The definition of evaluation of formulas justifies the notion of interpretation of
the labels of a sequent and of validity for labelled formulas and relational atoms
in a discrete linear temporal frame:

Definition 16. Let F = (K,≺K, <K) be a linear discrete frame with accessibil-
ity relations <K and ≺K. Let W be the set of labels used in the derivation of the
sequent Γ ⇒ Δ in G3LTcl. An interpretation of the labels from W in K is a
function [[·]] : W → K. A countermodel to Γ ⇒ Δ is a discrete linear temporal
frame (K,≺K, <K) together with an interpretation and an evaluation that vali-
dates all the formulas and relational atoms in Γ and no formula in Δ; Namely,
for all labelled formulas z : A and relational atoms x ≺ y in the antecedent,
[[z]] � A and [[x]] ≺K [[y]] but for no w : B in the succedent [[w]] � B.

The semantic explanations for the possibility-like temporal operators F, P and
the definition of the order relation <K as the transitive closure of the immediate

Decidability for Priorean Linear Time 115

successor relation ≺K justify the following notion of future and past witness. We
use the standard symbol for syntactic identity “x ≡ y” to denote that x and y
are the same syntactic object.

Definition 17. Given a labelled formula z : FB in the antecedent of a sequent
Γ ⇒ Δ (resp. z : GB in the succedent), we say that a label z′ is a future witness
for z : FB (resp. z : GB) if z′ : B is in Γ (resp. z′ : B is in Δ) and the relational
atoms z ≺ z0, . . . , zn−1 ≺ zn ≡ z′ are in Γ for some n.
Given a labelled formula z : PB in the antecedent of a sequent Γ ⇒ Δ (resp.
z : HB in the succedent), we say that a label z′ is a past witness for z : PB
(resp. z : HB) if z′ : B is in Γ (resp. z′ : B is in Δ) and the relational atoms
z′ ≺ z0, . . . , zn−1 ≺ zn ≡ z are in Γ for some n.

In the syntactic object that corresponds to a Priorean linear time model, we
have to ensure that every possibility-like formulas is realized by some label:

Definition 18. A chain zi ≺ zi+1, . . . , zj−1 ≺ zj (with j ≥ i + 1) in a sequent
Γ ⇒ Δ is a future loop if zj marks exactly the same formulas as the label zi

and, for every labelled formula zq : FB in Γ (resp. zq : GB in Δ) with i ≤ q ≤ j,
there exists zk such that i ≤ k ≤ j and zk : B is in Γ (resp. in Δ). We call zj

the future looping label with respect to zi

A chain zi ≺ zi+1, . . . , zj−1 ≺ zj (with j ≥ i + 1) in a sequent Γ ⇒ Δ is a past
loop if zi marks exactly the same formulas as the label zj and, for every labelled
formula zq : PB in Γ (resp. zq : HB in Δ) with i ≤ q ≤ j, there exists some
variable zk such that i ≤ k ≤ j and zk : B is in Γ (resp. in Δ). We call zi the
past looping label with respect to zj.

A root-first proof search succeeds when a derivation is found, namely all the
leaves of the derivation tree are initial sequents or instances of L⊥. However,
a failed proof search does not in general ensure that an endsequent Γ ⇒ Δ is
invalid unless a countermodel can be constructed from it. Here comes into play
the notion of fulfilling sequent for a purely logical sequent Γ ⇒ Δ:

Definition 19. Let the sequent Γ ∗ ⇒ Δ∗ be obtained by root-first proof search
from the purely logical sequent Γ ⇒ Δ (with all its formulas labelled by x). Then,
Γ ∗ ⇒ Δ∗ is a fulfilling sequent if the following conditions are satisfied:

(i) Every label in it is ≺-saturated;
(ii) It contains a chain of relational atoms z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x,

z0 ≺ z1, . . . , zn−1 ≺ zn, such that for some i with −m < i ≤ 0 the subchain
z−m ≺ z−(m−1), . . . , zi−1 ≺ zi is a past loop, and for some j with 0 ≤ j < n,
the subchain zj ≺ zj+1, . . . , zn−1 ≺ zn is a future loop;

(iii) Every labelled formula z : FB in Γ ∗ (resp. z : GB in Δ∗) is either
witnessed by a future witness label z′, or has z inside a future loop;

(iv) Every labelled formula z : PB in Γ ∗ (resp. z : HB in Δ∗) is either wit-
nessed by a past witness label z′, or has z inside a past loop.

116 B. Boretti and S. Negri

Intuitively, a fulfilling sequent corresponds to a structure constituted by a
(possibly empty) linear chain with two simple loops at the ends, with the left
and the right loop obtained by identifying the first and the last label of the past
and of the future loop, respectively.

In Section 4 we shall prove that, given a model for Priorean linear time, it
is possible to extract the corresponding fulfilling sequent, and in Section 5 we
shall show how to linearize the future and the past loop in order to obtain an
appropriate model.

Proposition 20. Let Γ ′ ⇒ Δ′ be obtained by applying root-first the rules of
G3LTcl from the purely logical sequent Γ ⇒ Δ with x as the uniform label that
marks all the formulas in the latter. Then Γ ′ ⇒ Δ′ contains a unique chain
z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn with zi different from
zj for i = j.

Proof. Since the root sequent Γ ⇒ Δ is purely logical, the result follows by
Lemmas 3, 4 and the fact that only seriality rules can introduce relational atoms.

While searching for a fulfilling sequent, we want to find one as small as possible.
Therefore we should try to avoid useless circles, namely those exploring instants
reachable as well through a more direct path. This motivates the following defi-
nition:

Definition 21. Let Γ ′ ⇒ Δ′ be obtained by applying root-first the rules of
G3LTcl from the purely logical sequent Γ ⇒ Δ with x as the uniform label
that marks all the formulas in the latter. A chain y0 ≺ y1, . . . , yn−1 ≺ yn (resp.
y−n ≺ y−(n−1), . . . , y−1 ≺ y0) with y0 ≡ x in Γ ′ ⇒ Δ′ is roundabout if it
contains labels yi, yj with 0 ≤ i < j ≤ n such that yi and yj mark the same
formulas, yi ≺ yi+1, . . . , yj−1 ≺ yj is not the future loop (resp. the past loop)
and either j = i + 1 or for every yk with i < k < j there exists some yl such
that l > j (resp. l < i) and yk and yl mark the same formulas. We say that the
subchain yi ≺ yi+1, . . . , yj−1 ≺ yj is dispensable. A fulfilling sequent is reduced
if it does not contain dispensable subchains.

Note that by Definition 21 a chain can be roundabout also in the case that yi

and yj mark no formulas.

Theorem 22. If a proof search for a purely logical sequent Γ ⇒ Δ (with all its
formulas labelled by x) leads to a fulfilling sequent Γ ∗ ⇒ Δ∗, then it also leads
to a reduced fulfilling sequent.

Proof. (Sketch) Note that for every label z introduced by R-Ser (resp. L-Ser)
a labelled formula z : C in Γ ∗ ⇒ Δ∗ either is introduced by applying root-
first the rules LT and RTcl (resp. LY and RYcl) or is the result of root-first
application of the other rules on a formula introduced in the former way. If the
chain z0 ≺ z1, . . . , zn−1 ≺ zn with x ≡ z0 contains a dispensable subchain
zi ≺ zi+1, . . . , zj−1 ≺ zj , then the labels zi and zj mark the same formulas;
Therefore zj+1 : B is introduced by LT (resp. RTcl) with principal formulas

Decidability for Priorean Linear Time 117

zj ≺ zj+1, zj : TB iff zi+1 : B can be introduced by LT (resp. RTcl) with
principal formulas zi ≺ zi+1, zi : TB. Given a set of formulas marked by a label
z, the rules of G3LTcl explore different subsets of closure formulas that possibly
≺-saturate z: While applying root-first the rules of G3LTcl we have to continue
along the branch in which the label zi+1 is ≺-saturated by the same subset
of closure formulas that ≺-saturates zj+1 in the original fulfilling sequent. By
choosing the appropriate premiss of a branching rule whenever a roundabout
chain is met, we finally reach the desired reduced fulfilling sequent.

Definition 23. A pre-proof of a purely logical sequent is a proof if no branch
in it leads to a fulfilling sequent. A sequent is provable if there is a proof for it.

Every G3LTcl derivation is a G3LTcl proof, but the converse does not hold.
Observe that, contrary to the definition of proof in cyclic calculi for induction
and infinite descent of [3], our definition in G3LTcl is completely local, i.e. there
is no need of checking previous parts of the tree: At any step of the proof search
we simply have to consider the sequents introduced by root-first application of
the rules and check if they are initial sequents, fulfilling sequents, or neither.

4 Soundness

Soundness for G3LTcl cannot be proved simply by showing that the initial se-
quents and the rules of the system are sound because, by Definition 23, proofs in
G3LTcl can contain infinitely long branches. Therefore, we prove soundness by
contraposition: If there exists a countermodel for Γ ⇒ Δ, then the corresponding
proof search should contain a fulfilling sequent and so Γ ⇒ Δ is unprovable in
G3LTcl. Thus, the absence of a fulfilling sequent in a derivation tree is a global
soundness condition for a proof.

Some preliminary results concerning standard models are needed: We have to
prove that, given a countermodel M for A, it is possible to extract a fulfilling
sequent all the labels of which mark ≺-saturated sets of closure formulas of A.
The lemmas below show how to construct a future and a past loop fromM. In the
following, we write s�

Ks′ if s = s′ or s <K s′ in a model M = (K,≺K, <K, �).

Lemma 24. Let M = (K,≺K, <K, �) be a model for Priorean linear time and
suppose that, for some instant w, w � A. Then for some s such that w�

Ks,
there exists s′ such that s <K s′, s and s′ satisfy the same subset H ⊆ cl(A),
and for every t if s�

Kt� Ks′ and t � FB and FB ∈ cl(A) (resp. t � GB and
GB ∈ cl(A)) there exists u such that s�

Ku�
Ks′ and u � B (resp. u � B).

Proof. Since every model for Priorean linear time is isomorphic to the integers,
there are infinitely many instants greater than w. However, by Corollary 9, there
are only 23|A| subsets of cl(A). By an application of Ramsey’s Theorem, for some
instant(s) greater than w there exist infinitely many instants satisfying the same
subset H of closure formulas of A. Let s be the first instant of the infinite set of
instants s0 <K s1 <K s2 <K s3 <K . . . all satisfying the same subset H ⊆ cl(A)
and such that w�

Ks. Let s�
Kt and t � FB and FB ∈ cl(A) (resp. t � GB

and GB ∈ cl(A)). If there exists a u such that u � B and s�
Ku�

Kt, we are

118 B. Boretti and S. Negri

done. Otherwise, since t � FB (resp. t � GB), there exists some u such that
t <K u and u � B (resp. u � B). Since, by hypothesis, there are infinitely many
instants greater than s satisfying H , but u can be reached from t by finitely many
iterations of the relation ≺K, for some i = 1, 2, . . ., we have s <K u�

Ksi. For
every i there are only finitely many closure formulas of A of the form FB (resp.
GB) validated (resp. invalidated) by an instant t such that s�

Kt� Ksi, and for
every such t we can find a k and a u such that s�

Ku�
Ksi+k and u � B (resp.

u � B). Since the set of closure formulas of A is finite, the process eventually
ends with the determination of a s′ such that s <K s′ and for every t if s�

Kt� Ks′

and t � FB and FB ∈ cl(A) (resp. t � GB and GB ∈ cl(A)) there exists u
such that s�

Ku�
Ks′ and u � B (resp. u � B).

Lemma 25. Let M = (K,≺K, <K, �) be a model for Priorean linear time such
that for some instant w, w � A. Then for some instant s such that s�

Kw,
there exists s′ such that s′ <K s, s and s′ satisfy the same subset H ⊂ cl(A)
and for every t if s′� Kt� Ks and t � PB and PB ∈ cl(A) (resp. t � HB and
HB ∈ cl(A)) there exists u such that s′� Ku�

Ks and u � B (resp. u � B).

Proof. Analogous to the proof of Lemma 24.

Lemma 26. All the rules of G3LTcl are sound.

Proof. The case of the initial sequents and the propositional rules is straight-
forward. The rules for G, F, H and P are sound by definition, since they are
justified by their fixed-point interpretations. Similarly, the rules for T and Y are
justified by their semantic explanations, and the mathematical rules correspond
to the frame properties of left and right seriality for ≺.

Theorem 27. If a purely logical sequent Γ ⇒ Δ (with all its formulas labelled
by x) has a countermodel, then it is not provable in G3LTcl.

Proof. Let us suppose that there exists a countermodel M = (K,≺K, <K, �) for
the purely logical sequent Γ ⇒ Δ, namely there exists w ∈ K such that [[x]] = w
and w � ∧Γ x ⊃ ∨Δx. By Lemma 26, every countermodel for the conclusion of
any of the rules of G3LTcl is a countermodel for (at least one of) the premiss(es).
By choosing the appropriate branch we eventually find a sequent with a chain

z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn

every label of which matches an instant in the corresponding position in M. To
show that this sequent is a fulfilling sequent for Γ ⇒ Δ, we have to check that
the conditions of Definition 19 are satisfied:

(i) By induction on the length of formulas, it is easy to prove that evey label
z appearing in the tree can be ≺-saturated by applying the rules root-first;

(ii) The presence of a future and a past loop follows from Lemmas 24 and
25, and the fact that we can go on applying right and left seriality rules and
introduce new labels until the conditions of the lemmas are satisfied;

(iii) If the formula z : FB (resp. z : GB) is in the antecedent (resp. succedent),
then [[z]] � FB (resp. [[z]] � GB). Therefore, either there exists an instant s such

Decidability for Priorean Linear Time 119

that [[z]] <K s and s � B (resp. s � B), and for some z′, [[z′]] = s and z′ is
the future witness of z : FB (resp. z : GB), or [[z]] falls under the conditions of
Lemma 24, and thus z is inside a future loop;

(iv) If the formula formula z : PB (resp. z : HB) is in the antecedent (resp.
succedent), then [[z]] � PB (resp. [[z]] � HB). Therefore, either there exists an
instant s such that s <K [[z]] and s � B (resp. s � B), and for some z′, [[z′]] = s
and z′ is the past witness of z : PB (resp. z : HB), or [[z]] falls under the
conditions of Lemma 25, and so z is inside a past loop.

5 Completeness

Completeness is also proved by contraposition: If Γ ⇒ Δ is not provable in
G3LTcl, i.e. if the root-first proof search leads to a fulfilling sequent, then a
countermodel for Γ ⇒ Δ can be constructed. Our completeness result follows
the method in [10]. However, the definition of fulfilling sequents allows to consider
only finite objects, and not (possibly) infinite reduction tree; Furthermore, the
presence of the fixed-point rules for the temporal operators requires additional
work in proving the inductive steps for temporal formulas, since we cannot appeal
directly to the semantic explanations for the corresponding operators.

Let us consider the standard frame F = (K,≺K, <K) for Priorean linear
time, with K = {si | i ∈ Z}, si ≺K si+1 and si <K sj for i < j. Given a
fulfilling sequent Γ ∗ ⇒ Δ∗ for the purely logical sequent Γ ⇒ Δ, we construct a
countermodel M by defining an appropriate interpretation for the set of labels
in Γ ∗ ⇒ Δ∗ into the domain K as follows: We put [[x]] = s0 if x is the label
that marks all the formulas in Γ ⇒ Δ, and for every label z if the relational
atoms x ≡ z0 ≺ z1, . . . , zn−1 ≺ zn ≡ z are in Γ , we put [[z]] = sn. Analogously,
if z ≡ z−n ≺ z−(n−1), . . . , z−1 ≺ z0 ≡ x are in Γ , we put [[z]] = s−n. We evaluate
the atomic formulas by putting [[z]] � P if z : P is in Γ ∗ and [[z]] � P if z : P
is in Δ∗. Furthermore, if zn+l is the future looping label with respect to zn,
[[zn+l]] = sn+l and [[zn]] = sn, then for every instant sn+m·l+q (with m ≥ 0 and
0 ≤ q ≤ l − 1) we put sn+m·l+q � P if zn+q : P is in Γ ∗ and sn+m·l+q � P if
zn+q : P is in Δ∗. Analogously, if z−(n+l) is the past looping label with respect
to z−n, [[z−(n+l)]] = s−(n+l) and [[z−n]] = s−n, then for every instant s−(n+m·l+q)
(with m ≥ 0 and 0 ≤ q ≤ l − 1) we put s−(n+m·l+q) � P if z−(n+q) : P is in Γ ∗

and s−(n+m·l+q) � P if z−(n+q) : P is in Δ∗.

Lemma 28. M is a countermodel for Γ ∗ ⇒ Δ∗.

Proof. By definition, if z ≺ z′ is in Γ ∗, then [[z]] ≺K [[z′]]. We have to show that,
for arbitrary formulas B, if z : B is in Γ ∗, then [[z]] � B, and if z : B is in Δ∗,
then [[z]] � B . We proceed by induction on the length of the formula B. If B is
an atomic formula P and z : P is in Γ ∗, then [[z]] � P by construction. If z : P
is in Δ∗, then [[z]] � P by construction. Since z is ≺-saturated, z : P cannot
be both in Γ ∗ and in Δ∗. If B ≡ ⊥, then it cannot be in Γ ∗ by definition of
fulfilling sequent. If z : ⊥ is in Δ∗, then [[z]] � ⊥ by Definition 15. The case of
propositional connectives is straightforward. We consider in detail only the cases
of B ≡ TC and B ≡ GC, all the other cases being analogous.

120 B. Boretti and S. Negri

If B ≡ TC and z : TC is in Γ ∗ (resp. Δ∗), then we have two cases: (i) If
the label z is not the future looping label zf , then it is connected to it by a
chain z ≡ zn+l−i ≺ zn+l−(i−1), . . . , zn+l−1 ≺ zn+l ≡ zf and, since the label
zn+l−i is ≺-saturated, we have zn+l−(i−1) : C in Γ ∗ (resp. Δ∗). Therefore, by
construction, we have [[zn+l−i]] ≺K [[zn+l−(i−1)]] and by inductive hypothesis
[[zn+l−(i−1)]] � C (resp. [[zn+l−(i−1)]] � C). So [[z]] � TC (resp. [[z]] � TC).
(ii) If z is the future looping label, then by definition for no label z′ the atom
z ≺ z′ is in Γ ∗. However, we have some label zn such that x ≡ z0 ≺ z1,
. . . , zn−1 ≺ zn, zn ≺ zn+1, . . . , zn+l−1 ≺ zn+l ≡ z are in Γ ∗ for l > 0 and zn

marks the same formulas as z; In particular zn : TC is in Γ ∗ (resp. Δ∗). Since
zn is ≺-saturated, zn+1 : C is in Γ ∗ (resp. Δ∗). By construction [[z]] = sn+l, so
[[z]] ≺K sn+l+1 and, by construction and inductive hypothesis, sn+l+1 � C (resp.
sn+l+1 � C). Therefore [[zn+l]] � TC (resp. [[zn+l]] � TC).

If B ≡ GC and z : GC is in Γ ∗, then, since z is ≺-saturated, both z : TC
and z : TGC are in Γ ∗, and, if the label z ≺ z′ is in Γ ∗, both z′ : C and z′ : GC
are in Γ ∗. Therefore, by repeating this argument, we have that for every z′′, if
z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′′ are in Γ ∗ for some i, j ≥ 0, then z′′ : C and
z′′ : GC are in Γ ∗. Note that, if z is the future looping label or z′′ is inside a
future loop zm ≺ zm+1, . . . , zn−1 ≺ zn (with n > m) both zk : C and zk : GC
are in Γ ∗ for every m ≤ k ≤ n. By inductive hypothesis, for every s, if [[z]] <K s
then s � C, therefore [[z]] � GC.

If z : GC is in Δ∗ then, by Definitions 18 and 19, we have two cases: (i)
There exists some future witness label z′ such that z′ : C is in Δ∗ and the atoms
z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′ are in Γ ∗ for some i, j ≥ 0. So, by construction
and inductive hypothesis there is some s = [[z′]] such that [[z]] <K s and s � C,
so [[z]] � GC. (ii) z is inside a future loop zn ≺ zn+1, . . . , zn+i−1 ≺ zn+i ≡ z,
zn+i ≺ zn+i+1, . . . , zn+l−1 ≺ zn+l (with l ≥ i). Then there exists some label z′

such that either zn ≡ z′ or the atoms zn ≺ zn+1, . . . , zn+q−1 ≺ zn+q ≡ z′ are in
Γ ∗ for 0 ≤ q ≤ i and the formula z′ : C is in Δ∗. By construction [[z′]] = sn+q, so
[[z]] <K sn+l+q and, by inductive hypothesis, sn+l+q � C. Therefore [[z]] � GC.

By the following result, every countermodel for the fulfilling sequent Γ ∗ ⇒ Δ∗

is a countermodel for the corresponding endsequent Γ ⇒ Δ:

Lemma 29. All the rules of G3LTcl preserve countermodels, that is, a coun-
termodel for (at least one of) the premisses is a countermodel for the conclusion.

Proof. Immediate for the rules for T and Y and for the rules of seriality. For the
propositional rules, by definition of validity for the propositional connectives.
For the rules for G, F, H and P, by their fixed-point interpretation.

Theorem 30. If the purely logical sequent Γ ⇒ Δ has no countermodels, then
it is provable in G3LTcl.

Corollary 31. Provability of purely logical sequents in G3LTcl is closed with
respect to cut.

Proof. By soundness of the cut rule and completeness of G3LTcl.

Decidability for Priorean Linear Time 121

6 Termination of Proof Search

In root-first application of the rules of G3LTcl, two possibilities arise: (i) The
proof search terminates because we find a fulfilling sequent or because every
branch leads to an initial sequent or an instance of L⊥; (ii) The proof search
does not terminate and, by König’s Lemma, there is at least one infinite branch.

However, we can truncate a potentially infinite proof search as shown below.
By Theorem 22, if Γ ⇒ Δ is not provable, then the proof search leads to a
reduced fulfilling sequent. Whenever a branch leads to a sequent with a round-
about chain, we can drop that branch and start a new one: If every branch in
the proof search for Γ ⇒ Δ leads to either an initial sequent or a sequent with
a roundabout chain, then Γ ⇒ Δ is provable in G3LTcl.

Lemma 32. Suppose that the proof search for a purely logical sequent Γ ⇒ Δ,
with all the formulas labelled by x, leads to a sequent Γ ′ ⇒ Δ′: If the chain
y−m ≺ y−(m−1), . . . , y−1 ≺ y0 ≡ x and the chain x ≡ y0 ≺ y1, . . . , yn−1 ≺ yn are
not roundabout then the number of labels has an exponential bound on the order
of the length of A ≡ ∧Γ x ⊃ ∨Δx, namely m, n ≤

∑23|A|

i=1 i.

Proof. (Sketch) We recall here that the rules of G3LTcl reflect the closure algo-
rithm that from a formula A gives the set of its closure formulas and, by Corollary
9, the number of subsets of closure formulas of A is at most 23|A|. Let us consider
the longest case of a non-roundabout chain y0 ≺ y1, . . . , yn−1 ≺ yn such that for
every k with 0 ≤ k ≤ n, yk labels a subset of closure formulas of A. It contains
a first subchain y0 ≺ y1, . . . , yi−2 ≺ yi−1 such that i = 23|A| and every subset of
closure formulas of A is labelled by some yk, for 0 ≤ k ≤ i− 1. Then we have a
second subchain yi ≺ yi+1, . . . , yi+j−2 ≺ yi+j−1, such that j = 23|A|−1 and every
subset of closure formulas of A except one is marked by yk for i ≤ k ≤ i + j− 1.
Thus, the subchain in the l+1st position contains j = 23|A|− l labels, that mark
the same subsets of cl(A) marked by the members of the chain in the lth po-
sition, except one. Summing up the numbers of the members of each subchain,
we finally obtain that n =

∑23|A|

i=1 i. The same argument applies to the chain

y−m ≺ y−(m−1), . . . , y−1 ≺ y0, therefore m =
∑23|A|

i=1 i.

Theorem 33. Proof search for G3LTcl terminates.

Proof. Let us suppose that the proof search for the purely logical sequent Γ ⇒ Δ
(with all its formulas labelled by x) does not terminate. Since every rule of
G3LTcl has a finite number of premisses, any derivation tree is finitely branching,
so by König’s Lemma there is at least one infinite branch. Obviously it cannot
lead to an initial sequent, nor to a conclusion of L⊥, nor to a fulfilling sequent,
because otherwise it would be finite. We have to show that it contains a sequent
with a roundabout chain. Note that the endsequent contains a finite number
of formulas: The logical rules for connectives and for temporal operators can
introduce only a finite number of new formulas, and by Lemma 6 temporal
rules cannot be applied more than once with the same principal formula(s).

122 B. Boretti and S. Negri

Furthermore, by Lemmas 3 and 4 we need not apply a seriality rule with side
label z, if z is not a label in the sequent or the antecedent already contains
an atom z ≺ z′ (resp. z′ ≺ z). Consequently, an infinite branch should contain
a sequent with an infinite ≺-chain. However, by Lemma 32 if a chain is not
roundabout, then it is finite and exponentially bounded on the order of the
length of the formula corresponding to the endsequent Γ ⇒ Δ. Therefore, any
potentially infinite branch can be truncated as soon as a sequent is met that
contains a chain z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn with

m >
∑23|∧Γ x⊃∨Δx|

i=1 i or n >
∑23|∧Γ x⊃∨Δx|

i=1 i.

References

1. Boretti, B.: Proof Analysis in Temporal Logic, Ph.D. Thesis, Univ. of Milan (2008)
2. Boretti, B., Negri, S.: On the finitization of Priorean linear time. In: SILFS 2007.

Proceedings of the International Conference of the Italian Society for Logic and
Philosophy of Science. College Publications (in press, 2009)

3. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite
descent. In: LICS 2007. Proceedings of the 22nd Annual IEEE Symposium on Logic
in Computer Science, pp. 51–62. IEEE Computer Society, Washington (2007)

4. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. Journal of
Logic and Algebraic Programming 76, 216–225 (2008)

5. Coquand, T.: Decidability Proof of LTL (unpublished note, 2007),
http://www.cs.chalmers.se/~coquand/LOGIC/ltl.pdf

6. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: Decision algorithm for full propo-
sitional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp.
97–109. Springer, Heidelberg (1993)

7. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and com-
pleteness. Logic Journal of IGPL 8, 55–85 (2000)

8. Negri, S.: Proof analysis in modal logic. J. of Phil. Logic 34, 507–544 (2005)
9. Negri, S.: Proof analysis in non-classical logics. In: Dimitracopoulos, C., Newelski,

L., Normann, D., Steel, J. (eds.) Logic Colloquium 2005, ASL Lecture Notes in
Logic, vol. 28, pp. 107–128. Cambridge University Press, Cambridge (2007)

10. Negri, S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds.) Acts
of Knowledge - History, Philosophy and Logic. College Publications (in press, 2009)

11. Schmitt, P.H., Goubault-Larrecq, J.: A tableau system for linear-TIME temporal
logic. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 130–144. Springer,
Heidelberg (1997)

12. Schwendimann, S.: A New One-Pass Tableau Calculus for PLTL. In: de Swart, H.
(ed.) TABLEAUX 1998. LNCS(LNAI), vol. 1397, pp. 277–291. Springer, Heidel-
berg (1998)

13. Sistla, A.P., Clarke, E.M.: The Complexity of Propositional Linear Temporal Log-
ics. Journal of the ACM 32, 733–749 (1985)

14. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)

15. Wolper, P.: The tableau method for temporal logic: An overview. Logique et Anal-
yse 110-111, 119–136 (1985)

http://www.cs.chalmers.se/~coquand/LOGIC/ltl.pdf

A Tableau-Based System for Spatial
Reasoning about Directional Relations

Davide Bresolin1,�, Angelo Montanari2, Pietro Sala2, and Guido Sciavicco3,��

1 Department of Computer Science, University of Verona, Verona, Italy
2 Department of Mathematics and Computer Science,

University of Udine, Udine, Italy
3 Department of Information, Engineering and Communications,

University of Murcia, Murcia, Spain

Abstract. The management of qualitative spatial information is an im-
portant research area in computer science and AI. Modal logic provides
a natural framework for the formalization and implementation of qual-
itative spatial reasoning. Unfortunately, when directional relations are
considered, modal logic systems for spatial reasoning usually turn out to
be undecidable (often even not recursively enumerable). In this paper, we
give a first example of a decidable modal logic for spatial reasoning with
directional relations, called Weak Spatial Propositional Neighborhood
Logic (WSpPNL for short). WSpPNL features two modalities, respec-
tively an east modality and a north modality, to deal with non-empty
rectangles over N × N. We first show the NEXPTIME-completeness of
WSpPNL, then we develop an optimal tableau method for it.

1 Introduction

The main goal of qualitative spatial representation and reasoning techniques is to
capture common-sense knowledge about space and to provide a calculus of spatial
information without referring to a quantitative model. Even though quantita-
tive models provide a more accurate description of spatial domains, qualitative
models are often the best or the only choice. In many cases, indeed, there is a
lack of quantitative models or existing ones turn out to be intractable. In addi-
tion, qualitative models make it possible to cope with spatial data indeterminacy
and to reason about incomplete spatial knowledge. The problem of representing
and reasoning about qualitative spatial information can be viewed under three
different points of view: (i) the algebraic perspective, that is, purely existential
theories formulated as constraint satisfaction systems over jointly exhaustive and
mutually disjoint sets of topological, directional, or combined relations; (ii) the
first-order perspective, that is, first-order theories of topological, directional, or

� Davide Bresolin has been partially supported by the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant no. INFSO-ICT-223844.

�� Guido Sciavicco has been partially supported by the Spanish projects PET2006-0406
and TIN2006-15460-C04-01.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 123–137, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

124 D. Bresolin et al.

combined relations; (iii) the modal logic perspective, where a propositional modal
language is interpreted over (a representation of space via) suitable Kripke struc-
tures. The increase in expressiveness of the two latter approaches is paired by
an increase in computational complexity, which often makes them impracticable.
Depending on the considered class of spatial relations, we can further distinguish
between topological and directional spatial reasoning. While topological relations
between pairs of spatial objects (viewed as sets of points) are preserved under
translation, scaling, and rotation, directional relations depend on the relative
spatial position of the objects.

A comprehensive and sufficiently up-to-date survey, which covers topological,
directional, and combined constraint systems and relations, can be found in [9].
Deductive systems for reasoning about topological relations have been proposed
in various papers, including Bennett’s work [4,5], later extended by Bennett et
al. [6], Nutt’s systems for generalized topological relations [17], the modal logic
systems for a number of mathematical theories of space described in [1], the logic
of connectedness constraints developed by Kontchakov et al. [12], and Lutz and
Wolter’s modal logic of topological relations [13]. Directional relations have been
mainly dealt with following both the algebraic approach and the modal logic one.
As for the first one, the most important contributions are those by Güsgen [11]
and by Mukerjee and Joe [16], that introduce Rectangle Algebra (RA), later
extended by Balbiani et al. in [2,3]. As for the second one, we mention Venema’s
Compass Logic [18], whose undecidability has been shown by Marx and Reynolds
in [14], and Spatial Propositional Neighborhood Logic (SpPNL for short) by
Morales et al. [15], that generalizes the logic of temporal neighborhood [10] to
the two-dimensional space. SpPNL makes it possible to reason about regions,
approximated by their minimum bounding boxes, by taking advantage of four
modal operators that allow one to move along the x- and the y-axis. In [15],
the authors analyze the expressive power of the logic, provide a representation
theorem, and devise a (non-terminating) sound and complete tableau system.

In this paper, we focus our attention on a proper syntactical and semantical
fragment of SpPNL, called Weak SpPNL (WSpPNL for short). SpPNL has been
proved to be undecidable over most relevant class of frames [15]. To recover
decidability, we restrict ourselves to the class of frames isomorphic to D × D,
where D is either N or a prefix of it, and consider a syntactic fragment of SpPNL
with two modalities only, namely 〈E〉 (east) and 〈N〉 (north), with a weakened
semantics. We show that WSpPNL is NEXPTIME-complete, and we provide
it with a sound and complete tableau system. Both the decidability proof and
the tableau system can be viewed as non-trivial adaptations of those for Right
Propositional Neighborhood Logic (RPNL) [7]. We also show that WSpPNL is
expressive enough to support a (weak form of) universal operator and nominals.
At the best of our knowledge, WSpPNL is the first example of a decidable modal
logic for directional reasoning that deals with extended regions. For the lack of
space, proofs have been omitted (they are reported in the long version of the
paper that the interested reader can obtain from the authors).

A Tableau-Based System for Spatial Reasoning about Directional Relations 125

2 SpPNL and WSpPNL

The language of Spatial Propositional Neighborhood Logic (SpPNL) consists of
a set of propositional variables AP , the logical connectives ¬ and ∨, and the
modalities 〈E〉, 〈W〉, 〈N〉, and 〈S〉. The other logical connectives, as well as the
logical constants and ⊥, can be defined in the usual way. Let p ∈ AP . SpPNL
formulas, denoted by ϕ, ψ, . . ., are recursively defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈E〉ϕ | 〈W〉ϕ | 〈N〉ϕ | 〈S〉ϕ.

Let Dh = 〈Dh, <〉 and Dv = 〈Dv, <〉, where Dh (resp, Dv) is (a prefix of)
the set of natural numbers N and < is the usual linear order. Elements of Dh

(resp., Dv) will be denoted by ha, hb, . . . (resp., va, vb, . . .). A spatial frame is
a structure F = Dh × Dv. The set of objects (rectangles) is the set O(F) =
{〈(ha, vb), (hc, vd)〉 | ha < hc, vb < vd, ha, hc ∈ Dh, vb, vd ∈ Dv}. The semantics
of SpPNL over O(F) is given in terms of spatial models M = 〈F, O(F),V〉, where
F is a spatial frame, O(F) is the set of relevant objects, and V : O(F) �→ 2AP is a
spatial valuation function. The pair (F, O(F)) is called spatial structure. Given a
model M and an object 〈(ha, vb), (hc, vd)〉, the truth relation for SpPNL formulas
is defined as follows:

– M, 〈(ha, vb), (hc, vd)〉 � p iff p ∈ V(〈(ha, vb), (hc, vd)〉), for any p ∈ AP ;
– M, 〈(ha, vb), (hc, vd)〉 � ¬φ iff M, 〈(ha, vb), (hc, vd)〉 � φ;
– M, 〈(ha, vb), (hc, vd)〉 � φ ∨ ψ iff M, 〈(ha, vb), (hc, vd)〉 � φ or M, 〈(ha, vb),

(hc, vd)〉 � ψ;
– M, 〈(ha, vb), (hc, vd)〉 � 〈E〉ψ iff there exists he ∈ Dh such that hc < he, and

M, 〈(hc, vb), (he, vd)〉 � ψ;
– M〈(ha, vb), (hc, vd)〉 � 〈W〉ψ iff there exists he ∈ Dh such that he < ha, and

M, 〈(he, vb), (ha, vd)〉 � ψ;
– M, 〈(ha, vb), (hc, vd)〉 � 〈N〉ψ iff there exists ve ∈ Dv such that vd < ve, and

M, 〈(ha, vd), (hc, ve)〉 � ψ;
– M, 〈(ha, vb), (hc, vd)〉 � 〈S〉ψ iff there exists ve ∈ Dv such that ve < vb, and

M, 〈(ha, ve), (hc, vb)〉 � ψ.

As an example, the semantics of 〈E〉 (resp., 〈N〉) is graphically depicted in Fig-
ure 1 (left): if 〈(ha, vb), (hc, vd)〉 satisfies 〈E〉p (resp., 〈N〉p), then there exists a
rectangle whose left (resp., bottom) edge coincides with the right (resp., top)
edge of 〈(ha, vb), (hc,vd)〉 that satisfies p.

Both the strength (expressiveness) and the weakness (undecidability) of the
logic SpPNL originate from the fact that its operators allow one to move (in one
step) from one rectangle to a right (resp., left, top, bottom) adjacent one. As
an example, when we apply the operator 〈E〉 to move to the right of the cur-
rent rectangle, three out of four coordinates of the resulting rectangle, namely,
hc, vb, vd, are determined by (coincide with) those of the current one. The com-
putational behavior of the logic can be improved by relaxing such a constraint.
Let us define the east (resp., west, north, south) of a rectangle as the entire area
to the right of it (resp., to the left of it, over it, under it) and redefine the se-
mantics of the modal operators accordingly. The revised semantics of 〈E〉 (resp.,

126 D. Bresolin et al.

p

p

〈E〉p
〈N〉p

p〈E〉p
〈N〉p

p

Fig. 1. The semantics of 〈E〉 and 〈N〉 in SpPNL (left) and WSpPNL (right)

〈N〉) is graphically depicted in Figure 1 (right). According to it, only one out of
four coordinates of the resulting rectangle, namely, hc (resp., vd), is determined
by (coincide with) those of the current one.

Weak SpPNL (WSpPNL for short) features the east 〈E〉 and north 〈N〉modal-
ities only, endowed with the above-described weakened semantics. The language
of WSpPNL consists of a set of propositional variables AP , the logical connec-
tives ¬ and ∨, and the modalities 〈E〉 and 〈N〉. The other logical connectives and
the logical constants and ⊥ are defined in the usual way. WSpPNL formulas
are recursively defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈E〉ϕ | 〈N〉ϕ.

Given a model M and an object 〈(ha, vb), (hc, vd)〉, the clauses for the two
modal operators are revised as follows:

– M, 〈(ha, vb), (hc, vd)〉 � 〈E〉ψ iff there exist he ∈ Dh and vf , vg ∈ Dv such
that hc < he, vf < vg, and M, 〈(hc, vf), (he, vg)〉 � ψ;

– M, 〈(ha, vb), (hc, vd)〉 � 〈N〉ψ iff there exist ve ∈ Dv and hf , hg ∈ Dh such
that vd < ve, hf < hg, and M, 〈(hf , vd), (hg, ve)〉 � ψ.

Let [E] and [N] be the duals of 〈E〉 and 〈N〉, respectively. We say that ϕ is a
horizontal formula if ϕ = 〈E〉ψ or ϕ = [E]ψ for some ψ (notice that ¬〈E〉ψ is
equivalent to [E]¬ψ and ¬[E]ψ is equivalent to 〈E〉¬ψ); similarly, we say that ϕ
is a vertical formula if ϕ = 〈N〉ψ or ϕ = [N]ψ for some ψ. Spatial formulas are
horizontal and vertical formulas.

Since WSpPNL features only north/east operators, we can restrict our atten-
tion to the initial object 〈(0, 0), (1, 1)〉, as stated by the following proposition.

Proposition 1. Let ϕ be a WSpPNL-formula. Then, ϕ is satisfiable if and only
if the WSpPNL-formula ϕ′ = ϕ∨〈E〉ϕ∨〈E〉〈E〉ϕ∨〈N〉ϕ∨〈N〉〈N〉ϕ is satisfiable
over the initial object.

Thanks to Proposition 1, satisfiability of a WSpPNL-formula ϕ thus reduces to
the existence of a model M such that M, 〈(0, 0), (1, 1)〉 � ϕ′.

A Tableau-Based System for Spatial Reasoning about Directional Relations 127

3 WSpPNL Expressiveness

In this section we show that, despite its simplicity, WSpPNL is expressive enough
to capture various interesting spatial notions. First of all, it makes it possible
to define a sort of pseudo-universal modal operator. As implicitly stated by
Proposition 1, the lack of the south/west operators prevents WSpPNL from
accessing objects whose left bottom corner is equal to (0, 0). However, WSpPNL
can access every other object of the frame.

Definition 1. Given a WSpPNL-formula ψ, we say that ψ is true almost ev-
erywhere in a model M if and only if for every object 〈(ha, vb),(hc, vd)〉 such that
ha = 0 or vb = 0, M, 〈(ha, vb),(hc, vd)〉 � ψ.

Let [WU] (weakly universal) be the following derived operator of WSpPNL:

[WU]ψ ::= ψ ∧ [N][E]ψ ∧ [E][N]ψ.

The next proposition shows that the operator [WU] captures the notion intro-
duced by Definition 1.

Proposition 2. Let M be a spatial model and 〈(ha, vb), (hc, vd)〉 be one of its
objects, with ha = 0 or vb = 0. We have that M, 〈(ha, vb), (hc, vd)〉 � [WU]ψ if
and only if ψ is true almost everywhere in M .

Moreover, for any propositional letter p ∈ AP, WSpPNL allows one to express
a weak nominal wn(p).

Definition 2. Given a propositional variable p ∈ AP, we say that p is true
almost only on 〈(ha, vb), (hc, vd)〉, with ha = 0 or vb = 0, in a model M if and
only if M, 〈(ha, vb),(hc, vd)〉 � p and, for every object 〈(h′a, v′b), (h′c, v′d)〉 = 〈(ha,
vb),(hc, vd), with h′a = 0 or v′b = 0, M, 〈(h′a, v′b), (h′c, v′d)〉 � ¬p.

Given a propositional variable p, the operator wn(p) (p is a weak nominal) can be
expressed in WSpPNL by taking advantage of two special propositional variables
p̄h and p̄v as follows:

wn(p) ::= wn1(p) ∧ wn2(p) ∧wn3(p),

where

wn1(p) ::= p ∧ 〈E〉ph ∧ 〈N〉pv,

wn2(p) ::= [WU]((〈E〉p → ¬〈E〉〈E〉p) ∧ (〈N〉p → ¬〈N〉〈N〉p)), and

wn3(p) ::= [WU](p → ¬〈E〉〈E〉ph ∧ ¬〈N〉〈N〉pv).

Proposition 3. Let M be a spatial model and 〈(ha, vb), (hc, vd)〉 be one of its ob-
jects, with ha = 0 or vb = 0. It holds that if M, 〈(ha, vb), (hc, vd)〉 � wn(p), then
M, 〈(ha, vb), (hc, vd)〉 � p and, for any object 〈(h′a, v′b), (h

′
c, v

′
d)〉 = 〈(ha, vb), (hc,

vd)〉, with h′a = 0 or v′b = 0, M, 〈(h′a, v′b), (h
′
c, v

′
d)〉 � p.

128 D. Bresolin et al.

As shown in [15], one of the possible measures of the expressive power of a
directional-based spatial logic for rectangles is the comparison with Rectan-
gle Algebra (RA) [16]. In RA, one considers a finite set of objects (rectangles)
O1, . . . On and a set of constraints between pair of objects. Each constraint is
a pair of Allen’s IA relations that capture the relationships between the pro-
jections on the x- and the y-axis of the objects. As an example, O1(ri, rj)O2
means that ri (resp., rj) is the interval relation between the x-projections (resp.,
y-projections) of O1 and O2. In general, given an algebraic constraint network,
the main problem is to establish whether the network is consistent, that is, if
all constraints can be jointly satisfied. In [15], it has been shown that SpPNL
is powerful enough to express and check the consistency of an RA-constraint
network. In the following, we show that the same can be done in WSpPNL as
well, exploiting the weakly universal operator and the weak nominals1. To this
end, we take advantage of the technique used in [15]. Given an RA-constraint
network with objects O1, . . . , On, we introduce a propositional variable for ev-
ery object and we force it to be a weak nominal. Moreover, we introduce ad-
ditional nominals for every constraint of the network whenever necessary. In
such a way, we are able to represent the network as a conjunction of WSpPNL
formulas which is satisfiable if and only if the network is consistent. On the
one hand, such an encoding of the consistency problem involves a blow-up in
computational complexity: while an RA-constraint network can be checked for
consistency in NP-time, the satisfiability problem for WSpPNL is, as we will
see, NEXPTIME-complete. On the other hand, WSpPNL allows one to express
a number of conditions, such as, for instance, arbitrary logical disjunctions, nega-
tions, and universal properties [8], that cannot be encoded in an RA-constraint
network. Let us show now, as a source of exemplification, how WSpPNL can
express the RA-constraint O1(d, b)O2 between two objects O1 and O2, that is,
the x-projection (resp., y-) of O1 is during (resp., before) the x-projection (resp.,
y-) of O2. Let O1, O2, and O(d,b) be three propositional variables and let 〈∃〉ψ be
a shorthand for 〈N〉ψ ∨ 〈N〉〈N〉ψ ∨ 〈E〉ψ ∨ 〈E〉〈E〉ψ. The constraint “there exist
two objects O1 and O2 such that O1(d, b)O2” can be expressed by the following
WSpPNL formula:

〈∃〉wn(O1) ∧ 〈∃〉wn(O2) ∧ 〈∃〉wn(O(d,b)) ∧ [WU](O1 → 〈E〉〈E〉O(d,b))∧

[WU](O2 → 〈E〉O(d,b)) ∧ [WU](〈E〉O2 → 〈E〉〈E〉O1) ∧ [WU](O1 → 〈N〉〈N〉O2).

4 WSpPNL Decidability and Complexity

In this section we prove some basic results which are instrumental to the devel-
opment of a sound and complete (terminating) tableau system for WSpPNL.

Let ϕ be an WSpPNL-formula to be checked for satisfiability and let AP be
the set of its propositional variables.
1 It worth pointing out that the restriction to frames based on natural numbers and

the exclusion of objects with left bottom corner equal to (0,) or (, 0) do not change
the status of the network (consistent/inconsistent).

A Tableau-Based System for Spatial Reasoning about Directional Relations 129

Definition 3. The closure CL(ϕ) of ϕ is the set of all sub-formulas of ϕ and of
their negations (we identify ¬¬ψ with ψ). The set of horizontal (resp., vertical)
spatial requests of ϕ is the set HF(ϕ) (resp., VF(ϕ)) of all horizontal (resp., ver-
tical) spatial formulas in CL(ϕ), that is, HF(ϕ) = {〈E〉ψ, [E]ψ ∈ CL(ϕ)} (resp.,
VF(ϕ) = {〈N〉ψ, [N]ψ ∈ CL(ϕ)}).

Let |ϕ| (the size of ϕ) be the number of symbols of ϕ. By induction on the
structure of ϕ, we can easily prove the following proposition.

Proposition 4. For every formula ϕ, |CL(ϕ)| is less than or equal to 2 · |ϕ|,
while |HF(ϕ)| and |VF(ϕ)| are less than or equal to 2 · |ϕ| − 2.

Definition 4. A ϕ-atom is a set A ⊆ CL(ϕ) such that:

– for every ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ ∈ A;
– for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ. We have that |Aϕ| ≤ 2|ϕ|. Atoms are
connected by the following binary relations.

Definition 5. Let Rh
ϕ (resp., Rv

ϕ) be a binary relation over Aϕ such that, for
every pair of atoms A, A′ ∈ Aϕ, A Rh

ϕ A′ (resp., A Rv
ϕ A′) if and only if, for

every [E]ψ ∈ CL(ϕ) (resp., [N]ψ ∈ CL(ϕ)), if [E]ψ ∈ A (resp., [N]ψ ∈ A), then
ψ ∈ A′.

We now introduce a suitable labelling of spatial structures based on ϕ-atoms.

Definition 6. We define a ϕ-labelled spatial structure (LSS for short) as a pair
L = ((F, O(F)),L), where (F, O(F)) is a spatial structure and L : O(F) �→ Aϕ

is a labelling function such that, for every pair of objects 〈(ha, vb), (hc, vd)〉 and
〈(hc, ve), (hf , vg)〉, L(〈(ha, vb), (hc, vd)〉) Rh

ϕ L(〈(hc, ve), (hf , vg)〉), and for every
pair of objects 〈(ha, vb), (hc, vd)〉 and 〈(he, vd), (hf , vg)〉, L(〈(ha, vb), (hc, vd)〉)
Rv

ϕ L(〈(he, vd),(hf , vg)〉). An LSS L is said to be horizontally (resp., vertically)
fulfilling if and only if, for every horizontal (resp., vertical) formula of the type
〈E〉ψ ∈ CL(ϕ) (resp., 〈N〉ψ ∈ CL(ϕ)) and every object 〈(ha, vb), (hc, vd)〉, if
〈E〉ψ ∈ L(〈(ha, vb), (hc, vd)〉) (resp., 〈N〉ψ ∈ L(〈(ha, vb), (hc, vd)〉)), then there
exists an object 〈(hc, ve), (hf , vg)〉 (resp., 〈(he, vd), (hf , vg)〉) such that ψ ∈
L(〈(hc, ve),(hf , vg)〉) (resp., ψ ∈ L(〈(he, vd), (hf , vg)〉)). An LSS L is said to be
fulfilling if and only if it is both horizontally and vertically fulfilling.

A formula ϕ is satisfiable if and only if there exists a fulfilling LSS such that ϕ
belongs to the labelling of the initial object, as stated by the following theorem.

Theorem 1. A formula ϕ is satisfiable if and only if there exists a fulfilling
LSS L = (F, O(F),L), with ϕ ∈ L(〈(0, 0), (1, 1)〉).

The above theorem reduces the satisfiability problem for ϕ to the problem of
finding a fulfilling LSS with the initial object labelled by ϕ. From now on, we
say that a fulfilling LSS L satisfies ϕ if and only if ϕ ∈ L(〈(0, 0), (1, 1)〉).

130 D. Bresolin et al.

Since fulfilling LSSs satisfying ϕ may be arbitrarily large or even infinite, we
must find a way to finitely establish their existence. In the following, we first
give a bound on the size of finite fulfilling LSSs and then we show that in the
infinite case we can safely restrict ourselves to infinite fulfilling LSSs with a finite
bounded representation. To prove these results, we take advantage of the follow-
ing two fundamental properties of LSSs: (i) the labellings of all objects that share
the rightmost horizontal (resp., topmost vertical) coordinate must agree on hori-
zontal (resp., vertical) spatial formulas, that is, for every ha, vb, hc, vd, he, vf , vg,
〈E〉ψ, [E]ψ ∈ L(〈(ha, vb),(hc, vd)〉) if and only if 〈E〉ψ, [E]ψ ∈ L(〈(he, vf),(hc,
vg)〉) (resp., for every ha, vb, hc, vd, he, vf , hg, 〈N〉ψ, [N]ψ ∈ L(〈(ha, vb),(hc, vd)〉)
if and only if 〈N〉ψ, [N]ψ ∈ L(〈(he, vf),(hg, vd)〉)); (ii) |HF(ϕ)|

2 different objects of
the type 〈(hc, ve),(hf , vg)〉 are sufficient to fulfill the existential horizontal formu-
las belonging to the labelling of an object 〈(ha, vb),(hc, vd)〉 (and symmetrically
for the vertical axis).

Definition 7. Given an LSS L = (F, O(F),L) and hc ∈ Dh (resp., vd ∈ Dv),
we denote by REQh(hc) (resp., REQv(vd) the set of all and only the horizontal
(resp., vertical) formulas belonging to the labellings of the objects of the type
〈(ha, vb),(hc, vd)〉. The set REQh(ϕ) (resp., REQv(ϕ)) is the set of all possible
sets of horizontal (resp., vertical) requests for the formula ϕ.

In order to bound the size of finite LSSs that we must take into consideration
when checking the satisfiability of a given formula ϕ, we determine the maximum
number of times that any set in REQh(ϕ) (resp., REQv(ϕ)) may appear in a
given LSS.

Definition 8. Given an LSS L = (F, O(F),L), a set of points D′h ⊆ Dh (resp.,
D′v ⊆ Dv), and a set of horizontal (resp., vertical) formulas R ⊆ HF(ϕ) (resp.,
VF(ϕ)), we say that R occurs n times in D′h (resp., D′v) if and only if there
exist exactly n distinct points hi1 , . . . , hin ∈ D′h (resp., D′v) such that REQh(hij)
(resp., REQv(hij)) = R, for all 1 ≤ j ≤ n.

The main technical ingredient of the proof is given by the following lemmas
that, given a fulfilling LSS, show when and how it is possible to remove a point
from it in such a way that the resulting LSS is still fulfilling. From now on, let
mh = |HF(ϕ)|

2 and mv = |VF(ϕ)|
2 .

Lemma 1. Let L = (F, O(F),L) be a fulfilling LSS that satisfies ϕ. If there
exists a point hil

∈ Dh, with hil
> 0, such that there are at least mv ·mh + mv

points 0 < hij < hil
and at least mh + mv points hil

< hij such that, for every
j, REQh(hil

) = REQh(hij), then there exists a fulfilling LSS L = (F, O(F),L)
that satisfies ϕ, with Dh = Dh \ {hil

} and Dv = Dv.

Lemma 1 can be intuitively explained as follows. When we remove a “horizontal”
point hil

, that is, all points with horizontal coordinate equal to hil
(in fact,

removing hil
means removing all objects having hil

as their leftmost or rightmost
horizontal coordinate), we can introduce one or more defects in L. Such defects

A Tableau-Based System for Spatial Reasoning about Directional Relations 131

hi1
. . . hij

. . . hil hθ ha

va

vb

vθ

v′
θ

ψ

θ

ψθ

θ

〈N〉ψ

〈E〉θ

Fig. 2. Fixing defects of type 3

can be of three different types, depending on which kind of existential formulas
are no more satisfied as an effect of the removal of hil

. A defect of type 1 is
generated by an 〈E〉ψ formula belonging to the set of requests of a point to the
west of hil

. Such a defect can be immediately fixed by taking advantage of the
copies of hil

to the east of it. A defect of type 2 is generated by an 〈N〉ψ formula
belonging to the set REQv(va), where va is the bottommost vertical coordinate
of an object with rightmost horizontal coordinate hil

. As in the previous case,
such a defect can be immediately fixed by using the copies of hil

to the east
of it. A defect of type 3 is generated by an 〈N〉ψ formula belonging to the set
REQv(va), where va is the bottommost vertical coordinate of an object with
leftmost horizontal coordinate hil

. As shown in Fig. 2, to fix a defect of this
type, we take advantage of the copies of hij to the west of it. Replacing θ by
ψ in the labeling of the object 〈(hij , va), (ha, vb)〉 may possibly introduce a new
defect (〈E〉θ). Thanks to the availability of a sufficient number of copies of hil

to
the west of it, we can guarantee that such a new defect may involve a horizontal
request only and it can be solved by forcing hij to behave as hil

behaved.

Lemma 2. Let L = (F, O(F),L) be a fulfilling LSS that satisfies ϕ. If there
exists a point vil

> 0 ∈ Dv such that there are at least mv · mh + mh points
0 < vij < vil

and at least mh + mv points vil
< vij such that, for every j,

REQv(vil
) = REQv(vij), then there exists a fulfilling LSS L = (F, O(F),L) that

satisfies ϕ, with Dh = Dh and Dv = Dv \ {vil
}.

The above lemmas can be directly exploited to give a bound on finite LSSs.

Theorem 2. Let L = (F, O(F),L) be a finite fulfilling LSS that satisfies ϕ.
Then, there exists a finite fulfilling LSS L = (F, O(F),L) that satisfies ϕ such
that, for every hi ∈ Dh (resp., vj ∈ Dv), REQh(hi) occurs at most mv ·mh + 2 ·
mv +mh times in Dh\{0} (resp., REQv(vj) occurs at most mv ·mh +2 ·mh+mv

times in Dv \ {0}).

Infinite structures can be dealt with as follows. First of all, we must distinguish
among three types of infinite LSSs, depending on whether only one domain is

132 D. Bresolin et al.

infinite (and which one) or both. For each of them, we introduce an appropriate
representation.

Definition 9. An infinite LSS L = (F, O(F),L) is horizontally ultimately peri-
odic, with prefix lh and period ph > 0, if and only if for all i > lh, REQh(hi) =
REQh(hi+ph

); it is vertically ultimately periodic, with prefix lv and period pv >
0, if and only if for all j > lv, REQv(vj) = REQv(vj+pv); it is simply ulti-
mately periodic if it is (i) both horizontally and vertically ultimately periodic,
or (ii) horizontally ultimately periodic and vertically finite, or (iii) horizontally
finite and vertically ultimately periodic.

The proof for the infinite case essentially reduces to show that for any infinite
fulfilling LSS there exists an equivalent ultimately periodic fulfilling LSS whose
horizontal and/or vertical prefixes and periods satisfy suitable bounds. In case
of structures which are infinite in one dimension only, say, the horizontal one,
the search for an ultimately periodic characterization of this component can be
paired with the application of the argument of Theorem 2 to the other compo-
nent, say, the vertical one (the case in which the vertical component is infinite
and the horizontal one is finite is fully symmetric). Let us assume the finite ver-
tical component to be bounded, that is, for each vj ∈ Dv, REQv(vj) occurs at
most mv ·mh + 2 ·mh + mv times in Dv \ {0}. The following theorem holds.

Theorem 3. Let L = (F, O(F),L) be a horizontally infinite fulfilling LSS that
satisfies ϕ. Then, there exists a horizontally ultimately periodic fulfilling LSS
L = (F, O(F),L), with prefix lh and period ph, that satisfies ϕ such that:

1. for every set of requests R that occurs only finitely often in L, R appears at
most mv ·mh + 2 ·mv + mh times in the set {hj | j ≤ lh};

2. for every set of requests R that occurs infinitely often in L, R appears at
most mv ·mh + mv times in the set {hj | j ≤ lh};

3. for every pair of points ha, hb ∈ Dh, with hlh < ha, hb ≤ hlh+ph
, if a = b,

then REQh(ha) = REQh(hb).

By applying a similar process to the vertical component, it is possible to get
an ultimately periodic counterpart to any LSS, which is infinite in the vertical
dimension or in both dimensions. Hence, the search for LSS (models) satisfying
a given WSpPNL-formula can be confined to the structures of Definition 9.

Taking advantage of Theorem 2 and Theorem 3, we can devise a simple de-
cision procedure for WSpPNL, that restricts the search for a model satisfy-
ing ϕ to finite exponential (pseudo-)models (such a decision procedure can be
viewed as a generalization of the one for RPNL given in [7]). It immediately
follows that the satisfiability problem for WSpPNL is in NEXPTIME. To prove
NEXPTIME-hardness, we will reduce the satisfiability problem for RPNL over
natural numbers (which has been shown to be NEXPTIME-hard in [7]) to it.

RPNL is the future fragment of the interval logic of temporal neighborhood.
Formulas of RPNL are built on by using propositional variables, logical connec-
tives, and the neighborhood modality 〈A〉 according to the grammar:

f ::= p | ¬f | f ∨ g | 〈A〉f

A Tableau-Based System for Spatial Reasoning about Directional Relations 133

RPNL is interpreted over models of the form M = 〈D, I(D),V〉, where D = 〈D, <〉
is N or a prefix of it, I(D) = {[di, dj] | di < dj , di, dj ∈ D} is the set of all
intervals over D, and V is the evaluation function. The semantics of 〈A〉 is such
that M, [di, dj] � 〈A〉f iff ∃dk ∈ D, with dk > dj , such that M, [dj , dk] � f .

Let us consider now an encoding η of RPNL formulas into WSpPNL that
makes no change to the original formula except for the replacement of 〈A〉 with
〈E〉. It is not difficult to prove the next lemma.

Lemma 3. Let ϕ be an RPNL-formula. We have that ϕ is satisfiable if and only
if the WSpPNL-formula η(ϕ) ∧ [E][N]⊥ is satisfiable.

Hence, we have the following theorem.

Theorem 4. The satisfiability problem for WSpPNL is NEXPTIME-complete.

5 The Tableau Method

In this section, we present a sound and complete (terminating) tableau method
for WSpPNL based on the model-theoretic results of the previous section. We
assume the reader to be familiar with the standard notions of decorated tree,
node in a tree, leaf, branch, and height of a tree.

Definition 10. Given any WSpPNL-formula ϕ to be checked for satisfiability,
a tableau for ϕ is a suitable decorated tree Tϕ. Each node of Tϕ is labelled with
a tuple of the type 〈ψ, 〈(ha, vb), (hc, vd)〉, Dh, Dv〉 where ψ ∈ CL(ϕ), Dh and Dv

are finite linearly-ordered sets, and 〈(ha, vb), (hc, vd)〉 ∈ O(F), where F is the
spatial frame obtained from Dh and Dv.

Given a tableau Tϕ and a branch B of it, we denote with DB
h (resp. DB

v) the
linear order Dh (resp., Dv) associated with the leaf of B. Moreover, we denote
by ΓB(〈(ha, vb), (hc, vd)〉) the set {ψ | 〈ψ, 〈(ha, vb), (hc, vd)〉, Dh, Dv〉 ∈ B}. Let
N = {n1, ..., nk} be a finite set of nodes. We denote by B · N the expansion
B · n1 | ... | nk, obtained by adding k immediate successors to the leaf of B.
Given a finite linear order D = {d0, ..., dm} and a point d /∈ D, we denote by
D ∪ {di < d < di+1} (resp., D ∪ {dm < d}) the linear order obtained from D
adding d in between di and di+1 (resp., after dm)2.

Given a tableau Tϕ for a WSpPNL-formula ϕ and one of its branches B, for
every horizontal (resp., vertical) coordinate h ∈ DB

h (resp., v ∈ DB
v), we define

the set of its horizontal (resp., vertical) requests REQB
h (h) (resp., REQB

v (v)) as
the smallest set satisfying the following properties:

– if exists n = 〈〈E〉ψ, 〈(ha, vb), (h, vd)〉, DB
h , DB

v 〉 in B, then 〈E〉ψ ∈ REQB
h (h);

– if exists n = 〈〈N〉ψ, 〈(ha, vb), (hc, v)〉, DB
h , DB

v 〉 in B, then 〈N〉ψ ∈ REQB
v (v);

– if exists n = 〈[E]ψ, 〈(ha, vb), (h, vd)〉, DB
h , DB

v 〉 in B, then [E]ψ ∈ REQB
h (h);

2 Hereafter, for the sake of simplicity, we will denote both cases as D∪{di < d < di+1}
with the implicit assumption that di+1 is missing whenever di = dm.

134 D. Bresolin et al.

– if exists n = 〈[N]ψ, 〈(ha, vb), (hc, v)〉, DB
h , DB

v 〉 in B, then [N]ψ ∈ REQB
v (v);

– if exists n = 〈ψ, 〈(h, vb), (hc, vd)〉, DB
h , DB

v 〉 in B and 〈E〉ψ ∈ CL(ϕ), then
〈E〉ψ ∈ REQB

h (h);
– if exists n = 〈ψ, 〈(ha, v), (hc, vd)〉, DB

h , DB
v 〉in B and 〈N〉ψ ∈ CL(ϕ), then

〈N〉ψ ∈ REQB
v (v).

Rules. Let Tϕ be a tableau for a WSpPNL-formula ϕ and let B be a branch of
it. The following rules can be applied to B:

– Not-rule: if there exists a node labelled with 〈¬¬ψ, 〈(ha, vb), (hc, vd)〉, Dh,
Dv〉 and ψ /∈ ΓB(〈(ha, vb), (hc, vd)〉), then expand B to B · n, where n =
〈ψ, 〈(ha, vb), (hc, vd)〉, DB

h , DB
v 〉;

– And-rule: if there exists a node labelled with 〈¬(ψ1∨ψ2), 〈(ha, vb), (hc, vd)〉,
Dh, Dv〉 ∈ B and {¬ψ1, ¬ψ2} ⊆ ΓB(〈(ha, vb), (hc, vd)〉), then expand B
to B · n1 · n2, where n1 = 〈¬ψ1, 〈(ha, vb), (hc, vd)〉, DB

h , DB
v 〉 and n2 =

〈¬ψ2, 〈(ha, vb), (hc, vd)〉, DB
h , DB

v 〉 (if one between ¬ψ1 and ¬ψ2 already be-
longs to ΓB(〈(ha, vb), (hc, vd)〉), we can avoid to add the corresponding node);

– Or-rule: if exists 〈(ψ1∨ψ2), 〈(ha, vb), (hc, vd)〉, Dh, Dv〉 ∈ B, and {ψ1, ψ2}∩
ΓB(〈(ha, vb), (hc, vd)〉) = ∅, then expand B to B·n1|n2, where n1 = 〈ψ1, 〈(ha,
vb), (hc, vd)〉, DB

h , DB
v 〉 and n2 = 〈ψ2, 〈(ha, vb), (hc, vd)〉, DB

h , DB
v 〉;

– DiamondE-rule: if for some point ha ∈ DB
h it holds that 〈E〉ψ ∈ REQB

h (ha)
and, for every hc ∈ DB

h , with hc > ha, and every vb, vd ∈ DB
v , ψ /∈

ΓB(〈(ha, vb), (hc, vd)〉), then we expand B as follows. Let h, v, v′ three fresh
points. We define the following classes of nodes:
• n

(i,j)
l = 〈ψ, 〈(ha, vl), (hi, vj)〉, Dh, Dv〉;

• m
(i,j)
l = 〈ψ, 〈(ha, v′), (hi, vj)〉, Dh, Dv ∪ {vl < v′ < vl+1}〉;

• n
(i,j)
l = 〈ψ, 〈(ha, vl), (h, vj)〉, Dh ∪ {hi < h < hi+1}, Dv〉;

• m
(i,j)
l = 〈ψ, 〈(ha, v′), (h, vj)〉, Dh ∪ {hi < h < hi+1}, Dv ∪ {vl < v′ <

vl+1}〉;
• n̂

(i,j)
l = 〈ψ, 〈(ha, vl), (hi, v)〉, Dh, Dv ∪ {vj < v < vj+1}〉;

• m̂
(i,j)
l = 〈ψ, 〈(ha, v′), (hi, v)〉, Dh, Dv ∪ {vl < v′ < vl+1, vj < v < vj+1}〉;

• ñ
(i,j)
l = 〈ψ, 〈(ha, vl), (h, v)〉, Dh∪{hi < h < hi+1}, Dv∪{vj < v < vj+1}〉;

• m̃
(i,j)
l = 〈ψ, 〈(ha, v′), (h, v)〉, Dh ∪ {hi < h < hi+1}, Dv ∪ {vl < v′ <

vl+1, vj < v < vj+1}〉.
Let N = {n(i,j)

l |a + 1 ≤ i ≤ |DB
h | − 1 ∧ 0 ≤ j ∧ l ≤ |DB

v | − 1 ∧ l ≤ j} ∪ . . .∪
{m̃(i,j)

l |a + 1 ≤ i ≤ |DB
h | − 1 ∧ 0 ≤ j ∧ l ≤ |DB

v | − 1 ∧ l ≤ j}. We expand B
to B ·N ;

– DiamondN-rule: analogous to the previous case;
– BoxE-rule: if for some point ha ∈ DB

h we have that [E]ψ ∈ REQB
h (ha) and

there exist three points hc ∈ DB
h , vb, vd ∈ DB

v , such that ψ /∈ ΓB(〈(h, vb),
(hc, vd)〉), then we expand B to B · n where 〈ψ, 〈(h, vb), (hc, vd)〉, DB

h , DB
v 〉;

– BoxN-rule: analogous to the previous case.

The behavior of the DiamondE-rule can be explained as follows. Suppose that
we are trying to build a model for the formula ϕ and, at a certain stage of the

A Tableau-Based System for Spatial Reasoning about Directional Relations 135

construction, we find an object labeled by 〈E〉ψ. We have to foresee all possible
ways of satisfying the request 〈E〉ψ, namely, ψ can be satisfied on an object that
has been already introduced in the model (node class n

(i,j)
l) or on a new one. In

the latter case, the new object can be created by adding at most one point in the
horizontal component and at most two points in the vertical one, in all possible
ways with respect to the existing points. This forces us to consider seven distinct
classes of new nodes.

Expansion Strategy. We introduce the notions of fulfilled branch, closed (and
open) branch, and blocked (and non-blocked) branch, and we describe how the
expansion rules must be applied in order to guarantee the completeness of the
method. We say that 〈E〉ψ ∈ HF(ϕ) (resp., 〈N〉ψ ∈ VF(ϕ)) is fulfilled for h by h′

(resp., fulfilled for v by v′) if there exists a node n = 〈ψ, 〈(h, vb), (h′, vd)〉, DB
h , DB

v 〉
(resp., n = 〈ψ, 〈(ha, v), (hc, v

′)〉, DB
h , DB

v 〉) in B.

Definition 11. Let Tϕ be a tableau for a WSpPNL-formula ϕ and B be one of
its branches. We say that B is horizontally (resp., vertically) fulfilled if there
exist two points hp < hq ∈ DB

h (resp., vp < vq ∈ DB
v) such that the following

conditions are respected:

1. for every h ≤ hq (resp., v ≤ vq), every formula 〈E〉ψ ∈ REQB
h (h) (resp.,

〈N〉ψ ∈ REQB
v (v)) is fulfilled in B;

2. for every point h′ ≥ hp (resp., v′ ≥ vp), there exists a point h′′ < hp

(resp., v′′ < vp) such that REQB
h (h′) = REQB

h (h′′) (resp., REQB
v (v′) =

REQB
v (v′′));

3. for every point h′ ≥ hq (resp., v′ ≥ vq), there exists a point hp ≤ h′′ ≤ hq

(resp., vp ≤ v′′ ≤ vq) such that REQB
h (h′) = REQB

h (h′′) (resp., REQB
v (v′) =

REQB
v (v′′)).

The notion of horizontally (resp., vertically) fulfilled branch can be explained as
follows. If each existential formula in B is explicitly fulfilled, we can choose the
greatest element of DB

h (resp., DB
v) as hq (resp., vq) and any other (distinct)

element of DB
h (resp., DB

v) as hp (resp., vp). This deals with the case of finite
models. If there exist some existential formulas in B which are not explicitly
fulfilled, it is possible to show that the satisfaction of the conditions of Definition
11 guarantees the existence of an infinite model for ϕ (in fact, it allows us to
produce a finite representation of an ultimately periodic model for ϕ).

Definition 12. Let Tϕ be a tableau for a WSpPNL-formula ϕ and let B be
one of its branches. We say that B is closed if and only if there exist four
points ha, hc ∈ DB

h and vb, vd ∈ DB
v such that {ψ,¬ψ} ⊆ ΓB(〈(ha, vb), (hc, vd)〉);

otherwise, we say that it is open.

Definition 13. Let Tϕ be a tableau for a WSpPNL-formula ϕ and let B be one
of its branches. We say that B is blocked if and only if one of the following
conditions hold:

136 D. Bresolin et al.

1. there exists a point h ∈ DB
h such that REQB

h (h) occurs mv ·mh+2·mv+mh+1
times in DB

h ;
2. there exists a point v ∈ DB

v such that REQB
v (v) occurs mv ·mh+2·mh+mv+1

times in DB
v .

Given a WSpPNL-formula ϕ, the initial tableau Tϕ for ϕ is a single-node tree
labelled by 〈ϕ, 〈(h0, v0), (h1, v1)〉, {h0 < h1}, {v0 < v1}〉. We expand the tableau
by applying to its open branches B the following rules (in the given order):

1. apply the Not/And/Or-rules until they generate no new nodes in Tϕ;
2. apply the BoxE/BoxN-rules until they generate no new nodes in Tϕ;
3. if B is not blocked and it is not horizontally (resp., vertically) fulfilled, apply

the DiamondE-rule (resp., DiamondN-rule) to it.

Definition 14. Given a WSpPNL-formula ϕ and a tableau Tϕ for it, we say
that Tϕ is final if and only if the application of the expansion strategy to every
open branch of Tϕ does not generate new nodes. A final Tϕ is said to be open if
there exists a vertically and horizontally fulfilled open branch B in it.

Soundness and Completeness. To prove that the method is sound, we take
a open branch B, that is both horizontally and vertically fulfilled, and show how
to obtain a model for the formula ϕ from it.

Theorem 5. If ϕ is a WSpPNL-formula and Tϕ is an open final tableau for it,
then ϕ is satisfiable.

To prove that the method is complete it suffices to show that, for each LSS
satisfying either the conditions of Theorem 2 or those of Theorem 3, there
exists a corresponding horizontally and vertically fulfilled open branch in the
(generated) final tableau Tϕ for ϕ.

Theorem 6. If ϕ is a satisfiable WSpPNL-formula, then there exists a final
tableau Tϕ for it.

6 Conclusions and Open Problems

In the paper, we introduced and studied a decidable modal logic for spatial
reasoning about directional relations. In particular, we proved its NEXPTIME-
completeness and we provided it with an optimal tableau-based decision pro-
cedure. The achieved results can be generalized in several directions. First, the
logic can be extended to the three-dimensional case, and beyond. The restric-
tion to two directions only can be removed as well. In both cases, the resulting
logic preserves decidability. Moreover, we believe it is possible to extend it to
dense domains without loosing decidability. Other extensions seem to be more
problematic from the decidability point of view. We are currently thinking of
the possibility of constraining adjacent rectangles to overlap with respect to one
dimension or of restricting the east (resp., north) of a rectangle to the area to
the north-east of it only and to redefine the semantics of the modal operators ac-
cordingly (both restrictions can be easily lifted to the case of higher-dimensional
structures).

A Tableau-Based System for Spatial Reasoning about Directional Relations 137

References

1. Aiello, M., van Benthem, J.: A modal walk through space. Journal of Applied
Non-Classical Logic 12(3-4), 319–363 (2002)

2. Balbiani, P., Condotta, J.F., Fariñas del Cerro, L.: A model for reasoning about
bidimensional temporal relations. In: Proc. of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 124–130
(1998)

3. Balbiani, P., Condotta, J.F., Fariñas del Cerro, L.: A new tractable subclass of
the rectangle algebra. In: Proc. of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI-1999), pp. 442–447 (1999)

4. Bennett, B.: Spatial reasoning with propositional logics. In: Doyle, J., Sandewall,
E., Torasso, P. (eds.) Proc. of the Fourth International Conference on Principles
of Knowledge Representation and Reasoning (KR 1994), pp. 51–62. Morgan Kauf-
mann, San Francisco (1994)

5. Bennett, B.: Modal logics for qualitative spatial reasoning. Journal of the Interest
Group in Pure and Applied Logic (IGPL) 4(1), 23–45 (1996)

6. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal
logic as a framework for spatio-temporal reasoning. Applied Intelligence 17(3),
239–251 (2002)

7. Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for right
propositional neighborhood logic. Journal of Automated Reasoning 4(3), 305–330
(2007)

8. Chittaro, L., Montanari, A.: Temporal representation and reasoning in artificial
intelligence: Issues and approaches. Annals of Mathematics and Artificial Intelli-
gence 28(1-4), 47–106 (2000)

9. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An
overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)

10. Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood
temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)

11. Güsgen, H.: Spatial reasoning based on Allen’s temporal logic. Technical Report
ICSI TR89-049, International Computer Science Institute (1989)

12. Kontchakov, R., Pratt-Hartmann, I., Wolter, F., Zakharyaschev, M.: On the
computational complexity of spatial logics with connectedness constraints. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp.
574–589. Springer, Heidelberg (2008)

13. Lutz, C., Wolter, F.: Modal logics of topological relations. Logical Methods in
Computer Science 2(2) (2006)

14. Marx, M., Reynolds, M.: Undecidability of compass logic. Journal of Logic and
Computation 9(6), 897–914 (1999)

15. Morales, A., Navarrete, I., Sciavicco, G.: A new modal logic for reasoning about
space: spatial propositional neighborhood logic. Annals of Mathematics and Arti-
ficial Intelligence 51(1), 1–25 (2007)

16. Mukerjee, A., Joe, G.: A qualitative model for space. In: Proc. of the of the Eighth
National Conference on Artificial Intelligence (AAAI-1990), pp. 721–727 (1990)

17. Nutt, W.: On the translation of qualitative spatial reasoning problems into modal
logics. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS,
vol. 1701, pp. 113–124. Springer, Heidelberg (1999)

18. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre
Dame Journal of Formal Logic 31(4), 529–547 (1990)

Terminating Tableaux
for the Basic Fragment of

Simple Type Theory

Chad E. Brown and Gert Smolka

Saarland University, Saarbrücken, Germany

Abstract. We consider the basic fragment of simple type theory, which
restricts equations to base types and disallows lambda abstractions and
quantifiers. We show that this fragment has the finite model property
and that satisfiability can be decided with a terminating tableau system.
Both results are with respect to standard models.

1 Introduction

We are interested in higher-order fragments of classical simple type theory [1,2]
for which it is decidable whether a formula is satisfied by a standard model.
Only few such fragments are known:

– The propositional fragment, which is obtained by admitting no other base
type but the type of truth values. In this case decidability follows from the
fact that all types are interpreted as finite sets.

– The fragment consisting of disequations s = t where s and t are pure terms
that do not involve the type of truth values. The decidability follows from
the completeness of lambda conversion [3].

– The fragments that correspond to propositional modal logics with inductive
expressivity, for instance PDL [4] and the propositional μ-calculus [5].

In this paper we will show that the fragment of simple type theory that restricts
equations to base types and disallows lambda abstraction and quantification is
decidable. We call the formulas of this fragment basic. Here are examples of
unsatisfiable basic formulas:

1. h(h⊥=h¬⊥) = h⊥ h : oι
2. h(f(f(fx))) = h(fx) x : o, f : oo, h : oι
3. x=y ∧ gx=y ∧ gy=x ∧ f(f(fx))=g(fx) a, x, y : o, f, g : oo
4. x=y ∧ gx=y ∧ gy=x ∧ pg ∧ ¬p(¬) x, y : o, g : oo, p : (oo)o
5. qfx ∧ f(fx) ∧ f(qfx)=fx x : o, f : oo, q : (oo)oo

None of the formulas is a formula of standard first-order logic. Seen from the
perspective of first-order logic, basic formulas are quantifier-free formulas where
terms can be formulas and predicates and functions can be higher-order.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 138–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Terminating Tableaux for the Basic Fragment of Simple Type Theory 139

Most of the above formulas are out of the reach of the automated tactics of
Isabelle [6] and the higher-order provers TPS [7] and LEO-II [8]. We hope that
the techniques of this paper will contribute to better auto tactics for higher-order
proof assistants.

Our decision procedure comes in the form of a terminating tableau system,
which is a subsystem of a tableau system for full extensional type theory. The
extended system is the dual of a Henkin-complete cut-free one-sided sequent
calculus devised by Brown [9], which has been the starting point for the re-
search reported in this paper. The most difficult part of the correctness proof for
the terminating system is a model existence theorem, which we establish with
the possible-values technique. The possible-values technique originated with cut
elimination proofs [10,11] and has been used by Brown [9] to obtain Henkin mod-
els. We seem to be the first to obtain standard models with the possible-values
technique.

2 Basic Definitions

Types (σ, τ , μ) are obtained with the grammar σ ::= ι | o | σσ. The elements
of o are the two truth values, ι is interpreted as a nonempty set, and a function
type στ is interpreted as the set of all total functions from σ to τ .

We assume a countable set of parameters (x), where every parameter comes
with a unique type, and where for every type there are infinitely many parameters
of this type. We employ the logical constants ⊥ : o, ¬ : oo, ∧ : ooo and =σ: σσo,
where there is a logical constant =σ for every type σ. The logical constants take
their standard interpretation. Terms (s, t, u, v) are defined inductively such that
every term has a unique type: (1) every parameter is a term; (2) every logical
constant is a term; (3) if s is a term of type τμ and t is a term of type τ , then st
is a term of type μ; (4) if x is a name of type σ and t is a term of type τ , then
λx.t is a term of type στ . We write s : σ to say that s is a term of type σ. If T
is a set of terms, T σ denotes the set of all terms that are in T and have type σ.

The logical constants =σ are called identities, and terms of type o are called
formulas. Formulas of the form s =σ t are called equations, and formulas of the
form ¬(s =σ t) are called disequations. We write disequations as s =σ t. We
usually write equations and disequations without the type index σ.

A term is basic if it contains no other identity but =ι. We write Λσ for the set of
all basic terms of type σ. A formula is normal if it is a basic formula or a disequation
s = t where s and t are basic terms. A normal set is a set of normal formulas.

The definition of normal formulas is asymmetric in that equations are re-
stricted to type ι while disequations s =σ t are allowed at any type σ. The
reason for this asymmetry is that the tableau system uses disequations as inter-
nal workhorse. Since s =t and ps ∧ ¬pt are equisatisfiable if p is fresh, normal
formulas are not more expressive than basic formulas.

The definition of basic formulas can be extended with further propositional
connectives including =o. Since they can be expressed with the connectives we
already have, this does not buy new expressivity.

140 C.E. Brown and G. Smolka

bot¬
s , ¬s

⊥ dn

¬¬s

s
and

s ∧ t

s , t
and¬

¬(s ∧ t)
¬s | ¬t

mat

xs1 . . . sn , ¬xt1 . . . tn

s1 �= t1 | · · · | sn �= tn

dec

xs1 . . . sn �=ι xt1 . . . tn

s1 �= t1 | · · · | sn �= tn

bot �=
s �= s

⊥ be

s �=o t

s , ¬t | ¬s , t

fe

s �=στ t

sx �= tx
x : σ fresh and s �=t not evident in A

sym

s =ι t

t = s
con

s =ι t , u �=ι v

s �= u | t �= v

A is the normal set to which the rule is applied
x fresh means that x does not occur in A

mat and dec assume n ≥ 1

Fig. 1. Tableau system B

For simplicity we provide only one base type ι different from o. Everything
generalizes to countably many base types.

3 Tableau System

Figure 1 shows the rules of a terminating tableau system B that decides the
satisfiability of finite normal sets. For the application constraint of Rule fe

we supply the following definition. A disequation s =στ t is evident in A if
there exist n ≥ 1 basic terms u1, . . . , un such that su1 . . . un = tu1 . . . un or
tu1 . . . un = su1 . . . un is in A. The names of the rules are derived as follows:
mat for Mating, fe for functional extensionality, be for Boolean extensionality,
dec for decomposition, and con for confrontation.

The rules in the first line of Figure 1 are the usual tableau rules deciding propo-
sitional logic. They also decide quantifier-free first-order logic without equality.
In contrast to classical first-order logic, type theory allows embedded formulas,
for instance p(¬x) where p : oo and x : o. The rules mat, dec and be handle em-
bedded formulas. mat decomposes “atomic” formulas into disequations, which
are further decomposed with dec. Embedded formulas are then fed back to the
propositional rules by be, as demonstrated by the following example.

Example 3.1. The following tableau refutes an unsatisfiable normal set with em-
bedded formulas.

Terminating Tableaux for the Basic Fragment of Simple Type Theory 141

p(fx(¬¬y)), ¬p(fxy)
mat

fx(¬¬y) = fxy
dec

x = x
bot�=
⊥

¬¬y = y
be

¬¬y, ¬y
bot¬
⊥

¬¬¬y, y
dn

¬y
bot¬
⊥

The types of the parameters are p : ιo, f : ιoι, x : ι, and y : o. ��

Example 3.2. Rules sym and con handle positive equations at ι. This is demon-
strated by the following refutation.

a = b, fa = gb, fb = ga
con

fa = fb
dec

a = b
bot¬
⊥

gb = ga
dec

b = a
sym

b = a
bot¬
⊥

The types of the parameters are a, b : ι and f, g : ιι. ��

The confrontation rule con does not exist in first-order systems. First-order
systems typically employ the replacement rule

rep

s =ι t , C[s]
C[t]

Example 3.2 can also be refuted with the replacement rule instead of the con-
frontation rule. However, the confrontation rule is more powerful than the
replacement rule since it supports the decomposition needed for embedded for-
mulas. This is illustrated by the next example, which cannot be refuted with the
replacement rule.

Example 3.3. Consider the normal set

fa = gb, f ′a = g′c, f ′′b = g′′c
fb = ga, f ′c = g′a, f ′′c = g′′b

with the typing a, b : o and f, g, f ′, g′, f ′′, g′′ : oι. The replacement rule rep

cannot be applied to the set. The confrontation rule con can be applied to 3

142 C.E. Brown and G. Smolka

confrontation pairs. Application of dec now yields 8 sets that all contain the
unsatisfiable set

a = b, a = c, b = c

up to symmetry. This set can be refuted with be and bot¬. Thus the initial set
can be refuted with B. ��

It remains to illustrate the use of the functional extensionality rule fe. fe is
only needed if higher-order parameters are present.

Example 3.4. The following tableau has two branches both of which contain the
refutable set {a = b, a = c, b = c}. Thus the set in the first line is refutable.

a = b, fa, fb, ga, gb, pf, ¬pg
mat

f = g
fe

fc = gc
be

fc, ¬gc
mat

a = c
mat

b = c

¬fc, gc
mat

a = c
mat

b = c

Note the crucial use of the functional extensionality rule fe. The types of the
parameters are a, b, c : o, f, g : oo and p : (oo)o. ��

In summary we can now say that B extends the classical propositional system
with the rules mat, dec, bot�=, be, fe and con to account for embedded formu-
las. mat and dec decompose formulas that are atomic for the classical rules. This
way be can finally lift embedded formulas to the top level. To deal with equal-
ity, the traditional replacement rule is replaced by the confrontation rule. All
rules so far are already needed for first-order normal formulas. For higher-order
parameters a single rule fe incorporating functional extensionality is needed.

The only higher-order tableau system we could find in the literature is the cal-
culus of Kohlhase [12]. Kohlhase’s calculus does not have equality, but there are
unification constraints that play the role of our top level disequations. For unifi-
cation constraints Kohlhase has rules that are similiar to mat, dec, fe, and be.
Our tableau rules also have similarities with the rules in Benzmüller’s [13] higher-
order RUE-resolution calculus, which employs primitive equality. In particular,
the RUE calculus allows resolution of positive equations against negative equa-
tions (which play the role of unification constraints). Combining this form of
resolution with decomposition, one obtains a rule

C ∨ s = t D ∨ u = v

C ∨D ∨ s = u ∨ t = v

which is essentially the same as our confrontation rule con.

Terminating Tableaux for the Basic Fragment of Simple Type Theory 143

4 Soundness and Termination

The rules in Figure 1 apply to normal sets and produce one or several normal sets
by adding normal formulas. More precisely, if a rule applies to a normal set A,
it yields n ≥ 1 normal sets A1, . . . , An called alternatives such that A ⊆ Ai for
all i ∈ {1, . . . , n}. If n ≥ 2, the rule applied is called branching. To obtain a ter-
minating system, we admit only applications where ⊥ /∈ A and the alternatives
A1, . . . , An are all proper supersets of A (i.e., A � Ai). The tableau system B is
sound if for every application of a rule the set A is satisfiable if and only if one
of the alternatives A1, . . . , An is satisfiable. For the termination of B we consider
the relation A→ A′ on normal sets that holds if and only if A′ can be obtained
as an alternative by a rule that applies to A. We say that B terminates if this
relation terminates on finite normal sets. Finally, we call a normal set A evident
if ⊥ /∈ A and no rule of B applies to A. We will show the following:

– B is sound.
– B terminates on finite normal sets.
– Evident sets are satisfiable, and finite evident sets are finitely satisfiable.

Together, soundness, termination and model existence yield a decision procedure
for the satisfiability of finite normal sets.

Proposition 4.1 (Soundness). B is sound.

Proof. Let A1, . . . , An be obtained from A by application of a rule. It suffices to
show that for every model of A there exists an interpretation that is a model of at
least one of the alternatives A1, . . . , An. For bot¬ this follows from the fact that
the implication x∧¬x → ⊥ is valid. For and¬ the validity of ¬(x∧y) → ¬x∨¬y
suffices, and for fe the validity of f =g → ∃x.fx=gx does the job. Note that
this is in fact equivalent to functional extensionality (∀x.fx=gx) → f=g. The
soundness of the other rules follows with similar arguments. ��

For the termination proof we distinguish between Rule fe and the other rules. fe
is special in that it introduces new parameters. We first show that the subsystem
B0 of B obtained by removing fe terminates. The proof will exhibit an upper
bound function U from sets of terms to sets of terms such that the following
holds for every derivation A1 → · · · → An in B0:

1. UA1 = · · · = UAn

2. UAi is a finite set such that Ai ⊆ UAi for all i = 1, . . . , n.

Since A1 � · · · � An, the bound function suffices for termination of B0.
Let T range over sets of terms. We define the bound function as UT :=

C(S(ET)) where the functions S (subterms), E (elements) and C (compounds)
are defined as follows:

– ET is the least set of terms such that:
1. ⊥ ∈ ET
2. If (s =ι t) ∈ T , then s, t ∈ ET .

144 C.E. Brown and G. Smolka

3. If (s = t) ∈ T , then s, t ∈ ET .
4. If ¬s ∈ T and s is not an equation, then s ∈ ET .
5. If s ∈ T and s is neither a negated term nor an equation, then s ∈ ET .

– ST is the set of all subterms of the terms in T .
– CT is the least set of terms such that:

1. T ⊆ CT .
2. If s, t ∈ T ι, then (s =ι t) ∈ CT .
3. If s, t ∈ T σ, then (s = t) ∈ CT .
4. If s ∈ T o, then ¬s ∈ CT .

All three functions are monotone functions from set of terms to set of terms that
preserve finiteness. The following properties are easy to verify:

1. If A→ A′ in B0, then S(EA) = S(EA′).
2. T ⊆ C(ET) ⊆ C(S(ET)).

Hence U has the required properties and B0 terminates.
We now extend the termination result to B. We define the power of A as the

multiset that contains for each function type σ as many copies of σ as there are
2-element subsets {s, t} ⊆ (S(EA))σ such that s = t is not evident in A. It is
not difficult to verify the following for normal sets A:

1. Application of Rule fe decreases the power of A.
2. Application of a rule other than fe does not increase the power of A.

Hence we have proved the termination of B.

Proposition 4.2 (Termination). B terminates.

5 Model Existence

Recall that an evident set is a normal set that does not contain ⊥ and to which
no rule of B can add a formula.

Theorem 5.1 (Model Existence). Every evident set has a model, and every
finite evident set has a finite model.

Before proving the theorem we state two important consequences.

Corollary 5.2. The tableau system B constitutes a decision procedure for the
satisfiability of normal formulas.

Proof. Follows from Theorem 5.1 since B is sound and terminating. ��

Corollary 5.3. Normal formulas have the finite model property.

Proof. Let s be a satisfiable normal formula. Since B is sound and terminating,
we can obtain a finite evident set E that contains s. Now Theorem 5.1 gives us
a finite model of E and hence of s. ��

Terminating Tableaux for the Basic Fragment of Simple Type Theory 145

We now begin the proof of the model existence theorem. Let E be an evident
set. We will construct a model I of E that is finite if E is finite. We arrange the
following:

– Io := {0, 1}
– I(στ) := set of all total functions from Iσ to Iτ

– I⊥ := 0
– I(¬), I(∧), and I(=σ) are defined as usual.

It remains to define I for the type ι and the parameters.

Discriminants

We prepare the definition of Iι. We write s�t if E contains s =t or t =s. A term
s ∈ Λι is discriminating if there is a term t such that s�t. We write Δ for the set
of all discriminating terms. A discriminant is a maximal subset D ⊆ Δ such that
for all s�t either s /∈ D or t /∈ D. We define Iι to be the set of all discriminants.

– Iι := {D | D is a discriminant }

Example 5.4. Suppose E = {x=y, x=z, y =z} and x, y, z : ι. Then there are 3
discriminants: {x}, {y}, {z}. ��

Example 5.5. Suppose E = {x=f(fx), fx=f(f(fx))} and f : ιι. Then there
are 4 discriminants: {x, fx}, {x, f(f(fx))}, {f(fx), fx}, {f(fx), f(f(fx))}. ��

Proposition 5.6. If E contains exactly n disequations at ι, then there are at
most 2n discriminants. If E contains no disequation at ι, then ∅ is the only
discriminant.

Proposition 5.7. Let D1 and D2 be different discriminants. Then:

1. D1 and D2 are separated by a disequation in E, that is, there exist terms
t1 ∈ D1 and t2 ∈ D2 such that t1�t2.

2. D1 and D2 are not connected by an equation in E, that is, there exist no
terms t1 ∈ D1 and t2 ∈ D2 such that (t1=t2) ∈ E.

Proof. The first claim follows by contradiction. Suppose there are no terms
t1 ∈ D1 and t2 ∈ D2 such that t1�t2. Let t ∈ D1. Then t ∈ D2 since D2 is
a maximal compatible set of discriminating terms. Thus D1 ⊆ D2. A symmetric
argument yields D2 ⊆ D1. Contradiction.

The second claim also follows by contradiction. Suppose there is an equation
(s1=s2) ∈ E such that s1 ∈ D1 and s2 ∈ D2. By the first claim we have terms
t1 ∈ D1 and t2 ∈ D2 such that t1�t2. Since E is closed under con, we have s1�t1
or s2�t2. Contradiction since D1 and D2 are discriminants. ��

146 C.E. Brown and G. Smolka

Possible Values

It remains to define I for the parameters. Given the presence of higher-order
parameters this is not straightforward. We base the definition on a family of
relations �σ ⊆ Λσ × Iσ defined by induction on types:

s �o 0 :⇐⇒ s /∈ E

s �o 1 :⇐⇒ ¬s /∈ E

s �ι D :⇐⇒ s ∈ [D]
s �στ f :⇐⇒ st �τ fa whenever t �σ a

[D] := D ∪ { s ∈ Λι | s not discriminating }

We read s � a as “s can be a” or “a is a possible value for s”. Note that if s is a
basic formula such that s /∈ E and ¬s /∈ E, then both 0 and 1 are possible values
for s. We will show that every basic term has a possible value and that we obtain
a model of E if we define Ix as a possible value for x for every parameter x.
Such a model will satisfy s � Îs for every basic term s. Note that Îs denotes the
value the term s evaluates to in the model I.

Example 5.8. Suppose E = {x=f(fx), fx=f(f(fx))} and f : ιι. The following
graph shows the discriminants and the possible pairs for possible values of f .

x, fx x, f(f(fx))

fx, f(fx) f(fx), f(f(fx))

There are 2 possible values for x. To obtain a possible value for f , we must
choose for every node exactly one departing edge. Hence there are 4 possible
values for f . For each choice of a value for x and f we obtain a model of E.
Altogether we obtain 8 models this way. Four of the obtained models have a
junk value at ι (i.e., a value that is not denoted by a basic term). From the
models with a junk value we can obtain three-valued models. There is no two-
valued model. ��

Compatibility

We define a family of relations ‖σ⊆ Λσ × Λσ by induction on types:

s ‖o t :⇐⇒ {s,¬t} ⊆ E and {¬s, t} ⊆ E

s ‖ι t :⇐⇒ not s�t

s ‖στ t :⇐⇒ su ‖τ tv whenever u ‖σ v

We say that s and t are compatible if s ‖ t. A set T of terms is compatible if s ‖ t
for all terms s, t ∈ T . If T ⊆ Λσ, we write T � a if a is a common possible value
for all terms s ∈ T . We will show that a set of equi-typed terms is compatible if
and only if all its terms have a common possible value.

Terminating Tableaux for the Basic Fragment of Simple Type Theory 147

Proposition 5.9. The compatibility relations ‖σ are symmetric.

The compatibility relations are also reflexive. Showing this fact will take some
effort. For the induction to go through we will strengthen the hypothesis. First
we prove the following lemma.

Lemma 5.10. Let s be a basic term. Then:

1. If s : o, then s ‖ s.
2. If s = cs1 . . . sn and c is a logical constant, then s ‖ s.

Proof. The first claim follows by contradiction. Suppose s ∦o s. Then s,¬s ∈ E,
contradicting the assumption that E is evident.

Given that the first claim holds, for the second claim it suffices to consider
terms of the forms ¬, ∧, =ι, (∧)t, and (=ι)t. In all cases the claim follows by
contradiction. We show =ι ‖ =ι. The other cases are similar.

Suppose =ι ∦ =ι. Then there exist terms such that s1 ‖ι s2, t1 ‖ι t2, and
s1=ιt1 ∦o s2=ιt2. Then either s1=t1 and s2 =t2 are both in E or s1 =t1 and s2=t2
are both in E. Since E is closed under con, we have either s1�s2 (contradicting
s1 ‖ s2) or t1�t2 (contradicting t1 ‖ t2). ��

Lemma 5.11 (Reflexivity). For every type σ and all basic terms s, t, xs1 . . . sn,
xt1 . . . tn of type σ:

1. We never have both s ‖σ t and s�t.
2. We always have either xs1 . . . sn ‖σ xt1 . . . tn or si�ti for some i ∈ {1, . . . , n}.
3. We always have s ‖σ s.

Proof. By mutual induction on σ. The base cases for Claim (1) follow easily
from the definition of compatibility and closure of E under be. The base cases
for Claim (2) use closure of E under mat and dec, and the base cases for
Claim (3) use closure of E under bot¬ and bot�=. Next we show the claims for
σ = τμ.

1. By contradiction. Suppose s ‖σ t and s�t. Since E is closed under fe there
exist n ≥ 1 terms u1, . . . , un such that su1 . . . un�tu1 . . . un. By inductive hy-
pothesis (3) we have ui ‖ ui for i = 1, . . . , n. Hence su1 . . . un ‖ tu1 . . .un since
s ‖σ t. This contradicts inductive hypothesis (1) since su1 . . . un�tu1 . . .un.

2. Suppose xs1 . . . sn ∦σ xt1 . . . tn. Then there exist terms u ‖τ v such that
xs1 . . . snu ∦μ xt1 . . . tnv. By inductive hypotheses (2) and (1) we have si�ti for
some i ∈ {1, . . . , n}.

3. Suppose s ∦σ s. By Lemma 5.10 we have s = xs1 . . . sn. By Claim (2), which
we have already established for σ, we have si�si for some i ∈ {1, . . . , n}. Con-
tradiction since E is closed under bot�=. ��

Lemma 5.12 (Common Value). Let T ⊆ Λσ. Then T is compatible if and
only if there exists a value a such that T �σ a.

148 C.E. Brown and G. Smolka

Proof. By induction on σ.

σ = o, ⇒. By contraposition. Suppose T � 0 and T � 1. Then there are terms
s, t ∈ T such that s,¬t ∈ E. Thus s ∦ t. Hence T is not compatible.

σ = o, ⇐. By contraposition. Suppose s ∦o t for s, t ∈ T . Then s,¬t ∈ E
without loss of generality. Hence s � 0 and t � 1. Thus T � 0 and T � 1.

σ = ι, ⇒. Let T be compatible. Then there exists a discriminant D that contains
all the discriminating terms in T . Thus T � D.

σ = ι, ⇐. By contradiction. Suppose T � D and T is not compatible. Then
there are terms s, t ∈ T such that s�t. Thus s and t cannot be both in D. This
contradicts s, t ∈ T � D.

σ = τμ, ⇒. Let T be compatible. We define Ta := { ts | t ∈ T, s �τ a } for
every value a ∈ Iτ and show that Ta is compatible. Let t1, t2 ∈ T and s1, s2 �τ a.
It suffices to show t1s1 ‖ t2s2. By the inductive hypothesis s1 ‖τ s2. Since T is
compatible, t1 ‖ t2. Hence t1s1 ‖ t2s2.

By the inductive hypothesis we now know that for every a ∈ Iτ there is a
b ∈ Iμ such that Ta �μ b. Hence there is a function f ∈ Iσ such that Ta �μ fa.
Thus T �σ f .

σ = τμ, ⇐. Let T �σ f and s, t ∈ T . We show s ‖σ t. Let u ‖τ v. It suffices
to show su ‖μ tv. By the inductive hypothesis u, v �τ a for some value a. Hence
su, tv �μ fa. Thus su ‖μ tv by the inductive hypothesis. ��

By Lemmas 5.11 and 5.12 we have a possible value for every parameter x (since
x ‖ x). Hence we can define Ix such that x � Ix for all parameters x. This
completes the definition of the interpretation I.

Lemma 5.13 (Admissibility). For all basic terms s: s � Îs.

Proof. By induction on s. Let s be a basic term.

If s = x is a parameter, we haven chosen Ix such that x � Ix.

If s = tu is an application, we have t � Ît and u� Îu by the inductive hypothesis.
Hence tu � (Ît)(Îu) = Î(tu).

Let s = (∧). Assume t1 �o a and t2 �o b. We show t1∧t2 �I(∧)ab by contradiction.
Suppose t1 ∧ t2 � I(∧)ab. Case analysis.

1. a = b = 1. Then ¬t1,¬t2 /∈ E and ¬(t1 ∧ t2) ∈ E. Contradiction since E is
closed under and¬.

2. a = 0 or b = 0. Then t1 /∈ E or t2 /∈ E, and (t1 ∧ t2) ∈ E. Contradiction
since E is closed under and.

Let s = (=ι). Assume t1 �ι D1 and t2 �ι D2. We show (t1 = t2) �o I(=ι)D1D2 by
contradiction. Suppose (t1 = t2) �o I(=ι)D1D2. Case analysis.

Terminating Tableaux for the Basic Fragment of Simple Type Theory 149

1. D1 = D2. Then (t1 = t2) ∈ E. Hence t1, t2 are discriminating and thus
t1 ∈ D1 and t2 ∈ D2 = D1. Contradiction by the definition of discriminants.

2. D1 = D2. Then (t1 = t2) ∈ E. Contradiction by Proposition 5.7 (2).

The case s = ¬ follows with the closure of E under dn. The case s = ⊥ is
straightforward. ��

Lemma 5.14. For all formulas s ∈ E: Îs = 1.

Proof. Let s ∈ E. Then s is either basic or a disequation between basic terms.
Suppose s is basic. By Lemma 5.13, s � Îs. On the other hand, s � 0 since

s ∈ E. Hence Îs = 1.
Suppose s = (s1 =s2) where s1 and s2 are basic. Then s1�s2. Assume Îs1 =

Îs2. Then s1, s2 � Îs1 by Lemma 5.13 and hence s1 ‖ s2 by Lemma 5.12. Con-
tradiction by Lemma 5.11 (1) since s1�s2. ��

This completes the proof of Theorem 5.1.

6 Extensions

A Henkin-complete cut-free tableau system T for extensional type theory can
be obtained as the dual of Brown’s one-sided sequent system [9]. Our system B
is in fact a subsystem of this system. B contains all the distinctive rules of T
(mat, dec, con). In the following, we consider the additional rules of T and
discuss their impact on termination.

General Equality

B restricts equality to the base type ι. If we admit all identities in basic terms,
two additional rules are needed:

eqb

s =o t

s , t | ¬s , ¬t
eqf

s =στ t

su = tu

Rule eqf destroys termination. However, we can preserve termination if we
restrict eqf such that u must be a term that already occurs as a subterm. It is
open whether the resulting system is complete.

Lambda Abstraction

B disallows lambda abstractions. If we admit lambda abstractions in basic terms,
an additional rule incorporating β-reduction is needed:

beta

s

t
t is obtainable from s by β-reduction

150 C.E. Brown and G. Smolka

Example 6.1. B extended with beta can prove the η-law:

(λx.fx) = f initial formula
(λx.fx)a = fa fe

fa = fa beta

⊥ bot�= ��

Example 6.2. B extended with beta does not terminate:

p(λx.p(fx)), ¬p(fa) initial formulas x, a : σ, f : σσo, p : (σo)o
(λx.p(fx)) = fa mat

(λx.p(fx))b = fab fe

p(fb) = fab beta

¬p(fb), fab be

(λx.p(fx)) = fb mat

. . .

Note that σ can be any type. The problem are the new parameters introduced
by fe and the disequations introduced by mat. There seems to be no easy fix.
For σ = ι the initial formulas do have a finite model: Iι = Io, If = λxy.y,
Ip(λx.x) = 0, Ip(λx.0) = 1. ��

Quantifiers

The extension of B with general equality and lambda abstraction can express
quantification and thus already covers full simple type theory. If desired, quantifi-
cation can be directly accounted for by additional logical constants. For universal
quantification, we may have the constants ∀σ : (σo)o and the rules

all

∀σs

st
t : σ all¬

¬∀σs

¬sx
x : σ fresh

7 Conclusion

We have presented a terminating tableau system that decides satisfiability of
basic formulas with respect to standard models. This contributes a new decid-
ability and completeness result for higher-order logic with standard semantics.
Our model existence proof relies on the possible-values technique, which for the
first time is used to construct standard models. We are confident that our re-
sults can be extended. On the one side, the addition of equations at functional
types may preserve decidability. On the other side, the addition of first-order
quantifiers may preserve completeness.

Besides theoretical curiosity, there is a practical interest behind our research.
We feel that the decision technique presented in this paper will lead to stronger

Terminating Tableaux for the Basic Fragment of Simple Type Theory 151

auto tactics for interactive theorem provers. Even with a naive implementation,
our decision technique can decide many problems that are out of the reach of
current systems. As is, decomposition and confrontation may cause combina-
torial explosion. An idea for further research is the integration of congruence
closure techniques [14], which could efficiently replace most applications of the
branching confrontation rule.

References

1. Andrews, P.B.: Classical type theory. In: Robinson, A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, vol. 2, pp. 965–1007. Elsevier Science, Amsterdam
(2001)

2. Farmer, W.M.: The seven virtues of simple type theory. J. Appl. Log. 6(3), 267–286
(2008)

3. Friedman, H.: Equality between functionals. In: Parikh, R. (ed.) Proc. Logic Col-
loquium 1972-73. Lectures Notes in Mathematics, vol. 453, pp. 22–37. Springer,
Heidelberg (1975)

4. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences 18, 194–211 (1979)

5. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

6. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

7. Andrews, P.B., Brown, C.E.: TPS: A hybrid automatic-interactive system for de-
veloping proofs. Journal of Applied Logic 4(4), 367–395 (2006)

8. Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - A cooperative
automatic theorem prover for classical higher-order logic (System description).
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS(LNAI),
vol. 5195, pp. 162–170. Springer, Heidelberg (2008)

9. Brown, C.E.: Automated Reasoning in Higher-Order Logic: Set Comprehension
and Extensionality in Church’s Type Theory. College Publications (2007)

10. Takahashi, M.: A proof of cut-elimination theorem in simple type theory. Journal
of the Mathematical Society of Japan 19, 399–410 (1967)

11. Prawitz, D.: Hauptsatz for higher order logic. J. Symb. Log. 33, 452–457 (1968)
12. Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Posegga, J., Hähnle,

R. (eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 294–309. Springer, Heidelberg
(1995)

13. Benzmüller, C.: Extensional higher-order paramodulation and RUE-resolution. In:
Ganzinger, H. (ed.) CADE 1999. LNCS(LNAI), vol. 1632, pp. 399–413. Springer,
Heidelberg (1999)

14. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (1980)

Modular Sequent Systems for Modal Logic

Kai Brünnler1 and Lutz Straßburger2

1 Institut für angewandte Mathematik und Informatik,
Neubrückstr. 10, CH – 3012 Bern, Switzerland

http://www.iam.unibe.ch/ kai/
2 École Polytechnique, Laboratoire d’Informatique (LIX),

Projet Parsifal, Rue de Saclay, 91128 Palaiseau Cedex, France
http://www.lix.polytechnique.fr/ lutz/

Abstract. We see cut-free sequent systems for the basic normal modal
logics formed by any combination the axioms d, t, b, 4, 5. These systems
are modular in the sense that each axiom has a corresponding rule and
each combination of these rules is complete for the corresponding frame
conditions. The systems are based on nested sequents, a natural generali-
sation of hypersequents. Nested sequents stay inside the modal language,
as opposed to both the display calculus and labelled sequents. The com-
pleteness proof is via syntactic cut elimination.

1 Introduction

This paper is part of a research effort to develop proof-theoretic systems for
modal logic that stay inside the modal language. This requirement in particular
excludes the display calculus [2,16], which is formulated in the language of tense
logic, and labelled sequents, see for example [12], which are formulated in a
hybrid language.

Examples of modal proof systems that stay inside the modal language are
hypersequent systems [1], systems in the calculus of structures [10,14,15,9] and,
what we will study here, systems using nested sequents. Nested sequents are a
natural generalisation of hypersequents, and they have been invented several
times independently, for example by Bull [6], by Kashima [11], by Brünnler [4,3]
(using the name deep sequent at the time) and by Poggiolesi (using the name
tree-hypersequent) [13].

In this paper we provide cut-free sequent systems for the basic normal modal
logics formed from the axioms d, t, b, 4, 5 which are modular in the sense that
each modal axiom has a corresponding sequent calculus rule and that each com-
bination of these rules is sound and complete for the corresponding modal logic.
To our knowledge, these are the first systems inside the modal language which
are modular.

These systems are closely related to the systems introduced in [3], in particular
the subsystem for the modal logic K is essentially the same. Modal axioms in [3]
were turned into �-rules, that is, rules where the active formula in the conclusion
has the connective � as its main connective. However, these systems are not

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 152–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modular Sequent Systems for Modal Logic 153

modular. For example, the logic S5 can be axiomatised in a Hilbert system both
by using the axioms t, b, 4 and by using t, 5. While there is a complete cut-free
system for S5 in [3], namely one with the rules t, b, 4, 5, neither the cut-free
system with rules t, b, 4 nor the cut-free system with the rules t, 5 are complete
for S5. Here, we follow another approach to designing modal rules. We do not
turn modal axioms into �-rules, but into structural rules. These structural rules
are the key to modularity, as was already conjectured in [4].

Proving completeness for our systems turned out to be challenging. We do so
by way of embedding a corresponding Hilbert system and syntactically proving
cut-elimination. The cut-elimination proof is interesting: it relies on a decompo-
sition of the contraction rule, similar to what has been observed in deep inference
systems for propositional logic, where contraction is decomposed into an atomic
version and a local medial rule [5].

2 The Sequent Systems

Formulas and modal axioms. Propositions p and their negations p̄ are atoms, with
¯̄p defined to be p. Formulas, denoted by A, B, C, D are given by the grammar

A ::= p | p̄ | (A ∨A) | (A ∧A) | �A | �A .

Given a formula A, its negation Ā is defined as usual using the De Morgan
laws, A ⊃ B is defined as Ā ∨B and and ⊥ are respectively defined as p ∨ p̄
and p∧ p̄ for some proposition p. Each name in {k, d, t, b, 4, 5} corresponds both
to a frame condition and to a Hilbert-style axiom:

k: �(A ∨B) ⊃ (�A ∨�B)
d: serial �A ⊃ �A
t: reflexive A ⊃ �A

b: symmetric A ⊃ ��A
4: transitive �A ⊃ ��A
5: euclidean �A ⊃ ��A

.

Nested sequents. A nested sequent is a finite multiset of formulas and boxed se-
quents. A boxed sequent is an expression [Γ] where Γ is a nested sequent. In the
following, a sequent is a nested sequent. Sequents are denoted by Γ, Δ, Λ, Π, Σ.
As usual, sequents are written without curly braces and the comma in the ex-
pression Γ, Δ is multiset union. A sequent is always of the form

A1, . . . , Am, [Δ1], . . . , [Δn] .

The corresponding formula of the above sequent is ⊥ if m = n = 0 and otherwise

A1 ∨ · · · ∨Am ∨ �(D1) ∨ · · · ∨�(Dn) ,

where D1 . . .Dn are the corresponding formulas of the sequents Δ1 . . . Δn. Notice
that a sequent induces a tree where each node is marked with a multiset of
formulas. We will refer to notions such as the depth or the root of a sequent,
meaning the depth or the root of the corresponding tree.

Sequent contexts. Informally, a context is a sequent with holes. We will mostly
encounter sequents with just one or two holes. A unary context is a sequent with

154 K. Brünnler and L. Straßburger

exactly one occurrence of the symbol { }, the hole, which does not occur inside
formulas. Such contexts are denoted by Γ{ }, Δ{ }, and so on. The hole is also
called the empty context. The sequent Γ{Δ} is obtained by replacing { } inside
Γ{ } by Δ. For example, if Γ{ } = A, [[B], { }] and Δ = C, [D] then

Γ{Δ} = A, [[B], C, [D]] .

The depth of a unary context Γ{ }, denoted depth(Γ{ }) is defined as follows

depth(Γ, { }) = 0
depth(Γ, [Δ{ }]) = depth(Δ{ }) + 1.

More generally, a context is a sequent with n ≥ 0 occurrences of { }, which do
not occur inside formulas, and which are linearly ordered. A context with n holes
is denoted by

Γ { } . . . { }︸ ︷︷ ︸
n−times

.

Holes can be filled with sequents, or contexts, in general. For example, if Γ{ }{ } =
A, [[B], { }], { } and Δ{ } = C, [{ }] then

Γ{Δ{ }}{ } = A, [[B], C, [{ }]], { } ,

where in all contexts the holes are ordered from left to right as shown.

System K+ Ẋ. Figure 1 shows the set of rules from which we form our deductive
systems. System K is the set of rules {∧,∨, �, k, ctr}. We will look at extensions of
System K with sets of rules Ẋ ⊆ {ḋ, ṫ, ḃ, 4̇, 5̇}. The rules in Ẋ are called structural
modal rules. The 5̇-rule is a bit special since it uses a two-hole-context. It can
actually be decomposed into three rules that use unary contexts. However, here
we prefer the presentation with a single rule. The 5̇-rule may be understood
as allowing to do the following, when going from premise to conclusion: take a
boxed sequent [Δ], which is not at the root of the sequent, and move it to any
other place in the sequent.

Notice that we have an explicit contraction rule in system K and that the
k-rule is not invertible. It is of course easy to drop contraction and build it into
the k-rule and into the rules in Ẋ, which makes all rules invertible. The reason
we choose not to do this is because our cut-elimination procedure works better
with explicit contraction.

There are also some rules that will turn out to be admissible, namely the�-rules, and the rules necessitation, weakening and cut, which are shown in
Figure 2. A �-rule is in a certain sense the result of “reflecting” the corresponding
structural rule at the cut, and vice versa. This comment will hopefully become
more clear after the proof of the reduction lemma.

Given a set X ⊆ {d, t, b, 4, 5}, Ẋ is the corresponding subset of {ḋ, ṫ, ḃ, 4̇, 5̇}
and

	
X is the corresponding subset of {

	
d,

	
t,

	
b,

	
4,

	
5}.

Inference rules, derivations, proofs. In the following instance of an inference
rule ρ

ρ
Γ1 . . . Γn

Δ

Modular Sequent Systems for Modal Logic 155

Γ{p, p̄} ∧ Γ{A} Γ{B}
Γ{A ∧ B} ∨ Γ{A,B}

Γ{A ∨B}

� Γ{[A]}
Γ{�A} k

Γ{[A, Δ]}
Γ{�A, [Δ]} ctr

Γ{Δ, Δ}
Γ{Δ}

ḋ
Γ{[∅]}
Γ{∅} ṫ

Γ{[Δ]}
Γ{Δ} ḃ

Γ{[Δ, [Σ]]}
Γ{[Δ], Σ}

4̇
Γ{[Δ], [Σ]}
Γ{[[Δ], Σ]} 5̇

Γ{[Δ]}{∅}
Γ{∅}{[Δ]} depth(Γ{ }{∅}) > 0

Fig. 1. System K+{ḋ,ṫ,ḃ,4̇,5̇}

�

d
Γ{[A]}
Γ{�A}

�

t
Γ{A}

Γ{�A}

�

b
Γ{[Δ], A}

Γ{[Δ, �A]}

�

4
Γ{[Δ, �A]}
Γ{�A, [Δ]}

�

5
Γ{∅}{�A}
Γ{�A}{∅}

depth(Γ{ }{∅}) > 0

nec
Γ

[Γ]
wk

Γ{∅}
Γ{Δ}

cut
Γ{A} Γ{Ā}

Γ{∅}

Fig. 2. Diamond rules, necessitation, weakening, cut

we call Γ1 . . . Γn its premises and Δ its conclusion. We write ρn to denote n
instances of ρ and ρ∗ to denote an unspecified number of instances of ρ. A
system, denoted by S, is a set of inference rules. A derivation in a system S is a
finite tree whose nodes are labelled with sequents and which is built according
to the inference rules from S. The sequent at the root is the conclusion and the
sequents at the leaves are the premises of the derivation. Derivations are denoted
by D. A derivation D with conclusion Γ in system S is sometimes shown as

S

Γ

.

The depth of a derivation D is denoted by |D|. A proof of a sequent Γ in a
system is a derivation in this system with conclusion Γ and where all premises
are instances of the axiom Γ{p, p̄}. Proofs are denoted by P . We write S � Γ
if there is a proof of Γ in system S. An inference rule ρ is (depth-preserving)

156 K. Brünnler and L. Straßburger

admissible for a system S if for each proof in S ∪ {ρ} there is a proof of in S
with the same conclusion (and with at most the same depth).

Soundness of our systems is easily established similarly to soundness of the
systems in [4]:

Theorem 1 (Soundness). Let X ⊆ {d, t, b, 4, 5}. If a sequent is provable in K+ Ẋ
then its corresponding formula is provable in a Hilbert system for the modal logic
K extended by the axioms in X.

Our main result is cut-elimination, which we prove in the next section.

Theorem 2 (Cut-Elimination). Let X ⊆ {d, t, b, 4, 5}. If K + Ẋ + cut � Γ then
K + Ẋ � Γ .

By using cut-elimination we obtain the completeness theorem:

Theorem 3 (Completeness). Let X ⊆ {d, t, b, 4, 5}. If a formula is provable in a
Hilbert system for the modal logic K extended by the modal axioms in X then it
is provable in system K + Ẋ.

Proof. Given a proof in the Hilbert system we construct a proof in K + Ẋ + cut
as usual, and then apply Theorem 2 (Cut-elimination). We show proofs for the
modal axioms:

[Ā, A]
k2 �Ā, �A, [∅]
ḋ �Ā, �A
∨�A ⊃ �A

[A, Ā]
k
[Ā], �A

ṫ
Ā, �A

∨
A ⊃ �A

[[A, Ā]]
k
[[Ā], �A]

ḃ
Ā, [�A]�
Ā, ��A

∨
A ⊃ ��A

[Ā, A], [∅]
k �Ā, [A], [∅]
4̇ �Ā, [[A]]�2 �Ā, ��A
∨�A ⊃ ��A

[[Ā, A]]
k
[[Ā], �A]

5̇
[Ā], [�A]�2 �Ā, ��A

∨�A ⊃ ��A

��

3 Syntactic Cut-Elimination

We first need some definitions. The depth of a formula A, denoted depth(A),
is defined as usual, the depth of possibly negated atoms being zero. Given an
instance of the cut rule as shown in Figure 2, its cut formula is A and its cut rank
is one plus the depth of its cut formula. For r ≥ 0 we define the rule cutr which
is cut with at most rank r. The cut rank of a derivation is the supremum of the
cut ranks of its cuts. A rule is cut-rank (and depth-) preserving admissible for a
system S if for all r ≥ 0 the rule is (depth-preserving) admissible for S + cutr.

Lemma 1 (Weakening and necessitation admissibility). Let X ⊆ {d, t, b, 4, 5}.
The wk-rule and the nec-rule are depth- and cut-rank-preserving admissible for
K + Ẋ.

Proof. A routine induction shows that a single nec or wk-rule can be eliminated
from a given proof, a second induction on the number of nec or wk-rules yields
our lemma. ��

Modular Sequent Systems for Modal Logic 157

Γ{[A, . . . , A]}
m�

Γ{�A}
Γ{A, . . . , A} Γ{B, . . . , B]}

m∧
Γ{A ∧B}

Γ{A, . . . , A} Γ{Ā, . . . , Ā}
mcut

Γ{∅}
Γ{[Δ], [Σ]}

med

Γ{[Δ, Σ]}
Γ{A,A}

fctr

Γ{A}

Fig. 3. Multi-rules, medial, and formula contraction

Seriality (the rule ḋ) is different from the other rules: it trivially permutes
below the cut. So we can get it out of the way and then prove cut elimination
for the systems without seriality.

Lemma 2 (Push down seriality). Let X ⊆ {d, t, b, 4, 5} and d ∈ X. For each proof
as shown on the left there is a proof as shown on the right:

K+Ẋ+cut

Γ

� K+Ẋ−ḋ+cut

Γ ′

‖
‖ ḋ

Γ

.

Proof. By an easy permutation argument, making use of weakening admissibility.

We also get contraction out of the way in order to eliminate the cut. First, we de-
compose contraction into the fctr-rule, which is contraction on formulas, and the
med-rule, shown in Figure 3. We permute down the fctr-rule. It does not permute
down below the rules cut, � and ∧, so we generalise these rules as in Figure 3.
We define a contraction-free system K− as K− = K − ctr + {med, m�, m∧} and
will show cut elimination for that system, but first we develop the machinery to
show that cut elimination for K− leads to cut-elimination for K (with any Ẋ).

Lemma 3 (Decompose contraction). The ctr-rule is derivable for {fctr, med}.

Proof. By induction the depth of a sequent which is contracted, we show the
inductive step:

Γ{A1, . . . , Am, [Δ1], . . . , [Δn], A1, . . . , Am, [Δ1], . . . , [Δn]}
ctr

Γ{A1, . . . , Am, [Δ1], . . . , [Δn]}

�
Γ{A1, . . . , Am, [Δ1], . . . , [Δn], A1, . . . , Am, [Δ1], . . . , [Δn]}

medn

Γ{A1, . . . , Am, A1, . . . , Am, [Δ1, Δ1], . . . , [Δn, Δn]}
ctrn

Γ{A1, . . . , Am, A1, . . . , Am, [Δ1], . . . , [Δn]}
fctrm

Γ{A1, . . . , Am, [Δ1], . . . , [Δn]}
��

158 K. Brünnler and L. Straßburger

Lemma 4 (Weakening and necessitation admissibility for K−). Let X ⊆ {d, t, b,
4, 5}. The wk-rule and the nec-rule are depth- and cut-rank-preserving admissible
for K− + Ẋ.

Lemma 5 (From mcut to cut). The rule mcutr is derivable for {cutr, wk}.

Proof. We define the rule mcutm,n
r with m, n > 0 as

Γ{
m−times︷ ︸︸ ︷
A, . . . , A} Γ{

n−times︷ ︸︸ ︷
Ā, . . . , Ā}

Γ{∅}
,

and show that rule derivable for {cutr, wk} by induction on m + n. The case for
m = n = 1 is trivial, for m > 1 and n = 1 we replace

Γ{A, . . . , A} Γ{Ā}
mcutm,1

r

Γ{∅}

by

Γ{A, . . . , A}
Γ{Ā}

wk
Γ{Ā, A}

mcutm−1,1
r

Γ{A} Γ{Ā}
cutr

Γ{∅}
and apply the induction hypothesis, and for m, n > 1 we replace

Γ{A, . . . , A} Γ{Ā, . . . , Ā}
mcutm,n

r

Γ{∅}

by

Γ{A, . . . , A}
Γ{Ā, . . . , Ā}

wk

Γ{Ā, . . . , Ā, A}
mcutm−1,n

r
Γ{A}

Γ{A, . . . , A}
wk

Γ{A, . . . , A, Ā} Γ{Ā, . . . , Ā}
mcutm,n−1

r
Γ{Ā}

cutr
Γ{∅}

and apply the induction hypothesis twice. ��

Lemma 6 (Push down contraction). Let X ⊆ {t, b, 4, 5}. Given a proof as shown
on the left, with ρ a single-premise-rule from K− + Ẋ + wk, there is a proof as
shown on the right, with |D′| ≤ |D|:

P
K−+Ẋ+mcut+wk

Γ2

D ‖‖ fctr

Γ1
ρ

Γ

�
P′

K−+Ẋ+mcut+wk

Γ3

D′ ‖
‖ fctr

Γ

.

Modular Sequent Systems for Modal Logic 159

Proof. By induction on the length of D and a case analysis on ρ. Most cases are
trivial. We show the two interesting ones. For ρ = ∨ and ρ = k we apply the
following transformations:

Γ{A, A, B}
fctr

Γ{A, B}
∨

Γ{A ∨B}
�

Γ{A, A, B}
wk

Γ{A, B, A, B}
∨2

Γ{A ∨B, A ∨B}
fctr

Γ{A ∨B}

Γ{[A, A, Δ]}
fctr

Γ{[A, Δ]}
k
Γ{�A, [Δ]}

�
Γ{[A, A, Δ]}

k2

Γ{�A, �A, [Δ]}
fctr

Γ{�A, [Δ]}
,

and in each case we apply the induction hypothesis twice. ��
Proposition 1 (Push down contraction). Given a proof as shown on the left, there
is a proof as shown on the right:

P
K+Ẋ+cut

Γ

�
P′

K−+Ẋ+cut

Γ ′

‖
‖ fctr

Γ

.

Proof. We first prove the claim that for each proof as shown on the left there is
a proof as shown on the right:

P1 K−+Ẋ+cut+fctr

Γ

�
P′

1 K−+Ẋ+mcut+wk

Γ ′

‖
‖ fctr

Γ

,

The proof of the claim is by induction on the depth of P1, using Lemma 6 (Push
down contraction). The proof of our proposition is as follows: by Lemma 3
(Decompose contraction) we obtain a proof in K− + Ẋ + cut + fctr, we apply
our claim, then we use Lemma 5 (From mcut to cut), to replace mcut, start-
ing with the top-most instances. Finally we remove weakening using weakening
admissibility. ��

The following three lemmas are needed for the reduction lemma. We define

X+ =

⎧⎪⎨⎪⎩
X ∪ {4} if {t, 5} ⊆ X or {b, 5} ⊆ X

X ∪ {5} if {b, 4} ⊆ X

X otherwise ,

and likewise for
	
X and Ẋ.

160 K. Brünnler and L. Straßburger

Lemma 7 (Push down 45). Let X ⊆ {t, b, 4, 5} and ρ ∈ (
	
X ∩ {

	
4,

	
5}). Given a

derivation as shown on the left, where ρ applies to �A, there is a derivation as
shown on the right, where all rules in D3 apply to the instance of �A shown,
and where |D2| ≤ |D1|:

Γ{�A}
ρ
Γ1{�A}
D1
‖
‖ Ẋ+med

Δ{�A}

�
Γ{�A}
D2
‖
‖ Ẋ+med

Γ2{�A}
D3
‖
‖ (

	
X+∩{

	
4,

	
5})

Δ{�A}

.

Proof. The proof is by induction on the length of D1. We permute the instance
of ρ down and apply the induction hypothesis, possibly several times. We only
show the non-trivial permutations.

Γ{[�A, Δ], [Σ]}	
4
Γ{�A, [Δ], [Σ]}

med
Γ{�A, [Δ, Σ]}

�
Γ{[�A, Δ], [Σ]}

med
Γ{[�A, Δ, Σ]}	

4
Γ{�A, [Δ, Σ]}

Γ{[�A, Δ]}	
4
Γ{�A, [Δ]}

ṫ
Γ{�A, Δ}

� Γ{[�A, Δ]}
ṫ

Γ{�A, Δ}

Γ{[Δ, [�A, Σ]]}	
4
Γ{[�A, Δ, [Σ]]}

ḃ
Γ{[�A, Δ], Σ}

�
Γ{[Δ, [�A, Σ]]}

ḃ
Γ{�A, [Δ], Σ}	

5
Γ{[�A, Δ], Σ}

Γ{[�A, Δ], [Σ]}	
4
Γ{�A, [Δ], [Σ]}

4̇
Γ{�A, [[Δ], Σ]}

�
Γ{[�A, Δ], [Σ]}

4̇
Γ{[[�A, Δ], Σ]}	

4
Γ{[�A, [Δ], Σ]}	

4
Γ{�A, [[Δ], Σ]}

Γ{[�A, Δ]}{∅}	
4
Γ{�A, [Δ]}{∅}

5̇
Γ{�A}{[Δ]}

�
Γ{[�A, Δ]}{∅}

5̇
Γ{∅}{[�A, Δ]}	

5
Γ{�A}{[Δ]}

Permuting down the
	
5-rule is trivial except over the ṫ-rule and the ḃ-rule, and

this is also trivial unless the restriction on the depth of the context in the
	
5-rule

becomes relevant:

Γ1, [Δ], Γ2{�A}	
5
Γ1, [�A, Δ], Γ2{∅}

ṫ
Γ1, �A, Δ, Γ2{∅}

�
Γ1, [Δ], Γ2{�A}

ṫ
Γ1, Δ, Γ2{�A}	

4
∗

Γ1, �A, Δ, Γ2{∅}

Modular Sequent Systems for Modal Logic 161

[Δ, [Σ]], Γ{�A}	
5
[Δ, [Σ, �A]], Γ{∅}

ḃ
[Δ], Σ, �A, Γ{∅}

�
[Δ, [Σ]], Γ{�A}

ḃ
[Δ], Σ, Γ{�A}	

4
∗

[Δ], Σ, �A, Γ{∅}
��

Lemma 8 (Push down ktb). Let X ⊆ {t, b, 4, 5} and let ρ = k or ρ ∈ (
	
X∩{	t,

	
b}).

Given a derivation as shown on the left, where ρ applies to �A, there is a
derivation as shown on the right, with σ = k or σ ∈ (

	
X ∩ {	t,

	
b}), where all rules

in D3 apply to the instance of �A shown, and where |D2| ≤ |D1|:

Γ{A}
ρ
Γ1{�A}
D1
‖
‖ Ẋ+med

Δ{�A}

�

Γ{A}
D2
‖
‖ Ẋ+med

Γ3{A}
σ

Γ2{�A}
D3
‖
‖ (

	
X+∩{

	
4,

	
5})

Δ{�A}

.

Proof. The proof is by induction on the length of D1. We permute the instance
of ρ down and apply Lemma 7 (Push down 45) and/or the induction hypothesis.
We only show the non-trivial permutations.

Γ{[A, Δ]}
k
Γ{�A, [Δ]}

ṫ
Γ{�A, Δ}

�
Γ{[A, Δ]}

ṫ
Γ{A, Δ}	

t
Γ{�A, Δ}

Γ{[Δ, [A, Σ]]}
k
Γ{[�A, Δ, [Σ]]}

ḃ
Γ{[�A, Δ], Σ}

�
Γ{[Δ, [A, Σ]]}

ḃ
Γ{A, [Δ], Σ}	

b
Γ{[�A, Δ], Σ}

Γ{[A, Δ], [Σ]}
k
Γ{�A, [Δ], [Σ]}

4̇
Γ{�A, [[Δ], Σ]}

�
Γ{[A, Δ], [Σ]}

4̇
Γ{[[A, Δ], Σ]}

k
Γ{[�A, [Δ], Σ]}	

4
Γ{�A, [[Δ], Σ]}

Γ{[A, Δ]}{∅}
k
Γ{�A, [Δ]}{∅}

5̇
Γ{�A}{[Δ]}

�
Γ{[A, Δ]}{∅}

5̇
Γ{∅}{[A, Δ]}

k
Γ{∅}{�A, [Δ]}	

5
Γ{�A}{[Δ]}

The cases for ρ =
	
t are trivial.

Γ{[Δ], A}	
b
Γ{[Δ, �A]}

ṫ
Γ{Δ, �A}

�
Γ{[Δ, A]}

ṫ
Γ{Δ, A}	

t
Γ{Δ, �A}

162 K. Brünnler and L. Straßburger

Γ{[Σ, [Δ], A]}	
b
Γ{[Σ, [Δ, �A]]}

ḃ
Γ{[Σ], Δ, �A}

�
Γ{[Σ, [Δ], A]}

ḃ
Γ{[Σ, A], Δ}

k
Γ{[Σ], Δ, �A}

Γ{[Δ], A, [Σ]}	
b
Γ{[Δ, �A], [Σ]}

4̇
Γ{[[Δ, �A], Σ]}

�
Γ{[Δ], A, [Σ]}

4̇
Γ{[[Δ], Σ], A}	

b
Γ{[[Δ], �A, Σ]}	

5
Γ{[[Δ, �A], Σ]}

For permuting down over the 5̇-rule, in the only non-trivial case, notice that
the context has to be of the form shown because of the restriction of context
depth in the 5̇-rule:

Γ{∅}{[Σ, [Δ], A]}	
b
Γ{∅}{[Σ, [Δ, �A]]}

5̇
Γ{[Δ, �A]}{[Σ, ∅]}

�
Γ{∅}{[Σ, [Δ], A]}

5̇
Γ{[Δ]}{[A, Σ]}

k
Γ{[Δ]}{�A, [Σ, ∅]}	

5
Γ{[Δ, �A]}{[Σ, ∅]}

��

Lemma 9 (Reflect 45). Let X ⊆ {4, 5}. Given a derivation as shown on the left,
where all rules in D apply to the instance of �A shown, then for each sequent
Δ there is a derivation as shown on the right:

Γ{�A}{∅}
D ‖‖

	
X

Γ{∅}{�A}
�

Γ{∅}{[Δ]}
D′ ‖
‖ Ẋ

Γ{[Δ]}{∅}
.

Proof. By induction on the length of D. ��

Lemma 10 (Reduction Lemma). Let X ⊆ {t, b, 4, 5}. Given a proof as shown on
the left, with P1 and P2 in K−+Ẋ+cutr, then there is a proof P in K−+Ẋ++cutr
as shown on the right:

P1

Γ1{A}
‖
‖ Ẋ+med

Γ{A}

P2

Γ2{Ā}
‖
‖ Ẋ+med

Γ{Ā}
cutr+1

Γ{∅}

� P

Γ{∅}

.

Proof. As usual, by an induction on |P1| + |P2| and a case analysis on the
lowermost rules in P1 and P2. We only show the most complicated case, in

Modular Sequent Systems for Modal Logic 163

which we cut a box introduced by the m�-rule against a diamond introduced by
k-rule. All other cases are much simpler. We have

Γ1{[B, . . . , B]}
m�

Γ1{�B}
‖
‖ Ẋ+med

Γ{�B}

Γ ′2{[B̄, Δ]}
k
Γ ′2{�B̄, [Δ]}

‖
‖ Ẋ+med

Γ{�B̄}
cutr+1

Γ{∅}

In the left subderivation we permute down the instance of m� and on the right
subderivation we apply Lemma 8 (Push ktb down) in order to obtain the follow-
ing derivation, where Γ{ } = Γ{ }{∅}. Note that the second hole in the binary
context marks the position to which the �B̄ is moved:

Γ1{[B, . . . , B]}
‖
‖ Ẋ+med

Γ{[B, . . . , B]}{∅}
m�

Γ{�B}{∅}

Γ ′2{[B̄, Δ]}
‖
‖ Ẋ+med

Γ3{B̄}
σ

Γ{∅}{�B̄}
‖
‖ (X+∩{4,5})�

Γ{�B̄}{∅}
cutr+1

Γ{∅}{∅}

By using Lemma 9 (Reflect 45) we obtain a derivation D and build:

Γ1{[B, . . . , B]}
‖
‖ Ẋ+med

Γ{[B, . . . , B]}{∅}
D ‖‖ (X+∩{4,5})·

Γ{∅}{[B, . . . , B]}
m�

Γ{∅}{�B}

Γ ′2{[B̄, Δ]}
‖
‖ Ẋ+med

Γ3{B̄}
σ

Γ{∅}{�B̄}
cutr+1

Γ{∅}{∅}

.

We now consider the three possible cases for σ ∈ {k, 	
t,

	
b} and apply one of the

following transformations to the relevant part of the proof:

Σ{[B, . . . , B], [Δ]}
m�

Σ{�B, [Δ]}
Σ{[B̄, Δ]}

k

Σ{�B̄, [Δ]}
cutr+1

Σ{[Δ]}
�

Σ{[B, . . . , B], [Δ]}
med

Σ{[B, . . . , B, Δ]} Σ{[B̄, Δ]}
mcutr

Σ{[Δ]}

Σ{[B, . . . , B]}
m�

Σ{�B}
Σ{B̄}	

t

Σ{�B̄}
cutr+1

Σ{∅}
�

Σ{[B, . . . , B]}
ṫ

Σ{B, . . . , B} Σ{B̄}
mcutr

Σ{∅}

164 K. Brünnler and L. Straßburger

Σ{[[B, . . . , B], Δ]}
m�

Σ{[�B, Δ]}
Σ{B̄, [Δ]}	

b

Σ{[�B̄, Δ]}
cutr+1

Σ{[Δ]}
�

Σ{[[B, . . . , B], Δ]}
ḃ

Σ{B, . . . , B, Δ]} Σ{B̄, [Δ]}
mcutr

Σ{[Δ]}
.

We then eliminate mcut by using Lemma 5 (From mcut to cut) and weakening
admissibility. ��
Proposition 2 (Cut-elimination for K−). Let X ⊆ {t, b, 4, 5}. If K−+ Ẋ+ cut � Γ
then K− + Ẋ+ � Γ .

Proof. We first prove the claim: If K−+ Ẋ+cutr+1 � Γ then K−+ Ẋ+ +cutr � Γ .
The claim is proved by induction on the depth of the given proof, using the
reduction lemma. Our proposition then follows from an induction on the cut
rank of the given proof, using the claim. ��
Lemma 11 (From X+ to X).
(i) The 4̇-rule is derivable for {ṫ, 5̇, nec}.

(ii) The 4̇-rule is derivable for {ḃ, 5̇, nec}.
(iii) The 5̇-rule is derivable for {ḃ, 4̇, wk}.
Proof. For (i) notice that the 4̇-rule is a special case of the 5̇-rule unless Γ{ }
has depth zero, and thus Γ{ } = Λ, { }. In that case we have:

Λ, [Δ], [Σ]
4̇
Λ, [[Δ], Σ]

�
Λ, [Δ], [Σ]

nec
[Λ, [Δ], [Σ]]

5̇
[Λ, [[Δ], Σ]]

ṫ
Λ, [[Δ], Σ]

.

For (ii) we again have to consider only the case where Γ{ } = Λ, { }:

Λ, [Δ], [Σ]
4̇
Λ, [[Δ], Σ]

�
Λ, [Δ], [Σ]

nec2

[[Λ, [Δ], [Σ]]]
5̇
[[Λ, [Σ]], [Δ]]

ḃ
[[Λ], [Δ], Σ]

ḃ
Λ, [[Δ], Σ]

For (iii) notice that a sequent has a tree structure and that, seen upwards, the
5̇-rule allows to move a boxed sequent [Δ] to any position in that tree, but not
to the root. To move a boxed sequent to any position in the tree it is enough if
we are both able to move it a) from a given node the parent of this node and
b) to move it from a given node to any child of that node. Point a) is just the
4̇-rule and point b) is as follows:

Γ{[Λ, [Δ]]}
wk

Γ{[Λ, [∅], [Δ]]}
4̇

Γ{[Λ, [[Δ]]]}
ḃ

Γ{[Λ], [Δ]}

.

��

Modular Sequent Systems for Modal Logic 165

Proof (of Theorem 2 (Cut-elimination)). We first prove the theorem for the
cases where d /∈ X. The transformation (i) is by Proposition 1 (Push down
contraction), the transformation (ii) is Proposition 2 (Cut-elimination for K−),
and transformation (iii) is by Lemma 11 (From X+ to X) and weakening and
necessitation admissibility.

P1 K+Ẋ+cut

Γ

(i)�
P2 K−+Ẋ+cut

Γ ′

‖
‖ fctr

Γ

(ii)�
P3 K−+Ẋ+

Γ ′

‖
‖ fctr

Γ

(iii)� P4 K+Ẋ

Γ

.

In the cases where d ∈ X we first apply Lemma 2 (Push down seriality) and then
proceed the same way with the upper part of the proof. ��

Future work. It looks like the cut-elimination proof can be generalised. So it
is our goal to devise 1) easily checkable critera on rules, which guarantee cut-
elimination, and 2) a procedure which turns modal axioms into rules which
satisfy these criteria. Such a generic cut-elimination procedure exists already for
the display calculus, but relies on the so-called display property, and thus on
the language of tense logic. Recently, such a procedure has also been proposed
by Ciabattoni et al. for hypersequent systems [8]. While hypersequents do not
seem to be expressive enough for the modal logics considered here, nested se-
quents seem to add just the right amount of extra generality to enable a similar
development for modal logics.

Related work. The fact that structural rules improve modularity has been ob-
served before by Castilho et. al. [7] in the context of tableau systems. Our �-rules
correspond exactly to what are called propagation rules in [7]. While the focus
of [7] is on giving decision procedures, our focus is on giving proof systems which
support a notion of cut-elimination. This is more easily done with local rules, so
in sequent systems instead of tableau systems. A further difference is that prop-
agation rules and structural rules are mixed in [7], while here we treat systems
with structural rules only (and in [3] we treated systems with propagation- or�-rules only).

166 K. Brünnler and L. Straßburger

References

1. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic:
from foundations to applications. Proc. Logic Colloquium, Keele, UK, 1993, pp.
1–32. Oxford University Press, New York (1996)

2. Belnap Jr., N.D.: Display logic. Journal of Philosophical Logic 11, 375–417 (1982)
3. Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkin-

son, I., Venema, Y. (eds.) Advances in Modal Logic, vol. 6, pp. 107–119. College
Publications (2006)

4. Brünnler, K.: Deep sequent systems for modal logic. In: Archive for Mathematical
Logic (to appear, 2008) http://www.iam.unibe.ch/~kai/Papers/dsm.pdf

5. Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R.,
Voronkov, A. (eds.) LPAR 2001. LNCS, vol. 2250, pp. 347–361. Springer, Heidel-
berg (2001)

6. Bull, R.A.: Cut elimination for propositional dynamic logic without *. Mathema-
tische Logik und Grundlagen der Mathematik 38, 85–100 (1992)

7. Castilho, M.A., del Cerro, L.F., Gasquet, O., Herzig, A.: Modal tableaux with
propagation rules and structural rules. Fundam. Inf. 32(3-4), 281–297 (1997)

8. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical
logics. In: Proceedings of LICS 2008, pp. 229–240 (2008)

9. Goré, R., Tiu, A.: Classical modal display logic in the calculus of structures and
minimal cut-free deep inference calculi for S5. Journal of Logic and Computa-
tion 17(4), 767–794 (2007)

10. Hein, R., Stewart, C.: Purity through unravelling. In: Bruscoli, P., Lamarche, F.,
Stewart, C. (eds.) Structures and Deduction, pp. 126–143. Technische Universität
Dresden (2005)

11. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–
135 (1994)

12. Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34(5-6),
507–544 (2005)

13. Poggiolesi, F.: The tree-hypersequent method for modal propositional logic. In: Ma-
linowski, J., Makinson, D., Wansing, H. (eds.) Towards Mathematical Philosophy.
Trends in Logic, pp. 9–30. Springer, Heidelberg (2009)

14. Stewart, C., Stouppa, P.: A systematic proof theory for several modal logics. In:
Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in
Modal Logic, vol. 5, pp. 309–333. King’s College Publications (2005)

15. Stouppa, P.: A deep inference system for the modal logic S5. Studia Logica 85(2),
199–214 (2007)

16. Wansing, H.: Displaying Modal Logic. Trends in Logic Series, vol. 3. Kluwer Aca-
demic Publishers, Dordrecht (1998)

http://www.iam.unibe.ch/~kai/Papers/dsm.pdf

Abduction and Consequence Generation in a
Support System for the Design of Logical

Multiple-Choice Questions

Marta Cialdea Mayer

Dipartimento di Informatica e Automazione
Università di Roma Tre

Abstract. This paper presents Logitest, a system that can be used to
assist the designer of multiple-choice questions aiming at verifying logi-
cal reasoning abilities (provided they can be represented in propositional
logic). Beyond allowing the designer to check the status of an option with
respect to the item stem (the problem presentation), i.e. whether it is
derivable or consistent with the given information, the system can ac-
complish generative tasks (abduction and consequence generation) that
can be useful both to complete the item stem, and to generate plausible
distractors (incorrect options). The provably correct and complete algo-
rithm used to perform abduction and consequence generation finds out
minimal solutions with no need to compare each of them with all the
others.

1 Introduction

Many educational institutions require students to take admission tests, either
to check whether they have a suitable initial preparation and attitude, or to
select (a limited number of) the most promising students among the appli-
cants. Admission tests often include multiple-choice questions aiming at assess-
ing logical reasoning abilities. The same kind of questions can be presented
to students in scientific disciplines, who are generally required to be proficient
in logical operations. Many logical tests have the following form: “given the
description of a state of facts, which of the assertions listed below is deriv-
able/underivable/consistent/inconsistent with the information you have?”. Of-
ten, the situation described in such questions concerns a fixed number of indi-
viduals, so that it can be represented in propositional logic.

A multiple-choice item is made up by (1) an item stem that presents the prob-
lem, (2) a sequence of options, containing (2a) the correct option, and (2b) several
distractor options, i.e. incorrect alternative answers. A well designed multiple-
choice item should meet some important basic requirements (see, for instance,
[2,4]). Some of them concern the linguistic presentation of the question, others
are of a more “logical” nature. In particular, it is required that (1) exactly only
one of the options is correct, and (2) the options should be equally plausible.
The first of such requirements seems quite obvious, and yet, in the case of log-
ical test items, checking its fulfillment can often be tricky. As a matter of fact,

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 167–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

168 M. Cialdea Mayer

invalid test items are not so infrequent. The second requirement is even subtler,
especially for logical tests, and very often unmet.

The author of this paper experienced the difficulty in designing good logical
questions when she was charged by her Faculty to edit the logical section of
students’ admission tests. In fact, some of the questions proposed by colleagues
appeared to be incorrect, as well as others the author found in published test
collections. Moreover, the designer can easily “run out of ideas”. This motivated
the implementation of Logitest, a tool to assist a test designer in both checking
and devising multiple-choice logical test items.

2 The Main Functionalities of the System

Logitest is a simple support system for the design and check of test items of
the form “given the information T , which of the following assertions is deriv-
able/underivable/consistent/inconsistent with T ?”. The system is written in Ob-
jective Caml [6] and is available at Logitest web page [7].

The system takes a file in input, specifying the components of the item and
the tasks to be executed. The input file contains a description of the language
used in the test (predicates, object types, constants, etc.) and the item stem
(the information T), represented by a set of logical formulae. The syntax used
in the input file is first-order, but formulae are translated into a propositional
language. In fact, the program can only deal with questions involving a finite
and fixed set of objects (which are assumed to be pairwise different).

Moreover, the input file contains directives to perform the tasks described in
the sequel.

Provability and consistency check. The input file can specify a set of formu-
lae to be checked for provability from the stem T or consistency with T . Then the
system checks them one by one. This is the basic task, useful to verify whether
one and only one of the options represents the correct answer.

Completion of the information given in the item stem. This task is useful
when the designer has run out of ideas; in this case the item stem specified in
the input file contains general information and possibly some facts, that however
are not sufficient to derive some given conclusion C, representing the correct
option. The system generates all the minimal conjunctions of literals Ei, that
are consistent with T and such that T ∪ {Ei} |= C (excluding trivial ones, i.e.
such that Ei |= C). In other terms, the system solves the abduction problem
given by T and C. A set of abducible predicates can also be specified, in order to
obtain solutions containing only such predicates.

Generation of correct answers. The system can be asked to generate for-
mulae which are derivable from the item stem; the logical consequences that are
generated are minimal disjunctions of literals, excluding trivial ones (that are
already explicitly present in the item stem). The system can similarly be asked
to generate literals that are consistent/inconsistent with the stem (excluding its
logical consequences).

Abduction and Consequence Generation in the Design of MCQs 169

Generation of distractors. The specification file may include a belief set,
that is intended to represent possible students’ misconceptions or an incorrect
interpretation of the stem (such as, for instance, reading a logical equivalence
in place of an implication). The beliefs are used to generate incorrect though
“plausible” options. The system generates minimal disjunctions C of literals
such that B |= C and T |= C, where B is the belief set and T the item stem.

3 Techniques and Algorithms

Logical consequence and satisfiability tests are carried out by means of Ordered
Binary Decision Diagrams [1]. The generation of consistent and inconsistent
literals simply iterates over the set of literals and tests them one by one.

Abduction is a computationally hard problem: deciding whether a given ab-
duction problem has a solution at all is a ΣP

2 -complete problem [5]. However,
due to the rather small size of problems to be solved in the present context, it
is a feasible task.

Logic-based abduction essentially consists in the generation of (non-trivial)
explanations E such that T ∪ {E} |= F (where F is the “observation”), i.e.
such that T ∪{¬F} |= ¬E. Abduction and consequence generation can therefore
be approached in the same way. And in fact Logitest performs the two tasks
following the same methodology. From the syntactical point of view, abduction
usually requires E to be a conjunction of literals. Using the same approach in
consequence generation means that “interesting” consequences of the stem or the
belief set are disjunctions of literals. The main difference between consequence
generation and logic-based abduction is that the latter requires E to be consis-
tent with T and such that E |= F , while interesting logical consequences of T
should exclude those that are already explicitly contained in T itself. Such tests
can however be performed after having generated E. Similarly, when generating
distractors, i.e. consequences of the beliefs that are not implied by T , the test
T |= C is performed after the generation of C.

In the following, the symbol T ∗ stands for T∪{¬F} in the case of an abductive
task, T itself (or the belief set) in the consequence generation task. Candidates
for abductive explanations are usually subjected to minimality criteria, such as
subset-minimality. It is reasonable to ask the consequence generation task to
fulfill the same requirement. In general, therefore, we want to find out subset-
minimal sets S of literals such that T ∗ ∪ S is inconsistent. The algorithm used
for performing both tasks takes T ∗ in input and returns a set S of literals. In the
abduction case, the solution is the conjunction of such literals; in the consequence
generation case, it is the disjunction of the complements of the literals in S.

The algorithm is inspired by [3], where a proof-theoretical abduction method
based on semantic tableaux is defined. Explanations are identified on the basis of
the set of open branches in a complete tableau for T ∗ (possibly simplified using
containment), and such a characterization is the declarative counterpart of a non-
deterministic algorithm that generates a single (minimal) abductive explanation,
with no need to test each candidate solution against the others. However, in order

170 M. Cialdea Mayer

to be complete, the algorithm suggested in [3] has to consider every permutation
of the set of open tableaux branches. Logitest uses an improved algorithm, that
iterates over a single sequence of tableau branches.

Like in [3], first of all a (simplified) set {F1, ..., Fn} of sets of literals represent-
ing the open branches in a complete tableaux for T ∗ is built (if we identify T ∗

with the conjunction of its elements, {F1, ..., Fn} represents a DNF of T ∗). Then
the branches are complemented, building the set γ(T ∗) = {C1, ..., Cn} where
Ci = {� | � ∈ Fi} (� being the complement of �).

In order to present the algorithm, some preliminary definitions are needed. A
set S = {�1, ..., �k} of literals is said to cover a set Γ = {C1, ..., Cn}, where each
Ci is a set of literals, if for all Ci ∈ Γ , S ∩ Ci = Ø (i.e. S contains at least one
element from each Ci).

Obviously, T ∗ ∪ S is inconsistent iff S covers γ(T ∗). Therefore, the search
space of candidate solutions is constituted by the sets covering γ(T ∗). Candidate
solutions S are generated by a backtracking algorithm which builds S in an
incremental manner, scanning the list of elements of γ(T ∗).

Minimality is dealt with by means of the following notion. A set of literals
S is said to be admissible with respect to a set Γ of sets of literals if and
only if for all � ∈ S there exists C ∈ Γ such that S ∩ C = {�}. I.e. S is not
admissible wrt Γ iff there exists a literal � ∈ S such that for all C ∈ Γ containing
�, C contains also some other literal �′ ∈ S. This means that the literal � is
redundant: if S covers Γ , � can be eliminated from S obtaining a set that still
covers Γ .

Finally, an admissible covering of Γ is a set that covers Γ and is admissible
wrt Γ , and a non-admissible covering of Γ is a set that covers Γ and is not
admissible wrt Γ .

It can easily be proved that:
P1. If S covers Γ , then it is subset-minimal (i.e. no S′ ⊂ S covers Γ) if and

only if it is admissible wrt Γ .
Therefore, S is a minimal consistent set of literals such that T ∗∪S is inconsistent
iff S is a consistent and admissible covering of γ(T ∗).

The algorithm used by Logitest builds a consistent solution S incrementally,
in such a way that it is always admissible. Initially, S = Ø. Then the elements
of γ(T ∗) are considered one by one (in any fixed order). Each Ci ∈ γ(T ∗) such
that S∩Ci = Ø, is ignored. If S∩Ci = Ø, a literal � from Ci consistent with S is
chosen; if either no literal in Ci is consistent with S of S ∪ {�} is not admissible
wrt {C1, ..., Ci}, the algorithm fails (and possibly backtracks), otherwise goes
on to Ci+1, with S ∪ {�}. Backtracking on every choice point generates all the
minimal solutions of the problem.

Here follows the pseudo-code of the backtracking algorithm. In the description
of the algorithm, choose identifies a backtrackable choice point.1

1 The algorithm suggested by [3] builds candidate solutions in a similar way, but for
the fact that the admissibility test is replaced by a restriction on literal choices: a
literal � cannot be added to Si at stage i if � ∈ C1 ∪ ... ∪ Ci−1. If such an algorithm
is run only on a fixed permutation of {C1, ..., Cn}, it is incomplete.

Abduction and Consequence Generation in the Design of MCQs 171

Input: T ∗, a set of formulae
Output: a set of literals
1) Build a simplified DNF {F1, ..., Fn} of T ∗

2) Build the set γ(T ∗) = {C1, ..., Cn}, where Ci = {� | � ∈ Fi}
3) Initialize S0 ← Ø
4) for i = 1, ..., n
5) do if Si−1 ∩ Ci = Ø then

6) choose � ∈ Ci such that � �∈ Si−1

7) if there is no such � then fail
8) else Si ← {�} ∪ Si−1

9) if Si is not admissible wrt {C1, ..., Ci}, then fail
10) done
11) return Sn

The algorithm is obviously correct: Sn does not contain any pair of comple-
mentary literals (test at line 7), it covers γ(T ∗) and is admissible wrt γ(T ∗)
(otherwise Sn is rejected by the test at line 9 in the last iteration). Hence, by
P1, it outputs only minimal consistent sets S such that T ∗ ∪ S is inconsistent.

With respect to completeness, let’s note that the test at line 7 rejects in-
consistent solutions and the test at line 5 rules out solutions that would triv-
ially be non minimal. However, in principle, the algorithm could be incom-
plete, if a set Si is discarded because it is not admissible wrt {C1, ..., Ci},
but it is admissible wrt {C1, ..., Ci+1} (or, in general, it can be extended to
a consistent admissible covering of {C1, ..., Cn}). For instance, consider the sets
C1 = {p, q}, C2 = {q, r}, C3 = {p, s}, and let’s assume that S1 = {p} (p is chosen
at the first iteration) and S2 = {p, q}. At this stage, the algorithm fails because
S2 is not admissible wrt {C1, C2}. Backtracking on the choice point of stage 2
yields S′2 = {p, r}; at the third iteration nothing is added to S′2 and it is output
as a solution. However, if S2 had not been rejected, at the next iteration it would
be recognized as admissible wrt {C1, C2, C3}. It seems that a correct solution
has been lost. But the algorithm can still backtrack on the choice at the first
stage: q can be chosen from C1, i.e. S′1 = {q}; nothing is added at the second
iteration (S′1 ∩C2 = Ø), and finally p is added to S′1 giving a second admissible
solution {p, q}, thus recovering the apparently lost one.

This holds in general: it can be shown that
P2. If a set S0 of literals is a consistent non-admissible covering of {C1, ..., Ck}

and there exists S ⊇ S0 that is admissible wrt {C1, ..., Ck, Ck+1}, then there
exists a consistent admissible covering S1 ⊆ S of {C1, ..., Ck}.

Using P1 and P2, it can be proved that the algorithm is complete. In fact, if
Γ (T ∗) = {C1, ..., Cn}, an inductive reasoning shows that, for any i = 1, ..., n,
if Si is a consistent and minimal covering of C1, ..., Ci, then there exist choices
of literals at iterations 1, ..., i such that Si is built at stage i. The completeness
proof, as well as proofs of P1 and P2, can be found in the technical report
available at [7].

It is worth discussing alternative algorithms that would still be correct and com-
plete. The simplest variant one can think of consists in first computing a consis-
tent covering of {C1, ..., Cn} and then make it minimal eliminating unnecessary

172 M. Cialdea Mayer

literals. Or, similarly, the algorithm presented above can be modified at line 9, in
such a way that, if Si is not admissible, then all redundant literals are removed
from Si before going on (without failing). A second alternative consists in failing
at line 9 only if Si is not admissible wrt {C1, ..., Ci, ..., Cn}. Showing completeness
of such variants is certainly easier, but in both cases it is very likely, even in sim-
ple cases, to produce several times the same solution. In order to avoid repetitions,
each solution should be compared to all the previously found ones before it is given
in output. The algorithm used by Logitest has not been proved to avoid such re-
dundancies; however, in the experiments carried out, it did not happen to output
the same solution more than once (run on an abductive problem with almost 5,000
solutions, no duplicates were found).

4 Concluding Remarks

The system described in this paper has been satisfactorily used by the author
to design logical test items. Obviously, the user is assumed to have some basic
logical notions in order to give adequate specifications in the input file.

Logitest can easily be improved by some routine work, in order to allow, for
instance, a compact specification of some frequently used predicate properties
(reflexivity, functionality, being an order relation, etc.), the possibility to define
different belief sets, and the generation of literals that are consistent/inconsistent
with the beliefs. A further step to make it more usable is the implementation of
a graphical user interface.

Future work may finally include the study of common “logical misconcep-
tions”, so that belief sets, and consequently distractors, can be automatically
generated.

Acknowledgements. The author thanks Serenella Cerrito for being willing to
discuss the details of the abduction algorithm.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

2. Carneson, J., Delpierre, G., Masters, K.: Designing and managing multiple choice
questions, http://web.uct.ac.za/projects/cbe/mcqman/mcqman01.html

3. Cialdea Mayer, M., Pirri, F.: First order abduction via tableau and sequent calculi.
Bulletin of the Interest Group in Pure and Applied Logics (IGPL) 1, 99–117 (1993)

4. Clegg, V.L., Cashin, W.E.: Improving multiple-choice tests. Idea paper no. 16.
Kansas State University: Center for Faculty Evaluation and Development (1986)

5. Eiter, T., Gottlob, G., Technische Universitt Wien: The complexity of logic-based
abduction. Journal of the ACM 42, 3–42 (1995)

6. Leroy, X.: The Objective Caml system, release 3.11. Documentation and user’s man-
ual (2008), http://caml.inria.fr/

7. Logitest web page, http://cialdea.dia.uniroma3.it/logitest/

http://web.uct.ac.za/projects/cbe/mcqman/mcqman01.html
http://caml.inria.fr/
http://cialdea.dia.uniroma3.it/logitest/

Goal-Directed Invariant Synthesis for
Model Checking Modulo Theories

Silvio Ghilardi1 and Silvio Ranise2

1 Dipartimento di Informatica, Università degli Studi di Milano, Italy
2 Dipartimento di Informatica, Università di Verona, Italy

Abstract. We are interested in automatically proving safety properties
of infinite state systems. We present a technique for invariant synthe-
sis which can be incorporated in backward reachability analysis. The
main theoretical result ensures that (under suitable hypotheses) our
method is guaranteed to find an invariant if one exists. We also discuss
heuristics that allow us to derive an implementation of the technique
showing remarkable speed-ups on a significant set of safety problems in
parametrised systems.

1 Introduction

Backward reachability analysis has been widely adopted in model checking safety
properties of infinite state systems (see, e.g., [1]). This verification procedure re-
peatedly computes pre-images of a set of unsafe states, usually obtained by
complementing a safety property that a system should satisfy. Potentially in-
finite sets of states are represented by constraints so that pre-image computa-
tion can be done symbolically. A key advantage of backward reachability is to
be goal-directed ; the goal being the set of unsafe states from which pre-images
are computed. Furthermore, safety properties for some classes of systems (e.g.,
broadcast protocols [8,6]) can be decided by backward reachability.

Despite these advantages, backward reachability can unnecessarily explore
(large) portions of the symbolic state space of a system which are actually not
required to verify the safety property under consideration. Even worse, in some
cases the analysis may not detect a fix-point, thereby causing non-termination.
In order to avoid visiting irrelevant parts of the symbolic state space during back-
ward reachability, techniques for analyzing pre-images and guessing invariants
have been devised (see, e.g., [5,15,9,4,13] to name a few). The success of these
techniques depend crucially on the heuristics used to guess the invariants. Our
framework is similar in spirit to [5], but employs techniques which are specific
for our different intended application domains.

Along this line of research, we present a technique for interleaving pre-image
computation and invariant synthesis which tries to eagerly prune irrelevant parts
of the search space. Formally, we work in the framework of the model checking
(based on Satisfiability) Modulo Theories approach of [10,12], where array-based
systems have been introduced as an abstraction of several classes of infinite state

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 173–188, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

174 S. Ghilardi and S. Ranise

systems (such as parametrized systems, lossy channels, and algorithms manip-
ulating arrays). The main result (cf. Theorems 4.9 and 4.11) of the paper en-
sures that the technique will find an invariant—provided one exists—under suit-
able hypotheses, which are satisfied for important classes of array-based systems
(e.g., mutual exclusion algorithms or cache coherence protocols). The key ingre-
dient in the proof of the result is the model-theoretic notion of configuration and
configuration ordering (introduced in [1] at an abstract level) which allows us to
finitely characterize the search space of candidate invariants. Although the tech-
nique is developed for array-based systems, we believe that the underlying idea
can be adapted to other symbolic approaches to model checking (e.g., [2,3]).

Plan of the paper. We briefly introduce the notion of array-based system (Sec. 2).
We revisit the backward reachability procedure as a Tableaux-like calculus (Sec. 3)
so as to give a firm basis for implementation. We show how invariants can help
backward reachability (Sec. 4), recall the duality between this and the synthesis of
invariants (Sec. 4.1), and describe how to interleave backward analysis and invari-
ant synthesis (Sec. 4.2) together with some heuristics (Sec. 4.3). Finally (Sec. 5),
we discuss how a prototype implementation of our techniques shows remarkable
speed-ups. Full proofs and more examples can be found in the technical report [11].

2 Formal Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, and
formula) and semantic (e.g., structure, sub-structure, truth, satisfiability, and
validity) notions of first-order logic (see, e.g., [7]). The equality symbol = is
included in all signatures considered below. A signature is relational if it does
not contain function symbols and it is quasi-relational if its function symbols are
all constants. An expression is a term, an atom, a literal, or a formula. Let x be
a finite tuple of variables and Σ a signature; a Σ(x)-expression is an expression
built out of the symbols in Σ where at most the variables in x may occur free
(we will write E(x) to emphasize that E is a Σ(x)-expression). Let e be a finite
sequence of expressions and σ a substitution; eσ is the result of applying the
substitution σ to each element of the sequence e.

According to the current practice in the SMT literature [16], a theory T is a
pair (Σ, C), where Σ is a signature and C is a class of Σ-structures; the structures
in C are the models of T . Below, we let T = (Σ, C). A Σ-formula φ is T -satisfiable
if there exists a Σ-structure M in C such that φ is true in M under a suitable
assignment to the free variables of φ (in symbols, M |= φ); it is T -valid (in
symbols, T |= ϕ) if its negation is T -unsatisfiable. Two formulae ϕ1 and ϕ2
are T -equivalent if ϕ1 ↔ ϕ2 is T -valid. The satisfiability modulo the theory T
(SMT (T)) problem amounts to establishing the T -satisfiability of quantifier-free
Σ-formulae.

T admits quantifier elimination iff for every formula ϕ(x) one can compute
a quantifier-free formula ϕ′(x) such that T |= ∀x(ϕ(x) ↔ ϕ′(x)). A theory
T = (Σ, C) is said to be locally finite iff Σ is finite and, for every finite set of
variables x, there are finitely many Σ(x)-terms t1, . . . , tkx such that for every

Goal-Directed Invariant Synthesis for Model Checking Modulo Theories 175

further Σ(x)-term u, we have that T |= u = ti (for some i ∈ {1, . . . , kx}).
The terms t1, . . . , tkx are called Σ(x)-representative terms ; if they are effectively
computable from x (and ti is computable from u), then T is said to be effectively
locally finite (in the following, when we say ‘locally finite’, we in fact always
mean ‘effectively locally finite’). If Σ is relational or quasi-relational, then any
Σ-theory T is locally finite. An enumerated data-type theory T is a theory in
a quasi-relational signature whose class of models contains only a single finite
Σ-structure M = (M, I) such that for every m ∈ M there exists a constant
c ∈ Σ such that cI = m.

A T -partition is a finite set C1(x), . . . , Cn(x) of quantifier-free formulae such
that T |= ∀x

∨n
i=1 Ci(x) and T |=

∧
i�=j ∀x¬(Ci(x) ∧ Cj(x)). A case-definable

extension T ′ = (Σ′, C′) of a theory T = (Σ, C) is obtained from T by ap-
plying (finitely many times) the following procedure: (i) take a T -partition
C1(x), . . . , Cn(x) together with Σ-terms t1(x), . . . , tn(x); (ii) let Σ′ be Σ ∪ {F},
where F is a “fresh” function symbol (i.e. F ∈ Σ) whose arity is equal to the
length of x; (iii) take as C′ the class of Σ′-structures M whose Σ-reduct is
a model of T and such that M |=

∧n
i=1 ∀x (Ci(x) → F (x) = ti(x)). Thus

a case-definable extension T ′ of a theory T contains finitely many additional
function symbols, called case-defined functions. It is not hard to translate any
SMT (T ′) problem into an equivalent SMT (T)-problem, by repeatedly applying
the following transformation: given the quantifier free formula φ to be tested
for T ′-satisfiability, replace it by

∨
i(Ciσ ∧ φi), where φi is a formula obtained

from φ by replacing each term of the kind Fσ by tiσ (the Ci’s are the partition
formulae for the case definition of F and the ti’s are the related ‘value’ terms).

From now on, we use many-sorted first-order logic. All notions introduced
above can be easily adapted to a many-sorted framework. In the rest of the
paper, we fix (i) a theory TI = (ΣI , CI) for indexes whose only sort symbol is
INDEX; (ii) a theory TE = (ΣE , CE) for data whose only sort symbol is ELEM (the
class CE of models of this theory is usually a singleton). The theory AE

I = (Σ, C)
of arrays with indexes I and elements E is obtained as the combination of
TI and TE as follows: INDEX, ELEM, and ARRAY are the only sort symbols of AE

I ,
the signature is Σ := ΣI ∪ΣE ∪{ []} where [] : ARRAY, INDEX −→ ELEM (intu-
itively, a[i] denotes the element stored in the array a at index i); a three-sorted
structure M = (INDEXM, ELEMM, ARRAYM, I) is in C iff ARRAYM is the set of
(total) functions from INDEXM to ELEMM, the function symbol [] is interpreted
as function application, and MI = (INDEXM, I|ΣI

), ME = (ELEMM, I|ΣE
) are

models of TI and TE , respectively (where I|ΣX
is the restriction of the interpre-

tation I to the symbols in ΣX for X ∈ {I, E}).

Notational conventions. For the sake of brevity, we introduce the following nota-
tional conventions: d, e range over variables of sort ELEM, a over variables of sort
ARRAY, i, j, k, and z over variables of sort INDEX. An underlined variable name
abbreviates a tuple of variables of unspecified (but finite) length and, if i :=
i1, . . . , in, the notation a[i] abbreviates the tuple of terms a[i1], . . . , a[in]. Possi-
bly sub/super-scripted expressions of the form φ(i, e), ψ(i, e) denote quantifier-
free (ΣI ∪ΣE)-formulae in which at most the variables i∪e occur. Also, φ(i, t/e)

176 S. Ghilardi and S. Ranise

(or simply φ(i, t)) abbreviates the substitution of the Σ-terms t for the variables
e. Thus, for instance, φ(i, a[i]) denotes the formula obtained by replacing e with
a[i] in the quantifier-free formula φ(i, e).

3 Backward Reachability and Tableaux

Following [12], we focus on a particular yet large class of array-based systems cor-
responding to guarded assignments. A (guarded assignment) array-based (tran-
sition) system (for (TI , TE)) is a triple S = (a, I, τ) where (i) a is the state
variable of sort ARRAY;1 (ii) I(a) is the initial Σ(a)-formula; and (iii) τ(a, a′)
is the transition (Σ ∪ ΣD)(a, a′)-formula, where a′ is a renamed copy of a and
ΣD is a finite set of case-defined function symbols not in ΣI ∪ ΣE . Below, we
also assume I(a) to be a ∀I-formula , i.e. a formula of the form ∀i.φ(i, a[i]),
and τ(a, a′) to be in functional form , i.e. a disjunction of formulae of
the form

∃i (φL(i, a[i]) ∧ ∀j a′[j] = FG(i, a[i], j, a[j])) (1)

where φL is the guard (also called the local component in [10]), and FG is a case-
defined function (called the global component). To understand why formulae (1)
are in functional form, consider λ-abstraction; then, the sub-formula ∀j a′[j] =
FG(i, a[i], j, a[j])) can be re-written as a′ = λj.FG(i, a[i], j, a[j]). (By abuse of
notation, any case-definable extension of AE

I will be denoted by AE
I).

Given an array-based system S = (a, I, τ) and a formula U(a), (an instance
of) the safety problem is to establish whether there exists a natural number n
such that the formula

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ U(an) (2)

is AE
I -satisfiable. If there is no such n, then S is safe (w.r.t. U); otherwise, it is

unsafe since the AE
I -satisfiability of (2) implies the existence of a run (of length

n) leading the system from a state in I to a state in U . From now on, we assume
U(a) to be a ∃I-formula , i.e. a formula of the form ∃i.φ(i, a[i]).

A general approach to solve instances of the safety problem is based on com-
puting the set of backward reachable states. For n ≥ 0, the n-pre-image of a
formula K(a) is Pre0(τ, K) := K and Pren+1(τ, K) := Pre(τ, Pren(τ, K)),
where

Pre(τ, K) := ∃a′.(τ(a, a′) ∧K(a′)). (3)

Given S = (a, I, τ) and U(a), the formula Pren(τ, U) describes the set of back-
ward reachable states in n steps (for n ≥ 0). At the n-th iteration of the loop, the
basic backward reachability algorithm, depicted in Figure 1 (a), stores in the vari-
able B the formula BRn(τ, U) :=

∨n
i=0 Prei(τ, U) representing the set of states

1 For simplicity (and without loss of generality), we limit ourselves to array-based
systems having just one variable a of sort ARRAY. This limitation is however dropped
in the examples, where in addition TE may be many-sorted.

Goal-Directed Invariant Synthesis for Model Checking Modulo Theories 177

function BReach(U : ∃I -formula)
1 P ←− U ; B ←− ⊥;
2 while (P ∧ ¬B is AE

I -sat.) do
3 if (I ∧ P is AE

I -sat.)
then return unsafe;

4 B ←− P ∨ B;
5 P ←− Pre(τ, P);
6 end
7 return (safe, B);

function SInv(U : ∃I -formula)
1 P ←− ChooseCover(U); B ←− ⊥;
2 while (P ∧ ¬B is AE

I -sat.) do
3 if (I ∧ P is AE

I -sat.)
then return failure;

4 B ←− P ∨B;
5 P ←− ChooseCover(Pre(τ, P));
6 end
7 return (success,¬B);

(a) (b)

Fig. 1. The basic backward reachability (a) and the invariant synthesis (b) algorithms

which are backward reachable from the states in U in at most n steps (whereas
the variable P stores the formula Pren(τ, U)). While computing BRn(τ, U),
BReach also checks whether the system is unsafe (cf. line 3, which can be read as
I∧Pren(τ, U) is AE

I -satisfiable) or a fix-point has been reached (cf. line 2, which
can be read as ¬(BRn(τ, U) → BRn−1(τ, U)) is AE

I -unsatisfiable or, equiva-
lently, that (BRn(τ, U) → BRn−1(τ, U)) is AE

I -valid). When BReach returns
the safety of the system (cf. line 7), the variable B stores the formula describing
the set of states which are backward reachable from U which is also a fix-point.
Indeed, for BReach (Figure 1 (a)) to be a true (possibly non-terminating) pro-
cedure, it is mandatory that (i) ∃I -formulae are closed under pre-image com-
putation and (ii) both the AE

I -satisfiability test for safety (line 3) and that for
fix-point (line 2) are effective.

Concerning (i), it is sufficient to recall the following result from [12].

Proposition 3.1. Let K(a) :=∃k φ(k, a[k]) and τ(a, a′) :=
∨m

h=1 ∃i (φh
L(i, a[i])∧

a′ = λj.Fh
G(i, a[i], j, a[j])). Then, Pre(τ, K) is AE

I -equivalent to an (effectively
computable) ∃I -formula.

The proof of Proposition 3.1 (see [12]) consists of applying simple logical manip-
ulations to show that Pre(τh, K) is AE

I -equivalent to the following ∃I -formula,
where τh is one of the m disjuncts of τ (cf. Proposition 3.1 above):

∃i∃k.(φh
L(i, a[i]) ∧ φ(k, Fh

G(i, a[i], k, a[k]))) (4)

where φ(k, Fh
G(i, a[i], k, a[k])) is the formula obtained from φ(k, a′[k]) by replac-

ing a′[km] with Fh
G(i, a[i], km, a[km]) for m = 1, ..., l and k is the tuple k1, . . . , kl

(the Fh
G can then be eliminated as shown in Section 2). Notice that the exis-

tentially quantified prefix ∃ k is augmented with ∃ i in (4) with respect to K.
Concerning (ii), observe that the formulae involved in the satisfiability checks
are I ∧BRn(τ, K) and BRn+1(τ, K)∧¬BRn(τ, K). Since we have closure under
pre-image computation, both formulae are of the form ∃a ∃i ∀j ψ(i, j, a[i], a[j])
and are called ∃A,I∀I-sentences [10].

178 S. Ghilardi and S. Ranise

Theorem 3.2 ([10]). The AE
I -satisfiability of ∃A,I∀I-sentences is decidable if

(i) TI is locally finite and is closed under substructures; (ii) the SMT (TI) and
SMT (TE) problems are decidable.

Hypothesis (i) concerns the topology of the system (not the data manipulated
by the components of the system) and it is satisfied in many practical cases,
e.g., when the models of TI are all finite sets, linear orders, graphs, forests,
etc. For example, the topology of virtually any cache coherence protocol can be
formalized by finite sets while that of mutual exclusion protocols by linear orders.
Under assumption (i), it is possible to show (see [10]) that an ∃A,I∀I -sentence is
AE

I -satisfiable iff it is satisfiable in a finite index model of AE
I (a finite index model

is a model M in which the set INDEXM has finite cardinality). This suggests
the following quantifier instantiation algorithm, which is indeed complete [10].
Let ∃a ∃i ∀j ψ(i, j, a[i], a[j]) be an ∃A,I∀I -sentence: first, consider the i’s as
Skolem constants and replace the j’s with the representative i-terms (by using
the local finiteness of TI); then, invoke the available SMT solver for checking the
AE

I -satisfiability of the resulting quantifier-free formula. The decidability of the
SMT (AE

I) problem can be shown by using generic combination techniques from
the decidability of those for SMT (TI) and SMT (TE) (see [10] for details).

We summarize our working hypotheses.

Assumption 3.3 We fix an array-based system S = (a, I, τ) such that the ini-
tial formula I is a ∀I-formula, τ(a, a′) :=

∨m
h=1 τh(a, a′) where τh is a formula

in functional form for h = 1, ..., m. We also assume that hypotheses (i)-(ii) of
Theorem 3.2 are satisfied.

3.1 Tableaux-Like Implementation of Backward Reachability

A naive implementation of the algorithm in Figure 1 (a) does not scale up. The
main problem is the size of the formula BRn(τ, U) which contains many redun-
dant or unsatisfiable sub-formulae. We now discuss how Tableaux-like techniques
can be used to circumvent these difficulties. We need one more definition: an ∃I -
formula ∃i1 · · · ∃inφ is said to be primitive iff φ is a conjunction of literals and is
said to be differentiated iff φ contains as a conjunct the negative literal ik = il
for all 1 ≤ k < l ≤ n. By applying various distributive laws together with the
rewriting rules

∃j(i = j ∧ θ) � θ(i/j) and θ � (θ ∧ i = j) ∨ (θ ∧ i = j) (5)

it is possible to transform every ∃I -formula into a disjunction of primitive dif-
ferentiated ones.

We initialize our tableau with the ∃I -formula U(a) representing the set of
unsafe states. The key observation is to revisit the computation of the pre-
image as the following inference rule (we use square brackets to indicate the
applicability condition of the rule):

K [K is primitive differentiated]
Pre(τ1, K) | · · · | Pre(τm, K)

PreImg

Goal-Directed Invariant Synthesis for Model Checking Modulo Theories 179

where Pre(τh, K) computes the ∃I -formula which is logically equivalent to the
pre-image of K w.r.t. τh (this is possible according to Proposition 3.1).

Since the ∃I -formulae labeling the consequents of the rule PreImg may not be
primitive and differentiated, we need the following Beta rule

K
K1 | · · · | Kn

Beta

where K is first transformed by eliminating the case-defined functions as ex-
plained in Section 2, and then by applying rewriting rules like (5) together with
standard distributive laws, in order to get K1, . . . , Kn which are primitive, dif-
ferentiated and whose disjunction is AE

I -equivalent to K.
By repeatedly applying the above rules, it is possible to build a tree whose

nodes are labelled by ∃I -formulae describing the set of backward reachable states.
Indeed, it is not difficult to see that the disjunction of the ∃I -formulae labelling
all the nodes in the (potentially infinite) tree is AE

I -equivalent to the (infinite)
disjunction of the formulae BRn(τ, U), where τ :=

∨m
h=1 τh. Indeed, there is

no need to fully expand our tree. For example, it is useless to apply the rule
PreImg to a node ν labelled by an ∃I -formula which is AE

I -unsatisfiable as all the
formulae labelling nodes in the sub-tree rooted at ν will also be AE

I -unsatisfiable.
This observation can be formalized by the following rule closing a branch in the
tree (we mark the terminal node of a closed branch by ×):

K [K is AE
I -unsatisfiable]
× NotAppl

This rule is effective since ∃I -formulae are a subset of ∃A,I∀I -sentences and the
AE

I -satisfiability of these formulae is decidable by Theorem 3.2.
According to procedure BReach, there are two more situations in which we

can stop expanding a branch in the tree. One terminates the branch because of
the safety test (cf. line 3 of Figure 1 (a)):

K [I ∧K is AE
I -satisfiable]

UnSafe
Safety

Interestingly, if we label with τh the edge connecting a node labeled with K with
that labeled with Pre(τh, K) when applying rule PreImg, then the transitions
τh1 , ..., τhe labelling the edges in the branch terminated by UnSafe (from the leaf
node to the root node) give a bad trace, i.e. a sequence of transitions leading
the array-based system from a state satisfying I to one satisfying U . Again, rule
UnSafe is effective since I ∧K is equivalent to an ∃A,I∀I -sentence and its AE

I -
satisfiability is decidable by Theorem 3.2. The other situation in which one can
close a branch corresponds to the fix-point test (cf. line 2 of Figure 1 (a))

K [K ∧
∧
{¬K ′|K ′ & K} is AE

I -unsatisfiable]
× FixPoint

where K ′ & K means that K ′ is a primitive differentiated ∃I -formula labeling
a node preceding the node labeling K (nodes can be ordered according to the

180 S. Ghilardi and S. Ranise

strategy for expanding the tree). Once more, this rule is effective since K ∧∧
{¬K ′|K ′ & K} can be straightforwardly transformed into an ∃A,I∀I -sentence

whose AE
I -satisfiability is decidable by Theorem 3.2.

From the implementation viewpoint, further heuristics are needed, in order
to reduce the instances needed for the satisfiability test of Theorem 3.2 and to
trivialize the recognition of the unsatisfiable premise of the rule NotAppl.

4 Invariants and Backward Reachability

Termination of our tableaux calculus (and of the algorithm of Figure 1 (a)) is not
guaranteed in general, but follows under certain restrictions covering important
applications (see below). In the general case, nothing can be said because safety
problems are undecidable.

Theorem 4.1. The problem: “given an ∃I-formula U , decide whether the array-
based system S is safe w.r.t. U” is undecidable (even if TE is locally finite).

It is well-known that invariants are useful for pruning the search space of back-
ward reachability procedures and may help either to obtain or to speed up ter-
mination.

Definition 4.2 (Safety invariants). The ∀I-formula J(a) is a safety invariant
for the safety problem consisting of the array-based system S = (a, I, τ) and
unsafe ∃I-formula U(a) iff the following conditions hold:

(i) AE
I |= ∀a(I(a) → J(a)),

(ii) AE
I |= ∀a∀a′(J(a) ∧ τ(a, a′) → J(a′)), and

(iii) ∃a.(U(a) ∧ J(a)) is AE
I -unsatisfiable.

If we are not given the ∃I-formula U(a) and conditions (i)–(ii) hold, then J(a)
is an invariant for S.

Checking whether conditions (i), (ii), and (iii) above hold can be reduced, by
trivial logical manipulations, to the AE

I -satisfiability of ∃A,I∀I -formulae, which
is decidable by Theorem 3.2. So, establishing whether a given ∀I -formula J(a)
is a safety invariant can be completely automated.

Property 4.3. Let U be an ∃I -formula. If there exists a safety invariant for U ,
then the array-based system S = (a, I, τ) is safe with respect to U .

So, if we are given a suitable safety invariant, Property 4.3 can be used as the
basis of the safety invariant method, which turns out to be more powerful than
the basic Backward Reachability algorithm of Figure 1 (a):

Property 4.4. Let the procedure BReach in Figure 1(a) terminate on the safety
problem consisting of the array-based system S = (a, I, τ) and unsafe formula
U(a). If BReach returns (safe, B), then ¬B is a safety invariant for U .

The converse of Proposition 4.4 do not hold: there might be a safety invariant
even when BReach diverges, as illustrated by the following example.

Goal-Directed Invariant Synthesis for Model Checking Modulo Theories 181

Example 4.5. Let us consider a simple algorithm for inserting an element b[0]
into a sorted array b[1], . . . , b[n]. Let ΣI consist of one binary relation symbol S
and one constant symbol 0 and TI be the theory whose class of models consists
of the substructures of the structure having the naturals as domain, with 0
interpreted in the obvious way, and S interpreted as the graph of the successor
function. To simplify the matter, we shall use a two-sorted theory and two array
variables. TE is the two-sorted theory whose class of models consists of the single
two-sorted structure given by the Booleans (with the constants ,⊥ interpreted
in the obvious way) and the rationals (with the standard ordering <). The array
variable a is a Boolean flag, whereas the array variable b is the sorted numerical
array where b[0] is to be inserted. The initial ∀I -formula is

∀i (a[i] = ⊥ ↔ i = 0) ∧ ∀i1, i2 (S(i1, i2)→ i1 = 0 ∨ b[i1] ≤ b[i2])

saying that the elements in the array b, whose corresponding Boolean flag, is set
to false are arranged in increasing order (namely, all except that at position 0).
The transition has the following guard and global component:

φL(i1, i2, a[i1], a[i2]) := S(i1, i2) ∧ a[i1] = ∧ a[i2] = ⊥ ∧ b[i1] > b[i2]
FG(i1, i2, a[i1], a[i2], b[i1], b[i2], j) := case of { j = i1 : 〈 , b[i2]〉,

j = i2 : 〈 , b[i1]〉,
j = i1 ∧ j = i2 : 〈a[j], b[j]〉 },

which swaps two elements in the array b if their order is decreasing and sets the
Boolean fields appropriately. The obvious correctness property is that there are
no two values in decreasing order in the array b whose corresponding Boolean
flags do not allow the transition to fire:

∃i1, i2 (S(i1, i2) ∧ ¬(a[i1] = ∧ a[i2] = ⊥) ∧ b[i1] > b[i2]). (6)

Unfortunately, BReach in Figure 1 (a) applied to (6) diverges. However, it is not
difficult to see that a safety invariant for (6) exists and is given by the following
formula:

∀i, j.(S(i, j)→ ¬(a[i] = ⊥ ∧ a[j] =)) (7)

saying that two adjacent indexes cannot have their Boolean flags set to ⊥ and
 , respectively.

4.1 Synthesis of Invariants as the Dual of Backward Reachability

The main difficulty to exploit Property 4.3 is to find suitable ∀I -formulae satis-
fying conditions (i)—(iii) of Definition 4.2. Unfortunately, the set of ∀I -formulae
which are candidates to become safety invariants is infinite. Such a search space
can be dramatically restricted when TE is locally finite, although it is still infi-
nite because there is no bound on the length of the universally quantified prefix.
To formalize this, we need to summarize some notions about pre-orders and
configurations.

182 S. Ghilardi and S. Ranise

A pre-order (P,≤) is a set endowed with a reflexive and transitive relation;
an upset of such a pre-order is a subset U ⊆ P such that (p ∈ U and p ≤ q imply
q ∈ U). An upset U is finitely generated iff it is a finite union of cones, where a
cone is an upset of the form ↑p = {q ∈ P | p ≤ q} for some p ∈ P . Two elements
p, q ∈ P are incomparable (equivalent) if neither (both) p ≤ q nor (and) q ≤ p.
A pre-order (P,≤) is a well-quasi-ordering (wqo) iff every upset of P is finitely
generated (this is equivalent to the standard definition, see [10] for a proof).

An AE
I -configuration (or, briefly, a configuration) is a pair (s,M) such that s

is an array of a finite index model M of AE
I (M is omitted whenever it is clear

from the context). We associate a ΣI -structure sI and a ΣE-structure sE with
an AE

I -configuration (s,M) as follows: the ΣI -structure sI is simply the finite
structureMI , whereas sE is the smallest ΣE-substructure ofME containing the
image of s (in other words, if INDEXM = {c1, . . . , ck}, then sE is the smallest ΣE-
substructure containing {s(c1), . . . , s(ck)}). Let s, s′ be configurations: we say
that s′ ≤ s holds iff there are a ΣI -embedding μ : s′I −→ sI and a ΣE-embedding
ν : s′E −→ sE such that the set-theoretical compositions of μ with s and of s′

with ν are equal. In [10], termination of BReach is proved under the hypotheses
that TE is locally finite and the configuration order is a wqo. This implies the
decidability of the safety problem for, among others, broadcast protocols and
lossy channel systems and can be seen as the declarative counterpart of general
results formulated within an algebraic framework (see, e.g., [1]). In the following,
we show that using the notions of configuration and configuration order, it is
possible to design a method for invariant synthesis.

Finitely generated upsets of configurations and ∃I -formulae can be used in-
terchangeably under a suitable assumption. Let K(a) be an ∃I -formula; we let
[[K]] := {(s,M) | M |= K(s)}.

Proposition 4.6 (Extended version of [10]). Let TE be locally finite. Finitely
generated upsets of AE

I -configurations coincide with sets of AE
I -configurations of

the kind [[K]], for some ∃I -formula K. In particular, for each AE
I -configuration s,

there exists an ∃I-formula Ks such that [[Ks]] =↑s.

The notion of a basis for a configuration upset will be useful in the following.

Definition 4.7. A basis for a finitely generated upset S (resp., for an ∃I-
formula K) is a minimal finite set {s1, . . . , sn} such that S (resp., [[K]]) is equal
to ↑s1 ∪ · · · ∪ ↑sn.

It is easy to see that two bases for the same upset are essentially the same, in the
sense that they are formed by pairwise equivalent configurations. Our goal is to
integrate the safety invariant method into the basic Backward Reachability algo-
rithm of Figure 1(a). To this end, we introduce the notion of ‘sub-reachability’.

Definition 4.8 (Subreachable configurations). Suppose TE is locally finite
and let s be a configuration. A predecessor of s is any s′ that belongs to a basis
for Pre(τ, Ks). Let s, s′ be configurations: s is sub-reachable from s′ iff there
exist configurations s0, . . . , sn such that (i) s0 = s, (ii) sn = s′, and (iii) either

Goal-Directed Invariant Synthesis for Model Checking Modulo Theories 183

si−1 ≤ si or si−1 is a predecessor of si, for each i = 1, . . . , n. If K is an ∃I-
formula, s is sub-reachable from K iff s is sub-reachable from some s′ taken from
a basis of K.

The following theorem is our main technical result.

Theorem 4.9. Let TE be locally finite. If there exists a safety invariant for U ,
then there are finitely many AE

I -configurations s1, . . . , sk which are sub-reachable
from U and such that ¬(Ks1 ∨ · · · ∨Ksk

) is also a safety invariant for U .

The intuition underlying the theorem is as follows. Let us call ‘finitely
representable’ an upset which is of the kind [[K]] for some ∃I -formula K and let
B be the set of backward reachable states. Usually B is infinite and it is finitely
representable only in special cases (e.g., when the configuration ordering is a wqo
like in the case of broad-cast protocols). Despite this, it may sometimes exist a set
B′ ⊇ B which is finitely representable and whose complement is an invariant of
the system. Theorem 4.9 ensures us to find such a B′, if any. This is the case of
Example 4.5 where not all configurations satisfying the negation of (7) are in B.

In practice, Theorem 4.9 suggests the following procedure to find the super-set
B′. At each iteration of BReach, the algorithm represents symbolically in the vari-
able B the configurations which are backward reachable in n steps; before com-
puting the next pre-image of B, non deterministically replace some of the configu-
rations in a basis of B with some sub-configurations and update B by a symbolic
representation of the obtained upset. In this way, if an invariant exists, we are
guaranteed to find it; otherwise, the process may diverge. This is so because the
search space of the configurations which are sub-reachable in n steps is finite, al-
though this number is infinite if no bound on n is fixed. To illustrate, the negation
of (7) in Example 4.5 identifies sub-reachable only configurations. This shows that
sub-reachability is crucial for Theorem 4.9 to hold.

The algorithm sketched above can be furtherly refined so as to obtain a com-
pletely symbolic method working with formulae without resorting to configura-
tions. The key idea towards this result is to identify an ∃I -formula which is the
symbolic counterpart of the (sub-reachable) configurations s1, . . . , sk of the the-
orem above which can be directly computed from the available safety invariant
for U . Formally, we introduce the following definition:

Min(φ, a, i) := φ(i, a[i]) ∧
∧
σ

(φ(iσ, a[iσ]) →
∧
i∈i

∨
t

(tσ = i))

where φ(i, a[i]) is a quantifier-free formula, t ranges over representative ΣI(i)-
terms, and σ ranges over the substitutions with domain i and co-domain in-
cluded in the set of representative ΣI(i)-terms. The formula ∃i.Min(φ, a, i) is
AE

I -equisatisfiable to the ∃I -formula ∃i.φ(i, a[i]); moreover if (as it often hap-
pens in applications) the signature ΣI is relational and the formula φ(i, a[i]) is
differentiated, Min(φ, a, i) is AE

I -equivalent to φ(i, a[i]).

Proposition 4.10. Let TE be locally finite, K := ∃i.φ(i, a[i]) be an ∃I -formula,
and L be a further ∃I-formula. The following two conditions are equivalent:

184 S. Ghilardi and S. Ranise

(i) for every s in a basis for K, there exists a configuration s′ in a basis for L
such that s ≤ s′;

(ii) L is (up to AE
I -equivalence) of the form ∃i, j.ψ(i, j, a[i], a[j]) for a quantifier-

free formula ψ and

if AE
I |= Min(ψ, a, i j) → θ(t, a[t]) then AE

I |= Min(φ, a, i)→ θ(t, a[t]),

for all quantifier free (ΣE ∪ ΣI)-formula θ and for all tuple of terms t(i)
taken from the set of the representative ΣI(i)-terms.

In the following, we will write K ≤ L whenever one of the (equivalent) conditions
in Proposition 4.10 holds. Under the assumption that TE is locally finite, it is
possible to compute all the finitely many (up to AE

I -equivalence) ∃I -formulae
K such that K ≤ L. Furthermore, we say that K covers L iff both K ≤ L
and AE

I |= L → K. Let ChooseCover(L) be a procedure that returns (according
to some criteria) one of the ∃I -formulae K such that K covers L. We are now
ready to give the procedure SInv in Figure 1 (b) for the computation of safety
invariants and prove its correctness.

Theorem 4.11. Let TE be locally finite. Then, there exists a safety invariant
for U iff the procedure SInv in Figure 1 (b) returns a safety invariant for U , for
a suitable ChooseCover function.

When ChooseCover(L) = L, i.e. ChooseCover is the identity (indeed, L covers
L), the procedure SInv is the (exact) dual of BReach in Figure 1 (a) and, hence
it can only return (the negation of) a symbolic representation of all backward
reachable states as a safety invariant.

4.2 Integrating Invariant Synthesis within Backward Reachability

The main drawback of procedure SInv is the difficulty of defining an appropriate
function ChooseCover. Although finite, the number of formulae covering a cer-
tain ∃I -formula is so large that makes any implementation of SInv impractical.
Instead, we prefer to study how to integrate the synthesis of invariants in the
backward reachability algorithm in Figure 1 (a). The idea is to use invariants
for the unsafe configuration U so as to prune the search space of the backward
reachability algorithm. In our symbolic framework, at the n-th iteration of the
loop of the procedure BReach, the set of backward reachable states is represented
by the formula stored in the variable B (which is equivalent to BRn(τ, U)). So,
‘pruning the search space of the backward reachability algorithm’ amounts to
disjoining the negation of the available invariants to B. In this way, the ex-
tra information encoded in the invariants makes the satisfiability test at line 2
(for fix-point checking) more likely to be successful and possibly decreasing the
number of iterations of the loop.

Indeed, the problem is to synthesize such invariants. A way to do this is to
consider the set B of reachable states, to extract an ∃I -formula representing a set
of sub-reachable configurations, and then checking whether this is an invariant.
We assume the existence of a function ChooseSub that takes an ∃I -formula P

Goal-Directed Invariant Synthesis for Model Checking Modulo Theories 185

and returns a (possibly empty) finite set S of ∃I -formulae such that K ≤ P
if K ∈ S. The formulae in S represent sub-reachable configurations that may
contribute to an invariant in the sense of Theorem 4.9.

To summarize, it is possible to integrate the synthesis of invariants within the
backward reachability algorithm by inserting between lines 4 and 5 in Figure 1
(a) the following instructions:

4′ foreach CINV ∈ ChooseSub(P) do
if BReach(CINV) = (safe, BCINV) then B ←− B ∨ ¬BCINV ;

where CINV stands for ‘candidate invariant.’ The resulting procedure will be
indicated with BReach+Inv (notice that BReach is used here as a sub-procedure).

Proposition 4.11. Let TE be locally finite. If the procedure BReach+Inv termi-
nates and returns safe (unsafe), then S is safe (unsafe) with respect to U .

The procedure BReach+Inv is incomplete (in the sense that it is not guaranteed
to terminate even in case a safety invariant exists), deterministic (no backtrack-
ing is required), and highly parallelizable (it is possible to run in parallel as
many instances of BReach as formulae in the set returned by ChooseSub), and
it performs well, as witnessed by the experimental evidence supplied in the next
Section. In this way, invariant synthesis has become a powerful heuristics within
a sophisticated version of the basic backward reachability algorithm. Further-
more, its integration in the Tableaux calculus of Sec. 3.1 is particularly easy:
just use the calculus itself with some bounds on the resources, such as a limit
on the depth of the tree to check if a candidate invariant is a true invariant.

4.3 Heuristics

There is a delicate trade-off between the number of candidate invariants pro-
duced by the function ChooseSub and their effects in pruning the search space
of the basic backward reachability algorithm. More candidate invariants implies
a higher probability of finding an invariant and, ultimately, to prune the search
space. However, looking at line 4′, it is evident that more candidate invariants
implies many more calls to the basic backward reachability algorithms to estab-
lish if they are invariant or not. Indeed, on “simpler” candidate invariants, the
procedure BReach is likely to perform well, i.e. to terminate in few iterations.
The following two remarks are helpful in finding the right trade-off.

First, it is possible to limit the resources of the basic backward reachability
algorithm BReach when invoking it at line 4′; e.g., it is possible to bound the
number of iterations of the loop or its run time. This allows us to avoid slowing
down too much each iteration of the main loop in BReach+Inv.

The second remark concerns the implementation of the function ChooseSub
when the theories TI and TE satisfy some additional requirements, which are
often satisfied when modelling classes of parametrised systems such as mutual
exclusion algorithms or cache coherence protocols. The goal of this discussion
is to design a function ChooseSub returning few “simple” candidate invariants
which are likely to become true invariants.

186 S. Ghilardi and S. Ranise

Claim. Let ΣI be relational and let TE be locally finite and admit elimination
of quantifiers. (When TI is the theory of all finite sets—this is appropriate for
cache coherence protocols—or the theory of linear orders—this is appropriate for
mutual exclusion algorithms—and TE is the theory of an enumerated datatype,
these assumptions are satisfied.) Let

L := ∃i j.(ψE(a[i], a[j]) ∧ ψI(i, j) ∧ δI(i)) (8)

be a primitive differentiated AE
I -satisfiable ∃I -formula such that (i) i ∩ j = ∅,

(ii) ψE(e, d) is a conjunction of ΣE-literals; (iii) ψI(i, j) is a conjunction of
ΣI -literals; (iv) δI(i) is a maximal conjunction of ΣI(i)-literals (i.e. for every
Σ(i)-atom A(i), δI contains either A(i) or its negation). If

K := ∃i (δI(i) ∧ φE(a[i])), (9)

where φE(e) is TE-equivalent to ∃d ψE(e, d) (which is guaranteed to exist as TE

admits elimination of quantifiers), then K covers L and in particular K ≤ L.

WhenChooseSub is applied to a disjunction of primitive differentiated∃I-formulae,
we need to transform each disjunct P := ∃k.θ(k, a[k]) to the form of (8) so as to
obtain a candidate invariant. To do this, we can decompose k into two disjoint sub-
sequences i and j such that k = i∪ j according to some criteria: if the conjunction
of ΣI(i) literals occurring in θ is maximal, we get a candidate invariant by return-
ing the corresponding ∃I -formula (9). This is quite feasible in many concrete cases.
For instance, quantifier elimination reduces to a trivial substitution if TE is an enu-
merated datatype theory and the ΣE-literals in θ are all positive. Maximality of θ
is guaranteed (by differentiatedness) if TI is the theory of finite sets; maximality of
θ is also guaranteed if TI is the theory of linear orders and i = i1 or (i = i1, i2 and
θ contains the atom i1 < i2).

5 Experiments and Discussion

To test the practical viability of our approach, we have implemented mcmt, a
prototype tool which uses Yices (http://yices.csl.sri.com) as the backhand
SMT solver. mcmt is the successor of the system in [12] which is not capable
of solving almost any of the problems considered here. The starting point of
our implementation is the Tableaux-like calculus of Section 3.1. As Yices is
guaranteed to behave as a decision procedure on quantifier-free formulae only,
universally quantified variables in ∃A,I∀I -sentences are instantiated according to
the procedure sketched after Theorem 3.2: this is required for the application
of rules NotAppl, Safety, FixPoint. Invariants have been integrated in the basic
backward reachability algorithm along the lines of Section 4.2.

As benchmarks, we have derived safety problems in our format from two sets
of benchmarks in [2]: one is of mutual exclusion protocols (with 7 problems,
cf. Table 1) and the other is of cache coherence protocols (with 9problems, cf.

http://yices.csl.sri.com

Goal-Directed Invariant Synthesis for Model Checking Modulo Theories 187

Table 1. Mutual exclusion algorithms

depth #nodes #calls time depth #nodes #calls #inv time
Bakery 9 29 221 0.104 7 8 129 5 0.052

Burns 14 57 497 0.216 2 2 59 3 0.016

Java M-lock 9 23 353 0.156 9 22 2390 1 0.772
Dijkstra 13 40 392 0.148 2 1 41 2 0.012

Dijkstra (rv) 14 138 6905 5.756 2 1 57 2 0.016

Szymanski 17 143 3266 2.208 11 22 1185 8 0.288

Szymanski (a) 23 2358 902017 24m19s 16 90 8547 16 5.188

Table 2. Cache coherence protocols

depth #nodes #calls time depth #nodes #calls #inv time
Berkeley 2 1 102 0.020 2 1 190 0 0.032

Mesi 3 2 175 0.032 3 2 231 0 0.036
Moesi 3 2 304 0.048 3 2 384 0 0.052

Dec Firefly 4 4 163 0.052 4 4 222 0 0.068
Xerox P.D. 7 13 607 0.288 7 13 1059 0 0.432

Illinois 4 8 998 0.196 4 8 1114 0 0.216
Futurebus 4 19 1318 0.460 4 19 3824 0 1.096

German 26 2985 322335 8m39s 26 2856 544429 10 10m37s
German (pfs) 42 26004 3062165 176m51s 42 22808 2656282 40 173m42s

Table 2).2 We used the theory of finite linear orders as TI for mutual exclusion
algorithms and the theory of finite sets as TI for cache coherence protocols.
The theory TE for the various systems is the combination of an enumerated
datatype theory for the control locations with theories for the data manipulated
by the processes. A difficulty in the translation was the presence of global (i.e.
universally quantified) guards which are not directly supported by our formalism.
It is possible to eliminate universal quantifiers in guards (see [12] for details) by
adopting the well-known stopping failure model (see, e.g., [14]) which is quite
close to the approximate model in [2,3]. This is without loss of generality since
establishing a safety property for the stopping failures model of a system trivially
implies that the same property is enjoyed by the original system. The elimination
of global guards can be easily mechanized as it is purely syntactic.

Columns 2-5 of both Tables report the statistics of our implementation of
the procedure BReach while columns 6-10 show the results for BReach+Inv. (All
timings are in seconds and obtained on a Pentium Dual-Core 3.4 GHz with 2
Gb Sdram). Table 1 clearly shows the usefulness of invariant search as the size
of the problem grows. Table 2 seems to suggest that invariant search is useless
or even detrimental to performances on cache coherence protocols. However, we
remark that all these problems, except the German, are quite small and a brute

2 The files containing such specifications and an executable of the tool are available
at http://homes.dsi.unimi.it/~ghilardi/mcmt.

http://homes.dsi.unimi.it/~ghilardi/mcmt

188 S. Ghilardi and S. Ranise

force search of the tiny search space (see the column ‘#nodes’) is likely to be
more successful. Furthermore, the overhead of searching for invariants can be
eliminated by implementing a parallel version of the tool. Interestingly, there is
some gain in using invariant synthesis on the last problem in this set (a difficult
version of the German protocol [15], which is well-known to be a significant
benchmark for verification tools). Although a comparative analysis is somewhat
difficult in lack of a standard for the specifications of safety problems, we report
that mcmt performs comparably with the model checker PFS [2] on small to
medium sized problems and outperforms the latter on larger instances.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proc. of LICS, pp. 313–321 (1996)

2. Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular model checking
without transducers (On efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer,
Heidelberg (2007)

3. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

4. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant Synthesis
for Combined Theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 378–394. Springer, Heidelberg (2007)

5. Bradley, A.R., Manna, Z.: Property-Directed Incremental Invariant Generation.
Formal Aspects of Computing (to appear, 2009)

6. Delzanno, G., Esparza, J., Podelski, A.: Constraint-based analysis of broadcast
protocols. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 50–66. Springer, Heidelberg (1999)

7. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

8. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
Proc. of LICS, pp. 352–359. IEEE Computer Society Press, Los Alamitos (1999)

9. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Proc.
of POPL 2002, pp. 191–202. ACM Press, New York (2002)

10. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT Model Checking
of Array-Based Systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS, vol. 5195, pp. 67–82. Springer, Heidelberg (2008)

11. Ghilardi, S., Ranise, S.: Goal-directed Invariant Synthesis for Model Checking Mod-
ulo Theories. Technical Report RI325-09, Univ. di Milano (2009)

12. Ghilardi, S., Ranise, S., Valsecchi, T.: Light-Weight SMT-based Model-Checking.
In: Proc. of AVOCS 2007-2008. ENTCS (2008)

13. Lahiri, S.K., Bryant, R.E.: Predicate Abstraction with Indexed Predicate. ACM
Trans. on Comp. Logic 9(1) (2007)

14. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
15. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible

invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001)

16. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2. Technical report, Dep.
of Comp. Science, Iowa (2006), http://www.SMT-LIB.org/papers

http://www.SMT-LIB.org/papers

Taming Displayed Tense Logics Using Nested
Sequents with Deep Inference

Rajeev Goré, Linda Postniece, and Alwen Tiu

Logic and Computation Group,
College of Engineering and Computer Science,

The Australian National University

Abstract. We consider two sequent calculi for tense logic in which the
syntactic judgements are nested sequents, i.e., a tree of traditional one-
sided sequents built from multisets of formulae. Our first calculus SKt is
a variant of Kashima’s calculus for Kt, which can also be seen as a display
calculus, and uses “shallow” inference whereby inference rules are only
applied to the top-level nodes in the nested structures. The rules of SKt
include certain structural rules, called “display postulates”, which are
used to bring a node to the top level and thus in effect allow inference
rules to be applied to an arbitrary node in a nested sequent. The cut
elimination proof for SKt uses a proof substitution technique similar to
that used in cut elimination for display logics. We then consider another,
more natural, calculus DKt which contains no structural rules (and no
display postulates), but which uses deep-inference to apply inference rules
directly at any node in a nested sequent. This calculus corresponds to
Kashima’s S2Kt, but with all structural rules absorbed into logical rules.
We show that SKt and DKt are equivalent, that is, any cut-free proof of
SKt can be transformed into a cut-free proof of DKt, and vice versa. We
consider two extensions of tense logic, Kt.S4 and S5, and show that this
equivalence between shallow- and deep-sequent systems also holds. Since
deep-sequent systems contain no structural rules, proof search in the
calculi is easier than in the shallow calculi. We outline such a procedure
for the deep-sequent system DKt and its S4 extension.

1 Introduction

Belnap’s Display Logic [2] (we prefer the term display calculi) is an extremely
general proof-theoretical framework with the property that any sequent contain-
ing a particular formula occurrence A can be transformed into another sequent
in which the occurrence of A is either the whole of the antecedent or the whole
of the succedent, using only a subset of the rules called the display postulates.
The occurrence of A is then said to be displayed. The most pleasing property of
display calculi however is that if the rules of the display calculus enjoy eight eas-
ily checked conditions, then the calculus is guaranteed to obey cut-admissibility.
That is, one single cut-admissibility proof suffices for all display calculi. This
modularity makes it an excellent framework for designing sequent calculi for

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 189–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

190 R. Goré, L. Postniece, and A. Tiu

logics, particularly when we wish to mix and match the intuitionistic, modal, or
substructural aspects of different logics into a new logic [17,7,6].

The generality of display calculi is obtained by adding a structural proxy for
every logical connective and using residuation principles to implement the display
property. For example, a display calculus for classical propositional logic usually
contains Gentzen’s “comma”, but also a unary involutive structural connective
“star” which allows us to flip structures from right/left to left/right of turnstile.

The main disadvantage of display calculi is that the display postulates can
and must create large structures during the process of displaying a particular
formula occurrence, making display calculi bad for backward proof-search. Dis-
play calculi also typically contain an explicit rule of contraction which duplicates
complex structures when applied backwards, making it even harder to use them
for backward proof search. A disciplined proof-theoretic methodology for trans-
forming a display calculus into a more manageable traditional “contraction-free”
calculus whilst preserving cut-admissiblity is therefore an important goal.

Our first step towards taming display calculi is to limit the structural con-
nectives used in the calculi and consequently, the number of display postulates.
Specifically, we work within display structures which can be viewed as a tree
of traditional Gentzen’s sequents, called nested sequents, which have been used
previously by Kashima [12] and, independently, by Brünnler [3,4] to present
several modal and tense logics. As in display calculi, Kashima’s nested-sequent
calculi contain “display-like” rules, called the turn rules in [12] and residuation
rules in the display logic literature, which can be seen as tree transformations to
bring a node in the nested sequent to the root. These residuation rules, and their
interaction with structure contraction, are largely responsible for the difficulty
in finding a proof search procedure for display-like calculi. Our second step is
therefore to eliminate these rules without losing completeness.

We use Kashima’s calculi for tense logics as a starting point for our proof the-
oretic (as opposed to the model-theoretic approach of Kashima) investigation
into the broader problem of taming display calculi for proof search. We have re-
cently shown that it is possible to tame the display calculus for Bi-Intuitionistic
logic [8] by using nested sequents with a limited display property. The result-
ing calculus, LBiInt1, still enjoys cut-admissibility. However, proof search for
LBiInt1 still suffers essentially the same problem as in display calculi, due to the
presence of residuation and contraction on structures. In the same paper, we also
show that these two problems can be eliminated entirely by a derived calculus
LBiInt2. However, the completeness proof of LBiInt2 w.r.t. LBiInt1 was done
via a detour through a third calculus GBiInt which is known to be semantically
complete, and it was not clear how this methodology could be generalised to
arbitrary display calculi for which the semantics may be unknown.

Here, we show that for some classical tense logics, residuation, seen as tree-
transformations on nested sequents, and contraction (on general structures) are
admissible if we allow a more liberal form of inference rule. Traditional rules
of Gentzen’s sequent calculus and display calculi apply only to formulae on
the top level of a nested sequent. We shall call these rules “shallow inference”.

Taming Displayed Tense Logics Using Nested Sequents with Deep Inference 191

Residuation and contraction become admissible once we allow deep inference,
the ability to apply inference rules at any depth in a nested sequent.

The choice of classical tense logics as a case study is convenient because nested
sequent calculi for these logics have already been given by Kashima [12]. But as
we have noted earlier, Kashima’s work is semantic based as there is no syntactic
cut elimination procedure in his work. Thus our work is the first which shows
direct syntactic cut elimination for a nested-sequent calculus for tense logic,
and also the first which establishes a direct correspondence between proofs in a
display-like calculus (with explicit residuation rules) and proofs in a contraction-
free deep-inference calculus (with no explicit residuation rules).

We begin with Kashima’s first system SKt which contains structural con-
nectives (proxies) for ♦ and 	 and contains explicit “turn” rules to capture
the residuation conditions that hold between them. Kashima shows that SKt
is sound with respect to the Kripke semantics for tense logic, but he does not
prove cut-admissibility for this system. He instead gives another calculus S2Kt
which allows rules to be applied at arbitrary depth, and shows that a sequent
has a cut-free proof in SKt if it has a cut-free proof in S2Kt. In a second step,
he shows that S2Kt minus cut is complete w.r.t. the Kripke semantics of tense
logic, which together imply the completeness of SKt minus cut.

We first replace formula contraction with general contraction in Kashima’s
SKt, show that the resulting calculus enjoys a display property, and show that
it also has cut-admissibility using an argument which is very similar to Bel-
nap’s cut-admissibility proof for display calculi. We then show that Kashima’s
S2Kt minus cut (in the form of our DKt) can be made contraction-free and
that the display postulates of SKt are admissible in DKt, meaning that DKt
can faithfully mimic cut-free SKt. We also show that SKt can mimic DKt by
showing that all of the rules of DKt are actually derivable in SKt using the
display property of SKt. We then show how to extend all these basic calculi to
handle tense S4 and S5, but we are still not able to give a systematic method for
converting the SKt-based calculi into the DKt-based calculi. Finally, we give a
simple proof search strategy for DKt, as well as show how to add histories a là
Heuerding to DS4 for terminating proof search in the tense logic Kt.S4.

Due to space limit, most proofs are omitted, but they can be found in an
extended version of the paper.

2 Tense Logic

To simplify presentation, we shall consider formulae of tense logic Kt which are
in negation normal form (nnf), given by the following grammar:

A := a | ¬a | A ∨A | A ∧A | �A |
A | ♦A | 	A.

where a ranges over atomic formulae and ¬a is the negation of a. We shall
denote with A the nnf of the negation of A. Implication can then be defined via
negation: A → B = A ∨ B. The axioms of minimal tense logic Kt are all the
axioms of propositional logic, plus the following in their nnf form:

192 R. Goré, L. Postniece, and A. Tiu

w � ¬A iff w �� A
w � A ∨B iff w � A or w � B w � A ∧ B iff w � A and w � B
w � �A iff ∀u. if wRu then u � A w � ♦A iff ∃u.wRu and u � A
w �
A iff ∀u. if uRw then u � A w � 	A iff ∃u.uRw and u � A

Fig. 1. Forcing of formulae

1. A→ �	A = A ∨�	A
2. A→
♦A = A ∨
♦A
3. �(A→ B) → (�A→ �B) = ♦(A ∧B) ∨ ♦A ∨�B
4.
(A→ B) → (
A→
B) = 	(A ∧B) ∨ 	A ∨
B.

The theorems of Kt are those that are generated from the above axioms and
their substitution instances using the following rules:

A A ∨B
B

MP
A

�A
Nec� A

A
Nec

A Kt-frame is a pair 〈W, R〉, with W a non-empty set (of worlds) and R ⊆ W×
W . A Kt-model is a triple 〈W, R, V 〉, with 〈W, R〉 a Kt frame and V : Atm → 2W

a valuation mapping each atom to the set of worlds where it is true.
For a world w ∈ W and an atom a ∈ Atm, if w ∈ V (a) then we write w � a

and say a is forced at w; otherwise we write w � a and say a is rejected at w.
Forcing and rejection of compound formulae is defined by mutual recursion in
Figure 1. A Kt-formula A is valid iff it is forced by all worlds in all models, i.e.
iff w � A for all 〈W, R, V 〉 and for all w ∈ W .

3 System SKt: A “Shallow” Calculus

We consider a right-sided proof system for tense logic where the syntactic judg-
ment is a tree of multisets of formulae, called a nested sequent. Nested sequents
have been used previously in proof systems for modal and tense logics [12,3].

Definition 1. A nested sequent is a multiset

{A1, . . . , Ak, ◦{Γ1}, . . . , ◦{Γm}, •{Δ1}, ..., •{Δn}}

where k, m, n ≥ 0, and each Γi and each Δj are themselves nested sequents.

We shall use the following notational conventions when writing nested sequents.
We shall remove outermost braces, e.g., we write A, B, C instead of {A, B, C}.
Braces for sequents nested inside ◦{} or •{} are also removed, e.g., instead of
writing ◦{{A, B, C}}, we write ◦{A, B, C}. When we juxtapose two sequents,
e.g., as in Γ, Δ, we mean it is a sequent resulting from the multiset-union of Γ
and Δ. When Δ is a singleton multiset, e.g., {A} or {◦{Δ′}}, we simply write:
Γ, A or Γ, ◦{Δ′}. Since we shall only be concerned with nested sequents, we shall
refer to nested sequents simply as sequents in the rest of the paper.

Taming Displayed Tense Logics Using Nested Sequents with Deep Inference 193

Γ, a, ā
id

Γ, A Δ, A

Γ, Δ
cut

Γ, A Γ, B

Γ, A ∧B
∧ Γ, A, B

Γ, A ∨ B
∨

Γ, Δ, Δ

Γ, Δ
ctr

Γ
Γ, Δ

wk
Γ, ◦{Δ}
•{Γ}, Δ rf

Γ, •{Δ}
◦{Γ}, Δ rp

Γ, •{A}
Γ,
A

Γ, ◦{A}
Γ, �A

�
Γ, •{Δ, A}

Γ, •{Δ}, 	A
	

Γ, ◦{Δ, A}
Γ, ◦{Δ}, ♦A

♦

Fig. 2. System SKt

The above definition of sequents can also be seen as a special case of structures
in display calculi, e.g., with ‘,’ (comma), • and ◦ as structural connectives.

A context is a sequent with holes in place of formulae. A context with a
single hole is written as Σ[]. Multiple-hole contexts are written as Σ[] · · · [], or
abbreviated as Σk[] where k is the number of holes. We write Σk[Δ] to denote
the sequent that results from filling the holes in Σk[] uniformly with Δ.

The shallow proof system for Kt, called SKt, is given in Figure 2. This is
basically Kashima’s system (also called SKt) [12], but with a more general
contraction rule (ctr), which allows contraction of arbitrary sequents. The modal
fragment of SKt was also developed independently by Brünnler [3]. The general
contraction rule is used to simplify our cut elimination proof, and as we shall see
in Section 4, it can be replaced by formula contraction. System SKt can also be
seen as a single-sided version of display calculus. The rules rp and rf are called
the residuation rules. They are an example of display postulates commonly found
in display calculus, and are used to bring a node in a nested sequent to the top
level. The following is an analog of the display property of display calculus.

Proposition 1. Let Σ[Δ] be a sequent. Then there exists a sequent Γ such that
Σ[Δ] is derivable from Δ, Γ and vice versa, using only the rules rp and rf .

Soundness and completeness. To prove soundness, we first show that each
sequent has a corresponding Kt-formula, and then show that the rules of SKt,
reading them top down, preserves validity of the formula corresponding to the
premise sequent. Completeness is shown by simulating Hilbert’s system for tense
logic in SKt. The translation from sequents to formulae are given below. In the
translation, we assume two logical constants ⊥ (‘false’) and (‘true’). This is
just a notational convenience, as the constants can be defined in a standard way,
e.g., as a∧ ā and a∨ ā for some fixed atomic proposition a. As usual, the empty
disjunction denotes ⊥ and the empty conjunction denotes .

Definition 2. The function τ translates an SKt-sequent

{A1, . . . , Ak, ◦{Γ1}, . . . , ◦{Γm}, •{Δ1}, ..., •{Δn}}

into the Kt-formula (modulo associativity and commutativity of ∨ and ∧):

A1 ∨ · · · ∨Ak ∨�τ(Γ1) ∨ · · · ∨�τ(Γm) ∨
τ(Δ1) ∨ · · · ∨
τ(Δn).

194 R. Goré, L. Postniece, and A. Tiu

Π1

Γ, •{A}
◦{Γ}, A rf

Π2

◦{A}, Δ
A, •{Δ}

rp

◦{Γ}, •{Δ} cut

...
◦{Γ ′}, A1

...
◦{Γ ′}, A2

◦{Γ ′}, A1 ∧A2

∧

Γ ′, •{A1 ∧ A2}
rf

...
Γ, •{A1 ∧A2}

...
A1, A2, •{Δ′}

A1 ∨ A2, •{Δ′} ∨

◦{A1 ∨ A2}, Δ′ rp

...
◦{A1 ∨ A2}, Δ

(1) (2) (3)

◦{◦{Γ ′}}, Δ
◦{Γ ′}, •{Δ} rf

Γ ′, •{•{Δ}} rf

...
Γ, •{•{Δ}}
◦{Γ}, •{Δ} rp

...
◦{Γ ′}, A1

...
◦{Γ ′}, A2

...
A1, A2, •{Δ′}

A1, ◦{Γ ′}, •{Δ′} cut

◦{Γ ′}, ◦{Γ ′}, •{Δ′} cut

◦{Γ ′}, •{Δ′} ctr

◦{◦{Γ ′}}, Δ′ rp

...
◦{◦{Γ ′}}, Δ

(4) (5)

Fig. 3. Some derivations in SKt

Theorem 1. A Kt-formula A is valid iff A is SKt-derivable.

Cut elimination. The main difficulty in proving cut elimination for SKt is
in finding the right cut reduction for some cases involving the rules rp and rf .
For instance, consider the derivation (1) in Figure 3. It is not obvious that there
is a cut reduction strategy that works locally without generalizing the cut rule
to, e.g., one which allows cut on any sub-sequent in a sequent. Instead, we shall
follow a global cut reduction strategy similar to that used in cut elimination
for display logics. The idea is that, instead of permuting the cut rule locally,
we trace the cut formula A (in Π1) and A (in Π2), until they both become
principal in their respective proofs, and then apply the cut rule(s) at that point
on smaller formulae. Schematically, our simple strategy can be illustrated as
follows: Suppose that Π1 and Π2 are, respectively, derivation (2) and (3) in
Figure 3, that A = A1∧A2 and there is a single instance in each proof where the
cut formula is used. To reduce the cut on A, we first transform Π1 by uniformly
substituting •{Δ} for A in Π1 (see derivation (4) in Figure 3). We then prove
the open leaf {◦{◦{Γ ′}}, Δ} by uniformly substituting ◦{Γ ′} for A in Π2 (see
derivation (5) in Figure 3). Notice that the cuts on A1 and A2 introduced in the
proof above are on smaller formulae than A.

The above simplified explanation implicitly assumes that a uniform substi-
tution of a formula (or formulae) in a proof results in a well-formed proof, and

Taming Displayed Tense Logics Using Nested Sequents with Deep Inference 195

that the cut formulae are not contracted. The precise statement of the proof
substitution idea becomes more involved once these aspects are taken into ac-
count. The formal statement is given in the lemma below. We use the notation
�S Γ to denote that the sequent Γ is provable in the proof system S. We write
�S Π : Γ when we want to be explicit about the particular proof Π of Γ. The
cut rank of an instance of cut is defined as usual, as the size of the cut formula.
The cut rank of a proof Π , denoted with cr(Π), is the largest cut rank of the
cut instances in Π (or zero, if there are no cuts in Π). Given a formula A, we
denote with |A| its size. Given a proof Π , we denote with |Π | its height, i.e., the
length of a longest branch in the proof tree of Π.

Lemma 1. Let A be a non-atomic formula. Suppose �SKt Π1 : Δ, A and �SKt

Π2 : Σk[A], for some k ≥ 1, and the cut ranks of Π1 and Π2 are smaller than
|A|. Then there exists a proof Π such that �SKt Π : Σk[Δ] and cr(Π) < |A|.

Theorem 2. Cut elimination holds for SKt.

4 System DKt: A Contraction-Free Deep-Sequent
Calculus

We now consider another sequent system which uses deep inference, where rules
can be applied directly to any node within a nested sequent. We call this system
DKt, and give its inference rules in Figure 4. Note that there are no structural
rules in DKt, and the contraction rule is absorbed into the logical rules. Notice
that, reading the logical rules bottom up, we keep the principal formulae in the
premise. This is actually not neccessary for some rules (e.g.,
, ∧, etc.), but this
form of rule allows for a better accounting of formulae in our saturation-based
proof search procedure (see Section 6).

The following intuitive observation about DKt rules will be useful later: Rules
in DKt are characterized by propagations of formulae across different nodes in a
nested sequent tree. The shape of the tree is not affected by these propagations,
and the only change that can occur to the tree is the creation of new nodes (via
the introduction rules
 and �).

System DKt corresponds to Kashima’s S2Kt [12], but with the contraction
rule absorbed into the logical rules. Kashima shows that DKt proofs can be en-
coded into SKt, essentially due to the display property of SKt (Proposition 1)
which allows displaying and undisplaying of any node within a nested sequent.
Kashima also shows that DKt is complete for tense logic, via semantic argu-
ments. We prove a stronger result: every cut-free SKt-proof can be transformed
into a DKt-proof, hence DKt is complete and cut is admissible in DKt.

To translate cut-free SKt-proofs into DKt-proofs, we show that all structural
rules of SKt are height-preserving admissible in DKt, as stated next.

Lemma 2 (Admissibility of weakening). Suppose �DKt Π : Σ[Γ]. Then for
every Δ, there exists Π ′ such that �DKt Π ′ : Σ[Γ, Δ] and |Π ′| ≤ |Π |.

196 R. Goré, L. Postniece, and A. Tiu

Σ[a, ā]
id

Σ[A ∧B, A] Σ[A ∧B, B]
Σ[A ∧B]

∧ Σ[A ∨ B, A,B]
Σ[A ∨B]

∨

Σ[
A, •{A}]
Σ[
A]

Σ[•{Δ, A}, 	A]
Σ[•{Δ}, 	A]

	1

Σ[◦{Δ, A}, ♦A]
Σ[◦{Δ}, ♦A]

♦1

Σ[�A, ◦{A}]
Σ[�A]

�
Σ[◦{Δ, 	A}, A]
Σ[◦{Δ, 	A}] 	2

Σ[•{Δ, ♦A}, A]
Σ[•{Δ, ♦A}] ♦2

Fig. 4. A contraction-free deep-sequent system

The proofs for the following lemmas that concern structural rules that change
the shape of the tree of a nested sequent share similarities. That is, the only
interesting cases in the proofs are those that concern propagation of formulae
across different nodes in a nested sequent. We show here an interesting case in
the proof for the admissibility of display postulates.

Lemma 3 (Admissibility of display postulates). If �DKt Π : Γ, •{Δ} then
there exists Π ′ such that �DKt Π ′ : ◦{Γ}, Δ and |Π ′| ≤ |Π |.

Proof. By induction on |Π |. The non-trivial cases are when there is an exchange
of formulae between Γ and Δ. One example is when Π is as shown below left.
Then Π ′ is as shown below right where Π ′

1 is obtained from induction hypothesis:

Π1
Γ ′, 	A, •{A, Δ}
Γ ′, 	A, •{Δ} 	1

Π ′
1

◦{Γ ′, 	A}, A, Δ

◦{Γ ′, 	A}, Δ 	2

Lemma 4 (Admissibility of display postulates). If �DKt Π : Γ, ◦{Δ} then
there exists Π ′ such that �DKt Π ′ : •{Γ}, Δ such that |Π ′| ≤ |Π |.

Lemma 5 (Admissibility of contraction). If �DKt Π : Σ[Δ, Δ] then there
exists Π ′ such that �DKt Π ′ : Σ[Δ] and |Π ′| ≤ |Π |.

Theorem 3. For every sequent Γ , �SKt Γ if and only if �DKt Γ.

A consequence of Theorem 3 is that the general contraction rule in SKt can be
replaced by formula contraction. This can be proved as follows: take a cut-free
proof in SKt, translate it to DKt and then translate it back to SKt. Since
general contraction is admissible in DKt, and since the translation from DKt
to SKt does not use general contraction (only formula contraction), we can
effectively replace the general contraction in SKt with formula contraction.

An interesting feature of DKt is that in a proof of a sequent, the ‘color’ of a
(formula or structural) connective does not change when moving from premise
to conclusion or vice versa. Let us call a formula (a sequent, a rule) purely modal
if it contains no black connectives. It is easy to see that if a purely modal formula
(sequent) is provable in DKt, then it is provable using only purely modal rules.
Let DK = {id,∧,∨, �, ♦1}, i.e., it is the set of purely modal rules of DKt. The
above observation leads to the following “separation” result:

Taming Displayed Tense Logics Using Nested Sequents with Deep Inference 197

Theorem 4. For every modal formula ϕ, �DK ϕ iff ϕ is a theorem of K.

This completeness result for DK is known from [3]; what we show here is how
it can be derived as a consequence of completeness of DKt.

5 Proof Systems for Some Extensions of Tense Logic

We now consider extensions of tense logic with some modal axioms. We show
that, for each extension, there is a shallow system that modularly extends SKt
for which cut elimination holds. By modular extension we mean that the rules
of the extended systems are the rules of SKt plus some structural rules that are
derived directly from the modal axioms. We then show that for each extension,
there is also a corresponding deep-inference system which is equivalent to the
shallow one. Again, as with DKt, the rules for the deep system are characterized
by propagations of formulae across different nodes in the nested sequents. How-
ever, the design of the rules for the deep system is not as modular as its shallow
counterpart, since it needs to take into account the closure of the axioms.

Cut elimination holds for all the extensions discussed in the following. Their
proofs are omitted as they are a straightforward adaptation of the cut elimination
proof for SKt. This is because the proof substitution technique used for cut
elimination in SKt relies on rule applications being invariant under formula
substitution. More precisely, all the additional structural rules that we shall
consider have the following property: If there is an instance of a structural rule
ρ (below left) then instantiating the occurrences of A in the multi-context Σ1
and Σ2 with any structure Δ yields a valid instance of ρ (below right):

Σk
2 [A]

Σk
1 [A]

ρ
Σk

2 [Δ]

Σk
1 [Δ]

ρ.

Hence the proof substitution technique for cut elimination goes through essen-
tially unchanged for the extended logic. This property of the structural rules is
similar to Belnap’s condition (C6) for cut elimination for display logics [2].

A primitive axiom is an axiom of the form A → B where both A and B
are built using propositional variables, ∧, ∨, ♦, and 	. Kracht [13] shows that
any extension of tense logic with primitive axioms has a display calculus which
enjoys cut elimination. He shows that any such axiom can be turned into a left
structural rule. The axioms we consider next are contrapositives of primitive
axioms, so Kracht’s translation from axioms to structural rules in our formalism
gives right structural rules. We illustrate here a few cases of primitive axioms
for which one can also get corresponding deep sequent systems.

Modal tense logic S4. Consider an extension of SKt with the following ax-
ioms:

T : �A→ A
A→ A 4 : �A→ ��A
A→

A.

198 R. Goré, L. Postniece, and A. Tiu

Σ[A, A]
Σ[A]

Ta

Σ[A, •{	A, Δ}]
Σ[A, •{Δ}] 4a

Σ[♦A, ◦{♦A, Δ}]
Σ[♦A, ◦{Δ}] 4c

Σ[♦A, A]
Σ[♦A]

Tb

Σ[◦{Δ, 	A}, 	A]
Σ[◦{Δ, 	A}] 4b

Σ[•{Δ, ♦A}, ♦A]
Σ[•{Δ, ♦A}] 4d

Fig. 5. Additional propagation rules for DS4

Σ[A, ◦{	A, Δ}]
5a

Σ[A, ◦{Δ}]
Σ[◦{Δ, ♦A}, ♦A]

5b
Σ[◦{Δ, ♦A}]

Σ[♦A, •{♦A, Δ}]
5c

Σ[♦A, •{Δ}]
Σ[•{Δ, 	A}, 	A]

5d
Σ[•{Δ, 	A}]

Fig. 6. Additional propagation rules for DS5

These axioms translate into the following structural rules, whose soundness is
immediately derivable from the axioms:

Γ, •{Δ}
Γ, Δ

Tp
Γ, ◦{Δ}

Γ, Δ
Tf

Γ, •{Δ}
Γ, •{•{Δ}}

4p
Γ, ◦{Δ}

Γ, ◦{◦{Δ}}
4f

Definition 3 (System SS4). System SS4 is SKt plus Tp, Tf , 4p and 4f .

Theorem 5. Cut elimination holds for SS4.

Definition 4 (System DS4). System DS4 is DKt plus the propagation rules
given in Figure 5.

Some of the modal rules of DS4 coincide with Brünnler’s rules for T and 4 in
[3]. The rules of DS4 can be shown to be derivable in SS4.

Lemma 6. Every rule of DS4 is derivable in SS4.

To prove the equivalence of SS4 and DS4, we need to prove the analogs of
Lemma 2 – 5. These are again a straightforward adaptation of the previous
proofs, and are omitted here. Additionally, we need to show that the structural
rules for the axioms T and 4 are also admissible in DS4. The principle behind
the proofs of admissibility for these structural rules is again the same; the non-
trivial cases we need to consider are those that concern propagation of formulae
across structures affected by the structural rules.

Theorem 6. For every Γ , we have �SS4 Γ if and only if �DS4 Γ.

Modal tense logic S5. We can obtain S5 from SS4 by collapsing � and
.
That is, the symmetry axiom B : A → �♦A splits into two axioms given below,

Taming Displayed Tense Logics Using Nested Sequents with Deep Inference 199

Function Prove (Sequent Ξ) : Bool

1. Let T = tree(Ξ)
2. If the id rule is applicable to any node in T , return True
3. Else if there is some node Θ ∈ T that is not saturated

(a) If A ∨ B ∈ Θ and A /∈ Θ or B /∈ Θ then let Ξ1 be the premise of the ∨ rule
applied to A ∨ B ∈ Θ. Return Prove(Ξ1).

(b) If A ∧ B ∈ Θ and A /∈ Θ and B /∈ Θ then let Ξ1 and Ξ2 be the premises
of the ∧ rule applied to A ∧ B ∈ Θ. Return True iff Prove(Ξ1) = True and
Prove(Ξ2) = True.

4. Else if there is some node Θ ∈ T that is not realised, i.e. some B = �A (B =
A)
is not realised
(a) Let Ξ1 be the premise of the � (
) rule applied to B ∈ Θ. Return Prove(Ξ1).

5. Else if there is some node Θ that is not propagated
(a) Let ρ be the rule corresponding to the requirement of Definition 9 that is not

met, and let Ξ1 be the premise of ρ. Return Prove(Ξ1).
6. Else return False

Fig. 7. Proof search strategy for DKt

which translate straightforwardly into two structural rules.

B1 :
A→ �A

Γ, •{Δ}
Γ, ◦{Δ} B1

B2 : �A→
A

Γ, ◦{Δ}
Γ, •{Δ} B2

Definition 5 (System SS5). System SS5 is SS4 plus the rules B1 and B2.

Theorem 7. Cut elimination holds for SS5.

Definition 6 (System DS5). System DS5 is DS4 plus the propagation rules
given in Figure 6.

Lemma 7. Every rule of DS5 is derivable in SS5.

We can prove the analogs of Lemma 2 – 5 and admissibility of the rules corre-
sponding to the axioms of SS4 and structural rules B1 and B2. Note that DS5
captures S5 = KT 45 rather than S5 = KT 4B.

Theorem 8. For every Γ , we have �SS5 Γ if and only if �DS5 Γ.

6 Proof Search

We can devise terminating proof search strategies for our deep sequent calculi.
While traditional tableaux methods operate on a single node at a time, our proof
search strategies will consider the whole tree. Following Kashima, first we define
a mapping from sequents to trees.

200 R. Goré, L. Postniece, and A. Tiu

A node is a set of formulae. A tree is a node with 0 or more children, where
each child is a tree, and each child is labelled as either a ◦-child, or a •-child.
Given a sequent Ξ = Θ, ◦{Γ1}, · · · , ◦{Γn}, •{Δ1}, · · · , •{Δm}, where Θ is a set
of formulae and n ≥ 0 and m ≥ 0, the tree tree(Ξ) represented by Ξ is:

()

Θ

tree(Γ1)

◦

· · ·

◦

tree(Γn)
◦

tree(Δ1)
•

· · ·

•

tree(Δm)

•

Definition 7. A set of formulae Θ is saturated iff it satisfies:

1. If A ∨B ∈ Θ then A ∈ Θ and B ∈ Θ.
2. If A ∧B ∈ Θ then A ∈ Θ or B ∈ Θ.

Definition 8. Given a tree T and a node Θ ∈ T , a formula �A ∈ Θ (
A ∈ Θ)
is realised iff there exists a ◦-child (•-child) Γ of Θ in T with A ∈ Γ .

6.1 Proof Search in DKt

Figure 7 gives a proof search strategy for DKt. The application of a rule deep
inside a sequent can be viewed as focusing on a particular node of the tree. The
rules of DKt can then be viewed as operations on the tree encoded in the sequent.
In particular, Step 3 saturates a node locally, Step 4 appends new nodes to the
tree, and Step 5 moves ♦ () prefixed formulae between neighbouring nodes.

Definition 9. Given a tree T and a node Θ ∈ T , we say Θ is propagated iff:

♦1: for every ♦A ∈ Θ and for every ◦-child Γ of Θ, we have A ∈ Γ
	1: for every 	A ∈ Θ and for every •-child Γ of Θ, we have A ∈ Γ
♦2: for every •-child Γ of Θ and for every ♦A ∈ Γ , we have A ∈ Θ
	2: for every ◦-child Γ of Θ and for every 	A ∈ Γ , we have A ∈ Θ

The degree of a formula is the maximum number of nested modalities:

deg(p) = 0
deg(A#B) = max(deg(A), deg(B)) for # ∈ {∧,∨}

deg(#A) = 1 + deg(A) for # ∈ {�, ♦,
, 	}.

The degree of a set of formulae is the maximum degree over all its members. We
write sf(A) for the subformulae of A, and define the set of subformulae of a set
Θ as sf(Θ) =

⋃
A∈Θ sf(A). For a sequent Ξ we define sf(Ξ) as below:

Ξ = Θ, ◦{Γ1}, · · · , ◦{Γn}, •{Δ1}, · · · , •{Δm}
sf(Ξ) = sf(Θ) ∪ sf(Γ1) ∪ · · · ∪ sf(Γn) ∪ sf(Δ1) ∪ · · · ∪ sf(Δm).

Theorem 9. Function Prove terminates for any input sequent Ξ.

Taming Displayed Tense Logics Using Nested Sequents with Deep Inference 201

6.2 Proof Search in DS4

Let DS4− denote the system DS4 minus the rules ♦1, ♦2, 	1, 	2.

Theorem 10. For every Γ , we have �DS4− Γ if and only if �DS4 Γ.

Proof. ⇒: obvious since every rule of DS4− is a rule of DS4. ⇐: by induction
on the height of the proof of �DS4 Γ , using the admissibility of ♦1, ♦2, 	1, 	2.

We now modify the Prove function for proof search in DS4. The saturation and
propagatation of ♦- and 	-prefixed formulae need to cater for reflexivity and
transitivity respectively. Moreover, a loop check and blocking on the creation
of new nodes is required, since a naive approach leads to non-termination [9].
We implement the loop check by adding histories to our nodes (in our case in
the form of tagged formulae), thus extending Heuerding’s approach [9] to tense
logic.

A tagged formula is a formula of the form A∗. For # ∈ {�, ♦,
, 	}, we write
(#Γ)∗ to mean a set of tagged #-formulae. In the following, the nodes in our
trees will consist of sets of formulae and tagged formulae. Note that we use tagged
formulae for book-keeping only; tagged formulae are never principal in inference
rule applications. Let DS4∗ be DS4− with the Ta, Tb, �,
 rules replaced by
the following. For simplicity, we write them directly as tree expansion rules:

T 1
a (T 1

b): If some node Θ contains an untagged 	A (♦A), add A to Θ, tag 	A
(♦A) and untag all � (
) formulae.

T 2
a (T 2

b): If some Θ contains a tagged 	A (♦A), add A to Θ.
�A: If some node Θ contains an unrealised, untagged �A, create an ◦-child

{(�Γ)∗, (♦Δ)∗, A}, where �Γ are all the � formulae in Θ, and (♦Δ)∗ are
all the tagged ♦ formulae in Θ.

A: If some node Θ contains an unrealised, untagged
A, create a •-child
{(
Γ)∗, (Δ)∗, A}, where
Γ are all the
 formulae in Θ, and (Δ)∗ are
all the tagged 	 formulae in Θ.

The intuition of tagging is that � (
) formulae are only expanded once within
each cycle of repeated ♦ () formulae. If an untagged ♦ () formula is encoun-
tered, rule T 1

a (T 1
b) removes the tags from all tagged � (
) formulae so that they

can be expanded again. Eventually all ♦ () formulae will be tagged, so the �
(
) formulae will also remain tagged and the � (
) rules will be blocked.

Definition 10. A set of formulae Θ is S4-saturated iff it is saturated and ♦A ∈
Θ or 	A ∈ Θ implies A ∈ Θ.

Definition 11. A node Θ in a given tree T is S4-propagated iff:

4a: for every 	A ∈ Θ and for every •-child Γ of Θ, we have 	A ∈ Γ
4b: for every ◦-child Γ of Θ and for every 	A ∈ Γ , we have 	A ∈ Θ
4c: for every ♦A ∈ Θ and for every ◦-child Γ of Θ, we have ♦A ∈ Γ
4d: for every •-child Γ of Θ and for every ♦A ∈ Γ , we have ♦A ∈ Θ

202 R. Goré, L. Postniece, and A. Tiu

Let ProveS4 be the function Prove from Figure 7, modified as follows:

1. Replace “saturated” with “S4-saturated” and add four sub-steps to Step 3
for ♦- and 	-formulae based on the rules T 1

a , T 1
b , T 2

a and T 2
b .

2. Replace “propagated” with “S4-propagated” in Step 5, and use Definition 11
instead of Definition 9.

Lemma 8. For every DS4∗-derivation Π, for every sequent Ξ ∈ Π, the maxi-
mum number of consecutive ◦-edges in tree(Ξ) is m2, where m = |sf(Ξ)|.

Lemma 9. For every DS4∗-derivation Π, for every sequent Ξ ∈ Π, the maxi-
mum number of consecutive •-edges in tree(Ξ) is m2, where m = |sf(Ξ)|.

Theorem 11. Function ProveS4 terminates for any input sequent Ξ.

Proof. Let T = tree(Ξ). The argument for Steps 3 and Step 5 is similar for the
proof of Theorem 9. We need show that the depth of T is bounded by the loop
check side conditions on the rules T 1

a , T 1
b , �,
.

For a contradiction, suppose there exists a T of infinite depth, i.e., T contains
an infinite branch. By Lemmas 8 and 9, an infinite branch must contain an
infinite number of alternations between sequences of ◦-labelled edges and •-
labelled edges. Since ◦-children are created by applications of the �-rule and
•-children are created by applications of the
-rule, there must be an infinite
number of alternating � and
 rule applications (with any other rule applications
in between). However, every such alternation decreases the degree of the node
by at least 1, since the � (
) rule removes the outer � (
) from the principal
formula, and ♦ () formulae can only be propagated across ◦ (•) edges. Thus
an infinite number of alternating � and
 rules is impossible. Contradiction.

7 Related Work and Future Work

Bernardi [1] appears to be the first to have noticed the connection between deep
inference and residuation in display logic in the context of categorial grammar,
although they do not give an explicit proof of this correspondence. Brünnler [3,4]
and Poggiolesi [15] have given deep inference calculi for the modal logic K and
some extensions. Brünnler has recently shown that the deep-inference-based cut-
elimination technique for K [3] can be extended to prove cut elimination for
Kashima’s deep inference calculus for Kt.1 In his proof, a crucial step is a proof
of the admissibility of a “deep” version of residuation:

Σ[•{◦{Δ}, Γ}]
Σ[Δ, •{Γ}]

Σ[◦{•{Δ}, Γ}]
Σ[Δ, ◦{Γ}]

It will be interesting to compare the direct proof of cut elimination in deep
systems (without residuation) to the one in shallow system (with residuation).

1 K. Brünnler. Personal communication.

Taming Displayed Tense Logics Using Nested Sequents with Deep Inference 203

Indrzejczak [11] and Trzesicki [16] have given cut-free sequent-like calculi for
tense logic. In each such calculus there is a rule (or rules) which allow us to “re-
turn” to previously seen worlds when the rules are viewed from the perspective
of counter-model construction. However, Trzesicki’s calculus has a large degree
of non-determinism and is therefore not suitable for proof search. In contrast,
our system DKt and its extension to tense S4 admits a simple proof search strat-
egy and termination argument. Indrzejczak’s calculus is suitable for proof search
but lacks a natural notion of a cut rule and cut-elimination. It is also possible to
give proof calculi for many modal and tense logics using semantic methods such
as labelled deduction [14] and graph calculi [5], but we prefer purely syntactic
methods since they can potentially be applied to logics with more complicated
semantics such as substructural logics.

The description logic community have already built extremely efficient theo-
rem provers for Kt.S4 in its incarnation as ALCI with transitive roles [10], so
our terminating calculus for Kt.S4 is not very exciting. However, Horrocks et.
al. do not consider proof-theoretic issues such as cut-elimination.

It remains to be seen whether we can extend our results to the primitive
extensions of modal tense logic in a systematic way, and also whether deep
inference can be used to tame other display calculi with more complex binary
residuation principles like those in substructural logics [1]. Another interesting
direction is the addition of (first-order) quantifiers. An approach to this would be
to consider quantifiers as modal operators, with appropriate display postulates,
such as the ones developed in [18].

A simple Haskell implementation of DKt is available at:
http://users.rsise.anu.edu.au/~linda/DKt.html.

Acknowledgment. We thank the anonymous referees for their helpful comments
on an earlier draft of the paper.

References

1. Areces, C., Bernardi, R.: Analyzing the core of categorial grammar. Journal of
Logic, Language, and Information 13(2), 121–137 (2004)

2. Belnap, N.: Display logic. Journal of Philosophical Logic 11, 375–417 (1982)
3. Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., et al.

(eds.) Advances in Modal Logic 6, pp. 107–119. College Publications (2006)
4. Brünnler, K.: Deep sequents for modal logic (unpublished, 2007)
5. Castilho, M.A., Cerro, L.F.D., Gasquet, O., Herzig, A.: Modal tableaux with prop-

agation rules and structural rules. Fundamenta Informaticae 32(3/4), 281–297
(1997)

6. Goré, R., Gaggles, Gentzen, Galois: How to display your favourite substructural
logic. Logic Journal of the IGPL 6(5), 669–694 (1998)

7. Goré, R.: Substructural logics on display. LJIGPL 6(3), 451–504 (1998)
8. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-

intuitionistic logic using nested sequents. In: AiML. College Publications (2008)

http://users.rsise.anu.edu.au/~linda/DKt.html

204 R. Goré, L. Postniece, and A. Tiu

9. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward
proof search in some non-classical propositional logics. In: Miglioli, P., Moscato,
U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS(LNAI), vol. 1071,
pp. 210–225. Springer, Heidelberg (1996)

10. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. Logic Journal of the IGPL 8(3), 239–264 (2000)

11. Indrzejczak, A.: Multiple sequent calculus for tense logics. In: International Con-
ference on Temporal Logic, Leipzig, pp. 93–104 (2000)

12. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–
135 (1994)

13. Kracht, M.: Power and weakness of the modal display calculus. In: Wansing, H.
(ed.) Proof Theory of Modal Logics, pp. 92–121. Kluwer, Dordrecht (1996)

14. Negri, S.: Proof analysis in modal logic. JPL 34(5–6), 507–544 (2005)
15. Poggiolesi, F.: The tree-hypersequent method for modal propositional logic. In:

Trends in Logic: Towards Mathematical Philsophy, pp. 9–30 (2009)
16. Trzesicki, K.: Gentzen-style axiomatization of tense logic. Bulleting of the Section

of Logic 13(2), 75–84 (1984)
17. Wansing, H.: Sequent calculi for normal modal proposisional logics. Journal of

Logic and Computation 4(2), 125–142 (1994)
18. Wansing, H.: Displaying Modal Logic. Kluwer Academic Publishers, Dordrecht

(1998)

Sound Global State Caching for ALC with
Inverse Roles

Rajeev Goré1 and Florian Widmann2

1 Logic and Computation Group, The Australian National University
Canberra, ACT 0200, Australia

Rajeev.Gore@anu.edu.au
2 Logic and Computation Group and NICTA�, The Australian National University

Canberra, ACT 0200, Australia
Florian.Widmann@anu.edu.au

Abstract. We give an optimal (exptime), sound and complete tableau-
based algorithm for deciding satisfiability with respect to a TBox in the
logic ALCI using global state caching. Global state caching guarantees
optimality and termination without dynamic blocking, but in the pres-
ence of inverse roles, the proofs of soundness and completeness become
significantly harder. We have implemented the algorithm in OCaml, and
our initial comparison with FaCT++ indicates that it is a promising
method for checking satisfiability with respect to a TBox.

1 Introduction

Description logics are classical multi-modal logics with applications in knowledge
representation and reasoning [1]. Most applications can be reduced to the prob-
lem of deciding whether a given concept is satisfiable with respect to a finite set
of concepts called a TBox. This problem is known to be exptime-complete for
the most basic expressive description logic ALC (normal multi-modal logic Kn),
and known to be nexptime-complete for more expressive logics like SHOIQ [2].

The known optimal algorithms [1] for these decision problems are rarely used
by practitioners because they are difficult to implement. Practitioners have in-
stead implemented sub-optimal, typically tableau-based, algorithms which ex-
hibit good average-case behaviour by utilising a vast array of optimisations like
“back-jumping” and “lazy unfolding” to reduce the tableau search space [3].

Tableau calculi for description logics typically build and-trees of nodes where
each node can be viewed as a set of concepts, and where the or-branching caused
by disjunctions is conceptually handled by splitting one and-tree into several. An
important optimisation is to “cache” previously seen tableau nodes when their
status is either known to be, or can safely be assumed to be, satisfiable or unsat-
isfiable [4]. If the same node appears again then a (hopefully fast) “cache hit”

� NICTA is funded by the Australian Government’s Department of Communications,
Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence program.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 205–219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

206 R. Goré and F. Widmann

gives us the answer without having to explore the node’s subtree again. Caching
unsatisfiable nodes is sound across different and-trees, but caching satisfiable
nodes can only be done within the same and-tree.

Goré and Nguyen have recently given an optimal, sound and complete al-
gorithm for deciding ALC-satisfiability with respect to a TBox which globally
caches all nodes, regardless of their status [5]. Their “global caching” algorithm
never explores the same node twice, immediately giving an optimal and termi-
nating procedure. The main difficulty is to prove that the method is sound and
complete. Recent experimental work of Goré and Postniece [6] has shown that
the method is competitive with the existing caching methods. Goré and Nguyen
have extended their method to several extensions of ALC by using an analytic
cut-rule [7]. It is doubtful if these extended methods will lead to practical im-
plementations because blind use of analytic cut is considered “impractical” by
practitioners in this field. It is therefore important to find direct methods for
these extension which utilise global caching without recourse to analytic cut.

One such extension is ALCI which extends ALC with inverse roles (converse
modalities). Inverse roles cause problems because a concept like 〈r〉([r−]ϕ1 �
[r−]ϕ2) in a node w causes the creation of an r-successor node v contain-
ing [r−]ϕ1 � [r−]ϕ2, which then demands that the parent node w contains ϕ1
if we expand the first disjunct in v but demands that the parent node w con-
tains ϕ2 if we expand the second disjunct. Assuming we take the first disjunct,
if the node w does not contain ϕ1 then it is “incompatible” with its r-child v,
so, in principle, we have to add ϕ1 to w and re-process the new ϕ1 in w. But
the re-processing may well make w contain a new concept [r−]ψ which we then
have to pass back to the parent of w, and so on. Moreover, if choosing the first
disjunct leads to an inconsistency, we have to undo all additions caused by the
insertion of ϕ1 into w so that we can explore the second disjunct in its original
context. Conceptually, this can be done by creating a copy of the and-tree for
each choice-point. Practical algorithms use many optimisations to minimise the
copying required to maintain such choice-points as well as “dynamic equality
blocking” to avoid infinite loops caused by TBoxes and inverse roles [8].

In summary, these methods can only globally cache unsatisfiable nodes, must
cleverly manage choice-points and require blocking to be dynamic. Actual im-
plementations are often sub-optimal in terms of their worst-case complexity.
Polynomial reductions from ALCI to ALC are also known [9].

Here, we give a sound, complete and cut-free method using “global state
caching” for deciding satisfiability with respect to a TBox for ALCI. As opposed
to global caching, which guarantees that the same node is never explored twice,
our method globally caches only state nodes, but this is sufficient to guarantee
worst-case optimality. This restriction can be safely relaxed to globally cache
certain non-state nodes as well, and we return to this issue in Section 5. Since
our underlying data structure is a cyclic graph, the main technical difficulty is to
prove soundness and completeness (but the proofs are omitted for lack of space).

We present our method as pseudo code rather than as traditional tableau
rules because the treatment of special nodes and the procedure update gives our

Sound Global State Caching for ALC with Inverse Roles 207

algorithm a non-local flavour. Thus a set of traditional local tableau “completion
rules” would be cluttered by side-conditions to enforce the non-local aspects or
would require a complicated strategy of rule applications.

Comparison of our OCaml implementation with FaCT++ shows that our
method is a promising method for checking ALCI-satisfiability w.r.t. a TBox.

Section 2 contains the syntax and semantics of ALCI. Section 3 contains
an overview of the algorithm, the detailed algorithm itself, and statements of
the theorems on soundness, completeness and optimal complexity. Section 4
contains a fully worked example. Section 5 contains a brief description of the
implementation and our initial experimental results, and concludes.

2 Syntax and Semantics

Definition 1. Let AR and AC be disjoint and countably infinite sets of role
names and concept names, respectively. The set R of all role descriptions and
the set C of all concept descriptions are inductively defined as follows: AR ⊆ R;
if r is in R then so is r−; AC ⊆ C; if C and D are in C then so are ¬C, C �D,
and C �D; if C is in C then so are [r]C and 〈r〉C for every r ∈ R. A concept
of the form 〈r〉C and [r]C is called a 〈·〉- and [·]-concept, respectively.

Definition 2. An interpretation I = (ΔI , ·I) is a pair where ΔI is a non-empty
set, the domain of I, and ΔI is an interpretation function mapping every A ∈
AC to a set AI ⊆ ΔI and every r ∈ AR to a binary relation rI ⊆ ΔI ×ΔI. An
interpretation function is inductively extended to concepts and roles as follows:

(¬C)I := ΔI \ CI

(C �D)I := CI ∩DI

(C �D)I := CI ∩DI

([r]C)I := {d ∈ ΔI | ∀e.(d, e) ∈ rI ⇒ e ∈ CI}
(〈r〉C)I := {d ∈ ΔI | ∃e.(d, e) ∈ rI & e ∈ CI}
(r−)I := {(e, d) ∈ ΔI ×ΔI | (d, e) ∈ rI} .

Definition 3. An interpretation I satisfies a (not necessarily finite) set of con-
cepts X ⊆ C iff

⋂
C∈X CI �= ∅, and validates X iff

⋂
C∈X CI = ΔI . A

TBox T ⊆ C is a finite set of concepts. A set X ⊆ C is satisfiable with respect
to T iff there exists an interpretation which validates T and satisfies X.

We extend the definitions to single concepts by interpreting them as singleton
sets. Clearly I validates C iff it does not satisfy ¬C. Traditionally, a TBox is
defined to be a finite set of terminological axioms of the form C � D, where C
and D are concepts, but the two definitions are equivalent.

Definition 4. For a role r ∈ R we define r� as s if r is of the form s−, and
as r− otherwise. A concept C ∈ C is in negation normal form if ¬ appears only
directly before concept names and if all roles appearing in C are in AR∪{r− | r ∈
AR}. It is well known that, in ALCI, every concept C has a logically equivalent
concept nnf(C) which is in negation normal form. A TBox T is in negation
normal form if all concepts in T are in negation normal form.

208 R. Goré and F. Widmann

3 Algorithm, Soundness, Completeness and Termination

Given a TBox T and a concept D, both in negation normal form, our method
searches for an interpretation which validates T and satisfies D by building an
and-or graph. We start with a high level description of our algorithm.

3.1 Overview of the Algorithm

Recall that the standard strategy for rule applications in tableau algorithms is
to apply the rules for decomposing � and � repeatedly until they are no longer
applicable, giving a “saturated” node which contains only atoms, negated atoms,
〈·〉-formulae and [·]-formulae. Let us call such a “saturated” node a state and
call the other nodes prestates. Thus the only rule applicable to a state x is the
〈·〉-rule which creates a node containing {C}∪{D | [r]D ∈ x} for each 〈r〉C ∈ x.
The standard strategy will now saturate any such child to obtain a state y,
then apply the 〈·〉-rule to y, and so on, until we find a contradiction, or find a
repeated node, or find a state which contains no 〈·〉-formulae. Let us call x the
parent state of y since all intervening nodes are not states.

When inverse roles are present, we require that {E | [r�]E ∈ y} ⊆ x, since y
is then compatible with being an r-successor of x in the putative interpretation
under construction. If some [r�]E ∈ y has E /∈ x then x is “too small”, and must
be enlarged into an alternative node x+ by adding all such E. If any such E is
a complex formula then the alternative node x+ is not “saturated”, and hence
not a state. So we must saturate it using the �/�-rules until we reach a state.
That is, a state x may conceptually be “replaced” by an alternative prestate x+

which is an enlargement of x, and which may have to be saturated further in
order to reach a state.

Our algorithm handles these “alternatives” by introducing a new type of node
called a special node, introducing a new type of status called toosmall, allowing
states to contain a field alt for storing these alternatives, and ensuring that a
state always has a special node as its parent. When we need to replace a state x
by its alternatives, the special node above x extracts these alternatives from
the altx field and creates the required alternative nodes as explained next.

Referring to Fig. 1, suppose state x has an r-successor prestate ps0, and further
saturation of ps0 leads to prestate psk, and an application of an �/�-rule to pk

will give a state y. Instead of directly creating y, we create a special node z
which carries the same set of formulae as would y, and make z a child of psk. We
now check whether z is compatible with its parent state x by checking whether
{E | [r�]E ∈ z} ⊆ x. If z is not compatible then we mark z as toosmall, and
add {E | [r�]E ∈ z} \ x to the set of alternative sets contained in altx, without
creating y, as shown in Fig. 1(a). If z is compatible with x, we create a state y
if it does not already exist, and make the new/old y a child of z, as in Fig. 1(b).

Suppose that y is compatible with x and that either y is already toosmall
or becomes so later because of some descendant state w of y. In either case,
the attribute alty then contains a number of sets y1, y2, . . . , yn (say), and the
toosmall status of y is propagated to the special node z. In response, z will

Sound Global State Caching for ALC with Inverse Roles 209

(a)

x

〈r〉C
��

ps0

��
psk

��
z

toosmall

({E | [r�]E ∈ z} \ x) ∈ altx

(b)

x

〈r〉C
��

ps0

��
psk

��
z

��
y

(c)

x

〈r〉C
��

ps0

��
psk

��
z

�� �����
���

																			

y y+
1 /z1 · · · y+

n /zn

Fig. 1. The use of special node z to handle in/compatibility between states x and y.
Scenario (a) occurs when x and y are incompatible. Scenario (b) occurs when x and y
are compatible. Scenario (c) occurs when x and y are compatible, but y is toosmall.

create the alternatives y+
1 , y+

2 , . . . , y+
n for y with y+

i := y ∪ yi. If y+
i is a state

then our algorithm will create a special node zi below z, and if zi is compatible
with x then y+

i will be created or retrieved and will become the child of zi as
in (b) else y+

i will not be created and zi will be marked as toosmall as in
(a). If y+

i is not a state then it will be created as a direct prestate child of z.
Figure 1(c) captures this by using y+

i /zi to stand for either y+
i or zi. Each of

these new non-special nodes will eventually be expanded by our algorithm but
now the “lapsed” special node z will be treated as a �-node.

3.2 The Algorithm

Our algorithm builds a graph G consisting of nodes and directed edges. We first
explain the structure of G in more detail. In the rest of the paper, we use the
notation P(Y) for the power set of Y and x ∈ Y ? (x ⊆ Y ?) to indicate that x
is either an element (a subset) of Y or undefined (“⊥”).

Definition 5. Each node x ∈ G has six attributes belonging to it: Γx ⊆ C,
altx ⊆ P(C)?, pstx ∈ G?, prlx ∈ R?, splx ∈ (G ∪ {lsn})?, and stsx ∈ S? where
S := {unsat, sat, toosmall, open} and lsn is just a constant.

Some attributes of a node x ∈ G may be undefined initially. Once an attribute
is defined in x, however, it will never become undefined again.

The attribute Γx of a node x ∈ G contains the concepts that are assigned
to x. It is set at the creation of x and is not changed afterwards. There may
exist several nodes having the same set of concepts.

The attribute altx is defined (at the creation of x) if and only if x is a state.
If defined it contains a set of sets of concepts. Each set of concepts can be seen
as a way to extend Γx to form an alternative node for x. The set altx is initially
empty but can grow as the algorithm proceeds.

210 R. Goré and F. Widmann

The attributes pstx and prlx are defined for all nodes excepts states. They are
set at the creation of x and are never changed. The attribute pstx identifies the,
as we will ensure, unique ancestor p ∈ G of x such that p is a state and there is
no other state between p and x in G. We call p the parent state of x. The creation
of the child of p which lies between p and x was caused by a 〈·〉-concept 〈r〉C
in Γp. The role r which we call the parent role of x is stored in prlx.

The attribute splx is defined if and only if x is a special node. If defined, its
value is either lsn or is the state that is the child of the special node. As explained
in the overview, the special nature of special nodes can eventually lapse, after
which they are treated as �-nodes: thus lsn stands for “lapsed special node”.

The last attribute stsx describes the status of x. It is initially undefined but
becomes defined eventually during the algorithm. Its value may be modified
several times. The value unsat indicates that the node is unsatisfiable. The
value sat indicates that the node is satisfiable. The value toosmall indicates
that the node is “useless” for building an interpretation because it does not con-
tain some concepts that are required by inverse roles and [·]-concepts. Hence, it
is treated similarly to unsat. Finally, the value open indicates that it is currently
not known whether or not the node is satisfiable.

Definition 6. Let x ∈ G be a node. We call x unsat iff it has stsx = unsat,
sat iff it has stsx = sat, too small iff it has stsx = toosmall, and open iff it
has stsx = open. A path π in G is a finite or infinite sequence x0, x1, x2, . . . of
nodes in G such that xi+1 is a child of xi for all xi which have a successor in π.

Next we comment on all procedures given in pseudocode.

Procedure is-sat(D, T) is the main procedure which determines whether a
concept D ∈ C is satisfiable w.r.t. a TBox T , both in negation normal form. It
first initialises G to the empty graph. We consider G as a global variable, so the
other procedures have access to it. Then we create a dummy state which we call
the root node and insert it in G. If we create a node, all attributes which are not
explicitly given are undefined. The root node is inserted for technical reasons so
that each node that is not a state has a parent state.

While there exists a node x ∈ G whose status is undefined, we expand x as
explained next. Since special nodes and nodes which contain a contradiction get
their status in the invocation of insert-node which creates them, the following
classifications do not contain such nodes.

If Γx contains a �-concept C whose immediate subconcepts are not in Γx,
we call x a �-node, so we create a new set Γ ′ by adding C1 and C2 to Γx.
Note Γ ′ � Γx. We then invoke insert-node which creates a node with Γ ′

assigned to it and adds an edge from x to that node. Note that pstx and prlx
are defined as x is not a state. After that we determine and set the status of x.

If x is not a �-node and Γx contains a �-concept C none of whose immediate
subconcepts is in Γx, we call x a �-node. For each decomposition Ci we do the
following: We create a new set Γi by adding Ci to Γx. Thus Γi is a strict superset
of Γx. Then we invoke insert-node which creates a node with Γi assigned to it
and add an edge from x to that node. Note that pstx and prlx must be defined
as x is not a state. Finally, we determine and set the status of x.

Sound Global State Caching for ALC with Inverse Roles 211

Procedure. is-sat(D, T) for testing whether D is satisfiable w.r.t. T
Input: a concept D ∈ C and a TBox T , both in negation normal form
Output: true iff D is satisfiable w.r.t. T
G := a new empty graph
let s ∈ AR be a dummy role name which does not occur in D or T
create new node rt with Γrt := {〈s〉D} and altrt := ∅
insert rt in G
while ∃x ∈ G. stsx = ⊥ do (∗ x is not expanded yet ∗)

if ∃C ∈ Γx. C = C1 � C2 & {C1, C2} �⊆ Γx then (∗ x is a �-node ∗)
Γ ′ := Γx ∪ {C1, C2}
insert-node(Γ ′, x,pstx, prlx)
stsx := det-sts-or(x)

else if ∃C ∈ Γx. C = C1 �C2 & {C1, C2} ∩ Γx = ∅ then (∗ x is a �-node ∗)
for i←− 1 to 2 do

Γi := Γx ∪ {Ci}
insert-node(Γi , x,pstx, prlx)

stsx := det-sts-or(x)
else (∗ x is a state ∗)

let 〈r1〉C1, · · · , 〈rk〉Ck be all of the 〈·〉-concepts in Γx

for i←− 1 to k do
Γi := {Ci} ∪ {E | [ri]E ∈ Γx} ∪ T
insert-node(Γi , x, x, ri)

stsx := det-sts-state(x)
let y1, . . . , yk be all the parents of x
for i←− 1 to k do update(yi)

return stsrt ∈ {sat, open}

If x is neither a �-node nor �-node, it must be fully saturated and hence a
state. For each 〈·〉-concept 〈ri〉Ci we do the following: We create a new set Γi

containing Ci, all concepts in T , and all concepts E such that [ri]E ∈ Γx. Then
we invoke insert-node which creates a node with Γi assigned to it and adds an
edge from x to that node. We call this node the successor of 〈ri〉Ci. Finally, we
determine and set the status of x.

At the end of the while loop, we update the status of all parent nodes of x.
The procedure stops if all nodes in G have a defined status. It returns “satis-

fiable” iff the root node is either sat or open.

Procedure insert-node(Γ, x, p, r) nominally creates a node with Γ assigned
to it and inserts an edge from x to that node. Due to the issues with inverse
roles, however, the details are more complicated. We start by explaining the
arguments of insert-node in more detail.

The node x ∈ G invokes insert-node because it requires the existence of a
node which has Γ ⊆ C assigned to it. The arguments p ∈ G and r ∈ R are the
parent state and the parent role of the new node, respectively. By inspecting the
three invocations of insert-node in is-sat, it should not be hard to see that p
and r are given the “right” values: if x is a �- or �-node then pstx and prlx

212 R. Goré and F. Widmann

Procedure. insert-node(Γ, x, p, r) for inserting a node into the graph
Input: a set Γ ⊆ C containing the concepts of the new node; a node x ∈ G

which invoked this procedure; the parent state p ∈ G (in
particular altp �= ⊥); and the parent role r ∈ R

if ∃C ∈ C. {C, nnf(¬C)} ⊆ Γ then (∗ contradiction found ∗)
create new node y with Γy := Γ , psty := p, prly := r, and stsy := unsat

insert y and edge (x, y) in G
else if ∃C ∈ Γ. C = C1 � C2 or C = C1 � C2 then

create new (�- or �-)node y with Γy := Γ , psty := p, and prly := r
insert y and edge (x, y) in G

else (∗ Γ is fully saturated ∗)
create new (special) node z with Γz := Γ , pstz := p, and prlz := r
Γalt := {C | [r�]C ∈ Γ} \ Γp

if Γalt = ∅ then (∗ Γ is compatible with p ∗)
if ∃y ∈ G. alty �= ⊥ & Γy = Γ then (∗ state already exists in G ∗)

insert edge (z, y) in G
splz := y

else (∗ state is not in G yet ∗)
create new (state) node y with Γy := Γ and alty := ∅
insert y and edge (z, y) in G
splz := y

stsz := det-sts-spl(z)
else (∗ Γ is not compatible with p ∗)

if stsp ∈ {⊥, open} then altp := altp ∪
{
Γalt

}
splz := lsn
stsz = toosmall

insert z and edge (x, z) in G

are just passed on; if x is a state then p is x itself and r is the role from the
〈·〉-concept in x which requires the existence of the said node.

If Γ contains an immediate contradiction, we create a new node y which
immediately becomes unsat and insert an edge from x to y. For the other cases,
we assume implicitly that Γ does not contain an immediate contradiction.

If Γ contains a �- or �-concept which still has to be decomposed, we create
a new �- or �-node y and insert an edge from x to y. Note that we create a
new node even if there already exists a node in G which has Γ assigned to it;
otherwise the parent state and the parent role of a node would not be unique.

If Γ is fully saturated, things become more interesting. In this case we first
create a special node z, not because of the usual tableau rules, but to handle the
“special” issue arising from inverse roles, as explained in the overview. Like �-
and �-nodes, special nodes have a unique parent state and a unique parent role.

Next we determine the set Γalt of all concepts C such that [r�]C is in Γ but C
is not in p. If there is no such concept we say that Γ is compatible with p. Note
that incompatibilities can only arise because of inverse roles.

Sound Global State Caching for ALC with Inverse Roles 213

If Γ is compatible with p, we check whether some state y in G has Γ assigned
to it. If such a state y already exists in G, we insert an edge from z to y;
otherwise we create a new state y first and then insert an edge from z to y.
Consequently, there is at most one state in G for every set of concepts explaining
the term “global state caching” of the title. In both cases we flag z as special by
defining splz := y. Then we determine and set the status of z.

If Γ is not compatible with p, we cannot connect p to a state with Γ assigned to
it as explained in the overview. Hence the intermediary z flags this by becoming
too small. A node which is too small is treated similarly to an unsat node as both
are useless for building an interpretation. That does not, however, mean that p
is unsatisfiable; maybe it is just missing some concepts. We cannot extend Γp

directly as this may have side-effects elsewhere; but to give p a clue as to what
went wrong, we add Γalt to altp if p is still open or has an undefined status. The
meaning is that if we create an alternative node for p by adding the concepts
in Γalt, we might be more successful in building an interpretation. We flag z as
special by defining splz := lsn, which in this case is just a dummy value which
is not needed later.

Finally we put an edge from x to the special node z.
Note that if a special node z requires a state y which already exists in G

and is already known to be too small then we must insert the alternative exten-
sions of y immediately via det-sts-spl(z) to determine the status of z. Since
such an alternative may itself be a special node, insert-node may recurse via
det-sts-spl. This is why special nodes are the only nodes which get their status
in the procedure insert-node, rather than in the outer procedure is-sat.

Procedure det-sts-spl(x) computes the status of a special node x ∈ G. By
definition of a special node, the attribute splx is defined.

If splx is a node y ∈ G then it must be a state and we do the following: If y
is unsat or sat, the status is just propagated to x. If y is open or its status is
not defined then x becomes open. The interesting case arises if y is too small,
meaning that y is unsuitable for building an interpretation. Its attribute alty

contains information on how to extend Γy in order to potentially fix the problem.
So we do the following for every set Γ ∈ alty: We create a new set by adding
the concepts in Γ to Γy and then insert this alternative node of y in G and add
an edge from x to it. It is easy to see that the new set is a strict superset of Γy.
The alternative node does not have to be a state since it may contain �- and
�-concepts, so it may require further saturation. Moreover, it is possible that it
contains a contradiction or that its saturation leads to sets of concepts which are
not compatible with the parent state of x. Hence we have to use insert-node
to insert the alternative nodes. If one of the alternative nodes turns out to be
“useful” for building an interpretation, it “replaces” the discarded y. Hence the
special nature of x has “lapsed” and it behaves like a �-node from now on, so
we set splz to lsn and determine its status by invoking det-sts-or.

If splx = lsn then we know that x has already created the alternative nodes
of the corresponding state and that it should behave like a �-node. Hence we
invoke det-sts-or and pass on the result.

214 R. Goré and F. Widmann

Procedure det-sts-or(x) computes the status of a �- or �-node x ∈ G. Note
that for this task, a �-node can be seen as a �-node with exactly one child. If
some child is sat then x is also sat. Otherwise, if there is at least one child that
is open or has an undefined status, then x is still open. If none of the two cases
apply, all children are unsat or too small. If there exists a child which is too
small then x is too small. If all children are unsat then so is x. Note that, apart
from the “extra” value toosmall, which is conceptually treated as unsat, the
procedure captures the standard behaviour for tableaux.
Procedure det-sts-state(x) computes the status of a state x ∈ G. If one of
the children of x is unsat then x must also be unsat. If some child y of x is
too small then x must also be too small as y cannot be used for building an
interpretation. If none of the children is unsat or too small, but some child is
open or has an undefined status, then x is still open. If none of the other cases
apply, all children must be sat, so x must be sat too. Again, apart from the
“extra” value toosmall, which is conceptually treated as unsat, the procedure
captures the standard behaviour for tableaux.
Procedure update(x) propagates status changes through G. It takes a node x ∈
G and recomputes its status if the node is still open. If this new status differs
from its old status stored in stsx, it updates stsx and invokes update recursively
on all nodes whose status might be affected by this change. Note that a node
that is open is either a special node or a �/�-node or a state.

We now list some facts which are useful in understanding the algorithm and
which are needed in the (omitted) proofs of Theorems 8-10. These facts can be
verified by inspection of the procedures in a rather straightforward way.

Proposition 7. Let x, y, z ∈ G be nodes.

(i) if update(x) is invoked then the status of x is defined;
(ii) if x and y are states with Γx = Γy then x = y;
(iii) if x is a state then its parents are exactly the special nodes y with Γy = Γx;
(iv) if x is a state and Γ ∈ altx then Γ �= ∅ and Γ ∩ Γx = ∅;
(v) if x is a special node, it has at least one child iff {C | [prl�x]C ∈ Γx} ⊆ Γpstx

.
In this case, one of its children is the state y with Γy = Γx.

(vi) if y is a child of x and neither of them are states then pstx = psty

and pstx = psty and Γx � Γy;

3.3 Soundness, Completeness, and Complexity

Let D ∈ C be a concept and T a TBox, both in negation normal form. Further-
more let G be the final graph with root node rt that was created by invoking
is-sat(D, T). Note that all nodes in G have a defined status. We define the size
of a concept C ∈ C as the number of symbols in C. Let n be the sum of the sizes
of all concepts in X := {D} ∪ T .

Theorem 8. The algorithm terminates and runs in exptime in n.

Theorem 9. If root node rt is sat or open then D is satisfiable w.r.t. T .

Theorem 10. If rt is unsat or too small then D is not satisfiable w.r.t. T .

Sound Global State Caching for ALC with Inverse Roles 215

Procedure. det-sts-spl(x) for determining the status of a special node
Input: a special node x ∈ G (i.e. splx �= ⊥) with at least one child in G
Output: the new status of x

if splx �= lsn then (∗ splx is a child of x ∗)
y := splx
if stsy = unsat then return unsat

else if stsy = sat then return sat

else if stsy ∈ {⊥, open} then return open

else (∗ y must be too small so create its alternatives ∗)
foreach Γ ∈ alty do insert-node(Γy ∪ Γ, x, pstx, prlx)
splx := lsn
return det-sts-or(x)

else return det-sts-or(x)

Procedure. det-sts-or(x) for determining the status of a �- or �-node
Input: a �- or �-node x ∈ G
Output: the new status of x

let y1, . . . , yk ∈ G be all the children of x
if ∃i ∈ {1, . . . , k}. stsyi = sat then return sat

else if ∃i ∈ {1, . . . , k}. stsyi ∈ {⊥, open} then return open

else if ∃i ∈ {1, . . . , k}. stsyi = toosmall then return toosmall

else return unsat; (∗ all children are unsatisfiable ∗)

Procedure. det-sts-state(x) for determining the status of a state
Input: a state x ∈ G
Output: the new status of x

let y1, . . . , yk ∈ G be all the children of x
if ∃i ∈ {1, . . . , k}. stsyi = unsat then return unsat

else if ∃i ∈ {1, . . . , k}. stsyi = toosmall then return toosmall

else if ∃i ∈ {1, . . . , k}. stsyi ∈ {⊥, open} then return open

else return sat; (∗ all children are satisfiable ∗)

Procedure. update(x) for propagating the status of nodes
Input: a node x ∈ G that has a defined status

if stsx = open then (∗ otherwise the status cannot change ∗)
sts := if splx �= ⊥ then det-sts-spl(x)

else if altx �= ⊥ then det-sts-state(x) else det-sts-or(x)
if stsx �= sts then

stsx := sts
let z1, . . . , zk be all the parents of x
for i←− 1 to k do update(zi)

216 R. Goré and F. Widmann

(1) state
{ 〈s〉C }

open ∅
〈s〉

(2) �-node
{ ¬A, ¬A � 〈r〉〈r〉[r−][r−](A �B) }
open (1), s

�

��

(3) special
{ ¬A, 〈r〉〈r〉[r−][r−](A �B), C }
open lsn (1), s

alt

��

(9) �-node
{ ¬A, A � B,

〈r〉〈r〉[r−][r−](A �B), C }
open (1), s

�1

��

�2

��

(4) state
{ ¬A, 〈r〉〈r〉[r−][r−](A �B), C }
toosmall { {A �B} }

〈r〉

��

(10) contradiction
{ A, ¬A, A �B,

〈r〉〈r〉[r−][r−](A �B), C }
unsat (1), s

(5) special
{ ¬A, 〈r〉[r−][r−](A �B) }
toosmall lsn (4), r

��

alt

��

(11) special
{ B, ¬A, A �B,

〈r〉〈r〉[r−][r−](A �B), C }
open (12) (1), s

��

(6) state
{ ¬A, 〈r〉[r−][r−](A �B) }

toosmall { {[r−](A �B)} }

〈r〉

��

(12) state
{ B, ¬A, A �B,

〈r〉〈r〉[r−][r−](A �B), C }
open ∅

〈r〉
��

(7) special
{ ¬A, [r−][r−](A �B) }
toosmall lsn (6), r

(13) special
{ ¬A, 〈r〉[r−][r−](A �B) }
open lsn (12), r

�����������������

alt

��
(8) special
{ ¬A, 〈r〉[r−][r−](A �B),

[r−](A �B) }
toosmall lsn (4), r

(14) special
{ ¬A, 〈r〉[r−][r−](A � B),

[r−](A �B) }
open (15) (12), r

Fig. 2. An example: The graph just before processing node (17) (cf. Fig. 3)

Sound Global State Caching for ALC with Inverse Roles 217

(14) special
{ ¬A, 〈r〉[r−][r−](A � B),

[r−](A � B) }
open (15) (12), r

(15) state
{ ¬A, 〈r〉[r−][r−](A �B),

[r−](A �B) }
open ∅

〈r〉
��

(17) state
{ ¬A, [r−][r−](A �B) }
⊥ ∅

(16) special
{ ¬A, [r−][r−](A �B) }
open (17) (15), r

��

Fig. 3. An example: The graph just before processing node (17) (cont.)

4 A Fully Worked Example

Given the TBox T := {¬A}, the concept C := ¬A � 〈r〉〈r〉[r−][r−](A � B) is
satisfiable w.r.t. T , so our algorithm should say so. Note that T does not play a
prominent role in this example and is only included for demonstration purposes.

Figure 2 and 3 show the graph just before processing node (17). The root
is node (1) and Fig. 3 shows the subgraph rooted at node (14). The nodes are
labelled in the order in which they are created. The bottom left corner of a node x
contains stsx. The bottom right corner contains altx if x is a state, and pstx

and prlx if x is a �/�- or special node. If x is a special node then splx is given in
the middle of the bottom line. We have not marked the principal concept which
is decomposed in a node, since it is obvious. Arrows leaving states are labelled
with a role r if an 〈r〉-concept caused the creation of the child. When a special
node creates the alternative nodes, the edges that are created during this process
are labelled with alt. The labelling of arrows leaving �- and �-nodes is obvious.

The creation and processing of nodes (1) and (2) is straightforward. As node (3)
is compatible with state (1), state (4) is created and inserted as a child of node (3).
Special node (5) and state (6) are handled similarly. Special node (7), however,
is incompatible with state (6). Hence node (7) immediately becomes too small,
and the set {[r−](A � B)} is added to the set of alternatives of state (6). Then
state (6) becomes too small via det-sts-state. Its status change is propagated
to special node (5) which now creates the alternative node (8) via det-sts-spl.
Since node (8) is incompatible with state (4), it immediately becomes too small.
Moreover the set {A�B} is added to the set of alternatives of state (4). Because all
children of node (5) are too small, it becomes too small as well via det-sts-spl
and det-sts-or.This result is propagated to node (4) and (3). Similar to node (5),
node (3) creates the alternative node (9).

The first child of node (9) contains a contradiction and becomes unsat immedi-
ately. Special node (11) and state (12) are handled similarly to node (3) and (4).
Special node (13) is compatible with state (12) which contains no [r−]-concepts.
The state it requires is already in the graph as node (6), but it is too small, so
node (13) immediately creates the alternative node (14). Nodes (8) and (14) are
similar to each other but unlike node (8), node (14) is compatible with its parent

218 R. Goré and F. Widmann

state (12). So node (15) is created and inserted as its child. Node (16) is similar
to node (7), but unlike node (7), it is compatible with its parent state (15). So
state (17) is created and inserted as a child of node (16).

This is the moment captured by Fig. 2 and 3. Only node (17) remains un-
processed. Since it lacks 〈·〉-concepts, it becomes sat via det-sts-state imme-
diately. The result is propagated to all open nodes, including the root, which
becomes sat. The algorithm returns that C is satisfiable w.r.t. T .

5 Implementation, Experimental Results and Conclusion

Our algorithm is fairly detailed, so a naive implementation should be straight-
forward. But a well-engineered and sophisticated implementation requires more
work so we address some aspects that do not show up in the algorithm.

There are some obvious optimisations. For example, the procedure can stop
as soon as the root becomes sat, unsat or too small since we know that its status
will not change again. Also we do not need to expand a node which has only
parents who are all already sat, unsat or too small. Of course, if a new parent
which is still open is linked to the node we might have to expand it after all.

We are free to choose any node to expand, but some nodes are obviously more
“promising” than others. For example, as long as a �-node has an open child, it
is not necessary to expand its other children. They require consideration only if
this open child becomes unsat or too small. This can be implemented efficiently
by having a decentralised queue which is distributed in the nodes.

One major issue is that our algorithm as given in this paper does the satura-
tion phase for every state independently. That is, if two states differ only slightly,
say one state has an additional concept name A ∈ AC, the “same” saturation
phase is done twice which seems unnecessary. However, we cannot uncondition-
ally use the same saturation tree for both states; for example a concept [r−]¬A
in some node of the saturation tree might affect one state but not the other.
Having said that, some improvements are possible. For example, we can cache
and reuse unsat nodes in the saturation phase, but this is not possible for the
other nodes. We can, however, reuse the same saturation tree for several states.
That is, if we are about to recreate (parts of) a saturation tree, we do not create
new nodes but allow the existing nodes to have several status flags, one for each
state in whose saturation tree they appear. Caching unsat nodes in saturation
trees is easy to implement, but the second improvement makes the algorithm
significantly more complicated.

We have a fairly sophisticated implementation of our algorithm in OCaml. It
uses some of the important optimisations like back-jumping, semantic branching,
and local simplification [3], but does not implement many “at a world” optimi-
sations and heuristics from SAT like reordering subconcepts of a �-concept.

We compared our implementation with FaCT++. Since FaCT++ handles
SROIQ which is much more expressive than ALCI, it is possible that this
additional complexity slows FaCT++ down on ALCI. On the other hand,
FaCT++ is highly optimised. Our intention was not to make a thorough system

Sound Global State Caching for ALC with Inverse Roles 219

comparison, but only to check whether our method is feasible. For the same
reason, we do not give actual runtimes but just explain the qualitative results.

First, good benchmarks for ALCI do not seem to exist, and most knowledge
bases use additional features like number restrictions, so we found it hard to
compile a good set of test problems. We therefore used the T98-sat and T98-kb
problems from the DL98 benchmarks (http://dl.kr.org/dl98/comparison).
The only problems where FaCT++ did significantly better were the “pigeon
hole” problems, which is not surprising since our prover does not include any SAT
optimisations. In five problems, our prover showed significantly better results.
For the remaining thirty problems, both provers were on par. We see these results
only as a sanity check since these problems do not use inverse roles.

Second, we tested the provers on randomly generated ALCI concepts with
varying sizes of ALCI TBoxes. For empty TBoxes, the concepts were not very
difficult as both provers showed a linear increase in the size of the concepts
and gave similar runtimes. As the TBoxes grew bigger, the performance of both
provers started to degrade in a similar manner. Although randomly generated
concepts are not good benchmarks, they sometimes serve a second purpose. We
found that FaCT++ returned some incorrect results as confirmed by its authors.

Our method for ALCI is definitely promising and should be extended to
more expressive logics to test whether it remains feasible. The extension to role
hierarchies and transitive roles should not present difficulties, but the extension
to include nominals and qualified number restrictions is not obvious to us.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

2. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. Journal of Au-
tomated Reasoning 39(3), 249–276 (2007)

3. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. Jour-
nal of Logic and Computation 9(3), 267–293 (1999)

4. Donini, F.M., Massacci, F.: EXPTIME tableaux for ALC. Artificial Intelli-
gence 124(1), 87–138 (2000)

5. Goré, R., Nguyen, L.A.: EXPTIME tableaux for ALC using sound global caching.
In: Proc. DL 2007. CEUR Workshop, vol. 250 (2007), CEUR-WS.org

6. Goré, R., Postniece, L.: An experimental evaluation of global caching for ALC (sys-
tem description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS, vol. 5195, pp. 299–305. Springer, Heidelberg (2008)

7. Goré, R., Nguyen, L.A.: EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.)
TABLEAUX 2007. LNCS, vol. 4548, pp. 133–148. Springer, Heidelberg (2007)

8. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logic. Else-
vier, Amsterdam (2006)

9. Ding, Y., Haarslev, V., Wu, J.: A new mapping from ALCI to ALC. In: Proc. DL-
2007. CEUR Workshop Proceedings, vol. 250 (2007), CEUR-WS.org

http://dl.kr.org/dl98/comparison
CEUR-WS.org
CEUR-WS.org

A Tableau System for the Modal μ-Calculus

Natthapong Jungteerapanich

Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, UK

n.jung@ed.ac.uk

Abstract. This paper presents a tableau system for determining satis-
fiability of modal μ-calculus formulas. The modal μ-calculus, which can
be seen as an extension of modal logic with the least and greatest fix-
point operators, is a logic extensively studied in verification and has been
shown to subsume many well-known temporal and modal logics including
CTL, CTL∗, and PDL. Concerning the satisfiability problem, the known
methods in literature employ results from the theory of automata on in-
finite objects. The tableau system presented here provides an alternative
solution which does not rely on automata theory. Since every tableau in
the system is a finite tree structure (bounded by the size of the initial
formula), this leads to a decision procedure for satisfiability and a small
model property. The key features are the use of names to keep track of
the unfolding of variables and the notion of name signatures used in the
completeness proof.

1 Introduction

As a logic for specifying system properties, the modal μ-calculus is one of the
most extensively studied. The logic was introduced by Kozen [4] as an extension
of propositional modal logic with the least and greatest fixpoint operators. The
fixpoint operators enable the logic to encode many well-known branching-time
temporal logics and program logics including CTL, CTL∗, and PDL; thus allow
the logic to express the properties expressible in these latter logics, and many
more. The incorporation of fixpoint operators, however, introduces difficulties
when solving computational and logical problems. Our concern here is the sat-
isfiability problem, i.e. to find a decision procedure which determines whether
a formula is satisfiable. A partial solution was first given in [4] where a tableau
method for checking satisfiability for a fragment of the logic, called aconjunctive
formulas, was introduced. This also, at the same time, proved the small model
property and the completeness of a deductive system for such fragment. How-
ever, for the full logic, the tableau method in that paper was insufficient. The
decidability of the satisfiability problem for the full logic was first established
in [5] where it was shown that the modal μ-calculus can be effectively encoded in
the monadic second-order logic of n-successors (SnS). The satisfiability problem
for SnS is known to be decidable [8] but is non-elementary.

A major milestone was made by Streett and Emerson [10], who introduced the
notion of well-founded pre-models as a characterisation of models. The

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 220–234, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Tableau System for the Modal μ-Calculus 221

paper also suggested that the existence of a well-founded pre-model for the given
formula can be checked by automata. Particularly, to show whether a formula
is satisfiable, an infinite-tree automaton which accepts all well-founded tree pre-
models for the formula is constructed; the formula is satisfiable iff the automaton
accepts some tree (which can be seen as a tree model for the formula). A related
method ([3], [6]) is to translate a formula into an equivalent alternating tree
automaton, which is then checked for emptiness. As far as we know, these have
been the only known effective methods to check satisfiability.

In this paper, we present a tableau system which can be directly used to
check the satisfiability of a modal μ-calculus formula. A tableau in our tableau
system is a finite tree structure whose size is bounded by (some function on)
the size of the formula. A successful tableau can be seen as a model for the
initial formula. The key is in the use of what we call names to keep track of
the unfolding of variables in the tableaux. A formula labelling each node in a
tableau is augmented with a sequences of names recording a (partial) history of
unfolding of variables in such formula. The termination and success of a tableau
are then determined from the recorded sequences of names. Since it is shown that
every tableau is finite, the soundness and completeness of the tableau system
entails the decidability of satisfiability and a small model property of the logic.

2 Modal μ-Calculus

Syntax. For convenience, we present the modal μ-calculus in positive form, where
negation symbols can only appear next to proposition letters. Precisely, formulas
in the modal μ-calculus are given by the following grammar:

φ ::= P | ¬P | X | φ ∨ φ | φ ∧ φ | 〈a〉φ | [a]φ | μX.φ | νX.φ

where P ranges over a countable set Prop of proposition letters, a over a countable
set Act of actions, and X over a countable set Var of variables. It is well-known
that every (closed) formula in the original syntax in [4] can be converted into an
equivalent one in positive form.

We use σ to stand for either μ or ν. A literal is a proposition letter or its
negation. Formulas of the form 〈a〉φ, [a]φ and σX.φ are called 〈·〉-formulas, [·]-
formulas, and fixpoint formulas, respectively. An occurrence of a variable X in
a formula is free iff its does not lie within the scope of σX ; it is said to be
bound otherwise. A closed formula is one without free occurrences of variables.
|φ| denotes the length of φ.

Definition 1 (Well-named formula). A formula φ is well-named iff, for each
variable X, there is at most one operator of the form σX in φ and, if X occurs
free in φ, no operator σX occurs in φ. Given a well-named formula φ and
variable X, the unique fixpoint subformula σX.ψ of φ, if exists, is said to be
identified by X. A μ-variable (resp. ν-variable) in φ is a variable which identifies
a formula of the form μX.ψ (resp. νX.ψ). A variable X is said to be higher
(in φ) than variable Y iff the fixpoint formula identified by Y in φ is a proper
subformula of the formula identified by X.

222 N. Jungteerapanich

Semantics. A model is a triple M = 〈 M, {Ra}a∈Act,VProp〉 where
• M is a set of states,
• Ra, for each action a ∈ Act, is a binary relation on M , and
• VProp : Prop→ ℘(M), called a propositional valuation.

Suppose M is of above form. A valuation on M is a function V : Var → ℘(M).
Given a valuation V onM and a formula φ, the set of states satisfying φ, denoted
‖φ‖MV , is given inductively as follows:

‖P‖MV = VProp(P), ‖¬P‖MV = M − VProp(P),
‖X‖MV = V(X),

‖φ1 ∨ φ2‖MV = ‖φ1‖MV ∪ ‖φ2‖MV ,

‖φ1 ∧ φ2‖MV = ‖φ1‖MV ∩ ‖φ2‖MV ,

‖〈a〉φ‖MV = {s ∈ M | ∃t.sRat, t ∈ ‖φ‖MV },
‖[a]φ‖MV = {s ∈ M | ∀t.sRat→ t ∈ ‖φ‖MV },
‖μX.φ‖MV =

⋂
{S ⊆ M | ‖φ‖MV[X:=S] ⊆ S},

‖νX.φ‖MV =
⋃
{S ⊆ M | S ⊆ ‖φ‖MV[X:=S]}.

where V [X := S] is the valuation in which V [X := S](X) = S and V [X :=
S](Y) = V(Y) for each variable Y other than X . For brevity, the superscript M
is omitted if possible.

A formula φ is said to be true at state s in model M under valuation V ,
written M, s |=V φ, iff s ∈ ‖φ‖MV . A formula is said to be satisfiable iff there is
a model, a valuation, and a state satisfying it. A formula φ is said to be valid,
written |= φ, iff φ is true at every state in every model under any valuation. Two
formulas φ, ψ are said to be (semantically) equivalent iff |= φ↔ ψ.

An approximant for σX.ψ is a formula of the form σαX.ψ (where α ranges
over ordinals), whose semantics can be given as follows:
• ‖μ0X.ψ‖V = ∅ and ‖ν0X.ψ‖V = M ,
• ‖σα+1X.ψ‖V = ‖ψ‖V[X:=‖σαX.ψ‖V],
• ‖μλX.ψ‖V =

⋃
α<λ ‖μαX.ψ‖V and ‖νλX.ψ‖V =

⋂
α<λ ‖ναX.ψ‖V ,

where α denotes an ordinal and λ a limit ordinal. From Knaster-Tarski theorem,
it is well-known that ‖μX.ψ‖V =

⋃
α ‖μαX.ψ‖V and ‖νX.ψ‖V =

⋂
α ‖ναX.ψ‖V .

By renaming bound variables, every formula can be turned into an equivalent
well-named formula. [7] and [6] define the notion of guarded formulas, and shows
that every formula is semantically equivalent to a formula of such kind.

Definition 2 (Guarded formulas). A formula φ is guarded iff, for each sub-
formula σX.ψ, each free occurrence of X in ψ lies within the scope of an occur-
rence of a modal operator 〈·〉 or [·] in ψ.

Lemma 1 ([7], [6]). Every formula is semantically equivalent to a guarded one.

Signatures. Streett and Emerson [10] introduced the notion of signatures, which
has become an indispensable tool in the modal μ-calculus. The definitions given
here are adapted from [11].

A Tableau System for the Modal μ-Calculus 223

Let φ be a closed and well-named formula. Originally, a signature associates
an ordinal to each μ-variable in φ. We extend the definition a bit by using
elements in the class O∞ = {α | α an ordinal}∪{∞}, and stipulate that α < ∞
for each ordinal α. Fix a sequence X1, ..., Xm of all the variables in φ such that
Xi higher than Xj implies i < j, and suppose Z1, ..., Zn is the subsequence of
the μ-variables in the former sequence. A signature is a sequence 〈α1, ..., αn〉 of
elements in O∞.

Let M be a model. Although φ is closed, a subformula of φ may contain free
occurrences of variables. As in [11], we define the valuation which assigns their
intended meanings to those variables. Precisely, the valuation VM,φ is defined
to be Vm, where V0, ...,Vm are given as follows:
• V0(X) = ∅ for all variables X ;
• Vi+1 = Vi[Xi+1 := ‖σi+1Xi+1.ψi+1‖Vi].

Given a signature sig = 〈α1, ..., αn〉, the relativised valuation Vsig
M,φ is defined

to be Vsig
m , where Vsig

0 , ...,Vsig
m are given as follows:

• Vsig
0 (X) = ∅ for all variables X ;

• Vsig
i+1 = Vsig

i [Xi+1 := ‖μαj Zj .ψ‖Vsig
i

], if Xi+1 identifies μZj.ψ and αj is an
ordinal;

• Vsig
i+1 = Vsig

i [Xi+1 := ‖μZj.ψ‖Vsig
i

], if Xi+1 identifies μZj.ψ and αj =∞;

• Vsig
i+1 = Vsig

i [Xi+1 := ‖νXi+1.ψ‖Vsig
i

], if Xi+1 identifies νXi+1.ψ.

For brevity, we write M, s |= ψ and M, s |=sig ψ for M, s |=VM,φ
ψ and

M, s |=Vsig
M,φ

ψ, respectively.

Lemma 2 ([10]). For each subformula ψ of φ, if M, s |= ψ then there exists a
signature sig = 〈α1, ..., αn〉, where each αi is an ordinal, such that M, s |=sig ψ.

3 Tableau System

We now describe the tableau system TS. Our presentation of tableaux has a
close resemblance to the model-checking tableaux in [12]. To simplify matters,
we only consider a tableau for a formula which is closed, guarded, and well-
named. Obviously, every formula can be turned into a closed one without affect-
ing satisfiability. As explained earlier, every formula is semantically equivalent
to a guarded and well-named one. Thus, with some pre-processing, TS can be
used to check satisfiability for any formula.

Suppose φ is a closed, guarded, and well-named formula. For definiteness,
we fix a sequence X1, ..., Xm of all the variables in φ such that Xi higher than
Xj implies i < j, and suppose Z1, ..., Zn is the subsequence of the μ-variables.
The tableau system TS employs extra symbols to keep track of the history of
the unfoldings of μ-variables. For each μ-variable Z in φ, we assume a sequence
z1, z2, ... of distinct symbols, called names for Z. As we later show, the number
of names required to build a tableau for φ is bound by the length of φ. For
convenience, we use z, y, x or their scripted versions to denote names.

224 N. Jungteerapanich

Goals. A goal in a tableau for φ is a sequent of the form Θ � Γ where
• Θ is a sequence of distinct names (called a global sequence), and
• Γ is a set of augmented formulas of the form ψρ where ρ is a sequence of

names from Θ.
As shall be seen from the tableau rules, only the sequences ρ of special form will
be used. Suppose ψρ is an augmented formula in a goal Θ � Γ :
(1) ρ can be decomposed into ρ(Z1) · ... · ρ(Zn) where each ρ(Zi) is a (possibly

empty) sequence of names for Zi.
(2) The ordering of names in ρ is compatible with that in Θ.
(3) For any name z and formulas ψρ1

1 , ψρ2
2 in Γ , if both ρ1 and ρ2 contain z,

then the prefixes of ρ1 and ρ2 up to the occurrence of z are equal.
Names in a global sequence Θ are linearly ordered based on their positions in

Θ: for any names y and z in Θ, y <Θ z iff y occurs before z in Θ. This extends
to sequences of names in a lexicographical manner as follows: for any sequences
ρ, ρ′ of names in Θ, ρ ≺Θ ρ′ iff, for some j, ρ(j) and ρ′(j) are names for the
same variable and ρ(i) = ρ′(i), ρ(j) <Θ ρ′(j) for each i < j. Note that this
latter ordering ≺Θ is not total. For example, suppose Θ = z1y1z2y2y3y4. Then
z1y1y2y4 ≺Θ z1y1y3, but z1y1 and z1z2y2 are not comparable.

Given a sequence of names ρ and a variable X , ρ � X denotes the sequence
obtained from ρ by removing all the names for any variable appearing later than
X in the sequence X1, ..., Xm assumed earlier. Similarly, for any number n, ρ�n
denotes the sequence of the first n names in ρ.

Tableau rules. A tableau rule is a rule of the form

Θ � Γ

Θ1 � Γ1 | ... | Θn � Γn
C

where n ≥ 0 and C is a side condition. The tableau rules of TS are given below. In
the subgoals for rules Unfoldσ, Resetz, and Thin, Θ′ denotes the result of removing
the names in Θ not appearing in any augmented formula in the subgoal. Similarly
for Θi in the i-th subgoal of the rule R〈〉. This is to ensure that the names in Θ
are precisely those associating some formula in the goal. See remarks below for
further explanation.

R∧ :
Θ � (ψ1 ∧ ψ2)ρ, Γ

Θ � ψρ
1 , ψρ

2 , Γ
R∨ :

Θ � (ψ1 ∨ ψ2)ρ, Γ

Θ � ψρ
i , Γ

i ∈ {1, 2}

Rσ :
Θ � (σX.ψ)ρ, Γ

Θ � Xρ, Γ

Unfoldμ : Θ � Zρ, Γ

Θ′ · zi � ψ(ρ�Z)·zi

, Γ
where Z identifies μZ.ψ and
zi is the first name for Z not occurring in Θ.

Unfoldν : Θ � Xρ, Γ
Θ′ � ψρ�X , Γ

, where X identifies νX.ψ.

A Tableau System for the Modal μ-Calculus 225

R〈〉 :
Θ � (〈a1〉ψ1)ρ1 , ..., (〈an〉ψn)ρn , Γ

Θ1 � ψρ1
1 , Γa1 | ... | Θn � ψρn

n , Γan

, n ≥ 1,

where
• Γ contains only literals and [·]-formulas, and
• for each action a, Γa = {ψρ | ([a]ψ)ρ ∈ Γ}.

Thin :
Θ � ψρ, ψρ′

, Γ

Θ′ � ψρ, Γ
,

where either ρ ≺Θ ρ′ or, for some μ-variable Z, ρ′ �Z is a proper prefix of ρ�Z.

Resetz :
Θ � ψρ·z·z1·ρ1

1 , ..., ψρ·z·zn·ρn
n , Γ

Θ′ � ψρ·z
1 , ..., ψρ·z

n , Γ
, n ≥ 1,

where z, z1, ..., zn are names for the same variable and z does not occur in Γ .

Remarks. In rule Unfoldμ, a new name for the μ-variable being unfolded is
added to the global sequence. In order to bound the number of possible goals,
we always choose the first name zi for such μ-variable (i.e. one with the least i)
not occurring in Θ.

The thinning rule Thin eliminates redundant formulas in the goal. It can be
shown that, for any distinct formulas ψρ, ψρ′

in a goal, the condition specified
in Thin (uniquely) chooses one of these formulas to keep.

Lemma 3. Thin is applicable on any goal Θ � ψρ, ψρ′
, Γ where ρ �= ρ′.

Tableaux. A tableau for φ is a proof tree T whose root is labelled with the initial
goal � φ (i.e. the global sequence is empty). For each node u in T labelled by
Θ � Γ , the goals labelling the children of u are determined by an application of
a tableau rule, subject to the termination condition given below. To guarantee
finiteness, when constructing a tableau it is required that rule Thin has the
highest priority, following by rule Reset, i.e. rule Thin is always applied whenever
possible, and in case Thin is not applicable, rule Resetz, for any name z, is applied
if possible.

Termination. A terminal in a tableau T is a node u labelled by Θ � Γ such that
one of the following conditions hold:
T1. Γ contains a complementary pair of literals (e.g. P,¬P).
T2. Γ contains only literals and [·]-formulas, but not a complementary pair of

literals.
T3. u has a proper ancestor v : Θ � Γ , called the companion of u.
It is required that a terminal in T is a leaf (i.e. a terminal node is not expanded
further).

Success. A successful terminal is a terminal u labelled by Θ � Γ such that one
of the following holds.

226 N. Jungteerapanich

S1. u satisfies T2.
S2. u has companion v and, for each name z which occurs in every goal on the

path from v to u, rule Resetz is not applied between v and u.
A terminal is said to be unsuccessful otherwise.

A successful tableau T is a finite tableau all whose leaves are successful ter-
minals.

Example 1. The formula μZ.νX.(〈a〉Z ∧ [a]X) is clearly unsatisfiable. As ex-
pected, every tableau for this formula is unsuccessful. One such tableau is shown
in figure 1(a). The terminal node 11 is unsuccessful as it has node 4 as the
companion, the name z1 occurs in every goal from node 4 to node 11, and
rule Resetz1 is applied at node 10. Another example is the unsatisfiable for-
mula νX.μZ.(〈a〉Z ∧ [a]X). An unsuccessful tableau for this formula is shown in
figure 1(b).

1: μZ.νX.(〈a〉Z∧[a]X)
Rμ

2: Z
Unfoldμ

3: z1νX.(〈a〉Z∧[a]X)z1

Rν

4: z1Xz1

Unfoldν

5: z1(〈a〉Z∧[a]X)z1

R∧
6: z1〈a〉Zz1

, [a]Xz1

R〈〉

7: z1Zz1
, Xz1

Unfoldμ

8: z1z2νX.(〈a〉Z∧[a]X)z1z2
, Xz1

Rν

9: z1z2Xz1z2
, Xz1

Thin

10: z1z2Xz1z2

Reset
z1

11: z1Xz1

UNSUCCESSFUL

(a)

1: νX.μZ.(〈a〉Z∧[a]X)
Rν

2: X
Unfoldν

3: μZ.(〈a〉Z∧[a]X)
Rμ

4: Z
Unfoldμ

5: z1(〈a〉Z∧[a]X)z1

R∧
6: z1〈a〉Zz1

, [a]Xz1

R〈〉

7: z1Zz1
, Xz1

Unfoldμ

8: z1z2(〈a〉Z∧[a]X)z1z2
, Xz1

Unfoldν

9: z1z2(〈a〉Z∧[a]X)z1z2
, μZ.(〈a〉Z∧[a]X)

Reset
z1

10: z1(〈a〉Z∧[a]X)z1
, μZ.(〈a〉Z∧[a]X)

Rμ

11: z1(〈a〉Z∧[a]X)z1
, Z

Unfoldμ

12: z1z2(〈a〉Z∧[a]X)z1
, (〈a〉Z∧[a]X)z2

Thin

13: z1(〈a〉Z∧[a]X)z1

UNSUCCESSFUL

(b)

Fig. 1. Unsuccessful tableaux for example 1

Example 2. Consider the satisfiable formula

(νX1.(μZ.P ∨ 〈a〉Z) ∧ 〈a〉X1) ∧ (μY.νX2.(¬P ∧ [a]X2) ∨ [a]Y)

A successful tableau for this formula is shown in figure 2.

A Tableau System for the Modal μ-Calculus 227

1: � (νX1.(μZ.P ∨ 〈a〉Z) ∧ 〈a〉X1) ∧ (μY.νX2.(¬P ∧ [a]X2) ∨ [a]Y)
R∧

2: � νX1.(μZ.P ∨ 〈a〉Z) ∧ 〈a〉X1, μY.νX2.(¬P ∧ [a]X2) ∨ [a]Y
Rν

3: � X1, μY.νX2.(¬P ∧ [a]X2) ∨ [a]Y
Rμ

4: � X1, Y
Unfoldμ

5: y1 � X1, (νX2.(¬P ∧ [a]X2) ∨ [a]Y)y1

Rν

6: y1 � X1, X2
y1

Unfoldν

7: y1 � X1, ((¬P ∧ [a]X2) ∨ [a]Y)y1

R∨
8: y1 � X1, (¬P ∧ [a]X2)y1

R∧
9: y1 � X1, ¬P y1

, [a]X2
y1

Unfoldν

10: y1 � (μZ.P ∨ 〈a〉Z) ∧ 〈a〉X1, ¬P y1
, [a]X2

y1

R∧
11: y1 � μZ.P ∨ 〈a〉Z, 〈a〉X1, ¬P y1

, [a]X2
y1

Rμ

12: y1 � Z, 〈a〉X1, ¬P y1
, [a]X2

y1

Unfoldμ

13: y1z1 � (P ∨ 〈a〉Z)z1
, 〈a〉X1, ¬P y1

, [a]X2
y1

R∨
14: y1z1 � 〈a〉Zz1

, 〈a〉X1, ¬P y1
, [a]X2

y1

R〈〉
15: y1z1 � Zz1

, X2
y1

Unfoldμ

16: y1z1z2 � (P ∨ 〈a〉Z)z1z2
, X2

y1

Resetz1

17: y1z1 � (P ∨ 〈a〉Z)z1
, X2

y1

R∨
18: y1z1 � P z1

, X2
y1

Unfoldν

19: y1z1 � P z1
, ((¬P ∧ [a]X2) ∨ [a]Y)y1

R∨
20: y1z1 � P z1

, [a]Y y1

SUCCESSFUL

15’: y1 � X1, X2
y1

SUCCESSFUL

Fig. 2. A successful tableau for example 2

Finiteness. It can be shown that every tableau is finite. This follows from the
restriction that rules Thin and Reset are applied whenever possible and from the
canonical choice of a new name introduced by rule Unfoldμ.

Lemma 4. For each μ-variable Z, the names for Z occurring in each goal (in
any tableau) are among z1, ..., z|φ|.

Proof. This property can be shown as an invariant when constructing a tableau
for φ. In particular, we can show that when expanding a goal, if the supply of
names in {z1, ..., z|φ|} runs out, then Thin or Reset must be applicable.

228 N. Jungteerapanich

The previous lemma clearly implies that the number of possible goals in any
tableau for φ is bounded. Let |μVar(φ)| denote the number of μ-variables in φ.

Lemma 5. There are 2O(|μVar(φ)||φ|log(|φ|)) possible goals in a tableau for φ.

Lemma 6. Every tableau for φ is a finite tree of degree O(|φ|) and height
2O(|μVar(φ)||φ|log(|φ|)).

Proof. The degree of a tableau cannot exceed the number of 〈·〉-subformulas of
φ, and hence is bounded by O(|φ|). By the previous lemma, a branch in a tableau
cannot be longer than 2O(|μVar(φ)||φ|log(|φ|)).

4 Soundness

Suppose T is a successful tableau for a guarded and closed formula φ. T can
be seen as a tree-with-backedges structure (where the backedges are from the
leaves to their companions). A model for φ can be constructed by identifying each
“modal node” as a state. A modal node is either a node where rule R〈〉 is applied
or a leaf node which contains only [·]-formulas and literals. For convenience, we
use the letters s, t and their scripted versions to denote modal nodes. To define
the transition relation, we need some extra notation. Suppose T is a tableau.
For any nodes u, v in T , we write u ⇒ v when either v is a child of u or u is a
leaf and v is its companion. For each modal node s, define the set

[s] = {u | there is a path u = u1 ⇒ ... ⇒ un = s (n ≥ 1) such that R〈〉 is
not applied at ui for each i < n }.

The guardedness of φ implies that for each node u there exists a unique modal
node s such that u ∈ [s].

Definition 3. Suppose T is a tableau for a guarded formula. Define the model
corresponding to T to be MT = 〈M, {Ra}a∈Act,VProp〉 where
• M contains all modal nodes of T ,
• sRat iff, for some node u ∈ [t], a formula 〈a〉ψρ in s is reduced to ψρ in u
by rule R〈〉, and
• VProp(P) = {s ∈ M | P ρ, for some ρ, is in the goal at s }.

It can be shown that MT is indeed a model for φ. To do so, we employ
the notion of trails ([10], [7], [1]). A trail captures a sequence of reductions of
formulas in a tableau. Precisely, given a tableau T , a trail is a (finite or infinite)
sequence (u1, ψ

ρ1
1), (u2, ψ

ρ2
2), ... such that u1 ⇒ u2 ⇒ ..., each ψρi

i is in the goal
at ui and, for each i ≥ 1, one of the following applies:
• The tableau rule applied at ui reduces the formula ψρi

i in ui to ψ
ρi+1

i+1 in ui+1.
• The tableau rule applied at ui does not reduce ψρi

i (thus ψρi

i is in ui+1), and
ψ

ρi+1
i+1 = ψρi

i .
• ui is a terminal with ui+1 as its companion, and ψ

ρi+1
i+1 = ψρi

i .

A Tableau System for the Modal μ-Calculus 229

(Note that in the case where Thin is applied to ui labelled by Θ � ψρ, ψρ′
, Γ

creating one successor ui+1 labelled by Θ′ � ψρ, Γ , both (ui, ψ
ρ), (ui+1, ψ

ρ) and
(ui, ψ

ρ′
), (ui+1, ψ

ρ) are counted as trails.)
An unfolding of a variable X in a trail is a subsequence of the form (ui, X

ρ),
(ui+1, ψρ′

), i.e. rule Unfold is applied to Xρ in ui. X is said to be unfolded
infinitely often in a trail iff there are infinitely many occurrences of unfoldings of
X in the trail. In any infinite trail, there must be one or more variables unfolded
infinitely often, and, particularly, the highest one. We call an infinite trail in
which the highest variable unfolded infinitely often is a μ-variable a μ-trail [7].
For example, the following is a μ-trail in the tableau in figure 1(a):

(4, Xz1
)→ (5, (〈a〉Z ∧ [a]X)z1

)→ (6, 〈a〉Zz1
)→ (7, Zz1

)→
(8, (νX.〈a〉Z ∧ [a]X)z1z2

)→ (9, Xz1z2
)→ (10, Xz1z2

)→ (11, Xz1
)→ (4, Xz1

)→ ...

The proof that MT is a model for φ is broken into two stages. First, we show
that every successful tableau does not contain a μ-trail. Then show that, if T
does not contain a μ-trail, MT is a model for φ.

Lemma 7. Every successful tableau does not contain a μ-trail.

Proof. Suppose T is a successful tableau which contains a μ-trail. Since the
tableau is finite, such a μ-trail must contain a subtrail: (u1, ψ

ρ1
1)→ (u2, ψ

ρ2
2) →

... such that each ψρi

i occurs infinitely often in this subtrail. Suppose Z is the
highest variable unfolded infinitely often in this subtrail. Observe that the rule
Unfoldμ when applied to Zρ in a goal increases the length of ρ � Z. Since Z is
unfolded infinitely often, the list ρ1 �Z, ρ2 �Z, ... does not converge, i.e. for each
i ≥ 1 there exists i′ > i such that ρi �Z �= ρi′ �Z. Let Y be the highest μ-variable
which is higher than or equal to Z and such that the list ρ1 �Y , ρ2 �Y , ... does not
converge (so Y could be Z). Consider the list ρj �Y, ρj+1 �Y, ρj+2 �Y,
Let ρ = ρk � Y (for some k ≥ j) be an element in this list which has the least
length, say n. It can be checked that, for each i ≥ j, whatever tableau rule applied
at ui, ρi �n �Θi ρi+1 �n (where Θi is the global sequence in ui). Since ρj occurs
infinitely often in the above list, it must be the case that ρj �n = ρj+1 �n = ...,
which implies that ρ is a prefix of each ρj , ρj+1, Since the above list does
not converge and ρ occurs infinitely often in the list (and is the shortest one
so), either some variable higher than Y (and hence higher than Z) is unfolded
infinitely often or rule Resetx, where x is the last name in ρ, is applied infinitely
often. The former cannot happen because Z is the highest variable unfolded
infinitely often in the trail. Thus there must be a path v, ..., u in T , where u is
a leaf and v is its companion, such that Resetx is applied on the path and the
name x occurs throughout the path. This contradicts the assumption that each
leaf of T is successful.

Lemma 8. If a tableau T for φ does not contain a μ-trail, MT satisfies φ.

Proof. This lemma appears in various forms in literature; for instance, the
tableau system in [7] and the fundamental semantic theorem in [1]. One way
to prove this is to first define for each pair (u, ψρ) where u is a node and ψρ is
in u, a valuation Val(u, ψρ):

230 N. Jungteerapanich

• Val(u, ψρ)(X) = {s ∈ M | ∃v ∈ [s] s.t. there is a trail from (u, ψρ) to
(v, Xρ′

) not going through a variable higher than X }.
Then prove a more general statement (by induction on ψ): for any state s and
node u ∈ [s], if ψρ is in u, then MT , s |=V ψ, where V = Val(u, ψρ).

Theorem 1 (Soundness). Every closed, guarded, and well-named formula
which has a successful tableau has a model in which the number of states is
linear in the number of nodes in the tableau.

5 Completeness

Every satisfiable (closed and well-named) formula φ has a successful tableau. The
idea of the proof is to construct a successful tableau for φ by making choices
which minimise a certain measure associated with the goals. The crucial part is
to carefully define such a measure so that the constructed tableau guarantees to
be successful.

Definition 4 (Name signatures). A name signature is a function η : Names →
O∞, where Names is the set of all names. Name signatures are ordered with respect
to a global sequence Θ as follows: suppose Θ = z1...zn, define
• η ≈Θ η′ iff η(zi) = η′(zi) for each i.
• η ≺Θ η′ iff η(zj) < η′(zj) for some j and η(zi) = η′(zi) for each i < j.
• η �Θ η′ iff η ≺Θ η′ or η ≈Θ η′.

Given a name signature η and a formula ψρ, we can assign a signature for the
μ-variables in ψ based on the names in ρ and the values given by η. Precisely,
we define the signature ηρ = 〈α1, ..., αn〉 as follows:
• αi = η(zi) if ρ contains a name for Zi and zi is the name for Zi occurring

last in ρ;
• αi =∞, otherwise.

Definition 5. A name signature η is considered good for Γ iff
G1. for any sequence ρ occurring in Γ and names zi, zj for the same variable,
if zi occurs before zj in ρ, then η(zi) > η(zj); and

G2. there is a model M and state s such that M, s |=ηρ ψ, for each ψρ ∈ Γ .

By lemma 2, it is easy to see that every satisfiable set Γ has a good name
signature.

Lemma 9. For any goal Θ � Γ , if Γ is satisfiable, then there is a good name
signature for Γ .

Definition 6 (Signature of a goal). For each goal Θ � Γ where Γ is satisfi-
able, define Sig(Θ � Γ) to be the name signature η such that
• η is good for Γ ,
• η �Θ η′ for any good name signature η′ for Γ , and
• η(z) = 0 for each name z not occurring in Θ.

A Tableau System for the Modal μ-Calculus 231

Clearly, a name signature η satisfying these conditions must be unique. The ex-
istence of such a name signature follows from the previous lemma. The following
properties are essential in the completeness proof.

Lemma 10. Below Θ′ denotes the result of removing all the names in Θ not
occurring in any augmented formula in the goal on the right hand side.

(a) Γ ′ ⊆ Γ implies Sig(Θ � Γ) �Θ′ Sig(Θ′ � Γ ′).
(b) Sig(Θ � (ψ1 ∧ ψ2)ρ, Γ) �Θ Sig(Θ � ψρ

1 , ψρ
2 , Γ).

(c) Sig(Θ � (ψ1 ∨ ψ2)ρ, Γ) �Θ Sig(Θ � ψρ
i , Γ) for some i ∈ {1, 2}.

(d) Sig(Θ � (μZ.ψ)ρ, Γ) �Θ Sig(Θ � Zρ, Γ).
(e) Sig(Θ � (νX.ψ)ρ, Γ) �Θ Sig(Θ � Xρ, Γ).
(f) Sig(Θ � Zρ, Γ) �Θ′ Sig(Θ′ · zi � ψ(ρ�Z)·zi

, Γ) where Z identifies μZ.ψ and zi

is a name for Z not occurring in Θ.
(g) Sig(Θ � Xρ, Γ) �Θ′ Sig(Θ′ � ψρ�X , Γ) where X identifies νX.ψ.
(h) Sig(Θ � (〈a〉ψ)ρ, Γ) �Θ′ Sig(Θ′ � ψρ, Γa) where Γa = {γρ′ | ([a]γ)ρ′ ∈ Γ}.

Lemma 11. Suppose Θ � ψρ·z·z1·ρ1
1 , ..., ψρ·z·zn·ρn

n , Γ is a goal where z, z1, ..., zn

are names for the same variable, and z does not occur in Γ .

Sig(Θ � ψρ·z·z1·ρ1
1 , ..., ψρ·z·zn·ρn

n , Γ) �Θ′′ Sig(Θ′ � ψρ·z
1 , ..., ψρ·z

n , Γ),

where Θ′ is Θ with all the names not occurring in the latter goal removed, and
Θ′′ is any prefix of Θ′ which contains z.

We are now ready to prove the completeness of TS. The tableau that we are
constructing will have some uniformity which will later enable us to prove the
small model property. A tableau is said to be uniform iff, for any pair of non-
terminal nodes u, v with the same goal, the tableau rule applied at u is the same
as the one applied at v, and the goals of the children of u are the same as those
of the children of v.

Theorem 2 (Completeness). Every satisfiable, closed, and well-named for-
mula has a successful and uniform tableau.

Proof. Suppose φ is a satisfiable, closed, and well-named formula. To construct a
successful tableau for φ, we start with the smallest tableau T0 and subsequently
expand it while making sure the set of formulas in each goal satisfiable. To
guarantee uniformity, we assume a selection rule which, given a goal, specifies
which formulas in the goal should be reduced first (giving priority to the formulas
reducible via Thin or Reset). Suppose we have constructed T0, ..., Ti. For each non-
terminal leaf u : Θ � Γ in Ti, apply the tableau rule following to the assumed
selection rule. We consider some interesting cases:
• Γ = (ψ1 ∨ ψ2)ρ, Γ ′. Rule R∨ can be applied to create either Θ � ψρ

1 , Γ ′ or
Θ � ψρ

2 , Γ ′. By lemma 10(c), there is a least i such that ψi, Γ
′ is satisfiable

and Sig(Θ � Γ) �Θ Sig(Θ � ψρ
i , Γ ′). Apply R∨ to create the i-th subgoal.

• Γ = Zρ, Γ ′. Apply Unfoldμ to create the subgoal Θ′ ·zi � ψ(ρ�Z)·zi

, Γ ′ where
zi is the first name for Z not occurring in Θ. By lemma 10(f), Sig(Θ �
Γ) �Θ′ Sig(Θ′ · zi � ψ(ρ�Z)·zi

, Γ ′).

232 N. Jungteerapanich

• Γ = ψρ·z·z1·ρ1
1 , ..., ψρ·z·zn·ρn

n , Γ ′ where z, z1, ..., zn are names for the same
variable, and z does not occur in Γ ′. Apply Resetz to create the subgoal Θ′ �
ψρ·z

1 , ..., ψρ·z
n , Γ ′. By lemma 11, Sig(Θ � Γ) �Θ′′ Sig(Θ′ � ψρ·z

1 , ..., ψρ·z
n , Γ),

for any prefix Θ′′ of Θ′ containing z.
In other cases, by lemma 10, for each created subgoal Θ′ � Γ ′, Sig(Θ � Γ) �Θ′

Sig(Θ′ � Γ ′). The construction must terminate at some tableau T ′ all whose
leaves are terminal. Since each goal in T ′ is satisfiable, all the leaves which
contain only literals and [·]-formulas are successful. Other leaves in T ′ are also
successful. Suppose u1 : Θ1 � Γ1, ..., un : Θn � Γn is the path to a terminal
un from its companion u1 (hence Θ1 = Θn and Γ1 = Γn). Assume that un is
unsuccessful. Thus there is some name z such that z occurs in each Θi and Resetz
is applied at some uj , 1 ≤ j < n. Suppose Θ = z1...zk, where zk = z, is the
prefix of Θ1 up to the occurrence of z. Since Θ1 = Θn, each zi must also occur
throughout the path, for if zi is removed at some point, zi cannot occur before
zk in Θn. Similarly, no name other than z1, ..., zk−1 may occur before zk in each
Θi on the path. This means that Θ is a prefix of each Θi. It follows from the
construction that Sig(Θ1 � Γ1) �Θ ... �Θ Sig(Θn � Γn). Since Resetz is applied
at uj , by lemma 11, Sig(Θj � Γj) �Θ Sig(Θj+1 � Γj+1). This is impossible
because Θ1 = Θn and Γ1 = Γn. Therefore un must be successful.

6 Applications

Since every tableau in TS is bounded in size, the soundness and completeness of
TS imply a small model property and the decidability of the satisfiability prob-
lem. The complexity of the small model property and the satisfiability problem
can also be obtained from the bound on tableaux.

Theorem 3. Every satisfiable guarded formula φ has a finite model with
2O(|μVar(φ)||φ|log(|φ|)) states.

Proof. Assume w.l.o.g. that φ is closed and well-named. By completeness, φ has
a successful and uniform tableau T . From soundness, the model MT satisfies
φ. Since T is uniform, MT can be turned into a small model by identifying all
the states (i.e. modal nodes) with the same goal in T . In particular, it is easy to
show that, for any states s, t in MT , if the goals at s and t in T are the same, s
and t are bisimilar in MT . By taking the bisimulation quotient on MT [1], we
obtain a model for φ with 2O(|μVar(φ)||φ|log(|φ|)) states.

Theorem 4. The satisfiability problem for guarded formulas is in NEXPTIME.

Proof. Suppose φ is a guarded formula. Assume w.l.o.g. that φ is closed and well-
named. We construct a nondeterministic algorithm which determines whether
φ has a successful tableau. As in the completeness proof, we assume a selection
rule which, given a goal, specifies which formulas in the goal should be reduced
first. Construct a game graph G = 〈V, E〉 such that V contains all possible goals
in tableaux for φ and (Θ � Γ, Θ′ � Γ ′) ∈ E iff the goal Θ � Γ can be reduced

A Tableau System for the Modal μ-Calculus 233

to Θ′ � Γ ′ according to the selection rule. By lemma 5, |V | is bounded by
2O(|φ||μVar(φ)|log(|φ|)). A choice node for player I (II) is a goal where, according
to the selection rule, R∨ (resp., R〈〉) is to be applied. A play is a finite path
π = Θ0 � Γ0, ..., Θn � Γn in the graph which is a branch in some maximal tableau
for φ. Player I wins play π if the last node in π is a successful terminal. It is easy to
see that player I has a memoryless winning strategy iff φ has a uniform successful
tableau under the assumed selection rule. A nondeterministic algorithm first
guesses a memoryless strategy for player I and then checks whether it is winning.
The latter task can be carried out (deterministically) in time O(|φ||μVar(φ)||V |).
Thus the algorithm nondeterministically determines whether φ is satisfiable in
time 2O(|φ||μVar(φ)|log(|φ|)).

Note that the algorithm given above in not optimal. It is known that the satisfi-
ability problem for the modal μ-calculus is EXPTIME-complete ([2],[6],[1]). We
believe that there is a deterministic algorithm which finds a successful tableau
for φ in exponential time.

7 Conclusion and Related Work

The tableau system TS is closely related to the automata-theoretic method for
checking satisfiability. As outlined in [10], an automaton recognising the tree
models (of some pre-determined degree) of the given formula φ is constructed as
a product of a local automaton, which is a tree automaton whose states are set of
subformulas of φ, and a checking automaton, which is an infinite-word automaton
checking that no “bad trail” exists on each branch of the tree. The checking
automaton can be constructed from the complement of a simpler automaton
(which recognises a branch containing a bad trail). If Safra’s complementation
method [9] is used, the states of the checking automaton will be Safra’s trees. As
a result, each state of the product automaton will have a tree structure. A goal
in a tableau can be seen as a compact representation of such tree structure (To
see this, suppose Θ � ψρ1

1 , ..., ψρn
n is a goal. Let T be the tree whose nodes are

the prefix closure of {ρ1, ..., ρn}, and for each node ρ, T (ρ) is labelled by the set
of formulas ψρi

i where ρi = ρ). Rule Reset and the success condition of TS are
both inspired by Safra’s construction. Despite this connection, it is interesting
to see that the soundness and completeness of the tableau system can be shown
independent of the results from automata theory. More importantly, it is quite
surprising that a simple form of measures, i.e. name signatures, is sufficient in
guiding the construction of a successful tableau. We are investigating whether
name signatures have applications elsewhere, e.g. in performing model surgery
or in related automata theory.

What we present in this paper is a simple, yet powerful, tableau system for
satisfiability. The nicest feature is that every tableau is a finite tree structure.
As a result, we are able to derive both a small model property and a decision
procedure for satisfiability. However, there is still much room for improvement.
First, the guardedness assumption can be relaxed. The problem with unguarded

234 N. Jungteerapanich

formulas is that, in a tableau for such formula, we may be able to keep un-
folding a fixpoint formula indefinitely without ever applying rule R〈〉. This can
be solved by recording extra information into each formula which determines
whether such formula is derived from an unfolding of a variable without rule
R〈〉 applied in-between. We opt not to incorporate this mechanism into TS so
that the presentation of the tableau system is as clear and simple as possible.
But by doing so, the small model theorem and the decision procedure in the
previous section apply to any formula. Secondly, the bound in the small model
theorem obtained can still be improved. One way is to let the μ-variables in φ of
the same alternation depth share the names. By doing so, we should be able to
obtain a slightly better bound: 2O(k|φ|log(|φ|)), where k is the alternation depth
of φ. Finally, we hope that the tableau system presented in this paper will be
useful for proving other properties of the logic; for instance, the completeness of
Kozen’s axiomatisation [4], [13].

Acknowledgements. I wish to thank my supervisor, Prof. Colin Stirling, for
comments and guidance on the result in this paper.

References

1. Bradfield, J., Stirling, C.: Modal Mu-Calculi. In: Handbook of Modal Logic, pp.
721–756. Elsevier, Amsterdam (2007)

2. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. In: Proc. 29th FOCS, pp. 328–337 (1988)

3. Emerson, E.A., Jutla, C., Sistla, A.P.: On model-checking for fragments of μ-
calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993)

4. Kozen, D.: Results on the propositional mu-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

5. Kozen, D., Parikh, R.: A decision procedure for the propositional μ-calculus. In:
Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 313–325.
Springer, Heidelberg (1984)

6. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. Journal of ACM 47, 312–360 (2000)

7. Niwiński, D., Walukiewicz, I.: Games for the μ-calculus. Theoret. Comput. Sci. 163,
99–116 (1997)

8. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Tran. AMS 141, 1–35 (1969)

9. Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327
(1988)

10. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the
propositional mu-calculus. Information and Computation 81, 249–264 (1989)

11. Stirling, C.: Modal and Temporal Properties of Processes. Springer, Heidelberg
(2000)

12. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. Theoret.
Comput. Sci. 89, 161–177 (1991)

13. Walukiewicz, I.: Completeness of Kozen’s axiomatization of the propositional μ-
calculus. Information and Computation 157, 142–182 (2000)

Terminating Tableaux for Graded Hybrid Logic
with Global Modalities and Role Hierarchies

Mark Kaminski, Sigurd Schneider, and Gert Smolka

Saarland University, Saarbrücken, Germany

Abstract. We present a terminating tableau calculus for graded hybrid
logic with global modalities, reflexivity, transitivity and role hierarchies.
Termination of the system is achieved through pattern-based blocking.
Previous approaches to related logics all rely on chain-based blocking.
Besides being conceptually simple and suitable for efficient implemen-
tation, the pattern-based approach gives us a NExpTime complexity
bound for the decision procedure.

1 Introduction

Graded modal logic [1] is a powerful generalization of basic modal logic. Most
prominently, graded modalities are used in description logics, rich modal lan-
guages tailored for knowledge representation that have a wide range of practical
applications [2]. Graded modal logic allows to constrain the number of accessi-
ble states satisfying a certain property. So, the modal formula ♦np is true in a
state x if x has at least n + 1 successors satisfying p. Analogously to ordinary
modal logic, graded modal logic can be extended by nominals [3]. The result-
ing language, graded hybrid logic, can be extended further by adding global
modalities [4], which allow to specify properties that are to hold in all states.

Role hierarchies were first studied by Horrocks [5] in the context of descrip-
tion logics. Using inclusion assertions of the form r � r′, one can specify that
the role (relation) r is contained in the role r′. Role hierarchies are of particu-
lar interest when considered together with transitivity assertions for roles [6,7].
The description logic SHOQ [8] combines the expressive means provided by
nominals, graded modalities, role hierarchies and transitive roles.

We present a terminating tableau calculus for graded multimodal logic ex-
tended by nominals, global modalities, reflexive and transitive roles, and role hi-
erarchies. The modal language under consideration in the present work is equiv-
alent to SHOQ extended by reflexive roles and a universal role, both extensions
also being known from SROIQ [9].

The most important difference of our approach to existing calculi for SHOQ
and stronger logics [8,10,9] is the technique used to achieve termination of the
tableau construction. The established tableau algorithms all rely on modifica-
tions of Kripke’s chain-based blocking technique [11]. Chain-based blocking as-
sumes a precedence order on the nominals (also known as nodes or prefixes) of
a tableau branch, and prevents processing of nominals that are subsumed by

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 235–249, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

236 M. Kaminski, S. Schneider, and G. Smolka

preceding nominals. In the simplest case, the precedence order is chosen to be
the ancestor relation among nominals (ancestor blocking). In general, however, it
may be any order that contains the ancestor relation (anywhere blocking [12,13]).
Ancestor blocking gives an exponential bound on the length of ancestor chains,
resulting in a double exponential bound on the size of tableau branches. De-
pending on the choice of the precedence order, anywhere blocking can lower this
bound to a single exponential. However, the size bound on tableau branches
does not seem to translate easily to a complexity bound for the decision proce-
dures in [8,10,9] ([8,10] show a 2-NExpTime bound, while [9] leaves complexity
open). We feel that the main difficulty in obtaining better complexity bounds is
the algorithms being non-cumulative.

A tableau system is called cumulative if its rules never update or delete formu-
las. In contrast to most systems in the literature, calculi devised for description
logics are often not cumulative. Cumulative calculi are easier to present than
non-cumulative systems and are usually more amenable to analysis.

Unlike [8,10,9], our calculus is cumulative. Cumulativity of the calculus in
the presence of nominals is achieved following [14] by representing equality con-
straints via an equivalence relation on nominals. Termination of our system
is achieved through pattern-based blocking [15,14]. Pattern-based blocking is
conceptually simpler than chain-based techniques in that it does not need an
order on the nominals, and seems promising as it comes to efficient implemen-
tation [16]. Pattern-based blocking provides an exponential bound on the size
of tableau branches and on the number of tableau rule applications for a single
branch. Thus it limits the complexity of the associated decision procedure to
NExpTime. To deal with graded modalities, we extend the blocking conditions
in [15,14], preserving the exponential size bound on the tableau branches.

We begin by presenting a calculus for graded hybrid logic with global modali-
ties. We argue that the blocking conditions used in [15,14] are insufficient in the
presence of graded modalities. We extend pattern-based blocking to account for
the increased expressive power and argue the completeness and termination of
the resulting calculus. In the second part of the paper, we extend our calculus
further by allowing reflexivity, transitivity and inclusion assertions. It turns out
that in the presence of inclusion assertions, the blocking condition used for the
basic calculus needs to be extended once again.

2 Graded Hybrid Logic with Global Modalities and Role
Inclusion

Following [17,14], we represent modal logic in simple type theory (see [18]). This
way we can make use of a rich syntactic and semantic framework and modal logic
does not appear as an isolated formal system. We start with two base types B
and S. The interpretation of B is fixed and consists of two truth values. The
interpretation of S is a nonempty set whose elements are called worlds or states.
Given two types σ and τ , the functional type στ is interpreted as the set of all
total functions from the interpretation of σ to the interpretation of τ . We write
σ1σ2σ3 for σ1(σ2σ3).

Terminating Tableaux for Graded Hybrid Logic 237

We employ three kinds of variables: Nominal variables x, y, z of type S,
propositional variables p, q of type SB, and role variables r of type SSB. Nominal
variables are called nominals for short, and role variables are called roles. We
assume there are infinitely many nominals. We use the logical constants

⊥,� : B ¬ : BB ∨,∧,→ : BBB .= : SSB ∃, ∀ : (SB)B

Terms are defined as usual. We write st for applications, λx.s for abstractions,
and s1s2s3 for (s1s2)s3. We also use infix notation, e.g., s ∧ t for (∧)st.

Terms of type B are called formulas. We employ some common notational
conventions: ∃x.s for ∃(λx.s), ∀x.s for ∀(λx.s), and x� .=y for ¬(x .=y).

For every n ∈ IN we define a constant Dn : S . . . SB as follows:

Dn := λx1 . . . λxn.
∧

1≤i<j≤n

xi � .=xj

Without loss of generality, we assume a strict total order ≺ on the nominals.
Given a set of nominals X of cardinality n ≥ 1, we write DX for Dnx1 . . . xn

where X = {x1, . . . , xn} and xi ≺ xi+1 for 1 ≤ i < n. We write D̄X for ¬DX .
Formulas of the form DX and D̄X are called distinctness constraints on X . Note
that for two distinct variables x, y, D̄{x, y} reduces to x

.=y.
Moreover, we use the following constants:

� : (SSB)(SSB)B r1 � r2 = ∀xy.r1xy → r2xy

R : (SSB)B Rr = ∀x.rxx

T : (SSB)B Tr = ∀xyz.rxy ∧ ryz → rxz

To the right of each constant is an equation defining its semantics. We call
formulas of the form r � r′ (role) inclusion assertions. Formulas Rr and Tr are
called reflexivity and transitivity assertions, respectively.

We write ∃X.s for ∃x1 . . . xn.s if |X | = n and X = {x1, . . . , xn}. The modal
constants are then defined as follows:

¬̇ : (SB)SB ¬̇px = ¬(px)
∧̇ : (SB)(SB)SB (p ∧̇ q)x = px ∧ qx

∨̇ : (SB)(SB)SB (p ∨̇ q)x = px ∨ qx

〈 〉n : (SSB)(SB)SB 〈r〉npx = ∃Y. DY ∧ (
∧

y∈Y rxy ∧ py)

[]n : (SSB)(SB)SB [r]npx = ∀Y. (
∧

y∈Y rxy)→ D̄Y ∨
∨

y∈Y py

En : (SB)SB Enpx = ∃Y. DY ∧
∧

y∈Y py

An : (SB)SB Anpx = ∀Y. D̄Y ∨
∨

y∈Y py

˙ : SSB ẋy = x
.=y

where |Y | = n + 1 in all equations

238 M. Kaminski, S. Schneider, and G. Smolka

Intuitively, the semantics of the graded modal operators is as follows:

Enp: There are at least n + 1 states satisfying p.
Anp: All states but possibly n exceptions satisfy p.
〈r〉np: There are at least n + 1 r-successors satisfying p.
[r]np: All r-successors but possibly n exceptions satisfy p.

In accordance with the usual modal intuition, “formulas” of modal logic are
seen as predicates of type SB denoting sets of states. They can be represented
as modal expressions according to the following grammar:

t ::= p | ẋ | ¬̇t | t ∧̇ t | t ∨̇ t | 〈r〉nt | [r]nt | Ent | Ant

As with the propositional connectives, we use infix notation for ∧̇ and ∨̇.
Unlike with the propositional connectives, we assume the application of modal
operators to have a higher precedence than regular functional application. So,
for instance, we write ¬̇〈r〉2ẏ ∨̇ p x for ((¬̇(〈r〉2(ẏ))) ∨̇ p)x.

An interpretation is a function M mapping B to the set {0, 1}, S to a non-
empty set, a functional type στ to the set of all total functions from the inter-
pretation of σ to the interpretation of τ , interpreting all variables as elements of
their respective types, and giving ⊥, �, ¬, ∧, ∨, →, ∃, ∀, .= their usual meaning.
A modal interpretation is an interpretation that, in addition, satisfies the equa-
tions defining the constants �, R, T , ¬̇, ∧̇, ∨̇, 〈 〉n, []n, E, A, ˙ . If Mt = 1, we
say that M satisfies t. A formula is called satisfiable if it has a satisfying modal
interpretation.

3 Graded Hybrid Logic with Global Modalities

We begin with a tableau calculus for the restricted language without inclusion,
reflexivity or transitivity assertions.

3.1 Tableaux and Evidence

For the sake of simplicity, we define our tableau calculus on negation normal
expressions, i.e., terms of the form:

t ::= p | ¬̇p | ẋ | ¬̇ẋ | t ∧̇ t | t ∨̇ t | 〈r〉nt | [r]nt | Ent | Ant

A branch Γ is a finite set of formulas s of the form

s ::= tx | rxy | DX | D̄X | ⊥

where t is a negation-normal modal expression of the above form. Formulas of
the form rxy are called accessibility formulas or edges. We use the formula ⊥
to explicitly mark unsatisfiable branches. We call a branch Γ closed if ⊥ ∈ Γ .
Otherwise, Γ is called open. The branch consisting of the initial formula to be
tested for satisfiability is called the initial branch.

Terminating Tableaux for Graded Hybrid Logic 239

Let Γ be a branch. With ∼Γ we denote the least equivalence relation ∼
on nominals such that x ∼ y for every formula D̄{x, y} ∈ Γ . We define the
equational closure Γ̃ of a branch Γ as

Γ̃ := Γ ∪ {tx | ∃x′ : x′ ∼Γ x ∧ tx′ ∈ Γ}
∪ {rxy | ∃x′, y′ : x′ ∼Γ x ∧ y′ ∼Γ y ∧ rx′y′ ∈ Γ}

Clearly, Γ̃ is finite if Γ is finite. Reasoning with respect to Γ̃ can be implemented
efficiently using disjoint-set forests, as demonstrated in [16].

A branch Γ is called evident if it satisfies all of the following evidence condi-
tions :

(t1 ∧̇ t2)x ∈ Γ ⇒ t1x ∈ Γ̃ ∧ t2x ∈ Γ̃

(t1 ∨̇ t2)x ∈ Γ ⇒ t1x ∈ Γ̃ ∨ t2x ∈ Γ̃

〈r〉ntx ∈ Γ ⇒ ∃Y : |Y | = n + 1 ∧ DY ∈ Γ ∧ {rxy, ty | y ∈ Y } ⊆ Γ̃

[r]ntx ∈ Γ ⇒ |{y | rxy ∈ Γ̃ , ty /∈ Γ̃}/∼Γ | ≤ n

Entx ∈ Γ ⇒ ∃Y : |Y | = n + 1 ∧ DY ∈ Γ ∧ {ty | y ∈ Y } ⊆ Γ̃

Antx ∈ Γ ⇒ |{y | ty /∈ Γ̃}/∼Γ | ≤ n

ẋy ∈ Γ ⇒ x ∼Γ y

¬̇ẋy ∈ Γ ⇒ x �∼Γ y

¬px ∈ Γ ⇒ px /∈ Γ̃

D̄X ∈ Γ ⇒ |X/∼Γ | < |X |
DX ∈ Γ ⇒ |X/∼Γ | = |X |

Note that the evidence condition for D̄X ∈ Γ implies |X | ≥ 2. A formula s
is called evident on Γ if Γ satisfies the right-hand side of the evidence condi-
tion corresponding to s. For instance, (t1 ∧̇ t2)x is evident on Γ if and only if
{t1x, t2x} ⊆ Γ̃ .

We will now show that evident branches are satisfiable. Given a term t, we
write N t for the set of nominals that occur in t. The notation is extended to
sets of terms in the natural way: NΓ :=

⋃
{N t | t ∈ Γ}.

Given a branch Γ , we construct the interpretation MΓ by taking as the do-
main of S the nominals on Γ , and interpreting propositional variables and roles
as the smallest sets that are consistent with the respective assertions on Γ . To
satisfy the equality constraints on Γ , all nominals that are equivalent modulo
∼Γ are mapped to the same fixed representative.

Let Γ be a branch and let x0 ∈ NΓ . Let ρ be a function from finite sets of
nominals to nominals such that ρX ∈ X whenever X is nonempty. We define
the interpretation MΓ as follows:

MΓ S := NΓ

MΓ x := if x ∈ NΓ then ρ{y ∈ NΓ | y ∼Γ x} else x0

MΓ p := {x ∈ NΓ | px ∈ Γ̃}
MΓ r := {(x, y) ∈ (NΓ)2 | rxy ∈ Γ̃}

240 M. Kaminski, S. Schneider, and G. Smolka

Note that in the last two lines of the definition, we interpret the set notation as
a convenient description for the respective characteristic functions.

The evidence of 〈r〉ntx (and Entx) depends on the presence of structurally
unrelated and possibly larger formulas DY (|Y | = n+1). Similar phenomena will
be observed later with our tableau rules (see Fig. 1). Therefore, in the following
we will need a measure ! " on formulas such that, in particular, !DY " < !〈r〉ntx".
Let #s$ denote the size of a formula s. We define the order of s, !s", as follows:

!DX" := 1
!D̄X" := 1 if |X | ≤ 2
!D̄X" := 2 if |X | > 2
!s" := 3 + #s$ otherwise

The case distinction in the definition of !D̄X" is exploited in the proofs of
Theorems 3.3 and 4.4.

Theorem 3.1 (Model Existence). If Γ is evident, then MΓ satisfies Γ .

Proof. For every s ∈ Γ , we show that MΓ satisfies s by induction on the order
of s. ��

3.2 Tableau Rules

The tableau rules of our basic calculus T are defined in Fig. 1. In the rules, we
write ∃x ∈ X : Γ (x) for Γ (x1) | . . . | Γ (xn), where X = {x1, . . . , xn} and Γ (x)
is a set of formulas parameterized by x. In case X = ∅, the notation translates
to ⊥. Dually, we write ∀x ∈ X : Γ (x) for Γ (x1), . . . , Γ (xn) (X = {x1, . . . , xn}).

The side condition of R♦ uses the notion of quasi-evidence, which we will
introduce in Sect. 3.3. For now, we assume the rule is formulated with the re-
striction “〈r〉ntx not evident on Γ”.

Note that for |X | < 2 the rule RD̄ instantiates to

D̄X

⊥

A branch Γ is called a proper extension of a branch Δ if Γ̃ � Δ̃. Note that if Γ
is a proper extension of Δ, in particular it holds Γ � Δ. We implicitly restrict
the applicability of the tableau rules such that a rule R is only applicable to a
formula s ∈ Γ if all of the alternative branches Δ1, . . . , Δn resulting from this
application are proper extensions of Γ .

Proposition 3.1 (Soundness). Let Δ1, . . . , Δn be the branches obtained from
a branch Γ by a rule of T . Then Γ is satisfiable if and only if there is some
i ∈ {1, . . . , n} such that Δi is satisfiable.

Terminating Tableaux for Graded Hybrid Logic 241

R∧̇
(s ∧̇ t)x

sx, tx
R∨̇

(s ∨̇ t)x

sx | tx

R♦

〈r〉ntx

DY, ∀y ∈ Y : rxy, ty
Y fresh, |Y | = n + 1, 〈r〉ntx not quasi-evident on Γ

R�

[r]ntx

D̄Y | ∃y ∈ Y : ty
Y ⊆ {y | rxy ∈ Γ̃}, |Y | = |Y/∼Γ | = n + 1

RE

Entx

DY, ∀y ∈ Y : ty
Y fresh, |Y | = n + 1, Entx not evident on Γ

RA

Antx

D̄Y | ∃y ∈ Y : ty
Y ⊆ NΓ, |Y | = |Y/∼Γ | = n + 1 RN

ẋy

D̄{x, y} x �= y

RN̄

¬̇ẋy

D{x, y} x �= y RD̄

D̄X

∃x, y ∈ X, x �= y : D̄{x, y} RD

DX

⊥ |X/∼Γ | < |X|

R⊥
¬̇
¬̇px

⊥ px ∈ Γ̃ R⊥̄
N

¬̇ẋx

⊥
Γ is the branch to which a rule is applied. “Y fresh” stands for Y ∩ NΓ = ∅.

Fig. 1. Tableau rules for T

3.3 Control

The restrictions on the applicability of the tableau rules given by the evidence
conditions are not sufficient for termination. To obtain a terminating calculus,
the rule R♦ needs to be restrained further. We do so by weakening the notion
of evidence for diamond formulas. The weaker notion, called quasi-evidence, is
then used in the side condition of R♦ in place of evidence. Quasi-evidence must
be weak enough to guarantee termination of the calculus but strong enough to
preserve completeness.

The notions of quasi-evidence used in previous work on pattern-based block-
ing [15,14] turn out to be too weak in the presence of graded modalities. For
instance, intuitively adapting the notion in [15] would give us the following can-
didate definition:

A formula 〈r〉msx is quasi-evident on Γ if there are y, z1, . . . , zm such that
{ryz1, sz1, . . . , ryzm, szm} ⊆ Γ̃ and {[r]nty | [r]ntx ∈ Γ̃} ⊆ Γ̃ . (We also say:
〈r〉msx is quasi-evident if the corresponding pattern {〈r〉ms}∪{[r]nt | [r]ntx ∈ Γ̃}
is expanded).

With this definition of quasi-evidence, no rule of our calculus would apply to
the following branch:

Γ := {ryz, qz, [r]1(p ∧̇ ¬̇p)y, 〈r〉0qx, [r]1(p ∧̇ ¬̇p)x, rxu, ¬̇qu}

242 M. Kaminski, S. Schneider, and G. Smolka

As Γ is clearly unsatisfiable, the notion of quasi-evidence needs to be adapted.
Given a branch Γ and a role r, an r-pattern is a set of expressions of the form

μs, where μ ∈ {〈r〉n, [r]n |n ∈ IN}. We write P r
Γ x for the largest r-pattern P

such that P ⊆ {t | tx ∈ Γ̃}. We call P r
Γ x the r-pattern of x on Γ . An r-pattern

P is expanded on Γ if there are nominals x, y such that rxy ∈ Γ̃ and P ⊆ P r
Γ x.

In this case, we say that the nominal x expands P on Γ .
A diamond formula 〈r〉nsx ∈ Γ is quasi-evident on Γ if it is either evident on

Γ or x has no r-successor on Γ (i.e., there is no y such that rxy ∈ Γ̃) and P r
Γ x

is expanded on Γ . The rule R♦ can only be applied to diamond formulas that
are not quasi-evident.

Note that whenever 〈r〉nsx ∈ Γ is quasi-evident but not evident on Γ , there
is a nominal y that expands P r

Γ x on Γ .
We call a branch Γ quasi-evident if it satisfies all of the evidence conditions

but the one for diamond formulas, which we replace by:

〈r〉ntx ∈ Γ ⇒ 〈r〉ntx is quasi-evident on Γ

One can show the following lemma:

Lemma 3.1. Let Γ be a quasi-evident branch and let 〈r〉nsx ∈ Γ be not evident
on Γ . Let y be a nominal that expands P r

Γ x on Γ and Δ := Γ ∪{rxz | ryz ∈ Γ̃}.
Then:

1. ∀z : rxz ∈ Δ̃ ⇐⇒ ryz ∈ Γ̃ ,
2. ∀m, t : 〈r〉mt ∈ P r

Γ x =⇒ 〈r〉mtx evident on Δ,
3. 〈r〉nsx evident on Δ,
4. ∀r′, m, t, z : 〈r′〉mtz evident on Γ =⇒ 〈r′〉mtz evident on Δ,
5. Δ quasi-evident.

Theorem 3.2 (Evidence Completion). For every quasi-evident branch Γ
there is an evident branch Δ such that Γ ⊆ Δ.

Proof. For every branch Γ , we define:

ϕΓ := |{〈r〉nsx | 〈r〉nsx ∈ Γ ∧ 〈t〉nsx not evident on Γ}|

Let Γ be quasi-evident. We proceed by induction on ϕΓ . If ϕΓ = 0, then Γ is
evident and we are done. Otherwise, there is a diamond 〈r〉nsx ∈ Γ that is not
evident on Γ . Let y be a nominal that expands P r

Γ x on Γ , and let Γ ′ := Γ ∪
{rxz | ryz ∈ Γ̃}. By Lemma 3.1(3-5), Γ ′ is quasi-evident and ϕΓ ′ < ϕΓ . So, by
the inductive hypothesis, there is some evident branch Δ such that Δ ⊇ Γ ′ ⊇ Γ .

��

A branch is called maximal if it cannot be extended by any tableau rule.

Theorem 3.3 (Quasi-evidence). Every open and maximal branch in T is
quasi-evident.

Proof. Let Γ be an open and maximal branch. We show that every s ∈ Γ that
is not of the form px or rxy is (quasi-)evident on Γ by induction on the order
of s. ��

Terminating Tableaux for Graded Hybrid Logic 243

3.4 Termination

We will now show that every tableau derivation is finite. As usual, the main
difficulty is bounding the number of applications of generative rules, in particular
ofR♦. The present proof is notably more complex than the proofs in [15,14] since
now, an application of R♦ does not necessarily expand a new pattern. Hence,
we need to combine the pattern-counting argument from [15,14] with a bound
on the number of non-expanding applications of R♦.

Since the rules R∨̇, R�, RA, and RD̄ are all finitely branching, by König’s
lemma it suffices to show that the construction of every individual branch ter-
minates. Since tableau rule application always produces proper extensions of
branches, it then suffices to show that the size (i.e., cardinality) of an individual
branch is bounded.

First, we show that the size of a branch Γ is bounded by a function in the
number of nominals on Γ . Then, we show that this number itself is bounded
from above, completing the termination proof.

We write Γ
R→ Δ to denote that the branch Δ is obtained from Γ by the

rule R. We write Γ → Δ if Δ is obtained from Γ by a single rule application.
We write SΓ for the set of all modal expressions occurring on Γ , possibly as
subterms of other expressions, and Rel Γ for the set of all roles that occur on Γ .

Crucial for the termination argument is the fact the the tableau rules cannot
introduce any modal expressions that do not already occur on the initial branch.

Proposition 3.2. If Γ, Δ are branches such that Δ is obtained from Γ by any
rule of T , then SΔ = SΓ .

Let m0 = max{n | ∃r, s, x : 〈r〉nsx ∈ Γ ∨ [r]nsx ∈ Γ}. For every pair of nominals
x, y and every role r, a branch Γ may contain an edge rxy, for every set X ⊆ NΓ
where |X | ≤ m0, Γ may contain constants DX and D̄X and, for every expression
s ∈ SΓ , a formula sx. Hence, the size of Γ is bounded by |Rel Γ | · |NΓ |2 + 2m0 ·
|NΓ |m0 +|SΓ |·|NΓ |. By Proposition 3.2, we know that |SΓ | and |Rel Γ | depend
only on the initial branch.

Note that the above bound is exponential in m0. If, however, we represented
distinctness constraints by binary equations and disequations, we could easily
give a bound that is independent from m0 by replacing the summand 2m0 ·
|NΓ |m0 with 2|NΓ |2.

By the above, it suffices to show that |NΓ | is exponentially bounded in the size
of the initial formula. We do so by giving a bound on the number of applications
of R♦ and RE that can occur in the derivation of a branch, which suffices since
R♦ and RE are the only two rules that can introduce new nominals.

We begin by showing that RE can be applied at most as many times, as
there are distinct modal expressions of the form Ens on the initial branch. For
this purpose, we define a function ψE such that ψEΓ := {Ens ∈ SΓ | ∃x ∈
NΓ : Ensx not evident on Γ}. Since |ψEΓ | is bounded from below by 0, it
suffices to show that the number decreases with every application of RE (and is
non-increasing otherwise, which is obvious).

244 M. Kaminski, S. Schneider, and G. Smolka

Proposition 3.3. Γ
RE→ Δ =⇒ |ψEΓ | > |ψEΔ|

The proof proceeds analogously to the corresponding arguments in [15,14].
Now we show that R♦ can be applied at most finitely often in a derivation.

Since there are only finitely many roles, it suffices to show thatR♦ can be applied
at most finitely often for each role. Observe that since R♦ is only applicable to
diamond formulas that are not quasi-evident, it holds:

Proposition 3.4. If R♦ is applicable to a formula 〈r〉nsx ∈ Γ , then either

1. x has an r-successor on Γ , or
2. P r

Γ x is not expanded on Γ .

Let Γ and Δ be branches such that Δ is obtained from Γ by applying R♦

to a formula 〈r〉nsx ∈ Γ such that P r
Γ x is not expanded on Γ . It is easy to

see that P r
Δx must be expanded on Δ. Let us call such an application of R♦

pattern-expanding.
Let Pat rΓ := P({〈r〉ns ∈ SΓ} ∪ {[r]ns ∈ SΓ}). In other words, Pat rΓ

contains all the possible sets of r-diamonds and r-boxes from SΓ . Since Γ → Δ
implies Γ̃ ⊆ Δ̃, it holds:

Lemma 3.2. Let Γ → Δ and P ∈ Pat rΓ . If P is expanded on Γ , then P is
expanded on Δ.

So, for each role r the derivation of a branch has at most |Pat rΓ0| pattern-
expanding applications of R♦, where Γ0 is the initial branch. Clearly, |Pat rΓ0|
is exponentially bounded in the size of the initial formula.

Hence, it remains to show that a derivation can contain only finitely many
applications of R♦ assuming that none of the applications is pattern-expanding.
We say a nominal x has a successor on Γ if x has an r-successor on Γ for any
role r. A set of nominals X has a successor on Γ if there is some x ∈ X that has
a successor on Γ . We define

ψX
♦ Γ := |{〈r〉ns ∈ SΓ | ∃x ∈ X : 〈r〉nsx not evident on Γ}|

and
ψ♦Γ :=

∑
X∈NΓ/∼Γ

X has a successor on Γ

ψX
♦ Γ .

Proposition 3.5. Let Γ → Δ such that Δ is obtained from Γ by some rule
application other than a pattern-expanding application of R♦.

1. If Δ is obtained from Γ by R♦, then ψ♦Γ > ψ♦Δ.
2. Otherwise, ψ♦Γ ≥ ψ♦Δ.

This completes the termination proof. Since the cardinalities of the sets Pat rΓ
are exponentially bounded in the size n0 of the initial formula, |ψEΓ | is polyno-
mial in n0, and ψ♦Γ polynomial in |Γ | and n0, |NΓ | is exponentially bounded in
n0. Since |Γ | is polynomial in |NΓ |, we conclude that |Γ | is at most exponential
in n0. By cumulativity, the construction of Γ terminates in at most exponen-
tially many steps in n0. This suffices to give us a NExpTime complexity bound
for the decision procedure based on the calculus.

Terminating Tableaux for Graded Hybrid Logic 245

4 Adding Reflexivity, Transitivity and Role Inclusion

We now extend T to deal with reflexivity, transitivity and inclusion assertions. As
in related work on description logic [5,8,10,9], we restrict our modal expressions
to contain no graded boxes for roles that have transitive subroles.

We define⊆∗Γ as the smallest reflexive and transitive relation such that r ⊆∗Γ r′

whenever r � r′ ∈ Γ . A role r is called simple if there is no r′ such that r′ ⊆∗Γ r
and Tr′ ∈ Γ . Observe that all subroles of a simple role are in turn simple.

Our branches may now contain inclusion, reflexivity and transitivity asser-
tions:

s ::= tx | rxy | DX | D̄X | ⊥ | r � r′ | Rr | Tr

The modal expressions t in formulas of the form tx are restricted to contain no
boxes [r]ns with n > 0 unless r is simple.

Following the ideas in [5,8,10,9], we introduce the induced transition rela-
tion �r

Γ to reason about accessibility in the presence of inclusion axioms. Intu-
itively, x �r

Γ y means that in every model of Γ , y is accessible from x via r.

4.1 Extending Evidence

To account for the new types of formulas, we extend the evidence conditions as
follows:

r � r′ ∈ Γ ⇒ ∀x, y ∈ NΓ : rxy ∈ Γ̃ ⇒ r′xy ∈ Γ̃

Rr ∈ Γ ⇒ ∀x ∈ NΓ : rxx ∈ Γ̃

T r ∈ Γ ⇒ ∀x, y, z ∈ NΓ : rxy ∈ Γ̃ ∧ ryz ∈ Γ̃ ⇒ rxz ∈ Γ̃

It is easy to see that if Γ satisfies the extended evidence conditions, MΓ will
satisfy the new formulas. Hence, Theorem 3.1 adapts to the extended system.

Theorem 4.1 (Model Existence). If Γ is evident, then MΓ satisfies Γ .

4.2 Pre-evidence

To account for the new evidence conditions, one could imagine the following
rules.

r � r′, rxy

r′xy

Rr

rxx
x ∈ NΓ

Tr, rxy, ryz

rxz

In the presence of blocking, however, the rules are problematic. In particular,
the rule for reflexivity renders the notion of quasi-evidence that we use for T
ineffective to ensure termination. Once we add a reflexive edge rxx to a branch
Γ , x will have an r-successor on Γ , meaning quasi-evidence will coincide with
evidence for all r-diamonds on x. Similarly, the rule for transitivity is known to
be incomplete in the presence of blocking [14].

246 M. Kaminski, S. Schneider, and G. Smolka

We solve the problem by defining a weaker notion of evidence, called pre-
evidence. To satisfy the pre-evidence conditions, we do not have to explicitly
add reflexive or transitive edges during tableau construction. We will extend our
tableau rules and the notion of quasi-evidence such that every open and maximal
branch in the extended calculus can be completed to a pre-evident branch, which
in turn can be made evident by adding the implicit edges.

We define the relation r
Γ as the least relation such that:

rxy ∈ Γ̃ ⇒ x r
Γ y

r′ � r ∈ Γ, x r′

Γ y ⇒ x r
Γ y

The relation r
Γ does not account for reflexivity. To do so, we extend it as follows:

�r
Γ :=

{
r

Γ ∪{(x, y) |x, y ∈ NΓ ∧ x ∼Γ y} if ∃r′ : r′ ⊆∗Γ r ∧Rr′ ∈ Γ
r

Γ otherwise

The pre-evidence conditions are obtained from the evidence conditions by
omitting the conditions for inclusion and reflexivity assertions and replacing the
conditions for diamonds, boxes and transitivity assertions as follows:

〈r〉ntx ∈ Γ ⇒ ∃Y : |Y | = n + 1 ∧ DY ∈ Γ̃ ∧ ∀y ∈ Y : x �r
Γ y ∧ ty ∈ Γ̃

[r]ntx ∈ Γ ⇒ |{y |x �r
Γ y, ty /∈ Γ̃}/∼Γ | ≤ n

Tr ∈ Γ ⇒ ∀x, y : [r′]0tx ∈ Γ̃ ∧ r ⊆∗Γ r′ ∧ x r
Γ y ⇒ [r]0ty ∈ Γ̃

Note that we do not need pre-evidence conditions for inclusion or reflexivity
assertions as their semantics is taken care of by the way we define the rela-
tion x �r

Γ y. Pre-evidence of individual formulas is defined analogously to the
corresponding evidence notion.

We now show that every pre-evident branch can be extended to an evident
branch. Let the evidence closure Γ̂ of a branch Γ be defined as the least superset
of Γ such that:

x �r
Γ y ⇒ rxy ∈ Γ̂

T r ∈ Γ̂ ∧ rxy ∈ Γ̂ ∧ ryz ∈ Γ̂ ⇒ rxz ∈ Γ̂

r � r′ ∈ Γ̂ ∧ rxy ∈ Γ̂ ⇒ r′xy ∈ Γ̂

Note that by construction, we have rxy ∈ ˆ̃Γ ⇐⇒ rxy ∈ Γ̂ .

Lemma 4.1. Let Γ be a branch and r be simple on Γ . Then x �r
Γ y ⇐⇒

rxy ∈ Γ̂

Lemma 4.2. Let Γ be a branch and let rxy ∈ Γ̂ . Then either x �r
Γ y, or there

is an r′ such that {r′ � r, T r′} ⊆ Γ and

∃n≥2 ∃x1, . . . , xn : x1 = x ∧ xn = y ∧ ∀1≤i<n : xi r′

Γ xi+1 .

Theorem 4.2 (Evidence Completion). Γ pre-evident =⇒ Γ̂ evident

Proof. Straightforward, using Lemmas 4.1 and 4.2. ��

Terminating Tableaux for Graded Hybrid Logic 247

R�

[r]ntx

D̄Y | ∃y ∈ Y : ty
Y ⊆ {y |x �r

Γ y}, |Y | = |Y/∼Γ | = n + 1

RT

Tr, [r′]0tx

[r]0ty
r ⊆∗

Γ r′, x r
Γ y

Fig. 2. New rules for T�
4.3 Tableau Rules

The tableau rules for the extended calculus T� in Fig. 2 replace the original
rule R� from Fig. 1 and add a new rule RT , which is necessary to achieve
the pre-evidence condition for transitivity assertions. While the formulation of
R♦ remains unchanged, the rule will now have to use an adapted notion of
quasi-evidence, which will be introduced in Sect. 4.4. For now, we assume R♦ is
formulated with the restriction “〈r〉ntx not pre-evident on Γ” instead. Again, it
is not hard to verify that the extended rules are sound.

4.4 Control

As it turns out, in the presence of role inclusion we have to modify the definition
of patterns. It no longer suffices to consider patterns separately for each role.
This is due to the fact that now, different roles may be constrained by inclusion
assertions. Consider, for instance, the unsatisfiable branch

Γ := {r � r′, 〈r〉0px, 〈r′〉0¬̇px, [r′]1(p ∧̇ ¬̇p)x, r′xy, ¬̇py, 〈r〉0pz, rzu, pu}

According to our previous notion of quasi-evidence, 〈r〉0px is quasi-evident on Γ
as x has no r-successor (even if we extend the set of successors to {y |x r

Γ y})
and P r

Γ x is expanded. Since the other two diamonds on Γ are evident, Γ is quasi-
evident, witnessing the incompleteness of our previous definition of patterns.

Hence, we redefine the notion of a pattern as follows. Given a branch Γ , a
pattern is a set of terms of the form μs, where μ ∈ {〈r〉n, [r]n | r ∈ Rel Γ, n ∈ IN}.
We write PΓ x for the largest pattern P such that P ⊆ {t | tx ∈ Γ̃}. We call PΓ x
the pattern of x on Γ . A pattern P is expanded on Γ if there are nominals x, y
and a role r such that x r

Γ y and P ⊆ PΓ x. In this case, we say that x expands
P on Γ . Note that here we use the relation r

Γ rather than �r
Γ . Otherwise, we

would get the same problems with termination as outlined in Sect. 4.2.
A diamond formula 〈r〉nsx is quasi-evident on Γ if it is either pre-evident on

Γ or x has no successor on Γ (i.e., there is no y such that for any r, x r
Γ y) and

PΓ x is expanded on Γ . As before, we restrain the rule R♦ such that it can only
be applied to diamond formulas that are not quasi-evident, and call a branch
Γ quasi-evident if it satisfies all of the pre-evidence conditions but the one for
diamond formulas, which we again replace by

〈r〉ntx ∈ Γ ⇒ 〈r〉ntx is quasi-evident on Γ

but now with the adapted notion of quasi-evidence.

248 M. Kaminski, S. Schneider, and G. Smolka

Lemma 4.3. Let x, y, u, v be nominals and Γ, Δ branches such that {r | rxy ∈
Γ̃} = {r | ruv ∈ Δ̃}. Then, for every r, x r

Γ y ⇔ u r
Δ v.

Lemma 4.4. Let Γ be a quasi-evident branch and let 〈r〉nsx be not pre-evident
on Γ . Let y expand PΓ x on Γ and Δ := Γ ∪ {r′xz | r′yz ∈ Γ̃}. Then:

1. ∀r′, z : x r′

Δ z ⇐⇒ y r′

Γ z and x �r′

Δ z ⇐⇒ y �r′

Γ z,
2. ∀r′, m, t : 〈r′〉mt ∈ PΓ x =⇒ 〈r′〉mtx pre-evident on Δ,
3. 〈r〉nsx pre-evident on Δ,
4. ∀r′, m, t, z : 〈r′〉mtz pre-evident on Γ =⇒ 〈r′〉mtz pre-evident on Δ,
5. Δ quasi-evident.

Proof. Analogous to the proof of Lemma 3.1, Lemma 4.3 being used for (1). ��

Theorem 4.3 (Pre-evidence Completion). For every quasi-evident branch
Γ there is a pre-evident branch Δ such that Γ ⊆ Δ.

Proof. Proceeds analogously to the proof of Theorem 3.2 with Lemma 4.4 in
place of Lemma 3.1. ��

Theorem 4.4 (Quasi-evidence). Every open and maximal branch in T� is
quasi-evident.

Proof. Proceeds analogously to the proof of Theorem 3.3. ��

While requiring some adaptations, the termination proof for T� is mostly anal-
ogous to the proof for T .

5 Conclusion

We have presented a terminating tableau calculus for graded hybrid logic with
global modalities and role hierarchies. Following [19,20,14], our calculus is cumu-
lative, representing state equality abstractly via an equivalence relation (declar-
ative approach). The existing calculi for equivalent and stronger logics [8,10,9]
work on possibly cyclic graph structures and treat equality by destructive graph
transformation during tableau construction (procedural approach). The proce-
dural approach encompasses algorithmic decisions that are not present in the
more abstract declarative approach. From a declarative calculus we can always
obtain a procedural system by refinement.

Exploiting an extended pattern-based blocking technique and the cumulativ-
ity of our calculus, we have proved a NExpTime complexity bound for the asso-
ciated decision procedure. To ensure termination of pattern-based blocking in the
presence of reflexivity, we differentiated between the induced transition relation
�r

Γ and its non-reflexive counterpart r
Γ . The implementation of pattern-based

blocking for a hybrid language with global modalities [16] reveals its consider-
able practical potential. We consider it a promising project to implement the
extended version of pattern-based blocking presented in this paper and compare
its performance to that of established blocking techniques.

Terminating Tableaux for Graded Hybrid Logic 249

References

1. Fine, K.: In so many possible worlds. Notre Dame J. Form. Log. 13(4), 516–520
(1972)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

3. Areces, C., ten Cate, B.: Hybrid logics. In: [21], pp. 821–868
4. Goranko, V., Passy, S.: Using the universal modality: Gains and questions. J. Log.

Comput. 2(1), 5–30 (1992)
5. Horrocks, I.: Optimising Tableaux Decision Procedures for Description Logics. PhD

thesis, University of Manchester (1997)
6. Sattler, U.: A concept language extended with different kinds of transitive roles.

In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS (LNAI), vol. 1137. Springer,
Heidelberg (1996)

7. Baader, F., Lutz, C.: Description logic. In: [21], pp. 757–820
8. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic.

In: Nebel, B. (ed.) Proc. 17th Intl. Joint Conf. on Artificial Intelligence (IJCAI
2001), pp. 199–204. Morgan Kaufmann, San Francisco (2001)

9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Do-
herty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. 10th Intl. Conf. on Principles
of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press,
Menlo Park (2006)

10. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom.
Reasoning 39(3), 249–276 (2007)

11. Kripke, S.A.: Semantical analysis of modal logic I: Normal modal propositional
calculi. Z. Math. Logik Grundlagen Math. 9, 67–96 (1963)

12. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artif.
Intell. 88(1–2), 195–213 (1996)

13. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics
using hypertableaux. In: Pfenning, F. (ed.) CADE-21. LNCS (LNAI), vol. 4603,
pp. 67–83. Springer, Heidelberg (2007)

14. Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with dif-
ference and converse. J. Log. Lang. Inf. (to appear, 2009)

15. Kaminski, M., Smolka, G.: Hybrid tableaux for the difference modality. In: Areces,
C., Demri, S. (eds.) Proc. 5th Workshop on Methods for Modalities (M4M5 2007).
Electr. Notes Theor. Comput. Sci., vol. 231, pp. 241–257. Elsevier, Amsterdam
(2009)

16. Götzmann, D.: Spartacus: A Tableau Prover for Hybrid Logic. M.Sc. thesis, Saar-
land University (2009)

17. Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with the difference
modality and converse. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 210–225. Springer, Heidelberg (2008)

18. Farmer, W.M.: The seven virtues of simple type theory. J. Appl. Log. 6(3), 267–286
(2008)

19. Bolander, T., Braüner, T.: Tableau-based decision procedures for hybrid logic. J.
Log. Comput. 16(6), 737–763 (2006)

20. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Com-
put. 17(3), 517–554 (2007)

21. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.
Studies in Logic and Practical Reasoning, vol. 3. Elsevier, Amsterdam (2007)

Prime Implicate Tries�

Andrew Matusiewicz1, Neil V. Murray1, and Erik Rosenthal2

1 Institute for Informatics, Logics, & Security Studies, Department of Computer Science,
University at Albany – SUNY, Albany, NY 12222, USA

nvm@cs.albany.edu, a matusi@cs.albany.edu
2 Department of Mathematics, University of New Haven, West Haven, CT 06516, USA

erosenthal@newhaven.edu

Abstract. The prime implicate trie (pi-trie) of a logical formula is a tree whose
branches are labeled with the prime implicates of the formula. The technology of
reduced implicate tries is employed to analyze the structure of pi-tries. Appropri-
ate lemmas and theorems are proved, and an algorithm that builds the pi-trie from
a logical formula is developed. Preliminary experimental results are presented.

1 Introduction

The prime implicate trie (pi-trie) of a logical formula, developed in this paper, is a
tree whose branches are labeled with the prime implicates of the formula. The reduced
implicate trie (ri-trie) is a data structure that was introduced in [10] as a target lan-
guage for knowledge compilation. It has the property that, even when large, a query
can always be processed in time linear in the size of the query. The pi-trie provides
compact storage for prime implicates, while the ri-trie stores information for answer-
ing arbitrary queries. Nonetheless, the two are structurally similar, and, in the sequel,
techniques originally developed to produce ri-tries are modified to produce pi-tries.
The resulting algorithm is quite different from any other prime implicate algorithm of
which the authors are aware.

Consequences expressed as minimal clauses that are implied by a formula are its
prime implicates, while minimal conjunctions of literals that imply a formula are its
prime implicants. Implicates are useful in certain approaches to non-monotonic reason-
ing [7,14,16], where all consequences of a formula — for example, the support set for a
proposed common-sense conclusion — are required. Another application is error analy-
sis during hardware verification, where satisfying models are desired. Many algorithms
have been developed to compute the prime implicates (or implicants) of a propositional
boolean formula — see, for example, [1,2,3,4,5,6,8,13,15,17,18].

The properties of reduced implicate tries are reviewed in Section 2. In Section 3
prime implicate tries, which are subtries of ri-tries, are introduced. An algorithm that
produces pi-tries is developed in Section 3.2.

� This research was supported in part by the National Science Foundation under grants IIS-
0712849 and IIS-0712752.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 250–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Prime Implicate Tries 251

2 Reduced Implicate Tries

The terminology used in this paper for logical formulas is standard: An atom is a propo-
sitional variable, a literal is an atom or the negation of an atom, and a clause is a disjunc-
tion of literals.1 Clauses are often referred to as sets of literals. Many authors restrict the
theory to conjunctive normal form (CNF) — a conjunction of clauses — but no such
restriction is required in this paper. An implicate of a logical formula is a clause entailed
by the formula, and a non-tautological clause is a prime implicate if no proper subset is
an implicate. Thus a clause C is an implicate of a logical formula F if and only if C is
satisfied by every interpretation that satisfies F . Hence, asking whether a given clause
is entailed by a formula is equivalent to the question, Is the clause an implicate of the
formula?

A tautology is logically equivalent to the empty sentence (empty conjunction) and
thus has no implicates. A contradiction, on the other hand, is logically equivalent to the
empty clause (empty disjunction). Thus all clauses are implicates, and the empty clause
is the only prime implicate.

2.1 Reduced Implicate Tries

The trie is a well-known data structure introduced by Morrison in 1968 [9]; it is a
tree in which each branch represents the sequence of symbols labeling the nodes2 on
that branch, in descending order. Tries have been used to represent logical formulas,
including sets of prime implicates [16]. The nodes along each branch represent the
literals of a clause, and the conjunction of all such clauses is a CNF equivalent of the
formula represented by the trie. If there is no possibility of confusion, we will often
use the term branch for the clause it represents. In general, the CNF formula can be
significantly larger than the corresponding trie. Tries that represent logical formulas can
be interpreted directly as formulas in negation normal form (NNF): A trie consisting
of a single node represents the label of that node. Otherwise, the trie represents the
disjunction of the label of the root with the conjunction of the formulas represented by
the tries rooted at its children.

In this paper, we will assume that a variable ordering has been selected, and that
nodes along a branch are labeled consistently with that ordering. A trie that stores all
(non-tautological) implicates of a formula is called a complete implicate trie. For a
formal definition and its properties, see [11].

Recall that for any logical formulasF and α and subformulaG ofF ,F [α/G] denotes
the formula produced by substituting α for every occurrence of G in F . If α is a truth
functional constant 0 or 1 (false or true), and if p is a negative literal, we will slightly
abuse this notation by interpreting the substitution [0/p] to mean that 1 is substituted
for the atom that p negates.

The following simplification rules, when applied to a complete implicate trie, will
produce a reduced implicate trie (ri-trie).

1 The term clause is also used for a conjunction of literals, especially with disjunctive normal
form.

2 Many variations have been proposed in which arcs rather than nodes are labeled, and the labels
are sometimes strings rather than single symbols.

252 A. Matusiewicz, N.V. Murray, and E. Rosenthal

SR1. F → F [G/G ∨ 0] F → F [G/G ∧ 1]
SR2. F → F [0/G ∧ 0] F → F [1/G ∨ 1]
SR3. F → F [0/p ∧ ¬p] F → F [1/p ∨ ¬p]

The branches of an ri-trie represent the relatively prime implicates [11]: If F is a
logical formula, and if the variables of F are ordered, then a relatively prime implicate
is one for which no proper prefix is also an implicate. If the leaf node of a branch in
an ri-trie is labeled pi, then every extension with variables of index greater than i is a
branch in the complete implicate trie of F . These extensions correspond to implicates
of F that are not relatively prime and that are represented implicitly by that branch in
the ri-trie.

Theorem 1. Given a logical formula F and an ordering of the variables of F , then the
branches of the corresponding ri-trie represent precisely the relatively prime implicates.
In particular, the prime implicates are relatively prime, and each is represented by a
branch in the trie. �

2.2 Computing Reduced Implicate Tries

Let F be a logical formula, and let the variables of F be V = {v1, v2, ..., vn}. Then
the ri-trie of F can be obtained by applying the recursively defined RIT operator (in-
troduced in [10]):

RIT(F , V) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F V = ∅

⎛⎜⎜⎜⎜⎝
vi ∨ RIT(F [0/vi], V − {vi})

∧
¬vi ∨ RIT(F [1/vi], V − {vi})

∧
RIT((F [0/vi] ∨ F [1/vi]), V − {vi})

⎞⎟⎟⎟⎟⎠ vi ∈ V

where vi is the variable of lowest index in V .
Implicit is the use of simplification rules SR1, SR2, and SR3.

Theorem 2. If F is a logical formula with variable set V , then RIT(F , V) is logically
equivalent to F . �

Let Imp(F) denote the set of all implicates of F .

Lemma 1. Given logical formulasF and G, Imp(F) ∩ Imp(G) = Imp(F ∨ G). �

The last lemma means that the implicates being computed in the third conjunct of the
RIT operator are precisely those that occur in both of the first two (ignoring, of course,
the root labels vi and ¬vi). This third conjunct can thus be computed from the first two,
and the direct recursive call on (F [0/vi] ∨ F [1/vi]) can be avoided. This is significant
because in this call, the size of the argument essentially doubles.

Prime Implicate Tries 253

Theorem 3. Let F be a logical formula with variable set V , and let C be an implicate
of F . Then there is a unique branch of RIT(F , V) that is a prefix of C, and every
branch is a relatively prime implicate. �

2.3 Ternary Representation

Observe that the RIT operator essentially produces a conjunction of three tries. It is
therefore natural to represent an ri-trie as a ternary trie. The root of the third subtrie
is labeled 0. One advantage of this representation is that the ith variable appears only
at level i. Another is that any subtrie (including the entire trie) is easily expressed as a
four-tuple consisting of its root and the three subtries. For example, for a subtrie T we
might write 〈r, T +, T −, T 0〉, where r is the root label of T , and T +, T −, and T 0 are
the three subtries.

A trivial technical difficulty arises with the ternary representation: The zeroes along
branches interfere with the prefix property of Theorem 3. But this is easily dealt with
by interpreting the statement, A branch B is a prefix of a clause C, to mean The clause
represented by B with zeroes simplified away is a prefix of C. The zeroes cause no
difficulty when traversing branches in the trie.

Obtaining the ternary representation with the RIT operator requires only a minor
change: disjoining 0 to the third conjunct. The notation ri(F , V) = 0 ∨ RIT(F , V)
will be used for the ternary ri-trie of F with variable ordering V . For the remainder of
this paper, we will generally assume this ternary representation. As a result, the forest
denoted by RIT(F , V) will contain three tries whose roots are labeled by a variable, its
complement, and zero.

Theorem 4. LetF and G be logically equivalent formulas. Then, with respect to a fixed
variable ordering V , ri(F , V) is isomorphic to ri(G, V). �

2.4 Intersecting ri-Tries

Given two formulas F and G, fix an ordering of the union of their variable sets, and let
TF and TG be the corresponding ri-tries. The intersection of TF and TG is defined to be
the ri-trie (with respect to the given variable ordering) that represents the intersection
of the implicate sets. By Theorems 2 and 4 and Lemma 1, this is the ri-trie for F ∨ G.

The intersection of two tries (with the same variable ordering) is produced by the
INT operator introduced in [12].

Theorem 5. Let TF and TG be the respective ri-tries of F and G (with the same
variable ordering). Then INT(TF , TG) is the intersection of TF and TG ; in particular,
INT(TF , TG) is the ri-trie of F ∨ G (with respect to the given variable ordering). �

Theorem 5 provides a formal basis for a definition of the RIT operator that produces ri-
tries using intersection. It is obtained from the earlier definition essentially by replacing
the third conjunct by INT(RIT(F [0/vi], V − {vi}), RIT(F [1/vi], V − {vi})).

254 A. Matusiewicz, N.V. Murray, and E. Rosenthal

3 Prime Implicate Tries

Let F be a formula and let TF be the ri-trie for F under variable ordering V . From
Theorem 3, there is a 1-1 correspondence between relatively prime implicates of F and
branches in TF . The sub-trie of TF consisting of the branches that correspond to prime
implicates, which are relatively prime, is called a prime implicate trie, or pi-trie. As
with ri-tries, it is convenient to use the ternary notation with pi-tries. The pi-trie for
F is denoted pi(F), and the set of prime implicates is denoted P(F). If B is a branch
in pi(F) whose labels form the implicate {p1, . . . , pn}, a suffix of B is a sub branch
having the labels {pj, pj+1, . . . , pn}, 1 ≤ j ≤ n + 1. This suffix is referred to as the
suffix of B beginning with pj ; note that if j = n + 1, the suffix is empty.

The algorithm presented in Section 3.2 was developed from the structure of ri-tries,
but the algorithm does not compute pi-tries from ri-tries. To do so would be potentially
inefficient, because the ri-trie may be considerably larger than the pi-trie. The approach
adopted here computes the pi-trie directly. Not only can the resulting pi-trie be smaller
than its ri-trie counterpart, but the ‘intermediate bulge’ that must be surmounted in both
computations can also be smaller for the pi-trie.

3.1 The Structure of Prime Implicate Tries

The results in this subsection are required to develop the pi-trie algorithm presented in
the next subsection. It is interesting to note that dealing with constants is a bit tricky. A
single node labeled 0 is the pi-trie of a contradiction. Thus all clauses are implicates,
and the empty clause is the only prime implicate. A single node labeled 1, on the other
hand, is the pi-trie of a tautology, and thus its implicate set is empty.

Lemma 2. Let F and G be logical formulas, and let C ∈ P(F ∨ G). Then there exist
prime implicates C0 of F and C1 of G such that C = C0 ∪ C1.

Proof. Let D0 be the subset of C that has the variables of C that occur in F ; similarly
let D1 be the subset of C that has the variables of C that are in G.

First, D0 is an implicate of F (and D1 is an implicate of G): If I is an interpretation
such that I(F) = 1, extend I so that I falsifies all literals in C −D0. Since I(F) = 1,
I(F ∨ G) = 1, so I(C) = 1. Thus I(D0) = 1.

Now let Ci be a prime subset of Di (i = 0, 1), and consider C0∪C1. Since C0∪C1 ⊆
C, it suffices to prove that C0∪C1 is an implicate ofF∨G. Suppose I(F∨G) = 1; then
I(F) = 1 or I(G) = 1, say I(F) = 1. Then, since C0 is an implicate of F , I(C0) = 1,
so I(C0 ∪ C1) = 1. �

Note that C0 and C1 need not be disjoint. Note also that the lemma admits the possibility
that C0 or C1 might be empty. But if that occurs, then the corresponding formula must
be unsatisfiable.

Suppose that formulasF and G have, respectively, pi-tries TF and TG . The branches
of TF and of TG correspond to P(F) and to P(G). Define the prime union of P(F) and
P(G) to be

{C0 ∪ C1|C0 ∈ P(F), C1 ∈ P(G)}
Lemma 2 assures that P(F ∨ G) is a subset of the prime union.

Prime Implicate Tries 255

Lemma 3. Let F be a logical formula, and let p be a literal whose variable does not
occur in F . If C is an implicate of F not containing the variable of p, then C is not an
implicate of p ∨ F .

Proof. Let I falsify C and satisfy p; then I satisfies p ∨ F but not C. �

Lemma 4. Let F be a logical formula, and let p be a literal whose variable does not
occur in F . Then C is an implicate of F iff {p} ∪ C is an implicate of p ∨ F .

Proof. Suppose first that C is an implicate of F ; it suffices to show that any interpre-
tation I that falsifies {p} ∪ C falsifies p ∨ F . Since I falsifies C, I falsifies F , and, in
turn, since I falsifies p, I falsifies p ∨ F .

Now assume that {p} ∪ C is an implicate of p ∨ F , and consider a satisfying inter-
pretation I for F . Extend I to falsify p. Since I satisfies F , I satisfies (p ∨ F), so I
satisfies {p} ∪ C. Since I(p) = 0, C is satisfied. �

This result can be extended to prime implicates.

Lemma 5. Let F be a logical formula, and let p be a literal whose variable does not
occur in F . Then C is a prime implicate of F iff {p}∪C is a prime implicate of p∨F .

Proof. Suppose first that C is a prime implicate of F . By the previous lemma, p∪C is
an implicate of p ∨ F . Consider a prime subset D of {p} ∪ C. Then D must contain p
by Lemma 3, say D = {p} ∪ D′. We must show that D′ = C. But this is immediate
since, by the previous lemma, D′ is an implicate of F .

Now suppose that {p} ∪C is a prime implicate of p ∨ F . Then it is immediate from
the previous lemma that C is a prime implicate of F . �

Lemma 6. Let F be a logical formula and p a literal, and let F0 = F [0/p]. Then
{p} ∪ C is an implicate of F iff C is an implicate of F0. Moreover, if {p} ∪ C is a
prime implicate of F , p �∈ C, then C is a prime implicate of F0. The analogous results
for F1 = F [1/p] are also valid.

Proof. Suppose first that {p} ∪ C is an implicate of F , and let I be an interpretation
satisfying F0. Extend I to falsify p. Then by the definition of F0, I(F) = 1. So I
satisfies {p} ∪ C but falsifies p, so I satisfies C.

Now assume that C is an implicate of F0, and let I be a satisfying interpretation for
F . If I(p) = 1, then I({p} ∪ C) = 1. If I(p) = 0, then I(F0) = 1, so I(C) = 1 =
I({p} ∪ C).

Finally, suppose that {p}∪C is a prime implicate of F . Then, by the first part of the
Lemma, C is an implicate of F0. If a subset D of C is also an implicate, we must show
that D = C. Then {p} ∪D is an implicate of F . Since {p} ∪D is a subset of {p}∪C,
and since {p} ∪ C is prime, {p} ∪D = {p} ∪ C and D = C.

The proof for F1 is entirely similar. �

The reader is reminded that, for a logical formula F , F ≡ (p ∨ F0) ∧ (p ∨ F1), where
F0 = F [0/p] and F1 = F [1/p]. The next lemma characterizes a clause C and and a
formula F when C is a prime implicate of F0 but not of F itself.

256 A. Matusiewicz, N.V. Murray, and E. Rosenthal

Lemma 7. Let F be a logical formula and p a literal, let F0 = F [0/p] and F1 =
F [1/p], and let C be a clause with p �∈ C. Then C is a prime implicate of F0 and
{p} ∪ C is not a prime implicate of F iff C is prime for F and an implicate of F1.
In that case, if D is a subset of C and a prime implicate of F1, and if C �= D, then
{p} ∪D ∈ P(F). The analogous result for a prime implicate of F1 is also valid.

Proof. Note that the variable of p does not occur in F0 or in F1. Assume first that C is
prime for F0 and that {p} ∪ C is not prime for F . By Lemma 5, {p} ∪ C is prime for
p ∨ F0, and by Lemma 6, it is an implicate of F . So some proper subset D of {p} ∪C
is a prime implicate of F . Also from Lemma 6, this prime subset cannot include p and
is therefore a subset of C. Clearly, p ∨ D is an implicate of F , thus D is an implicate
of F0. So D = C because C is prime for F0.

Now consider an interpretation I that falsifies C and satisfies p. Since C is an impli-
cate ofF , I(F) = 0, and since I(p) = 1, I(p∨F0) = 1. SinceF = (p∨F0)∧(p∨F1),
I must falsify p ∨ F1. Therefore I falsifies F1, making C an implicate of F1.

Assume now that C is prime for F and an implicate of F1. Let I be an interpretation
that falsifies {p} ∪ C. Since C is an implicate of both F1 and F , I(F1) = I(F) = 0.
But I(p ∨ F1) = 1, so I(p ∨ F0) = 0; as a result, I(F0) = 0, and C is an implicate
of F0.

Finally, if C �= D — i.e., if D is a proper subset of C — we must show that {p}∪D ∈
P(F). But this is immediate from the first part of the lemma: Were {p} ∪D �∈ P(F),
D would be an implicate of F0 and a proper subset of a prime implicate of F0. �

The next example illustrates the previous five lemmas, which relate the implicates of a
formula F to those of F0 and of F1.

Example. Let
F = ((p ∨ (q ∧ r)) ∧ (p ∨ q ∨ r)).

The set of prime implicates of F is

P(F) = {{p, q}, {p, r}, {q, r}},

and
F0 = F [0/p] = (q ∧ r) and F1 = F [1/p] = (q ∨ r).

Consider Lemmas 3 and 4. Let C = {p, q, r}. Then C ∈ Imp(F), the variable s
does not occur in F , and s �∈ C. Lemma 3 assures us that C �∈ Imp(s ∨ F), and
Lemma 4 that C ∪{s} ∈ Imp(s∨F). Lemma 5 extends Lemma 4 to prime implicates.
To illustrate, now let C = {q, r}. Then C ∈ P(F), and C ∪ {s} ∈ P(s ∨ F). For
Lemma 6, let C = {q}. Then C ∈ P(F0) and C ∪ {p} ∈ P(F). Letting C = {q, r}
illustrates Lemma 6 for the non-prime case.

Lemma 7 is probably the one in most need of explanation. This example illustrates
the dual: If C = {q, r}, then C ∈ P(F1) and C ∪ {p} �∈ P(F). The lemma guarantees
that C ∈ P(F) and that C ∈ Imp(F0). Since C is a proper superset of a prime
implicate D = {r} of F0, the lemma also guarantees that {p} ∪ D ∈ P(F), which
is indeed the case.

Prime Implicate Tries 257

Lemma 8. If F is satisfiable and F0 is unsatisfiable, then P(F) = {{p}} ∪ P(F1).
Similarly, if F1 is unsatisfiable, then P(F) = {{p}} ∪ P(F0). In particular, if the unit
{p} is an implicate of F , then no prime implicate of F contains p.

Proof. Suppose interpretation I satisfies F . Then, since F0 is unsatisfiable, I(p) = 1.
Thus the unit {p} is a prime implicate.

On the other hand, any interpretation that satisfies F1 extends to an interpretation
that satisfies F by assigning p = 1. Thus the implicates of F not containing p are
exactly the implicates of F1 that do not contain p. �

Lemma 9. If F is satisfiable and F0 is a tautology, then P(F) = {{¬p} ∪ C | C ∈
P(F1)}. Similarly, if F1 is a tautology, then P(F) = {{p} ∪ C | C ∈ P(F0)}.

Proof. First note that every implicate must contain p, for if C is a clause that does not
contain p, let I be the interpretation that assigns 1 to p and 0 to all other literals in C.
Then I satisfies F but not C. Also, by Lemma 7, since F0 has no implicates, if C is a
prime implicate of F1, then {p} ∪ C is a prime implicate of F . �

The next theorem summarizes the parts of the lemmas that are explicitly used in the
algorithm in the next section.

Theorem 6. Let F be a logical formula and p a literal, let F0 = F [0/p], let F1 =
F [1/p], and suppose C ∈ P(F0) and D ∈ P(F1). Then

1. If C = D, then C ∈ P(F) (and thus {p} ∪C �∈ P(F)).
2. If C ⊂ D (i.e., proper subset), then D ∈ P(F) and {p} ∪C ∈ P(F).
3. If no subset relationship exists between C and D, then a subset of C ∪D is a prime

implicate of F . �

Observe that if the literal p is redundant or does not occur in F , then only Case 1 of the
theorem applies.

3.2 An Algorithm for Prime Implicate Tries

The algorithm developed here is not entirely transparent; every effort has been made to
explain how it works. The algorithm builds the pi-trie of a logical formula recursively,
processing one variable at a time. IfF is the formula and p the variable being processed,
let F0 = F [0/p] and F1 = F [1/p], as before. The base case is a constant, and the pi-
trie is a single node labeled with the constant. The procedure prime handles the base
case and makes the recursive calls, each of which reduces the number of variables by at
least 1.3

The output of the algorithm is a ternary pi-trie. The first subtrie contains all prime
implicates of F that contain p, the second has all prime implicates that contain ¬p,
and the third all prime implicates that contain neither p nor ¬p. The function prime
initializes the first subtrie to p∨ pi(F0) (recall that pi(F0) is the prime implicate trie of
F0), and the second to ¬p ∨ pi(F1). Both are supersets of the desired tries. Repeated

3 Substituting a truth constant for one variable and simplifying may remove other variables.

258 A. Matusiewicz, N.V. Murray, and E. Rosenthal

applications of Theorem 6 removes redundant branches from the first two subtries while
building the third, which is the pi-trie for F0 ∨ F1. The PIT procedure builds the third
subtrie from the first two; in the process, all unnecessary branches are removed from
the first two. The procedure copycheck prunes non-minimal branches from the third
sub-trie.

The description below is intended to assist the reader with the details of the pi-trie
algorithm. The comments in steps are references to lemmas and theorems that justify
the steps. The reader is reminded that tautologies have no implicates, and hence, pi(1)
is a single node labeled 1 and represents the empty set. On the other hand, all clauses
are implicates of a contradiction. Thus, the empty clause is the only prime implicate,
and pi(0) is a single node labeled 0 and represents {�}.

Algorithm Description

1. The base case is a constant; the pi-trie is a single node labeled with the constant.
2. If p is the variable being processed in a recursive call, initialize T0 to pi(F0), T1 to

pi(F1), and T2 to empty.
3. Apply Theorem 6 to each pair of branches C in T0 and D in T1. Note that move

means remove and place. Note also that moving C means that it will never be paired
up again in this loop.
(a) If C = D, then move C to T2 and remove D from T1. {Theorem 6, Part 1}
(b) If C ⊂ D (proper subset), then

i. Move D to T2 and mark it prime. {Theorem 6, Part 2}
ii. Mark C prime.

(c) Else-if D ⊂ C, then
i. Move C to T2 and mark it prime. {Theorem 6, Part 2}

ii. Mark D prime.
(d) Else (i.e., no subset relationship between C and D) {Theorem 6, Part 3}

Form C ∪D and move to T2.
4. After all pairs of branches have been processed {Theorem 6}

(a) If T0 (or T1) is a leaf, set it to ∅, since p is not an implicate of (p ∨ F0).
(b) p ∨ T0 = pi(p ∨ F0) and ¬p ∨ T1 = pi(¬p ∨ F1).
(c) The branches of T2 are implicates of (F0 ∨ F1) and T2 ⊃ pi(F0 ∨ F1).

5. Remove any branch in T2 that is a superset of another branch.
6. The routine PIT below handles Steps 3 and 5 simultaneously.
7. After all pairs of branches in T2 have been processed in Step 5, the pi-trie for F is

(subject to simplification)
pi(F) = 0 ∨ [(p ∨ T0) ∧ (¬p ∨ T1) ∧ T2)].

8. Simplification is necessary if T0 or T1 is a a single node labeled with a constant.
(a) T0 = 0, T1 = 0. Then pi(F) = pi(p ∧ ¬p) = 0.
(b) T0 = 0, T1 = 1. Then T2 = 1 and pi(F) = pi((p ∨ 0) ∧ 1) = p.
(c) T0 = 0, T1 is not constant. {Lemma 8}

i. p ∨ T0 = p, so the unit p is a prime implicate.
ii. Resolving p with ¬p ∨ T1 produces T1.

iii. T2 = T1 and there are no prime implicates containing ¬p.
iv. pi(F) = 0 ∨ (p ∧ T2).

Prime Implicate Tries 259

(d) T0 = 1, T1 = 0 is similar to the case T0 = 0, T1 = 1.
(e) T0 = 1, T1 = 1. Then pi(F) = pi(0 ∨ 1) = 1.
(f) T0 = 1, T1 is not constant. {Lemma 9}

i. T0 = 1 since tautologies have no implicates.
ii. p ∨ T0 = 1, so pi(p ∨ T0) = 1.

iii. F0 ∨ F1 ≡ 1, so T2 = 1.
iv. pi(F) = 0 ∨ (¬p ∨ T1).

(g) There are similar cases when T1 is constant and T0 is not.

This description together with the results from Section 3.1 prove

Theorem 7. If a logical formula F is input to the pi-trie algorithm, then the algorithm
terminates and produces pi(F).

Algorithm Pseudocode

The pi-trie algorithm is initialized with the call prime(0,F , 1); prime handles the base
cases — truth constants — and calls the procedure PIT. In turn, PIT calls the routine,
copycheck, which purges non-prime branches in the third sub-trie. The routine prime is
pseudocode for Steps 7 and 8 in the algorithm description. Note that T ∗0 is merely T0 but
with its root set to zero; similiarly for T ∗1 . These are needed in the two cases in which
non-constant tries originally computed as first or second subtries must be installed as a
third subtrie and thus must have a zero root.

The primary functions of the routine PIT are to remove redundant branches from the
subtries T0 and T1 rooted at, respectively, p and ¬p, and to initialize the third subtrie,
T2, rooted at 0. The routine is a straightforward iteration over all branch pairs consisting
of one branch from T0 and one from T1. Theorem 6 describes which branches need to
be moved to T2 and which remain.

The intricate control structure in PIT is there to reduce the number of iterations and
the number of subset checks. The comments in the routine refer to the part of Theorem 6
that justifies the particular control. For example, if a subset relation between branches is
discovered — say C is in T0, D is in T1, and C ⊂ D — then Part 2 of the theorem tells
us that C remains in T0 and that D should be moved to T2. Each can then be marked
prime, and neither can be a superset of another implicate, potentially eliminating subset
checks. Note that whenever all branches of the form bi are removed from Ti, i = 0, 1,
then Ti is a root leaf and must be set to ∅.

Part 3 of the theorem applies when no subset relationship exists between branches.
The union is installed in T2, and the copycheck routine is called to determine whether
the union is in fact a branch in T2.

The purpose of the routine copycheck is to remove redundant branches from the
third subtrie T2. The first parameter b is the branch passed to it, and the second, T , is
the subtrie T2. If b is a tautology, which is possible when it is the result of a union, or
if a prefix of b is already in T , b does not belong in T , and thus there is nothing to be
done by the routine.

The third parameter is the boolean testf lag. Whenever it is known that no branch
in T can subsume b, testf lag = 0. Thus, if the passed branch is marked prime, 0 is

260 A. Matusiewicz, N.V. Murray, and E. Rosenthal

passed to testf lag; otherwise 1 is passed. In the routine itself, if it is discovered that b
is a subset of a branch b̃, then b̃ is removed. No other branch in T can be a subset of b̃ —
otherwise, b̃ would already have been removed — so no branch in T can be a subset of
b. Thus testf lag can be set to 0.

definefunction prime (root:TrieNode, F :LogicalFormula, i:index):Trie;
local TrieNode T0, T1;
if F is constant then return (F);
T0 ←− prime(pi,F [0/pi], i + 1); T ∗0 ←− T0[0/pi];
T1 ←− prime(¬pi,F [1/pi], i + 1); T ∗1 ←− T1[0/¬pi];
switch T0, T1 do

case (T0, T1 are not constant) return (PIT (root, T0, T1, 1));
case T0 = 0 ∧ T1 = 0 return (0);
case T0 = 0 ∧ T1 = 1 return (〈root, pi, 1, 1〉);
case T0 = 0 ∧ (T1 is not constant) return (〈root, pi, 1, T ∗1 〉);
case T0 = 1 ∧ T1 = 0 return (〈root, 1,¬pi, 1〉);
case T0 = 1 ∧ T1 = 1 return (1);
case T0 = 1 ∧ (T1 is not constant) return (〈root, 1, T1, 1〉);
case (T0 is not constant) ∧ T1 = 0 return (〈root, 1,¬pi, T ∗0 〉);
case (T0 is not constant) ∧ T1 = 1 return (〈root, T0, 1, 1〉);

end
end prime;

To illustrate how parts of the algorithm work, consider again the example from Sec-
tion 3.1:

F = ((p ∨ (q ∧ r)) ∧ (p ∨ q ∨ r)).

The set of prime implicates of F is P(F) = {{p, q}, {p, r}, {q, r}};F0 = F [0/p] =
(q ∧ r), and F1 = F [1/p] = (q ∨ r). Assume the variables are in the order p, q, r.

The first two subtries of T will be denoted T0 and T1, respectively, which matches
their local names in the initial invocation of prime. In the recursive invocation comput-
ing T0, the tries assigned locally to T0 and T1 will be denoted globally as T00 and T01.
In general, a given subtrie will be identified by the branch leading to it corresponding
to a string subscript of T .

The function prime calls itself recursively until the formula input to it is constant. It
determines T0 and T1 (locally) and invokes PIT precisely when both of these are non-
constant. In the example, T0 = prime(p, (q∧r), 2) and T1 = prime(¬p, (¬q∨r), 2).
Consider T0, which is built entirely by prime. Then T00 = prime(q, 0, 3) = 0 and
T01 = prime(¬q, r, 3).

Next, T010 = prime(r, 0, 4) = 0, and T011 = prime(¬r, 1, 4) = 1. This triggers
the third case in computing T01, and the result is 〈¬q, r, 1, 1〉. Since T00 = 0, the fourth
case is triggered in the computation of T0. The result is that the version of T01 referenced
in the invocation locally as T ∗1 is installed as the third subtrie of T0. More precisely,
T0 = 〈p, q, 1, 〈0, r, 1, 1〉〉.

Prime Implicate Tries 261

definefunction PIT (root:TrieNode, T0, T1, T2:Trie):Trie;
; /* T0, T1 are the pi-tries for F0, F1, respectively */
; /* ⊂ means proper subset */

foreach pair of branches b̃0, b̃1(b̃i ∈ Ti) do
bi ←− b̃i − {root(Ti)};
switch b0, b1 do

case both are marked prime copycheck (b0 ∪ b1, T2, 1);
case b0 is marked prime /* no subsets of b0 are in T1 */

if b0 ⊂ b1 then /* Theorem 6 */
MOVE b1 to T2 and mark b1 prime /* Part 2 */;
copycheck (b1, T2, 0)

else
copycheck (b0 ∪ b1, T2, 1) /* Part 3 */

end
end
case b1 is marked prime /* no subsets of b1 are in T0 */

if b1 ⊂ b0 then /* Theorem 6 */
MOVE b0 to T2 and mark b0 prime /* Part 2 */;
copycheck (b0, T2, 0)

else
copycheck (b0 ∪ b1, T2, 1) /* Part 3 */

end
end
otherwise

if b0 ⊂ b1 then /* Theorem 6 */
MOVE b1 to T2, mark b1 and b0 prime /* Part 2 */;
copycheck (b1, T2, 0)

else
if b1 = b0 then /* Theorem 6 */

DELETE b0, MOVE b1 to T2, mark b1 prime /* Pt 1 */;
copycheck (b1, T2, 0)

else
if b1 ⊂ b0 then /* Theorem 6 */

MOVE b0 to T2, mark b0 and b1 prime /* Part 2 */;
copycheck (b0, T2, 0)

else
copycheck (b0 ∪ b1, T2, 1) /* Part 3 */

end
end

end
end

end
end
if leaf(T1) then T1 ← ∅ else if leaf(T2) then T2 ← ∅;
return (〈root, T0, T1, T2〉);
end PIT;

262 A. Matusiewicz, N.V. Murray, and E. Rosenthal

r

qq

p

r

0

p

r

0

qq

p

r

0

0

0

Fig. 1. Left: Building T0 and T1; Right: Final pi-trie

A similar analysis reveals that T1 = 〈¬p, 1, 〈¬q, 〈r, 1, 1, 1〉, 1, 1〉, 1〉. The upshot is
that T0 has {p, q} and {p, r} as branches; T1 has only {¬p,¬q, r}. So in computing T ,
PIT is called on these tries. This is the situation on the left in Figure 1.

When PIT examines the branch pair ({r},{¬q, r}), rooted at, respectively, p and ¬p,
Part 2 of Theorem 6 applies. Since {¬q, r} ⊃ {r}, {¬q, r} is placed in the zero subtrie
of T , and {p, r} is marked prime (and not moved). This removes the only branch below
the root ¬p in T1. The iteration terminates, and T1 is set to ∅, as shown on the right in
Figure 1.

define copycheck (b, T , testf lag);
if TAUTOLOGY(b) then EXIT;
if b has a prefix in T then EXIT;
foreach branch b̃ ∈ T do

if testf lag then
if b̃ ⊆ b then exit copycheck

end
if b̃ is not marked prime then

if b ⊂ b̃ then
remove b̃ from T ;
testf lag ← 0

end
end

end
add b to T ;
end copycheck;

An example that illustrates the routine copycheck would be rather large and is not
included due to space limitations.

3.3 Uniqueness of pi-Tries

Prime implicate tries can be represented as n-ary or as ternary trees, although in this
paper attention has been restricted to the ternary representation. Reduced implicate tries
are similar in this regard, and each representation is unique for ri-tries [11]: If F and
G are logically equivalent, then ri(F , V) is isomorphic to ri(G, V). Formal proofs are
provided in [11], but it is easy to see why this is true. Each branch represents a relatively
prime implicate, so that, for a given logical formula, once the variable order has been
chosen, the tree branches and the node labels are completely determined. The same is
true for a pi-trie since the branches represent the prime implicates.

Prime Implicate Tries 263

Definition. Let D1 and D2 be directed acyclic graphs (dags). Then D1 and D2 are
said to be isomorphic if there is a bijection f such that if (A, B) is an edge in D1,
then (f(A), f(B)) is an edge in D2. If the nodes of the dags are labeled, then the
isomorphism is label-preserving if for every node A, Label(A) = Label(f(A)).

Theorem 8. LetF and G be logically equivalent formulas. Then, with respect to a fixed
variable ordering, pi(F) is isomorphic to pi(G). �

4 Preliminary Experiments

The algorithm from Section 3 has only recently been realized in a prototype implemen-
tation. Java was used for flexibility and to shorten development time. The prototype runs
but is certainly in a “preliminary development” stage. The experiments compared the
prototype to a simple resolution-based system. The results are mildly encouraging but
do not support any conclusions about the potential efficiency of a pi-trie based system.

There were 11 sets of trials. Each set consisted of ten randomly generated CNF
formulas for a fixed number of variables. The number of clauses in each set was four
times the number of variables, and each clause contained 3 literals. The table shows the
results for each set of trials.

Avg Number
Number of Number of Number of of Prime Avg Time (msecs.)

Variables Clauses Literals Implicates prime Resolution

7 28 84 14 29 58
8 32 96 6 12 200
9 36 108 13 31 459

10 40 120 15 138 1280
11 44 132 30 128 3906
12 48 144 36 286 8223
13 52 156 53 750 21470
14 56 168 47 1384 76465
15 60 180 49 3893 170757
16 64 192 63 3781 639090
17 68 204 48 1626 1124601

The first four columns list, for each trial set, the numbers of variables, clauses, and
literals in each formula and the average number of prime implicates. Times are in the
last two columns, given in milliseconds and are averaged over the ten formulas in each
trial. Both algorithms were run on the same ten formulas. The pi-trie algorithm is con-
sistently faster than the resolution-based algorithm: twice as fast in the smallest trial and
700 times as fast in the last. Although these results are very preliminary and inconclu-
sive, they are enough to indicate pi-trie techniques are worthy of further development.

Acknowledgements

The authors are grateful for the useful and constructive comments from the reviewers.

264 A. Matusiewicz, N.V. Murray, and E. Rosenthal

References

1. Bittencourt, G.: Combining syntax and semantics through prime form representation. Journal
of Logic and Computation 18, 13–33 (2008)

2. Coudert, O., Madre, J.: Implicit and incremental computation of primes and essential impli-
cant primes of boolean functions. In: 29th ACM/IEEE Design Automation Conference, pp.
36–39 (1992)

3. de Kleer, J.: An improved incremental algorithm for computing prime implicants. In: Proc.
AAAI-1992, San Jose, CA, pp. 780–785 (1992)

4. Jackson, P.: Computing prime implicants incrementally. In: Kapur, D. (ed.) CADE 1992.
LNCS(LNAI), vol. 607, pp. 253–267. Springer, Heidelberg (1992)

5. Jackson, P., Pais, J.: Computing prime implicants. In: Stickel, M.E. (ed.) CADE 1990.
LNCS(LNAI), vol. 449, pp. 543–557. Springer, Heidelberg (1990)

6. Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates.
Journal of Symbolic Computation 9, 185–206 (1990)

7. Kean, A., Tsiknis, G.: Assumption based reasoning and clause management systems. Com-
putational Intelligence 8(1), 1–24 (1992)

8. Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation
using satisfiability algorithms. In: Proceedings of the IEEE International Conference on Tools
with Artificial Intelligence, Newport Beach, USA, November 1997, pp. 232–239 (1997)

9. Morrison, D.R.: Patricia — practical algorithm to retrieve information coded in alphanu-
meric. Journal of the ACM 15(4), 514–534 (1968)

10. Murray, N.V., Rosenthal, E.: Efficient query processing with compiled knowledge bases.
In: Beckert, B. (ed.) TABLEAUX 2005. LNCS(LNAI), vol. 3702, pp. 231–244. Springer,
Heidelberg (2005)

11. Murray, N.V., Rosenthal, E.: Efficient query processing with reduced implicate tries. Journal
of Automated Reasoning 38(1-3), 155–172 (2007)

12. Murray, N.V., Rosenthal, E.: Updating reduced implicate tries. In: Olivetti, N. (ed.)
TABLEAUX 2007. LNCS(LNAI), vol. 4548, pp. 183–198. Springer, Heidelberg (2007)

13. Ngair, T.: A new algorithm for incremental prime implicate generation. In: Proc. IJCAI-1993,
Chambery, France (1993)

14. Przymusinski, T.C.: An algorithm to compute circumscription. Artificial Intelligence 38, 49–
73 (1989)

15. Ramesh, A., Becker, G., Murray, N.V.: Cnf and dnf considered harmful for computing prime
implicants/implicates. Journal of Automated Reasoning 18(3), 337–356 (1997)

16. Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: prelim-
inary report. In: Proc. 6th National Conference on Artificial Intelligence, Seattle, WA, July
12-17, 1987, pp. 183–188 (1987)

17. Slagle, J.R., Chang, C.L., Lee, R.C.T.: A new algorithm for generating prime implicants.
IEEE transactions on Computers C-19(4), 304–310 (1970)

18. Strzemecki, T.: Polynomial-time algorithm for generation of prime implicants. Journal of
Complexity 8, 37–63 (1992)

Proof Systems for a Gödel Modal Logic

George Metcalfe1, and Nicola Olivetti2

1 Department of Mathematics, Vanderbilt University
1326 Stevenson Center, Nashville TN 37240, USA

george.metcalfe@vanderbilt.edu
2 LSIS-UMR CNRS 6168, Université Paul Cézanne

Campus de Saint Jérôme, Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20, France

nicola.olivetti@univ-cezanne.fr

Abstract. A basic propositional modal fuzzy logic GK� is defined by
combining the Kripke semantics of the modal logic K with the many-
valued semantics of Gödel logic G. A sequent of relations calculus is
introduced for GK� and a constructive counter-model completeness proof
is given. This calculus is used to establish completeness for a Hilbert-style
axiomatization and Gentzen-style hypersequent calculus admitting cut-
elimination, and to show that the logic is PSPACE-complete.

1 Introduction

Logical formalizations of vagueness and modal notions such as necessity, knowl-
edge, and obligation have been studied intensively, the former primarily as fuzzy
logics (see e.g. [14,16]), the latter under the rubric of modal logics (see e.g. [7]).
However, there have been few treatments and until recently no systematic study
of modal fuzzy logics. Such an investigation is important for providing a unified
approach for topics such as fuzzy description logics, which can be understood,
analogously to classical description logics, as multi-modal fuzzy logics [19,15].

Particular examples of fuzzy modal logics given in the literature have typi-
cally been situated quite far up the spectrum of modal logics, e.g. at the level
of the logic S5 (see e.g. [14]) or focus just on the minimal fuzzy logic of Zadeh
(see e.g. Zhang [21]). More general approaches dealing with many-valued modal
logics, such as [11,12], have focussed on the finite-valued case. Recent papers of
Priest [17] and Bou et al. [5] provide a broad basis for studying fuzzy modal logics
but again the majority of the results concern finite-valued modal logics. Defer-
ring formal definitions to the next section, the rough idea of these approaches
(followed also in this paper) is to consider Kripke models where the accessibility
relation between worlds may be either Boolean-valued or many-valued. Propo-
sitional connectives operate as usual for the logic in question at an individual
world, while the values of boxed formulas �A are calculated using the infimum
of values of A at accessible (to some degree) worlds. Validity is defined as usual
as truth (i.e. taking the value 1) at all worlds of all models.
� Supported by a visiting professor grant at LSIS, Université Paul Cézanne, June 2008.

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 265–279, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

266 G. Metcalfe and N. Olivetti

In this paper, we narrow our focus on the fuzzy side to Gödel logic G, the
infinite-valued version of a family of finite-valued logics introduced by Gödel in
the 1930s [13], axiomatized by Dummett by adding the schema (A → B)∨(B →
A) to intuitionistic logic [9]. Aside from being an important fuzzy logic, there is
also a good practical reason to focus on G in modal contexts. As noted in [5], G
is the only fuzzy logic whose modal analogues admit the schema �(A → B) →
(�A → �B) (roughly speaking, since G, unlike other fuzzy logics, admits both
weakening and contraction). Moreover, axiomatizations for a basic “K” Gödel
modal logic with the � or the ♦ modality (so far not both) have recently been
provided by Caicedo and Rodŕıguez [6]. These authors also show, interestingly,
that the logic with � is complete with respect to either Boolean or many-valued
accessibility relations but does not have the finite model property, while the
logic with ♦ based on a many-valued accessibility relation has the finite model
property but differs from the corresponding logic with a Boolean-valued relation.

We extend the work of [6] here by providing proof systems for the Gödel
modal logic with �, the broader aim being to initiate a general investigation
into the proof theory of modal fuzzy logics (e.g., as undertaken for fuzzy logics
in [16]). A wide range of proof calculi have been developed for Gödel logic,
including the sequent calculi of Sonobe [18] and Dyckhoff [10]; here we focus
on extending the hypersequent calculus of Avron [2] and sequent of relations
calculus of Baaz and Fermüller [4]. In particular, we give a constructive proof
of completeness for the more proof-search-oriented sequent of relations calculus
and use it to give both an alternative completeness proof for the axiomatization
of Caicedo and Rodŕıguez [6] and a (first) proof of PSPACE-completeness. We
then establish completeness and cut-elimination for the more elegant extended
hypersequent calculus, better suited e.g. for extension to first-order modal fuzzy
logics or investigating theoretical properties such as interpolation.

Note that the approach taken both here and in [6] for Gödel logic differs
markedly from certain other developments in the literature. In particular, the
intermediate logics extended with modalities investigated in e.g. [20] make use
of two accessibility relations in Kripke models, one for the modal operator and
another for the intuitionistic connectives. Also, the class of modalities for fuzzy
logics considered in [8] represent truth stressers such as “very true” and, unlike
the modalities considered here, can be interpreted as unary functions on [0, 1].

2 The Gödel Modal Logic GK�

We make use of a language L� with a countably infinite set Var of variables
p, q, r . . ., binary connectives →, ∧, ∨, constants ⊥, �, and a unary connective
�. The set Fm of formulas, denoted A, B, C . . . , is defined inductively as usual,
and the complexity of a formula A, denoted |A|, is the number of connectives
occurring in A. We also let ¬A =def A → ⊥ and A↔ B =def (A → B)∧(B → A).
We use Γ, Π, Σ, Δ to stand for finite multisets of formulas, writing

∨
Γ and

∧
Γ

with
∨

[] =def ⊥ and
∧

[] =def � for disjunctions and conjunctions of formulas
and �Γ for [�A : A ∈ Γ]. We let Γ 0 =def [] and Γ n+1 =def Γ , Γ n for n ∈ N.

Proof Systems for a Gödel Modal Logic 267

Following similar ideas in [14,6,5], the usual definition of the modal logic K
can be generalized to define a natural “Gödel modal logic” GK�. Recall that a
(standard) Kripke frame is a pair 〈W, R〉 where W is a non-empty set of worlds
and R ⊆ W 2 is a binary accessibility relation on W . A Kripke model for GK� is
then a 3-tuple K = 〈W, R, V 〉 where 〈W, R〉 is a Kripke frame and V : Var×W →
[0, 1] is a mapping, called a valuation, extended to V : Fm×W → [0, 1] by:

– V (A→ B, w) =

{
V (B, w) if V (A, w) > V (B, w)
1 otherwise;

– V (A ∧B, w) = min(V (A, w), V (B, w));
– V (A ∨B, w) = max(V (A, w), V (B, w));
– V (�, w) = 1 and V (⊥, w) = 0;
– V (�A, w) = inf({1} ∪ {V (A, w′) : Rww′}).

A formula A is GK�-valid, written |=GK� A, if V (A, w) = 1 for all Kripke models
〈W, R, V 〉 for GK� and w ∈W .

The above definitions give a reasonable semantics for a Gödel modal logic.
However, we have made a number of significant “design choices”. First, note
that we have omitted the dual modality ♦, characterized by the condition:

– V (♦A, w) = sup({0} ∪ {V (A, w′) : Rww′}).

This connective is definable using negation in (classical) modal logic as ♦A =def

¬�¬A, but for Gödel logic, the equivalence breaks down. We concentrate here on
the fuzzy logic with just one modality simply as a first step in our investigations
of the full logic GK.

A second complaint may be that GK� is not “fuzzy enough” since the acces-
sibility relation R of a Kripke frame is Boolean-valued (crisp). Consider instead
a fuzzy Kripke frame as a pair 〈W, R〉 where W is a non-empty set of worlds and
R : W ×W → [0, 1] is a binary fuzzy accessibility relation on W . A fuzzy Kripke
model for GKF

�
is then a 3-tuple K = 〈W, R, V 〉 where 〈W, R〉 is a fuzzy Kripke

frame and V : Var ×W → [0, 1] is a mapping defined as for GK� except that
the � condition is changed (following the semantics of Gödel implication) to:

– V (�A, w) = inf({1} ∪ {V (A, w′) : Rww′ > V (A, w′)}).

A formula A is GKF
�
-valid, written |=GKF

�
A, if V (A, w) = 1 for all fuzzy Kripke

models 〈W, R, V 〉 for GKF
�

and w ∈ W . A dual treatment of modal many-valued
logics based on classical and fuzzy Kripke models is a common theme in the
literature (see e.g. [11,12,5,6]). However, for this paper the distinction is not so
important. It has been shown in [6] (and will follow from our results below) that
in the case of GK� and GKF

�
the valid formulas of the two logics coincide.

Another issue is the fact that in the definition of �A, the infimum value may
not be “witnessed” by the value of A at any accessible world. If we restrict to
worlds where this is always the case, i.e., by insisting that every infimum is a
minimum, then we get a different “witnessed” logic (see e.g. [15]). For example,
the formula �¬¬p → ¬¬�p (considered in [6]) is valid in the witnessed logic,

268 G. Metcalfe and N. Olivetti

(A1) A→ (B → A) (A8) (A→ B)→ ((C → A)→ (C → B))
(A2) (A ∧B)→ A (A9) (A→ (B → C))→ (B → (A→ C))
(A3) (A ∧B)→ B (A10) ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)
(A4) A→ (B → (A ∧B)) (A11) (A→ (B → C))→ ((A ∧B)→ C)
(A5) ⊥ → A (A12) ((C → A) ∧ (C → B))→ (C → (A ∧B))
(A6) A→ (A ∨B) (A13) (A→ (A→ B))→ (A→ B)
(A7) B → (A ∨B) (A14) (A→ B) ∨ (B → A)

A A→ B
B

(mp)

Fig. 1. The Hilbert System HG

but not in GK�: just consider a Kripke model 〈N, R, V 〉 where Rmn holds for
all m, n ∈ N and V (p, n) = 1/(n + 1) for all n ∈ N. In fact, the formula is valid
in all Kripke models with a finite number of worlds, so the logic GK� does not
have the finite model property.

An axiomatization of GK� (and GKF
�

, since the valid formulas of these logics
coincide) is obtained by extending a standard axiomatization of Gödel logic such
as that presented in Fig. 1 with the usual K axiom schema and also a further
schema reflecting the fact, already implicit in classical logic, that V (¬¬A, w) = 0
if V (A, w) = 0 and 1 otherwise. More precisely, let HGK� be HG extended with:

(K�) �(A→ B)→ (�A→ �B)
(Z�) ¬¬�A → �¬¬A

and A
�A

(nec).

Completeness for this axiomatization was established using a counter-model con-
struction by Caicedo and Rodŕıguez in [6]:

Theorem 1 ([6]). |=GK� A iff |=GKF
�

A iff �HGK� A.

In what follows, we give an alternative proof of this theorem as a byproduct of
a completeness proof for a sequent of relations calculus for GK�.

3 A Sequent of Relations Calculus

A sequent of relations S is a finite set of ordered triples:

A1 �1 B1 | . . . | An �n Bn

where Ai and Bi are formulas and �i ∈ {<,≤} for i = 1 . . . n. We say that a
sequent of relations S is GK�-valid, written |=GK� S, if for all Kripke models
〈W, R, V 〉 and w ∈W : V (A, w) � V (B, w) for some (A � B) ∈ S.

Note that � ∈ {≤, <} is used here both syntactically, as a symbol in sequents
of relations, and semantically, for interpreting those sequents of relations. Let
us call a sequent of relations atomic if it contains only propositional variables

Proof Systems for a Gödel Modal Logic 269

Axioms:

S | A ≤ A
(id)

S | A ≤ �
(≤�)

S | ⊥ ≤ A
(⊥≤)

S | ⊥ < �
(<)

Structural Rules:

S | A ≤ B | C � D | A ≤ D S | A ≤ B | C � D | C ≤ B

S | A ≤ B | C � D
(com)

S | � ≤ ⊥
S

(≤)
S

S | A � B
(ew)

Logical Rules:

S | A � C | B � C

S | A ∧ B � C
(∧�)

S | C � A S | C � B

S | C � A ∧ B
(�∧)

S | A � C S | B � C

S | A ∨ B � C
(∨�)

S | C � A | C � B

S | C � A ∨ B
(�∨)

S | B < A S | B < C

S | A → B < C
(→<)

S | A ≤ B | C < B S | C < �
S | C < A → B

(<→)

S | � ≤ C | B < A S | B ≤ C

S | A → B ≤ C
(→≤)

S | A ≤ B | C ≤ B

S | C ≤ A → B
(≤→)

Fig. 2. The Sequent of Relations Calculus SG

or constants, and propositional if it contains no occurrences of �. In Fig. 2, we
present a sequent of relations calculus SG for G consisting of logical rules taken
from [4] and some additional axioms and structural rules (based on similar calculi
for G presented in [16]) for deriving valid atomic sequent of relations. As shown
e.g. in [16], an atomic sequent of relations S is valid iff there exists (ai�iai+1) ∈ S
for i = 1 . . . n such that one of the following holds:

1. a1 = an+1 or a1 = ⊥ or an+1 = �, where �i is ≤ for some i ∈ {1, . . . , n}.
2. a1 = ⊥ and an+1 = �.

It is an easy induction to show that an atomic sequent of relations S is valid
iff it is derivable using the axioms and structural rules of SG (see e.g. [16] for
very similar proofs). Since also the logical rules of SG are sound and invertible
(see e.g. [16]), it follows that:

Theorem 2. |=GK� S iff �SG S for any propositional sequent of relations S.

The sequent of relations calculus SGK� consists of SG extended with the rules:

A1 ≤ B | . . . | An ≤ B | C1 ≤ ⊥ | . . . | Cm ≤ ⊥
S | �A1 ≤ �B | . . . | �An ≤ �B | �C1 ≤ ⊥ | . . . | �Cm ≤ ⊥ (�)

(n ≥ 1, m ≥ 0)

S | A ≤ B | �� ≤ B

S | A ≤ B
(wl)

S | A ≤ B | A ≤ ⊥
S | A ≤ B

(wr)

Note that the rather ugly “weakening” rules (wl) and (wr) allow us to work
backwards from relations of the form A ≤ �B and �A ≤ B to �� ≤ �B and
�A ≤ ⊥, respectively, so that they fit the format of the rule (�).

270 G. Metcalfe and N. Olivetti

Example 1. Consider the following derivation of a sequent of relations corre-
sponding to the K axiom schema �(A → B)→ (�A→ �B):

A ≤ B | B < A | A ≤ A
(id)

A ≤ B | B < A | B ≤ B
(id)

A ≤ B | B < A
(com)

A ≤ B | � ≤ B | B < A
(ew)

A ≤ B | B ≤ B
(id)

A ≤ B | A→ B ≤ B
(→≤)

�A ≤ �B | �(A→ B) ≤ �B
(�)

�(A→ B) ≤ �A→ �B
(≤→)

�(A→ B) ≤ �A→ �B | � ≤ �A→ �B
(ew)

� ≤ �(A→ B)→ (�A→ �B)
(≤→)

Theorem 3. If �SGK� S, then |=GK� S.

Proof. The proof is a standard induction on the height of a derivation of S
in SGK�; the only significantly new case is to establish the soundness of (�).
Suppose that there is a counter-model K = 〈W, R, V 〉 for the conclusion. I.e. for
some w ∈ W : V (�Ai, w) > V (�B, w) for i = 1 . . . n and V (�Cj , w) > 0 for
j = 1 . . .m. Then there must be a world w′ accessible to w where V (Ai, w

′) >
V (B, w′) for i = 1 . . . n. Moreover, since V (�Cj , w) �= 0, we must also have
V (Cj , w

′) > 0 for j = 1 . . .m as required. ��
Completeness is of course more complicated. Notice first that all the logical
rules (as proved in [4]), (com), (wl), and (wr) are invertible in the sense that
if the conclusion is GK�-valid, then so are the premises. Hence applying the
logical rules backwards to a GK�-valid sequent of relations results in GK�-valid
sequent of relations containing only modal formulas and atoms. Let us call a
sequent of relations S containing only modal formulas and atoms saturated if
whenever S occurs as the conclusion of (com), (≤), (wl), or (wr), then S also
occurs as one of the premises. In other words, the sequent of relations is “closed”
under applications of these rules. Moreover, since sequents of relations are sets
of pairs of formulas, there is a finite number that can be obtained by applying
the rules backwards to any given sequent of relations. Hence easily:

Lemma 1. Every sequent of relations S is derivable from a set of saturated
sequent of relations S1, . . . ,Sn using the logical rules, (com), (≤), (wl), and
(wr), and if |=GK� S, then |=GK� Si for i = 1 . . . n.

The challenge now is to show that a valid saturated sequent of relations S is
derivable. Our strategy will be to use Lemmas 2 and 4 to show that either S is
derivable using just the rules of SG or the part of S containing only relations
of the form �A ≤ �B and �C ≤ ⊥ is itself valid. For the latter case, S is
derivable using (�) from a less complex sequent of relations that is proved valid
in Lemma 5. An inductive argument then completes the proof.

Let us say that a formula occurs in a sequent of relations if it occurs as the
left or right side of one of the relations. Then a sequent of relations is said to be
propositionally GK�-valid if the sequent of relations obtained by replacing each
occurrence of a modal formula �A with a variable pA is GK�-valid.

Proof Systems for a Gödel Modal Logic 271

Lemma 2. Let S | S′ be saturated where S contains only relations of the form
�A��B, �A ≤ ⊥, �A < �, and ⊥ < �B, and S′ contains no relations of this
form. If |=GK� S | S′, then either S | S′ is propositionally GK�-valid or |=GK� S.

Proof. Proceeding contrapositively, suppose that �|=GK� S and S | S′ is not
propositionally GK�-valid. Then for some model K = 〈W, R, V 〉 and w ∈W :

(1) V (�A, w) �� V (�B, w) for all (�A � �B) ∈ S.
(2) V (�A, w) > 0 for all (�A ≤ ⊥) ∈ S.
(3) V (�A, w) = 1 for all (�A < �) ∈ S.
(4) V (�B, w) = 0 for all (⊥ < �B) ∈ S.

For each �A occurring in S | S′, let us add a constant cA to the language so
that for any model 〈W ′, R′, V ′〉 and world x ∈ W ′:

V ′(cA, x) = V (�A, w).

Let (S | S′)P be S | S′ with each �A occurring in S | S′ replaced by cA.

Claim: �|=GK� (S | S′)P .

The result follows from this claim. Let v : Var → [0, 1] be the propositional
counter-valuation for (S | S′)P . Define K ′ = 〈W ∪ {w0}, R′, V ′〉 where:

1. R′ = R ∪ {(w0, w
′) : (w, w′) ∈ R}.

2. V ′ is V extended with V ′(p, w0) = v(p) for all variables p.

Then V ′(�A, w0) = V (�A, w) for all �A occurring in S | S′. So, since v is a
counter-valuation for (S | S′)P , we have �|=GK� S | S′ as required.

Proof of claim. Proceeding by contraposition, suppose that |=GK� (S | S′)P .
Then using (1)-(4), |=GK� (S′)P . By saturation, there are several possibilities:

(i) (S′)P contains a ≤ a or ⊥ ≤ a or a ≤ � or ⊥ < �. But then S′ is
propositionally GK�-valid, a contradiction.

(ii) (S′)P contains cC �cD or cC < � or ⊥ < cD. But then S′ contains �C��D
or �C < � or ⊥ < �D, a contradiction.

(iii) (S′)P contains a ≤ cD and V (�D, w) = 1. But then by (wl), S contains
�� ≤ �D and V (�D, w) < 1, a contradiction.

(iv) (S′)P contains cC ≤ a and V (�C, w) = 0. But then by (wr), S contains
�C ≤ ⊥ and V (�C, w) > 0, a contradiction. ��

The next step is to remove relations involving strict inequalities. We make use of
the following scaling lemmas, easily proved by induction on formula complexity.

Lemma 3. Let K = 〈W, R, V 〉 be a model and c ∈ (0, 1).

(a) Let K ′ = 〈W, R, V ′〉 where for each variable p and x ∈W :

V ′(p, x) =

{
1 if V (p, x) ≥ c

V (p, x) otherwise.

272 G. Metcalfe and N. Olivetti

Then for all x ∈ W and every formula A:

V ′(A, x) =

{
1 if V (A, x) ≥ c

V (A, x) otherwise.

(b) Let K ′ = 〈W, R, V ′〉 where 0 < a < b < 1 and for each variable p and x ∈W :

V ′(p, x) =

{
a + c(V (p, x)− a) if V (p, x) ∈ (a, b]
V (p, x) otherwise.

Then for all x ∈ W and every formula A:

V ′(A, x) =

{
a + c(V (A, x) − a) if V (A, x) ∈ (a, b]
V (p, x) otherwise.

Lemma 4. Let S | F < G be saturated and contain only relations of the form
�A � �B, �A ≤ ⊥, �A < �, and ⊥ < �B. If |=GK� S | F < G, then |=GK� S.

Proof. Let us consider just the case where F < G is of the form �A < �B,
since the other cases are very similar. Proceeding contrapositively, suppose that
�|=GK� S. Hence there is a model K = 〈W, R, V 〉 and w ∈W such that:

(1) V (�C, w) �� V (�D, w) for all (�C � �D) ∈ S.
(2) V (�C, w) > 0 for all (�C ≤ ⊥) ∈ S.
(3) V (�C, w) = 1 for all (�C < �) ∈ S.
(4) V (�D, w) = 0 for all (⊥ < �D) ∈ S.

If V (�A, w) ≥ V (�B, w), then �|=GK� S | �A < �B as required, so assume that:

(5) V (�A, w) < V (�B, w).

Since S | F < G is saturated, for each (�C ≤ �D) ∈ S:

either (�C ≤ �B) ∈ S and, by (1), V (�C, w) > V (�B, w)

or (�A ≤ �D) ∈ S and, by (1), V (�A, w) > V (�D, w)

and in particular:

(6) V (�A, w) ≤ V (�D, w) < V (�C, w) ≤ V (�B, w) is not possible.

We have two cases:

(i) Suppose that V (�B, w) < 1. Then using Lemma 3 (b), we define for each
i ∈ Z+, a counter-model Ki = 〈Wi, Ri, Vi〉 where:
1. 〈Wi, Ri〉 is a copy of 〈W, R〉 with distinct worlds for each i ∈ Z+ and wi

is the corresponding copy of w.
2. For all formulas E satisfying Vi(�A, wi) < Vi(E, wi) ≤ Vi(�B, wi):

Vi(�A, wi) < Vi(E, wi) < V (�A, wi) + 1/i.
Now we define a model K ′ = 〈W ′, R′, V ′〉 where:

Proof Systems for a Gödel Modal Logic 273

1. W ′ = {w0} ∪
⋃

i∈Z+ Wi.
2. R′ = {(w0, w

′) : (wi, w
′) ∈ Vi for some i ∈ Z+} ∪

⋃
i∈Z+ Ri.

3. V ′(p, x) = Vi(p, x) for all x ∈Wi and V ′(p, w0) = 0.
But then: V ′(�B, w0) = inf({1} ∪ {V ′(B, w′) : R′w0w

′})
= inf{Vi(�B, wi) : i ∈ Z+}
= V ′(�A, w0).

If V (C, w)≥V (D, w) for some �C <�D∈S, then V ′(�C, w0)≥V ′(�D, w0).
If �C ≤ �D ∈ S, then by (6), it follows that V ′(�C, w0) > V ′(�D, w0).

(ii) Now suppose that V (�B, w) = 1. Then using Lemma 3 (a), we obtain a
model K ′ = 〈W, R, V ′〉 where V ′(�A, w) = V ′(�B, w) = 1. As in case (i),
again by (6), the other inequalities required are not affected. ��

Lemma 5. Suppose that |=GK� {�Ai ≤ �Bi}n
i=1 | {�Cj ≤ ⊥}m

j=1. Then |=GK�∧
i∈I Ai ≤

∧
i∈I Bi | {Cj ≤ ⊥}m

j=1 for some ∅ ⊂ I ⊆ {1, . . . , n}.

Proof. We argue by contraposition; i.e., suppose that:

�|=GK�

∧
i∈I

Ai ≤
∧
i∈I

Bi | {Cj ≤ ⊥}m
j=1 for all ∅ ⊂ I ⊆ {1, . . . , n}.

We obtain a model for each i ∈ {1, . . . , n} as follows. By assumption:

�|=GK� Ai ∧ . . . ∧An ≤ Bi ∧ . . . ∧Bn | {Cj ≤ ⊥}m
j=1.

So we have Ki = 〈Wi, Ri, Vi〉 and xi ∈Wi (with each Wi distinct) such that:

Vi(Ai∧ . . .∧An, xi) > Vi(Bi∧ . . .∧Bn, xi) and Vi(Cj) > 0 for j = 1 . . .m.

Moreover, without loss of generality we can assume:

Vi(Bi, xi) ≤ Vi(Bk, xi) and so Vi(Ak, xi) > Vi(Bi, xi) for k = i . . . n.

Now using Lemma 3, we define iteratively K ′
i = 〈Wi, Ri, V

′
i 〉 for i = n . . . 1 such

that for j = i . . . n:

(1) V ′j (Bj , xj) < Vk(Aj , xk) for k = 1 . . . i− 1.
(2) V ′j (Bj , xj) < V ′k(Aj , xk) for k = i . . . n.
(3) V ′j (Ck, xj) > 0 for k = 1 . . .m.

We achieve this by scaling the interval [0, Vi(Bi, xi)] (if necessary) to the smaller
interval [0, V ′i (Bi, xi)] so that (1) and (2) hold with j replaced by i. Now consider
j ∈ {i, . . . , n}. Clearly V ′i (Bj , xj) ≤ Vi(Bj , xj). Moreover, since Vi(Aj , xi) >
Vi(Bi, xi), also V ′i (Aj , xi) = Vi(Aj , xi) > V ′j (Bj , xj) as required.

Finally, we define a model K = 〈W, R, V 〉 where for a new world w0:

1. W = W1 ∪ . . . ∪Wn ∪ {w0}.
2. R = R1 ∪ . . . ∪Rn ∪ {(w0, w) : (xi, w) ∈ Ri for some i ∈ {1, . . . , n}}.
3. V (p, x) = V ′i (p, x) for all x ∈Wi and V (p, w0) = 0.

274 G. Metcalfe and N. Olivetti

Then by (1)-(3) above, V (�Bi, x0) = V (Bi, xi) < V (�Ai, x0) for i = 1 . . . n and
V (�Ck, x0) > 0 for k = 1 . . .m as required. ��
Theorem 4 (Completeness). If |=GK� S, then �SGK� S.

Proof. We prove the theorem by induction on the modal degree of the sequent
of relations S: the maximal complexity of a boxed subformula occurring in S. If
the modal degree is 0, then S is propositional and SGK�-derivable. Otherwise,
by Lemma 1 (since working upwards, the rules do not increase modal degree),
we can assume that S is both GK�-valid and saturated. If S is propositionally
GK�-valid, then it is derivable. Otherwise, by Lemmas 2 and 4, S is of the form:

S′ | {�Ai ≤ �Bi}n
i=1 | {�Cj ≤ ⊥}m

j=1

and |=GK� {�Ai ≤ �Bi}n
i=1 | {�Cj ≤ ⊥}m

j=1. But then by Lemma 5:

|=GK�

∧
i∈I

Ai ≤
∧
i∈I

Bi | {Cj ≤ ⊥}m
j=1 for some ∅ ⊂ I ⊆ {1, . . . , n}.

Let us assume without loss of generality that I = {1, . . . , n}. Then also:

|=GK� {Ai ≤ Bk}n
i=1 | {Cj ≤ ⊥}m

j=1 for k = 1 . . . n.

So by the induction hypothesis and an application of (�):

�SGK S′ | {�Ai ≤ �Bk}n
i=1 | {�Cj ≤ ⊥}m

j=1 for k = 1 . . . n.

But then S is derivable by repeated applications of (com). ��
We can use SGK� to give an alternative completeness proof for the axiomatiza-
tion HGK� with respect to both standard and fuzzy Kripke frames (Theorem 1).

Corollary 1. |=GK� A iff |=GKF
�

A iff �HGK� A.

Proof. First notice that the soundness proof for SGK� can be adjusted to prove
soundness for fuzzy frames: i.e., if �SGK� S, then |=GKF

�
S. But then it follows

from the completeness proof (the other direction is trivial) that |=GKF
�
S iff

|=GK� S. Now consider the following interpretation of sequent of relations:

I({Ai < Bi}n
i=1 | {Cj ≤ Dj}m

j=1) =
n∧

i=1

(Bi → Ai)→
m∨

j=1

(Cj → Dj).

It is easily shown that |=GK� S iff |=GK� I(S). Hence to establish completeness
for HGK�, it is sufficient to show that for each rule S1, . . . ,Sn / S of SGK�,
whenever �HGK� I(Si) for i = 1 . . . n, also �HGK� I(S). This is straightforward
for the propositional rules and easy for the weakening rules, so let us just consider
�. We show the simplified case that if �HGK� (A → B) ∨ ¬C, then �HGK�
(�A → �B) ∨ ¬�C. Note first that �HG (¬¬F → G) ↔ (G ∨ ¬F). Hence if
�HGK� (A→ B)∨¬C, then �HGK� ¬¬C → (A→ B). But then by (nec), �HGK�
�(¬¬C → (A → B)) and using (K�), �HGK� �¬¬C → (�A → �B). Now,
using (Z�), �HGK� ¬¬�C → (�A→ �B). But then �HGK� (�A→ �B)∨¬�C
as required. ��

Proof Systems for a Gödel Modal Logic 275

Theorem 5. The GK�-validity problem for GK� is PSPACE-complete.

Proof. First we show that GK� is PSPACE-hard. We recall that the modal logic
K is PSPACE-complete (see e.g. [7]). Consider the translation ∗ sending each
propositional variable p to its double negation ¬¬p. We can easily show that
|=K A iff |=GK� A∗ which establishes that GK� must also be PSPACE-hard. For
the non-trivial direction consider any GK model M = 〈W, R, V 〉 and define a K
model M ′ = 〈W, R, V ′〉 by stipulating: V ′(p, w) = V (¬¬p, w). Then by a simple
induction, V ′(C, w) = V (C∗, w) ∈ {0, 1} for any formula C. Thus if �|=GK� A∗,
then there is a K model M where A is not valid.

For PSPACE-inclusion, we consider the sequent of relations calculus SGK�.
Given a formula A, let Sub(A) be the set of subformulas of A together with the
formulas �, ��,⊥, �⊥, and consider the set

ΦA = {C � D : C, D ∈ Sub(A), � ∈ {<,≤}}.

The cardinality of ΦA is O(|A|2). Since any sequent of relations appearing in a
derivation of � ≤ A is a subset of ΦA, its size is also O(|A|2).

We now consider the length of branches in the search for an SGK�-derivation
of � ≤ A. Using the invertibility of the logical rules we assume that any branch
of a derivation is expanded by applying iteratively the rules upwards in the
following order:

(1) Apply the logical rules, (wl), (wr), (≤), and (com) in order to obtain a
saturated sequent and check the axioms.

(2) Apply (�) and restart from (1) with the premise of this rule.

The length of the branch built in (1) is O(|A|2) since each logical rule replaces
one relation with one or two relations involving formulas of smaller complexity,
and each application of (wl), (wr), (≤), and (com) add exactly one relation
at a time, with the total number of different relations possible being O(|A|2).
The sequent obtained in (2) by applying (�) has a smaller or equal number of
relations and a strictly smaller modal degree. The entire length of a proof branch
is hence bounded by O(|A|2 ×m) = O(|A|3), where m is the modal degree of A.

Thus storing a branch of a proof requires only polynomial space. Moreover,
the branching is at most binary. As usual, we search for a proof in a depth-first
manner: we store one branch at a time together with some information (requiring
a small amount of space, say logarithmic space) to reconstruct branching points
and backtracking points, the latter determined by alternative applications of
(�). Hence the total amount of space needed for carrying out proof search is
polynomial in the size of A, and so deciding validity for GK� is in PSPACE. ��

4 A Hypersequent Calculus

Hypersequents were introduced by Avron in [1] as a generalization of Gentzen
sequents that allow disjunctive or parallel forms of reasoning. Instead of a single
sequent, there is a collection of sequents that can be “worked on” simultaneously.

276 G. Metcalfe and N. Olivetti

Initial Hypersequents

G | A ⇒ A
(id)

G | Γ,⊥ ⇒ Δ
(⊥⇒)

G | Γ ⇒ �
(⇒�)

Structural Rules

G
G | H

(ew)

G | H | H
G | H

(ec)

G | Γ1, Π1 ⇒ Δ1 G | Γ2, Π2 ⇒ Δ2

G | Γ1, Γ2 ⇒ Δ1 | Π1, Π2 ⇒ Δ2
(com)

G | Γ ⇒ Δ

G | Γ, A ⇒ Δ
(wl)

G | Γ ⇒
G | Γ ⇒ A

(wr)

G | Γ, A, A ⇒ Δ

G | Γ, A ⇒ Δ
(cl)

Logical Rules

G | Γ1 ⇒ A G | Γ2, B ⇒ Δ

G | Γ1, Γ2, A → B ⇒ Δ
(→⇒)

G | Γ, A ⇒ B

G | Γ ⇒ A → B
(⇒→)

G | Γ, A ⇒ Δ

G | Γ, A ∧ B ⇒ Δ
(∧⇒)1

G | Γ, B ⇒ Δ

G | Γ, A ∧ B ⇒ Δ
(∧⇒)2

G | Γ ⇒ A G | Γ ⇒ B

G | Γ ⇒ A ∧ B
(⇒∧)

G | Γ, A ⇒ Δ G | Γ, B ⇒ Δ

G | Γ, A ∨B ⇒ Δ
(∨⇒)

G | Γ ⇒ A

G | Γ ⇒ A ∨ B
(⇒∨)1

G | Γ ⇒ B

G | Γ ⇒ A ∨B
(⇒∨)2

Cut Rule
G | Γ1, A ⇒ Δ G | Γ2 ⇒ A

G | Γ1, Γ2 ⇒ Δ
(cut)

Fig. 3. The Gentzen System GG

More precisely, we define a sequent S here as an ordered pair consisting of a finite
multiset Γ of formulas and a multiset Δ containing at most one formula, written
Γ ⇒ Δ, and a hypersequent G as a non-empty finite multiset of sequents, written
Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn or sometimes, for short, as [Γi ⇒ Δi]ni=1. By taking
multisets of formulas and sequents rather than sequences (as used e.g. by Avron
in [1]) or sets we ensure that the multiplicity but not the order of elements is
important. We interpret sequents and hypersequents as follows (recalling that∧

[] =def � and
∨

[] =def ⊥):

I(Γ ⇒ Δ) =def

∧
Γ →
∨

Δ I(S1 | . . . | Sn) =def I(S1) ∨ . . . ∨ I(Sn).

Hypersequent calculi admitting cut-elimination have been defined for a wide
range of fuzzy logics (for details see [16]). In particular, the first example of
such a system was the calculus GG defined for Gödel logic by Avron in [2] (see
also [3,16]). We extend this system, presented in Figure 3 with an adapted version
of the usual Gentzen rule for K. GGK� is GG extended with:

Π ⇒| Γ ⇒ A

�Π ⇒| �Γ ⇒ �A
(�)

Rules for the defined negation ¬A =def A → ⊥ are derivable in GGK�:

G | Γ ⇒ A

G | Γ,¬A⇒ (¬⇒)
G | Γ, A⇒
G | Γ ⇒ ¬A

(⇒¬)

Proof Systems for a Gödel Modal Logic 277

It will also be helpful (e.g. in proving cut-elimination) to consider a generalization
of the rule (�), derivable using (com), (�), (cl), and (wl):

Π1 ⇒| . . . | Πn ⇒| Γ ⇒ A

�Π1 ⇒| . . . | �Πn ⇒| �Γ ⇒ �A
(�)∗

(n ∈ N)

Example 2. All the axioms of HGK� are derivable in GGK�; e.g. for (Z�):

A⇒ A
(id)

A,¬A⇒ (¬⇒) A⇒ A
(id)

A,¬A⇒ (¬⇒)

A, A⇒| ¬A,¬A⇒ (com)

A, A⇒| ¬A⇒ (cl)

A⇒| ¬A⇒ (cl)

A⇒|⇒ ¬¬A
(⇒¬)

�A⇒|⇒ �¬¬A
(�)

⇒ ¬�A |⇒ �¬¬A
(⇒¬)

¬¬�A⇒|⇒ �¬¬A
(¬⇒)

¬¬�A⇒| ¬¬�A⇒ �¬¬A
(wl)

¬¬�A⇒ �¬¬A | ¬¬�A⇒ �¬¬A
(wr)

¬¬�A⇒ �¬¬A
(ec)

⇒ ¬¬�A→ �¬¬A
(→⇒)

Theorem 6. �GGK� G iff �HGK� I(G) iff |=GK� I(G) iff |=GKF
�

I(G).

Proof. If �HGK� I(G), then �GGK� G, since (1) all the axioms of HGK� are
derivable in GGK� and the rules are admissible, and (2) �GGK� G iff �GGK�
I(G) (proved as for GG in [16]). Moreover, to show that �GGK� G implies |=GK�
I(G), we need only show that the rules of GGK� are sound with respect to the
semantics, the new case of (�) following exactly as in the proof of Theorem 3. All
other implications follow from Theorem 1 (also proved using the completeness
of SGK� as Corollary 1). ��

We now show that cut-elimination holds for GGK�, i.e., that there is a construc-
tive procedure for transforming a derivation of a hypersequent G in this calculus
into a derivation of G with no applications of (cut). We write d �S X to denote
that d is a derivation of some structure X in a calculus S and |d| for the height
of the derivation considered as a tree. We also recall that the principal formula
of an application of a rule is the distinguished formula in the conclusion and
that the cut-formula of an application of (cut) is the formula appearing in the
premises but not the conclusion.

Theorem 7. Cut-elimination holds for GGK�.

Proof. Let GGK◦
�

be GGK� with (cut) removed. Then to establish cut-
elimination for GGK� it is sufficient to give a constructive proof of the following:

Claim. If d1 �GGK◦
�

[Γi, [A]λi ⇒ Δi]ni=1 and d2 �GGK◦
�
H | [Πj ⇒ A]mj=1,

then �GGK◦
�
H | [Γi, Π

λi

j ⇒ Δi]
j=1...m
i=1...n .

278 G. Metcalfe and N. Olivetti

We proceed by induction on the lexicographically ordered pair 〈|A|, |d1|+ |d2|〉.
If the last step in either derivation is an initial hypersequent, then the result fol-
lows almost immediately. Also, if the last step in either derivation is not (�) or
does not have the cut-formula as the principal formula, then the result follows by
applications of the induction hypothesis to the premises and applications of the
same rule and structural rules. Suppose for example that one of the derivations
ends with an application of (com) (the other derivation may end with (�)):

G | Γ ′
1, Γ

′
2, [A]λ

′
1+λ′

2 ⇒ Δ1 G | Γ ′′
1 , Γ ′′

2 , [A]λ
′′
1 +λ′′

2 ⇒ Δ2

G | Γ ′
1, Γ

′′
1 , [A]λ

′
1+λ′′

1 ⇒ Δ1 | Γ ′
2, Γ

′′
2 , [A]λ

′
2+λ′′

2 ⇒ Δ2

where G = [Γi, [A]λi ⇒ Δi]ni=3. Then by the induction hypothesis twice:

�GGK◦
�
H′ | [Γ ′1, Γ ′2, Π

λ′
1+λ′

2
j ⇒ Δ1]mj=1 �GGK◦

�
H′ | [Γ ′′1 , Γ ′′2 , Π

λ′′
1 +λ′′

2
j ⇒ Δ2]mj=1

where H′ = H | [Γi, Π
λi

j ⇒ Δi]
j=1...m
i=3...n . The required hypersequent:

H′ | [Γ ′1, Π
λ′
1+λ′′

1
j , Γ ′′1 ⇒ Δ1]mj=1 | [Γ ′2, Π

λ′
2+λ′′

2
j , Γ ′′2 ⇒ Δ2]mj=1

is derivable by repeated applications of (com), (ec), and (ew).
If a distinguished occurrence of A is the principal formula in both derivations

and of the form B ∧ C, B ∨ C, or B → C, then we can first use the induction
hypothesis applied to the premises in one derivation and the conclusion in the
other, and then apply the induction hypothesis again with cut-formulas B and
C of smaller complexity. The result follows using applications of (ec) and/or
(ew) as required. Consider then the hardest case where both derivations d1 and
d2 end as follows with an application of (�) and A is of the form �B:

...
Γ1, [B]λ1 ⇒| Γ2, [B]λ2 ⇒ C

�Γ1, [�B]λ1 ⇒| �Γ2, [�B]λ2 ⇒ �C
(�)

...
Σ ⇒| Π ⇒ B

�Σ ⇒| �Π ⇒ �B
(�)

Then since |B| < |�B|, we can apply the induction hypothesis to the GGK◦
�

-
derivable hypersequents Γ1, [B]λ1 ⇒| Γ2, [B]λ2 ⇒ C and Σ ⇒| Π ⇒ B to
obtain a GGK◦

�
-derivation of Σ ⇒| Γ1, Π

λ1 ⇒| Γ2, Π
λ2 ⇒ C. Hence by an

application of the derived rule (�)∗, we obtain a GGK◦
�

-derivation ending with
�Σ ⇒| �Γ1, �Πλ1 ⇒| �Γ2, �Πλ2 ⇒ �C as required. ��

Concluding Remark. In this paper, we have introduced sequent of relations
and hypersequent calculi and established PSPACE completeness for a basic
Gödel modal logic. Our broader goal is to extend these results to classes of modal
fuzzy logics. Certain Gödel modal logics with accessibility relations that are tran-
sitive, reflexive, symmetric, etc. (giving e.g. K4 and S4 versions of the logic) are
axiomatized in [6] and in these cases, it is a straightforward task to develop cor-
responding hypersequent calculi extending GGK� that admit cut-elimination.
However, a general treatment incorporating more complicated modal conditions

Proof Systems for a Gödel Modal Logic 279

will require more expressive formalisms such as display calculi or labelled se-
quents/tableaux as is already the case for classical modal logics. Another task,
important in connection with fuzzy description logics, is to develop calculi to
deal with logics equipped also with the modality ♦. Although similar methods
to those developed for the single modality should work, the logics based on
standard and fuzzy Kripke frames diverge and require different rules.

References

1. Avron, A.: A constructive analysis of RM. Journal of Symbolic Logic 52(4), 939–
951 (1987)

2. Avron, A.: Hypersequents, logical consequence and intermediate logics for concur-
rency. Annals of Mathematics and Artificial Intelligence 4(3–4), 225–248 (1991)

3. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics:
a survey. Journal of Logic and Computation 13, 1–27 (2003)

4. Baaz, M., Fermüller, C.G.: Analytic calculi for projective logics. In: Murray, N.V.
(ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 36–50. Springer, Heidelberg
(1999)

5. Bou, F., Esteva, F., Godo, L., Rodŕıguez, R.: On the minimum many-valued logic
over a finite residuated lattice (manuscript)

6. Caicedo, X., Rodŕıguez, R.: A Gödel modal logic (manuscript)
7. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford

(1996)
8. Ciabattoni, A., Metcalfe, G., Montagna, F.: Adding modalities to MTL and its

extensions. In: Proceedings of the 26th Linz Symposium (to appear)
9. Dummett, M.: A propositional calculus with denumerable matrix. Journal of Sym-

bolic Logic 24, 97–106 (1959)
10. Dyckhoff, R.: A deterministic terminating sequent calculus for Gödel-Dummett

logic. Logic Journal of the IGPL 7(3), 319–326 (1999)
11. Fitting, M.C.: Many-valued modal logics. Fundamenta Informaticae 15(3-4), 235–

254 (1991)
12. Fitting, M.C.: Many-valued modal logics II. Fundamenta Informaticae 17, 55–73

(1992)
13. Gödel, K.: Zum intuitionisticschen Aussagenkalkül. Anzeiger Akademie der Wis-

senschaften Wien, mathematisch-naturwiss. Klasse 32, 65–66 (1932)
14. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
15. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Sys-

tems 154(1), 1–15 (2005)
16. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Applied

Logic, vol. 36. Springer, Heidelberg (2009)
17. Priest, G.: Many-valued modal logics: a simple approach. Review of Symbolic

Logic 1, 190–203 (2008)
18. Sonobe, O.: A Gentzen-type formulation of some intermediate propositional logics.

Journal of Tsuda College 7, 7–14 (1975)
19. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-

ligence Research 14, 137–166 (2001)
20. Wolter, F.: Superintuitionistic companions of classical modal logics. Studia Log-

ica 58(2), 229–259 (1997)
21. Zhang, Z., Sui, Y., Cao, C., Wu, G.: A formal fuzzy reasoning system and rea-

soning mechanism based on propositional modal logic. Theoretical Computer Sci-
ence 368(1-2), 149–160 (2006)

Generic Modal Cut Elimination Applied to
Conditional Logics

Dirk Pattinson1, and Lutz Schröder2,

1 Department of Computing, Imperial College London
2 DFKI Bremen and Department of Computer Science, Universität Bremen

Abstract. We develop a general criterion for cut elimination in sequent
calculi for propositional modal logics, which rests on absorption of cut,
contraction, weakening and inversion by the purely modal part of the rule
system. Our criterion applies also to a wide variety of logics outside the
realm of normal modal logic. We give extensive example instantiations
of our framework to various conditional logics. For these, we obtain fully
internalised calculi which are substantially simpler than those known in
the literature, along with leaner proofs of cut elimination and complex-
ity. In one case, conditional logic with modus ponens and conditional
excluded middle, cut elimination and complexity are explicitly stated as
open in the literature.

1 Introduction

Cut elimination, originally invented by Gentzen [5], is one of the core concepts of
proof theory and plays a major role in particular for algorithmic aspects of logic,
including the subformula property, the complexity of automated reasoning and,
via interpolation, modularity issues. The large number of logical calculi that are
currently in use, in particular in various areas of computer science, motivates
efforts to define families of sequent calculi that cover a variety of logics and admit
uniform proofs of cut elimination, enabled by suitable sufficient conditions. Here,
we present such a method for modal sequent calculi that applies to possibly non-
normal normal modal logics, which appear, e.g. in concurrency and knowledge
representation. We use a separation of the modal calculi into a fixed underlying
propositional part and a modal part; the core of our criterion is absorption
of cut by the modal rules. This concept generalises the notion of resolution
closed rule set [9,12], dropping the assumption that the logic at hand is rank-1,
i.e. axiomatised by formulas in which the nesting depth of modal operators is
uniformly equal to 1 (such as K).

Our method is reasonably simple and intuitive, and nevertheless applies to a
wide range of modal logics. While we use normal modal logics such as K and T
as running examples to illustrate our concepts at the time of introduction, our
� Partially supported by EPSRC grant EP/F031173/1.

�� Work performed as part of the DFG project Generic Algorithms and Complexity
Bounds in Coalgebraic Modal Logic (SCHR 1118/5-1).

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 280–294, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Generic Modal Cut Elimination Applied to Conditional Logics 281

main applications are conditional logics, which have a binary modal operator
read as a non-monotonic implication (unlike default logics, conditional logics al-
low nested non-monotonic implications). In particular, we prove cut-elimination
(hence, since the generic systems under consideration are analytic, the subfor-
mula property) for the conditional logics CK, CKMP, CKCEM, and CKMPCEM
using our generic procedure. An easy analysis of proof search in the arising cut-
free calculi moreover establishes that the satisfiability problem of each of these
logics is in PSPACE . This is a tight bound for CK and CKMP, whereas the
provability problem in extensions of CKCEM can be solved in coNP , as we show
by a slightly adapted algorithmic treatment of our calculus using a dynamic
programming approach in the spirit of [13]. We point out that while (different)
cut-free labelled sequent calculi for CK, CKMP, CKCEM, and some further con-
ditional logics, as well as the ensuing upper complexity bounds, have previously
been presented by Olivetti et al., the corresponding issues for CKMPCEM have
explicitly been left as open problems [8].

Related work. A set of sufficient conditions for a sequent calculus to admit cut
elimination and a subsequent analysis of the complexity of cut elimination (not
proof search) is presented in [10]. The range of application of this method is very
wide and encompasses, e.g. first-order logic, the modal logic S4, linear logic, and
intuitionistic propositional logic. This generality is reflected in the fact that the
method as a whole is substantially more involved than ours. A simpler method
for a different and comparatively restrictive class of calculi, so-called canonical
calculi, is considered in [1]; this method does not apply to typical modal systems,
as it considers only so-called canonical rules, i.e., left and right introduction rules
for connectives which permit adding a common context simultaneously in the
premise and the conclusion. (In fact, it might be regarded as the essence of
modal logic that its rules fail to be canonical, e.g. the necessitation rule A/�A
does not generalise to Γ, A/Γ, �A for a sequent Γ .) Moreover, the format of the
rules in op.cit. does not allow for the introduction of more than one occurrence
of a logical connective, which is necessary even for the most basic modal logics.
The same applies to [4]. In [3], logical rules are treated on an individual basis,
which precludes the treatment of cuts between two rule conclusions. Overall,
our notion of absorption is substantially more general when compared to similar
notions in the papers discussed above, which stipulate that cuts between left
and right rules for the same connective are absorbed by structural rules. In our
own earlier work [9], we have considered a special case of the method presented
here in the restricted context of rank-1 logics; in particular, these results did not
cover logics such as K4, CKMP, or CKMPCEM.

2 Preliminaries and Notation

A modal similarity type (or modal signature) is a set Λ of modal operators with
associated arities that we keep fixed throughout the paper. Given a set V of
propositional variables, the set F(Λ) of Λ-formulas is given by the grammar

F(Λ) . A, B ::= ⊥ | p | ¬A | A ∧B | ♥(A1, . . . , An)

282 D. Pattinson and L. Schröder

where p ∈ V and ♥ ∈ Λ is n-ary. We use standard abbreviations of the other
propositional connectives �, ∨ and →. A Λ-sequent is a finite multiset of Λ-
formulas, and the set of Λ-sequents is denoted by S(Λ). We write the multiset
union of Γ and Δ as Γ, Δ and identify a formula A ∈ F(Λ) with the sin-
gleton sequent containing only A. If S ⊆ F(Λ) is a set of formulas, then an
S-substitution is a mapping σ : V → S. We denote the result of uniformly sub-
stituting σ(p) for p in a formula A by Aσ. This extends pointwise to Λ-sequents
so that Γσ = A1σ, . . . , Anσ if Γ = A1, . . . , An. If S ⊆ F(Λ) is a set of Λ-formulas
and A ∈ F(Λ), we say that A is a propositional consequence of S if there exist
A1, . . . , An ∈ S such that A1 ∧ · · · ∧ An → A is a substitution instance of a
propositional tautology. We write S �PL A if A is a propositional consequence
of S and A �PL B for {A} �PL B for the case of single formulas.

3 Modal Deduction Systems

To facilitate the task of comparing the notion of provability in both Hilbert and
Gentzen type proof systems, we introduce the following notion of a proof rule
that can be used, without any modifications, in both systems.

Definition 1. A Λ-rule is of the form Γ1,...,Γn

Γ0
where n ≥ 0 and Γ0, . . . , Γn

are Λ-sequents. The sequents Γ1, . . . , Γn are the premises of the rule and Γ0 its
conclusion. A rule Γ0

without premises is called a Λ-axiom, which we denote by
just its conclusion, Γ0. A rule set is just a set of Λ-rules, and we say that a rule
set R is substitution closed, if Γ1σ . . . Γnσ/Γ0σ ∈ R whenever Γ1 . . . Γn/Γ0 ∈ R
and σ : V → F(Λ) is a substitution.

In view of the sequent calculi that we introduce later, we read sequents disjunc-
tively. Consequently, a rule Γ1, . . . , Γn/Γ0 can be used to prove the disjunction
Γ0, provided that

∨
Γi is provable, for all 1 ≤ i ≤ n. We emphasise that a rule

is an expression of the object language, i.e. it does not contain meta-linguistic
variables. As such, it represents a specific deduction step rather than a family
of possible deductions, which helps to economise on syntactic categories. In our
examples, concrete rule sets are presented as instances of rule schemas.

Example 2. For the modal logics K, K4 and T , we fix the modal signature
Λ = {�} consisting of a single modal operator � with arity one. The language
of conditional logic is given by the similarity type Λ = {⇒} where the conditional
arrow⇒ has arity 2. We use infix notation and write A⇒ B instead of⇒ (A, B)
for A, B ∈ F(Λ). Deduction over modal and conditional logics are governed by
the following rule sets:

1. The rule set K associated to the modal logic K consists of all instances of
the necessitation rule (N) and the distribution axiom (D) below.

(N)
A

�A
(D)�(A → B)→ (�A → �B) (4)��A→ �A (R)�A→ A

The rule sets for T and K4 arise by extending this set with the reflexivity axiom
(R) and the (4)-axiom, respectively. We reserve the name (T) for the reflexivity
rule in a cut-free system.

Generic Modal Cut Elimination Applied to Conditional Logics 283

2. Conditional logic, e.g. the system CK of [2] is axiomatised by the rule set
that consists of all instances of (RCEA) on the left, and (RCK) on the right below:

A ↔ A′

(A⇒ B) ↔ (A′ ⇒ B)
B1 ∧ · · · ∧Bn → B

(A ⇒ B1) ∧ · · · ∧ (A⇒ Bn)→ (A ⇒ B)

As additional axioms, we consider

(ID)A⇒ A (MP)(A ⇒ B)→ (A → B) (CEM)(A ⇒ B) ∨ (A⇒ ¬B)

that induce extensions of CK that we denote by juxtaposition of the respective
axioms, e.g. CKMPCEM contains the rules for CK and the axioms (MP) and
(CEM).

Rules with more than one premise arise through saturation of a given rule set
under cut that, e.g. leads to the rules (CKg) and (MPg) presented in Section 6.

The notion of deduction in modal Hilbert systems then takes the following form.

Definition 3. Suppose R is a set of rules. The set of R-derivable formulas in
the Hilbert-system given by R is the least set of formulas that

• contains Aσ whenever A is a propositional tautology and σ is a substitution
• contains B whenever it contains A and A→ B
• contains

∨
Γ0 whenever it contains

∨
Γ1, . . . ,

∨
Γn and Γ1...Γn

Γ0
∈ R.

We write HR � A if A is R-derivable.

In other words, the set of derivable formulas is the least set that contains propo-
sitional tautologies, is closed under uniform substitution, modus ponens and
application of rules. We will later consider Hilbert systems that induce the same
provability predicate based on the following notion of admissibility.

Definition 4. A rule set R′ is admissible in HR if HR � A ⇐⇒ H(R∪R′) � A
for all formulas A ∈ F(Λ). Two rule sets R, R′ are equivalent if R is admissible
in HR′ and R′ is admissible in HR.

In words, R′ is admissible in HR if adding the rules R′ to those of R leaves the
set of provable formulas unchanged. We note the following trivial, but useful
consequence of admissibility.

Lemma 5. HR � A iff HR′ � A if R and R′ are equivalent and A ∈ F(Λ).

The next proposition is concerned with the structure of proofs in Hilbert systems
and is the key for proving equivalence of Hilbert and Gentzen-type systems.

Proposition 6. The set HT(R) = {A ∈ F(Λ) | HR � A} is the smallest set
S of formulas that contains a formula A ∈ F(Λ) whenever there are rules
Θ1/Γ1, . . . , Θn/Γn ∈ R and substitutions σ1, . . . , σn : V → F(Λ) such that∨

Δσi ∈ S for all Δ ∈ Θi (i = 1, . . . , n) and {
∨

Γ1σ, . . . ,
∨

Γnσ} �PL A.

284 D. Pattinson and L. Schröder

In other words, in a modal Hilbert system, each provable formula is a proposi-
tional consequence of rule conclusions with provable premises. This result forms
the basis of our comparison of Hilbert and Gentzen systems, and we show that
cut elimination essentially amounts to the fact that – in the corresponding
Hilbert system – each valid formula is a consequence of a single rule conclu-
sion with provable premise.

We now set the stage for sequent systems that we are going to address in
the remainder of the paper. The notion of derivability in the sequent calculus
associated with a rule set R is formulated parametric in terms of a set X of
additional rules that will later be instantiated with relativised versions of cut,
weakening, contraction and inversion.

Definition 7. Suppose R and X are sets of Λ-rules. The set of RC+X-derivable
sequents in the Gentzen-system given by R is the least set of sequents that

• contains A,¬A, Γ for all sequents Γ ∈ S(Λ) and formulas A ∈ F(Λ)
• contains ¬⊥, Γ for all Γ ∈ S(Λ)
• is closed under instances of the rule schemas

Γ,¬A,¬B

Γ,¬(A ∧B)
Γ, A Γ, B

Γ, A ∧B

Γ, A

Γ,¬¬A

where A ∈ F(Λ) ranges over formulas and Γ ⊆ F(Λ) over multisets of formulas.
We call the above rules the propositional rules and the formula occurring in the
conclusion but not in Γ principal in the respective rule.
• is closed under the rules in R ∪ X, i.e. it contains Γ0 whenever it contains

Γ1, . . . , Γn for Γ1...Γn

Γ0
∈ R ∪ X.

We write GR + X � Γ if Γ can be derived in this way and GR � Γ if X = ∅.
The set X of extra rules will later be instantiated with a relativised version of
the cut rule and additional axioms that locally capture the effect of weakening,
contraction and inversion, applied to rule premises. This allows to formulate local
conditions for the admissibility of cut that can be checked on a per-rule basis.

Many other formulations of sequent systems only permit axioms of the form
Γ, p,¬p where p ∈ V is a propositional atom. The reason for being more liberal
here is that this makes it easier to prove admissibility of uniform substitution,
at the expense of loosing depth-preserving admissibility of structural rules. We
come back to this matter in Remark 12.

The following proposition is readily established by an induction on the prov-
ability predicate RH �.

Proposition 8. Suppose Γ ∈ S(Λ) is a sequent. Then RH �
∨

Γ if RG � Γ .

The remainder of the paper is concerned with the converse of the above propo-
sition, which relies on specific properties of the rule set R.

4 Generic Modal Cut Elimination

In order to establish the converse of Proposition 8 we need to establish that the
cut rule is admissible in the Gentzen system GR defined by the ruleset R. Clearly,

Generic Modal Cut Elimination Applied to Conditional Logics 285

we cannot expect that cut elimination holds in general: it is well known (and
easy to check) that the sequent system arising from the rule set consisting of all
instances of (N) and (D), presented in Example 2 does not enjoy cut elimination.
In other words, we have to look for constructions that allow us to transform a
given rule set into one for which cut elimination holds. The main result of our
analysis is that cut elimination holds if the rule set under consideration satisfies
four crucial requirements that are local in the sense that they can be checked on
a per-rule basis without the need of carrying out a fully-fledged cut-elimination
proof: absorption of weakening, contraction, inversion and cut.

The first three properties can be checked for each rule individually and amount
to the admissibility of the respective principle, and the last requirement amounts
to the possibility of eliminating cut between a pair of rule conclusions. We em-
phasise that these properties can be checked locally for the modal rules, and
cut elimination will follow automatically. It is not particularly surprising that
cut elimination holds under these assumptions. However, isolating the four con-
ditions above provides us with means to convert a modal Hilbert system into
an equivalent cut-free sequent calculus. We now introduce relativised versions of
the structural rules that will be the main tool in the proof of cut elimination.

Definition 9. Suppose Γ is a Λ-sequent and let A(Γ) consist of the axioms

• Γ, A for all A ∈ F(Λ)
• Δ, A if Γ = Δ, A, A for some Δ ∈ S(Λ), A ∈ F(Λ)
• Δ, A if Γ = Δ,¬¬A for some Δ ∈ S(Λ), A ∈ F(Λ)
• Δ,¬A1,¬A2 if Γ = Δ,¬(A1 ∧A2) for some Δ ∈ S(Λ), A1, A2 ∈ F(Λ)
• Δ, Ai for i = 1, 2 if Γ = Δ, (A1 ∧A2) for some Δ ∈ S(Λ), A1, A2 ∈ F(Λ)

We say that a rule set R absorbs the structural rules if

GR + A(Γ1) ∪ · · · ∪ A(Γn) � Γ

for all Γ1...Γn

Γ0
∈ R and all Γ ∈ A(Γ0).

In other words, a deduction step that applies weakening, contraction or inversion
to a rule conclusion can be replaced by a (possibly different) rule where the cor-
responding structural rules are applied to the premises. We discuss a number of
standard examples before stating that absorption of the structural rules implies
their admissibility.

Example 10. The rule sets containing all instances of either of the following
rule schemas (K), (T) and (K4)

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An, �A0, Γ

¬A,¬�A, Γ

¬�A, Γ

¬A1,¬�A1, . . . ,¬An,¬�An, B

¬�A1, . . . ,¬�An, �B, Γ

absorbs the structural rules. We note that (K) absorbs weakening due to the
presence of Γ in the conclusion, and the absorption of contraction in (T) and
(K4) is a consequence of the presence of the negated �-formulas in the premise.
The absorption of inversion in a consequence of the weakening context Γ in (K)

286 D. Pattinson and L. Schröder

and (K4) and implied by duplicating the context Γ in (T). On the other hand,
the rule sets defined by

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An, �A0

¬A, Γ

¬�A, Γ

fail to absorb the structural rules: the rule on the left fails to absorb weakening,
whereas the right-hand rule does not absorb contraction.

It should be intuitively clear that absorption of structural rules implies their
admissibility, which we establish next.

Proposition 11. Suppose R absorbs the structural rules. Then all instances of
the rule schemas of weakening, contraction and inversion

Γ

Γ, A

Γ, A, A

Γ, A

Γ,¬¬A

Γ, A

Γ,¬(A1 ∧A2)
Γ,¬A1,¬A2

Γ, A1 ∧A2

Γ, Ai
(i = 1, 2)

where Γ ∈ S(Λ) and A, A1, A2 ∈ F(Λ) are admissible in GR.

Remark 12

1. The main purpose for introducing the notion of absorption of structural
rules (Definition 9) is to have a handy criterion that guarantees admissibility of
the structural rules (Proposition 11). Our definition offers a compromise between
generality and simplicity. In essence, a rule set absorbs structural rules, if an
application of weakening, contraction or inversion can be pushed up one level of
the proof tree. A weaker version of Definition 9 would require that an application
of weakening, contraction or inversion to a rule conclusion can be replaced by a
sequence of deduction steps where the structural rule in question can not only be
applied to the premises of the rule, but also freely anywhere else, provided that
these additional applications are smaller in a well-founded ordering. However,
we are presently not aware of any examples where this extra generality would
be necessary.

2. In many Sequent systems, the statement of Proposition 11 can be strength-
ened to say that weakening, contraction and inversion are depth-preserving ad-
missible, i.e. does not increase the height of the proof tree. This is in general
false for the systems considered here as axioms are of the form A,¬A, Γ for
A ∈ F(Λ) and, for instance, (A∧B),¬(A∧B) is derivable with a proof of height
one (being an axiom), but, e.g. A∧B,¬A,¬B cannot be established by a proof
of depth one (not being an axiom). It is easy to see that weakening, inversion and
contraction are in fact depth-preserving admissible if only atomic axioms of the
form p,¬p, Γ are allowed, for p ∈ V a propositional variable. The more general
form of axioms adopted in this paper allows us to simplify many constructions
as we do not have to consider a congruence rule explicitly which would allow us
to prove (rather than to assume as axioms) sequents of the form �A,¬�A, Γ .

Having dealt with the structural rules, we now address our main concern: the
admissibility of the cut rule. In contrast to the absorption of structural rules,
we need one additional degree of freedom in that we need to allow ourselves to
apply cut to a structurally smaller formula.

Generic Modal Cut Elimination Applied to Conditional Logics 287

Definition 13. The size of a formula A ∈ F(Λ) is given inductively by size(p) =
size(⊥) = 1, size(A∧B) = size(A∨B) = 1+ size(A)+ size(B) and, for the modal
case, size(♥(A1, . . . , An)) = 1 + size(A1) + · · ·+ size(An).

A ruleset R absorbs cut, if for all rules (r1)Γ1,...,Γn

A,Γ0
, (r2)Δ1,...,Δk

¬A,Δ0
∈ R

GR + Cut(A, r1, r2) � Γ0, Δ0

where Cut(A, r1, r2) consists of all instances of the rule schemas

Γ, C Δ,¬C

Γ, Δ

Γ

Γ, A

Γ, A, A

Γ, A

Γ,¬¬A

Γ, A

Γ,¬(A1 ∧A2)
Γ,¬A1,¬A2

Γ, A1 ∧A2

Γ, Ai

where size(C) < size(A) in the leftmost rule and i = 1, 2 in the rightmost schema,
together with the axioms Γ1, . . . , Γn, Δ1, . . . , Δk and all sequents of the form Γ, Δ
where Γ, Δ ∈ S(Λ) and, for some B ∈ F(Λ),

• Γ, B and Δ,¬B ∈ {Γ1, . . . , Γn, Δ1, . . . , Δk}, or
• Γ, B = Γ0, A and Δ,¬B ∈ {Δ1, . . . , Δk}, or
• Γ, B = Δ0,¬A and Δ,¬B ∈ {Γ1, . . . , Γn}.

A rule set that absorbs structural rules and the cut rule is called absorbing.

The intuition behind the above definition is similar to that of absorption of
structural rules, but we have two additional degrees of freedom: we can not only
apply the cut rule to rule premises, but we can moreover freely use both cut on
structurally smaller formulas and the structural rules. This allows us to use the
standard argument, a double induction on the structure of the cut formula and
the size (or height) of the proof tree, to establish cut elimination. This is carried
out in the proof of the next theorem.

Theorem 14. Suppose R is absorbing. Then the cut rule

Γ, A Δ,¬A

Γ, Δ

is admissible in GR.

The proof proceeds by a double induction on the size of the cut formula and the
size of the proof tree, and analyse all possible ways in which the cut rule can be
applied. The case of cuts arising between conclusions of modal rules follows from
absorption of cut. Cuts between conclusions of a modal and a propositional rule
can be eliminated by using the absorption of structural rules.

We illustrate the preceding theorem by using it to derive the well-known fact
that cut-elimination holds for the modal logics K, K4 and T and use it to derive
cut-elimination for various conditional logics in Section 6.

Example 15. The rule sets K, K4 and T are absorbing. We have already seen
that they absorb weakening, contraction and inversion in Example 10 so every-
thing that remains to be seen is that they also absorb cut. For (K), we need to
apply cut to a formula of smaller size. For the two instances

(r1)
¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An, �A0, Γ
(r2)

¬B1, . . . ,¬Bk, B0

¬�B1, . . . ,¬�Bk, �B0, Δ

288 D. Pattinson and L. Schröder

we need to consider, up to symmetry, the cases Ai = B0, �Ai ∈ Δ and ¬�A0 ∈
Δ, for i = 1, . . . , n. Here, we only treat the first case for i = 1 where we have
to show that ¬�A2, . . . ,¬�An, �A0,¬�B1, . . . ,¬�Bk, Γ, Δ is derivable from
GR + Cut(�A1, r1, r2), which follows as the latter system allows us to apply cut
on A1 = B0. The case �Ai ∈ Δ and ¬�A0 ∈ Δ are straight forward.

The argument to show that (K4) is absorbing is similar, and uses an additional
(admissible) instance of cut on a formula of smaller size and contraction. For (T)
we only consider instances of cut between two conclusions of

(r1)
¬A,¬�A, Γ

¬�A, Γ
(r2)

¬B,¬�B, Δ

¬�B, Δ

of the T-rule. We only demonstrate the case �A ∈ Δ. In this case, Δ = Δ′, �A
and we have to show that ¬�B, Γ, Δ′ can be derived in Cut(�A, r1, r2). The
latter system allows us to cut ¬�A between the conclusion of (T) on the left
and the premise of the right hand rule, i.e., we have that Cut(�A, r1, r2) �
¬B,¬�B, Γ, Δ′) and an application of (T) now gives derivability of ¬�B, Γ, Δ′.

5 Equivalence of Hilbert and Gentzen Systems

We now investigate the relationship between provability in a Hilbert-system and
provability in the associated Gentzen system. We note the following standard
lemmas that we will use later on.

Lemma 16. Suppose A ∈ F(Λ) is a propositional tautology. Then GR � A. If
moreover R is closed under substitution, then GR � Γσ whenever GR � Γ for all
Γ ∈ S(Λ).

Remark 17. Being able to prove the previous lemma is the main reason for
formulating axioms as A,¬A, Γ where A ∈ F(Λ) rather than p,¬p, Γ . Both
formulations are equivalent if the modal congruence rule

A1 ↔ A′1 . . . An ↔ A′n
♥(A1, . . . , An)→ ♥(A′1, . . . , A′n)

is admissible. However, Lemma 16 can be proved without the assumption that
congruence is admissible using axioms of the form A,¬A, Γ .

Theorem 18. Suppose R is absorbing and substitution closed. Then GR � Γ ⇐⇒
HR �
∨

Γ for all Γ ∈ S(Λ).

Proof (Sketch). We only need to show the direction from right to left. Inductively
assume that HR �

∨
Γ for Γ ∈ S(Λ). By Proposition 8 we have that there are

rules Θi/Γi and substitutions σi, i = 1, . . . , n such that

• HR � Δσi whenever Δ ∈ Θi (i = 1, . . . , n)
• {
∨

Γ1σ1, . . . ,
∨

Γnσn} �PL

∨
Γ .

Generic Modal Cut Elimination Applied to Conditional Logics 289

By induction hypothesis, GR � Δσi for all i = 1, . . . , n and Δ ∈ Θi. By Lemma
16 we have

GR �
∨

Γ1σ1 ∧ · · · ∧
∨

Γnσn →
∨

Γ.

The claim follows by applying cut, contraction and inversion.

The construction of an absorbing rule set from a given set of axioms and rules
essentially boils down to adding the missing instances of cut, weakening, contrac-
tion and inversion to a given rule set. The soundness of this process is witnessed
by the following two simple lemmas, which we use in this section to derive an
absorbing rule set for K and to establish cut-elimination for a large range of
conditional logics in the next section.

Lemma 19. Suppose Γ1, . . . , Γn/¬A, Γ0 and Δ1, . . . , Δk/A, Δ0 ∈ R. Then the
rule Γ1, . . . , Γn, Δ1, . . . , Δk/Γ0, Δ0 is admissible in HR.

The same applies to instances of the structural rules of weakening, contraction
and inversion. As we are extending the rule set while leaving the provability pred-
icate in the Hilbert calculus unchanged, the following formulation is handy for
our purposes – in particular it implies the fact that we can freely use structural
rules both in the premise and conclusion.

Lemma 20. Suppose that Γ1, . . . , Γn/Γ0 ∈ R. If Δ0, . . . , Δ1 ∈ S(Λ) and both

{
∨

Δ1, . . . ,
∨

Δk} �PL

∨
Γi(1 ≤ i ≤ n) and

∨
Γ0 �PL

∨
Δ0

then the rule Γ1, . . . , Γk/Γ0 is admissible in HR.

This gives us a recipe for constructing rule sets that absorb contraction and cut:
simply add more rules according to the lemmas above. This will not change the
notion of provability in the Hilbert system, but when this process terminates, the
ensuing rule set will be absorbing and gives rise to a cut free sequent calculus.

Example 21 (Modal Logic K). In a Hilbert-style calculus, the axiomatisation
of K is usually described in terms of the distribution axiom (which we view as
a rule with empty premise) and the necessitation rule:

(D) �(A→ B) → �A→ �B (N)
A

�A

We first apply Lemma 19 to break the propositional connectives in the dis-
tribution axiom. We have that the axiom ¬�(A → B),¬�A, �B is admissi-
ble by Lemma 20, and applying Lemma 19 to this axiom and the instance
A → B/�(A → B) of the necessitation rule gives admissibility of the all in-
stances of

¬A, B

¬�A, �B

with the help of (admissible) propositional reasoning in the premise. The same
procedure, applied to the instances

¬A, B → C

¬�A, �(B → C)
¬�(B → C),¬�B, �C

290 D. Pattinson and L. Schröder

gives admissibility of the left hand rule below,

¬A,¬B, C

¬�A,¬�B, �C

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An, �A0, Γ

and continuing in this way and absorbing weakening, we obtain admissibility of
the rule on the right, where Γ ∈ S(Λ) is an arbitrary context. We have shown
previously that this rule set is absorbing, and it is easy to see that it is equivalent
to the rule set consisting of all instances of (N) and (D).

6 Applications: Sequent Calculi for Conditional Logics

After having seen how the construction of absorbing rule sets gives rise to cut-
elimination for a number of well-studied normal modal logics, in this section we
construct a cut-free sequent calculus for a number of conditional logics.

Conditional logics [2] are extensions of propositional logic by a non-monotonic
conditional A ⇒ B, read as “B holds under the condition that A”. The con-
ditional implication is non-monotonic in general, that is the validity of A ⇒ B
does not imply that also (A ∧C) ⇒ B is a valid statement.

Axiomatically, the first argument A of the conditional operation A ⇒ B
behaves like the � in neighbourhood frames and only supports replacement of
equivalents, whereas the second argument B obeys the rules of K. We recall
from Example 2 that CK CK is axiomatised by the rules (RCEA) and (RCK) that
we augment with a subset of the following axioms:

(ID)A⇒ A (MP) (A⇒ B) → A→ B (CEM) (A ⇒ B) ∨ (A⇒ ¬B).

The first axiom embodies a form of identity in the sense that A holds under
condition A and (MP) is a conditional form of modus ponens. The axiom (CEM)
is the conditional excluded middle. We denote combination of rule sets by jux-
taposition so that CKID comprises all instances of CK and ID.

6.1 Cut Elimination for Extensions of CK without CEM

We first treat extensions of the basic conditional logic CK with axioms ID and
MP, but not including CEM and discuss CEM later, as the effect of adding CEM
leads to a more general form of the CK rule. We start by introducing some
notation that provides a shorthand for expressing the bi-implications in the
premise of CK.

Notation 22. If A0, . . . , An ∈ F(Λ) are conditional formulas, we write A0 =
· · · = An for the sequence of sequents consisting of ¬A0, Ai and ¬Ai, A0 for all
1 ≤ i ≤ n.

If we absorb cuts using Lemmas 19 and 20 we see that all instances of

(CKg)
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), Γ

are admissible in HCK. It is easy to see that the rule set CKg is actually absorbing:

Generic Modal Cut Elimination Applied to Conditional Logics 291

Theorem 23. The rule set CKg is absorbing and equivalent to CK. As a con-
sequence, GCKg has cut-elimination and GCKg � A iff HCK � A whenever
A ∈ F(Λ).

Proof. Using Lemmas 19 and Lemma 20 it is immediate that the rule set CKg is
admissible in HCK. The argument that show that CKg is absorbing is analogous
to that for the modal logic K (Example 15), and the result follows from Theorem
18.

The logic CKID arises form CK by adding the identity axiom A ⇒ A to the rule
set CKH that axiomatises standard conditional logic. Applying Lemma 19 to the
two rule instances on the left

¬A, B ¬B, A

¬(A ⇒ A), (A ⇒ B)
A⇒ A (IDg)

A = B

A ⇒ B, Γ

gives rise to the rule schema (IDg) on the right where we have used Lemma 20
to absorb weakening. If we denote the rule set consisting of all instances of CKg

and IDg by CKIDg, we obtain:

Proposition 24. The rule set CKIDg is absorbing and equivalent to CKID.

Proof. It is easy to see that CKIDg absorbs the structural rules, and that CKID
is equivalent to CKIDg. Cuts between conclusions of (IDg) are readily seen to be
absorbed, and absorption of cuts between an instance of CKg and an instance of
ID follows by construction.

The logic CKMP arises by augmenting the logic CK with the additional axiom
(A ⇒ B) → (A → B). The effect of adding (MP) is similar to that of enriching
the modal logic K with the (T)-axiom. Adding the missing cuts to CK augmented
with (MP) and absorbing the structural rules leads to the rule schema

(MPg)
A,¬(A ⇒ B), Γ ¬B,¬(A ⇒ B), Γ

¬(A ⇒ B), Γ

and we denote the rule set consisting of all instances of CKg and MPg by CKMPg.
Our cut elimination theorem then takes the following form:

Proposition 25. The rule set CKMPg is absorbing and equivalent to CKMP.

Proof. Again, it is easy to see that CKMPg is admissible in HCKMP and the con-
verse follows by construction. All we have to show is that CKMPg is absorbing,
where the absorption of structural rules is easy and left to the reader. For the ab-
sorption of cut, the argument is similar to cut elimination in the modal logic T.

6.2 Cut Elimination for Extensions of CKCEM

To construct an absorbing rule set for conditional logic plus the axiom

(CEM)(A⇒ B) ∨ (A ⇒ ¬B)

292 D. Pattinson and L. Schröder

we start from the admissible rule set for CK and close under cuts that arise with
(CEM). Repeated applications of Lemma 19 and Lemma 20 lead to the rule set

(CKCEMg)
A0 = · · · = An B0, . . . , Bj ,¬Bj+1,¬Bn

(A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn), Γ

for 1 ≤ j ≤ n.

Proposition 26. The rule set CKCEMg is absorbing and equivalent to CKCEM.

As a consequence, cut elimination holds in CKCEMg. We can apply essentially the
same argument to an extension of CK with both conditional modus ponens and
conditional excluded middle, but have to take care of the cuts arising between
MPg and CKCEMg, which leads to the new rule

(MPEMg)
A, (A ⇒ B), Γ B, (A ⇒ B), Γ

(A⇒ B), Γ
.

If we denote the extension of CKCEMg with MPg and MPEMg by CKCEMMPg,
we obtain:

Proposition 27. CKCEMMPg is absorbing and equivalent to CKCEMMP.

We note that the latter theorem was left as an open problem for the sequent
system presented in [8]. In summary, we obtain the following results about ex-
tensions of the conditional logic CK.

Theorem 28. Suppose that L is one of CK, CKID, CKMP, CKCEM or CKCEMMP.
Then GLg � A whenever HL � A for all A ∈ F(Λ). Moreover, cut elimination holds
in GL.

The theorem follows, in each of the cases, from Theorem 14 and Theorem 18
together with the fact that the rule set L and Lg are equivalent and the latter is
absorbing.

7 Complexity of Proof Search

It is comparatively straightforward to extract complexity bounds for provability
of the logics considered above by analysing the complexity of proof search under
suitable strategies in the cut-free sequent systems obtained. Clearly, in those
cases where all modal rules peel off exactly one layer of modal operators, the
depth of proofs is polynomial in the nesting depth of modal operators in the
target formula, and therefore, proof search is in PSPACE under mild assumptions
on the branching width of proofs [12,9]. Besides reproving Ladner’s classical
result for K [7], we thus have

Theorem 29. Provability in CK and CKID is in PSPACE.

This reproves known complexity bounds originally shown in [8] (alternative short
proofs using coalgebraic semantics are given in [11]). For CKCEM, the bound can
be improved using dynamic programming in the same style as in [13]:

Generic Modal Cut Elimination Applied to Conditional Logics 293

Theorem 30. Provability in CKCEM is in coNP.

More interesting are those cases where some of the modal operators from the
conclusion remain in the premise, such as T, K4, CKMP, and CKCEM (where the
difference between non-iterative logics, i.e. ones whose Hilbert-axiomatisation
does not use nested modalities, such as T, CKMP, and CKMPCEM, and itera-
tive logics such as K4 is surprisingly hard to spot in the sequent presentation).
For K4, the standard approach is to consider proofs of minimal depth, which
therefore never attempt to prove a sequent repeatedly, and analyse the maximal
depth that a branch of a proof can have without repeating a sequent. For T, a
different strategy is used, where the (T) rule is limited to be applied at most
once to every formula of the form ¬�A in between two applications of (K) [6]. A
similar strategy works for the conditional logics CKMP and CKMPCEM, which
we explain in some additional detail for CKMP.

We let CKMP0
g and CKMP1

g denote restricted sequent systems where in CKMP0
g,

a formula ¬(A ⇒ B) is marked on a branch as soon as the rule (MPg) has been ap-
plied to it (backwards) and unmarked only at the next application of rule (CKg).
Rule (MPg) applies only to unmarked formulas. In CKMP1

g, we instead impose a
similar restriction where rule (MPg) applies to a sequent¬(A ⇒ B), Γ only in case
Γ does not contain a propositional descendant of either A or ¬B. Here, a sequent
Δ is called a propositional descendant of a formula A if it can be generated from A
by applying propositional sequent rules backwards (e.g. the propositional descen-
dants of (¬(A ∧ B) ∧ C) are ¬(A ∧ B); C; and ¬A,¬B). It is easy to check that
CKMP1

g-proofs can be converted into CKMP0
g-proofs, i.e. CKMP1

g is the most re-
strictive system. One shows that CKMP1

g admits contraction and inversion by ver-
ifying that the corresponding proof transformations in CKMPg preserve CKMP1

g-
proofs. It is then clear that every application of the rule (MPg) that violates the
CKMP1

g-restriction can be replaced by inversion and contraction, so that CKMP1
g,

and hence also CKMP0
g, proves the same formulas as CKMPg. Proofs in CKMP0

g

are easily seen to have at most polynomial depth. Essentially the same reasoning
applies to CKMPCEM. Therefore, we have

Theorem 31. Provability in CKMP is in PSPACE; provability in CKMPCEM
is in coNP.

We note that the complexity of CKMPCEM was explicitly left open in [8].

8 Conclusions

We have established a generic method of cut elimination in modal sequent sys-
tem based on absorption of cut and structural rules by sets of modal rules. We
have applied this method in particular to various conditional logics, thus ob-
taining cut-free unlabelled sequent calculi that complement recently introduced
labelled calculi [8]. In at least one case, the conditional logic CKMPCEM with
modus ponens and conditional excluded middle, our calculus seems to be the
first cut-free calculus in the literature, as cut elimination for the corresponding

294 D. Pattinson and L. Schröder

calculus in [8] was explicitly left open. We have applied these calculi to obtain
complexity bounds on proof search in conditional logics; in particular we have re-
proved known upper complexity bounds for CK, CKID, CKMP [8] and improved
the bound for CKCEM from PSPACE to coNP using dynamic programming
techniques following [13]. Moreover, we have obtained an upper bound coNP
for CKMPCEM, for which no bound has previously been published. We con-
jecture that our general method can also be applied to other base logics, e.g.
intuitionistic propositional logic or first-order logic, which is subject to further
investigations.

References

1. Avron, A., Lev, I.: Canonical propositional gentzen-type systems. In: Goré, R.P.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 529–544. Springer,
Heidelberg (2001)

2. Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)
3. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical

logics. In: Logic in Computer Science, LICS 2008, pp. 229–240. IEEE Press, Los
Alamitos (2008)

4. Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut-elimination.
Stud. Log. 82, 95–119 (2006)

5. Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z. 39, 176–210
(1934)

6. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward
proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U.,
Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225.
Springer, Heidelberg (1996)

7. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6 (1977)

8. Olivetti, N., Pozzato, G.L., Schwind, C.: A sequent calculus and a theorem prover
for standard conditional logics. ACM Trans. Comput. Logic 8(4) (2007)

9. Pattinson, D., Schröder, L.: Admissibility of cut in coalgebraic logics. In: Coalge-
braic Methods in Computer Science, CMCS 2008. ENTCS, vol. 203, pp. 221–241.
Elsevier, Amsterdam (2008)

10. Rasga, J.: Sufficient conditions for cut elimination with complexity analysis. Ann.
Pure Appl. Logic 149, 81–99 (2007)

11. Schröder, L., Pattinson, D.: Shallow models for non-iterative modal logics. In:
Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.)
KI 2008. LNCS(LNAI), vol. 5243, pp. 324–331. Springer, Heidelberg (2008)

12. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans.
Comput. Log. 10(2:13), 1–33 (2009)

13. Vardi, M.: On the complexity of epistemic reasoning. In: Logic in Computer Sci-
ence, LICS 1989, pp. 243–251. IEEE, Los Alamitos (1989)

Proof Search and Counter-Model Construction
for Bi-intuitionistic Propositional Logic with

Labelled Sequents

Lúıs Pinto1 and Tarmo Uustalu2

1 Centro de Matemática, Universidade do Minho,
Campus de Gualtar, P-4710-057 Braga, Portugal

luis@math.uminho.pt
2 Institute of Cybernetics at Tallinn University of Technology,

Akadeemia tee 21, EE-12618 Tallinn, Estonia
tarmo@cs.ioc.ee

Abstract. Bi-intuitionistic logic is a conservative extension of intu-
itionistic logic with a connective dual to implication, called exclusion.
We present a sound and complete cut-free labelled sequent calculus for
bi-intuitionistic propositional logic, BiInt, following S. Negri’s general
method for devising sequent calculi for normal modal logics. Although it
arises as a natural formalization of the Kripke semantics, it is does not
directly support proof search. To describe a proof search procedure, we
develop a more algorithmic version that also allows for counter-model
extraction from a failed proof attempt.

1 Introduction

Bi-intuitionistic logic (also known as Heyting-Brouwer logic, subtractive logic) is
an extension of intuitionistic logic with a connective dual to implication, called
exclusion (coimplication, subtraction), a symmetrization of intuitionistic logic.
It first got the attention of C. Rauszer [14,15,16], who studied its algebraic and
Kripke semantics, alongside adequate Hilbert-style systems and sequent calculi.
More recently, it has been of interest to �Lukowski [9], Restall [17], Crolard [2]
and Goré with colleagues [6,1,7,8]. Part of the motivation is the expected com-
putational significance of the logic: one would expect proof systems working as
languages for programming with values and continuations in a symmetric way.

A particularity of bi-intuitionistic logic is that it admits simple sequent calculi
obtained from the standard ones for intuitionistic logic essentially by dualizing
the rule for implication. Although several authors have stated or “proved” that
these calculi enjoy cut elimination (most notably Rauszer [15] for her sequent
calculus), they are in fact incomplete without cut and thus not directly suitable
for backward (i.e., root-first) proof search. The reasons of the failure are similar
to those for the modal logic S5 (S4 + symmetry) and the future-past tense
logic KtT4 (S4 + modalities for the converse of the accessibility relation). A
closer analysis suggests that finding remedies that are satisfactory, both from

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 295–309, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

296 L. Pinto and T. Uustalu

the structural proof theory and automated theorem proving points of view, is
challenging and provides insights into the subtleties of the logic.

In this paper we propose one solution to the problem. We describe a cut-free
labelled sequent calculus for bi-intuitionistic propositional logic, BiInt, where
the labels are interpreted as worlds in Kripke structures. Exploiting the fact that
BiInt admits a translation to the future-past tense logic KtT4, we obtain it
by the general method of S. Negri [12] for devising sequent calculi for normal
modal logics. Then, to formulate a search procedure and obtain a termination
argument we fine-tune it for the constructive logic situation with monotonicity of
truth. This approach is in line with S. Negri’s method where frame conditions are
uniformly transformed into inference rules, but termination of proof search of the
resulting sequent calculus must be obtained on a case-by-case basis. Interestingly,
bi-intuitionistic logic turns out to be a rather delicate case.

Cut-free sequent calculi for BiInt have also been proposed by Goré and col-
leagues. Goré’s first formulation [6] was in the display logic format, inspired
by a general method for devising display systems for normal modal logics. The
next formulation by Postniece and Goré [1,7] achieves cut-freedom by combining
refutation with proof (passing failure information from premise to premise) to
be able to glue counter-models together without the risk of violating the mono-
tonicity condition of interpretations. The new nested sequent calculus by Goré,
Postniece and Tiu [8] is a refinement of the display logic version and basically
allows reasoning in a local world of a Kripke structure with references to facts
about its neighbouring worlds captured in the nested structure.

The paper is organized as follows. In Sect. 2, we introduce BiInt with its
Kripke semantics and the translation to KtT4. We also show its Dragalin-style
sequent calculus and why cut elimination fails. In Sect. 3, we introduce a labelled
sequent calculus for BiInt designed according to S. Negri’s recipe. In Sect. 4,
we refine this declarative system into a more algorithmic version, show that it
is sound and its rules also preserve falsifiability. In the next section (Sect. 5) we
define a proof search procedure for the calculus and show that it terminates. In
Sect. 6 we put the pieces together to conclude completeness. In the final section
we sum up and outline some directions for further enquiry.

2 Bi-intuitionistic Propositional Logic, Dragalin-Style
Sequent Calculus and Failure of Cut Elimination

We start by defining the logic BiInt. The language extends that of intuitionistic
propositional logic, Int, by one connective, exclusion, thus the formulae are given
by the grammar:

A, B := p | � | ⊥ | A ∧B | A ∨B | A⊃B | A � B

where p ranges over a denumerable set of propositional variables which give
us atoms; the formula A � B is the exclusion of B from A. We do not take
negations as primitive, but in addition to the intuitionistic (or strong) negation,

Proof Search and Counter-Model Construction 297

we have dual-intuitionistic (or weak) negation, definable by ¬A := A ⊃ ⊥ and
�A := � � A.

The Kripke semantics defines truth relative to worlds in Kripke structures
that are the same as for Int. A Kripke structure is a triple K = (W,≤, I) where
W is a non-empty set whose elements we think of as worlds, ≤ is a preorder
(reflexive-transitive binary relation) on W (the accessibility relation) and I—the
interpretation—is an assignment of sets of propositional variables to the worlds,
which is monotone w.r.t. ≤, i.e., whenever w ≤ w′, we have I(w) ⊆ I(w′).

Truth in Kripke structures is defined as for Int, but covers also exclusion,
interpreted dually to implication as possibility in the past:

– w |= p iff p ∈ I(w);

– w |= � always; w |= ⊥ never;

– w |= A ∧B iff w |= A and w |= B; w |= A ∨B iff w |= A or w |= B;

– w |= B ⊃A iff, for any w′ ≥ w, w′ �|= B or w′ |= A;

– w |= A � B iff, for some w′ ≤ w, w′ |= A and w′ �|= B.

A formula is called valid if it is true in all worlds of all structures. It is easy to see
that monotonicity extends from atoms to all formulae thanks to the universal
and existential semantics of implication and exclusion.

It is also a basic observation that the Gödel translation of Int into the modal
logic S4 extends to a translation into the future-past tense logic KtT4 (cf. [9]).
As the semantics of KtT4 does not enforce monotonicity of interpretations,
atoms must be translated as future necessities or past possibilities (these are
always monotone): p# = �p (or �p); �# = �; ⊥# = ⊥; (A ∧B)# = A# ∧B#;
(A ∨B)# = A# ∨B#; (B ⊃A)# = �(B# ⊃A#); (A � B)# = �(A# � B#).

A sequent calculus for BiInt is most easily obtained from Dragalin’s sequent
calculus for Int (as has been done by Restall [17] and Crolard [2]; Rauszer’s
[15] original sequent calculus was different). In Dragalin’s system sequents are
multiple-conclusion, but the implication-right rule is constrained. The extension
imposes a dual constraint on the exclusion-left rule. The sequents are pairs Γ � Δ
where Γ, Δ (the antecedent and succedent) are finite multisets of formulae (we
omit braces and denote union by comma as usual). Such a sequent is taken to
be valid if, for any Kripke structure K and world w, some formula in Γ is false
or some formula in Δ is true. The inference rules are displayed in Fig. 1.

Note that the context Δ is missing in the premise of the ⊃R rule and dually in
the premise of �L we do not have the context Γ . The rules ⊃L and �R involve
some contraction. This is necessary because we have chosen not to include a
general contraction rule.

This calculus is sound and complete w.r.t. the above-defined notion of validity
(completeness can be shown going through the algebraic semantics in terms of
Heyting-Brouwer algebras [14]). However it is incomplete without cut, as shown
by Pinto and Uustalu in 2003 (private email message from T. Uustalu to R. Goré,
13 Sept. 2004, quoted in [1]). It suffices to consider the obviously valid sequent

298 L. Pinto and T. Uustalu

initial rule and cut:

Γ, A � A, Δ
hyp

Γ � A, Δ Γ, A � Δ

Γ � Δ
cut

logical rules:

Γ � Δ

Γ,� � Δ
�L

Γ � �, Δ
�R

Γ, A, B � Δ

Γ, A ∧ B � Δ
∧L

Γ � A, Δ Γ � B, Δ

Γ � A ∧ B, Δ
∧R

Γ,⊥ � Δ
⊥L

Γ � Δ

Γ � ⊥, Δ
⊥R

Γ, A � Δ Γ, B � Δ

Γ, A ∨ B � Δ
∨L

Γ � A, B, Δ

Γ � A ∨ B, Δ
∨R

Γ, B ⊃ A � B, Δ Γ, A � Δ

Γ, B ⊃ A � Δ
⊃L

Γ, B � A

Γ � B ⊃ A, Δ
⊃R

A � B, Δ

Γ, A � B � Δ
�L

Γ � A, Δ Γ, B � A � B, Δ

Γ � A � B, Δ
�R

Fig. 1. Dragalin-style sequent calculus for BiInt

p � q, r ⊃ ((p � q) ∧ r). The only possible last inference in a proof could be

?
p, r � (p � q) ∧ r

p � q, r ⊃ ((p � q) ∧ r)
⊃R

but the premise is invalid as the succedent formula q has been lost. With cut,
the sequent is proved as follows:

p � q, p, . . .
hyp

p, q � q, p � q, . . .
hyp

p � q, p � q, . . .
�R

p, p � q, r � p � q
hyp

p, p � q, r � r
hyp

p, p � q, r � (p � q) ∧ r
∧R

p, p � q � q, r ⊃ ((p � q) ∧ r)
⊃R

p � q, r ⊃ ((p � q) ∧ r)
cut

Cut elimination fails as we cannot permute the cut on the exclusion p � q up
past the ⊃R inference for which the cut formula is a side formula. This is one
type of cuts that cannot be eliminated, there are altogether 3 such types [11].
This situation is similar to the naive sequent calculus for S5 where the sequent
p � �♦p cannot be proved without cut, but can be proved by applying cut to
the sequents p � ♦p and ♦p � �♦p that are provable without cut.

3 L: A Labelled Sequent Calculus

We now proceed to a labelled sequent calculus for bi-intuitionistic logic that we
call L. This calculus turns out to be complete without a cut rule. Essentially it is
a formalization of the first-order theory of the Kripke semantics in such a fashion
that the extralogical axioms corresponding to the reflexivity-transitivity condi-
tion on frames and monotonicity condition on interpretations do not necessitate
cut. Our design follows the method of S. Negri [12].

We proceed from a denumerable set of labels. A labelled formula is a pair x : A
where x is a label and A a formula. The intended meaning is truth of the formula
at a particular world.

Proof Search and Counter-Model Construction 299

preorder rules:

Γ G∪{(x,x)} Δ

Γ G Δ
refl

xGy yGz Γ G∪{(x,z)} Δ

Γ G Δ
trans

initial rule and monotonicity rules:

Γ, x : A G x : A, Δ
hyp

xGy Γ, x : A, y : A G Δ

Γ, x : A G Δ
monL

yGx Γ G y : A, x : A, Δ

Γ G x : A, Δ
monR

logical rules:

Γ G Δ

Γ, x : � G Δ
�L

Γ G x : �, Δ
�R

Γ, x : A, x : B G Δ

Γ, x : A ∧ B G Δ
∧L

Γ G x : A, Δ Γ G x : B, Δ

Γ G x : A ∧ B, Δ
∧R

Γ, x : ⊥ G Δ
⊥L

Γ G Δ

Γ G x : ⊥, Δ
⊥R

Γ, x : A G Δ Γ, x : B G Δ

Γ, x : A ∨ B G Δ
∨L

Γ G x : A, x : B, Δ

Γ G x : A ∨ B, Δ
∨R

xGy Γ G y : B, Δ Γ, y : A G Δ

Γ, x : B ⊃ A G Δ
⊃L

y /∈ G, Γ, Δ Γ, y : B G∪{(x,y)} y : A, Δ

Γ G x : B ⊃ A, Δ
⊃R

y /∈ G, Γ, Δ Γ, y : A G∪{(y,x)} y : B, Δ

Γ, x : A � B G Δ
�L

yGx Γ G y : A, Δ Γ, y : B G Δ

Γ G x : A � B, Δ
�R

Fig. 2. Labelled sequent calculus L

Sequents are triples Γ �G Δ where Γ and Δ are finite multisets of labelled
formulae, and G is a finite binary relation on labels called the graph. Graphs
are a means to keep track of label dependencies and thus induce an accessibility
relation on worlds.

The inference rules are presented in Fig. 2. Some of them have provisos, that
we also write as rule premises. We let xGy abbreviate (x, y) ∈ G. Following
usual sequent calculus terminology, at a given rule, we call the explicit labelled
formula in the conclusion the labelled formula introduced by the rule or the main
labelled formula of the rule and the explicit labelled formulae in the premises the
side labelled formulae.

The interesting logical rules are those for implication and exclusion which are
dual. Notice the freshness condition on the label y in the rules ⊃R and �L,
guaranteeing their soundness. We call label y the eigenlabel of the rule and x
the parent of y. Note also the presence of the monotonicity rules accounting for
propagation of truth (resp. falsity) to future (resp. past) worlds and preorder
rules which account for reflexivity and transitivity of accessibility.

The counter-example to cut elimination for the Dragalin-style sequent calculus
is proved in L as follows:

x : p, y : r (x,y) x : q, x : p
hyp

x : p, y : r, x : q (x,y) x : q
hyp

x : p, y : r (x,y) x : q, y : p � q
�R

x : p, y : r (x,y) x : q, y : r
hyp

x : p, y : r (x,y) x : q, y : (p � q) ∧ r
∧R

x : p ∅ x : q, x : r ⊃ ((p � q) ∧ r)
⊃R

300 L. Pinto and T. Uustalu

Notice the downward information propagation in the �R inference to an already
existing label.

In a L-derivation the names of the eigenlabels can be changed (to new names
not occurring in the derivation) without changing the end sequent. This property
allows us to show by usual methods that L enjoys admissibility of the weakening
rules. A simple combination of the monotonicity, reflexivity and weakening also
guarantees admissibility of the contraction rules in L. (This is what enables us
to avoid explicit contractions at ⊃L and �R rules.)

The cut rule is also admissible in L. This can be proved along the lines of cut
elimination results of S. Negri for labelled sequent calculi for modal logics. In this
paper, as an immediate consequence of soundness and completeness of system L
w.r.t. the Kripke semantics (Cor. 1), we get a semantical proof of admissibility
of cut.

Given a Kripke structure K, a K-valuation is a mapping from the set of labels
to the set of worlds of K.

Definition 1. A Kripke structure K = (W,≤, I) and a K-valuation v are a
counter-model (cm) to an L-sequent Γ �G Δ, if: i) for all xGy, v(x) ≤ v(y); ii)
for all x : A ∈ Γ , v(x) |= A; and iii) for all x : A ∈ Δ, v(x) �|= A. The sequent
is valid, if it has no counter-model.

Proposition 1 (Soundness of L). If Γ �G Δ is derivable, Γ �G Δ is valid.

Completeness holds as well (Cor. 1) and is proved with the help of the algorithmic
version of L introduced in the next section. In fact our completeness argument
allows for construction of counter-models of non-derivable sequents.

4 L∗: An Algorithmic Version of L

Although L constitutes a good basis for backward proof search for bi-
intuitionistic propositional logic, it still faces the problem that the preorder
and monotonicity rules can be applied at any point in backward proof search.
To deal with this problem, we introduce now an algorithmic version of L called
L∗. System L∗ does not have explicit preorder or monotonicity rules. It uses
a marking mechanism on certain kinds of labelled formulae. Such mechanism
allows for the recovering of labelled formulae, so that monotonicity requirements
are guaranteed. The marking mechanism is also designed in a way that it can
be used in loop-detection, to avoid infinite search along paths corresponding to
non-derivable sequents.

Sequents in L∗ are triples Γ �G Δ as in L, with the difference that, in the
contexts Γ and Δ, labelled formulae can now be marked either with ∗ (written
as x : A∗), ◦ (written as x : A◦) or with • (written as x : A•). The rules of L∗

are in Fig. 3.
Let us briefly explain the role of + and − and of marks ∗, ◦ and • in backward

proof search. The + (resp. −) is used to propagate a formula to future (resp.
past) labels (as determined by the transitive closure of the graph). The marking

Proof Search and Counter-Model Construction 301

initial rule:

Γ, x : p◦ G x : p◦, Δ
hyp

atom rules:

Γ, p+, x : p∗, x : p◦ G Δ

Γ, x : p G Δ
atomL

where p+ = {y : p | xGy}

Γ G x : p◦, x : p∗, p−, Δ

Γ G x : p, Δ
atomR

where p− = {y : p | yGx}

logical rules:

Γ G Δ

Γ, x : � G Δ
�L

Γ G x : �, Δ
�R

Γ, x : A, x : B G Δ

Γ, x : A ∧ B G Δ
∧L

Γ G x : A, Δ Γ G x : B, Δ

Γ G x : A ∧ B, Δ
∧R

Γ, x : ⊥ G Δ
⊥L

Γ G Δ

Γ G x : ⊥, Δ
⊥R

Γ, x : A G Δ Γ, x : B G Δ

Γ, x : A ∨ B G Δ
∨L

Γ G x : A, x : B, Δ

Γ G x : A ∨ B, Δ
∨R

Γ, (B ⊃ A)+, x : (B ⊃ A)∗ G x : B, Δ Γ, x : A G Δ

Γ, x : B ⊃ A G Δ
⊃L

where (B ⊃ A)+ = {y : B ⊃ A | xGy}

x : (B ⊃ A)• /∈ Δ y /∈ G, Γ, Δ, Γ, Γ y/x, y : B G∪{(x,y)} y : A, x : (B ⊃ A)•, Δ

Γ G x : B ⊃ A, Δ
⊃R

where Γ y/x = {y : C | x : C∗ ∈ Γ} ∪ {y : p◦ | x : p◦ ∈ Γ}
∪{y : (C � D)• | x : C � D ∈ Γ or x : (C � D)• ∈ Γ}

x : (A � B)• /∈ Γ y /∈ G, Γ, Δ Γ, x : (A � B)•, y : A G∪{(y,x)} y : B, Δy/x, Δ

Γ, x : A � B G Δ
�L

where Δy/x = {y : C | x : C∗ ∈ Δ} ∪ {y : p◦ | x : p◦ ∈ Δ}
∪{y : (D ⊃ C)• | x : D ⊃ C ∈ Δ or x : (D ⊃ C)• ∈ Δ}

Γ G x : A, Δ Γ, x : B G x : (A � B)∗, (A � B)−, Δ

Γ G x : A � B, Δ
�R

where (A � B)− = {y : A � B | yGx}

Fig. 3. Algorithmic version L∗

x : A∗ is done at the atom rules, ⊃L and �R (where x : A is the main formula) in
order to be able to recover A at eventual labels still unknown when x : A is anal-
ysed, but later created with a graph connection to x. The marking of a labelled
formula with a ◦ (used only with atoms) or • (used only with implications and
exclusions) means essentially that the formula was already analysed (the case
with the explicit circles and bullets in the rule premises of the atom rules, ⊃R,
�L) or has no further useful information and so need not be analysed (the case
with circles and bullets implicit in Γ y/x and Δy/x in the premises of ⊃R and
�L respectively) and prevents a new analysis of the formula at the given world
(notice that no rule introduces a labelled formula with a circle or a bullet).

Notice that an L-sequent is also an L∗-sequent and that if we take an L∗-
sequent and erase all ∗, ◦ and • marks we obtain an L-sequent. Given an L∗

302 L. Pinto and T. Uustalu

context Γ , we write Γ− for the L-context resulting from it by replacing all
labelled formulae x : A∗, x : A◦ with unmarked labelled formulae x : A and
removing all labelled formulae x : A•. Given an L∗-sequent Γ �G Δ its erasure
is the L-sequent Γ− �G Δ−. We say that an L∗-rule is derivable in L if the rule
obtained by replacing its premises and conclusion by their erasures is derivable
in L. The next proposition shows that all L∗-rules are derivable in L and thus
L∗ is sound w.r.t. L.

Proposition 2 (Soundness of L∗ w.r.t. L). 1. All rules of L∗ are derivable
in L. 2. If Γ �G Δ is derivable in L∗ then Γ− �G Δ− is derivable in L.

Because the rules of L∗ do not throw away any relevant information (read back-
ward, i.e., from the conclusion to the premises), they have the strong property
that a counter-model of a premise is also a counter-model of the conclusion. This
is used in Sec. 6 for extracting counter-models out of failed proof attempts.

Given a Kripke structure K = (W,≤, I), a K-valuation v and a graph G,
≤−G denotes the relation ≤ \v(G)∗, i.e., ≤−G is the relation obtained from ≤ by
eliminating all pairs in the reflexive-transitive closure of {(v(x), v(y)) | xGy}.

Definition 2. A Kripke structure K = (W,≤, I) and a K-valuation v are a
counter-model of an L∗-sequent Γ �G Δ when:

1. for all xGy, v(x) ≤ v(y);
2. for all x : A, x : A◦ ∈ Γ , v(x) |= A;
3. for all x : A∗ ∈ Γ and for all w ∈W such that v(x) ≤−G w, w |= A;
4. for all x : A, x : A◦ ∈ Δ, v(x) �|= A;
5. for all x : A∗ ∈ Δ and for all w ∈ W such that w ≤−G v(x), w �|= A.

Notice that for L-sequents this notion of counter-model coincides with the notion
introduced in the previous section. As usual valid sequents are those for which
there are no counter-models.

Proposition 3 (Preservation of counter-models). For each L∗-rule, a
counter-model of a premise is also a counter-model of the conclusion.

5 A Search Procedure and Its Termination

We now describe a backward search procedure for L∗, which incorporates a loop-
checking mechanism, and prove it sound and terminating. As a by-product of
the explicit presence in sequents of labels/worlds and the graph/accessibility
relation, when the search procedure terminates with failure, we will be left with
a Kripke counter-model of the given sequent. This fact is proved in the next
section and accounts for the completeness of the search procedure. In order to
describe the search procedure, we introduce first some terminology, notation and
also the loop-rules.

The rules ⊃R and �L are the only rules of L∗ where the graph relation
varies in a backward reading. We call these rules world creating rules. A sequent

Proof Search and Counter-Model Construction 303

y �∈ G Γ \ Γ (y) �G Δ[x/y]

Γ �G∪{(x,y)} Δ
loopUp

provided Γ [y] ⊆ Γ [x] ∪ Γ•[x], Γ∗[y] ⊆ Γ∗[x],
and Γ◦[y] ⊆ Γ◦[x]

y �∈ G Γ [x/y] �G Δ \Δ(y)

Γ �G∪{(y,x)} Δ
loopDn

provided Δ[y] ⊆ Δ[x] ∪Δ•[x], Δ∗[y] ⊆ Δ∗[x],
and Δ◦[y] ⊆ Δ◦[x]

Fig. 4. Loop rules

Γ �G Δ is called saturated if it is irreducible w.r.t. the non-world creating rules.
A sequent Γ �G Δ is called stuck when it is irreducible w.r.t. any rule and
moreover it is not an axiom (hyp, ⊥L, �R).

Given an L∗ context Γ , we use the notations Γ [x], Γ ∗[x], Γ ◦[x], Γ •[x] and
Γ (x) to mean {A | x :A ∈ Γ}, {A | x :A∗ ∈ Γ}, {A | x :A◦ ∈ Γ}, {A | x :A• ∈ Γ}
and Γ [x] ∪ Γ ∗[x] ∪ Γ ◦[x] ∪ Γ •[x] respectively.

The loop rules are presented in Fig. 4. (For a context Γ and labels x and
y, the notation Γ [x/y] stands for the context obtained by replacing y with x
in Γ .) Their backward reading corresponds to the action taken when a loop is
detected and the detection of a loop corresponds to satisfaction of their side-
conditions. The formulation of the loop rules corresponds to the situation where
x is the parent and thus y is a descendant of x, labeling necessarily subformulae
of x-labelled formulae.

We are now in conditions of presenting the search procedure. It goes as follows:

1. Given an L∗-sequent Γ �G Δ, we reduce it w.r.t. the non-world creating
rules (i.e., we apply as long as possible these rules). We call a saturation
both this process and the partial proof of Γ �G Δ so constructed. The top
sequent of each branch of a saturation is a saturated sequent. Notice also
that the order in which rules are applied in saturation is unimportant since
they are inter-permutable.

2. Then, for every branch in the saturation of Γ �G Δ, we do the following:
(a) we check if the top sequent is an axiom and if so search along the branch

is stopped with success;
(b) we check if there is a loop, i.e., we test if the side condition of any of the

loop rules is met, and if so proceed according to the corresponding loop
rule.

3. If neither (a) nor (b) is the case, the development of the branch carries on,
by applying one of the world creating rules, and we go back to 1.We stop
with failure if no world creating rule can be applied.

We call proof attempt both the run of the search procedure with a given
sequent and the corresponding partial proof (in L∗ augmented with the loop
rules). Throughout we assume that proof attempts always start with L-sequents
whose graphs are trees (i.e., the graph, seen as an undirected graph by forgetting
the directions of the arcs, is connected and acyclic). Then the graphs of all
sequent in the proof attempt are trees.

Proposition 4 (Soundness of the search procedure). If the proof attempt
for an L-sequent terminates with success, then the sequent is L-derivable.

304 L. Pinto and T. Uustalu

Proof: By induction on the height of the proof attempt, we prove that, for any
L∗-sequent Γ �G Δ in it, Γ− �G Δ− is derivable in L. The cases corresponding
to L∗-inferences follow by part 1. of Prop. 2. Consider the case correspond-
ing to the loopUp rule of Fig. 4. (The case of loopDn is similar.) By IH we
have that (Γ \ Γ (y))− �G Δ[x/y]− is L-derivable. From this, by weakening ,
Γ− �G∪{(x,y)} (Δ \Δ(y))−, Δ(y)[x/y]−, Δ(y)−is also derivable in L. Since xGy,
by repeated use of monR, we can derive Γ− �G∪{(x,y)} (Δ \Δ(y))−, Δ(y)−which
is Γ− �G∪{(x,y)} Δ−. �

Now we consider terminology, notation and lemmata used in particular for
proving termination of the search procedure. Given a label x, the world creation
tree of x induced by a branch of a proof attempt has x as root and has as subtrees
(if any) the world creation trees of each eigenlabel in the branch whose parent
is x. Given a set of formulas S, mhf(S) stands for the maximal height of the
formulae in S.

Lemma 1. Any saturation in a proof attempt is finite.

Proof: Observe that: (i) ∧ and ∨ inferences replace the main formula by strict
subformulae; and (ii) even if the main formula of an atomL, atomR, ⊃L or �R
inference may reappear in the premises or upper sequents, it does so with a
distinct label (as the graph is a tree) and thus can only reappear finitely many
times (recall L∗-graphs are finite). �

Lemma 2. Given a label x and a branch B of a proof attempt, x has finitely
many children in B.

Proof: Notice that all formulae in a sequent of B are subformulae of a formula
in the end sequent of B (which is finite) and that, once x : A⊃B (resp. x : A�B)
is analysed as the main formula of a ⊃R (resp. �L) inference, x : (A⊃B)• (resp.
x : (A � B)•) is added to the succedent (resp. antecedent) of the inference’s
premise, preventing that x : A⊃B (resp. x : A � B) becomes analysed again. �

Lemma 3. For 1 ∈ {∗, ◦} and any saturated sequent Γ �G∪{(x,y)} Δ in a proof
attempt: i) if x : A� ∈ Γ , y : A� ∈ Γ ; and ii) if y : A� ∈ Δ, x : A� ∈ Δ.

Proof: Firstly notice that, for any L∗-rule, if z : B� is in the antecedent (resp.
succedent) of the conclusion, z : B� is in the antecedent (resp. succedent) of
any premise. Consider the case x : p◦ ∈ Γ (the other cases being similar or
simpler). Then x : p∗ ∈ Γ and thus x : p must have been the main formula in an
atomL inference. Let Γ0 �G0 Δ0 be the premise of that inference. If (x, y) ∈ G0,
y : p ∈ Γ0 and any top sequent in the saturation of Γ0 �G0 Δ0 has both y : p∗

and y : p◦ in the antecedent. If not, above the referred inference, there must
be an ⊃R inference with eigenlabel y and parent x and the top sequents of the
saturation of its premise have y : p∗ and y : p◦ in their antecedents. �

Lemma 4. In a proof attempt, if Γ0 �G Δ0 is the conclusion of an ⊃R inference
with eigenlabel x1 and parent x0 and Γ1 �G∪{(x0,x1)} Δ1 is a top sequent in the
saturation of the inference’s premise, then Γ0(x0) ⊂ Γ1(x1).

Proof Search and Counter-Model Construction 305

Proof: By the following three facts: i) Γ0(x0) ⊆ Γ1(x0), because no L∗ rule
removes starred, circled or bulleted formulae (when read backwards); ii) Γ1(x0) ⊆
Γ1(x1), because Γ1[x0]∪Γ •1 [x0] ⊆ Γ •1 [x1], Γ ∗1 [x0] ⊆ Γ ∗1 [x1], Γ ◦1 [x0] ⊆ Γ ◦1 [x1] (the
last two containments proved with the help of Lemma 3); iii) Γ1(x1) �⊆ Γ1(x0),
because of the loop checking mechanism. �

Lemma 5. For any sub-branch of a proof attempt of the form

Γ2 �G1∪{(x2,x1)} Δ2

.

.

.

Γ1, x1 : (A1 � B1)•, x2 : A1 �G1∪{(x2,x1)} x2 : B1, Δ1, Δ
x2/x1
1

Γ1, x1 : A1 � B1 �G1 Δ1
�L

.

.

.

Γ0, Γ
x1/x0
0 , x1 : A0 �G0∪{(x0,x1)} x1 : B0, x0 : (A0 ⊃ B0)•, Δ0

Γ0 �G0 x0 : A0 ⊃ B0, Δ0
⊃R

where the conclusion of �L is a top sequent in the saturation of the premise of
⊃R and Γ2 �G1∪{(x2,x1)} Δ2 is a top sequent in the saturation of the premise of
�L we have mhf(Γ0(x0) ∪ {A0 ⊃B0}) > mhf(Γ2(x2) ∪Δ2(x2)).

Proof: By the following two facts: i) each formula of Γ2(x2) ∪ Δ2(x2) is a
subformula of Δ1(x1) or a strict subformula of A1 � B1; and ii) Δ1(x1) has
only strict subformulae of Γ0(x0) ∪ {A0 ⊃ B0} and A1 � B1 is a subformula of
Γ0(x0) ∪ {A0 ⊃B0}1. �

Theorem 1 (Termination of the search procedure). A proof attempt al-
ways terminates.

Proof: If it did not, by König’s Lemma there would be an infinite branch B
in the proof attempt. Since each saturation is finite (Lemma 1), there must be
infinitely many saturations and at least one of the labels in the end sequent,
x00 say, has an infinite world creation tree, call it T . By Lemma 2, T is finitely
branching and so König’s Lemma forces T to have an infinite branch, which we
will show to be impossible.

1 The first fact follows from the following lemma (and the second fact from an analo-
gous lemma): For any sequent Γ �G1∪{(x2,x1)} Δ in the saturation of the premise of
an �L inference with eigenlabel x2 and parent x1:

1. if x : A ∈ Γ (resp. Δ) and A is not an exclusion (resp. implication), then x2(G1 ∪
{(x2, x1)})∗x (resp. x(G1 ∪ {(x2, x1)})∗x2);

2. if A ∈ Γ [x1] (resp. Δ[x1]), then A is an exclusion (resp. implication) or A ∈ Γ (x2)
(resp. Δ(x2));

3. if Γ0 �G1∪{(x2,x1)} Δ0 is a sequent immediately above Γ �G1∪{(x2,x1)} Δ and
A ∈ Γ0(x2) (resp. Δ0(x2)), then A is a subformula of Γ (x2) (resp. Δ(x2)) or a
strict subformula of Δ(x2) (resp. Γ (x2)).

306 L. Pinto and T. Uustalu

It is impossible that an infinite branch of T beyond a certain point, z0 say,
goes always upwards, i.e., that the descendants z1, z2, . . . of z0 in T all arise with
⊃R inferences. Otherwise, using Lemma 4, we could form an infinite sequence

Γ0(z0) ⊂ Γ1(z1) ⊂ Γ2(z2) . . .

(where Γi is the conclusion’s antecedent of the inference where zi creates zi+1),
which is is impossible, for all these sets must be included in the finite set of
subformulae of the end sequent. Similarly, T cannot have an infinite branch that
beyond a certain point goes always downwards.

Therefore, an infinite branch of T would have to correspond to an infinite
zigzag of the shape shown in Fig. 5 (or of a dual shape), where a dashed arrow
up (resp. down) means that zero or more worlds were created by ⊃R (resp. �L)
inferences in between xi0 and xini and a solid arrow up (resp. down) means that
x(i+1)0 was created from xini by an ⊃R (resp. �L) inference. Let Γij (resp. Δij)
stand for the conclusion’s antecedent (resp. succedent) of the inference where
xij creates its immediate successor in branch B. By Lemma 5, a property anal-
ogous to it (for the case where �L is below ⊃R), and the fact that, given i
and j1 < j2 ≤ ni, mhf(Γij1 (xij1) ∪ Δij1(xij1)) ≥ mhf(Γij2 (xij2) ∪ Δij2 (xij2)),
it follows that mhf(Γini(xini) ∪ Δini(xini)) > mhf(Γ(i+1)ni+1(x(i+1)ni+1) ∪
Δ(i+1)ni+1(x(i+1)ni+1)) and so an infinite descending chain of natural numbers
would be produced. �

x10
�� ��

x30

�� ��x0n0

������� x1n1
��					 x2n2

�������

x00

�� ��
x20

�� ��

Fig. 5. An infinite zigzag

6 Completeness and Counter-Model Construction

We prove here that when the search procedure introduced in the previous section
arrives at a stuck sequent, we can immediately read off from the sequent a Kripke
counter-model for it. This result is then instrumental in achieving the equivalence
between derivability in L and validity.

Theorem 2 (Counter-models at stuck sequents). Let B be a failed branch
of a proof attempt with top sequent Γ �G Δ.

1. The structure K = (W,≤, I) where W is the set of labels in the sequent, ≤ is
the reflexive-transitive closure of G and I(x) = {p | x : p◦ ∈ Γ}, is a Kripke
structure.

2. Let Gext stand for G extended with all pairs removed in loop steps of B2. Let
v be the valuation on W such that v(y) = x if (x, y) or (y, x) is in Gext and

2 Here is assumed that when an eigenlabel is created at a branch of a proof attempt
it is distinct of any other label occurring below in the branch.

Proof Search and Counter-Model Construction 307

y �∈ G; and v(y) = y otherwise. For any sequent Γ ′ �G′ Δ′ in B, (i) for all
xG′y, v(x) ≤ v(y), and moreover (ii) for any formula A,
(a) if x : A or x : A◦ or x : A• belongs to Γ ′, v(x) |= A;
(b) if x : A∗ ∈ Γ ′, for all w ∈W s.t. v(x) ≤−G′ w, w |= A;
(c) if x : A or x : A◦ or x : A• belongs to Δ′, v(x) �|= A;
(d) if x : A∗ ∈ Δ′, for all w ∈W s.t. w ≤−G′ v(x), w �|= A;
hence, in particular, (K, v) is a cm of Γ ′ �G′ Δ′.

Proof: 1. If x = x1Gx2G...Gxn = y and x : p◦ ∈ Γ , follows by induction on n
that y : p◦ ∈ Γ (using Lemma 3 in the step case).

2. (i) Trivial. (ii) By induction on the formula A and sub-induction on the
number of sequents above Γ ′ �G′ Δ′ in B. If Γ ′ �G′ Δ′ is Γ �G Δ itself, it
can only have circled atoms or else starred or bulleted formulas. The conditions
on circled atoms hold by construction of (K, v) and the conditions on starred
formulas hold trivially, since ≤−G=≤ \v(G)∗ = ∅. If x : (C � D)• ∈ Γ ′ (for
x : (C ⊃D)• ∈ Δ′ the argument is analogous), it can be proved that there are
labels y and z, such that zGexty(Gext)∗x and B includes a step

Γ ′′, y : (C � D)•, z : C �G′′∪{(z,y)} z : D, Δ′′z/y, Δ′′

Γ ′′, y : C � D �G′′ Δ′′ �L

By the outer IH, v(z) |= C and v(z) �|= D. Thus, since zGexty(Gext)∗x implies
v(z) ≤ v(y) ≤ v(x), v(x) |= C � D.

If Γ ′ �G′ Δ′ is the conclusion of an atom or logical inference, the desired
conditions follow by the inner IH applied to the premise in B. Let us consider
the case of the loopUp rule (loopDn is analogous):

y �∈ G0 Γ ′ \ Γ ′(y) �G0 Δ′[x0/y]

Γ ′ �G0∪{(x0,y)} Δ′ loopUp

provided Γ ′[y] ⊆ Γ ′[x0] ∪ Γ ′•[x0], Γ ′∗[y] ⊆ Γ ′∗[x0], Γ ′◦[y] ⊆ Γ ′◦[x0]

Conditions (a) and (b) restricted to Γ ′ \ Γ ′(y) hold by the inner IH. As to
Γ ′(y): for y : A� ∈ Γ ′ (1 ∈ {∗, ◦}), the proviso guarantees x0 : A� ∈ Γ ′ and
so, by the inner IH and v(y) = v(x0), v(y) |= A; for y : A ∈ Γ ′, the proviso
guarantees either x0 : A ∈ Γ ′ or x0 : A• ∈ Γ ′, but both cases follow also from
the inner IH3. Conditions (c) and (d) follow from the inner IH and the facts
Δ′(y) ⊆ (Δ′[x0/y])(x) and v(y) = v(x0). �

Corollary 1. 1. Let Γ �G Δ be an L-sequent whose graph is a tree. The fol-
lowing statements are equivalent: i) Γ �G Δ is derivable in L; ii) Γ �G Δ is
valid; iii) the attempt to prove Γ �G Δ terminates with success.

2. For any L-sequent whose graph is a tree, the search procedure yields either
a proof or a counter-model.

3 The second case illustrates why the inductive argument does not go through, if we
simply prove that (K, v) is a cm of Γ ′ �G′ Δ′.

308 L. Pinto and T. Uustalu

Proof: 1. Follows from Thm. 2 with the help of Thm. 1 and Prop. 1.
2. Apply the search procedure to the given sequent. Thm. 1 guarantees that it

terminates. If this happens with success, then by Prop. 4 the sequent is provable
in L. Otherwise, the proof attempt has at least one failed branch and thus Thm. 2
guarantees the wanted cm. �

7 Conclusion

Although bi-intuitionistic logic may seem to be a modest extension of intuition-
istic logic, it has proved to be rather intricate from the structural proof theory
point of view. While naive sequent calculus formalizations are incomplete with-
out a cut rule, more considerate attempts at the design of sequent calculi for
backward proof search seem all to lead to relatively sophisticated designs.

We believe that our labelled sequent calculus represents a meaningful com-
promise between declarativeness and algorithmicity by encoding a reasonably
straightforward Kripke semantics based search strategy very much in the spirit
of analytic tableaux. Some novelties include integration of all useful monotonic-
ity consequences into the logical rules, including a specific annotation to deal
with consequences that must be delayed (flow of information into worlds not yet
created), and a termination argument utilizing the fact that information cannot
flow around too many turns. The failure-collecting sequent calculus by Postniece
and Goré [1,7] and the new calculus of nested sequents by Goré et al. [8] are
systems with the same aim and we find the nested sequent calculus especially
neat proof-theoretically, although it may require fine-tuning to be practical in
theorem proving/counter-model building.

As future work, we would like to see whether bi-intuitionistic logic admits
a loop-free backward-search proof system à la Dyckhoff [4], possibly modifiable
into a refutation system [13]. We would like to see if it is possible to devise a
system with controlled (“analytic”) cuts by a careful analysis of the failure of
cut elimination for the Dragalin-style sequent calculus. A yet further line would
be to devise a sequent calculus for forward search (a calculus of Mints-style
resolution) [10].

On a different note, we would also very much like to come to an under-
standing of the computational significance of bi-intuitionistic logic, i.e., whether
it admits useful a Curry-Howard interpretation justified by a well-motivated,
non-degenerate categorical semantics. The first step in this direction was made
already by Filinski [5] and further considerations appear in the work of Curien
and Herbelin [3]. Crolard’s project [2] clearly had the same ultimate aim. We
expect that the nested sequences technique of Goré et al. [8] can point to the
right structures.

Acknowledgements. We are very grateful to Sara Negri and Linda Postniece for
discussions and to our referees for very useful comments. Both of us benefit-
ted from the support of the FP6 IST coordination action TYPES. In addition,
L. Pinto was supported by the Portuguese FCT through Centro de Matemática

Proof Search and Counter-Model Construction 309

da Universidade do Minho and project RESCUE no. PTDC/EIA/65862/2006
and T. Uustalu was supported by the Estonian Science Foundation through
grants no. 5567 and 6940.

References

1. Buisman (Postniece), L., Goré, R.: A cut-free sequent calculus for bi-intuitionistic
logic. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS, vol. 4548, pp. 90–106.
Springer, Heidelberg (2007)

2. Crolard, T.: Subtractive logic. Theor. Comput. Sci. 254(1–2), 151–185 (2001)
3. Curien, P.-L., Herbelin, U.: The duality of computation. In: Proc. of 5th Int. Conf.

on Functional Programming, ICFP 2000, Montreal, September 2000, pp. 233–243.
ACM Press, New York (2000)

4. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. of Symb.
Logic 57(3), 795–807 (1992)

5. Filinski, A.: Declarative continuations: An investigation of duality in programming
language semantics. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard,
D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 224–249.
Springer, Heidelberg (1989)

6. Goré, R.: Dual intuitionistic logic revisited. In: Dyckhoff, R. (ed.) TABLEAUX
2000. LNCS, vol. 1847, pp. 252–267. Springer, Heidelberg (2000)

7. Goré, R., Postniece, L.: Combining derivations and refutations for cut-free com-
pleteness in bi-intuitionistic logic. J. of Logic and Comput. (to appear)

8. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-
intuitionistic logic using nested sequents. In: Areces, C., Goldblatt, R. (eds.) Ad-
vances in Modal Logic 7, pp. 43–66. College Publications, London (2008)

9. �Lukowski, P.: Modal interpretation of Heyting-Brouwer logic. Bull. of Sect. of
Logic 25, 80–83 (1996)

10. Mints, G.: Gentzen-type systems and resolution rules, part 1: Propositional logic.
In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231.
Springer, Heidelberg (1990)

11. Monteiro, C.: Caracterizações semânticas e dedutivas da lógica bi-intuitionista.
Master’s thesis. Universidade de Trás-os-Montes e Alto-Douro (2006)

12. Negri, S.: Proof analysis in modal logic. J. of Philos. Logic 34(5–6), 507–544 (2005)
13. Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic

propositional logic. In: Behara, M., Fritsch, R., Lintz, R.G. (eds.) Proc. of 2nd
Gauss Symp., Munich, August 1993, pp. 225–232. Conf. A. Walter de Gruyter,
Berlin (1995)

14. Rauszer, C.: Semi-boolean algebras and their applications to intuitionistic logic
with dual operators. Fund. Math. 83, 219–249 (1974)

15. Rauszer, C.: A formalization of the propositional calculus of H-B logic. Studia
Logica 33(1), 23–34 (1974)

16. Rauszer, C.: Applications of Kripke models to Heyting-Brouwer logic. Studia Log-
ica 36(1–2), 61–71 (1977)

17. Restall, G.: Extending intuitionistic logic with subtraction (unpublished note,
1997), http://consequently.org/writing/extendingj/

http://consequently.org/writing/extendingj/

Automated Synthesis of Tableau Calculi

Renate A. Schmidt and Dmitry Tishkovsky

School of Computer Science, The University of Manchester

Abstract. This paper presents a method for synthesising sound and
complete tableau calculi. Given a specification of the formal semantics
of a logic, the method generates a set of tableau inference rules which can
then be used to reason within the logic. The method guarantees that the
generated rules form a calculus which is sound and constructively com-
plete. If the logic can be shown to admit finite filtration with respect to a
well-defined first-order semantics then adding a general blocking mecha-
nism produces a terminating tableau calculus. The process of generating
tableau rules can be completely automated and produces, together with
the blocking mechanism, an automated procedure for generating tableau
decision procedures. For illustration we show the workability of the ap-
proach for propositional intuitionistic logic.

1 Introduction

We are interested in the problem of automatically generating a tableau calculus
for a logic. We assume that the logic is defined by a high-level specification of
the formal semantics. Our aim is to turn this into a set of inference rules that
provide a sound and complete tableau calculus for the logic. For a decidable
logic we want to generate a terminating calculus. In previous work we have de-
scribed a framework for turning sound and complete tableau calculi into decision
procedures [6]. The prerequisites for this to work are that the logic admits the
effective finite model property shown by a filtration argument, and that (i) the
tableau calculus is sound and constructively complete, and (ii) a weak form of
subexpression property holds for tableau derivations. Constructive completeness
is a slightly stronger notion than completeness and means that for every open
branch in a tableau there is a model which reflects all the expressions (formulae)
occurring on the branch. The subexpression property says that every expression
in a derivation is a subexpression of the input expression with respect to a finite
subexpression closure operator.

In order to be able to exploit the ‘termination through blocking’ results in [6],
in this paper, our goal is to produce tableau calculi that satisfy the prerequi-
sites (i) and (ii). It turns out that provided that the semantics of the logic is
well-defined in a certain sense, the subexpression property can be imposed on
the generated calculus. Crucial is the separation of the syntax of the logic from
the ‘extras’ in the meta-language needed for the semantic specification of the
logic. The process can be completely automated and gives, together with the
unrestricted blocking mechanism and the results in [5,6], an automated proce-
dure for generating tableau decision procedures for logics, whenever they have

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 310–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automated Synthesis of Tableau Calculi 311

the effective finite model property with respect to a well-defined first-order se-
mantics.

That the generated calculi are constructively complete has the added advan-
tage that models can be effectively generated from open, finished branches in
tableau derivations. This means that the synthesised tableau calculi can be used
for model building purposes.

The method works as follows. The user defines the formal semantics of the
given logic in a many-sorted first-order language so that certain well-definedness
conditions hold. The method automatically reduces the semantic specification of
the logic to Skolemised implicational forms which are then rewritten as tableau
inference rules. Combined with some default closure and equality rules, this pro-
vides a sound and constructively complete calculus for the logic. Under certain
conditions it is then possible to refine the rules. If the logic can be shown to ad-
mit finite filtration, then the generated calculus can be automatically turned into
a terminating calculus by adding the unrestricted blocking mechanism from [5].

The method is intended to be as general as possible, and cover as many
logics as possible. Our main applications are non-classical logics and description
logics. As a case study we consider the application of the method to propositional
intuitionistic logic (e.g. [3]). Intuitionistic logic provides a nearly perfect example
because the semantics of the logical connectives is not Boolean and the semantics
is restricted by a background theory. In addition, the logic is simple.

The paper is structured as follows. Section 2 defines the apparatus for specify-
ing the semantics of the logic of interest. Section 3 is about synthesising tableau
rules. In Section 4 we prove that the generated rules form a sound and construc-
tively complete calculus for the logic. Section 5 discusses ways of refining the
rules in order to reduce branching and redundancy in the syntax of the calculus.
In Section 6 the approach is applied to intuitionistic logic. We conclude with a
discussion of the method.

This paper contains no proofs, but these are given in the long version [7]. The
long version also contains more examples.

2 Specifying the Semantics of the Logic

For the sake of generality we assume the logic for which we want to develop a
tableau calculus is a many-sorted logic.

Let Sorts
def= {0, 1, . . . , N} be an index set of sorts and Conn a countable set

of the logical connectives of the logic. Every connective σ in Conn is associ-
ated with a tuple (i1, i2, . . . , im+1) ∈ Sorts(m+1), where m ≥ 0. The last argu-
ment im+1 is the sort of the expression obtained by applying σ to expressions
of sorts i1, i2, . . . , im, respectively. We say that σ is an m-ary connective of sort
(i1, i2, . . . , im+1).

By L we denote an abstract sorted language defined over an alphabet given
by a set of sorts Sorts, a set of connectives Conn, a countable set of variable
symbols {pi

j | i ∈ Sorts, j ∈ ω}, and a countable set of constant symbols {qi
j |

i ∈ Sorts, j ∈ ω}. L is defined as a set of expressions over the alphabet closed

312 R.A. Schmidt and D. Tishkovsky

under the connectives in Conn. More formally, let L def=
⋃

i∈Sorts Li, where each Li

denotes a set of expressions of sort i defined as the smallest set of expressions
satisfying the following conditions:

– All variables pi
j and all constants qi

j in the alphabet belong to Li.
– For every connective σ ∈ Conn of sort (i1, i2 . . . , im+1), σ(E1, . . . , Em) be-

longs to Lim+1 , whenever E1, . . . , Em belong to Li1 , . . . ,Lim , respectively.

Symbols, expressions and connectives in L are also referred to as L-symbols,
L-expressions and L-connectives. Variables and constants in L are called atomic
L-expressions. We usually refer to expressions in L0 as individuals, expressions
in L1 as concepts, and expressions in L2 as roles.

For an L-expression E, the notation E(p1, . . . , pm) indicates that p1, . . . , pm

are variables in the expression E. E(E1, . . . , Em) denotes the expression ob-
tained by uniformly substituting Ei into pi, for all i = 1, . . . , m. Similarly, if
X is a set of L-expressions depending on variables p1, . . . , pm, we indicate this
as X(p1, . . . , pm) and denote by X(E1, . . . , Em) the set of expressions which
are instances of expressions from X under uniform substitution of expressions
E1, . . . , Em into p1, . . . , pm, respectively.

Let ≺ be any transitive ordering on L-expressions, E an L-expression, and
X a set of L-expressions. We define sub≺(E) def= {E′ | E′ ≺ E} and sub≺(X) def=⋃

E∈X sub≺(E). We write sub≺(E1, . . . , Em) rather than sub≺({E1, . . . , Em}).
The language in which the semantics of the given logic is specified, is a sorted

first-order language with equality, denoted by FO(L). Formally, FO(L) is an
extension of the language L with: one additional sort, additional symbols, the
usual connectives and quantifiers of first-order logic, and the equality predi-
cate. The sorts of FO(L) are Sorts ∪ {N + 1} = {0, . . . , N, N + 1}. We call the
additional sort N + 1 the designated sort, and symbols that operate on this
sort, designated symbols. The additional symbols comprise of a countable set
of variable symbols {x, y, z, x0, y0, z0, . . .} of the designated sort, a countable
set of constants {a, b, c, a0, b0, c0, . . .} of the designated sort, function symbols
{f, g, h, f0, g0, h0, . . .} mapping argument terms to terms of sort N + 1, and a
countable set of constant predicate symbols {P, Q, R, P0, Q0, R0, . . .} of the des-
ignated sort (i.e., argument terms are required to be terms of sort N + 1). In
addition, FO(L) contains intersort symbols denoted by ν0, . . . , νN , i.e., one for
each sort in Sorts. The purpose of the intersort symbols is to define the seman-
tics of the connectives of the logic (similar to satisfaction conditions in standard
definitions of the semantics of connectives). In particular, ν0 is a unary function
symbol of sort (0, N + 1), and each of the remaining νi is a predicate symbol of
sort (i, N +1, . . . , N +1), with arity i+1. Furthermore, for every sort we assume
the presence of a binary predicate symbol functioning as equality predicate for
that sort. For reasons of simplicity, we use one symbol, namely ≈, for each of
the equality predicates.

We fix some more common notation. w denotes a sequence of first-order
variables: w

def= w1, . . . , wn. Similarly, ∀w denotes the universal quantifier pre-
fix ∀w def= ∀w1 · · · ∀wn. For any set S of formulae, ∀S denotes the universal

Automated Synthesis of Tableau Calculi 313

closure of S, i.e., the set ∀S def= {∀w φ(w) | φ(w) ∈ S}. The symbol ∼ denotes
complementation, i.e., ∼ψ denotes ψ′ if ψ = ¬ψ′, and ¬ψ, otherwise.

Formulae of FO(L) in which all occurrences of the L-variables pi
j (of sorts

i = 0, . . . , N) are free are called L-open formulae. Similarly, any L-open formula
is an L-open sentence if it does not have free occurrences of variables of the
designated sort N + 1.

For any set S of L-open formulae in FO(L) and a set X of L-expressions, let
S�X be the set of substitution instances of formulae in S under substitutions
into the variables of L which do not contain expressions outside X . Formally,

S�X def= {φ(E1, . . . , Em) | φ(p1, . . . , pm) ∈ S and
all L-expressions occurring in φ(E1, . . . , Em) belong to X}.

The semantics of L is specified in FO(L) as follows. Each expression in L
is interpreted as a term in FO(L). In particular, each variable symbol pi

j in Li

is interpreted as a variable of sort i in FO(L), each constant symbol qi
j in Li is

interpreted as a constant of sort i in FO(L), and every connective σ is interpreted
as a function of the same sort as σ.

An L-structure is a tuple I def= (L0, . . . ,LN , ΔI , νI0 , . . . , νIN , aI , . . . , P I , . . .)
where ΔI is a non-empty set, ν0(�)I ∈ ΔI for every individual � ∈ L0, νIn ⊆
Ln × (ΔI)n, for 0 < n ≤ N . aI ∈ ΔI and P I ⊆ (ΔI)m, where m is the arity
of P . Observe that an L-structure I is a first-order model (interpretation) of the
language FO(L). For simplicity we omit the sets L0, . . . ,LN and simply write
I = (ΔI , νI0 , . . . , νIN , aI , . . . , P I , . . .).

A valuation in I is a mapping ι from the set of variables and constants
of FO(L) to L ∪ ΔI such that ι(pi

j), ι(q
i
j) ∈ Li, and ι(xj), ι(aj) ∈ ΔI . We say

that a valuation ι in an L-structure is canonical if every variable and constant of
any sort i = 0, . . . , N is interpreted by itself, that is, ι(pi

j) = pi
j and ι(qi

j) = qi
j for

every variable pi
j and constant qi

j of the language L. This means that a canon-
ical valuation of every term of any sort i = 0, . . . , N is the term itself. It is not
difficult to see that any L-open formula φ is satisfiable in an L-structure iff it is
satisfiable in an L-structure under a canonical valuation. We write S |=c S′ for
sets of formulae S and S′, if, for every L-structure I and a canonical valuation ι
in I, I, ι |= S implies I, ι |= S′. Similarly, we write I |=c S iff there is a canonical
valuation ι such that I, ι |= S.

We say that a concept C is satisfiable in I if there is an a ∈ ΔI such that
(C, a) ∈ νI1 , or equivalently I |=c ∃x ν1(C, x). A concept C is valid in I if
I |=c ∀x ν1(C, x).

Let S be a set of L-open sentences in FO(L). A formula φσ in the language
of S defines the connective σ with respect to S if it does not contain σ and the
following holds:

∀S |= ∀p1 . . . ∀pm ∀x (νn(σ(p1, . . . , pm), x) ≡ φσ(p1, . . . , pm, x)). (∗)

Here p1, . . . , pm are variables of appropriate sorts which match the signature
of σ, and n is the result sort of σ (for x = (x1, . . . , xn)). We also say S defines σ.

314 R.A. Schmidt and D. Tishkovsky

∀x (x ≈ x) ∀x∀y (x ≈ y → y ≈ x) ∀x∀y∀z (x ≈ y ∧ y ≈ z → x ≈ z)

∀x1 · · · ∀xn∀yi (P (x1, . . . , xn) ∧ xi ≈ yi → P (x1, . . . xi−1, yi, xi+1, xn))

∀p∀x1 · · · ∀xn∀yi (νn(p, x1, . . . , xn) ∧ xi ≈ yi → νn(p, x1, . . . xi−1, yi, xi+1, xn))

∀p1 · · · ∀pm∀x1 · · · ∀xn∀yi (xi ≈ yi →
f(p1, . . . , pm, x1, . . . , xn) ≈ f(p1, . . . , pm, x1, . . . xi−1, yi, xi+1, . . . , xn))

Fig. 1. Equality axioms in FO(L)

The L-open sentence ∀x (νn(σ(p1, . . . , pm), x) ≡ φσ(p1, . . . , pm, x) is said to be
a σ-definition (in S).

By definition, a (first-order) semantic specification of L is a set of L-open
sentences in FO(L) that defines the connectives of L. Given a semantic speci-
fication S, we use the notation S0 for the set of L-open sentences defining the
connectives of L.

For the sake of generality, we always include the usual equality axioms, listed
in Figure 1, in a semantic specification. This ensures that ≈ is a congruence on
every sort in any first-order interpretation of FO(L).

We consider a semantic specification S to be normalised if it consists of three
disjoint parts. More specifically, S = S+ ∪ S− ∪ Sb, where S+, S−, and Sb are
disjoint sets of sentences satisfying the following:

(n1) S+ is a set of L-open sentences ξE
+ of the form:

ξE
+

def= ∀x (νn(E(p1, . . . , pm), x)→ φE
+(p1, . . . , pm, x)),

(n2) S− is a set of L-open sentences ξE
− of the form:

ξE
−

def= ∀x (φE
−(p1, . . . , pm, x) → νn(E(p1, . . . , pm), x)),

(n3) None of the L-open sentences in Sb contain non-atomic L-expressions.

In this definition, we suppose that multiple sentences of the form (n1) (resp. (n2))
for the same expression E in S+ and S− are all equivalently reduced to a single
sentence ξE

+ (resp. ξE
−). The intuition is that S+ and S− define the semantics

of the connectives. S+ defines it for positive occurrences of expressions E (with
free variables p1, . . . , pm), while S− defines it for negative occurrences of expres-
sions E. We refer to Sb as the background theory of the semantics S. Note that
Sb includes the equality axioms.

It can be seen that the set S0 ∪ Sb is a semantic specification which can
be turned into normalised form by decomposing each connective definition in S0

into two implications. In fact, S0 and S+∪S− play the same role in axiomatising
L-connectives in FO(L) modulo the background theory Sb.

For every L-expression E, let

ΦE
+

def= {φF
+(E1, . . . , Em, x) | E = F (E1, . . . , Em) for some ξ

F (p1,...,pm)
+ from S},

ΦE
−

def= {φF
−(E1, . . . , Em, x) | E = F (E1, . . . , Em) for some ξ

F (p1,...,pm)
− from S}.

Automated Synthesis of Tableau Calculi 315

Thus, ΦE
+ (resp. ΦE

−) is the set of instantiations of succedents (resp. antecedents)
of positive (resp. negative) specifications in S, where the antecedents (resp. succe-
dents) are unifiable with the given expression E.

The expression specifications in any normalised semantics S induce an order-
ing ≺ on expressions as follows. Let ≺ be the smallest transitive ordering satis-
fying: E′ ≺ E whenever there is a sentence ξ

F (p1,...,pm)
+ or a sentence ξ

F (p1,...,pm)
−

such that E = F (E1, . . . , Em), for some L-expressions E1, . . . , Em, and E′ oc-
curs in φF

+(E1, . . . , Em, x) or φF
−(E1, . . . , Em, x), respectively. Because we can

assume that S0 is also a normalised semantic specification, it similarly induces
an ordering ≺0 which is assumed to be well-founded.

Usually the semantics is defined by induction in terms of definitions of the
semantics of the connectives and the primitives in the logic which is lifted to
arbitrary L-expressions. This is equivalent to assuming a well-founded ordering
on expressions of L. For any reasonable definition such a well-founded ordering
exists. Thus, although it is not difficult to imagine formulae φσ such that ≺0
is not well-founded, we assume that the φσ are chosen in such a way that it
is possible to lift the semantics of L-primitives to all L-expressions, i.e., ≺0 is
well-founded.

Recall that S0 denotes the set of L-open sentences that define the L-connec-
tives. A semantic specification S is well-defined iff

(wd1) ∀S0, ∀Sb |= ∀S,
(wd2) the ordering ≺ is well-founded, and

(wd3) ∀S0, Sb�sub≺(σ(p)) |=c ∀x
((∧

Φ
σ(p)
+ → φσ(p, x)

)
∧(

φσ(p, x)→
∨

Φ
σ(p)
−

))
.

According to this definition, a well-defined semantics S is equivalent to S0∪Sb

modulo the background theory Sb. This is ensured by condition (wd1) and the
assumption that S defines all L-connectives in S0. Through condition (wd2), S
imposes its own inductive structure on L-expressions. Condition (wd3) specifies
a correlation between S and S0 on instances of L-expressions. It can be seen
that S0 ∪ Sb is a well-defined semantic specification itself.

A (propositional) logic L over the languageL is a subset of concepts in L which
is closed under arbitrary substitutions of variables with expressions of the same
sorts. A logic L is first-order definable iff there is a semantic specification SL

such that L coincides with the set of all concepts that are valid in all L-structures
satisfying ∀SL, i.e., L = {C ∈ L1 | ∀SL |=c ∀x ν1(C, x)}.

For a fixed semantic specification SL of logic L, if I is an L-structure satisfying
SL then by definition I is a model of L or simply a L-model (with respect to SL).

The following are examples of first-order definable logics, which all have a
normalised semantic specification according to the above definitions: most de-
scription logics, including ALCO, ALBO [5], SHOIQ [1], most propositional
modal logics, including K, S4, KD45, propositional intuitionistic logic [3], and
the logic of metric and topology [2].

316 R.A. Schmidt and D. Tishkovsky

3 Synthesising a Tableau Calculus

A tableau calculus is a set of tableau inference rules. A tableau inference rule
is a rule of the form X/X1 | · · · | Xm, where both the numerator X and all
denominators Xi (m ≥ 0) are finite sets of negated or unnegated atomic formulae
in the language FO(L). The formulae in the numerator are called premises, while
the formulae in the denominators are called conclusions. The numerator and all
the denominators are non-empty, but m may be zero, in which case the rule is a
closure rule and is usually written X/⊥. If m > 1, the rule is a branching rule.

Inference steps are performed as usual. A rule is applied to a set of (ground)
literals in a branch of a tableau derivation, if the literals are instances of the
premises of the rule. Then, in the case of a non-branching rule, the corresponding
(ground) instances of the conclusions of the rule are added to the branch. In
the case of a branching rule the branch is split into several branches and the
corresponding (ground) instances of the conclusions are added to each branch.

Let T denote a tableau calculus and C a concept. We take an arbitrary con-
stant a of the designated sort which does not occur in the rules of T . We de-
note by T (C) a finished tableau derivation built by starting with the formula
ν1(C, a) as input and applying the rules of T . That is, all branches in the tableau
derivation are fully expanded and all applicable rules of T have been applied in
T (C). As usual we assume that all the rules of the calculus are applied non-
deterministically in a tableau derivation. A branch of a tableau derivation is
closed if a closure rule has been applied, otherwise the branch is called open.
The tableau derivation T (C) is closed if all its branches are closed and T (C) is
open otherwise. The calculus T is sound (for L) iff for any concept C, each T (C)
is open whenever C is satisfiable in an L-model. T is complete iff for any unsat-
isfiable concept C there is a T (C) which is closed. T is said to be terminating if
every finished open tableau derivation in T has a finite open branch.

Let L be a first-order definable propositional logic over L and SL a well-
defined semantic specification of L. We now describe how tableau rules can
be synthesised from SL. If SL is not already normalised we first normalise it.
Thus assume SL = S+

L ∪ S−L ∪ Sb
L. Now take a positive specification ξE

+ in S+
L .

Eliminate quantifiers using Skolemisation and equivalently rewrite ξE
+ into the

following implicational form

νn(E(p1, . . . , pm), x1, . . . , xn)→
J∨

j=1

Kj∧
k=1

ψjk,

where each ψjk denotes a literal. This is always possible. The implication is now
turned into the rule:

ρ+(ξE
+) def=

νn(E(p1, . . . , pm), x1, . . . , xn), y1 ≈ y1, . . . , ys ≈ ys

ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

,

where y1, . . . , ys denote the free variables in ψjk which are not among the vari-
ables x1, . . . , xn. Essentially, the antecedent of the implication has become the

Automated Synthesis of Tableau Calculi 317

main premise in the nominator and the succedent was appropriately turned into
the denominators of the rule. The purpose of the equations yi ≈ yi is domain
predication. We say the rule corresponds to ξE

+ . Analogously a tableau rule is be
generated for each negative specification ξE

− in S−L . The contrapositive of ξE
− is

equivalently rewritten to Skolemised implicational form

¬νn(E(p1, . . . , pm), x1, . . . , xn)→
J∨

j=1

Kj∧
k=1

ψjk,

where each ψjk denotes a literal, and the corresponding rules have the form

ρ−(ξE
−) def=

¬νn(E(p1, . . . , pm), x1, . . . , xn), y1 ≈ y1, . . . , ys ≈ ys

ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

.

We refer to the rules ρ+(ξE
+) and ρ−(ξE

−) as decomposition rules.
For example, the generated decomposition rules for the existential restriction

operator in the description logic ALC are:

ν1(∃r.p, x)
ν2(r, x, f(p, x)), ν1(p, f(p, x))

,
¬ν1(∃r.p, x), y ≈ y

¬ν2(r, x, y) | ¬ν1(p, y)
.

These are not the familiar rules used in standard description logic tableau sys-
tems, but in Section 5 we see how to get those.

The sentences in the background theory of SL are turned into rules by first
equivalently transforming them into Skolemised disjunctive normal form. More
specifically, let ξ be an arbitrary sentence in Sb

L. It is first rewritten to

J∨
j=1

Kj∧
k=1

ψjk, (∗∗)

where each ψjk denotes a literal, and is then turned into the corresponding rule,
namely

ρ(ξ) def=
p1 ≈ p1, . . . , pm ≈ pm, x1 ≈ x1, . . . , xn ≈ xn

ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

.

The p1, . . . , pm, x1, . . . , xn are the variables that are free in (∗∗). Rules corre-
sponding to sentences in Sb

L are called theory rules.
We use TL to denote the generated calculus. In summary, it consists of these

rules.

(t1) The decomposition rules ρσ
+(ξ) and ρσ

−(η) corresponding to all positive
specifications ξ in S+

L and all negative specifications η in S−L .
(t2) The theory rules ρ(ζ) corresponding to all sentences ζ in the background

theory Sb
L.

(t3) The closure rules (for every n = 1, . . . , N , and every constant predicate
symbol P in SL):

νn(p, x), ¬νn(p, x)
⊥ ,

P (x), ¬P (x)
⊥ .

318 R.A. Schmidt and D. Tishkovsky

4 Ensuring Soundness and Constructive Completeness

It is possible to prove that every rule of the generated calculus TL preserves
satisfiability of FO(L)-formulae. That is, if all premises of a rule are true in an
L-model I (under a canonical valuation) then the conclusions of some branch
are also true. This is not difficult to see because the definitions of the rules mimic
the specified semantics. Hence:

Theorem 1 (Soundness). TL is sound for L, i.e., for every concept C satis-
fiable in an L-model, any finished tableau derivation TL(C) is open.

Now, we prove constructive completeness of TL. Let B denote an arbitrary branch
in a TL-tableau derivation. We define the following relation ∼B with respect to
B: t∼B t′

def⇐⇒ t ≈ t′ ∈ B, for any ground terms t and t′ of the designated sort
N + 1 in B. Let ‖t‖ def= {t′ | t∼B t′} be the equivalence class of an element t.
The presence of the rules generated from the equality axioms ensure that ∼B is
a congruence relation on all designated ground terms in B.

We say a model I, under a (canonical) valuation ι, reflects an expression E
occurring in a branch B iff for every ground terms t1, . . . , tn we have that

– (E, ι(t1), . . . , ι(tn)) ∈ νIn whenever νn(E, t1, . . . , tn) ∈ B, and
– (E, ι(t1), . . . , ι(tn)) /∈ νIn whenever ¬νn(E, t1, . . . , tn) ∈ B.

Similarly, I reflects predicate constant P from B under a (canonical) valuation ι
in I iff for every ground terms t1, . . . , tn we have that

– (ι(t1), . . . , ι(tn)) ∈ P I whenever P (t1, . . . , tn) ∈ B, and
– (ι(t1), . . . , ι(tn)) /∈ P I whenever ¬P (t1, . . . , tn) ∈ B.

A model I reflects branch B under a valuation ι if I reflects all predicate con-
stants and expressions occurring in B under ι.

A tableau calculus TL is said to be constructively complete (for L) iff for
any given concept C that is satisfiable, if B is an open branch in the tableau
derivation TL(C) then there is an L-model I such that:

(m1) The domain ΔI of I is the set of the equivalence classes ‖t‖ for each
ground term t occuring in B.

(m2) I reflects B under the canonical projection valuation π defined by π(t) def=
‖t‖, for every ground term t occuring in B.

It is clear that if TL is constructively complete then TL is complete for L.
Suppose now that SL is a semantic specification and ≺0 is a well-founded

ordering on L-expressions induced by the set S0
L of the definitions of the con-

nectives of the form (∗) with respect to SL.
Let B be an open branch in a finished tableau derivation in TL. Define inter-

pretations of predicate symbols in I(B) by induction on ≺0 as follows:

– P I(B) def= {(‖t1‖, . . . , ‖tn‖) | P (t1, . . . , tn) ∈ B}, for every n-ary constant
predicate symbol P in SL.

Automated Synthesis of Tableau Calculi 319

– For every n = 1, . . . , N the interpretation ν
I(B)
n of the νn symbols is defined

as the smallest subset of Ln × (ΔI(B))n satisfying both (p, ‖t1‖, . . . , ‖tn‖) ∈
ν
I(B)
n ⇐⇒ νn(p, t1, . . . , tn) ∈ B and (σ(E1, . . . , Em), ‖t1‖, . . . , ‖tn‖) ∈

ν
I(B)
n ⇐⇒ I(B) |=c φσ(E1, . . . , Em, ‖t1‖, . . . , ‖tn‖), for every variable or

constant p of the sort n, every connective σ, and any expressions E1, . . . , Em.

A consequence of the definition of I(B) is that the definitions of the connec-
tives are valid in I(B), i.e., we have I(B) |= ∀S0

L.
It can be proved that I(B) reflects the branch B (under the valuation π) by

induction on the well-founded ordering ≺. As a consequence we obtain construc-
tive completeness.

Theorem 2 (Constructive completeness). TL is constructively complete.

5 Refining the Synthesised Calculus

In order to get inference rules that have better properties, in this section we
introduce two refinements.

The first refinement reduces the number of branches of a rule by constraining
the rule with additional premises rather than deriving new conclusions. Suppose
r

def= X/X1 | · · · | Xm is a tableau rule of a sound and constructively complete
tableau calculus TL. For some i ∈ {1, . . . , m} suppose Xi = {ψ1, . . . , ψk}. With-
out loss of generality we can assume that i = 1. Consider the rules rj with
j = 1, . . . , k defined by

rj
def=

X ∪ {∼ψj}
X2 | · · · | Xm

.

Note that we can drop any domain predication equalities from the numerator
when they are not necessary. Let T ′L be the tableau calculus obtained from TL

by replacing rule r by the rules r1, . . . , rk. It is clear that T ′L is sound. In general,
T ′L is not constructively complete. However the following theorem is true.

Theorem 3. Let B be an open branch in a T ′L-tableau. Assume that for every
set Y of L-expressions the following holds.

If all expressions from Y are reflected in I(B) then for every E1, . . . , El ∈ Y ,

X(E1, . . . , El, t1, . . . , tn) ⊆ B implies
I(B) |= Xi(E1, . . . , El, ‖t1‖, . . . , ‖tn‖) for some i = 1, . . . , m. (†)

Then, B is reflected in I(B).

Corollary 1. If the condition of Theorem 3 holds for every open branch B of
any T ′L-tableau then T ′L is constructively complete.

Generalising this refinement to moving more than one conclusion up to the
numerator is not difficult. The formulation of Theorem 3 does not change then.

320 R.A. Schmidt and D. Tishkovsky

Consider the generated rule for negative occurrences of the existential restric-
tion operator given on p. 317. In most description logics it can be transformed
to the more often seen rule:

¬ν1(∃r.p, x), ν2(r, x, y)
¬ν1(p, y)

.

In order to preserve constructive completeness, the following condition is usually
proved by induction on ≺. This, in turn, inductively implies condition (†).

If ¬ν1(∃E.F, t) ∈ B and I(B) |= ν2(E, t, t′) then ¬ν1(F, t′) ∈ B.

Another example of a generated rule and a refinement are (for transitive R):

x ≈ x, y ≈ y, z ≈ z

¬R(x, y) | ¬R(y, z) | R(x, z)
,

R(x, y), R(y, z)
R(x, z)

.

Condition (†) holds in this case since, by definition of I(B), I(B) reflects all
atomic predicate constants in the branch B.

The second refinement we describe exploits the expressivity of the logic. Sup-
pose that the language L of the logic L is expressive enough to represent its
own semantics. That is, assume that for every n = 0, . . . , N and every n-
ary predicate constant P occuring in SL, there are concepts C+

n (p, �1, . . . , �n),
C−n (p, �1, . . . , �n), D+

P (�1, . . . , �n), and D−P (�1, . . . , �n), depending on variable p
of sort n and variables �1, . . . , �n of sort 0, such that

∀SL |= ∀x
(
ν1(C+

n (p, �1, . . . , �n), x) → νn(p, ν0(�1), . . . , ν0(�n))
)
,

∀SL |= ∀x
(
ν1(C−n (p, �1, . . . , �n), x) → ¬νn(p, ν0(�1), . . . , ν0(�n))

)
,

∀SL |= ∀x
(
ν1(D+

P (�1, . . . , �n), x) → P (ν0(�1), . . . , ν0(�n))
)
,

∀SL |= ∀x
(
ν1(D−P (�1, . . . , �n), x) → ¬P (ν0(�1), . . . , ν0(�n))

)
.

In this case we are able to express all tableau rules for L in the language L itself.
We only need to replace every positive occurrence of νn(E, x1, . . . , xn) in TL

with C+
n (E, �1, . . . , �n), every (negative) occurrence of ¬νn(E, x1, . . . , xn) in TL

with C−n (E, �1, . . . , �n), and, similarly, all the predicate constants P need to be
replaced with occurrences of D+

P or D−P depending on the polarity of P . In fact,
the sort N + 1 of FO(L) can be reflected in the sort 0.

A slight difficulty is caused by Skolem functions in FO(L) occurring in the
tableau calculus, since for them there could be no corresponding function sym-
bols in L. It can be solved by introducing new connectives fg into the lan-
guage L for every (Skolem) function and constant g of FO(L) so that for every
(p1, . . . , pm, �1, . . . , �n), fg(p1, . . . , pm, �1, . . . , �n) is a term of the sort 0 and its
semantics is defined by ν0(fg(p, �1, . . . , �n)) def= g(p, ν0(�1), . . . , ν0(�n)). An al-
ternative is to introduce unique, new individual names (for every p1, . . . , pm,
�1, . . . , �n) instead of new connectives.

Automated Synthesis of Tableau Calculi 321

Connective definitions
∀x (ν1(⊥, x) ≡ ⊥)

∀x (ν1(p1 ∧ p2, x) ≡ ν1(p1, x) ∧ ν1(p2, x)
)

∀x (ν1(p1 ∨ p2, x) ≡ ν1(p1, x) ∨ ν1(p2, x)
)

∀x (ν1(p1 → p2, x) ≡ ∀y (R(x, y)→ (ν1(p1, y)→ ν1(p2, y)
))

Background theory of a partial ordering R and ν1

∀x R(x, x)
∀x∀y (R(x, y) ∧R(y, x)→ x ≈ y)

∀x∀y∀z (R(x, y) ∧R(y, z)→ R(x, z))
∀x∀y (ν1(p, x) ∧R(x, y)→ ν1(p, y)

)
Fig. 2. Specification of semantics of intuitionistic logic

For example, in the description logic ALCO with full support of individuals,
we can set (for any atomic role r and individual equality):

C+
2 (r, �1, �2)

def= �1 : ∃r.{�2}, D+
≈(�1, �2)

def= �1 : {�2},
C−2 (r, �1, �2)

def= �1 : ¬∃r.{�2}, D−≈(�1, �2)
def= �1 : ¬{�2}.

Thus, the language of the tableau calculus can be significantly simplified. For
instance, the (refined) rules for the existential restriction operator become:

� : ∃r.p
� : ∃r.{f(r, p, �)}, f(r, p, �) : p

,
� : ¬∃r.p, � : ∃r.{�′}

�′ : ¬p
.

6 Synthesising Tableaux for Intuitionistic Logic

Intuitionistic logic is an example of a logic where νn cannot be expressed in
the language of the logic. It also provides an example of a logics for which a
background theory is an essential part of the definition of the semantics.

The language of intuitionistic logic is a one-sorted language defined over a
countable set of propositional symbols p1

1, p
1
2, . . ., and the standard connectives

are →,∨,∧,⊥. The semantic specification in FO(L) is given in Figure 2 (cf. [3]).
R is the designated predicate symbol representing the partial order in the back-
ground theory. For intuitionistic logic the orderings ≺0 and ≺ coincide. The
ordering ≺ on subexpressions induced by the semantic definition of the connec-
tives is the smallest ordering satisfying: E1 ≺ E1σE2 and E2 ≺ E1σE2, for each
σ ∈ {→,∨,∧} and all intuitionistic formulae E1 and E2.

The tableau rules generated by our approach are those listed in Figure 3.
Together with the equality rules, they form a calculus, which is sound and con-
structively complete for propositional intuitionistic logic. This is an immedi-
ate consequence of Theorems 1 and 2. Refining the generated rules yields the
rules listed in Figure 4. Using Theorem 3 we conclude that these rules together
with suitably refined equality rules provide a sound and constructively complete
tableau calculus for intuitionistic logic.

322 R.A. Schmidt and D. Tishkovsky

Decomposition rules:

ν1(⊥, x)
⊥

ν1(p1 ∧ p2, x)
ν1(p1, x), ν1(p2, x)

¬ν1(p1 ∧ p2, x)
¬ν1(p1, x) | ¬ν1(p2, x)

¬ν1(⊥, x)
¬⊥

ν1(p1 ∨ p2, x)
ν1(p1, x) | ν1(p2, x)

¬ν1(p1 ∨ p2, x)
¬ν1(p1, x), ¬ν1(p2, x)

ν1(p1 → p2, x)
¬R(x, y) | ¬ν1(p1, y) | ν1(p2, y)

¬ν1(p1 → p2, x)
R(x, f(p1, p2, x)), ν1(p1, f(p1, p2, x)), ¬ν1(p2, f(p1, p2, x))

Theory rules:

x ≈ x

R(x, x)
x ≈ x, y ≈ y

¬R(x, y) | ¬R(y, x) | x ≈ y

x ≈ x, y ≈ y, z ≈ z

¬R(x, y) | ¬R(y, z) | R(x, z)
p ≈ p, x ≈ x, y ≈ y

¬ν1(p, x) | ¬R(x, y) | ν1(p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)
⊥

R(x, y), ¬R(x, y)
⊥

Fig. 3. Generated tableau rules for intuitionistic logic

Decomposition rules:

ν1(⊥, x)
⊥

ν1(p1 ∧ p2, x)
ν1(p1, x), ν1(p2, x)

¬ν1(p1 ∧ p2, x)
¬ν1(p1, x) | ¬ν1(p2, x)

ν1(p1 ∨ p2, x)
ν1(p1, x) | ν1(p2, x)

¬ν1(p1 ∨ p2, x)
¬ν1(p1, x), ¬ν1(p2, x)

ν1(p1 → p2, x), R(x, y), ν1(p1, y)
ν1(p2, y)

¬ν1(p1 → p2, x)
R(x, f(p1, p2, x)), ν1(p1, f(p1, p2, x)), ¬ν1(p2, f(p1, p2, x))

Theory rules:

x ≈ x

R(x, x)
R(x, y), R(y, x)

x ≈ y

R(x, y), R(y, z)
R(x, z)

ν1(p, x), R(x, y)
ν1(p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)
⊥

Fig. 4. Refined tableau rules for intuitionistic logic

A terminating tableau calculus is obtained if the calculus is enhanced with
the blocking mechanism of [5,6]. This follows from the results in [6], the sound-
ness and constructive completeness of the calculus, the subexpression property
and the fact that intuitionistic logic admits finite filtrations. The calculus can
be turned into a deterministic decision procedure using breadth-first search or
depth-first search, as we showed in [6].

Automated Synthesis of Tableau Calculi 323

7 Discussion and Conclusions

The method introduced in this paper automatically produces a sound and
constructively complete tableau calculus from a semantic first-order specification
of a many-sorted logic. The method is directly applicable to many non-classical
logics and covers many types of ground tableau calculi commonly found in the
literature. These include two types of tableau calculi for relations satisfying ex-
tra theory conditions which can be accommodated either by structural rules or
propagation rules.

The results of the paper can be regarded as a mathematical formalisation and
generalisation of tableau development methodologies. Our formalisation is based
on, and provides the basis for, the implementation of tableau decision procedures
for modal and description logics in the MetTeL system [8]. The formalisation
separates the creative part of tableau calculus development, which needs to be
done by a human developer, and the automatic part of the development process,
which can be left to an automated (currently first-order) prover and an auto-
mated tableau synthesiser. The creative part is the specification of the logic so
that the conditions of well-foundness of the orderings ≺0 and ≺ hold. The auto-
matic part deals with verification of the first-order conditions (wd1) and (wd3),
and the generation of tableau rules from the (well-defined) semantics provided
by the developer. Then, the developer can transform the generated rules to re-
fined form by applying Theorem 3. Refinements are crucial for the success of the
method. With the described refinements the calculi that the method generates
are equivalent (modulo inessential variations) to the calculi common for intu-
itionistic logic, ALCO, most other first-order definable description logics, and
the common modal logics such as S4 and S5, for example.

For commonmodal anddescription logics conditions (wd1)and (wd3) are simple
to check, even trivial inmany cases. In fact,adeveloper usually implicitly formalises
the logic’s semantics S in such way that S = S0 ∪ Sb. This is the case for almost
all of known logics. If the specification of the semantics satisfies S = S0 ∪ Sb then
conditions (wd1) and (wd3) hold trivially and the orderings ≺0 and ≺ coincide.
This means the ordering used for the specification of the semantics of the logical
connectives (which is usually well-founded), is enough for tableau synthesis.

This paper also presents a general method for proving (constructive) com-
pleteness of tableau calculi. In addition, the generated rules can be transformed
to an optimal form provided that the special condition (†) has been proven by
induction on the ordering ≺ for the refined calculus.

With enough expressivity for representing the basics of the semantics within
the logic it is possible to simplify the language of the tableau. In this case, the
obtained calculus is similar to tableau calculi for description logics with full sup-
port of individuals, hybrid modal logic, and labelled tableau calculi. Otherwise,
the calculus has the same flavour as the standard tableau calculus for intuition-
istic logic, where every node of a tableau is characterised by two complementary
sets of true and false formulae (concepts).

As a case study we considered tableau synthesis for propositional intuitionis-
tic logic. We believe the approach is also applicable to most known, first-order

324 R.A. Schmidt and D. Tishkovsky

definable modal and description logics. Non first-order translatable logics such
as propositional dynamic logic are currently beyond the scope of the method.

The tableau calculi generated are Smullyan-type tableau calculi, i.e., ground
semantic tableau calculi. We believe that other types of tableau calculi can be
generated using the same techniques. Exploiting the known relationships to other
deduction methods and the underlying ideas of [4] we expect synthesis of non-
tableau approaches is possible as well, but this is future work. In [4] we have
shown that it is possible to synthesise tableau calculi for modal logics by trans-
lation to first-order logic combined with first-order resolution. In this framework
the semantic specification of a logic is transformed into clausal form and then
a set of inference rules. Soundness and completeness of the generated calculus
follows from the soundness and completeness of the simulating resolution refine-
ment used. This approach has several advantages, but in this paper we have
taken a different, more direct approach. Rather than proceeding via simulation
by resolution we have shown that tableau rules can be generated directly from
the specification of the logic.

Our future goal is to further reduce human involvement in the development
of calculi by finding appropriate automatically verifiable conditions for optimal
calculi to be generated.

References

1. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Automat.
Reasoning 39(3), 249–276 (2007)

2. Hustadt, U., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Automated reasoning
about metric and topology (System description). In: Fisher, M., van der Hoek, W.,
Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS(LNAI), vol. 4160, pp. 490–493.
Springer, Heidelberg (2006)

3. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Formal Systems and
Recursive Functions, pp. 92–130. North-Holland, Amsterdam (1965)

4. Schmidt, R.A.: Developing modal tableaux and resolution methods via first-order
resolution. In: Advances in Modal Logic, vol. 6, pp. 1–26. College Publ. (2006)

5. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics
with role negation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 438–451.
Springer, Heidelberg (2007)

6. Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description
logics, modal logics and related first-order fragments. In: Armando, A., Baumgart-
ner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 194–209. Springer,
Heidelberg (2008)

7. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi (2009),
http://www.cs.man.ac.uk/~dmitry/papers/astc2009.pdf

8. Tishkovsky, D.: MetTeL system,
http://www.cs.man.ac.uk/~dmitry/implementations/MetTeL/

http://www.cs.man.ac.uk/~dmitry/papers/astc2009.pdf
http://www.cs.man.ac.uk/~dmitry/implementations/MetTeL/

Tableaux for Projection Computation
and Knowledge Compilation

Christoph Wernhard

Technische Universität Dresden
christoph.wernhard@tu-dresden.de

Abstract. Projection computation is a generalization of second-order
quantifier elimination, which in turn is closely related to the computa-
tion of forgetting and of uniform interpolants. On the basis of a unified
view on projection computation and knowledge compilation, we develop
a framework for applying tableau methods to these tasks. It takes refine-
ments from performance oriented systems into account. Formula simpli-
fications are incorporated at the level of tableau structure modification,
and at the level of simplifying encountered subformulas that are not yet
fully compiled. In particular, such simplifications can involve projection
computation, where this is possible with low cost. We represent tableau
construction by means of rewrite rules on formulas, extended with some
auxiliary functors, which is particularly convenient for formula transfor-
mation tasks. As instantiations of the framework, we discuss approaches
to propositional knowledge compilation from the literature, including
adaptions of DPLL, and the hyper tableau calculus for first-order clauses.

1 Introduction

There are two established families of methods for second-order quantifier elimi-
nation, the SCAN approach, based on resolvent generation, and direct methods,
based and Ackermann’s lemma [9]. Over the last decade, several methods for
second-order quantifier elimination have been proposed that can be classified
as belonging to a third approach: tableau construction [12,4,14,16,11]. All of
these are restricted to propositional logic (and thus, more specifically perform
Boolean quantifier elimination) and most of them are based on DPLL which we
regard as a tableau procedure, considering semantic trees as tableaux. They are
combined with knowledge compilation, the transformation of formulas such that
they meet syntactic criteria which permit to execute certain operations with
low cost. They are described with different techniques, including pseudocode as
common in the literature on modern DPLL methods, and with varying terminol-
ogy such as marginalization, computation of uniform interpolants, forgetting and
projection computation for second-order quantifier elimination or closely related
tasks. In this paper, we stick with projection computation, specified explicitly as
a generalization of second-order quantifier elimination.

Our goal in this paper is to develop a framework that realizes abstractions
in two respects: First, it provides a unified view on projection computation and

M. Giese and A. Waaler (Eds.): TABLEAUX 2009, LNAI 5607, pp. 325–340, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

326 C. Wernhard

certain kinds of knowledge compilation. Second, it abstracts from differences in
tableau construction methods that are inessential for the adaption to such tasks.
Adaptions of the methods of successful automated tableau systems, such as mod-
ern SAT solvers or hyper tableau systems, can then be modeled as instantiations
of the framework.

The basic idea is that the whole tableau itself is the objective of computation
– in contrast to a single branch representing a model, or a proof of unsatisfiability
where the tableau represents the search trace. A computed tableau then repre-
sents a transformed input formula that satisfies syntactic criteria which permit
certain operations – especially projection computation – to be performed with
low cost.

The paper is structured as follows: Preliminaries on projection and the consid-
ered compilation target format, linkless formulas, are given in Sect. 2, followed
by the definition of a relation that generalizes the relationships between inputs
and outputs of projection computation, knowledge compilation, and their com-
binations. In Sect. 3, a tableau variant is presented that is particularly suited for
formula transformation tasks, since tableaux are represented as formulas with
some additional structure indicating operators. Tableau construction rules then
closely resemble formula rewriting rules. A tableau calculus is introduced and –
based on the relation defined in Sect. 2 – shown to satisfy correctness properties
with respect to projection computation and knowledge compilation. Refinements
of the calculus that seem essential for practical application, such as and-nodes,
tableau level simplification and backjumping, are discussed in Sect. 4. Methods
for projection computation and knowledge compilation that are based on well
known practical successful methods such as DPLL and hyper tableaux are then
modeled in Sect. 5 as instances of this tableau framework.

Notation. Unless specially noted, we assume that a formula is in negation nor-
mal form, constructed from first-order literals, truth value constants�,⊥, binary
connectives ∧,∨ and the universal first-order quantifier ∀. N-ary connectives are
understood as meta-level notation with respect to this syntax. We write the pos-
itive (negative) literal with atom A as +A (−A) and the complement of literal L

as L̃. As usual, a sentence is a formula without free variables. A universal literal
is a sentence of the form ∀x1 . . . ∀xn L, where n ≥ 0 and L is a literal. The
symbol LIT denotes the set of all universal literals. We assume a fixed first-order
signature Σ and refer to the ground atoms and ground literals constructable
from it as all ground atoms and ground literals, respectively. The symbol ALL
denotes the set of all ground literals, POS all positive ground literals. The atom
base A(F) (literal base L(F)) of a formula F is the set of all ground atoms
(ground literals) which are instance of an of atom (literal) in F .

Semantic Framework. We use the notational variant of Herbrand interpreta-
tions described in [19]: An interpretation is a pair 〈I, β〉, where I is a structure,
that is, a set of ground literals that contains for all ground atoms A exactly one
of +A or −A, and β is a variable assignment, that is, a mapping of the set of vari-
ables into the set of ground terms. The set of literals I of an interpretation 〈I, β〉
is called “structure”, since it represents a structure in the conventional sense used

Tableaux for Projection Computation and Knowledge Compilation 327

in model theory: The domain is the set of ground terms. Function symbols f
with arity n ≥ 0 are mapped to functions f ′ such that for all ground terms
t1, ..., tn it holds that f ′(t1, ..., tn) = f(t1, ..., tn). Predicate symbols p with arity
n ≥ 0 are mapped to {〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}. Moreover, an interpreta-
tion 〈I, β〉 represents a conventional second-order interpretation [8] (if predicate
variables are considered as distinguished predicate symbols): The structure in
the conventional sense corresponds to I, as described above, except that map-
pings of predicate variables are omitted. The assignment is β, extended such
that all predicate variables p are mapped to {〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}.

The satisfaction relation is defined as usual by a clause for each logic operator,
for example: 〈I, β〉 |= (F1∧F2) iffdef 〈I, β〉 |= F1 and 〈I, β〉 |= F2. Entailment and
equivalence of formulas are straightforwardly defined in terms of the satisfaction
relation: A formula F1 entails a formula F2, in symbols F1 |= F2, if and only
if for all interpretations 〈I, β〉 it holds that if 〈I, β〉 |= F1 then 〈I, β〉 |= F2. A
formula F1 is equivalent to a formula F2, in symbols F1 ≡ F2, if and only if
F1 |= F2 and F2 |= F1.

2 A General View on Projection and Compilation

Projection onto Literal Scopes. Projection computation is a generalization
of second-order quantifier elimination which permits, so to speak, to “quantify”
upon an arbitrary set of ground literals instead of just (all ground literals with)
a given predicate symbol. We pursue the following formal approach to projec-
tion computation: The syntax of formulas is extended by a projection operator
project(F, S), where F is a formula and S specifies a set of ground literals. We
call a set of ground literals in the role as argument to projection a literal scope.
The formula project(F, S) is called the literal projection of F onto S.

Projection computation then means to compute for a given formula that con-
tains the project operator an equivalent formula without the project operator.
This is analogous to second-order quantifier elimination: computing for a given
formula with second-order quantifiers an equivalent formula without second-
order quantifiers. Existential second-order quantification is a special case of pro-
jection, which could be defined as ∃p F def= project(F, S), where S is the set of
all ground literals with a predicate other than p. The semantics of the project
operator is specified with the following clause in the definition of the satisfaction
relation, which is added to the usual clauses for the classical operators:

〈I, β〉 |= project(F, S) iffdef there exists a structure J such that (PROJ)
〈J, β〉 |= F and J ∩ S ⊆ I.

Some properties of projection are displayed in Table 1. Property (viii) will be
discussed in the next section. For more comprehensive material see [19,20,18,13].

Linkless Formulas. Projection does not in general distribute over conjunction,
as it does over disjunction, but under the precondition that the pair of the con-
juncts is linkless outside the scope of the projection (Tab. 1. viii). This property
is defined as follows, along with related properties, discussed below:

328 C. Wernhard

Definition 1 (Linkless). Let F, F1, F2 be formulas and let S be a literal scope.

(i) The pair 〈F1, F2〉 is linkless outside S if and only if L(F1)∩L̃(F2) ⊆ S∩S̃.
(ii) F is linkless outside S if and only if each pair of conjuncts of F is linkless

outside S, where the pairs of conjuncts of F are the pairs 〈F1, F2〉 for each
of its subformulas of the form (F1 ∧ F2) and the pairs 〈F1, F1〉 for each of its
subformulas of the form ∀xF1.

(iii) Fully linkless is a synonym for linkless outside the empty set of literals.

The term linkless stems from the concept of link as a pair of occurrences of
complementary literals, each in a different conjunct of a conjunction, in the
graph-based formula view of [15]. A pair of formulas is linkless outside a literal
scope (Def. 1.i) if all ground atoms “involved in links” between the formulas
(that is, are the atoms of complementary ground instances of two literals, one in
each component of the pair) are contained in the literal scope, positively as well
as negatively. For example, the pair of formulas 〈p ∨ q, ¬p ∨ q〉 is linkless out-
side the literal scope {+p,−p}. The relation is symmetric with respect to the pair
components. With Def. 1.ii, the notion of linkless is transferred from pairs of for-
mulas to formulas: A formula is linkless if for each of its conjunctive subformulas
the pair of conjuncts is linkless, where “conjunctive subformulas” are introduced
explicitly by the ∧ operator and implicitly by universal quantification.

Linkless formulas permit to perform certain computations with low complex-
ity. For a propositional formula that is fully linkless, satisfiability and clausal
entailment can be decided in linear time [16,20]. If F is a propositional for-
mula that is linkless outside a literal scope S, then projection computation for
project(F, S) can be performed in linear time by simply replacing in F all literals
that are not in S with �. This can be justified as follows: Since F is linkless
outside S, by Tab. 1.viii and vii the project operator can be distributed inwards
immediately in front of literals L. Now, if L is in S, then by Tab. 1.v it holds
that project(L, S) ≡ L; Otherwise by Tab. 1.vi it holds that project(L, S) ≡ �.

The LP Relation: Generalizing Projection and Compilation. The LP re-
lation, defined in the following, covers in different instantiations the relationships
between inputs and outputs of projection computation, compilation to linkless

Table 1. Some properties of projection that hold for formulas F, F1, F2, literal scopes
S, S1, S2, and universal literals L

(i) If F1 |= F2 then project(F1, S) |= project(F2, S).
(ii) F |= project(F, S).
(iii) project(project(F, S1), S2) ≡ project(F, S1 ∩ S2).
(iv) project(F, S) is satisfiable iff F is satisfiable.
(v) project(L, S) ≡ L, if L(L) ⊆ S.
(vi) project(L, S) ≡ �, if L(L) ∩ S = ∅.
(vii) project(F1 ∨ F2, S) ≡ project(F1, S) ∨ project(F2, S).
(viii) If 〈F1, F2〉 is linkless outside S, then

project(F1 ∧ F2, S) ≡ project(F1, S) ∧ project(F2, S).

Tableaux for Projection Computation and Knowledge Compilation 329

formulas, and combinations of these. The name LP suggests the combination of
a syntactic requirement related to Linklessness with semantic conditions related
to Projection.

The LP relation has four arguments, where the first three represent inputs: A
formula and two literal scopes, “link scope” and “projection scope”, where the
former is a subset of or equal to the latter. The fourth argument represents the
output, a formula. The relation constrains output formulas syntactically with
respect to the link scope, and semantically with respect to the input formula
and the projection scope: An output formula must be linkless outside the link
scope and be equivalent to the input formula relative to the projection scope.

Definition 2 (The LP Relation). For formulas F, F ′ and literal scopes Sl, Sp

such that Sl ⊆ Sp the relation LP is defined as

LP(F, Sl, Sp, F
′) def=

F ′ is linkless outside Sl, (LP-L)
project(F ′, Sp) ≡ project(F, Sp). (LP-P)

The LP relationship is preserved if the link scope Sl is enlarged, and also if
the projection scope Sp is made smaller, that is, if Sl ⊆ S′l ⊆ S′p ⊆ Sp, then
LP(F, Sl, Sp, F

′) implies LP(F, S′l , S
′
p, F

′).
Consider a program that computes for inputs F, Sl, Sp, where F is a proposi-

tional formula and Sl, Sp are representations of literal scopes such that Sl ⊆ Sp,
an output formula F ′ such that LP(F, Sl, Sp, F

′) is satisfied. (The restriction to
propositional F ensures that such an F ′ exists.) The program can be applied to
solve the following different tasks, distinguished by the values of Sl and Sp:

– Projection Computation. If Sl and Sp are identical, then projection compu-
tation for project(F, Sp) can be performed by substituting in F ′ all literals
that are not in Sp with �, as indicated in Sect.2. Thus, the essential work
for projection computation is done by computing F ′.

– Compilation to an equivalent formula that is linkless outside a given literal
scope. If Sp is the set of all literals, then Condition LP-P states that F ′ is
equivalent to F . If Sl is the given literal scope, then Condition LP-L states
that F ′ is linkless outside the given scope.

– Compilation to a fully linkless equivalent formula. This specializes the task
described in the previous item by requiring Sl to be the empty set. As before,
Sp is the set of all literals.

– Deciding satisfiability. If Sl is the empty set, then F ′ is fully linkless and its
satisfiability can be checked in a linear postprocessing step. Since projection
preserves equi-satisfiability, an arbitrary set of literals can be taken as Sp.
However, the empty set as Sp is preferable, since it least constrains LP.

3 LP-Tableaux

Tableau Representation. We represent tableaux as terms, constructed like for-
mulas from literals and logic operators, but with two additional structure

330 C. Wernhard

indicating operators. Tableau manipulation rules can then be presented as term
rewriting rules which are very similar to formula rewriting rules and thus straight-
forwardly exhibit semantic and structural relationships between subformulas as-
sociated with subterms of tableaux.

Definition 3 (Expression, Tableau, Leafy Formula)
(i) An expression is constructed from literals and logic operators, like a for-

mula, and the two additional binary operators // and /. The operators // and /
are written in infix notation, with higher precedence than ∧,∨,

∧
,
∨

, and lower
precedence than the other operators.

(ii) A tableau is an expression which has one of the following forms:
1. Leaf node: L//F , where L ∈ LIT ∪ {�} and F is a sentence,
2. Or-node: (L/F ∧

∨
i∈{1,...,n} Ti), where n ≥ 1, L ∈ LIT ∪ {�}, F is a

sentence, and for i ∈ {1, . . . , n} it holds that Ti is a tableau.
(iii) A subexpression occurrence in a tableau is called a subtableau of the

tableau if the subexpression is a tableau.
(iv) The leafy formula of an expression E, in symbols E♣, is the NNF formula

obtained from E by replacing all subexpressions of the form L/F with L and
those of the form L//F with (L ∧ F).

A tableau according to Def. 3.ii can be viewed as representing a tableau in the
more conventional sense, an ordered tree: A leaf node represents a leaf of the tree.
An or-node (L/F ∧

∨
i∈{1,...,n} Ti) represents a non-leaf node, whose i-th child is

the root of the tree represented by Ti. With a node L//F or (L/F ∧ ...) two labels
are associated, literal label L and forward label F . Literal labels correspond to
the usual node labels in tableaux. They are restricted to literals, in contrast to
complex formulas, as common for tableaux formats used by efficient automated
methods. They can contain universal, but not rigid, variables. The truth value
constant � is allowed as literal label to facilitate a technique discussed in Sect. 4.

If tableau node labels are restricted to literals, the – complex – input formula
must be represented in some special way, external to the tableau. Forward labels
provide a means to avoid such external structures, and, moreover, to incorporate
formula simplifications and decompositions that are useful for transformation
tasks but can not be straightforwardly expressed as tableau manipulations. The
forward label of a node is a complex formula. Calculi construct it basically as
a copy of the input formula on which simplifications with respect to the nodes
on the branch to the node have been performed. The name forward should sug-
gest that forward labels represent portions of the input that have not yet been
processed (entered into the proper tableau structure), but will so at a future “for-
ward” point in time. In implementations, forward labels not necessarily have to
be fully materialized. A prototypical example is the DPLL procedure: The input
formula, simplified by unit propagation with respect to a branch maintained by
the procedure, can be modeled as forward label.

The formula view of a tableau is made explicit with the leafy formula op-
eration ♣, which removes the structural operators / and //. Constituents of a
leafy formula are all literal labels and the forward labels of leaf nodes. Forward

Tableaux for Projection Computation and Knowledge Compilation 331

Table 2. Required properties of restriction F |L and simplification F ∗

(R1) L ∧ F ≡ L ∧ F |L.
(R2) L(F |L) ⊆ L(F).
(R3) A(F |L) ∩ A(L) = ∅.

(S1) project(F ∗, S) ≡ project(F, S).
(S2) L(F ∗) ⊆ L(F).

labels F of non-leaf nodes (L/F ∧ ...) are not taken over into the leafy formula.
They facilitate destructive tableau operations such as backjumping by recording
forward labels of previous leafs. Leafy formula is defined for expression to be
applicable also to tableau subexpressions which themselves are not tableaux.

Abstract Calculi. Our aim is to apply tableau construction methods to com-
pute the LP relation. To this end, we consider tableaux that are constructed
by rewrite rules. It should be noted that at this level of abstraction rules are
characterized by means of semantic relationships, similar to the abstract formal-
ization of DPLL in [17]. It is implicitly assumed that the rules are applied in
cases where these relationships can be efficiently established, usually with well
known methods.

We call sets of the considered rewrite rules LP-Calculi and the constructed
tableaux LP-tableaux. Before we come to their definition (Def. 4), we need to
introduce two mappings between formulas, which are involved in the rules.

The first is restriction of a sentence F by a literal sentence L, in symbols
F |L. Of this operation, we require that it satisfies the properties given in Tab. 2.
For propositional sentences, restriction can be realized simply by replacing in F
all occurrences of L with � and of L̃ with ⊥. A variant for clausal first-order
sentences and universal literals is hinted in Sect. 5.

The second auxiliary operation is scope preserving simplification of a sen-
tence F with respect to a literal scope S. In symbols it is written as F ∗, assuming
that the scope parameter is specified in the context. It is assumed to be a sim-
plification, that is, intuitively, an operation that can be performed fast and be
applied only a number of times that is polynomial in the size of the formula. The
properties required of a scope preserving simplification are also listed in Tab. 2.
An example that applies to clausal propositional sentences is the replacement of
clauses containing an atom A, where +A and −A are not in S, by their resolvents
upon A, in cases where the total number of clauses is reduced.

Definition 4 (LP-Calculus, LP-Tableau). Let F0 be a sentence, Sl and Sp

where Sl ⊆ Sp be literal scopes, | be a restriction function, and ∗ be a simplifica-
tion function preserving the scope Sp. An LP-calculus is a set of tableau rewrite
rules which can be parameterized with these items. A tableau constructed by
applying a finite number (including zero) of rewrite steps with rules of an LP-
calculus to an initial tableau as specified with Init (Tab. 3) is called an LP-tableau
for F0 obtained with the LP-calculus. The parameter Sl is referred as link scope
and Sp as projection scope.

Initial State and the Extend Rule. Consider Init and Extend defined in Tab. 3.
Init specifies the initial state referenced in the definition of LP-tableau. Extend

332 C. Wernhard

Table 3. Initial state and [abstract] rules of LP-calculi

Init: �//F ∗
0

Extend:
if

⎧⎪⎪⎨⎪⎪⎩
F |=
∨

i∈{1,...,n}
Li, where n ≥ 1

For i ∈ {1, . . . , n}:
Li ∈ LIT and L(Li) ⊆ L(F)

L//F −→ L/F ∧
∨

i∈{1,...,n}
Li//F |∗Li

See Sect. 4
And-Separate:

if

⎧⎨⎩
n ≥ 2
For i, j ∈ {1, . . . , n} s.th. i �= j:
〈Fi, Fj〉 is linkless outside Sl

L//
∧

i∈{1,...,n}
Fi −→ L/

∧
i∈{1,...,n}

Fi ∧
∧

i∈{1,...,n}
�//F ∗

i

See Sect. 4
True-Up:

if
{

n ≥ 0
L(K) ∩ Sp = ∅L/F ∧ (K//� ∨

∨
i∈{1,...,n}

Ti) −→ L//�

And-True-Up:
L/F ∧

∧
i∈{1,...,n}

�//� −→ L//� if n ≥ 2

True-Below-Cut-Up:
L/F ∧ (K//� ∨ K̃//�) −→ L//� if K is ground

is a tableau construction rule that can be considered as an “abstract rule” since
it specifies semantic and structural conditions which, as shown in Sect. 5, are
matched by various more specific rules, including well known tableau rules. Ex-
tend models the attachment of n successor nodes to a leaf. The if -preconditions
state that the forward label F of the leaf entails a disjunction of n universal lit-
erals, whose literal bases are contained in that of F . For each disjunct Li, a new
node with literal label Li is attached. Its forward label is the forward label F of
the former leaf, restricted by Li and then simplified, where the projection scope
Sp (an implicit parameter) is preserved.

LP-Calculi Compute the LP Relation. That LP-calculi can be used to
compute the LP relation is formally stated as Theorem 1. For clarity, we just
consider instances of Extend as tableau rules, but the proofs in essence extend
also to other rules, as indicated in Sect. 4. Theorem 1 refers to two properties
which are defined before the theorem statement:

Definition 5 (Unlinking LP-Calculus, Terminal LP-Tableau)
(i) An LP-calculus is called unlinking if and only if for all LP-tableaux ob-

tained by the calculus which have a leaf node whose forward label is not linkless
outside the link scope Sl it holds that some subtableau can be rewritten with a
rule of the LP-calculus.

(ii) An LP-tableau is called terminal with respect to an LP-calculus if and
only if none of its subtableaux can be rewritten with a rule of the LP-calculus.

Theorem 1 (LP-Calculi Compute the LP Relation). Let F0 be a sentence,
Sl, Sp be literal scopes such that Sl ⊆ Sp, and let CALC be an LP-calculus which

Tableaux for Projection Computation and Knowledge Compilation 333

is unlinking and whose rules are instances of Extend. If T is a terminal LP-
tableau for F0 that is obtained by CALC for link scope Sl and projection scope Sp,
then LP(F0, Sl, Sp, T

♣).

The theorem holds since the two conditions of LP are satisfied with respect to
the given parameters, which is shown with two lemmas below. We first consider
Condition LP-L, verified by Lemma 1 which is preceded by an auxiliary definition
and proposition.

Definition 6 (Subformula Within a Leaf). Let T be an LP-tableau. A
subformula occurrence in T♣ is called within a leaf with respect to T if and only
if it occurs within a subformula F that has been obtained in the mapping of T
to T♣ by replacing a leaf node L//F with F .

Proposition 1. Let Sl, Sp be literal scopes such that Sl ⊆ Sp and assume that
T is an LP-tableau obtained with an LP-calculus whose rules are instances of
Extend, for link scope Sl and projection scope Sp. If there is an occurrence of a
subformula of the form (G∧H) in T♣ that is not within a leaf with respect to T ,
then 〈G, H〉 is linkless outside Sl.

By Prop. 1, a subformula (F1 ∧ F2) where 〈F1, F2〉 is not linkless outside Sl can
in T♣ only occur within a leaf. If T is terminal with respect to an unlinking
calculus, this possibility is also excluded, which implies the lemma for LP-L:

Lemma 1 (Terminal LP-Tableaux are Linkless Outside the Link Scope)
Let Sl be a literal scope and let CALC be an LP-calculus which is unlinking and
whose rules are instances of Extend, for link scope Sl. If T is a terminal LP-
tableau that is obtained by CALC, then T♣ is linkless outside Sl.

We now turn to Condition LP-P, which is verified by Lemma 3. Its proof is based
on the following Lemma 2, which states a precondition under which the result
of rewriting a subformula G of F with a formula G′ such that project(G′, S) ≡
project(G, S) yields a formula F ′ such that project(F ′, S) ≡ project(F, S). Follow-
ing [7], we use the following notation: If T is a term with a subterm occurrence
replaced by a hole, and U is a term, then T [U] is T with the hole replaced by
U . At the same time T [U] indicates that the term T contains an occurrence of
the subterm U .

Lemma 2 (Scope Preservation by Unlinked Replacement). If S is a liter-
al scope and G, G′, F [G] are sentences such that (1.) project(G′, S)≡project(G, S),
(2.) for all subformulas of F of the form (F1[G]∧F2) or (F2 ∧F1[G]) it holds that
〈G, F2〉 is linkless outside S, (3.) for all subformulas of F of the form (F1[G]∨F2)
or (F2 ∨ F1[G]) it holds that F1 and F2 do not have free variables in common,
and (4.) conditions (2.–3.) also hold for G′ in place of G, then project(F [G′], S) ≡
project(F [G], S).

Proof (Sketch). The sentence F [G] is equivalent to a sentence ((G ∧ F1) ∨ F2),
whereF1 andF2 are sentences and 〈G, F1〉 is linkless. This sentence canbe obtained
from F [G] by rewriting subformulas of the form ((H [G]∨H1)∧H2) – where H, H1

334 C. Wernhard

and H2 are sentences – with the equivalent ((H [G] ∧ H2) ∨ (H1 ∧ H2)), and in
addition some standard equivalences. Similarly, F [G′] is equivalent to ((G′∧F1)∨
F2), where 〈G′, F1〉 is linkless too. From precondition (1.) follows project((G′ ∧
F1) ∨ F2, S) ≡ project((G ∧ F1) ∨ F2, S) which then implies the conclusion of the
lemma. ��

It can be shown that a rewriting step with Extend matches the preconditions
of Lemma 2 with respect to leafy formulas: Precondition (1.) can be verified
from the definition of Extend, (2.) follows as a corollary from Prop. 1 since
Sl ⊆ Sp, and (3.) follows from the definition of tableau. By induction on the
tableau structure, as constructed from Init by rewriting with Extend, the lemma
for LP-P can be proven:

Lemma 3 (LP-Calculi Preserve the Projection Scope). Let F0 be a sen-
tence, Sp be a literal scope, and let CALC be an LP-calculus whose rules are
instances of Extend. If T is an LP-tableau for F0 that is obtained by CALC for
projection scope Sp, then project(T♣, Sp) ≡ project(F0, Sp).

4 LP-Tableau Refinements

And-Nodes. The definition of tableau (Def. 3.ii) can be extended by the fol-
lowing clause:

3. And-node: (L/F ∧
∧

i∈{1,...,n} Ti), where n ≥ 2, L ∈ LIT ∪ {�}, F is a
sentence, and for i ∈ {1, . . . , n} it holds that Ti is a tableau.

And-nodes are like or-nodes, but with
∧

in place of
∨

and n restricted by n ≥ 2.
By the latter restriction, tableaux with a single child are unambiguously classi-
fied as or-nodes. And-nodes are constructed with the And-Separate rule (Tab. 3).
In this rule, the

∧
operator on the left side is understood modulo associativity

and commutativity. The rationale for Theorem 1 given in Sect. 3 straightfor-
wardly carries over to LP-tableaux with and-nodes and the And-Separate rule.
And-Separate constructs nodes with literal label � to preserve the structural
uniformity of the tableau.

And-nodes allow to model a decomposition technique that has been intro-
duced in DPLL adaptions for model counting [2] and also applied to knowledge
compilation into DNNF1 [11]. There, the component formulas F1, . . . , Fn are
required to have pairwise disjoint atom bases. After processing them indepen-
dently, the numbers of their models are multiplied, or their compiled equiv-
alents are conjoined, respectively. For the purpose of compilation to formulas
that are linkless outside link scope Sl, the linklessness condition on F1, . . . , Fn

in And-Separate, which is weaker than requiring disjoint atom bases, is sufficient.
Forward labels are quite convenient to formally handle the integration of such
decomposition techniques into tableau methods.
1 Decomposable negation normal form (DNNF) [4] is a sublanguage of fully linkless

propositional formulas: An atom is not allowed to occur in both conjuncts of con-
junctive subformulas, no matter whether in complementary or identical literals.

Tableaux for Projection Computation and Knowledge Compilation 335

Tableau Level Simplifications. Simplification operations ∗ map forward la-
bels, or subformulas of them, to further forward labels, but they do not modify
the tableau structure. Here we consider rules which modify the tableau struc-
ture, but whose effect can also be viewed as a formula simplification – of the
tableau’s leafy formula. Following [10], we call them at the tableau level.

True-Up (Tab. 3) is such a rule. The disjunction operators on its left side
are understood modulo associativity and commutativity. It does in general not
preserve equivalence of the leafy formula, but equivalence with respect to the
projection scope Sp. As can be easily verified, if T, T ′ are LP-tableaux matching
the two sides of an instance of True-Up, then project(T ′♣, Sp) ≡ project(T♣, Sp).
And-True-Up (Tab. 3) supplements True-Up by applying to tableaux with a par-
ticular form that can arise when And-Separate is involved. The given rationale
of Theorem 1 straightforwardly carries over to LP-tableaux whose rules include
True-Up and And-True-Up.

In the case that L is – like K – not in the projection scope Sp, a rewriting step
with True-Up can effect that True-Up becomes applicable again, with the old L
in the role of the new K. If Sp is empty, in this way, when a model has been
found – indicated by a leaf node with forward label � – the True-Up rule can be
repeatedly applied until the whole tableau consists of just a single node �//�.
The method then terminates “inherently” after finding the first model instead
of having to be stopped extraneously from computing alternative models.

Tableau level simplifications have also been considered in [10], but only sim-
plifications that preserve equivalence. Rule [10, Fig 1., rightmost] seems useful
for LP-calculi, especially since it can effect that True-Up becomes applicable. Its
adaption is shown in Tab. 3 as True-Below-Cut-Up.

Backjumping. Dependency directed backtracking belongs to the important
techniques of efficient automated tableau systems. Backjumping, as abstractly
described for DPLL in [17], is a variant of it, which can be coarsely modeled for
LP-tableaux as a two-step process: An application of Extend, which is preceded
by an application of the following auxiliary rule Truncate-for-Backjump:

L/F ∧
∨

i∈{1,...,n}
Ti −→ L//F if n ≥ 2

Backjumping is applicable to a subtableau matching the left side of Truncate-
for-Backjump when it has been established (by means of data structures not
represented in LP-tableaux) that F |= K for a ground literal K ∈ L(F). The
subtableau L//F resulting from Truncate-for-Backjump is then rewritten by Ex-
tend to (L/F ∧K//F |∗K). The given rationale of Theorem 1 can be extended to
apply also for LP-tableaux with Truncate-for Backjump.

For theorem proving or model computation tasks, backjumping is commonly
applied with respect to a branch in which siblings to the right represent possi-
bilities to explore in future computation and siblings to the left are either not
present or can be ignored, since they correspond to parts of the problem that
already have been solved. For transformation tasks this is different. Although
siblings to the left might correspond to already transformed parts of the input
formula, a backjumping step can effect that these are deleted and an improved

336 C. Wernhard

transformation, in which more unit lemmas are available below some nodes, is
computed. Examples for this can be found in [20], along with a more fine grained
modeling of backjumping.

The termination arguments for DPLL with backjumping (e.g. [17]) can be
generalized for propositional transformation tasks. An ordering relation >t on
tableaux can be defined such that T >t T ′ whenever T ′ is obtained from T by a
rewrite step with one of the rules in Tab. 3 or by backjumping, as a Truncate-for-
Backjump step immediately followed by Extend. The relation >t can be defined as
follows: With a tableau T a sequence of pairs 〈l0, r0〉 . . . 〈ln−1, rn−1〉 is associated,
where n is the size of its longest branch and for i ∈ {0, . . . , n − 1} the left
component li is defined as the number of leaf nodes in T at depth i which
do not have � as forward label, and the right component ri is defined as the
number of nodes in T at depth i + 1. (The root is understood as having depth
0.) Now, T1 >t T2 if and only if the sequence associated in this way with T1 is
lexicographically greater than that associated with T2, where the elements of the
sequences are compared lexicographically, and the components of these elements
by numerical value.

5 Instantiations of the LP-Tableau Framework

DPLL Adaptions. Rules Split and Unit (Tab. 4) are two instances of Extend,
familiar from the DPLL procedure for propositional sentences. Split ensures that
an LP-calculus has the unlinking property, and thus can be used to compute
LP according to Theorem 1. In order to just achieve the unlinking property,
the legitimacy of K in the precondition of Split can be further restricted by
requiring {K, K̃} �⊆ Sl and that F has a subformula (F1[K] ∧ F2[K̃]). On the
other hand, performing Split on literals K that do not meet these criteria might
be heuristically beneficial in cases where it enables effective simplifications by
the ∗ function. The Unit rule is an option. LP-calculi allow unit propagation also
to be performed just within computation of forward labels by the ∗ function.

In [5,11] an adaption of DPLL for knowledge compilation of propositional
CNF into DNNF is presented, by means of pseudocode, where the compilation
result is understood as trace of a procedure run. Apart from caching techniques,
this method can in essence be modeled more abstractly by an LP-calculus with
Split, Unit, And-Separate (for the DNNF target format, the precondition of And-
Separate has to be strengthened: The Fi must have pairwise disjoint atom bases)
and backjumping, supplemented by a rule application strategy that corresponds
to depth-first tree construction.

DPLL and other practically successful tableau procedures operate space effi-
ciently by keeping in memory at any point of time just a piece of the tableau un-
der construction. While this is clearly beneficial for theorem proving tasks where
a yes/no answer is searched, it can also be utilized for formula transformation
tasks by methods that output pieces of their overall output as soon as they are
computed. Such a method has been described for an LP-calculus (in a different
notational framework) without And-Separate, but with backjumping [20].

Tableaux for Projection Computation and Knowledge Compilation 337

Table 4. Instances of the Extend abstract rule

Split:
L//F −→ L/F ∧ (K//F |∗K ∨ K̃//F |∗

K̃
) if K, K̃ ∈ L(F)

Unit:
if
{ L(K) ⊆ L(F)

F |= K
L//F −→ L/F ∧K//F |K∗

ClausalExpansion (for propositional CNF):
L//F −→ L/F ∧

∨
i∈{1,...,n}

Li//F |∗Li
if
∨

i∈{1,...,n}
Li is a clause in F, where n ≥ 1

HyperTableauExtension (for CNF):
if

⎧⎨⎩
∨

i∈{1,...,n}
+Ai is a clause in F , where n ≥ 1∨

i∈{1,...,n}
+Aiσ is pure [1]

L//F −→ L/F ∧
∨

i∈{1,...,n}
+Aiσ//F |∗+Aiσ

Propositional Clausal Tableaux. In [16] it has been observed that a fully de-
veloped regular clausal tableau for a given propositional CNF formula represents
an equivalent to the formula that is in DNNF; thus any method for computing
such a tableau can be considered as a DNNF compiler. Such a method can be
modeled by an LP-calculus with an instance of Extend, the rule ClausalExpan-
sion (Tab. 4), and a simplification ∗ that just propagates truth value constants
(removing clauses containing �, removing ⊥ from clauses, returning � for the
empty clause set, and ⊥ for a clause set containing the empty clause). In the
LP-calculus framework, a clause attached by ClausalExpansion stems not directly
from the input formula, but from the simplified forward label of the node to
which it is attached. In this way, the violation of regularity and the construc-
tion of branches with complementary literals is automatically prevented. In a
terminal tableau, each leaf has a truth value constant as forward label.

In [16] also a second method for compilation of propositional NNF formulas
into DNNF has been proposed, but not related to the clausal tableau construc-
tion: Rewriting of arbitrary subformulas with the Shannon expansion. As shown
in [20], this method can be simulated by LP-calculi with Split and And-Separate.

Incorporating Projection Computation into Knowledge Compilation
Projection to an application relevant subvocabulary is a means to compensate
somewhat for the size blow-up inherent in knowledge compilation. In the litera-
ture, so far projection computation has mainly been considered as an a-posteriori
operation that can be performed with low cost on results of compilation [4,6,16]
(An exception is the DPLL-based clausal compiler described in [14] which in-
corporates Boolean quantifier elimination). But projection computation can in
part be incorporated into knowledge compilation, effecting potentially drastic
efficiency improvements of the compilation process, since superpolynomial size
reductions by projection become effective already in intermediate compilation
stages [20, Theorem 7]. With LP-calculi this is realized by the projection scope
parameter, which is passed into the interior of the calculus: The simplification
function ∗ can involve operations that preserve equivalence just with respect to

338 C. Wernhard

the projection scope, and is applied to intermediate subformulas. The True-Up
rule performs special cases of projection computation in intermediate stages as
simplifications at the tableau level.

Hyper Tableaux. The hyper tableau calculus [1] is typically used in appli-
cations for first-order model computation where the intended semantics of a
formula is the set of its minimal Herbrand models. Models computed by the
hyper tableau calculus per se are not minimal. Applications accept non-minimal
outputs as harmless redundancies, or use extra means to enforce minimality [3].
Hyper tableaux add two new aspects to the previously considered LP-calculi
instantiations: first-order clauses and minimization.

The rule HyperTableauExtension (Tab. 4) is an instance of Extend that models
hyper tableau construction. Its second if -precondition states that σ is a substi-
tution under which the literals +Ai have pairwise disjoint sets of variables. In
the rule presentation quantifiers have been omitted: Free variables are assumed
to be universally quantified, where the variable scope does not extend a clause.
The literals +Aiσ are understood as universal literals.

A restriction function F |L for a first-order CNF F and universal literal L
(without multiple occurrences of the same variable) can be realized for example
by applying diff-expansion [18] to compute a CNF which has the same Herbrand
expansion as F (with respect to the function symbols in the fixed signature Σ)
and does not contain a literal whose atom is unifiable with – but no instance of
– the atom of L. In the formula resulting from diff-expansion, instances of L are
then replaced by � and instances of L̃ by ⊥. For example, if the function symbols
in Σ are the constant a and the unary function symbol f, then (∀x(−p(x) ∨
+q(x))∧∀x(+p(x)∨+r(x)))|+p(a) = (q(a)∧∀x(−p(f(x))∨+q(f(x)))∧∀x(+p(f(x))∨
+r(f(x)))). As a first approximation, the simplification ∗ can be just equivalence
preserving truth value propagation, as described above for clausal tableaux.

We now consider hyper tableau construction in combination with projection.
Define min as logic operator such that the models of min(F) are exactly the
minimal models of F :
〈I, β〉 |= min(F) iffdef 〈I, β〉 |= F and (MIN)

there does not exist a structure J such that
〈J, β〉 |= F and J ∩ POS ⊂ I ∩ POS.

For expressions T , define T♠ as the formula which is defined like T♣, except
that leaf nodes L//F are replaced just by L instead of (L ∧ F). It then holds in
general that T♣ |= T♠. For an LP-tableau T obtained with an LP-calculus with
HyperTableauExtension as the only rule, T♠ contains only positive literals and if
T is terminal then min(T♠) ≡ min(T♣). Since T♠ contains only positive literals
it is fully linkless and project(T♠, Sp) can be computed linearly by substituting
literals of which no instance is in Sp with �, as shown in Sect. 2 (assuming
further that for each literal in T♠ either all or no instances are in Sp).

Theorem 2, which follows, then justifies a method to compute project(F0, Sp)
where Sp contains only positive literals: Compute a terminal tableau T with
HyperTableauExtension for F0 and projection scope Sp and apply the linear pro-
jection computation by substitution with � to T♠.

Tableaux for Projection Computation and Knowledge Compilation 339

Theorem 2 also justifies an extension to standard hypertableau methods which
is useful for projection computation and potentially also for model computation
in cases where only model fragments from a subvocabulary are relevant to the
application: The use of simplifications ∗ which just preserve equivalence with
respect to the projection scope. As a simple example consider the CNF sentence
F0 = (+p ∧ (−p ∨ +q ∨ +r) ∧ (−q ∨ +s) ∧ (−r ∨ +s)) and projection scope Sp =
{+p, +s}. A value for F ∗0 could then be (+p ∧ (−p ∨ +s)), which leads with one
HyperTableauExtension step to the terminal tableau (+p/F ∗0 ∧ +s//�), without
the need to branch for +q and +r.

Theorem 2 (Projection and Hyper Tableaux). Let F0 be a sentence in
CNF, Sp ⊆ POS be a literal scope and let CALC be an LP-calculus with Hyper-
TableauExtension as its only rule. If T is a terminal LP-tableau for F0 that is ob-
tained by CALC for projection scope Sp, then project(T♠, Sp) ≡ project(F0, Sp).

Proof (Sketch). By Lemma 3 it holds that project(F0, Sp) ≡ project(T♣, Sp).
The theorem is then implied by project(T♣, Sp) ≡ project(T♠, Sp), which can
be shown as follows: The left to right direction is implied by T♣ |= T♠ which
holds in general. It remains to show the right-to-left direction. Since T♠ con-
tains no existential quantifiers, it satisfies the following condition: Each model
of T♠ is an extension (i.e. superset w.r.t. positive literals) of a minimal model
of T♠. From this condition and the fact that Sp ⊆ POS it can be derived that
project(T♠, Sp) |= project(min(T♠), Sp). As mentioned above, since T is termi-
nal it holds that min(T♠) ≡ min(T♣). It then follows that project(T♠, Sp) |=
project(min(T♣), Sp), which implies project(T♠, Sp) |= project(T♣, Sp). ��

6 Conclusion

We presented an approach for applying tableau methods to projection compu-
tation, a generalization of second-order quantifier elimination. We developed a
formal framework that extends, subsumes and relates a variety of methods and
observations that so far have been formulated dispersed and in more ad-hoc
ways. We have discussed some subtle issues exposed by the framework, such as
the integration of formula simplifications that perform projection computation
into knowledge compilation, and projection in combination with minimal model
computation. Since the framework can be used to model techniques of efficient
automated systems, it provides a basis for the specification of implementations.

References

1. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Or�lowska, E.,
Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS(LNAI), vol. 1126, pp.
1–17. Springer, Heidelberg (1996)

2. Bayardo, R.J., Pehoushek, J.D.: Counting models using connected components. In:
AAAI-2000, pp. 157–162 (2000)

3. Bry, F., Yahya, A.H.: Positive unit hyperresolution tableaux and their application
to minimal model generation. J. Autom. Reason. 25(1), 35–82 (2000)

340 C. Wernhard

4. Darwiche, A.: Decomposable negation normal form. JACM 48(4), 608–647 (2001)
5. Darwiche, A.: New advances in compiling CNF to decomposable negation normal

form. In: ECAI 2004, pp. 328–332 (2004)
6. Darwiche, A., Marquis, P.: A knowledge compilation map. JAIR 17, 229–264 (2002)
7. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Handbook of Automated Reasoning,

vol. I, ch. 1, pp. 537–610. Elsevier Science, Amsterdam (2001)
8. Ebbinghaus, H.-D., Flum, J., Thomas, W.: Einführung in die mathematische Logik,

4th edn. Spektrum Akademischer Verlag, Heidelberg (1996)
9. Gabbay, D.M., Schmidt, R.A., Sza�las, A.: Second-Order Quantifier Elimina-

tion: Foundations, Computational Aspects and Applications. College Publications
(2008)

10. Hähnle, R., Murray, N.V., Rosenthal, E.: Normal forms for knowledge compilation.
In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS,
vol. 3488, pp. 304–313. Springer, Heidelberg (2005)

11. Huang, J., Darwiche, A.: DPLL with a trace: From SAT to knowledge compilation.
In: IJCAI 2005, pp. 156–162 (2005)

12. Kohlas, J., Haenni, R., Moral, S.: Propositional information systems. J. Logic and
Comp. 9(5), 651–681 (1999)

13. Lang, J., Liberatore, P., Marquis, P.: Propositional independence – formula-
variable independence and forgetting. JAIR 18, 391–443 (2003)

14. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264.
Springer, Heidelberg (2002)

15. Murray, N.V., Rosenthal, E.: Dissolution: Making paths vanish. JACM 40(3), 504–
535 (1993)

16. Murray, N.V., Rosenthal, E.: Tableaux, path dissolution and decomposable nega-
tion normal form for knowledge compilation. In: Cialdea Mayer, M., Pirri, F. (eds.)
TABLEAUX 2003. LNCS, vol. 2796, pp. 165–180. Springer, Heidelberg (2003)

17. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
JACM 53(6), 937–977 (2006)

18. Wernhard, C.: Semantic knowledge partitioning. In: Alferes, J.J., Leite, J. (eds.)
JELIA 2004. LNCS (LNAI), vol. 3229, pp. 552–564. Springer, Heidelberg (2004)

19. Wernhard, C.: Literal projection for first-order logic. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 389–402. Springer,
Heidelberg (2008)

20. Wernhard, C.: Automated Deduction for Projection Elimination. Dissertationen
zur Künstlichen Intelligenz (DISKI), vol. 324. AKA/IOS Press (2009)

Author Index

Alenda, Régis 17
Aravantinos, Vincent 32
Areces, Carlos 47
Avron, Arnon 62

Baader, Franz 77
Baelde, David 93
Bauer, Andreas 77
Baumgartner, Peter 77
Boretti, Bianca 108
Bresolin, Davide 123
Brown, Chad E. 138
Brünnler, Kai 152

Caferra, Ricardo 32
Cialdea Mayer, Marta 167
Cregan, Anne 77

Figueira, Diego 47

Gabaldon, Alfredo 77
Ghilardi, Silvio 173
Goré, Rajeev 189, 205
Goŕın, Daniel 47

Jeavons, Peter 1
Ji, Krystian 77
Jungteerapanich, Natthapong 220

Kaminski, Mark 235

Lahav, Ori 62
Lee, Kevin 77

Matusiewicz, Andrew 250
Mera, Sergio 47

Metcalfe, George 265
Montanari, Angelo 123
Murray, Neil V. 250

Negri, Sara 108

Olivetti, Nicola 17, 265

Pattinson, Dirk 280
Peltier, Nicolas 32
Pinto, Lúıs 295
Postniece, Linda 189

Rajaratnam, David 77
Ranise, Silvio 173
Rosenthal, Erik 250

Sala, Pietro 123
Schmidt, Renate A. 310
Schneider, Sigurd 235
Schröder, Lutz 280
Schwind, Camilla 17
Schwitter, Rolf 77
Sciavicco, Guido 123
Smolka, Gert 138, 235
Straßburger, Lutz 152

Tishkovsky, Dmitry 310
Tiu, Alwen 189

Uustalu, Tarmo 295

Wernhard, Christoph 325
Widmann, Florian 205
Wolper, Pierre 16

	Title Page
	Preface
	Organization
	Table of Contents
	Presenting Constraints
	A Menagerie of Problems
	The Constraint Satisfaction Problem - 3 Definitions
	Restricted Forms of CSP
	Constraint Languages, Expressive Power, and Reductions
	Calculating Expressive Power
	Complexity

	On the Use of Automata for DecidingLinear Arithmetic
	Comparative Concept Similarity over Minspaces: Axiomatisation and Tableaux Calculus
	Introduction
	The Logic of $Comparative Concept Similarity CSL$
	A Tableaux Calculus
	Termination of the Tableau Calculus
	Conclusion

	A Schemata Calculus for Propositional Logic
	Introduction
	Schemata of Propositional Formulae
	Syntax
	Semantics

	A Proof Procedure: stab
	Inference Rules
	Soundness and Completeness

	Extensions
	Infinite Iterations (Looping)
	Purity Principle

	A Terminating Class
	Example: The N-Bit Adder
	Conclusion

	Tableaux and Model Checking for Memory Logics
	Memory Logics
	Complete and Sound Tableau Calculi
	Terminating Tableaux
	Model Checking
	Conclusions, Related and Further Work

	Canonical Constructive Systems
	Introduction
	Canonical Constructive Systems
	Semantics for Canonical Constructive Systems
	Soundness, Completeness, Cut-Elimination
	Analycity and Decidability
	Related and Further Works

	A Novel Architecture for Situation Awareness Systems
	Introduction
	Related Work
	Running Example

	SAIL Architecture
	Data Aggregation
	Semantic Analysis
	Alerts
	Controlled Natural Language (CNL) Interface

	Conclusions

	On the Proof Theory of Regular Fixed Points
	Introduction
	μMALL
	Finite State Automata
	Encoding Finite Automata in μMALL

	Regular Formulas
	Relationship to Cyclic Proofs

	Conclusion

	Decidability for Priorean Linear Time Using a Fixed-Point Labelled Calculus
	Introduction
	A Fixed-Point Proof System
	Proofs in G3LT$_{cl}$
	Soundness
	Completeness
	Termination of Proof Search

	A Tableau-Based System for Spatial Reasoning about Directional Relations
	Introduction
	SpPNL and WSpPNL
	WSpPNL Expressiveness
	WSpPNL Decidability and Complexity
	The Tableau Method
	Conclusions and Open Problems

	Terminating Tableaux for the Basic Fragment of Simple Type Theory
	Introduction
	Basic Definitions
	Tableau System
	Soundness and Termination
	Model Existence
	Extensions
	Conclusion

	Modular Sequent Systems for Modal Logic
	Introduction
	The Sequent Systems
	Syntactic Cut-Elimination

	Abduction and Consequence Generation in a Support System for the Design of Logical Multiple-Choice Questions
	Introduction
	The Main Functionalities of the System
	Techniques and Algorithms
	Concluding Remarks

	Goal-Directed Invariant Synthesis for Model Checking Modulo Theories
	Introduction
	Formal Preliminaries
	Backward Reachability and Tableaux
	Tableaux-Like Implementation of Backward Reachability

	Invariants and Backward Reachability
	Synthesis of Invariants as the Dual of Backward Reachability
	Integrating Invariant Synthesis within Backward Reachability
	Heuristics

	Experiments and Discussion

	Taming Displayed Tense Logics Using Nested Sequents with Deep Inference
	Introduction
	Tense Logic
	System SKt: A ``Shallow'' Calculus
	System DKt: A Contraction-Free Deep-Sequent Calculus
	Proof Systems for Some Extensions of Tense Logic
	Proof Search
	Proof Search in DKt
	Proof Search in DS4

	Related Work and Future Work

	Sound Global State Caching for ALC with Inverse Roles
	Introduction
	Syntax and Semantics
	Algorithm, Soundness, Completeness and Termination
	Overview of the Algorithm
	The Algorithm
	Soundness, Completeness, and Complexity

	A Fully Worked Example
	Implementation, Experimental Results and Conclusion

	A Tableau System for the Modal μ-Calculus
	Introduction
	Modal μ-Calculus
	Tableau System
	Soundness
	Completeness
	Applications
	Conclusion and Related Work

	Terminating Tableaux for Graded Hybrid Logic with Global Modalities and Role Hierarchies
	Introduction
	Graded Hybrid Logic with Global Modalities and Role Inclusion
	Graded Hybrid Logic with Global Modalities
	Tableaux and Evidence
	Tableau Rules
	Control
	Termination

	Adding Reflexivity, Transitivity and Role Inclusion
	Extending Evidence
	Pre-evidence
	Tableau Rules
	Control

	Conclusion

	Prime Implicate Tries
	Introduction
	Reduced Implicate Tries
	Reduced Implicate Tries
	Computing Reduced Implicate Tries
	Ternary Representation
	Intersecting ri-Tries

	Prime Implicate Tries
	The Structure of Prime Implicate Tries
	An Algorithm for Prime Implicate Tries
	Uniqueness of pi-Tries

	Preliminary Experiments

	Proof Systems for a Gödel Modal Logic
	Introduction
	The Gödel Modal Logic GK_{\Box}
	A Sequent of Relations Calculus
	A Hypersequent Calculus

	Generic Modal Cut Elimination Applied to Conditional Logics
	Introduction
	Preliminaries and Notation
	Modal Deduction Systems
	Generic Modal Cut Elimination
	Equivalence of Hilbert and Gentzen Systems
	Applications: Sequent Calculi for Conditional Logics
	Cut Elimination for Extensions of {\sf CK} without {\sf CEM}
	Cut Elimination for Extensions of {\sf CKCEM}

	Complexity of Proof Search
	Conclusions

	Proof Search and Counter-Model Construction for Bi-intuitionistic Propositional Logic with Labelled Sequents
	Introduction
	Bi-intuitionistic Propositional Logic, Dragalin-Style Sequent Calculus and Failure of Cut Elimination
	L: A Labelled Sequent Calculus
	L*: An Algorithmic Version of L
	A Search Procedure and Its Termination
	Completeness and Counter-Model Construction
	Conclusion

	Automated Synthesis of Tableau Calculi
	Introduction
	Specifying the Semantics of the Logic
	Synthesising a Tableau Calculus
	Ensuring Soundness and Constructive Completeness
	Refining the Synthesised Calculus
	Synthesising Tableaux for Intuitionistic Logic
	Discussion and Conclusions

	Tableaux for Projection Computation and Knowledge Compilation
	Introduction
	A General View on Projection and Compilation
	LP-Tableaux
	LP-Tableau Refinements
	Instantiations of the LP-Tableau Framework
	Conclusion

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

