
R. Paige, A. Hartman, and A. Rensink (Eds.): ECMDA-FA 2009, LNCS 5562, pp. 98–113, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Challenges in Combining SysML and MARTE for
Model-Based Design of Embedded Systems

Huascar Espinoza1, Daniela Cancila1, Bran Selic2, and Sébastien Gérard1

1 CEA LIST, Model-Driven Engineering Labs (LISE)
Point Courrier 94, 91191, Gif sur Yvette, France

{huascar.espinoza,daniela.cancila,sebastien.gerard}@cea.fr
2 Malina Software Corporation

10 Blueridge Court, Nepean, Ontario, Canada
selic@acm.org

Abstract. Using model-based approaches for designing embedded systems
helps abstract away unnecessary details in a manner that increases the potential
for easy validation and verification, and facilitates reuse and evolution. A com-
mon practice is to use UML as the base language, possibly specialized by the
so-called profiles. Despite the ever increasing number of profiles being built in
many domains, there is still insufficient focus on discussing the issue of com-
bining multiple profiles. Indeed, a single profile may not be adequate to cover
all aspects required in the multidisciplinary domain of embedded systems. In
this paper, we assess possible strategies for combining the SysML and MARTE
profiles in a common modelling framework, while avoiding specification con-
flicts. We show that, despite some semantic and syntactical overlapping, the
two are highly complementary for specifying embedded systems at different ab-
straction levels. We conclude, however, that a convergence agenda is highly de-
sirable to align some key language features.

Keywords: model-based engineering, embedded systems, SysML, MARTE.

1 Introduction

The design of embedded systems is a complex process that depends more and more
on the effective interplay of multiple disciplines, such as mechanical, electronics, and
software engineering. In particular, the lack of a common design language between
different disciplines hampers reasoning about system properties. The architecture of a
system is particularly vulnerable to bad design choices made in the early design
phases, which, unfortunately, often tend to show up later during the integration or
construction phases. Designers of one part of the system may make wrong assump-
tions concerning some other parts resulting in increasing development costs due to
long feedback cycles.

The use of models throughout the design process is gaining momentum in address-
ing these issues [20]. Models allow designers from different disciplines to share
knowledge, facilitate design comprehension, and assess system-level trade-offs seek-
ing higher quality and reliability. We subscribe to the view that both system design

 Challenges in Combining SysML and MARTE for Model-Based Design 99

and integration will be reduced significantly by the use of a common modelling for-
malism, even for smaller projects. In particular, we believe that the widespread accep-
tance of UML (Unified Modelling Language) [16] by industry and the use of UML
profiles for domain-specific expressiveness ease the challenge considerably. A profile
is the mechanism standardized by the OMG for creating domain-specific modelling
languages by refining the concepts of an existing standard language such as UML.

A number of UML profiles have been proposed for modelling embedded systems,
both within a standardization context and as research outcomes [12]. In our work,
standardization is a crucial concern since it promotes lower overall training costs and
helps to reduce the risk of being dependent on a single tool vendor. We particularly
focus on two standard UML profiles that cover, as a whole, a broad cross-section of
the modelling capabilities required for the embedded system domain. On the one
hand, SysML (Systems Modelling Language) [17] provides constructs to specify
traceable requirements, structure and behaviour of system blocks, as well as a para-
metric formalism to specify equation-based analytical models. On the other hand,
MARTE (Modelling and Analysis Real-Time and Embedded systems) [18] deals with
time- and resource-constrained aspects, and includes a detailed taxonomy of hardware
and software patterns along with their non-functional attributes to enable state-of-the-
art quantitative analyses (e.g., performance and power consumption).

A major impediment to any kind of real-world application is that a single profile
may not be sufficient to capture all aspects in the multidisciplinary domain of embed-
ded systems. A number of industrial and research efforts have started to consider the
use of both profiles in a synergistic manner, as described in more detail in Section 5,
to cover as much as possible the description of embedded systems at different abstrac-
tion levels (e.g., [9] [14] [11] [1]). However, even in the standards world, different
profiles may be mutually inconsistent and may overlap in ways that are not fully
documented. Hence, it is essential to investigate ways of combining these two UML
profiles to avoid conflicts and mismatches.

In this paper, we provide the basis for a comparison between the two profiles. The
purpose is to identify some typical scenarios in which their combined usage is of rele-
vant added value in the embedded systems domain and, to provide a convenient start-
ing point for those interested in using both profiles in a complementary manner. One
problem is that, because they are constructed for different purposes and follow differ-
ent design rationales, they tend to define different syntaxes for the same modelling
concepts. This issue immediately puts profile users in a dilemma when they try to ex-
ploit both profiles in the same system model. Some minimum alignment is necessary
to deal with such overlaps. Consequently, another objective of this paper is precisely
to encourage the SysML and MARTE standardization task forces to provide a con-
vergence and alignment program for their respective technologies.

The remainder of the paper is organized as follows. Section 2 outlines SysML and
MARTE and their respective modelling capabilities. Section 3 introduces some antici-
pated scenarios that combine concepts from both expressiveness domains. In Section 4,
we provide some strategies to properly compare and integrate common modelling con-
structs. Section 5 discusses contributions and shortcomings of other attempts at com-
bining both profiles. A short discussion and conclusions round out the paper.

100 H. Espinoza et al.

2 Background

2.1 UML Profiling Capabilities

Because of the diverse nature of the disciplines needed for designing real-time and em-
bedded system, it is clear that a single modelling language is not adequate to cover all
the various concerns involved. Consequently, there has been much discussion about the
suitability of UML for such domains compared to custom domain-specific modelling
language designed from scratch [9]. The latter approach has the obvious advantage of
enabling the definition of a language that is optimally suited to the problem at hand. At
first glance, this may seem the ideal approach to modelling language definition, but
closer examination reveals that it can have serious drawbacks. If each sub-domain is
expressed using a specific language, there is the problem of integrating the various
parts of the design so that the full system can be verified, or simply unambiguously
understood. Another drawback of domain-specific languages is the availability of and
support for industrial-strength tools and training for a such custom language (commer-
cial tool vendors are rarely interested in supporting custom or low-volume languages).
This can lead to significant and recurring expenses related to developing and support-
ing custom tools and providing training for them.

In contrast, although UML was designed to eliminate the accidental complexity
stemming from gratuitous diversity, it still provides a built-in mechanism, profiles, for
creating domain-specific modelling languages (DSML). Profiles are based on special-
izing the general UML concepts and semantics and can, therefore, take advantage of
existing UML tools and expertise. For example, the domain-specific concept of a real-
time clock can be derived from the more generic UML concept of an object, by the
addition of new attributes and additional semantic constraints. It is even possible to
use a domain-specific notation in lieu of the standard UML notation. This kind of re-
use can mitigate or even eliminate some of the above drawbacks of custom DSMLs

Another advantage of the profile approach is that a profile can be defined as an
annotation profile, meaning that it can be overlaid, non-intrusively, on an existing
model to provide supplemental information and semantics not present in the original
model. Such profiles can be applied to create domain-specific views and specializa-
tions of an underlying model. This is especially useful in multidisciplinary problems
for the ability to capture cross-domain concerns. For example, a UML model can be
annotated with information such that it can be analyzed for its schedulability charac-
teristics by domain experts or specialized tools. At the same time (and independently
of the schedulability view) a reliability engineer might overlay a reliability-specific
view on that same model to determine its overall reliability characteristics. Some
parts of the MARTE profile are significant examples of this profile usage.

2.2 SysML and MARTE Modelling Capabilities

SysML and MARTE consider characteristics of the embedded systems domain at dif-
ferent abstraction levels, architectural styles, and particularly for specific purposes or
application areas. In this section, we summarize their major modelling capabilities.

 Challenges in Combining SysML and MARTE for Model-Based Design 101

SysML is a UML profile "for specifying, analyzing, designing, and verifying complex
systems that may include hardware, software, information, personnel, procedures, and
facilities" [17]. The so-called Block concept is the common conceptual entity that fac-
torizes many different kinds of system elements such as electronic or software compo-
nents, mechanical parts, information units, and whatever structural entity composing
the system under interest. Blocks articulate a set of modelling perspectives enabling
separation of concerns during systems design. Eschewing excessive detail1, we identify
the following key contributions of SysML regarding UML:

• Architecture Organization: These include modelling concepts to organize sys-
tem architecture descriptions as defined by the IEEE 1471 standard [6].
Among them, the concepts of view, viewpoint, and rationale are most impor-
tant.

• Blocks and Flows: Block description and internal block diagrams of SysML
enable the specification of more generic interactions and phenomena than
those existing just in software systems. This includes physical flows such as
liquids, energy, or electrical flows. The dimension and measurement units of
the flowing physical quantities can be explicitly defined.

• Behaviour: Although most behaviour constructs in SysML are similar to
UML (interactions, state machines, activities, and use cases), SysML refines
some of them for modelling continuous systems and probabilities in activity
diagrams.

• Requirements: SysML provides an explicit facility for modelling system re-
quirements, along with their traceability with regard to the architecture evolu-
tion. These can be specified in either graphical or tabular format.

• Parametrics: A perspective called parametric diagram allows SysML users to
describe, in a graphical manner, analytical relationships and constraints, such
as those described by mathematical equations. Parametric diagrams provide a
mechanism for integrating SysML design models with engineering analysis.

MARTE is a UML profile that supports specification of real-time and embedded
systems [18]. In addition to functional design, this profile adds constructs to describe
the hardware and software (e.g., OS services) resources and defines specific proper-
ties to enable designers to perform timing and power consumption analysis. With re-
gard to UML, MARTE adds the following features2:

• NFPs. The NFPs (Non-Functional Properties) modelling framework provides
means to specify semantically well-formed non-functional properties (e.g.,
throughputs, bandwidths, delays, memory usage), supported by a language to
formulate algebraic and time expressions.

• Time. A highly refined model of time and timing mechanisms integrates con-
cepts from different sub-domains in embedded systems design, such as causal
time, synchronous time, and chronometric time.

• Software application. A common model of computation provides semantic
support for the real-time object paradigm. This paradigm allows specifying

1 Further information on SysML can be found via http://www.omgsysml.org/
2 Further information on MARTE can be found via http://www.omgmarte.org/

102 H. Espinoza et al.

applications at a high abstraction level, by delegating concurrency, communi-
cation, and time-constraint aspects to a modular unit called real-time unit
(RtUnit).

• Components. The MARTE component model extends UML composite struc-
tures and SysML internal block diagrams with a notion of message-based
communications. This is intended to support the request-reply/publish-
consume communication paradigm.

• HW/SW Resources. Software and hardware resources can be described at differ-
ent levels of abstraction, including their typical services, as found in common
OS platforms, and common non-functional properties like power consumption
or memory usage.

• Quantitative Analysis. A set of pre-defined non-functional annotations enable
MARTE models to bridge with state-of-the-art performance and scheduling
analysis tools.

3 Scenarios of Combined Usage

To focus our study, we identify a set of representative scenarios in which a combined
usage of SysML and MARTE is of relevant added value in the embedded systems
domain. Although this set is certainly incomplete, it allows us to drive our comparison
in a more focused manner. The intent is to adequately answer the question of what
can each profile target best in modelling, and then determine their integration issues.

3.1 Defining Architecture Frameworks

The modelling capabilities of both SysML and MARTE are rich enough for a wide
range of design approaches. This has the flexibility for supporting and integrating
multiple design perspectives, but also the difficulty of understanding and choosing
among a variety of language alternatives. In both cases, there is not a predetermined
approach to use the language constructs through the development lifecycle. This
means that a consistent modelling framework and methodology should be defined for
using these profiles in a particular application domain.

Architecture Organization. In the IEEE 1471 standard (and in the draft of its up-
coming update ISO/IEC 42010), the concept of modelling framework is referred as
architecture framework. An architecture framework "establishes a common practice
for creating, organizing, interpreting and analyzing architectural descriptions used
within a particular domain of application or stakeholder community" [6]. An architec-
ture framework identifies one or more predefined architectural viewpoints. View-
points define how to construct views, which are in turn a representation of a system
from the perspective of a set of modeling concerns.

SysML implements IEEE 1471 by providing a set of constructs to organize models.
In particular, SysML does not define any specific viewpoint, but it provides means to
specify how views are built, and to relate any user-specific view to a given viewpoint.
This is aligned with the IEEE 1471 approach that envisages libraries of viewpoints, in
order to enable architects selecting those useful for system design at hand.

 Challenges in Combining SysML and MARTE for Model-Based Design 103

Although MARTE does not provide any concrete model element to define view-
points, it has an implicit conception of viewpoints rooted in its design rationale. In-
deed, some of the MARTE constructs have been designed to define domain-specific
viewpoints (see Section 2.1). Such viewpoints, when applied to a standard UML
model, cast that model in a domain-specific way and may also add supplementary in-
formation to the model relevant to the viewpoint.

In consequence, there is no language overlapping in this respect. SysML and
MARTE can be used in complementary way. While SysML provides means to create
viewpoints in a general way, MARTE provides particular viewpoints. However, an
open issue is to enable designers of architecture frameworks to build consistent inter-
view rules that ensure meaningful and correct-by-construction models.

3.2 Requirements Engineering

System Usage Scenarios. Requirements engineering is the process by which the re-
quirements for systems and software products are gathered, analyzed, documented,
and managed throughout the development life cycle. UML has traditionally been used
to document user requirements by means of use case diagrams. Use cases follow a
graphical, scenario-based approach. This means that requirements are organized into
system usage histories, acting as a user-friendly bridge between technical and busi-
ness stakeholders.

Although use cases may be formalized to certain degree, for example by using se-
quence diagrams in order to detail such usage histories, they are often criticized for a
number of limitations. For instance, use cases lack well-defined semantics, which
may lead to differences in interpretations by stakeholders [22]. They are applied
mainly to model functional requirements, but are not very helpful to model non-
functional ones. Also, relationships between requirements and the various architec-
tural parts that satisfy those requirements are difficult to trace. SysML and MARTE
provide some significant enhancements in these aspects.

Requirements Management/Traceability. SysML requirements diagrams explicitly
show the various kinds of relationships between different requirements. This enlarges
the spectrum of requirements engineering tools that can interact with UML tools. In
effect, the SysML requirements modelling constructs are intended to provide an
automated bridge between architectural models and traditional requirements man-
agement tools such as, for instance, Requisite Pro, Rectify, or DOORS [1]. The latter
provide support for traceability analysis, flow-down, derivation, assignment, among
other requirement engineering activities. In particular, requirements tracing is very
useful, for example, to identify how requirements are affected by changes, and to pri-
oritize requirements. Traceability also provides a possibility of verifying whether or
not all requirements have been fulfilled by the system and sub-system components.

Non-Functional Requirements. On its side, MARTE offers key features to specify
non-functional requirements in general and timing requirements in particular. In embed-
ded systems development, non-functional characteristics (e.g., performance, reliability,
power consumption) influence a wide range of design decisions [3]. One possible sce-
nario is using MARTE annotations to characterize non-functional constraints in use case
diagrams and their underlying sequence diagrams. This provides two important capa-
bilities leading toward more formal requirements specification.

104 H. Espinoza et al.

First, non-functional requirements are cohesively specified along with functional re-
quirements. While specifying non-functional aspects is possible with SysML require-
ments diagrams, their semantic relationship to concrete functional system usages is
hard to capture. In particular, the completeness of requirements satisfaction in real-time
systems is strongly dependent on the coupling between system function and timing. In
MARTE, timing annotations provide semantic definitions closely related to the system
behavior. For instance, one may define a jitter constraint in the arrival of an event and
identify if such event relates either to a send, receive, or consume occurrence within a
sequence diagram. Second, non-functional annotations follow a well-defined textual
syntax, which is supported by the MARTE’s Value Specification Language (VSL).
The main advantages of this level of formalization are the ability to support automated
validation, verification, traceability, and, more simply, an unambiguous understanding
by stakeholders.

Clearly, SysML and MARTE concepts, articulated by use cases and scenarios, are
highly complementary. While scenarios are useful for managing change and evolu-
tion, managing scenario traceability across multiple changes becomes increasingly
difficult. SysML contributes with constructs to define such traceability relations. Ad-
ditionally, MARTE completes scenario precision with well-formed non-functional
annotations. However, it is important to define clear consistency rules to combine
them in a typical development process using different requirements engineering tools.

3.3 System-Level Design Integration

In a typical development process for embedded systems, software and other forms of
engineering will be at least partially concurrent. The system is developed by composing
pieces that, all or in part, have already been pre-designed or designed independently by
different teams specialized in different disciplines. This is often done in vertical design
chains such as, for example, in the avionics and automotive industries. Therefore, there
is a need for supporting design artefacts by common and standard specification formal-
isms that will allow plug-and-play of subsystems and their implementation [23].

A model view is a typical abstraction that helps to divide a complex problem into
smaller and comprehensible parts. In order to integrate global models, e.g., for per-
forming system-level analysis, we must recombine these smaller parts in a consistent
way. UML supports model composition by means of composite structure diagrams.
The basic principle is to define usages of model elements in a given context. The idea
of composite system models is to describe how information from multiple modelling
artefacts and views is to be joined, deployed, or configured. Although there is a lin-
guistic divergence3, both SysML and MARTE reuse this notion with some particulari-
ties. Thus, some aspects need to be taken into consideration for their combined use.

Hierarchy and Composition. To understand the pragmatic problems of SysML-
MARTE joint usage, let us consider the scenario of a large development project with
engineers from multiple disciplines. It should be carefully decided how the system
model will be created by integrating the models from different disciplines. One im-
portant issue is the layering and mismatched sub-system hierarchies, which has been

3 While SysML uses the term "block" for such composition units, MARTE uses "structured

component".

 Challenges in Combining SysML and MARTE for Model-Based Design 105

comprehensively addressed by Maier [15]. For instance, in multiprocessor software-
intensive design, the electronic system perspective typically represents a hierarchy of
interconnected processors, each containing software units. From the software perspec-
tive, the hierarchy is reversed, as generally illustrated in MARTE examples [18]. At
the top is a distributed application, composed of software units that interact through
data- and message-based interfaces. Below the application are the operating system
(OS) and library layers that support the distributed application. At the bottom of the
hierarchy, the hardware (processors and networks) completes the model.

This aspect is important when deciding which kind of modelling constructs will be
used to represent hierarchy, allocation/deployment, and composition. For instance,
while a composition relationship would be used for the hardware viewpoint, an allo-
cation relationship (supported by both SysML and MARTE) would be preferred by
the software designers. Some compatibility or merging rules need to be defined to
provide system-level consistency.

While in some cases, engineers from a given discipline would exclusively use ei-
ther SysML or MARTE, in other cases they would need to combine concepts from
both profiles. An integration scenario may consist in starting from a system-level
model, probably specified with SysML blocks, and in adding later some additional
semantics to some of these blocks, for example by applying MARTE stereotypes. In-
deed, the detail level underlying MARTE constructs makes possible to specify some
aspects such as concurrency and synchronization mechanisms, as well as resource
patterns such as processing resources, communication buses, or power supply devices
along with a set of predefined quality attributes. This is especially required in applica-
tion areas where designers are interested in preparing models to perform simulation,
quantitative analysis or product synthesis.

Interfacing/Interaction. A central concern in system and software architecting is to
understand the interfaces and interactions between structural elements. The nature of
such interfaces and interactions can significantly vary from software to other kind of
systems. Looking at the structural aspects, we can see that MARTE adopted the no-
tions of port and flow from SysML. This may seem very convenient from a perspec-
tive of semantic consistency. However, SysML flow ports require careful attention
when used to model flows of physical quantities, such as for example energy or
torque. Cares must be exercised in defining explicit behaviour on flow transmission.
SysML physical flows are often continuous in time, whereas MARTE flows are used
to describe data transmission with particular delegation semantics. While providing a
precise semantics to flows is currently outside the scope of both profiles, their com-
bined use should define a common "semantic envelope" that could be shared by
SysML and MARTE. In this way, composing models from different disciplines will
preserve system-level consistency.

3.4 Engineering/Quantitative Analysis

Engineering analysis (SysML term) or quantitative analysis (MARTE term) concern
the use of mathematical techniques to study certain quality attributes of the system.
They include stress, thermal or fluid analysis in mechanical engineering, and per-
formance or reliability analysis in software engineering. One challenging problem in
model-based engineering is to integrate models that are commonly used for system

106 H. Espinoza et al.

production or software code generation with the information that is relevant to per-
form analysis [7]. The goal is to reduce the time required to prepare a design model
for performing analysis and to ensure greater accuracy of an analysis model by di-
rectly associating it with the actual system model. Both SysML and MARTE provide
key contributions in this direction, but some alignment work has to still be done.

Timing Modelling. Beyond the annotation of quality attributes, timing analysis re-
quires a careful semantic definition closely related to the system behavior and the dif-
ferent models of computation and communication [2]. SysML does not extend the
UML time model, but a set of preliminary requirements were established by its stan-
dardization board, including continuous time models and relativistic effects that can
occur in distributed systems. In MARTE, time modelling is a core concern. We can
distinguish at least three layers of time constructs:

• In a first layer, time is presented as a set of fundamental notions such as time in-
stant, duration, time bases, or clocks. These provide an unambiguous basis to
express further modeling constructs and well-formed value spaces for data types.

• In a second layer, MARTE provides mechanisms to annotate timing require-
ments and constraints in UML models. One key modeling feature is the concept
of observation. Observations provide marking points in UML models to specify
assertions. Some typical assertions have been embedded in ready-to-use patterns,
such as for example jitters.

• In the third layer, time concepts are defined as part of the behavior, not mere an-
notations. This set of constructs cover both physical and logical time. While the
logical time is the basis to understand basic temporal notions, this is further re-
fined to support precedence/dependency in presence of concurrency, and
clocked time abstractions to cover synchronous language abstractions (such as
those from Lustre, Signal or Esterel).

While the adoption of the two basic layers is certainly useful for system engineering
in general, the third layer would need some extensions to include, for example, mod-
elling of the continuous dynamics of systems [12]. This would need to provide means
to specify system behaviour in terms of hybrid discrete event and differential alge-
braic equation systems.

Quantities Values. In SysML, a value property represents a quantifiable characteris-
tic of a block (e.g. energy consumption, surface, and temperature range of a micro-
processor). Value properties are defined in block compartments by assigning a name
and a value type. A value type is a kind of data type that carries a particular pair con-
sisting of a dimension and a measurement unit.

For its part, MARTE uses its Non-Functional Properties (NFPs) modelling frame-
work. The NFPs modelling framework provides the ability to encapsulate rich annota-
tions within non-functional values. For instance, consider a property named ``latency".
Instead of specifying its meaning in an axiomatic way such as: "duration in millisec-
onds with an accuracy of 0.01 measured by simulation as a mean value", the specifica-
tion itself include all this information in a normalized syntax. For this purpose, the
MARTE data type system includes the required data structure (value, unit, precision,
measurement source, etc.) in a predefined library. For example, Duration, Frequency

 Challenges in Combining SysML and MARTE for Model-Based Design 107

and Power are typical non-functional data types. Different units of the same physical
quantity may be transformed to, or expressed in terms of, existing base units through a
given conversion factor and an offset factor.

One of the main issues when trying to combine both profiles is that the modelling
approaches to declare and specify quantitative values is quite different. The main dif-
ference is that SysML hard coded the qualification of value types with the stereotypes
unit and dimension, while MARTE allows for declaring a set of qualifiers as an ex-
tendable library. As a consequence, using both modelling mechanisms in the same
model may lead to inconsistencies and cumbersome model processing. Alignment of
these two modelling styles is a key issue that is being dealt as a joint effort between
the MARTE and SysML task forces at OMG.

Beyond syntactical issues, the debate should be centred on providing practical ca-
pabilities to both profiles. We believe that at least two key capabilities should be al-
lowed from SysML and MARTE models:

• Measurement conversion. Quantities need to be expressed in different measure-
ment units while still allowing tools to convert quantities from one set of units to
another.

• Dimensional analysis. Physical expressions must guarantee the consistency of
equations and solve resulting measurement units and dimensions.

If we look at SysML, it forces tools to be hard-coded with the transformations between
measurement units (e.g., from "mm" to "m") because unit definition lacks conversion
factors. Furthermore, dimensional analysis is not possible in SysML since dimensions
are not defined in terms of basic dimensions and their exponents (e.g., F = LMT-2).
Conversely, while MARTE supports unit conversion, the notion of dimension has not
been considered at all.

Parameters/Expressions. Parameterized expressions are a primary feature in order to
prepare models for analyzing performance, risk, costs, and so on [7]. SysML paramet-
ric diagrams capture constraints among performance, physical, and other quality-
related properties of the system and its environment. Such constraints are specified as
equations among value properties. Equations can be specified in a third-party language
(e.g., MathML or Modelica). The basic composite modelling entity is the Constraint
Block. The relationships between modelling entities within a constraint block are not
committed to an 'input' or 'output' role early. Thus, they are called non-causal, as op-
posed to data flow and control flow approaches. Non-causal models are suitable to en-
able analytic processing, and can increase the level of integration/automation between
design tools and analysis tools.

In addition, MARTE’s VSL gives the syntax to formulate algebraic and time ex-
pressions. VSL is rooted in OCL. However, VSL was intended to provide more com-
pact expressions. In addition, VSL extends arithmetic and logical expressions with
time-related annotations, which can be extended by libraries providing new functions.

We believe that a combined use of SysML parametric diagrams and VSL would
provide significant advantages. While parametric diagrams provide a user-friendly
formalism to specify non-causal models, VSL provides the textual syntax for con-
straint expressions. One open issue in VSL is its extension to support special expres-
sions used in system engineering. For instance, differential and integrals, continuous
time expressions, and discrete event equations.

108 H. Espinoza et al.

4 Combination Strategies

In this section, we outline some issues in combining SysML and MARTE and propose
general strategies to integrate both profiles in a single modelling framework. Table 1
summarizes the modelling aspects discussed in Section 3 along with a set of profile
combination cases and implementation issues, which are elaborated below.

Table 1. MARTE/SysML Combination Issues

Modelling Concern
(from Section 3)

SysML concepts
(examples)

MARTE concepts
(examples)

Conflicting Com-
bination Cases*

Implementation
Issues*

Architecture Organization view, viewpoint, ration-
ale,…

- - predefine library of
MARTE viewpoints

Hierarchy/Composition block, part, allocation structural component, parts,
hw/sw patterns, application-

platform allocations

(a) (1) & (2)

Interfacing/Interaction port, flow, items idem SysML + message-
based

(a) (c) (2)

Spectrum of Behavioral
Models

rate, continuous, discrete
edges, probability,…,

synchronous/asynchronous,
causal/real-time

(c), (d) (1)

System Usage Scenarios use case, sequence dia-
grams

use cases, sequence dia-
grams

common UML

concepts

-

Requirements Process-
ing/Trace

requirement, trace rela-
tionships, test case

- - (1) SysML re-
quirements can be

fully imported

Non-Functional Re-
quirements

requirement nfp constraint, VSL expres-
sions

complementary (1)

Time Modelling (UML) time constraints extended time constraints,
clocks, predefined nfp’s for

time analysis

- (1) & (2) not all
MARTE time no-

tions required

Quantity Values value property, value
type, unit, dimension

nfp, nfp type, unit (c) (d)
overlapping

(2) language
alignment required

Parameters/Expressions constraint blocks, para-
metric diagrams

VSL expressions (c)

complementary

(1) VSL as ex-
pression language

* see text for full explanations

Combination Case. We can generalize typical categories of the combined usage of
UML profiles (this is applicable for two or more profiles) as follows:

a) Each language is used for different partitions of the system, in which case they
are practically mutually exclusive and conflicts are small or even negligible. For
example, SysML is used for mechanical design and MARTE for software de-
sign. As shown in Table 1, this category needs special attention when defining
the hierarchy/composition and interfacing/interaction constructs during a sys-
tem-level integration phase.

b) Each language is used for a different level of abstraction. Again, there is not
much conflict here. For instance, SysML is used for system domain analysis and
MARTE for a detailed design.

c) The languages are used in combination into the same parts of a model (e.g., in
the same modelling view) and for the same purpose or concern. For instance, we
may use the SysML facilities for continuous behaviour in activity diagrams and
the MARTE time annotations to support performance analysis.

 Challenges in Combining SysML and MARTE for Model-Based Design 109

d) The languages are used in combination but for different purposes such as, for
example, using MARTE annotations to do performance analysis on a SysML
model. The UML profiling capabilities of being able to apply many stereotypes
to a single model entity is crucial for this kind of usage. There may be some con-
flict in trying to keep the consistency between MARTE non-functional annota-
tions embedded in stereotype attributes (e.g., performance analysis stereotypes),
with other SysML specifications such as block quantity value annotations or
block constraint parameters.

Implementation Issues. The above combined cases may result in different combina-
tion issues from a tool implementation viewpoint. A supporting toolset that accompa-
nies UML profiles is, strictly speaking, not a part of the language problem. However,
the utility of a profile combination is directly related to the maturity of the supporting
tools. We identify the following scenarios in combining MARTE and SysML profiles
in modelling tools:

1) The simplest solution is to apply the profiles (i.e., the full profile definition) or
sub-profiles (i.e., sub-packages stereotyped as profiles) where needed within a
model. For example, a SysML user could specify that it requires the full Time
Modeling package of MARTE. UML tools can manage this case because of the
modularity defined in MARTE (organized in "extension units") and the UML’s
ability to select only those profile packages that are of direct interest.

2) While one may likely use some concepts of a profile or sub-profile, designers
may not want to include the full profile or sub-profile package in their models.
For instance, MARTE profile users may want to gain access to SysML concepts
of block, but they may prefer to use the MARTE constructs for flows. UML
does not allow for applying single stereotypes (contained in a profile) into a
model. What is needed is a decoupling/merging mechanism to compose profile
concepts and to make it available for profile users. Managing semantic compati-
bility is a requirement here.

In general, a hypothetical MARTE-SysML modelling tool should allow for filtering
appropriate information according to specific users. Some engineering disciplines
may be satisfied with a high-level description (e.g., blocks-and-flows description),
software developers may want detailed behaviour specifications, while analysis ex-
perts may require information of non-functional properties. This aspect is more rele-
vant when more than one stereotype is applied to a single UML model element. For
instance, one may consider a SysML Block, as a specific hardware resource by anno-
tating it with the appropriate MARTE stereotype. However, it is considered as a “re-
source” from a software viewpoint, but not from an electronic viewpoint. This needs a
suitable presentation mechanism to show the right stereotype to various stakeholders.

4.2 Combination Clues

Defining a modelling framework that combines SysML and MARTE requires a sys-
tematic comparison of the two. We consider that at least the following aspects should
be assessed in such work:

1. Conceptual Domain Coverage. Beyond syntactical aspects, it is important to be-
gin by assessing both profiles from a conceptual viewpoint. The intent is to

110 H. Espinoza et al.

reach an overall understanding of these profiles and determine what application
domains are best covered by each. A good starting point is using the conceptual
domain models underlying the UML profiles. Conceptual domain models are
created as free as possible from considerations related to specific solution tech-
nologies so as to not embody any premature decisions that may hamper later
language use. Currently, the MARTE specification provides a conceptual do-
main model in the form of a metamodel with a textual description. On the other
hand, SysML directly defined UML stereotypes extending the UML metamodel.
Although a conceptual description is provided, a metamodel would significantly
help on identifying/comparing conceptualization entities of the targeted domain.

2. Semantic/Syntactic Overlapping. The evaluation of related points between both
profiles should be clearly identified by defining overlapping semantics (concep-
tual coverage), abstract syntax (extended UML constructs), and concrete syntax
(symbols and terminology). The intent is to determine which aspects of both
profiles can be consistently aligned and/or selected to consistently use both pro-
files. Overlapping aspects must be assessed in the light of one of the language
use cases, (c) or (d), identified in Section 3.1. While case (d) needs revisiting the
notion of views and viewpoints in the context of UML profiles (see Section 2.1),
case (c) requires a more careful treatment of semantic consistency.

3. Usability/Pragmatics. Usability issues are concerned with such concepts as ease
of use, productivity, and user satisfaction. Once the overlapping concepts are
identified and before deciding which profile features to adopt in a given model-
ing framework, we should identify the effectiveness of different symbols or
stereotype names for model understandability, as well as the number of steps
needed to accomplish a modeling goal. Of course that may depend on a tools’
maturity. However, syntactical design choices can help avoid complicated ways
of performing modeling steps or features which invite mistakes.

4. Expressiveness Limitations. One fundamental requirement that should drive a
useful comparison is completeness and lack of model expressiveness. The
evaluation of missing aspects needs to be objective by clearly identifying
whether it implies a conceptual, semantic, or attributes insufficiency. This raises
the problems of improving and extending both profiles, which is an important
goal of our research.

5. Abstraction/Refinement Levels. One fundamental difference between SysML and
MARTE relates to their ontological considerations. For example, while SysML
does not consider any "functional" classification of structural elements (only the
generic concept of Block exists), MARTE goes deeper by providing a detailed
taxonomy of application and resource structural elements. Using abstract or con-
crete language concepts will depend on the phase of development, and the kind
of model processing (simulation, verification, etc.) required at each level.

5 Related Work

The academic and industrial communities have recently begun to investigate the com-
plementary use of SysML and MARTE to support model-based development of em-
bedded systems.

 Challenges in Combining SysML and MARTE for Model-Based Design 111

Among current projects in the embedded systems domain, MeMVaTEx [1] defines
a model-based methodology for modelling, validating, and tracing system require-
ments. It relies on SysML for requirements modelling and on MARTE for modelling
timing aspects. Since these aspects are practically independent, their combination is
handled methodologically, by providing consistent rules on when and where to apply
concepts of the individual profiles. Another project combining these two profiles is
INTERESTED [11], which attempts to create an interoperable tool-chain for en-
hanced rapid design and prototyping of embedded systems. This work aims at a more
extensive use of SysML and MARTE. While the first profile serves to describe the
high-level architecture organized around functional blocks, the second one provides
the standard annotations to enable timing analysis. However, the methodological rules
to guide the combined use of both profiles have yet to be established.

Two additional projects were recently started with the objective of adopting
SysML and MARTE in the hardware/software co-design field. One of these, the
SATURN project [19], proposes to bridge the gap between SysML/MARTE model-
ling and tools for architecture exploration, simulation and synthesis (in Sys-
temC/VHDL for hardware and C/C++ for embedded software). The main strategy is
to adopt most of the constructs of SysML and to integrate MARTE for adding the
formal semantics of different models of computation and thus enable system verifica-
tion. The second project, Lambda [14], intends to reconcile a number of related stan-
dards, including SysML, MARTE, AADL, and IP-XACT, to develop a library of
broadly used software and hardware platforms.

At the other end of the spectrum, there is very little research literature discussing
integrated approaches for system and software modelling based on UML. An example
is [10], where the authors evaluate how UML and SysML could be consistently used
for both system and software modelling. Perhaps, the main contribution of this work
is a mapping between SysML and UML concepts and the identification of the applica-
tion domains associated with each concept. Unlike this work, we attempt to provide a
more rigorous comparison of system and software modelling concerns, and addition-
ally, enrich expressiveness with MARTE features.

With regard to the combination of profiles at tooling level, the authors in [4] intro-
duce a packaging unit called MDATC (which stands for Model-Driven Architecture
Tool Component) that serves to collect metamodels and/or profiles, know-how, and
required resources in order to support domain-specific activities. Thus, by using
MDATC, modelling rules and constraints in the use of multiple profiles can be repre-
sented and exchanged in a standard format.

We end this section by highlighting the general problem of composition of lan-
guages or profiles. For instance, an aspect oriented approach supporting metamodel
composition is proposed in [8]. The authors focus on implementing composition
mechanisms for matching and merging model elements that crosscut the dominant
structure described in a primary model. The composition directives are implemented
in Kermeta, an open-source metamodelling language. Even if language composition
between different metamodels is certainly a more difficult problem than combining
stereotypes extending the same metamodel, especial care must be exercised. Our
study can be inserted in this lively context and viewed as a modest contribution in
composition of profiles, with special focus on SysML and MARTE, although in gen-
eral fragmentation problem is left as an open problem.

112 H. Espinoza et al.

6 Conclusions

Because of the varying nature of the disciplines involved in embedded system design,
it is clear that a single modelling language, such as for example UML, may not be
suitable for all aspects. We believe that the UML profile mechanism is well suited to
create domain-specific languages, by providing a common semantic and syntactic
foundation while also permitting reuse of the underlying modelling tools. Currently,
there are an important number of profiles that may make their usage cumbersome, as
they are often created mutually inconsistent and overlapping. In this paper we pre-
sented some integration strategies for combining the SysML and MARTE profiles.
Both provide essential ingredients to model embedded systems. Our intent is to offer
a better understanding of their conceptual domains, and to help in using both profiles
in a single model by avoiding semantic and syntactical mismatches.

We presented some typical scenarios in which their combined usage is of relevant
added value in the embedded systems domain. In general, using modelling constructs
from one or the other profile depends on the expressive power a constructs should
provide to practitioners. In a simple usage scenario, the intent may be to aid under-
standing and to communicate about a system design. As such, it is not necessary to
define a detailed description or precise semantics, and basic evaluations of the archi-
tecture could be performed. In a more elaborated scenario, however, we may be inter-
ested on using powerful analysis tools, simulators, model checkers, product synthesis
tools, and the like. In this case, the necessary levels of specification detail and seman-
tic precision are much higher. While both forms of specification have merit, their us-
age will be driven by the specific needs of a particular development process and its
phases through the system lifecycle.

Our future work consists in providing a detailed comparison of SysML and
MARTE’s semantic and syntax, providing pertinent examples on their combined us-
age, and suggesting some improvements regarding language mismatches.

Acknowledgments. The work presented here is partially carried out within the
System@tic competitiveness cluster projects Lambda and IMOFIS.

References

[1] Albinet, A., Begoc, S., Boulanger, J.-L., Casse, O., Dal, I., Dubois, H., Lakhal, F., Louar,
D., Peraldi-Frati, M.-A., Sorel, Y., Van., Q.-D.: The MeMVaTEx methodology: from re-
quirements to models in automotive application design. In: 4th European Congress ERTS
Embedded Real Time Software. Toulouse, France (January 2008)

[2] André, C.: Time Modeling in MARTE. In: FDL 2007 Forum on specification and Design
Languages, Barcelona, Spain (2007)

[3] Cancila, D., Passerone, R.: Functional and structural properties in the Model-Driven En-
gineering approach. In: ETFA 2008 (2008)

[4] Bendraou, R., Desfray, P., Gervais, M.-P., Muller, A.: MDA Tool Components: a pro-
posal for packaging know-how in model driven development. Software and System Mo-
deling 7, 329–343 (2008)

[5] Cuccuru, A., Gérard, S., Radermacher, A.: Meaningful Composite Structures - On the Se-
mantics of Ports in UML2. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301. Springer, Heidelberg (2008)

 Challenges in Combining SysML and MARTE for Model-Based Design 113

[6] Emery, D., Hilliard, R.: Updating IEEE 1471: architecture frameworks and other topics.
In: Seventh Working IEEE/IFIP Conference on Software Architecture WICSA (2008)

[7] Espinoza, H., Servat, D., Gérard, S.: Leveraging Analysis-Aided Design Decision Kno-
wledge in UML-Based Development of Embedded Systems. In: SHARK at ICSE 2008,
Leipzig (May 2008)

[8] France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing Support for Model
Composition in Metamodels. In: Proceedings of EDOC 2007, Annapolis, USA (October
2007)

[9] Gray, J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-
Specific Modeling. In: CRC Handbook of Dynamic System Modeling. CRC Press, Boca
Raton (2007)

[10] Hause, M., Thom, F.: Building Bridges Between Systems and Software with SysML and
UML. In: INCOSE Intl. Symposium (June 2008)

[11] INTERESTED EU Project: Interoperable embedded systems Tool-chain for enhanced
rapid design, prototyping and code generation,

 http://www.interested-ip.eu/index.html
[12] Johnson, T., Jobe, J., Paredis, C., Burkhart, R.: Modeling Continuous System Dynamics

in SysML. In: Proceedings of the IMECE 2007 (November 2007)
[13] Lagarde, F., Espinoza, H., Terrier, F., André, C., Gérard, S.: Leveraging Patterns on Do-

main Models to Improve UML Profile Definition. In: Fiadeiro, J.L., Inverardi, P. (eds.)
FASE 2008. LNCS, vol. 4961, pp. 116–130. Springer, Heidelberg (2008)

[14] Lambda Project, Lambda Libraries for Applying Model Based Development Approaches,
Technical Annex (May 2008)

[15] Maier, M.: System and Software Architecture Reconciliation. Systems Engineering Jour-
nal, 146–159 (2006)

[16] OMG, Unified Modeling Language, UMLTM Superstructure, V2.1.2
[17] OMG, Systems Modeling Language SysMLTM, V1.0
[18] OMG, UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded sys-

tems, Beta 2
[19] SATURN Project: SysML bAsed modeling, architecTUre exploRation, simulation and

syNthesis for complex embedded systems, http://www.saturnsysml.eu
[20] Selic, B.: From Model-Driven Development to Model-Driven Engineering. In: Keynote

talk at ECRTS 2007 (July 2007)
[21] Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML. In:

ISORC 2007, pp. 2–9 (2007)
[22] Soares, M.S., Vrancken, J.L.M.: A Proposed Extension to the SysML Requirements dia-

gram. In: IASTED International Conference on Software Engineering, Austria (2008)
[23] Sifakis, J.: Embedded Systems - Challenges and Work Directions. In: Higashino, T. (ed.)

OPODIS 2004. LNCS, vol. 3544, pp. 184–185. Springer, Heidelberg (2005)

	Challenges in Combining SysML and MARTE for Model-Based Design of Embedded Systems
	Introduction
	Background
	UML Profiling Capabilities
	SysML and MARTE Modelling Capabilities

	Scenarios of Combined Usage
	Defining Architecture Frameworks
	Requirements Engineering
	System-Level Design Integration
	Engineering/Quantitative Analysis

	Combination Strategies
	Combination Clues

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

