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Abstract. This paper discusses progress in the verification of security protocols.
Focusing on a small, classic example, it stresses the use of program-like represen-
tations of protocols, and their automatic analysis in symbolic and computational
models.

1 Introduction

As computer security has become a broad, rich field, rigorous models have been devel-
oped for many policies and mechanisms. Sometimes these models have been the subject
of formal proofs, even automated ones. The goal of this paper is to discuss some of the
progress in this direction and some of the problems that remain.

The paper focuses on the study of security protocols, a large, mature, and active area.
It aims to offer an introduction and a partial perspective on this area, rather than a com-
prehensive survey. We explain notations, results, and tools informally, through the de-
scription of a basic example: a variant of the classic Wide-mouthed-frog protocol [25]].
For this example, we consider specifications and automated proofs in two formalisms.
We refer the reader to the research literature for presentations of other formalisms and
for precise definitions and theorems, and to a recent tutorial [1]] for additional back-
ground.

Current research in this area addresses at least three challenges:

—

the treatment of realistic, practical protocols;

2. the analysis of actual implementation code;

3. extending the analysis to refined models, in particular computational models with
complexity-theoretic hypotheses on cryptographic functions.

With regard to (d)), protocol analysis appears to be catching up with protocol develop-
ment. In the last few years there have been increasingly thorough analyses of practical
protocols. While these analyses remain laborious and difficult, the sophistication and
power of the techniques and tools for protocol analysis seem to have grown faster than
the complexity of practical protocols. For instance, in the last dozen years, the un-
derstanding and formal analysis of SSL and its descendant TLS [30] has progressed
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considerably while this protocol has neither changed substantially nor been replaced
(e.g., [12331/42]/44]). In this paper we do not discuss (I)) further, although we recognize
its importance.

Progress on (@) is more recent and still more tentative, but quite encouraging [32,
34]. Moreover, we believe that much further progress is possible using static analyses
and type systems, including ones that are not specific to protocol security. This paper
concerns (@) in that it deals with protocols written in little programming languages,
namely a dialect of the pi calculus [41] and a special-purpose language for writing
cryptographic games. It concerns (2)) also in that it relies on tools (ProVerif [1516}18]
and Crypto Verif [[17,21]) that can be applied to protocols written in a general-purpose
programming language such as Ff (a dialect of ML) [12][14,[32].

As for (@), models and the corresponding proofs of security can concern several dif-
ferent levels of abstraction. For instance, at a high level, they may deal with secure
communication channels as primitive. At a lower level, they may show how these chan-
nels are implemented in terms of cryptographic functions, while treating those as “black
boxes”. An even lower-level model would describe, in detail, how the cryptographic al-
gorithms transform bitstrings. This lower-level model is however not necessarily the
final one: we could also take into account such characteristics as timing and power con-
sumption, which some clever attacks may exploit. In this paper we focus on the relation
between “black-box” cryptography, in which cryptographic operations are symbolic,
and “computational” cryptography, in which these operations are regarded as computa-
tions on bitstrings subject to complexity-theoretic assumptions.

The next section introduces our example informally. Section[3]shows how to code it
in a dialect of the pi calculus and how to treat it with the tool ProVerif, symbolically.
Section[d] gives a computational counterpart to this symbolic analysis via fairly general
soundness results that map symbolic guarantees to computational guarantees (e.g., [7,
40L26]). As an alternative, Section 3 treats the protocol directly in the computational
model, with the tool CryptoVerif. Section || concludes.

2 An Example, Informally: The Wide-Mouthed-Frog Protocol

The Wide-mouthed-frog (WMF) protocol is a classic, simple method for establishing
a secure channel via an authentication server. Mike Burrows originally invented it in
order to show that two messages suffice for this task, in the 1980s. It became popular as
an example in papers on protocol analysis.

The protocol enables two principals A and B to establish a shared session key K 4 5.
They rely on the help of an authentication server .S with which they share keys K45
and Kpg, respectively. Informally, the protocol goes roughly as follows:

— First, A generates the session key K ap, and sends A, {T4, B, Kap}k,s to S.
Here T'4 represents a timestamp, and the braces indicate encryption. It is assumed
that clocks are synchronized, and that the encryption not only guarantees secrecy
but protects the message from tampering.

— The server S can decrypt this message and check its timeliness. It then sends
{Ts, A, Kap} Ky to B, where Tg is also a timestamp.

— Finally, B can decrypt this message, check its timeliness, and obtain K 4.
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The principals A and B trust that S does not divulge K 4 g nor use it for its own pur-
poses. They also trust S' in other ways—for instance, to check timestamps properly.
Defining such trust relations precisely has been one of the important goals of work in
this area. Because of this trust, A and B can treat K 45 as a shared key. Afterwards, A
and B may exchange messages directly under K 4.

This simple example brings up a number of issues. In particular, we may ask what
exactly is assumed of timestamps? of cryptographic operations? For instance, it is note-
worthy that the protocol relies on A to generate a session key. While this may be ac-
ceptable, it is a non-trivial assumption that A can invent good shared secrets; in many
other protocols, this important task is left for servers.

Formal analyses of the protocol address these and other questions, with various de-
grees of explicitness. While early analyses emphasized clock synchronization and A’s
generation of K 4p, those aspects of the protocol seem to be less central, or at least
more implicit, in later work. This shift should not be too surprising. As Roger Needham
has argued, the assumptions and objectives of security protocols are not uniform, and
they have changed over the years [43]]. Our analysis, below, focuses on other questions,
and in particular on the required properties of cryptographic operations.

3 The WMF Protocol in the Pi Calculus

Specifying the WMF protocol or another protocol can be, to some extent, a simple
matter of programming. For each role in the protocol (A, B, or S), one writes code
that models the actions of a principal that plays this role. We need not write code for
the adversary, which we treat as the environment, and over which we typically have a
universal quantification. Similarly, we do not write code for principals that pretend to
play arole but do not actually follow the protocol, since those principals can be regarded
as part of the adversary.

Note that principals and roles are distinct. Indeed, a principal may play multiple
roles, for instance being the initiator A in one session and the interlocutor B in a con-
current session. A role is basically a program, while a principal is a host that may run
this program, as well as other programs.

The programs can be written in a variety of ways. We have often used process calculi,
and in particular two extensions of the pi calculus: the spi calculus and the applied pi
calculus [5,16].

— The basic pi calculus offers facilities for communication on named channels, for
parallel composition, and for generating fresh names, which may represent fresh
cryptographic keys. For example, ((vk).c(k)) | c(x).d(z) is a process that gener-
ates a fresh name £ and then sends it on the channel ¢, in parallel with a process that
receives a message on ¢, with formal name x, then forwards it on d. In this small
example, one may think of ¢ and d as public channels on which an attacker may
also communicate, for instance intercepting k. More generally, public channels are
often represented by free names, not bound by v.

— The extensions of the pi calculus include both data structures and symbolic rep-
resentations of cryptographic functions. Tupling, encryption, hashing, signatures,
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and many of their variants can be accommodated. For instance, classically, { M },
may represent the shared-key encryption of the message M under the key k.

This approach has been followed in modeling many protocols (e.g., [3,14,/9,[13[18L[19}
37,139]]). Techniques from the programming-language literature, such as typing, have
been employed for proofs, sometimes with substantial extensions or variations; special-
purpose techniques have also been developed and exploited, as in the tool ProVerif on
which we rely below (e.g., [2,[101123124]28}133,136]]). Research on related formalisms
includes many similar themes and methods (e.g., [8L22L127[29138143]).

Over the last decade, this approach to modeling and proving has evolved and matured
considerably. Most noticeably, proof techniques have progressed in their power and
sophistication. Partly because of this progress, the specifics of modeling protocols has
changed as well.

We use the WMF protocol to illustrate this point. The original paper on the spi calcu-
lus [6] contains a description of the WMF protocol (with nonce handshakes rather than
timestamps). Below, we give a new description of this protocol. The two descriptions
differ on many small but often interesting points. In particular, the new description mod-
els probabilistic encryption [31]], in which the encryption function has a third parameter
that serves for randomizing ciphertexts: { M }}, represents the encryption of M under
k with random component 7. This random component ensures that an attacker can-
not recognize when two different ciphertexts have the same underlying plaintext. The
new description is also crafted so as to be within the realm of application of ProVerif,
CryptoVerif, and the general soundness results that map symbolic guarantees to com-
putational guarantees.

The WMF Protocol in the Pi Calculus. We represent principal names by parameters
like a and b. The role of A may be executed by any principal a, and the role of B by
any principal b. We write k,s and ks for the respective keys shared with the server.

The code for the role of A may be given three parameters: an identity a, an iden-
tity b, and a key k,s. This code first generates a fresh process id pid. Since a may run
concurrently several copies of the same program, possibly with the same partner, pid
is useful in distinguishing the different copies. Next, the code generates a new key k,
called K 4 g in the informal description of Section[2l The code then communicates on a
public channel c. It sends a triple that contains pid, a, and A. (This message and similar
ones below do not appear in the informal description of the protocol but are helpful for
enabling the application of computational-soundness results.) It also sends a pair that
contains a and the ciphertext {{co, b, k)}}, . Here r is a freshly generated name, and
co is a constant that represents the message type. A distinct constant ¢; will tag the
message from S to B. The two tags ¢ and c1, although rudimentary, serve for avoiding
confusion between messages and suffice for the properties that we establish.

Pa(a,b, kas) & wpidywk).c((pid, a, A)).wr).c{{a, {{co, b, k) }5. )

Note that the messages do not specify destinations. Destinations could be included in
message headers, but an attacker could change them anyway, so they have no value
from the point of view of security.
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As a variant, which we adopt, we may wish to quantify over any possible partner b,
letting the environment (that is, the attacker) choose b, thus:

Pa(a, kas) ef (wpidy(vk).c((pid, a, A)).
c(a).if 1 (x) = pid thenlet b = ma(x) inwr).c{{a, {{co, b, k)}},.))

else 0

Here a receives a message = and performs some computations and tests on z. Specif-
ically, a tries to retrieve the first component of a (supposed) pair using the projection
function 71, then examines the first component to check that the message is intended
for this instance. If the projection fails, then the equality test fails as well. If the equal-
ity test fails, then the execution stops. (An alternative could be to restart the program
or to wait for another message.) In case of success, on the other hand, b is bound to the
second component (72 (x)) of the message. Otherwise, the execution stops; 0 is the null
process.

In this presentation we take some liberties—all the i’s will be dotted for the ProVerif
version of the code, which we describe below. In particular, we omit the axioms for en-
cryption and decryption. We also use a shorthand for pattern matching: we write inputs
of the form ¢(t) when ¢ is a term that can supposedly be decomposed by the principal
that receives the message. Such matching tests can be desugared to conditionals in a
standard way; variables that occur in the term ¢ are parts of the messages that are not
checked and they are bound with a /et construction. With this notation, we can rewrite
P, as follows:

Pa(a, kqs) def (Vpid)(uk).c<(pid7a,A>>.c((pid7x>).(ur).c<<a,{(co,a:, k>};a>>

Similarly, we specify the process Pg:

Pg(a,b, kys,m) < wpid).c((pid, b, B)). ¢((pid, z)).
let {c1,a,y) = decrypt(z, kps) in (wr).c({m}y)

Here m is an arbitrary message that is supposed to remain secret. According to this
code, b sends the secret only to a. However, we may want to enable b to interact with
any other principal, sending them an appropriate secret, or nothing at all. In order to
model this possibility, we simply show another version of the program in which the
final payload is not sent:

PL (b, kys) def (wpid).c{{pid, b, B)).c((pid, x)).let {c1, z,y) = decrypt(x, kps) in 0

Finally, we specify the process Ps:

Ps(a,b, kas, kbs) ef wpid).c{{pid, SY).c({pid, a, z)).
let (co,b,y) = decrypt(x, kqs) in wr).c{{{c1,a,y)}},.)
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We also consider two variants of Pg in which one of the protocol participants A and B
is compromised.

Pla,b, kys) L wpid).c((pid, S)).c((pid, k)).c((pid, z, x)).if z % a Az #b then
let {co, b, y) = decrypt(x, k) in (wr).c{{{c1,2,y)},.)

P2(a,b, kas) < wpid).c((pid, S)).c((pid, k)).c({pid, a, z)).
let (co,z,y) = decrypt(x, kqs) in
if z# aAz#bthen wr).c{{c1,a,y)}})

We represent a corrupted principal by letting .S get its key from the environment. The
case in which both A and B are compromised is less interesting, because in that case S
can be simulated by the environment entirely. (Similarly, we do not specify corrupted
versions of P4 or Pp, because they can be simulated by the environment.)

We assemble these definitions, letting a, b, and the server run any number of copies
of their respective programs (for simplicity with a single parameter m):

P(m) € Wkas)Wkss).("Pa(a, kas)) | (Pa(b, kss)) |

('Pg(a,b, kps,m)) | (!Pg(b,a, kaes,m)) | (!Pg(a,a,kas,m)) | (IPg(b,b, kps,m)) |
(1P (b, kvs)) | (1Pp(a, kas)) |

(IPs(a,b, kas, kps)) | (\Ps(b, a, kbs, kas)) |

(!Ps(a,a, Kas, kaS)) ‘ (!PS(b7 b, kps, k'bs)) |

(1Pg(a,b,kvs)) | (\Ps (b, a,kas)) | (\P3(a, b, kas)) | (1PS(b, a, kys)))

Here ! is the replication operator, so ! P behaves like an unbounded number of copies
of P in parallel; formally, |P = P |!P. The names k,s and ks are bound. This binding
manifests an important feature of the process calculus: such a construction hides the
names, which are not visible outside their scope. The process P therefore expresses
that k,s and ks are not a priori known outside, unless they are leaked on a public
channel.

The process calculus and ProVerif also allow more compact and more convenient
representations of P, as well as many variants and elaborations. We rely on the def-
initions above partly because we wish to match the conditions of the computational-
soundness results. For instance, we avoid the use of functions that link keys to principal
names (which are common in ProVerif models, but which appear to be computationally
unsound), and also the use of private channels (which may be permitted by ongoing
work on computational soundness). As research in this area progresses further, we an-
ticipate that those results will be increasingly flexible and general.

The WMEF protocol has several standard security properties. In particular, it preserves
the secrecy of the payload m. Formally, this secrecy can be expressed as an observa-
tional equivalence: P(m) ~ P(m'), for all m and m’. It holds even in the case where
m and m/' are not atomic names, and it precludes even the leaking of partial information
about m and m/’. For these reasons, this property is sometimes called “strong secrecy”.

As we show below, ProVerif offers one particularly effective method for establishing
such security properties. There are others, sometimes relying in part on techniques from
the pi calculus (as in [6]], for instance).
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The WMF Protocol in ProVerif. The WMF protocol can be programmed much as above
in the input language of ProVerif. In this language, the encryption {m}], is written
encrypt(m, k,r). Encryption and decryption are declared in ProVerif by:

fun encrypt/3.
reduc decrypt(encrypt(z,y,7),y) = .

which introduces a function symbol encrypt of arity 3 and a function symbol decrypt
defined by a rewrite rule decrypt(encrypt(z, y, ), y) — x, which means that decryp-
tion of a ciphertext with the correct key yields the plaintext. Furthermore, we add a
function symbol keyeq that allows the adversary to test equality between keys of two
ciphertexts:

reduc keyeq(encrypt(z, y, r), encrypt(z’, y, r’)) = true.

This function symbol models that the encryption scheme is not key-concealing (so the
computational-soundness result of Section ] can be applied without assuming that en-
cryption is key-concealing).

At the level of processes, the input language of ProVerif is an ASCII syntax for the
applied pi calculus. For example, the process Pa(a, kqs) is coded:

let processAa =
new pid; out(c, (pid,a, A)); in(c, (= pid, zb));
new Kab; new 7; out(c, (a, encrypt((c0, zb, Kab), Kas, ))).

The language uses new for v, out(c, m) for ¢(m), and in(c, m) for ¢(m). The syntax
of patterns is made more explicit, by adding an equality sign (as in = pid, for exam-
ple) when making a comparison with a known value. Other minor departures from the
definition of P4 (a, k.s) above are changes in the identifiers.

The other processes that represent the WMF protocol are coded in a similar way in
ProVerif. We therefore omit their ProVerif versions.

ProVerif can establish the security property claimed above, using the technique de-
scribed in [[16]. The proof is fully automatic. For a large class of protocols in which
messages are tagged, ProVerif is guaranteed to terminate [20]; our example does not
quite fit in this class (in particular, because of the use of inequality tests), but ProVerif
does terminate nonetheless. ProVerif can similarly establish security properties of many
more complex protocols.

4 Computational Soundness

While formal analysis of protocols has traditionally provided only formal results, like
those stated in Section[3] the exact status of those results can be unclear. Do they entail
any actual guarantees, or is formal analysis valuable only as a means of identifying
assumptions, explaining protocols, and sometimes finding mistakes?

One approach to addressing such questions is to try to map the formal results to
a more concrete model via a general theorem. Such a theorem should enable us to
leverage high-level notations, proof techniques, and proof tools for obtaining guarantees
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for large families of protocols. In this section we discuss this approach and how it
applies to the WMF protocol.

In the more concrete model, cryptographic operations work on bitstrings, not ex-
pressions, and are subject to standard complexity-theoretic assumptions. Names are
interpreted as bitstrings—more precisely, ensembles of probability distributions on bit-
strings, parameterized by a security parameter 1. This interpretation is extended to a
mapping from symbolic expressions to bitstrings. The adversary may perform any com-
putation on bitstrings, and not only the basic expected cryptographic operations; the
adversary is however constrained to run in (probabilistic) polynomial time with respect
ton.

Computational-soundness theorems translate symbolic guarantees to computational
guarantees. In particular, a recent computational-soundness theorem [26], on which we
rely, roughly says that the symbolic equivalence of two processes implies their com-
putational indistinguishability. In other words, the distinguishing capabilities of a com-
putational attacker are not stronger than the distinguishing capabilities of the symbolic
attacker, whose range of operations is much more limited. Of course, these theorems also
indicate assumptions, in particular hypotheses on cryptographic operations. Unexpected
but necessary hypotheses sometimes surface when one proves soundness theorems.

Assumptions. Specifically, the theorem of [26] requires some assumptions on the en-
cryption scheme:

— IND-CPA security (the standard semantic guarantee for secrecy [31], also called
“type-3 security” [7]), and
— INT-CTXT security (an authentication guarantee [[L1]]).

It also requires that:

— the attacker can create a key only using the key-generation algorithm;

— there are no encryption cycles: there is an ordering < on private keys such that, if
k < K/, then k may appear in the plaintext of a ciphertext encrypted under k', but
not the converse;

— finally, it is possible to compute a symbolic representation of any bitstring—this is
a “parsing assumption”.

The assumptions are far from trivial: IND-CPA is standard, but INT-CTXT is strong,
and the inability to create keys without following the key-generation algorithms is quite
unusual. These three properties are however necessary for the soundness theorem: if one
of these three hypotheses fails, we can find protocols that appear secure symbolically
but that are not secure computationally, under some encryption schemes. In fact, under
some encryption schemes that do not satisfy INT-CTXT, there are computational attacks
on the WMF protocol in particular.

Encryption cycles have attracted a great deal of attention in recent years, in part
because of computational-soundness theorems, but they are of independent interest.
Their exact status remains a well-known open question.

The parsing assumption is probably not necessary, but eases the proofs.
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Application to WMF. Since P(m) ~ P(m’) has been proved using ProVerif, we
should get some computational indistinguishability guarantee, thanks to the theorem
of [26] discussed above. That theorem pertains to a symbolic equivalence relation ~
that distinguishes slightly more processes than ~ and ProVerif. For instance, ~ dis-
tinguishes two symbolic messages whose computational interpretations have distinct
lengths, while ~ may not.

This discrepancy illustrates that further work is needed for establishing a perfect
match between models. Moreover, the soundness theorems remain hard to establish
and they do not yet cover all useful cryptographic primitives, nor all sensible styles for
writing protocol code.

The discrepancy might be resolved by refining ~ by introducing functions that, given
a ciphertext, reveal the length, structure, or other properties of the underlying plaintext.
Such functions could also be incorporated in ProVerif analyses.

For our specific example, more simply, we may require that encryption conceal
the length of payloads, and we can weaken ~ accordingly. This approach is accept-
able for the WMF protocol since its messages can be assumed to have a constant
length. In this case, ~ and ~ coincide, so the ProVerif verification actually estab-
lishes P(m) ~4 P(m'). Moreover, we have proved manually the absence of encryption
cycles so, for implementations that satisfy the other assumptions of the computational-
soundness theorem, we obtain the desired computational indistinguishability guarantee.

5 The WMF Protocol in CryptoVerif

In this section, we study the WMF protocol using CryptoVerif. In contrast to the ap-
proach of Section ] CryptoVerif works directly in the computational model, and pro-
vides proofs by sequences of games, like those constructed manually by cryptographers.
In these proofs, one starts from an initial game that represents the protocol under study.
This game is then transformed either by relying on security assumptions on crypto-
graphic primitives or by syntactic transformations. These transformations are such that
the difference of probability of success of an attack in consecutive games is negligible.
The final game is such that the desired security property is obvious from the form of the
game. One can then conclude that the security property also holds in the initial game.

The WMF Protocol in CryptoVerif. In order to automate this technique, the games are
formalized in a process calculus, as we illustrate on the WMF protocol. Throughout this
section, we refer to a and b as honest principals, and we focus on them in writing code.
The adversary can play the role of dishonest principals.

The following process P4 models the role of A:

Py =!Ney(2A - host,xB : host); if A =aV 24 = b then
let KAs = (if A = a then Kas else Kbs) in
new rKab : keyseed; let Kab : key = kgen(rKab) in
new 7 : seed; cs{xA,encrypt(concat(c0, 2B, Kab), KAs, r))

The process P4 starts with a replication bounded by N, which is assumed to be poly-
nomial in the security parameter: at most N copies of A can be run. Two host names
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are then received on channel c3: zA is the name of the host playing the role of A, zB is
the name of its interlocutor; zA is required to equal a or b. Then K As is defined as the
key of zA. The protocol proper starts at this point: P4 chooses a fresh key Kab to be
shared between zA and =B by generating a random seed 7Kab (new rKab : keyseed)
and applying the key-generation algorithm kgen. Next, P4 forms the first message, and
sends it on channel c3. The function concat builds the plaintext to be encrypted by con-
catenating its arguments (a tag, a host name, and a key). After the output on c3, control
returns to the adversary.

Variables are typed. These types simply represent sets of bitstrings, and have no
security meaning. They are still necessary in the computational model, in particular
when generating random numbers: the random numbers can be drawn from various sets
(keys, random seeds, nonces, ... ).

The messages are each sent or received on a distinct channel c;. Furthermore, the
replication ! implicitly defines an index i € [1, N], and the channel names c; are in
fact abbreviations for ¢; [¢], so that a distinct channel is used in each copy of the process.
Thus, the adversary knows exactly to which process it is talking. Using distinct channel
names and replication indices replaces the process identifiers (pid) of the model of
Section[3

The following process Pp represents the role of B:

Pp = !Weg(zB : host); if zB = aV zB = b then
let KBs = (if B = a then Kas else Kbs) in ¢g();
c1o(x : bitstring); let injbot(concat(= cl, zA, kab)) = decrypt(z, KBs) in
if zA =aV zA = b then
new r : seed; c11(encrypt(pad(mpayload), kab, r))

Similarly to P4, the process Pp is replicated, and expects as first message its own iden-
tity zB; xB is required to equal a or b and KBs is its key. Then a message (normally
from the server) is received on channel c1¢, and Pp decrypts this message. The decryp-
tion can succeed or fail. When it succeeds, it returns a normal bitstring; when it fails,
it returns L. The function injbot is the natural injection from bitstrings to bitstrings
union L, so that when injbot(y) = decrypt(z, KBs), the decryption succeeded and its
value is y. Next, when the interlocutor zA of zB is honest, the process Pp encrypts the
payload mpayload under the shared key kab and sends the ciphertext on channel ¢1;.
(The function pad is only a type conversion function, which converts payloads to plain-
texts; it leaves the bitstrings unchanged.)
The process Py is a key-registration process:

Prc = N2c15(h : host, k : key);
let Khs : key = if h = a then Kas else if h = b then Kbs else k

All variables defined under replications in Crypto Verif are implicitly arrays indexed by
the replication index. So, here, Py stands for:

P = 11N2epo[i](hi] : host, k[i] : key);

let Khs[i] : key = if h[i] = a then Kas else if h[i] = b then Kbs else k]
In order to register a key k1 for host h1, the adversary sends a pair (hq, k1) on channel
c12[7] for some i. The host name h4 is stored in h[i] while the key k; is stored in Khs|[i],
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except when h; is a or b; in this case, the key Kas or Kbs respectively is stored instead,

so that the only keys that can be registered for a and b are Kas and Kbs respectively.

In order to retrieve the key for host A/, one can then look for an index u’ such that

hlu'] = I; the key for h' is Khs[u']. This is done by the construct find v’ < Ny

suchthat defined(Khs[u'], h[u']) A ' = h[u'] then... Khs[u']... used below.
The role of the server is specified by the process Pg:

Ps = Weg(zA : host, x : bitstring);
find uA < N, suchthat defined(Khs[uA], h[uA]) A zA = h[uA] then
let KAs = Khs[uA] in
let injbot(concat(= c0, zB, kab)) = decrypt(z, KAs) in
find uB < N suchthat defined(Khs[uB], h[uB]) A 2B = h[uB] then
let KBs = Khs[uB] in
new r : seed; cy(encrypt(concat(cl, zA, kab), KBs, 1))

The first message of the protocol is received on channel ¢g. The variable KAs is set to
the key of zA. Then the server decrypts the message with KAs, sets KBs to the key of
zB, and finally outputs the second message of the protocol on channel c7.

The following process P receives two payloads m0 and m1, chooses a bit switch,
and sets the payload mpayload to be encrypted by Pg to either m0 or mI depending
on the value of switch. (We will show that the adversary cannot distinguish switch
from a fresh random bit, so it cannot distinguish whether the encrypted payload is m0
or m1.) Next, P generates the keys Kas and Kbs for a and b respectively, using the
key-generation algorithm kgen; then it launches processes for the various roles of the
protocol and for key registration:

P = c13(m0 : payload, m1 : payload);
new switch : bool; let mpayload : payload = test(switch, m0, m1) in
new rKas : keyseed;let Kas : key = kgen(rKas) in
new rKbs : keyseed; let Kbs : key = kgen(rKbs) in c14(); (Pa | Pg | Ps | Px)

Here test is defined by test(true, m0, m1) = m0 and test(false, m0, m1) = m1.

Assumptions. In addition to these processes, the CryptoVerif model also specifies sev-
eral hypotheses:

— The encryption scheme is IND-CPA and INT-CTXT.

— The function concat returns bitstrings of constant length. Moreover, concat is in-
jective, and it is possible to compute z, y, z from concat(z,y, z) in polynomial
time.

— All payloads have the same length.

We do not assume that the attacker can create a key only using the key-generation al-
gorithm. This contrasts with the assumptions of Sectiond] which apply to a large class
of protocols, including protocols for which there would be computational attacks with-
out this assumption. Neither do we assume the absence of encryption cycles; however,
the success of the game transformation sequence shows that there is a key hierarchy.
Finally, we do not have any parsing assumption.
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Analysis. With the model presented above, Crypto Verif is not able to complete the proof
of the desired properties. Manual inspection of the games computed by CryptoVerif
shows that, in Py, it fails to distinguish automatically the cases in which the key Kab is
generated for an honest interlocutor a or b from the cases in which it is generated for a
dishonest interlocutor. The code can easily be modified to make this distinction from the
start, simply by adding the test “if 2B = b V B = a then” just before the generation
of 7K ab and duplicating the rest of the process P4. With this modification, the proof
of secrecy of switch succeeds automatically. That is, the adversary cannot distinguish
switch from a fresh random bit, so it cannot tell whether the encrypted payload is m0
orml.

Additionally, CryptoVerif can also show secrecy properties of the key exchanged
between A and B, after removal of the payload message. (We do not present the cor-
responding process for brevity.) More precisely, CryptoVerif shows that the keys Kab
chosen by P4 when 24 and zB are honest principals are secret, that is, indistinguishable
from fresh independent random keys. However, CryptoVerif cannot show the secrecy
of the keys kab received by Pp when zA and zB are honest principals. This failure is
not due to a limitation of CryptoVerif, but to an attack: by replaying messages in the
protocol, the adversary can force several sessions of B to use the same key kab. Hence,
those keys kab may not be independent. Crypto Verif still establishes what we call “one-
session secrecy”, that is, that each key kab (for A and zB honest) is indistinguishable
from a fresh random key.

The Sequence of Games (Summary). In order to establish the secrecy of switch, Cryp-
toVerif successively reduces the original game to simpler games, using the security
assumptions. In a first step, it performs syntactic transformations to make explicit all
usages of the key Kbs and to replace it with its value kgen(rKbs). The obtained game
is then transformed using the INT-CTXT assumption: CryptoVerif replaces every de-
cryption of a message M under Kbs with a look-up that searches for M among all
ciphertexts built by encryption under Kbs. If the ciphertext M is found, the look-up re-
turns the corresponding plaintext; otherwise, decryption fails and the look-up returns L.
If the attacker wins the game before this transformation, then either it wins the new
game or, at some point, it has been able to forge an encryption under Kbs. In the latter
case, it would break INT-CTXT. Then, CryptoVerif replaces any plaintext M that is
encrypted under Kbs with Z (M), a bitstring of the same length as M but consisting
only of zeroes. This time, if the attacker wins the game before this transformation, then
either it wins the new game or it wins an IND-CPA game.

CryptoVerif performs similar transformations for the key Kas.

At this stage, the key Kab no longer occurs as a plaintext. CryptoVerif now ap-
plies the same transformations as above, for this key, and finally replaces all payloads
mpayload encrypted under Kab with the same plaintext Z(mpayload). The final game
is trivial: it cannot be won by an attacker.

6 Conclusion

Model refinements such as those that we discuss in this paper, while numerous and
varied, should not be fundamentally surprising. After all, reasoning about software
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and hardware correctness often employs similar refinements. Furthermore, in any area,
models and the corresponding proofs may be incomplete and inaccurate.

Security, however, is different in at least one important respect: an adversary may
be doing its best to undermine the validity of the models. This specificity increases
the importance of understanding refinements, and the interest of the corresponding the-
ory. Within this domain, we believe that the transition from symbolic to computational
models is particularly worthwhile. It can serve for strengthening the foundations of for-
mal analysis, for enabling proofs, and also for indicating implicit hypotheses and subtle
flaws.

It remains open to debate whether computational results should be obtained directly,
with a tool such as CryptoVerif, or indirectly from symbolic proofs via soundness
theorems. Soundness theorems often require more hypotheses: there are situations in
which a computational proof can be obtained using CryptoVerif, while the hypothe-
ses of soundness theorems are not met. However, when the hypotheses are satisfied, a
symbolic proof suffices, and is generally easier to obtain, often automatically.

At present, both avenues still present challenges. ProVerif, CryptoVerif, and the
soundness theorems all still have important limitations. These imply, for instance, that
one should be careful in writing protocol specifications—not all equivalent formula-
tions are equally easy to handle. Despite these limitations, as this paper illustrates, the
progress to date is substantial.
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