Cardinality Abstraction for Declarative
Networking Applications

Juan Antonio Navarro Pérez, Andrey Rybalchenko, and Atul Singh

Max Planck Institute for Software Systems (MPI-SWS)

Abstract. Declarative Networking is a recent, viable approach to make
distributed programming easier, which is becoming increasingly popular
in systems and networking community. It offers the programmer a declar-
ative, rule-based language, called P2, for writing distributed applications
in an abstract, yet expressive way. This approach, however, imposes new
challenges on analysis and verification methods when they are applied to
P2 programs. Reasoning about P2 computations is beyond the scope of
existing tools since it requires handling of program states defined in terms
of collections of relations, which store the application data, together with
multisets of tuples, which represent communication events in-flight. In
this paper, we propose a cardinality abstraction technique that can be
used to analyze and verify P2 programs. It keeps track of the size of
relations (together with projections thereof) and multisets defining P2
states, and provides an appropriate treatment of declarative operations,
e.g., indexing, unification, variable binding, and negation. Our cardinal-
ity abstraction-based verifier successfully proves critical safety proper-
ties of a P2 implementation of the Byzantine fault tolerance protocol
Zyzzyva, which is a representative and complex declarative networking
application.

1 Introduction

Declarative networking is a recent approach to the programming of distributed
applications [29]. This approach allows the programmer to focus on a high-level
description of the distributed system from the point of view of the global system,
while the underlying runtime environment is responsible for the automatic dis-
tribution of computation and communication among nodes participating in the
system. Declarative networking is increasingly employed by the distributed sys-
tems and networking community. It has been successfully applied to implement
several network protocols, including sensor networks, Byzantine fault tolerance,
and distributed hash tables, see [TTL25,8039], and is a subject of study from the
compilation, debugging, and protocol design perspectives, see [141[40,39]. Com-
plementing these lines of research, this work proposes a reasoning technique for
declarative networking.

An implementation of the declarative networking approach is given by P2, a
rule-based programming language [15]. The language is derived from distributed
Datalog. Formally, P2 programs describe parameterized systems whose nodes

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 58 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cardinality Abstraction for Declarative Networking Applications 585

execute the same set of rules [20]. Application data of P2 programs is stored
at network nodes in form of relations (i.e., sets of named tuples organized in
tables) that satisfy programmer-defined projection constraints. These constraints
require that the projection of each table on a specified subset of its columns
does not contain duplicate elements. The P2 runtime environment enforces these
constraints by pruning existing table rows whenever addition of new tuples leads
to a violation. Nodes communicate by exchanging events that are represented
by named tuples. P2 treats events in-flight as a collection of multisets. An event
received by a node triggers evaluation of the program rules at the node. For
each rule, this corresponds to computing all solutions of the relational query
represented by the rule body with respect to the stored relations. Each one of
these solutions determines an action to be executed that, according to the rule
head, can either modify the relations stored at the node or send a new event.

Declarative networking imposes new challenges on existing analysis and verifi-
cation methods that cannot be directly applied to P2 programs. First, reasoning
about P2 computations requires dealing with relations and multisets. In contrast,
existing verification methods represent the program state as a single tuple—a
valuation of program variables in scope. Second, declarative statements used in
P2 carry out complex operations on relations, e.g., joins and projections on ta-
bles, as well as addition and deletion of tuples. Such artifacts are beyond the
scope of the existing verification tools.

In this paper, we present a cardinality abstraction technique for the analysis
and verification of declarative networking applications. Cardinality abstraction
aims at discovering quantitative information about data-storing relations and
multisets of events such as those manipulated during the execution of P2 pro-
grams. This information is expressed in terms of cardinality measures that count
the number of stored facts as well as the size of projections of the corresponding
tables on their columns. Cardinality abstraction yields an over-approximation of
the one-step transition relation represented by a P2 program, thus providing a
basis for its further analysis and verification.

Cardinality abstraction keeps track of cardinality measures under the applica-
tion of declarative operations during program execution. We represent the effect of
these operations using a set of equations over cardinality measures. Given a P2 pro-
gram, the corresponding set of equations is derived automatically. The equations
are precise, i.e., for every satisfying valuation of cardinality measures there is a cor-
responding pair of states in the program’s transition relation. Cardinality abstrac-
tion naturally handles data values, stored in tables and delivered by events, to the
following extent. First, it takes into account the binding of variables during event
matching, which triggers rule evaluation for the respective values, and the propaga-
tion of values through the rule. Second, the cardinality abstraction is sensitive to a
priori fixed data values, possibly symbolic, by a syntactic program transformation
that partitions tables according to the appearance of such data values.

The analysis and verification of declarative networking applications is then
performed by applying abstract interpretation [I7] to the cardinality abstraction
of a P2 program. Since the abstracting equations provide a relational abstraction

586 J.A.N. Pérez, A. Rybalchenko, and A. Singh

of the one-step transition relation given by a P2 program, cardinality abstraction
can be used to verify temporal safety and liveness properties. The computation
of the abstract semantics can be carried out using existing tools and techniques,
e.g., ASTREE, BLAST, INTERPROC, SLAM, and TERMINATOR [4L 516} 16]27].

We implemented the cardinality analysis-based tool CARDAN for the verifi-
cation of safety properties of P2 program&@. CARDAN uses the ARMC model
checker for the computation of the abstract semantics@ We applied CARDAN
to automatically prove crucial safety properties of a P2 implementation of the
Zyzzywa protocol for Byzantine fault tolerance [39], which is a representative,
complex declarative networking application.

In summary, our contribution is a cardinality abstraction technique that enables
analysis and verification of declarative networking applications. It relies on a quan-
titative abstraction of complex program states consisting of relations and multisets
and manipulated using declarative statements. Our experimental evaluation using
the CARDAN tool indicates that cardinality abstraction can be successfully applied
for the automatic verification of declarative networking applications.

2 Example

In this section, we briefly describe P2 and illustrate cardinality abstraction on a
simple program, TOKEN in Figure[Il that implements a token passing protocol.
States. The first four lines in the figure define the structure of TOKEN states.
Each node maintains two tables token and neighbor that keep track of the token
ownership and the network connectivity between nodes, respectively. Commu-
nication events in the multisets release and pass initiate the token transfer
and convey the act of passing between the nodes. Distribution in P2 is achieved
by keeping the address of a tuple, where it should be stored or sent to, as the
value in its first argument. The keys declarations in Figure [l require that the
projection of neighbor on its first column does not have duplicate elements, i.e.,
each node has at most one neighbor. In Figure 2l we show an example state sg
of TOKEN, in a network with three nodes A, B and C, under an assumption that
there are no events in-flight. We use the symbol “—” to denote an empty table.

data(token/1, keys(1)).
data(neighbor/2, keys(1)).
event (release/1).

event (pass/1).

rl del token(X) :- release(X), token(X).

r2 snd pass(Y) :- release(X), token(X), neighbor(X, Y).
r3 add token(Y) :- pass(Y).

Fig. 1. Program TOKEN implementing a token passing protocol in P2

! Tool and examples available at: http://www.mpi-sws.org/~ jnavarro/tools
2 The choice is due to implementation convenience.

http://www.mpi-sws.org/~jnavarro/tools

Cardinality Abstraction for Declarative Networking Applications 587

A B C A B C A B C
token A — — — — — — B —
neighbor (A, B) (B,C) (C,A) (A, B)(B,C)(C,A) (4 B) (B C)(C A)
release — — -
pass — B —
So S1 S2

Fig. 2. Sequence of TOKEN states so, s1, and s2 obtained by applying rules r1, r2, and
r3 on the state sg. Tables token and neighbor define the stored data, release and
pass refer to the events in-flight. “—” denotes an empty table.

Rules. Program statements in P2 are represented by rules consisting of a head
and a body separated by the symbol “:-". The rule head specifies the name of
the rule, its action and the tuple on which the action is applied. TOKEN uses
rules r1 and r3 to delete and add tuples from the table token, as specified by
the keywords del and add. The rule r2 sends events in the form of pass tuples.

The body of each rule provides values for the variables appearing in the rule
head. The evaluation is triggered by events arriving at a node. Assume that
an event release is periodically broadcasted to all nodes from some external
source whose nature is not important for this example, i.e., the nodes A, B, and C
receive the tuples release(A), release(B), and release(C), respectively. Then,
the runtime environment of each node triggers evaluation of rules whose first
conjunct in the body matches with the event. Triggering consumes the corre-
sponding event, i.e., the multiset of events in-flight becomes empty. At node A
the rules r1 and r2 are triggered by release(A), but the rule r3 is not. The same
rules are triggered at nodes B and C. For each triggered rule the set of all solutions
to the rule body is computed. This step is similar to the bottom-up evaluation
procedure of Datalog. Given the state sg, the evaluation of r1 at A produces an
action del token(A) by setting X = A, and for r2 we obtain snd pass(B) due to
the presence of neighbor(A, B) which sets Y = B. Only a single snd action can be
produced by TOKEN at A because of the projection constraint on neighbor. In
fact, if TOKEN had the declaration data(neighbor/2, keys(1,2)) then each
node could have multiple neighbors, and executing r2 would result in the event
pass to be delivered at each of them. At nodes B and C no actions are produced
since the rule evaluation fails due to the lack of token tuples.

The execution of rules produces actions to manipulate data and send events.
After executing del token(A) we obtain a state s; shown in Figure[2 The run-
time environment sends the event pass(B) to the node B. Upon arrival, this event
triggers the execution of r3 at the node B, which consumes the event and adds
the tuple token(B) to its tables. The resulting state so is shown in Figure 21

Property. If correct, the TOKEN program should satisfy the property of mutual
exclusion when executed on a network with an arbitrary number of nodes. The
property states that, at any given moment in time, at most one node can hold
the token; under the assumption that the initial state of TOKEN already satisfies
this condition and does not have any events in-flight.

588 J.A.N. Pérez, A. Rybalchenko, and A. Singh

This property relies on the invariant that the number of token and pass tuples
together does not exceed one. This invariant is maintained in TOKEN through an
interplay between the rules and the projection constraint on neighbor. When-
ever the token leaves a node then only one of its neighbors will receive a pass
tuple and will obtain the token.

Cardinality abstraction. Checking the validity of the mutual exclusion prop-
erty for TOKEN requires reasoning about its set of reachable states. Instead of
dealing with program states in full detail, we only consider their quantitative
properties by applying cardinality abstraction.

We use cardinality measures to keep track of the size of tables and their pro-
jections on subsets of columns. For example, the measure #neighbor, ,, where
the subscript “1,2” refers to its first and second column, represents the num-
ber of tuples in the table; whereas #neighbor, represents the size of the table
projected on its first column. The measures #pass refers to the number of pass
events in-flight. This measure does not refer to any projection, since P2 treats
events in-flight as multisets and multiset projection does not affect cardinality.

Cardinality abstraction over-approximates the semantics of rule execution in
form of a binary relation over cardinality measures. For example, the execution
of rules r1 and r2 triggered by an event release produces the following modi-
fication of the measures #token; and #pass, expressed in terms of a cardinality
operator |-| and primed notation to denote measures after rule execution:

#token] = #token; — |{X | release(X) A token(X)}|,
#pass’ = #pass + |{Y | release(X) A token(X) A neighbor(X,Y)}| .
The cardinality expressions in the above equations are further constrained by
applying algebraic properties of relational queries, the semantics of projection

constraints, and the definition of measures, which are marked by (a), (b), and
(c) respectively.

|[{X | release(X) A token(X)}| < [{X | release(X)}| (a)

[{Y | release(X) A token(X) A neighbor(X,Y)}| < |{Y | token(X) A neighbor(X,Y)}| (a)
[{Y | token(X) A neighbor(X,Y)}| < |{X | token(X) A neighbor(X,Y)}| (b)

|{X | token(X) A neighbor(X,Y)}| < |{X| token(X)}| (a)

[{X | token(X)}| = #token; (c)

Additionally, we use the fact that only one event is consumed at a time, i.e.,
{X | release(X)}| <1,
and that measures are always non-negative.

Cardinality abstraction-based verification. To verify TOKEN, we compute
the set of reachable valuations of cardinality measures and show that it implies
the assertion #token; < 1, stating that at most one node holds the token.
We apply a standard algorithm for assertion checking and obtain the following
invariant that implies the property

#token; < 1 A #pass + #token; < 1.

Cardinality Abstraction for Declarative Networking Applications 589

3 Preliminaries

In this section we briefly describe P2 programs [29] following the presentation
in [34], which provides a better basis from the program analysis perspective.

Programs. A P2 program Py = (£,D,K, R, Sy) is defined by a set of predicate
symbols £, a data domain D, a function K defining projection constraints, a set
of rules R, and an initial state Sy. For the rest of the exposition we assume that
variables are elements from a set of variables V. We write vars(W) to denote the
set of variables occurring in an arbitrary expression W.

Given a predicate symbol p € £, with a positive arity n, a predicate is a term
p(u1,...,u,), where each argument u; is either a variable from V, or a data
element from D. Variable-free predicates are called tuples. The first position in
a predicate has a special role in P2 and is called address. The set of predicate
symbols is partitioned into data and event symbols, which induces a partitioning
of corresponding predicates and tuples.

The function K assigns to each data predicate symbol p of arity n a subset
of its positions that includes the first one, i.e., 1 € K(p) and K(p) C {1,...,n}.
Given a data tuple P = p(vy,...,v,), the projection operator P |, computes a
sub-tuple obtained from P by removing all of its arguments whose positions do
not appear in the set K(p). For example, given P = p(a, b, ¢,d) and K(p) = {1, 3},
we obtain Pl = p(a,c).

P2 uses rules of the form

raH :-T, B

that consist of a head and a body separated by the symbol “:-". The head
specifies the rule name r, determines the action kind a € {add,del, snd}, and
the action predicate H. For rules with the action kind snd, P2 requires H to
be an event predicate, otherwise it must be a data predicate. The body consists
of an event predicate T', called trigger, and a sequence of data predicates B =
By, ..., By, called query. Fach variable in the head must also appear in the body.
We assume that all predicates in the body have the same address, i.e., they share
the variable in the first position, and for each event name there is one rule in R
with the equally named trigger predicateE

Computations. The state of a P2 program (M, E) consists of a data store M
and an event queue £. The store M is a set of data tuples that satisfies the
projection constraints given by K. The queue £ is a multiset of event tuples.
Figure [3 shows the procedure EVALUATE that defines the operational seman-
tics of P2 programs. One iteration of the main loop, lines 2-12, defines the binary
transition relation on program states, as represented by the P2 program. The
state is given by the valuation of variables (M,) in EVALUATE. Each transition
starts selecting and removing an event tuple E from the event queue £. Then, we
select the rule with the matching trigger and compute all solutions to its query.

3 These assumptions are not proper restrictions and can be removed at the expense
of a more elaborate exposition of the proposed technique.

590 J.A.N. Pérez, A. Rybalchenko, and A. Singh

procedure EVALUATE
input

Py, ={(L,D,K,R,So): P2 program
vars

(M, E): program state

E: selected event tuple

A: derived tuples

begin

1. (M,E) =50

2: while £ # 0 do

3: FE := take from &

4: find r a H :- T, B € R such that T unifies with £

5: A:={Ho|o:V—-Dand E=To and M = Bo}

6: case a of

7 snd: £:=E\{E}UA

8: add:

9: AR = {D|, | D € A}

10: M:={D|DeMand D|,c g AF}UA

11: del: M := M\ A

12: end case

13: domne
end.

Fig. 3. Operational semantics for P2

The resulting (multi)set A of tuples is further processed according to the action
kind a. If the rule is of kind add, and to guarantee the satisfaction of projection
constraints, conflicting tuples are deleted from M before adding the new ones.

4 Cardinality Abstraction

This section presents the cardinality abstraction technique.

Cardinality measures. Cardinality measures are expressions of the form #Fx
and #F, where F' is a conjunction of predicates, X is a set of variables, and F is
an event predicate. Sometimes we use an arbitrary expression W instead of X. In
this case, we assume X = vars(WW). Given a substitution function o: V — VUD
and a set of variables X, we write 0| x to denote the restriction of o wrt. X,
i.e., the function such that zo|y = zo if x € X, and zo| y = x if © ¢ X. Note
that o]y is the identity function.

Given a program state S = (M, &), the cardinality measures #Fy wrt. S
counts the number of valuations for X that are determined by the solutions of
F wrt. M. Similarly, #F counts the number of events in £ that unify with the
event predicate E. Formally, we have

[#Fx]s = {olx |o: V=DM Fo}|,
[#E]s = Y. {E(Eo) | o: vars(E) — D} .

Cardinality Abstraction for Declarative Networking Applications 591

For an expression @ over cardinality measures, we write [#]s to denote the
expression where cardinality measures are replaced by their evaluation wrt. S.

The measure #Fy evaluates to one if the query F' has at least one solution
since all solutions are equal to the identity. If F' does not have any solutions then
#Fy evaluates to zero. We assume that variables in X that do not appear in F’
can be assigned arbitrary values from D. Formally, in case X contains a set of
variables X~ that do not occur in F, say X = X W X, we obtain

[#Fx]s = [#Fx+]s x DX |

Ezample 1 (Measure evaluation). We consider a case where £ = {p/2,q/2},
D ={a,b,c,d,e, f}, K(p) = {1,2}, and K(q) = {1}. Let S = (M, E) be a state
such that M is given by the tables p and g below and £ = (). We present examples

of cardinality measures and their evaluation wrt. S below. O
P q F X [#Fx]s F X [#Fx]s
a,b a,b p($,y) {x,y} 5 p(x,y) /\Q(ZJ7Z) {x’yvz} 4
a,c b plzy) {z} 4 p(x,y) Naly,z) {y, 2} 2
b,b dia plzy) {y} 3 p(@,y) Naly,2) 0 1
ca ea plxy) {y,z} 18 play) Aqly,x) 0 0
db fa pla,z) {z} 2 p(z,y) Ap(y,z) {z,y} 3

4.1 Computing the Cardinality Abstraction

Figure @] shows the CARDAN algorithm that together with a function STRUCT-
CLOSURE computes the cardinality abstraction of P2 programs. The algorithm
generates for each event, and corresponding triggered rule, a constraint that
describes the state transition in terms of cardinality measures. Each constraint
represents a relation between measures evaluated before and after the rule is ex-
ecuted. The primed cardinality measures #F% and #E’ represent the next state
of the program, and the evaluation [®]s s/ of an expression @ is obtained by
evaluating current and next state measures on the states S and &', respectively.

These constraints take into account how the measures on all tables (and their
projections), as well as on all events, are updated according to the kind of rule ex-
ecuted (add, del, or snd) and the consumption of the selected event. A structural
closure, computed by STRUCTCLOSURE, provides a set of constraints satisfied
by the measures produced by the main algorithm. It constrains the values of
measures for complex queries in terms of measures for their components. The
execution of STRUCTCLOSURE terminates since at each iteration only cardinal-
ity measures with fewer predicates or fewer variables are introduced. Constraints
computed by CARDAN are in the worst case exponentially larger than the input
program. Section 2] presents optimizations that address this explosion in order
to achieve a practical analysis.

Ezample 2 (Measure update). We show the constraints that CARDAN creates for
an event s(wj) that triggers a rule

r add p(x,y) T s(a:), B(mvyaz)

592 J.A.N. Pérez, A. Rybalchenko, and A. Singh

procedure CARDAN

input
Py, =(L,D,K,R,So): a P2 program
vars
¥, ®: constraints over cardinality measures
begin
1. v:=1
2: for each event S = s(wi,...,wn) do
3: b =T
4: let r a H:— T, B € R such that T and S unify
5: for each data predicate P = p(v1,...,v,) and set V' C vars(P) do
6: if there is a substitution o such that H = Po then
7 if ¢ = add then
8: @ =D N (#Py, = #Py + #Bvo — #(B A (Poly))y,)
9: else if a = del then
10: if V. ={v1,...,vn} then
11: D =P N (#Py, =#Py —#(BAH)y,,)
12: else
13: D :=dN(#Py —#(BAH),, <#P, <#Py)
14: else
15: & =& N (#P), = #Pv)
16: for each event predicate E = e(vy,...,v,) do
17: A:=0
18: if £ and H unify then
19: A= #Bgy
20: if £ and T unify then
21: A=A-1
22: b =D A #S =#S + A)
23: ¥ := ¥ V STRUCTCLOSURE(®D)
24: end
25: return ¥
end.

function STRUCTCLOSURE

input
&: constraints over cardinality measures

begin
1: do
2: & :=DdANNA{0<#F) <1]|#Fx occurs in ¢}
3: @:Z@/\/\{#FX < #Fxuy < #Fx X #Fy |#FXUY occurs in @}
4: D= ANN{#F NG)x <#Fx | #(F A G)y occurs in $}
5: & =D NN\ {#Px = #Pp|, | #Px occurs in & and vars(P|c) C X C vars(P)}
6: for each data predicate P = p(v1,...,v,) and set V C vars(P) do
7 & :=PANN\{#Pox <#Py | #Pox occurs in @, |V| = |X|, and X =V}
8: while & is updated
9: return ¢

end.

Fig. 4. CARDAN algorithm for computing cardinality abstraction

Cardinality Abstraction for Declarative Networking Applications 593

where B(x,y, z) is some query over variables z, y, and z. For P = p(v1,v2) and
V = {v1}, line B of CARDAN creates the constraint

#p(vlaUQ)i;vl} = #p(UhUQ){vl} + #B(x,y,z){m} - #(B(.I‘,y,Z) /\p(xaUQ)){;p} .

In this case, the substitution o that unifies p(v1,ve) with the head of the rule is
given by o = {v1 — x,v2 — y} and its restriction is o],y = {v1 — z}.

This expression describes the change in the number of values in the p table—
after executing the rule and projecting wrt. its first column—by adding first
the number of solutions of the query projected on the variable x, and then
subtracting the number of values that were already in the table. This is the role
of the last term, which asks for those values of x that appear both as a solution
to the query and as the first component in some tuple currently in the table.
The second component of such tuple is free to contain any arbitrary value.

For other predicates, line[I5l creates constraints encoding the frame conditions,
e.g., for predicate g(v1,v2) we obtain #q(vy, 1)2)?, = #q(v1,v2)y . O

Ezample 3 (Structural closure). We illustrate the STRUCTCLOSURE function on
expressions from Example [l The set of computed constraints includes

0<#((@,9) Ny,)y <1, (1)

#p(2,Y) 10y S #0(2,Y) (43 < #P(T,Y) 0y X #0(2,9) ¢y (2)
Hp(,9) A (122 gy < 00 5) gy)
#q(2,Y) () = #0(T,Y) 4y (4)
#p(a,),y < #p(v1,02) (1 - (5)

These constraints correspond to algebraic properties satisfied by cardinality
measures (IHJ), relations imposed by projection constraints (@), and relations
between arbitrary single-predicate queries and table projections (&). One can
check that all (IHD) are valid for the state S presented earlier in Example[l O

Correctness of Cardan. The constraints generated by STRUCTCLOSURE are
valid for all possible states, as formalized in the following theorem.

Theorem 1. Given an arithmetic constraint @ over cardinality measures and a
state S, the constraint [®]s holds if and only if [STRUCTCLOSURE(®)]s does.

Although we omit a proof for brevity, it is not hard to verify that all the con-
straints generated by CARDAN are valid. Moreover, as a direct consequence from
the previous result, soundness of the approach follows.

Theorem 2. Given a P2 program Ps, and a pair of states S, S’ related by the
transition relation given by EVALUATE, the constraint [CARDAN(Py)]s, s/ holds.

By Theorem[I] the STRUCTCLOSURE function gives a sound and relatively com-
plete abstraction (modulo data values) of relations in terms of cardinality mea-
sures. Moreover, Skolem symbols can be used to refine the abstraction by taking
into account particular data values and, in that sense, obtain completeness for
the overall approach, see Section Bl

594 J.A.N. Pérez, A. Rybalchenko, and A. Singh

4.2 Extensions and Optimizations

The presentation in the previous sections was simplified with the assumption
that, for each selected event, only one rule is executed. Programs in P2, including
our TOKEN example from Section [2 often require the simultaneous execution
of several rules in a single step. We automatically find sets of rules that have
to be evaluated together (also propagating bindings of variables across rules),
and prune combinations of rules that will never be evaluated concurrently. The
algorithm presented earlier in Figure @ can then to be modified to generate
individual transitions not for each rule, but for each one of those groups of rules
that perform atomic updates.

The implementation of many applications in P2, in particular the Zyzzyva
protocol discussed in the next section, rely on rules that can also, as part of
their evaluation, count the number of solutions of arbitrary queries on the store.
To accommodate for this feature, the syntax of rules has to be extended to allow
the use of counting operators on their bodies. However, since these counting
operators can be expressed in terms of our cardinality measures, they don’t
impose any new challenges in the theory or implementation of the approach.

Finally, as an optimization to reduce the number of variables in queries, and
therefore the number of constraints generated by the STRUCTCLOSURE func-
tion, we implement a symbolic constant propagation technique. This procedure
simplifies rules by computing a set of variables that will be bound to at most
one value, and replacing those variables with symbolic constants. This set of
variables is initialized with those appearing in the trigger (since they have to
exactly match the selected event), and then expanded to include more variables
by propagating these symbolic constants through the projection constraints.

5 Experience

In this section we describe our experiences applying cardinality abstraction for
the verification of the P2 implementation of the Zyzzyva protocol [39]. Zyzzyva is
a state-of-the-art Byzantine fault tolerance (BFT) protocol designed to improve
the reliability of client-server applications such as web services. In Zyzzyva, the
service state and request processing logic is replicated on 3F + 1 computer hosts,
where F' is a non-negative integer. Zyzzyva guarantees correct and consistent
execution of the service even when at most F' replica hosts can fail arbitrarily,
e.g., due to software bugs or malicious behavior caused by a computer virus.
To be correct, Zyzzyva must assign a distinct sequence number to each client
request. This safety property is amenable to cardinality analysis since, by count-
ing the number of messages that are sent between replicas and clients, it is
possible to identify how many requests have been assigned to a given sequence
number. Specifically, the safety property is violated if the table done, which
collects the responses accepted by clients, contains two tuples with a different
client or request values but the same sequence number. Our approach can show
that the safety property is valid under the assumption that at most F' hosts are

Cardinality Abstraction for Declarative Networking Applications 595

faulty among the totaol of 3F + 1 hosts. The BFT guarantees are not assumed,
but rather derived from the basic assumption.

Since cardinality abstraction does not handle the data values stored in tuples
(i.e., values of particular requests or sequence numbers), we represent this infor-
mation by partitioning the original program tables with respect to a finite set of
values of interest. For example, a table reply (Replica, Request, SeqgNo) is
partitioned to contain a table reply a s(Replica) whose elements correspond
to tuples of the form reply(Replica, a, s).

We distinguish the behavior of correct and faulty replicas. To model Byzan-
tine failures, we simulated the worst possible faulty behavior for replicas that,
for this property, corresponds to sending (without the corresponding checks)
confirmation messages agreeing to two conflicting request assignments for the
same sequence number. Correct replicas behave according to the protocol im-
plementation. We apply CARDAN on the resulting P2 program, which computes
cardinality abstraction of the program. The model checking backend ARMC an-
alyzes the resulting transition relation over cardinality measures and proves the
property in five seconds.

In the on-going work, we consider further examples of BFT protocols [10,28,[42],
as well as other distributed applications.

6 Related work

Verification of distributed applications is a classical research topic. Recent ef-
forts have been focused on the synthesis of quantified invariants [I,[3,85] and
counting abstraction [36] for parameterized, bounded-data systems. These tech-
niques, however, are not directly applicable to P2 programs due to the complex
program state and declarative representation of transition relations. Our ap-
proach, although closely related to counting abstraction, differs in that we count
the number of solutions of complex relational queries, rather than the number
of processes in one of finitely many possible states [36]. On the other hand,
the network topology in P2 programs is abstracted away by a table of reachable
neighbors. This eliminates the need to perform a network reachability analysis—
one of the common difficulties of distributed protocol verification.

Program analysis has been extensively studied for Datalog and other forms
of logic programming. Comprehensive abstract interpretation frameworks for
Prolog exist, including [9L18]. These frameworks are supported by state-of-the-
art implementations, e.g., PLAI/CIAOPP [24] and ANALYSER [2I]. These tools
perform size analysis, cost analysis, determinacy analysis, non-failure analysis,
termination analysis, and resource analysis. The cardinality analysis for Prolog,
see e.g. [8], approximates number of solutions to a goal, but it does not han-
dle indexing and bottom-up evaluation semantics, which we found crucial for
declarative networking applications written in P2.

Existing approaches to the analysis of networking applications, see
e.g. MACEMC [26] and CMC [32/[33], focus on finding defects using symbolic ex-
ecutions techniques. While in theory they can be applied exhaustively to prove

596 J.A.N. Pérez, A. Rybalchenko, and A. Singh

absence of defects, it is extremely difficult to achieve this in practice. In the
context of declarative networking, early steps have been given by clarifying the
semantics of P2 programs [34], and designing translations of program properties
into formulas suitable for use in interactive theorem provers [41]. Our analysis
complements these techniques by supporting automated proof discovery.

Abstraction of sets and relations for imperative programs focuses on dynam-
ically allocated heap used to store graph structures of a particular shape, e.g.,
shape analysis [7,38] and separation logic [37,43]. [23] refines these approaches
with information about the size of the allocated heap fragments. In contrast,
declarative networking uses relations as a general purpose-data store without
particular shape invariants and, unlike heap models, has to deal with database
operations that manipulate tables. The result of cardinality abstraction can be
analysed by existing tools and techniques for computing abstract semantics,
including numerical abstract domains, e.g. [2Z[19[31], automatic abstraction re-
finement, invariant generation, and predicate abstraction [12}[1322].

References

1. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with
automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, p. 221. Springer, Heidelberg (2001)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming (2008)

3. Balaban, I., Pnueli, A., Zuck, L.D.: Invisible safety of distributed protocols. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 528-539. Springer, Heidelberg (2006)

4. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: POPL (2002)

5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
blast. STTT (2007)

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI (2003)

7. Bogudlov, I., Lev-Ami, T., Reps, T.W., Sagiv, M.: Revamping TVLA: Making
parametric shape analysis competitive. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 221-225. Springer, Heidelberg (2007)

8. Braem, C., Charlier, B.L., Modart, S., van Hentenryck, P.: Cardinality analysis of
Prolog. In: ILPS (1994)

9. Bruynooghe, M.: A practical framework for the abstract interpretation of logic
programs. J. Log. Program. (1991)

10. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance (1999)

11. Chu, D., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.:
The design and implementation of a declarative sensor network system. In: SenSys
(2007)

12. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855. Springer, Heidelberg (2000)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

Cardinality Abstraction for Declarative Networking Applications 597

Colén, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420-432. Springer, Heidelberg (2003)

Condie, T., Chu, D., Hellerstein, J.M., Maniatis, P.: Evita raced: metacompilation
for declarative networks. In: PVLDB (2008)

Condie, T., Gay, D.E., Loo, B.T., et al.: P2: Declarative networking website (2008),
http://p2.cs.berkeley.edu/

Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415-418. Springer, Heidelberg
(2006)

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
ACM, New York (1977)

Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
J. Log. Program. (1992)

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL (1978)

German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
(1992)

Gobert, F.: Towards Putting Abstract Interpretation of Prolog Into Practice. Ph.D
thesis, Université catholique de Louvain (2007)

Graf, S., Saidi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
0. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: POPL (2009)

Hermenegildo, M.V., Puebla, G., Bueno, F., Lépez-Garcia, P.: Program develop-
ment using abstract interpretation (and the Ciao system preprocessor). In: Cousot,
R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 127-152. Springer, Heidelberg (2003)
Killian, C., Anderson, J.W., Braud, R., Jhala, R., Vahadat, A.: Mace: Language
support for building distributed systems. In: PLDI (2007)

Killian, C.E., Anderson, J.W., Jhala, R., Vahdat, A.: Life, death, and the critical
transition: Finding liveness bugs in systems code. In: NSDI (2007)

Lalire, G., Argoud, M., Jeannet, B.: The interproc analyzer,
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/
interproc/index.html

Lamport, L.: The Part-Time Parliament. ACM Transactions on Computer Systems
(1998)

Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking: Language,
execution and optimization. In: SIGMOD (2006)

Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Im-
plementing declarative overlays. In: SIGOPS (2005)

Miné, A.: The octagon abstract domain. Higher-Order and Symb. Comp. (2006)
Musuvathi, M., Engler, D.R.: Model checking large network protocol implementa-
tions. In: NSDI (2004)

Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: A prag-
matic approach to model checking real code. In: OSDI (2002)

Navarro, J.A., Rybalchenko, A.: Operational semantics for declarative networking.
In: PADL (2009)

http://p2.cs.berkeley.edu/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html

598

35.

36.

37.

38.

39.

40.

41.

42.

43.

J.A.N. Pérez, A. Rybalchenko, and A. Singh

Pnueli, A.,; Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p. 82.
Springer, Heidelberg (2001)

Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, infty)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 107. Springer,
Heidelberg (2002)

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS (2002)

Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. (2002)

Singh, A., Das, T., Maniatis, P., Druschel, P., Roscoe, T.: BFT protocols under
fire. In: NSDI (2008)

Singh, A., Maniatis, P., Roscoe, T., Druschel, P.: Using queries for distributed
monitoring and forensics. In: EuroSys, Leuven, Belgium (2006)

Wang, A., Basu, P., Loo, B.T., Sokolsky, O.: Declarative networking verification.
In: PADL (2009)

Wood, T., Singh, R., Venkataramani, A., Shenoy, P.: ZZ: Cheap Practical BFT Us-
ing Virtualization. Technical Report TR14-08, University of Massachusetts (2008)
Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385-398. Springer, Heidelberg (2008)

	Cardinality Abstraction for Declarative Networking Applications
	Introduction
	Example
	Preliminaries
	Cardinality Abstraction
	Computing the Cardinality Abstraction
	Extensions and Optimizations

	Experience
	Related work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

