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Abstract. We present a new technique called Monotonic Partial Order Reduc-
tion (MPOR) that effectively combines dynamic partial order reduction with
symbolic state space exploration for model checking concurrent software. Our
technique hinges on a new characterization of partial orders defined by com-
putations of a concurrent program in terms of quasi-monotonic sequences of
thread-ids. This characterization, which is of independent interest, can be used
both for explicit or symbolic model checking. For symbolic model checking,
MPOR works by adding constraints to allow automatic pruning of redundant in-
terleavings in a SAT/SMT solver based search by restricting the interleavings
explored to the set of quasi-monotonic sequences. Quasi-monotonicity guaran-
tees both soundness (all necessary interleavings are explored) and optimality (no
redundant interleaving is explored) and is, to the best of our knowledge, the only
known optimal symbolic POR technique.

1 Introduction

Verification of concurrent programs is a hard problem. A key reason for this is the be-
havioral complexity resulting from the large number of interleavings of transitions of
different threads. In explicit-state model checking, partial order reduction (POR) tech-
niques [6, 14, 16] have, therefore, been developed to exploit the equivalence of inter-
leavings of independent transitions in order to reduce the search space. Since computing
the precise dependency relation between transitions may be as hard as the verification
problem itself, existing POR methods often use a conservative statically computed ap-
proximation. Dynamic [5] and Cartesian [9] partial order reduction obviate the need
to apply static analysis a priori by detecting collisions (data dependencies) on-the-fly.
These methods can, in general, achieve better reduction due to more accurate collision
detection. However, applying these POR methods (which were designed for explicit
state space search) to symbolic model checking is a non-trivial task.

A major strength of symbolic state space exploration methods [2] is that property
dependent and data dependent search space reduction is automatically exploited inside
modern SAT or SMT (Satisfiability Modulo Theory) solvers, through the addition of
conflict clauses and non-chronological backtracking [15]. Symbolic methods are often
more efficient in reasoning about variables with large domains. However, combining
classic POR methods (e.g., those based on persistent-sets [7]) with symbolic algorithms
has proven to be difficult [1, 3, 8, 10, 12]. The difficulty arises from the fact that sym-
bolic methods implicitly manipulate large sets of states as opposed to manipulating
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states individually. Capturing and exploiting transitions that are dynamically indepen-
dent with respect to a set of states is much harder than for individual states.

Consider the example program from [17] shown in Fig. 1 comprised of two concur-
rent threads accessing a global array a[ ]. It is hard to determine statically whether tran-
sitions tA, tB in thread T1 are dependent with tα, tβ in T2. Similarly, without knowing
the points-to locations of p and q, we cannot decide whether tC and tγ are dependent or
not. This renders POR methods relying on a static computation of conflicts non-optimal.
Indeed, when i �= j holds in some executions, tA, tB and tα, tβ become indepen-
dent, meaning that the two sequences tA; tB; tα; tβ; tC ; tγ ; and tα; tβ ; tA; tB; tC ; tγ ;
are equivalent. However, none of the existing symbolic partial order reduction meth-
ods [1, 3, 8, 10, 12] takes advantage of such information. Among explicit-state POR
methods, dynamic partial order reduction [5] and Cartesian partial order reduction [9]
are able to achieve some reduction by detecting conflicts on-the-fly; in any individual
state s, the values of i and j (as well as p and q) are fully determined, allowing us to
detect conflicts accurately. However, it is not clear how to directly apply these tech-
niques to symbolic model checking, where conflict detection is performed with respect
to a set of states. Missing out on these kind of partial-order reductions can be costly
since the symbolic model checker needs to exhaustively search among the reduced set
of execution sequences.

T1

i = foo() ;
...

A a[i] = 10 ;
B a[i] = a[i]+20;
C *p = a[j] ;

T2

j = bar() ;
...

α a[j] = 50 ;
β a[j] = a[j]+100;
γ *q = a[i] ;

Fig. 1. tA, tB are independent with tα, tβ when i �=
j; tC is independent with tγ when (i �= j) ∧ (p �= q)
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Fig. 2. The lattice of interleavings

Recently, a new technique called Peephole Partial Order Reduction (PPOR) [17]
has been proposed that allows partial order reduction to be integrated with symbolic
state space exploration techniques. The key idea behind PPOR is to place constraints
on which processes can be scheduled to execute in the next two steps starting at each
global state. If in a global state, transitions tr and tr′ such that tid(tr) < tid(tr′),
where tid denotes thread-id, are enabled and independent then tr′ cannot execute im-
mediately before tr. It was shown that PPOR is optimal for programs with two threads
but non-optimal for programs with more than two. The reason is that in order to achieve
optimality for programs with more than two threads, we might need to track depen-
dency chains involving many processes. These chains, which could be spread out over
an entire computation, are hard to capture via local scheduling constraints.
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We present a new technique called Monotonic Partial Order Reduction (MPOR) that
exploits a new characterization of partial orders defined by computations of a given con-
current program in terms of quasi-monotonic sequences of thread-ids. This characteri-
zation, which is of independent interest, can be used both for explicit or symbolic model
checking. In this paper, we show that restricting the interleavings explored to the set of
quasi-monotonic sequences guarantees both soundness (all necessary interleavings are
explored) and optimality (no redundant interleaving is explored). This is accomplished
by proving that for each computation there exists a quasi-monotonic sequence that is
Mazurkiewicz equivalent1 [13] to it, and that no two quasi-monotonic sequences can
be Mazurkiewicz equivalent. The key intuition behind quasi-monotonicity is that if all
transitions enabled at a global state are independent then we need to explore just one
interleaving. We choose this interleaving to be the one in which transitions are executed
in increasing (monotonic) order of their thread-ids. If, however, some of the transitions
enabled at a global state are dependent than we need to explore interleavings that may
violate this natural monotonic order. In that case, we allow an out-of-order-execution,
viz., a transition tr with larger thread-id than that of transition tr′ to execute before tr′

only if there exists a dependency chain from tr to tr′, i.e., a sequence of transitions
from tr to tr′ wherein adjacent transitions are pairwise dependent. Such sequences are
called quasi-monotonic.

Note that although our monotonic POR method has the same goal as classic POR
methods [6, 14, 16, 5, 9], it does not correspond directly to any existing method. In
particular, it is not a symbolic implementation of any of these explicit-state methods.
Importantly, our method is optimal for programs with arbitrarily many threads, which,
to the best of our knowledge, is not guaranteed by any of the existing symbolic POR
techniques [1, 12, 8, 3, 10, 17]. Finally, the proposed encoding scheme is well suited
for symbolic search using SAT/SMT solvers.

To summarize, our main contributions are: (1) the notion of quasi-monotonic se-
quences, which isolates a unique representative for each partial order resulting from
the computations of the given program; (2) a new partial order reduction that adds
constraints to ensure quasi-monotonicity, along with a symbolic formulation; and (3)
the guarantee of removal of all redundant interleavings for programs with an arbitrary
number of threads.

2 Classical Partial Order Reduction

We start by reviewing standard notions from classical partial order reduction (POR)
[11, 7]. Let Ti (1 ≤ i ≤ N ) be a thread with the set transi of transitions. Let trans =⋃N

i=1 transi be the set of all transitions. Let Vi be the set of local variables of thread Ti,
and Vglobal the set of global variables of the given concurrent program. For t1 ∈ transi,
we denote the thread-id, i.e., i, by tid(t1), and denote the enabling condition by ent1 . If
t1 is a transition in Ti from control locations loc1 to loc2 and is guarded by cond, then
ent1 is defined as (pci = loc1)∧ cond. Here pci ∈ Vi is a special variable representing

1 Intuitively, two computations x and y are said to be Mazurkiewicz equivalent if x can be
obtained from y by repeatedly permuting adjacent pairs of independent transitions, and vice
versa.
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the thread program counter. Let S be the set of global states of the given program. A
state s ∈ S is a valuation of all local and global variables. For two states s, s′ ∈ S,

s
t1→ s′ denotes a state transition by applying t1, and s

ti...tj→ s′ denotes a sequence of
state transitions.

2.1 Independence Relation

Partial-order reduction exploits the fact that computations of concurrent programs are
partial orders on operations of threads on communication objects. Thus instead of ex-
ploring all interleavings that realize these partial orders it suffices to explore just a few
(ideally just one for each partial order). Interleavings which are equivalent, i.e., realize
the same partial order, are characterized using the notion of an independence relation
over the transitions of threads constituting the given concurrent program.

Definition 1 (Independence Relation [11, 7]). R ⊆ trans×trans is an independence
relation iff for each 〈t1, t2〉 ∈ R the following two properties hold for all s ∈ S:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in s iff t2 is enabled in s′; and

2. if t1, t2 are enabled in s, there is a unique state s′ such that s
t1t2→ s′ and s

t2t1→ s′.

In other words, independent transitions can neither disable nor enable each other, and
enabled independent transitions commute. As pointed out in [6], this definition has
been mainly of semantic use, since it is not practical to check the above two proper-
ties for all states to determine which transitions are independent. Instead, traditional
collision detection, i.e., identification of dependent transitions, often uses conservative
but easy-to-check sufficient conditions. These checks, which are typically carried out
statically, over-approximate the collisions leading to exploration of more interleavings
than are necessary. Consider, for example, the transitions t1:a[i] = e1 and t2:a[j] = e2.
When i �= j, t1 and t2 are independent. However since it is hard to determine statically
whether a[i] and a[j] refer to the same array element, t1 and t2 are considered (stati-
cally) dependent irrespective of the values of i and j. This results in the exploration of
more interleavings than are necessary. Such techniques are therefore not guaranteed to
be optimal.

In the conditional dependence relation [11, 7], which is a refinement of the depen-
dence relation, two transitions are defined as independent with respect to a state s ∈ S
(as opposed to for all states s ∈ S). This extension is geared towards explicit-state
model checking, in which persistent sets are computed for individual states. A persis-
tent set at state s is a subset of the enabled transitions that need to be explored from s.
A transition is added to the persistent set if it may conflict with a future operation of
another thread. The main difficulty in persistent set computation lies in detecting future
collisions with enough precision due to which these classic definitions of independence
are not well suited for symbolic search.

3 Optimal Partial Order Reduction

We formulate a new characterization of partial order reduction in terms of quasi mono-
tonic sequences that is easy to incorporate in both explicit and symbolic methods for
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T1(){
c1: sh = 1;

}

T2(){
c2: sh = sh’;

}

T3(){
c3: sh’ = 2;

}

Fig. 3. An Example Program

state space search. To motivate our technique, we consider a simple concurrent program
P comprised of three threads T1, T2 and T3 shown in figure 3. Suppose that, to start
with P is in the global state (c1, c2, c3) with thread Ti at location ci (for simplicity, we
show only the control locations and not the values of the variables in each global state).
Our goal is to add constraints on-the-fly during model checking that restrict the set of
interleavings explored in a way such that all necessary interleavings are explored and
no two interleavings explored are Mazurkiewicz equivalent. Let ti denote the program
statement at location ci of thread Ti, respectively. In the global state s = (c1, c2, c3),
we see that transitions t1 and t2 are dependent as are t2 and t3. However, t1 and t3 are
independent with each other. Since t1 and t2 are dependent with each other, we need to
explore interleavings wherein t1 is executed before t2, and vice versa.

For convenience, given transitions t and t′ executed along a computation x of the
given program, we write t <x t′ to denote that t is executed before t′ along x. Note that
the same thread statement (say within a program loop) may be executed multiple times
along a computation. Each execution is considered a different transition. Then, using
the new notation, we can rephrase the scheduling constraints imposed by dependent
transitions as follows: since t1 and t2 are dependent transitions, we need to explore
interleavings along which t1 < t2 and those along which t2 < t1. Similarly, we need
to explore interleavings along which t2 < t3, and vice versa. However, since t1 and t3
are independent we need to avoid exploring both relative orderings of these transitions
wherever possible.

Let the thread-id of transition tr executed by thread Ti, denoted by tid(tr), be i.
In general, one would expect that for independent transitions tr and tr′ we need not
explore interleavings along which tr < tr′ as well as those along which tr′ < tr
and it suffices to pick one relative order, say, tr < tr′, where tid(tr) < tid(tr′), i.e.,
force pairwise independent transitions to execute in increasing order of their thread-
ids. However, going back to our example, we see that the transitivity of ‘<’, might
result in ordering constraints on the independent transitions t1 and t3 that force us to
explore both relative orderings of the two transitions. Indeed, the ordering constraints
t3 < t2 and t2 < t1 imply that t3 < t1. On the other hand, the constraints t1 < t2
and t2 < t3 imply that t1 < t3. Looking at the constraints t3 < t2 and t2 < t1 from
another perspective, we see that t3 needs to be executed before t1 because there is a
sequence of transitions from t3 to t1 (in this case t3, t2, t1) wherein adjacent transitions
are pairwise dependent. Thus given a pair of independent transitions tr and tr′ such
that tid(tr) < tid(tr′), a modification to the previous strategy would be to explore an
interleaving wherein tr′ < tr only if there is a sequence of transitions from tr′ to tr
wherein adjacent transitions are pairwise dependent, i.e., force independent transitions
to execute in increasing order of their thread-ids as long as there are no dependency
constraints arising from the transitivity of ‘<’ that force an out-of-order execution.



Monotonic Partial Order Reduction: An Optimal Symbolic POR Technique 403

This strategy, however, might lead to unsatisfiable scheduling constraints. To see
that we consider a new example program with a global state (c1, c2, c3, c4), where for
each i, local transition ti of Ti is enabled. Suppose that t1 are t4 dependent only with
each other, as are t2 and t3. Consider the set of interleavings satisfying t4 < t1 and
t3 < t2. Using the facts that (i) tid(t1) < tid(t3), and (ii) there cannot be a sequence of
transitions leading from t3 to t1 wherein adjacent transitions are pairwise dependent, by
the above strategy we would execute t1 before t3 leading to the interleaving t4, t1, t3, t2.
However, since t2 and t4 are independent, and there is no sequence of transitions from
t4 to t2 wherein adjacent transitions are pairwise dependent, t2 must be executed before
t4. This rules out the above interleaving. Using a similar reasoning, one can show that
the above strategy will, in fact, rule out all interleavings where t4 < t1 and t3 <
t2. Essentially, this happens because thread-ids of processes in groups of dependent
transitions have opposing orders. In our case, the groups t1, t4 and t2, t3 of mutually
dependent transitions are such that tid(t1) < tid(t2) but tid(t4) > tid(t3).

Our strategy to handle the above problem, is to start scheduling the transitions in
increasing order of their thread-ids while taking into account the scheduling constraints
imposed by the dependencies. Thus in the above example, suppose that we want to
explore interleavings satisfying t4 < t1 and t3 < t2. Then we start by first trying to
schedule t1. However, since t4 < t1, we have to schedule t4 before t1. Moreover, since
there are no scheduling restrictions (even via transitivity) on t2 and t3, vis-a-vis t1 and
t4, and since tid(t2) > tid(t1) and tid(t3) > tid(t1), we schedule both t2 and t3 to
execute after t1. Thus we constrain all interleavings satisfying t4 < t1 and t3 < t2
to start with the sequence t4, t1. Next we try to schedule the transition with the lowest
thread-id that has not yet been scheduled, i.e., t2. However, since t3 < t2, we must
schedule t3 first and then t2 resulting in the unique interleaving t4t1t3t2.

In general, for independent transitions t and t′, where tid(t) < tid(t′), we allow t′

to be executed before t only if there is a sequence of transitions t0, t1, ..., tk, wherein
t0 = t′, each pair of adjacent transitions is dependent, and either tk = t or tid(tk) <
tid(t). This leads to the key concept of a dependency chain.

Definition 2 (Dependency Chain). Let t and t′ be transitions executed along a compu-
tation x such that t <x t′. A dependency chain along x starting at t is a (sub-)sequence
of transitions tri0 , ..., trik

executed along x, where (a) i0 < i1 < ... < ik, (b) for each
j ∈ [0..k − 1], trij is dependent with trij+1 , and (c) there does not exist a transition
executed along x between trij and trij+1 that is dependent with trij .

We use t ⇒x t′ to denote the fact that there is a dependency chain from t to t′ along
x. Then our strategy can be re-phrased as follow: for independent transitions t and t′,
where tid(t) < tid(t′), we allow t′ to be executed before t only if either (i) t′ ⇒x t, or
(ii) there exists transition t′′, where tid(t′′) < tid(t), t′ <x t′′ <x t and t′ ⇒x t′′. This
leads to the notion of a quasi-monotonic sequence.

Definition 3 (Quasi-Monotonic Computation). A computation x is said to be quasi-
monotonic if and only if for each pair of transitions tr and tr′ such that tr′ <x tr we
have tid(tr′) > tid(tr) only if either (i) tr′ ⇒x tr, or (ii) there exists a transition tr′′

such that tid(tr′′) < tid(tr), tr′ ⇒x tr′′ and tr′ <x tr′′ <x tr.
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MPOR Strategy. Restrict the interleavings explored to the set of all quasi-monotonic
computations.

We now show the following:
Soundness., i.e., all necessary interleavings are explored.
Optimality. i.e., no two interleavings explored are Mazurkiewicz equivalent.

For soundness, we show the following result.

Theorem 1. (Soundness). For each computation π there exists a quasi-monotonic in-
terleaving that is Mazurkiewicz equivalent to π.

Proof. The proof is by induction on the length n of π. For the base case, i.e., n = 1,
the path π comprises only of one state and is therefore trivially quasi-monotonic.

For the induction step, we assume that the result holds for all paths of length less than
or equal to k. Consider a path π of length k + 1. Write π as π = ρ.tr, where ρ is the
prefix of π of length k and tr is the last transition executed along π. By the induction
hypothesis, these exists a quasi-monotonic path ρ′ that is Mazurkiewicz equivalent to
ρ. Set π′ = ρ′.tr. Let π′ = tr0...trk−1tr. Note that we have represented π′ in terms of
the sequence of transitions executed along it as opposed to the states occurring along it.
Thus here tri represents the (i + 1)st transition executed along π′. Let tr′ = trj be the
last transition executed along ρ′ such that tid(tr′) ≤ tid(tr). Define Tdc = {trl | l ∈
[j + 1, k − 1] and trl ⇒π′ tr} and Tnc = {trl | l ∈ [j + 1, k − 1] and trl �∈ Tdc}.

Let ρ′′ = tr0...trj .ν.tr.ζ, where ν is the sequence of all transitions in Tdc listed in the
relative order in which they were executed along π′. Similarly, let ζ be the sequence of
transitions of Tnc listed in the relative order in which they were executed along π′. We
claim that ρ′′ is Mazurkiewicz equivalent to π′. Indeed, the effect of our transformation
on π′ is to migrate the execution of transitions of Tnc rightwards. The only way ρ′′

cannot be Mazurkiewicz equivalent to ρ′ is if there exist transitions t ∈ Tnc and t′ ∈
Tdc ∪ {tr} such that t and t′ are dependent. However in that case we can show that t ∈
Tdc contradicting our assumption that t ∈ Tnc. Indeed, the only case where we cannot
move the transition t ∈ Tnc to the right is if there exists a transition t′ ∈ Tdc ∪ {tr}
fired after t along ρ′ such that t′ is dependent with t. Since t′ ∈ Tdc∪{tr}, by definition
of Tdc, t′ ⇒π′ tr. However, since t is dependent with t′, we have that t ⇒π′ tr and so
t ∈ Tdc.

Set π′′ = tr0...trj .ν
′.tr.ζ′, where ν′ and ζ′ are quasi-monotonic computations that

are Mazurkiewicz equivalent to ν and ζ, respectively. The existence of ν′ and ζ′ follows
from the induction hypothesis. Clearly π′′ is a valid computation.

All we need to show now is that π′′ is quasi-monotonic. If possible, suppose that
there exists a pair of transitions t and t′ such that tid(t′) > tid(t) that violate quasi
monotonicity. We now carry out a case analysis. Note that since tr0, ..., trj is quasi-
monotonic, t and t′ cannot both occur along tr0, ..., trj . Thus there are two main cases
to be considered: (1) t′ occurs along tr0, ..., trj and t along ν′.tr.ζ′, and (2) t′ and t
both occur along ν′.tr.ζ′.

First assume that t′ and t occur along tr0..., trj and ν′.tr.ζ′, respectively. We start
by observing that from the definition of j it follows that all transitions executed along
ν′ and ζ′ have thread-id greater than tid(tr) ≥ tid(trj). Thus tid(t) ≥ tid(trj), and so
tid(t′) > tid(t) ≥ tid(trj). Since tr0, ..., trj is quasi-monotonic, either (i) t′ ⇒tr0...trj
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trj , or (ii) there exist a transition trp, where p ∈ [0..j], such that t′ ⇒tr0...trj trp and
tid(trp) < tid(trj). If trp ⇒π′′ t then from t′ ⇒tr0...trj trp it follows that t′ ⇒π′′ t
and so t and t′ do not violate quasi-monotonicity. If, on the other hand, trp �⇒π′′ t we
observe that tid(trp) < tid(trj) ≤ tid(t). Also since t′ ⇒tr0...trj trp implies that
t′ ⇒π′′ trp, we again see that t and t′ do not constitute a violation.

Next we consider case 2, i.e., both t and t′ occur along ν′.tr.ζ′. Note that since by
our construction, (i) ν′ and ζ′ are quasi-monotonic, and (ii) there is a dependency chain
from each transition occurring along ν′ to tr, a violation could occur only if t′ occurs
along ν′.tr and t along ζ′. Since t occurs along ζ′, we have tid(t) > tid(tr). Moreover,
since t occurs along ν′, there is a dependency chain from t′ to tr (note that since ν and
ν′ are Mazurkiewicz equivalent they have the same dependency chains). Thus t and t′

satisfy the quasi-monotonicity property thereby contradicting our assumption that π′′ is
not quasi-monotonic. This completes the induction step and proves the result. 
�
For optimality, we show the following result.

Theorem 2. (Optimality). No two computations explored are Mazurkiewicz
equivalent.

Proof. We prove by contradiction. Assume that π, π′ are two different quasi-monotonic
sequences which are (Mazurkiewicz) equivalent. By definition, π and π′ have the same
set of transitions, i.e., π′ is a permutation of π. Let tr1 = π′

i be the first transition along
π′ that is swapped to be πj , where i �= j, along π. Let tr0 = πi. Note that i < j, else
the minimality of i will be contradicted. Then π and π′ share a common prefix up to
i (Fig. 4). For definiteness, we assume that tid(tr1) < tid(tr0), the other case where
tid(tr1) > tid(tr0) being handled similarly.

Since π and π′ are Mazurkiewicz equivalent and the relative order of execution of
tr0 and tr1 is different along the two paths, tr0 and tr1 must be independent. Since
tid(tr1) < tid(tr0) and π is quasi-monotonic, there must exist a transition tr2, such
that tr0 <π tr2 <π tr1, tid(tr2) < tid(tr1) and tr0 ⇒π tr2 (note that there cannot
exist a dependency chain from tr0 to tr1 else π and π′ will not be Mazurkiewicz equiv-
alent). In Fig. 4, the circle on the square bracket corresponding to tr2 along π indicates
that tr2 lies between tr0 and tr1 along π.

Since all adjacent transitions along a dependency chain are, by definition, dependent,
the relative ordering of the execution of transitions along any dependency chain must
be the same along both π and π′ as they are Mazurkiewicz equivalent. It follows then
that tr0 <π′ tr2. Since tr1 <π′ tr0, we have tr1 <π′ tr2. Furthermore, it cannot be
the case that tr1 ⇒π′ tr2 else to preserve Mazurkiewicz equivalence it must be the
case that tr1 ⇒π tr2 and so tr1 <π tr2 leading to a contradiction. Therefore, since
π′ is quasi-monotonic and tid(tr2) < tid(tr1), there must exist a transition tr3, such
that tr1 <π′ tr3 <π′ tr2, tid(tr3) < tid(tr2) and tr1 ⇒π′ tr3. Again as before
since tr1 ⇒π′ tr3, we have tr1 ⇒π tr3. Thus tr1 <π tr3. Since tr2 <π tr1, we
have tr2 <π tr3. But tid(tr3) < tid(tr2) and we can repeat the above argument. Thus
continuing the above process we can obtain a sequence tr0, tr1, ..., trk of transitions
such that tid(trk) < tid(trk−1) < ... < tid(tr1) < tid(tr0) and
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tr3

tr5

tr2
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ππ′
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tr1
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tr0

Fig. 4. Dependency Chains

1. for each i ∈ [0..k − 2], tri ⇒ tri+2 (tri ⇒π tri+2 and tri ⇒π′ tri+2)
2. for each i ∈ [1..k/2], tr2i <π tr2i−1

3. for each i ∈ [0..k/2], tr2i+1 <π′ tr2i.

Since the thread-ids of the transitions tri form a strictly descending sequence, there
exists a sequence of transitions of maximum length satisfying the above properties. As-
sume now that the above sequence is, in fact, maximal. We consider two cases. First
assume that k is even. Then there is dependency chain (property 1) from trk−2 to trk

along π′. Thus trk is executed after trk−2 along both π and π′ and so trk−2 <π′

trk. Also, by property 3, trk−1 <π′ trk−2. By combining the above facts, we have
trk−1 <π′ trk−2 <π′ trk. Note also that tid(trk) < tid(trk−1). Thus by quasi-
monotonicity of π′ either (i) there exists a dependency chain from trk−1 to trk, or
(ii) there exists a transition trk+1 such that trk−1 ⇒ trk+1 and trk−1 <π′ trk+1 <π′<
trk. The second case cannot happen as it would violate the maximality of the se-
quence {tri}. Thus trk−1 ⇒ trk which implies that trk−1 <π trk (as dependency
chains are preserved across Mazurkiewicz equivalent sequences). However by property
2, trk <π trk−1 which is absurd. This contradicts our initial assumption that there ex-
ist two different Mazurkiewicz equivalent quasi-monotonic sequences. The other case
where k is odd can be handled similarly. This completes the proof. 
�

4 Implementation

4.1 Bounded Model Checking (BMC)

We start by reviewing the basics of SMT/SAT-based bounded model checking. Given a
multi-threaded program and a reachability property, BMC can check the property on all
execution paths of the program up to a fixed depth K . For each step 0 ≤ k ≤ K , BMC
builds a formula Ψ such that Ψ is satisfiable iff there exists a length-k execution that
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violates the property. The formula is denoted Ψ = Φ ∧ Φprop, where Φ represents all
possible executions of the program up to k steps and Φprop is the constraint indicating
violation of the property (see [2] for more details about Φprop). In the following, we
focus on the formulation of Φ.

Let V = Vglobal ∪
⋃

Vi, where Vglobal is the set of global variables and Vi the
set of local variables of Ti. For all local (global) program variables, we add a state
variable for Vi (Vglobal). Array and pointer accesses need special handling. For an array
access a[i], we add separate variables for the index i and for the content a[i]. Similarly,
for a pointer access ∗p, we maintain separate state variables for (∗p) and p. We add
a pci variable for each thread Ti to represent its current program counter. To model
nondeterminism in the scheduler, we add a variable sel whose domain is the set of
thread indices {1, 2, . . . , N}. A transition in Ti is executed only when sel = i.

At every time frame, we add a fresh copy of the set of state variables. Let vi ∈ V i

denote the copy of v ∈ V at the i-th time frame. To represent all possible length-
k interleavings, we first encode the transition relations of individual threads and the
scheduler, and unfold the composed system exactly k time frames.

Φ := I(V 0) ∧
k∧

i=0

(SCH(V i) ∧
N∧

j=1

TRj(V i, V i+1))

where I(V 0) represents the set of initial states, SCH represents the constraint on the
scheduler, and TRj represents the transition relation of thread Tj . Without any par-
tial order reduction, SCH(V i) := true, which means that sel takes all possible val-
ues at every step. This default SCH considers all possible interleavings. Partial or-
der reduction can be implemented by adding constraints to SCH to remove redundant
interleavings.

We now consider the formulation of TRj . Let V Sj = Vglobal ∪ Vj denote the set of
variables visible to Tj . At the i-th time frame, for each t ∈ transj (a transition between
control locations loc1 and loc2), we create tri

t. If t is an assignment v := e, then tri
t :=

pci
j = loc1 ∧ pci+1

j = loc2 ∧ vi+1 = ei ∧ (V Si+1
j \ vi+1) = (V Si

j \ vi) .

If t is a branching statementassume(c), as in if(c), then tri
t :=

pci
j = loc1 ∧ pci+1

j = loc2 ∧ ci ∧ V Si+1
j = V Si

j .

Overall, TRi
j is defined as follows:

TRi
j :=

⎛

⎝seli = j ∧
∨

t∈transj

tri
t

⎞

⎠ ∨ (
seli �= j ∧ V i+1

j = V i
j

)

The second term says that if Tj is not selected, variables in Vj do not change values.

4.2 Encoding MPOR

In order to implement our technique, we need to track dependency chains in a space
efficient manner. Towards that end, the following result is crucial.
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Theorem 3. Let transitions tr and tr′ executed by processes Ti and Tj , respectively,
along a computation x, constitute a violation of quasi-monotonicity. Suppose that tr′<x

tr and tid(tr′) > tid(tr). Then any transition tr′′ executed by Tj such that tr′ <x

tr′′ <x tr also constitutes a violation of quasi-monotonicity with respect to tr.

Proof. If possible, suppose that the pair of transitions tr′′ and tr do not constitute a
violation of quasi-monotonicity. Since tid(tr′′) > tid(tr) and tr′′ <x tr, either (1)
there is a dependency chain from tr′′ to tr, or (2) there exists tr′′′ such that (a) tr′′ <x

tr′′′ <x tr, (b) tid(tr′′′) < tid(tr), and (c) there is a dependency chain from tr′′ to
tr′′′. However, since all transitions belonging to the same thread are dependent with
each other, we see that tr′ is dependent with tr′′. Thus any dependency chain starting
at tr′′ can be extended backwards to start at tr′. As a result we have that either (1)
there is a dependency chain from tr′ to tr, or (2) there exists tr′′′ such that (a) tr′ <x

tr′′′ <x tr, (b) tid(tr′′′) < tid(tr), and (c) there is a dependency chain from tr′ to tr′′′.
However, in that case transitions tr′ and tr do not violate quasi-monotonicity, leading
to a contradiction. 
�

Theorem 3 implies that if there is a violation of quasi-monotonicity involving transitions
tr and tr′ executed by threads Ti and Tj , respectively, such that tid(tr′) > tid(tr), then
there is also a violation between tr and the last transition executed by Tj before tr along
the given computation. This leads to the important observation that in order to ensure
that a computation π is quasi-monotonic, we need to track dependency chains only from
the last transition executed by each process along π and not from every transition.

Tracking Dependency Chains. To formulate our MPOR encoding, we first show how
to track dependency chains. Towards that end, for each pair of threads Ti and Tj , we
introduce a new variable DCij defined as follows.

Definition 4. DCil(k) is 1 or −1 accordingly as there is a dependency chain or not,
respectively, from the last transition executed by Ti to the last transition executed by Tl

up to time step k. If no transition has been executed by Ti till time step k, DCil = 0.

Updating DCij . If at time step k thread Ti is executing transition tr, then for each
thread Tl, we check whether the last transition executed by Tl is dependent with tr. To
track that we introduce the dependency variables DEPli defined below.

Definition 5. DEPli(k) is true or false accordingly as the transition being executed
by thread Ti at time step k is dependent with the last transition executed by Tl, or not.
Note that DEPii(k) is always true (due to control conflict).

If DEPli(k) = true and if DCjl(k−1) = 1, i.e., there is a dependency chain from the
last transition executed by Tj to the last transition executed by Tl, then this dependency
chain can be extended to the last transition executed by Ti, i.e., tr. In that case, we
set DCji(k) = 1. Also, since we track dependency chains only from the last transition
executed by each thread, the dependency chain corresponding to Ti needs to start afresh
and so we set DCij(k) = −1 for all j �= i. To sum up, the updates are as follows.
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DCii(k) = 1
DCij(k) = −1 when j �= i
DCji(k) = 0 when j �= i and DCjj(k − 1) = 0
DCji(k) =

∨n
l=1(DCjl(k − 1) = 1 ∧ DEPli(k)) when j �= i and DCjj(k − 1) �= 0

DCpq(k) = DCpq(k − 1) when p �= i and q �= i

Scheduling Constraint. Next we introduce the scheduling constraints variables Si,
where Si(k) is true or false based on whether thread Ti can be scheduled to execute or
not, respectively, at time step k in order to ensure quasi-monotonicity. Then we conjoin
the following constraint to SCH (see subsection 4.1):

n∧

i=1

(selk = i ⇒ Si(k))

We encode Si(k) (where 1 ≤ i ≤ n) as follows:
Si(0) = true and
for k > 0, Si(k) =

∧
j>i(DCji(k) �= −1 ∨ ∨

l<i(DCjl(k − 1) = 1))

In the above formula, DCji(k) �= −1 encodes the condition that either a transition by
thread Tj , where j > i, hasn’t been executed up to time k, i.e., DCji(k) = 0, or if it has
then there is a dependency chain from the last transition executed by Tj to the transition
of Ti enabled at time step k, i.e., DCji(k) = 1. If these two cases do not hold and there
exists a transition tr′ executed by Tj before the transition tr of Ti enabled at time step k,
then in order for quasi-monotonicity to hold, there must exist a transition tr′′ executed
by thread Tl, where l < i, after tr′ and before tr such that there is a dependency chain
from tr′ to tr′′ which is encoded via the condition

∨
l<i(DCjl(k − 1) = 1).

Encoding DEP. The decoupling of the encoding of the dependency constraints (via
the DEP variables) from the encoding of quasi-monotonicity has the advantage that it
affords us the flexibility to incorporate various notions of dependencies based on the ap-
plication at hand. These include dependencies arising out of synchronization primitives,
memory consistency models like sequential consistency, etc. For our implementation,
we have, for now, used only dependencies arising out of shared variable accesses the
encoding of which is given below.

We define the following set of variables for each thread Ti:

– pWVi(k), pRVi(k), pR2Vi(k) denote the Write-Variable and Read-Variables of
the last transition executed by Ti before step k. For simplicity, we assume that each
assignment has at most three operands: a write variable occurring on the left hand
side of the assignment, i.e., pWVi(k) and up to two read variables occurring on the
right hand side of the assignment, i.e., pRVi(k) and pR2Vi(k).

– wvi(k), wri(k), r2vi(k) denote the Write-Variable and Read-Variables of the tran-
sition executed by Ti at step k.

We encode DEPij(k) as follows,



410 V. Kahlon, C. Wang, and A. Gupta

DEPij(k) = ( pWVi(k) = wvi(k) ∧ pWVi(k) �= 0∨
pWVi(k) = rvi(k) ∧ pWVi(k) �= 0∨
pWVi(k) = r2vi(k) ∧ pWVi(k) �= 0∨
pRVi(k) = wvi(k) ∧ wvi(k) �= 0∨
pR2Vi(k) = wvi(k) ∧ wvi(k) �= 0)

Read and Write Variables. Let t1, . . . , tn ∈ transi be the set of transitions of Ti, and
t1.writeV ar be the Write-Variable of the transition t1. Moreover, enti(V k) equals true
or false accordingly as ti is enabled at time step k or not, respectively.

– We encode wvi(k) as follows

wvi(k) = (selk = i ∧ ent1(V k)) ? t1.writeV ar :
(selk = i ∧ ent2(V k)) ? t2.writeV ar :
. . .
(selk = i ∧ entn(V k)) ? tn.writeV ar : 0

– We encode pWVi(k + 1) as follows (with pWVi(0) = 0)

pWVi(k + 1) = (selk = i ∧ ent1(V k)) ? t1.writeV ar :
(selk = i ∧ ent2(V k)) ? t2.writeV ar :
. . .
(selk = i ∧ entn(V k)) ? tn.writeV ar : pWVi(k)

Important Optimization. Note that the last encoding requires an if-then-else chain of
length |transi|. However, we need to detect dependencies only between transitions of
threads which access shared objects (as all internal transitions following a shared object
access can be executed in one atomic step). Thus, transi would now denote the number
of transitions of Ti accessing only shared objects which typically is a small fraction of
the total number of transitions of Ti.

5 Experiments

We have implemented the optimal POR methods in an SMT-based bounded model
checker using the Yices SMT solver [4]. The experiments were performed with two
variants of the optimal POR reduction and a baseline BMC algorithm with no POR.
The two variants represent different tradeoffs between the encoding overhead and the
amount of achievable reduction. The first one is PPOR [17], in which the quasi mono-
tonicity constraints are collected only within a window of two consecutive time frames
(and so the reduction is not optimal). The second one is MPOR, in which the entire set
of quasi-monotonicity constraints are added to ensure quasi monotonicity (the reduc-
tion is optimal). Our experiments were conducted on a workstation with 2.8 GHz Xeon
processor and 4GB memory running Red Hat Linux 7.2.

We use a parameterized version of dining philosophers as our test example. The dining
philosopher model we used can guarantee the absence of deadlocks. Each philosopher
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(a) With SAT instances (property ’pa’) (b) With UNSAT instances (property ’pb’)

Fig. 5. Comparing runtime performance of (optimal) MPOR and (peephole) PPOR

has its own local state variables, and threads communicate through a shared array of chop-
sticks. When accessing the global array, threads may have conflicts (data dependency).
The first property (pa) we checked is whether all philosophers can eat simultaneously
(the answer is no). The second property (pb) is whether it is possible to reach a state in
which all philosophers have eaten at least once (the answer is yes).

We set the number of philosophers (threads) to 2, 3, . . ., and compared the runtime
performance of the three methods. The results are given in Fig. 5. The x-axis represents
unroll depth. The y-axis is the BMC runtime in seconds, and is in logarithmic scale. The
number of variable decisions and conflicts of the SMT solver look similar to the runtime
curves and are, therefore, omitted for brevity. When comparing the sizes of the SMT
formulae, we found that those produced by the optimal POR encoding typically are
twice as large as the plain BMC instances, and those produced by the PPOR encoding
are slightly larger than the plain BMC instances.

The detailed results are given in Table 1. In Table 1, Columns 1-3 show the name of
the examples, the number of BMC unrolling steps, and whether the property is true or

Table 1. Comparing PPOR, MPOR and plain BMC

Test Program Total CPU Time (s) #Conflicts (k) #Decisions (k)
name steps prop none MPOR PPOR none MPOR PPOR none MPOR PPOR

phil2-pa 15 unsat 0.2 0.2 0.1 1 1 1 1 1 0
phil3-pa 22 unsat 18.2 0.9 1.1 17 1 1 23 2 3
phil4-pa 29 unsat 49.6 5.3 44.9 39 3 27 53 8 41
phil5-pa 36 unsat 76.3 22.9 148.6 48 6 53 69 17 82
phil6-pa 43 unsat 98.4 52.3 504.4 56 12 92 84 30 147
phil7-pa 50 unsat 502.3 161.6 > 1h 161 16 - 238 48 -

phil2-pb 15 sat 0.1 0.1 0.1 1 1 1 1 1 0
phil3-pb 22 sat 1.5 1.3 0.3 2 1 1 4 4 1
phil4-pb 29 sat 18.3 9.5 3.8 12 3 3 17 11 6
phil5-pb 36 sat 195.5 94.7 61.7 44 9 16 61 26 31
phil6-pb 43 sat >1h 315.4 2283 - 16 122 - 52 200
phil7-pb 50 sat >1h 1218 > 1h - 31 - - 85 -
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not. Columns 4-6 report the runtime of the three methods. Columns 7-9 and Columns
10-12 report the number of backtracks and the number of decisions of the SMT solver.

In general, adding more SAT constraints involves a tradeoff between the state space
pruned and the additional overhead in processing these constraints. However, the results
in Fig. 5 indicate that the reduction achieved by MPOR more than outweighs its encod-
ing overhead. For programs with two threads, PPOR always outperforms MPOR. This
is because PPOR is also optimal for two threads, and it has a significantly smaller en-
coding overhead. However, as the number of threads increases, percentage-wise, more
and more redundant interleavings elude the PPOR constraints. As is shown in Fig. 1,
for more than four threads, the overhead of PPOR constraints outweighs the benefit
(runtime becomes longer than MPOR).

6 Conclusions

We have presented a monotonic partial order reduction method for model checking
concurrent systems, based on the new notion of quasi-monotonic sequences. We have
also presented a concise symbolic encoding of quasi-monotonic sequences which is
well suited for use in SMT/SAT solvers. Finally, our new method is guaranteed optimal,
i.e., removes all redundant interleavings.
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