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Abstract. This paper is concerned with the problem of computing the
image of a set by a polynomial function. Such image computations consti-
tute a crucial component in typical tools for set-based analysis of hybrid
systems and embedded software with polynomial dynamics, which found
applications in various engineering domains. One typical example is the
computation of all states reachable from a given set in one step by a con-
tinuous dynamics described by a differential or difference equation. We
propose a new algorithm for over-approximating such images based on
the Bernstein expansion of polynomial functions. The images are stored
using template polyhedra. Using a prototype implementation, the per-
formance of the algorithm was demonstrated on two practical systems
as well as a number of randomly generated examples.

1 Introduction

Hybrid systems, that is, systems exhibiting both continuous and discrete dynam-
ics, have been an active research domain, thanks to their numerous applications
in chemical process control, avionics, robotics, and most recently molecular biol-
ogy. Due to the safety critical features of many such applications, formal analysis
is a topic of particular interest. A major component in any verification algo-
rithm for hybrid systems is an efficient method to compute the reachable sets of
their continuous dynamics described by differential or difference equations. Well-
known properties of affine systems and other simpler systems can be exploited
to design relatively efficient methoddl]. A recently-developed method can han-
dle continuous systems of 100 and more variables [I1]. Nevertheless, non-linear
systems are much more difficult to analyze.

In this work, we address the following image computation problem: given a set
in R™, compute its image by a polynomial. This problem typically arises when
we deal with a dynamical system of the form x(k + 1) = w(xz(k)) where 7 is a
multivariate polynomial. Such a dynamical system could result from a numerical
approximation of a continuous or hybrid system. Many existing reachability
computation methods for continuous systems can be seen as an extension of
numerical integration. For reachability analysis which requires considering all

! The hybrid systems reachability computation literature is vast. The reader is referred
to the recent proceedings of the conferences HSCC.
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possible solutions (for example, due to non-determinism in initial conditions),
one has to solve the above equation with sets, that is z(k) and z(k + 1) in the
equation are subsets of R™ (while they are points if we only need a single solution,
as in numerical integration). In addition, similar equations can arise in embedded
control systems, such as some physical system controlled by a computer program,
which is the implementation of some continuous (or possibly hybrid) controller
using appropriate discretization.

Another reason for our interest in the image computation problem for polyno-
mials is that such systems can be used to model a variety of physical phenomena
in engineering, economy and bio-chemical networks. This problem was previously
considered in [4], where a method using Bézier techniques from Computer Aided
Geometric Design (CAGD) was proposed. The drawback of this method is that
it requires expensive convex-hull and triangulation computation, which restricts
its application to systems of dimensions not higher than 3, 4. The essence of the
new method we propose in this paper can be summarized as follows. Using a
special class of polyhedra together with optimization, we are able to reduce the
complexity of the required polyhedral manipulation. Furthermore, by exploiting
the Bernstein expansion, we only need to solve linear programming problems
instead of polynomial optimization problems.

Our method is similar to a number of existing methods for continuous and
hybrid systems in the use of linear approximation. Its novelty resides in the ef-
ficient way of computing linear approximations. Indeed, a common method to
approximate a non-linear function by a piecewise linear one, as in the hybridiza-
tion approach [I] for hybrid systems, requires non-linear optimization. Indeed,
the work presented in this paper follows the approach using template polyhedra
and optimization for hybrid systems with continuous dynamics proposed in [21].

Besides constrained global optimization, other important applications of the
Bernstein expansion include various control problems [7] (in particular, robust
control). The approximation of the range of a multivariate polynomial over a box is
also used in program analysis and optimization (for example [3I23]). In the hybrid
systems verification, polynomial optimization is used to compute barrier certifi-
cates [18]. Algebraic properties of polynomials are used to compute polynomial
invariants [24] and to study the computability of image computation in [17].

The paper is organized as follows. In Section 2] we introduce the notions of
template polyhedra and the Bernstein expansion. We then formally state our
problem and describe an optimization-based solution. In order to transform the
polynomial optimization problem to a linear programming problem, a method
for computing bound functions is presented. We then describe an algorithm sum-
marizing the main steps of our method. Some experimental results, in particular
the analysis of a control and a biological systems, are reported in Section El

2 Preliminaries

Notation. Let R denote the set of reals. Throughout the paper, vectors are
often written using bold letters. Exceptionally, scalar elements of multi-indices,
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introduced later, are written using bold letters. Given a vector x, z; denotes its

i*" component. Capital letters such as A, B, X, Y, denote matrices or sets. If A
is a matrix, A’ denotes the i*" row of A. An afﬁne function is thus represented
as cI'x +d.

We use B, to denote the unit box B, = [0,1]". We use 7 to denote a vector
of n functions such that for all ¢ € {1,...,n}, m; is an n-variate polynomial of
the form m; : R™ — R. In the remainder of the paper, we sometimes refer to 7
simply as “a polynomial”.

To discuss the Bernstein expansion, we use multi-indices of the form i =
(i1,...,in) where each i; is a non-negative integer. Given two multi-indices i
and w, we write i < w if for all j € {1,...,n}, i; < w;. Also, we write v‘v for

(B dyand (1) for (2)(J2)... ().

Template polyhedra. A convex polyhedron is a conjunction of a finite number
of linear inequalities described as Ax < b, where A is a m X n matrix, b is
a column vector of size m. Template polyhedra are commonly used in static
analysis of programs for computing invariants (see for example [19]). The reader
is referred to [19] for a thorough description of template polyhedra.

A template is a set of linear functions over x = (z1, ..., z,). We denote a tem-
plate by an m x n matrix H, such that each row H* corresponds to the linear func-
tion H'x. Given such a template H and a real-valued vector d € R™, a template
polyhedron is defined by considering the conjunction of the linear inequalities of
the form A,_, . Hix < d;. We denote this polyhedron by (H,d).

By changmg the values of the elements of d, one can define a family of template
polyhedra corresponding to the template H. We call d a polyhedral coefficient
vector. Givend,d’ e R™,if Vi € {1,...,m}: d; < d}, we write d < d’. Given an
m X n template H and two polyhedral coefficient vectors d,d’ € R™, if d < d’
then the inclusion relation (H,d) C (H,d’) holds, and we say that (H,d) is not
larger than (H,d’).

The advantage of template polyhedra over general convex polyhedra is that
the Boolean operations (union, intersection) and common geometric operations
can be performed more efficiently [19].

Bernstein expansion. We consider an n- Varlate polynomial 7 : R* — R”
defined as: 7(x) = i/ ajx! where x! = :rl ...l a; is a vector in R™; i and
w are two multi-indices of size n such that i < w; Iw is the set of all multi-indices
i <w, that is I, = {i | i < w}. The multi-index w is called the degree of 7.

Given a set X C R™, the image of X by m, denoted by m(X), is defined as
follows: 7(X) = {(m1(x),...,m(x)) | x € R"}.

In order to explain the Bernstein expansion of the polynomial 7, we first
introduce Bernstein polynomials. For x = (z1,...,2,) € R”, the i*" Bernstein
polynomial of degree w is: Bw i(X) = Bw, i1 (1) - - - Bwn.i, (Tn) where for a real
number y, Bw, i, (y) = (v.lvjj)yi-f(l —y%i~1i). Then, for all x € B, = [0, 1], 7 can
be written using the Bernstein expansion as follows: m(x) = } i, biBw,i(x)
where for each i € I, the Bernstein coefficient by is:
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-y (@) o W

J
The following property of the Bernstein coefficients is of interest. The above
enclosure yields: Vx € B, : w(x) € Ob; | i € Iw}) where O denotes the
bounding box of a point set.

Let us return to the main problem of the paper, which is computing the
image of a set by a polynomial. Using the above convex-hull property, we can
use the coefficients of the Bernstein expansion to over-approximate the image
of the unit box B, by the polynomial 7. To compute the image of a general
convex polyhedron, one can over-approximate the polyhedron by a box and
then transform it to the unit box via some affine transformation. A similar
idea, which involves using the coefficients of the Bézier simplex representation,
was used in [4] to compute the image of a convex polyhedron. However, the
convex-hull computation is expensive especially in high dimensions, which poses
a major problem in continuous and hybrid systems verification approaches using
polyhedral representations.

In this work, we propose a new method which can avoid complex convex-hull
operations over general convex polyhedra as follows. First, we use template poly-
hedra to over-approximate the images. Second, the problem of computing such
template polyhedra can be formulated as a polynomial optimization problem.
This optimization problem is computationally difficult, despite recent progress
in the development of methods and tools for polynomial programming (see for
example [25/13J6] and references therein). We therefore seek their affine bound
functions for polynomials, in order to transform the polynomial optimization
problem to a linear programming one, which can be solved more efficiently (in
polynomial time) using well-developed techniques, such as Simplex [8] and inte-
rior point techniques [2]. Indeed, the above-described Bernstein expansion is used
to compute these affine bound functions. This is discussed in the next section.

Bound functions. To compute bound functions, we employ the method us-
ing the Bernstein expansion, published in [8/9JT0]. Finding convex lower bound
functions for polynomials is a problem of great interest, especially in global opti-
mization. It is important to note that the method described in this section only
works for the case where the variable domain is the unit box B,,. We however
want to compute the images of more general sets, in particular polyhedra. An
extension of this method to such cases will be developed in Section

A simple affine lower bound function is a constant function, which can be
deduced from the property of the Bernstein expansion mentioned in Section
z; <min{b; | i € Iy} = bjo = b’. The main idea of the method is as follows. We
first compute the affine lower bound function whose corresponding hyperplane
passes through this control point b®. Then, we aditionally determine (n — 1) hy-
perplanes passing through n other control points. This allows us to construct a
sequence of n affine lower bound functions lg, I, . . .l,. We end up with [,,, a func-
tion whose corresponding hyperplane passes through a lower facet of the convex
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hull spanned by these control points. A detailed description of the algorithm can
be found in [5]. Note that we can easily compute upper bound functions of 7
by computing the lower bound functions for (—) using this method and then
multiply each resulting function by (—1).

3 Image Approximation Using Template Polyhedra

We want to use a template polyhedron (H,d) to over-approximate the image
of a polyhedron P by the polynomial 7. The template matrix H, which is of
size m X n is assumed to be given; the polyhedral coefficient vector d € R™ is
however unknown. The question is thus to find d such that

m(P) € (H,d). (2)

It is not hard to see that the following condition is sufficient for (2) to hold:
Vx € P : Hwm(x) < d. Therefore, to determine d, one can formulate the
following optimization problem:

Vie{l,...,m}, d; = max(¥}_, H}mx(x)) subj. to x € P. (3)

where H® is the i*" row of the matrix H and H; is its k*" element. Note that the
above functions to optimize are polynomials. As mentioned earlier, polynomial
optimization is expensive. Our solution is to bound these functions with affine
functions, in order to transform the above optimization problem to a linear
programming one. This is formalized as follows.

3.1 Optimization-Based Solution

In Section Zlwe discussed lower bound functions for polynomials. Note that these
bound functions are valid only when the variables x are inside the unit box B,,.
To consider more general domains, we introduce the following definition.

Definition 1 (Upper and lower bound functions). Given f: R™ — R, the
function v : R™ — R is called an upper bound function of f w.r.t. a set X C R”
ifvVxe X f(x) <uvu(x). A lower bound function can be defined similarly.

The following property of upper and lower bound functions is easy to prove.

Lemma 1. Given X, Y CR" s.t. Y C X, if v is an upper (lower) bound func-
tion of f w.r.t. X, then v is an upper (lower) bound function of f w.r.t. Y.

For each k € {1,...,m}, let ug(x) and l(x) respectively be an upper bound
function and a lower bound function of 7 (x) w.r.t. a bounded polyhedron P C
R™. We consider the following optimization problem:

Vie{l,...,m},d; = Xp_ Hiwy. (4)

where the term H}wy, is defined as follows:
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— If the element H}, > 0, Hjwy, = H}, max uy(x) subj. to x € P;
— If the element H}, <0, Hjw, = Hj minl,(x) subj. to x € P.

The following lemma is a direct result of ().
Lemma 2. Ifd € R™ satisfies (), then n(P) C (H,d).

Proof. Tt is indeed not hard to see that the solution d; of the optimization
problems () is greater than or equal to the solution of (B]). Hence, if d satis-
fies @), then Vi € {1,...,m} Vx € P: X7 Himy(x) < d;. This implies that
Vx € P: Hn(x) <d, that is the image n(P) is included in (H,d). O

We remark that if all the bound functions in (@) are affine and P is a bounded
convex polyhedron, d can be computed by solving at most 2n linear programming
problems. It remains now to find the affine bound functions uy and I for 7 w.r.t.
a polyhedron P, which is the problem we tackle in the next section.

3.2 Computing Affine Bound Functions over Polyhedral Domains

As mentioned earlier, the method to compute affine bound functions for polyno-
mials in Section 2] can be applied only when the function domain is a unit box,
anchored at the origin. The reason is that the expression of the control points
of the Bernstein expansion in (Il is only valid for this unit box. If we over-
approximate P with a box B, it is then possible to derive a formula expressing
the Bernstein coefficients of m over B. However, this formula is complex and its
representation and evaluation can become expensive.

We alternatively consider the composition of the polynomial = with an affine
transformation 7 that maps the unit box B, to B. The functions resulting from
this composition are still polynomials, for which we can compute their bound
functions over the unit box. This is explained more formally in the following.

Let B be the bounding box of the polyhedron P, that is, the smallest box
that includes P. The composition 7 = (7 o 7) is defined as v(x) = 7(7(x)). The
functions 7 and v can be computed symbolically, which will be discussed later.

Lemma 3. Let vy =7 o 7. Then, n(P) C v(By).

Proof. By the definition of the composition v, v(B,) = {n(7(x)) | x € B,}.
Additionally, 7(B,,) = B. Therefore, v(B,) = m(B). Since the polyhedron P is
included in its bounding box B, we thus obtain 7(P) C 7w(B) = v(By)- O

We remark that the above proof is still valid for any affine function 7. This
means that instead of an axis-aligned bounding box, we can over-approximate P
more precisely with an oriented (i.e. non-axis-aligned) bounding box. This can
be done using the following method.

3.3 Computing an Oriented Bounding Box

The directions of an oriented bounding box can be computed using Principal
Component Analysis [14]. We first choose a set S = {s!,s? ... 8™} of m points?

2 By abuse of notation we use m to denote both the number of template constraints
and the number of points here.
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in the polyhedron P, such that m > n. We defer a discussion on how this point
set is selected to the end of this section. PCA is used to find an orthogonal basis
that best represents the point set S. More concretely, we use § to be the mean of
S, thatiss = ! > s and we denote §; ; = s} —§;. For two points s’ and s’ in
S, the covariance of their translated points is: couv(s;,s;) = ml—l > Sk,iSk,j-
Then, we define the co-variance matrix C' such that the element C;; = cov(s?, s7).
The n largest singular values of C provide the orientation of the bounding
box. More concretely, since C' is symetric, by singular value decomposition, we
have C = UAUT where A is the matrix of singular values. The axes of the
bounding box are hence determined by the first n columns of the matrix U, and
its centroid is 8.

We now discuss how to select the set S. When the vertices of P are available,
we can include them in the set. However, if P is given as a template polyhe-
dron, this requires computing the vertices which is expensive. Moreover, using
only the vertices, when their distribution do not represent the geometric form
of the polyhedron, may cause a large approximation error, since the resulting
principal directions are not the ones along which the points inside P are mostly
distributed. To remedy this, we sample points inside P as follows. First, we com-
pute an axis-aligned bounding box of P (this can be done by solving 2n linear
programming problems). We then uniformly sample points inside this bounding
box and keep only the points that satisfy the constraints of P. Uniform sampling
on the boundary of P in general enables a better precision. More detail on this
can be found in [5].

3.4 Image Computation Algorithm

The following algorithm summarizes the main steps of our method for over-
approximating the image of a bounded polyhedron P C R"™ by the polynomial
7. The templates are an input of the algorithm. In the current implementation of
the algorithm, the templates can be fixed by the user, or the templates forming
regular sets are used.

Algorithm 1. Over-approximating m(P)
/* Inputs: convex polyhedron P, polynomial w, templates H */
B = PCA(P) /* Compute an oriented bounding box */
7 =UnitBoxMap(B) /* Compute the function mapping the unit box B, to B */
y=mworT

(u,l) = BoundFunctions(7y) /* Compute the affine bound functions */
d = PolyApp(u,l, H) /* Compute the coefficient vector d */
Q= (H,d) /* Form the template polyhedron and return it */
Return(Q@)

The role of the procedure PC A is to compute an oriented bounding box B that
encloses P. The procedure UnitBoxMap is then used to determine the affine
function 7 that maps the unit box B, at the origin to B. This affine function
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is composed with the polynomial 7, the result of which is the polynomials ~.
The affine lower and upper bound functions [ and u of v are then computed,
using the Bernstein expansion. The function PolyApp determines the polyhedral
coefficient vector d by solving the linear programs in () with u, [ and the
optimization domain is B,,. The polyhedral coefficient vector d are then used to
define a template polyhedron @), which is the result to be returned.

Based on the analysis so far, we can state the correctness of Algorithm [II

Theorem 1. Let (H, d) be the template polyhedron returned by Algorithm [
Then w(P) C (H,d).

We remark that v and ! are upper and lower bound functions of v with respect
to B,. It is not hard to see that 7=*(P) C B, where 7! is the inverse of 7.
Using the property of bound functions, u and [ are also bound functions of ~
with respect to 771(P). Hence, if we solve the optimization problem over the
domain 771(P) (which is often smaller than B, ), using Lemma 2] the resulting
polyhedron is still an over-approximation of 7(P). This remark can be used to
obtain more accurate results.

Approximation errors and Complexity. We finish this section by briefly
discussing the precision and complexity of our method. A more detailed analysis
can be found in [B]. The approximation errors are caused by the use of bound
functions, the bounding box approximation and template polyhedra.

It can be proven that in one dimensional cases, the error between the bound
functions and the original polynomial is quadratic in the length of box domains.
This quadratic convergence seems to hold for higher dimensional cases in prac-
tice, as shown in [9]. We conjecture that there exists a subdivision method of
the box B which allows a quadratic convergence of the error. This subdivision
method is similar to the one used for finding roots of a polynomial with quadratic
convergence [16].

On the other hand, a polyhedron can be approximated by a set of non-
overlapping oriented boxes with arbitrarily small error. Then, for each box, we
compute a bounding function, with which we then compute a coefficient for each
template. Finally, for each template, we take the largest coefficient to define the
template polyhedron. Since the boxes are smaller, the bounding functions are
more precise, we can thus improve the coeflicients as much as desired.

Concerning the error inherent to the approximation by template polyhedra, it
can be controlled by fine-tuning the number of template constraints. If using this
method with a sufficient number of templates to assure the same precision as
the convex hull in our previous Bézier method [4], then the convergence of both
methods are quadratic. However the Bezier method requires expensive convex-
hull and triangulation operations, and geometric complexity of resulting sets may
grow step after step. Combining template polyhedra and bounding functions
allows a good accuracy-cost compromise.

We now discuss the complexity of our algorithm. Let each polynomial 7; be
written as m; = 3 o, a}xj where each a;.' # 0. We denote by #(m;) the number
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of such monomials in 7;, i.e. the cardinality of I;. Let K be the maximal number
of monomials in each m;, that is K = max;eqy .. ny #(m).

First, we remark that the computation of the bound functions and PCA only
requires manipulating matrices and linear equations. Additionally, linear pro-
gramming with n variables and m constraints can be solved in polynomial time
O((mn)*3).

The proofs of the following results can be found in [5]. The complexity of
the computation of the bound functions is O(n* + Kn®). The complexity of
the computation of an affine function 7 mapping the unit box to an oriented
box is O(nn3?) (due to n LP problems). The approximation using a template
polyhedron requires solving 2n LP problems over the unit box and has thus the
complexity O(2n(2nn)>?) (see @)).

The exponentiel factor in the complexity of our algorithm comes from the
composition of m and an affine transformation 7. Let us suppose that we use
a simple composition algorithm whose complexity depends on the number of
monomialdl. The following theorem shows some cases for which our algorithm
has a polynomial time complexity.

Theorem 2. If 7 and T satisfy two conditions:

(1)Vie{l,...,n}: Y > ji = O(n(n))

JEI; k=1

2)Vie{1,...,n}#(n) < 2

then the composition T o T has in total O(Kn®) monomials, thus the computation
of m o T can be done in O(Kn?).

The proof of this can be found in [5]. Note that if we use axis-aligned bound-
ing boxes, each component of 7 always have 2 terms, and the second condition
of the theorem are satisfied. However, this polynomial time complexity w.r.t. the
dimension may not hold if we use oriented bounding boxes to over-approximate
the reachable sets before mapping them to the unit box. Indeed, in this case each
component of 7 may have more than 2 terms.

Concerning the complexity w.r.t. the number of iterations, if the number of
template constraints is constant, we can prove that the complexity depends
linearly on the number of iterations (see more in [5]).

4 Experimental Results

We have implemented our method in a prototype tool using the template poly-
hedral library developed by S. Sankaranarayanan [20] and the library lpsolve
for linear programming. In the following, we demonstrate the method with two
examples: a control system (modelled as a hybrid system) and a biological sys-
tem (modelled as a continuous system). The time efficiency of the tool is also
evaluated by considering using a number of randomly generated polynomials.

3 Advanced composition algorithms, e.g. [22], can achieve a better complexity.
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A control system. The control system we consider is the Duffing oscilla-
tor [I5J6]. Its continuous-time dynamics is described by 4(t) + 2¢y(¢) + y(t) +
y(t)® = wu(t), where y € R is the state variable and u € R is the control in-
put. The damping coefficient ¢ = 0.3. In [6], using a forward difference ap-
proximation with a sampling period h = 0.05, this system is approximated by
the following discrete-time model: z1(k + 1) = z1(k) + haa(k), z2(k + 1) =
—hz1(k) + (1 — 2Ch)z2 (k) + hu)k) — hay (k)3.

In [6], an optimal predictive control law wu(k) was computed by solving a
parametric polynomial optimization problem. In Figure [ one can see the phase
portrait of the system under this control law and without it (i.e. YkgeO u(k) = 0)
is shown . We model this control law by the following switching law with 3
modes: u(k) = 0.5k if 0 < k < 10, u(k) = 5 — 0.5(k — 10)/3 if 10 < k < 40,
and u(k) = 0 if & > 40. The controlled system is thus modelled as a hybrid
automaton with 3 discrete modes. The result obtained using our tool on this
system is shown in Figure d] which is coherent with the phase portrait in [6].
The initial set is a ball with radius 1e — 04. The number of template constraints
is 100. In addition to the reachable set after 120 steps (computed after 3s), in
Figured, we also illustrate the approximation error by visusalizing the template
polyhedron after the first step and a cloud of exact points (obtained by sampling
the initial set and applying the polynomial to the sampled points).

A biological system. The second example is the well-known Michaelis-Menten
enzyme kinetics [12], where E is the concentration of an enzyme that combines
with a substrate S to form an enzyme substrate complex ES. In the next step,
the complex can be dissociated into E and S or it can further proceed to form

a product P.
This pathway kinetics can be described by the following ODEs where x1, x4,
x3 and x4 are the concentrations of S, F, ES and P: &7 = —61x122 + 0223,

[0.08

| x2

(XL 8 M (-5

Fig. 1. The Duffing oscillator: phase portrait, the reachable set, and the reachable set
after the first step
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%3 2t x4 A—

Fig. 2. Michaelis-Menten enzyme kinetics. The evolution of the reachable set after 10
steps.

By = —O1x122 + (02 + 03)23, 3 = Ohx102 + (02 + O3)23, T4 = O373. Using a
second order Runge Kutta discretization with time step 0.3, we obtain

m1(x) = &1 — 0.053838z 122 + 0.001458x 72 + 0.001458z1 5 — 3.9366e — 5.07 25
+0.00577523 — 0.00202521 23 — 0.000162z2x3 + 5.9049¢ — 512023 — 6.075¢ — 623
w2 (x) = x2 — 0.051975z122 + 0.00145823 22 + 0.001458x: 235 — 3.9366€ — Szias + 0.0721875z3
—0.002025z1x3 — 0.000162z223 + 5.9049¢ — Sx12x223 — 6.075e — 6x§
m3(x) = 0.051975z1 29 — 0.001458.21%x5 — 0.001458z1 23 + 3.9366e — 5z1°23
+0.92781223 + 0.002025z1 23 + 0.000162z 223 — 5.9049¢ — 5z1zow3 + 6.075¢ — 623
7a(x) = 0.001863z1 72 + 0.066412525 + 4.

The reachable set computed for all the initial states inside a ball centered at
(12,12,0,0) with radius le — 0.4 is shown in Figure 2l The number of template
constraints is 60. In order to compare with the result in [12], the figures depict
the evolution of each variable for the first 10 steps (the horizontal axis is time).
In the vertical axis, the minimal and maximal values of the variables are shown.
This result is conherent with the simulation result in [I2]. The computation time
for 20 steps is 3.7s.

Randomly generated systems. In order to evaluate the performance of our
method, we tested it on a number of randomly generated polynomials in various
dimensions and maximal degrees (the maximal degree is the largest degree for
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dim degree nb steps time (s) hk constraints = 5 x dim
1002s 10
100.18 s
100182 s
1001s
10032 s
100198 s

NNNNNKN
WWWwNNN

10.01s 15
10037s
100364s
10.02s
1003s
1003.84s

WWwwwww
WWWNNN

10.03s 20
1006s
1006.64s
10.06s
10067s
1006.41s

ESIE ISR S O
WWWNNN

Fig. 3. Computation time for randomly generated polynomial systems

dim degree nb steps time (s) nb constraints =5 x dim
10.12s 25
101.02s
10010.2 s
1037s
101.22s
10010.74 s

Lnonnbn bl
WWWwNNN

1061s 30
102.01s
10016.85 s
13.99s
1042.47s
100400.30s

[N )
WWwwWwNNN

14.11s 35
1060.12s
100568.35s
130.01s
10345.68s
1003856.4s

N N
WWwWwNNN

Fig. 4. Computation time for randomly generated polynomial systems

all variables). For a fixed dimension and degree, we generated different exam-
ples to estimate an average computation time. In the current implementation,
polynomial composition is done symbolically, and we do not yet exploit the pos-
sibility of sparsity of polynomials (in terms of the number of monomials). The
computation time shown in Figures does not include the time for polynomial
composition. Note that the computation time for 7-variate polynomials of degree
3 is significant, because the randomly generated polynomials have a large num-
ber of monomials; however, practical systems often have a much smaller number
of monomials. As expected, the computation time does not grows linearly w.r.t.
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the number of steps. This can be explained by the use of template polyhedra
where the number of constraints can be chosen according to required precisions
and thus control better the complexity of the polyhedral operations, compared to
general convex polyhedra. Indeed, when using general polyhedra, the operations
such as convex hull may increase their geometric complexity (roughly described
by the number of vertices and constraints).

Conclusion. In this paper we propose a new method to compute images of
polynomials. This method combines the ideas from optimization and the Bern-
stein expansion. This result can be readily applicable to solve the reachability
analysis problem for hybrid systems with polynomial continuous dynamics.

The performance of the method was demonstrated on a number of randomly
generated examples, which shows an improvement in efficiency compared to our
previously developed method using Bézier techniques [4]. These encouraging
results also show an important advantage of the method: thanks to the use
of template polyhedra as a symbolic set representations, the complexity and
precision of the method are more controllable than those using general polyhedra.

There are a number interesting directions to explore. Indeed, different tools
from geometric modeling could be exploited to improve the efficiency of the
method. For example, polynomial composition can be done for sparse polyno-
mials more efficiently using the blossoming technique [22]. In addition to more
experimentation on other hybrid systems case studies, we intend to explore a
new application domain, which is verification of embedded control software. In
fact, multivariate polynomials arise in many situations when analyzing programs
that are automatically generated from practical embedded controllers.
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