Requirements Validation for Hybrid Systems*

Alessandro Cimatti, Marco Roveri, and Stefano Tonetta

Fondazione Bruno Kessler (FBK-irst), Trento, Italy

Abstract. The importance of requirements for the whole development flow calls
for strong validation techniques based on formal methods. In the case of dis-
crete systems, some approaches based on temporal logic satisfiability are gaining
increasing momentum. However, in many real-world domains (e.g. railways sig-
naling), the requirements constrain the temporal evolution of both discrete and
continuous variables. These hybrid domains pose substantial problems: on one
side, a continuous domain requires very expressive formal languages; on the other
side, the resulting expressiveness results in highly intractable problems.

In this paper, we address the problem of requirements validation for real-
world hybrid domains, and present two main contributions. First, we propose the
HRELTL logic, that extends the Linear-time Temporal Logic with Regular Ex-
pressions (RELTL) with hybrid aspects. Second, we show that the satisfiability
problem for the linear fragment can be reduced to an equi-satisfiable problem for
RELTL. This makes it possible to use automatic (albeit incomplete) techniques
based on Bounded Model Checking and on Satisfiability Modulo Theory.

The choice of the language is inspired by and validated within a project funded
by the European Railway Agency, on the formalization and validation of the Eu-
ropean Train Control System specifications. The activity showed that most of
requirements can be formalized into HRELTL, and an experimental evaluation
confirmed the practicality of the analyses.

1 Introduction

Requirements analysis is a fundamental step in the development process of software
and system design. In fact, flaws and ambiguities in the requirements can lead to the
development of correct systems that do not do what they were supposed to. This is
often unacceptable, especially in safety-critical domains, and calls for strong tools for
requirements validation based on formal techniques. The problem of requirements val-
idation is significantly different from traditional formal verification, where a system
model (the entity under analysis) is compared against a set of requirements (formalized
as properties in a temporal logic), which are assumed to be “golden”. In requirements
validation, on the contrary, there is no system to be analyzed (yet), and the requirements
themselves are the entity under analysis.

Formal methods for requirements validation are being devoted increasing inter-
est [LU13016L28]]. In such approaches, referred to as property-based, the requirements
are represented as statements in some temporal logics. This allows to retain a corre-
spondence between the informal requirements and the formal statement, and gives the

* The first and second authors are supported by the European Commission (FP7-2007-IST-1-
217069 COCONUT). The third author is supported by the Provincia Autonoma di Trento
(project ANACONDA).

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 1881203 2000.
(© Springer-Verlag Berlin Heidelberg 2009

Requirements Validation for Hybrid Systems 189

ability to reason at the level of abstraction of the requirements engineer. Typical anal-
ysis functionalities include the ability to check whether the specification is consistent,
whether it is strict enough to rule out some undesirable behaviors, and whether it is
weak enough not to rule out some desirable scenarios. These analysis functionalities
can in turn be obtained by reduction to temporal logics satisfiability [28].

Property-based approaches have been typically applied in digital domains, where the
requirements are intended to specify a set of behaviors over discrete variables, and the
wealth of results and tools in temporal logic and model checking provides a substan-
tial technological basis. However, in many real-world domains (e.g. railways, space,
industrial control), the requirements are intended to constrain the evolution over time
of a combination of discrete and continuous variables. Hybrid domains pose substantial
problems: on the one side, a continuous domain requires very expressive formal lan-
guages; on the other side, the high expressiveness leads to highly intractable problems.

In this paper, we address the problem of requirements validation in such hybrid do-
mains by making two main contributions.

First, we define a suitable logic for the representation of requirements in hybrid
domains. The logic, called Hybrid Linear Temporal Logic with Regular Expressions
(HRELTL), is interpreted over hybrid traces. This allows to evaluate constraints on
continuous evolutions as well as discrete changes. The basic atoms (predicates) of the
logic include continuous variables and their derivatives over time, and are interpreted
both over time points and over open time intervals[] The semantics relies on the fact
that each open interval of a hybrid trace can be split if it does not have a uniform eval-
uation of predicates in the temporal formulas under analysis (cf. [14427]), and that the
formulas satisfy properties of sample invariance and finite variability [14]]. The logic
encompasses regular expressions and linear-time operators, and suitable choices have
been made to interpret the “next” operator and regular expressions over the open time
intervals, and the derivative of continuous variables over the time points.

Second, we define a translation method for automated verification. The transla-
tion encodes satisfiability problems for the linear fragment of HRELTL into an equi-
satisfiable problem in a logic over discrete traces. The restrictions of the linear fragment
guarantee that if the formula is satisfiable, there exists a piecewise-linear solution. We
exploit the linearity of the predicates with regard to the continuous variables to encode
the continuity of the function into quantifier-free constraints. We can therefore compile
the resulting formula into a fair transition system and use it to solve the satisfiability and
the model checking problem with an automata-theoretic approach. We apply infinite-
state model checking techniques to verify the language emptiness of the resulting fair
transition system.

Our work has been inspired by and applied within a project funded by the European
Railway Agency (http://www.era.europa.eu). The aim of the project was to
develop a methodology supported by a tool for the validation of requirements in rail-
way domains. Within the project, we collaborated with domain experts in a team that
tackled the formalization of substantial fragments of the European Train Control Sys-
tem (ETCS) specification. With regard to the hybrid aspects of ETCS requirements, the

! This is known to be a nontrivial issue: see for instance [27114123]] for a discussion on which
type of intervals and hybrid traces must be considered.

http://www.era.europa.eu

190 A. Cimatti, M. Roveri, and S. Tonetta

formalization and the validation were based on the language and techniques described
in this paper, and were successfully applied by the domain experts.

2 Motivating Application Domain

The ETCS specification is a set of requirements related to the automatic supervision of
the location and speed performed by the train on-board system. The system is intended
to be progressively installed on all European trains in order to guarantee the interoper-
ability with the track-side system which are currently governed by national rules. ETCS
specifies how the train should behave in the proximity of the target location. In partic-
ular, the Chapter 3 of the System Requirement Specification (SRS) [L5] describes how
trains move on a line and periodically receive a so-called Movement Authority (MA).
The MA consists of a set of sections and a series of timeout that define some deadlines
of the authorization to move in each section while a number of curves limit the speed
of the train approaching the end of the MA (see Fig. [I). The specific curves are not
defined by ETCS, but only constrained by high-level requirements (“The algorithm for
their calculation is an implementation matter” SRS Sec. 3.13.4.1). Moreover, when the
trains pass some limit, particular actions must be taken on board: e.g. when the train
passes the end of the MA the “train trip” must be started.

The ETCS specification poses demanding requisites to the formal methods adopted
for its validation. First, the adopted formalism shall be able to capture the meaning
of the requirements. Second, the formalism shall be as simple as possible to be used
by non-experts in formal methods: the requirements are usually ambiguous English
sentences that only an expert in the domain can formalize and validate.

In this context, a model-based approach is not natural. First, designing a hybrid sys-
tem that captures all behaviors allowed by the requirements requires to consider all
possible intricate combinations of timeout values, locations where to reset the timers,
speed limits for given locations. Second, these are not parameters of the system but
variables that change their value at discrete steps. Finally, in a model-based approach
it is hard to maintain the link between a requirement and its formal counterpart in the
model.

A property-based approach to requirements validation relies on the availability of
an expressive temporal logic, so that each informal statement has a formal counterpart
with similar structure. A natural choice are formulas in Linear-time Temporal Logic

- —— -

(=) (=) . () \
S S e >
> i i Distance to Danger Point e
- i i L]
— E—— ength of overlap

i i

Section Time—-out stop location i Section Time—out stop location
-

Overlap Time—out start location

(=) Optional signal < [N

End Section Time—out start location | il Distarwce

Section(1) Section(2) = End Section

Fig. 1. Structure of an MA (left) and a speed monitoring curve (right) [[15]

Requirements Validation for Hybrid Systems 191

(LTL) [26]] extended with Regular Expressions (RELTL) [6], because temporal formu-
las often resemble their informal counterpart. This is of paramount importance when
experts in the application domain have the task of disambiguating and formalizing the
requirements. For instance, a complex statement such as “The train trip shall issue
an emergency brake command, which shall not be revoked until the train has reached
standstill and the driver has acknowledged the trip” SRS Sec. 3.13.8.2 can be formal-
ized into G (train trip — (emergency brake U (train speed = 0 A ack trip))).

In order to deal with an application domain such as ETCS, first, we need to model
the dynamic of continuous variables, such as position, speed, time elapse, and timers,
in a way that is reasonably accurate from the physical point of view. For example, we
expect that a train can not move forward and reach a location without passing over all
intermediate positions. Second, we must be able to express properties of continuous
variables over time intervals. This poses problems of the satisfiability of formulas like
(pos < P U pos > P) or (speed > 0 U speed = 0). The first formula is satisfi-
able only if we consider left-open intervals, while the second one is satisfiable only if
we consider left-closed intervals (see [23]). Considering time points (closed singular
intervals) and open intervals is enough fine grained to represent all kinds of intervals.

Last, we need to be able to intermix continuous evolution and discrete steps, intu-
itively modeling “instantaneous” changes in the status of modes and control procedures.
For example, the requirement “The End Section timer shall be started on-board when
the train passes the End Section timer start location” (SRS Sec. 3.8.4.1.1) demands to
interrupt the continuous progress of the train for resetting a timer.

3 Hybrid Traces

Let V' be the finite disjoint union of the sets of variables Vp (with a discrete evolu-
tion) and Vi (with a continuous evolution) with values over the Reals A state s is an
assignment to the variables of V' (s : V' — R). We write X for the set of states. Let
f : R — X be a function describing a continuous evolution. We define the projection of
f over a variable v, written fv, as f¥(t) = f(t)(v). We say that a function f : R — R
is piecewise analytic iff there exists a sequence of adjacent intervals Jy, Ji,... € R
and a sequence of analytic functions hg, k1, ... such that U;J; = R, and for all : € N,
f(t) = hi(t) for all t € J;. Note that, if f is piecewise analytic, the left and right
derivatives exist in all points. We denote with f the derivative of a real function f, with
f(t)— and f(t), the left and the right derivatives respectively of f in ¢. Let I be an
interval of R or N; we denote with le(]) and ue(I) the lower and upper endpoints of I,
respectively. We denote with R* the set of non-negative real numbers.

Hybrid traces describe the evolution of variables in every point of time. Such evo-
lution is allowed to have a countable number of discontinuous points corresponding to
changes in the discrete part of the model. These points are usually called discrete steps,
while we refer to the period of time between two discrete steps as continuous evolution.

Definition 1 (Hybrid Trace). A hybrid trace over V is a sequence
(f, Iy = {fo, Io), {f1, 1), (fo, I2), ... such that, for all i € N,

’In practice, we consider also Boolean and Integer variables with a discrete evolution, but we
ignore them to simplify the presentation.

192 A. Cimatti, M. Roveri, and S. Tonetta

—— speed
— = limit
—— - —-— warning

VALUE

= » TIME
[E G D [IE ¢ [[EC) TRACE1
B¢ LI C D[IEC [[IRIC OLIC) TRACE2

Fig. 2. Possible evolution of two continuous variables (speed and limit) and a discrete variable
(warning), and two possible hybrid traces that represent it. TRACE?2 is a refinement of TRACEI.

either I; is an open interval (I; = (t,t') for some t,t' € RY, t < t') oris a singular
interval (I; = [t,t] for some t € RT);

the intervals are adjacent, i.e. ue(l;) = le(Ii11);

the intervals cover RT: |, oy It = RY (thus Iy = [0, 0]);

- fi : R — X is a function such that, for allv € Vo, f? is continuous and piecewise
analytic, and for all v € Vp, f! is constant;

if I; = (t,V) then fi(t) = fi—1(t), fi(t') = fis1(t)).

Typically, the f; are required to be smooth. Since observable events may occur during
a continuous evolution, we wish that a predicate over the continuous variable changes
its truth value only a finite number of times in a bounded interval. For this reason, we
require the analyticity of functions (see similar assumptions in [14]]). At the same time,
we weaken the condition of smoothness allowing discontinuity in the derivatives also
during a continuous evolution. This allows to observe the value of functions and their
derivatives without the need to break the continuous evolution with discrete steps not
required by the specification.

Fig. 2 shows the evolution of two continuous variables (speed and limit) and a dis-
crete variable (warning). The evolution presents two discrete steps and three continuous
evolutions. The figure shows two possible traces, respectively with 10 and 14 intervals.
In the second continuous evolution the function associated to speed is continuous but
not derivable in all points.

Some predicate over the variables in V' may evaluate to true only in particular points
of a continuous evolution. Therefore, it is important to sample the evolution in particular
time points. We say that a trace is a sampling refinement of another one if it has been
obtained by splitting an open interval into two parts by adding a sampling point in the
middle [14]]. In Fig.2l TRACE2 refines TRACE1 by exposing two more points.

Definition 2 (Partitioning Function [14]). A partitioning function p is a sequence
Loy 41, 12, - - - of non-empty, adjacent and disjoint intervals of N partitioning N. For-

mally, U,y i = N and ue(p;) = le(pip1) — 1.

Definition 3 (Trace Sampling Refinement [14]). A hybrid trace (f',I') is a sampling
refinement of (f,I) by the partitioning y (denoted with <f/7 I/> =<K (f, 1)) iff, for all
i €N I =Uje,, 1j and, forall j € p;, f; = fi.

Requirements Validation for Hybrid Systems 193

4 A Temporal Logic for Hybrid Traces

In this section we define HRELTL, i.e. linear temporal logic extended with regular
expressions equipped to deal with hybrid traces. The language is presented in a general
form with real arithmetic predicates without details on the syntax and the semantics of
the real functions. It is indeed possible that some requirements need such expressiveness
to be faithfully represented. A linear sub-case is then presented for which we have a
discretization that produces equi-satisfiable formulas.

Syntax. If v is a variable we denote with NEXT(v) the value of v after a discrete step
and with DER(v) the derivative of v. If V' is the set of variables, we denote with V¢,
the set of next variables and with V., the set of derivatives. HRELTL is built over a set
of basic atoms, that are real arithmetic predicates over V' U V¢, or over V U Vderﬁ
We denote with PRE D the set of predicates, with p a generic predicate, with pcyr
a predicate over V' only, with p,..+ a predicate over V' and V,,c.¢, and with pge, a
predicate over V' and V... We denote with p the predicate obtained from p by replacing
< with >, > with <, = with # and vice versa. We denote with py the predicate obtained
from p by substituting the top-level operator with i<, for e {<, >, =, <, >, #}.
The subset PRED;, of PRED over linear arithmetic constraints consists of the
predicates in one of the following forms
- ag + a1v1 + agve + - + apv, > 0 where vy,...,v, € Vg, ag,...,a, are
arithmetic predicates over variables in Vp, and <€ {<, >, =, <, >, #}.
— ag + a1v > 0 where v € Vo, ag, a; are arithmetic predicates over variables in Vp,
and e {<, >, =, <, >, #}

Example 1. © < y + z, NEXT(z) = 0, DER(z) < d are in PRED. The first two
predicates are also in PRFE D), while the third one is in PRFE D, only if d is a discrete
variable.

We remark that, the class of predicates generalizes the class of constraints used for
linear hybrid automata [2l20]; in particular, we replace constants with discrete (dense-
domain) variables.

The HRELTL is defined by combining extended regular expressions (SEREs) and
temporal operators from LTL. The linear fragment of HRELTL is defined by consider-
ing only predicates in PRE D,

Definition 4 (SERE syntax). I[fp € PRED, r, r1 and r5 are SEREs, then:
— pisa SERE;
— c¢isa SERE;
- r[*], 11579, 71 e, 1 | 7o, and vy && 1o are SEREs:.

Definition 5 (HRELTL syntax). Ifp € PRED, ¢, ¢1 and ¢ are HRELTL formulas,
and r is a SERE, then:

— pisa HRELTL formula;

3In practice, we consider also predicates with next variables and derivatives, and derivatives
after a discrete step, but we ignore this extensions to simplify the presentation.

194 A. Cimatti, M. Roveri, and S. Tonetta

- —d1, P1 A P2, X ¢1, ¢1 U ¢o are HRELTL formulas;
— r Q— ¢ is an HRELTL formula.

We use standard abbreviations for V, —, G , F , and |~ (see, e.g., [11]]).
Example 2. G (warning = 1 — (warning = 1 U speed < limit)) is in HRELTL.

Semantics. Some choices underlie the definition of the semantics in order to guarantee
that the satisfaction of a formula by a hybrid trace does not depend on the sampling of
continuous evolutions, rather it depends only on the discrete steps and on the shape of
the functions that describe the continuous evolutions (sampling invariance [14]]). Other
choices have been taken to make the formalization of requirements more natural. For
example, predicates including next variables can be true only in discrete steps.

Definition 6 (PRED semantics)

= (f,I),i & Dewrr iffs forall t € I, peyrr evaluates to true when v is equal to fF (t),
denoted with f;(t) = p;

= {f,I),i E Dnewst iff there is a discrete step between i and i + 1, i.e. I; = ;11 =
[t,t], and ppeqt evaluates to true when v is equal to f{(t) and NEXT(v) to f7 (1),
denoted with f;(t), fit1(t) = Pnext;

= {f,I),i & paer iff, for all t € I;, pye, evaluates to true both when v is equal to
fY(t) and DER(v) to £ ()1, and when v is equal to fY(t) and DER(v) to f7(t)_,
denoted with f;(t), fi(t)+ | pacr and fi(t), fi(t)— | pacr (When f;(t) is defined
this means that f;(t), fl(t) E pder)-

Note that, for all 7 € N, f; is defined on all reals, and thus the left and right derivatives
are defined in all points of ;.

In order to ensure sample invariance, the predicates inside a SERE can be true over
a sequence of more than one moment. This is different from the standard discrete ap-
proach, where they are usually true only if evaluated on just one state. Moreover, we
require that if a sequence satisfies the concatenation or repetition of two SEREs, the
sequence must contain a discrete step.

Definition 7 (SERE semantics)

- {f,I),i,7 Epiff forallk, i < k < j, there is no discrete step at k (I, # Iy1),
and, forallk, i <k <j, (f,I),k = p;

- <f7[>7Z1]):607‘7’>J!

- {f,D),i,5 Er[*1iffi > j, or (f,I),i,j = r, or there exists a discrete step at k
(I = Ixy1), 0 <k < j,suchthat (f,I), i,k =r, (f,I),k+ 1,5 = r[*];

-{f, D, Er s iff (f,1),4,5 = r, (f,1),7+ 1,5 E re (ie, mo accepts
the empty word), or; (f,I),1,1 — 1 = r1, (f,I),i,j |E 72 (i.e., r1 accepts the
empty word), or there exists a discrete step at k (I, = I,41), 1 < k < j, such that
<f7[>7iak ':7’1, <f7[>7k+1vj ':712;

- ({f,I),i,5 = r1 2 ro iff there exists a discrete step at k (I;;, = Ij41), i < k < j,
such that (f, I),i,k = ri, (f, 1), k,j Ere;

- <f7[>7Z1]):7"1 | T2 ﬁ<f71>7zaj |:7’1 07<f,[>,i,j):'FQ;

- {f,D,i,j =Er &&ro iff (f,I),4,j Eriand (f,I),i,j E ra.

Requirements Validation for Hybrid Systems 195

Definition 8 (HRELTL semantics)

< Dyi=pif (f,1),i = p;

i Uf (f D)1 b ¢

= QNP If(f,)i = gand (f,)i |=;

i = X ¢ iff there is a discrete step at i (I; —Iz+1) and (f, I),i+ 1 ¢;
):¢U¢lﬁ‘forsome322< I),j = vYand foralli < k < j,
):

i = ()—) ¢ iff, there exists a discrete step at j > i (I; = I 1) such that
i, j T, and (f,1),j = ¢.

Definition 9 (Ground Hybrid Trace [14]). A hybrid trace {f,I) is a ground hybrid
trace for a predicate p iff the interpretation of p is constant throughout every open
interval: if I; = (t,t') then either (f,I),i |= por (f,I),i |E p. A hybrid trace (f,I)
is a ground hybrid trace for a formula ¢ iff it is ground for all predicates of ¢.

S S . . .

Given an HRELTL formula ¢, and a hybrid trace (f,I) ground for ¢, we say that

(f, 1) | oiff (f,1),0 = ¢.
Given an HRELTL formula ¢, and any hybrid trace (f, I), we say that (f,I) = ¢

iff there exists a sampling refinement (f/7 I /> of (f,I) such that (f/7 I /> is ground for ¢
/ !/
and (f, T') = ¢.
For example, the hybrid traces depicted in Fig. Rl satisfy the formula of Example[2l
The following theorems guarantee that the semantics is well defined. (We refer the
reader to [12] for the proofs.)

Theorem 1 (Finite variability). Given a formula ¢, for every hybrid trace (f,I) there
exists another hybrid trace (f /, 1 /> which is a sampling refinement of (f, I) and ground

for ¢.

Theorem 2 (Sample invariance). If (f/, 1 /> is a sampling refinement of (f,I), then
the two hybrid traces satisfy the same formulas.

Note that we can encode the reachability problem for linear hybrid automata into the
satisfiability problem of a linear HRELTL formula. Despite the undecidability of the
satisfiability problem, we provide automatic techniques to look for satisfying hybrid
traces, by constructing an equi-satisfiable discrete problem.

5 Reduction to Discrete Semantics

RELTL is the temporal logic that combines LTL with regular expressions and consti-
tutes the core of many specification languages. Here, we refer to a first-order version
of RELTL with real arithmetic predicates. RELTL syntax can be seen as a subset of
HRELTL where predicates are allowed to include only current and next variables, but
not derivatives.

RELTL formulas are interpreted over discrete traces. A discrete trace is a sequence
of states ¢ = sg, $1, S, ... with s; € X for all ¢ € N. The semantics for RELTL is
analogue to the one of HRELTL but restricted to discrete steps only. We refer the reader
to [[12] for more details.

196 A. Cimatti, M. Roveri, and S. Tonetta

Encoding Hybrid RELTL into Discrete RELTL. We now present a translation of
formulas of the linear fragment of HRELTL into equi-satisfiable formulas of RELTL. In
the rest of this document we assume that formulas contain only predicates in PRE D).

We introduce two Real variables §; and (respectively to track the time elapsing
between two consecutive steps, and to enforce the non-Zeno property (i.e. to guarantee
that time diverges). We introduce a Boolean variable ¢ that tracks if the current state
samples a singular interval or an open interval.

We define a formula v, that encodes the possible evolution of d; and ¢:

P, =L AC>0 A
G (LA =0AX()V(EASG>0AX () V(mtAs>0AX (1)) A
G (NEXT(¢) = () n @
GF§ >

In particular, we force to have a discrete step, which is characterized by two consecutive
singular intervals, if and only if ; = 0.

For every continuous variable v € V¢ we introduce the Real variable v; and v,
that track the left and right derivative of v. We define a formula g that encodes the
relation among continuous variables and their derivatives:

Yoer 1= Nyey, (06 > 0N L) — (NEXT(v) — v) = (6 X NEXT(01))) A
((6¢ > 0 A=) — (NEXT(v) — v) = (0¢ X Vr)). (2)

The equation says that, before a point that samples an open interval, the evolution is
tracked with the value of left derivative assigned in the sampling point, while after-
wards, the evolution is tracked with the right derivative in the same point.

We define a formula ¥prgp o being PRED, the set of predicates occurring in
¢ without next variables and derivatives, that encodes the continuous evolution of the
predicates.

YprrED, = (0t > 0NAL) — /\pEPRED¢ NEXT(p=) — p= A
(0t >0A) — /\pePREI% p= — NEXT(p=) A@3)
6 >0 H/\pePRED¢((p< — =X ps) A (p> — X p<)).

The first two conjuncts encode that if p— holds in an open interval, then p— holds
in the immediately adjacent singular intervals too. The third conjuncts encodes that if
p< holds we cannot move to an immediately following state where p~. holds (and vice
versa) without passing through a state where p— holds.

We define ¢y, to encode that discrete variables do not change value during a con-
tinuous evolution:
Yvp =0t > 0= (A,cy, (NEXT(v) = v)). 4)
Finally, we define the partial translation 7/(¢) recursively over ¢. The translation 7/,
of predicates is defined as:
- T; (pcurr) = Pcurrs
- 7—; (pnext) - (6t - 0) A Pnexts
- T(;,(pder) = pdeT[bl/DER(v)] A Pder ['[}T/DER(U)])'

Where, p[v’/v] is predicate p where every occurrence of v is replaced with v'.
The translation 7;. of SERESs is defined as:

- 7(p) = (6 > O AT, ()]s ma(p)

* This has the effect that 7/ (pnext) = 7o (Prewt) = (6 = 0 A Prewt)-

Requirements Validation for Hybrid Systems 197

7€) =

T (r [*]) =e | {r;(r) : 6, = O}[*]; 7.(r);

- Tl(?‘l ;r2) = {{e && 7i(r1)} 5 (o)}t | {7(r1) 5 {e && 7(r2)}} |
{{r (1) 0 —0} {ri(r2) s T}h

Tr(riire) = (1) 16 =0:7(r2);

- 7(r1 | r2) =7.(r1) | 7(r2);

- T(?"l && 7"2) = TT(Tl) && T;(Tg).

The translation 7" of HRELTL is defined as:

p) 7a(D);
-)—ﬁ7(¢1)
A ¢2) =T (1) AT (92);
X¢1)—(5t—0/\XT(¢1)
#1 U ¢2) = 7'(¢1) U 7'(¢2);
= 7'(r 0=) = {7.(r) 1 6: = 0} O— 7'(9).

Thus, the translation 7 for a generic HRELTL formula is defined as:

7(¢) := ¥, Ao ApPrED, A vp AT (). ®)

(
(¢
- (¢
(
(

Remark 1. If ¢ contains only quantifier-free predicates then also 7(¢) is quantifier-free.
In general, the predicates in 7(¢) are non linear. ¢ may contain non linear predicates,
even in the case ¢ is in the linear fragment of HRELTL, since it may contain polyno-
mials over discrete variables or multiplications of a continuous variable with discrete
variables. Moreover, Equation 2l introduces quadratic equations. Finally, note that if ¢
does not contain SEREs, then the translation is linear in the size of ¢.

We now define a mapping from the hybrid traces of ¢ to the discrete traces of 7(¢), and
vice versa. Without loss of generality, we assume that the hybrid trace does not have
discontinuous points in the derivatives in the open intervals.

Definition 10. Given a hybrid trace {f,I), the discrete trace o = Q2({f, I)) is defined
as follows: forall i € N,

-t =tififI; = [t,t], and t; = (t +t/)/2 ifl; = (t,t/),'

- si(v) = fi(t);

= if L = (t, 1), si(0) = (f (t:) — f7 (tie1))/ (i — tiza) and si(0r) = (f7 (tig1) —
fE(ta))/ (tigr = ta); if I = [t,t] then si(in) = [{'(t)— and s;(0r) = f7'(t)+;

- () =TifI; =[t,t], and s;(t) = Lif I, = (¢, t);

= 5i(0¢) = tiy1 — ti;

- 5i(¢) = «, such that for all i € N, there exists j > i such that t; 1 — t; > « (such
« exists for the Cauchy’s condition on the divergent sequence {t;}icn).

We then define the mapping in the opposite direction.

Definition 11. Given a discrete trace o, the hybrid trace (f,I) = 1 (o) is defined as
follows: for all i € N,

-ti= 20§j<i71 55 (0¢),

198 A. Cimatti, M. Roveri, and S. Tonetta

- l'fSi(L) =T then I; = [ti,ti] else I, = (ti—17ti+1),
— if 5;(8:) > O then f; is the piecewise linear function defined as f(t) = s;(v) —
si(0r) x (t; —t) ift <t;andas f¥(t) = s;(v) + s;(0r) X (t — ;) if t > ;.

Theorem 3 (Equi-satisfiability). If (f,I) is ground for ¢ and (f,I) = ¢, then
QUf, D)) E 7(9). If o is a discrete trace such that o |= 7(¢), then V(o) = ¢ and
Y (o) is ground for ¢. Thus ¢ and () are equi-satisfiable.

For the proofs we refer the reader to [12].

6 Fair Transition Systems and Language Emptiness

Fair Transition Systems (FTS) [26] are a symbolic representation of infinite-state sys-
tems. First-order formulas are used to represent the initial set of states I, the transition
relation 7', and each fairness condition ¢ € F'.

To check the satisfiability of an RELTL formula ¢ with first-order constraints we
build a fair transition system Sy and we check whether the language accepted by S is
not empty with standard techniques. For the compilation of the RELTL formula S into
an equivalent FTS S we rely on the works described in [11!10].

The language non-emptiness check for the FTS Sy is performed by looking for a
lasso-shape trace of length up to a given bound. We encode this trace into an SMT
formula using a standard Bounded Model Checking (BMC) encoding and we submit
it to a suitable SMT solver. This procedure is incomplete from two point of views:
first, we are performing BMC limiting the number of different transitions in the trace;
second, unlike the Boolean case, we cannot guarantee that if there is no lasso-shape
trace, there does not exist an infinite trace satisfying the model (since a real variable may
be forced to increase forever). Nevertheless, we find the procedure extremely efficient
in the framework of requirements validation.

The BMC encoding allows us to perform some optimizations. First, as we are con-
sidering a lasso-shape path, the Cauchy condition for the non-Zeno property can be
reduced to G F 6; > 0 and no extra variables are needed. Second, whenever we have a
variable whose value is forced to remain the same in all moments, we can remove such
constraint and use a unique copy of the variable in the encoding.

The definition of HRELTL restricts the predicates that occur in the formula to linear
function in the continuous variables in order to allow the translation to the discrete case.
Nevertheless, we may have non-linear functions in the whole set of variables (including
discrete variables). Moreover, the translation introduces non-linear predicates to encode
the relation of a variable with its derivatives.

We aim at solving the BMC problem with an SMT solver for linear arithmetics over
Reals. To this purpose, first, we assume that the input formula does not contain non-
linear constraints; second, we approximate (2)) with linear constraints. Suppose DER(v)
is compared with constants ¢y, . . ., ¢, in the formula, we replace the non-linear equa-
tions of (@) that are in the form NEXT(v) — v = h X &; with:

Nicicn(h <ci < NEXT(v) —v < X0 A
"7 h=c¢ o NEXT(v) —v=0c¢; X A (6)
h > ¢; <> NEXT(v) —v > ¢; X 0t))).

Requirements Validation for Hybrid Systems 199

7 Practical Experience

The HRELTL language has been evaluated in a real-world project that aims
at formalizing and validating the ETCS specification. The project is in re-
sponse to the ERA tender ERA/2007/ERTMS/OP/01 (“Feasibility study for
the formal specification of ETCS functions”), awarded to a consortium com-
posed by RINA SpA, Fondazione Bruno Kessler, and Dr. Graband and Partner
GmbH (see http://www.era.europa.eu/public/core/ertms/Pages/
Feasibility_ Study.aspx for further information on the project). The language
used within the project is actually a superset of HRELTL that encompasses first-order
constructs to represent classes of objects and their relationships. The extension enriches
the representation power of the discrete part of the specification, and therefore it is or-
thogonal to the hybrid aspects of the language. The techniques used to handle objects
and first-order constraints are described in [[10].

We implemented the translation from linear HRELTL to RELTL in an extended ver-
sion of the NUSMYV [9] model checker that interfaces with the MathSAT [5] SMT
solver. For an RELTL formula ¢, we use NUSMYV to compile ¢ into an equivalent FTS
S¢. Then, we check the language non-emptiness of S by submitting the corresponding
BMC problem to the MathSAT SMT solver.

We ran the experiments on a 2.20GHz Intel Core2 Duo Laptop equipped with
2GB of memory running Linux version 2.6.24. All the data and binaries neces-
sary to reproduce the results here presented are available at http://es. fbk.eu/
people/tonetta/tests/cav09/.

We extracted from the fragment of the ETCS specification a set of requirements that
falls in HRELTL and that are relevant for their hybrid aspects. This resulted in a case
study consisting of 83 HRELTL formulas, with 15 continuous variables, of which three
are timers and two are stop watches. An excerpt of the ETCS specification in HRELTL
format is reported in [12]].

We first checked whether the specification is consistent, i.e. if it is satisfiable (SAT).
Then, we validated the formalization with 3 different scenarios (SCEN {1,2,3}), check-
ing the satisfiability of the conjunction of the specification with a formula that represents
some assumptions on the evolution of the variables. In all cases, the tool generated a
trace proving the satisfiability of the formulas. We then asked the tool to generate wit-
ness traces of different increasing lengths & (10, 20, and 30 respectively). We obtained
the results reported in Fig. In the table we report also the size, in terms of num-
ber of variables and number of fairness conditions of the FTS we submit to underlying
verification tool. (We use #r,#b,# f with the meaning, r Real variables, b Boolean
variables, and f fairness conditions.) Fig.[3(b)]also reports some curves that we can ex-
tract from the trace generated by the tool. These curves are the same that are manually
depicted in ETCS (Fig.[I(b)). The fact that the automated generated traces resemble the
ones inserted in the requirements document makes us more confident that the require-
ments captures what the designers have in mind.

8 Related Work

To the best of our knowledge, this is the first attempt to generalize requirements valida-
tion to the case of hybrid domains.

http://www.era.europa.eu/public/core/ertms/Pages/
Feasibility_Study.aspx
http://es.fbk.eu/
people/tonetta/tests/cav09/

200 A. Cimatti, M. Roveri, and S. Tonetta

Name: Sat k #r#b#f Mem Time 7 T T T T T ryree—
(MB) (sec) W limit

SAT Y 10 56310,17 748 11.38 61 SBIlimit e 1

SAT Y 20 56310,17 1224 5538 5| SBD_limit- —

SAT Y 30 56310,17 173.0 141.20 EBD_limit

SCEN 1 Y 10 56312,19 75.4 15.00 4l

SCEN 1 Y 20 56312,19 123.1 78.09 ‘

SCEN I Y 30 56312,19 1743 190.73 3| .

SCEN2 Y 10 56312,19 768 17.56

SCEN 2 Y 20 56312,19 127.1 78.26 2y

SCEN2 Y 30 5631219 180.0 270.59

SCEN3 Y 10 5632318 759 19.16

SCEN3 Y 20 56323,18 1225 52.52 o N

SCEN3 Y 30 56323,18 1733 147.97 o 1 2 3 4 5 6 7 8 9

() (b)

Fig. 3. The results of the experimental evaluation

The work most closed to the current paper is described in [[14], where LTL with
continuous and hybrid semantics is compared with the discrete semantics. It is proved
that a positive answer to the model checking problem and to the validity problem with
the discrete semantics implies a positive answer to the corresponding problem in the
continuous semantics. The properties of finite variability and sampling invariance are
introduced. Notably, the hybrid semantics of the logic relies on the hybrid traces ac-
cepted by a hybrid system (while our definition is independent).

Besides [[14], our work is also inspired by the ones of [23124127]]. [24427] face the
problem of the observability of predicates during continuous evolutions, and define
phase transition systems, which are a symbolic version of hybrid automata. [23] for-
mally defines a continuous semantics for LTL without next operator and derivatives. In
all these works, there is no attempt to solve the satisfiability problem for LTL with the
continuous semantics.

Many logics have been introduced to describe properties of timed systems (see [3/4]
for a survey), but none of them can force the continuity of functions, because the seman-
tics is discrete, though in some cases even a dense time domain is considered. Hybrid
systems [27/20] assume that some functions are continuous but the logic used to express
the properties is discrete.

In [18l22], a translation from dense time to discrete time is proposed for a particular
class of specifications, but only discrete semantics is considered. In [30]], the discretiza-
tion of hybrid systems is obtained with an over-approximation, while our translation
produces an equi-satisfiable discrete formula.

In [19], a framework for specifying requirements of hybrid systems is pro-
posed. However, the techniques are model based, and the requirements are formal-
ized in a tabular notation, which can be seen as a symbolic representation of an
automaton.

In [29]], a hybrid dynamic logic is proposed for the verification of hybrid systems
and it was used to prove safety properties for ETCS. The approach is still model-based
since the description of the system implementation is embedded in the logical formula.
The regular expression operations are used to define hybrid programs, that represent the

Requirements Validation for Hybrid Systems 201

hybrid systems. Properties of hybrid programs are expressed with the modalities of first-
order dynamic logic. As in RELTL, we use regular expressions with a linear semantics.
Moreover, the constraints on the continuous evolution are part of the requirements rather
than the system description. As explained in Sec. 2] our approach to the validation of
ETCS specifications is property-based.

In [2120], linear hybrid automata are defined and a symbolic procedure is proposed
to check their emptiness. Besides the different property-based approach that we pro-
pose, our techniques differ in the following points. First, instead of a finite set of states,
the discrete modes are represented by the infinite (uncountable) set of assignments to
the discrete variables. Second, instead of fix-point computations where the image is
based on the quantifier elimination in the theory of Reals, we propose a BMC-based
approach with a quantifier-free encoding (this is accomplished by forcing each step to
move in a convex region). Related to the encoding of invariants that hold in a continuous
evolution, also [31] faces the problem of concave conditions, and splits concave time
conditions into convex segments. The condition () of our translation has the purpose
to split the trace into convex regions in an analogue way.

In [25], a continuous semantics to a temporal logic which does not consider next
operators and derivatives is presented. The paper addresses the problem of monitoring
temporal properties of circuits with continuous signals.

On a different line of research, Duration Calculus (DC) [7] specifies requirements
of real-time systems with predicates over the integrals of Boolean functions over fi-
nite intervals of time. Extensions of DC such as Extended Duration Calculus [8]] can
specify properties over continuous and differentiable functions. DC has been used to
specify properties for ETCS [17]]. Similarly to DC, Hybrid Temporal Logic (HTL) [21]
uses the “chop” operator to express the temporal succession and can express temporal
constraints on the derivatives of dynamic functions. Both DC and HTL interpret formu-
las over intervals of time (rather than infinite sequences of intervals). On the contrary,
HRELTL is based on RELTL, which has been consolidated as specification language
at the industrial level. HRELTL has the advantage to allow the reuse of requirements
analysis techniques for RELTL.

9 Conclusions and Future Work

In this paper, we tackled the problem of validating requirements for hybrid systems.
We defined a new logic HRELTL, that allows to predicate over properties of hybrid
traces. Then, we showed that the satisfiability for the linear fragment of HRELTL can
be reduced to an equi-satisfiable problem for RELTL over discrete traces. HRELTL
was used for modeling in a real-world project aiming at the validation of a subset of the
ETCS specification. The validation showed that the temporal requirements of ETCS can
be formalized with HRELTL, and the experimental evaluation we carried out showed
the practicality of the analysis, based on the use of SMT techniques.

As future work, we will enhance the scalability of the satisfiability procedure, by
means of incrementality, lemmas on demand, and abstraction-refinement techniques.
We will also consider alternative ways to deal with nonlinear constraints.

202

A. Cimatti, M. Roveri, and S. Tonetta

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

The PROSYD project on property-based system design (2007),
http://www.prosyd.org

Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid Automata: An Algorithmic
Approach to the Specification and Verification of Hybrid Systems. In: Hybrid Systems, pp.
209-229 (1992)

Alur, R., Henzinger, T.A.: Logics and Models of Real Time: A Survey (1992)

Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. Inf. Com-
put. 104(1), 35-77 (1993)

Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT
Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 299-303. Springer,
Heidelberg (2008)

Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191-206. Springer,
Heidelberg (2005)

Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5),
269-276 (1991)

Chaochen, Z., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time
systems. In: Hybrid Systems, pp. 36-59 (1992)

Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: a new Symbolic Model
Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495-499.
Springer, Heidelberg (1999)

Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Object models with temporal constraints. In:
SEFM 2008, pp. 249-258. IEEE Press, Los Alamitos (2008)

Cimatti, A., Roveri, M., Tonetta, S.: Symbolic Compilation of PSL. IEEE Trans. on CAD of
Integrated Circuits and Systems 27(10), 1737-1750 (2008)

Cimatti, A., Roveri, M., Tonetta, S.: Requirements Validation for Hybrid Systems. Technical
Report 200904002, FBK, Extended version of CAV 2009 (2009)

Claessen, K.: A coverage analysis for safety property lists. In: FMCAD, pp. 139-145. IEEE,
Los Alamitos (2007)

de Alfaro, L., Manna, Z.: Verification in Continuous Time by Discrete Reasoning. In: Alagar,
V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 292-306. Springer, Heidelberg
(1995)

ERTMS/ETCS — Baseline 3: System Requirements Specifications. SUBSET-026-1, i3.0.0
(2008), http://www.era.europa.eu/core/ertms/Pages/
FirstETCSSRS300.aspx

Eveking, H., Braun, M., Schickel, M., Schweikert, M., Nimbler, V.: Multi-level assertion-
based design. In: MEMOCODE, pp. 85-86. IEEE, Los Alamitos (2007)

Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the european
train control system. In: FMCAD, pp. 76-77 (2006)

Furia, C.A., Pradella, M., Rossi, M.: Automated Verification of Dense-Time MTL Specifi-
cations Via Discrete-Time Approximation. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM
2008. LNCS, vol. 5014, pp. 132-147. Springer, Heidelberg (2008)

Heitmeyer, C.L.: Requirements Specifications for Hybrid Systems. In: Hybrid Systems, pp.
304-314 (1995)

Henzinger, T.A.: The Theory of Hybrid Automata. In: LICS, pp. 278-292 (1996)
Henzinger, T.A., Manna, Z., Pnueli, A.: Towards refining temporal specifications into hybrid
systems. In: Hybrid systems, pp. 60-76 (1992)

Henzinger, T.A., Manna, Z., Pnueli, A.: What Good Are Digital Clocks? In: Kuich, W. (ed.)
ICALP 1992. LNCS, vol. 623, pp. 545-558. Springer, Heidelberg (1992)

http://www.prosyd.org
http://www.era.europa.eu/core/ertms/Pages/FirstETCSSRS300.aspx
http://www.era.europa.eu/core/ertms/Pages/FirstETCSSRS300.aspx

23.

24.

25.

26.

27.
28.

29.

30.

31.

Requirements Validation for Hybrid Systems 203

Kapur, A.: Interval and point-based approaches to hybrid system verification. PhD thesis,
Stanford, CA, USA (1998)

Maler, O., Manna, Z., Pnueli, A.: From Timed to Hybrid Systems. In: REX Workshop, pp.
447-484 (1991)

Maler, O., Nickovic, D., Pnueli, A.: Checking Temporal Properties of Discrete, Timed and
Continuous Behaviors. In: Pillars of Computer Science, pp. 475-505 (2008)

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, Heidelberg (1992)

Manna, Z., Pnueli, A.: Verifying Hybrid Systems. In: Hybrid Systems, pp. 4-35 (1992)

Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal analysis of
hardware requirements. In: DAC, pp. 821-826 (2006)

Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In: Olivetti,
N. (ed.) TABLEAUX 2007. LNCS, vol. 4548, pp. 216-232. Springer, Heidelberg (2007)
Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design 32(1), 57-83
(2008)

Wang, F.: Time-Progress Evaluation for Dense-Time Automata with Concave Path Condi-
tions. In: ATVA, pp. 258-273 (2008)

	Requirements Validation for Hybrid Systems
	Introduction
	Motivating Application Domain
	Hybrid Traces
	A Temporal Logic for Hybrid Traces
	Reduction to Discrete Semantics
	Fair Transition Systems and Language Emptiness
	Practical Experience
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

