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Abstract. We provide a verification technique for a class of programs working
on integer arrays of finite, but not a priori bounded length. We use the logic
of integer arrays SIL [13]] to specify pre- and post-conditions of programs and
their parts. Effects of non-looping parts of code are computed syntactically on
the level of SIL. Loop pre-conditions derived during the computation in SIL
are converted into counter automata (CA). Loops are automatically translated—
purely on the syntactical level—to transducers. Pre-condition CA and transducers
are composed, and the composition over-approximated by flat automata with dif-
ference bound constraints, which are next converted back into SIL formulae, thus
inferring post-conditions of the loops. Finally, validity of post-conditions speci-
fied by the user in SIL may be checked as entailment is decidable for SIL.

1 Introduction

Arrays are an important data structure in all common programming languages. Auto-
matic verification of programs using arrays is a difficult task since they are of a finite,
but often not a priori fixed length, and, moreover, their contents may be unbounded too.
Nevertheless, various approaches for automatic verification of programs with arrays
have recently been proposed.

In this paper, we consider programs over integer arrays with assignments, conditional
statements, and non-nested while loops. Our verification technique is based on a combi-
nation of the logic of integer arrays SIL [[13]], used for expressing pre-/post-conditions
of programs and their parts, and counter automata (CA) and transducers, into which
we translate both SIL formulae and program loops in order to be able to compute the
effect of loops and to be able to check entailment.

SIL (Single Index Logic) allows one to describe properties over arrays of integers
and scalar variables. SIL uses difference bound constraints to compare array elements
situated within a window of a constant size. For instance, the formula (Vi.0 <i <
n—1—b5b[i]>0) A (Vi0<i<ny—1— c[i] <0) describes a post-condition of a
program partitioning an array a into an array b containing its positive elements and an
array c¢ containing its negative elements. SIL formulae are interpreted over program

* This work was supported by the French project RNTL AVERILES, the Czech Science Founda-
tion (projects 102/07/0322, 102/09/H042), the Barrande project MEB 020840, and the Czech
Ministry of Education by the project MSM 0021630528.

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 157 2009.
(© Springer-Verlag Berlin Heidelberg 2009



158 M. Bozga et al.

states assigning integers to scalar variables and finite sequences of integers to array
variables. As already proved in [13], the set of models of an F*V*-SIL formula corre-
sponds naturally to the set of traces of a flar CA with loops labelled by difference bound
constraints. This entails decidability of the satisfiability problem for 3*v*-SIL.

In this paper we take a novel perspective on the connection between 3*v*-SIL and
CA, allowing to benefit from the advantages of both formalisms. Indeed, the logic is
useful to express human-readable pre-/post-conditions of programs and their parts, and
to compute the post-image of (non-looping) program statements symbolically. On the
other hand, automata are suitable for expressing the effects of program loops.

In particular, given an 3*V*-SIL formula, we can easily compute the strongest post-
condition of an assignment or a conditional statement in the same fragment of the logic.
Upon reaching a program loop, we then translate the 3*V*-SIL formula ¢ describing
the set of states at the beginning of the loop into a CA A, encoding its set of models.
Next, to characterise the effect of a loop L, we translate it—purely syntactically—into
a transducer Tr, i.e., a CA describing the input/output relation on scalars and array el-
ements implemented by L. The post-condition of L is then obtained by composing 77,
with Ae. The result of the composition is a CA By 1, representing the exact set of states
after any number of iterations of L. Finally, we translate Bz back into 3*V*-SIL, ob-
taining a post-condition of L w.r.t. . However, due to the fact that counter automata
are more expressive than 3*V*-SIL, this final step involves a (refinable) abstraction.
We first generate a flat CA that over-approximates the set of traces of By 1, and then
translate the flat CA back into 3*V*-SIL.

Our approach thus generates automatically a human-readable post-condition for
each program loop, giving the end-user some insight of what the program is doing.
Moreover, as these post-conditions are expressed in a decidable logic, they can be used
to check entailment of user-specified post-conditions given in the same logic.

We validate our approach by successfully and fully algorithmically verifying several
array-manipulating programs, like splitting of an array into positive and negative ele-
ments, rotating an array, inserting into a sorted array, etc. Some of the steps were done
manually as we have not yet implemented all of the techniques—a full implementation
that will allow us to do more examples is underway.

Due to space reasons, we skip below some details of the techniques and their proofs,
which are deferred to [4]].

Related Work. The area of automated verification of programs with arrays and/or syn-
thesising loop invariants for such programs has recently received a lot of attention. For
instance, [112I8[1216l18] build on templates of universally quantified loop invariants
and/or atomic predicates provided by the user. The form of the sought invariants is then
based on these templates. Inferring the invariants is tackled by various approaches, such
as predicate abstraction using predicates with Skolem constants [8]], constraint-based
invariant synthesis [1J2], or predicate abstraction combined with interpolation-based
refinement [16]].

In [20], an interpolating saturation prover is used for deriving invariants from finite
unfoldings of loops. In the very recent work of [17]], loop invariants are synthesised by
first deriving scalar invariants, combining them with various predefined first-order array
axioms, and finally using a saturation prover for generating the loop invariants on arrays.
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This approach can generate invariants containing quantifier alternation. A disadvantage
is that, unlike our approach, the method does not take into account loop preconditions,
which are sometimes necessary to find reasonable invariants. Also, the method does not
generate invariants in a decidable logical fragment, in general.

Another approach, based on abstract interpretation, was used in [[L1]. Here, arrays are
suitably partitioned, and summary properties of the array segments are tracked. The par-
titioning is based on heuristics related to tracking the position of index variables. These
heuristics, however, sometimes fail, and human guidance is needed. The approach was
recently improved in [15] by using better partitioning heuristics and relational abstract
domains to keep track of the relations of the particular array slices.

Recently, several works have proposed decidable logics capable of expressing com-
plex properties of arrays [3L619/10.21]]. In general, these logics lack the capability of
universally relating two successive elements of arrays, which is allowed in our previ-
ous work [[13!14]. Moreover, the logics of [3l619410i21]] do not give direct means of
automatically dealing with program loops, and hence, verifying programs with arrays.
In this work, we provide a fully algorithmic verification technique that uses the decid-
able logic of [13]]. Unlike many other works, we do not synthesise loop invariants, but
directly post-conditions of loops with respect to given preconditions, using a two-way
automata-logic connection that we establish.

2 Preliminaries

For a set A, we denote by A* the set of finite sequences of elements from A. For such
a sequence G € A*, we denote by |o] its length, and by o; the element at position i, for
0 <i < |o|. We denote by N the set of natural numbers, and by Z the set of integers. For
a function f : A — B and a set S C A, we denote by f|g the restriction of f to S. This
notation is naturally lifted to sets, pairs or sequences of functions.

Given a formula @, we denote by FV () the set of its free variables. If we denote
a formula as @(xy,...,x,), we assume FV (@) C {x1,...,x,}. For @(x1,...,x,), we de-
note by ¢[f1/x1,...,t,/xy] the formula which is obtained from ¢ by replacing each free
occurrence of xi,...,x, by the terms #1,...,t,, respectively. Moreover, we denote by
o[t /x1,...,x,] the formula that arises from @ when all free occurrences of all the vari-
ables xy,...,x, are replaced by the same term 7. Given a formula ¢ and a valuation v of
its free variables, we write v = @ if by replacing each free variable x of @ with v(x) we
obtain a valid formula. By = ¢ we denote the fact that ¢ is valid.

A difference bound constraint (DBC) is a conjunction of inequalities of the forms
(MHx—y<ec,(2)x<c,or (3)x > ¢, where ¢ € Z is a constant. We denote by T (true)
the empty DBC.

A counter automaton (CA) is a tuple A = (X,0,1,—,F), where: X is a finite set of

counters ranging over Z, Q is a finite set of control states, I C Q is a set of initial states,

. ” . . XX . . .
— is a transition relation given by a set of rules g u g’ where @ is an arithmetic

formula relating current values of counters X to their future values X' = {x' | x € X},
and F C Q is a set of final states.
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A configuration of a CA A is a pair (g,v) where g € Q is a control state, and v: X — Z
is a valuation of the counters in X. For a configuration ¢ = {(¢q,V), we designate by
val(c) = v the valuation of the counters in c. A configuration (¢’,V') is an immediate

. . .. X.X'
successor of (g, v) if and only if A has a transition rule ¢ LLUON ¢ such that vUV' |=

¢. Given two control states ¢,¢’ € Q, a run of A from ¢ to ¢’ is a finite sequence of
configurations cicy . .. ¢, with c; = (g, V), ¢, = (¢', V') for some valuations v,V : X — Z,
and c;y; is an immediate successor of ¢;, for all 1 <i < n. Let R (A) denote the set
of runs of A from some initial state go € I to some final state gy € F, and Tr(A) =
{val(ci)val(cz)...val(cy) | cica...cn € R(A)} be its set of traces.

For two counter automata A; = (X;, Q;,I;, —, F;), i = 1,2 we define the product au-

tomaton as Ay © Az = (X1 UXa,01 X Q2,11 X b, —, Fi x F), where (q1,42) > (¢ ¢5)

if and only if g; R/ q) a2 *, ¢ and |= @ < @ A @,. We have that, for all sequences
ce€Tr(AI ®A;),0lx,€Tr(Ar) and 6|x, € Tr(Az), and vice versa.

3 Counter Automata as Recognisers of States and Transitions

In the rest of this section, let a = {aj,az,...,a;} be a set of array variables, and b =
{b1,b2,...,by} be asetof scalar variables. A state (0.,1) is a pair of valuations o : a —
Z*, and 1: b — Z. For simplicity, we assume that |ai(a; )| = |a(a2)| = ... = |a(ax)| > 0,
and denote by |0 the size of the arrays in the state.

In the following, let X be a set of counters that is partitioned into value counters
x = {x1,X2,...,X}, index countersi={iy,ia,...,ix }, parameters p = {p1,p2,- -, Pm}»
and working counters w. Notice that a is in a 1:1 correspondence with both x and i, and
that b is in a 1:1 correspondence with p.

Definition 1. Let (0,1) be a state. A sequence 6 € (X — 7Z)* is said to be consistent
with {a,1), denoted 6 - (a,1) if and only if, forall 1 < p <k, andall 1 <r <m:

1. forall g € Nwith 0 < g <|o|, we have 0 < 6,4(ip) < |al,

2. forall g,r e Nwith0 < g <r <|o|, we have 64(ip) < 6:(ip),

3. forall s € Nwith 0 < s < |al, there exists 0 < g < |0 such that 6,4(i,) = s,
4. forallg e Nwith0 < q <|o|, if 64(ip) = s <|al, then 64(x,) = 0ap)s,
5. forall g € Nwith 0 < q < |o|, we have 64(pr) =1(b;).

Intuitively, a run of a CA represents the contents of a single array by traversing all of
its entries in one move from the left to the right. The contents of multiple arrays is
represented by arbitrarily interleaving the traversals of the different arrays. From this
point of view, for a run to correspond to some state (i.e., to be consistent with it), it
must be the case that each index counter either keeps its value or grows at each step
of the run (point 2 of Def. [I)) while visiting each entry within the array (points 1 and
3 of Def. [I]) The value of a certain entry of an array a, is coded by the value that

! In fact, each index counter reaches the value |oi| which is by one more than what is needed to
traverse an array with entries 0,...,|ct| — 1. The reason is technical, related to the composi-
tion with transducers representing program loops (which produce array entries with a delay of
one step and hence need the extra index value to produce the last array entry) as will become
clear later. Note that the entry at position |0 is left unconstrained.
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the array counter x, has when the index counter i, contains the position of the given
entry (point 4 of Def.[). Finally, values of scalar variables are encoded by values of the
appropriate parameter counters which stay constant within a run (point 5 of Def. [I)).

A CA is said to be state consistent if and only if for every trace ¢ € Tr(A), there
exists a (unique) state (o,1) such that 6 - (o, 1). We denote Z(A) = {{o,1) | T o €
Tr(A) . oF (o,1)} the set of states recognised by a CA.

A consequence of Definition[I]is that, in between two adjacent positions of a trace,
in a state-consistent CA, the index counters never increase by more than one. Conse-
quently, each transition whose relation is non-deterministic w.r.t. an index counter can
be split into two transitions: an idle (no change) and a tick (increment by one). In the
following, we will silently assume that each transition of a state-consistent CA is either
idle or tick w.r.t. a given index counter.

For any set U = {uy,...,u, }, let us denote U’ = {u',...,u},} and U° = {ug,....ul}. If
s = (a,1) and t = (B,K) are two states such that || = |B|, the pair (s,¢) is referred to as
atransition. ACA T = (X,0Q,1,—,F) is said to be a transducer iff its set of counters X

is partitioned into: input counters x' and output counters x°, where X = {x1,x2,..., %},
index counters i = {iy,ia,...,ix}, input parameters p' and output parameters p°, where
p={p1,p2,-..,Pm}, and working counters w.

Definition 2. A sequence ¢ € (X — Z)* is said to be consistent with a transition (s,t),
where s = (a,,1) and t = (B,X), denoted 6 &= (s,t) if and only if, for all 1 < p < k and
all 1 <r<m:

1. forall g € Nwith 0 < g <|o|, we have 0 < 6,4(ip) < |al,

2. forall g,r e Nwith0 < g <r <|o|, we have 64(ip) < 6:(ip),

3. foralls € Nwith 0 < s < |0, there exists 0 < q < |o| such that 64(ip) = s,
4. forall g e Nwith0 < g <|o|, ifo,4(ip) = s < |0, then Gq(xi,) = afap)s,
5. forall g € Nwith0 < g < 0|, if 64(ip) =5 >0, then 64(x) = B(ap)s—1,
6. forall g € Nwith 0 < g < |6, we have 6,(p’) = \(b,) and 6(p?) = x(b;).

The intuition behind the way the transducers represent transitions of programs with
arrays is very similar to the way we use counter automata to represent states of such
programs—the transducers just have input as well as output counters whose values
in runs describe the corresponding input and output states. Note that the definition of
transducers is such that the output values occur with a delay of exactly one step w.r.t.
the corresponding input (cf. point 5 in Def. IZI)H

A transducer 7 is said to be transition consistent iff for every trace 6 € Tr(T) there
exists a transition (s,#) such that 6 - (s,¢). We denote ©(T) = {(s,#) | 3o € Tr(T) .o+
(s,1)} the set of transitions recognised by a transducer.

Dependencies between Index Counters. Counter automata and transducers can rep-
resent one array in more than one way, which poses problems when composing them.
For instance, the array a = {0 — 4,1 — 3,2 — 2} may be encoded, e.g., by the runs

2 The intuition is that it takes the transducer one step to compute the output value, once it reads
the input. It is possible to define a completely synchronous transducer, we, however, prefer this
definition for technical reasons related to the translation of program loops into transducers.
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(0,4),(0,4),(1,3),(2,2),(2,2) and (0,4),(1,3),(1,3),(2,2), where the first elements
of the pairs are the values taken by the index counters, and the second elements are the
values taken by the value counters corresponding to a. To obtain a sufficient criterion
that guarantees that a CA and a transducer can be composed, meaning that they share
a common representation of arrays, we introduce a notion of dependence. Intuitively,
we call two or more index counters dependent if they increase at the same moments in
all possible runs of a CA or transducer.

For the rest of this section, let X C i be a fixed set of index counters. A dependency
d is a conjunction of equalities between elements belonging X. For a sequence of valu-
ations 6 € (X — Z)*, we denote 6 =0 if and only if 6; =6, for all 0 <[ < |g].

For a dependency 8, we denote [[§]] = {0 € (X — Z)* | there exists a state s such that
o F s and 6 |= 3}, i.e., the set of all sequences that correspond to an array and that
satisfy 8. A dependency &, is said to be stronger than another dependency 8., denoted
81 — &, if and only if the first order logic entailment between 8; and &, is valid. Note
that 8; — &, if and only if [[§;] C [8,]. If 8; — &, and &, — J;, we write 8; < &;. For
a state consistent counter automaton (transition consistent transducer) A, we denote by
A(A) the strongest dependency 8 such that Tr(A) C [[J].

Definition 3. A CAA = (x,0Q,I,—,F), where x C X, is said to be state-complete if and

only if for all states s € (A), and each sequence 6 € (X — Z)*, such that 6 s and
6 = A(A), we have o € Tr(A).

Intuitively, an automaton A is state-complete if it represents any state s € X(A) in all
possible ways w.r.t. the strongest dependency relation on its index counters.

Composing Counter Automata with Transducers. For a counter automaton A and
a transducer T, X(A) represents a set of states, whereas O(T') is a transition relation.
A natural question is whether the post-image of X(A) via the relation O(T) can be
represented by a CA, and whether this automaton can be effectively built from A and T'.

Theorem 1. IfA is a state-consistent and state-complete counter automaton with value
counters X ={x1,...,x }, index countersi={iy, ..., iy }, and parametersp={p1, ..., Pm }
and T is a transducer with input (output) counters X' (x°), index counters i, and input
(output) parameters p' (p°) such that A(T)[x/x'] — A(A), then one can build a state-
consistent counter automaton B, such that 2(B) = {t | 3s € Z(A) . (s,t) € O(T)}, and,
moreover A(B) — A(T)[x/x].

4 Singly Indexed Logic

We consider three types of variables. The scalar variables b,by,b,... € BVar appear
in the bounds that define the intervals in which some array property is required to hold
and within constraints on non-array data variables. The index variables i,i,i, ... € IVar
and array variables a,ay,as, ... € AVar are used in array terms. The sets BVar, IVar, and
AVar are assumed to be pairwise disjoint.

Fig. [l shows the syntax of the Single Index Logic SIL. We use the symbol T to
denote the boolean value frue. In the following, we will write i < f instead of i < f — 1,
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nm,p... €7 integer constants i,j,i1,i2,... € IVar  index variables
b,by,by,... € BVar scalar variables a,ai,ap,... € AVar  array variables
o) Presburger constraints ~ e {<,>}
B :=n|b+n array-bound terms
G =T|B<i<B|GAG|GVG guard expressions
V i=ali+n]~B|ali+n|—ayi+m]~p|i—ali+n] ~m|V AV value expressions
F :=VYi.G—V|¢@By,Bs,....By) | "F|F ANF formulae

Fig. 1. Syntax of the Single Index Logic

i = f instead of f <i < f, @1V @y instead of =(—@; A —¢2), and Vi . v(i) instead
of Vi. T —v(i). If Bi(b1),...,Bn(b,) are bound terms with free variables by,...,b, €
BVar, respectively, we write any Presburger formula @ on terms a;[Bi],...,a,[By] as
a shorthand for (Ay_,Vj . j = Bx — ak[j] = b;) A@[b}/ai[Bi],...,b),/an[B,]], where
b, ...,b), are fresh scalar variables.

The semantics of a formula @ is defined in terms of the forcing relation (a,1) = @
between states and formulae. In particular, (o, 1) = Vi . Y(i,b) — v(i,a,b) if and only
if, for all values 7 in the set (\{[—m, || —m — 1] | a[i +m] occurs in v}, if 1 |= y[n/i],
then also tU o = v[n/i]. Intuitively, the value expression ¥ should hold only for those
indices that do not generate out of bounds array references.

We denote [@] = {{o,1) | {a,1) = @}. The satisfiability problem asks, for a given for-

mula @, whether [[@] 0. We say that an automaton A and a SIL formula ¢ correspond
if and only if X(A) = o]

The 3*V* fragment of SIL is the set of SIL formulae which, when written in prenex
normal form, have the quantifier prefix of the form i ...3i,Vj;...Vj,. As shown
in [13] (for a slightly more complex syntax), the 3*V* fragment of SIL is equivalent
to the set of existentially quantified boolean combinations of (1) Presburger constraints
on scalar variables b, and (2) array properties of the form Vi . y(i,b) — v(i,b,a).

Theorem 2 ([13]). The satisfiability problem is decidable for the 3*V* fragment of SIL.

Below, we establish a two-way connection between 3*V*-SIL and counter automata.
Namely, we show how loop pre-conditions written in 3*V*-SIL can be translated to CA
in a way suitable for their further composition with transducers representing program
loops (for this reason the translation differs from [[13]]). Then, we show how 3*Vv*-SIL
formulae can be derived from the CA that we obtain as the product of loop transducers
and pre-condition CA.

4.1 From F*V*-SIL to Counter Automata

Given a pre-condition ¢ expressed in 3*V*-SIL, we build a corresponding counter au-
tomaton A4, i.e., X(A) = [[¢]]. Without loosing generality, we will assume that the pre-
condition is satisfiable (which can be effectively checked due to Theorem2)).

For the rest of this section, let us fix a set of array variables a = {ay,az,...,a;} and
a set of scalar variables b = {by,by,...,b,}. As shown in [13]], each 3*V*-SIL formula
can be equivalently written as a boolean combination of two kinds of formulae:
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(i) array properties of the form Vi . f <i < g — v, where f and g are bound terms,
and v is either: (1) ap[i] ~ B, (2) i —ap|i] ~ n, or (3) a,i] — ay[i + 1] ~ n, where
~e{<,>},1< p,gq<k,n€eZ, and B is abound term.

(ii) Presburger constraints on scalar variables b.

Let us now fix a (normalised) pre-condition formula ¢(a,b) of 3*V*-SIL. By pushing
negation inwards (using DeMorgan’s laws) and eliminating it from Presburger con-
straints on scalar variables, we obtain a boolean combination of formulae of the forms
(i) or (ii) above, where only array properties may occur negated.

W.lLo.g., we consider only pre-condition formulae without disjunctionsE’] For such
formulae ¢, we build CA A with index counters i = {iy, i, ...,ix}, value counters x =
{x1,x2,...,x¢ }, and parameters p = {p1, p2, ..., pm }, corresponding to the scalars b.

For a term or formula f, we denote by f the term or formula obtained from f by
replacing each b, by p;, 1 < g < m, respectively. The construction of Ay is defined
recursively on the structure of @:

- o=y Ay, then Ay = Ay, ®Ay,.
— If @ is a Presburger constraint on b, then Ay = (X, 0, {4}, —,{qs}) where:
* X={pg|bg €FV(p)NBVar, 1 <q<m},
hd Q = {qi7qf}’
O A Ayex ¥ =x Asex X'=x
e g —————qyand gy —— qy.

— For @being Vi. f <i<g—v,Aqand A have states Q = {gi,41,92,93,qy}, with
gi and gy being the initial and final states, respectively. Intuitively, the automaton
waits in g increasing its index counters until the lower bound f is reached, then
moves to g and checks the value constraint v until the upper bound g is reached.
Finally, the control moves to ¢3 and the automaton scans the rest of the array until
the end. In each state, the automaton can also non-deterministically choose to idle,
which is needed to ensure state-completeness when making a product of such CA.
For v of type (1) and (2), the automaton has one index (i) and value (x,) counters,
while for v of type (3), there are two dependent index (ip,i;) and value (x,,x,)
counters. The full definitions of Ay and A, are given in [4], for space reasons.

We aim now at computing the strongest dependency A(A,) between the index counters
of Ay, and, moreover, at showing that A, is state-complete (cf. Definition B). Since Ay
is defined inductively, on the structure of @, A(Aq) can also be computed inductively.
Let 8() be the formula defined as follows:

— O8(p) = T if @ is a Presburger constraint on b,

g isa v Sy ] OBl -t ol
= (91 A @2) =8(p1) A&(@2).

Theorem 3. Given a satisfiable 3*V*-SIL formula ¢, the following hold for the CA
Ay defined above: (1) Ay is state consistent, (2) Ay is state complete, (3) Ay and @
correspond, and (4) 8(Aq) — A(Ag).

3 Given a formula containing disjunctions, we put it in DNF and check each disjunct separately.
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4.2 From Counter Automata to 3*Vv*-SIL

The purpose of this section is to establish a dual connection, from counter automata to
the 3*V* fragment of SIL. Since obviously, counter automata are much more expressive
than 3*V*-SIL, our first concern is to abstract a given state-consistent CA A by a set of
restricted CA AKX, 2K ... 4K such that £(A) C N, =(4K), and for each 2K, 1 <
i <n, to generate an 3*V*-SIL formula ¢; that corresponds to it. As a result, we obtain
a formula @4 = A7 @; such that Z(A) C [[@4]-

Let p(X,X’) be a relation on a given set of integer variables X, and I(X) be a predi-
cate defining a subset of Z*. We denote by p(I) = {X' | 3X €. (X,X’) € R} the image
of I via R, and we let p AT = {(X,X') € p | X € I}. By p", we denote the n-times re-
lational composition popo...op, p* =V ,>op" is the reflexive and transitive closure
of p, and T is the entire domain Z*. If p is a difference bound constraint, then p” is
also a difference bound constraint, for a fixed constant n > 0, and p* is a Presburger
definable relation [7U5] (but not necessarily a difference bound constraint).

Let D(p) denote the strongest (in the logical sense) difference bound relation D s.t.
p C D.If p is Presburger definable, D(p) can be effectively computed, and, moreover,
if p is a finite union of n difference bound relations, this takes O(n x 4k?) tlm‘ where
k is the number of free variables in p.

We now define the restricted class of CA, called flat counter automata with difference
bound constraints (FCADBC) into which we abstract the given CA. A control path in
a CA A is a finite sequence q1¢>...q, of control states such that, for all 1 <i < n, there

exists a transition rule g; &, gi+1. A cycle is a control path starting and ending in the
same control state. An elementary cycle is a cycle in which each state appears only
once, except for the first one, which appears both at the beginning and at the end. A CA
is said to be flat (FCA) iff each control state belongs to at most one elementary cycle.
An FCA such that every relation labelling a transition occurring in an elementary cycle
is a DBC, and the other relations are Presburger constraints, is called an FCADBC.
With these notatlons we define the K-unfolding of a one-state self-loop CA A, =

(X,{q},{a},a > g,{a}) as the FCADBC AK = (X,0K {q:},—K,0F), where 0K =

{q1,92,.--,qx } and —>p is defined such that g; LK gi+1, 1 <i< K, and gg M e

The K-abstraction of Ap, denoted A% (cf. Fig. D), is obtained from A by replacing

.. KT . . D(pK(T
the transition rule gg LalAPLATN gk with the difference bound rule gx 27 re), qx

Intuitively, the information gathered by unfolding the concrete relation K times prior to
the abstraction on the loop gx — gk, allows to tighten the abstraction, according to the
K parameter. Notice that the ﬂl{f abstraction of a relation p is an FCADBC with exactly
one initial state, one self-loop, and all states final. The following lemma proves that the
abstraction is sound, and that it can be refined, by increasing K.

Lemma 1. Given a relation p(X,X') on X = {x1,...,x¢}, the following facts hold:
(1) Tr(Ap) = Tr(AK) C Tr(aK), for all K >0, and (2) Tr(A5*) C Tr(A5") if Ki < Ka.

4 D(p) can be computed by finding the unique minimal assignment v : {z;; | 1 <i,j <k} = Z
that satisfies the Presburger formula ¢(z) : VXVX'. p(X,X') — Ay v exuxXi —Xj < Zij-

SIfp=p;VPaV...Vpy, and each p; is represented by a (2k)2-matrix M;, D(p) is given by the
pointwise maximum among all matrices M;, 1 <i<n.
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K times
A

Fig. 2. K-abstraction of a relation

For the rest of this section, assume a set of arrays a = {aj,as,...,a;} and a set of
scalars b = {by,b2,...,by}. At this point, we can describe an abstraction for counter
automata that yields from an arbitrary state-consistent CA A, a set of state-consistent
FCADBC féllK , félf ,..., 4K whose intersection of sets of recognised states is a superset
of the original one, i.e., £(A) C N, £(AK). Let A be a state-consistent CA with coun-
ters X partitioned into value counters X = {xi,...,x;}, index counters i = {ij,...,ix },
parameters p = {py, ..., pm } and working counters w. We assume that the only actions
on an index counter i € i are tick (i' =i+ 1) and idle (i’ = i), which is sufficient for the
CA that we generate from SIL or loops.

The main idea behind the abstraction method is to keep the idle relations separate
from ticks. Notice that, by combining (i.e., taking the union of) idle and tick transitions,
we obtain non-deterministic relations (w.r.t. index counters) that may break the state-
consistency requirement imposed on the abstract counter automata. Hence, the first step
is to eliminate the idle transitions.

Let 3 be an over-approximation of the dependency A(A), i.e., A(A) — 9. In particu-
lar, if A was obtained as in Theorem [l by composing a pre-condition automaton with
a transducer T, and if we dispose of an over-approximation & of A(T), i.e., A(T) — 9,
we have that A(A) — 8, cf. Theorem [[—any over-approximation of the transducer’s
dependency is an over-approximation of the dependency for the post-image CA.

The dependency 6 induces an equivalence relation on index counters: for all i, j € i,
i ~g j iff  — i = j. This relation partitions i into n equivalence classes [iy, |, [is,], ..., [is, ],
where 1 < s1,52,...,5, < k. Let us consider n identical copies of A: A1,A»,...,A,. Each
copy A; will be abstracted w.rt. the corresponding ~s-equivalence class is j] into ﬁlJK
obtained as in Fig. 2l Thus we obtain X(A) C (;_; X(Af), by Lemmal[ll

We describe now the abstraction of the A; copy of A into ﬁlf . W.lo.g., we assume
that the control flow graph of A ; consists of one strongly connected component (SCC)—
otherwise we separately replace each (non-trivial) SCC by a flat CA obtained as de-
scribed below. Out of the set of relations R 4; that label transitions of A;, let vy,..., 0}

be the set of idle relations w.r.t. [i,], i.e., v — /\ie[is,] i'=i,1<t<p, and 0], ...,6;; be
the set of tick relations w.r.t. [isj], ie., 9tj — /\ie[ijj] i"=i+1, 1<t <gq.Note that since
we consider index counters belonging to the same ~g-equivalence class, they either all
idle or all tick, hence {v,...,v}} and {8],...,8/} form a partition of R 1.

Let Y; = D(V/"_, v/) be the best difference bound relation that approximates the idle
partof Aj, and Y} be its reflexive and transitive closurdd. Let © i=Vi, D(Y})o 6/, and

6 Since Y is a difference bound relation, by [[7U3], we have that Y;‘ is Presburger definable.
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let Ag, be the one-state self-loop automaton whose transition is labelled by ©, and 541
be the K-abstraction of A@ (cf. Fig.2). It is to be noticed that the abstraction replaces
a state-consistent FCA W1th a single SCC by a set of state-consistent FCADBC with
one self-loop. The soundness of the abstraction is proved in the following:

Lemma 2. Given a state-consistent CA A with index counters i and a dependency 8 s.t.
A(A) — 8, let [ig,], [is,), - -, lis,] be the partition of 1 into ~g-equivalence classes. Then
each A%, 1 <i<nis state-consistent, and Z(A) C N, £(AK), for any K > 0.

The next step is to build, for each FCADBC ,qu , 1 <i<n, an F*V*-SIL formula @;
such that Z(ELIK ) = [[@i]), for all 1 <i < n, and, finally, let 4 = A}, @; be the needed
formula. The generation of the formulae builds on that we are dealing with CA of the
form depicted in the right of Fig. 2l

For a relation ¢(X,X’), X =xUp, let T;(¢) be the SIL formula obtained by replacing
(1) each unprimed value counter x; € FV (@) Nx by a;[i], (2) each primed value counter
X, € FV(@)Nx' by a,[i+ 1], and (3) each parameter p, € FV (@) Np by b,, for 1 < s <k,
1<r<m.

For the rest fix an automaton ﬁlK of the form from Fig. 2 for some 1 < j <n,

and let g, LR gpr1, 1 < p <K, be its sequential part, and gg A gk its self-loop.

Let [zxj} = {iy, ,ir,, ...,z,q} be the set of relevant index counters for félf , and let x, =

x\ {x;,...,x, } be the set of redundant value counters. With these notations, the de-

sired formula is defined as @; = (VA 't()) v (3b. b > 0AT(K) A w(b)), where:
-1 . . : Tanr] /

1(0): /\ T.(3i,x,, X, W. p) o(b): (Vi.K <j<K+b— T(3ix,x,,Ww. L)) A

=0 To(3i,%, X', W A[K [y ooyt | K+ b= 1/ifo0si7. ])

Here, b € BVar is a fresh scalar denoting the number of times the self-loop gx A gk 1s

iterated. A” denotes the formula defining the b-times composition of A with itself

Intuitively, T() describes arrays corresponding to runs of ﬁlf from g to g;, for some
1 <1 <K, without iterating the self-loop gx L gk, while ®(b) describes the arrays
corresponding to runs going through the self-loop b times. The second conjunct of
®(b) uses the closed form of the b-th iteration of A, denoted AP, in order to capture the
possible relations between b and the scalar variables b corresponding to the parameters
p in A, created by iterating the self-loop.

Theorem 4. Given a state-consistent CA A with index counters i and given a depen-
dency & such that A(A) — 8, we have X(A) C [[@4]], where:

— 0a = A\, 9;, where @; is the formula corresponding to }ZLK, forall 1 <i<n, and
- /‘ZLIK ,félf ..., AK are the K-abstractions corresponding to the equivalence classes
induced by & on i.

7 In case we start from a CA with more SCCs, we get a CA with a DAG-shaped control flow
interconnecting components of the form depicted in Fig. [2] after the abstraction. Such a CA
may be converted to SIL by describing each component by a formula as above, parameterised
by its beginning and final index values, and then connecting such formulae by conjunctions
within particular control branches and taking a disjunction of the formulae derived for the
particular branches. Due to lack of space, we give this construction in detail in [4] only.

8 Since A is difference bound relation, AP can be defined by a Presburger formula [[715].
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5 Array Manipulating Programs

We consider programs consisting of as- e BVar,a € AVar,i € IVar,n€Z,c € N
signments, colnditional. statements, and ASGN -— LHS — RHS
non-nested while loops in the form shown .
in Fig. @ working over arrays AVar and LHS =D | afi+c]
' TRM ==LHS|i

scalar variables BVar (for a formal syn- RHS = TRM | -TRM | TRM+n

tax, see [4]]). In a loop, we assume a 1:1 CND = CND & CND | RHS < RHS
correspondence between the set of arrays

AVar and the set of indices /Var. In other Fig. 3. Assignments and conditions
words, each array is associated exactly

one index variable. Each index i € IVar is initialised at the beginning of a loop us-
ing an expression of the form b+ n where b € BVar and n € Z. The indices are local to
the loop. The body St ~--§S£l,§ of each loop branch consists of zero or more assignments
followed by a single index increment statement incr(f), I C IVar. The syntax of the
assignments and boolean expressions used in conditional statements is shown in Fig.
We consider a simple syntax to make the presentation of the proposed techniques eas-
ier: various more complex features can be handled by straightforwardly extending the
techniques described below.

A state of a program is a pair (I,s) where [ is a line of the program and s is a state
(o, 1) defined as in Section[3] The semantics of program statements is the usual one (e.g.,
[[19]). For simplicity of the further constructions, we assume that no out-of-bound array
references occur in the programs—such situations are considered in [4].

Considering the program statements given in Fig. [3] we have developed a strongest
post-condition calculus for the 3*V*-SIL fragment. This calculus captures the semantics
of the assignments and conditionals, and is used to deal with the sequential parts of the
program (the blocks of statements outside the loops). It is also shown that 3*V*-SIL is
closed for strongest post-conditions. Full details are given in [4]].

5.1 From Loops to Counter Automata

Given a loop L starting at control line /, such that I’ is the control line immediately fol-
lowing L, we denote by © = {(s,7) | there is a run of L from (/,s) to (’,¢) } the transi-
tion relation induced by LB We define the loop  dependency
9, as the conjunction of equalities i, = iy, ip,iy €

IVar, where (1) e, = e¢; where e; and ey are the whilea iy =, ...ag:i—=e; (C)

expressions initialising i, and i; and (2) for each if (C1) Sl;"‘;srlll;

branch of L finished by an index increment statement else if (C2) ST ~~§S%2 ;
incr(l), i, € I <= i, € 1. The equivalence relation

~~5, on index counters is defined as before: i, =5, iy elseif (Ch1) S\ .. 8h
iff =6, — i, =1, else Sh;...;SZh;

Assume that we are given a loop L as in Fig. [
with AVar = {ay,...,ax}, IVar = {iy,...,ix}, and  Fig.4. A while loop
BVar = {by,...,by} being the sets of array, index,

9 Note that we ignore non-terminating runs of the loop in case there are some—our concern is
not to check termination of the loop, but correctness of terminating runs of the loop.
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and scalar variables, respectively. Let I1,l,...,I, C IVar be the partition of IVar
into equivalence classes, induced by ~5, . For E being a condition, assignment, in-
dex increment, or an entire loop, we define di : AVar — NU{_L} as dg(a) = max{c |
ali+ c] occurs in E} provided a is used in E, and dg(a) =L otherwise. The transducer
T, = (X,0,{q0},—,{qsin}). corresponding to the program loop L, is defined below:

r»7ro

1<dp(a,)}U{p., pw, |1 <r<m}U{wy} where X/° 1< r<k, are input/output
array counters, p’r/ ° 1<r<k, are parameters storing input/output scalar values,
and w,, 1 < r < m, are working counters used for the manipulation of arrays and
scalars (wy stores the common length of arrays).

- Q = {q07qpre7qloopaquufyq.fin} U{qi ‘ 1<I< h70 <r< nl}~

— The transition rules of 7} are the following. We assume an implicit constraint x’ = x
for each counter x € X such that x’ does not appear explicitly:

(p . . .
® G0 = qpres O = NicremWr = pp) Awn > OA N <k (ir = 0A X, = wip) A

A 1= (W, =w?)) (the counters are initialised).
1<i<dp(ay) ’

e Foreach ~;, -equivalenceclass I;, 1 < j <n, gpre e, qpre With @ = Algrgk(ir <

= X ={x, 20,0 |1 <r<k}U{wl, |1 <r<k1<I<di(a)}U{w|1<r<k0<

E(er)) NE(incr(I)) (Tr, copies the initial parts of the arrays untouched by L).
® Gore LR Qioop> © = N1<,<iir = E(e,) (T starts simulating L).

o For each 1 <1 <A, quoop — gy @ = E(C) A Ay<ri(ZE(C,)) AE(C)) where

C, = T (T, chooses the loop branch to be simulated).

st .
e Foreachl1 <I<h,1 §r§n;,qlr_1 g(—’)>qwhereq:ql,1fr<n1,andq:q100p

otherwise (the automaton simulates one branch of the loop).

® Gioop > Gsufs © = ~E(C) AN\ <pem(wr = p2) (T; finished the simulation of the
actual execution of L).

e For each ~;5, -equivalence class Ij, 1 < j <n, and ir € [}, Gy 2, Gsuf> P=1 <
wn A &(incr(I;)) (copy the array suffixes untouched by the loop).

® Guf s, qfin» @ = N1<r<iir = wy (all arrays are entirely processed).

The syntactical transformation & of assignments and conditions preserves the structure
of these expressions, but replaces each b, by the counter w, and each a,[i, + c| by Wie
for b, € BVar, a, € AVar, i, € [Var, and ¢ € N. On the left-hand sides of the assignments,
future values of the counters are used (cf. [4]). For increment statements we define, for
all i, € IVar:

o o y 4
= &lincr(iy)) : x. = w1 ANici<dy (a,) Wri-1 = Wy, A = woo A

il . . .
No<i<dy(ar) WHI-1 = Wi AWrdy (a,) = Wiy (a,) N = ir + 1, i di(ar) > 0,
— E(incr(ir)) @ xi = w0 AXY = woo Al = ir+ 1, if di(ar) = 0.
For the increment of a set of indices, we extend this definition pointwise.

The main idea of the construction is the following. 7}, preserves the exact sequences
of operations done on arrays and scalars in L, but performs them on suitably chosen
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counters instead, exploiting the fact that the program always accesses the arrays through
a bounded window only, which is moving from the left to right. The contents of this
window is stored in the working counters. The values stored in these counters are shifted
among the counters at each increment step. In particular, the initial value of an array cell
a[l] is stored in W, i (ar) TOT dr(ay) > 0 (the case of dp(a,) = 0 is just a bit simpler).
This value can then be accessed and/or modified via wy, where g € {dL(a,),...,0} in
the iterations ! — dy(a,),...,1, respectively, due to copying Wi, into wy a1 whenever
simulating incr(i,) for g > 0. At the same time, the initial value of a,[/] is stored in
W) 41 (ay)» Which is then copied into wj, for g € {di(a;) —1,...,1} and finally into x,,
which happens exactly when i, reaches the value /. Within the simulation of the next
incr(i,) statement, the final value of a,[l] appears in x2, which is exactly in accordance
with how a transducer expresses a change in a certain cell of an array (cf. Def.[2)).

Note also that the value of the index counters i, is correctly initialised via evaluating
the appropriate initialising expressions e,, it is increased at the same positions of the
runs in both the loop L and the transducer 77, and it is tested within the same conditions.
Moreover, the construction takes care of appropriately processing the array cells which
are accessed less than the maximum possible number of times (i.e., less than &, (a, )+ 1-
times) by (1) “copying” from the input xi. counters to the output x? counters the values of
all the array cells skipped at the beginning of the array by the loop, (2) by appropriately
setting the initial values of all the working array counters before simulating the first
iteration of the loop, and (3) by finishing the pass through the entire array even when
the simulated loop does not pass it entirely.

The scalar variables are handled in a correct way too: Their input value is recorded in
the p'. counters, this value is initially copied into the working counters w, which are
modified throughout the run of the transducer by the same operations as the appropri-
ate program variables, and, at the end, the transducer checks whether the p? counters
contain the right output value of these variables.

Finally, as for what concerns the dependencies, note that all the arrays whose indices
are dependent in the loop (meaning that these indices are advanced in exactly the same
loop branches and are initialised in the same way) are processed at the same time in
the initial and final steps of the transducers (when the transducer is in the control states
Gpre OF gy ). Within the control paths leading from g;o0p t0 gi00p, indices of such arrays
are advanced at the same time as these paths directly correspond to the branches of the
loop. Hence, the working counters of these arrays have always the same value, which
is, however, not necessarily the case for the other arrays.

It is thus easy to see that we can formulate the correctness of the translation as cap-
tured by the following Theorem.

Theorem 5. Givenaprogramloop L, the following hold: (1) Ty is a transition-consistent
transducer, (2) ©(L) = O(Ty), and (3) A(Tp) — O

The last point of Theorem[3lensures that & is a safe over-approximation of the depen-
dency between the index counters of 7;. This over-approximation is used in Theorem
[l to check whether the post-image of a pre-condition automaton A can be effectively
computed, by checking 87 — A(A). In order to meet requirements of Theorem [T} one
can extend 7} in a straightforward way to copy from the input to the output all the arrays
and integer variables which appear in the program but not in L.
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6 Examples

In order to validate our approach, we have performed proof-of-concept experiments
with several programs handling integer arrays. Table [[] reports the size of the derived
post-image automata (i.e., the CA representing the set of states after the main program
loop) in numbers of control states and counters. The automata were slightly optimised
using simple, lightweight static techniques (eliminating useless counters, compacting
sequences of idling transitions with the first tick transition, eliminating clearly infeasi-
ble transitions). The result sizes give a hint on the simplicity and compactness of the
obtained automata. As our prototype implementation is not completed to date, we have
performed several steps of the translation into counter automata and back manually.
The details of the experiments are given in [4].
The init example is the classical initialisa- Table 1. Examples

tion of an array with zeros. The partition ex-

) I, program  control states counters
ample copies the positive elements of an array a

into another array b, and the negative ones into 1n1t " j 284
c. The insert example inserts an element on ?ar ttion ; -
its corresponding position in a sorted array. The ~ 7SSt

rotate 4 15

rotate example takes an array and rotates it by
one position to the left. For all examples from
Table[Il a human-readable post-condition describing the expected effect of the program
has been inferred by our method.

7 Conclusion

In this paper, we have developed a new method for the verification of programs with
integer arrays based on a novel combination of logic and counter automata. We use
a logic of integer arrays to express pre- and post-conditions of programs and their parts,
and counter automata and transducers to represent the effect of loops and to decide en-
tailments. We have successfully validated our method on a set of experiments. A full
implementation of our technique, which will allow us to do more experiments, is cur-
rently under way. In the future, we are, e.g., planning to investigate possibilities of using
more static analyses to further shrink the size of the generated automata, optimisations
to be used when computing transitive closures needed within the translation from CA
to SIL, adjusted for the typical scenarios that happen in our setting, etc.
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