Linear Functional Fixed-Points

Nikolaj Bjgrner and Joe Hendrix

Microsoft, One Microsoft Way, Redmond, WA, 98074, USA

{nbjorner, johendri}@microsoft.com

Abstract. We introduce a logic of functional fixed-points. It is suitable
for analyzing heap-manipulating programs and can encode several logics
used for program verification with different ways of expressing reacha-
bility. While full fixed-point logic remains undecidable, several subsets
admit decision procedures. In particular, for the logic of linear func-
tional fixed-points, we develop an abstraction refinement integration of
the SMT solver Z3 and a satisfiability checker for propositional linear-
time temporal logic. The integration refines the temporal abstraction by
generating safety formulas until the temporal abstraction is unsatisfiable
or a model for it is also a model for the functional fixed-point formula.

1 Introduction

Software often manipulates heap allocated data structures of finite but poten-
tially unbounded size, such as linked lists, doubly linked lists, and trees. To rea-
son about such structures, invariants about the reachable heap contents can be
necessary. Logics capable of expressing interesting heap properties often require
some form of transitive closure, fixed-points, and/or 2°%-order quantification.
As is well known, complete first-order axiomatization of transitive closure is
impossible [10], though approximations that suffice for ground validity of some
fragments have been formulated. The approximations work directly with theo-
ries supported in the same (first-order) setting, but must rely on the capabilities
of the generic first-order engine. A different approach is to directly use non-first
order logics and rely on specialized decision procedures for these logics. Such
specialized decision procedures do not suffice in practice when the invariants
also require reasoning in the theories of arithmetic and arrays.

Contributions. This paper analyzes several different fixed-point logic frag-
ments to identify expressive logics that still have good decidability and complex-
ity results. On the practical side, we outline an integration procedure between
propositional temporal logic checking and theory solvers.

— We formulate a logic called the Fquational Linear Functional Fized Point
Logic (or FFP(E) for short). FFP(E) encodes several fixed point logics pre-
sented in recent literature on program verification.

— We establish that FFP(E) is PSPACE-complete modulo background theo-
ries that are in PSPACE by using a reduction from FFP(E) into proposi-
tional linear-time temporal logic. We show that two different extensions are
NEXPTIME-hard and undecidable, respectively.

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 124-139| 2009.
© Springer-Verlag Berlin Heidelberg 2009

Linear Functional Fixed-Points 125

— We provide a decision procedure for FFP(E) that combines the SMT solver
Z3with a (symbolic)satisfiability checking of propositional linear time temporal
formulas. The proposed integration generalizes the standard abstrac-
tion/refinement framework used in SMT solvers. Instead of relying on refin-
ing a propositional model, we here refine a propositional linear time model.
An early stage prototype of the procedure is available.

The resulting approach can therefore be viewed as a marriage between the
flexible axiomatization approach to fixed-points and specialized decision proce-
dures. Our abstraction/refinement framework admits all axiomatizations allowed
by other approaches, but furthermore provides a decision procedure for formulas
that fall into FFP(E).

Example 1 (A simple example). We illustrate the use of reachability predi-
cates using a simple example also used in [16]. It exercises transitivity. We use

Ve :[a 4, bl.o(x) to say that f™*(a) ~ b for some n, and for every k < n it is the
case that o(f*(a)).
procedure INIT-CYCLIC(head)
d(head) = true; curr := f(head);
invariant d(head) AVz : [f(head) 4, curr].d(x)
while curr # head do
d(curr) := true
curr = f(curr)
ensure d(head) AVx : [f(head) 4, head).d(z)

The invariant and post-condition can be established by verifying properties:

vz : [f(head) 4 curr].d(z) Ad(curr) — Yz : [f(head) 4 f(curr)].d(z)
head ~ curr AVz : [f(head) 4 curr].d(z) — Vz:[f(head) ER head).d(x)

While these particular properties hardly require the full might of transitive closure
reasoning, we are here interested in characterizing the limits of what can be solved
in a sufficiently general language with fized-points.

Related work. We refer to [3] for an extended summary of the extensive re-
lated work. An early paper was by Greg Nelson [14], who gave 8 axioms for a
ternary reachability predicate. The axioms are sufficient for a verification ex-
ample, but general completeness with respect to ground validity was left as an
open question. Several recent extensions and variants for ground validity have
been pursued in [12,9,17,16,8]. These also develop first-order axiomatizations
and rely on specialized rewriting or quantifier instantiation engines for their
rules. The approach based on first-order axioms is of course quite extensible,
as one can throw in useful axioms at will without requiring an encoding into a
fixed limited formalism. On the other hand, the approach is only as viable as
the strength of the quantifier instantiation heuristics. Balaban et al. [2] use a

126 N. Bjgrner and J. Hendrix

small model theorem to derive a decision procedure. A different line of work is
based on automata-based decision procedures. The PALE system [13] can reason
about heap-allocated data structures using weak monadic second-order logic of
graph types. The logic of reachable patterns [21] is a decidable and quite ex-
pressive logic that combines local reasoning with an extended form of regular
expressions. Finally in several practical cases, Separation Logic [18] provides a
compelling alternative to reachability predicates.

Paper structure. The rest of this paper is structured as follows. In Section 2,
we formally define functional fixed-point logic (FFP), and briefly review results
from temporal logic used later in the paper. In Section 3, we study different
fragments of FFP to obtain decidability and complexity results. Our main fo-
cus in this section is to define linear functional fixed-point logic with equality,
FFP(E). We also show that FFP(E) is closed under updates, subsumes several
different logics for reasoning about heap invariants, and has a PSPACE-complete
satisfiability problem. In Section 4, we describe our reference satisfiability solver
for FFP(E) which works by integrating the SMT-based theorem prover Z3 with
a decision procedure for propositional LTL. Finally, in Section 5, we summarize
our results and discuss ways our results can be extended in future research.

2 Preliminaries

Our results are mainly based on a reduction of FFP fragments into propositional
linear-time temporal logic (LTL); and we rely on decision procedures for it.
LTL [11] augments propositional logic with the temporal connectives U, O,
O and . LTL models are represented as an infinite sequence of states o :
S0, 81, S2, . . ., where each state supplies an assignment to propositional atoms.
Recall that the operator U is the least fixed-point solution to the equivalence
AUB=(BV[ANO(AU B))]), or directly: AUB=uX . BV (ANOX).

Functional Fixed-point Logic (FFP) extends quantifier-free first-order logic
with the fixed-point operator p to define the least fixed-point of unary predicates.
To be more specific, we let x range over bound variables, X ranges over bound
unary predicates, f and g range over distinguished unary uninterpreted function
symbols, a, b, c, ¢’ range over constant terms, P ranges over unary predicates, R
over predicates containing neither bound variables, nor the function symbols f,
g. Then the set of formulas ¢ in FFP are given by the rules:

ta=f(t)|gt)|clax atom = X(t) |t~t'| P(t) |R

A, B, o n=atom | =~ | oV |loAe | (uX Az . oT[X])(t)

where ¢T[] is a positive context in .

The semantics of FFP follows the standard rules for evaluating fixed-point ex-
pressions. For example, a model M over a domain A satisfies (uX Az . ¢[X])(t)
ifM@A) e {BCA|M,[X — B EVr. o X] — X(z)}. FFP allows multi-
ple different unary function symbols to be applied to the same bound variables,
and allows multiple bound second-order predicates to appear in the same scope.

Linear Functional Fixed-Points 127

We will here restrict ourselves to a more modest fragment inspired by Linear
Time Temporal Logic (LTL). In this fragment each fixed point expression has
the form:

pXAz.(B vV [ANX(f(x))]),

where A and B are formulas that do not contain X, but may contain z. Intu-
itively, the function f is used as a next state transition.

Convention 2. The following shorthands will be used throughout the paper:

(AU soB)(c) = [pXAz.BV[ANX(f(2))] (c)
(AW yaB)(c) = ~(-BUysamAN-B)(c) (@y.B)(c) = ~((Ore—B)(c))
Vo :[a ER bJA = (AUszx>~Db)(a) (OraB)(c) = (true U 10 B) (c)
Veijab oA = (AW, ,2~b)(a) alb = (Orar=b)(a)

The connective VW is inspired by the weak until connective from LTL here, A
holds either forever or until B is reached. We also include strong and weak
versions for the case when A holds on every value between a and b.

Convention 3. The set of subformulas of a formula ¢ is denoted SF(p). The
set of atomic subformulas of ¢ is denoted ASF(yp).

We will later establish that formulas in this more modest fragment are in
general undecidable, and so we will study various subsets of it. Of particular
utility is restricting the number of free variables that a formula may contain. We
say that a formula ¢ is linear if each subformula 1) € SF(p) has at most one free
variable. As an example, the formula stating that ¢ reaches an infinite number of
elements, (Of» (Oryy #) (f(2))) (¢), is not a linear formula, because y # z
has two free variables.

Normal forms of linear formulas. When a formula is linear, we can rename
the variables in the formula to achieve a normal form which we use to simplify
later exposition. Specifically, we give the same name to variables bound in nested
quantifiers, while giving different names to variables bound in unrelated contexts.
We are going to unfold fixed-points incrementally. In this context it is going to
be useful to have an anchor on the bound variables. Therefore, for each top-
level application of (¢ U ;1) (t) we can introduce a fresh constant z that has
the same name as the bound variable z, replace t by the variable, and add the
constraint that x ~ ¢t. Thus, for instance

[xEalls, Plx)N(y#£bUrypyPy)) (@) (c) A(Ogax =b)(c)

is converted into

[x2aldss P@)N(x 20Uy, —Px)) (z)](x) AN ~c
ANOgyy=b)(y) ANy ~c.

This transformation allows us to distinguish variables occurring in unrelated
fixed-point expressions while identifying variables occurring in related sub-ex-
pressions.

128 N. Bjgrner and J. Hendrix

Atomic formulas containing unbound variables are called flexible; otherwise,
they are called rigid atoms. For example x ~ ¢ and f f(x) ~ z are flexible atoms,
while ¢ ~ f(¢’) and P(f(c)) are rigid atomic formulas.

We will use a shorthand (») for distributing an application f over all free
variables. For example, ((z ~ f(z) N@Q@W U ') (x)) is short for (f(z) ~
FUF@) A U g0 ') (F(F(@)))):

3 Complexity Results for FFP Logics

We will here introduce various variants of FFP and summarize relevant complex-
ity results. Fig. 1 summarizes how the examined fragments relate to each other in
terms of generality. 2FFP(E) is the fragment of linear FFP allowing at most two
functions f and g to be nested inside fixed-point operators. FFP(NL) does not
allow nesting of functions inside fixpoint operators, but does allow non-linear
subformulas. We will show that satisfiability of 2FFP(E) is undecidable while
satisfiability of FFP(NL) is NEXPTIME-hard. FFP(E) is the linear fragment of
FFP(NL), and FFP(PL) is the purely propositional fragment of FFP(E).

3.1 FFP(PL)

We first study the propositional fragment FFP(NL) 2FFP(E)

of FFP, called FFP(PL). It corresponds very
closely to linear time temporal logic, the FFP(E)
only real difference is that the temporal sub-
formulas refer to an explicit anchor, as a con-
stant.

Formulas in FFP(PL) have the form:

FFP(PL)

Fig. 1. Relative expressiveness
pu=P@) [RloNe|—p] (pUfap)(t) of the FFP fragments

ta=f"(x) | f"(c)

where z is a variable, f™(x) is the n-time application of f to x, ¢ is an arbitrary
rigid term (without variables), P is a unary predicate, and R is a relation using
only rigid terms.

FFP(PL) is formulated to be very similar to propositional LTL. It is indeed
very straightforward to translate formulas from LTL to FFP(PL) and to translate
formulas from FFP(PL) into equisatisfiable formulas in LTL. The correspondence
can be used to establish:

Theorem 4. FFP(PL) is PSPACE complete.

Proof (Sketch). We can embed LTL into FFP(PL) using transformations, such
as OOP +— (Crau P(f(2))) (x). Conversely, we can translate FFP(PL) formulas
into LTL by dropping the explicit variable references and annotating predicates
based on the context they appear, e.g.,

(Ofy PW) (d) = OGPy and (P(z) U 1. Q(f())) (ff(¢)) = OO(PeU OQe).

Linear Functional Fixed-Points 129

By reusing results from [19], we can take advantage of the reduction to LTL
and obtain a few results on NP-complete subsets “for free”. For instance, Sistla
and Clarke show that linear-time temporal logic using only the operators [J and
< is NP-complete, and so is the case if formulas are in positive normal form using
<& and Q. The corresponding FFP(PL) subsets are therefore also NP-complete.

3.2 FFP(E)

We will now consider an extension of FFP(PL) by admitting equality predicates
on terms containing bound variables. The resulting logic is called FFP(E). In
contrast to FFP(PL), the embedding into LTL is less straightforward, since the
equalities interact in an essential way with the models for the propositional
temporal abstraction. Formulas in FFP(E) extend FFP(PL) by admitting atomic
formulas that are equalities between terms containing variables, constants, and
distinguished functions used in fixed-points. We use f and g to refer to the
distinguished functions. For simplicity we will assume that formulas in FFP(E)
use just two functions f and g in the fixed-points. The generalization to multiple
functions is simple.

The operators () and (o) are used to limit the number possible equality pred-
icates to consider. We also admit terms where the distinguished functions f and
g are applied to a constant. Thus, formulas of FFP(E) are of the form:

o, = fMa)~x| g™ (@) 2z |ex= f(d)] e=g(d) | @Qp | @Qp|z~c|ec~d
| P(x) [R]~¢loVe [ong' [(0 Usad) (@)] (¢ Ugad) (x)

such that the formulas ¢ and ¢’ in (p U ;5 ¢') (x) contain at most one free

variable, which is x. So we require every bound variable to appear linearly.

We furthermore restrict applications of f and g so that they do not ap-
pear together in the same flexible formula. Specifically, for each subformula
(¢ Usz¢")(t), g may not appear in ¢ or ¢’. A similar condition is also required
where the roles of f and g are exchanged. Thus,

(Orax=a)(c) A(Ogyy~b)(c)
is a legal formula in FFP(E), but

(Orar=a)(c) A (Ogy@y ~ b)) ()

is not, because both f and g are used on the same variable y. In general, this
restriction is necessary to ensure our complexity result in Theorem 10. However,
when g does not directly refer to the same variable x, one can introduce fresh
rigid predicates to normalize the formula into an equisatisfiable formula with
this restricted form. For example,

(Craz=cA(Oge P(x)) (1) (a)
can be expressed as the equisatisfiable formula

(Crez=cAr)(@)A(r <= (g P(x)) (b))

130 N. Bjgrner and J. Hendrix

It is not hard to see that we can build all combinations of equality predicates
using one variable x, the function f and up to two constants ¢ and ¢’ using
the base cases f"(z) ~ x, © ~ ¢, ¢ =~ f(c/), ¢ =~ ¢ and the operator (D).
For example ¢[f(c) ~ ff(c), f(x) ~] is equisatisfiable to the formula ¢; ~
fe) Nea = f() N ler = flea),@(x = ¢)]. We will use the operator () in two
ways: in a temporal view and a ground view. In the temporal view, we do not
normalize the formula with respect to the definition of (;); the use of (¥)is essential
for bridging FFP(E) with LTL. In the ground view, we distribute (») over the free
variables such that () gets eliminated.

Even very small examples can show how the interaction between equalities
makes checking the satisfiability of FFP(E) more complex. For example, the
following unsatisfiable formula illustrates how distinct constants can not be as
easily partitioned as was done in FFP(PL):

(Crer~cN@P(x)) (a) A (Ofzx~cA—DP(x)) (b).

The first conjunct implies that P(f(c)), but the second required —P(f(c)), al-
though P(f(c)) does not directly appear in the formulas.
To illustrate how equalities and predicates may interact, consider the formula:

(OCraz = f(2)) () A (Oraz = f*(2) (a) A (Ora @P(x) <= ~P(x))(a)

The first two conjuncts require that fi*3(a) = fi(a) and fi*2(a) = f7(a) for
some 4 and j in N. Collectively, this implies that f(f*(a)) = f*(a) for k >
min(4, 7). Conversely, the third clause requires that the value of P changes at
each dereference, and consequently, f(f*(a)) cannot equal f*(a).

Expressivity of FFP(E). We make a case that the FFP(E) logic is quite gen-
eral and expressive. It subsumes several (but not all) logics recently proposed
for reasoning about heaps. We summarize some of the properties that can be
expressed in FFP by encoding logics from the literature on verification of heap
manipulating programs.

Example 5 (Transitive Closure of [). Suppose we let f*(a,b) mean that there
is a sequence of 0 or more applications of f to a that produces an element b.
That is, f*(a,b) = 3In . f"(a) ~ b. This can be easily represented:

* f
fa,b) =(Opzx=b)(a)=a=D
Example 6 (Reachability Invariants [14]). Nelson introduced a ternary pred-
icate u L v which indicates that u reaches v without going through w. It can be

used to verify a program that computes the union of two sets represented as doubly

linked lists, and can be expressed in FFP(E) as: u Lov= (xFwlfrz~v)(u).

Example 7 (Well-Founded Reachability [7]). Lahiri and Qadeer use block-
ing set predicates BS to identify distinguished elements in potentially cyclic
data structures. Blocking sets generalize Nelson’s blocking variable. Under the assump-
tion that every node eventually reaches a blocker, they can define the program

Linear Functional Fixed-Points 131

verification-friendly functions and predicates: FFP(E) allows formulating these
predicates directly:

B(u)~v = (=BS(z) U j oz ~v)(u) AN BS(v)
R(u,v) = (=BS(f(z)) U fzx ~v)(u)

Example 8 (btwny [16]). The dual to Nelson’s reachability predicate is the pred-
icate btwny(a, b, c) which requires b is visited before c. It is versatile for a wide
range of program verification cases, and can be defined as:

btwnf(a,b,c)E(x;ﬁcuf@xzb)(a)/\ch

FFP(E) is also closed under the weakest-precondition predicate transformer,
when a pointwise update is made to the function f:

Proposition 9. FFP(E) is closed under pointwise functional updates. As we
show in [3]: if ©[f] is in FFP(E), then for constants u and v, the formula
©[Ay.if y ~ u then v else f(y)] can also be expressed in FFP(E).

Theorem 10. The satisfiability problem of FFP(E) is PSPACE-complete.

Proof (Sketch [3]). We reduce FFP(E) to LTL, and use the PSPACE-completeness
result from [19]. The reductions follow 3 transformations Tableau, Erase, and
Embed:

Tableau Erase Embed
® »Tab(p) > OPTL > ©PTLx

Each of the transformations can be done in polynomial time and space, with
the last transformation being the most expensive, requiring quadratic space.

Tableau. The tableau normal form [11] of a formula ¢ is a conjunction of the
form:
Tab(p) = [@] A Next A Inv A /\ OCF
FeF

where [¢] replaces the top-most occurrences of () and U ¢, subformulas by
fresh auxiliary propositional variables, Next encodes an accessibility relation
over the original and auxiliary propositional variables, Inv is a state invariant
that ensures that the interpretation of temporal connectives is consistent on
every state; and the set F contains the set of acceptance conditions:

(¥ Upa))](x) — [¢] for each (¢ U 5. 1)') (x) € SF(g).

Erase. The propositional erasure converts an FFP(E) formula ¢ into an LTL
formula @pry, by using the transformations:

(Y Usa") (@)prr = YprrUYpp, and (DY) prr = OYprr.

132 N. Bjgrner and J. Hendrix

Embed. The heart of the reduction is to add a sufficient set of axioms such that
the LTL formula is equisatisfiable with the FFP(E) formula. The formula
@prL« is obtained by enumerating the atomic subformulas of ¢ and adding
the conjunctions, whenever there are atomic formulas matching the pre-
conditions of the implications:

x~c = O(xtcWF) FeF(x)
f'(x) =z = ((z) — O"L(x))
iz~ a A ffr) e = fedmn)g) ~ g
ffax)ytanhe~c = O™(x #c)
ffx)aenffz) e = ") n>m
(@) ~ 2 = O(f"(x) ~ 2)
r~cAl(z) = Ry
r~c = (v~ < cx~d)
c~ f(d)hz~d = Oz ~c)
e eh (B — (zs.) (10
OE—taut (11

- W N

A~ N N N SN N~~~
o N O Ot
—_ T DD e DD DD O =

=)

Let us motivate the conditions a bit. The condition (1) ensures that all ac-
ceptance conditions mentioning z are visited between two anchor states where x
is equal to a constant anchor c. It can still be the case that f is periodic on x, but
x is not constrained to be a constant; conditions (2), (3), and (6) handle such
cases and enforce that once f is periodic it remains so, it satisfies congruence
closure over the period, and that states are identical after n steps. Conditions (4)
and (5) ensure that the state literals are consistent with disequalities f™(z) # «.
The last set of invariants (11) are the set of tautologies needed to axiomatize
the theory of equality for the rigid predicates. They are the counterpart to the
axioms (7)—(9) which are used to axiomatize the theory of equality inside tempo-
ral subformulas. The conditions (7) and (10) are used to force evaluations after
each constant anchor to be consistent across different variables. They use the
rigid predicate Ry ., which is introduced for every literal ¢(z) and constant c.
Suppose that one state s; requires the variable = to satisfy ~ ¢. Another state
so requires a different variable y to satisfy y ~ c¢. These states must satisfy the
same literals ¢(x) respectively ¢(y). To ensure that also the states following s;
and sg evaluate the same literals in tandem we use condition (10) which uses
the new variable ;. and will involve all literals associated with = and y, and
any other variable that anchors with c.

Let us assume that the variables are x,y,z. To extract a model M of ¢
from an LTL model ¢ = s1, 82,53... of @prrs«, we partition each state s; € o
into s;(x), si(y), and s;(z). The state s;(x) contains all the assignments to the
atomic subformulas using the variable x. For each variable z, there are 3 cases
to consider: (1) x ~ ¢ appears in both s;(z) and s;(x) for some indices i < j
but x ~ ¢ is not in any other state before s;(z). (2) f"(z) ~ x appears in some

Linear Functional Fixed-Points 133

state s;j(z), but not in any earlier states; and (3) neither cases (1) or (2) apply
and consequently each equality x ~ ¢ appears in at most one state in o.

In the first case, we add fresh elements aq,...,aj_1, set f(ar) = ag+1 for
k<j—1,set f(aj—1) = a;, and assign predicates based on the assignments to
the states s1(z),. .., s;—1. We are guaranteed acceptance conditions are satisfied
by the axioms (1). In the second case, we add fresh elements as,...,aj1n—1,
and assign f and the predicates in the obvious way, with f(a;yn—1) = a;. We
are guaranteed consistency by the axioms (2)—(6). In the final case, we add an
infinite sequence of fresh elements a1, as,

3.3 Extensions to FFP(E)

In this section, we analyze the complexity of two extensions to FFP(E).

FFP(NL) is the fragment of FFP that admits only a single function symbol
f with fixed-point expressions, but allows different bound variables to appear
together in the same scope. We can reduce FFP(NL) to monadic second order
logic by translating each fixed-point expression (uR.Az.C[R])t into an equivalent
second-order expression (VZ) (Vz.Z(z) < C[Z](x)) = Z(t).

Both weak and strong monadic second-order logic with a single function sym-
bol is decidable [4] (Corollary 7.2.11 and 7.2.12). So FFP(NL) logic is decidable.
The second-order theory of one unary function is on the other hand not elemen-
tary recursive. It does not necessarily follow that FFP(NL) is non-elementary as
well, but we establish in [3] that FFP(NL) is at least NEXPTIME-hard. Our proof
is inspired by a similar construction for LRP [21], and reduces the NEXPTIME-
complete problem of deciding whether a tiling problem 7 admits a tiling com-
patible with 7 on a square grid of size 2™ x 2".

FFP(NL) does not enjoy the finite model property. For example:

Proposition 11. The sentence (¥, (Ofyx % y) (f(x))) (¢) is satisfiable by an
infinite model, but unsatisfiable for finite models.

In [3], we use this result to show that FFP(NL) is incomparable with the Logic of
Reachable Patterns (LRP) [21]. LRP allows reasoning backwards along edges, and
consequently can specify properties that FFP(NL) cannot. However, LRP has the
finite model theory whereas by Prop. 11, FFP(NL) does not. We are not aware
of any matching lower and upper bounds on the complexity of FFP(NL), neither
do we know if the weak theory (that only admits finite models) of FFP(NL) is
any easier than full FFP(NL).

We also consider the fragment of FFP where multiple function symbols are
allowed to be associated with the temporal connectives and we are allowed to
nest different functions over the variables. We call this fragment 2FFP(E). Among
other things, this logic allows us to encode arbitrarily large grids. For example,
we can express that functions f and g commute over all nodes reachable from a
given constant c

(Ose Dy f9(y) =~ g(f(w)]z) ()

134 N. Bjgrner and J. Hendrix

We show in [3] that the satisfiability problem for this logic is undecidable. The
proof uses a commonly used reduction from tiling problems. It is very similar to
results in [6,21].

4 SMT Solver Integration

This section describes how Theorem 10 can be used to provide a decision proce-
dure for FFP(E) together with a background theory 7. The theorem suggests a
direct embedding of FFP(E) into LTL, but this is not always necessary, and we
here examine how intermediary steps can be used. The approach we will present
is analogous to how SAT solvers may be combined with decision procedures,
except, instead of extracting conflict clauses for a propositional SAT solver, we
extract temporal safety formulas to refine a propositional LTL abstraction.

4.1 FFP and Theories

Our formulation of FFP(E) uses auxiliary constants a,b,c but does not say
whether there are any additional constraints on the constants. This is a conve-
nient simplification for presenting FFP(E), but we would like integrating FFP(E)
with other theories, such as the theories 7 of arrays and linear arithmetic. These
theories can directly be combined in a Nelson-Oppen [15] framework of signature
disjoint, stably infinite theories. In this setting FFP(E) can treat subterms that
use symbols from other theories as constants. The theory EUF of uninterpreted
theories is half-way built into FFP(E) because it relies on congruence closure over
unary functions. SMT solvers most commonly provide general purpose congru-
ence closure decision procedures, and these can be used directly for the unary
functions used in the FFP(E) fragment.

We here observe that the Nelson-Oppen combination result can also be used
for FFP(E). Formally, FFP(E) is not a first-order theory, yet it can still satisfy the
conditions for a Nelson-Oppen combination: First, FFP(E) is stably infinite. In
other words, if a formula ¢ over FFP(E) has a model, it has a model of any larger
cardinality. This follows because the evaluation of ¢ only depends on values of
the original auxiliary constants a, b, ¢, their forward closure under a fixed set of
unary functions f, g, and the values of unary predicates (P, Q) over the closure.
The original model will already fix their interpretation. Second, we will assume
that the unary predicates and functions used for FFP(E) formulas are not used
in other theories. This restriction is required for completeness. For example, the
combination result does not apply to the formula (O, read(z) < read(f(z))) (a)
which uses arithmetical relation < and the shared function read.

To summarize, we have:

Theorem 12. Let ¢ be a formula over FFP(E) + T, where T is stably infi-
nite decidable theory whose signature is disjoint from the unary functions and
predicates used by FFP(E). Then satisfiability of ¢ is decidable.

Linear Functional Fixed-Points 135

Proof (Sketch). (1) We first purify ¢ to create a conjunction YFFP(E) Ao,
such that PFFP(E) Uses only the vocabulary from FFP(E), and ¢ uses only

the vocabulary from 7. The two conjuncts may share constants a,b,c,.... (2)
Then apply Theorem 10 to YFFP(E) to obtain ¢ prr«. (3) Create the conjunction

@ Frame comprising of the frame conditions (O(a ~ b) V O(a % b) for each pair of
constants a, b that occur in both conjuncts. The resulting formula @ prr« Az A
©rrame 18 equisatisfiable with . Furthermore, since FFP(E) is stably infinite
we can reconstruct the Nelson-Oppen combination result and observe that it is
satisfiable iff there is a propositional LTL model o for ¢ prr« A prame and model
M for o, such that o = a ~ b iff M |= a ~ b for each pair of shared variables
a,b.

4.2 Abstraction/Refinement Solver Combinations

The proof of Theorem 12 could suggest applying the transformations from The-
orem 10 eagerly. The drawback is that a potential quadratic number of new
formulas are created in the process. We will therefore develop a method that
integrates with an SMT solver, such as Z3 [5], in a more incremental way. The
integration is a bit similar to how state-of-the-art SAT solving techniques are
used in SMT solvers: The SAT solver treats each interpreted atom in a formula
as a propositional atom. It provides propositional models that assign each atom
to true or false. We will use s to refer to a propositional model, and it will
be represented as the set of atomic formulas that are true in the propositional
model. A propositional model s of a formula ¢ corresponds to a conjunction of

literals:
L= /\ a A /\ -a

a€ASF(p),a€s a€ASF(¢),a¢s

The theory solvers check the propositional models for 7 consistency. If the con-
junction is 7-unsatisfiable, then there is a minimal subset L’ C L such that
T A L' is inconsistent. The SAT solver can in exchange learn the clause —L’ and
has to search for a propositional model that avoids L'.

An incremental integration of a solver for LTL with a 7 solver is a sim-
ple generalization. Instead of refining a propositional model s, we here refine a
propositional temporal model ¢ that is generated by a propositional LTL solver.

1. Purify: From the original formula ¢ create the purified and separted con-
junction PFFP(E) Ao

2. Erase: Create a temporal abstraction pppy from ‘pFFP(E)' This formula
does not contain the embedding axioms.

3. Incremental Embed: If opry has a temporal model o, then check (a) that
each state is consistent with ¢, (b) that ¢ evalutes rigid subformulas to

136 N. Bjgrner and J. Hendrix

In the limit, this procedure produces @ prr« A @prame. On the other hand, it
allows first adding partial constraints that increase the complexity of checking
propositional temporal satisfiability only incrementally. It also allows interposing
partial checks on ¢ that result in a modest cost for the LTL checking phase.

Example 13 (Neighbor consistency). Suppose the model o contains the se-
quence of states sg, s1,..., and suppose that sg contains the state assignment
¢~ f()YNz ~ AN=P(c), and s1 contains the state assignment P(x). The
states cannot be neighbors because the conjunction

c f(YNz = AN=Ple) \OP(z) = c~ f(d) ANz~ AN=P(c) N P(f(x))
s contradictory. To rule out this case, it suffices to add the safety formula
c~ f(dYNz~d AN=P(c) = -OP(z),
or equivalently strengthen the accessiblity relation Next.

Example 14 (Cross-state consistency). The two states s1 and so are con-
tradictory if s1 entails the assignment P(z) A x ~ c and state sy entails the
assignment ~P(y) A y =~ ¢ for potentially different variables x and y. Such a
situation is ruled out if we apply safety condition (7) for every pair of variables
x, y, and every literal £(x), but cross-state consistency checking will also capture
this case. The resulting safety condition is in this case

O~(Px) Az ~c) V O-(=P(y) Ay ~c)

A set of relevant tests are in order of their overhead:

State consistency: Each state can be checked for consistency in isolation. If
the state is not 7 consistent, we can constrain the LTL abstraction by adding
an invariant to rule out the inconsistent state. The saturation condition E-taut
is contained in the state consistency check.

Cross-state consistency: The conjunction of states can be checked for consis-
tency. If the conjunction is inconsistent, then generate a disjunction of invariants
to rule out the inconsistent combination of states. This check requires creat-
ing fresh copies of variables so that their evaluation is not fixed across states.
Cross-state consistency implies state consistency, but requires checking a larger
formulas.

Neighbor consistency: Each pair of consecutive states s;, s;+1 can be checked
for relative consistency. In contrast to cross-state consistency, we only need one
copy of the variables; the occurrences of the variable x in s;11 is replaced by
f(z). If some pair of states is found to not be consecutive, one can add an
additional safety constraint. The safety constraint does not increase the set of
states reachable in the temporal tableau. Neighbor and cross-state consistency
can be used to enforce the frame condition ¢ grame-

Linear Functional Fixed-Points 137

Saturation consistency: In the spirit of approaches based on first-order en-
codings of fixed-point logics [8,12,16] we can saturate pppp using a first-order
approximation. In the context of FFP(E), we can enforce some properties of U
by instantiating the axiom:

Vo . [(Uped)(@) < "V @AW U) (f(2))

There are two ways to instantiate this axiom in a way that avoids indefinite
unfoldings. The first is to instantiate it whenever there is a ground subformula
in YFFP(E) congruent to [(¢ U 5, ¥")](f(t)) for some ¢t. The second is to instan-

tiate it when both f(t) and [(¢) U ¢, 4")](t) appear in YFFP(E)- The Z3 solver

allows controlling such instantiations using so called E-matching on patterns.
Note that saturation consistency can in some cases completely replace all other
checks. This is the case when there is a complete axiomatization for ground
queries using quantifiers, as in [8].

Embedding consistency: Finally, the auxiliary axioms (1)-(11) required for a
full embedding can be added lazily by only adding axioms that are violated by
the current model.

5 Conclusions and Future Work

In this paper, we have introduced several ground first-order logics with fixed-
points, and shown how satisfiability for the functional fixed-point logic with
equality FFP(E) can be reduced to checking satisfiability of linear-time tem-
poral formulas. Furthermore, we have developed and implemented an abstrac-
tion/refinement framework that integrates an LTL solver with an SMT solver to
efficiently solve FFP(E) satisfiability problems directly.

Our choice of LTL as the target is a matter of convenience that was useful
for identifying NP-complete subsets of FFP(PL) in Section 3.1. We suspect that
one can extend those techniques to identify fragments of FFP(E) with an NP-
complete decision problem. Our reduction to FFP(E) satisfiability checking was
reduced to checking satisfiability of tableau normal forms. It is well-known that
the tableau construction captures more than LTL; it also allows for handling
formulas in the extended temporal logic, ETL [20]. In ETL, we can for instance
express Vn > 0.P(f%"(a)). It is expressible as (vXAz. X (ff(z)) A P(x))(a), but
does not correspond to a formula in FFP(E). Nevertheless, the satisfiability of
such formulas can be checked using the same apparatus developed in this paper.

While simple extensions of FFP(E) are undecidable, there are decidable classes
of formulas that can be formulated using functional fixed-points, yet they can-
not be formulated in FFP(E). For example [8] studies a fragment based on the

predicate Vz : [a ER b].¢ that allows multiple functions and variables to interact.
Among other things, their predicate allows one to specify the formula

Vo :[a EN nil]. (x =nil VVy: [f(z) EN nil].y # x)

138 N. Bjgrner and J. Hendrix

which states that the elements in the list from a to nil are distinct. The formula
refers simultaneously to multiple dereference functions. The reduction to LTL
does not work when there are multiple bound variables: The LTL reduction
requires that at most one variable is affected in the tableau state transitions. We
are investigating whether freeze quantifiers, which were developed in the context
of real-time temporal logic [1] can be applied. We thank the reviewers, Sergio
Mera and Margus Veanes for valuable feedback.

References

1. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181-204 (1994)

2. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis of single-parent heaps. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 91-105. Springer, Hei-
delberg (2007)

3. Bjgrner, N., Hendrix, J.: Linear functional fixed-points. Technical Report MSR-
TR-2009-8, Microsoft Research (2009)

4. Borger, E., Gréadel, Gurevich: The Classical Decision Problem. Springer, Heidelberg
(1996)

5. de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

6. Immerman, N., Rabinovich, A.M., Reps, T.W., Sagiv, S., Yorsh, G.: The bound-
ary between decidability and undecidability for transitive-closure logics. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 160-174.
Springer, Heidelberg (2004)

7. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded linked lists. In: Prin-
ciples of Programming Languages (POPL 2006), pp. 115-126 (2006)

8. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification
using SMT solvers. In: POPL, pp. 171-182. ACM, New York (2008)

9. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, S., Srivastava, S., Yorsh, G.:
Simulating reachability using first-order logic with applications to verification of
linked data structures. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632,
pp- 99-115. Springer, Heidelberg (2005)

10. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

11. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (1995)

12. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476-490.
Springer, Heidelberg (2005)

13. Mgller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: Program-
ming Language Design and Implementation (PLDI 2001), pp. 221-231 (2001)

14. Nelson, G.: Verifying Reachability Invariants of Linked Structures. In: Principles
of Programming Languages (POPL 1983), pp. 38—47 (1983)

15. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245-257 (1979)

16. Rakamarié, Z., Bingham, J., Hu, A.J.: An inference-rule-based decision procedure
for verification of heap-manipulating programs with mutable data and cyclic data
structures. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp.
106-121. Springer, Heidelberg (2007)

17.

18.

19.

20.

21.

Linear Functional Fixed-Points 139

Ranise, S., Zarba, C.G.: A Theory of Singly-Linked Lists and its Extensible Deci-
sion Procedure. In: SEFM 2006, pp. 206-215 (2006)

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th LICS, pp. 55-74. IEEE Computer Society, Los Alamitos (2002)

Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733-749 (1985)

Wolper, P.: Specification and synthesis of communicating processes using an ex-
tended temporal logic. In: POPL, pp. 20-33 (1982)

Yorsh, G., Rabinovich, A.M., Sagiv, S., Meyer, A., Bouajjani, A.: A logic of
reachable patterns in linked data-structures. In: Aceto, L., Ing6lfsdéttir, A. (eds.)
FOSSACS 2006. LNCS, vol. 3921, pp. 94-110. Springer, Heidelberg (2006)

	Linear Functional Fixed-Points
	Introduction
	Preliminaries
	Complexity Results for {\tt FPP} Logics
	{\tt FFP(PL)}
	{\tt FFP(E)}
	Extensions to {\tt FFP(E)}

	SMT Solver Integration
	{\tt FFP} and Theories
	Abstraction/Refinement olver Combinations

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

