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Abstract. Size-change termination involves deducing program termina-
tion based on the impossibility of infinite descent. To this end we may use
a program abstraction in which transitions are described by monotonicity
constraints over (abstract) variables. When only constraints of the form
z >y and x > y' are allowed, we have size-change graphs, for which
both theory and practice are now more evolved then for general mono-
tonicity constraints. This work shows that it is possible to transfer some
theory from the domain of size-change graphs to the general case, com-
plementing and extending previous work on monotonicity constraints.
Significantly, we provide a procedure to construct explicit global rank-
ing functions from monotonicity constraints in singly-exponential time,
which is better than what has been published so far even for size-change
graphs. We also consider the integer domain, where general monotonicity
constraints are essential because the domain is not well-founded.

1 Introduction

This paper is concerned with termination analysis. This is a fundamental and
much-studied problem of software verification, certification and transformation.
A subproblem of termination analysis is the construction of global ranking func-
tions. Such a function is required to decrease in each step of a program (for “step”
read basic block, function call, etc, as appropriate); an explicitly presented rank-
ing function whose descent is (relatively) easy to verify is a useful certificate for
termination and may have other uses, such as running-time analysis.

A structured approach is to break the termination problem for programs into
two stages, an abstraction of the program and analysis of the abstract pro-
gram. One benefit of this approach is that the abstract programs may be rather
independent of the concrete programming language. Another one is that the
termination problem for the abstract programs may be decidable.

Size-change termination (SCT [9]) is such an approach. It views a program as
a transition system with states. The abstraction consists in forming a control-
flow graph for the program, identifying a set of state variables, and forming a
finite set of size-change graphs that are abstractions of the transitions of the pro-
gram. In essence, a size-change graph is a set of inequalities between variables of
the source state and the target state. Thus, the SCT abstraction is an example
of a transition system defined by constraints of a particular type. The technique
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concentrates on well-founded domains and on the impossibility of infinite de-
scent. Thus, only two types of inequalities were admitted into the constraints
in [9]: x >y’ (old value of x greater than new value of y) and = > ¥/.

Size-change graphs lend themselves to a very natural generalization: Mono-
tonicity Constraints. Here, a transition may be described by any combination of
order relations, including equalities as well as strict and non-strict inqualities,
and involving any pair of variables from the source state and target state. Thus,
it can express a relation among source variables, that applies to states in which
the transition may be taken; a relation among the target variables, which applies
to states which the transition may produce; and, as in SCT, relations involving
a source variable and a target variable, but here equalities can be used, as well
as relations like z < 2/, that is, an increase.

The Monotonicity Constraint Systems treated in this paper will include an-
other convenience, state invariants associated with a point in the control-flow
graph. These too are conjunctions of order constraints.

Monotonicity constraint systems generalize the SCT abstraction and are clearly
more expressive. It may happen that analysis of a program yields monotonicity
constraints which are not size-change graphs; in such a case, simply approximat-
ing the constraints by a size-change graph may end up missing the termination
proof. Specific examples appear in the next section. It is not surprising, perhaps,
that Monotonicity Constraints actually predated the SCT framework—consider
the Prolog termination analyses in [5] [I0]. But as often happens in science, con-
centrating on a simplified system that is sufficiently interesting was conductive
to research, and thus the formulation of the SCT framework led to a series of
interesting discoveries. To pick up some of the salient points:

— The SCT abstraction has a simple semantics, in terms of transition systems.

— It has an appealing combinatorial representation as a set of graphs.

— A termination criterion has been formulated in terms of these graphs (the
existence of an infinite descending thread in every infinite multipath [9]).

— This criterion is equivalent to the termination of every model (transition
system)—in logical terms, this condition is sound and complete [8], [9].

— Termination of a set of size-change graphs can be effectively decided; while
having exponential worst-case time, the method is often usable.

— It has been established that a global ranking function can also be effectively
constructed from the size-change graphs. Lee [8] gave the first proof, where
the size of the resulting ranking expression is up to triply-exponential. This
left open the challenging problem of improving this upper bound. Progress

T

regarding certain special cases is reported in [2].

Which of the desirable features are preserved if we move to the stronger frame-
work of monotonicity constraints? The first contribution of this paper is an
answer: in essence, all of them.

The second contribution of this paper is an algorithm to verify termination of
a monotonicity constraint system while constructing a global ranking function,
all in singly-exponential time. Thus, we solve the open problem from [§], and,
surprisingly, by tackling a super-problem.



Size-Change Termination, Monotonicity Constraints and Ranking Functions 111

X X X > X x><ix
Y><Y y y y | 2
z Bz z > Z z z

Gy G2 Gs

Fig. 1. SCT example with a complex ranking function. There is a single flow-point.
Heavy arcs represent strict descent.

To illustrate this result, Figure [Il shows an SCT instance not falling into
the classes handled in [2]. A ranking function for this instance, of the kind
that we derive in this paper, follows. Its codomain is triples, and it descends
lexicographically in every transition.

<$7y,Z> if Z<$§y\/y<m§z
plx,y,2) =4 (y,y,2) if z<y<avez<y<z
<z,y72> if $§Z<y\/y§z<az

Related Work. An important precursor of this work is [4]. It concentrated on local
ranking functions, and made the intriguing observation that the termination
test used in [I0, [5] is sound and complete for SCT, but incomplete for general
monotonicity constraints. It also presented the correct test (see Section E3J).
Even earlier, [7] presented a termination analysis for logic programs in which
the correct decision algorithm for monotonicity constraint systems is embedded.
There are many works that target the discovery of relations among variables
in a program. Classic examples include [3] for logic programs and [6] for im-
perative programs. All these techniques can be used to discover monotonicity
constraints—none are inherently restricted to size-change graphs.

2 Basic Definitions and Examples

This section introduces monotonicity constraint systems (MCS) and their se-
mantics, and formally relates them to SCT.

A monotonicity constraint system is an abstract program. An abstract pro-
gram is, essentially, a set of abstract transitions. An abstract transition is a
relation on (abstract) program states.

When describing program transitions, it is customary to mark the variables
in the resulting state with primes (e.g., ). We use S’ to denote the primed
versions of all variables in a set S. For simplicity, we will name the variables
Z1,...,&, (regardless of what program point we are referring to).

Definition 2.1 (MCS). A monotonicity constraint system, or MCS, is an ab-
stract program representation that consists of a control-flow graph (CFG), mono-
tonicity constraints and state invariants, all defined below.
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— A control-flow graph is a directed multigraph over the set F' of flow points.
— A monotonicity constraint or MC is a conjunction of order constraints of
the form x <1y where x,y € {x1,...,Zn,x},..., 2}, and < € {>,>,=}.

— FBvery CFG arc f — g is associated with a monotonicity constraint G. We

write G : f — g.
— For each f € F, there is an invariant Iy, which is a conjunction of order
constraints among the variables.

The terms “abstract program”, “constraint system” and “MCS instance” are
used interchangeably, when context permits. The letter A is usually used to
denote such a program; F4 will be its flow-point set. When notions of connec-
tivity are applied to A (such as, “A is strongly connected”), they concern the
underlying CFG.

Definition 2.2 (constraints as graphs). The graph representation of G : f —
g is a labeled graph (X UY, E) with the nodes X = {x1,...,2,} and Y = X’
and E includes a labeled arc for each constraint:

— For a constraint x >y (respectively x > y), an arc x EX y (x I y').
— For a constraint x = y, an edge (undirected arc) x — y (thus, G is a mixed
graph E

The labeled arcs are referred to, verbally, as strict and non-strict and the edges
are also called no-change arcs.

We remark that the lack of direction in edges is meaningful when we consider
paths of size-change arcs. Note also that arcs may connect two source variables,
two target variables or a source and a target variable—in any direction.

Henceforth, we identify a MC with its graph representation: it is a graph and
a logical conjunction of constraints at the same time.

Definition 2.3 (semantics). Let Val be a fized, infinite well-ordered set. A
state of A (or an abstract state) is s = (£,0), where f € FA and o : {1,...,n} —
Val represents an assignment of values to f’s variables. A transition is a pair of
states. The truth value of an expression such as x1 > xo under o is defined in
the natural way.

For G : f — g € A, we write G((f,0) — (g,0")) if all constraints in Iy,
I, and G are satisfied by o and o'. In this case, transition (f,0) — (g,0’) is
described by G.

We say that G is unsatisfiable if it describes no transition.

The transition system associated with A is the relation T s defined by

(s,8) €Ty <= G(s+—3§') for some G € A.

Definition 2.4 (termination). A run of T4 is a (finite or infinite) sequence
of states § = sg,81,82... such that for all i, (s;,8:41) € Te. Transition system
T4 is uniformly terminating if it has no infinite run.

! Hopefully, the use of — to denote both types of arcs will not confuse the reader.
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Fig. 2. A multipath

MCS A is said to be terminating if 74 is uniformly terminating for any choice
of Val.

Definition 2.5 (size-change graph). A size-change graph (SCG) is a mono-
tonicity constraint consisting only of relations of the forms x; > 333 and x; > 333
An SCT instance is a MCS where all constraints are size-change graphs and

all invariants are trivial.

Let P(s,s’) be any predicate over states s,s’, possibly written using variable
names, e.g., 1 > Tz A xg < xh. We write G = P if G(s — §') = P(s,s').

Definition 2.6. A (global) ranking function for a transition system T with state
space St is a function p : St — W, where W is a well-founded set, that decreases
on every transition.

A ranking function for a MCS A is a ranking function for T 4. Equivalently,
it satisfies G |= p(s) > p(s') for every G € A.

Example 2.1 ([4]). Consider an abstract program with a single flow-point f, a

trivial invariant, and a single abstract transition G: &1 > x5 Axe > x3 Az} < a%.
This system is terminating; a possible proof is to note that the following

ranking function descends (lexicographically) in every possible transition:

<17$1> if i) Z I3
<07$1> if z9 < x3.

f(x1, 72, 73) :{

Clearly, G is not a size-change graph. Its best approximation as a size-change
graph is {z1 > 24} which does not prove termination.

Example 2.2. Change G into xz2 > x3 A x3 = x5 Az, > x%. Now, termination
follows, not from the impossibility of infinite descent, but from the unsatisfiabil-
ity of G(s +— ') AG(s' — s").

We remark that the issue of unsatisfiability never arises with SCT instances.

3 Multipaths, Walks and Termination

Definition 3.1. A multipath M in A (an A-multipath) is a finite or infinite
sequence of MC graphs G1Gs ... that label a (finite or infinite) path in the CFG
of A.
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Most often, we view a multipath as the single (finite or infinite) graph obtained
by concatenating the sequence of MC' graphs, i.e., identifying the target nodes of
G; with the source nodes of Gi11 (Figure[d). In this way it can also be seen as
a conjunction of constraints on a set of variables which correspond to the nodes
of the combined graph.

Thus a multipath is a mixed graph. We will consider walks in this graph; a walk
can cross an undirected arc in both directions. Recall also that walks are allowed
to repeat nodes and arcs.

Definition 3.2. A walk that includes a strict arc is said to be descending. A
walk that includes infinitely many strict arcs is infinitely descending.

An MCS is size-change terminating if every infinite multipath has an infinitely
descending walk.

Note that the walk above may actually be a cycle! In this case it is contained
in a finite section of the multipath, and, logically, it implies the condition = > x
for some variable x. Thus, such a multipath is unsatisfiable and corresponds to
no concrete run. If the walk is not a cycle, it indicates an infinite descending
chain of values and this contradicts well-foundedness. Thus, we see that if A is
size-change terminating it can have no infinite runs. This proves the if direction
of the next theorem.

Theorem 3.3. A is terminating if and only if it is size-change terminating.

Proof. (only if) suppose that A is not size-change terminating. Hence, an infi-
nite multipath M can be formed, without infinite descent. Consider the infinite
set V of the nodes of M as distinct variables; our aim is to show that there is
a choice of Val such that these variables can all be assigned while satisfying all
the constraints. This assignment will form an infinite run.

In fact, V itself is partially quasi-ordered by the constraints in M; more pre-
cisely, the constraints can be completed to a partial quasi-order by including
additional inequalities, to satisfy the reflexive axiom v = v for all v, and the
various other axioms: > yAy>z=x>2, z>yAy>x=>zcz=y, etc

The closure ensures transitivity and symmetry of = as well as transitivity of
>, and the agreement of > with > and =. The asymetry of > is guaranteed by
the non-existence of a descending cycle.

Moreover, the partial quasi-order is well founded, because of the non-existence
of infinite descent in M. Now, let Val be V/=, which is a well-founded partial
order, and extend the ordering to a total one in an arbitrary way while preserving
well-foundedness. O

The SCT condition [9J] is similar to the infinite-descent condition, but only con-
cerns walks that proceed forwards in the multipath. Obviously, with SCT graphs,
there are no other walks anyway.

Definition 3.4. Let M = G1Gs... be a multipath. A thread in M is a walk
that only includes arcs in a forward direction (v; — z%). A MCS A satisfies
SCT if every infinite A-multipath has an infinitely descending thread.
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As the examples of Section [ show, the SCT condition, while clearly a suffi-
cient condition for termination, is not a necessary one with respect to general
monotonicity constraint systems.

4 Fully Elaborated Systems and Stability

In this section we describe a procedure that while increasing the size of an
abstract program (by duplicating flow points), simplifies its termination proof.
In order to express the correctness of a transformation on abstract programs we
begin by defining “simulation.”

4.1 Simulation

Definition 4.1. Let 7, S be transition systems, with flow-point sets F, F°
respectively, and both having states described by n variables over Val. We say
that S simulates T if there is a relation ¢ C F x FS and, for all (f,g) € ¢,
a bijection s 4 {1,...,n} — {1,...,n} such that for every (finite or infinite)
state-transition sequence (f1,01) — (f2,02) — (fs,03) — ... of T there is a
corresponding sequence (g91,01) — (g2, 0%) — (g3,0%) — ... of S with (fi,g;) € ¢
and ] = ;0 (17,0,

Definition 4.2. We say that an abstract program A simulates an abstract pro-
gram B if T4 simulates Tg, via mappings ¢ and 1, as above.

We say that A simulates B deterministically if for every f € F® and assign-
ment o’ satisfying Iy there is a unique g € FA with (f,g) € ¢ such that, letting
o' = sigmao (1 g4), assignment o’ satisfies I.

Briefly, determinism means that the invariants of different A flow-points that
simulate a given B flow-point have to be mutually exclusive (for valid states).

4.2 Elaboration

Definition 4.3. An MCS A is fully elaborated if the following conditions hold:

(1) Each state invariant fully specifies the relations among all variables. That
is, for i, < n, one of x; = x;, x; < x; or x; > x; is implied by I¢.

(2) Each size-change graph G is closed under logical consequence (taking the
invariants into account). That is, whenever G((f,0) — (g,0")) = x >y, for
X € {>,>,=,}, the corresponding arc is included in G.

(3) No MC in A is unsatisfiable.

In a fully elaborated system, the invariants can be assumed to have the form

zi{Zte2{Z}. {Z} o (1)

In this form, the variables are re-indexed according to the sorted order of their
value; this has some convenient consequences. In particular, the closure under
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logical consequence yields a “downward closure” of the graphs: if x; — x; eqG
then z; — z}, € G for every k < j, and if xlim; € G then xlimc;c eqG.

The number of possible orderings of n variables plays a role in the combina-
torics of fully elaborated instances. Note that equalities are possible. Therefore,
the number of orderings is not n!, but a slightly larger number called the nth
ordered Bell number B,. An easily proved upper bound is B, < 2n""!. We
denote the set of these orderings by Bell,.

Recall that f = O(g) means that f = O(g - log" g) for some constant k. Thus
O(n”) is asymptotically dominated by n™ times a polynomial in n.

Lemma 4.4. Any MCS B with n variables at any point, and m flow-points, can
be transformed into a fully-elaborated system A, simulating B deterministically,
in O(mn™) time and space.

If B terminates, so does A.

Proof. The algorithm for the transformation follows almost immediately from
the definitions: first, for every f € FB, generate flow-points f, where 7 ranges
over Bell,,. A mapping ¢y, s is defined according to the ordering, to satisfy ().
The invariant Iy is also set to express the chosen ordering.

Next, for every MC G : f — g in B, and every pair f;, g, create a size-change
graph G & : fr — g as follows:

1. For every arc z — y € G, include the corresponding arc in G », according
to the variable renaming used in the two A flow-points.

2. Complete G by closure under consequences of the inequalities expressed
by the given arcs, Iy, and I,_. Calculating this closure is easy since it is ac-
tually an All-Pairs Shortest-Path problem with weights in the set {|,T,=}.
This can be done in polynomial time, at most O(n?), by a standard al-
gorithm. Note that the algorithm will also find out whether the graph is
satisfiable—it only fails to be so if the closure includes a strict self-loop
x>,

Unsatisfiable graphs are removed from the constructed system.

If B terminates, so does A—because every run of A represents a run of B. 0O

4.3 Stability

Definition 4.5. An MC G : f — g is stable if it is closed under logical conse-

quence, and, moreover, every relation among variables of state s (respectively,

s') implied by Ir(s) N G(s,s') N14(s") is already implied by Iy (respectively, I,).
MCS A is stable if all its abstract transitions are.

It is easy to see that a fully elaborated system is stable. Full elaboration can be
seen as a brute-force solution; a system can be stabilized by an iterative fixed-
point computation, which is likely to end up with fewer than B, times every
flow point. We do not elaborate further on the algorithm in this abstract.

Theorem 4.6. A stable MCS A is terminating if and only if it satisfies SCT.
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Proof. If A satisfies SCT, it is terminating. For the converse direction, Let
M = G1Gs ... be an infinite A-multipath. We know that it has an infinitely
descending walk. We now have two cases, as the walk is either a cycle or extends
to infinity. We claim that the first case cannot happen (and leave the proof to
the reader; it uses the same ideas as the other case). In the second case, we shall
prove that there is an infinitely descending thread.

For unique naming, let the nodes of the multipath be labeled z[t, 9] such that
x[t,i] is a source node of Gy11 representing x; (and a target node of G;). The
index t is called the time coordinate. The walk is made out of arcs xz[t,ir] —
Z[th+1, k1) for k = ko, ko + 1,... Let j; be the first occurrence of ¢ in the
sequence; note that this is well defined for all ¢ > ¢5,. The walk is broken into
segments leading from z[t,i;,] to x[t 4+ 1,4;,,,], of which infinitely many are
descending. We claim that each of this segments can be replaced with a single
arc, strict when appropriate. This implies that SCT is satisfied.

As there is a walk from «[t,ij,] to z[t+1,4;,,,], consider the shortest one (the
shortest strict one, if appropriate). We claim that it consists of one arc. For if it
does not, consider a node x[t*, i;,. | of smallest time coordinate that occurs inside
the segment (not at its ends). Then consider the two arcs—one that enters that
node and one that exits; they must both be in Gj,.. . By consequence closure,
there is a single arc (strict if any of the two arcs is) to replace these two arcs.
Thus, the presumed shortest walk is not shortest. a

A decision algorithm. Theorem has the immediate consequence of an algo-
rithm to decide MCS termination. Namely, stabilize the system and apply an
SCT algorithm. Note that for deciding SCT, we can ignore any “backward” arcs
(333 — x;), as well as the state invariants, in other words retain just SCT graphs.
This observation may possibly be useful in optimizing an implementation, in
particular in conjunction with a subsumption test.

Anothe natural expectation is that it would be desirable in practice to avoid
full elaboration when possible, as already remarked. The emphasis on “in
practice” is due to the fact that when the theoretical worst-case complexity
is considered, full elaboration may (somewhat paradoxically) be an improve-
ment, specifically, when the decision procedure used is the closure-based algo-
rithm [9]. The closure set of an SCT instance can reach (at the worst case) a size
of m? 2@(”2); the closure set of a fully-elaborated system is only m?2 20 (nlogn),
However, as the next section will show, once we have fully elaborated the sys-
tem, there is actually a polynomial-time algorithm that decides termination (and
more), so there is no need to do anything as costly as a closure computation.

The decision algorithm for MCS that is embedded in the logic-program analy-
sis of [7] is a “closure type” algorithm similar to the standard algorithm for SCT.
It seems that the algorithm can be interpreted as applying the standard SCT
algorithm to a stabilized constraint system (disregarding aspects that do not
apply to our framework). Yet another similar algorithm is found in []. It uses
“balancing” which is similar to our stabilization but on a local basis (consistent
with the overall local approach of that paper).
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5 Constructing a Global Ranking Function

This section describes our ranking-function construction. The general form of the
constructed function is a “case expression” which associates tuples of variables
and constants with guards. The function evaluates to the value of the tuple
whose guard matches the current state. For an example see Section 1.

5.1 Background
We first cite some definitions and results from previous work, specifically [II, [2].

Definition 5.1 (vectors). For flow-point f € F and positive integer B, VfB 18
the set of tuples v§ = (v1,v2,...) of even length, where every odd position is a
variable of f, such that every variable appears once; and every even position is
an integer between 0 and B.

Definition 5.2 (thread preserver). Given MCS A, a mapping P : F4 —
P{1,...,n}) is called a thread preserver of A if for every G : f — g in A, it
holds that whenever i € P(f), there is j € P(g) such that x;—z; € G.

It is easy to see that the set of thread preservers of A is closed under union.
Hence, there is a unique maximal thread preserver, which we denote by MTP(A).
Given a standard representation of A, MTP(A) can be found in linear time [IJ.

Definition 5.3 (complete thread). A thread in a given multipath is complete
if it starts at the beginning of the multipath, and is as long as the multipath.

Lemma 5.4. If a strongly connected MCS satisfies SCT, every finite multipath
includes a complete thread.

5.2 Preliminaries

The essential idea of the construction is to first fully-elaborate the program, and
then process the resulting constraint system. This works, as shown next:

Lemma 5.5. If A simulates B deterministically, any ranking function for A
can be transformed into a ranking function for B.

Proof. Let p be the A ranking function. The B ranking function is defined for
state (g,0’) as p(f,o) where f is the unique point satisfying (f,g) € ¢ and

[f(g’o(w;,;))y andJZU/O(w;,;)' B

Note that, if p assigns a unique vector to each flow-point in A, the resulting 5

ranking function has just the form described at the beginning of this section.
We assume, henceforth, that A is a fully-elaborated, terminating constraint sys-

tem. By Theorem[Z£.6] A satisfies SCT, and can be handled as an SCT instance.

Definition 5.6. A variable x; is called thread-safe at flow-point f if every finite
A-multipath, starting at f, includes a complete thread from x;.
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Lemma 5.7. Assume that A is strongly connected. For every f, let S(f) be the
set of indices of variables that are thread-safe at f. Then S(f) is not empty for
any f € FA and S is a thread preserver.

Proof. Let M be any finite A-multipath starting at f. Observe that since A
satisfies SCT and is strongly connected, there must be a complete thread in M,
say starting at x;. But then x, can also start a thread (note the downward-
closure of fully-elaborated MCs). It follows that n € S(f).

We now aim to show that S is a thread preserver. Let i € S(f), and let
G : f — g. Every finite multipath M beginning with G has a complete thread
that begins with an arc from x;, say z; — x;M. Let J be the set of all such
indices jys, and kK = max J. Then x; — xj is an arc of G, because k € J; and by
the downward-closure property one can see that every M has a complete thread
beginning with the arc z; — .. Hence, k € S(g) and the proof is complete. O

Definition 5.8 (freezer). Let C : F4 — {1,...,n}. Such C is called a freezer
Jor A if for every G € A, G = xo(p) = x’c(g).

Lemma 5.9. Suppose that A is strongly connected, satisfies SCT, and has a
freezer C. If for every f, variable xc(yy is ignored, SCT will still be satisfied.

Proof. Let M be an infinite multipath of A; by the SCT property, M has an
infinitely descending thread 7. Observe that C induces one infinite thread o
in M, consisting entirely of no-change arcs x; — x’; this thread represents a
sequence of unchanging data values in any transition sequence described by M,
and therefore can have at most finitely many intersections with 7. It follows that
M has an infinitely descending thread that avoids the frozen variables. a

Lemma 5.10. Let A have thread preserver S, where S(f) # 0 for all f. For
every f € FA, let iy = min S(f). Then every MC G : f — g includes Tip — T

Proof. G must have an arc from z;, to some z; € S(g); so by consequence-
closure, G includes x;, — a:;g. O

5.3 Constructing the Ranking Function

To construct a ranking function for a general MCS, we begin by transforming it
into a fully-elaborated A as described in Lemma 4l We then proceed with the
construction in an incremental way. To justify the incremental construction, we
define a residual transition system and relate it to ranking functions.

Definition 5.11. Let 7 be a transition system with state space St. A quasi-
ranking function for 7 is a function p : St — W, where W is a well-founded
set, such that p(s) > p(s') for every (s,s') € T.

The residual transition system relative to p, denoted T /p, includes all (and
only) the transitions of T which do not decrease p.

Observe that Lemma [5.10 provides a quasi-ranking function: p(f,o) = o(z;,).
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The next couple of lemmas are quite trivial but we spell them out because
they clarify how a ranking function may be constructed incrementally. We use
the notation v - u for concatenation of tuples.

Lemma 5.12. Assume that p is a quasi-ranking function for T, and p' a ranking
function for T /p whose range consists of lexicographically-ordered tuples; then
p-p is a ranking function for T .

Lemma 5.13. Assume that the CFG of A consists of a set Cy,...,Cy of mutu-
ally disconnected components (that is, there is no arc from C; to C; with i # j).
If for every i, p; is a ranking function for A restricted to C;, then U;p; is a
ranking function for A.

Lemma 5.14. Suppose that the CFG of A consists of several strongly connected
components (SCCs). Let Cy, . ..,Cy be a reverse topological ordering of the com-
ponents. Define a function p(s) for s = (f, o) as the index i of the component C;
including f. Then p is a quasi-ranking function (with co-domain [1,k]) and it is
strictly decreasing on every transition represented by an inter-component arc.

The following algorithm puts all of this together. Note: a CFG whose arc set is
empty is called vacant. A strongly connected component whose arc set is empty
is called trivial (it may have connections to other components).

Algorithm 5.1. (ranking function construction for A)

1. List the SCCs of A in reverse-topological order. For each f € F4, let
ks be the position of the SCC of f. Form A’ by deleting all the inter-
component transitions. If A" is vacant, return p where p(f,o) = K.

2. For each SCC C, compute the MTP, using the algorithm in [I]. If empty,
report failure and exit.

3. For every f, let x;, be the lowest MTP variable of f.

4. For every graph G : f — g, if it includes w;, LA xég, delete the graph

from A’; otherwise, retain the graph but delete (or hide) the node w;,

and incident arcs.

For every f, let p(f,0) = (kys,0(xi,)).

6. If A’ is now vacant, return p. Otherwise, compute a ranking function p’
recursively for A’; and return p - p’.
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We claim that the abstract program A’, passed to the recursive call, always
represents the residual transition system 74/p. This should be clear when we
delete graphs that strictly decrease p. The less-trivial point is the treatment of
graphs G where the MTP arc z;, — x;, is non-strict (Step H). To obtain the
residual system precisely we should have kept z;, with no-change arcs z;, — ;.
However, having done so, the variables z;, for every f become a freezer, and
therefore can be dropped (Lemma [5.9).

Dropping the “frozen” variables ensures that these variables will not be used
again in p’. So in the final tuple py - p}, each variable will occur at most once.
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Finally, the ranking function for the original A can be obtained according to
Lemma We summarize the conclusion in a theorem:

Theorem 5.15. Let B be a terminating MCS, with m flow-points and n vari-
ables per point. There is a ranking function p for B where ps(o) is a case ex-
pression with inequality constraints as guards and elements of Vi™ as values. The

complezity of construction (as well as the size of the output) is O(m -n™).

Even when restricting attention to SCT instances, these results improve upon
previous publications. The improvement over [2] is that any positive instance
can be handled, and the bound B in V7 is reduced from about m - 27 to m;
the improvement over [§] is that in that work, the vectors were possibly doubly
exponential in length (as a function of n) and the complexity of the construction
was only bounded by a triply exponential function.

6 Monotonicity Constraints over the Integers

In practice, the integers are clearly the predominant domain for the constraints;
when they represent the size of a list or tree they are necessarily non-negative,
which allows the well-founded model to be used, but it has often been pointed out
that in imperative programming languages, in particular, the crucial variables
often are of integer type and might be negative (by design or by mistake). With
the integer type, monotonicity constraints are still useful: they can prove that in
a loop, two values keep approaching each other—which can also be expressed as
showing that < y is an invariant and y — « descends. In this section we adapt
the ideas of the previous sections to the integer domain. We do not consider
the domain of non-negative integers separately but note that by including the
constant 0 as a “variable” and indicating its relation to every variable known to
be non-negative we reduce the problem to the general integer case.

An intuitive reduction of the integer case to the well-founded case is to create
a new variable for every difference x; —z; which can be deduced from the MCs to
be non-negative, and also deduce relations among these new variables to obtain a
constraint system. But this solution may square the number of variables, which is
bad because this number is in the exponent of the complexity, and completeness
is not obvious(why shouldn’t other linear combinations be necessary?). We will
tackle the problem directly. Due to space limitations, this part will be rather
terse.

6.1 Termination

We begin by formulating a termination condition in combinatorial terms. To this
end we generalize the notion of a thread and define an up-thread to be a thread
that consists of inverse arcs (so it indicates an ascending chain). A down-thread
is an ordinary thread.
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Condition S (for Stable MCS). In any infinite multipath (with variables x|t, i
as in Sec. {3)) there is a up-thread (z[k, lg])k=ko ko+1,... and a down-thread
(x[k, hk])k=ko,ko+1,... such that all the constraints z[k,l;] < z[k,h;] are
present in the corresponding invariants. In addition, at least one of the
threads has infinitely many strict arcs.

The condition for a general MCS is similar but uses walks instead of threads.

Condition G (for General MCS). In any infinite multipath (with variables
x[t,1]) there is an infinite sequence of triples (¢;,1;, h;) such that the con-
straints in the multipath imply: z[t;, ;] < z[t;, h;], x[t;, ;] < z[tj11,lj41]
and z[t;, h;] > z[tj41,hj+1]. In addition, at least one of the walks (z[t;,
l;])j=1,2,... and (z[t;, h;]);j=1,2,... has infinitely many strict arcs.

Theorem 6.1. Conditions G and S are equivalent for a stable system. Both are
sound and complete criteria for termination of the respective transition systems.

Condition S can be decided by a closure-based algorithm, which is essentially
described in [4] (they consider non-negative integers but this difference is trivial).

6.2 Ranking Functions

Consider a fully elaborated system over the integers. If for every pair z; < x; we
create a variable x;; to represent x; — x; (as it is non-negative) and we connect
such variables with the obvious size-change arcs (if z; < a:f and z; > m;l then
xi; > xj;,) then Condition S implies ordinary size-change termination in the new
variables. Thus a ranking function exists with such differences as elements of the
vectors. Elaborating this system will put 2 in the exponent. But it turns out that
the order relations among the original variables lead to enough information about
relations among the differences, that we can apply a version of the algorithm of
Section Bl Thus, we can construct a global ranking function in O(m - n™) time.

A final comment. In principle, we could abstract from the integers and just state
the assumption that for any two elements there are only finitely many elements
strictly between them. However, this abstraction buys us no generality, as every
total order with this property is isomporphic to a subset of the integers.

7 Conclusion

We introduced the MCS abstraction, partly as background to our construction
of ranking functions (which was initially developed with size-change graphs in
mind), but also in order to explicate the ways in which our knowledge about
SCT extends to this more expressive (and practically appealing) framework. This
aspect should be seen as a call for further research, involving the application of
monotonicity constraints.

The algorithms in this article were aimed at simplicity of presentation and
analysis and can certainly be improved, for example by avoiding full elaboration.
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For the decision procedure we know that this can be done (by stabilization), but
creating practical applications of the procedure is a non-trivial challenge; more
so for our ranking-function construction, where full elaboration was directly used
in the proof, though it is clear that this does not mean that it is really always
necessary.

We should point out that in the worst-case, the exponential behaviour cannot
be beaten with this sort of global ranking functions. This is shown in [2], which
actually provides a rather tight lower bound as it shows that n! vectors may be
needed for programs with n variables. On the bright side, our exponent is tight
in that the algorithm is of complexity m 2°0(198™) Jike the lower bound, and
unlike the m?2 - 20(7%) upper bound of the closure algorithm.
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