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Abstract. A number of papers are suggested with the goal to measure the quality
of anonymity of a given anonymity system. Most of them use the anonymity set as
the basis for developing, reasoning about and applying measure. In this paper we
argue that these approaches are premature. In this work we suggest to use the so
called hypothesis set – a term derived from possibilistic information flow theory.
Investigating the hypothesis set, it is possible to make the “protection structure”
explicit and also define well known terms from measurement theory like scale
and metric. We demonstrate our approach by evaluating the hypothesis set of the
classical Chaumian Mix.

1 Introduction

One of the most important values in the information society is the information itself.
Therefore, the protection of this precious good is a crucial task. A lot of research at-
tention has been devoted to protecting the information contained within messages. This
can be easily achieved today, by using encryption techniques. Here we focus not on the
protection of such content data but rather on how to ensure the confidentiality of traffic
data, i.e. information about communication relations. Protection of traffic data usually
results in some form of anonymity. Such confidentiality is important, since third parties’
unrestricted access to traffic data is considered an unacceptable invasion of both private
and business lives. Several techniques are known to protect traffic data. However, there
is still a lack of models to evaluate the level of protection these techniques can provide.
There are two reasons to determine the level of protection. First, the quality of pro-
tection can be made visible to the user. Second, the mathematic model gives designers
insight into the protection task.

In this paper we will study a specific system - the Mix system [1] that exposes
the basis for an understanding of the abstract problem. Consequently, our focus is to
investigate the abstract problem and the well known model of anonymity systems,
the anonymity set, which can be used to model all traffic protection techniques [2]:
Anonymity is the state of being not identifiable within a set of subjects, called the
anonymity set.

All practical anonymity techniques leak some information about the users’ commu-
nication peers in the anonymity set. As the number of observed anonymity sets in-
creases, the uncertainty about the peer partners usually decreases, eventually reaching
0. At this point, there is enough information to determine the peer partners uniquely. Ac-
cording to this observation and inspired by the metric Mean Time To Failure (MTTF)
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[3], Shannon’s unicity distance [4] and measurement theory [3], we define the metric
Mean Time To Deanonymization (MTTD).

In [5] an attack algorithm called the Hitting Set Attack (HS-Attack) is proposed that
can be used to measure MTTD for the MIX model. It was proven in [5] that HS-Attack
requires the least number of observations that is necessary to uncover the peer partners
of a user given a global passive attacker, who can observe any communication link from
the sender to the Mix and from the Mix to the receivers. In this work we will investigate
the HS-Attack for new structures to better understand how the attack evolves with in-
creasing observations. We will mathematically approximate sharply this evolution from
secure state into insecure state as a homomorphism of the “reality”. Thereby we will
provide mathematic answers to the following main questions:

– What is the average number of observations to disclose all of a user’s peer partners?

– What is the average number of observations to disclose at least one of the user’s
peer partners?

– How likely is it to find a particular fraction of a user’s peer partners in a random
hypothesis after a given number of observations?

Question one was first considered with respect to inherent structures of the Mix- and
attacker- model in [5]. They measured the mean number of observations to reach a nec-
essary condition (called exclusivity) to disclose all of a user’s peer partners. In contrast
to [5], our approach is more comprehensive and granular, since it enables to directly
model the number of observations to disclose any number of a user’s peer partners.

In answering question two, we are the first to suggest the anonymity metric MTTD-1
that measures the time point, when the mix system’s anonymity function leaks the first
unambiguous information about a user’s peer. This peer can be revealed by HS-Attack
and we provide a mathematic measurement of the number of observations that the at-
tacker needs to succeed. Each of a user’s communication relationship is information
theoretic anonymous, if it can be avoided that the attacker gains MTTD-1 observations.
MTTD-1 extends the traditional measurement of anonymity that until now only consid-
ers the time point when all of a user’s peer is disclosed.

Finally question three applies to the situation, when it is not possible to definitively
identify any user’s peer. Our mathematic model gives the probability that a random hy-
pothesis contains a certain number of the user’s contacts. The latter point shows that
our approach opens the door to further analysis beyond the scope of unambiguous iden-
tification of peers and we are also the first to address this issue.

This paper is organised as follows. Section 2 will provide basic background informa-
tion, related works and the used Mix meta model. Section 3 will describe the inherent
structures and properties of hypotheses sets and we will contribute a precise mathe-
matic model to describe them. Based on this model, we will derive analytical formulas
to expose distinct anonymity states with respect to the Mix parameters and the obser-
vations of the attacker in Sect. 4. We will measure the mean number of observations
to identify arbitrary subsets of a user’s peer partners, the size of the hypothesis set and
the probability to find a particular fraction of a user’s partners in a randomly computed
hypothesis. Section 5 will finally summarise our results and outline future works.
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2 Background

Over the last years a handful of “anonymity metrics” have been proposed [6, 7, 8, 9,
10, 11, 12] that measure the information flow to the attacker. If information flows to the
attacker, then it reduces the uncertainty of the attacker, which can be measured with some
variant of Shannon’s entropy. All entropy measurements follow here a similar scheme:
information flow occurs if the attacker is really uncertain1 and afterwards fairly certain.

This kind of “macroscopic” measurement can easily be applied to different anony-
mity systems, since only the probability distributions have to be known. The paradigm
“information flows when uncertainty decreases” is problematic as discussed in [13, 11].
Our approach is more microscopic. The attacker and his knowledge (his interpretation)
is incorporated in the model. Thus, direct application of our approach to other anonymity
techniques (e.g. Crowds [14]) is not given, i.e. it has to be adapted or rather redeveloped.

Again, we model the whole path from secure to insecure state where the uncertainty
with each observation decreases (i.e. number of hypotheses decreases). Indeed, in each
step we can measure the uncertainty by using entropy as suggested in the literature. This
would be a concomitant measurement. However, we think that the other way around is
not possible (without formal proof), since suggested entropy based approaches measure
only the actual information flow but not how the security evolves with time. The reason
for our approach is that we think that the goal of a security strength metric is to quantify
the attackers efforts that are required to break a system’s security. Therefore, with re-
spect to the general paradigm “the harder the successful attack the stronger the system”
the actual entropy metric suggestions are premature2.

Consequently, we define anonymity in terms of the attacker’s knowledge, using the
well known trace-based approach [15]. An attacker observes and accumulates input and
output events of the anonymity system. The measurement of anonymity depends on the
knowledge (i.e. interpretation of the observations) of the attacker that we model with
a set of hypotheses. The only assumption we make is that the user keeps the set of
peer partners. Unlike the theoretic works in this area (see e.g. [16, 17, 18]), we are not
interested to give a formal specification of the anonymity problem.

2.1 The Mix Model

We consider the Mix Model that was described in [5]. The Mix technique was proposed
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Fig. 1. Formal model

by David Chaum in 1981 [1]. Figure 1 shows the
basic ingredients of this technique which consist
of a set of senders S, a set of recipients R, and
a Mix node. Note that S and R can be equal.
All senders in S are connected to the Mix and
the Mix itself is connected to all recipients in
R by a communication network with reliable se-
cure channels. A reliable secure channel does not

1 E.g. a priori distribution is the uniform distribution.
2 The draw back of our approach (as mentioned above) is the necessity of modelling explicitly

the anonymity system and the attackers knowledge.
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result in loss or duplication of transmitted messages, and guarantees authenticity, in-
tegrity, and confidentially of transmitted messages. The users and the Mix transmit
messages by using the following protocols:

User Protocol: Users prepare their messages to be of constant length either by splitting
long messages or by padding short messages to the specified length. Each message
is encrypted twice with one time pads: first the message is encrypted using a shared
secret between the sender and the intended recipient, and then it is encrypted using
a shared secret between the sender and the Mix. The users send twice encrypted
messages to the Mix.

Mix Protocol: A Mix collects b messages (called a batch) from distinct users, decrypts
the messages, and outputs the decrypted messages in a batch in a different order
than the order in that they were received (lexicographically sorted or randomly
delayed). The output is broadcasted to all recipients. Furthermore, any incoming
packet is compared with formerly received messages (i.e. by locally caching for-
merly received messages) in order to reject any duplicate messages.

The basic Mix technique described above can perfectly hide the communication rela-
tionships between senders and recipients of messages from everybody but the Mix and
message senders. Even the act of sending or receiving can be perfectly hidden if the
above protocol is applied in fixed time slots, and if every user supplies a fixed number
of messages (perhaps some or all of them being dummy messages) to each slot and the
whole output batch in a time slot is distributed to every user [19, 1, 20]. Pfitzmann [20]
states that the Mix technique provides information-theoretic anonymity and unobserv-
ability based on complexity-theoretic secure cryptography.

The pure Mix technique. The “perfect” anonymity solution discussed above uses
dummy messages and broadcasting. This solution is not followed widely in large net-
works such as the Internet, as justified in [5]. As a consequence, most current implemen-
tations and solutions use a variant of the perfect Mix solution by neither using dummy
messages nor the broadcasting function. We refer to this kind of Mix techniques by
the term pure Mix technique. Our pure Mix (also called threshold Mix) model is quite
general and also Pool-Mixes can be mapped on it as shown in [10].

We consider a global passive attacker who is capable of observing all communica-
tion links simultaneously as described in [5]. This attacker model is also known as the
Dolev-Yao model in the literature. Based on this attacker, we will use the following
formal model of a pure Mix and information leakage therein for our analysis.

Formal Model of the Pure Mix Technique

– A communication system consists of a set of senders S, and a set of recipients R,
and a Mix node (see Fig. 1). If a sender s ∈ S communicates with a recipient
r ∈ R, then we say that s and r are peer partners. If the roles of sender and receiver
need to be distinguished, then we say that s is a peer sending partner of r and r is
a peer recipient partner of s.
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– In each communication round3 a subset S′ ⊆ S of all senders S send a message to
their peer partners. Let R′ ⊆ R be the set of intended recipients. The act of sending
or receiving a message is not hidden among dummy messages.

– The size of the sender anonymity set is |S′| = b, where 1 < b � |S| = n.
– The size of the recipient anonymity set is |R′| � b since each sender sends exactly

one message and several senders may communicate with the same recipient. The
size of the recipient set is |R| = N .

– The information leakage X available to an attacker in a communication round con-
sists of the pair (S′, R′) of peer senders and receivers.

2.2 The Hitting-Set Attack

The hitting-set attack (HS-Attack) introduced by [21, 5] is a global passive attack.
The goal of the attack is to compute all possible peer recipient sets of a target sender
Alice ∈ S that are called hypotheses. Alice’s peer recipient set is HA and its size is
m = |HA|. We will denote recipients r /∈ HA by the term non-peers. If HS-Attack
can find only one hypothesis of size m, then Alice’s peer set is uniquely identified. The
adversary is interested in Alice’s peers, he therefore only observes those pairs (S′, R′),
where Alice participates as a sender, i.e. Alice ∈ S′. Under this condition we denote the
corresponding recipient set R′ by the term observation O and the set of observations
collected during t rounds is the observation set OS = {O1, . . . , Ot}. For each hypoth-
esis H �= HA, it is unlikely that whenever Alice sends a message, also a receiver of H
is contacted. The number of hypotheses therefore decreases with increasing number of
observations as illustrated in Example 1.

Example 1. Let HA = {8, 9} and the observations at time 1,2,3 be O1 = {8, 5},
O2 = {9, 4}, O3 = {8, 6}. Alice contacted peer 8 in the first and third observation
and peer 9 in the second observation. At time point 2 the attacker only sees O1, O2,
therefore H = {5, 4} is a hypotheses, since these peers could also be contacted by
Alice. But at time point 3 H is excluded, since neither 4 nor 5 is contacted in O3.

To mount the HS-Attack, the attacker starts with the set L0 that contains all
(

N
m

)
possi-

ble subsets of cardinality m of N recipients, which is called the hypothesis set. We
assume in this paper that m is know4, because we are interested in analysing how
long Alice can keep a constant set HA of m peer partners anonymous. Since Alice
has m peer partners, exactly one subset in L0 is the set of all peer partners of Alice.
Let {O1, O2, O3, . . . , } be the observations in the successive communication rounds in
which Alice participates. Since Alice has a peer partner in O1, a set in L0 that has an
empty intersection with O1 cannot be the set of all peer partners of Alice. Thus upon
observing O1, the attacker obtains a new hypothesis set L1 by discarding all recipients
sets in L0 that have an empty intersection with O1. The attacker repeats this process to

3 A communication round consists of the following events: The Mix node collects messages
from a fixed number of distinct senders, and after applying the “Mix” protocol, it forwards the
collected messages to their intended recipients.

4 All attacks shown in this paper are also applicable if m is unknown. See [22] for a justification.
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generate hypotheses sets L2, L3, . . . after observing recipient sets O2, O3, . . . respec-
tively, until the hypothesis set Lt has only one subset in it. The last remaining subset
in the hypothesis set Lt has to be the set HA of all peer partners of Alice, hence the
algorithm fully discloses Alice’s peer set. Note that HS-Attack finds the unique minimal
hitting set of all observations. A hitting set is a set that intersects with all given sets 5.
The hitting set is called minimal, if no proper subset of it is a hitting set, otherwise it is
called non-minimal. All hitting sets addressed in this paper are of size less or equal m.
Also note that HS-Attack requires the least number of observations to disclose Alice’s
peer set under a global passive attacker as proved in [5].

3 Properties of Minimal Hitting Sets

Peers of any hitting sets H �= HA, where H ≤ m are unlikely to be always contacted
whenever Alice communicates and this becomes unlikelier, the smaller the size of H
is. After some observations, all hitting sets of size m must therefore be minimal. From
now on these minimal hitting sets (of cardinality m) are called hypotheses and the
hypothesis set is the set of all hypotheses. Each non-minimal hitting set H is a superset
of a minimal hitting set H′ of cardinality m′ < m. Minimal hitting sets therefore
represent the common peers of all non-minimal supersets thereof.

A peer can be identified, if it is common to all hitting sets. It is therefore straight
forward and without loss of generality to restrict our analysis to minimal hitting sets.

The HS-Attack [21, 5] in Sect. 2.2 does not focus on minimal hitting sets. It simply
removes non hitting sets from the set of all

(
N
m

)
possible sets of size m. In contrast to

this the ExactHS attack introduced by Pham [23] is the first work that reveals precise
structures and quantities of minimal hitting sets. The ExactHS attack is a structured
variant of the minimal hitting set attack that requires the same (number of) observations
to disclose Alice’s peer set as the HS-Attack.

We will extend Pham’s work [23] and show how to derive a mathematic model for
the evolution of the minimal hitting sets by observations. The obtained model will be el-
ementary, since it enables us to determine the probability, the number and the structure
of the minimal hitting sets after any number of observations with respect to the parame-
ters N ,b,m of the Mix. In particular we can determine the number of observations, such
that a particular number of Alice’s peers is disclosed, which is our new metric MTTD.

3.1 Number of Minimal Hitting Sets

The ExactHS attack [23] is a minimal hitting set attack that computes all minimal hitting
sets of size lower or equal m with respect to a given observation set (representing the
observations of the attacker). It therefore allows us to prove the following claim about
the number of minimal hitting sets.

Claim. Let N , b, m be the Mix parameters and HA be Alice’s peer set of size m. For
a given observation set OS, the maximal number of possible minimal hitting sets of
cardinality less or equal to m in OS is bm. This bound is sharp, if mb ≤ N . For
mb > N this is still an upper bound, but it is not sharp.

5 In our case these sets are the observations O1, O2, . . . , Ot.
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ExactHS Algorithm. Before the first invocation of Alg. 1 the set of all minimal hitting
sets L and the candidate set H are empty, and the observation set OS consists of all
observations collected by the attacker. The computation of the minimal hitting sets is
initially invoked by calling ExactHS(OS, m, H). We refer to this observation set by
the term initial observation set, as OS will be changed during the processing of Ex-
actHS. In each recursion level H is extended by exactly one peer r, chosen in Line 7
from a designated observation O ∈ OS determined in Line 5, where OS is the actual
observation set. At the invocation of the next recursion level to determine the next peer
to be added to H ∪ {r} in Line 8, ExactHS is applied to a modified copy of the actual
observation set that contains no observations intersecting with {r}. This step of remov-
ing is important to avoid non-minimal hitting sets, as it allows us to focus on adding
only those peers to the actual set H ∪ {r} that definitively intersect with observations
not intersected by H ∪ {r}. Finally, if Line 2 detects that no observation of the actual
observation set remains that is not intersected by H, then H is a hitting set. In this case
it will be added to the set L in Line 3. After a selection of r has been done in a recur-
sion level, we remove r from all observations of the actual observation set in Line 8
and from the designated observation O in Line 9. This way the algorithm can repeat the
extension of H with a new peer r not chosen before in Line 7.

1: procedure EXACTHS( , )
2: if = then
3: is a hitting set, add it to hypothesis set
4: else if 1 then add a peer to , if contains less than peers
5: choose
6: while ( 0) ( ) do
7: choose will become element of
8: EXACTHS( 1 ) select remaining ( − 1) peers of
9: remove in all observations of

10: do not choose in this recursion level again
11: end while
12: end if
13: end procedure

Algori thm1 ExactHS.

Bound of the Number of Minimal Hitting Sets. ExactHS creates a hitting set H by
starting with an empty set H = {} and adding a recipient to H in each choice phase
represented by the lines 6–11. The number of recursive invocation of the choice phases
in Line 8 is restricted by m, since we are interested in computing hitting sets H with
at most m recipients. In each choice phase we only have at most b possible choices of
a recipient ri, because only recipients r1, . . . , rb of a fixed observation O are selected.
From the restriction on the number of recursive invocations of the choice phase and
the number of choices in each phase, we can conclude that the algorithm computes at
most bm minimal hitting sets. A formal proof that ExactHS is sound and complete with
respect to the computation of all minimal hitting sets can be found in [23].

To show that the bound bm of the algorithm is tight, we construct m pairwise disjoint
observations O1, . . . , Om, such that Oi ∩ Oj = ∅ and |Oi| = |Oj | = b for distinct
i, j ∈ {1, . . . , m}.
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Let us consider a concrete example with the parameters m = 2, b = 2, the victim
peer set HA = {1, 2} and the observations {1, 3}, {2, 4}. A short glance shows that
there are bm = 4 minimal hitting sets, namely: {1, 2}, {1, 4}, {3, 2}, {3, 4}.

3.2 Structuring Minimal Hitting Sets

This section shows the classification and quantification of minimal hitting sets intro-
duced by [23].

We partition the minimal hitting sets into (m + 1) disjoint classes H0, . . .Hm. A
minimal hitting set H belongs to the class Hi (written H ∈ Hi), if and only if it contains
exactly (m − i) distinct peer partners of Alice.

H0 = {HA}

H1 ⊆ (R \ HA)1 × Hm−1
A

H2 ⊆ (R \ HA)2 × Hm−2
A

...

Hm ⊆ (R \ HA)m . (1)

For sets A, B and integer i we define Ai =
⋃i

j=0 Aj ,
where A0 is a neutral element, such that A0×Bk = Bk.
For example the class H2 might contain the (minimal
hitting) sets H2 = {r21 , r22 , a23 . . . , a2m} and H′

2 =
{r′21

, a′
23

. . . , a′
2m

}, where each rij represents a non-
peer and each aik

represents an Alice’s peer. All peers
within a set must be disjoint.

Bounds of Minimal Hitting Set Classes. The last section derives the bound of bm for
the number of minimal hitting sets. Based on ExactHS (2) represents refined bounds for
each of the minimal hitting set classes H0, . . . , Hm as proved in [23].

|Hi| =
(

m

m − i

)
(b − 1)i =

(
m

i

)
(b − 1)i . (2)

Note that this bound is again tight and we can use the same construction of m disjoint
observations as in Sect. 3.1 to prove its tightness. It is also clear that the sum of the
cardinality of each class results in bm, i.e.

∑m
i=0 |Hi| =

∑m
i=0

(
m
i

)
(b − 1)i = bm .

Probability Property of Classes. To model the probability of excluding a particular
hypothesis of a class Hi, we assume that Alice chooses her recipient in each round
uniformly distributed from the set of m recipients HA = {a1, . . . , am}. Similarly the
remaining b − 1 senders of a batch are assumed to select their receivers uniformly from
the set R of N receivers. A (former) hitting set H is excluded by an observation O, if
and only if H does not intersect with O, i.e. if H∩O = ∅. A hitting set H is excludable
with respect to an observation set OS , if and only if H is a hitting set in OS and there
exist an observation O /∈ OS , such that H would be excluded by O.

Suppose that a hypothesis H ∈ Hi is given. According to Pham [24] the probability
that this particular hypothesis is excluded by the next observation O is:

pinv (N, b, m, i) =
i

m
(1 − m

N
)b−1 . (3)

Thereby the first factor i
m is the probability that Alice chooses to communicate with any

of the i recipients not covered by H in the observation O. The second factor represents
the probability that the remaining (b − 1) senders do not choose to contact any of the
recipients in H.
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3.3 Extensive Hypotheses

Extensive hypotheses combine the knowledge about the minimal hitting sets of size
≤ m, which are computed by ExactHS with the knowledge about the structure of hy-
potheses. That way we can predict which hypotheses will be computed in the future.

Table 1 shows the the Minimal hitting sets Mi, the extensive hypothesis set Li, and
the excluded sets that result from analysing the observation set OSi = {O1, . . . , Oi}.

For i = 0 there is no observation and no M0, but we have knowledge about the ini-
tial hypothesis set represented by the classes (1) in L0. Each element H ∈ Li is called
an extensive class. We will address these classes by their order from left to right and
from top to bottom, i.e. Hu is the u-th class in the hypothesis set. An extensive class
is unspecified, if it contains a variable x (standing for any variable xv

u with indexes),
otherwise it is specified. A specified extensive class is called a specified extensive hy-
pothesis. The only specified extensive hypothesis in L0 is H1 = {1, 2, 3}. Each variable
x represents any (b − 1) unspecified non-peers r ∈ R \ HA, thereby only distinct peers
can be assigned to xv

u, xw
u ∈ Hu for v �= w. Peers that are explicitly mentioned are

called specified. Newly specified peers are bold highlighted. Note that writing H ⊆ L0
would be more appropriate than H ∈ L0, since H is a class. But for the sake of reducing
formalisms and simplifying explanations, we use the element-notation and -operations.

For i = 3 we can see that extensive hypotheses also visualise exclusions of implicit
hypotheses (e.g. {2, 3, 4} and {3, 4, 5}). A hypothesis is implicit, if it has not been
computed by ExactHS as a minimal hitting set yet, otherwise it is explicit. Finally all
extensive hypotheses will be explicit and equal to minimal hitting sets as seen in i = 4.

Table 1. Evolution of minimal hitting sets and extensive hypothesis set

i Oi Minimal hitting sets Mi Extensive hypothesis set Li Exclusion
0 H0 : {1, 2, 3}; H1 : {1, 2, x1

2}, {1, 3, x1
3}, {2, 3, x1

4};
H2 : {1, x1

5, x2
5}, {2, x1

6, x2
6}, {3, x1

7, x2
7}; H3 : {x1

8, x2
8, x3

8}
1 {1, 4} {1}, {4} H0 : {1, 2, 3}; H1 : {1, 2, x1

2}, {1, 3, x1
3}, {2, 3, 4};

H2 : {1, x1
5, x2

5}, {2, 4, x1
6}, {3, 4, x1

7}; H3 : {4, x1
8, x2

8}
2 {2, 5} {1, 2}, {1, 5},

{4, 2}, {4, 5}
H0 : {1, 2, 3}; H1 : {1, 2, x1

2}, {1, 3, 5}, {2, 3, 4};
H2 : {1, 5, x1

5}, {2, 4, x1
6}, {3, 4, 5}; H3 : {4, 5, x1

8}
3 {1, 6} {1, 2}, {1, 5},

{4, 2, 6}, {4, 5, 6}
H0 : {1, 2, 3}; H1 : {1, 2, x1

2}, {1, 3, 5};
H2 : {1, 5, x1

4}, {2, 4, 6}; H3 : {4, 5, 6}
{2, 3, 4},
{3, 4, 5}

4 {3, 4} {1, 2, 3}, {1, 2, 4},
{1, 5, 3}, {1, 5, 4},
{4, 2, 6}, {4, 5, 6}

H0 : {1, 2, 3}; H1 : {1, 2, 4}, {1, 3, 5};
H2 : {1, 5, 4}, {2, 4, 6}; H3 : {4, 5, 6}

Li is constructed with respect to the observation set OSi = {O1, . . . , Oi} and the
minimal hitting sets Mi for i ≥ 1. Let H ∈ Hj be an extensive class of size m and
H− = H \ HA \ {x}, then H ∈ Li, if and only if H− is a minimal hitting set with
respect to OS ′

i = {O\HA | O ∈ OSi, O∩H∩HA = ∅} 6. Thus for each H−, there is
a minimal hitting set Hi with respect to OSi, such that |Hi| ≤ m, H− = Hi \ HA and
Hi ⊆ H An extensive class H that complies to these conditions is called minimal, hence
an extensive hypothesis set consists of only minimal classes. This defines a surjective

6 The set OS ′
i results from removing all Alice’s peers from those observations in OSi that do

not contain any of Alice’s peers of H.
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mapping of the extensive hypothesis set Li to the minimal hitting sets with respect to
OSi. We can define Li for i ≥ 1 recursively as follows:
1. Let Li = {} before the start of its construction below.
2. For each extensive class H ∈ Li−1, let {r1, . . . , rk} ⊆ H be the set of all specified

peers in H ∈ Hj , where k ≤ m. Apply either 3. or 4. to each H.
3. If {r1, . . . , rk} ∩ Oi �= ∅ then add H to Li, i.e. Li = Li ∪ {H}, because H is not

excluded by Oi.
4. Else if {r1, . . . , rk} ∩ Oi = ∅ and k < m then add for each non-peer r ∈ Oi \ HA

the extensive class H′ = {r1, . . . , rk, r, x1, . . . , xm−k−1} ∈ Hj to Li, if H′ is a
minimal class in OSi.

We generalise from this example that all extensive classes will become specified apart
from the exceptions discussed below. The exclusion probability of a specified extensive
hypothesis H ∈ Hi is exactly pinv (N, b, m, i), even if H is implicit.

The number of specified extensive hypotheses resulting from L0 is strictly bounded
by bm. This is due to the fact that L0 and its extensions are defined according to the
classes Hi (1) and their class sizes (2).

Exceptions. An exception can only arise in point 4. of the computation of Li and con-
sists of following cases:

– The extensive class H′ ∈ Hj resulting from specifying a peer in H ∈ Hj is not
minimal in OSi.

– There are less than (b − 1) non-peers in Oi.
We now analyse the effect of exceptions on the number of the sets that will be specified.
Let Alice’s peers be HA = {1, 2, 3}, b = 3 and the considered extensive class be
H = {1, 4, x} ∈ H2. If the next observation is no exception (e.g. Oi = {2, 7, 8}),
then (b − 1) = 2 specified sets of H2 would result from extending H. These sets are
H′ = {1, 4, 7} and H′′ = {1, 4, 8}. Assume that H′′ is not minimal than only H′

would be the extension of H. Similarly, if the next observation would contain less than
(b − 1) non-peers, e.g. Oi = {2, 3, 6}, respectively Oi = {2, 7}. Only one specified set
H′ = {1, 4, 6} respectively H′ = {1, 4, 7} would result from extending H.

Let k be the number of specified peers in H from point 4., then for each missing non-
peer in the next observation Oi, the number of sets that will be specified decreases by
at most bm−k−1. The same decrease is caused, if the class H′ resulting from specifying
a peer in H is not minimal in OSi.

Note that the preconditions for exceptions imply that sets excluded by exceptions
are unspecified and implicit before the exclusion. We observe that most extensive hy-
potheses become specified very fast and logically at least as fast as minimal hitting sets
reach the size m. The impact of exclusions by exceptions on the size of the extensive
hypothesis set is therefore moderate in comparison to normal (non-exceptional) exclu-
sions. For the sake of simplicity, we only mathematically model the normal exclusion
of extensive hypotheses from the initial bm extensive hypotheses.

The main result of this section is that we can map the inconvenient exclusion process
of minimal hitting sets on the exclusion process of the extensive hypothesis set. This
again can be simplified to the exclusion process of specified extensive hypothesis set,
where the exclusion probability of each set is known. From now on hypotheses and
classes are always addressed in terms of specified extensive hypotheses and classes.
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4 Modelling Anonymity States

Section 3.3 justified that the evolution of the minimal hitting sets can be modelled by
the evolution of the extensive hypothesis set. This section will introduce formulas to
describe the deployment of the size and structure of the (extensive) hypothesis set for
distinct number of observations and distinct Mix parameters N , b, m. In particular we
will answer the following questions:

– How many observation are required to disclose all of Alice’s peers?
– How likely is it to find k ≤ m of Alice’s peers in a random minimal hitting set after

t observations?
– What is the average number of observation to disclose at least one peer of Alice?

4.1 Full Disclosure

The full disclosure of Alice’s peer set is the unambiguous identification of all of Alice’s
peer recipients, i.e. the identification of HA.

Mean Number of Minimal Hitting Sets. In this section, we derive closed formulas
for the mean number of hypotheses after t observations for distinct classes.

Let Vi be a random variable, where Vi = 1 is the event that a particular hypothesis
H of the class Hi remains valid after t observations, while Vi = 0 denotes the inverse
event. The probability of Vi = 1 corresponds to t stochastically independent Bernoulli
trials, where the outcome of each of the t trials shows that the minimal hitting set re-
mains valid. Thereby a Bernoulli trial corresponds to the outcome, whether H remains
valid at the next collected observation. Since each observation appears stochastically
independently from those in the past and in the future, we have a natural mapping of
the “remaining valid event” of H on the independent Bernoulli trials, hence:

P (Vi = 1) = [P (H remains valid at next observation)]t

is the probability that H remains a hypothesis after t observations, which is by (3)
exactly (1 − pinv (N, b, m, i))t.

Let Hi = {H1, . . . , H|Hi|} be a minimal hitting set class containing only hypotheses
and Vij be the event that the hypothesis Hj ∈ Hi remains valid after t observations. The
expectation E of the number of hypotheses in Hi after t observations is thus the expecta-
tion of the convolution of the random variables Vi1 , . . . , Vi|Hi| .

E(Vi1 , . . . , Vi|Hi|) =
|Hi|∑

j=1

E(Vij ) (4)

=
|Hi|∑

j=1

P (Vij = 1)

= |Hi|P (Vi = 1) . (5)

This expectation is represented by (4).
Thereby we benefit from the additivity of
the expectation function by splitting the
complex expectation on the left side to a
sum of expectation of single Vij events on
the right side. The probability of the out-
come P (Vij = 1) is identical for each
fixed hypothesis Hj ∈ Hi (i.e. P (Vij =
1) = P (Vi = 1)), hence the right side of the former equation can be simplified to (5).
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Note that the events Vij , Vik
for i, k ∈ {1, . . . |Hi|} and j �= k are not stochastically

independent, hence the probability P (Vij ) = P (Vi) respectively P (Vik
) = P (Vi) only

holds, if we consider single events, as on the right side of the equation below.
To clarify that (5) depends on the parameter N , b, m and t we use the more elaborate

formulation:

E|Hi|(N, b, m, t) = |Hi|(1 − pinv (N, b, m, i))t =

(
m

i

)

(b − 1)i(1 − i

m
(1 − m

N
)b−1)t (6)

for the expected number of remaining hypotheses of class Hi.
Formula (4) can be easily extended to cover the mean number of observations for

any combination of classes including the consideration of all classes. The expectation
of the remaining hypotheses with respect to the initial hypothesis set H is:

E|H|(N, b, m, t) =
m∑

i=0

(
m

i

)
(b − 1)i(1 − i

m
(1 − m

N
)b−1)t

≤ ((b − 1)e−
t

m (1−m
N )b−1

+ 1)m . (7)

Time to Reduce Hypothesis Set to a Threshold. The expectations E|Hi| and E|H| of
the number of hypotheses after t observations can be easily reformulated to derive the
number of observations, such that a hypotheses remains on average.

By a transformation of (6), where a denotes the left side of the equation, we obtain:

tHi =
ln a − ln

(
m
i

)
− i ln (b − 1)

ln (1 − i
m (1 − m

N )b−1)
for a > 0 . (8)

This equation represents the number of observations, such that at most a hitting sets
remain on average in the class Hi for i ≥ 1.

Similarly we reformulate (7) to obtain the number of observations tH, such that there
are on average less than a minimal hitting sets left from the initial hypothesis set H.
Alice’s peer set HA always remains in H, therefore a > 1.

tH ≤ m(ln (b − 1) − ln (a1/m − 1))
(1 − m

N )b−1 for a > 1 . (9)

Comparison to Simulation. This section visualise the precision of the function tH of
Sect. 4.1 by comparing it with the mean time of full disclosure obtained by our hitting
set simulations. The simulation applies the HS-Attack on simulated observations, until
Alice’s peer set can be uniquely identified. This simulation is run several times to obtain
a confidence interval of 95% on the mean number of observations to identify Alice’s
peer set. The observations are generated under the assumption of a uniformly distributed
communication of Alice and the other senders. That is Alice chooses one of her m peers
with probability 1

m and each of the other senders chooses its peer from all N receivers
with the probability 1

N at each round. This distribution complies to the distribution used
in our formulas.
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Fig. 2. Number of observations: Full disclosure by simulation (HS), reduction of hypothesis set
to size below 2 (HS2) and below 1.1 (HS1.1)

The plots in Fig. 2 compare the mean number of observations for full disclosure
obtained by the simulation (HS) with the number of observations to reduce the initial
hypothesis set to a cardinality less than 2 (HS2) respectively less than 1.1 (HS1.1) using
(9). The y-axes of the plots shows the number of observations, while the x-axes vary
one of the parameters N ,b, or m.

Note that the mean number of observations for full disclosure is not necessary equal
to the number of observation to reduce the hypothesis set to a particular size, although
these two values are strongly related to each other. Let μdis be the mean number of
observations for the full disclosure, then the mean number of hypotheses after μdis

observations is obviously larger than 1. Depending on the variance of the number of
hypotheses around μdis, more than μdis observations are necessary to keep the number
of hypotheses closed to 1. This is shown by the Fig. 2. The HS2 curve is almost identical
to the HS curve, whereas the HS1.1 curve is noticeably above the HS curve.

Parallel to us [25] suggested a “lower bound” t∗ for the mean number of obser-
vations for full disclosure using the same Mix and attacker model. They compute for
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each of the
(
N
m

)
“normal” (not extensive) hypotheses the

probability that it is excluded after t observations and
claim that t∗ is the lower bound of the time when only
one hypothesis remains. Figure 3 shows that t∗ is far
away from being a lower bound. Firstly, there are at most(
N
m

)
−

(
N−b

m

)
“normal” hypotheses after the first obser-

vation due to the Mix model, but this restriction is not in
their mathemtic model and causes a significant overes-
timation. Secondly, even if this would be corrected, the
evolution of the “normal” hypothesis set depends on the
distribution of the hypotheses’ structures remaining after the first observation and those
succeeding that. This is not mathematically modeled and might be very difficult to do.

4.2 Partial Disclosure

The partial disclosure is the unambiguous identification of a subset HA′ ⊆ HA of
Alice’s peer set. The full disclosure in Sect. 4.1 is a special case of the partial disclosure.

Probability to Identify k Particular Peers. The probability to identify k particular
peers HA′ ⊆ HA of Alice after at most t observations is the probability that all hy-
potheses are excluded that do not contain all of these k = |HA′ | peers after at most
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t observations. This probability is a discrete distribution with respect to t and we will
address it by the term fid. The probability to exclude a particular hypothesis depends
on its class, therefore we will first determine the number of hypotheses of each class Hi

that have to be excluded.

Number of Exclusions in a Class. We remember from (2) that the size of Hi is |Hi| =(
m
i

)
(b−1)i. In this class i of the m peers of Alice are replaced by non-peers. Therefore(

m−k
i

)
(b−1)i is the number of hypotheses in the class Hi, where the k of Alice’s peers

HA′ are not replaced by non-peers. The number of hypotheses in Hi that have to be
excluded to enable the identification of HA′ is therefore:

exNoi(b, m, k, i) =
((

m

i

)
−

(
m − k

i

))
(b − 1)i . (10)

Note that we distinguish between the to be excluded hypotheses with respect to their
class membership, because the probability to exclude a hypothesis depends on its mem-
bership as shown in Sect. 3.2. Also note that we only know the probability with respect
to the exclusion of a single hypothesis. If two hypotheses H1 and H2 are considered,
then there could be a stochastic dependency between them, i.e. if H1 is excluded, then
H2 might be excluded, too. For that reason we make the simplifying assumption that
all minimal hitting sets are stochastically independent. This enables us to unrestrictedly
apply pinv to describe the exclusion of hypotheses. The following equation derives the
distribution fid with respect to the parameters N , b, m, t and the number k = |HA′ | of
Alice’s peers that should be identified.

fid (N, b, m, k, t) =
m−k∏

i=1

(1 − (1 − pinv (N, b, m, i))t)((
m
i )−(m−k

i ))(b−1)i

(11)

m∏

i=m−k+1

(1 − (1 − pinv (N, b, m, i))t)(
m
i )(b−1)i

.

Probability to Identify at Least k Peers. Based on the function fid of the last section,
we will derive the probability distribution fidany that at least k of Alice’s peers can
be identified after at most t observations. In contrast to the previous section we are
not focusing on disclosing particular peers, but on the probability to disclose a certain
number of peers.

Let Y k be a random variable denoting the event that particular k peers of Alice’s peer
set HA are identified, i.e. Y k = 1 if the designated peers are identified else Y k = 0 for
the inverse case. To simplify the notation we will abbreviate the probability P (Y k = 1)
by the term P (Y k).

Let Y k
1 , . . . , Y k

(m
k) be

(
m
k

)
distinct random variables. Each of this variable represents

the event that distinct subsets of HA of cardinality k are identified. In order to compute
the probability that at least k of Alice’s peers can be disclosed, we have to determine
the probability that any of these Y k

i events, for i ∈ {1, . . . ,
(
m
k

)
} takes place. Thereby

it would be imprecise to simply sum up the probabilities P (Y k
i ) for i ∈ {1, . . . ,

(
m
k

)
},
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because the events Y k
i are not stochastically independent. We can solve this problem

by applying the inclusion-exclusion-formula:

P (Y k
1 ∨ . . . ∨ Y k

(m
k)) = P (Y k

1 ) + . . . + P (Y k

(m
k)) (12)

− P (Y k
1 , Y k

2 ) − . . . − P (Y k

(m
k)−1, Y

k

(m
k)) . . . + . . . − . . . .

Assume that {ai1 , ai2} and {aj1 , aj2} are those peers that are identified by the event Y k
i

respectively Y k
j (for k = 2). The above term P (Y k

i , Y k
j ) is the probability that all peers

of the joint set {ai1 , ai2 , aj1 , aj2} are identified. Let us denote the joint event by the
term Y k′

, where k′ = |{ai1 , ai2 , aj1 , aj2}| ≤ 2k, then P (Y k
i , Y k

j ) = P (Y k′
) can be

computed by (11). It is also obvious that this transformation can even be applied to an
arbitrary number of joints of events, i.e. we can transform P (Y k

1 , . . . , Y k
z ) to P (Y k′

)
for any z ≥ 1 accordingly.

The next formula is an elaborate formulation of (12) for the special case of k = 1. It
is the probability to identify at least one of Alice’s peers after at most t observations.

fidany (N, b, m, t, 1) =
m∑

s=1

(

(−1)s−1
(

m

s

)
fid (N, b, m, s, t)

)

. (13)

The general probability distribution for arbitrary values of k, where k ≤ m is the
least number of peers that are to be disclosed is:

fidany (N, b, m, t, k) =
(m

k )∑

i=1

(−1)i−1
(m

i )−(i−1)∑

j1=1

· · ·
(m

i )−(i−i)∑

ji=ji−1+1

fid(N, b, m, |
k⋃

z=1

Yjz |, t) ,

where
⋃k

z=1 Yjz is the union of the set of peers identified by each Yjz .
Given the distribution fidany (N, b, m, t, k), the probability that at least k peers can

be identified after exactly t observation is:

pidany (N, b, m, t, k) = fidany (N, b, m, t, k) − fidany (N, b, m, t − 1, k) .

Mean Time to Deanonymization. We are now able to provide the first existing for-
mula to compute the mean number of observations to unambiguously identify at least k
of Alice’s peer, which we call MTTD-k.

Eidany (N, b, m, t, k) =
∞∑

t=1

t pidany (N, b, m, t, k) . (14)

Note that in particular Eidany (N, b, m, t, 1), which is the mean number of observations
needed to identify at least one of Alice’s peers (MTTD-1) should be considered as a
more appropriate measurement of the lower bound of the anonymity provided by Mix
systems. This is justified by the fact that MTTD-1 measures the time point, when the
attacker gains the first unambiguous information about Alice’s communication partners
and thus breaks the anonymity function of the Mix. In contrast to this, full disclosure,



A Combinatorial Approach for an Anonymity Metric 41

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  200  400  600  800  1000

nu
m

be
r 

of
 o

bs
er

va
tio

ns
 [t

]

number of peers [N]

varying N, b=10, m=10

HS
HS2

MTTD-1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  5  10  15  20  25  30  35  40

nu
m

be
r 

of
 o

bs
er

va
tio

ns
 [t

]

batch size [b]

N=400, varying b, m=10

HS
HS2

MTTD-1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30

nu
m

be
r 

of
 o

bs
er

va
tio

ns
 [t

]

Alice’s peer size [m]

N=400, b=10, varying m

HS
HS2

MTTD-1

Fig. 4. Disclosure of at least one peer (MTTD-1), simulated full disclosure (HS), reduction of
hypothesis set size below 2 (HS2)

or the number of observations to reduce the hypothesis set below a particular size a can
not expose this threat.

Figure 4 compares the expected number of observations to disclose at least one peer
(MTTD-1) by using Eidany (N, b, m, t, 1) with the simulation result for the mean num-
ber of observations for full disclosure (HS) and the mean number of observation to
reduce the hypothesis set to a size below 2 (HS2) computed by (9). The comparison
is with respect to different parameters N , b, m. We can see that the partial disclosure
(MTTD-1) appears noticeable earlier than full disclosure (HS) and before the hypoth-
esis set is reduced to a size below 2. This difference increases, the more observations
are required for full disclosure and shows that full disclosure alone is insufficient to
measure anonymity.

4.3 Beyond Unambiguous Identification of Peers

Our model also enables us to consider the number of Alice’s peers contained in any
computed minimal hitting set after a particular number of observations.

Figure 5 plots the number of observations to reduce each minimal hitting class Hi to
a size less than a by using (8). The figure shows this for a = 1 by the HS1 curve and
for a = 0.1 by the HS0.1 curve for the Mix parameters N = 400, b = 10, m = 10.
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We can see that minimal hitting set classes Hi con-
taining less of Alice’s peers are reduced earlier than
those containing more of Alice’s peers. Thus after a par-
ticular number of observations t, the number of hypothe-
ses containing less than k Alice’s peers are negligible,
since E|Hi|(t) < a for i > (m − k). In particular our
plot shows that after about t = 40 observations, the at-
tacker will unlikely find a minimal hitting set containing
less than 7 of Alice’s peers. Thus any minimal hitting set
computed by the attack contains with a high probability
at least 70% of the peers of Alice. If we assume that minimal hitting sets are excluded
stochastic independently from each other, then the probability to find at least k of m
peers of Alice after at most t observations is:

fidk
(N, b, m, k, t) ≥

m∏

i=m−k−1

(1 − (1 − pinv (N, b, m, i))t)|Hi| .
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5 Conclusions

In this work, we investigated the fundamental structures for anonymity that we identi-
fied as the hypothesis set. The analysis of the hypothesis set is made under the assump-
tion of a uniformly distributed communication of the senders and of static peer sets.
This assumption is chosen in a way, such that we obtain a conservative consideration
of anonymity, which can be considered as a lower bound of the anonymity provided by
Mixes in the real world.

Based on the ExactHS [23], we derived a comprehensive mathematic model to prob-
abilistically describe the inherent properties of the hypothesis set in detail. In particular
we estimated in Sect. 4 the size of the hypothesis set, the structure of hypotheses in it,
the size of those structures and the probability that particular hypotheses are included
in it, with respect to the parameters N ,b,m at any number of observations. This in-
formation enabled a fine granular measurement of anonymity that also measures those
protection states before the point of full disclosure. In particular MTTD-k introduced in
Sect. 4.2 determined the mean number of observations to disclose from one to all Al-
ice’s peers. The evaluations of MTTD -1 (see Fig. 4) showed that the first unambiguous
knowledge about one of Alice’s peers can be gained noticeably before full disclosure.
It is therefore not sufficient to solely consider full disclosure (which is the focus of all
existing hypothesis set based approaches e.g. [5, 23, 25]) for anonymity measurement.

Furthermore, our model even enabled an analysis granularity beyond the scope of
unambiguous identification of peers. This is shown in Sect. 4.3, which provided the
probability to find a certain number of Alice’s peers in randomly computed hypotheses.
This insight opens the door for a new refined metric, which also covers unambiguous
information in the anonymity consideration.

We also showed that our mathematic model and the resulting measurements were
precise and meaningful by comparison to simulations. All results were in reasonable
scopes and reflected the right relations to the Mix parameters N , b, m and the number
of observations t.

The elementary model and analyses of our work are important for designers and users
of Mix networks. It enables Alice to estimate how much information she is going to leak
about her peers with each of her communications. That way she knows when to stop
communicating, or to add dummy traffic to remain information theoretic anonymous,
such that even attackers with unlimited computing power cannot reveal her peers.

In the future we intend to integrate the leakage of unambiguous and ambiguous in-
formation about Alice’s peers in one metric. In conjunction with this, we will analyse
the uncertainty caused by dummy traffic. Finally we will refine our model to expand the
analysis beyond the uniform communication assumption to get closer to the real world.
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