
Meet-in-the-Middle Preimage Attacks on

Double-Branch Hash Functions:
Application to RIPEMD and Others

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. We describe preimage attacks on several double-branch hash
functions. We first present meet-in-the-middle preimage attacks on
RIPEMD, whose output length is 128 bits and internal state size is 256
bits. With this internal state size, a straightforward application of the
meet-in-the-middle attack will cost the complexity of at least 2128, which
gives no advantage compared to the brute force attack. We show two at-
tacks on RIPEMD. The first attack finds pseudo-preimages and preim-
ages of the first 33 steps with complexities of 2121 and 2125.5, respectively.
The second attack finds pseudo-preimages and preimages of the interme-
diate 35 steps with complexities of 296 and 2113, respectively. We next
present meet-in-the-middle preimage attacks on full Extended MD4, re-
duced RIPEMD-256, and reduced RIPEMD-320. The best known attack
for these is the brute force attack. We show how to find preimages more
efficiently on these hash functions.

Keywords: RIPEMD, double branch, preimage, meet-in-the-middle.

1 Introduction

Hash functions are cryptographic primitives used for various purposes. They
are required to satisfy several security properties: preimage resistance, second
preimage resistance, collision resistance, and so on. Usually, if the length of
the hash is n-bit, the required security for these properties is 2n, 2n, and 2n/2,
respectively. Note that in the SHA-3 competition [22] conducted by NIST, 2n

security is required for the preimage resistance.
Various hash functions have been designed. A list of hash function types is

shown in Fig. 1. The most widely used hash functions, e.g., MD5 [18], SHA-1,
and SHA-2 [23], have a structure where the initial value, whose length is the
same as the hash value, is iteratively updated by using messages. Hereafter, we
call such a structure “single-path.” In contrast, some hash functions update two
copies of the initial value in parallel, merge each result, and finally output the
merged value as the hash value of the message. Hereafter, we call such a structure
“double-branch.” For example, RIPEMD [16], RIPEMD-128, and RIPEMD-160
[7], are double-branch hash functions.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 214–231, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 215

H0

Hash

H0 H1

Hash

H0 H1

Hash

H0 H1

Hash

MD4
MD5
SHA-1/-2

RIPEMD
RIPEMD-128

MD4-Extend
RIPEMD-256
RIPEMD-320

Cascaded
construction

RIPEMD-160

Fig. 1. Types of hash function structures

Hash functions are sometimes required to output longer hash values. For this
purpose, some hash functions define an extension to output the double-length
hash value, e.g., MD4 [17], RIPEMD-128, and RIPEMD-160. For a given input
message, two hash values are computed by using different initial values and
round constants. Finally, the concatenated value of two hash values, which is
the double-length of the original hash value, is output. Such extensions of MD4,
RIPEMD-128, and RIPEMD-160 are called Extended MD41, RIPEMD-256, and
RIPEMD-320, respectively. Efforts to strengthen the security are made in these
extensions. Intermediate chaining values after each round are swapped between
computations of two hash values so that a stronger interaction between two
computations can be achieved.

A cascaded construction, which was analyzed by Joux [10], produces a long
hash value from two short hash values. It computes two hash functions and
outputs the concatenated value.

The security of the double-branch hash functions is unclear. Intuitively, if two
hash functions are ideal, the security will be a product of two hash functions.
However, if two hash computations are similar, some attacks might be performed
because of unwanted dependencies. The designers of RIPEMD-256 and -320
consider this situation. Although the known best preimage attack on RIPEMD-
256 and -320 is the brute force attack, which costs 2256 and 2320, their security is
claimed to be 2128 and 2160, respectively. Similarly, the security of Extended MD4
is not described by its designer2. Reference [14, Fact 9.27] claims the security
of the cascaded construction is a product of each hash function; however, Joux
showed the security is damaged if iterated hash functions are instantiated [10].

1.1 Attack History

Several papers have been published on finding collisions or variants of colli-
sions on RIPEMD, RIPEMD-128, and RIPEMD-160 [6,5,4,25,12]. However, the
1 Rivest, the designer of MD4, did not name this extension. Dobbertin, the first

cryptanalyst of this extension, called it “Extended MD4.”
2 Dobbertin, in his analysis paper [5], introduced Extended MD4, which was proposed

for highest security requirements.

216 Y. Sasaki and K. Aoki

preimage resistance of double-branch hash functions has not been studied much.
Since 2008, several meet-in-the-middle preimage attacks on hash functions whose
structures are similar to MD4 have been proposed [11,2,1,20,21]. The targets of
these attacks are single-path hash functions, hence the attack techniques cannot
be applied to double-branch hash functions directly. Mendel presented preimage
attacks [13] on HAS-V [15], which is a double-branch hash function with a swap-
ping function. The attack exploits a weakness of the HAS-V step-function, which
cannot be applied to other hash functions. Saarinen [19] presented a preimage
attack on FORK-256 [8], which is a 4-branch hash function. The attack has some
similarity with ours; however, its success lies in the small number of steps in each
branch and the weak message schedule of FORK-256. At ISPEC 2009, a preim-
age attack on 29 steps of RIPEMD with a complexity of 2115.2 was presented by
Wang et al. [24]. Note that our work is independent of Ref. [24].

At CRYPTO’04, Joux analyzed the cascaded construction [10]. He showed
that the cascaded construction does not provide the security of each product if an
iterated hash function is used. Joux also explained that his technique cannot be
applied to RIPEMD-256 and -320 due to the swapping function of intermediate
values. This shows that the swapping function strengthens the security at some
point. However, whether or not it can prevent other attacks is unclear.

1.2 Our Contribution

We present preimage attacks on several double-branch hash functions. We first
present preimage attacks on step-reduced RIPEMD and then show how to find
preimages of Extended MD4, RIPEMD-256, and RIPEMD-320 faster than the
brute force attack does. The second result shows that using the swapping func-
tion does not provide the ideal security for double-branch hash functions. Details
of each result are as follows.

1. We describe two preimage attacks on RIPEMD. The first attack, with a
complexity of 2121, provides pseudo-preimages of the first 33 out of 48 steps
of RIPEMD. This can be converted to a preimage attack with a complexity
of 2125.5. Our attack is based on the meet-in-the-middle attack on MD5 and
MD4 [1]. However, because RIPEMD runs two MD4 computations, the size of
the internal state is also doubled. Therefore, the straightforward application
of the meet-in-the-middle attack does not give any advantage. We focus on
the differentials of two MD4 computations, and efficiently perform the meet-
in-the-middle attack.

The second approach, with a complexity of 296, provides pseudo-preimages
of the intermediate 35 steps of RIPEMD. This can be converted to a preimage
attack with a complexity of 2113. Technically, we use the meet-in-the-middle
attack and the idea of local collision. This strategy is partially similar to the
preimage attack on 1-block MD4 [1].

2. Extended MD4 provides 256-bit hash values. Our preimage attack on full Ex-
tended MD4 finds pseudo-preimages and preimages with complexities of 2229

and 2243.5, respectively. We also show that pseudo-preimages and preimages

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 217

of the first 62 out of 64 steps of RIPEMD-256 are found with complexities
of 2240 and 2249, respectively, and pseudo-preimages and preimages of the
intermediate 64 out of 80 steps of RIPEMD-320 are found with complexities
of 2304 and 2313, respectively.

From a technical viewpoint, we show how to avoid the swapping func-
tions. In Extended MD4, the message schedules of both sides are identical.
We show that using swapping functions in such a structure does not prevent
our attack. In RIPEMD-256 and -320, message schedules are different on
each side. However, the attacker might be able to attack even if the swap-
ping function is used. Then, by combining this idea with the splice-and-cut,
partial-matching, and partial-fixing techniques proposed in Ref. [1,21], we
attack those hash functions.

Although results in this paper do not contradict the security claims of
these hash functions, the known best attack on these hash functions is the
brute force attack, and no one knows whether or not better attacks exist.
Therefore, we believe that our analyses contribute to better understanding
of the security of double-branch hash functions.

2 Description of Hash Functions

2.1 MD4

MD4 takes arbitrary length messages as input and outputs 128-bit hash values.
MD4 was proposed in 1990 by Rivest [17] and is a basic component of RIPEMD
and Extended MD4. MD4 has the Merkle-Damg̊ard structure. The input message
is padded to be multiples of 512-bit. First, a single bit ‘1’ is appended, then bit
‘0’s are appended until the message length becomes 448 mod 512. Finally, the
binary expression of the input message length is appended to the last 64 bits.
The message is divided into 512-bit message blocks Mi. Then, the hash value is
computed as follows:{

H0 ← IV,
Hi+1 ← md4(Hi, Mi) for i = 0, 1, . . . , n− 1,

where IV is the initial value defined in the specification, Hn is the output hash
value, and md4: {0, 1}128 × {0, 1}512 → {0, 1}128 is the compression function of
MD4 computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 15).
2. p0 is set to Hi.
3. Compute the following: pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , 47.
4. Hi+1 (= p48 + Hi) is output, where “+” denotes 32-bit word-wise addition.

In this paper, we similarly use “−” to denote 32-bit word-wise subtraction.

Rj is the step function for Step j. Let aj , bj , cj , and dj be 32-bit values that
satisfy pj = (aj , bj, cj , dj). Rj(pj , mπ(j)) is defined as follows:

aj+1 = dj , bj+1 = (aj + Φj(bj , cj , dj) + mπ(j) + kj) ≪ sj ,

cj+1 = bj, dj+1 = cj ,

218 Y. Sasaki and K. Aoki

where Φj , kj , and ≪ sj are the bitwise Boolean function, constant value, and
left rotation defined in the specification, respectively. π(j) is the MD4 message
schedule. Note that R−1

j (pj+1, mπ(j)) can be computed at almost the same com-
plexity as that of Rj .

2.2 RIPEMD

RIPEMD [16] is an extension of MD4, whose compression function consists of
two parallel copies of MD4’s compression function. These functions are identical
but for the constant number in each step. We describe chaining variables for one
side pj = (aj , bj , cj , dj) and for the other side p′j = (a′

j , b
′
j , c

′
j , d

′
j). The message

schedule π(j), the constant numbers kj and k′
j , and the rotation number sj are

different from those for MD4. These values are shown in Table 1. Finally, the out-

Table 1. Message schedule, constants, and rotation numbers of RIPEMD

π(0), π(1), . . . , π(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16), π(17), . . . , π(31) 7 4 13 1 10 6 15 3 12 0 9 5 14 2 11 8
π(32), π(33), . . . , π(47) 3 10 2 4 9 15 8 1 14 7 0 6 11 13 5 12

0 ≤ i ≤ 15 16 ≤ i ≤ 31 32 ≤ i ≤ 47

ki 0x00000000 0x5a827999 0x6ed9eba1

k′
i 0x50a28be6 0x00000000 0x5c4dd124

s0, s1, . . . , s15 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
s16, s17, . . . , s31 7 6 8 13 11 9 7 15 7 12 15 9 7 11 13 12
s32, s33, . . . , s47 11 13 14 7 14 9 13 15 6 8 13 6 12 5 7 5

put of RIPEMD’s compression function Hn+1 = (Ha, Hb, Hc, Hd) is computed
by using Hn = (IVa, IVb, IVc, IVd), p48, and p′48 as follows.

Ha = IVb + c48 + d′48, Hb = IVc + d48 + a′
48,

Hc = IVd + a48 + b′48, Hd = IVa + b48 + c′48.

2.3 RIPEMD-128, RIPEMD-160

RIPEMD-128 and RIPEMD-160, which output 128-bit and 160-bit hash values
respectively, were proposed by Dobbertin et al. in 1996 [7]. They have been
standardized by the International Organization for Standardization (ISO) [9].

A branch of RIPEMD-160 uses five 32-bit chaining variables. It computes
80 steps to produce the output value. Let the chaining variables in step j be
pj = (aj , bj , cj , dj , ej). Step function Rj(pj , mπ(j)) is as follows.

aj+1 = ej , cj+1 = bj , dj+1 = cj ≪ 10, ej+1 = dj ,

bj+1 = ((aj + Φj(bj , cj , dj) + mπ(j) + kj) ≪ sj) + ej .

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 219

Table 2. Message schedules of RIPEMD-160

r π(r), π(r + 1), . . . , π(r + 15) π′(r), π′(r + 1), . . . , π′(r + 15)

0 0 1 2 3 4 5 6 7 8 9 101112131415 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12
16 7 4 13 1 10 6 15 3 12 0 9 5 2 1411 8 6 11 3 7 0 13 5 101415 8 12 4 9 1 2
32 3 1014 4 9 15 8 1 2 7 0 6 1311 5 12 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
48 1 9 1110 0 8 12 4 13 3 7 1514 5 6 2 8 6 4 1 3 1115 0 5 12 2 13 9 7 1014
64 4 0 5 9 7 12 2 1014 1 3 8 11 6 1513 121510 4 1 5 8 7 6 2 1314 0 3 9 11

Between two copies of the compression function, the order of the Boolean func-
tions, message schedules, constants, and rotation numbers are different. The
message schedules are shown in Table 2. The output of RIPEMD-160 is com-
puted in the same manner as that of RIPEMD.

A branch of RIPEMD-128 uses 4 chaining variables and consists of 64 steps.
The step function is the same as that of MD4 and RIPEMD. The Boolean
functions and rotation numbers used in RIPEMD-128 are the same as those
of the first 64 steps for RIPEMD-160, but the order is different. The message
schedule for RIPEMD-128 is the same as that of the first 64 steps for RIPEMD-
160, which is shown in Table 2. Computation for the final output is also the
same as that of RIPEMD.

2.4 Extended MD4, RIPEMD-256, and RIPEMD-320

Extended MD4 is an optional extension of MD4 proposed by Rivest to obtain
256-bit hash values [17]. Two copies of MD4 are run in parallel over the input.
The first copy is the same as MD4. The second copy is computed with different
IV and constants. To strengthen the data dependency between two copies, a
swapping function is introduced, which exchanges the values of a16 and a′

16, a32

and a′
32, and a48 and a′

48. The final output is obtained by concatenating both
results.

RIPEMD-256 and RIPEMD-320 are extensions of RIPEMD-128 and
RIPEMD-160 for obtaining the double length hash values without needing a
higher security level [7]. The output is achieved by computing the feedforward
of IV in each branch and concatenating the results at the end of every applica-
tion of the compression function. Interaction between two copies is introduced
by a swapping function, which exchanges the values of a16 and a′

16, b32 and b′32,
etc.

3 Related Works

3.1 Converting Pseudo-preimage Attack to Preimage Attack

Given a hash value Hn, a pseudo-preimage is a pair of (Hn−1, M) such that
Hash(Hn−1, M) = Hn. In x-bit iterated hash functions, a pseudo-preimage at-
tack whose complexity is 2y, y < x − 2 can be converted to a preimage attack
with a complexity of 2

x+y
2 +1 [14, Fact9.99].

220 Y. Sasaki and K. Aoki

3.2 Meet-in-the-Middle Preimage Attack

Aoki and Sasaki proposed a preimage attack based on the meet-in-the-middle at-
tack [1]. They proposed three techniques named splice-and-cut, partial-matching,
and partial-fixing.

The splice-and-cut technique considers the first and last steps of the compres-
sion function as consecutive steps. Then, the compression function is divided into
two chunks of steps so that each chunk includes independent message words,
which are called neutral words. Then, a pseudo-preimage is computed by the
meet-in-the-middle attack.

The partial-matching technique can skip messages in several steps when check-
ing the match in the meet-in-the-middle attack. It focuses on the property where
not all the chaining variables are updated in each step. With this idea, we can
partially compare two results, even if values of message words in several steps
are not known.

The partial-fixing technique enables an attacker to skip more steps. The idea
is to fix a part of the neutral words so that an attacker can partially compute a
chunk even if a neutral word for the other chunk appears. For example, consider
the inversion of MD4: aj = (bj+1 ≫ sj) − Φj(cj+1, dj+1, aj+1)−mπ(j) − kj . If
the lower n bits of mπ(j) are fixed and thus known to the attacker and if other
variables are fully known, the lower n bits of aj can be computed independently
of the higher 32− n bits.

Since the internal state size of RIPEMD is double the output size, the straight-
forward application of the meet-in-the-middle attack does not give any advantage.

3.3 Analysis on Double-Branch Hashes and Cascaded Construction

At CRYPTO 2004, Joux proposed attacks on cascaded construction [10]. Joux
showed how to generate multi-collisions of iterated hash functions and how
to find collisions and preimages of the cascaded construction by using multi-
collisions. The success of Joux’s attack lies in the independency of the two hash
functions in the cascaded construction, namely, multi-collisions of the iterated
hash functions can be generated independently of the others. Joux explained
that his technique would not be applied to RIPEMD-256 and -320 due to the
dependency of the two compression functions caused by swapping functions. In
conclusion, if swapping functions are used, no attack is known to break the
preimage resistance of double-branch hash functions.

4 Preimage Attacks on RIPEMD

We present here two preimage attacks on RIPEMD. The first attack targets the
first 33 steps and the second attack targets the intermediate 35 steps.

4.1 Attacks on First 33 Steps

Outline of Attack. Our attack is based on the meet-in-the-middle attack
introduced in Section 3.2. However, since the internal state size is double the

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 221

1st chunk 1st chunk

2nd chunk 2nd chunk

Start step

Hn

Start step
Δ=Δstart

Δ=0k
k
k

k ’
k ’
k ’

Meet-in-the-middle

ps ps’

Fig. 2. Outline of strategy 1

output size, a direct application of the meet-in-the-middle attack cannot exceed
the brute force attack. Our strategy to solve this problem is shown in Fig. 2.
We separate the attack target so that one chunk is located in the first several
steps and the other chunk is located in the last relatively long steps, and then we
compare the results of the two chunks at the last feedforward operation which
is performed in 128 bits.

Assume ma and mb are neutral words, where ma is included in the first chunk
but is not included in the second chunk, and mb is vice versa. Remember that
message schedules for both sides are identical, hence if one side can be separated
into two chunks, the other side can always be separated in the same manner.
First, we fix all message words but ma and mb and fix chaining variables at the
border of two chunks, e.g., fix ps and p′s to compute the first and second chunks
independently. We then inversely compute the first chunk with R−1

j (pj+1, mj)
and R′ −1

j (p′j+1, mj) for j = s − 1, s − 2, . . . , 0 by trying all values of ma and
store the results in a table. Finally, we compute the second chunk with Rj(pj , mj)
and R′

j(p
′
j , mj) for j = s, s + 1, . . . , 32 by trying all values of mb and then check

whether the result matches items in the table.
For consistency with the specification of RIPEMD, the values of p0 and p′0

computed in the backward computation must be identical, because they are
originally computed from the same IV . The differences of the computations for
both sides are differences of the constant Δk only. Therefore, we fix intermediate
chaining variables ps and p′s to have a specific difference Δstart so that Δstart

and Δk can be cancelled out in the backward computation.

Set Up of Attack. We separate the 33 steps into 2 chunks as shown in Fig. 3.
The border of the two chunks is between Steps 2 and 3; we therefore fix p3 and
p′3 so that their difference Δstart can cancel Δk in Steps 0–2. Now we trace the
differentials in Steps 0–2 of both sides to determine the appropriate Δstart. The
analysis is shown in Fig. 4.

222 Y. Sasaki and K. Aoki

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2© 3 4 5 6 7 8 9 10 11 12© 13 14 15

first chunk second chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 7 4 13 1 10 6 15 3 12© 0 9 5 14 2© 11 8

second chunk skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 3 10 2© 4 9 15 8 1 14 7 0 6 11 13 5 12©

skip Excluded from the attack target

In RIPEMD, the message schedules of the two compression functions
are identical. We separate them into two chunks in the same manner.

Fig. 3. Chunks for first 33 steps of RIPEMD

a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

<<< s0

Φ0
m0

k0

<<< s1

Φ1
m1

k1

<<< s2

Φ2
m2

k2

Δk0

Δk1

Δk2

0 0 0 0

00

0

0

0 0 0(−Δk0)<<<s0

0 0(−Δk0)<<<s0

0 (−Δk0)<<<s0

(−Δk1)<<<s1

(−Δk1)<<<s1

Δv

(−Δv−Δk2)<<<s2

0?

Bold font represents the value of differences.

Fig. 4. Differences propagation in first three steps

The difference of a variable X is defined as ΔX = X ′ − X . The goal is
determining Δa3, Δb3, Δc3, and Δd3 so that Δa0, Δb0, Δc0, and Δd0 become 0.
Since message schedules for both sides are identical, Δmπ(j) is always 0. In the
first chunk, m2 is the neutral word. Therefore, in every trial of the first chunk,
the values of m2 and corresponding chaining variables are changed. In Fig. 4,
we circled such variables. The analysis is as follows.

Δb0 = 0: This can be easily achieved by setting Δa3 = 0.
Δa0 = 0: Assume we can achieve Δb0 = Δc0 = Δd0 = 0. Then, Δa0 = 0 can

be achieved by setting Δd3 = (−Δk0) ≪ s0.
Δc0 = 0: Assume we have finished fixing the values of a3, a

′
3, c3, c

′
3, d3, and d′3.

Then, the value and difference of the output of Φ2 are fixed. Let this difference
be Δv. Finally, Δc0 = 0 is achieved by setting Δb3 = (−Δv −Δk2) ≪ s2.

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 223

Δd0 = 0: Achieving Δd0 = 0 is complicated. We want to guarantee Δa1 =
0 regardless of the value of the neutral variable m2. To achieve this, we
need to fix the value of Φ1 independently of m2. Since the function Φ1 is
Φ1(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z) and Δc1 = Δd1 = 0, ΔΦ1 can be fixed
to 0 by setting b1 = b′1. However, this is impossible since b1 and b′1 must
have differences. Consequently, we search for the exact value of b1 and b′1 to
minimize the Hamming weight of (b1⊕b′1) so that the probability of ΔΦ1 = 0
is maximized. Remember that for each bit where b1 ⊕ b′1 = 1, the equation
ΔΦ1 = 0 is satisfied with a probability of 1/2.
As we will explain later, we fix the lower 21 bits of m2 for the partial-
fixing technique. Consequently, the lower 21 bits of ΔΦ1 are fixed. Therefore,
minimizing the Hamming weight of the upper 11 bits (HW 11) of (b1 ⊕ b′1)
is enough. We tried 232 values of b1 and confirmed that no value achieves
HW 11(b1⊕b′1) ≤ 3 and many values achieve HW 11(b1⊕b′1) = 4. For example,
b1 = 0xffffffff, b′1 = 0x50a28be5 is the case. Finally, by choosing the value
of b1(= d3) to minimize the Hamming weight, the probability of ΔΦ1 = 0 is
2−4.

Partial-Matching and Partial-Fixing Techniques. As a result of comput-
ing the second chunk, we obtain p29 and p′29. By fixing the lower 21 bits of
m2, we can perform the meet-in-the-middle attack on a further 4 steps in for-
ward computation, namely, up to Step 32. The equation we use for matching
is Hb = IVc + d33 + a′

33, where Hb is given and the upper 11 bits of IVc are

a29 b29 c29 d29

a30 b30 c30 d30

a31 b31 c31 d31

<<< 11

m2

k29

<<< 13

m11

k30

all all all all

all

all all all

all all

0-20

all

11-31

11-31

11-31

24-31

a32 b32 c32 d32

<<< 12

m8

k31

all

all

11-3124-31

a33 b33 c33 d33

<<< 11

m3

k32

all

11-31 24-31

Φ29

Φ30

Φ31

Φ32

(2)

(2)

(2)

Bold font represents the bit positions of known bits.

Fig. 5. Partial-matching and partial-fixing techniques

224 Y. Sasaki and K. Aoki

produced from the first chunk. Therefore, we need to compute d33 from p29 and
a′
33 from p′29. How we compute d33 and a′

33 is shown in Fig. 5. Since m2 is
identical on both sides, the fixed bit positions in m2 are also identical on both
sides.

In Fig. 5, since the lower 21 bits of m2 are fixed, we can uniquely compute
bits 11–31 of b30. This produces bits 11–31 of Φ30. In the addition of Φ30, we
cannot determine the carried number from bit position 10 to 11. Therefore, we
consider both carried number patterns and obtain two candidates for bits 24–31
of b31 after the s30(= 13)-bit left rotation. Then, we compute the upper 8 bits
of d33 +a′

33 with consideration of the two candidates of carried number patterns
from bit position 23 to 24. In conclusion, the second chunk produces 4 candidates
for the upper 8 bits of d33 + a′

33 for given p29 and p′29, and thus, we can perform
the 8-bit matching in 33-step RIPEMD.

Remark: From a designer’s view, when results of two compression functions are
merged, adding two values from different registers seems to be a good strategy
against our attack. In fact, with only the partial-matching technique, attackers
can skip only two steps in RIPEMD, whereas attackers can skip three steps in
MD4. This is because the attacker needs to know the values of two different
registers to compute each word of the output of RIPEMD.

Attack Procedure. Our attack first finds pseudo-preimages and converts them
to preimages. Therefore, our attack finds a 2-block preimage. Hence, we fix
m13, m14, and m15 to satisfy padding for 2-block messages. Given a hash value
H2 = (Ha, Hb, Hc, Hd), the attack procedure is as follows.

1. Fix mi (i 	∈ {2, 12, 13, 14, 15}) and the lower 21 bits of m2 to randomly
chosen values.

2. Fix a3, b3, c3 to randomly chosen values and d3 to 0xffffffff. Then, com-
pute a′

3, b
′
3, c

′
3, and d′3 to make Δstart, shown in Fig. 4.

3. (a) For all upper 11 bits of m2, compute R−1
j (pj+1, mπ(j)) and

R′−1
j (p′j+1, mπ(j)) for j = 2, 1, 0.

(b) If Δp0 = 0, compute Hb − c0 and store (m2, p0, Hb − c0)s in a table.
4. Compute Rj(pj , mπ(j)) and R′

j(pj′ , mπ(j)) for j = 3, 4, . . . , 11, and store p12

and p′12.
5. (a) For all m12, compute Rj(pj , mπ(j)) and R′

j(p
′
j , mπ(j)) for j = 12, 13, . . .28.

(b) Compute bit positions 11 to 31 of b30 and b′30, then compute bit positions
24 to 31 of b31 for both carried number patterns as shown in Fig. 5. Then,
compute bits 24–31 of d33 + a′

33 by considering both carried number
patterns from bit 23 to 24.

(c) For each item in the table, check whether bits 24–31, in total 8 bits, of
d33 + a′

33 are matched with Hb − c0.
(d) If matched, compute p30 to p33 by the corresponding mi, and check

whether or not all values are matched.
(e) If all bits are matched, the corresponding message and p0 is a pseudo-

preimage.

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 225

Complexity Evaluation. Assume the complexity for computing 1 step is 1/33
33-step RIPEMD computations. The computational complexity of the above
procedure is as follows. Step 3a takes 211 · 3

33 . Since the success probability of 3b
is 2−4, 27(= 211 ·2−4) items are stored in the table. Step 4 is negligible. Steps 5a
and 5b take 232 · (17

33 + 3
33). In 5b, 234(= 232 ·2 ·2) items are produced. Therefore,

in 5c, 241(= 234 · 27) pairs are compared, and after 8-bit matching for both
carried number patterns, 233(= 241 · 2−8) pairs will remain. In 5d, we compute
p30 and p31 at the complexity of 228(= 233 · 2

64), and by applying additional 56-bit
match and checking the correctness of the guess for the carried number patterns,
2−25(= 233 · 2−56 · 2−2) pair will remain. Furthermore, by computing p31 and
p32 at negligible complexity, we obtain 2−89(= 2−25 · 2−64) pair that is matched
with 128 bits. The dominant complexity so far is 232 of 5a and 5b. Therefore, by
repeating the attack 289 times, we obtain a pseudo-preimage at the complexity
of 2121(= 232 × 289). Finally, by applying the technique in Section 3.13, this
pseudo-preimage attack is converted to the preimage attack with a complexity
of 2125.5. In the above procedure, a memory is used to store 27 (m2, p0, Hb− c0)s
at step 3b. Therefore, the memory complexity of this attack is approximately
27 × 6 words.

4.2 Attack on Intermediate 35 Steps

Similar to the attack on the first 33 steps, this attack is a meet-in-the-middle at-
tack, but the approach is different. The strategy is shown in Fig. 6. In this
approach, we start the meet-in-the-middle attack from an intermediate step
of either two copies of the compression functions. Let us start from the left
side. We separate the compression function so that one chunk includes two
neutral messages that can form a local collision. This strategy was first used
for the 1-block preimage attack on MD4 [1]. Due to the property of the local
collision, the value of a pseudo-preimage is always fixed to a constant value.
Therefore, we can consider the feedforward as constant addition and can com-
pute the second chunk independently of the first chunk. Finally, we perform
the meet-in-the-middle attack at the right side. The chunk we use is shown in
Fig. 7.

The attack procedure is similar to Aoki and Sasaki’s one-block MD4 preimage
attack [1], and how to construct a local collision in the second round is explained
in Leurent’s MD4 preimage attack [11]. Therefore, because of the limited space,
we omit the detailed attack procedure. Since both of the first and second chunks
have 232 free bits, the complexity of finding the pseudo-preimage is 296, and
this attack, at the complexity of 2113, is converted to the preimage attack. The
memory complexity is approximately 232 × 5 words.

3 Several techniques converting partial-pseudo-preimages to preimages have been pro-
posed [11,3]. However, since our attack does not find partial-pseudo-preimages effi-
ciently, these techniques cannot be applied.

226 Y. Sasaki and K. Aoki

1st chunk 1st chunk

2nd chunk 2nd chunk

Start step

Hn

Meet-in-
the-middle

m2

Local
collision

m2

m0

m6

m2

m2

m0

m6

Constant

Fig. 6. Outline of strategy 2

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0© 1 2© 3 4 5 6© 7 8 9 10 11 12 13 14 15

excluded first chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 7 4 13 1 10 6© 15 3 12 0© 9 5 14 2© 11 8

first chunk 2nd chunk

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 3 10 2© 4 9 15 8 1 14 3 0© 6© 11 13 5 12

second chunk excluded

Chunk separations are identical on both sides.

Fig. 7. Chunks for intermediate 35 steps of RIPEMD

5 Cryptanalyses on Double-Branch Hash Functions

In this section, we analyze the preimage resistance of double length parallel hash
functions. Specifically we give a study of relations of the splice-and-cut technique
and swapping functions.

5.1 Extended MD4

In Extended MD4, two copies of MD4 with different IV and constants are com-
puted. The swapping function of Extended MD4 exchanges the values of a16 and
a′
16, a32 and a′

32, and a48 and a′
48.

MD4 has already been broken by using the splice-and-cut technique [1]. In this
research, we found that the swapping function of Extended MD4 cannot prevent
the splice-and-cut technique, namely, preimages are generated by almost the
same approach as MD4. This is caused by the fact that the message schedules
of two MD4 computations are exactly the same as original MD4. Due to this

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 227

fact, when we compute chunks in one side, we can also compute the value for
the other side. Since we know the values for both sides, we can exchange them
according to the swapping function. This means the swapping functions do not
contribute to prevent our attack.

The chunk separation is the same as that shown in Ref. [1, Fig.5]. However,
the partial-fixing technique can be improved for Extended MD4. In this attack,
since we compare the results of two chunks on both compression functions, the
number of bits matched by the meet-in-the-middle attack can increase. This
enables us to reduce the fixed bits in neutral words, hence free bits in neutral
words increase and the meet-in-the-middle attack becomes efficient.

By the partial-fixing technique, we fix the lower 5 bits of the neutral word and
examine the 30-bit matching (= 5 bits × 6 words). This results in the pseudo-
preimage attack4 with a complexity of 2229. This, with a complexity of 2243.5,
is converted to a preimage attack with the algorithm explained in Section 3.1.
The memory complexity is approximately 227 × 11 words.

5.2 RIPEMD-256 and RIPEMD-320

In RIPEMD-256 and -320, the message orders of two copies of the compression
functions are different. Therefore, different from Extended MD4, the attack can-
not be applied in a straightforward manner. Note that the swapping function
exchanges the value of a16 and a′

16, b32 and b′32, c48 and c′48, and so on.
To attack RIPEMD-256, we first search for a pair of neutral words that can

attack as many steps as possible on either side. Then, on the other side, we check
if we can divide the steps into two chunks so that the intermediate chaining
variables that are used in the swapping function can also be computed. Selected
neutral words and chunks are shown in Fig. 8.

As shown in Fig. 8, we skip eight steps when we attack the right side of MD4
by using the partial-matching and partial-fixing techniques. As introduced in
Ref. [1], the partial-fixing technique, which increases the matching candidate
twice, enables us to partially compute four steps in backward computation and
one step in forward computation. The partial-matching technique enables us to
skip three steps. Finally, eight steps can be skipped.

Avoid Swapping Function. In this attack, we assume that a16 and a′
16, b32

and b′32, and c48 and c′48 are exchanged. d64 and d′64 are not exchanged since
Step 63 is excluded from the attack target.

As you can see in Fig 8, b32 and b′32 are included in the second chunk and
c48 and c′48 are included in the first chunk. Therefore, by computing both sides
simultaneously, we can compute the values that follow the swapping function.
a16 and a′

16 are included in the skipped steps. When we check the matching of
the results of both chunks, we do not use the values of a16 and a′

16. Therefore,
swapping a16 and a′

16 does not affect the attack complexity.
4 If the previous attack is applied without improving the partial-fixing technique, this

complexity would be 2241.

228 Y. Sasaki and K. Aoki

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

index L 0© 1 2 3 4 5 6 7 8 9 10© 11 12 13 14 15

index R 5 14 7 0© 9 2 11 4 13 6 15 8 1 10© 3 12
first chunk skip

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

index L 7 4 13 1 10© 6 15 3 12 0© 9 5 2 14 11 8
second chunk

index R 6 11 3 7 0© 13 5 10© 14 15 8 12 4 9 1 2
skip second chunk

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

index L 3 10© 14 4 9 15 8 1 2 7 0© 6 13 11 5 12
second chunk first chunk

index R 15 5 1 3 7 14 6 9 11 8 12 2 10© 0© 4 13
second chunk first chunk

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

index L 1 9 11 10© 0© 8 12 4 13 3 7 15 14 5 6 2
first chunk excluded

index R 8 6 4 1 3 11 15 0© 5 12 2 13 9 7 10© 14
first chunk excluded

Fig. 8. Chunks for first 62 steps of RIPEMD-256

Outline of Attack Procedure. Fix messages mj , j /∈ {0, 10}, p39, and p′45,
where pj is a variable for the left side and p′j is for the right side. In the first
chunk, compute Rj(pj , mπ(j)) and R′

j(p
′
j , mπ(j)) to obtain p48 and p′48 and swap

c48 and c′48 to follow the swapping function. Then, we compute R′
j(p

′
j , mπ(j))

until we obtain p′13 and store the results in a table. In the second chunk, compute
R−1

j (pj , mπ(j)) and R′−1
j (p′j , mπ(j)) to obtain p32 and p′32 and swap b32 and b′32

to follow the swapping function. Then, we compute R′−1
j (p′j , mπ(j)) until we

obtain p′21 and check whether the result matches items in the table by using the
partial-matching and partial-fixing techniques. Hence, a pseudo-preimage for the
right side is found efficiently, and by repeating this attack 2128 times, one of the
resulting pseudo-preimages will also be the pseudo-preimage for the left side.

Complexity Estimation. When we attack the right side, we use the splice-and-
cut technique. Since the partial-fixing technique is used, the complexity to find
a pseudo-preimage of the right side is 2112. If a pseudo-preimage of the right side
is found, we check whether the message is also a pseudo-preimage of the left side.
This occurs with a probability of 2−128. Therefore, with a complexity of 2240,
we obtain a pseudo-preimage, and this, with a complexity of 2249, is converted
to a preimage. The memory complexity is approximately 216 × 9 words.

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 229

Preimage Attack on Intermediate 64 Steps of RIPEMD-320. With
the same strategy as the attack on RIPEMD-256, the intermediate 64 steps of
RIPEMD-320 can be attacked. From Steps 12–75 are our attack target, and we
select m10 and m11 as neutral words. Since the attack strategy is the same as
that of RIPEMD-256, we show details of the chunks in Appendix A, Fig. 9.

Since the partial-fixing technique is necessary, the complexity of the pseudo-
preimage attack is 2304, and this, with a complexity of 2313, is converted to a
preimage attack. The memory complexity is approximately 216 × 7 words.

6 Conclusion

We first described preimage attacks on RIPEMD. The first attack focuses on
differentials of two copies of the compression function and attacks the first 33
steps. The second attack uses local collision and attacks the intermediate 35
steps. We next analyzed the preimage resistance of double-length hash functions.
Our attacks find preimages of full Extended MD4, the first 62 steps of RIPEMD-
256, and the intermediate 64 steps of RIPEMD-320 faster than the brute force
attack does. We believe that analyses presented in this paper will contribute to
greater understanding of the security of double-branch hash functions.

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Workshop Records of SAC 2008, Sackville, Canada, pp. 82–98 (2008)

2. Aumasson, J.-P., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and
step-reduced MD5. In: Workshop Records of SAC 2008, Sackville, Canada, pp. 99–
114 (2008); ePrint version is available at IACR Cryptology ePrint Archive: Report
2008/183, http://eprint.iacr.org/2008/183.pdf

3. Canniére, C.D., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Hei-
delberg (2008); (slides on preliminary results were appeared at ESC 2008 seminar
http://wiki.uni.lu/esc/)

4. Debaert, C., Gilbert, H.: The RIPEMDL and RIPEMDR improved variants of MD4
are not collision free. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 65–74.
Springer, Heidelberg (2002)

5. Dobbertin, H.: Cryptanalysis of MD4. Journal of Cryptology 11(4), 253–272 (1997);
First result was announced at FSE 1996

6. Dobbertin, H.: RIPEMD with two-round compress function is not collision-free.
Journal of Cryptology 10(1), 51–69 (1997)

7. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996)

8. Hong, D., Chang, D., Sung, J., Lee, S., Hong, S., Lee, J., Moon, D., Chee, S.: A
new dedicated 256-bit hash function: FORK-256. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 195–209. Springer, Heidelberg (2006)

9. International Organization for Standardization. ISO/IEC 10118-3:2004, Informa-
tion technology – Security techniques – Hash-functions – Part 3: Dedicated hash-
functions (2004)

http://eprint.iacr.org/2008/183.pdf
http://wiki.uni.lu/esc/

230 Y. Sasaki and K. Aoki

10. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

11. Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

12. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the collision resistance
of RIPEMD-160. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 101–116. Springer, Heidelberg (2006)

13. Mendel, F., Rijmen, V.: Weaknesses in the HAS-V compression function. In: Nam,
K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 335–345. Springer, Hei-
delberg (2007)

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1997)

15. Park, N.K., Hwang, J.H., Lee, P.J.: HAS-V: A New Hash Function with Variable
Output Length. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 202–216. Springer, Heidelberg (2001)

16. RIPE Integrity Primitives, Berlin, Heidelberg, New York. Integrity Primitives for
Secure Information Systems, Final RIPE Report of RACE Integrity Primitives
Evaluation, RIPE-RACE 1040 (1995)

17. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991);
Also appeared in RFC 1320, http://www.ietf.org/rfc/rfc1320.txt

18. Ronald, L.R.: Request for Comments 1321: The MD5 Message Digest Algorithm.
The Internet Engineering Task Force (1992),
http://www.ietf.org/rfc/rfc1321.txt

19. Saarinen, M.-J.O.: A meet-in-the-middle collision attack against the new FORK-
256. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 10–17. Springer, Heidelberg (2007)

20. Sasaki, Y., Aoki, K.: Preimage attacks on 3, 4, and 5-pass HAVAL. In: Pieprzyk,
J.P. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg
(2008)

21. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
New York (2009)

22. U.S. Department of Commerce, National Institute of Standards and Technology.
Federal Register 72(212) (November 2, 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

23. U.S. Department of Commerce, National Institute of Standards and Technology.
Secure Hash Standard (SHS) (Federal Information Processing Standards Publica-
tion 180-3) (2008),
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

24. Wang, G., Wang, S.: Preimage attack on hash function RIPEMD. In: Bao, F.,
Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 274–284. Springer,
Heidelberg (2009)

25. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

http://www.ietf.org/rfc/rfc1320.txt
http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 231

A Chunks for Intermediate 64-Step RIPEMD-320

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

index L 0 1 2 3 4 5 6 7 8 9 10© 11© 12 13 14 15
excluded first chunk

index R 5 14 7 0 9 2 11© 4 13 6 15 8 1 10© 3 12
excluded first chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

index L 7 4 13 1 10© 6 15 3 12 0 9 5 2 14 11© 8
first chunk skip

index R 6 11© 3 7 0 13 5 10© 14 15 8 12 4 9 1 2

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

index L 3 10© 14 4 9 15 8 1 2 7 0 6 13 11© 5 12
skip second chunk

index R 15 5 1 3 7 14 6 9 11© 8 12 2 10© 0 4 13
second chunk

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

index L 1 9 11© 10© 0 8 12 4 13 3 7 15 14 5 6 2
2nd chunk first chunk

index R 8 6 4 1 3 11© 15 0 5 12 2 13 9 7 10© 14
second chunk first chunk

Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

index L 4 0 5 9 7 12 2 10© 14 1 3 8 11© 6 15 13
first chunk excluded

index R 12 15 10© 4 1 5 8 7 6 2 13 14 0 3 9 11©
first chunk excluded

Fig. 9. Chunks for intermediate 64 steps of RIPEMD-320

	Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions: Application to RIPEMD and Others
	Introduction
	Attack History
	Our Contribution

	Description of Hash Functions
	MD4
	RIPEMD
	RIPEMD-128, RIPEMD-160
	Extended MD4, RIPEMD-256, and RIPEMD-320

	Related Works
	Converting Pseudo-preimage Attack to Preimage Attack
	Meet-in-the-Middle Preimage Attack
	Analysis on Double-Branch Hashes and Cascaded Construction

	Preimage Attacks on RIPEMD
	Attacks on First 33 Steps
	Attack on Intermediate 35 Steps

	Cryptanalyses on Double-Branch Hash Functions
	Extended MD4
	RIPEMD-256 and RIPEMD-320

	Conclusion
	Chunks for Intermediate 64-Step RIPEMD-320

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

