

Lecture Notes in Computer Science 5594
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Colin Boyd Juan González Nieto (Eds.)

Information Security
and Privacy

14th Australasian Conference, ACISP 2009
Brisbane, Australia, July 1-3, 2009
Proceedings

13

Volume Editors

Colin Boyd
Juan González Nieto
Queensland University of Technology
Information Security Institute
GPO Box 2434, Brisbane, QLD 4001, Australia
E-mail: {c.boyd, j.gonzaleznieto}@qut.edu.au

Library of Congress Control Number: 2009930749

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, E.4, F.2.1, K.4.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-02619-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02619-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12707515 06/3180 5 4 3 2 1 0

Preface

The 2009 Australasian Conference on Information Security and Privacy was the
14th in an annual series that started in 1996. Over the years ACISP has grown
from a relatively small conference with a large proportion of papers coming from
Australia into a truly international conference with an established reputation.
ACISP 2009 was held at Queensland University of Technology in Brisbane, dur-
ing July 1–3, 2009.

This year there were 106 paper submissions and from those 30 papers were
accepted for presentation, but one was subsequently withdrawn. Authors of ac-
cepted papers came from 17 countries and 4 continents, illustrating the interna-
tional flavor of ACISP. We would like to extend our sincere thanks to all authors
who submitted papers to ACISP 2009.

The contributed papers were supplemented by two invited talks from emi-
nent researchers in information security. Basie von Solms (University of Johan-
nesburg), currently President of IFIP, raised the question of how well dressed is
the information security king. L. Jean Camp (Indiana University) talked about
how to harden the network from the friend within. We are grateful to both of
them for sharing their extensive knowledge and setting challenging questions for
the ACISP 2009 delegates.

We were fortunate to have an energetic team of experts who formed the
Program Committee. Their names may be found overleaf, and we thank them
warmly for their considerable efforts. This team was helped by an even larger
number of individuals who reviewed papers in their particular areas of expertise.
A list of these names is also provided which we hope is complete. We would like to
express our thanks to Springer for continuing to support the ACISP conference
and for help in the conference proceedings production.

We are delighted to acknowledge the generous financial sponsorship of ACISP
2009 by the Research Network for a Secure Australia (funded by the Australian
Research Council). The conference was hosted by the Information Security Insti-
tute at Queensland University of Technology, who provided first-class facilities
and material support. The excellent Local Organizing Committee was led by the
ACISP 2009 General Chair, Ed Dawson, with key contributions from Elizabeth
Hansford and Christine Orme. We made use of the iChair electronic submission
and reviewing software written by Thomas Baignères and Matthieu Finiasz at
EPFL, LASEC.

July 2009 Colin Boyd
Juan González Nieto

Organization

General Chair

Ed Dawson Queensland University of Technology, Australia

Program Co-chairs

Colin Boyd Queensland University of Technology, Australia
Juan González Nieto Queensland University of Technology, Australia

Program Committee

Michel Abdalla École Normale Supérieure, France
Tuomas Aura Microsoft Research, UK
Feng Bao Institute for Infocomm Research, Singapore
Lynn Batten Deakin University, Australia
Mike Burmester Florida State University, USA
Andrew Clark Queensland University of Technology, Australia
Marc Dacier Symantec Research Labs Europe, France
Sabrina De Capitani

di Vimercati Università degli Studi di Milano, Italy
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Alain Durand Thomson, France
Pierre-Alain Fouque Ecole Normale Supérieure, France
Steven Galbraith Royal Holloway, UK
Dieter Gollman Hamburg University of Technology, Germany
Maria Isabel González

Vasco Universidad Rey Juan Carlos, Spain
Kwangjo Kim Information and Communication University, Korea
Lars Knudsen Technical University of Denmark, Denmark
Pil Joong Lee Pohang University of Science and Technology, Korea
Xuejia Lai Shanghai Jiaotong University, China
Mark Manulis TU Darmstadt, Germany
Chris Mitchell Royal Holloway, UK
Atsuko Miyaji JAIST, Japan
Paul Montague DSTO, Australia
Yi Mu University of Wollongong, Australia
Eiji Okamoto Tsukuba University, Japan
Pascal Paillier Gemalto, France
Kenny Paterson Royal Holloway, UK
Josef Pieprzyk Macquarie University, Australia

VIII Organization

Matt Robshaw Orange Labs, France
Carsten Rudolph Fraunhofer SIT, Germany
Mark Ryan University of Birmingham, UK
Rei Safavi-Naini University of Calgary, Canada
Palash Sarkar Indian Statistical Institute, India
Ron Steinfeld Macquarie University, Australia
Douglas Stinson University of Waterloo, Canada
Willy Susilo University of Wollongong, Australia
Jorge Villar Universitat Politècnica de Catalunya, Spain
Huaxiong Wang Nanyang Technological University, Singapore
Duncan Wong University of Hong Kong, China

External Reviewers

Davide Alessio
Myrto Arapinis
Tomoyuki Asano
Mina Askari
Man Ho Au
Julia Borghoff
Joo Yeon Cho
Imsung Choi
Carlos Cid
Nico Doettling
Ming Duan
Dang Nguyen Duc
Orr Dunkelman
Sungwook Eom
Martin Gagné
Praveen Gauravaram
David Galindo
Zheng Gong
Choudary Gorantla
Fuchun Guo
Jian Guo
Kyusuk Han
Francisco Rodŕıguez
Henŕıquez
Matt Henricksen
Javier Herranz
Jonathan Hoch
Dennis Hofheinz
Qiong Huang
Xinyi Huang
Tibor Jager

Shaoquan Jiang
Marc Joye
Stefan Katzenbeisser
Angelos Keromytis
Sun Young Kim
Izuru Kitamura
Divyan M. Konidala
Gregor Leander
Hyunrok Lee
Corrado Leita
Benoit Libert
Xibin Lin
Hans Loehr
Xianhui Lu
Yi Lu
Atefeh Mashatan
Toshihiko Matsuo
Krystian Matusiewicz
Jörn Müller-Quade
Hyeran Mun
Kris Narayan
Kazuto Ogawa
Kazumasa Omote
Hyewon Park
Vijayakrishnan
Pasupathinathan
Axel Poschmann
Angel L. Perez del Pozo
Thomas Plantard
Siamak Shahandashti
Ben Smyth

Agusti Solanas
Rainer Steinwandt
Pairat Thorncharoensri
Leonie Simpson
Bo Qin
Rolando Trujillo Rasua
Jae Woo Seo
Michal Sramka
Xiaorui Sun
Tomas Toft
Olivier Thonnard
Sungmok Shin
Sren S. Thomsen
Damien Vergnaud
Nguyen Vo
Zhongmei Wan
Hongjun Wu
Mu-En Wu
Jiang Wu
Qianhong Wu
Wei Wu
Zhongming Wu
Xiaokang Xiong
Yeon-Hyeong Yang
Myunghan Yoo
Kazuki Yoneyama
Tsz Hon Yuen
Greg Zaverucha
Lei Zhang
Liangfeng Zhang
Huafei Zhu

Table of Contents

Invited Lecture

Is the Information Security King Naked? . 1
Basie von Solms

Network Security

Measurement Study on Malicious Web Servers in the .nz Domain 8
Christian Seifert, Vipul Delwadia, Peter Komisarczuk,
David Stirling, and Ian Welch

A Combinatorial Approach for an Anonymity Metric 26
Dang Vinh Pham and Dogan Kesdogan

On Improving the Accuracy and Performance of Content-Based File
Type Identification . 44

Irfan Ahmed, Kyung-suk Lhee, Hyunjung Shin, and ManPyo Hong

Symmetric Key Encryption

Attacking 9 and 10 Rounds of AES-256 . 60
Ewan Fleischmann, Michael Gorski, and Stefan Lucks

Cryptographic Properties and Application of a Generalized Unbalanced
Feistel Network Structure . 73

Jiali Choy, Guanhan Chew, Khoongming Khoo, and Huihui Yap

Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round
PRESENT and HIGHT . 90

Onur Özen, Kerem Varıcı, Cihangir Tezcan, and Çelebi Kocair

Improved Cryptanalysis of the Common Scrambling Algorithm Stream
Cipher . 108

Leonie Simpson, Matt Henricksen, and Wun-She Yap

Testing Stream Ciphers by Finding the Longest Substring of a Given
Density . 122

Serdar Boztaş, Simon J. Puglisi, and Andrew Turpin

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 134
Atsuko Miyaji and Masahiro Sukegawa

X Table of Contents

Hash Functions

Analysis of Property-Preservation Capabilities of the ROX and ESh
Hash Domain Extenders . 153

Mohammad Reza Reyhanitabar, Willy Susilo, and Yi Mu

Characterizing Padding Rules of MD Hash Functions Preserving
Collision Security . 171

Mridul Nandi

Distinguishing Attack on the Secret-Prefix MAC Based on the 39-Step
SHA-256 . 185

Hongbo Yu and Xiaoyun Wang

Inside the Hypercube . 202
Jean-Philippe Aumasson, Eric Brier, Willi Meier,
Maŕıa Naya-Plasencia, and Thomas Peyrin

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash
Functions: Application to RIPEMD and Others . 214

Yu Sasaki and Kazumaro Aoki

On the Weak Ideal Compression Functions . 232
Akira Numayama and Keisuke Tanaka

Invited Lecture

Hardening the Network from the Friend Within . 249
L. Jean Camp

Public Key Cryptography

Reducing the Complexity in the Distributed Computation of Private
RSA Keys . 250

Peter Lory

Efficiency Bounds for Adversary Constructions in Black-Box
Reductions . 264

Ahto Buldas, Aivo Jürgenson, and Margus Niitsoo

Building Key-Private Public-Key Encryption Schemes 276
Kenneth G. Paterson and Sriramkrishnan Srinivasan

Multi-recipient Public-Key Encryption from Simulators in Security
Proofs . 293

Harunaga Hiwatari, Keisuke Tanaka, Tomoyuki Asano, and
Koichi Sakumoto

Table of Contents XI

Fair Threshold Decryption with Semi-Trusted Third Parties 309
Jeongdae Hong, Jinil Kim, Jihye Kim, Matthew K. Franklin, and
Kunsoo Park

Conditional Proxy Broadcast Re-Encryption . 327
Cheng-Kang Chu, Jian Weng, Sherman S.M. Chow,
Jianying Zhou, and Robert H. Deng

Security on Hybrid Encryption with the Tag-KEM/DEM Framework . . . 343
Toshihide Matsuda, Ryo Nishimaki, Akira Numayama, and
Keisuke Tanaka

Protocols

A Highly Scalable RFID Authentication Protocol . 360
Jiang Wu and Douglas R. Stinson

Strengthening the Security of Distributed Oblivious Transfer 377
K.Y. Cheong, Takeshi Koshiba, and Shohei Nishiyama

Towards Denial-of-Service-Resilient Key Agreement Protocols 389
Douglas Stebila and Berkant Ustaoglu

A Commitment-Consistent Proof of a Shuffle . 407
Douglas Wikström

Implementation

Finite Field Multiplication Combining AMNS and DFT Approach for
Pairing Cryptography . 422

Nadia El Mrabet and Christophe Negre

Random Order m-ary Exponentiation . 437
Michael Tunstall

Jacobi Quartic Curves Revisited . 452
Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and
Ed Dawson

Author Index . 469

Is the Information Security King Naked?

Basie von Solms

University of Johannesburg
Johannesburg
South Africa

basievs@uj.ac.za

Abstract. As children we probably all often listened to the fable of the
king who rode nakedly through the street thinking he wore a beautiful
new coat created for him by his (rogue) tailor. Nobody wanted to tell
him that he was naked, because they all feared him – until a small boy
revealed the truth.

This paper asks whether the IT industry is not in the same position –
Information Security wise totally naked - although everyone tells everyone
else how secure our IT systems are.

Keywords: Information Security, Information Security Governance,
Insecure systems, Naked, Viruses, Social engineering, Ethics.

1 How Well Is the Information Security King Dressed?

In the fable, the main reason why his subordinates did not tell the king that he
was naked, was because they wanted to keep him happy – for whatever reason
and under all circumstances. They knew perfectly well that what they told him
was not true, but that was less important than keeping him happy. Eventually
when the truth was exposed – that he was actually naked – probably all his
advisors disappeared or claimed ignorance!

This paper tries to investigate the present situation as far as the way the
Information Security king is dressed. In this paper we envisaged the Information
Security king wanting to attend certain events (functions) and for every function
he needs a dress.

The Information Security king is seen as representative of those who rely on us
as Information Security professionals to ensure that IT systems are secure – they
include customers, clients, patients, bosses, business owners etc. The functions
the king wants to attend represent the IT systems used by the king, and the
dress is representative of the Information Security capabilities of IT systems
developed to be used by the king. We, as information security professionals and
practitioners, are representative of the advisors to the king about the quality of
his dress for a specific function.

Of course there are many Information Security kings, and many events, and
many dresses, but in this paper we investigate the issue in general.

Does the possibility exist that we, as Information Security practitioners and
professionals truly believe that the Information Security king is (always) properly

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 1–7, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 B. von Solms

(suitably) dressed, without realizing that he is maybe already naked or nearly
naked?

Even worse, does the possibility exist that we, as Information Security prac-
titioners and professionals know very well that the Information Security king is
already naked, or nearly naked, but we choose not to advise him about this fact?

It is important that we think about these questions, because the Information
Security king relies on our advice!

As Information Security professionals we must all agree on one basic fact –
perfect Information Security is not possible. In no way can any operational IT
system on this planet be perfectly secured. Anyone claiming that is advising the
king that he is always regally dressed – fit for a king - while knowing perfectly
well that he is at the most well dressed, or even only casually dressed or dressed
in a swimming pants or even a g-string!

The real question is then – how good can we secure systems, meaning how
well can we actually dress the king?

I trust that this paper will stimulate the growing discussion about the security
of IT systems, and the role that we as Information Security professionals should
play in ensuring the security of such systems.

Let us investigate some reasons why many, including the author, have a very
worrying feeling that at the present time, for many important functions, the
Information Security king is (often) very, very scantily dressed.

2 Should There Be a Worry about the Information
Security King’s Dress?

Do we have reason to be worried? Why is the question, comprising the title of
this paper, at all necessary?

Let us investigate a few quotes from publications over the last few years to
give us some clue:

‘Computers around the world are systematically being victimized by rampant
hacking. This hacking is not only widespread, but is being executed so flawlessly
that attackers compromise a system, steal everything of value and completely
erase their tracks within 20 minutes’ [3]

‘On the Internet you are always living in a bad neighborhood...’ [4]
‘Security remains one of the hottest topics in IT today – one that keeps users

baffled and petrified, boards of directors tied up in discussions and the poor IT
manager awake at night...’ [4]

‘Consumer Reports recently conducted a survey of more than 3200 US home
computer users with Internet access. Results show that these users have a one-in
three likelihood of experiencing damage to their computers, financial loss or both
because of a computer worm, virus, Trojan horse or spyware.’ [5]

‘An intruder gained unauthorized access into a ... system, potentially exposing
more than 33000 officers to identity theft’ [5]

Is the Information Security King Naked? 3

‘A computer tape from a Connecticut bank containing personal data on 90,000
customers, including names, addresses, Social Security numbers and checking
account numbers, was lost in transit recently.’ [6]

‘Personal information for 55,000 customers, including bank data and Social
Security numbers, has been stolen from a database at the upmarket Atlantis
Resort in the Bahamas.’ [7]

‘In November alone, the Anti-Phishing Working Group (APWG) received
16,882 unique reports of phishing attacks that attempted to fool consumers with
93 different hijacked brands, according to a report the group released this week.
November’s phishing attacks marked an all-time high, climbing from the 15,820
the group received notice of in October, and doubling the number of attacks
recorded in November 2004, according to the report.’ [8]

‘Since early 2005, more than 150 million personal records have been ex-
posed.’ [9]

‘RBS WorldPay (formerly RBS Lynk), the U.S. payment processing arm of
The Royal Bank of Scotland Group, today announced that its computer system
had been improperly accessed by an unauthorized party. Certain personal
information of approximately 1.5 million cardholders and other individuals may
have been affected and, of this group, Social Security numbers of 1.1 million
people may have been accessed.’ [10]

‘Late last week, Jefferson County Clerk Jennifer Maghan said she unveiled
a new online search tool that enabled residents and business professionals to
access nearly 1.6 million documents that are stored in her office via their home
computers.’ [10]

The quotes above are just a very small number of those which are mentioned
daily and weekly concerning Information Security issues – there are many more!

We, as Information Security professionals, know (or should know) this. We
also know that the Internet as a system has now become so complex and sophis-
ticated, that it is basically impossible to properly secure any IT system using
this Internet.

We know that the ‘window of vulnerability’, ie the time between a vulnerabil-
ity being announced and the first virus exploiting that vulnerability is let loose,
is becoming smaller and smaller (zero-day vulnerability).

The question is what do we tell the Information Security king? It is and
stays our responsibility to seriously talk to the king about his dress, and where
necessary, tell him directly that he runs the risk of being naked.

This basic ‘unsafe (naked) at any time’ feeling is not only because of the
Internet. One of the major threats to the use of any IT systems has always been,
and will always be the fact that such systems are used by humans – that is the
weakest link.

The growing threat of specialized social engineering, where the trust of the
user is misused to gain important access and other IT related information, is
becoming extremely pervasive.

‘... gurus agree that, generally, user-focused attacks present perhaps the biggest
threat today.’ [4]

4 B. von Solms

Knowing all this, and taking all this into account, we as Information Security
professionals have no other option than to be (very) worried about the king’s
dress!

Personally this author feels that the Information Security king is often very
close to naked, specifically for specific events, and is worried that many advisors
still convince him that he is well dressed for such events. This feeling does, of
course, not imply that all IT systems are insecure, or that it is impossible to
secure any IT system. It does imply that many new IT systems are

– so complex and ‘close to the edge’, that such systems should rather not be
developed or implemented, or

– implemented and put into production without proper and adequate infor-
mation security features designed into the system, or

– are put into production without comprehensive testing the security features
of the system

History has some form of analogy relevant to the issues discussed above. This is
briefly discussed in the next paragraph

3 The Strategic Defense Initiative (SDI) and David
Parnas

‘The Strategic Defense Initiative (SDI), commonly called Star Wars after the
popular science fiction series, was a system proposed by U.S. President Ronald
Reagan on March 23, 1983 to use space-based systems to protect the United
States from attack by strategic nuclear missiles. It was never implemented and
research in the field tailed off after the end of the Cold War.’ [2] Prof David
Parnas, one of the pioneers in the development of Computer Science and Soft-
ware Engineering, was at that time a consultant to the Office of Naval Re-
search in Washington, and was one of nine scientists asked by the Strategic
Defense Initiative Office to serve on the “panel on computing in support of battle
management”.

Parnas resigned from this advisory panel on antimissile defense, asserting
that it will never be possible to program a vast complex of battle management
computers reliably or to assume they will work when confronted with a salvo of
nuclear missiles.

In his letter of resignation he said that it would never be possible to test
realistically the large array of computers that would link and control a system
of sensors, antimissile weapons, guidance and aiming devices, and battle man-
agement stations. Nor, he protested, would it be possible to follow orthodox
computer program-writing practices in which errors and “bugs” are detected
and eliminated in prolonged everyday use.

“I believe,” Professor Parnas said, “that it is our duty, as scientists and en-
gineers, to reply that we have no technological magic that will accomplish that.
The President and the public should know that.” [1]

Is the Information Security King Naked? 5

In 1984 the ACM Council passed and published an important resolution. It
begins:

Contrary to the myth that computer systems are infallible, in fact computer
systems can and do fail. Consequently, the reliability of computer-based systems
cannot be taken for granted. This reality applies to all computer-based systems,
but it is especially critical for systems whose failure would result in extreme risk
to the public. Increasingly, human lives depend upon the reliable operation of
systems such as air traffic and high-speed ground transportation control systems,
military weapons delivery and defense systems, and health care delivery and
diagnostic systems. [1]

Although Parnas’s stand was related to nuclear warfare, which may not be so
relevant today anymore, the morale of this story is still the same. Parnas and
the ACM highlighted the reliability issues of the use of computers, because they
were important issues concerning the man in the street. They clearly told the
DSI king that he runs the danger of being totally naked! It is important to note
that Parnas did not say that all computer systems are unreliable – he just said
that this specific initiative was dangerous. The reader may now say that the SDI
issues were related to the reliability of nuclear computer systems, and not to
the Information Security of commercial systems. My answer to such a reaction
is : ‘Is the Information Security of general IT systems today, even though they
are now much more business focussed, less important, or less complicated?’ Just
have a look at paragraph 2 above, or ask a person who lost all his/her money
through fraud committed using IT systems whether he sees it as a serious issue
or not? Following Parnas’s quote above, I want to state :

‘it is our duty, as Information Security practitioners to make it heard from
all platforms that IT systems are becoming so complex that we doubt whether
they can still be properly protected in all cases. The public should know that’

Maybe the ACM and other relevant bodies like IFIP [11] should again take a
stance on this issue as the ACM took in 1985.

4 What Should We Do?

We must have the willingness to advise, and keep advising the king, and we must
refuse to be part of the tailor’s creation if we are convinced that the resulting
risk will be too high.

The motor manufacturing industry can build cars which can do 300 kilometer
per hour, but they realize that for security reasons, they must govern the speed
to acceptable safe levels. Coming back to the statement in paragraph 2 above,
about users having a one-in-three likelihood of experiencing damage to their
computers, financial loss or both because a computer worm, virus, Trojan horse
or spyware. Will we buy a car if we know that the there is a one-in-three chance
of brake failure?

We know that we can build extremely powerful and useful IT systems, specif-
ically exploiting the power of the Internet, but the core question must be the
security and safety of such systems – we owe that to the man in the street who
will use such systems.

6 B. von Solms

Are we not at the point where we as Information Security profes-
sionals must start raising our voices about more and more new and
complex systems being developed and rolled out – systems which are
too complex and dangerous for their own good, and where the eventual
loser will most probably be the well trusting user of a system?

I challenge my peers in this field, and IT organizations to start an open dis-
cussion about the wardrobe of the Information Security king.

However, there may be another issue related to the question stated above.
The statement uses the term ‘information security professionals’. Let us briefly
investigate this aspect.

5 Information Security Professionals

The reasoning in this paper sofar accepts that we, working in the field of Infor-
mation Security and who act as advisors to the Information Security king, can
call ourselves ‘Information Security Professionals’ !

Can we really do that? Are we really professionals, as the term is understood
in other circles like medicine, engineering etc? Do we belong to a professional
body which has a defined Body of Knowledge, an Ethics Code or a Disciplinary
Code? Can we be held accountable for the advice we give to the Information
Security king?

Do we have a ‘true’ Information Security Profession which is acknowledged
internationally? The answer must be ‘NO’ at this stage!

There are some bodies which do ‘certify’ people as Information Security Pro-
fessionals, and that is already a step in the right direction. However, it does not
go far enough, and do not create ‘true’ Information Security Professionals or a
‘true’ Information Security Profession.

Other initiatives are developing to create a ‘true’ Information Technology Pro-
fession, but that is wider than Information Security. Notable examples of these
initiatives are those by IFIP, through the International Information Technology
Professional (IITP) and I3P programs, those by some national IT Societies like
the Australian, British, Canadian and South African Computer Societies and the
IEEE-CS. We must ensure that these initiatives should also cater for a dedicated
‘Information Security Professional’.

In the meantime, we as Information Security practitioners (not yet Informa-
tion Security professionals) should act extremely responsible in our advice roles.

6 Summary

We, as Information Security practitioners (professionals?) must ask ourselves
two questions :

1. Is the Information Security king naked? Personally I think it is not (yet) the
case, but I very strongly feel that he is NOT well dressed, and I am worried
that we are wary and scared to tell him that.

Is the Information Security King Naked? 7

2. How are we going to organize ourselves into a true Information Security
Profession?

Let’s talk about this matter – we owe it to the king and the users out there.

References

1. The Risk Digest 1(1) (1985), http://catless.ncl.ac.uk/Risks/1.01.html
(accessed April 2009)

2. Wikipedia, http://en.wikipedia.org/wiki/Strategic Defense Initiative
(accessed April 2009)

3. Winkler, I.: Guard against Titan Rain hackers (2005),
http://www.computerworld.com/printthis/2005/0,4814,105585,00.html
(accessed April 2009)

4. Haggard, B.: iWeek (December 1, 2005), www.iweek.co.za
5. Schultz, E.: Computers and Security 24(8) (2005)
6. Lawson, S.: ComputerWorld (accessed April 2009),

http://cwflyris.computerworld.com/t/242864/94135/5963/0/
7. Nicolai, J.: ComputerWorld (2006), http://cwflyris.computerworld.com/t/

242864/94135/5965/0/ (accessed April 2009)
8. Garretson, C.: NETWORK WORLD (2006), http://www.computerworld.com/

securitytopics/security/story/0,10801,107747,00.html?source=NLT SEC&
nid=107747 (accessed April 2009)

9. Theft Statistics (2007),
http://www.absolute.com/EMEA/computer-theft-statistics-details.asp
(accessed April 2009)

10. Theft Centre (2008), http://www.idtheftcenter.org/BreachPDF/ITRC Breach
Report 2008 final.pdf (accessed April 2009)

11. IFIP, http://www.ifip.org

http://catless.ncl.ac.uk/Risks/1.01.html
http://en.wikipedia.org/wiki/Strategic_Defense_Initiative
http://www.computerworld.com/printthis/2005/0,4814,105585,00.html
www.iweek.co.za
http://cwflyris.computerworld.com/t/242864/94135/5963/0/
http://cwflyris.computerworld.com/t/242864/94135/5965/0/
http://cwflyris.computerworld.com/t/242864/94135/5965/0/
http://www.computerworld.com/securitytopics/security/story/0,10801,107747,00.html?source=NLT_SEC&nid=107747
http://www.computerworld.com/securitytopics/security/story/0,10801,107747,00.html?source=NLT_SEC&nid=107747
http://www.computerworld.com/securitytopics/security/story/0,10801,107747,00.html?source=NLT_SEC&nid=107747
http://www.absolute.com/EMEA/computer-theft-statistics-details.asp
http://www.idtheftcenter.org/BreachPDF/ITRC_Breach_Report_2008_final.pdf
http://www.idtheftcenter.org/BreachPDF/ITRC_Breach_Report_2008_final.pdf
http://www.ifip.org

Measurement Study on Malicious Web Servers
in the .nz Domain

Christian Seifert, Vipul Delwadia, Peter Komisarczuk, David Stirling,
and Ian Welch

School of Engineering and Computer Science
Victoria Univestity of Wellington

P.O. Box 600, Wellington 6140, New Zealand
{cseifert,vipul,peterk,david.stirling,ian}@ecs.vuw.ac.nz

Abstract. Client-side attacks have become an increasing problem on
the Internet today. Malicious web pages launch so-called
drive-by-download attacks that are capable to gain complete control of
a user’s machine by merely having that user visit a malicious web page.
Criminals that are behind the majority of these malicious web pages are
highly sensitive to location, language and economic trends to increase
their return on investment. In this paper, a comprehensive measurement
study of malicious web servers on the .nz domain is presented. The risk
of drive-by-download attacks has been compared with other domains
showing no elevated risk for the .nz domain. However, a comprehensive
assessment of the .nz domain showed the existence of malicious web pages
across a variety of types of web pages. Blacklisting services showed lim-
ited success to protect against such malicious web pages. This is primarily
attributed to the highly dynamic nature of malicious web pages. Over a
period of eight months, the .nz domain was monitored and continuous
shifting of malicious behavior of web pages has been observed. The rates
observed show that on average 50% of malicious URLs identified change
monthly. The rates pose a challenge to blacklisting services as well as a
risk to end users with rapid dissemination of zero-day attacks. Frequent
scans of the web are required to obtain a good up-to-date view of the
threat landscape.

1 Introduction

Broadband connectivity and the great variety of services offered over the Internet
have made it an important source of information and entertainment and a major
means of communication. In 2009, users are more connected than ever. With
connectivity to the Internet, however, come security threats. Because the Internet
is a global network, an attack can be delivered anonymously from any location in
the world. Security professionals responding to these threats offer a wide range
of mitigation strategies and measures.

As attack vectors are barred by defenses, malicious users seek out new, un-
protected paths of attack. One of these is the client-side attack, which targets
client applications. As the client accesses a malicious server, the server delivers

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 8–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Measurement Study on Malicious Web Servers in the .nz Domain 9

the attack to the client as part of its response. A web server that attacks web
browsers is a common example. As the web browser requests content from a web
server, the server returns a malicious web page that attacks the browser. These,
so-called drive-by-download attacks, are capable of gaining complete control of
the user’s machine without the user’s notice or consent. Merely visiting a web
page with a vulnerable browser is sufficient for a successful attack to occur. Tra-
ditional defenses, such as firewalls, pose no barrier against these attacks and
antivirus detection is currently poor [1].

Malicious web pages are prevalent in many areas of the Internet [2]. As such,
any user might be affected and if this problem is not tackled more effectively it
might result in a loss of trust in usage of the Internet and therefore negatively
impact cyber commerce, banking and e-government efforts.

To increase the effectiveness of the malicious web pages, criminals are highly
sensitive to location, language and economic trends [3]. Specific regions, for ex-
ample, are targeted in, so-called, campaigns. As a result, attacks might differ
from country to country [3]. For instance, the majority of malware on Chinese
sites might target stealing passwords from online gamers [4,5] whereas malware
on Brazilian sites is designed to steal bank account information [5]. With specific
campaigns, attackers are capable to increase their return on investment.

Purpose of this study is to assess the threat of drive-by-download attacks
within New Zealand. Not only is a New Zealand threat profile compared to
other countries, but also a measurement study is conducted over an eight month
period. The specific goals are:

– Assess where the threat is located. Not only are physical and network charac-
teristics investigated, but malicious web pages are also inspected for content
to assess concentration of malicious web pages on particular types of web
pages.

– Comprehensively assess the threat within the New Zealand domain. The goal
is to assess how many malicious web pages exist.

– Evaluate protection mechanisms. A variety of common protection mecha-
nisms are evaluated in their effectiveness to protect end users from the threat
of drive-by-download attacks.

– Investigate the changes in the threat landscape. The question of whether
drive-by-download attacks are an increasing or decreasing phenomena are
answered. Phenomena that are observed over the eight months period are
investigated and assessed in detail.

The paper is structured as follows. In section 2, related work is presented.
Section 3 describes the threats to internal and external validity that experi-
mental designs may pose to measurement studies as presented in this paper.
Sections 4,5, and 6 present the measurement study; section 7 concludes.

2 Related Work

Several measurement studies and whitepapers exist that describe the threat land-
scape. Most security vendors publish white papers on a regular basis. Because

10 C. Seifert et al.

campaigns are part of malware and malicious web sites, the security companies in
this space pay special attention to geography. Data from the majority of reports
list two countries to be hosting the majority of web-based client-side attacks:
The United States of America and China [6,7,5]. McAfee didnt investigate phys-
ical location, but rather investigated top level domain names [8]. Their report
shows that web sites in the .ro (Romania with 1.119%), .info, and .nu (Niue with
0.514%) contain the highest percentage of malicious web sites. .cn (China with
0.307%) is listed in fourth; .us (United States with 0.075%) in 18th position.
New Zealand is not listed in the report. The shortcoming of these white papers
is the fact that most are created by commercial entities that lack transparency
in their data collection methodology and, as such, it is very difficult to assess
external and internal validity. In this paper, we identify and mitigate threats
to internal and external validity of the measurement study in a systematic and
thorough manner.

China is named repeatedly in the white papers. Malicious web sites and the
underground economy of the Chinese web was the focus of an academic study
by Zhuge et al. [9]. Measurements on popular Chinese web pages revealed a
high percentage of malicious web pages of 1.38%. These pages were sourced by
submission of popular query terms to the Baidu search engine. The focus of
the study presented in this paper investigates the .nz domain comprehensively:
both popular and unpopular web pages; web pages that are indexed by search
engines and web pages that are not indexed by search engines. Further, this study
investigates the .nz over a period of 8 months, which allows us to investigate
trends and other behavior that is influenced by time.

Provos et al. also conducted a measurement study on malicious web pages
that were part of Google’s index [10]. Over a period of 11 months, Provos et
al inspected 66 million URLs. They observed an increasing trend of malicious
URLs on their search results page. For each malicious URL, they investigated
the physical location of the web page denoted by the URL as well as the server
that hosts the exploit. China and the United states were the top two countries in
both categories. New Zealand is not listed in their statistics. The work presented
in this paper, focuses on the .nz domain. This study is comprehensive because
our sample of pages represent a significant proportion of the .nz domain.

We argue that our survey was comprehensive because we inspected 247,198
web servers and we estimate there to be 500,000 web servers based in New
Zealand. Note that our estimate is very rough as it is arrived at by assuming
30% of hosts are web servers and there are at least 1.7 million hosts (according
to the 2008 CIA Factbook) in New Zealand. Furthermore, the 30% is based
upon Internet Systems Consortiums January 2009 (www.isc.org) estimate of 625
million hosts on the Internet and NetCrafts January 2009 (www.netcraft.com)
estimate of 185 million web servers on the Internet.

In addition, few studies exist that measure the prevalence of drive-by-download
attacks. These studies use crawlers and search engine to generate a list of poten-
tially malicious web sites. Measurements of 0.2% [11], 0.071% [12] and 0.1% [2]
were observed. Direct comparison, however, cannot be conducted due to a lack

Measurement Study on Malicious Web Servers in the .nz Domain 11

of information provided by the studies. As part of this work, the methodology
of this study is disclosed so the results can be put into context in the future.

3 Threats to Internal and External Validity

The presented measurement study is designed to identify and collect information
about malicious web pages with client honeypots. The purpose of this study is to
answer the question on magnitude of the problem, where the threat is located,
whether the threat is increasing/decreasing, assess protection mechanisms, etc.
Further, the output of the measurement study could be used in economic models
as illustrated by a variety of security related economic studies [13,14,9,15]. The
business models [16,3] of the operation behind the malicious web pages can be
used to devise strategies to break the business model. Measurement provides the
inputs for accurate business models.

To utilize measurement studies for the purposes mentioned above, they have
to have external and internal validity. The study needs conduct measurements
correctly, so it measures what it is designed to measure (internal validity) and
it needs to be generalizable beyond the experimental setting (external valid-
ity.) Threats to external and internal validity are plentiful, such as designs
that include confounding variables or attempt inappropriate analysis. The major
threats to the internal and external validity we identified are uncontrolled vari-
ables. These including our mitigation strategy are presented next. The threats
are organized into three groups.

3.1 Apparatus (Client Honeypot)

Several threats were identified around the client honeypot technology used to
conduct the measurement. A group of high priority threats were concerned with
the functional aspects of correctness of the client honeypot. Questions on whether
the client honeypot performs what it is designed to do were raised multiple times.
The mitigation strategy identified was functional testing. Functional testing can
be supported when the technology is transparent and available to a larger audi-
ence, so it can be examined and tested. The open-source community does provide
this level of support and is one driver why our client honeypot has been made
publically available as an open-source project. We believe that many threats are
mitigated through this strategy.

In addition to the correctness of the client honeypot, reliability was a concern.
Especially in a setting in which there are several network components involved
and attack code is executed, threats that stem from low reliability emerge. Con-
tinuous monitoring and error handling appear to be mitigating these threats and
have been implemented as part of our client honeypot.

Bias introduced by URL selection and client honeypot configuration were iden-
tified to be a threat to external validity. A sample taken from dubious sources,
such as links in email SPAM messages, can show very different characteristics in
malicious web pages than web pages sourced from search engines in a random

12 C. Seifert et al.

fashion [2]. While difficult to address the bias directly, full disclosure how URLs
are sourced or providing the list of URLs used and how client honeypots are
configured can prevent generalizing beyond the subjects studied.

3.2 Subjects (Web Page(s))

The subjects, the web pages, also pose a variety of threats to the experimental
design of the measurement study. The primary threat is related to connectivity
issues in which a web page may not be able to participate in the study because the
network components, such as DNS server or/and HTTP server, are temporarily
unreachable. This threat may be addressed through retrying retrieval of the web
page multiple times and logging any unsuccessful visits of the web pages.

Further, a malicious web page may choose not to participate in the study.
It could selectively not launch an attack as part of the study, but do so when
accessed by a regular used. This may be caused by anti-forensic techniques em-
ployed by the malicious web page. The selective behavior could stem from the
fact that the web page somehow identified the client honeypot. Primarily a ma-
licious web page can identify the client honeypot through the means it makes
requests; this threat is more closely reviewed in the following section.

3.3 Stimuli (Making the Request)

Stimuli, in our context the means of making the request to retrieve the web
page for it to participate in the measurement study, is the final area that could
pose threats to the validity of the measurement study. Since the process of
making the request is part of the apparatus, similar threats around functional
correctness and reliability apply to making the request. Functional testing and
monitoring functionality during operation is the primarily mitigation strategy
for those threats.

As mentioned in the previous section, a malicious web page may choose not
to participate in the study through identification that is part of the study. A
malicious web page may do so by analyzing the way requests are made. Several
characteristics of the requests may cause this threat: Location, time, deceptive
nature, and history.

Location. Location from where requests are made may pose a threat to a mea-
surement studys validity. The two main reason why location is of importance are
the campaigns run by attackers and evasion techniques. Campaigns were already
described above. For a client honeypot, a campaign may manifest itself in an in-
ability to detect certain malicious web pages that do target clients at a specific
location. A client honeypot located in New Zealand accessing a malicious web
that only triggers an attack if accessed from a client located in Germany will not
be exposed to the attack and therefore fail identification of that malicious web
page. An assessment on where a client is located is primarily made by mapping
the IP address of the client to a specific location with freely available libraries,

Measurement Study on Malicious Web Servers in the .nz Domain 13

such as MaxMind Geolocation Technology [17]. Web exploitation kits, such as
MPack, provide functionality to enable location based triggering of attacks [18].

The geolocation-dependent triggering could easily be extended into a more fine
grained triggering mechanism as an evasion technique to avoid specific networks.
Since location and locale pose threats to the measurement study, they should be
explicitly documented.

Time. Malicious web pages change over time. A malicious web page that ex-
hibits malicious behavior in one month might cease to do so in the following
month. The attackers might have abandoned the site or the web master might
have detected and subsequently removed the malicious content. Sophos Security
threat report 07/2008, for instance, describes that the number of malicious web
sites they detect almost tripled [5] from 2007 to 2008. Just in a year, the number
of malicious web pages on the Internet appeared to have changed significantly.
So the time a measurement study is conducted greatly influences the results and,
as a result, should be explicitly documented.

Deceptive Nature. If a malicious web page detects it is part of a study, it
may choose not to participate in this study. It could make this decision based
on identifying that the requests were made by a client honeypot. As such, the
deceptive nature of the client honeypot in making the request needs to be closely
aligned with how users make requests.

History. History of requests may pose another threat to a study of malicious
web pages. Particular malicious web pages implement a tracking functionality
in which the attack is launched only once upon a target. A client honeypot
requesting the identical page a second time would not lead to an attack and
therefore the malicious web page would be missed. This threat is mitigated
through caching and rotation of IP addresses to minimize the chance of the
client honeypot to visit a web page twice.

4 Comparative Measurement

The first measurement was designed to compare the risk of drive-by-download
attacks from web servers in the .nz domain to other top level domains. Sample
of potentially malicious web pages from the .nz, .uk,.au, and .com domain were
inspected for malicious web pages with client honeypots. Statistical analysis of
the malicious URLs and domains was conducted to assess risk levels at each top
level domain. First, the methodology is presented followed by the results.

4.1 Methodology

From the Victoria University network, 664,000 web pages from the Australia,
New Zealand, UK, and .com top level domain were inspected with a hybrid
client honeypot system. The hybrid client honeypot system was composed of

14 C. Seifert et al.

Fig. 1. Hybrid System

low- and high-interaction client honeypot Weta 1.0 and Capture-HPC 2.0 [19].
Each malicious URL was recorded and the number of malicious URLs per domain
were analyzed to determine statistically significant differences across domains.

To compare URLs from the various domains, the malicious nature of URLs
from the domains need to be assessed. The number of URLs needed to be of
sufficient size to detect any statistically significant differences across the various
domains. To achieve this, a large sample of 664,000 URLs needed to be classified.
Due to resource constraints, a comprehensive classification of this many URLs
using a slow high-interaction client honeypot was not possible. Instead, all URLs
were inspected first with a fast-low interaction client honeypot system, which
is capable of making an initial classification, and finally with a high-interaction
client honeypot for a final classification as shown in Figure 1. The low-interaction
client honeypot produces false positives and false negatives. The false positives
were addressed by re-inspecting each URL that was classified as malicious with a
high-interaction client honeypot. This high-interaction client honeypot filters out
all false positives produced by the low-interaction client honeypot. In addition to
producing false positives, the low-interaction client honeypot is known to miss
attacks. The low-interaction client honeypot approximately misses half of the
malicious web pages, but it is assumed that these false negatives apply with
equal level across all domains. As such, a comparison is still possible. When we
more comprehensively assess the .nz domain described in the later sections, we
abandon the low-interaction client honeypot and exclusively inspect all URLs
with a high-interaction client honeypot to minimize the level of false negatives.

The low-interaction client honeypot of the hybrid client honeypot system is
Weta v1.0. Weta v1.0 is a simulated web browser that imitates Microsoft Internet
Explorer 6.0 SP2. It only retrieves the web page denoted by the URL and not
any embedded resources, such as iframes and images. It makes a classification
based on the static attributes found on the page, such as existence of obfuscated
JavaScript, Iframes, etc. Because of the common attributes used by malicious
web pages, it is possible to identify malicious pages using this method. The
system is very fast and is capable to classify a web page within 0.05 seconds on
an Amazon EC2 instance with 1.7GB of RAM, which is equivalent to a CPU
capacity of a 1.0-1.2 GHz 2007 Xeon processor, on a 250Mbps connection [20].
The classification mechanism used by this system produces 5.88% false positives
and 53.85% true positives. (Note that even though the false positive rate is
lower than the true positive rate, the majority of alerts generated by the low-
interaction client honeypot will consist of false positives because the majority of
web pages in the sample will be benign web pages [21].) The detection mechanism
implemented by Weta v1.0 has been described in detail in previous work [22].

Measurement Study on Malicious Web Servers in the .nz Domain 15

Each web page that is classified as malicious by the low-interaction client
honeypot system is forwarded to the high-interaction client honeypot for re-
inspection. The open-source high-interaction client honeypot used is Capture-
HPC v2.0 developed at Victoria University of Wellington [19]. It uses a dedicated,
vulnerable computer system to interact with potentially malicious servers. As
responses from these servers are consumed by the client honeypot, it monitors
the operating system at the kernel level for any unauthorized state changes at
the process, file system and registry level (excluding authorized changes to the
system state associated with background system processes, such as the creation
of temporary cache files). For instance, if a new file appears in the startup folder
after the vulnerable browser interacted with a server, the client-honeypot can
conclude that the server it just interacted with must have launched a successful
attack and placed the file in the startup folder. This approach filters out the
false positives the low-interaction client honeypot produces.

Capture-HPC v2.0 was configured with stock installation of Windows XP
SP2 and Internet Explorer 6 SP2 within a VMware Server 1.x virtual machine.
No additional plug-ins were installed nor was the configuration of the system
adjusted to solicit more attacks, such as lowering the browser default security
settings. This system was configured with the en-nz locale and the location
was set to be New Zealand. The client would be configured to visit the URLs
sequentially. After each visitation, the client honeypot would wait 10 seconds
to give the web page the opportunity to trigger the attack. If no unauthorized
state changes were detected, the client honeypot would record its classification
and proceed visiting the next URL. If unauthorized state changes were detected,
the client honeypot would record the classification including all the unauthorized
state changes that occurred. Before visiting the next URL, the state of the virtual
machine would be reset into a clean state prior to doing so.

The data for the comparative study was collected in January and February
2008 from the network at the School of Mathematics, Statistics and Computer
Science (now School of Engineering and Computer Science) at Victoria Univer-
sity of Wellington, in Wellington, New Zealand. The URLs from the domains .au,
.com, .nz and .uk were sourced from the Yahoo Search engine [23]. Because the
domains were domains of countries with the national language English, URLs
could be sourced by submitting English queries to the search engine. By submit-
ting the same queries to the search engine for each domain, it is expected that
the URLs sourced from the results page are controlled and only differ in the do-
main they come from. Category bias, which was observed previously [2], such as
elevated percentage of adult web pages over news web pages, should be applied
consistently across all four domains. The queries were English 5 N-gram queries
that randomly selected from the corpus of web pages linked by the DMOZ Open
Directory Project [24]. The first 1000 URLs on the results page were used to
build the list of 664,000 URLs.

Data Collection and Analysis. All URLs were first inspected with the low-
interaction client honeypot Weta v1.0. Each URL that was classified as mali-
cious could be a false positive. As a result, these URLs were forwarded to the

16 C. Seifert et al.

high-interaction client honeypot Capture-HPC v2.0 for a second and final in-
spection, which would eliminate false positives. The malicious classification of
the final inspection by the high-interaction client honeypot was recorded for each
URL. A visual verification of the unauthorized state changes ensured that no
false positives were used in the data analysis phase.

To assess whether one top level domain contains generally more malicious
URLs than others, a simple Chi-Square test was performed on the number of
malicious URLs. Because some malicious URLs might have originated from the
same host, a second Chi-Square test was performed on the number of unique
host names that host at least one malicious URL.

4.2 Results

Inspecting the 664,000 URLs, the low-interaction client honeypot Weta v1.0
produced a total of 11,095 URLs that it considers may be malicious. Since the
majority of these URLs were false positives, they were inspected once again with
the high-interaction client honeypot Capture-HPC v2.0. A total of 38 malicious
URLs from 27 unique hosts were detected.

Of the 168,000 URLs per domain, 26 unique malicious URLs from 16 unique
hosts were identified for the .au domain, one URL from one host identified for
the .com domain, eight URLs from 7 hosts were identified on the .uk domain,
and three URLs from three unique hosts were identified for the .nz domain.
The statistical Chi-Square test shows that the difference between the malicious
URLs and hosts identified in the .au domain and any of the other domains is
statistically very significant (URLs: p < 0.0036; Hosts: p < 0.0092).

5 Comprehensive Measurement

The first measurement used a hybrid system to compare domains. The second
measurement should be more comprehensive. Because the hybrid system is likely
to miss attacks, the second measurement is designed to minimize this risk by
omitting inspection with the low-interaction client honeypot Weta v1.0. Instread,
all URLs were inspected with the more accurate high-interaction client honeypot
Capture-HPC v2.1 [19]. In addition, the URLs used for the comprehensive study
were not sourced by a search engine, but rather by extracting URLs from the
.nz domain file. This allowed us to even inspect URLs that were not indexed by
search engines. Each malicious URL identified was recorded and several defensive
techniques were evaluated against these malicious URLs.

5.1 Methodology

Each URL is inspected with the open-source high-interaction client honeypot
used is Capture-HPC v2.1 developed at Victoria University of Wellington [19].
This is more accurate than the hybrid system used in the first experiment as it
is likely to miss less attacks and is able to identify known and unknown attacks.

Measurement Study on Malicious Web Servers in the .nz Domain 17

It produces negligible false positives. It is configured in the identical way as
Capture-HPC v2.0 was in the first experiment. The version 2.0 and 2.1 differ
primarily in bug fixes.

Several high-interaction client honeypots were used to inspect potentially ma-
licious URLs. For analysis purposes and to counter evasion techniques based on
tracking client honeypots, all requests were made via a HTTP/DNS proxy server
Squid v2.6 and Pdnsd 1.2.6 [25,26]. These proxy servers were configured to cache
more aggressively compared to a standard configuration to counter evasion tech-
niques and support the subsequent analysis [27].

The data for the comprehensive study was collected in April 2008 from the
network at the School of Mathematics, Statistics and Computer Science (now
School of Engineering and Computer Science) at Victoria University of Welling-
ton, in Wellington, New Zealand. The URLs were obtained by querying DNS
records for valid .nz hostnames. Each hostname was checked for the existence
of a common web server listening port (TCP port 80) indicating the existence
of a web server. For all hostnames that did not indicate the existence of a web
server, the hostname was modified with the prefix “www”. and existence of a
web server checked once again. For all hostnames for which an indication of a
web server existed, a URL was generated that pointed to the main entry point
of the web server, for example “http://www.vuw.ac.nz/”. 247,198 unique URLs
were obtained using this method.

Data Collection and Analysis. All URLs were inspected with the high-
interaction client honeypot Capture-HPC v2.1, which has a negligible false pos-
itive rate. For each URL, the classification, time of inspection as well as any
unauthorized state changes, such as a new file that appeared in the startup
folder, were recorded. In addition, the network traffic as well as the web page
itself was recorded by the HTTP and DNS proxy. A visual verification of the
unauthorized state changes ensured that no false positives were used in the data
analysis phase.

All malicious URLs were further analyzed. First, they were inspected once
again with a fully patched system. This allowed us to assess whether dangerous
zero-day exploits exist in the .nz domain. Second, a brief description of the web
page and popularity ranking from Alexa, Google Toolbar and SiteAdvisor service
[28,29,30] was obtained by visually inspecting the web page to assess whether
popularity and particular topic areas show a higher concentration of malicious
web pages. Third, each URL was cross-checked against the URL assessment
service of Googles Safe Browsing API [31], McAfee SiteAdvisor [30], Stopbadware
database [32], and with the HauteSecure browser plugin [33]. This allowed us to
evaluate whether knowledge of these pages by leading blacklisting services exist.

5.2 Results

Comprehensive measurement of 247,198 URLs in the .nz domain detected a total
of 52 malicious URLs. The sites themselves fill a wide spectrum of topics: From
shopping sites, personal sites, to tourist sites. It seems as if sites from various

18 C. Seifert et al.

Fig. 2. Map of hosts

topic areas pose a risk to the end user. Adjusting browser behavior might reduce
the risk (e.g. avoid SPAM links and adult content sites), but the risk cannot be
eliminated.

Popularity of these sites in general is low; 17 of the URLs were not known
to SiteAdvisor, Alexa or Google. Only 2 sites showed a medium popularity. In
general, it is expected that in global comparison, sites in the .nz domain will
rank low. The fact that several were not tracked by these services poses a risk,
because if a site is not known, a security assessment is not likely to take place
and therefore the site will not be tagged as malicious by the corresponding
blacklisting services.

Several publicly available blacklisting services were used to check whether the
malicious sites were known to the service. A combined assessment of Google,
Stopbadware.com, and SiteAdvisor showed that only nine out of 52 sites were
tagged as suspicious or malicious. Blacklisting based on these services would
have protected the end user inadequately.

The browser plug-in by Haute Secure shows more promising results that al-
lows for protection against malicious web pages. Haute Secure was able to detect
40 out of 52 sites, because this software takes a different approach. Instead of
merely checking the main URL that is input into the browser, the Haute Secure
plug-in also checks for embedded resources on that page. For instance, if a URL
foo.com contains an iFrame that points to a centralizied exploit server malicious-
Site.com, Haute Secure will detect and block the request to the maliciousSite.com
effectively protecting the end user. The approach is more successful than merely
blocking the main URL, because many malicious URLs point to few centralized
exploit servers as shown in Figure 3.

The physical location of the exploit servers is shown in Figure 4. This Figure
shows that the exploit servers are geographically more globally dispersed than
the hosts of the .nz domain (as shown in Figure 2.) The hosts of the .nz do-
main are primarily located in New Zealand and the United States, where many
discount hosting providers exist. The exploit servers referenced by these pages,
however, are located in additional countries; primarily Unitied States, Russia
and China.

Measurement Study on Malicious Web Servers in the .nz Domain 19

Fig. 3. Centralized Exploit Servers

Fig. 4. Map of exploit servers

Besides blacklisting, patching was evaluated. The analysis of inspecting the
malicious URLs with a fully patched system resulted in zero successful attacks.
As such, patching is a very successful mechanism to defend against these attacks.
However, in case just one malicious URL deploys a zero-day exploit, the impact
on end users would be tremendous.

6 Term Measurement

In the last and final experiment, a trend assessment of the threat landscape in
the .nz domain was made. Over a period of 6 months comprehensive and partial
scans of the .nz were conducted repeatedly from the Victoria University network
with the high-interaction client honeypot Capture-HPC v.2.1. Changes over this
period were analyzed to detect trends and other observations.

20 C. Seifert et al.

6.1 Methodology

The client honeypots were identically setup and configured as described in sec-
tion 5 High-interaction client honeypots were used exclusively because of their
better detection accuracy.

The repeated comprehensive measurements were taken from June 2008 to
November 2008 from the network at the School of Mathematics, Statistics and
Computer Science (now School of Engineering and Computer Science) at Vic-
toria University of Wellington, in Wellington, New Zealand. The URLs used for
the comprehensive assessment were also used for the repeated measurements over
the 6 month study period. Because attackers are likely to record the IP addresses
of the clients and alter their behavior accordingly, the external IP address of the
system was changed monthly.

Data Collection and Analysis. All URLs were inspected with the high-
interaction client honeypot Capture-HPC v2.1 monthly. For each URL, the clas-
sification, time of inspection as well as any unauthorized state changes were
recorded. In addition, the network traffic as well as the web page itself were
recorded by the HTTP and DNS proxy. After the monthly scan, the HTTP and
DNS proxy cache were cleared. A visual verification of the unauthorized state
changes ensured that no false positives were used in the data analysis phase.

The monthly measurements were used to investigate trends in the attack
landscape of the .nz domain. Further, monthly scans were analyzed to assess the
extent of how dynamic the attack landscape is. The lifetime of malicious behavior
of malicious web pages detected in June was determined. For the month of July
to November those web pages were inspected for malicious behavior. This data
allowed us to assess how quickly and to what extend malicious URLs are turning
benign. To determine how quickly and to what extent previously benign URLs
turn malicious, a percentage based upon newly discovered URLs was calculated.

6.2 Results

The 247,198 URLs were repeatedly inspected over a period of eight months. A
total of 291 unique malicious URLs, about 0.12%, were identified. Results of the
monthly inspection of these URLs are shown in Figure 5 (Note that no monthly
scan was conducted in May 2008). Over the eight month period, no increasing
nor decreasing trend can be detected. While there are fluctuations between 52
(April 2008) and 97 (July 2008) malicious URLs can be observed, significant
increases and decreases appear to occur throughout the period of eight months.
On average, 73.7 malicious URLs were detected.

Of the 291 malicious URLs identified, a majority of URLs only exhibited
malicious behavior once as shown in Figure 6. No malicious URLs that exhibited
malicious behavior constantly over the seven monthly scans. Only about 8% of
malicious URLs exhibited malicious behavior more than half of the seven scans.

Of the malicious URLs identified over the eight month period, a considerable
portion of the malicious URLs were newly classified as malicious compared to

Measurement Study on Malicious Web Servers in the .nz Domain 21

Fig. 5. Monthly Scan Results

Fig. 6. Number of Times a Malicious URL exhibited over the Seven Monthly Scans

the previous month as shown in Figure 7. In July, for instance nearly 80% of
the malicious URLs were newly classified as malicious compared to June. Over
the following four months, the percentage of newly classified malicious URLs
decreased continuously. In November, about 34% of the malicious URLs were
newly classified as malicious compared to October. On average, 50% of malicious
URLs were newly classified as malicious compared to the previous month.

In addition to assess URLs that turn malicious, malicious URLs that turn
benign were observed. Figure 8 shows malicious URLs identified in June 2008
over time. In June 2008, 62 malicious URLs were observed. Of those 62 malicious
URLs, about 32% were identified also in July 2008. The percentage continuously
decreases over time. Of the 62 malicious URLs identified in June 2008, approx-
imately 6% were also identified in November 2008. This decay appears to be
decreasing over time with an initial half-life of 0.6 months and a half-life of 1.2
months 5 months later. An average half-life of 0.94 months is observed.

In summary, a constant threat level on the .nz domain was observed. However,
while the number of malicious URLs identified does not indicate an upward or
downward trend, a highly dynamic nature of malicious URLs has been observed.
As malicious URLs disappear, they reappear elsewhere. The rates observed show
that on average 50% of malicious URLs identified change monthly. This figure
applies to the appearance of new and disappearance of existing malicious be-
havior. Appearance of malicious behavior can be explained by the continuous

22 C. Seifert et al.

Fig. 7. Percentage of Newly Classified Malicious URLs From Previous Month

Fig. 8. Malicious URLs Identified in June 2008 Over Time (monthly)

malicious activity which target legitimate web sites. These web sites, which usu-
ally expose vulnerabilities, are attacked and modified to serve malicious code. Its
estimated that 75-80% of all malicious web sites are hacked [5,34]. The web sites
identified mostly seem to fall into this category. The do not appear to have been
setup with the intent to attack visitors of that site, but are rather legitimate
sites that are abused by a third party.

Malicious URLs that turn benign is a behavior that is a more difficult to
explain. Potentially, this behavior could be attributed to the measures taken
by the major search engines Google, Yahoo, and Live Search [35,36,37] which
all now search for malicious web pages and either remove them (Yahoo) or tag
them as malicious on the results page (Google and Live Search.) As malicious
URLs are tagged, the webmasters is notified either directly or indirectly by the
impact such a warning has on the traffic to her website, are now inclined to
take action to remove the malicious content from their site, and secure their site
so a repeated attack cannot occur [38]. Further, take-down notices by various
entities in the security space could lead to shutting down of the responsible
exploit servers. And finally, the malicious web pages might naturally exhibit
sporadic malicious behavior. Even immediate interaction with a malicious page
would result in benign behavior. This could be due to fast flux networks [39],
malicious advertisements that are only shown occasionally [10], or intentional
randomization by attackers to counter detection technology.

Measurement Study on Malicious Web Servers in the .nz Domain 23

7 Conclusion

Over the last 10 months, the threat of drive-by-download attacks in the .nz
domain was assessed. While the comparative measurement between the .au, .uk,
.com and .nz domain has not revealed an elevated risk for the .nz domain, several
hundred malicious URLs in the .nz were identified. These malicious URLs appear
to be primarily sites that have been hacked by a malicious third party and then
manipulated to serve exploit code. While the malicious URLs of the .nz were
primarily hosted in New Zealand and the United States, exploit servers which
host the actual attack code, were primarily located in the USA, Russia and
China.

The malicious URLs identified in the month of April 2008 were cross-checked
against known bad site of the Stopbadware, Google index and McAfee SiteAdvi-
sor. Very few URLs were known by these three sources. This is an indication how
difficult it is to identify malicious pages on the Internet and provide defensive
intelligence to end-users. The Haute Secure browser plug-in was more successful
in detection of the malicious content, because it instruments the browser and is
able to view and check the commonly used centralized exploit servers. However,
some URLs identified did not make use of an exploit server. Rather the exploit
code was hosted directly on the page; such pages were often missed by Haute
Secure browser plug-in. Identification of malicious web sites is overall difficult.

Patching was a successful method to defend against malicious web pages.
None of the pages that were detected as part of this study successfully attacked
a patched system. But even with patching being a good defensive strategy, it
assumes that users do patch, which is not a given [40]. In addition, even patched
systems can be at risk if a zero-day attack appears which continued to happen
throughout 2008.

Analyzing the results from the monthly scans conducted from April 2008 to
November 2008, the number of malicious URLs that were identified remained
fairly constant. However, a very dynamic nature of malicious web pages were
observed. Most of the malicious URLs identified only exhibited malicious behav-
ior one month of the seven monthly scans performed. URLs that were identified
to exhibit malicious behavior one month might cease to do so in the following
month. At the same time, URLs that did not exhibit malicious behavior one
month might do so in the following month. A monthly rate of change about
50% has been observed. Few malicious URLs that previously exhibited mali-
cious behavior but are no longer exhibiting malicious behavior today could be
attributed to the inaccessibility of the central exploit server that hosts the ex-
ploit code. Whether these exploit servers were purposefully abandoned by the
attacker or taken down as part of a take-down notice could not be determined.

In conclusion, the attack landscape of the .nz and the likely the Internet as
a hole is highly dynamic. The rate of change poses a challenge to blacklisting
services as well as a risk to end users with the potential for rapid dissemination
of zero-day attacks. Frequent scans of the web are required to obtain a good
up-to-date view of the threat landscape.

24 C. Seifert et al.

8 Future Work

In this paper, a comprehensive measurement of the threat landscape in the .nz
domain was presented. A highly dynamic nature of the threat landscape was
identified. However, the reason for the dynamic natures could not be determined.
Additional measurement on web servers, increasing the frequency of scans and
development of tools to collect information on why web pages change in their
malicious nature will be part of future work.

Acknowlegement

This work was funded by InternetNZ. URLs used for the .nz survey can be
provided on request to allow replication of this work.

References

1. Seifert, C., Welch, I., Komisarczuk, P., Narvaez, J.: Drive-by-downloads (February
2008)

2. Seifert, C., Steenson, R., Holz, T., Bing, Y., Davis, M.A.: Know your enemy:
Malicious web servers (2007)

3. Finjan: Web security trends report - Q2/2008 (2008)
4. Microsoft Corporation: Microsoft security intelligence report (2008)
5. Sophos: Sophos threat report (July 2008)
6. ScanSafe: Global threat report (2008)
7. Stopbadware.org: Badware websites report 2008 (2008)
8. McAfee, Inc.: Mapping the mal web, revisited (2008)
9. Zhuge, J., Holz, T., Song, C., Guo, J., Han, X., Zou, W.: Studying malicious

websites and the underground economy on the chinese web. Technical report, Uni-
versity of Mannheim (2007)

10. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to
us (2008)

11. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A crawler-based study of
spyware on the web. In: 13th Annual Network and Distributed System Security
Symposium, San Diego, The Internet Society (2006)

12. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King,
S.: Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That
Exploit Browser Vulnerabilities. In: 13th Annual Network and Distributed System
Security Symposium, San Diego, Internet Society (2006)

13. Thomas, R., Martin, J.: The underground economy: Priceless (2006)
14. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G., Paxson, V.,

Savage, S.: Spamalytics: An empirical analysis of spam marketing conversion. In:
CCS, Alexandria, ACM, New York (2008)

15. Holz, T., Gorecki, C., Rieck, K., Freiling, F.: Measuring and detecting fast-flux
service networks. In: 15th Annual Network & Distributed System Security Sympo-
sium, San Diego (2008)

16. Finjan: Web security trends report - Q1/2008 (2008)
17. MaxMind: MaxMind GeoLite Country (2002)

Measurement Study on Malicious Web Servers in the .nz Domain 25

18. Seifert, C.: Know your enemy: Behind the scenes of malicious web servers (2007)
19. Seifert, C., Steenson, R.: Capture - honeypot client (2006)
20. Amazon, Inc.: Amazon Elastic Compute Cloud (Amazon EC2) (2006)
21. Axelsson, S.: The base-rate fallacy and its implications for the difficulty of intrusion

detection. In: 6th ACM Conference on Computer and Communications Security,
Singapore. ACM Press, New York (1999)

22. Seifert, C., Komisarczuk, P., Welch, I.: Identification of malicious web pages with
static heuristics. In: Austalasian Telecommunication Networks and Applications
Conference, Adelaide. IEEE, Los Alamitos (2008)

23. Filo, D., Wang, J.: Yahoo! search engine (1994)
24. Netscape Communications Corporation: DMOZ open directory project (1998)
25. Wessels, D., Nordstroem, H., Rousskov, A., Chadd, A., Collins, R., Serassio, G.,

Wilton, S., Francesco, C.: Squid web proxy cache (1996)
26. Moestl, T., Rombouts, P.: Pdnsd - proxy DNS server (2000)
27. Seifert, C., Endicott-Popovsky, B., Frincke, D., Komisarczuk, P., Muschevici, R.,

Welch, I.: Justifying the need for forensically ready protocols: A case study of
identifying malicious web servers using client honeypots. In: 4th Annual IFIP WG
11.9 International Conference on Digital Forensics, Kyoto (2008)

28. Google Inc.: Google toolbar (2000)
29. Alexa Internet, Inc.: Alexa toolbar (1996)
30. McAfee, Inc.: Mcafee siteadvisor (2005)
31. Google Inc.: Google Safe Browsing API (2007)
32. Stopbadware.org: Home page (2006)
33. HauteSecure: Home page (2007)
34. Websense Inc.: State of internet security, Q1 - Q2, 2008 (2008)
35. Yahoo! Inc.: A safer way to search (2008)
36. Google Inc.: Putting a stop to spyware (2006)
37. Seifert, C.: Live search: Battling the plague of the web (2008)
38. Day, O., Palmen, B., Greenstadt, R.: Reinterpreting the disclosure debate for web

infections. In: 7th Workshop on the Economics of Information Security, Hanover,
New Hampshire (2008)

39. The Honeynet Project: Know your enemy: Fast-flux service networks (2007)
40. Frei, S., Duebendorfer, T., Ollman, G., May, M.: Understanding the web browser

threat: Examination of vulnerable online web browser populations and the ”inse-
curity iceberg” (2008)

A Combinatorial Approach for an Anonymity Metric

Dang Vinh Pham1 and Dogan Kesdogan1,2

1 Siegen University, Siegen, Germany
pham@fb5.uni-siegen.de

2 NTNU-Norwegian University of Science and Technology, Trondheim, Norway
kesdogan@fb5.uni-siegen.de, dogan.kesdogan@q2s.ntnu.no

Abstract. A number of papers are suggested with the goal to measure the quality
of anonymity of a given anonymity system. Most of them use the anonymity set as
the basis for developing, reasoning about and applying measure. In this paper we
argue that these approaches are premature. In this work we suggest to use the so
called hypothesis set – a term derived from possibilistic information flow theory.
Investigating the hypothesis set, it is possible to make the “protection structure”
explicit and also define well known terms from measurement theory like scale
and metric. We demonstrate our approach by evaluating the hypothesis set of the
classical Chaumian Mix.

1 Introduction

One of the most important values in the information society is the information itself.
Therefore, the protection of this precious good is a crucial task. A lot of research at-
tention has been devoted to protecting the information contained within messages. This
can be easily achieved today, by using encryption techniques. Here we focus not on the
protection of such content data but rather on how to ensure the confidentiality of traffic
data, i.e. information about communication relations. Protection of traffic data usually
results in some form of anonymity. Such confidentiality is important, since third parties’
unrestricted access to traffic data is considered an unacceptable invasion of both private
and business lives. Several techniques are known to protect traffic data. However, there
is still a lack of models to evaluate the level of protection these techniques can provide.
There are two reasons to determine the level of protection. First, the quality of pro-
tection can be made visible to the user. Second, the mathematic model gives designers
insight into the protection task.

In this paper we will study a specific system - the Mix system [1] that exposes
the basis for an understanding of the abstract problem. Consequently, our focus is to
investigate the abstract problem and the well known model of anonymity systems,
the anonymity set, which can be used to model all traffic protection techniques [2]:
Anonymity is the state of being not identifiable within a set of subjects, called the
anonymity set.

All practical anonymity techniques leak some information about the users’ commu-
nication peers in the anonymity set. As the number of observed anonymity sets in-
creases, the uncertainty about the peer partners usually decreases, eventually reaching
0. At this point, there is enough information to determine the peer partners uniquely. Ac-
cording to this observation and inspired by the metric Mean Time To Failure (MTTF)

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 26–43, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Combinatorial Approach for an Anonymity Metric 27

[3], Shannon’s unicity distance [4] and measurement theory [3], we define the metric
Mean Time To Deanonymization (MTTD).

In [5] an attack algorithm called the Hitting Set Attack (HS-Attack) is proposed that
can be used to measure MTTD for the MIX model. It was proven in [5] that HS-Attack
requires the least number of observations that is necessary to uncover the peer partners
of a user given a global passive attacker, who can observe any communication link from
the sender to the Mix and from the Mix to the receivers. In this work we will investigate
the HS-Attack for new structures to better understand how the attack evolves with in-
creasing observations. We will mathematically approximate sharply this evolution from
secure state into insecure state as a homomorphism of the “reality”. Thereby we will
provide mathematic answers to the following main questions:

– What is the average number of observations to disclose all of a user’s peer partners?

– What is the average number of observations to disclose at least one of the user’s
peer partners?

– How likely is it to find a particular fraction of a user’s peer partners in a random
hypothesis after a given number of observations?

Question one was first considered with respect to inherent structures of the Mix- and
attacker- model in [5]. They measured the mean number of observations to reach a nec-
essary condition (called exclusivity) to disclose all of a user’s peer partners. In contrast
to [5], our approach is more comprehensive and granular, since it enables to directly
model the number of observations to disclose any number of a user’s peer partners.

In answering question two, we are the first to suggest the anonymity metric MTTD-1
that measures the time point, when the mix system’s anonymity function leaks the first
unambiguous information about a user’s peer. This peer can be revealed by HS-Attack
and we provide a mathematic measurement of the number of observations that the at-
tacker needs to succeed. Each of a user’s communication relationship is information
theoretic anonymous, if it can be avoided that the attacker gains MTTD-1 observations.
MTTD-1 extends the traditional measurement of anonymity that until now only consid-
ers the time point when all of a user’s peer is disclosed.

Finally question three applies to the situation, when it is not possible to definitively
identify any user’s peer. Our mathematic model gives the probability that a random hy-
pothesis contains a certain number of the user’s contacts. The latter point shows that
our approach opens the door to further analysis beyond the scope of unambiguous iden-
tification of peers and we are also the first to address this issue.

This paper is organised as follows. Section 2 will provide basic background informa-
tion, related works and the used Mix meta model. Section 3 will describe the inherent
structures and properties of hypotheses sets and we will contribute a precise mathe-
matic model to describe them. Based on this model, we will derive analytical formulas
to expose distinct anonymity states with respect to the Mix parameters and the obser-
vations of the attacker in Sect. 4. We will measure the mean number of observations
to identify arbitrary subsets of a user’s peer partners, the size of the hypothesis set and
the probability to find a particular fraction of a user’s partners in a randomly computed
hypothesis. Section 5 will finally summarise our results and outline future works.

28 D.V. Pham and D. Kesdogan

2 Background

Over the last years a handful of “anonymity metrics” have been proposed [6, 7, 8, 9,
10, 11, 12] that measure the information flow to the attacker. If information flows to the
attacker, then it reduces the uncertainty of the attacker, which can be measured with some
variant of Shannon’s entropy. All entropy measurements follow here a similar scheme:
information flow occurs if the attacker is really uncertain1 and afterwards fairly certain.

This kind of “macroscopic” measurement can easily be applied to different anony-
mity systems, since only the probability distributions have to be known. The paradigm
“information flows when uncertainty decreases” is problematic as discussed in [13, 11].
Our approach is more microscopic. The attacker and his knowledge (his interpretation)
is incorporated in the model. Thus, direct application of our approach to other anonymity
techniques (e.g. Crowds [14]) is not given, i.e. it has to be adapted or rather redeveloped.

Again, we model the whole path from secure to insecure state where the uncertainty
with each observation decreases (i.e. number of hypotheses decreases). Indeed, in each
step we can measure the uncertainty by using entropy as suggested in the literature. This
would be a concomitant measurement. However, we think that the other way around is
not possible (without formal proof), since suggested entropy based approaches measure
only the actual information flow but not how the security evolves with time. The reason
for our approach is that we think that the goal of a security strength metric is to quantify
the attackers efforts that are required to break a system’s security. Therefore, with re-
spect to the general paradigm “the harder the successful attack the stronger the system”
the actual entropy metric suggestions are premature2.

Consequently, we define anonymity in terms of the attacker’s knowledge, using the
well known trace-based approach [15]. An attacker observes and accumulates input and
output events of the anonymity system. The measurement of anonymity depends on the
knowledge (i.e. interpretation of the observations) of the attacker that we model with
a set of hypotheses. The only assumption we make is that the user keeps the set of
peer partners. Unlike the theoretic works in this area (see e.g. [16, 17, 18]), we are not
interested to give a formal specification of the anonymity problem.

2.1 The Mix Model

We consider the Mix Model that was described in [5]. The Mix technique was proposed

� �� �
��

��

���
��

��

��

��

���

Mixe
s

Fig. 1. Formal model

by David Chaum in 1981 [1]. Figure 1 shows the
basic ingredients of this technique which consist
of a set of senders S, a set of recipients R, and
a Mix node. Note that S and R can be equal.
All senders in S are connected to the Mix and
the Mix itself is connected to all recipients in
R by a communication network with reliable se-
cure channels. A reliable secure channel does not

1 E.g. a priori distribution is the uniform distribution.
2 The draw back of our approach (as mentioned above) is the necessity of modelling explicitly

the anonymity system and the attackers knowledge.

A Combinatorial Approach for an Anonymity Metric 29

result in loss or duplication of transmitted messages, and guarantees authenticity, in-
tegrity, and confidentially of transmitted messages. The users and the Mix transmit
messages by using the following protocols:

User Protocol: Users prepare their messages to be of constant length either by splitting
long messages or by padding short messages to the specified length. Each message
is encrypted twice with one time pads: first the message is encrypted using a shared
secret between the sender and the intended recipient, and then it is encrypted using
a shared secret between the sender and the Mix. The users send twice encrypted
messages to the Mix.

Mix Protocol: A Mix collects b messages (called a batch) from distinct users, decrypts
the messages, and outputs the decrypted messages in a batch in a different order
than the order in that they were received (lexicographically sorted or randomly
delayed). The output is broadcasted to all recipients. Furthermore, any incoming
packet is compared with formerly received messages (i.e. by locally caching for-
merly received messages) in order to reject any duplicate messages.

The basic Mix technique described above can perfectly hide the communication rela-
tionships between senders and recipients of messages from everybody but the Mix and
message senders. Even the act of sending or receiving can be perfectly hidden if the
above protocol is applied in fixed time slots, and if every user supplies a fixed number
of messages (perhaps some or all of them being dummy messages) to each slot and the
whole output batch in a time slot is distributed to every user [19, 1, 20]. Pfitzmann [20]
states that the Mix technique provides information-theoretic anonymity and unobserv-
ability based on complexity-theoretic secure cryptography.

The pure Mix technique. The “perfect” anonymity solution discussed above uses
dummy messages and broadcasting. This solution is not followed widely in large net-
works such as the Internet, as justified in [5]. As a consequence, most current implemen-
tations and solutions use a variant of the perfect Mix solution by neither using dummy
messages nor the broadcasting function. We refer to this kind of Mix techniques by
the term pure Mix technique. Our pure Mix (also called threshold Mix) model is quite
general and also Pool-Mixes can be mapped on it as shown in [10].

We consider a global passive attacker who is capable of observing all communica-
tion links simultaneously as described in [5]. This attacker model is also known as the
Dolev-Yao model in the literature. Based on this attacker, we will use the following
formal model of a pure Mix and information leakage therein for our analysis.

Formal Model of the Pure Mix Technique

– A communication system consists of a set of senders S, and a set of recipients R,
and a Mix node (see Fig. 1). If a sender s ∈ S communicates with a recipient
r ∈ R, then we say that s and r are peer partners. If the roles of sender and receiver
need to be distinguished, then we say that s is a peer sending partner of r and r is
a peer recipient partner of s.

30 D.V. Pham and D. Kesdogan

– In each communication round3 a subset S′ ⊆ S of all senders S send a message to
their peer partners. Let R′ ⊆ R be the set of intended recipients. The act of sending
or receiving a message is not hidden among dummy messages.

– The size of the sender anonymity set is |S′| = b, where 1 < b � |S| = n.
– The size of the recipient anonymity set is |R′| � b since each sender sends exactly

one message and several senders may communicate with the same recipient. The
size of the recipient set is |R| = N .

– The information leakage X available to an attacker in a communication round con-
sists of the pair (S′, R′) of peer senders and receivers.

2.2 The Hitting-Set Attack

The hitting-set attack (HS-Attack) introduced by [21, 5] is a global passive attack.
The goal of the attack is to compute all possible peer recipient sets of a target sender
Alice ∈ S that are called hypotheses. Alice’s peer recipient set is HA and its size is
m = |HA|. We will denote recipients r /∈ HA by the term non-peers. If HS-Attack
can find only one hypothesis of size m, then Alice’s peer set is uniquely identified. The
adversary is interested in Alice’s peers, he therefore only observes those pairs (S′, R′),
where Alice participates as a sender, i.e. Alice ∈ S′. Under this condition we denote the
corresponding recipient set R′ by the term observation O and the set of observations
collected during t rounds is the observation set OS = {O1, . . . ,Ot}. For each hypoth-
esis H �= HA, it is unlikely that whenever Alice sends a message, also a receiver of H
is contacted. The number of hypotheses therefore decreases with increasing number of
observations as illustrated in Example 1.

Example 1. Let HA = {8, 9} and the observations at time 1,2,3 be O1 = {8, 5},
O2 = {9, 4}, O3 = {8, 6}. Alice contacted peer 8 in the first and third observation
and peer 9 in the second observation. At time point 2 the attacker only sees O1,O2,
therefore H = {5, 4} is a hypotheses, since these peers could also be contacted by
Alice. But at time point 3 H is excluded, since neither 4 nor 5 is contacted in O3.

To mount the HS-Attack, the attacker starts with the set L0 that contains all
(

N
m

)
possi-

ble subsets of cardinality m of N recipients, which is called the hypothesis set. We
assume in this paper that m is know4, because we are interested in analysing how
long Alice can keep a constant set HA of m peer partners anonymous. Since Alice
has m peer partners, exactly one subset in L0 is the set of all peer partners of Alice.
Let {O1,O2,O3, . . . , } be the observations in the successive communication rounds in
which Alice participates. Since Alice has a peer partner in O1, a set in L0 that has an
empty intersection with O1 cannot be the set of all peer partners of Alice. Thus upon
observing O1, the attacker obtains a new hypothesis set L1 by discarding all recipients
sets in L0 that have an empty intersection with O1. The attacker repeats this process to

3 A communication round consists of the following events: The Mix node collects messages
from a fixed number of distinct senders, and after applying the “Mix” protocol, it forwards the
collected messages to their intended recipients.

4 All attacks shown in this paper are also applicable if m is unknown. See [22] for a justification.

A Combinatorial Approach for an Anonymity Metric 31

generate hypotheses sets L2,L3, . . . after observing recipient sets O2,O3, . . . respec-
tively, until the hypothesis set Lt has only one subset in it. The last remaining subset
in the hypothesis set Lt has to be the set HA of all peer partners of Alice, hence the
algorithm fully discloses Alice’s peer set. Note that HS-Attack finds the unique minimal
hitting set of all observations. A hitting set is a set that intersects with all given sets 5.
The hitting set is called minimal, if no proper subset of it is a hitting set, otherwise it is
called non-minimal. All hitting sets addressed in this paper are of size less or equal m.
Also note that HS-Attack requires the least number of observations to disclose Alice’s
peer set under a global passive attacker as proved in [5].

3 Properties of Minimal Hitting Sets

Peers of any hitting sets H �= HA, where H ≤ m are unlikely to be always contacted
whenever Alice communicates and this becomes unlikelier, the smaller the size of H
is. After some observations, all hitting sets of size m must therefore be minimal. From
now on these minimal hitting sets (of cardinality m) are called hypotheses and the
hypothesis set is the set of all hypotheses. Each non-minimal hitting set H is a superset
of a minimal hitting set H′ of cardinality m′ < m. Minimal hitting sets therefore
represent the common peers of all non-minimal supersets thereof.

A peer can be identified, if it is common to all hitting sets. It is therefore straight
forward and without loss of generality to restrict our analysis to minimal hitting sets.

The HS-Attack [21, 5] in Sect. 2.2 does not focus on minimal hitting sets. It simply
removes non hitting sets from the set of all

(
N
m

)
possible sets of size m. In contrast to

this the ExactHS attack introduced by Pham [23] is the first work that reveals precise
structures and quantities of minimal hitting sets. The ExactHS attack is a structured
variant of the minimal hitting set attack that requires the same (number of) observations
to disclose Alice’s peer set as the HS-Attack.

We will extend Pham’s work [23] and show how to derive a mathematic model for
the evolution of the minimal hitting sets by observations. The obtained model will be el-
ementary, since it enables us to determine the probability, the number and the structure
of the minimal hitting sets after any number of observations with respect to the parame-
ters N ,b,m of the Mix. In particular we can determine the number of observations, such
that a particular number of Alice’s peers is disclosed, which is our new metric MTTD.

3.1 Number of Minimal Hitting Sets

The ExactHS attack [23] is a minimal hitting set attack that computes all minimal hitting
sets of size lower or equal m with respect to a given observation set (representing the
observations of the attacker). It therefore allows us to prove the following claim about
the number of minimal hitting sets.

Claim. Let N , b, m be the Mix parameters and HA be Alice’s peer set of size m. For
a given observation set OS, the maximal number of possible minimal hitting sets of
cardinality less or equal to m in OS is bm. This bound is sharp, if mb ≤ N . For
mb > N this is still an upper bound, but it is not sharp.

5 In our case these sets are the observations O1, O2, . . . , Ot.

32 D.V. Pham and D. Kesdogan

ExactHS Algorithm. Before the first invocation of Alg. 1 the set of all minimal hitting
sets L and the candidate set H are empty, and the observation set OS consists of all
observations collected by the attacker. The computation of the minimal hitting sets is
initially invoked by calling ExactHS(OS, m,H). We refer to this observation set by
the term initial observation set, as OS will be changed during the processing of Ex-
actHS. In each recursion level H is extended by exactly one peer r, chosen in Line 7
from a designated observation O ∈ OS determined in Line 5, where OS is the actual
observation set. At the invocation of the next recursion level to determine the next peer
to be added to H ∪ {r} in Line 8, ExactHS is applied to a modified copy of the actual
observation set that contains no observations intersecting with {r}. This step of remov-
ing is important to avoid non-minimal hitting sets, as it allows us to focus on adding
only those peers to the actual set H ∪ {r} that definitively intersect with observations
not intersected by H ∪ {r}. Finally, if Line 2 detects that no observation of the actual
observation set remains that is not intersected by H, then H is a hitting set. In this case
it will be added to the set L in Line 3. After a selection of r has been done in a recur-
sion level, we remove r from all observations of the actual observation set in Line 8
and from the designated observation O in Line 9. This way the algorithm can repeat the
extension of H with a new peer r not chosen before in Line 7.

1: procedure EXACTHS(,)
2: if = then
3: is a hitting set, add it to hypothesis set
4: else if 1 then add a peer to , if contains less than peers
5: choose
6: while (0) () do
7: choose will become element of
8: EXACTHS(1) select remaining (− 1) peers of
9: remove in all observations of

10: do not choose in this recursion level again
11: end while
12: end if
13: end procedure

Algori thm1 ExactHS.

Bound of the Number of Minimal Hitting Sets. ExactHS creates a hitting set H by
starting with an empty set H = {} and adding a recipient to H in each choice phase
represented by the lines 6–11. The number of recursive invocation of the choice phases
in Line 8 is restricted by m, since we are interested in computing hitting sets H with
at most m recipients. In each choice phase we only have at most b possible choices of
a recipient ri, because only recipients r1, . . . , rb of a fixed observation O are selected.
From the restriction on the number of recursive invocations of the choice phase and
the number of choices in each phase, we can conclude that the algorithm computes at
most bm minimal hitting sets. A formal proof that ExactHS is sound and complete with
respect to the computation of all minimal hitting sets can be found in [23].

To show that the bound bm of the algorithm is tight, we construct m pairwise disjoint
observations O1, . . . ,Om, such that Oi ∩ Oj = ∅ and |Oi| = |Oj | = b for distinct
i, j ∈ {1, . . . , m}.

A Combinatorial Approach for an Anonymity Metric 33

Let us consider a concrete example with the parameters m = 2, b = 2, the victim
peer set HA = {1, 2} and the observations {1, 3}, {2, 4}. A short glance shows that
there are bm = 4 minimal hitting sets, namely: {1, 2}, {1, 4}, {3, 2}, {3, 4}.

3.2 Structuring Minimal Hitting Sets

This section shows the classification and quantification of minimal hitting sets intro-
duced by [23].

We partition the minimal hitting sets into (m + 1) disjoint classes H0, . . .Hm. A
minimal hitting set H belongs to the class Hi (written H ∈ Hi), if and only if it contains
exactly (m − i) distinct peer partners of Alice.

H0 = {HA}

H1 ⊆ (R \ HA)1 ×Hm−1
A

H2 ⊆ (R \ HA)2 ×Hm−2
A

...

Hm ⊆ (R \ HA)m . (1)

For sets A, B and integer i we define Ai =
⋃i

j=0 Aj ,
where A0 is a neutral element, such that A0×Bk = Bk.
For example the class H2 might contain the (minimal
hitting) sets H2 = {r21 , r22 , a23 . . . , a2m} and H′

2 =
{r′21

, a′
23

. . . , a′
2m

}, where each rij represents a non-
peer and each aik

represents an Alice’s peer. All peers
within a set must be disjoint.

Bounds of Minimal Hitting Set Classes. The last section derives the bound of bm for
the number of minimal hitting sets. Based on ExactHS (2) represents refined bounds for
each of the minimal hitting set classes H0, . . . , Hm as proved in [23].

|Hi| =
(

m

m − i

)
(b − 1)i =

(
m

i

)
(b − 1)i . (2)

Note that this bound is again tight and we can use the same construction of m disjoint
observations as in Sect. 3.1 to prove its tightness. It is also clear that the sum of the
cardinality of each class results in bm, i.e.

∑m
i=0 |Hi| =

∑m
i=0

(
m
i

)
(b − 1)i = bm .

Probability Property of Classes. To model the probability of excluding a particular
hypothesis of a class Hi, we assume that Alice chooses her recipient in each round
uniformly distributed from the set of m recipients HA = {a1, . . . , am}. Similarly the
remaining b− 1 senders of a batch are assumed to select their receivers uniformly from
the set R of N receivers. A (former) hitting set H is excluded by an observation O, if
and only if H does not intersect with O, i.e. if H∩O = ∅. A hitting set H is excludable
with respect to an observation set OS , if and only if H is a hitting set in OS and there
exist an observation O /∈ OS , such that H would be excluded by O.

Suppose that a hypothesis H ∈ Hi is given. According to Pham [24] the probability
that this particular hypothesis is excluded by the next observation O is:

pinv (N, b, m, i) =
i

m
(1 − m

N
)b−1 . (3)

Thereby the first factor i
m is the probability that Alice chooses to communicate with any

of the i recipients not covered by H in the observation O. The second factor represents
the probability that the remaining (b − 1) senders do not choose to contact any of the
recipients in H.

34 D.V. Pham and D. Kesdogan

3.3 Extensive Hypotheses

Extensive hypotheses combine the knowledge about the minimal hitting sets of size
≤ m, which are computed by ExactHS with the knowledge about the structure of hy-
potheses. That way we can predict which hypotheses will be computed in the future.

Table 1 shows the the Minimal hitting sets Mi, the extensive hypothesis set Li, and
the excluded sets that result from analysing the observation set OSi = {O1, . . . ,Oi}.

For i = 0 there is no observation and no M0, but we have knowledge about the ini-
tial hypothesis set represented by the classes (1) in L0. Each element H ∈ Li is called
an extensive class. We will address these classes by their order from left to right and
from top to bottom, i.e. Hu is the u-th class in the hypothesis set. An extensive class
is unspecified, if it contains a variable x (standing for any variable xv

u with indexes),
otherwise it is specified. A specified extensive class is called a specified extensive hy-
pothesis. The only specified extensive hypothesis in L0 is H1 = {1, 2, 3}. Each variable
x represents any (b − 1) unspecified non-peers r ∈ R \HA, thereby only distinct peers
can be assigned to xv

u, xw
u ∈ Hu for v �= w. Peers that are explicitly mentioned are

called specified. Newly specified peers are bold highlighted. Note that writing H ⊆ L0
would be more appropriate than H ∈ L0, since H is a class. But for the sake of reducing
formalisms and simplifying explanations, we use the element-notation and -operations.

For i = 3 we can see that extensive hypotheses also visualise exclusions of implicit
hypotheses (e.g. {2, 3, 4} and {3, 4, 5}). A hypothesis is implicit, if it has not been
computed by ExactHS as a minimal hitting set yet, otherwise it is explicit. Finally all
extensive hypotheses will be explicit and equal to minimal hitting sets as seen in i = 4.

Table 1. Evolution of minimal hitting sets and extensive hypothesis set

i Oi Minimal hitting sets Mi Extensive hypothesis set Li Exclusion
0 H0 : {1, 2, 3}; H1 : {1, 2, x1

2}, {1, 3, x1
3}, {2, 3, x1

4};
H2 : {1, x1

5, x2
5}, {2, x1

6, x2
6}, {3, x1

7, x2
7}; H3 : {x1

8, x2
8, x3

8}
1 {1, 4} {1}, {4} H0 : {1, 2, 3}; H1 : {1, 2, x1

2}, {1, 3, x1
3}, {2, 3, 4};

H2 : {1, x1
5, x2

5}, {2, 4, x1
6}, {3, 4, x1

7}; H3 : {4, x1
8, x2

8}
2 {2, 5} {1, 2}, {1, 5},

{4, 2}, {4, 5}
H0 : {1, 2, 3}; H1 : {1, 2, x1

2}, {1, 3, 5}, {2, 3, 4};
H2 : {1, 5, x1

5}, {2, 4, x1
6}, {3, 4, 5}; H3 : {4, 5, x1

8}
3 {1, 6} {1, 2}, {1, 5},

{4, 2, 6}, {4, 5, 6}
H0 : {1, 2, 3}; H1 : {1, 2, x1

2}, {1, 3, 5};
H2 : {1, 5, x1

4}, {2, 4, 6}; H3 : {4, 5, 6}
{2, 3, 4},
{3, 4, 5}

4 {3, 4} {1, 2, 3}, {1, 2, 4},
{1, 5, 3}, {1, 5, 4},
{4, 2, 6}, {4, 5, 6}

H0 : {1, 2, 3}; H1 : {1, 2, 4}, {1, 3, 5};
H2 : {1, 5, 4}, {2, 4, 6}; H3 : {4, 5, 6}

Li is constructed with respect to the observation set OSi = {O1, . . . ,Oi} and the
minimal hitting sets Mi for i ≥ 1. Let H ∈ Hj be an extensive class of size m and
H− = H \ HA \ {x}, then H ∈ Li, if and only if H− is a minimal hitting set with
respect to OS ′

i = {O\HA | O ∈ OSi,O∩H∩HA = ∅} 6. Thus for each H−, there is
a minimal hitting set Hi with respect to OSi, such that |Hi| ≤ m, H− = Hi \HA and
Hi ⊆ H An extensive class H that complies to these conditions is called minimal, hence
an extensive hypothesis set consists of only minimal classes. This defines a surjective

6 The set OS ′
i results from removing all Alice’s peers from those observations in OSi that do

not contain any of Alice’s peers of H.

A Combinatorial Approach for an Anonymity Metric 35

mapping of the extensive hypothesis set Li to the minimal hitting sets with respect to
OSi. We can define Li for i ≥ 1 recursively as follows:
1. Let Li = {} before the start of its construction below.
2. For each extensive class H ∈ Li−1, let {r1, . . . , rk} ⊆ H be the set of all specified

peers in H ∈ Hj , where k ≤ m. Apply either 3. or 4. to each H.
3. If {r1, . . . , rk} ∩ Oi �= ∅ then add H to Li, i.e. Li = Li ∪ {H}, because H is not

excluded by Oi.
4. Else if {r1, . . . , rk} ∩Oi = ∅ and k < m then add for each non-peer r ∈ Oi \HA

the extensive class H′ = {r1, . . . , rk, r, x1, . . . , xm−k−1} ∈ Hj to Li, if H′ is a
minimal class in OSi.

We generalise from this example that all extensive classes will become specified apart
from the exceptions discussed below. The exclusion probability of a specified extensive
hypothesis H ∈ Hi is exactly pinv (N, b, m, i), even if H is implicit.

The number of specified extensive hypotheses resulting from L0 is strictly bounded
by bm. This is due to the fact that L0 and its extensions are defined according to the
classes Hi (1) and their class sizes (2).

Exceptions. An exception can only arise in point 4. of the computation of Li and con-
sists of following cases:

– The extensive class H′ ∈ Hj resulting from specifying a peer in H ∈ Hj is not
minimal in OSi.

– There are less than (b − 1) non-peers in Oi.
We now analyse the effect of exceptions on the number of the sets that will be specified.
Let Alice’s peers be HA = {1, 2, 3}, b = 3 and the considered extensive class be
H = {1, 4, x} ∈ H2. If the next observation is no exception (e.g. Oi = {2, 7, 8}),
then (b − 1) = 2 specified sets of H2 would result from extending H. These sets are
H′ = {1, 4, 7} and H′′ = {1, 4, 8}. Assume that H′′ is not minimal than only H′

would be the extension of H. Similarly, if the next observation would contain less than
(b− 1) non-peers, e.g. Oi = {2, 3, 6}, respectively Oi = {2, 7}. Only one specified set
H′ = {1, 4, 6} respectively H′ = {1, 4, 7} would result from extending H.

Let k be the number of specified peers in H from point 4., then for each missing non-
peer in the next observation Oi, the number of sets that will be specified decreases by
at most bm−k−1. The same decrease is caused, if the class H′ resulting from specifying
a peer in H is not minimal in OSi.

Note that the preconditions for exceptions imply that sets excluded by exceptions
are unspecified and implicit before the exclusion. We observe that most extensive hy-
potheses become specified very fast and logically at least as fast as minimal hitting sets
reach the size m. The impact of exclusions by exceptions on the size of the extensive
hypothesis set is therefore moderate in comparison to normal (non-exceptional) exclu-
sions. For the sake of simplicity, we only mathematically model the normal exclusion
of extensive hypotheses from the initial bm extensive hypotheses.

The main result of this section is that we can map the inconvenient exclusion process
of minimal hitting sets on the exclusion process of the extensive hypothesis set. This
again can be simplified to the exclusion process of specified extensive hypothesis set,
where the exclusion probability of each set is known. From now on hypotheses and
classes are always addressed in terms of specified extensive hypotheses and classes.

36 D.V. Pham and D. Kesdogan

4 Modelling Anonymity States

Section 3.3 justified that the evolution of the minimal hitting sets can be modelled by
the evolution of the extensive hypothesis set. This section will introduce formulas to
describe the deployment of the size and structure of the (extensive) hypothesis set for
distinct number of observations and distinct Mix parameters N , b, m. In particular we
will answer the following questions:

– How many observation are required to disclose all of Alice’s peers?
– How likely is it to find k ≤ m of Alice’s peers in a random minimal hitting set after

t observations?
– What is the average number of observation to disclose at least one peer of Alice?

4.1 Full Disclosure

The full disclosure of Alice’s peer set is the unambiguous identification of all of Alice’s
peer recipients, i.e. the identification of HA.

Mean Number of Minimal Hitting Sets. In this section, we derive closed formulas
for the mean number of hypotheses after t observations for distinct classes.

Let Vi be a random variable, where Vi = 1 is the event that a particular hypothesis
H of the class Hi remains valid after t observations, while Vi = 0 denotes the inverse
event. The probability of Vi = 1 corresponds to t stochastically independent Bernoulli
trials, where the outcome of each of the t trials shows that the minimal hitting set re-
mains valid. Thereby a Bernoulli trial corresponds to the outcome, whether H remains
valid at the next collected observation. Since each observation appears stochastically
independently from those in the past and in the future, we have a natural mapping of
the “remaining valid event” of H on the independent Bernoulli trials, hence:

P (Vi = 1) = [P (H remains valid at next observation)]t

is the probability that H remains a hypothesis after t observations, which is by (3)
exactly (1 − pinv (N, b, m, i))t.

Let Hi = {H1, . . . ,H|Hi|} be a minimal hitting set class containing only hypotheses
and Vij be the event that the hypothesis Hj ∈ Hi remains valid after t observations. The
expectation E of the number of hypotheses in Hi after t observations is thus the expecta-
tion of the convolution of the random variables Vi1 , . . . , Vi|Hi| .

E(Vi1 , . . . , Vi|Hi|) =
|Hi|∑

j=1

E(Vij) (4)

=
|Hi|∑

j=1

P (Vij = 1)

= |Hi|P (Vi = 1) . (5)

This expectation is represented by (4).
Thereby we benefit from the additivity of
the expectation function by splitting the
complex expectation on the left side to a
sum of expectation of single Vij events on
the right side. The probability of the out-
come P (Vij = 1) is identical for each
fixed hypothesis Hj ∈ Hi (i.e. P (Vij =
1) = P (Vi = 1)), hence the right side of the former equation can be simplified to (5).

A Combinatorial Approach for an Anonymity Metric 37

Note that the events Vij , Vik
for i, k ∈ {1, . . . |Hi|} and j �= k are not stochastically

independent, hence the probability P (Vij) = P (Vi) respectively P (Vik
) = P (Vi) only

holds, if we consider single events, as on the right side of the equation below.
To clarify that (5) depends on the parameter N , b, m and t we use the more elaborate

formulation:

E|Hi|(N, b, m, t) = |Hi|(1 − pinv (N, b, m, i))t =

(
m

i

)

(b − 1)i(1 − i

m
(1 − m

N
)b−1)t (6)

for the expected number of remaining hypotheses of class Hi.
Formula (4) can be easily extended to cover the mean number of observations for

any combination of classes including the consideration of all classes. The expectation
of the remaining hypotheses with respect to the initial hypothesis set H is:

E|H|(N, b, m, t) =
m∑

i=0

(
m

i

)
(b − 1)i(1 − i

m
(1 − m

N
)b−1)t

≤ ((b − 1)e−
t

m (1−m
N)b−1

+ 1)m . (7)

Time to Reduce Hypothesis Set to a Threshold. The expectations E|Hi| and E|H| of
the number of hypotheses after t observations can be easily reformulated to derive the
number of observations, such that a hypotheses remains on average.

By a transformation of (6), where a denotes the left side of the equation, we obtain:

tHi =
ln a − ln

(
m
i

)
− i ln (b − 1)

ln (1 − i
m (1 − m

N)b−1)
for a > 0 . (8)

This equation represents the number of observations, such that at most a hitting sets
remain on average in the class Hi for i ≥ 1.

Similarly we reformulate (7) to obtain the number of observations tH, such that there
are on average less than a minimal hitting sets left from the initial hypothesis set H.
Alice’s peer set HA always remains in H, therefore a > 1.

tH ≤ m(ln (b − 1) − ln (a1/m − 1))
(1 − m

N)b−1 for a > 1 . (9)

Comparison to Simulation. This section visualise the precision of the function tH of
Sect. 4.1 by comparing it with the mean time of full disclosure obtained by our hitting
set simulations. The simulation applies the HS-Attack on simulated observations, until
Alice’s peer set can be uniquely identified. This simulation is run several times to obtain
a confidence interval of 95% on the mean number of observations to identify Alice’s
peer set. The observations are generated under the assumption of a uniformly distributed
communication of Alice and the other senders. That is Alice chooses one of her m peers
with probability 1

m and each of the other senders chooses its peer from all N receivers
with the probability 1

N at each round. This distribution complies to the distribution used
in our formulas.

38 D.V. Pham and D. Kesdogan

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30

nu
m

be
r

of
 o

bs
er

va
tio

ns
 [t

]

Alice’s peer size [m]

N=400, b=10, varying m

HS
HS2

HS1.1

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50

nu
m

be
r

of
 o

bs
er

va
tio

ns
 [t

]

batch size [b]

N=400, varying b, m=10

HS
HS2

HS1.1

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100 200 300 400 500 600 700 800 900 1000

nu
m

be
r

of
 o

bs
er

va
tio

ns
 [t

]

number of peers [N]

varying N, b=10, m=10

HS
HS2

HS1.1

Fig. 2. Number of observations: Full disclosure by simulation (HS), reduction of hypothesis set
to size below 2 (HS2) and below 1.1 (HS1.1)

The plots in Fig. 2 compare the mean number of observations for full disclosure
obtained by the simulation (HS) with the number of observations to reduce the initial
hypothesis set to a cardinality less than 2 (HS2) respectively less than 1.1 (HS1.1) using
(9). The y-axes of the plots shows the number of observations, while the x-axes vary
one of the parameters N ,b, or m.

Note that the mean number of observations for full disclosure is not necessary equal
to the number of observation to reduce the hypothesis set to a particular size, although
these two values are strongly related to each other. Let µdis be the mean number of
observations for the full disclosure, then the mean number of hypotheses after µdis

observations is obviously larger than 1. Depending on the variance of the number of
hypotheses around µdis, more than µdis observations are necessary to keep the number
of hypotheses closed to 1. This is shown by the Fig. 2. The HS2 curve is almost identical
to the HS curve, whereas the HS1.1 curve is noticeably above the HS curve.

Parallel to us [25] suggested a “lower bound” t∗ for the mean number of obser-
vations for full disclosure using the same Mix and attacker model. They compute for

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 o

bs
er

va
tio

ns
 [t

]

batch size [b]

N=400, varying b, m=10

HS
HS1.1

t*

Fig. 3. Comparison: Simulation
(HS), reducing hypothesis set
below 1.1 (HS1.1), t∗ (t*)

each of the
(
N
m

)
“normal” (not extensive) hypotheses the

probability that it is excluded after t observations and
claim that t∗ is the lower bound of the time when only
one hypothesis remains. Figure 3 shows that t∗ is far
away from being a lower bound. Firstly, there are at most(
N
m

)
−

(
N−b

m

)
“normal” hypotheses after the first obser-

vation due to the Mix model, but this restriction is not in
their mathemtic model and causes a significant overes-
timation. Secondly, even if this would be corrected, the
evolution of the “normal” hypothesis set depends on the
distribution of the hypotheses’ structures remaining after the first observation and those
succeeding that. This is not mathematically modeled and might be very difficult to do.

4.2 Partial Disclosure

The partial disclosure is the unambiguous identification of a subset HA′ ⊆ HA of
Alice’s peer set. The full disclosure in Sect. 4.1 is a special case of the partial disclosure.

Probability to Identify k Particular Peers. The probability to identify k particular
peers HA′ ⊆ HA of Alice after at most t observations is the probability that all hy-
potheses are excluded that do not contain all of these k = |HA′ | peers after at most

A Combinatorial Approach for an Anonymity Metric 39

t observations. This probability is a discrete distribution with respect to t and we will
address it by the term fid. The probability to exclude a particular hypothesis depends
on its class, therefore we will first determine the number of hypotheses of each class Hi

that have to be excluded.

Number of Exclusions in a Class. We remember from (2) that the size of Hi is |Hi| =(
m
i

)
(b−1)i. In this class i of the m peers of Alice are replaced by non-peers. Therefore(

m−k
i

)
(b−1)i is the number of hypotheses in the class Hi, where the k of Alice’s peers

HA′ are not replaced by non-peers. The number of hypotheses in Hi that have to be
excluded to enable the identification of HA′ is therefore:

exNoi(b, m, k, i) =
((m

i

)
−

(
m − k

i

))
(b − 1)i . (10)

Note that we distinguish between the to be excluded hypotheses with respect to their
class membership, because the probability to exclude a hypothesis depends on its mem-
bership as shown in Sect. 3.2. Also note that we only know the probability with respect
to the exclusion of a single hypothesis. If two hypotheses H1 and H2 are considered,
then there could be a stochastic dependency between them, i.e. if H1 is excluded, then
H2 might be excluded, too. For that reason we make the simplifying assumption that
all minimal hitting sets are stochastically independent. This enables us to unrestrictedly
apply pinv to describe the exclusion of hypotheses. The following equation derives the
distribution fid with respect to the parameters N , b, m, t and the number k = |HA′ | of
Alice’s peers that should be identified.

fid (N, b, m, k, t) =
m−k∏

i=1

(1 − (1 − pinv (N, b, m, i))t)((
m
i)−(m−k

i))(b−1)i

(11)

m∏

i=m−k+1

(1 − (1 − pinv (N, b, m, i))t)(
m
i)(b−1)i

.

Probability to Identify at Least k Peers. Based on the function fid of the last section,
we will derive the probability distribution fidany that at least k of Alice’s peers can
be identified after at most t observations. In contrast to the previous section we are
not focusing on disclosing particular peers, but on the probability to disclose a certain
number of peers.

Let Y k be a random variable denoting the event that particular k peers of Alice’s peer
set HA are identified, i.e. Y k = 1 if the designated peers are identified else Y k = 0 for
the inverse case. To simplify the notation we will abbreviate the probability P (Y k = 1)
by the term P (Y k).

Let Y k
1 , . . . , Y k

(m
k) be

(
m
k

)
distinct random variables. Each of this variable represents

the event that distinct subsets of HA of cardinality k are identified. In order to compute
the probability that at least k of Alice’s peers can be disclosed, we have to determine
the probability that any of these Y k

i events, for i ∈ {1, . . . ,
(
m
k

)
} takes place. Thereby

it would be imprecise to simply sum up the probabilities P (Y k
i) for i ∈ {1, . . . ,

(
m
k

)
},

40 D.V. Pham and D. Kesdogan

because the events Y k
i are not stochastically independent. We can solve this problem

by applying the inclusion-exclusion-formula:

P (Y k
1 ∨ . . . ∨ Y k

(m
k)) = P (Y k

1) + . . . + P (Y k

(m
k)) (12)

− P (Y k
1 , Y k

2) − . . . − P (Y k

(m
k)−1, Y

k

(m
k)) . . . + . . . −

Assume that {ai1 , ai2} and {aj1 , aj2} are those peers that are identified by the event Y k
i

respectively Y k
j (for k = 2). The above term P (Y k

i , Y k
j) is the probability that all peers

of the joint set {ai1 , ai2 , aj1 , aj2} are identified. Let us denote the joint event by the
term Y k′

, where k′ = |{ai1 , ai2 , aj1 , aj2}| ≤ 2k, then P (Y k
i , Y k

j) = P (Y k′
) can be

computed by (11). It is also obvious that this transformation can even be applied to an
arbitrary number of joints of events, i.e. we can transform P (Y k

1 , . . . , Y k
z) to P (Y k′

)
for any z ≥ 1 accordingly.

The next formula is an elaborate formulation of (12) for the special case of k = 1. It
is the probability to identify at least one of Alice’s peers after at most t observations.

fidany (N, b, m, t, 1) =
m∑

s=1

(

(−1)s−1
(

m

s

)
fid (N, b, m, s, t)

)

. (13)

The general probability distribution for arbitrary values of k, where k ≤ m is the
least number of peers that are to be disclosed is:

fidany (N, b, m, t, k) =
(m

k)∑

i=1

(−1)i−1
(m

i)−(i−1)∑

j1=1

· · ·
(m

i)−(i−i)∑

ji=ji−1+1

fid(N, b, m, |
k⋃

z=1

Yjz |, t) ,

where
⋃k

z=1 Yjz is the union of the set of peers identified by each Yjz .
Given the distribution fidany (N, b, m, t, k), the probability that at least k peers can

be identified after exactly t observation is:

pidany (N, b, m, t, k) = fidany (N, b, m, t, k) − fidany (N, b, m, t − 1, k) .

Mean Time to Deanonymization. We are now able to provide the first existing for-
mula to compute the mean number of observations to unambiguously identify at least k
of Alice’s peer, which we call MTTD-k.

Eidany (N, b, m, t, k) =
∞∑

t=1

t pidany (N, b, m, t, k) . (14)

Note that in particular Eidany (N, b, m, t, 1), which is the mean number of observations
needed to identify at least one of Alice’s peers (MTTD-1) should be considered as a
more appropriate measurement of the lower bound of the anonymity provided by Mix
systems. This is justified by the fact that MTTD-1 measures the time point, when the
attacker gains the first unambiguous information about Alice’s communication partners
and thus breaks the anonymity function of the Mix. In contrast to this, full disclosure,

A Combinatorial Approach for an Anonymity Metric 41

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000

nu
m

be
r

of
 o

bs
er

va
tio

ns
 [t

]

number of peers [N]

varying N, b=10, m=10

HS
HS2

MTTD-1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 o

bs
er

va
tio

ns
 [t

]

batch size [b]

N=400, varying b, m=10

HS
HS2

MTTD-1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

nu
m

be
r

of
 o

bs
er

va
tio

ns
 [t

]

Alice’s peer size [m]

N=400, b=10, varying m

HS
HS2

MTTD-1

Fig. 4. Disclosure of at least one peer (MTTD-1), simulated full disclosure (HS), reduction of
hypothesis set size below 2 (HS2)

or the number of observations to reduce the hypothesis set below a particular size a can
not expose this threat.

Figure 4 compares the expected number of observations to disclose at least one peer
(MTTD-1) by using Eidany (N, b, m, t, 1) with the simulation result for the mean num-
ber of observations for full disclosure (HS) and the mean number of observation to
reduce the hypothesis set to a size below 2 (HS2) computed by (9). The comparison
is with respect to different parameters N , b, m. We can see that the partial disclosure
(MTTD-1) appears noticeable earlier than full disclosure (HS) and before the hypoth-
esis set is reduced to a size below 2. This difference increases, the more observations
are required for full disclosure and shows that full disclosure alone is insufficient to
measure anonymity.

4.3 Beyond Unambiguous Identification of Peers

Our model also enables us to consider the number of Alice’s peers contained in any
computed minimal hitting set after a particular number of observations.

Figure 5 plots the number of observations to reduce each minimal hitting class Hi to
a size less than a by using (8). The figure shows this for a = 1 by the HS1 curve and
for a = 0.1 by the HS0.1 curve for the Mix parameters N = 400, b = 10, m = 10.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10

nu
m

be
r

of
 o

bs
er

va
tio

ns
 [t

]

Minimal hitting set class [Hi]

N=400, b=10, m=10, varying class Hi

HS1
HS0.1

Fig. 5. No. of observ. to reduce
size of Hi below 1 (HS1) and
0.1 (HS0.1).

We can see that minimal hitting set classes Hi con-
taining less of Alice’s peers are reduced earlier than
those containing more of Alice’s peers. Thus after a par-
ticular number of observations t, the number of hypothe-
ses containing less than k Alice’s peers are negligible,
since E|Hi|(t) < a for i > (m − k). In particular our
plot shows that after about t = 40 observations, the at-
tacker will unlikely find a minimal hitting set containing
less than 7 of Alice’s peers. Thus any minimal hitting set
computed by the attack contains with a high probability
at least 70% of the peers of Alice. If we assume that minimal hitting sets are excluded
stochastic independently from each other, then the probability to find at least k of m
peers of Alice after at most t observations is:

fidk
(N, b, m, k, t) ≥

m∏

i=m−k−1

(1 − (1 − pinv (N, b, m, i))t)|Hi| .

42 D.V. Pham and D. Kesdogan

5 Conclusions

In this work, we investigated the fundamental structures for anonymity that we identi-
fied as the hypothesis set. The analysis of the hypothesis set is made under the assump-
tion of a uniformly distributed communication of the senders and of static peer sets.
This assumption is chosen in a way, such that we obtain a conservative consideration
of anonymity, which can be considered as a lower bound of the anonymity provided by
Mixes in the real world.

Based on the ExactHS [23], we derived a comprehensive mathematic model to prob-
abilistically describe the inherent properties of the hypothesis set in detail. In particular
we estimated in Sect. 4 the size of the hypothesis set, the structure of hypotheses in it,
the size of those structures and the probability that particular hypotheses are included
in it, with respect to the parameters N ,b,m at any number of observations. This in-
formation enabled a fine granular measurement of anonymity that also measures those
protection states before the point of full disclosure. In particular MTTD-k introduced in
Sect. 4.2 determined the mean number of observations to disclose from one to all Al-
ice’s peers. The evaluations of MTTD -1 (see Fig. 4) showed that the first unambiguous
knowledge about one of Alice’s peers can be gained noticeably before full disclosure.
It is therefore not sufficient to solely consider full disclosure (which is the focus of all
existing hypothesis set based approaches e.g. [5, 23, 25]) for anonymity measurement.

Furthermore, our model even enabled an analysis granularity beyond the scope of
unambiguous identification of peers. This is shown in Sect. 4.3, which provided the
probability to find a certain number of Alice’s peers in randomly computed hypotheses.
This insight opens the door for a new refined metric, which also covers unambiguous
information in the anonymity consideration.

We also showed that our mathematic model and the resulting measurements were
precise and meaningful by comparison to simulations. All results were in reasonable
scopes and reflected the right relations to the Mix parameters N , b, m and the number
of observations t.

The elementary model and analyses of our work are important for designers and users
of Mix networks. It enables Alice to estimate how much information she is going to leak
about her peers with each of her communications. That way she knows when to stop
communicating, or to add dummy traffic to remain information theoretic anonymous,
such that even attackers with unlimited computing power cannot reveal her peers.

In the future we intend to integrate the leakage of unambiguous and ambiguous in-
formation about Alice’s peers in one metric. In conjunction with this, we will analyse
the uncertainty caused by dummy traffic. Finally we will refine our model to expand the
analysis beyond the uniform communication assumption to get closer to the real world.

References

[1] Chaum, D.L.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM 24(2), 84–88 (1981)

[2] Pfitzmann, A., Köhntopp, M.: Anonymity, Unobservability, and Pseudonymity - A Pro-
posal for Terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies.
LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001)

A Combinatorial Approach for an Anonymity Metric 43

[3] Eusgeld, I., Freiling, F.C., Reussner, R. (eds.): Dependability Metrics. LNCS, vol. 4909.
Springer, Heidelberg (2008)

[4] Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715
(1949)

[5] Kesdogan, D., Agrawal, D., Pham, V., Rauterbach, D.: Fundamental Limits on the
Anonymity Provided by the Mix Technique. In: IEEE Symposium on Security and Privacy
(May 2006)

[6] Clauß, S., Schiffner, S.: Structuring Anonymity Metrics. In: DIM 2006: Proceedings of the
second ACM workshop on Digital identity management, pp. 55–62 (2006)

[7] Deng, Y., Pang, J., Wu, P.: Measuring Anonymity with Relative Entropy. In: Dimitrakos, T.,
Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 65–79.
Springer, Heidelberg (2007)

[8] Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards Measuring Anonymity. In: Dingledine,
R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)

[9] Edman, M., Sivrikaya, F., Yener, B.: A Combinatorial Approach to Measuring Anonymity,
356–363 (2007)

[10] Serjantov, A., Danezis, G.: Towards an Information Theoretic Metric for Anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 259–263. Springer,
Heidelberg (2003)

[11] Tóth, G., Hornák, Z., Vajda, F.: Measuring Anonymity Revisited. In: Proceedings of the
Ninth Nordic Workshop on Secure IT Systems, pp. 85–90 (November 2004)

[12] Zhu, Y., Bettati, R.: Anonymity vs. Information Leakage in Anonymity Systems. In: ICDCS
2005: Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems, pp. 514–524 (2005)

[13] Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in Information Flow. In: Proceedings
of the 18th IEEE workshop on Computer Security Foundations, pp. 31–45 (2005)

[14] Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Transactions
on Information and System Security 1, 66–92 (1998)

[15] Mantel, H.: A Uniform Framework for the Formal Specification and Verification of Infor-
mation Flow Security. PhD thesis, Universität des Saarlandes (July 2003)

[16] Schneider, S., Sidiropoulos, A.: CSP and Anonymity. In: Martella, G., Kurth, H., Mon-
tolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer,
Heidelberg (1996)

[17] Halpern, J.Y., O’Neill, K.R.: Anonymity and Information Hiding in Multiagent Systems
13, 483–514 (2005)

[18] Hughes, D., Shmatikov, V.: Information Hiding, Anonymity and Privacy: a Modular Ap-
proach. J. Comput. Secur. 12, 3–36 (2004)

[19] Padlipsky, M.A., Snow, D.W., Karger, P.A.: Limitations of End-to-End Encryption in Se-
cure Computer Networks. Technical Report ESD-TR-78-158 (August 1978)

[20] Pfitzmann, A.: Diensteintegrierende Kommunikationsnetze mit teilnehmerüberprüfbarem
Datenschutz. Informatik-Fachberichte, vol. 234 (1990)

[21] Kesdogan, D., Pimenidis, L.: The Hitting Set Attack on Anonymity Protocols. In: Fridrich,
J. (ed.) IH 2004. LNCS, vol. 3200, pp. 326–339. Springer, Heidelberg (2004)

[22] Kesdogan, D., Agrawal, D., Penz, S.: Limits of Anonymity in Open Environments. In:
Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 53–69. Springer, Heidelberg (2003)

[23] Pham, V.: Analysis of the Anonymity Set of Chaumian Mixes. In: 13th Nordic Workshop
on Secure IT-Systems (October 2008)

[24] Pham, D.V.: Analysis of Attacks on Chaumian Mixes (Analyse von Angriffen auf Chaum-
mixen). Master’s thesis, RWTH-Aachen (April 2006)

[25] O’Connor, L.: Entropy Bounds for Traffic Confirmation. Cryptology ePrint Archive (2008),
http://eprint.iacr.org/2008/

http://eprint.iacr.org/2008/

On Improving the Accuracy and Performance of
Content-Based File Type Identification

Irfan Ahmed1, Kyung-suk Lhee1, Hyunjung Shin2, and ManPyo Hong1

1 Digital Vaccine and Internet Immune System Lab
Graduate School of Information and Communication,

Ajou University, South Korea
{irfan,klhee,mphong}@ajou.ac.kr

2 Department of Industrial and Information Systems Engineering,
Ajou University, South Korea

shin@ajou.ac.kr

Abstract. Types of files (text, executables, Jpeg images, etc.) can be
identified through file extension, magic number, or other header infor-
mation in the file. However, they are easy to be tampered or corrupted
so cannot be trusted as secure ways to identify file types.In the presence
of adversaries, analyzing the file content may be a more reliable way to
identify file types, but existing approaches of file type analysis still need
to be improved in terms of accuracy and speed. Most of them use byte-
frequency distribution as a feature in building a representative model of
a file type, and apply a distance metric to compare the model with byte-
frequency distribution of the file in question. Mahalanobis distance is the
most popular distance metric. In this paper, we propose 1) the cosine
similarity as a better metric than Mahalanobis distance in terms of clas-
sification accuracy, smaller model size, and faster detection rate, and 2)
a new type-identification scheme that applies recursive steps to identify
types of files. We compare the cosine similarity to Mahalanobis distance
using Wei-Hen Li et al.’s single and multi-centroid modeling techniques,
which showed 4.8% and 13.10% improvement in classification accuracy
(single and multi-centroid respectively). The cosine similarity showed re-
duction of the model size by about 90% and improvement in the detection
speed by 11%. Our proposed type identification scheme showed 37.78%
and 31.47% improvement over Wei-Hen Li’s single and multi-centroid
modeling techniques respectively.

Keywords: file type identification, byte frequency distribution, cosine
similarity, Mahalanobis distance, linear discriminant, cluster analysis.

1 Introduction

File type identification is an important task for many security applications to
work efficiently. For example, filtering email attachments may require blocking
inbound attachment types that may contain malicious contents. Virus scanners
may be configured to skip some file extensions; in Norton Antivirus 2008 for

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 44–59, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Improving the Accuracy of Content-Based File Type Identification 45

example, we have an exclusion option to specify file types to skip for virus
scan [1]. Some applications raise alerts before opening unrecognized (therefore
suspicious) file extensions; for instance, Windows Media player raises an alert
when user tries to open a file of unrecognized extension. Some steganalysis pro-
grams also rely on file type detection; for example, stegdetect [2], which detects
steganographic contents in images, uses libmagic1 package [3] to determine file
type using magic numbers. However, they are easy to be tampered or corrupted
so cannot be trusted as secure ways to identify file types. In the presence of
adversaries, analyzing the file content may be a more reliable way to identify file
types. Solutions that analyze file content usually build a representative model of
a file type by averaging the byte frequency distributions of sample files, and use
a measure to find out the consistency between the model and the byte frequency
distribution of the file in question. Moreover, mahalanobis distance is a popular
measure to compare byte frequency distributions such as it is used in PAYL [4],
Fileprint [6], [5], [7]. However, existing approaches of file type analysis still need
to be improved in terms of accuracy and speed.

In this paper, we propose two schemes to improve the analysis of file content
for type identification. First, we show that the cosine similarity [8] is a better
metric than mahalanobis distance in terms of classification accuracy, smaller
model size and faster detection rate. Secondly, we propose a new type identifi-
cation scheme that recursively refines the type of a file in question.

We use Wei-Hen Li et al [6]’s modeling technique to compare the cosine simi-
larity (CS) and Mahalanobis distance (MD). Wei-Hen Li’s work is a representa-
tive modeling technique in that it uses MD and its single centroid model is also
used by other schemes [9], [10], [11]. Its multi-centroid model is comparable to
our recursive scheme.

In our proposed type identification scheme, we group files with similar byte-
frequency pattern irrespective of their file types (whereas Wei-Hen Li’s technique
groups files with the same type). Then we apply the linear discriminant analysis
[12] to identify the type of each file. Our proposed scheme shows better result
than Wei-Hen Li’s single and multi-centroid modeling technique (considering
both CS and MD as distance metric).

This paper is organized as follows. Section 2 presents the related work. Section
3 describes the assumptions that are required for robust techniques of byte-
frequency analysis, and explains the dataset used in this paper. Section 4 explains
our experiment results on cosine similarity and Mahalanobis distance. Section 5
discusses the weaknesses of Wei-Hen Li’s modeling technique. Section 6 presents
our recursive file-type identification scheme. Section 7 analyzes the proposed
scheme. In section 8, we compare the Wei-Hen Li’s single and multi-centroid
models (using both CS and MD) with the proposed scheme, and Section 9 shows
the conclusions and future work.

2 Related Work

This section discusses the previous techniques for file type identification. Some
of these techniques are commonly used by operating systems where the file type

46 I. Ahmed et al.

information is explicitly written either in the file header or in the file name.
There are other techniques which analyze the file content to identify the file
type.

The most common and the simplest way to identify file type is to look at
the file’s extension [13], but this can be easily spoofed by users with malicious
intent. Novice users could also unintentionally change the file extension while
renaming the file name. Malwares could also easily hide themselves by having
file extensions that virus scanners skip.

Another method to identify file type is to look at magic numbers in the file
[14]. For example, GIF files begin with ASCII representation of either GIF87a
or GIF89a depending on the standard. ZIP files always have the magic number
”PK” at the beginning of the file. However, only binary files have magic numbers
so it is not applicable to text files. As with the file extension, it can also be
easily spoofed. For instance, malcodes can be hidden using code obfuscation and
alphanumeric encoding [15], [16], [17], [18].

McDaniel and Heydari [19] introduce three algorithms to identify file types by
analyzing file content. In byte frequency analysis algorithm (BFA), they calculate
byte-frequency distribution of different files and generate ”fingerprint” of each
file type by averaging byte-frequency distribution of their respective files. They
also calculate correlation strength as another characterizing factor. They take
the difference of the same byte in different files. If the difference gets smaller, the
correlation strength increases towards 1 or vice versa. In byte-frequency cross-
correlation algorithm, they find the correlation between all byte pairs. They
calculate the average frequency between all byte pairs and correlation strength
similar to the BFA algorithm. In file header/trailer algorithm, the file headers
and trailers are byte patterns that appear in a fixed location at the beginning
and end of a file. They maintain an array of 256 for each location and the array
entry corresponding to the value of the byte is filled with correlation strength of
1. They construct the fingerprint by averaging the correlation strength of each
file. In these algorithms, they compare the file with all the generated fingerprints
to identify its file type.

Wei-Hen Li et al. identify file types using n-gram analysis. They calculate
1-gram frequency distribution of files and build 3 different models of each file
type: single centroid (one model of each file type), multi-centroid (multiple mod-
els of each file type), and exemplar files (set of files of each file type) as centroid.
They refer them as ”fileprint”. In single and multi-centroid models, they calcu-
late mean and standard deviation of 1-gram frequency distribution of files, and
use Mahalanobis distance to compare these models with 1-gram distribution of
given file to find the closest model. In exemplar file model, they compare 1-gram
distribution of exemplar file with that of given file (there is no variance com-
puted), and Manhattan distance is used instead of Mahalanobis distance. Their
solution cannot identify files having similar byte-frequency distributions such as
MS Office file formats (such as Word and Excel) but treat them as one group or
one abstract file type.

On Improving the Accuracy of Content-Based File Type Identification 47

Karresand and Shahmehri [9], [10] proposed the ′′Oscar′′ method for iden-
tifying the types of file fragments. They build the single centroid fileprints [6]
but use quadratic distance metric and 1-norm as distance metric to compare the
centroid with the byte frequency-distribution of file. Although Oscar identifies
any file type, they optimized their algorithm for JPG file using specific byte
pairs in the file, and reported 99.2% detection rate with no false positives. They
also use rate of change of bytes, i.e. the difference of two consecutive byte values
where they consider the ordering information of bytes.

Veenman [11] extracts three features from file content. These features are 1)
byte frequency distribution, 2) entropy derived from byte-frequency distribution
of files, and 3) the algorithmic or Kolmogorov complexity that exploits the sub-
string order [20]. The Fisher linear discriminant is applied to these features to
identify the file type.

Calhoun and Coles [21] extended Veenman’s work by building classification
models (based on the ASCII frequency, entropy, and other statistics) and apply
linear discriminant to identify file types. They also argued that files of same
type probably have longer substrings in common than that of different types.
Our recursive scheme also uses the byte-frequency distribution as a feature and
linear discriminant analysis for classification. However, the main difference of
ours from Veenman’s scheme is the way we build the classification model for each
file type. Veenman computes one discriminant function for each file type using
all its sample files. However, our scheme combines the similar byte frequency files
in groups irrespective of their file types using clustering, and computes the linear
discriminant function for each file type in each group. Hence multiple functions
could be computed for each file type. Veenman reported 45% overall accuracy
while our scheme shows 77% overall accuracy.

3 Assumptions and Dataset Details

3.1 Assumptions for Byte-Frequency Distributions of File Types

We make two assumptions for byte-frequency distribution of files.

1. Byte-frequency distributions of different file types could be homogeneous.
That is, they could have similar byte frequency distributions (Figure 1(a)
and 1(b))

2. Byte-frequency distributions of a file type could be heterogeneous. That
is, files of the same type could have different byte-frequency distributions
(Figure 1(c) and 1(d).

We believe that a robust solution for file-type identification, which uses
byte-frequency distribution to build representative models of file types, should
satisfy these assumptions. The proposed recursive scheme is based on these
assumptions.

48 I. Ahmed et al.

(a) ASP (b) HTML

(c) DOC (d) DOC

Fig. 1. a) and b) show that ASP and HTML can have similar byte-frequency patterns.
c) and d) show that two DOC files can have different byte-frequency patterns (X-axis
represents the byte patterns and y-axis the relative byte frequency).

3.2 Dataset

In our experiments, we used two datasets to analyze different file-type identifi-
cation schemes and our scheme. One dataset is used to build the representative
models of file types and the other to test the classification accuracy of the iden-
tification schemes. 10 file types (JPG, HTML, GIF, EXE, MP3, PDF, TXT,
DOC, XLS, and ASP) are included in each dataset, with each type having 100
files. These file types are chosen since they are popularly used and cover a broad
range of file contents such as binary files (JPG, GIF, EXE, MP3, PDF), print-
able character files (TXT, HTML, ASP), and the files that contain binary and
characters (DOC and XLS).

4 Cosine Similarity: An Efficient Measure to Compare
Byte Frequency Vectors

4.1 Cosine Similarity

Cosine similarity is a measure to compare two vectors. If is a byte-frequency
vector of a test file and is the representative model vector of a file type (that is
achieved by averaging the byte-frequency distributions of the sample files of the
file type), cosine similarity is defined by Eq. 1.

cos(x, ȳ) =
x.ȳ

|x||ȳ| (1)

On Improving the Accuracy of Content-Based File Type Identification 49

Where . indicates the vector dot product, x.ȳ =
∑n

k=1 xkȳk and |x| =√∑n
k=1 x2

k =
√

x.x is the length of vector , The value of cosine similarity lies
between 0 and 1. If the cosine similarity is 1, cosine angle between x and ȳ is
0, thus x and ȳ is the same except the magnitude. If the cosine similarity is 0,
cosine angle between x and ȳ is 90◦, which means they are absolutely dissimilar
to each other.

Cosine similarity is quite different from Mahalanobis distance, as it does not
use standard deviation but it takes account of the varying size of files. Whereas
the byte-frequency distribution of a file needs to be normalized (by dividing each
frequency with file size) in order to use Mahalanobis distance, there is no need
to normalize the files when using cosine similarity.

In our experimental results presented in next section we found that, unlike
Mahalanobis distance, cosine similarity does not lose accuracy even if we truncate
the representative model of a file type (so that it contains a subset of highly
occurring byte patterns). Thus, using a small number of byte patterns makes
it more efficient as it requires less memory and computation without losing
accuracy.

4.2 Performance Comparison between Cosine Similarity and
Mahalanobis Distance

We use Wei-Hen Li’s modeling technique in comparing the classification accu-
racy of cosine similarity and Mahalanobis distance. The reasons we use their
technique are that it uses Mahalanobis distance, its single-centroid model is a
representative technique also used by other schemes [9], [10], [11], and its multi-
centroid model is comparable to our recursive scheme presented in later section.
They build representative model of file type, by combining the byte-frequency
distribution of several files of the same type (considering each byte pattern in the
distribution as a variable) and averaging their relative frequencies. It is referred
as single-centroid model. They also proposed to build multiple representative
models of a file type in a similar fashion, but in this case they further group the
files of a same type based on their byte-frequency distributions. Such models are
referred as multi-centroid model.

We applied, for each file type, multiple truncated models that contain only
subsets of byte patterns. For this, we first sorted the byte patterns of a file type
(in the order of highest occurring to lowest) and then create multiple models
by gradually reducing the number of byte patterns. The rationale behind this
is that byte-patterns that rarely occur in a file type may not be representative
of that type, but rather be noises. Hence excluding them from the model may
be beneficial since it requires smaller memory and computation, and may even
increase the classification accuracy in some cases

We also use the simplified Mahalanobis distance formula that is used in Wei-
Hen Li’s work, which is defined as follows.

d(x, ȳ) =
∑n−1

i=0 (|xi − .ȳi|)
δ̄i

(2)

50 I. Ahmed et al.

where x is a byte-frequency vector of a test file, and ȳ and δ̄ are the mean value
and standard deviation of the byte-frequency distributions of the sample files
(used to build the model of a file type).

Figure 2 (from a to d) shows the classification accuracy of Mahalanobis dis-
tance and cosine similarity (on some of the 10 sample file types as mentioned
in section 3.2) using different percentages of byte-patterns of single- and multi-
centroid models). We used K-means algorithm (as used in Wei-Hen Li’s work)
to build multi-centroid models. We chose a random value of K (3 in this ex-
periment) as Wei-Hen Li et al. reported that they observed similar results on
different values of K. We observed that, in most of the file types, the classifi-
cation accuracy is degraded as we decrease the number of byte-patterns in the
model when using Mahalanobis distance. However using cosine similarity, the
classification accuracy either remains the same or shows some improvement.

Figure 2 (e) shows the average classification accuracy of Mahalanobis distance
and cosine similarity. We can observe that cosine similarity shows better accuracy
than Mahalanobis distance, and the multi-centroid model shows better accuracy
than single-centroid model. We can also observe that the cosine similarity shows
not much difference in classification accuracy even if only 10% of (high frequency)
byte-patterns are used. This experiment suggests that we may use a small per-
centage of high frequency byte-patterns, which reduces the model size and also
improve the computation time to compute the cosine similarity values.

Figure 2 (f) shows that by using only 10% of byte-patterns the elapsed time is
reduced by approximately 11%. Our experiment considers each byte-pattern as a
variable (that is, 1-gram analysis). Since the size of model using 1-gram frequency
distribution is small (there are only 256 patterns), there is not much opportunity
for improvement on memory space and time. However, models using higher n-
grams [22], [23] (i.e. a variable consists of a sequence of multiple bytes) are much
bigger since the number of distinct patterns grows exponentially. Therefore the
improvement in model size and computation time will be much greater if we use
higher n-gram (higher n-gram is out of the scope of this paper).

5 Accuracy of Wei-Hen Li et al.’s Single- and
Multi-centroid Models

Figure 2 (e) shows that the average classification accuracy using Wei-Hen Li’s
modeling technique is less than 80%, which may not be satisfactory for many
applications. This section presents a discussion of why we think it is so. Our
reasoning below is the basis of our proposed scheme in the next section.

In section 3, we argue that files of a same type could have different byte-
frequency patterns. In such case, averaging the different byte-frequency patterns
i.e. building a single-centroid model would not yield an accurate representative
model (figure 3). In multi-centroid model, a model is built using the files of the
same type having similar byte frequency patterns. In section 3, we also argue
that files of different types could have similar byte-frequency patterns. Hence it
is possible that similar models of different file types are built (figure 4).

On Improving the Accuracy of Content-Based File Type Identification 51

(a) Comparison of MD and CS on
SC and MC models using ASP files

(b) Comparison of MD and CS on SC
and MC models using HTML files

(c) Comparison of MD and CS on
SC and MC models using TXT files

(d) Comparison of MD and CS on
SC and MC models using PDF files

(e) Average classification accuracy
of MD and CS on SC and MC
models using 10 file types men-
tioned in figures (a to j)

(f) Improvement in elapsed time
of file type detection by processing
1500 files (419MB of total size) on
different percentages of byte pat-
terns of representative models.

Fig. 2. a) and b) show that ASP and HTML can have similar byte-frequency patterns.
c) and d) show that two DOC files can have different byte-frequency patterns (X-axis
represents the byte patterns and y-axis the relative byte frequency).

52 I. Ahmed et al.

(a) DOC single cen-
troid model

(b) A particular DOC
file

Fig. 3. Inaccurate single centroid model of the DOC file type. (x-axis represents byte
patterns and y-axis is the relative byte frequency).

(a) HTML (b) TXT (c) ASP

Fig. 4. Similar multi-centroid models of different file types. (x-axis represents byte-
patterns and y-axis is the relative byte frequency).

Therefore, when identifying the type of a file, both algorithms (i.e. inaccurate
single-centroid model and similar multi-centroid models of different file types)
are easily confused with similar nature of other file types (such as TXT, ASP,
and HTML) and produces inaccurate results.

6 The Proposed File-Type Identification Scheme

A weakness in Wei-Hen Li’s multi-centroid model is that it does not cope well
with different types of files having similar byte-frequency distributions. Based on
this observation, we propose a scheme that applies recursive steps to classify file
types. Our scheme builds a representative model in two steps; we first divide files
of varying types (in the sample space) into a few clusters, each of which contain
files with similar byte-frequency patterns irrespective of their actual types. Then
we apply linear discriminant analysis to find the distinguishing byte-patterns (i.e.
a model of a file type) from similar byte-frequency distributions in each cluster.

6.1 Building a Representative Model of a File Type

Clustering is an exploratory statistical procedure to naturally group the data into
different clusters. At this stage we do not make any consideration on file types.

On Improving the Accuracy of Content-Based File Type Identification 53

Fig. 5. Identifying a test file using our proposed scheme

After the clusters are built, each cluster could have files with many different
types (although the files have similar byte-pattern frequencies). Therefore we
need to further divide the type of files in each cluster. For this we perform linear
discriminant analysis (LDA), which finds linear combination of byte-patterns to
make further distinction of file types. It derives discriminant function for each
file type in each cluster. For instance, if two clusters have mp3 files, LDA derives
two linear discriminant functions (i.e., one for each cluster). The output of linear
discriminant function is called discriminant score, which is supposed to be the
least for actual file type.

6.2 Detection Algorithm

Figure 5 illustrates the detection process of our proposed scheme. When a file
enters into the proposed system for type identification, its relative byte frequen-
cies is calculated. The file is then assigned to the cluster having the most similar
byte-pattern frequencies. If the assigned cluster represents only one file type, the
same type is assigned to the file. Otherwise LDA is used to identify the exact
type of the file. The discriminant scores are computed for all file types in the
cluster using their respective discriminant function. The file type having least
discriminant score is deemed to be the type of file.

7 Evaluation of Our Scheme

7.1 Cluster Analysis to Group Similar Byte-Frequency Distribution
Files

In this section, we describe how files are grouped using clustering. We use Ward’s
clustering method [24] which forms clusters by minimizing the total within-
cluster sum of squares. For instance, if XY is the cluster obtained by combining
clusters X and Y, the sum of within-cluster distances (WXY) are

WXY =
nXY∑

i=1

(yi − ȳXY)
′
(yi − ȳXY) (3)

54 I. Ahmed et al.

(a) Grouping file types using 3 clusters (b) Grouping file types using 6 clus-
ters

(c) Grouping file types using 8 clusters

Fig. 6. Grouping of file types on different number of clusters

where yi are data points, ȳXY = (nX ȳX+nY ȳY)
(nX+nY) and , nX , nY and nXY = nX+nY

are number of data points in X,Y and XY respectively.
Figure 6 illustrates the grouping of different file types and their respective

percentage. We group files in 3, 6 and 8 clusters. Figure 6 shows that certain file
types are always grouped together. These file types usually have similar content
characteristics. For example, ASP, HTML, and TXT files usually contain ASCII
characters therefore they are grouped together. Also multiple file types lie in
one cluster and same file type in multiple clusters. Such observation supports
our assumptions made in section 3, which states that files with different types
could have similar byte-frequency patterns and files with the same type could
have dissimilar patterns.

We observed some outlier clusters and did not use them in type identification
process. We consider them as outlier because each of them only consists of one
TXT type file.

On Improving the Accuracy of Content-Based File Type Identification 55

7.2 Linear Discriminant Analysis to Classify Each File Type

This section discusses the classification accuracy. In detection phase, the test
dataset is used to find out the detection accuracy of the clustering, LDA and
overall system. If the type of a test file does not match with any of the cluster
file type, it is said to be misclassified. For example, if file f of type X is assigned
to cluster Y but cluster Y does not have type X, then file f is considered mis-
classified. Hence the accuracy (%) of assigning files to their respective clusters
is calculated as follows.

Accuracy(%) =
(Total number of files - misclassified files)

total number of files
(4)

The files that are not misclassified in the clustering step are further processed
by LDA if the assigned cluster has multiple file type. Each cluster has its own
linear discriminant functions for its file types. For example, if the file f is assigned

Fig. 7. Accuracy achieved by LDA while detecting 10 file types in different number
clusters

Fig. 8. Average accuracy (%) achieved by clustering and LDA when different number
of clusters are used. Overall shows the combined accuracy of clusters and LDA.

56 I. Ahmed et al.

to a cluster, linear discriminant score is computed for each file type using its
respective function and the file type having least discriminant score is considered
as the type of test file f. We use the Eq. 4 to compute the accuracy of LDA for each
file type. Figure 7 shows that file types (such as MP3 and JPG) that reside only
in one cluster have almost achieved 100% accuracy. However types EXE, DOC,
XLS, and GIF reside in multiple clusters (because their byte-pattern frequencies
are quite similar) and the results of LDA on them were less accurate. Figure 8
shows the average detection accuracy of the clustering, LDA, and the overall
proposed system. Figure 8 also shows the average accuracy of Ward’s clustering
method when different number of clusters is used. It shows that the accuracy
remains almost constant when we increase the number of clusters.

8 Comparison of Single- and Multi-centroid Models with
the Proposed Scheme

Figure 9 shows the comparison of the proposed scheme with single- and multi-
centroid models (using both cosine similarity and Mahalanobis distance). We

Fig. 9. Classification accuracy (%) achieved by our proposed scheme (6 clusters are
used) and single and multiple centroid models using cosine similarity (CS) and Maha-
lanobis distance (MD) while classifying 10 sampled file types

Fig. 10. Comparison of average classification accuracy among single- and multi-
centroid models and the proposed scheme

On Improving the Accuracy of Content-Based File Type Identification 57

took the classification accuracy using all the 256 byte-patterns in single and
multi-centroid models (i.e. we did not truncate the models). Figure 9 shows that
in most cases our recursive scheme has highest accuracy rate, and on average
it achieved substantial improvement in classification accuracy over single- and
multi-centroid models (Figure 10).

9 Conclusion and Future Work

This paper presented two approaches to improve the classification accuracy in
identifying file types using their byte-frequency distributions. The first approach
is to use cosine similarity as a distance metric to find out the consistency be-
tween the byte frequency-distribution of a test file and representative model of a
file type. Based on our experimental results, we conclude that cosine similarity
is a better measure than Mahalanobis distance as it improved 4.8% and 13.10%
classification accuracy using Wei-Hen Li’s single and multi centroid models re-
spectively, and did not lose accuracy when using a small percentage of highly-
occurred byte-patterns in the representative models. Using small percentage of
byte patterns results in smaller model size and faster detection rate. Our experi-
ment shows that cosine similarity reduces the detection speed by approximately
11% when only 10% of highly-occurred byte-patterns of the representative model
are used. We expect that the improvement in model size and computation time
will be much greater if we use higher n-gram.

Wei-Hen Li’s multi-centroid model performs better than its single-centroid
model but still suffers when building models of different file types showing similar
byte patterns. We proposed a recursive scheme which is comparable to Wei-
Hen Li’s multi-centroid model but is more accurate (figure 10 shows 31.47%
improvement).

From cluster analysis, we noticed that files of similar nature file types are al-
ways grouped together. For instance, the text-based files (ASP, TXT and HTML)
are always grouped together. Also DOC and XLS which contains both text and
binary characters are always found in same clusters. The accuracy of linear dis-
criminant in our experiment is still not satisfactory. As our future work, we plan
to improve our grouping scheme, especially focusing on identifying text-based
file types.

Acknowledgement

This research is supported by the Ubiquitous Computing and Network(UCN)
Project, Knowledge and Economy Frontier R&D Program of the Ministry of
Knowledge Economy(MKE) in Korea and a result of subproject UCN 09C1-C5-
20S.

H.Shin would like to gratefully acknowledge support from Post Brain Korea
21 and the research grant from Korean Government (MOEHRD, Basic Research
Promotion Fund, KRF-2008-531-D00032).

58 I. Ahmed et al.

References

1. Exclusion option to skip the files for the scanning in Norton antivirus,
http://service1.symantec.com/SUPPORT/nav.nsf/0/
c829006aa01d540b852565a6007770d8?OpenDocument

2. Stegdetect, http://packages.debian.org/unstable/utils/stegdetect
3. Libmagic1 package, http://packages.debian.org/unstable/libs/libmagic1
4. Wang, K., Stolfo, S.J.: Anomalous Payload-based Network Intrusion Detection.

In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
203–222. Springer, Heidelberg (2004)

5. Ahmed, I., Lhee, K.-s.: Detection of malcodes by packet classification. In: Workshop
on Privacy and Security by means of Artificial Intelligence, ARES 2008, pp. 1028–
1035 (2008)

6. Li, W.J., Wang, K., Stolfo, S., Herzog, B.: Fileprints: Identifying File Types by n-
gram Analysis. In: Workshop on Information Assurance and security (IAW 2005),
United States Military Academy, West Point, NY, pp. 64–71 (2005)

7. Srinivasan, N., Vaidehil, V.: Reduction of False Alarm Rate in Detecting Network
Anomaly using Mahalanobis Distance and Similarity Measure. In: Proceedings of
ICSCN, pp. 366–371 (2007)

8. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to data mining. Addison-
Wesley, Reading (2005)

9. Martin, K., Nahid, S.: Oscar - file type identification of binary data in disk clusters
and RAM pages. In: IFIP security and privacy in dynamic environments, pp. 413–
424 (2006)

10. Martin, K., Nahid, S.: File type identification of data fragments by their binary
structure. In: Proceedings of the IEEE workshop on information assurance, pp.
140–147 (2006)

11. Veenman, C.J.: Statistical disk cluster classification for file carving. In: IEEE third
international symposium on information assurance and security, pp. 393–398 (2007)

12. Rencher, A.C.: Methods of Multivariate Analysis. Wiley Interscience, Hoboken
(2002)

13. File extensions, http://www.file-extension.com/
14. Magic numbers, http://qdn.qnx.com/support/docs/qnx4/utils/m/magic.html
15. Nachenberg, C.: Polymorphic virus detection module, United States Patent #

5,826,013 (1998)
16. Szor, P., Ferrie, P.: Hunting for metamorphic. In: Proceedings of Virus Bulletin

Conference, pp. 123–144 (2001)
17. RIX, Writing IA32 Alphanumeric Shell codes,

http://www.phrack.org/issues.html?issue=57&id=15#article
18. Eller, R.: Bypassing MSB Data Filters for Buffer Overflow Exploits on Intel plat-

forms (2003), http://community.core-di.com/~juliano/bypassmsb.txt
19. McDaniel, M., Hossain Heydari, M.: Content Based File Type Detection Algo-

rithms. In: Proceedings of the 36th Annual Hawaii International Conference on
System Sciences (2003)

20. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1–11 (1965)

21. Calhoun, W.C., Coles, D.: Predicting the types of file fragments. Digital Investi-
gation 5(1), 14–20 (2008)

http://service1.symantec.com/SUPPORT/nav.nsf/0/c829006aa01d540b852565a6007770d8?OpenDocument
http://service1.symantec.com/SUPPORT/nav.nsf/0/c829006aa01d540b852565a6007770d8?OpenDocument
http://packages.debian.org/unstable/utils/stegdetect
http://packages.debian.org/unstable/libs/libmagic1
http://www.file-extension.com/
http://qdn.qnx.com/support/docs/qnx4/utils/m/magic.html
http://www.phrack.org/issues.html?issue=57&id=15#article
http://community.core-di.com/~juliano/bypassmsb.txt

On Improving the Accuracy of Content-Based File Type Identification 59

22. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Re-
sistant to Mimicry Attack. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 226–248. Springer, Heidelberg (2006)

23. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting Mal-
ware Infection Through IDS-Driven Dialog Correlation: in 16th USENIX Security
Symposium (2007)

24. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the
American Statistical Association, 235–244 (1963)

Attacking 9 and 10 Rounds of AES-256

Ewan Fleischmann, Michael Gorski, and Stefan Lucks

Bauhaus-University Weimar, Germany
{Ewan.Fleischmann,Michael.Gorski,Stefan.Lucks}@uni-weimar.de

Abstract. The AES-256 has received less attention in cryptanalysis
than the 192 or 128-bit versions of the AES. In this paper we propose new
attacks on 9 and 10-round AES-256. In particular we present a 9-round
attack on AES-256 which has the lowest data complexity of all known
9-round attacks. Also, our 10-round attack has a lower data complexity
than all known attacks on AES-256. Also, our attack is the first that
uses a key differential with probability below one in combination with a
related-key boomerang attack. This leads to better related-key differen-
tials which contain less non-zero byte differences and rounds with zero
byte differences in each byte of a subkey difference.

Keywords: block ciphers, AES, differential cryptanalysis, related-key
boomerang attack.

1 Introduction

The Advanced Encryption Standard (AES) [5] has become one of the most used
symmetric encryption algorithms in the world. Differential cryptanalysis [3] is is
the source for essentially all attacks on block ciphers like the AES (i.e. Rijndael).
It recovers subkey bits for the first or the last rounds, while using differential
properties of the underlying cipher.

The boomerang attack [15] is a strong extension to differential cryptanalysis
in order to break more rounds than differential attacks can do, since the cipher
is treated as a cascade of two sub-ciphers, using short differentials in each sub-
cipher. These differentials are combined in an adaptive chosen plaintext and
ciphertext attack to exploit properties of the cipher that have a high probability.

Related-key attacks [1, 14] apply differential cryptanalysis to ciphers using dif-
ferent, but related, keys and consider the information that can be extracted from
encryptions under these keys. Ciphers with a weak key schedule are vulnerable
to this kind of attack. The idea of related-key differentials was presented in [11],
while two encryptions under two related-keys are used. Several combinations of
related-key and differential attacks were introduced in the following. Related keys
combined with the impossible differential attack [10], the differential-linear at-
tack [8] or the rectangle attack [2, 9, 12, 13]. Biryukov [4] proposed a boomerang
attack on the AES-128 which can break up to 5 and 6 out of 10 rounds. The
related-key boomerang attack was published first in [2], but was not used to
attack the AES.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 60–72, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Attacking 9 and 10 Rounds of AES-256 61

Table 1. Existing attacks on round reduced AES-256

Attack # Rounds # Keys Data / Time Source

Partial Sums 8 1 2128 − 2119 / 2204 [6]

Partial Sums 9 256 285 / 5 · 2224 [6]
Related-Key Rectangle 9 4 299 / 2120 [12]
Related-Key Boomerang 9 215.5 267 / 2142.83 Section 4

Related-Key Rectangle 10 256 2114.9 / 2171.8 [2]
Related-Key Rectangle† 10 64 2113.9 / 2172.8 [12]
Related-Key Boomerang 10 215.5 267 / 2182.67 Section 5

† : the attack is based on the 10-round attack of Biham et al. [2], which has
some flaws.

In this paper we propose a 9-round related-key boomerang attack on the AES-
256 which has the lowest data complexity among all attacks presented so far.
Furthermore we present the first attack on 10 rounds of the AES-256 described
in full detail. There is a similar attack on 7 and 9-round AES-192 proposed
by Gorski and Lucks at INDOCRYPT’08 [7]. In addition to their attack, we
introduce a key differential that has a probability below one. This allows us to
reduce data and time complexity. Up to now, this is the first paper which used
this technique on the AES. Table 1 summarizes existing attacks on the AES-256
and our new attacks on 9 and 10 rounds.

The paper is organized as follows: In Section 2 we give a brief description of the
AES. In Section 3 we describe the related-key boomerang attack. In Section 4,
we present a related-key boomerang attack on 9-round AES-256. We extend this
attack to a 10-round attack which is presented in Section 5. We conclude the
paper in Section 6.

2 Description of the AES

The AES [5] is a block cipher using data blocks of 128 bits with 128, 192 or
256-bit cipher key. A different number of rounds is used depending on the length
of the cipher key. The AES has 10, 12 and 14 rounds when a 128, 192 or 256-bit
cipher key is used respectively. The plaintexts are treated as a 4 x 4 byte matrix,
which is called state. Any single round applies four operations to the state:

– SubBytes (SB) is a non-linear byte-wise substitution applied to every byte
of the state matrix.

– ShiftRows (SR) is a cyclic left shift of the i-th row by i bytes, where i ∈
{0, 1, 2, 3}.

– MixColumns (MC) is a multiplication of each column by a constant 4 x 4
matrix.

– AddRoundKey (AK) is a XORing of the state and a 128-bit subkey which
is derived from the cipher key.

62 E. Fleischmann, M. Gorski, and S. Lucks

An AES round function applies the SB, SR, MC and AK operation in order.
Before the first round, a whitening AK operation is applied and the MC operation
is omitted in the last round because of symmetry. We concentrate on the 256-bit
version of the AES in this paper and refer to [5] for more details on the other
versions. Let Wi be a 32-bit word and Wi,j the i-th byte in Wj , then the 256-
bit cipher key is represented by W0||W1||W2|| . . . ||W7. The 256-bit key schedule
algorithm works as follows:

– For j = 8 to 59
• If j ≡ 0 mod 8, then

• W0,j = W0,j−8 ⊕ SB(W1,j−1) ⊕ Rcon(j/8),
∗ For i = 1 to 3

• Wi,j = Wi,j−8 ⊕ SB(Wi+1 mod 4,j−1),
• Else if j ≡ 4 mod 8, then

∗ For i = 0 to 3 do Wi,j = Wi,j−8 ⊕ SB(Wi,j−1),
• Else

∗ For i = 0 to 3 do Wi,j = Wi,j−8 ⊕ Wi,j−1,

where Rcon denotes fixed constants depending on its input. The whitening key
is W0||W1||W2||W3, the subkey of round 1 is W4||W5||W6||W7, the subkey of
round 2 is W8||W9||W10||W11 and so on. The byte coordinates of a 4 x 4 state
matrix are labeled as:

x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

3 The Related-Key Boomerang Attack

We now describe the related-key boomerang attack [2] in more detail. But first,
we have to give some definitions.

Definition 1. Let P, P ′ be two bit strings of the same length. The bit-wise xor
of P and P ′, P ⊕P ′, is called the difference of P, P ′. Let ′a′ be a known and ′∗′
an unknown non-zero byte difference.

Definition 2. α → β is called a differential if α is the plaintext difference P⊕P ′

before some non-linear operation f(·) and β is the difference after applying these
operation, i.e, f(P) ⊕ f(P ′). The probability p is linked on a differential saying
that an α difference turns into a β difference with probability p. The backward
direction, i.e., α ← β has probability p̂.

Two texts (P, P ′) are called a pair, while two pairs (P, P ′, O, O′) are called a
quartet. Regularly, the differential probability decreases the more rounds are in-
cluded. Therefore two short differentials covering only a few rounds each will be
used instead of a long one covering the whole cipher. Related-keys are used to
exploit some weaknesses of the key schedule to enhance the probability of the
differentials being used. We call such differentials related-key differentials. We

Attacking 9 and 10 Rounds of AES-256 63

split the related-key boomerang attack into two steps. The related-key boomerang
distinguisher step and the key recovery step. The related-key boomerang distin-
guisher is used to find all plaintexts sharing a desired difference that depends
on the choice of the related-key differential. These plaintexts are used in the key
recovery step afterwards to recover subkey bits for the initial round key.

Distinguisher Step. During the distinguisher step we treat the cipher as a cas-
cade of two sub-ciphers EK(P) = E1

K(P) ◦ E0
K(P), where K is the key used for

encryption and decryption. We assume that the related-key differential α → β
for E0 occurs with probability p, while the related-key differential γ → δ for E1

occurs with probability q, where α, β, γ and δ are differences of texts. The back-
ward direction E0−1 and E1−1 of the related-key differential for E0 and E1 are
denoted by α ← β and γ ← δ and occur with probability p̂ and q̂ respectively. The
related-key boomerang distinguisher involves four different unknown but related-
keys Ka, Kb = Ka ⊕ ∆K∗, Kc = Ka ⊕ ∆K ′ and Kd = Ka ⊕ ∆K∗ ⊕ ∆K ′, where
∆K∗ and ∆K ′ are chosen cipher key differences. The attack works as follows:

1. Choose a pool of s plaintexts Pi, i ∈ {1, . . . , s} uniformly at random and
compute a pool P ′

i = Pi ⊕ α.
2. Ask for the encryption of Pi under Ka, i.e., Ci = EKa(Pi) and ask for the

encryption of P ′
i under Kb, i.e., C′ = EKb

(P ′
i).

3. Compute the new ciphertexts Di = Ci ⊕ δ and D′
i = C′

i ⊕ δ.
4. Ask for the decryption of Di under Kc, i.e., Oi = E−1

Kc
(Di) and ask for the

decryption of D′
i under Kd, i.e., O′

i = E−1
Kd

(D′
i).

– For each pair (Oi, O
′
j), i, j ∈ {1, . . . , s}

5. If Oi ⊕ O′
j equals α store the quartet (Pi, P

′
j , Oi, O

′
j) in the set M .

A pair (Pi, P
′
j), i, j ∈ {1, . . . , s} with the difference α satisfies the differential

α → β with the probability p. The output of E0 is Ai and A′
j , i.e., E0

Ka
(Pi) = Ai

and E0
Kb

(P ′
j) = A′

j have a certain difference β = Ai ⊕ A′
j with probability p.

Using the ciphertexts Ci and C′
j we can compute the new ciphertexts Di = Ci⊕δ

and D′
j = C′

j ⊕ δ. Let Bi = E1−1

Kc
(Di) and B′

j = E1−1

Kd
(D′

j) are the decryption
of Di and D′

j with E1−1

Ki
i ∈ {c, d}. A difference δ turns into a difference γ after

passing E1−1

Ki
with probability q̂. Since δ = Ci ⊕ Di and δ = C′

j ⊕ D′
j we know

that γ = Ai ⊕Bi and γ = A′
j ⊕B′

j with probability q̂2. Since we also know, that
Ai⊕A′

j = β with probability p, it follows that (Ai⊕Bi)⊕(Ai⊕A′
j)⊕(A′

j ⊕B′
j) =

γ ⊕ β ⊕ γ = β = (Bi ⊕ B′
j) holds with probability p · q̂2. A β difference turns

into an α difference after passing the differential E0−1

Ki
with probability p̂. Thus,

a pair of plaintexts (Pi, P
′
j) with Pi ⊕ P ′

j = α generates a new pair of plaintexts
(Oi, O

′
j) where Oi ⊕O′

j = α with probability p · p̂ · q̂2. A quartet containing these
two pairs is defined as:

Definition 3. A quartet (Pi, P
′
j , Oi, O

′
j) which satisfies

Pi ⊕ P ′
j = α = Oi ⊕ O′

j,
Ai ⊕ A′

j = β = Bi ⊕ B′
j,

64 E. Fleischmann, M. Gorski, and S. Lucks

Ai ⊕ Bi = γ = A′
j ⊕ B′

j,
Ci ⊕ Di = δ = C′

j ⊕ D′
j,

is called a correct related-key boomerang quartet which occurs with proba-
bility Prc = p · p̂ · q̂2. A quartet (Pi, P

′
j , Oi, O

′
j) which only satisfies the condition

P ⊕ P ′
j = α = Oi ⊕ O′

j is called a false related-key boomerang quartet.

Figure 1 displays the structure of the related-key boomerang distinguisher step.
Any attacker who applies a related-key boomerang distinguisher does not know
the internal states Ai, A

′
j , Bi, B

′
j , since he can only apply a chosen plaintext

and ciphertext attack on the cipher. The set M , which is the output of the
related-key boomerang distinguisher, therefore contains correct and false related-
key boomerang quartets. It is impossible to form another distinguisher which
separates the correct and the false related-key boomerang quartets, since the
interior differences β and γ cannot be computed.

Key Recovery Step. The second step of the related-key boomerang attack is
the key recovery step. From now on, an attacker operates on the set M that was
stored by the related-key boomerang distinguisher. Let ka, kb, kc and kd be some
key bits of the last round keys derived from the cipher keys Ka, Kb, Kc and Kd.
Let dk(C) be the one round partially decryption of C under the key bits k. The
key bits are related as kb = ka ⊕ ∆k∗, kc = ka ⊕ ∆k′ and kd = ka ⊕ ∆k∗ ⊕ ∆k′,
where ∆k∗ and ∆k′ are differences of the last round key bits. These differences
are derived from the cipher key difference ∆K∗ and ∆K ′. The key recovery step
works as follows:

Fig. 1. The related-key boomerang distinguisher

Attacking 9 and 10 Rounds of AES-256 65

- For each key-bit combination of ka

1. Initialize a counter for each key-bit combination with zero.
- For all quartets (P, P ′, O, O′) stored in M

2. Ask for the encryption of P, P ′, O, O′ under Ka, Kb, Kc and Kd re-
spectively and obtain the ciphertext quartet C, C′, D, D′. Decrypt
the ciphertexts C, C′, D, D′ under ka, kb, kc, kd, i.e., C̄ = dka(C), C̄′=
dkb

(C′), D̄ = dkc(D) and D̄′ = dkd
(D′).

3. Test whether the differences C̄ ⊕ D̄ and C̄′ ⊕ D̄′ have a desired
difference an attacker would expect depending on the related-key
differential being used. Increase a counter for the used key-bits if the
difference is fulfilled in both pairs.

4. Output the key-bits ka with the highest counter as the correct one.

Four cases can be distinct in Step 3, since M contains correct and false related-
key boomerang quartets and the key-bit combination ka can either be correct
or false. A correct related-key boomerang quartet encrypted with the correct
key bits will have the desired difference needed to pass the test in Step 3 with
probability 1. Hence, the counter for the correct key bits is increased. The three
other cases are: a correct related-key boomerang quartet is used with false key
bits (PrcKf

), a false related-key boomerang quartet is used with the correct
key-bits (PrfKc) or a false related-key boomerang quartet is used with a false
key-bit combination (PrfKf

). We assume that the cipher acts like a random
permutation. In these cases we assume that

PrcKf
= PrfKc = PrfKf

=: Prfilter.

The probability that a quartet in one of the three undesirable cases is counted
for a certain key bit combination is Prfilter. The related-key differentials have
to be chosen such that the counter of the correct key bits is significantly higher
than the counter of each false key bit combination. If the differentials have a high
probability the key recovery step outputs the correct key-bits in Step 4 with a
high probability much faster than exhaustive search.

4 Related-Key Boomerang Attack on 9-Round AES-256

In this section we mount a key recovery attack on 9-round AES-256 using 215.5

related keys. The cipher is represented as E = E1 ◦ E0. E0 is a differential
containing rounds 1 to 5 and including the whitening key addition as well as the
key addition of round 5. E1 is a differential covering rounds 6 to 9. The notation
used in our attack will be defined as:

– Ka, Kb, Kc, Kd unknown cipher keys (256 bit).
– Kai, Kbi, Kci, Kdi unknown round keys of round i, where i ∈ {0, 1, 2, . . . , 12}

(128 bit).
– ∆K∗, ∆K ′ chosen cipher key differences (256 bit).
– ∆K∗

i , ∆K ′
i known subkey differences of round i (128 bit).

– Pi, P
′
j , Oi, O

′
j plaintexts.

66 E. Fleischmann, M. Gorski, and S. Lucks

– Ci, C
′
j , Di, D

′
j ciphertexts.

– a is a known non-zero byte difference.
– b, b′ are an output differences of S-Box for the input difference a.
– c, d, e, f are unknown non-zero byte differences.
– ∗ is a variable unknown non-zero byte differences.

The Structure of the Keys. In our attack we use four related but unknown
keys Ka, Kb, Kc and Kd. Let Ka be the unknown key an attacker would like to
recover. The relation that is required for the attack is:

Kb = Ka ⊕ ∆K∗

Kc = Ka ⊕ ∆K ′

Kd = Ka ⊕ ∆K∗ ⊕ ∆K ′

∆K∗ is the cipher key difference used for the first related-key differential E0 and
∆K ′ is the cipher key difference used for the second related-key differential E1.
An attacker only chooses the differences ∆K∗ and ∆K ′ but does not know the
keys. He chooses the cipher key differences as:

∆K∗ =
a a

and ∆K ′ =
b a

Using the key schedule algorithm of AES-256 we can use the cipher key differ-
ences ∆K∗ and ∆K ′ to derive the round key differences ∆K∗

0 , . . . , ∆K∗
8 and

∆K ′
0, . . . , ∆K ′

8 respectively.1 These values are shown in Figure 2 and 3. The key
differences ∆K∗

0 , ∆K∗
1 , . . . , ∆K∗

10 occur with probability 1, while the key differ-
ences ∆K ′

0, ∆K ′
1, . . . , ∆K ′

10 occur with probability 2−14. This is the probability
that an a difference will be transformed into a certain b difference by the S-Box
two times. The difference b can be one of 27 −1 values, because of the symmetry
of the XOR operation and the fact that an a difference can be one of 28 − 1
differences.

4.1 The Related-Key Differential E0 for Rounds 1 − 5

The input difference α of E0 has a non-zero difference in bytes 0,3,4,5,9,10,14
and 15. After SR1 all non-zero byte differences are in column 0 and 1. A column
with four non-zero byte differences ist transformed into a column having an
a difference with fixed position after MixColumns with probability 2−32. This
occurs for two of such columns with probability 2−64. The two a differences in
bytes 0 and 4 are canceled out by the key addition AK1. Thus each byte of the
state matrix has a zero difference until AK3 creates an a difference in byte 0,
which is transformed to a non-zero difference by SB4 and to four non-zero byte
differences after MC4. The state matrix has a non-zero differences in bytes 0, 1,
2, and 3. The difference which occurs after AK5 is called βout, where all bytes
1 The key difference ∆K∗ is also used in [12].

Attacking 9 and 10 Rounds of AES-256 67

∆K∗
0 ∆K∗

1
a a

∆K∗
2 ∆K∗

3
a

∆K∗
4 ∆K∗

5
a a a a

∆K∗
6

b′ b′ b′ b′

∆K∗
7

a a

c c c c

∆K∗
8

d d d d
b′ b′

∆K∗
9

a a

e e e e
c c

∆K∗
10

f f f f
d d
b′ b′

Fig. 2. Round key differences derived from ∆K∗

∆K′
0

a
∆K′

1
b

∆K′
2

a a a
∆K′

3
b

∆K′
4

a a
∆K′

5

∆K′
6

a a
∆K′

7 ∆K′
8

a
∆K′

9 ∆K′
10

b b b

Fig. 3. Round key differences derived from ∆K′

α

∗ ∗
∗ ∗

∗ ∗
∗ ∗

AK0,SB1,SR1,MC1−→
a a

AK1,...,AK3−→
a

SB4,SR4,MC4,AK4−→
∗
∗
∗
∗

SB5,SR5,MC5,AK5−→

βout

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Fig. 4. The related-key differential E0

are non-zero. The probability of the differential E0, i.e., the transformation of
an α difference into a βout difference is given by

Pr(α → βout) = 2−64.

The related-key differential E0 is shown in Figure 4.

4.2 The Related-Key Differential E1−1
for Rounds 9 − 6

From the bottom up direction of the related-key boomerang distinguisher the
related-key differential E1−1

is used with the round-key differences of ∆K ′. Note
that the used key differential ∆K ′ has a probability of 2−14 to occur, which
increases the necessary keys for the attack. The input difference δ consists of

68 E. Fleischmann, M. Gorski, and S. Lucks

δ

∗
AK−1

9−→
∗

SR−1
9 ,SB−1

9−→
a

AK−1
8 ,...,AK−1

6−→
a a

MC−1
6 ,...,SB−1

6−→

γ

∗ ∗
∗ ∗

∗ ∗
∗ ∗

Fig. 5. The related-key differential E1−1

a non-zero difference in byte 4. SB−1
9 generates an a difference in byte 4 with

probability 2−8. If this occurs the text difference after SB−1
9 is equal to the

subkey difference ∆K ′
8. Hence, all bytes have a zero difference after applying

AK−1
8 . Passing AK−1

6 the state matrix has two a differences in bytes 4 and 8.
We call γ the text difference remaining after SB−1

6 . This text difference has
eight non-zero difference in bytes 2,3,4,7,8,9,13 and 14. The probability of E1−1

is Pr(γ ← δ) = 2−8. The related-key differential E1−1
is shown in Figure 5.

4.3 The Related-Key Differential E0−1
for Rounds 6 − 1

For the following steps we need that the output difference βout of the related-key
differential E0 is equal to the input difference βin for the related-key differential
E0−1

. Note that βin and βout are not only equal in the same positions of non-zero
differences but are also equal in each byte. We will shown how to construct such
a case. From the boomerang condition inside the cipher for two differences γ1
and γ2 we know that

βout ⊕ γ1 ⊕ γ2 = βin

holds with some probability. Since γ1 and γ2 are equal in each byte, we simply
write γ. Thus the above condition reduces to :

βout ⊕ γ ⊕ γ = βout = βin (1)

Using the differentials above, the differences βin and βout are equal with prob-
ability one. Note that these difference occur only with some probability, which
will be given in more detail later.

Let A, A′, B, B′ be the internal state after SR5 when encrypting P, P ′, O, O′

under Ka, Kb, Kc, Kd respectively. We use the same notation as in Figure 1.
Since MC is linear γ can be expressed as

γ = Ka5 ⊕ MC5(A) ⊕ Kc5 ⊕ MC5(B) =

∆K′
5︷ ︸︸ ︷

Ka5 ⊕ Kc5 ⊕MC5(A ⊕ B) (2)

and as

γ = Kb5 ⊕ MC5(A′) ⊕ Kd5 ⊕ MC5(B′) =

∆K′
5︷ ︸︸ ︷

Kb5 ⊕ Kd5 ⊕MC5(A′ ⊕ B′). (3)

Equation (2) and (3) can be combined, which leaves A ⊕ A′ = B ⊕ B′. In other
words, the MC5 operation can be undone with the probability 1 due to the

Attacking 9 and 10 Rounds of AES-256 69

βin

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

AK−1
5 ,MC−1

5−→
∗

∗
∗

∗

SR−1
5 ,SB−1

5−→
∗
∗
∗
∗

AK−1
4 ,MC−1

4−→
∗

SR−1
4 ,SB−1

4−→
a

AK−1
3 ,...,AK−1

1−→
a a

MC−1
1 ,SR−1

1 ,SB−1
1 ,AK−1

0−→

α

∗ ∗
∗ ∗
∗ ∗

∗ ∗

Fig. 6. The related-key differential E0−1

boomerang condition (1).To achieve that βout equals βin the differences γ1 and
γ2 have to be equal. This happens with probability 2−56 since an a difference
can be one of 27 − 1 values after an S-Box transformation and MixColumns is
a linear operation. If this occurs we know from the boomerang condition that
βout⊕γ1⊕γ2 = βout = βin holds with some probability and MC5 can be undone
with probability one. This means that we know that a non-zero byte difference
occurs after MC−1

5 only in the bytes 0,7,10 and 13, while the other bytes are
zero. Four non-zero bytes remain after AK−1

4 in column 0. With probability
2−24 MC−1

4 generates a non-zero difference in byte 0 while the remaining bytes
are zero. After the next S-Box operation we have an a difference with probabil-
ity 2−8. The further steps operate such that the output difference of E0−1

has
non-zero differences in bytes 1,2,6,7,8,11,12 and 13. We call this difference α.
The differential E0−1

has the probability Pr(α ← βin) = 2−32 and is shown in
Figure 6.

4.4 The Attack

1. Choose 242.5 structures S1, S2, . . . , S242.5 of 264 plaintexts Pi, i ∈ {1, 2, . . . , 264}
where the bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed and the other bytes have all
possible values. Ask for encryption of Pi under Ka to obtain the ciphertexts Ci,
i.e., Ci = EKa(Pi).

2. Compute 242.5 structures S′
1, S

′
2, . . . , S

′
249.5 of 264 plaintexts P ′

i = Pi. Ask for
encryption of P ′

i under Kb, where Kb = Ka ⊕ ∆K∗ to obtain the ciphertexts
C′

i, i.e., C′
i = EKb

(P ′
i).

3. For each possible value of b compute ∆K̃ ′

3.1. Compute 242.5 structures S∗
1 , S∗

2 , . . . , S∗
242.5 of 264 ciphertexts Di, i.e, Di =

Ci ⊕ δ where δ is a fixed 128-bit value of which byte 4 non-zero while all
other bytes are zero. Ask for decryption of Di under Kc = Ka ⊕ ∆K̃ ′ to
obtain the plaintexts Oi, i.e., Oi = E−1

Kc
(Di).

3.2. Compute 242.5 structures S′∗
1 , S′∗

2 , . . . , S′∗
242.5 of 264 ciphertexts D′

i, i.e, D′
i =

C′
i ⊕ δ where δ is as in Step 3.1. Ask for decryption of D′

i under Kd =
Ka ⊕ ∆K∗ ⊕ ∆K̃ ′ to obtain the plaintexts O′

i, i.e., O′
i = E−1

Kd
(Di).

3.3. Store only those quartets (Pi, P
′
j , Oi, O

′
j) where Oi ⊕ O′

j have a zero byte
differences in bytes 0, 3, 4, 5, 9, 10, 14 and 15.

70 E. Fleischmann, M. Gorski, and S. Lucks

3.4. Guess an 8-bit subkey k̄a9 of Ka9 in the positions of byte 4 and compute
k̄b9, k̄c9, k̄d9 respectively.

3.4.1. Partially decrypt each quartet (Ci, C
′
j , Di, D

′
j) remaining after Step 3.3

under k̄a9, k̄b9, k̄c9, k̄d9 respectively.
3.4.2. Check if dk̄a9

(Ci) ⊕ dk̄c9
(Di) and dk̄b9

(C′
i) ⊕ dk̄d9

(D′
i) have an a-

difference after SB−1
9 in byte 4. Record (k̄a9) and all the qualified

quartets and then go to Step 3.5.
3.5. Guess a 32-bit subkey k′

a0 of Ka0 in the positions of bytes 0,5,10,15 and
compute k′

b0 = k′
c0 = k′

d0 = k′
a0 (∆K∗

0 and ∆K ′
0 are zero in these four

bytes)
3.5.1. Partially encrypt each quartet (Pi, P

′
j , Oi, O

′
j) remaining after Step 3.4.2

under k′
a0, k

′
b0, k

′
c0, k

′
d0 respectively.

3.5.2. Check if ek′
a0

(Pi)⊕ek′
b0

(P ′
j) and ek′

c0
(Oi)⊕ek′

d0
(O′

j) have an a difference
in byte 0 after MC1. Record (k̄a9, k

′
a0) and all the qualified quartets and

then go to Step 3.6.
3.6. Guess a 32-bit subkey k∗

a0 of Ka0 in the positions of bytes 3,4,9,14 and
compute k∗

b0 = k∗
a0, compute k∗

c0 = k∗
a0 ⊕ M1, with the 32-bit value M1 =

(a, 0, 0, 0) and compute k∗
d0 = k∗

b0 ⊕ M1.
3.6.1. Partially encrypt each quartet (Pi, P

′
j , Oi, O

′
j) remaining after Step 3.5.2

under k∗
a0, k

∗
b0, k

∗
c0, k

∗
d0 respectively.

3.6.2. Check if ek∗
a0

(Pi)⊕ek∗
b0

(P ′
j) and ek∗

c0
(Oi)⊕ek∗

d0
(O′

j) have an a difference
in byte 4 after MC1. If there exist more than 2 boomerang quartets
passing this test, record (k̄a9, k

′
a0, k

∗
a0) and all the qualified quartets

and then go to Step 4. Otherwise, repeat Step 3.6 with another guessed
key. If all the possible keys are tested, then repeat Step 3.5 with another
guessed key. If all the possible keys are tested, then repeat Step 3.4 with
another guessed key.

4. For a suggested (k̄a9, k
′
a0, k

∗
a0), do an exhaustive search for the remaining 184

cipher key bits using trial encryption. If a 256-bit cipher key is suggested, output
it as the cipher key. Otherwise, go to Step 3 with another guess of b.

4.5 Analysis of the Attack

A pool of 264 plaintexts can be combined to (264)2

2 = 2127 quartets. Each quartet
of structures Si, S

′
i, S

∗
i , S′∗, i ∈ {1, 2, . . . , 242.5} can be analyzed separately. The

data complexity of Step 1, 2, 3.1 and 3.2 is 22 · 264 = 266 chosen plaintexts,
while the time complexity is about 264 encryptions for Step 1 and 2 and about
27.5 · 27 · 264 = 278.5 for Step 3.1 and 3.2, since Step 3 runs at most 27 times
and we expect that we need to run the attack with about 27.5 different cipher
keys. The data complexity of Step 3.3 is 22 · 264 = 266 plaintexts, since we have
a 64-bit filtering condition which leaves 2127 · 2−64 = 263 quartets stored in
this step. Step 3.4.1 takes about 27.5 · (1/9) · (1/16) · 27 · 28 · 22 · 263 = 280.33

nine round encryptions. The number of remaining quartets after Step 3.4.2 are
263·2−14 = 249, since we have a 7-bit filtering on both pairs of a quartet. The time
complexity of Step 3.5.1 is about 27.5 · (1/9) · (4/16) ·27 ·232 ·28 ·22 ·249 = 2100.33

nine round encryptions. Due to the 32-bit filtering on both pairs we obtain about

Attacking 9 and 10 Rounds of AES-256 71

249 · 2−64 = 2−15 quartets after Step 3.5.2. The time complexity of Step 3.6.1 is
negligible, while about 2−15 · 2−64 = 2−79 quartets remain after this step.

Using 242.5 structures we obtain #PP ≈ 242.5 ·2127 = 2169.5 quartets in total.
A correct related-key boomerang quartet occurs with probability

Prc = Pr(α → βout) · (Pr(γ ← δ))2 · Pr(βout = βin) · Pr(α ← βin)
= 2−64 · (2−8)2 · 2−56 · 2−32 = 2−168,

since all related-key differential conditions are fulfilled. About 242.5·2−79 = 2−36.5

false related-key boomerang quartets remain Step 3.6.2 and are counted with the
false key bits.

Using the Poisson distribution we can compute the success rate of our attack.
The probability that the number of remaining quartets for each false key bit
combination is larger than 1 is Y ∼ Poisson(µ = 2−36.5), Pr(Y ≥ 2) ≈ 0.
Therefore the probability that our attack outputs false key bits as the correct
one is very low. We expect to have a count of 3 quartets for the correct key bits.
The probability that the number of quartets counted for the correct key bits is
larger than 1 is Z ∼ Poisson(µ = 3), Pr(Z ≥ 2) ≈ 0.8.

The data complexity is about 267 = 23 · 264 adaptive chosen plaintexts and
ciphertexts and the time complexity is about 2142.83 = 242.5 · 2100.33 9-round
AES-256 encryptions.

5 Related-Key Boomerang Attack on 10-Round AES-256

The related-key boomerang attack can easily be extended to a 10-round attack,
by guessing 32 bits of K10 at the bytes 1,4,11 and 14. Since we use related keys
we have to take the key differences ∆K∗

10 and ∆K ′
10 into account. Therefore we

have to guess 8 bits for the unknown values of f in ∆K∗
10. The moreover, we

change the order of MC9 and AK9, which allows us to mount the 9-round attack
inside the 10-round attack. The data complexity of this 10-round attack on AES-
256 remains at 267 chosen plaintexts and ciphertexts and the time complexity
increases to 232 · 28 · (9/10) · 2142.83 = 2182.67 10-round AES-256 encryptions.

6 Conclusion

This paper proposes a new attack on 9 and 10-round AES-256. These are the first
attacks using a related-key differential with probability below one. Our 9 and 10-
round attacks on AES-256 have the lowest data complexity compared to existing
attacks and use about 267 chosen plaintexts and ciphertexts. Nevertheless, the
attacks presented in this paper find only some weaknesses for round reduced
versions of the AES-256, while the full version of the AES-256 remains unbroken.

Acknowledgements

The authors would like to thank Orr Dunkelman and the anonymous reviewers
for many helpful comments.

72 E. Fleischmann, M. Gorski, and S. Lucks

References

[1] Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptol-
ogy 7(4), 229–246 (1994)

[2] Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

[3] Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

[4] Biryukov, A.: The Boomerang Attack on 5 and 6-Round Reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 11–15.
Springer, Heidelberg (2005)

[5] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

[6] Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

[7] Gorski, M., Lucks, S.: New Related-Key Boomerang Attacks on AES. In: Chowd-
hury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp.
266–278. Springer, Heidelberg (2008)

[8] Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

[9] Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced
versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

[10] Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit
Key AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 208–221. Springer, Heidelberg (2004)

[11] Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing,
S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

[12] Kim, J., Hong, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced AES-
192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

[13] Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-Key Rectangle Attack
- Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

[14] Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

[15] Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

Cryptographic Properties and Application of a
Generalized Unbalanced Feistel Network

Structure

Jiali Choy, Guanhan Chew, Khoongming Khoo, and Huihui Yap

DSO National Laboratories
20 Science Park Drive, Singapore 118230

{cjiali,cguanhan,kkhoongm,yhuihui}@dso.org.sg

Abstract. In this paper, we study GF-NLFSR, a Generalized Unbal-
anced Feistel Network (GUFN) which can be considered as an extension
of the outer function FO of the KASUMI block cipher. We prove up-
per bounds for the differential and linear hull probabilities for any n + 1
rounds of an n-cell GF-NLFSR. Besides analyzing security against dif-
ferential and linear cryptanalysis, we provide a frequency distribution for
upper bounds on the true differential and linear hull probabilities. We
also demonstrate a (2n − 1)-round impossible differential distinguisher
and a (3n − 1)-round integral attack distinguisher on the n-cell GF-
NLFSR. As an application, we design a new block cipher Four-Cell based
on a 4-cell GF-NLFSR. We prove the security of Four-Cell against differ-
ential, linear, and boomerang attack. Based on the 7-round impossible
differential and 11-round integral attack distinguisher, we set the num-
ber of rounds of Four-Cell to be 25 for protection against these attacks.
Furthermore, Four-Cell can be shown to be secure against other attacks
such as higher order differential attack, cube attack, interpolation attack,
XSL attack and slide attack.

Keywords: Block Ciphers, Generalized Unbalanced Feistel Network,
Differential Probability, Linear Hull Probability.

1 Introduction

In this paper, we examine a family of block ciphers whose structure is modelled
after that of a Generalized Unbalanced Feistel Network (GUFN). The GUFN was
first suggested by Schneier et al. in [20]. Similar to conventional Feistel networks,
unbalanced ones comprise of a concatenation of rounds. In each round, one part
of the block controls the encryption of another part of the block. However, the
two parts need not be of equal sizes.

The particular GUFN we shall be analyzing is an n-cell extension of the
outer function FO of the KASUMI block cipher [24], which is a 2-cell structure.
Besides being a GUFN, our structure can also be viewed as an n-cell NonLin-
ear Feedback Shift Register (NLFSR). Thus, we call our structure a Generalized

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 73–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 J. Choy et al.

Feistel-NonLinear Feedback Shift Register (GF-NLFSR). In Section 3, we shall
give a detailed description of the GF-NLFSR.

Many GUFN-based block ciphers have been constructed; some examples in-
clude the ciphers SMS4 [13] and CLEFIA [21]. While the true differential and
linear hull probabilities of these ciphers are not known in the open literature,
they have been calculated for other GUFN-like constructions. In [24], these were
derived for KASUMI’s FO function, which is equivalent to a 2-cell GUFN. Sim-
ilar analyses have been done in [25] for another GUFN-like round function, and
also in [15]. To the best of our knowledge, bounds for the true differential and
linear hull probabilities have not been proven for GUFN-based ciphers with n
input cells. Analysis of true differentials and linear hulls is required in assessing
vulnerability to attacks such as boomerang attack. In light of this, the study in
our paper is both novel and useful.

In Sections 4 and 5, we prove that the true differential and linear hull prob-
ability of any n + 1 rounds of the n-cell GF-NLFSR is bounded by p2 where
p is the maximal probability of the nonlinear function. In Section 6, we inves-
tigate the frequency distribution of the differential and linear hull probability
of any n + 1 rounds based on different input-output differentials/linear masks.
From the frequency distribution, we see that the maximal probability p2 only
holds for a very tiny portion of all differentials/linear hulls. There are also other
differentials/linear hulls having probability bounds p3, p4, . . . , pn, but we prove
that almost all differentials/linear hulls have probability bound pn. Furthermore,
we compute the expected differential/linear hull probability bound and find this
value to be close to (2−B + p)n where B is the size of each cell in GF-NLFSR.
These differential and linear hull probability bounds are achieved when the in-
put differences and mask values are randomly chosen, which is likely when n+1
rounds of the n-cell GF-NLFSR is prepended and appended by additional cipher
structures. In this case, the security of n + 1 rounds of n-cell GF-NLFSR, in the
sense of differential and linear hull probability bounds, is therefore much better
than is typically believed. This motivates our study of the expected bounds in
the Section 6.

Other than differential and linear cryptanalysis, in Sections 7 and 8, we also
consider the security of GF-NLFSR against impossible differential and integral
cryptanalysis. For the former this is done by finding impossible differential char-
acteristics which play the role of a sieve, methodically rejecting the wrong key
guesses and leaving the correct key. For GF-NLFSR, the maximum number of
rounds for impossible differential characteristics was found to be 2n− 1. On the
other hand, in an integral attack, the attacker looks at larger carefully chosen
sets of encryptions, in which parts of the input text form a multiset. We studied
the propagation of multisets through the cipher and unveiled a (3n − 1)-round
distinguisher for GF-NLSR.

As an application of our results on GF-NLFSR, we design a GUFN-based
block cipher Four-Cell in Section 9. It is a 128-bit block cipher based on a
4-cell GF-NLFSR where each cell is 32-bit long. Besides proving practical secu-
rity against differential and linear cryptanalysis, we are able to bound its true

Cryptographic Properties and Application of a GUFN Structure 75

differential probability by 2−55.39 and linear hull probability by 2−52.96. More-
over, we show that with 99.9999% frequency, the differential and linear hull
probability bounds are much lower at 2−110.78 and 2−105.91 respectively. These
facts also allow us to prove its security against boomerang attack. Based on the
results in Sections 7 and 8, we can deduce a 7-round impossible differential and
an 11-round integral attack distinguisher on Four-Cell. To protect against these
attacks, we set the number of rounds of Four-Cell to be 25. Furthermore, we
explain why Four-Cell is secure against other cryptanalysis like higher-order dif-
ferential attack, cube attack, interpolation attack, XSL attack and slide attack.

Like the AES cipher, our Four-Cell block cipher can be proven secure against
known block cipher attacks. In principle, it can use the same S-box (SubBytes)
and MDS transform (MixColumn) as AES. However, it is more efficient (in
hardware) in the sense that it uses less MDS transforms (25 compared to 40)
than AES while keeping the number of S-boxes unchanged. Another advantage of
the n-cell GF-NLFSR structure is that the nonlinear function in any n rounds can
be computed in parallel. Therefore, any four rounds of the nonlinear transforms
in our block cipher Four-Cell can be computed in parallel. This is not true for a
general GUFN-based block cipher like SMS4 [13].

2 Definitions and Preliminaries

In this paper, we shall study the GF-NLFSR which can be considered as a
particular instantiation of the Generalized Unbalanced Feistel Network defined in
[20]. In what follows, the “+” symbol is used to denote finite field addition (XOR)
over GF (2)n or ordinary addition, depending on the operands and context.

2.1 Differential Cryptanalysis

As is widely known, differential cryptanalysis [1] is a chosen-plaintext attack in
which statistical key information is deduced from ciphertext blocks obtained by
encrypting pairs of plaintext blocks with a specific bitwise difference under the
target key. It studies the propagation of input differences to output differences
in iterated transformations.

Let f : GF (2)m �→ GF (2)m be a Boolean mapping composed of a number
of rounds. The concept of characteristic was introduced: a sequence of differ-
ence patterns such that the output difference from one round corresponds to
the input difference in the next round. On the other hand, in [10,11], the con-

cept of a differential, denoted by α
f−→ β, was presented, where the XORs in

the inputs and outputs of the intermediate rounds are not fixed. We denote
DP (α

f−→ β) = Pr(f(x)+ f(x+α) = β), where α, β are fixed input and output
differences.

Differential cryptanalysis exploits differential characteristics with high proba-
bility. However, even if the maximal differential characteristic probability is low,
one cannot conclude that the cipher is secure against differential attack. Instead,
one must show that the maximal differential probability of all differentials is low

76 J. Choy et al.

enough [11]. This property ensures provable security against differential crypt-
analysis as opposed to practical security which simply considers the maximal
differential characteristic probability.

Proposition 1. [11] A block cipher with block length m is resistant against con-
ventional differential attacks under an independent subkey assumption, if there
does not exist any differential α −→ β, α �= 0, ranging over all but a few rounds,
such that DP (α −→ β) � 2−m.

For key-dependent functions, we consider the average resistance against differ-
ential cryptanalysis, i.e. the average differential probability taken over the entire
key set. More formally, let F : GF (2)m × K �→ GF (2)m be a key-dependent
function. Denote fk = F (x, k) for each fixed k ∈ K. Let α, β ∈ GF (2)m be
constants. The differential probability of the differential α

F−→ β is defined as
DP (α F−→ β) = 1

|K|
∑

k∈K DP (α
fk−→ β). The maximal differential probability

of F is defined as DP (Fmax) = max
α�=0,β

DP (α F−→ β).

2.2 Linear Cryptanalysis

Linear cryptanalysis [14] is a known-plaintext attack that tries to utilize high
probability occurrences of linear expressions involving plaintext bits, ciphertext
bits, and subkey bits.

As with the differential case, we must also distinguish between a linear
characteristic and a linear hull. A linear characteristic over f consists of a se-
quence of mask values such that the output mask values from one round cor-
responds to the input mask values to the next round. On the other hand, a
linear hull, denoted by u

f←− w, is the set of all linear characteristics with
the same initial and terminal mask values. We denote LP (u

f←− w) = [2 ·
Pr(u · f(x) = w · x) − 1]2, where w, u are fixed input and output mask
values.

Linear cryptanalysis takes advantage of linear characteristics with high corre-
lation probability to recover key bits. However, in the evaluation of the strength
of a block cipher against linear cryptanalysis, one must consider the linear hulls
instead. Having low linear hull probability for all linear hulls will guarantee
provable security against linear attacks [17].

Proposition 2. [17] A block cipher with block length m is resistant against con-
ventional linear cryptanalysis under an independent subkey assumption, if there
does not exist any linear hull u ←− w, u �= 0, ranging over all but a few rounds,
such that LP (u ←− w) � 2−m.

For key-dependent functions, we consider the average resistance against linear
cryptanalysis. Explicitly, let F : GF (2)m × K �→ GF (2)m be a key-dependent
function. Denote fk(x) = F (x, k) for each fixed k ∈ K. Let u, w ∈ GF (2)m be
constants. The linear hull probability of the linear hull u

F←− w is defined as

Cryptographic Properties and Application of a GUFN Structure 77

LP (u F←− w) = 1
|K|

∑
k∈K LP (u

fk←− w). The maximal linear hull probability of

F is defined as LP (Fmax) = max
w,u�=0

LP (u F←− w).

It was proven in [11] and [17] the following result about differential and linear
hull probabilities of compositions of key-dependent mappings.

Fact 1. [11,17] Let F : GF (2)m×GF (2)m×K1 and G : GF (2)m×GF (2)m×K2
be key-dependent functions of the type F (x, k, k′) = f(x + k, k′), G(x, k, k′) =
g(x + k, k′), where f : GF (2)m × K1 �→ GF (2)m and g : GF (2)m × K2 �→
GF (2)m are bijective for all fixed k1 ∈ K1, k2 ∈ K2. Then DP (α G◦F−→ β) =
∑

ξ∈GF (2)m DP (α
f−→ ξ)DP (ξ

g−→ β) and LP (u G◦F←− w)=
∑

v∈GF (2)m LP (u
g←−

v)LP (v
f←− w).

In Sections 4 and 5, we shall be demonstrating provable security of our design struc-
ture against differential and linear cryptanalysis by studying its differential and
linear hull probabilities. Fact 1 will be required in the proofs of our results later.

3 Description of the Structure

In this section, we will give a description of our design structure, which we
call GF-NLFSR. It is essentially a generalization of the outer function, FO, of
the KASUMI cipher. The FO function was first suggested by Matsui in [15,
Figure 7] as one of the new structures of block ciphers with provable security
against differential and linear cryptanalysis. It was then adopted in the design
of KASUMI [24]. The following result was proven in the same paper regarding
the maximal differential and linear hull probabilities of this function.

Fact 2. [24, Theorem 2] Let F be the 3-round function shown in Figure 1 of [24]
(i.e. a 2-cell GF-NLFSR) where each Fi : GF (2)B ×GF (2)B ×K ′

i �→ GF (2)B is
of the form Fi(x, ki, k

′
i) = fi(x + ki, k

′
i) and each fi : GF (2)B × K ′

i �→ GF (2)B

is bijective for all fixed k′
i ∈ K ′

i, where K ′
i is the key space for k′

i.

(1) If DP ((fi)max) ≤ p for each i, then DP (Fmax) ≤ p2.
(2) If LP ((fi)max) ≤ q for each i, then LP (Fmax) ≤ q2.

This function splits the input block into 2 sub-blocks of equal size. Our block
cipher structure generalizes this by splitting the input block into n sub-blocks of
equal size. Figure 1 below displays one round of GF-NLFSR. Explicitly, suppose
we have a m-bit block cipher, i.e. the input and output blocks are both of size
m = nB bits. Let the internal state by denoted by S = (S1, S2, . . . , Sn) where
Si ∈ GF (2)B . Therefore the internal state consists of n sub-blocks of B bits
each. The round keys of the cipher shall be denoted by ki, k

′
i (i = 1, . . . , n + 1).

Each Fi function is of the form

Fi : GF (2)B × GF (2)B × K ′
i �→ GF (2)B

Fi(x, ki, k
′
i) = fi(x + ki, k

′
i)

where each fi : GF (2)B × K ′
i �→ GF (2)B is bijective for all fixed k′

i ∈ K ′
i.

78 J. Choy et al.

Fig. 1. One round of n-cell GF-NLFSR

The round function R that maps Si to Si+1 under the round keys ki, k
′
i is:

R : GF (2)m × GF (2)B × K ′
i �→ GF (2)m

((S1, S2, . . . , Sn), ki, k
′
i) �→ (S2, S3, . . . , Sn, Fi(S1, ki, k

′
i) + S2 + S3 + . . . + Sn)

4 Differential Probability

In this section, we present a result for the differential probability of an n-block
GF-NLFSR over n + 1 rounds which is similar to Fact 2.

Theorem 1. Let F be the (n+1)-round function in Figure 2 (left) of Appendix B
where each Fi : GF (2)B ×GF (2)B ×K ′

i �→ GF (2)B is of the form Fi(x, ki, k
′
i) =

fi(x + ki, k
′
i) and each fi : GF (2)B × K ′

i �→ GF (2)B is bijective for all fixed
k′

i ∈ K ′
i. If DP ((fi)max) ≤ p for each i, then DP (Fmax) ≤ p2.

Proof. Let the input difference of F be α = (α1, . . . , αn) �= 0 and the output
difference be β = (β1, . . . , βn) �= 0, where αi, βi ∈ GF (2)B for i = 1, 2, . . . , n.
Also let the output difference of F1 be ε.

In general, the input-output differences for all Fi’s in the n-cell GF-NLFSR
can be summarized as follows:

α1
F1−→ ε

α2
F2−→ ε + α2 +β1

α3
F3−→ ε + α2 + α3 +β1 + β2

...
...

...
αn

Fn−→ ε + α2 + α3 + . . . + αn +β1 + β2 + . . . + βn−1

ε + α2 + α3 + . . . + αn
Fn+1−→ β1 + β2 + . . . + βn−1 + βn

(1)

Cryptographic Properties and Application of a GUFN Structure 79

From Fact 1, we have the following:

DP (α F−→ β) =∑

ε∈GF (2)B

DP (α1
F1−→ ε)DP (α2

F2−→ ε + α2 + β1)

DP (α3
F3−→ ε + α2 + α3 + β1 + β2) . . .DP (ε+α2 + . . . + αn

Fn+1−→ β1 + . . . + βn).
(2)

We shall show that at least 2 input differences in Equation 2 are non-zero
when α �= 0. This implies that DP (α F−→ β) ≤ p2. It suffices to prove this fact
for the cases where only one of α1, α2, . . . , αn is non-zero.

(1) Suppose that only α1 �= 0, then ε �= 0 (otherwise, DP (α1
F1−→ ε = 0)).

Therefore, the input difference of Fn+1, i.e. ε+α2 + . . .+αn = ε, is non-zero.
(2) Suppose that only α2 �= 0, then the input difference of Fn+1, i.e. ε + α2 +

. . . + αn = α2, is non-zero.

...

(n) Suppose that only αn �= 0, then the input difference of Fn+1, i.e. ε + α2 +
. . . + αn =

αn, is non-zero.
Therefore, at least 2 of the input differences are non-zero and DP (α F−→ β) ≤ p2.

��

5 Linear Hull Probability

We also have a result similar to Fact 2 for the linear hull probability of GF-
NLFSR over n + 1 rounds where the internal state is split into n equally sized
blocks.

Theorem 2. Let F be the (n+1)-round function in Figure 2 (right) of Appendix
B where each Fi : GF (2)B×GF (2)B×K ′

i �→ GF (2)B is of the form Fi(x, ki, k
′
i) =

fi(x + ki, k
′
i) and each fi : GF (2)B × K ′

i �→ GF (2)B is bijective for all fixed
k′

i ∈ K ′
i. If LP ((fi)max) ≤ q for each i, then LP (Fmax) ≤ q2.

Proof. Let the output mask value of F be u = (u1, . . . , un) �= 0 and the input
mask value be w = (w1, . . . , wn) �= 0. If the output mask value of F1 is ε, it can
be easily derived that we have the following individual round approximations:

ε
F1←− w1

u1 + u2
F2←− ε + w2

u2 + u3
F3←− ε + w3 + u1 + u2

...
...

...

un−1 + un
Fn←− ε + wn + u1 + un−1

un
Fn+1←− ε + u1 + un

80 J. Choy et al.

Then Fact 1 gives

LP (u F←− w) =
∑

ε∈GF (2)B

LP (ε
F1←− w1)LP (u1 + u2

F2←− ε + w2)LP (u2 + u3
F3←− ε + w3 + u1 + u2) . . .

LP (un−1 + un
Fn←− ε+wn + u1 + un−1)LP (un

Fn+1←− ε + u1 + un).
(3)

We shall show that at least 2 output mask values in Equation 3 are non-zero
when u, w �= 0. This will then imply that LP (u F←− w) ≤ q2. If all the output
mask values are equal to 0, i.e.

ε = u1 + u2 = u2 + u3 = . . . = un−1 + un = un = 0,

then u1 = u2 = . . . = un = 0
⇒ u = 0

which gives a contradiction. Therefore, at least 1 output mask value is non-zero.
Now we show that if only one of them is non-zero, then we will arrive at a
contradiction.

(1) Suppose that only ε �= 0. Then u1 = u2 = . . . = un = 0 which is a contra-
diction since u �= 0.

(2) Suppose that only u1 + u2 �= 0. Note that if ε = 0, then w1 = 0; otherwise,
LP (ε F1←− w1) = 0. If w1 = 0, then for other non-zero values of ε, LP (ε F1←−
w1) = 0.

ε = u2 + u3 = u3 + u4 = . . . = un−1 + un = un = 0
⇒ ε + u1 + un = u1 = 0 (otherwise, LP (u F←− w) = 0)

and u2 = u3 = . . . = un = 0
⇒ u = 0

which gives a contradiction.
(3) Suppose that only u2 + u3 �= 0. Then

ε = u1 + u2 = u3 + u4 = . . . = un−1 + un = un = 0
⇒ ε + u1 + un = u1 = 0 (otherwise, LP (u F←− w) = 0)
⇒ u2 = u1 = 0 and u3 = u4 = . . . = un = 0
⇒ u = 0

which gives a contradiction.
...

(n) Suppose that only un−1 + un �= 0. Then
ε = u1 + u2 = u2 + u3 = . . . = un−2 + un−1 = un = 0

⇒ ε + u1 + un = u1 = 0 (otherwise, LP (u F←− w) = 0)
⇒ u1 = u2 = . . . = un−1 = 0 and un = 0
⇒ u = 0

which gives a contradiction.

Cryptographic Properties and Application of a GUFN Structure 81

(n + 1) Suppose that only un �= 0. Then

ε = u1 + u2 = u2 + u3 = . . . = un−1 + un = 0
⇒ u1 = u2 = . . . = un−1 = un

⇒ w1 = 0, ε + w2 = w2 = 0, ε + w3 + u1 + u2 = w3 = 0, . . . ,

ε + wn + u1 + un−1 = wn = 0 (otherwise, LP (u F←− w) = 0)
⇒ w = 0

which gives a contradiction.
Therefore, at least 2 of the output mask values must be non-zero and LP (u F←−
w) ≤ q2. ��

6 Frequencies of Differential and Linear Hull Probabilities
and Expected Value

Here we calculate the approximate number of input-output differences (α −→ β)
or mask values (u ←− w) with DP (α F−→ β) ≤ px or LP (u F←− w) ≤ qx

respectively (x = 2, . . . , n). With reference to the sequence of differences and
mask values stated in Sections 4 and 5, let ∆ = {α1, α2, . . . , αn} and Ω =
{u1 + u2, u2 + u3, . . . , un−1 + un, un}.

Define Nd(x) (respectively Nl(x)) as the number of input-output differences
(α, β) (respectively input-output masks (w, u)) when there are x non-zero entries
in ∆ (respectively Ω). From the structure of n-cell, having x non-zero entries
in ∆ or Ω will ensure DP (α F−→ β) ≤ px or LP (u F←− w) ≤ qx respectively.
The only exception is when x = 1, where we still have DP (α F−→ β) ≤ p2 or
LP (u F←− w) ≤ q2 by Theorems 1 and 2.

Various cases for the input-output pairs and their corresponding bounds are
shown in Table 1 in Appendix A. When there are x non-zero entries in ∆,
the number of possible input-output differences is given by Nd(x) =

(
n
x

)
(2B −

1)x(2nB − 1). This is because there are
(
n
x

)
possible input differences with x

non-zero entries where each non-zero entry has 2B − 1 possibilities, and there
are 2nB − 1 possibilities for the non-zero output difference. We have an identical
formula for Nl(x) by a similar reason.

Based on the values Nd(x) and Nl(x), we see that when an attacker uses
plaintexts such that the input differences α (output mask values u resp.) are
randomly chosen, he is more likely to obtain a bound much lower than p2 (q2

resp.) since most of the input differences α (output mask values u resp.) give rise
to differential probabilities DP (α F−→ β) (linear hull probabilities LP (u F←− w)
resp.) whose bounds are much smaller than p2 (q2 resp.). Such a scenario may
occur when, for example, the (n+1)-round structure is an intermediate portion of
a cipher so that the attacker does not have much control over the input differences
(output mask values resp.). This motivates our desire to have more practically
useful differential and linear hull probability bounds. For this purpose, we make
the following definitions:

82 J. Choy et al.

Definition 1. The expected differential probability is defined as Ed =
∑

α,β �=0 DP (α F−→β)
#{(α,β)|α,β �=0} and the expected linear probability is defined as El =

∑
w,u�=0 LP (u F←−w)
#{(w,u)|w,u�=0}

Note that
∑n

x=2 Nd(x) = (2nB − 1)2 which is the total number of differences
with both input and output non-zero. We may make a similar observation for
the linear case. From this table, we may directly calculate the proportion of
input-output differences (mask values resp.) with differential (linear hull resp.)
probability ≤ px (qx resp.). Denote the approximate proportion of input-output
differences with differential probability ≤ px by Pd(x) = Nd(x)

#{(α,β)|α,β �=0} . Like-
wise, denote the approximate proportion of input-output mask values with linear
hull probability ≤ qx by Pl(x) = Nl(x)

#{(w,u)|w,u�=0} . It can be computed that the
statistics are heavily skewed towards the lowest probabilities instead of p2 or
q2. For example, when n = 4, B = 8, and when n = 4, B = 16, we have the
following proportions shown in Table 2 in Appendix A.

Using the frequency values in Table 1, we can derive that

Ed ≤ 1
(2nB − 1)2

[(
n

1

)

(2B − 1) · (2nB − 1)p2 +
n∑

x=2

(
n

x

)

(2B − 1)x · (2nB − 1)px

]

<
1

(2nB − 1)

[(
n

1

)

(2B − 1)p +
n∑

x=2

(
n

x

)

(2B − 1)xpx

]

<
1

(2nB − 1)

[
n∑

x=0

(
n

x

)

(2B − 1)xpx

]

=
1

(2nB − 1)
(1 + (2B − 1)p)n

≈ (2−B + p)n, (4)

where we have approximated 2B − 1 and 2nB − 1 by 2B and 2nB respectively
because B is usually much larger than 1. Similarly, we have El ≤ (2−B + q)n.

For example, when n = 4, B = 8 and p = 2−6, the bound in (4) is ap-
proximately 2−22.7, which is much better than the 2−12 bound obtained from
Theorem 1.

7 Impossible Differential Characteristics

Impossible differential cryptanalysis is a variant of differential cryptanalysis
against block ciphers. It was applied against Skipjack to reject wrong key can-
didates by using input and output difference pairs whose probabilities are zero.
It can also be used to attack a 5-round Feistel structure even though the 3-
round Feistel structure with bijective round functions are provably secure against
differential and linear cryptanalysis.

Cryptographic Properties and Application of a GUFN Structure 83

In impossible differential cryptanalysis, impossible differential characteristics
are used to retrieve a subkey material for the first or last several rounds of
block ciphers. Thus the security of a block cipher against impossible differential
cryptanalysis can be evaluated by impossible differential characteristics [26].

A general tool, called U -method, was introduced by [26] to find the maxi-
mum number of rounds for impossible differential characteristics. An algorithm,
Algorithm 1, was also provided to compute the maximum length of impossible
differential characteristics that can be found by the U -method. Interested read-
ers may refer to [26] for the technicalities. By modifying Algorithm 1, we can
determine the impossible differential characteristics of the block cipher struc-
tures. The following result for our block cipher n-cell GF-NLFSR is based on
the simulation. Here, a r-round impossible differential characteristic is denoted
by α �r β where α = (α1, α2, · · · , αn) and β = (β1, β2, · · · , βn).

Proposition 3. The maximum number of rounds for impossible differential char-
acteristics that can be found by the U -method for n-cell GF-NLFSR is 2n − 1.
Generalized impossible differential characteristics are

(0, · · · , 0, αn) �2n−1 (β1, β2, 0, · · · , 0), where αn �= 0, β1 = β2 �= 0,

and,

(0, · · · , 0, αn) �2n−1 (β1, 0, · · · , 0, βn), where αn �= 0, β1 = βn �= 0.

In particular, when n = 4, a 7-round impossible differential characteristic is
(0, 0, 0, γ) �7 (γ, γ, 0, 0), with the input and output differences to and after each
round as follows:

(0, 0, 0, γ) → (0, 0, γ, γ) → (0, γ, γ, 0) → (γ, γ, 0, 0) → (γ, 0, 0, γ + δ) → (0, 0, γ + δ, ?)

→ (0, γ + δ, ?, ?) �= (0, γ, γ, 0) ← (γ, γ, 0, 0),

where γ, δ and ? denote nonzero nonfixed, nonzero fixed, and, nonfixed differences
respectively. We can thus use a 7-round impossible differential to conduct an
impossible differential attack.

8 Integral Attack

The integral attack is a cryptanalytic technique on block ciphers. It was origi-
nally proposed by Knudsen and Wagner in 2002 [9] and has since been adapted
to cryptanalyse various ciphers. In this attack, a set of chosen plaintexts is en-
crypted and the corresponding ciphertexts are decrypted a certain number of
rounds using all possible subkey guesses. The plaintext set is chosen such that
one part is held constant while another part varies over all possibilities. Using
this plaintext set, a distinguisher is produced after a certain number of rounds,
which enables the attacker to determine the correct subkey which was used for
partial decryption. We shall show that for n ≥ 2, GUFN has a (3n − 1)-round
distinguisher, where n is the number of blocks.

84 J. Choy et al.

In this section, we let the n-tuple (A, c, . . . , c) denote a set of 2B plaintexts
where the leftmost block of B bits vary over all 2B possibilities, while the other
blocks, represented by c, are constants. We shall let uppercase letters represent a
set that varies over all values in GF (2)B . Thus, we obtain the set (c, c, . . . , c, D+
c) after a round of encryption. Consequently, we have the following sequence of
round-by-round output sets after n rounds:

(A, c, . . . , c) → (c, c, . . . , c, D + c)
...

→ (c, D + c, D + c, c, . . . , c)
→ (D + c, D + c, c, c, . . . , c).

After another n rounds we have the following:

(D + c, D + c, c, . . . , c) → (D + c, c, . . . , c, D + E + c)
→ (c, . . . , c, D + E + c, D + E + G + c)
→ (c, . . . , c, D + E + c, D + E + G + c, G + c)
→ (c, . . . , c, D + E + c, D + E + G + c, G + c, c)

...
→ (D + E + c, D + E + G + c, G + c, c, . . . , c).

The distinguishing property of certain values in the set is subsequently de-
stroyed block by block. We obtain this, after another n − 1 rounds:

(D + E + c, D + E + G + c, G + c, c, . . . , c) → (D + E + G + c, G + c, c, . . . , c, ?)
...

→ (c, ?, ?, . . . , ?).

The set of ciphertexts after 3n−1 rounds of encryption will be constant in the
leftmost block. This property can be exploited as a distinguisher if the cipher
has only slightly more than 3n − 1 rounds. Although some minor detail of the
above proof does not apply for the cases n = 2 and n = 3, it can be easily
verified, using a similar approach, that the (3n − 1)-round result still holds for
these values of n.

9 Application: New Block Cipher Four-Cell

As an application, we design a new 128-bit block cipher, Four-Cell, with 128-
bit key size. It uses the block cipher structure described in Section 3 with four
cells where each cell is a 32-bit word. The block cipher has 25 rounds and uses
two types of nonlinear functions for round i, defined as follows:

Cryptographic Properties and Application of a GUFN Structure 85

fi(xi, ki, 0) = MDS(S(xi+ki)), for rounds i = 1, 2, . . . , 5 and i = 21, 22, . . . , 25.

fi(xi, ki, k
′
i) = S(MDS(S(xi + ki)) + k′

i), for rounds i = 6, 7, . . . , 20.

Here, S : GF (28)4 → GF (28)4 is defined as

S(x1, x2, x3, x4) = (Inv(x1), Inv(x2), Inv(x3), Inv(x4)),

where Inv : GF (28) → GF (28) is affine equivalent to x �→ x254 on GF (28) (e.g.,
the AES S-box). MDS : GF (28)4 → GF (28)4 is a 4-byte to 4-byte maximal
distance separable transform with optimal branch number 5 (e.g., the MixCol-
umn operation in AES). Note that one subkey and one layer of S-box is used for
rounds 1, 2, . . . , 5 and 21, 22, . . . , 25 while two subkeys and two layers of S-boxes
are used for rounds 6, 7, . . . , 20. Moreover, we XOR a 128-bit post-whitening key
K26 to the output after 25 rounds.

We leave the implementation of a secure key schedule open to the reader. One
possibility would be to use a similar cipher with 26 rounds as the key schedule.
The only difference is that the nonlinear function for all rounds is defined as
fi(xi, ci, 0) = MDS(S(xi + ci)) where the ci’s are distinct randomly generated
constants. The input to the key-schedule is the secret key K. The least significant
32 output bits (i.e., nonlinear output) of round i of the key schedule can be used
as the ith-round cipher subkey ki. For rounds i = 6, 7, . . . , 20, we can take the
next 32 least significant output bits of round i of the key schedule to be k′

i. The
post-whitening key K26 is the 128-bit output of round 26 of the key schedule.

In the following section, we demonstrate the security of Four-Cell against a
slew of cryptanalytic attacks, in addition to differential and linear cryptanalysis.

9.1 Security of Four-Cell

Based on the cryptographic properties of the inversion S-box and MDS trans-
form, it is easy to see that the differential and linear characteristic probabilities
of Four-Cell are at most 2−192 < 2−128. Therefore it is practically secure against
differential and linear cryptanalysis. By combining the results of Sections 4 and
5 with the differential and linear probability of a SPN structure [19], we can
show that the true differential and linear probabilities of Four-Cell are at most
2−55.39 and 2−52.96 respectively.

However, this bound is tight only for a negligible number of input-output
differences and masks. From the results of Section 6, the expected differential
and linear probabilities are actually 2−110.5 and 2−105.79 respectively. Based on
the true differential probability, we can show that if we split Four-Cell into two
sub-ciphers with true differential probabilities p and q, then (pq)2 ≤ 2−221.57 �
2−128. This will ensure Four-Cell is secure against boomerang attack.

From the results of Section 7, there is a 10-round impossible differential attack
based on a 7-round impossible differential distinguisher. In addition, from the re-
sults of Section 8, there is a 14-round attack based on an 11-round integral attack
distinguisher. However, it is unlikely that these two attacks will work against the
full cipher which will require a 21-round impossible differential/integral attack
distinguisher.

86 J. Choy et al.

Furthermore, Four-Cell is secure against higher order differential and cube
attacks after 9 rounds, because the algebraic degree of the cipher attains the
maximum degree 127. We also see that interpolation attack might not work as
the cipher will be a complex multivariable equation over GF (28). By analyzing
the works in [3,4,5,12], we are able to show that the XSL attack (over GF (2)
and GF (28)) does not work on our cipher. Finally, Four-Cell is secure against
slide attack because of its distinct round structures and distinct round subkeys.
Full details on the analysis of Four-Cell can be found in the full version of our
paper (with the same title) on the IACR cryptology eprint archive.

9.2 Implementation Considerations

The Four-Cell cipher uses 160 S-boxes based on the inversion function on GF (28).
This is the same as the number of S-boxes used in AES. However only 25 MDS
transform are used when compared to AES, which uses 40 MDS transforms. This
might make the cipher faster in hardware implementations where the S-box and
MDS are not combined into a T-table. Moreover, note that the computation of
the nonlinear function in any 4 consecutive rounds of the cipher can be performed
in parallel for faster encryption speed, giving it an added advantage over other
GUFNs such as SMS4. Thus the Four-Cell cipher which (like the AES cipher)
has provable security against existing block cipher attacks can be viewed as a
viable alternative.

Also note that although the inverse cipher of Four-cell is distinct from Four-cell
itself and therefore coding might potentially take up more space in hardware, it is
still useful for modes of operation such as counter mode, output feedback (OFB)
mode, and cipher feedback (CFB) mode, where no inverse cipher is required.

Acknowledgement

The authors would like to thank the anonymous reviewer of CT-RSA who
pointed out the integral attack on Four-Cell.

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, New York (1993)

2. Biryukov, A., Wagner, D.: Slide Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

3. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

4. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. IACR eprint server 2002/044 (March 2002),
http://www.iacr.org

5. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

http://www.iacr.org

Cryptographic Properties and Application of a GUFN Structure 87

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES, The Advanced Encryption
Standard. Springer, Heidelberg (2002)

7. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials, Cryp-
tology Eprint Archive, Report 2008/385

8. Jakobsen, T., Knudsen, L.R.: Attacks on Block ciphers of Low Algebraic Degree.
Journal of Cryptology 14, 197–210 (2001)

9. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

10. Lai, X.: On the Design and Security of Block Ciphers, Thesis (1992)
11. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.

In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

12. Lim, C.W., Khoo, K.: An Analysis of XSL Applied on BES. In: Biryukov, A. (ed.)
FSE 2007. LNCS, vol. 4593, pp. 242–253. Springer, Heidelberg (2007)

13. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.: Analysis of
the SMS4 Block Cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 158–170. Springer, Heidelberg (2007)

14. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

15. Matsui, M.: New Structure of Block Ciphers with Provable Security Against Differ-
ential and Linear Cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039,
pp. 205–218. Springer, Heidelberg (1996)

16. Murphy, S., Robshaw, M.: Essential Algebraic Structure within the AES. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

17. Nyberg, K.: Linear Approximation of Block Ciphers. In: De Santis, A. (ed.) EU-
ROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

18. Nyberg, K.: Generalized Feistel Networks. In: Kim, K.-c., Matsumoto, T. (eds.)
ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

19. Park, S., Sang, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

20. Schneier, B., Kelsey, J.: Unbalanced Feistel Networks and Block-Cipher Design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

21. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Block-
cipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

22. Daemen, J., Knudsen, L., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

23. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

24. Wallen, J.: Design Principles of the KASUMI Block Cipher (June 2008),
http://www.tml.tkk.fi/Opinnot/Tik-110.501/2000/papers/wallen.pdf

25. Wu, W., Zhang, W., Lin, D.: On the Security of Generalized Feistel Scheme with SP
Round Function. International Journal of Network Security 3(3), 215–224 (2006)

26. Kim, J., Hong, S., Sung, J., Lee, S., Lim, J., Sung, S.: Impossible Differential
Cryptanalysis for Block Cipher Structures. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

http://www.tml.tkk.fi/Opinnot/Tik-110.501/2000/papers/wallen.pdf

88 J. Choy et al.

A Tables

Table 1. Frequencies of differential and linear hull probabilities

Differential Linear hull Nd(x)/Nl(x) # of elements in ∆ (or Ω resp.)
probability probability which are non-zero

≤ pn ≤ qn (2B − 1)n · (2nB − 1) n

≤ pn−1 ≤ qn−1

(
n

n − 1

)

(2B − 1)n−1 · (2nB − 1) n − 1

≤ pn−2 ≤ qn−2

(
n

n − 2

)

(2B − 1)n−2 · (2nB − 1) n − 2

...
...

...
...

≤ p3 ≤ q3

(
n

3

)

(2B − 1)3 · (2nB − 1) 3

≤ p2 ≤ q2

(
n

2

)

(2B − 1)2 · (2nB − 1) 2

≤ p2 ≤ q2

(
n

1

)

(2B − 1) · (2nB − 1) 1

Table 2. Distribution of proportions

Differential Linear hull x Pd(x)/Pl(x)
probability probability n = 4, B = 8 n = 4, B = 16

p4 q4 4 0.9844663148 0.9999389662
p3 q3 3 0.1544260886 0.0000610323
p2 q2 2 0.0000910763 0.1396955440 × 10−8

Cryptographic Properties and Application of a GUFN Structure 89

B Figures

Fig. 2. Sequence of differences(left)/mask values(right) for n+1 rounds of GF-NLFSR

Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT

and HIGHT

Onur Özen1, Kerem Varıcı2,�, Cihangir Tezcan3, and Çelebi Kocair4

1 EPFL IC LACAL Station 14. CH-1015 Lausanne, Switzerland
onur.ozen@epfl.ch

2 K.U.Leuven, Dept. of Electrical Engineering, ESAT/SCD/COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

kerem.varici@esat.kuleuven.be
3 METU, Institute of Applied Mathematics,

Department of Cryptography, 06531 Ankara, Turkey
cihangir@metu.edu.tr

4 METU, Department of Computer Engineering, 06531 Ankara, Turkey
celebi@ceng.metu.edu.tr

Abstract. Design and analysis of lightweight block ciphers have be-
come more popular due to the fact that the future use of block ciphers
in ubiquitous devices is generally assumed to be extensive. In this re-
spect, several lightweight block ciphers are designed, of which Present

and Hight are two recently proposed ones by Bogdanov et al. and Hong
et al. respectively. In this paper, we propose new attacks on Present

and Hight. Firstly, we present the first related-key cryptanalysis of 128-
bit keyed Present by introducing 17-round related-key rectangle attack
with time complexity approximately 2104 memory accesses. Moreover, we
further analyze the resistance of Hight against impossible differential
attacks by mounting new 26-round impossible differential and 31-round
related-key impossible differential attacks where the former requires time
complexity of 2119.53 reduced round Hight evaluations and the latter is
slightly better than exhaustive search.

Keywords: Present, Hight, Related-Key Attack, Rectangle Attack,
Impossible Differential Attack.

1 Introduction

Lightweight cryptography has become very vital with the emerging needs in
sensitive applications like RFID (Radio-frequency identification) systems and
� This work was sponsored by the Research Fund K.U.Leuven, by the IAP Programme

P6/26 BCRYPT of the Belgian State (Belgian Science Policy) and by the Euro-
pean Commission through the ICT Programme under Contract ICT-2007-216676
(ECRYPT II). The information in this paper is provided as is, and no warranty
is given or implied that the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 90–107, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Lightweight Block Ciphers Revisited 91

sensor networks. For these types of special purposes, there is a strong demand in
designing secure lightweight cryptographic modules. After the selection of AES
(Advanced Encryption Standard) [1], the research on efficient implementation
of AES, especially for such constrained environments, brought special attention
in research community. Even though it is highly convenient for such devices, the
research on designing and analyzing new lightweight block ciphers that are more
efficient than AES on these platforms poses huge challenges. For this purpose,
several block ciphers are designed as potential candidates such as Hight [2,3],
Present [4], mCrypton [5], SEA [6], CGEN [7], DES [8] and DESXL [8]1.

A recent portfolio2, which contains four software and three hardware oriented
stream ciphers [11], has been announced by ECRYPT as part of eSTREAM
project to identify new stream ciphers that might become suitable for widespread
adoption including lightweight platforms. As a result, stream ciphers are shown
to be highly efficient on both software and hardware implementations comparing
to block ciphers. To fill this efficiency gap, Present [4] was proposed by Bog-
danov et al. at CHES ’07 as an ultra-lightweight block cipher with 31 rounds
offering as good hardware and software performance as current modern stream
ciphers while it is more efficient than many known block ciphers.

Basic security analysis of Present is provided in [4] by showing resistance
against known attacks such as differential, linear cryptanalysis and their vari-
ants. Recent differential attacks [12,13] on 16 and 19 rounds of Present provide
similar results as in the original proposal with some practical evidence of applied
characteristics where the latter is an attempt to combine algebraic attacks with
differential cryptanalysis. Another type of an attack called bit-pattern based in-
tegral attack [14] is applicable up to seven rounds of Present. More recently, a
new type of attack, called statistical saturation attack was proposed in [15] and
shown to be applicable up to 24 rounds of Present. Previous results on the
analysis of Present are summarized in Table 1.

The security of Present against key schedule weaknesses is provided by
showing the resistance against slide [16] and related-key differential attacks [17]
where slide attacks are inapplicable because of the round dependent counters in
key scheduling algorithm. Related-key differential attacks, on the other hand,
are also believed to be inapplicable because of the sufficient non-linearity due to
key scheduling algorithm.

Hight [2,3] is a South Korean standard encryption algorithm enjoying the
use of a low-resource hardware implementation. It is a 32 round block cipher
proposed one year before Present at CHES ’06 by Hong et al. to be used for
ubiquitous computing devices. The prominent characteristic of Hight is that
it makes use of simple byte oriented operations such as exclusive-or, addition
modulo 256 and cyclic rotation which offers nice performance on hardware.

1 TEA [9] and XTEA [10] can also be given as lightweight block ciphers which were
designed before AES.

2 The original hardware-oriented portfolio of eSTREAM contains four hardware-
oriented stream ciphers. However, F-FSCR-H has recently been eliminated from
the eSTREAM portfolio.

92 O. Özen et al.

Table 1. Summary of the attacks on Present and Hight (CP-Chosen Plaintext, MA-
Memory Accesses, PR-Reduced round Present evaluation, HE-Reduced round Hight

evaluation)

Cipher Rounds Key Attack Data Time Memory Reference
Size Type Complexity Complexity Complexity

Present 24 80 Stat. Sat. 260CP 220 PR 216 bytes [15]
24 80 Stat. Sat. 257CP 257 PR 232 bytes [15]
7 128 Bit-Pat. Int. 224.3CP 2100.1 MA 277 bytes [14]
17 128 Rel.-Key Rec. 263 CP 2104 MA 253 bytes §3.1
19 128 Alg.-Dif. 6 × 262 CP 2113 MA not specified [13]

Hight 18 128 Imp. Dif. 246.8 CP 2109.2 HE not specified [2]
25 128 Imp. Dif. 260 CP 2126.78HE not specified [18]
26 128 Imp. Dif. 261 CP 2119.53HE 2109 bytes §4.1
26 128 Rel.-Key Rec. 251.2 CP 2120.41HE not specified [18]
28 128 Rel.-Key Imp. 260 CP 2125.54HE not specified [18]
31 128 Rel.-Key Imp. 264 CP 2127.28HE 2117 bytes §4.2

The security of Hight is investigated in [2] by showing resistance against
differential, linear, truncated differential, boomerang, rectangle, impossible dif-
ferential attacks and their related-key variants. In [2], the safety margin was
shown to be 13 rounds as the best attack covers 19 rounds. Recent serious at-
tacks [19] by Lu on reduced round Hight make use of 25, 26 and 28 round
impossible differential, related-key rectangle and related-key impossible differ-
ential attacks: the last attack is the best attack on Hight so far that reduced
the safety margin from 13 rounds to four rounds.

In this work, we present the first related-key cryptanalysis of Present.
For 128-bit keyed version, we introduce 17-round related-key rectangle attack
[20,21,22] which is not explicitly mentioned in the original proposal [4]. More-
over, we further analyze the resistance of Hight against impossible differential
attacks [23,24]. Firstly, we improve 25-round impossible differential attack of Lu
by introducing a new characteristic to 26 rounds and update 28-round related-
key impossible differential attack on 31 rounds. To the best of our knowledge,
these are the best cryptanalytic results on Hight. We provide a summary of our
results in Table 1.

The organization of the paper is as follows. In Section 2, we give a brief de-
scription of the block ciphers Present and Hight. Section 3 introduces the idea
behind the related-key attacks on Present and contains related-key rectangle
attack on 17-round. In Section 4, we introduce our improved impossible differ-
ential and related-key impossible differential attacks on reduced round Hight.
We conclude with Section 5 and provide supplementary details about the paper
in Appendices.

2 The Block Ciphers PRESENT and HIGHT

2.1 Notation

For Present and Hight, we use the same notation to denote the variables used
in this paper. For the sake of clarity and the parallelism with the previous work

Lightweight Block Ciphers Revisited 93

Table 2. Notation

⊕ Bitwise logical exclusive OR (XOR)
� Addition modulo 28

≪i Left cyclic rotation by i bits
Present-n-r Present reduced to r-rounds with n-bit secret key
Ki ith subkey of Present

Si ith S-Box of Present

ej1,...,jk
A word with zeros in all positions but bits j1, . . . , jk

Hight-r Hight reduced to r-rounds
ej A byte with zeros in all positions but bit j (0 � j � 7)
ej,∼ A byte that has zeros in bits 0 to j − 1, a one in bit j and indeterminate

values in bits (j + 1) to 7
ej̄,∼ A byte that has zeros in bits 0 to j and indeterminate values in bits (j +1)

to 7
? An arbitrary byte
Xi,j jth byte of state variable of round i of Hight, (0 � j � 7) (0 � i � 32)
MKi ith secret key byte of Hight

WKi ith whitening key byte of Hight

SKi ith subkey byte of Hight

[19], we use exactly the same notation for Hight which is provided in Table 2.
Throughout the paper, it is assumed that the rounds are numbered from zero
and the leftmost bit is the most significant bit in a byte or a word.

2.2 PRESENT

Present is a 31-round (and an output whitening at the end) SPN (Substitution
Permutation Network) type block cipher with block size of 64 bits that supports
80 and 128-bit secret key. Round function of Present, which is depicted in
Figure 1, is same for both versions of Present and consists of standard op-
erations such as subkey XOR, substitution and permutation: At the beginning
of each round, 64-bit input of the round function is XORed with the subkey.
Just after the subkey XOR, 16 identical 4× 4-bit S-boxes are used in parallel as
a non-linear substitution layer and finally a permutation is performed so as to
provide diffusion.

The subkeys for each round are derived from the user-provided secret key by
the key scheduling algorithm. We provide only the details of the key scheduling
algorithm of Present-128 as it is the main target of this paper: 128-bit secret
key is stored in a key register K and represented as k127k126 . . . k0. The subkeys
Ki (0 ≤ i ≤ 31) consist of 64 leftmost bits of the actual content of register K.
After round key Ki is extracted, the key register K is rotated by 61 bit positions

S
15

S
14

S
13

S
12 11

S S
10

S S S S S S S S S S
89 7 6 5 4 3 2 1 0

K i

Fig. 1. Round function of Present

94 O. Özen et al.

X X X X X X X

XXXXXXXX

SK SK

X

SK SK

F FF
0 1 0

F
1

i, 6 i, 5 i, 4i, 7 i, 3 i, 2 i, 1 i, 0

i+1, 0i+1, 1i+1, 2i+1, 3i+1, 4i+1, 5i+1, 6i+1, 7

4(i+1)−1 4(i+1)−2 4(i+1)−3 4(i+1)−4

Fig. 2. ith round of Hight for i = 0, . . . , 31

to the left, then S-box is applied to the left-most eight bits of the key register
and finally the round counter value, which is a different constant for each round,
is XORed with bits k66k65k64k63k62. Further details about the specification of
Present are provided in [4].

2.3 HIGHT

Hight is a 32-round block cipher with 64-bit block size and 128-bit user key
that makes use of an unbalanced Feistel Network. The encryption function starts
with an Initial Transformation (IT) that is applied to plaintexts together with
input whitening keys WKs. At the end of 32 rounds, in order to obtain the
ciphertexts, a Final Transformation (FT) is applied to the output of the last
round together with an output whitening. The byte-oriented round function,
shown in Figure 2, uses modular addition, XOR and linear subround functions
F0 and F1; the latter can be described as follows:

F0(x) = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7)
F1(x) = (x ≪ 3) ⊕ (x ≪ 4) ⊕ (x ≪ 6)

Hight only works with 128-bit secret key MK which is treated as 16 bytes,
(MK15, . . . , MK0). The key schedule of Hight uses additional constants to
avoid the self similarity in the key scheduling algorithm which prevents cipher
from slide attacks. Input-output whitening keys and round subkeys are obtained
by permuting the 16 bytes of the original key and using addition with constants.
Table 9 will be extensively used in this paper that shows the relations between
the original and the subkey bytes. Namely, each value in a row represents the
obtained whitening and subkey bytes once the corresponding byte in the first
column of the same row of the original key is known. Further details about the
specification of Hight are provided in [2,3].

3 The Related-Key Attacks on PRESENT

The idea behind the related-key attacks on Present is to benefit from the slow
mixing in the key scheduling algorithm which makes use of only one or two S-
box operations (depending on the version) during each iteration. To achieve this

Lightweight Block Ciphers Revisited 95

goal, we made an efficient search for related-key differentials of Present which
was done by flipping at most two bits of the original key. The crucial part of the
key differentials is that we only consider the trivial differentials. More precisely,
all reduced round key differentials in our attacks work with probability one.

In the original proposal of Present [4], the resistance against differential and
linear attacks are given by the bounds provided by the minimum number of active
S-boxes. This approach also works for showing resistance against wide variety of
attacks. A recent differential attack [12] uses same idea to attack the cipher by
increasing the overall probability of the characteristics more effectively. Although
there is no contradiction with the security claims given in [4], the differential
attack in [12] provides a practical evidence. In this work, however, our aim is
quite different and simple in that we try to decrease the number of active S-boxes
(NAS). In order to do so, we cancel the intermediate differences with the subkey
differences and construct our differentials by activating at most five S-boxes
at the beginning. At the end, we are able to construct related-key differentials
having less active S-boxes than given in [12]. As an example, for Present-80, the
minimum number of active S-boxes for any five-round differential characteristic
is given to be ten in [4,12]. However, we found several five-round related-key
differentials with only three active S-boxes.

Although it seems quite promising, as the number of rounds increases, the
minimum number of active S-boxes gets closer to the one given in the original
proposal [12] and the overall probabilities of the characteristics are not optimal.
Still, for less number of rounds the related-key differentials are efficient and the
number of possible characteristics are quite high. So, attacks like the related-key
rectangle attack are easily applicable.

3.1 The Related-Key Rectangle Attack on PRESENT-128-17

The related-key rectangle attack is the clever extension of differential cryptanaly-
sis. In rectangle-boomerang style attacks, the attacker uses two short differential
characteristics instead of one long differential characteristic. The aim is to ben-
efit from the slow mixing in relatively reduced round versions of the attacked
cipher. We provide a brief description about the related-key rectangle attack in
Appendix A and follow the mounted attack on Present. Throughout the paper,
the related-key rectangle attack is assumed to be mounted by using four related
keys.

Let E denote the encryption function of Present-n-r. We treat E as a cas-
cade of four subciphers as E = Ef ◦ E1 ◦E0 ◦Eb where E is composed of a core
E′ = E1 ◦E0 covered by additional rounds, Eb and Ef which are the subciphers
before and after the core function respectively.

For the related-key rectangle attack on Present-128-17, we use the following
decomposition: E0 starts with the first round and ends just after the subkey
XOR in round eight. E1, on the other hand, commences with the substitution
layer in round eight and stops at the end of round 143. Round 0 and round

3 This decomposition is not unique and can be done in various ways.

96 O. Özen et al.

Table 3. An example of related-key differential used in E0

Input Key Output
r Difference Difference ∆(I) ⊕ ∆(K) Difference NAS P

∆(I) ∆(K) ∆(O)
1 00000000000000bb 0000000000000000 00000000000000bb 0003000000000000 2 2−4

2 0003000000000000 0003000000000000 0000000000000000 0000000000000000 0 1
3 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1
4 0000000000000000 00000c0000000000 00000c0000000000 0000000004000000 1 2−3

5 0000000004000000 0000000000000000 0000000004000000 0000004000000040 1 2−2

6 0000004000000040 0000003000000000 0000007000000040 0000000200000202 2 2−4

7 0000000200000202 0000000000000000 0000000200000202 0000010500000105 3 2−6

8 0000010500000105 00000000c0000000 00000105c0000105 1

15 − 16 serve as the round before and after the distinguisher respectively (Eb

and Ef)4.
All the differentials used in E0 have the same input difference α = e0,1,3,4,5,7

and they all work with the key difference ∆K12 = e118,119. There are at least
343 such characteristics with varying differences at the beginning of the seventh
round: there exist one characteristics of probability p = 2−19, 18 characteristics
of probability p = 2−20, 108 characteristics of probability p = 2−21 and 216
characteristics of probability p = 2−22. Therefore the overall probability for E0
is p̂ =

√
1 · (2−19)2 + 18 · (2−20)2 + 108 · (2−21)2 + 216 · (2−22)2 ≈ 2−17. Table 3

shows one of the characteristics used for E0.
Given the α difference, the number of active S-boxes in Eb which lead to an

α difference in round 1 can be found by applying the inverse permutation to α
difference. This leads to six active S-boxes in the first round with varying output
differences after the substitution layer. These six S-boxes are used to create the
α difference before the core function. Since the output difference is known for all
active S-boxes in round 0, namely 1x, not all of the input differences are possible.
The number of possible input differences is only 215.5 instead of 224.

For the second subcipher E1, we use the fixed output difference δ = e11,15
under the key difference ∆K13 = e117,121. The most efficient characteristic is
provided in Table 4 with probability p = 2−12. As it can be seen from the table,
the overall probability for E1 is q̂ ≈ 2−12. Thus, the probability of the related-
key rectangle distinguisher is given by Pr = 2−64p̂2q̂2 ≈ 2−122. Similarly, the
subcipher Ef after the core function can be defined by letting δ propagate. In
round 15, there exist two active S-boxes with input differences 8x each leading
to six output differences and these outputs are diffused to six different S-boxes
after key addition in round 16 which produce 221.22 possible output differences
in total out of 224.

To attack 17 round Present, we request 239 structures of 224 plaintexts each.
The structures are chosen in such a way that each structure varies all over the
possible inputs to the active S-boxes in Eb, while the differences for the other
S-boxes are kept zero. Our aim is to get an α difference at the beginning of
E0. This technique for choosing plaintexts lets us 247 pairs in total for each
structure in which 223 of them satisfy α difference before E0. Thus, the total

4 We exclude the output whitening in our attack.

Lightweight Block Ciphers Revisited 97

Table 4. An example of related-key differential used in E1

Output Key
r Difference Difference ∆(I) ⊕ ∆(K) P −1(S−1(I ⊕ K)) NAS P

∆(O) ∆(K)
14 0000000000008800 0000000000008800 0000000000000000 0000000000000000 0 1
13 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1
12 0000000000000000 0000000000220000 0000000000220000 0000000000600060 2 2−6

11 0000000000600060 0000000000000000 0000000000600060 0000000008800000 2 2−6

10 0000000008800000 0000000008800000 0000000000000000 0000000000000000 0 1
9 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1
8 0000000000000000 0000000000000000

number of pairs with an α difference before the core function is 262 that produce
approximately 2124 quartets of which 2124 · 2−64 · 2−58 = 22 = 4 are expected to
be right. The overall attack works as follows:

1. Generate 239 structures of 224 plaintexts and encrypt each structure of plain-
texts with K1, K2, K3 and K4 to obtain the corresponding pool of cipher-
texts Cj where 1 ≤ j ≤ 4.
– This step requires data complexity of 263 chosen plaintexts and time

complexity of 265
Present-128-17 encryptions.

2. Generate 224+8+24 = 256 counters each of which corresponds to a different
key guess in Eb and Ef respectively.
– Time complexity of this step is 256 memory accesses.

3. Insert 265 ciphertexts (C1, C3) and (C2, C4) into hash tables (T 1
13, T

3
13) and

(T 2
24, T

4
24) respectively indexed by 40 (expected inactive) bits. If a collision

occurs in the same bins of (T 1
13, T

3
13) and (T 2

24, T
4
24), check whether the dif-

ferences of the collided ciphertexts are one of the 221.22 expected ciphertext
differences.
– This step has time complexity of 265 memory accesses from inserting all

the ciphertext into hash tables. In the hash tables there exist 240 bins
and in each bin we expect to have 223 ciphertexts. Therefore, we can
form (223)2 = 246 pairs where one of the components from T 1

13(T
2
24) and

the other is from T 3
13(T

4
24). That makes 286 pairs in total for each pair

of tables (T 1
13, T

3
13) and (T 2

24, T
4
24). In order to check whether colliding

ciphertexts’ differences are one of the expected ciphertext differences we
have to make 287 memory accesses in total. The number of remaining
pairs is 286−2.78 = 283.22 for each of (T 1

13, T
3
13) and (T 2

24, T
4
24) since the

probability of having expected difference in the ciphertexts is 221.22−24 =
2−2.78.

4. For each surviving pair (C1, C3) (and (C2, C4)) from the previous step, find
the corresponding plaintext pairs (P1, P3) (and (P2, P4)) from the structures.
For each such pair, check whether P1 ⊕P2 satisfies the required difference in
Eb. If this check succeeds, examine the ciphertexts C3 and C4 that collided
with C1 and C2 respectively. If the difference between the corresponding
plaintexts P3 and P4 also satisfies the required difference in Eb, continue to
analyze the quartet ((P1, P2), (P3, P4)).

98 O. Özen et al.

– The probability that P1⊕P2 satisfies the required difference is 215.5−24 =
2−8.5, if they are in the same structure. So, the probability that the
required difference is satisfied is 2−8.5−39 = 2−47.5 under the assumption
of uniform distribution of plaintexts and structures. This reduces the
number of pairs satisfying the condition in (T 1

13, T
3
13) to 283.22−47.5 =

235.72. Similarly, there exist 235.72 pairs in (T 2
24, T

4
24). Thus, we can form

(235.72)2 = 271.44 quartets satisfying the conditions in Eb and Ef . In
order to do this filtering we have to make 284.22 memory accesses.

5. For each remaining quartet ((P1, P2), (P3, P4)), ((C1, C2), (C3, C4)) and every
possible subkey value (kb and kf independently) of Eb and Ef test whether

Ebkb
(P1) ⊕ Eb

k
′
b

(P2) = Eb
k

′′
b

(P3) ⊕ Eb
k

′′′
b

(P4) = α where k
′
b = kb ⊕ ∆K12

and k
′′
b = k

′′′
b ⊕ ∆K12,

E−1
fkf

(C1) ⊕ E−1
f

k
′′
f

(C3) = E−1
f

k
′
f

(C2) ⊕ E−1
f

k
′′′
f

(P4) = δ where k
′′
f = kf ⊕ ∆K13

and k
′
f = k

′′′
f ⊕ ∆K13 hold.

If this is the case, increment the counters that correspond to kb, kf .
– In this step, every surviving quartet is partially encrypted (in Eb) and

decrypted (in Ef) independently. As the number of subkeys guessed are
more in Ef than in Eb, the overall complexity of this step is 271.44+32 =
2103.44 memory accesses and half round decryptions (as eight S boxes
are affected in total); the latter is equivalent to 299

Present-128-17
evaluations.

6. Output the subkeys whose counters are maximal.
– This step requires 256 memory accesses.

Since α difference after Eb can be obtained from 215.5 input differences in step
5, the probability that the intermediate difference is α before the core function is
2−15.5 on average. Thus, each subkey is suggested by a quartet with probability
2−31. Similarly, the probability that the difference after the core function has an δ
difference is 2−21.22 on average leading to 2−42.44 of the subkeys by the quartets.
Each of the 271.44 quartets that enter step 5 suggests 256−2×15.5−2×21.22 = 2−17.44

subkeys, so the total number of suggested subkeys is about 254. As there are 256

subkeys, the expected number of times a wrong subkey is suggested is about
2−2. This means that we can find the right subkey or at least discard almost all
the wrong subkeys.

Thus, the overall attack has memory complexity of 253 bytes, time complex-
ity of 2104 memory accesses and data complexity of 263 chosen plaintexts. The
expected number of right quartets is taken to be four.

4 Impossible Differential Attacks on HIGHT

In this section, we introduce improved impossible differential attack on 26-round
and related-key impossible differential attack on 31-round Hight which utilize

Lightweight Block Ciphers Revisited 99

Table 5. 26-Round impossible differential

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0 Subkeys
∆X0 ? ? ? ? ? e0,∼ 0 0 SK3 SK2 SK1 SK0
∆X1 ? ? ? ? e0,∼ 0 0 0 SK7 SK6 SK5 SK4
∆X2 ? ? ? e0,∼ 0 0 0 0 SK11 SK10 SK9 SK8
∆X3 ? ? e0,∼ 0 0 0 0 0 SK15 SK14 SK13 SK12
∆X4 ? e0,∼ 0 0 0 0 0 0 SK19 SK18 SK17 SK16

∆X5 e0,∼ 0 0 0 0 0 0 0 SK23 SK22 SK21 SK20
∆X6 0 0 0 0 0 0 0 e0,∼ SK27 SK26 SK25 SK24
∆X7 0 0 0 0 0 ? e0,∼ 0 SK31 SK30 SK29 SK28
∆X8 0 0 0 ? ? e0,∼ 0 0 SK35 SK34 SK33 SK32
∆X9 0 ? ? ? e0,∼ 0 0 0 SK39 SK38 SK37 SK36

∆X10 ? ? ? e0,∼ 0 0 0 ? SK43 SK42 SK41 SK40
∆X11 ? ? e0,∼ 0 0 ? ? ? SK47 SK46 SK45 SK44
∆X12 ? e0,∼ 0 ? ? ? ? ? SK51 SK50 SK49 SK48
∆X13 e0,∼ ? ? ? ? ? ? ? SK55 SK54 SK53 SK52

∆X13 e0̄,∼ 80x ? ? ? ? ? ? SK55 SK54 SK53 SK52
∆X14 80x 0 ? ? ? ? ? e0,∼ SK59 SK58 SK57 SK56
∆X15 0 0 ? ? ? ? e0,∼ 80x SK63 SK62 SK61 SK60
∆X16 0 0 ? ? ? e0,∼ 80x 0 SK67 SK66 SK65 SK64
∆X17 0 0 ? ? e0,∼ 80x 0 0 SK71 SK70 SK69 SK68
∆X18 0 0 ? e2,∼ 80x 0 0 0 SK75 SK74 SK73 SK72
∆X19 0 0 e2,∼ 80x 0 0 0 0 SK79 SK78 SK77 SK76
∆X20 0 0 80x 0 0 0 0 0 SK83 SK82 SK81 SK80
∆X21 0 80x 0 0 0 0 0 0 SK87 SK86 SK85 SK84
∆X22 80x 0 0 0 0 0 0 e0,∼ SK91 SK90 SK89 SK88
∆X23 0 0 0 0 0 ? e0,∼ 80x SK95 SK94 SK93 SK92
∆X24 0 0 0 ? ? e0,∼ 80x 0 SK99 SK98 SK97 SK96
∆X25 0 ? ? ? e0,∼ 80x 0 0 SK103 SK102 SK101 SK100
∆X26 ? ? ? e0̄,∼ 80x 0 0 ? WK7 WK6 W K5 WK4

F T ? ? ? ? e0̄,∼ 80x 0 0

16-round impossible differential and 22-round related-key impossible differen-
tial characteristics respectively. For impossible differential attack on 26-round
Hight, we use a similar characteristic as in [19] which enables us to attack 26-
round of Hight with a lower complexity. However, we use better characteristic
for related-key impossible differential attack.

The process of both attacks is similar. First, a data collection part is processed
for the generation of necessary plaintext-ciphertext pairs. Then, to guarantee the
impossible differential characteristic, pairs are filtered by checking the conditions
at each intermediate rounds. At the end, the guessed key is eliminated if any
one of the remaining pairs satisfies the impossible differential characteristic.

4.1 Impossible Differential Attack on HIGHT-26

We use the following 16-round impossible differential which is also given in Ta-
ble 5 in detail:

(e0,∼, 0, 0, 0, 0, 0, 0, 0) � (0, 80x, 0, 0, 0, 0, 0, 0)

In Table 5, the contradictory differences and the guessed subkey bytes in the
attack are labeled with gray background. The differences used here are considered
with respect to XOR operation and shown as hexadecimal. The propagation of
the differences can easily be checked by the properties of addition and linear
subround functions Fi. Contradiction is shown by miss in the middle manner
at values X13,7. This attack covers the rounds 0 - 25 and excludes the input
whitening as done in [19]. Overall attack on 26-round Hight works as follows:

100 O. Özen et al.

1.) Data Collection

(i) Choose 213 structures of 248 plaintexts each where the bytes (1, 0) have
fixed values, bytes (7, 6, 5, 4, 3) and most significant 7 bits of the byte (2)
take all possible values.
– Such a structure of plaintexts propose 294 plaintext pairs and so we get

2107 pairs in total.
(ii) Obtain all the ciphertexts Ci of the plaintexts P i. Choose only the cipher-

text pairs satisfying the difference (?, ?, ?, ?, e0̄,∼, 80x, 0, 0).
– This step can be done by inserting all the ciphertexts into a hash table

indexed by expected inactive bits and choosing the colliding pairs which
satisfy the required difference. There is a 25-bit filtering condition over
the ciphertext pairs. Therefore, 282 pairs remain.

2.) Filtering and Key Elimination

We have 28 similar steps given in Table 6 to reach impossible differential char-
acteristic and eliminate the wrong key values.

Let us look at the first step as an example. Guess MK3 and partially encrypt
every plaintext pairs by using SK3 to obtain (7, 0)-th bytes of X1 (The relation
between the MK values and SK values are given in the Table 9). The expected
difference for the (7, 0)-th bytes is (?, 0) which comes up with an eight-bit condi-
tion. Therefore, the number of total pairs is decreased to 282−8 = 274 after this
step. In this step, we partially encrypt 282 pairs with the guessed eight-bit of the
secret key. Each partial encryption is equivalent to 1/4th of a round of Hight

and the overall attack is done on 26 rounds. Thus, the complexity of this step is
2 ·282 ·28 · 1

4 · 1
26 ≈ 284.30 26-round Hight encryptions. Remaining steps given in

Table 6 follow similarly. Moreover, if the secret key byte MK is already guessed
and known for the required subkey SK, it is directly used and since most of the
previous conditions are preserved for the next rounds there does not exist too
much conditions on the evaluation process of intermediate rounds.

In step 28, if a pair satisfies the impossible differential characteristic, we elim-
inate that guessed key. Since there is an eight-bit condition, every pair elimi-
nates 2−8 of the keys. Therefore after the first pair, there remain 2112 − 2104 =
2112 ·(1−2−8) keys. After the second pair, it is expected to have 2112 ·(1−2−8)−
2112 · (1 − 2−8) · 2−8 = 2112 · (1 − 2−8)2 remaining keys. Following that manner,
after the last pair, we have 2112(1 − 2−8)2

11 ≈ 2100.46 remaining keys. Complex-
ity of this step is 2 · 2112

{
1 + (1 − 2−8) + . . . + (1 − 2−8)2

11−1
}
· 1

4 · 1
26 ≈ 2114.30

Hight encryptions.

3.) Final Step

For every recorded 112 bit key at the end of Step 28, we obtain the remaining
16 bits and the original key itself with exhaustive search by checking over two
plaintext-ciphertext pairs. The probability that a wrong key is suggested is ap-
proximately 2−64×2 = 2−128. So, the expected number of wrong keys is about
2−128 · 2116.46 = 2−11.54. Thus, it is very likely that we can find the correct key.

Lightweight Block Ciphers Revisited 101

Table 6. 26-Round impossible differential attack

Guess Use Obtain Check Condition Remaining Time
Key Byte Difference (In terms of bits) Pairs Complexity(HE)

1 MK3 SK3 (7, 0) of X1 (?, 0) 8 274 ≈ 284.30

2 MK1 WK7, SK103 (7, 6) of X25 (0, ?) 8 266 ≈ 284.30

3 MK2 SK2 (6, 5) of X1 - - 266 ≈ 284.30

4 MK7 SK7 (7, 0) of X2 (?, 0) 8 258 ≈ 292.30

5 MK0 WK6, SK102 (5, 4) of X25 - - 258 ≈ 292.30

6 MK4 SK98 (5, 4) of X24 (0, ?) 8 250 ≈ 2100.30

7 - WK5, SK101 (3, 2) of X25 - - 250 ≈ 292.30

8 - SK97 (3, 2) of X24 - - 250 ≈ 292.30

9 MK8 SK93 (3, 2) of X23 (0, ?) 8 242 ≈ 2100.30

10 - SK1 (4, 3) of X1 - - 242 ≈ 292.30

11 MK6 SK6 (6, 5) of X2 - - 242 ≈ 2100.30

12 MK11 SK11 (7, 0) of X3 (?, 0) 8 234 ≈ 2108.30

13 - WK4, SK100 (1, 0) of X25 - - 234 ≈ 2100.30

14 - SK96 (1, 0) of X24 - - 234 ≈ 2100.30

15 MK15 SK92 (1, 0) of X23 - - 234 ≈ 2108.30

16 - SK88 (1, 0) of X22 (0, e0,∼) 8 226 ≈ 2108.30

17 - SK0 (2, 1) of X1 - - 226 ≈ 2100.30

18 MK5 SK5 (4, 3) of X2 - - 226 ≈ 2108.30

19 MK10 SK10 (6, 5) of X3 - - 226 ≈ 2116.30

20 - SK15 (7, 0) of X4 (?, 0) 8 218 ≈ 2116.30

21 - SK99 (7, 6) of X24 - - 218 ≈ 2108.30

22 - SK95 (7, 6) of X23 - - 218 ≈ 2108.30

23 MK14 SK91 (7, 6) of X22 - - 218 ≈ 2116.30

24 - SK87 (7, 6) of X21 (0, 80x) 7 211 ≈ 2116.30

25 - SK4 (2, 1) of X2 - - 211 ≈ 2109.30

26 MK9 SK9 (4, 3) of X3 - - 211 ≈ 2117.30

27 - SK14 (6, 5) of X4 - - 211 ≈ 2117.30

28 - SK19 (7, 0) of X5 (e0,∼, 0) 8 - ≈ 2114.30

The total complexity of the steps given in Table 6 is 2119.35. Since we have
approximately 2100.46 remaining keys before the final step, the complexity of the
final step is 2100.46+16 = 2116.46. Therefore, the overall complexity of the attack
is 2119.35 + 2116.46 = 2119.53 26-round Hight evaluations, 261 chosen plaintexts
of data and 2109 bytes of memory.

4.2 Related-Key Impossible Differential Attack on HIGHT-31

In this section, we introduce our related-key impossible differential attack on
31-round Hight which utilizes a new 22-round related-key impossible differen-
tial. The differences of this attack from [19] are the used related-key impossible
differential and the overall complexity which makes use of a related-key impos-
sible differential of three more rounds. We use the following 22-round impossible
differential which is given in Table 7 in detail:

(0, 0, 0, 0, 0, 0, 80x, 0) � (0, 0, 0, 80x, 0, 0, 0, 0)

The related-key impossible differential occurs by using the key difference
(∆MK15, ∆MK14, . . . , ∆MK0) = (80x, 0, . . . , 0). The contradiction occurs at
values X17,3 and can be shown similarly by miss in the middle manner which is
given in Table 7 where the contradictory differences and the subkey bytes having
nonzero differences are shown with gray background. The related-key impossible
differential was found by imposing the difference 80x to all 16 key bytes and
observing the impossibility at the differentials. It can be concluded that the best

102 O. Özen et al.

Table 7. 31-Round related-key impossible differential

∆Xi,7 ∆Xi,6 ∆Xi,5 ∆Xi,4 ∆Xi,3 ∆Xi,2 ∆Xi,1 ∆Xi,0 Subkeys
∆X0 ? ? ? e0,∼ 80x 0 ? ? SK3 SK2 SK1 SK0
∆X1 ? ? e0,∼ 80x 0 0 ? ? SK7 SK6 SK5 SK4
∆X2 ? e0,∼ 80x 0 0 0 ? ? SK11 SK10 SK9 SK8
∆X3 e0,∼ 80x 0 0 0 0 ? ? SK15 SK14 SK13 SK12
∆X4 80x 0 0 0 0 0 ? e2,∼ SK19 SK18 SK17 SK16
∆X5 0 0 0 0 0 0 e2,∼ 80x SK23 SK22 SK21 SK20

∆X6 0 0 0 0 0 0 80x 0 SK27 SK26 SK25 SK24
∆X7 0 0 0 0 0 0 0 0 SK31 SK30 SK29 SK28
∆X8 0 0 0 0 0 0 0 0 SK35 SK34 SK33 SK32
∆X9 0 0 0 0 0 0 0 0 SK39 SK38 SK37 SK36

∆X10 0 0 0 0 0 0 0 0 SK43 SK42 SK41 SK40
∆X11 0 0 0 80x 0 0 0 0 SK47 SK46 SK45 SK44
∆X12 0 e2,∼ 80x 0 0 0 0 0 SK51 SK50 SK49 SK48
∆X13 e2,∼ 80x 0 0 0 0 0 ? SK55 SK54 SK53 SK52
∆X14 80x 0 0 0 0 ? ? e0,∼ SK59 SK58 SK57 SK56
∆X15 0 80x 0 ? ? ? e0,∼ 80x SK63 SK62 SK61 SK60
∆X16 80x ? ? ? ? e0,∼ 80x e0,∼ SK67 SK66 SK65 SK64
∆X17 ? ? ? ? e0,∼ ? e0,∼ ? SK71 SK70 SK69 SK68

∆X17 ? ? ? e0,∼ 80x 0 ? ? SK71 SK70 SK69 SK68
∆X18 ? ? e0,∼ 80x 0 0 ? ? SK75 SK74 SK73 SK72
∆X19 ? e0,∼ 80x 0 0 0 ? ? SK79 SK78 SK77 SK76
∆X20 e0,∼ 80x 0 0 0 0 ? ? SK83 SK82 SK81 SK80
∆X21 80x 0 0 0 0 0 ? e2,∼ SK87 SK86 SK85 SK84
∆X22 0 0 0 0 0 0 e2,∼ 80x SK91 SK90 SK89 SK88
∆X23 0 0 0 0 0 0 80x 0 SK95 SK94 SK93 SK92
∆X24 0 0 0 0 0 0 0 0 SK99 SK98 SK97 SK96
∆X25 0 0 0 0 0 0 0 0 SK103 SK102 SK101 SK100
∆X26 0 0 0 0 0 0 0 0 SK107 SK106 SK105 SK104
∆X27 0 0 0 0 0 0 0 0 SK111 SK110 SK109 SK108
∆X28 0 0 0 80x 0 0 0 0 SK115 SK114 SK113 SK112
∆X29 0 e2,∼ 80x 0 0 0 0 0 SK119 SK118 SK117 SK116
∆X30 e2,∼ 80x 0 0 0 0 0 ? SK123 SK122 SK121 SK120
∆X31 80x 0 0 0 0 ? ? e0,∼ WK7 WK6 W K5 WK4

F T e0,∼ 80x 0 0 0 0 ? ?

related-key impossible differential is 22 rounds and it can not be extended by
the same technique5.

Using this related-key impossible differential, we can attack up to 31 rounds of
Hight. This attack covers the rounds 0 - 30 and excludes the input whitening as
done in 26-round impossible differential attack [19]. We use the related-key im-
possible differential characteristic to attack 31-round of Hight which is detailed
in Table 7. The attack can be described as follows.

1.) Data Collection

(i) Choose 215 structures of 248 plaintexts each where the byte (2) and the
least significant seven bits of the byte (3) are fixed to certain values. The
bytes (7, 6, 5, 1, 0) and the most significant seven bits of the byte (7) contain
every possible values.
– There exist 2110 plaintext pairs in total which are encrypted by the

prescribed difference in the key.
(ii) Obtain all the ciphertexts Ci of the plaintexts P i encrypted with K1 and

ciphertext Ci′
of the plaintexts P i encrypted with K2 where K1 ⊕ K2 =

(80x, 0, . . . , 0). Choose only the ciphertext pairs (Ci, Cj′
) satisfying the

difference (e0,∼, 80x, 0, 0, 0, 0, ?, ?).

5 A similar attack with the same complexity can be mounted by imposing the difference
80x to MK9 instead of MK15.

Lightweight Block Ciphers Revisited 103

Table 8. 31-Round related key impossible differential attack

Guess Use Obtain Check Condition Remaining Time
Key Byte Difference (In terms of bits) Pairs Complexity(HE)

1 MK0 SK0 (2, 1) of X1 (0, ?) 8 bits 261 ≈ 271.05

2 MK3 SK3 (7, 0) of X1 - - 261 ≈ 271.05

3 MK4 SK4 (2, 1) of X2 (0, ?) 8 bits 253 ≈ 279.05

4 MK9 WK4, SK120 (1, 0) of X30 (0, ?) 8 bits 245 ≈ 279.05

5 MK12 WK7, SK123 (7, 6) of X30 (e2,∼, 80x) 2 bits 243 ≈ 279.05

6 - SK119 (7, 6) of X29 (0, e2,∼) 8 bits 235 ≈ 277.05

7 MK2 SK2 (6, 5) of X1 - - 235 ≈ 277.05

8 MK7 SK7 (7, 0) of X2 - - 235 ≈ 285.05

9 MK8 SK8 (2, 1) of X3 (0, ?) 8 bits 227 ≈ 293.05

10 MK11 WK6, SK122 (5, 4) of X30 - - 227 ≈ 293.05

11 - SK118 (5, 4) of X29 - - 227 ≈ 293.05

12 - SK114 (5, 4) of X28 (0, 80x) 5 bits 222 ≈ 293.05

13 MK1 SK1 (4, 3) of X1 - - 222 ≈ 296.05

14 MK6 SK6 (6, 5) of X2 - - 222 ≈ 2104.05

15 - SK11 (7, 0) of X3 - - 222 ≈ 2104.05

16 - SK12 (2, 1) of X4 (0, ?) 8 bits 214 ≈ 2104.05

17 MK5 SK5 (4, 3) of X2 - - 214 ≈ 2104.05

18 MK10 SK10 (6, 5) of X3 - - 214 ≈ 2112.05

19 MK15 SK15 (7, 0) of X4 (80x, e2,∼) 2 bits 212 ≈ 2120.05

20 - SK16 (2, 1) of X5 (0, e2,∼) 8 bits 24 ≈ 2118.05

21 - SK9 (4, 3) of X3 - - 24 ≈ 2110.05

22 MK14 SK14 (6, 5) of X4 - - 24 ≈ 2118.05

23 - SK19 (7, 0) of X5 - - 24 ≈ 2118.05

24 - SK20 (2, 1) of X6 (0, 80x) 5 bits - ≈ 2117.89

– This step can be done by inserting all the ciphertexts into a hash table
indexed by expected inactive bits and choosing the colliding pairs which
satisfy the required difference. There is 41-bit filtering condition over
the ciphertext pairs. Therefore 269 pairs remain.

2.) Filtering and Key Elimination

We follow the steps as in 26-round attack which is given in Table 8 to reach
impossible differential characteristic.

In step 24, if a pair satisfies the impossible differential characteristic, we elim-
inate the corresponding guessed key. Since there is five-bit condition, each pair
eliminates 2−5 of the keys and after the last pair there remain 2120(1−2−5)2

4 ≈
2119.27 keys.

3.) Final Step:

For every recorded 120 bit key (MK0, . . . , MK12, MK14, MK15), obtain the
remaining eight bits of the key by exhaustive search by checking over three
plaintext-ciphertext pairs. The probability that a wrong key is suggested is ap-
proximately 2−64×3 = 2−192. So, the expected number of wrong keys is about
2−192 · 2127.27 = 2−64.73. It is very likely that we can find the correct key.

The total complexity of the steps given in Table 8 is approximately 2121.03.
Since there exists 2119.27 remaining keys, the complexity of the final step is
approximately 2127.27. Therefore, the complexity of this whole attack is 2127.28

31-round Hight computations. Even if this attack is not significant compared
to the exhaustive search, it is still an important result against Hight which
reduces the safety margin of Hight to one round.

104 O. Özen et al.

5 Conclusion

In this paper, we present the first related-key cryptanalysis of Present and im-
prove the recent impossible differential attacks on Hight. Although our attacks
are totally theoretical and have no practical implications, they show new results
for both ciphers. The related-key attacks on Present can be seen as a new
approach to see the security of the cipher. Hight, on the other hand, was shown
to be secure up to 19 rounds in the original proposal and recently attacked up to
28 rounds. However, our results show that the security of Hight can be further
reduced up to one round.

Acknowledgements

The authors would like to thank anonymous reviewers of ACISP 2009 for point-
ing out recent results on Present and Jonsung Kim for the additional infor-
mation about Hight. We also like to thank Meltem Sönmez Turan, Shahram
Khazaei and Martijn Stam for reviewing the previous versions of the paper.
The simulations were run on the HPC Cluster of the Department of Computer
Engineering, Middle East Technical University.

References

1. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, New York (2002)
2. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,

J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

3. South Korea Telecommunications Technology Associations (TTA). 64-bit Block
Cipher HIGHT. Standardization Number TTAS.KO-12.0040, December 27 (2006)

4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

5. Lim, C.H., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

6. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

7. Robshaw, M.J.B.: Searching for Compact Algorithms: CGEN. In: Nguyên, P.Q.
(ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 37–49. Springer, Heidelberg (2006)

8. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

9. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

Lightweight Block Ciphers Revisited 105

10. Wheeler, D.J., Needham, R.M.: TEA Extensions (October 1997)
11. The eSTREAM Portfolio. The eSTREAM Project (September 2008),

http://www.ecrypt.eu.org/stream/
12. Wang, M.: Differential Cryptanalysis of Reduced-Round PRESENT. In: Vaudenay,

S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

13. Albrecht, M., Cid, C.: Algebraic Techniques in Differential Cryptanalysis. To ap-
pear in proceedings of FSE (2009)

14. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-Pattern Based Integral
Attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008)

15. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. To appear in proceedings of CT-RSA (2009)

16. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen [26], pp. 245–259
17. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of

Cryptology 7(4), 229–246 (1994)
18. Lu, J.: Cryptanalysis of Block Ciphers. PhD thesis, Royal Holloway, University of

London, England (July 2008)
19. Lu, J.: Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES

2006. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 11–26.
Springer, Heidelberg (2007)

20. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

21. Biham, E., Dunkelman, O., Keller, N.: New Combined Attacks on Block Ciphers.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 126–144.
Springer, Heidelberg (2005)

22. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

23. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. Journal of Cryptology 18(4), 291–311
(2005)

24. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen [26], pp. 124–138

25. Dunkelman, O.: Techniques for Cryptanalysis of Block Ciphers. PhD thesis, Tech-
nion, Israel (February 2006)

26. Knudsen, L.R. (ed.): FSE 1999. LNCS, vol. 1636. Springer, Heidelberg (1999)

http://www.ecrypt.eu.org/stream/

106 O. Özen et al.

A A Brief Description of Related-Key Rectangle Attack

Let E denote the encryption function of the attacked cipher which is treated as
a cascade of four subciphers as E = Ef ◦E1◦E0◦Eb where the core E′ = E1 ◦E0
is covered by additional rounds called Eb and Ef which are the subciphers before
and after the core function respectively to be used in key recovery. The related-
key differential is the quadruple (∆X, ∆Y, ∆K, p) satisfying following under the
nonlinear K-keyed function FK ,

Pr[FK(P) ⊕ FK⊕∆K(P ⊕ ∆X) = ∆Y] = p.

Here, ∆X and ∆Y are the corresponding input and output differences respec-
tively, ∆K the key difference and p is the corresponding probability. We say
the related-key differential characteristics ∆X

∆K→ ∆Y holds with probability
Pr = p.

Let α
∆K12

−−−−→ β with probability p be the first related-key differential used

for E0 and γ
∆K13

−−−−→ δ with probability q be the second differential used for
E1. Here, (α, β) and (γ, δ) stand for the input-output differences for E0 and E1
respectively. We define p̂ and q̂ as the probabilities related to α and δ respectively
as follows: p̂ =

√∑
β P 2

∆K12(α → β) and q̂ =
√∑

γ P 2
∆K13(γ → δ). Here, β and

γ are the possible differences at the end of E0 and at the beginning of E1. The
key differences ∆K12 = K1 ⊕K2 = K3 ⊕K4 and ∆K13 = K1 ⊕K3 = K2 ⊕K4

are the respective key differences for the subciphers E0 and E1. The subciphers
before and after the core function are formed according to the α and δ differences.
The basic related-key rectangle attack for the core function works as follows:

– Take a randomly chosen plaintext P1 and form P2 = P1 ⊕ α.
– Obtain the corresponding ciphertexts C1 = E′

K1(P1) and C2 = E′
K2(P2),

where K2 = K1 ⊕ ∆K12.
– Pick another randomly chosen plaintext P3 and form P4 = P3 ⊕ α.
– Obtain the corresponding ciphertexts C3 = E′

K3(P3) and C4 = E′
K4(P4),

where K3 = K1 ⊕ ∆K13 and K4 = K3 ⊕ ∆K12.
– Check C1 ⊕ C3 = C2 ⊕ C4 = δ.

The probability of the rectangle distinguisher is given by Pr = 2−np̂2q̂2 where
n is the block size. If p̂ · q̂ is sufficiently high, the rectangle distinguisher works.
As shown in [25], if the expected number of right quartets is taken to be four,
then there is at least one right quartet in the data set with probability 0.982
since it is a Poisson distribution with expectation of four. Therefore, for this
success rate, the number of plaintext pairs needed is N = 2n/2+1/p̂q̂ that consist
of 2n+2/p̂2q̂2 quartets expecting four right quartets at a time. Further details
about rectangle and boomerang attacks can be found in [20,21,22,25].

Lightweight Block Ciphers Revisited 107

B Key Schedule Properties of HIGHT

Table 9. Relations of the original key with whitening keys and subkeys

Original Whitening Subkeys
Key Keys

MK15 WK3 SK15 SK24 SK41 SK58 SK75 SK92 SK109 SK126
MK14 WK2 SK14 SK31 SK40 SK57 SK74 SK91 SK108 SK125
MK13 WK1 SK13 SK30 SK47 SK56 SK73 SK90 SK107 SK124
MK12 WK0 SK12 SK29 SK46 SK63 SK72 SK89 SK106 SK123
MK11 WK15 SK11 SK28 SK45 SK62 SK79 SK88 SK105 SK122
MK10 WK14 SK10 SK27 SK44 SK61 SK78 SK95 SK104 SK121
MK9 WK13 SK9 SK26 SK43 SK60 SK77 SK94 SK111 SK120
MK8 WK12 SK8 SK25 SK42 SK59 SK76 SK93 SK110 SK127
MK7 WK11 SK7 SK16 SK33 SK50 SK67 SK84 SK101 SK118
MK6 WK10 SK6 SK23 SK32 SK49 SK66 SK83 SK100 SK117
MK5 WK9 SK5 SK22 SK39 SK48 SK65 SK82 SK99 SK116
MK4 WK8 SK4 SK21 SK38 SK55 SK64 SK81 SK98 SK115
MK3 WK7 SK3 SK20 SK37 SK54 SK71 SK80 SK97 SK114
MK2 WK6 SK2 SK19 SK36 SK53 SK70 SK87 SK96 SK113
MK1 WK5 SK1 SK18 SK35 SK52 SK69 SK86 SK103 SK112
MK0 WK4 SK0 SK17 SK34 SK51 SK68 SK85 SK102 SK119

Improved Cryptanalysis of the Common
Scrambling Algorithm Stream Cipher

Leonie Simpson1, Matt Henricksen2, and Wun-She Yap2

1 Information Security Institute,
Queensland University of Technology,

GPO Box 2434, Brisbane Qld 4001, Australia
lr.simpson@qut.edu.au

2 Institute for Infocomm Research,
A*STAR, Singapore

{mhenricksen,wsyap}@i2r.a-star.edu.sg

Abstract. This paper provides a fresh analysis of the widely-used
Common Scrambling Algorithm stream cipher (CSA-SC). Firstly, a new
representation of CSA-SC with a state size of only 89 bits is given, a
significant reduction from the 103 bit state of a previous CSA-SC rep-
resentation. Analysis of this 89-bit representation demonstrates that the
basis of a previous guess-and-determine attack is flawed. Correcting this
flaw increases the complexity of that attack so that it is worse than ex-
haustive key search. Although that attack is not feasible, the reduced
state size of our representation makes it obvious that CSA-SC is vulner-
able to several generic attacks, for which feasible parameters are given.

Keywords: Digital Video Broadcasting, Common Scrambling Algorithm,
Stream Cipher, Cryptanalysis.

1 Introduction

The Digital Video Broadcasting Common Scrambling Algorithm (CSA) has been
used to encrypt European cable digital television signals since 1994. It was spec-
ified by the European Telecommunication Standards Institute (ETSI), and the
proprietary algorithm was distributed to cable TV subscribers in the form of
a hardware chip. Although some high-level details appear in patents [3], the
algorithm has never officially been revealed. In 2002, a software program that
implemented the algorithm was released in binary form. This was reverse engi-
neered by hackers who released the details of the CSA algorithm.

The CSA algorithm can be considered as the application of two cipher layers:
a stream cipher layer and a block cipher layer. For encryption, the block cipher
is applied first, followed by the stream cipher layer. For decryption, the stream
cipher layer is applied first, followed by the block cipher layer. Both the block
and stream ciphers are initialized using the same 64-bit key. We do not consider

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 108–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improved Cryptanalysis of the CSA-SC 109

the block cipher component within this paper. The stream cipher component
is a binary additive stream cipher. We refer to the keystream generator for the
stream cipher component of the CSA algorithm as CSA-SC.

The CSA-SC structure comprises two nonlinear Feedback Shift Registers
(FSRs), a combiner with memory and an output function. In the patent ap-
plication [3], the total internal state size of CSA-SC is described as 107 bits.
In previous analysis of CSA-SC, Weinmann and Wirt [8] showed that it can be
modelled using 103 bits, and note that the period of the keystream produced by
CSA-SC is upper bounded by 2103. In this paper, we provide a new representa-
tion of CSA-SC that uses only 89 state bits. Consequently the maximum CSA-SC
keystream period must be much less than the 2103 bits asserted by Weinmann
and Wirt [8], with an upper bound of 289 bits. This significant reduction in state
size also has implications for the security of CSA-SC.

Weinmann and Wirt [8] presented an analysis of CSA-SC and proposed a
guess-and-determine attack with complexity less than 245, based on their 103
bit CSA-SC representation and predicated on the state cycle structure of one
of the FSRs during keystream generation. They claimed that the state cycle
structure for this FSR consists of many leading paths and short cycles, with
experimental simulation to support this conjecture. However, in examining the
cycle structure of the FSR when developing our 89-bit model, we identified that
there are no leading paths to cycles, and short cycles were not readily located,
implying that the Weinmann-Wirt attack can not work as claimed.

We present our model of the CSA-SC in Section 2. In Section 3, we provide the-
oretical observations about the state update functions used in CSA-SC. These
observations contradict the results presented by Weinmann and Wirt [8], but
show that there are security vulnerabilities that can be exploited in cryptana-
lytic attacks. Section 4 describes an exploration of the FSR state cycle structure.
This is motivated by the discrepancy between our observations and the results
presented in [8]. Section 5 discusses several possible attacks on CSA-SC. In
Section 5.1, the analysis of CSA-SC in [8] is summarized, and the problem
with their attack is discussed. In Section 5.2, the vulnerability of CSA-SC to
time-memory tradeoff attacks is demonstrated. Section 6 presents some closing
remarks on the security of CSA-SC.

2 Specification of the CSA-SC

CSA-SC comprises two FSRs and a combiner with memory. These are denoted
FSR-A, FSR-B and FSM-C, respectively. For our representation of CSA-SC,
FSR-A and FSR-B each have ten stages, with each stage containing one four-bit
word (a nibble). The combiner FSM-C consists of two stages, each containing a
nibble, and a single-bit carry. The total state size is 89 bits. Figure 1 shows a
high-level view of the relationships between components of the CSA-SC during
keystream generation.

During keystream generation, FSR-A is autonomous. The state update func-
tion for FSR-A is nonlinear, with the output of the s-box SA used in calculating

110 L. Simpson, M. Henricksen, and W.-S. Yap

Fig. 1. High-level view of the relationship between components during CSA-SC
keystream generation

the next state value. Nonlinear outputs from FSR-A are also used as input to
the update functions of both FSR-B and FSM-C, by providing all of the input
to s-boxes SB, SD, SP , and SQ. The outputs of SB and SP are used to modify
FSR-B, and the outputs of SD and SQ are used to modify FSM-C. The specific
state update functions for each component and the keystream output function
are described in greater detail in Section 2.1.

The notation used in this paper is as follows. Let At represent the contents of
FSR-A at time t. Then At

i,j represents bit j of the ith stage of FSR-A at time
t, where i ∈ {0, 1, . . . , 9} and j ∈ {0, 1, 2, 3}. Similarly, Bt

i,j represents bit j of
the ith stage of FSR-B at time t. At time t, the contents of the two four-bit
stages of FSM-C are denoted Dt

i,j , where i ∈ {0, 1} and j ∈ {0, 1, 2, 3}, and the
contents of the one-bit carry are denoted ct. According to ETSI conventions, the
most significant bit of a stage is denoted by index 0. Binary addition and mod-
ular addition in Z24 are represented by ⊕ and � operators, respectively. ROLx

represents word rotation to the left by x bits. c||D represents the concatenation
of bit c and word D. For example, 0||1001 = 01001.

2.1 Generating Keystream

When the keystream generator is clocked at time t, FSR-A, FSR-B and FSM-C
are simultaneously clocked. FSR-A is autonomous, and contributes to the state
update functions of FSR-B and FSM-C. Nonlinear combinations of values stored
in FSR-A stages, obtained through the use of various s-boxes, are used in the
state update functions of all components. S-boxes SA, SB and SD each take
twenty-bit inputs from FSR-A and provide 4-bit outputs. S-boxes SP and SQ

take 5 bits of input from FSR-A, and each produce a 1-bit output. Specific details
regarding the s-boxes are contained in Appendix A. The state update functions
for the CSA-SC components are as follows:

Improved Cryptanalysis of the CSA-SC 111

At
i = At−1

i−1 1 ≤ i ≤ 9
At

0 = At−1
9 ⊕ SA(At−1)

Bt
i = Bt−1

i−1 1 ≤ i ≤ 9
Bt

0 = ROLSP (At−1)(B
t−1
6 ⊕ Bt−1

9 ⊕ SB(At−1))

Dt
1 = Dt−1

0

ct||Dt
0 =

{
ct−1||Dt−1

1 if SQ(At−1) = 0
SD(At−1) � Dt−1

1 � ct−1 if SQ(At−1) = 1

The keystream is produced as a series of 2-bit words. The contents of FSR-A,
FSR-B and FSM-C all contribute to the keystream output word zt. To facilitate
effective cryptanalysis, we consider the formation of zt based on an intermediate
word, denoted wt. The 4-bit intermediate word wt and the 2-bit keystream
output zt are obtained as follows:

wt = SD(At−1) ⊕ FC(Bt−1) ⊕ Dt−1
1

zt = f(wt � 2)||f(wt mod 22)

where

f(x) =
{

0 if x = 0 or x = 3
1 if x = 1 or x = 2

The function FC produces four bits of output, with each output bit formed
from a linear combination of four bits from FSR-B. Specifically, FC(Bt) = (Bt

2,0⊕
Bt

5,1⊕Bt
6,2⊕Bt

8,3)||(Bt
5,0⊕Bt

7,1⊕Bt
2,3⊕Bt

3,2)||(Bt
4,3⊕Bt

7,2⊕Bt
3,0⊕Bt

4,1)||(Bt
8,2⊕

Bt
5,3 ⊕ Bt

2,1 ⊕ Bt
7,0).

2.2 A Note on Previous Representations

In the DVB patent [3], the CSA-SC algorithm is defined as having a state of 107
bits. This representation facilitates an efficient hardware implementation. The
CSA-SC representation of Weinmann and Wirt [8] reduced the state size from
107 to 103 bits.

Our representation obtains a further reduction in the state size to 89 bits, by
removing the 4-bit memories X , Y , and Z and one-bit memories p and q from the
representation used by Weinmann and Wirt. These memories hold the outputs of
s-boxes at time t, and are used in the state update function at time t+1 to form
feedback. In this representation, none of the s-boxes use the final stage of FSR-A,
A9. When the state update function is applied to FSR-A, the contents of At

0..8
are shifted to become At+1

1..9 . All of the values required to calculate the feedback
at time t remain in the FSR at time t + 1, so the memories, while useful in
constructing efficient hardware, are not required in an equivalent representation
of the shift register. In the equivalent representation, the indices of the stages
used as inputs to the s-boxes must be incremented by one.

112 L. Simpson, M. Henricksen, and W.-S. Yap

Note that in the original representation, the initial value of all memories is
zero. For our representation, this necessitates a special case for the first clock of
the key initialization process where the output of the s-boxes must be treated
as zero irrespective of their inputs. Although this may not be the most efficient
hardware implementation, it permits a cryptographically equivalent representa-
tion of CSA-SC using only 89 bits.

Neither our work nor that of Weinmann and Wirt considers the key initial-
ization during cryptanalysis, so we omit the details of the initialisation process
in this paper. There are several errors in the specification given in the work of
Weinmann and Wirt [8], which we correct in Appendix A of this paper.

3 Some Observations on CSA-SC

In this section, we make some observations regarding CSA-SC. Firstly, in Section
3.1, we show that during keystream generation the state update functions of both
FSR-A and FSR-B are invertible. That is, given the state of the two FSRs at
time t + 1, the corresponding FSR states at time t can be uniquely determined.
This contradicts the claims of leading paths to short cycles made by Weinmann
and Wirt [8], motivating our exploration of the FSR-A state cycles presented
in Section 4. Secondly, in Section 3.2 we make observations regarding the ratio
of the CSA-SC state size to the key size, which indicates a vulnerability to a
generic style of attack.

3.1 State Update Functions during Keystream Generation

The state update functions for FSR-A and FSR-B are invertible. As FSR-A is
autonomous during keystream generation, but FSR-B is dependant on FSR-A,
it is necessary to establish that the state update function for FSR-A is invert-
ible before examining the state update function for FSR-B. Following this, the
conditions under which the FSM-C may be inverted are also presented.

The state update function for FSR-A makes use of SA, a 20 × 4 s-box. Al-
though SA itself is not bijective, the FSR-A state update function is nevertheless
invertible because (rearranging the state update function in Section 2.1):

At−1
i = At

i+1 0 ≤ i ≤ 8
At−1

9 = At
0 ⊕ SA(At−1)

That is, for the inversion, the register contents are shifted back one stage,
rather than forward, and the contents of the last stage, A9, are computed from
the contents of At

0 and the output of SA at time t−1. Now given that SA(At−1)
takes as input 20 bits from At−1, including the two bits At−1

9,0 and At−1
9,1 , this

initially appears to cause a circular dependancy. However, if SA is considered
as the concatenation of four 5-input Boolean functions, then the ouput of each
of these functions can be computed individually and the dependency avoided.
Table 3 in Appendix A shows the stages of FSR-A which provide the inputs
to each of the four Boolean functions. At−1

9,0 and At−1
9,1 depend upon the input

Improved Cryptanalysis of the CSA-SC 113

sets s3 and s2, respectively. Only bits in stages 1-6 and 8 of At−1 (equivalent
to stages 2-7 and 9 of At), are required, and these are already known. At−1

9,2

and At−1
9,3 depend upon the input sets s1 and s0, respectively. These input sets

include At−1
9,0 and At−1

9,1 . Therefore, if At−1
9,0 and At−1

9,1 have been calculated, then
At−1

9,2 and At−1
9,3 can also be calculated, obtaining the state At−1 in its entirety.

As the state update function for FSR-A is invertible, if the state of FSR-A is
known at time t, then all future and previous states of FSR-A during keystream
generation can be easily calculated.

It follows from the invertibility of FSR-A and the use of only a linear combi-
nation of the stages of FSR-B in the state update function for FSR-B that the
state update function of FSR-B can also be inverted, once At−1 is obtained, as
follows:

Bt−1
i = Bt

i+1 0 ≤ i ≤ 8
Bt−1

9 = ROL3−SP (At−1)(Bt
0) ⊕ Bt−1

6 ⊕ SB(At−1)
= ROL3−SP (At−1)(Bt

0) ⊕ Bt
7 ⊕ SB(At−1)

That is, given the internal state of FSR-A and FSR-B at time t during keystream
generation, all previous and future state values for these two feedback shift reg-
isters can be calculated.

The final component to consider is FSM-C. From the FSM-C state update
function, Dt−1

0 = Dt
1. However, the value of ct−1||Dt−1

1 is dependent on the
values of ct, Dt

0 and At−1. When SQ(At−1) = 0, then given Dt and ct, it is
obvious that ct−1||Dt−1

1 = ct||Dt
0. However, when SQ(At−1) = 1, the calculation

of ct−1||Dt−1
1 is more complex, due to the use of integer addition rather than

XOR.
Consider the case where SQ(At−1) = 1. As ct||Dt

0 = SD(At−1)� Dt−1
1 � ct−1,

clearly Dt−1
1 �ct−1 = ct||Dt

0−SD(At−1), where the addition and subtraction are
integer rather than bitwise operations. There are two possible values for ct−1, so
this provides two possible values for ct−1||Dt−1

1 .
The intermediate keystream word wt is given by wt = SD(At−1)⊕FC(Bt−1)⊕

Dt−1
1 , and wt, SD(At−1) and FC(Bt−1) are all known, but Dt−1

1 is unknown.
However, the sum Dt−1

1 �ct−1 is known. The contribution of ct−1 to Dt−1
1 �ct−1

is in the least significant bit, but as the addition is integer addition, this raises
the possibility of carry to the next bit position, and so on. That is, if ct−1 = 1
and the least significant bit of Dt−1

1 = 1, then the least significant bit of the
integer sum will be 0, and the influence of ct−1 is carried to the next position.
However, where the least significant bit of the integer sum is 1 (that is, the sum
is an odd value), clearly the value of ct−1 and the value of the least significant
bit of Dt−1

1 are not the same, so there is no possibility that the influence of ct−1

extends beyond that least significant bit position. The 2-bit keystream output
zt is useful in discovering whether the two least significant bits in Dt−1

1 are the
same (00 or 11) or different (01 or 10). Combining this knowledge with a known
odd value of Dt−1

1 � ct−1 enables a unique value of ct−1||Dt−1
1 to be determined.

Note that FSM-C is the only section of the CSA-SC internal state where the
state cycle mapping may involve branching. If SQ(At−1) = 0 there is a unique

114 L. Simpson, M. Henricksen, and W.-S. Yap

previous state. However, if SQ(At−1) = 1 then a unique previous state exists
only if Dt−1

1 � ct−1 = ct||Dt
0 − SD(At−1) is odd, and known keystream bits can

be used to determine this unique state. Otherwise, there are two possible prior
states for the combiner.

3.2 The Ratio of State Size to Key Size

The CSA-SC key initialization uses the combination of a 64-bit key and 64-
bit IV to populate the 89-bit state in preparation for keystream generation.
That is, the initialisation function takes 128 bits of input and produces an
89-bit output: the CSA-SC initial state at the start of keystream generation.
Although this paper does not consider the specific details of the initialisation
function, clearly there exist multiple key-IV pairs that produce the same inter-
nal state at the start of keystream generation, and hence the same keystream.
That is, the use of different keys does not guarantee the production of differ-
ent keystreams. Even for a single 64-bit key, clearly there are multiple IVs for
which the initial 40-bit state of FSR-A will be the same. As the nonlinear-
ity of the functions used in CSA-SC is largely determined by the contents of
FSR-A, CSA-SC may be vulnerable to divide and conquer attacks which target
FSR-A.

The small CSA-SC state size also indicates a potential vulnerability to time-
memory-data (TMD) tradeoff attacks. These known-plaintext attacks can be
used to identify either the internal state of CSA-SC, or the key. These attacks
are discussed in greater detail in Section 5.

4 Exploring the State Cycles of FSR-A

In Section 3.1, the state update function of FSR-A is shown to be invertible.
Therefore every state of FSR-A has exactly one previous state and exactly one
successor state. Consequently, there is either one cycle of length 240 in the FSR-
A state space or there are multiple disjoint cycles. It is possible that some of
these may be short cycles. There can be no overlapping cycles, and there are no
cycles with leading paths.

Floyd’s algorithm [6] can be used to detect cycles. This simple algorithm,
when applied to FSR-A of CSA-SC, detects a single cycle using the following
steps:

Algorithm FA

1. Initialize two instances A0 and A1 of FSR-A with the same initial state s
2. Set counter l to 0.
3. Do

(a) Clock A0 once. Increment counter l.
(b) Clock A1 twice.
while state(A0) is not equal to state(A1).

4. Output l as the length of the cycle.

Improved Cryptanalysis of the CSA-SC 115

Applying Floyd’s algorithm to comprehensively map all of the cycles produced
by FSR-A using the following algorithm raises a problem in detemining which
values of s to select.

Algorithm A

1. Set t to 240.
2. Do

(a) Choose unique value of s.
(b) Invoke Floyd’s algorithm (Algorithm FA) for s, which outputs cycle

length l for state s.
(c) Decrement t by the value of l.
while t > 0.

A naive memoryless approach is to begin with s = 0 and increment s until
s = 240−1. This which ensures that all cycles are mapped, but the running time
of the process, at O(280), makes this infeasible.

A modification to the algorithm, using a time-memory tradeoff, tracks the
state values visited (using a one-bit flag per state). During each invocation of
Floyd’s algorithm, the value s is chosen from the complement of the set of visited
states. The running time of this algorithm is 240 · c, but the storage requirement
is 240 × log2240 bits = 2.3 terabytes. In practice, this version of the algorithm
must be implemented using hard disks, which have high latency, so that the
constant c becomes quite large. The storage requirements can be improved by
tracking and storing only “distinguished points”. For example, states with an
8-bit prefix consisting of 0 bits may be considered “distinguished”. This reduces
disk usage by a factor of 28. However, the algorithm will not detect any cycles
that traverse only non-distinguished points. Since Weinmann and Wirt [8] claim
the existence of small cycles, we do not want to take this approach.

A possible compromise is to use the first approach, in which at iteration i,
si = i, but with a slight modification to include early stopping criteria. If Floyd’s
algorithm traverses over state j < i at iteration i, then the cycle has been visited
previously and the algorithm aborts early. Similarly, if the cycle length l is larger
than the state space not so far searched, then the algorithm has rediscovered a
cycle and aborts.

Given that we know there are no leading paths, the algorithm can be optimized
by using a single instance of FSR-A, with a stopping condition that a cycle has
been found when the starting point is traversed for the second time.

Algorithm FA-M

1. Initialize an instance A of FSR-A with the initial state s.
2. Set counter lc to 0, lmax to t.
3. Do

(a) Clock A once.
(b) Increment counter lc.
(c) If lc > lmax then abort.
while state(A) is not equal to initial state s.

116 L. Simpson, M. Henricksen, and W.-S. Yap

Table 1. Cycles identified in FSR-A State Space

Cycle number Cycle length Cycle length (log 2)
1 307,080,986 28.19
2 783,472,466 29.52
3 10,152,192,874 33.24
4 14,199,085,442 33.72
5 36,257,653,742 35.08
6 78,922,935,703 36.20
7 225,691,600,544 37.72
8 308,063,543,688 38.16
9 424,911,536,585 38.63

Total 1,099,289,102,030 39.9997

4. Output lc as the length of the cycle

The running time of the FA-M algorithm varies depending on the length of
the cycles that it finds. The results of our search are shown in Table 1. They
were generated using several Intel Core Duo machines. Each core is capable of
iterating through 238 states per day.

The identification of nine large cycles in conjunction with the observation that
the update function is invertible provides strongly contradictory evidence to the
claims of Weinmann and Wirt [8] that 98% of the state space of FSR-A can be
partitioned into very short cycles.

5 Cryptanalysis of CSA-SC

Observations made in Section 3.2 indicate CSA-SC may be vulnerable to two
common styles of attack. The dependence of other components on the
autonomous 40-bit FSR-A for nonlinearity indicates the potential for divide and
conquer style attacks which target FSR-A. The ratio of the state size to the key
size indicates a vulnerability to a generic style of attack known as Time-Memory
Tradeoff (TMTO) attack. The attack in by Weinmann and Wirt [8] targets FSR-
A, and is reviewed in Section 5.1. The application of TMTO attacks to CSA-SC
is discussed in Section 5.2.

5.1 The Weinmann and Wirt Attack

A guess-and-determine attack on CSA-SC which targets FSR-A is presented by
Weinmann and Wirt [8]. The aim of the attack is to recover the internal state of
the cipher during keystream generation, when FSR-A is autonomous. The attack
complexity is claimed to be less than 245. We explain the flaw in this attack and
show that, when the flaw is corrected, the attack performance is actually worse
than exhaustive key search.

The attack is performed in three phases. In the first phase, the attacker guesses
53 bits of state comprising FSR-A, FSM-C and the 4-bit memory X used by

Improved Cryptanalysis of the CSA-SC 117

Weinmann and Wirt [8] for their 103-bit CSA-SC representation. Because each
output bit of FC is a linear combination of bits within FSR-B, and these output
bits are linearly combined to form the keystream, a system of equations can
be formed relating the keystream bits to the unknown contents of FSR-B. The
second phase of the attack solves this system of equations using Gaussian elimi-
nation. The third phase of the attack comprises consistency checking to establish
the veracity of guesses made in the first phase. If the consistency checking fails,
the guess in the first phase is considered incorrect and a new guess is made.
Otherwise, the attack terminates and the combination of the 53-bit guess and
the solution to the equation system is used to recover the initial internal state.

The cost of the first phase is 253 operations. In the second phase, a system
of equations containing 60 equations in 40 unknowns is developed, which can be
solved using Strassen’s algorithin in 217.7 operations. The cost of the third phase
is negligible. The total complexity of the state recovery attack is therefore around
270.7 operations, which is about one hundred times worse than a brute-force key
search on the 64-bit key.

Weinmann and Wirt [8] claimed to have identified numerous short cycles
produced by the FSR-A feedback function. They performed 10,000 random ini-
tializations of the cipher, and found that for 98.4% of cases, those key-IV pairs
led to FSR-A state cycles with lengths of between 108 and 121,992. This lead
to the assumption that for any key-IV pair, the effective state space for FSR-A
is equal to the sum of the lengths of those short cycles, with 98.4% probability.
An attacker does not know the key, so must guess FSR-A states from all of
the points on all of the short cycles. Ignoring leading paths, this gives a total
of 313,169 possibilities. Therefore, Weinmann and Wirt[8] claim that the cost
of the first phase is reduced to 219 × 29, where the second term is the cost of
guessing the memories and registers in FSM-C.

The optimisation of the guessing phase of the divide and conquer attack is
necessary in order for the attack to be faster than exhaustive search. However,
both the theoretical observation in Section 3.1 that no leading paths exist be-
cause the FSR-A feedback function is invertible, and the empirical results in
Section 4 that demonstrate the FSR-A state cycles form a small number of dis-
joint large cycles show that the basis for the optimisation is unfounded. Thus
the performance of Weinmann and Wirt’s attack is worse than exhaustive key
search, unless further optimizations are identified.

5.2 Time-Memory Tradeoff Attacks

As the TMTO approach is well known, it is not described here. Instead, we refer
the reader to the work of Hong and Sarkar [7] for a description of the phases of
TMTO attacks. Our analysis aims to determine the feasibility of applying TMTO
attacks to CSA-SC given the constraints on the amount of keystream available
to an attacker. The specification for Digital Video Broadcasting indicates that
keystream is propagated at a maximum rate of 64 Mb/s, and that rekeying
occurs at least every 120 seconds. Therefore, for a single key-IV pair, assume

118 L. Simpson, M. Henricksen, and W.-S. Yap

that an attacker has access to about D = 233 bits of data. We consider possible
tradeoffs for two styles of TMTO.

The first style of TMTO attack is one in which the attacker attempts to invert
the CSA-SC keystream to recover the internal state. For this style of attack, the
attacker must satisfy the time-memory-data tradeoff curve N2 = TM2D2 for
T ≥ D2 and T < 2K , where N = 289 is the total number of states, T is the time
taken to execute the attack, and M is the amount of memory required to store
precomputed tables. The value 2K = 264 represents the computational effort
required to launch a brute force attack. The attacker is unable to make use of
all available data since T ≥ D2 implies that T > 2K . Reasonable parameters are
therefore D = 225, T = 250 and M = 239, for which the attacker requires around
6 terabytes of disk space. This is feasible by today’s standards.

If the key initialization function was invertible, then the recovered internal
state could be used to derive the key. However, this does not seem to be the
case. Therefore this attack is of limited use, since frequent key-IV rekeying is
mandatory within the DVB specification, and this attack must be performed on
the keystream segment obtained after each rekeying.

The second style of TMTO attack attempts to invert the CSA-SC keystream
to recover the key. For this style of attack, the state size is immaterial. The
same time-memory-data tradeoff curve holds, but N now refers to the number
of possible key+IV values, rather than the number of possible internal states.
Here, N = 264+64. Taking the Dunklemann-Keller approach [4], the attacker
prepares different tables for many IVs in the precomputation phase. This removes
the restriction that T ≥ D2, at the expense of reducing the success rate of the
attack if the right IVs are not used. Due to the larger size of N , the computational
complexity of this attack is inferior to the first, with one possible parameter set
being D = 248.5, T = 253, M = 253. However, as this is key recovery rather
than state recovery, the stipulation for frequent rekeying does not present a
limitation. Therefore, any proposed key recovery attack on CSA-SC with time
complexity greater than T=253 should be regarded as unnecessary unless the
data and memory requirements are much less than those given for this TMD
attack.

6 Discussion and Conclusion

In this paper we provide a new representation of CSA-SC that uses only 89 state
bits, a significant reduction over the 107 bits and 103 bits used for previous
representations. Theoretical observations about the state update functions of
components of CSA-SC contradict the empirical results presented in previous
research [8], motivating an exploration of the state cycles for FSR-A.

Our FSR-A state-cycle findings raise doubts about the validity of the optimi-
sation required in order for the divide and conquer attack presented by Wein-
mann and Wirt [8] to be successful. It appears that the complexity of that state
recovery attack is not around 245, as claimed, but in fact worse than exhaus-
tive key search. Even applying their approach to our representation of CSA-SC,

Improved Cryptanalysis of the CSA-SC 119

where the state size is reduced because the memory X is redundant, results
in an overall attack complexity of about 266.7 operations. This is about thir-
teen times worse than brute force attack and several orders of magnitude worse
than TMTO attacks, although with the memory requirement is less than for the
TMTO attacks.

The reduction in the state space obtained in our model indicates that CSA-SC
is vulnerable to TMTO attacks. Given a keystream segment produced from a
single key-IV pair, a state recovery attack is possible with data, time and memory
parameters of D = 225, T = 250 and M = 239, respectively. Additionally, for
an increased data value obtained by taking keystream segments formed from a
single key, but possibly multiple known IVs, a key recovery attack is possible,
with data, time and memory requirements of D = 248.5, T = 253, M = 253,
respectively. This application of a generic attack style to CSA-SC shows that
CSA-SC is vulnerable to cryptanalytic attack.

The attacks discussed in this paper made no use of the CSA-SC initialisation
process. Exploring the initialisation process may reveal weaknesses that will
lead to improved attacks on this cipher. Additionally, it may be possible to
improve the performance of divide and conquer attacks targeting FSR-A by
reducing the complexity of determining whether guessed FSR-A and FSM-C
states are correct. This could be accomplished, by using a distinguisher, and
only proceeding to solving the system of equations to recover the contents of
FSR-B for a correct guess.

We examined the cipher with respect to differential and linear attacks, and to
guess-and-determine attacks. Even though the s-boxes are far from optimal with
respect to differential and linear attacks, the fact that in each clock cycle, half
of the bits in FSR-A are passed through s-boxes makes it difficult to utilize the
s-box biases; ie. the diffusion in the register is good. Likewise, this means that
a large number of bits must be guessed in order to determine a single nibble in
the register, and a straightforward guess-and-determine approach is ineffective
in reducing the complexity of an attack below 253 operations, even considering
the effective reduced state size.

Although there are generic attacks that apply to CSA-SC, it appears that the
attack strategy of Weinmann and Wirt [8] does not succeed in key recovery with
better complexity than brute force.

Acknowledgements. Thanks to anonymous referees for their valuable com-
ments. Thanks also to Yian Chee Hoo for his spare computer cycles.

References

1. Anonymous. CSA - known facts and speculations (2003), http://csa.irde.to
2. Bernstein, D.J.: Costs of cryptanalytic hardware, Posting to ECRYPT eSTREAM

forum, August 21 (2005),
http://www.ecrypt.eu.org/stream/phorum/read.php?1,95,95#msg-95

3. Bewick, S.: Descrambling DVB data according to ETSI common scrambling speci-
ficiation. UK Patent Application GB2322995A (1998)

http://csa.irde.to
http://www.ecrypt.eu.org/stream/phorum/read.php?1,95,95#msg-95

120 L. Simpson, M. Henricksen, and W.-S. Yap

4. Dunkelman, O., Keller, N.: Treatment of the Initial Value in TMTO Attacks. In:
SASC 2008: The State of the Art of Stream Ciphers, Lausanne, Switzerland, pp.
249–258 (2008)

5. FFDeCSA 1.0.0 implementation,
http://www.dvbsupport.net/download/index.php?act=view&id=129

6. Floyd, R.: Non-deterministic Algorithms. Journal of the Association for Comput-
ing 4(14), 636–644 (1967)

7. Hong, J., Sarkar, P.: New Applications of Time Memory Data Tradeoffs. In: Roy, B.
(ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg (2005)

8. Weinmann, R.-P., Wirt, K.: Analysis of the DVB Common Scrambling Algorithm.
Communications and Multimedia Security. In: Proceedings of the 8th IFIP TC-
6 TC-11 Conference on Communications and Multimedia Security (CMS 2004).
Springer, Heidelberg (2004)

A CSA-SC S-Boxes

CSA-SC has not been published by ETSI. Information has been revealed in
patents [3] and by reverse engineering of implementations; see, for example, [5].
The specification by Weinmann and Wirt [8] is the best academic description of
CSA-SC in the public literature to date but contains multiple errors; including
a misprint in the table that specifies inputs from FSR-A into the s-boxes, and
incorrect ANFs for the component boolean functions of the s-boxes. We give the
(hopefully) correct versions below.

Table 2 describes the s-boxes referred to in Section 2. Each s-box is built from
5-input boolean functions. S-boxes SA, SB and SD are each constructed from
four boolean functions, while s-boxes SP and SQ are each built from a single
boolean function. These boolean functions are denoted Fi(sj) in the following
tables, where i denotes the function index and sj denotes the jth set of FSR-A
positions which provide the five inputs to Fi. The FSR-A positions for the 5
inputs xi, 0 ≤ i ≤ 4 are given in Table 3. The boolean functions are given in
Algebraic Normal Form in Table 4. For example, the most significant output bit
of s-box SA is F6(s3), where F6 is 1+x0 +x1 +x5 +x0 ·x4...+x0x1x2x3x4x5, and
from the definition of s3 in Table 3, x0 = A3,3, x1 = A1,1, x2 = A2,3, x3 = A4,2
and x4 = A8,0.

Table 2. S-boxes used in our model of CSA-SC

S-box Input Size (bits) Output Size (bits) Output
SA 20 4 F6(s3)||F4(s2)||F3(s1)||F1(s0)
SB 20 4 F10(s5)||F8(s4)||F7(s3)||F5(s2)
SD 20 4 F2(s1)||F0(s0)||F11(s5)||F9(s4)
SP 5 1 F13(s6)
SQ 5 1 F12(s6)

http://www.dvbsupport.net/download/index.php?act=view&id=129

Improved Cryptanalysis of the CSA-SC 121

Table 3. Inputs from FSR-A into the S-box boolean functions

Function input x0 x1 x2 x3 x4

s0 A4,0 A1,2 A6,1 A7,3 A9,0

s1 A2,1 A3,2 A6,3 A7,0 A9,1

s2 A1,3 A2,0 A5,1 A5,3 A6,2

s3 A3,3 A1,1 A2,3 A4,2 A8,0

s4 A5,2 A4,3 A6,0 A8,1 A9,2

s5 A3,1 A4,1 A5,0 A7,2 A9,3

s6 A2,2 A3,0 A7,1 A8,2 A8,3

Table 4. Algebraic Normal Forms of 5-input Boolean functions Fi, 0 ≤ i < 14

i Algebraic Normal Form of Fi

0 1 + x4 + x3 + x3x4 + x2x4 + x2x3 + x1x4 + x1x3 + x1x2 + x1x2x4 + x1x2x3 +
x0 +x0x3x4 +x0x2 +x0x2x3 +x0x1 +x0x1x3 +x0x1x3x4 +x0x1x2 +x0x1x2x3

1 x3 + x2x4 + x1 + x1x4 + x1x3x4 + x0x4 + x0x1 + x0x1x3 + x0x1x2 + x0x1x2x4

2 1+x4+x3+x2x4+x2x3+x2x3x4+x1+x0x2x3+x0x1x4+x0x1x3+x0x1x3x4+
x0x1x2

3 1 + x3 + x2 + x2x4 + x1x3x4 + x1x2x4 + x0x3x4 + x0x2 + x0x1 + x0x1x3x4 +
x0x1x2x4

4 1 + x4 + x3 + x2x4 + x2x3 + x2x3x4 + x1 + x1x4 + x1x3 + x1x3x4 + x1x2 +
x1x2x3 +x0 +x0x3 +x0x3x4 +x0x2 +x0x2x4 +x0x2x3 +x0x2x3x4 +x0x1x4 +
x0x1x2 + x0x1x2x3

5 x3 + x3x4 + x2x4 + x1 + x0

6 1 + x4 + x3x4 + x2 + x2x3x4 + x1 + x1x2x3 + x0 + x0x4 + x0x3 + x0x2x3x4 +
x0x1 + x0x1x4 + x0x1x3x4 + x0x1x2 + x0x1x2x3

7 1+x3 +x3x4 +x2 +x1x4 +x1x3x4 +x1x2 +x0x4 +x0x3 +x0x2x3x4 +x0x1 +
x0x1x4 + x0x1x3x4 + x0x1x2 + x0x1x2x3

8 1+x4+x3+x3x4+x2x4+x2x3+x2x3x4+x1+x1x4+x1x3x4+x1x2x4+x1x2x3+
x0x4 + x0x3 + x0x2 + x0x2x3 + x0x2x3x4 + x0x1x4 + x0x1x3 + x0x1x2x4 +
x0x1x2x3

9 x3x4 + x2 + x2x4 + x2x3x4 + x1x4 + x1x3 + x1x2x4 + x0x4 + x0x2 + x0x2x4 +
x0x2x3 + x0x2x3x4 + x0x1 + x0x1x4 + x0x1x3 + x0x1x3x4

10 x3 + x2x4 + x1x3x4 + x1x2 + x1x2x4 + x0 + x0x3x4 + x0x1x4

11 x4+x2+x2x3+x2x3x4+x1x3+x1x2+x1x2x3+x0x3x4+x0x2x3+x0x2x3x4+
x0x1x3x4 + x0x1x2x3

12 x4+x3+x3x4+x2+x1+x1x3x4+x0x4+x0x3x4+x0x2+x0x2x3+x0x2x3x4+
x0x1x3x4 + x0x1x2x3

13 x4 + x3x4 + x2 + x2x3 + x2x3x4 + x1 + x1x2 + x0 + x0x1x3 + x0x1x3x4

Testing Stream Ciphers by Finding the Longest
Substring of a Given Density�

Serdar Boztaş1, Simon J. Puglisi2, and Andrew Turpin2

1 School of Mathematical & Geospatial Sciences
2 School of Computer Science & Information Technology,

RMIT University, Melbourne VIC, Australia
serdar.boztas@ems.rmit.edu.au,

{simon.puglisi,andrew.turpin}@rmit.edu.au

Abstract. Given a string x[1..n] drawn from the alphabet {0, 1}, and
a rational density parameter 0 ≤ θ ≤ 1, this paper considers algorithms
for finding the longest substring of x with density θ. That is, if the length
of the substring is m, the number of one-bits in the substring is exactly
θ × m. It is surprisingly difficult to devise an algorithm that has worst
case time less than the obvious brute-force algorithm’s O(n2). We present
three new approaches to reducing the running time, and an algorithm
that solves the problem in O(n log n) expected time.

We then apply the new algorithm, as well as an empirical estimate
of the lim-sup and the lim-inf of a centred statistic which is expected to
obey a law of the iterated logarithm, to the randomness testing of (a) the
output of the BSD function Random, and (b) the output of the stream
cipher Dragon. The results for these outputs warrant further study.

1 Introduction

“A method of producing random numbers should not be chosen at ran-
dom”−Donald Knuth, in [8].

The security of modern information systems depends on the quality of pseudo-
random number generators and the “randomness” of numbers they produce. As
such, algorithms that test these generators are of interest – they provide some
level of assurance. Randomness testing has been investigated by various authors
in the past: Knuth [8] has a good overview of such tests, L’Ecuyer [4] has also
considered the same problem, from a different point of view. Other references
in this area include The Handbook of Applied Cryptography [10] (see Chapter
5), Marsaglia’s work [9] including his DIEHARD battery of randomness tests,
and the recent volume [12] by Neuenschwander. A suite of randomness tests are
implemented by the US Government’s NIST [13], and another suite of random-
ness tests called CRYPT-XS are implemented by the Queensland University of
Technology(QUT)’s Information Security Institute [15].

� This work is supported by the Australian Research Council.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 122–133, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Testing Stream Ciphers by Finding the Longest Substring 123

In this paper we consider algorithms for an easy to state problem that is
useful for randomness testing, but which is deceptively difficult to solve in worst
case asymptotic time less than an obvious brute-force solution. We discuss the
problem of randomness testing and its application to security further in Section 3
and focus on algorithmics below.

Throughout we consider a string x[1..n] = x[1]x[2] . . . x[n] of n symbols drawn
from a binary alphabet Σ = {0, 1}. We call x[i..j] = x[i]x[i + 1] . . .x[j], 1 ≤ i ≤
j ≤ n a substring of x. A substring x[i..j] is a suffix of x if j = n and a prefix of
x if i = 1.

The density of a string x is the ratio of the number of one-bits in the string to the
length of the string. More formally given a string x and θ = c/d, c and d positive
integers c ≤ d, we say a substring x[i..j] is θ-dense (or has density θ) if and only if
j − i + 1 = kd and x[i..j] contains kc one-bits, for some positive integer k.

Problem 1 (Longest θ-dense substring). Given a string x[1..n] on {0, 1}
and θ = c/d, c and d positive integers, with c ≤ d and gcd(c, d) = 1, find the
longest substring of x having density θ. In other words, find the largest k such
that there is a substring of x of length kd that has kc one-bits.

Note that, a string as defined in Problem 1, need not exist, and if it does, the
problem is finding it efficiently. Throughout this paper, we use log to denote
logarithms to the base 2.

The remainder of this paper is as follows. Section 2 considers Problem 1 and
gives a basic solution to which we add several heuristics. We show that one of the
heuristics leads to a O(n log n) expected time solution to the problem. We discuss
randomness testing and display experimental results using the new algorithm in
in Section 3. Finally, in Section 4 we offer some reflections and future directions.

2 Locating the Longest Substring with Given Density

An O(n2) worst case solution to Problem 1, finding the longest θ-dense substring,
is relatively straightforward.

Firstly we preprocess x so that we can answer rank queries on x in constant
time. The answer to a rank query rankx(i) is the number of one-bits in x[1..i]. A
simple data structure to support rank queries is an array of integers containing
the a count of the number of one-bits in x up to that position in the array.
Such an array can be calculated in a single pass over x, requiring θ(n) time, and
the largest element in such an array would be n, requiring at least log n bits of
storage, so total space for the auxiliary data structure would be O(n log n). A
more sophisticated data structure supporting constant time rank queries can be
built in O(n) time and requires n + o(n) bits of extra space [6,11,14].

Once the auxiliary data structure is constructed so rank queries can be an-
swered in constant time, the number of bits in substring x[i..j] can be cal-
culated as rankx(j) − rankx(i−1), also in O(1) time. Then for each position
in the string i ∈ [1..n−d+1], compute the number of bits in each substring
x[i..i+kd], k ∈ [1..(n−i+1)/d] keeping track of the longest substring containing

124 S. Boztaş, S.J. Puglisi, and A. Turpin

BruteForce (x[1..n],θ = c/d)
Set up a rank data structure that computes rankx(i) in O(1) time.
Set max ← (0, 0).
for i ← 1 to n − d + 1 do

Set kc ← c.
for j ← i + d − 1 to n in steps of d do

if (rankx(j) − rankx(i − 1)) = kc and (j − i > max.j − max.i) then
Set max ← (i, j).

Set kc ← kc + c.
if max �= (0, 0) then output x[max.i..max.j] else no substring found.

Fig. 1. Algorithm BruteForce to find the longest substring of x[1..n] that is θ-dense

kc one-bits. For each position we ask at most O(n/d) rank queries, there are at
most n positions, so overall the time spent is O(n2/d) = O(n2). Figure 1 shows
some pseudo code for this approach.

Given that the rank data structure allows a constant time decision on whether
a given substring of length kd contains the necessary number of one-bits, the dif-
ficulty with Problem 1 seems to be the number of substrings an algorithm must
consider, so any reduction in running time must be gained through a reduction
in the number of substrings. This observation is consistent with literature de-
scribing O(n) algorithms for finding θ-dense substrings with bounded lengths [7].
In the next two subsections we examine two approaches to reducing the number
of substrings considered.

2.1 Exploiting θ-Primitives

It would seem intuitive that long θ-dense strings would contain substrings that
were themselves θ-dense. If this were true, then an inductive style algorithm that
constructs long θ-dense strings by combining smaller θ-dense substrings should
reduce the running time of an algorithm to solve Problem 1. In this regard, we
observe the following lemma.

Lemma 1. A θ-dense string x of length kd containing exactly kc one-bits must
have at least one substring of length d containing c one-bits.

Proof. Call a substring of x of length d under or over if it contains less than
or more than c one-bits respectively. We proceed with a proof by contradiction.
Assume the Lemma is not true, then every substring of x of length d must be
either under or over. If all length d substrings were under, then there would be
less than kc one bits in x in total; similarly, if all of the length d substrings were
over, then there would be more than kc one bits in x in total. Hence, there must
be at least one under and one over substring in x as it is θ-dense. Moreover,
there must be a point in the string where an over and under substring overlap
by d − 1 characters, otherwise all substrings must be under, or all over.

Without loss of generality say that position in x where the overlap between an
under and an over substring occurs is i+1; that is, x[i..i+d] is under and x[i+1..d+1]

Testing Stream Ciphers by Finding the Longest Substring 125

is over. The substring x[i..i+d] can have at most c−1 one-bits, as it is under, hence
the substring x[i..i+d]x[i+d+1] = x[i..i+d+1] can have at most c one-bits. But if
x[i..i+d+1] can have at most c one-bits, it is not possible for its suffix x[i+1..i+d+1]
to have more than c bits hence x[i+1..d+1] cannot be over. Therefore x cannot
consist of only substrings of length d that are a mix of under and over. Therefore
x contains a substring of length d that contains c one-bits. �

We call a θ-dense string of length d a θ-primitive string.
It would be nice if the θ-primitive substrings of a string could be used as

a base for constructing longer θ-dense substrings. That is, beginning with θ-
primitives of length d, expand them to θ-dense strings of length 2d, and so on.
Unfortunately if x is of length kd and contains kc one-bits, there is no guarantee
that it must contain a substring of length (k − 1)d containing (k − 1)c bits. For
example, if x = 111000111 and d = 3, c = 2, then the entire string (k = 3) has
density 2/3, but there is no substring of length 6 containing 4 one-bits (k = 2).
So while any θ-dense string must contain a θ-primitive of length d containing
c one-bits, there is no guarantee that it must contain a substring of length 2d
containing 2c one-bits. This limits the power of Lemma 1 to reduce the number
of substrings that must be considered by any algorithm designed to find the
longest θ-dense substring of a string below O(n2).

Interestingly, Lemma 1 can be used to solve the following (weaker) problem
in O(n) time.

Problem 2. Given a string x[1..n] on {0, 1} and θ = c/d, c and d relatively
prime positive integers, c < d, determine if x has any substrings with density of
one-bits equal to θ.

Lemma 1 allows us to only check the substrings of length d — if none are present
then there can be no longer ones. The substrings of length d can be checked for
in O(n) time by sliding a window of size d over x.

Although there is no ready inductive argument that might allow an algo-
rithm to identify all θ-primitive regions, and then use them to construct longer
substrings in sub-O(n2) time, in practice Lemma 1 may provide some useful
heuristics that will reduce running time on random strings.

Lemma 2. Let i1 and i2 be the positions of consecutive θ-primitive substrings
in x. No θ-dense substring can begin after position i1 and end before position
i2 + d − 1.

Proof. From Lemma 1 we know that any θ-dense substring must contain a θ-
primitive substring. Any substring beginning after i1 and ending before i2 will
not contain a θ-primitive substring, so cannot be θ-dense. �

If θ-primitives are few and far between, as we might expect in random strings
for large d, then this Lemma allows us to discard quite a few substrings from
consideration. An algorithm similar to BruteForce, where i and j, the left
and right boundaries of possible substrings respectively, move right along x can
exploit this. The right boundary, j must be to the right of the closest primitive

126 S. Boztaş, S.J. Puglisi, and A. Turpin

SkipMisMatch (x[1..n],θ = c/d)
Set up a rank data structure that computes rankx(i) in O(1) time.
for k ← �n/d	 downto 1 do

Set i ← 1, and j ← kd.
while i ≤ n − kd + 1 do

Set δ ← |kc − rankx(j) + rankx(i − 1)|.
if δ = 0 then

Set max ← (i, j) and terminate.
Set i ← i + δ, and j ← j + δ.

Output no suitable substring found.

Fig. 2. Algorithm SkipMisMatch to find the longest substring of x[1..n] that is θ-
dense

to i, if such a primitive exists, allowing j to skip several positions from consider-
ation. For each pair, however, all strings beginning at i and ending at a position
greater than j must be checked, so the algorithm still requires O(n2) time. The
worst case is realised when every position in the string is the end of a θ-primitive;
for example, x = 110110110.. when θ = 2/3.

2.2 Exploiting Mismatches

A reversal of the loops in Figure 1 yields an alternate brute force algorithm that
for every possible substring length, every position is checked; rather than one
that checks every possible length for every position. This simple reversal of loops
does not lower the asymptotic cost of Algorithm BruteForce, but it does allow
an optimisation, as captured in the following Lemma.

Lemma 3. If the number of one-bits, say m, in a substring of length kd begin-
ning at position i, where 1 ≤ i ≤ n − kd + 1, x[i..i + kd − 1], is not equal to
kc, then there can be no θ-dense substring of length kd beginning in positions
x[i..i + |kc − m|].

Proof. By definition, a θ-dense substring of length kd must contain kc one-bits.
If a substring of x of length kd contains only m < kc one-bits, then at least a
further kc − m bits must be added to the substring to bring the count of one-
bits up to kc. That is, the end of the substring must be increased by kc − m
positions. In order to remain of length kd, however, the left boundary of the
substring must also be increased by kc − m positions, hence it cannot begin in
positions x[i..i + (kc − m)]. Similarly, if m > kc, then m − kc zero-bits must be
added to the end of x to reduce its density to θ. �

This lemma allows us to exploit mismatches in windows of length kd in much the
sameway that patternmatching algorithms such asKMPorBoyer-Moore skip over
mismatching areas of text [3]. Algorithm SkipMisMatch outlines the approach.
Note that the order of loops is reversed from Algorithm BruteForce, and k de-
creases from the maximum possible until some θ-dense substring is found. Because

Testing Stream Ciphers by Finding the Longest Substring 127

the algorithm searches from longest to shortest substrings, it can terminate as soon
as it has found a θ-dense substring, as there can be no longer such substrings. For
each substring considered, if there is an abundance or deficit of one-bits (δ �= 0),
then i and j are stepped by the difference as per Lemma 3.

The worst case running time of Algorithm SkipMisMatch is still O(n2), but
the expected running time can be less, depending on the number and size of the
skips arising from Lemma 3.

Lemma 4. Algorithm SkipMisMatch requires O(n log n) expected time.

Proof. Let us assume that the string x has been generated by a source that
emits a one-bit with probability p. For some substring of length kd, the expected
number of one-bits is p × kd, and the number of one-bits required for a θ-dense
substring is θ × kd. The expected value of δ, therefore, is δ̂k = |θkd−pkd|. So
for each possible k value we expect to skip over δ̂k positions for every position
examined, so at most n/δ̂k positions are examined. Given that examining each
position requires O(1) time, The expected time is bounded by

�n/d∑

k=1

n − kd + 1
δ̂k

≤ n

|θ − p|d

n/d+1∑

k=1

1/k = O(n log n),

and the proof is complete. �

2.3 Experimental Results on BSD Function Random

In order to confirm that the expected running time of Algorithm SkipMisMatch

is sub-O(n2) we ran some simple timing experiments on strings generated using

11 1
1

1

1

1

0 10 20 30 40 50 60

0
10

20
30

40
50

n (’000,000)

T
im

e
(s

ec
s)

22 2 2
2

2

2

33 3 3
3

3

3

44 4 4 4
4

4

55 5 5 5
5

5

1
2
3
4
5

0.501
0.503
0.509
0.513
0.519

Fig. 3. Mean time taken for Algorithm SkipMisMatch on strings of varying length
generated by the BSD function Random (x-axis) when p = 0.5. The values in the legend
indicate the θ value used for each run.

128 S. Boztaş, S.J. Puglisi, and A. Turpin

1 2 4 8 16 32 64 128 256 512

50
00

10
00

0
15

00
0

20
00

0
25

00
0

n (’000,000)

M
ax

im
um

 le
ng

th
 o

f s
eq

ue
nc

e

Fig. 4. Length of the longest θ-dense sequence, generated by Random, where θ = 0.519,
p = 0.5. Boxes show 0.25 and 0.75 quantiles, the black line is the median, and whiskers
and dots show extreme values. The solid curve is the bound given by the Strong Law
of Large Numbers: log(n)/H(0.519, 0.5).

the BSD function random on a Sun Fire V210 Server with 16GB of RAM run-
ning Solaris 10, utilising one of the two 1.34 GHz UltraSPARCIII-i processors.
Times reported are the CPU time as reported by the Solaris command line time
program.

Figure 3 shows the mean running time of Algorithm SkipMisMatch, where
the mean is over 20 runs with a different random seed for the random function
at each run, for various θ values. The standard deviations of each group of runs
were very small, and so are not plotted as error bars. The digits labelling the
curves represent data points, and the lines are drawn for clarity. In all cases, the
time required increases sub-O(n2) as n increases. As |θ − p| increases (curves
1 down to 5) the running time of SkipMisMatch decreases accordingly, as
the constant of proportionality in the O(n log n) expected running time bound
includes 1/|θ − p|. To examine the effect of varying p, we fixed θ at 0.6, and ran
20 runs for various p values, again using new random seeds for each run. The
data is consistent with an expected running time of O(|θ − p|−1n log n).

Figure 4 shows some of the lengths of the longest sequences we observed at the
output of Random. The plot is consistent with the expectation that the length
of the longest sequence is proportional to log(n)/H(θ, p), as discussed in detail
in the next section.

Testing Stream Ciphers by Finding the Longest Substring 129

3 Application to Randomness Testing of Stream Ciphers

The eStream project www.ecrypt.eu.org/stream/ is a recently completed project
described as a “multi-year effort running from 2004 to 2008 [which] has identified
a portfolio of promising new stream ciphers”. An interesting and highly efficient
cipher submitted to that project is Dragon [16] designed by researchers at QUT.
Dragon has been subjected to extensive randomness testing with no weaknesses
identified.

While many randomness tests are currently known and used, it is still of
interest to look for further tests, since in cryptography, a cipher is considered
suspect as soon as its output fails a single well-designed test. Moreover, recent
work has shown that the issue of statistical dependence between commonly used
tests is quite complicated. In particular some tests output test results which
have a much higher correlation than what would be expected if the tests were
statistically independent. See Turan et. al. [17] for more details.

3.1 Testing Dragon Using the Erdös-Rényi Strong Law of Large
Numbers

The relevance of Problem 1 to randomness testing comes from the fact that for a
random sequence, the statistic computed by Problem 1 has an almost-sure limit
as n→∞. Let X1, . . . , Xn be a given sequence of {0, 1}−valued random variables
and define Ln(θ), the length of the “longest run of 1’s with density θ” by

log2(n/1,000,000)

M
ax

im
um

 le
ng

th
 o

f d
en

se
 s

eq
ue

nc
e

0
50

00
15

00
0

25
00

0

0 1 2 3 4 5 6 7 8 9 10

Fig. 5. Length of the longest θ-dense sequence, generated by Dragon, where θ = 0.519,
p = 0.5. Boxes show 0.25 and 0.75 quantiles, the black line is the median, and whiskers
and dots show extreme values. The solid curve is the bound given by the SLLN:
log(n)/H(0.519, 0.5).

130 S. Boztaş, S.J. Puglisi, and A. Turpin

Ln(θ) = max

{

t : ∃i ∈ {0, . . . , n − t}, θ ≤ 1
t

t∑

k=1

Xi+k

}

.

Erdös and Rényi [5] have proved the following.

Theorem 1. If X1, . . . , Xn are i.i.d. with Pr[Xi = 1] = p, for all θ ∈ (p, 1], we
have Ln(θ) → log(n)

H(θ,p) , almost surely, where the binary relative entropy is given
by H(θ, p) = θ log(θ/p) + (1 − θ) log((1 − θ)/(1 − p)).

We now give an intuitive and non-rigorous explanation of what the phrase con-
verges almost surely (implicit in the Theorem above) means. The rigorous def-
inition of this measure-theoretic terminology can be found in many statistics
textbooks.

If we say that a random quantity Tn converges in probability to a constant
T , this means that, for the random sequence Tn, for all ε > 0, the quantity
Pr[|Tn − T | > ε] goes to zero as n → ∞. But this probability is averaged over
all possible realizations of the random sequence (Tn)n≥1 so that there can be
some realizations for which the convergence above does not hold, albeit for a
vanishing fraction as of all possible realizations n→∞.

If we say that a random quantity Tn almost surely converges to a constant
T , this means that, for the random sequence Tn, for all ε > 0, the quantity
Pr[|Tn − T | > ε] goes to zero as n → ∞ for essentially all possible realizations
of the random sequence (equivalently except for a set of probability zero among
all possible realizations). It is, however, possible that the rate of convergence of
Pr[|Tn − T | > ε] to zero depends on the realization.

Note that limθ→p H(θ, p) = 0, and that’s why we take θ ∈ (p, 1]. It is relatively
simple to obtain an upper bound on this growth rate by using large deviations,
see [2], but much harder to get the lower bound and hence the exact growth rate.
Using this almost sure growth rate to test the randomness of a given sequence
would essentially proceed as follows (for simplicity, we assume the sequence is
unbiased, i.e., p = 1/2) which should hold for the output of any good random
bit generator.

For i = 1, 2, . . . , s compute the length of the longest substring in X1, . . . , Xni

with density θ1, . . . , θm. Use the theorem to visually observe whether the growth
rate of the length of the longest substring is roughly:

(i) Proportional to log(ni), i = 1, . . . , s; and
(ii) Inversely Proportional to H(θj , 1/2) for j = 1, . . . , m.

As a preliminary experiment to exploit Theorem 1 for solving Problem 1,
we could assume a value of p, and assume that string x is long enough for the
strong law to be accurate, and only search the string for substrings of length
log(n)/H(θ, p). We have done this for the function Random and displayed the
results in Figure 4.

We have also applied this approach as a preliminary test of the output of
Dragon. In particular, for keystream output lengths of 225 + 1000k, with k =

Testing Stream Ciphers by Finding the Longest Substring 131

n − 225

−
6

−
4

−
2

0
2

−5000 −3000 −1000 0 1000 3000 5000

Wn

Tn

Fig. 6. The values of the quantities Tn defined in (1) (solid circles) and and Wn defined
in (2) for the output of Dragon, where the output length ranges from 225 − 5000 to
225 + 5000 bits at equal intervals of 1000 bits

−5,−4, . . . , +4, +5, we have generated 100 random keys from /dev/random for
each nk and used the 100 output keystreams thus generated as input to our
algorithm computing the length of the longest substring with density θ = 0.519
assuming p = 1/2. The results look as expected and are plotted in Figure 5.
These results are, of course, very preliminary, and extensive testing will follow.
Note that we have used a logarithmic plot of the x−axis in Figure 5, hence
the straight line of the solid curve, when compared to the curved line of the
solid curve in Figure 4. When an x−axis value of Figure 5 is converted to the
corresponding x−axis value in Figure 4, the statistical behaviour (in terms of
median and dispersion) of Ln(θ) is essentially the same for Dragon and for the
BSD function Random.

3.2 Testing Dragon Using the Law of the Iterated Logarithm

A related statistical strong law, described in [1], has also been used to test
Dragon, and is described below.

Let X1, X2, . . . be an i.i.d. sequence of binary random variables with p =
P [Xi = 1] = 1−P [Xi = 0] for all i ≥ 1, and let Sn:t be defined as the maximum
number of ones occuring in a window of length t starting within the first n tosses:

Sn:t = max
1≤i≤n

(Xi + Xi+1 + · · · + Xi+t−1).

Assume that a ∈ (p, 1) and use a Law of the Iterated Logarithm from [1] to

plot the variability of the output of Dragon. Fix θ ∈ (p, 1). With t
�
= t(n) =

�log(n)/H(θ, p)�, and the “odds ratio” r
�
= r(θ, p) =

132 S. Boztaş, S.J. Puglisi, and A. Turpin

= p(1 − θ)/(θ(1 − p)), as n→∞ define centering constants b(n, t)
�
= b(n, t; θ, p)

by

b(n, t) =
θ log n

H(θ, p)
− 1

2
log1/r log(n) − 1

2
log1/r

(
2πθ(1 − θ)

H(θ, p)

)
+ log1/r(θ − p).

We then have:

P

[

lim sup
n

Sn:t − b(n, t)
log1/r log n

= 1

]

= 1. (1)

This means that for ε > 0 arbitrarily small and for n large enough if we plot the
time series Tn = (Sn:t − b(n, t))/ log1/r log n, Tn will approach arbitrarily closely
to 1 from below but never reach it, infinitely often. Similarly

P
[
lim inf

n

(
Sn:t − b(n, t) + log1/r log log n

)
= −1

]
= 1. (2)

which means that the time series Wn = Sn:t − b(n, t) + log1/r log log n will ap-
proach -1 arbitrarily closely from above but never reach it, infinitely often.

Interestingly, when we apply this test to Dragon, as seen in Figure 6, Tn

(shown as circles) exceeds +1 somewhat but is usually under it, which is rea-
sonable. However, Wn (shown as diamonds) varies around a mean of roughly -5,
which may be an indicator of a problem with Dragon. Clearly, this preliminary
observation deserves further study.

4 Conclusions and Discussion

In this paper we have presented a new algorithm for finding the longest substring
of a given density in a string, and shown that it runs in O(n log n) expected time.
Moreover, we have given two alternate approaches to solving the problem: ex-
ploiting the idea of θ-primitives as introduced in Lemma 1; and exploiting the
bound given by the Strong Law of Large Numbers. While our implementations
of these ideas did not decrease running times below those of Algorithm Skip-

MisMatch for parameterisations that would be typical in randomness testing,
both seem promising avenues of exploration.

In particular, one ready optimisation for an algorithm that solves the problem
could be to check for the existence of any θ-primitive during the construction
of the data structure used for rank queries. If no such primitive exists, then no
further work is required. This is particularly useful when |θ − p| is large, but is
not so useful if the data structure is computed once for a string, but used for
many different θ values.

For the output of a stream cipher, the assumption p = 1/2 is eminently
reasonable, and is tested by the basic frequency test which is O(n) in complexity.
Once the cipher passes that test, one can apply the tests developed here. We have
presented preliminary results on the output of Dragon which deserves further
study.

Testing Stream Ciphers by Finding the Longest Substring 133

Acknowledgements

The authors acknowledge the constructive comments by the anonymous referees
whose suggestions have improved the presentation of the results in this paper.

References

1. Arratia, R., Gordon, L., Waterman, M.S.: The Erdös-Rényi Law in Distribution,
for Coin Tossing and Pattern Matching. Annals of Statistics 18(2), 539–570 (1990)

2. Arratia, R., Waterman, M.S.: The Erdös-Rényi Strong Law for Pattern Matching
with a Given Proportion of Mismatches. Annals of Probability 17(3), 1152–1169
(1989)

3. Boyer, R.S., Moore, J.S.: A Fast String Searching Algorithm. Comm. of the
ACM 20(10), 762–772 (1977)

4. L’Ecuyer, P.: Testing Random Number Generators. In: Proceedings of the 1992
Winter Simulation Conference, pp. 305–313 (1992)

5. Erdös, P., Rényi, A.: On a New Law of Large Numbers. J. Analyse Math. 22,
103–111 (1970)

6. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503,
pp. 27–38. Springer, Heidelberg (2005)

7. Greenberg, R.I.: Fast and Space-Efficient Location of Heavy or Dense Segments in
Run-Length Encoded Sequences. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003.
LNCS, vol. 2697, pp. 528–536. Springer, Heidelberg (2003)

8. Knuth, D.: The Art of Computer Programming: Seminumerical Algorithms, vol. 2.
Addison-Wesley, Reading (1981)

9. Marsaglia, G.: A Current View of Random Number Generators. Computer Science
and Statistics: The Interface, pp. 3–10. Elsevier Science, Amsterdam (1985)

10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

11. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

12. Neuenschwander, D.: Probabilistic and Statistical Methods in Cryptology: An
Introduction by Selected Topics. In: André, E., Dybkjær, L., Minker, W., Heis-
terkamp, P. (eds.) ADS 2004. LNCS, vol. 3068. Springer, Heidelberg (2004)

13. National Institute of Standards and Technology, Random Number Generation and
Testing, Publication SP-800-22 (visited February 4, 2009),
http://csrc.nist.gov/rng/

14. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
(ALENEX 2007) (visited February 6, 2009),
http://www.siam.org/proceedings/alenex/2007/

15. Queensland University of Technology, Information Security Institute, CRYPT-XS,
http://www.isi.qut.edu.au/resources/cryptx/ (visited February 6, 2009)

16. Queensland University of Technology, Information Security Institute, Dragon
Stream Cipher, http://www.isi.qut.edu.au/resources/dragon/ (visited Febru-
ary 6, 2009)

17. Turan, M.S., Doganaksoy, A., Boztaş, S.: On Independence and Sensitivity of Sta-
tistical Randomness Tests. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof,
A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 18–29. Springer, Heidelberg (2008)

http://csrc.nist.gov/rng/
http://www.siam.org/proceedings/alenex/2007/
http://www.isi.qut.edu.au/resources/cryptx/
http://www.isi.qut.edu.au/resources/dragon/

New Correlations of RC4 PRGA Using
Nonzero-Bit Differences

Atsuko Miyaji� and Masahiro Sukegawa

Japan Advanced Institute of Science and Technology
miyaji@jaist.ac.jp

Abstract. RC4 is the stream cipher proposed by Rivest in 1987, which
is widely used in a number of commercial products because of its sim-
plicity and substantial security. RC4 exploits shuffle-exchange paradigm,
which uses a permutation S. Many attacks have been reported so far.
No study, however, has focused on correlations in the Pseudo-Random
Generation (PRGA) between two permutations S and S′ with some dif-
ferences, nevertheless such correlations are related to an inherent weak-
ness of shuffle-exchange-type PRGA. In this paper, we investigate the
correlations between S and S′ with some differences in the initial round.
We show that correlations between S and S′ remain before “i” is in the
position where the nonzero-bit difference exists in the initial round, and
that the correlations remain with non negligible probability even after
“i” passed by the position. This means that the same correlations be-
tween S and S′ will be observed after the 255-th round. This reveals an
inherent weakness of shuffle-exchange-type PRGA.

1 Introduction

RC4 is the stream cipher proposed by Rivest in 1987, which is widely used
in a number of commercial products because of its simplicity and substan-
tial security. Though many cryptanalysis of RC4 have been proposed so far
[1,4,13,7,2,12,8,11,9,3,5], it has remained secure under proper use. As a result,
RC4 is widely used in many applications such as Secure Sockets Layer (SSL),
Wired Equivalent Privacy (WEP), etc.

RC4 exploits shuffle-exchange paradigm, which uses a permutation S =
(S[0], · · · , S[N − 1]) given in the initial, and outputs 8-bit data in each round
by updating the permutation S, where typically each S[i] (i ∈ [0, N − 1]) is
8 bits and N = 256. In more detail, RC4 consists of two algorithms, the Key
Scheduling Algorithm (KSA) and the Pseudo Random Generation Algorithm
(PRGA). KSA is given a secret key with � bytes (typically, 5 ≤ � ≤ 16) and gen-
erates the initial permutation S0, which is an input of PRGA. PRGA is given
� This study is partly supported by Grant-in-Aid for Scientific Research (B),

203000032.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 134–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 135

the initial permutation S0, uses two indices i and j, (where i is a public counter
but j is one element of secret state information), updates S and j, and outputs
Z = S[S[i] + S[j]] as a key stream at the end of each round. There are mainly
two approaches to the cryptanalysis of RC4, analysis of the weaknesses of the
KSA, and analysis of the weaknesses of the PRGA. Many works, however, focus
on the bias between a secret key and the initial permutation, which is an input
of PRGA. Some analysis of the weaknesses of the PRGA also focus on the corre-
lation between the first keystream output of PRGA and the secret key. We have
not seen any research on correlations in PRGA between two permutations with
some differences. However, such correlations should be investigated, since it is
reported that sets of two keys which output either the same initial permutations
or initial permutations with differences of just a few bits can be intentionally in-
duced [6]. Furthermore, correlations between outputs of two consecutive rounds
is an inherent weakness of shuffle-exchange-type PRGA.

In this paper, we focus on a shuffle-exchange structure of PRGA, where 1
swap is executed in each round. We investigate how the structure mixes the
permutation S, by observing correlations between two permutations, S and S′,
with some differences in the initial round. The set of indices where differences
exist in the initial round is represented by Diff0. The correlations are measured
over (a) the difference value of two permutations ∆S = S⊕S′, (b) the difference
value of two outputs of PRGA, ∆Z = Z ⊕ Z ′, and (c) the difference value of
two indices ∆j = j ⊕ j′. We start with Diff0 = {df0[1], df0[2]}. Our results,
however, are easily applicable to other cases where there exist differences Diff0
with #Diff0 > 2 in the initial round.

We show theoretically that correlations between two permutations S and S′,
such as ∆Z = 0, ∆j = 0, and the hamming weight of ∆S, remain when i <
df0[1]. Furthermore, we show that such correlations between two permutations
S and S′ remain with non negligible probability when i ≥ df0[1], thus, the
same correlations between permutations will be observed when i < df0[2]. For
example, the probability that such correlations remain when i > df0[1] is greater
than 30% in the cases of df0[1] ≥ 93. We give the theoretical formulae of the
probability of both outputs being equal when i = df0[1]. All theoretical results
have been confirmed experimentally.

This paper is organized as follows. Section 2 summarizes the known facts on
RC4 together with notation. Section 3 investigates correlations in each round
between two permutations S and S′ with some differences in the initial round.
Section 4 investigates correlations in each round between outputs of two per-
mutations S and S′. Section 5 shows the experimental results which confirm all
theories in Sections 3 and 4. Section 6 investigates how to predict inner states.

2 Preliminary

This section presents the KSA and the PRGA of RC4, after explaining the
notations used in this paper.

136 A. Miyaji and M. Sukegawa

S, S′ : permutations
S0, S

′
0 : the initial permutations of PRGA

Diff0 : the set of indices where differences between S and S′ exist in the initial
round

r : number of rounds (r = 0 means the initial round)
df0[1], df0[2], · · · : the positions where differences exist in the initial round
ir, jr (j′

r): i and j (j′) of S (S′) after r rounds
Sr (S′

r): the permutation S (S′) after r rounds
Sr[i] (S′

r[i]): the value of Sr (S′
r) in the position i after r rounds

∆Sr : Sr ⊕ S′
r

∆Sr[i] : Sr[i] ⊕ S′
r[i]

|∆Sr| : the number of indices with ∆Sr[i] �= 0
Zr (Z′

r): the output under S (S′) at the r-th round
∆Zr : Zr ⊕ Z′

r

∆jr : jr ⊕ j′
r

∆State[0], ∆State[1], · · · : the state differences between S and S′ (j and j′) in a
round r.

(The state differences of i are omitted since the same i is used each other.)

RC4 has a secret internal state which is a permutation of all the N = 2n

possible n-bit words and index j. RC4 generates a pseudo-random stream of
bits (a keystream) which, for encryption, is combined with the plaintext using
XOR; decryption is performed in the same way. To generate the keystream, the
cipher makes use of a secret internal state which consists of two parts (shown in
Figure 1): A key scheduling algorithm, KSA, which turns a random key (whose
typical size is 40-256 bits) into an initial permutation S0 of {0, . . . , N − 1}, and
an output generation algorithm, PRGA, which uses the initial permutation to
generate a pseudo-random output sequence.

The algorithm KSA consists of N loops. It initializes S to be the identity
permutation, and both i and j to 0, and then repeats three simple operations:
increment i, which acts as a counter, set j by using S and a secret key K with
� bytes where each word contains n bits, and swap two values of S in positions
i and j. Finally, it outputs a random permutation S = S0.

KSA(K)
Initialization
For i = 0 . . . N − 1
S[i] = i
j = 0
Scrambling:
For i = 0 . . . N − 1
j = j + S[i] + K[i (mod �)]
Swap(S[i], S[j])

PRGA(K)
Initialization:
i = 0
j = 0
Generation loop:
i = i + 1
j = j + S[i]
Swap(S[i], S[j])
Output z = S[S[i] + S[j]]

Fig. 1. The Key Scheduling Algorithm and the Pseudo-Random Generation Algorithm

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 137

The algorithm PRGA is similar to KSA. It repeats four simple operations:
increment i, which act as a counter, set j by using S and the previous j, swap two
values of S in positions i and j, and output the value of S in position S[i]+S[j].
Each value of S is swapped at least once (possibly with itself) within any N
consecutive rounds. All additions used in both KSA and PRGA are in general
additions modulo N unless specified otherwise.

3 State Analysis of Permutations with Some Differences

This section analyzes correlations between two permutations, S and S′, with
some differences in the initial round. The set of indices where differences exist
in the initial round is represented by Diff0 = {df0[1], df0[2], · · · }. The indices
with nonzero bit differences are arranged in order of positions that i will reach
after the next round. Therefore, if nonzero bit differences exist in positions 0
and N − 1 in the initial round, then Diff0 = {df0[1], df0[2]} = {N − 1, 0} since i
will be incremented to 1 in the first round.

3.1 Overview of Analysis

Assume that two permutations S and S′ with Diff0 = {df0[1], df0[2]}
in the initial round are given, where (S0[df0[1]], S0[df0[2]]) = (a, b) and
(S′

0[df0[1]], S′
0[df0[2]]) = (b, a) (See Figure 2). Then, the initial state of differ-

ences between S0 and S′
0 is:

∆State[0] : (∆S[x] �= 0⇐⇒ x ∈ Diff0) ∧ (∆j = 0).

Then, we analyze the conditions in each round in which the initial state changes
from the current state to another, or remains the same.

The transitions of state are different according to the position of i, that is,
i < df0[1]; i = df0[1] and the nonzero bit difference still exists in the position
df0[1]; i = df0[1] but the nonzero bit difference does not exist in the position
df0[1], which are formalized as follows.

0 1 2 253 254 255df0[1] df0[2]3

Fig. 2. ∆State[0]

0 1 2 253 254 255df0[1] df0[2]3

Fig. 3. Event[1]

0 1 2 253 254 255df0[1] df0[2]3

Fig. 4. Event[2]

0 1 2 253 254 255df0[1] df0[2]

Fig. 5. Event[3]

138 A. Miyaji and M. Sukegawa

Event[1] : ir < df0[1] (Figure 3),
Event[2] : [ir = df0[1]] ∧ [∆Sr−1[df0[1]] �= 0] (Figure 4),
Event[3] : [ir = df0[1]] ∧ [∆Sr−1[df0[1]] = 0] (Figure 5).

Figures 3, 4, and 5 show each event, where (x, x′) = (b, a) or x = x′. We will
see the reason for this in the following subsections. The following subsections
describe each transition and the probability of its occurrence in each event. We
will see that the state of differences between two permutations S and S′ has the
Markov property, that is, given the state in a certain round (the present state),
the state in a future round (future states) is independent of past rounds.

3.2 Transitions of ∆State[0] Before the Nonzero Bit Difference

This subsection shows Theorem 1, which describes the transitions from the initial
state in Event[1] and their associated probabilities. The state diagram is given
in Figure 6D

Fig. 6. State Diagram of PRGA in Event[1]

Theorem 1. Assume that two initial permutations S and S′ are in the state of
differences ∆State[0] in the (r−1)-th round, and that Event[1] occurs in the r-th
round.
(1) The state changes to the state ∆State[0] (resp. ∆State[1], resp. ∆State[2]) if
jr �∈ Diff0 (resp. jr = df0[2], resp. jr = df0[1]), where

∆State[0] : [∆Sr[x] �= 0⇐⇒ x ∈ Diff0] ∧ [∆jr = 0],
∆State[1] : [∆Sr[x] �= 0⇐⇒ x ∈ Diff1] ∧ [∆jr = 0],
∆State[2] : [∆Sr[x] �= 0⇐⇒ x ∈ Diff2] ∧ [∆jr = 0].

and where Diff1 = {df1[1], df1[2]} = {df0[1], ir} and Diff2 = {df2[1], df2[2]} =
{df0[2], ir}.
(2) Each transition occurs with the following probabilities if j is distributed ran-
domly:

Prob [∆State[0]] =
N − 2

N
, Prob [∆State[1]] =

1
N

, and Prob [∆State[2]] =
1
N

,

where each probability is taken over choices of S and S′ in state ∆State[0] in the
initial round.

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 139

Proof: (1) It is clear that jr = j′r holds in any case, since jr = jr−1 + Sr−1[ir],
∆jr−1 = 0, and ir �∈ Diff0. In the case of jr �∈ Diff0, ∆Sr−1[ir] = ∆Sr−1[jr] = 0
holds and, thus, positions of non-zero-bit differences remain the same as those
in (r − 1)-round. Therefore, ∆State[0] occurs. In the case of jr = df0[2],

(Sr[ir], Sr[jr]) = (Sr−1[jr], Sr−1[ir]) = (b, Sr−1[ir]);
(S′

r[ir], S
′
r[j

′
r]) = (S′

r−1[j
′
r], S

′
r−1[ir]) = (a, S′

r−1[ir]);

and, thus, the non-zero-bit difference in the position df0[2] moves to the current
ir. Therefore, ∆State[1] occurs. In the case of jr = df0[1],

(Sr[ir], Sr[jr]) = (Sr−1[jr], Sr−1[ir]) = (a, Sr−1[ir]);
(S′

r[ir], S
′
r[j

′
r]) = (S′

r−1[j
′
r], S

′
r−1[ir]) = (b, S′

r−1[ir]);

and, thus, the non-zero-bit difference in the position df0[1] moves to the current
ir. Therefore, ∆State[2] occurs.

(2) The probability that each state will occur follows from the above
discussion. ��
Theorem 1 implies that

– |∆Sr| = 2 and ∆jr = 0 hold as long as ir is not equal to the position that a
nonzero bit difference exits in the initial round.

– If jr = df0[1] at least once in the r-th round during ir < df0[1], then the
nonzero bit difference in the position df0[1] moves to the current ir. As a
result, the nonzero-bit difference that was originally in the position df0[1]
affects neither |∆S| nor ∆j until the (r + N − 1)-th round. This is the case
in which Event[3] occurs.

The following corollary describes the detailed cases in which i is not equal to
any position that a nonzero bit difference exits before the N -th round.

Corollary 1. Assume that two initial permutations S and S′ in the state of
differences ∆State[0] are given. Then, if either of the following events occurs,
then i is not equal to any position that a nonzero bit difference exits; and both
|∆Sr| = 2 and ∆jr = 0 hold until the N -th round.

Event[4] : [jr1 = df0[1](1 ≤ ∃ir1 < df0[1])] ∧ [jr2 = df0[2](ir1 < ∃ir2 < df0[2])]
Event[5] : [jr3 = df0[2](1 ≤ ∃ir3 < df0[1] − 1)] ∧ [jr4 = df0[1](ir3 < ∃ir4 < df0[1])] .

Note that ir3 is less than df0[1] − 1 since ir3 < ir4 < df0[1].

Proof: Assume that Event[4] has occurred in (jr1 , jr2), that is, first jr1 = df0[1]
for 1 ≤ ir1 < df0[1] has occurred. This means that ∆State[2] has occurred in the
index of ir1 and, thus, ∆Sr1 [x] �= 0 ⇐⇒ x ∈ Diff2. Therefore, the nonzero-bit
difference in the position df0[1] moves to the position ir1 . Next, it is assumed
that jr2 = df0[2](ir1 < ir2 < df0[2]) has occurred. Then, ∆Sr2 [x] �= 0 ⇐⇒ x ∈
{ir1, ir2} by applying Theorem 1 to Diff2. Thus, i is not equal to any position
that a nonzero bit difference exits until the N -th round.

140 A. Miyaji and M. Sukegawa

Assume that Event[5] has occurred in (jr3 , jr4), that is, first jr3 = df0[2] for
1 ≤ ir3 < df0[1] − 1 has occurred. This means that ∆State[1] has occurred in
the index of ir3 and, thus, ∆Sr3 [x] �= 0 ⇐⇒ x ∈ Diff1. Then, the index df0[2]
no longer indicates a nonzero bit difference. Next, it is assumed that jr4 =
df0[1](ir3 < ir4 < df0[1]) has occurred. Then, ∆Sr4 [x] �= 0⇐⇒ x ∈ {ir3, ir4} by
applying Theorem 1 to Diff1. Thus, i is not equal to any position that a nonzero
bit difference exits until the N -th round. ��
The probability that Event[3] occurs, Prob [Event[3]], is computed by the next
theorems.

Theorem 2. Assume that two initial permutations S and S′ in the state of
differences ∆State[0] with df0[1] ≥ 5 are given. Then, Event[3] will occur with
the following probability if j is distributed randomly:

Prob [Event[3]] = 1 −
(

N − 1
N

)df0[1]−1

,

where the probability is taken over choices of S and S′ with differences in Diff0
in the initial round.

Proof: Event[2], the complement of Event[3], occurs if and only if j �= df0[1]
during i < df0[1]. Therefore, Prob [Event[3]] = 1−

(
N−1

N

)df0[1]−1
if j is distributed

randomly. ��
In the case of df0[1] < 5, we can describe Prob [Event[3]] by the conditions of S0
as follows:

Theorem 3. Assume that two initial permutations S and S′ in the state of
differences ∆State[0] with df0[1] ≤ 5 are given. Then, Event[3] will occur in the
following probability if S0[1], S0[2], and S0[3] are distributed randomly:
(1) In the case of df0[1] = 2, Prob [Event[3]] = Prob [S0[1] = j1 = 2] = 1

N
,

(2) In the case of df0[1] = 3,

Prob [Event[3]] = Prob [S0[1] = 3] + Prob [S0[1] �= 2, 3 ∧ S0[1] + S0[2] = 3] =
2N − 3

N(N − 1)
,

(3) In the case of df0[1] = 4,

Prob [Event[3]] = Prob [S0[1] = 2] + Prob [S0[1] = 4] + Prob [S0[1] = 3 ∧ S0[2] = N − 2]

+ Prob [S0[1] �= 2, 3, 4 ∧ S0[3] �= 0, 1 ∧ S0[1] + S0[2] + S0[3] = 4]

=
2(2N − 3)
N(N − 1)

,

where the probability is taken over choices of S and S′ with differences in Diff0
in the initial round.

Proof: (1) Event[3] occurs if and only if j1 = df0[1] = 2, where j1 = j0 +S0[1] =
S0[1]. Therefore, Prob [Event[3]] = Prob [S0[1] = 2] = 1

N .

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 141

(2) Event[3] occurs if and only if j1 = df0[1] = 3 or j2 = df0[1] = 3. If S0[1] = 3,
then we get j1 = j0 + S0[1] = S0[1] = 3 = df0[1]. If S0[1] �= 2, then S0[1] =
j1 �= 2, which means that S0[1] is not swapped with S0[2] in the first round.
This implies that S1[2] = S0[2]. Thus, if [S0[1] �= 2, 3] ∧ [S0[1] + S0[2] = 3], we
get j2 = j1 + S1[2] = S0[1] + S0[2] = 3 = df0[1]. Therefore, Prob [Event[3]] =
1
N + N−2

N(N−1) = 2N−3
N(N−1) .

(3) Event[3] occurs if and only if j1 = df0[1] = 4, j2 = df0[1] = 4, or j3 =
df0[1] = 4. If S0[1] = 4, then we get j1 = j0 + S0[1] = S0[1] = 4 = df0[1]. If
S0[1] = 2, then j1 = j0 + S0[1] = 2; S0[1] is swapped with S0[2]; and, we get
j2 = j1 + S1[2] = j1 + S0[1] = 4 = df0[1]. Note that S0[1] is swapped with
S0[2] if and only if S0[1] = 2. If S0[1] �= 2, 4 and S0[1] + S0[2] = 4, then we get
j2 = j1 + S1[2] = S0[1] + S0[2] = 4 = df0[1].

If S0[1] = 3 and S0[2] = N −2, then j1 = S0[1] = 3; and S0[1] is swapped with
S0[3], which implies that (S1[1], S1[3]) = (S0[3], S0[1]). Then, in the 2nd round,
j2 = j1 + S1[2] = 3 + S0[2] = 1; and S1[2] is swapped with S1[1], which implies
that S2[3] = S1[3] = 3. Thus, in the 3rd round, we get j3 = j2 + S2[3] = 4. Note
that S0[1] is swapped with S0[3] if and only if S0[1] = 3.

If S0[1] �= 2, 3, 4; S0[3] �= 0, 1; and S0[1]+S0[2]+S0[3] = 4, then S1[2] = S0[2];
S1[3] = S0[3]; and S0[1] + S0[2] �= 3. This implies that S1[3] is not swapped with
S1[2] and that S2[3] = S1[3]. Thus, we get j3 = S0[1] + S0[2] + S0[3] = 4. To
sum up all conditions, which are independent of each other, Prob [Event[3]] =
2
N + N−2

N(N−1) + 1
N(N−1) + N−3

N(N−1) = 2(2N−3)
N(N−1) . ��

3.3 Transitions of ∆State[0] on the Nonzero Bit Difference

This subsection shows Theorem 4, which describes each transition of the initial
state ∆State[0] and the probability of its occurrence in Event[2] . The state
diagram is given in Figure 7.

Fig. 7. State Diagram of PRGA in Event[2]

142 A. Miyaji and M. Sukegawa

Theorem 4. Assume that two permutations S and S′ are in the state of differ-
ences ∆State[0] in the (r − 1)-th round.
(1) The state changes to ∆State[3] (resp. ∆State[3′], resp. ∆State[4], resp.
∆State[4′], resp. ∆State[5], resp. ∆State[6]), if [jr = df0[2]] ∧ [j′r �∈ Diff0]
(resp. [j′r = df0[2]] ∧ [jr �∈ Diff0], resp. [jr = df0[1]] ∧ [j′r �∈ Diff0], resp.
[j′r = df0[1]] ∧ [jr �∈ Diff0], resp. j′r, jr �∈ Diff0, resp. j′r, jr ∈ Diff0), where

∆State[3] : [∆Sr[x] �= 0⇐⇒ x ∈ Diff3] ∧ [∆jr �= 0],
∆State[3′] : [∆Sr[x] �= 0⇐⇒ x ∈ Diff3′] ∧ [∆jr �= 0],
∆State[4] : [∆Sr[x] �= 0⇐⇒ x ∈ Diff4] ∧ [∆jr �= 0],
∆State[4′] : [∆Sr[x] �= 0⇐⇒ x ∈ Diff4′] ∧ [∆jr �= 0],
∆State[5] : [∆Sr[x] �= 0⇐⇒ x ∈ Diff5] ∧ [∆jr �= 0],
∆State[6] : [|∆Sr| = 0] ∧ [∆jr �= 0],

where

Diff3 = {df3[1], df3[2]} = {df0[1], j′r} = {ir, j′r},
Diff3′ = {df3′ [1], df3′ [2]} = {df0[1], jr} = {ir, jr},
Diff4 = {df4[1], df4[2], df4[3]} = {df0[1], df0[2], j′r} = {ir, df0[2], j′r},
Diff4′ = {df4′ [1], df4′ [2], df4′ [3]} = {df0[1], df0[2], jr} = {ir, df0[2], jr},
Diff5 = {df5[1], df5[2], df5[3], df5[4]} = {df0[1], df0[2], jr, j

′
r} = {ir, df0[2], jr, j

′
r}.

(2) Each transition occurs with the following probability, if j is distributed
randomly:

Prob [∆State[3] ∨ ∆State[3′]] = Prob [Event[2]] · 2(N−2)
N(N−1) ,

Prob [∆State[4] ∨ ∆State[4′]] = Prob [Event[2]] · 2(N−2)
N(N−1) ,

Prob [∆State[5]] = Prob [Event[2]] · (N−2)(N−3)
N(N−1) ,

Prob [∆State[6]] = Prob [Event[2]] · 2
N(N−1) .

Proof: (1) It is clear that jr �= j′r in each case, since ∆jr = ∆jr−1 +∆Sr−1[ir] =
∆Sr−1[ir] �= 0. In the case of jr = df0[2] and j′r �∈ Diff0, Sr−1[ir] = Sr−1[df0[1]] =
a is swapped with Sr−1[jr] = b; S′

r−1[ir] = S′
r−1[df0[1]] = b is swapped with

S′
r−1[jr], which implies that S′

r−1[df0[2]] = a remains the same. Thus, we get
∆Sr[x] �= 0 ⇐⇒ x ∈ Diff3 after the r-th round. In the case of j′r = df0[2] and
jr �∈ Diff0, the same also holds.

In the case of jr = df0[1] and j′r �∈ Diff0, ir = jr = df0[1] occurs; Sr−1[ir] =
Sr−1[jr] = a remains the same; and S′

r−1[ir] = b is swapped with S′
r−1[jr], Thus,

we get ∆Sr[x] �= 0⇐⇒ x ∈ Diff4 after the r-th round. In the case of j′r = df0[1]
and jr �∈ Diff0, the same also holds.

In the case of j′r, jr �∈ Diff0, Sr−1[ir] = a (resp. S′
r−1[ir] = b) is swapped

with Sr−1[jr] (resp. S′
r−1[j

′
r]), where nonzero-bit difference did not exist; and

both Sr−1[df0[2]] = b and S′
r−1[df0[2]] = a still remain the same. Thus, we get

∆Sr[x] �= 0⇐⇒ x ∈ Diff5 after the r-th round.
In the case of (jr , j

′
r) = (df0[1], df0[2]), S′

r−1[ir] = S′
r−1[df0[1]] = b is

swapped with S′
r−1[j

′
r] = S′

r−1[df0[2]] = a while both Sr−1[ir] = Sr−1[jr] = a

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 143

and Sr−1[jr] = b remain the same. Thus, all nonzero-bit differences disap-
pear after swapping in the r-th round. The same also holds in the case of
(jr, j

′
r) = (df0[2], df0[1]).

(2) The probability that each state will occur follows from the above
discussion. ��

4 Correlation between Outputs and State Transitions

This section analyzes the differences between outputs of two permutations S and
S′ in each transition described in Section 3, where two initial permutations S
and S′ are in the state of differences ∆State[0].

4.1 Outputs before the Nonzero-Bit Difference

This subsection investigates the correlation between outputs of two permutations
in each transition before the first nonzero-bit difference (i.e. i < df0[1]). The
states of differences of two permutations in any round r < df0[1] are ∆State[0],
∆State[1], or ∆State[2] from Theorem 1. The probability that both outputs of
permutations are equal, Prob [∆Z = 0], is given in the next theorem.

Proposition 1. Assume that two initial permutations S and S′ are in the state
of differences ∆State[0] in the (r − 1)-th round, and that Event[1] occurs in the
r-th round. Then, Prob [∆Z = 0] in each state is as follows:

Prob [∆Z = 0] =
N − 2

N
,

2
N(N − 1)

, or
2

N(N − 1)

if ∆State[0], ∆State[1], or ∆State[2] occurs, respectively.

Proof: Theorem 1 has shown that

– ∆jr = 0 and jr, ir �∈ Diff0 if ∆State[0],
– ∆jr = 0, ir ∈ Diff1 and jr �∈ Diff1 if ∆State[1],
– ∆jr = 0, ir ∈ Diff1 and jr �∈ Diff2 if ∆State[2].

Then, the necessary and sufficient conditions for ∆Z = 0 in each state are as
follows.
In ∆State[0] : ∆Z = 0 ⇐⇒ [∆(Sr[ir] + Sr[jr]) = 0] ∧ [Sr[ir] + Sr[jr] �∈ Diff0]

⇐⇒ Sr[ir] + Sr[jr] �∈ Diff0

Thus, Prob [∆Z = 0] = N−2
N .

In ∆State[1] : ∆Z = 0 ⇐⇒ [∆(Sr[ir] + Sr[jr]) �= 0] ∧ [Sr[ir] + Sr[jr], S′
r[ir] + S′

r[jr] ∈ Diff1]
⇐⇒ Sr[ir] + Sr[jr], S′

r[ir] + S′
r[jr] ∈ Diff1

Thus, Prob [∆Z = 0] = 2
N(N−1) since #Diff1 = 2 and Sr[ir] + Sr[jr] �= S′

r[ir] + S′
r[jr].

In ∆State[2] : ∆Z = 0 ⇐⇒ [∆(Sr[ir] + Sr[jr]) �= 0] ∧ [Sr[ir] + Sr[jr], S′
r[ir] + S′

r[jr] ∈ Diff2]
⇐⇒ Sr[ir] + Sr[jr], S′

r[ir] + S′
r[jr] ∈ Diff2

Thus, Prob [∆Z = 0] = 2
N(N−1) since #Diff1 = 2 and Sr[ir] + Sr[jr] �= S′

r[ir] + S′
r[jr].

From the above, Proposition 1 follows. ��
From Theorem 1 and Proposition 1, the probability of Prob [∆Z = 0] if r < df0[1]
(i.e. i < df0[1]) can be computed as follows.

Corollary 2. Assume that two initial permutations S and S′ with Diff0 =

{df0[1], df0[2]} are given. Then, Prob [∆Z = 0] =
(

N − 2
N

)2
+ 4

N2(N − 1)
, if

r < df0[1].

144 A. Miyaji and M. Sukegawa

4.2 Outputs on the Nonzero-Bit Difference
This subsection investigates the correlation between outputs of two permutations
in each transition when r = df0[1] (i.e. i = df0[1]). The probability that both
outputs are equal, Prob [∆Z = 0], is given in the next theorem.

Proposition 2. Assume that two initial permutations S and S′ are in the state
of differences ∆State[0] in the (r − 1)-th round, and that Event[2] occurs in the
r-th round. Then, Prob [∆Z = 0] in each state is as follows:

Prob [∆Z = 0] = 2
N(N−1) if ∆State[3] ∨ ∆State[3′]

Prob [∆Z = 0] = N−3
N(N−2) + 3

N(N−1) if ∆State[4] ∨ ∆State[4′]
Prob [∆Z = 0] = N−4

N(N−3) + 4
N(N−1) if ∆State[5]

Prob [∆Z = 0] = 0 if ∆State[6]

Proof: Let c and c′ ∈ [0, N − 1] be values in positions of jr and j′r before
swapping in the r-th round, that is, (c, c′) = (Sr−1[jr], S′

r−1[j
′
r]). On the other

hand, (a, b) = (Sr−1[df0[1]], Sr−1[df0[2]]) = (S′
r−1[df0[2]], S′

r−1[df0[1]]). (See
Figure 2). Theorem 4 has shown that:

∆State[3] : (Sr[ir], Sr[jr]) = (b, a) ∧ (S′
r[ir], S′

r[j′
r]) = (c′, b) (i.e. c = b and c′ �= a, b);

∆State[4] : (Sr[ir], Sr[jr]) = (a, a) ∧ (S′
r[ir], S′

r[j′
r]) = (c′, b) (i.e. a = c and c′ �= a, b);

∆State[5] : (Sr[ir], Sr[jr]) = (c, a) ∧ (S′
r[ir], S′

r [j′
r]) = (c′, b) (i.e. c′ �= c and c′, c �= a, b);

∆State[6] : ∆Sr = 0, (Sr[ir], Sr [jr]) = (a, a) ∧ (S′
r[ir], S′

r[j′
r]) = (a, b) (i.e. ir = jr);

or ∆Sr = 0, (Sr[ir], Sr [jr]) = (b, a) ∧ (S′
r[ir], S′

r[j′
r]) = (b, b) (i.e. ir = j′

r).

Therefore, the necessary and sufficient conditions of ∆Z = 0 in each

state are as follows.

In ∆State[3] : ∆Z = 0
⇐⇒ [Sr[ir] + Sr[jr], S′

r[ir] + S′
r[j

′
r] ∈ Diff3] ∧ [∆(Sr [ir] + Sr[jr]) �= 0]

⇐⇒ [(a + b, c′ + b) = (df0[1], j′r), (j′r , df0[1])].

Thus, Prob [∆Z = 0] = 2
N(N−1) since a + b �= c′ + b always holds.

The same reasoning holds in the case of ∆State[3′].
In ∆State[4] : ∆Z = 0
⇐⇒ [[∆(Sr[ir] + Sr[jr]) = 0] ∧ [Sr[ir] + Sr[jr] �∈ Diff4]]

∨
[[∆(Sr[ir] + Sr[jr]) �= 0]∧

[Sr[ir] + Sr[jr], S′
r[ir] + S′

r[j
′
r] ∈ Diff4] ∧ Sr[Sr[ir] + Sr[jr]] = S′

r[S
′
r[ir] + S′

r[j
′
r]]]

⇐⇒ [2a = c′ + b ∧ 2a �∈ Diff4]
∨

[(2a, c′ + b) = (ir, df0[2]), (j′
r
, ir), (df0[2], ir)].

Thus, Prob [∆Z = 0] = N−3
N(N−2) + 3

N(N−1) .
The same reasoning holds in the case of ∆State[4′].
In ∆State[5] : ∆Z = 0

⇐⇒ [[∆(Sr[ir] + Sr[jr]) = 0] ∧ [Sr[ir] + Sr[jr] �∈ Diff5]]
∨

[[∆(Sr[ir] + Sr[jr]) �= 0]∧
[Sr[ir] + Sr[jr], S′

r[ir] + S′
r[j′r] ∈ Diff5] ∧ Sr[Sr[ir] + Sr[jr]] = S′

r[S′
r[ir] + S′

r[j′r]]]
⇐⇒ [c + a = c′ + b ∧ c + a �∈ Diff5]

∨

[(a + c, b + c′) = (df0[1], jr), (jr, df0[2]), (df0[2], j′
r
)], (j′

r
, df0[1])],

Thus, Prob [∆Z = 0] = N−4
N(N−3) + 4

N(N−1) .

In ∆State[6] : Prob [∆Z = 0] since ∆(Sr[ir] + Sr[jr]) �= 0 and ∆Sr = 0.

From the above, the proposition follows. ��

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 145

The probability Prob [∆Z = 0] when i = df0[1] follows immediately from Theo-
rem 4 and Proposition 2.

Corollary 3. Assume that two permutations S and S′ in the (r − 1)-th round
are in ∆State[0] and Event[2] occurs in the r-th round. Then, the probability that
both outputs are equal in the r-th round, Prob [∆Z = 0], is given as follows:

Prob [∆Z = 0] = Prob [Event[2]] ·
(

N2 − 4N + 2
N2(N − 1)

+
2(2N − 1)(N − 2)

N2(N − 1)2

)

From Corollaries 2 and 3, we get the following theorem.

Theorem 5. Assume that two initial permutations S and S′ with
Diff0 = {df0[1], df0[2]} are given. Then, the probability P1 = Prob [∆Z = 0] in
the round r = df0[1] is given as

P1 = P2 ·
(
(N−2

N
)2 + 4

N2(N−1)

)
+ (1 − P2) ·

(
N2−4N+2
N2(N−1) + 2(2N−1)(N−2)

N2(N−1)2

)
,

= P2 ·
(
(N−2

N
)2 − N2−4N−2

N2(N−1) − 2(2N−1)(N−2)
N2(N−1)2

)
+ N2−4N+2

N2(N−1) + 2(2N−1)(N−2)
N2(N−1)2 ,

where P2 = Prob [Event[3]].

Proof: The state of differences between two permutations has the Markov prop-
erty. Therefore, the probability Prob [∆Z = 0] in r = df0[1] is determined only
by the state in the r-th round, where either Event[2] or Event[3] occurs. Theo-
rem 5 follows from this fact. ��

The second term of (1 − P2) ·
(

N2−4N+2
N2(N−1) + 2(2N−1)(N−2)

N2(N−1)2

)
can be dealt with as

an error term if df0[1] is large, which will be discussed in Section 5.

5 Experimental Results and New Bias

This section shows experimental results of Theorems 2, 3, and 5, and Corol-
lary 2 in Sections 3 and 4. All experiments were conducted under the following
conditions: execute KSA of RC4 with N = 256 for 108 randomly chosen keys
of 16 bytes, generate the initial permutation S0, and set another initial per-
mutation S′

0 with Diff0. Experiments are executed over the following sets of
Diff0: df0[1] = 2, · · · , 2551 for Theorems 2 and 3; and Diff0 = {df0[1], df0[2]} =
{2 − 254, 255}, {2, 3 − 255}, and {3, 4 − 255} for Theorem 5 and Corollary 2.
The percentage absolute error ε of experimental results compared with theoreti-
cal results is computed by ε = |experimental value−theoretical value|

experimental value × 100(%),

which is also used in [10].

1 Event[3] does not depend on df0[2]. See Theorems 2 and 3.

146 A. Miyaji and M. Sukegawa

5.1 Experimental Results of Event[3]

Figure 8 shows experimental results of Prob [Event[3]] and its associated percent-
age absolute error, where the theoretical value is computed by Theorems 2 and
3. The horizontal axis represents df0[1] = 2, · · · , 255. The left side of vertical axis
represents Prob [Event[3]], and the right side represents the percentage absolute
error. Table 1 shows the cases of df0[1] ≤ 6 in detail.

Table 1. Experimental results with ε > 5 of Event[3]

df0[1] Theoretical value Experimental value ε(%)
2 0.003906 0.005350 26.991
3 0.007797 0.009069 14.027
4 0.015548 0.018221 14.667
5 0.015534 0.016751 7.265
6 0.019379 0.020501 5.472

Only the cases of 2 ≤ df0[1] ≤ 6 give the percentage absolute error ε ≥ 5,
and, thus, our theoretical formulae closely match the experimental results if
df0[1] > 6. The initial permutation S0, that is the output of KSA, has a great
influence on Event[3] when df0[1] is small. Our results indicate that the bias in
S0 is propagated to Prob [Event[3]] as the bias in S0 has been reported in [8,2,10].

Figure 8 also indicates that the nonzero bit difference in the position df0[1]
moves to another position until i = df0[1] with Prob [Event[3]] > 30% when
df0[1] ≥ 93 and, thus, the correlations between S and S′ such as ∆j = 0 and
|∆S| = 2 remain the same until i = df0[2].

5.2 Experimental Results of Outputs

Figure 9 shows experimental results of Prob [∆Z = 0] in r = df0[1] − 1, df0[1],
and df0[1] + 1, and percentage absolute error in r = df0[1] (i.e. i = df0[1] − 1),
where the theoretical value is computed by Theorem 5. The horizontal axis repre-
sents df0[1] = 2, · · · , 254. The left side of vertical axis represents Prob [∆Z = 0],
and the right side represents the percentage absolute error. By using the exper-
imental results, we investigate each case of outputs before or on the nonzero-bit
difference.

Outputs before the nonzero-bit difference
Let us discuss Prob [∆Z = 0] in r = df0[1] − 1 (i.e. i = df0[1] − 1) for
df0[1] = 2, · · · , 254. The probability is theoretically estimated in Corollary 2.
Our theoretical and experimental results indicate that both outputs of two per-
mutations are coincident with a high probability Prob [∆Z = 0] > 0.98 during
i < df0[1]2.

2 Similar experimental results to i = df0[1] − 1 hold during i < df0[1] − 1.

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 147

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 50 100 150 200 2507 93

Fig. 8. Experimental results and ε of Event[3]

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 50 100 150 200 250

Fig. 9. Prob [∆Z = 0] (df0[2] = 255)

Let us discuss3 Prob [∆Z = 0] in r = df0[1] + 1 for df0[1] = 2, · · · , 253, where
df0[1]+1 = i < df0[2]. Actually, it corresponds to the case in which i is before the
nonzero bit difference df0[2] since df0[1] + 1 is an index of nonzero bit difference
when i = df0[1] + 1 from the fact of df0[1] + 1 < df0[2].

3 The case of df0[1] = 254 is omitted since i indicates the second nonzero bit difference
df0[2] = 255.

148 A. Miyaji and M. Sukegawa

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 50 100 150 200 250

Fig. 10. Comparison of Prob [Event[3]] and Prob [∆Z = 0]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0 50 100 150 200 250

Fig. 11. Prob [∆Z = 0] (df0[1] = 3)

Our experimental results show that Prob [∆Z = 0] in the round df0[1] + 1 is
almost the same as in the round df0[1], which reflects the results in Theorem 1.
To sum up, we see that it is highly probable that both outputs of permutations
are coincident as long as i does not indicate the index of nonzero bit difference
in the current round.

Outputs before the nonzero-bit difference:
Let us discuss Prob [∆Z = 0] in r = df0[1], where there exists originally4

a nonzero-bit difference. Prob [∆Z = 0] is estimated theoretically in Theorem

4 If Event[3] has occurred in the round r < df0[1], then df0[1] is not an index of nonzero
bit difference.

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 149

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0 50 100 150 200 250

Fig. 12. Occurrence of S0[1]

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

0 50 100 150 200 250

Fig. 13. Occurrence of S0[2] when S0[1] = 3

5.From the fact that the percentage absolute error ε < 1 holds in 2 ≤ ∀df0[1] ≤
254, we see that our theoretical formulae closely match the experimental results
in any Diff0.

Let us discuss the relation between two events of ∆Z = 0 and Event[3] in
r = df0[1]. Figures 8 and 9 show that df0[1] satisfying Prob [∆Z = 0] > 30%
is almost the same as df0[1] satisfying Prob [Event[3]] > 30%. In fact, P1 =
Prob [∆Z = 0] in the round df0[1] deeply affects P2 = Prob [Event[3]] as we have
seen in Theorem 5. Figure 10 shows the comparison between P1 and P2 for
2 ≤ df0[1] ≤ 255, where two percentage absolute errors are listed, ε1 = |P2−P1|

P2

and ε2 = |P2−(theoretical)Prob[Event[3]]|
P2

for experimental values P1 and P2. The hori-
zontal axis represents df0[1] = 2, · · · , 254. The left side of vertical axis represents

150 A. Miyaji and M. Sukegawa

Prob [∆Z = 0], and the right side represents the percentage absolute error. Ex-
perimental results show that ε1 < 5 (resp. 10) if df0[1] > 15 (resp. df0[1] > 9)
and, thus, we see that the observable event ∆Z = 0 can indicate that the internal
event Event[3] occurs with extremely high probability.

Figure 11 shows experimental results of Prob [∆Z = 0] in the round df0[1] = 3
in each case of 4 ≤ df0[2] ≤ 255 (df0[1] = 3), and percentage absolute error.
The horizontal axis represents df0[2]. The left side of vertical axis represents
Prob [∆Z = 0], and the right side represents the percentage absolute error. The
percentage absolute error ε < 0.8 holds in 4 ≤ ∀df0[2] ≤ 255. We see that
our theoretical formulae closely match the experimental results independent of
another nonzero-bit difference df0[2].

5.3 Experimental Results of Biases in S0[1] and S0[2]

Let us discuss Event[3] when df0[1] = 3 in detail, where the error ε > 10 (Ta-
ble 1). Theorem 3 says that both S0[1] and S0[2] determine Event[3], that is,
Event[3]⇐⇒ [S0[1] = 3]

∨
[S0[1] �= 2, 3 ∧ S0[1] + S0[2] = 3]. Here we investigate

the bias in S0[1] and S0[2] from the point of view of Event[3].
Figure 12 shows experimental results concerning the occurrence of S0[1] with

0 ≤ S0[1] ≤ 255, and the percentage absolute error, where the theoretical value
(a random association) of occurrence of each S0[1] is 1

N = 3.906×10−3. Figure 13
shows experimental results concerning the occurrence of S0[2] when S0[1] = 3,
and the percentage absolute error, where the theoretical value (a random asso-
ciation) of occurrence of each (S0[1] = 3, S0[2]) is 1

N(N−1) = 1.532 × 10−5. The
horizontal axis represents S0[1] or S0[2]. The left side of vertical axis represents
each probability, and the right side represents each percentage absolute error.

Table 2. Probability of occurrence S0[1]

S0[1] Probability of occurrence S0[1]
0 - 9 0.0039 0.0039 0.0054 0.0053 0.0053 0.0053 0.0053 0.0052 0.0052 0.0052

10 - 19 0.0052 0.0052 0.0052 0.0052 0.0052 0.0051 0.0051 0.0051 0.0051 0.0051
20 - 29 0.0051 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0049 0.0050 0.0049
30 - 39 0.0049 0.0047 0.0049 0.0049 0.0048 0.0049 0.0048 0.0048 0.0048 0.0048

Table 3. Probability of occurrence S0[2] in S0[1] = 3

S0[2] Probability of occurrence S0[2] in S0[1] = 3
0 - 6 0.0000211 0.0000227 0.0000207 - 0.0000286 0.0000280 0.0000281
7 - 13 0.0000280 0.0000278 0.0000286 0.0000277 0.0000278 0.0000270 0.0000274
14 - 20 0.0000273 0.0000270 0.0000271 0.0000270 0.0000270 0.0000269 0.0000269

108 - 114 0.0000216 0.0000213 0.0000213 0.0000206 0.0000216 0.0000207 0.0000219
115 - 121 0.0000212 0.0000216 0.0000204 0.0000207 0.0000210 0.0000202 0.0000218
122 - 128 0.0000210 0.0000211 0.0000206 0.0000206 0.0000205 0.0000208 0.0000206

New Correlations of RC4 PRGA Using Nonzero-Bit Differences 151

These experimental results indicate a non-uniform distribution of S0[1] and
S0[2] when S0[1] = 3. Tables 2 and 3 show some cases that indicate a non-uniform
distribution as follows:

Prob [S0[1] = 3] = 5.303 × 10−3 > 3.906 × 10−3,

Prob [S0[1] = 3 ∧ S0[2] = x] > 2.0 × 10−5 > 1.532 × 10−5 for ∀x ≤ 135,

Prob [S0[1] = 3 ∧ 0 ≤ S0[2] ≤ 128] = 3.05299 × 10−3 > 1.9531 × 10−3.

These non-uniform distribution will be used for a new cryptanalytic analysis in
Section 6.

6 A New Cryptanalytic Analysis

Here we investigate how to analyze the internal state of S or j. Assume that
two permutations S and S′ with Diff0 = {df0[1], df0[2]} in the initial round are
given, and that both outputs of PRGA are observable.

Then, by observing both outputs Z and Z ′ of PRGA, we can recognize the
index of the first nonzero-bit difference from the first round in which both outputs
are not equal. This is investigated in Section 5.2. Therefore, if neither df0[1] nor
df0[2] are known, the first nonzero-bit difference is predictable.

Consider the case of df0[1] = 2. By checking whether ∆Z = 0 in the 2nd
round, we can recognize whether Event[3] has occurred. If Event[3] has oc-
curred, then S0[1] = 2 holds from Theorem 3. The experimental result shows
Prob [Event[3] | df0[1] = 2] = 0.005350 (see Table 1). However, if we try to pre-
dict S0[1] from a random association, then the probability is 1/256 = 0.003906.
Therefore, one can guess S0[1] with an additional advantage of 0.005350−0.003906

0.003906 ×
100 = 36.9 %.

Consider the case of df0[1] = 3. By checking whether ∆Z = 0 in the
3rd round, we can recognize whether Event[3] has occurred. Let us dis-
cuss how to predict both S0[1] and S0[2]. If Event[3] has occurred, then
[S0[1] = 3] ∨ [S0[1] �= 2, 3 ∧ S0[1] + S0[2] = 3] holds, from Theo-
rem 3. In the case of S0[1] = 3, the experimental results show that
Prob [Event[3] | df0[1] = 3] = 0.009069 (see Table 1) and Prob [S0[1] = 3] =
0.0053 (see Table 2). On the other hand, we predict S0[2] with the prob-
ability 1/255. Therefore, we can predict (S0[1], S0[2]) with the probability
0.0053 × 1/255 = 2.078431 × 10−5. In the case of [S0[1] �= 2, 3 ∧ S0[1] +
S0[2] = 3], if S0[1] is predicted, then S0[2] can be predicted promptly. We find
that Prob [Event[3] ∧ [S0[1] �= 2, 3] ∧ [S0[1] + S0[2] = 3]] = (0.009069− 0.0053)×
1/254 = 1.483858 × 10−5. Therefore, we can predict (S0[1], S0[2]) with the
probability 1.483858 × 10−5. Taking both together, the probability to predict
(S0[1], S0[2]) is 2.078431 × 10−5 + 1.483858 × 10−5 = 3.562289 × 10−5. On
the other hand, if we try to predict (S0[1], S0[2]) from a random association,
then the probability is 1/256 × 1/255 = 1.531863 × 10−5. Therefore, one can
guess (S0[1], S0[2]) with an additional advantage of 3.562289−1.531863

1.531863 × 100 =
132.54 %.

152 A. Miyaji and M. Sukegawa

7 Conclusion

In this paper, we have investigated, for the first time, correlations between two
permutations, S and S′, with some differences in the initial round. We have
shown that correlations between two permutations S and S′ remain before “i”
is in the position where the nonzero-bit difference exists in the initial round, and
that the correlations remain with non negligible probability even after “i” passed
by the position. All theoretical results have been confirmed experimentally.

Our results imply that the same correlations between two permutations will
be observed with non negligible probability after the 255-th round. This reveals
a new inherent weakness of shuffle-exchange-type PRGA. We have also investi-
gated how to predict inner states such as S and j and shown that we can guess
inner states with an additional advantage.

References

1. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis meth-
ods for (alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

2. Mantin, I.: Analysis of the stream cipher RC4, Master’s Thesis, The Weizmann
Institute of Science, Israel (2001)

3. Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004)

4. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 87–104. Springer, Heidelberg (2002)

5. Mister, S., Tavares, S.E.: Cryptanalysis of RC4-like Ciphers. In: Tavares, S., Meijer,
H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 131–143. Springer, Heidelberg (1999)

6. Matsui, M.: Key Collisions of the RC4 Stream Cipher. In: FSE 2009. LNCS.
Springer, Heidelberg (to appear, 2009)

7. Golic,J.:LinearstatisticalweaknessofallegedRC4keystreamgenerator. In:Fumy,W.
(ed.) EUROCRYPT1997. LNCS, vol. 1233, pp. 226–238. Springer,Heidelberg (1997)

8. Mironov, I. (Not So) Random Shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

9. Paul, G., Rathi, S., Maitra, S.: On Non-negligible Bias of the First Output Byte
of RC4 towards the First Three Bytes of the Secret Key. Designs, Codes and
Cryptography 49, 123–134 (2008)

10. Paul, G., Maitra, S., Srivastava, R.: On Non-Randomness of the Permutation after
RC4 Key Scheduling. In: Boztaş, S., Lu, H.-F(F.) (eds.) AAECC 2007. LNCS,
vol. 4851. Springer, Heidelberg (2007), http://eprint.iacr.org/2007/305.pdf

11. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Generator.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

12. Tomasevic, V., Bojanic, S.: Reducing the State Space of RC4 Stream Cipher. In:
Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS,
vol. 3036, pp. 644–647. Springer, Heidelberg (2004)

13. Fluhrer, S.R., McGrew, D.A.: Statistical Analysis of the Alleged RC4 Keystream
Generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer,
Heidelberg (2001)

http://eprint.iacr.org/2007/305.pdf

Analysis of Property-Preservation Capabilities
of the ROX and ESh Hash Domain Extenders�

Mohammad Reza Reyhanitabar, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering

University of Wollongong, Australia
{rezar,wsusilo,ymu}@uow.edu.au

Abstract. Two of the most recent and powerful multi-property
preserving (MPP) hash domain extension transforms are the Ramdom-
Oracle-XOR (ROX) transform and the Enveloped Shoup (ESh) trans-
form. The former was proposed by Andreeva et al. at ASIACRYPT
2007 and the latter was proposed by Bellare and Ristenpart at ICALP
2007. In the existing literature, ten notions of security for hash functions
have been considered in analysis of MPP capabilities of domain exten-
sion transforms, namely CR, Sec, aSec, eSec (TCR), Pre, aPre, ePre,
MAC, PRF, PRO. Andreeva et al. showed that ROX is able to preserve
seven properties; namely collision resistance (CR), three flavors of second
preimage resistance (Sec, aSec, eSec) and three variants of preimage re-
sistance (Pre, aPre, ePre). Bellare and Ristenpart showed that ESh is ca-
pable of preserving five important security notions; namely CR, message
authentication code (MAC), pseudorandom function (PRF), pseudoran-
dom oracle (PRO), and target collision resistance (TCR). Nonetheless,
there is no further study on these two MPP hash domain extension trans-
forms with regard to the other properties. The aim of this paper is to
fill this gap. Firstly, we show that ROX does not preserve two other
widely-used and important security notions, namely MAC and PRO.
We also show a positive result about ROX, namely that it also preserves
PRF. Secondly, we show that ESh does not preserve other four prop-
erties, namely Sec, aSec, Pre, and aPre. On the positive side we show
that ESh can preserve ePre property. Our results in this paper provide
a full picture of the MPP capabilities of both ROX and ESh transforms
by completing the property-preservation analysis of these transforms in
regard to all ten security notions of interest, namely CR, Sec, aSec, eSec
(TCR), Pre, aPre, ePre, MAC, PRF, PRO.

Keywords: Hash Functions, Domain Extension, MPP, ROX, ESh.

1 Introduction

A cryptographic hash function is a function that can map variable length strings
to fixed length strings. Hash functions have been used in a vast variety of
� The full version of this paper is available from [16].

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 153–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 M.R. Reyhanitabar, W. Susilo, and Y. Mu

applications, e.g. digital signature, MAC, PRF, and must provide different secu-
rity properties depending on the security requirements of the applications. The
most well-known property for a hash function is collision resistance (CR). Never-
theless, hash functions are often asked to provide many other security properties
ranging from merely being a one-way function (i.e. preimage resistance property)
to acting as a truly random function (i.e. a random oracle).

In a formal study of cryptographic hash functions two different but related
settings can be considered. The first setting is the traditional unkeyed hash
function setting where a hash function refers to a single function H : M →
{0, 1}n (e.g. SHA-1) that maps variable length messages to a fixed length output
hash value. In the second setting, a hash function is considered as a family of
functions H : K×M→ {0, 1}n, also called a “dedicated-key hash function” [3],
indexed by a key space K. The exact role of the hash function key is application-
dependent; it can be a public parameter, e.g. when the hash function is used in
a digital signature, or a secret key like in MAC and PRF applications. In this
paper, we consider hash functions and their security notions in the dedicated-key
hash function setting.

Almost all cryptographic hash functions are designed based on the follow-
ing two-step approach: first a compression function is designed which is only
capable of hashing fixed-input-length (FIL) messages and then a domain ex-
tension transform is applied to get a full-fledged hash function which can hash
variable-input-length (VIL) or arbitrary-input-length (AIL) messages, depending
on the transform. Assume that we have a (dedicated-key) compression function
h : {0, 1}k × {0, 1}n+b → {0, 1}n that can only hash messages of fixed length
(n+b) bits. A domain extension transform can use this compression function (as
a black-box) to construct a (dedicated-key) hash function H : K×M→ {0, 1}n,
where the message spaceM can be either {0, 1}∗ (in which case H is an AIL hash
function) or {0, 1}<2λ

, for some huge positive integer λ, e.g. λ = 64 (in which
case H is a VIL hash function). For instance, the strengthened-MD domain ex-
tension transform [12, 8, 3] yields to a VIL hash function while the Prefix-free
domain extension transform [7, 3] yields to an AIL hash function. In practice
the difference between being VIL or AIL hash function will not be of a concern
as for typical value of λ = 64 almost all messages will have length less than 264

bits, i.e. will belong to {0, 1}<264

.
From security viewpoint, the crux sought from a domain extension transform is

its property preserving capability; that is, if the underlying compression function
h possesses some security property P, then the obtained full-fledged hash function
H should also provably possess the property P. The most well-known domain ex-
tension transform is the strengthened Merkle-Damg̊ard (MD) construction which
was shown by Merkle [12] and Damg̊ard [8] to be a CR preserving transform. Bel-
lare and Rogaway in [6] showed that strengthened MD, despite preserving CR
property, is unable to preserve UOWHF property (put forth by Naor and Yung
[15]) which is a weaker than CR property. They renamed UOWHF as target col-
lision resistance (TCR) and provided four domain extension transforms for pre-
serving the TCR property. Shoup in [18] provided a transform (improving XLH

Analysis of Property-Preservation Capabilities of the ROX and ESh 155

transform of Bellare-Rogaway in [6]), which is shown to be UOWHF and CR pre-
serving. Mironov [14] showed that Shoup’s transform is optimal from key expan-
sion viewpoint among masking based serial transforms for TCR preservation.
Coron et al. [7] introduced the notion of random oracle preservation and provided
prefix-free MD transform which is capable of preserving (pseudo-)random oracle,
which means that if the compression function is modeled as a random oracle then
the AIL hash function obtained by applying prefix-free MD transform will also be
indifferentiable from a random oracle [7, 11]. A new line of research recently has
been initiated by Bellare and Ristenpart in [5], and followed in several other works,
e.g. [3, 1], with the aim of designing multi-property-preserving (MPP) domain ex-
tension transforms. An MPP transform is capable of preserving multiple security
properties simultaneously while extending the domain of a compression function.

Two of the most recent and powerful MPP transforms are the Enveloped Shoup
(ESh) transform designed by Bellare and Ristenpart in [3] and the
Random-Oracle XOR (ROX) transform by Andreeva et al. in [1]. Both ESh and
ROX are variants of Shoup (Sh) transform proposed in [18].

ESh is a standard model transform and was shown to be the best-performing,
in terms of property preserving capability, among the nine transforms studies in
[3]. It is shown in [3] that ESH preserves five security notions; namely CR, TCR,
MAC, PRF, and PRO.

ROX was shown to be the only transform among the twelve transforms inves-
tigated in [1] which is able to preserve seven security notions; namely CR, Sec,
aSec, eSec, Pre, aPre, and ePre as put forth by Rogaway and Shrimpton in [17].
But unlike to other transforms, ROX “..., quite controversially, uses a random
oracle in the iteration.” [1], although Andreeva et al. in [1] provide arguments
justifying the merits of such a limited application of auxiliary FIL random oracles
in their construction from practical viewpoint.

Our Contribution. We complete property-preservation analysis of the ROX
and ESh transforms by providing new negative and positive results in regard to
their MPP capabilities. Our results complete the property preservation analysis
of ROX and ESh in regard to all ten security notions of interest, namely CR, Sec,
aSec, eSec (TCR), Pre, aPre, ePre, MAC, PRF, PRO. For the ROX transform,
we show that it does not preserve MAC and PRO. This settles the open question
of [1] about MAC and PRO preservation capability of the ROX, in a negative
way. On the positive side we notice that the ROX is also a PRF preserving
transform. Regarding the ESh transform, we show that ESh does not preserve
Sec, aSec, Pre, and aPre properties. As a positive result about ESh we show that
it also preserves ePre property.

The overview of the results are shown in Table 1. A “Yes” means that the
property is provably preserved by the transform. A “No” means that the property
is not preserved and this is shown either by showing a counterexample compres-
sion function or by some attacks benefiting from the structural weakness of the
transform in regard to the specific security property. Unreferenced entries are the
results shown in this paper. We leave the question of a ten-property-preserving
transform without any random oracle as an interesting open question.

156 M.R. Reyhanitabar, W. Susilo, and Y. Mu

Table 1. Overview of the MPP capabilities of the ESh and ROX hash domain extension
transforms in regard to ten security notions. Unreferenced entries are the results shown
in this paper.

ESh ROX
CR (Coll) Yes [3] Yes [1]
Sec No Yes [1]
aSec No Yes [1]
eSec (TCR or UOWHF) Yes [3] Yes [1]
Pre No Yes [1]
aPre No Yes [1]
ePre Yes Yes [1]
MAC Yes [3] No
PRF Yes [3] Yes
PRO Yes [3] No

2 Preliminaries

2.1 Notations

If A is a probabilistic algorithm with access to some oracle f(.) then by y
$←

Af(.)(x1, · · · , xn) it is meant that y is the output random variable which is
defined by running A, given inputs x1, · · · , xn and having oracle access to f(.). To

show that an algorithm A is run without any input, we use the notation y
$← A().

By time complexity of an algorithm we mean the running time, relative to some
fixed model of computation plus the size of the description of the algorithm
using some fixed encoding method. If X is a finite set, by x

$← X it is meant
that x is chosen from X uniformly at random. By X ← Y it is meant that the
value Y is simply assigned to the variable X . Let x||y denote the string obtained
from concatenating string y to string x. Let 1m and 0m, respectively, denote a
string of m consecutive 1 and 0 bits, and 1m0n denote the concatenation of 0n

to 1m. By (x, y) we mean an injective encoding of two strings x and y, from
which one can efficiently recover x and y. For a binary string M , let |M | denote
its length in bits and |M |b � �|M |/b� denote its length in b-bit blocks. Let M [i]
denote the i-th bit of M , and Mi...j denote the bits from i-th to j-th positions, i.e.
Mi...j = M [i] · · ·M [j]. If S is a finite set we denote size of S by |S|. For a positive
integer m, let 〈m〉λ denote its representation as a binary string of length exactly
λ bits. The set of all binary strings of length n bits (for some positive integer n)
is denoted as {0, 1}n, the set of all binary strings whose lengths are variable but
upper-bounded by N is denoted by {0, 1}≤N and the set of all binary strings of
arbitrary length is denoted by {0, 1}∗. The set of all functions f : Dom→ Rng
(from a domain Dom to a range Rng) is denoted by Func(Dom, Rng).

2.2 Definition of Security Notions

In this section, we recall definition of ten security notions for hash functions;
namely, the seven notions (Coll, Sec, aSec, eSec, Pre, aPre and ePre) formalized

Analysis of Property-Preservation Capabilities of the ROX and ESh 157

in [17] as well as PRF, MAC, PRO. All definitions are for a dedicated-key hash
function H : K × M → C, where C = {0, 1}n for some positive integer n,
the key space K is some nonempty set and the message space M ⊆ {0, 1}∗
such that {0, 1}m ⊆ M for at least a positive integer m. For any M ∈ M
and K ∈ K, we use the notations HK(M) and H(K, M) interchangeably. The
advantage measures for an adversary A attacking H are defined in Fig. 1 for the
ten security notions.

We say that H is (t, l, ε)-xxx, for xxx ∈ {Coll, Sec[δ], aSec[δ], eSec, Pre[δ],
aPre[δ], ePre}, if the advantage of any adversary A with time complexity at most
t and using messages of length at most l, is less than ε, in attacking H in xxx
sense. Note that four of the notions (namely, Sec[δ], aSec[δ], Pre[δ] and aPre[δ])
are parameterized by δ where {0, 1}δ ⊆M. If H is a compression function (i.e.
an FIL hash function), then parameter δ and the resource parameter l for the
adversary will be the same as the fixed input length of the compression function
and hence omitted from the notations. It is shown in [17] that the strength of
provisional implications between different notions depends on the relative size
of δ and the hash size n. For more related details we refer to [17].

Fig. 1. Definitions of ten security notions for a hash function family H [17, 3]

158 M.R. Reyhanitabar, W. Susilo, and Y. Mu

For xxx ∈ {MAC, PRF}, we say that H is (t, q, l, ε)-xxx if the advantage of
any adversary A having time complexity at most t and making at most q queries
with maximum query length of l bits is at most ε.

PRO Notion. The definition of pseudorandom oracle preservation for a hash
function was first considered by Coron et al. in [7] using the indifferentiability
framework of Maurer et al. in [11], and further studied in the following works,
e.g. in [5, 3]. The definition for the dedicated-key setting that we consider in this
paper, as shown in Fig. 1, is due to Bellare and Ristenpart [3].

PRO is defined formally as follows. Adversary A is given ‘oracles access ’ to
either the VIL hash function Hh

K(.) and FIL random oracle hK(.), or a VIL
random oracle F(.) and a simulator SF (K, .). A must differentiate between these
two worlds and the simulator’s goal is to mimic the FIL random oracle hK(.) in
a way that convinces adversary A that Hh

K(.) is F(.) (i.e. the two worlds become
indifferentiable from A’s view). The PRO advantage of an adversary A against
H is defined as the difference between the probability that A outputs a one when
given oracle access to Hh

K(.) and hK(.) and the probability that it outputs a one
when given oracle access to F(.) and the simulator SF (K, .). We say that H is
(tA, tS , q1, q2, l, ε)−PRO, if for any adversary A having time complexity at most
t and making at most q1 queries from its first (left) oracle and q2 queries from its
second (right) oracle with maximal query length of l bits, there exits a simulator
S with time complexity tS such that makes AdvPRO

H (A) < ε.

The Special Case of ROX Construction. In the case of a hash function
obtained using ROX construction, the VIL hash function H utilizes two FIL ran-
dom oracles RO1 and RO2 in its construction as well as a compression function
h. In this case the definitions should be straightforwardly adapted to consider
the existence of these two auxiliary FIL random oracles, namely adversary A
will be also given oracle access to RO1 and RO2 and the number of queries from
these oracles should also be considered as additional resource parameters for the
adversary A. One also must use the generalized PRO notion based on the indif-
ferentiability framework of [11] to involve these additional random oracles. We
provide the required generalized definition in section 3.1 of this paper, following
[11, 5]. Briefly saying, the simulator will have to simulate three random oracles
for the adversary, namely the compression function itself (which for PRO notion
is modeled as an FIL random oracle), as well as the two auxiliary random oracles
used by the ROX in addition to h. More details are given in section 3.1 of this
paper.

2.3 Hash Domain Extension

Assume that we have a compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n
that can only hash messages of fixed length (n + b) bits. A domain extension
transform can use this compression function (as a black-box) to construct a
hash function H : K ×M→ {0, 1}n, where the message spaceM can be either
{0, 1}∗ or {0, 1}<2λ

, for some positive integer λ (e.g. λ = 64). The key space K

Analysis of Property-Preservation Capabilities of the ROX and ESh 159

is determined by the construction of a domain extender. Clearly log2(|K|) ≥ k,
as H involves at least one invocation of h.

A domain extension transform comprises two functions: an injective ‘padding
function’ and an ‘iteration function’. First, the padding function Pad :M→ DI

is applied to an input message M ∈ M to convert it to the padded message
Pad(M) in a domain DI . Then, the iteration function f : K × DI → {0, 1}n
uses the compression function h as many times as required, and outputs the final
hash value. The full-fledged hash function H is obtained by combining the two
functions. In the case of ROX transform both the padding algorithm (rox-pad)
and the iteration algorithm need small-input random oracles as well.

The padding functions used in the Sh, ESh and ROX domain extension trans-
forms are ‘Strengthening’, ‘Strengthened Chain Shift’ and ‘rox-pad’ defined as
follows, where 2λ is the maximum message length in bits (typically λ = 64) :

– Strengthening: pads : {0, 1}<2λ

→
⋃

L≥1 {0, 1}Lb, where pads(M) =
M ||10p|| 〈|M |〉λ and p is the minimum number of 0’s required to make the
length of pads(M) a multiple of block length.

– Strengthened Chain Shift: padCSs : {0, 1}<2λ

→
⋃

L≥1 {0, 1}Lb+b−n,
where padCSs(M) = M ||10r|| 〈|M |〉λ ||0p, and parameters p and r are de-
fined in two ways depending on the block length b. If b ≥ n + λ then p = 0,
otherwise p = b−n. Then r is the minimum number of 0’s required to make
the padded message a member of {0, 1}Lb+b−n, for some positive integer L.

– rox-pad: rox-padRO2 : {0, 1}<2λ

→
⋃

L≥1 {0, 1}L.b, where RO2 : {0, 1}k ×
{0, 1}λ × {0, 1}�log b� → {0, 1}2n is an auxiliary FIL random oracle, and

rox-padRO2(M) = M ||RO2(M1...k, 〈|M |〉λ , 〈1〉)||RO2(M1...k, 〈|M |〉λ , 〈2〉)|| · · ·

where the last block of padded message must contain at least 2n bits gen-
erated by RO2 which implies adding a new final block just for padding if
necessary.

The iteration functions for Sh, ESh and ROX transforms are shown in Fig. 2,
where IV, IV1, and IV2 are some known initial values and IV1
= IV2. RO1 :
{0, 1}k × {0, 1}k × {0, 1}�log λ� → {0, 1}n is a random oracle used by the ROX
iteration function to generate required key masks.

The variable-input-length (VIL) hash function H : K × {0, 1}<2λ

→ {0, 1}n,
for H ∈ {Sh, ESh, ROX}, obtained by applying Sh, ESh, or ROX domain ex-
tension transforms on a fixed-input-length (FIL) hash function h : {0, 1}k ×
{0, 1}n+b → {0, 1}n is defined, respectively, as follows:

Sh(K, M) = fSh(K, pads(M)), where K = K||K0|| · · · ||Kt−1 ∈ {0, 1}k+tn

ESh(K, M) = fESh(K, padCSs(M)), where K = K||K0|| · · · ||Kt−1 ∈ {0, 1}k+tn

ROXRO1,RO2(K, M) = f
RO1(.)
ROX (K, rox-padRO2(.)(M)), where K ∈ {0, 1}k

160 M.R. Reyhanitabar, W. Susilo, and Y. Mu

Fig. 2. Iteration functions of Shoup (Sh), Enveloped Shoup (ESh), and ROX transforms

3 Property Preservation Analysis of the Transforms

In this section we analyze property preserving capability of the ROX and ESh
transforms in terms of the ten security notions defined in section 2.2, namely
CR (Coll), Sec, aSec, eSec(TCR), Pre, aPre, ePre, MAC, PRF, PRO.

ROX was already shown in [1] to be able to preserve seven properties, namely:
CR (Coll), Sec, aSec, eSec, Pre, aPre, and ePre. We complete a property-
preservation analysis of ROX in regard to the other three important security
notions (i.e. MAC, PRF, PRO) and gather both negative and positive results.
On the negative side we show that ROX cannot preserve MAC and PRO no-
tions. As a positive result we note that ROX can also preserve PRF. Next we
investigate ESh transform. ESh was already shown in [3] to be able to preserve
five properties, namely: CR (Coll), MAC, PRF, PRO, and TCR (eSec). We com-
plete the property preservation analysis of ESh with respect to the remaining
five properties among the ten notions by showing, as negative results, that ESh
does not preserve four properties, namely Sec, aSec, Pre, aPre, and as a positive
result we show that it can also preserve ePre.

3.1 Analysis of the ROX Transform

In this section we provide two negative results about PRO and MAC preservation
and one positive result about PRF preserving capability of the ROX domain
extension transform. Among these results, the negative result showing that ROX
does not preserve PRO seems more interesting regarding the fact that ROX,

Analysis of Property-Preservation Capabilities of the ROX and ESh 161

unlike all other hash domain extension transforms, uses random oracles in its
construction.

Indifferentiability Analysis of the ROX Construction. Our aim is to
show that ROX transform does not preserve PRO, i.e., the VIL hash function
obtained using ROX transform is differentiable from a true VIL random oracle.
We first provide the required generalization of PRO notion for the case of ROX
construction based on the indifferentiability framework of [11]. Then we provide
our negative result in Theorem 1.

For the purpose of PRO analysis (in the dedicated key hash setting [3]), the
compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n is modeled as a family
of FIL random oracles, i.e. hK : {0, 1}n+b → {0, 1}n is assumed to be an FIL
random oracle for any value of the key K where hK(.) = h(K, .). We note that
the ROX transform itself utilizes two additional FIL random oracles, namely
RO1 and RO2 in generation of the key masks used in the iteration function and
padding, respectively. Hence the VIL hash function ROXhK ,RO1,RO2 : {0, 1}k ×
{0, 1}<2λ

→ {0, 1}n will have access to three FIL random oracles, namely
hK(.), RO1(.) and RO2(.). According to the general indifferentiability framework
of [11] which is used to define PRO in [7, 5, 3], adversary A will be given access
to four oracles; namely, a VIL oracle O1 : {0, 1}<2λ

→ {0, 1}n, and three FIL or-
acles as O2 : {0, 1}n+b → {0, 1}n, O3 : {0, 1}k × {0, 1}k × {0, 1}�log λ� → {0, 1}n

and O4 : {0, 1}k × {0, 1}λ × {0, 1}�log b� → {0, 1}2n, and must differentiate be-
tween the following two worlds:

– World 1: A random key K
$← {0, 1}k is selected. The oracles are set as

O1(.) = ROXhK,RO1,RO2(K, .), O2(.) = hK(.), O3(.) = RO1(.), O4(.) =
RO2(.). A is given K as input and has access to the four oracles.

– World 2: A random key K
$← {0, 1}k is selected. O1(.) = F(.) where

F : {0, 1}<2λ

→ {0, 1}n is a true VIL random oracle. A simulator SF (K) =
(SF1 (K),SF2 (K),SF3 (K)), having access to the oracle F(.) and receiving K
as input, simulates the role of the three FIL random oracles for the adver-
sary. That is, in this world when adversary queries the first oracle (i.e. the
VIL oracle) O1 the response comes from the true VIL random oracle F(.),
but when adversary queries any of the three FIL oracles O2(.),O3(.) and
O4(.), the queries are forwarded to the the simulator S. Simulator will re-
spond to these queries trying to mimic the oracles hK(.), RO1(.) and RO2(.),
respectively, by its sub-algorithms S1,S2 and S3 in a way that convinces A
that O1(.) is ROXhK ,RO1,RO2(K, .) although it is now actually F(.).

Let HK(.) = H(K, .) = ROXhK ,RO1,RO2 (K, .). The PRO advantage of the ad-
versary in differentiating H from F is defined as follows:

ε = AdvPRO
H (A) =

∣∣Pr
[
AO1, O2, O3, O4(K)⇒ 1 |World 1

]
−

Pr
[
AO1, O2, O3, O4(K)⇒ 1 |World 2

]∣∣

162 M.R. Reyhanitabar, W. Susilo, and Y. Mu

We say that an adversary A is a (tA, tS , q1, q2, q3, q4, l, ε)-differentiating adversary
against H if its PRO advantage is at least ε against any simulator S having time
complexity at most tS , where the time complexity of the adversary is at most
tA, the number of queries from i-th oracle is at most qi (for 1 ≤ i ≤ 4) and the
length of each query is at most l bits.

Now we are ready to state our negative result which shows the inability of
ROX to preserve PRO.

Theorem 1 (Negative Result: PRO). ROX domain extension transform
does not preserve pseudorandom oracle.

Proof. We show a (c, tS , 2, 1, 1, 2, 3b−2n, 1−2−n)-differentiating adversary against
H , i.e. A has overwhelming PRO advantage of 1−2−n in differentiating the VIL
hash function ROXhK ,RO1,RO2 : {0, 1}<2λ

→ {0, 1}n from a true VIL random
oracle F : {0, 1}<2λ

→ {0, 1}n, with respect to any simulator S with arbitrary
time complexity tS . A has time complexity tA = c, where c is a small constant,
and it asks only: two queries from the first oracle O1, one query from the second
oracle O2, one query from the third oracle O3 and two queries from the fourth
oracle O4. The maximum query length is 3b− 2n bits.

Adversary A acts as follows:

1. M
$← {0, 1}2b−2n and Y ← O1(M);

2. IP ← O4(M1...k, 〈2b− 2n〉λ , 〈1〉);
3. M ′ $← {0, 1}b−2n and Z ← O1(M ||IP ||M ′);
4. K0 ← O3(K, M1...k, 〈0〉);
5. OP ← O4(M1...k, 〈3b− 2n〉λ , 〈1〉);
6. Z ′ ← O2

(
(Y ⊕K0)||M ′||OP

)
;

7. If Z = Z ′ then return 1 (i.e. guess that it is World 1) else return 0 (i.e. guess
that it is World 2)

From the construction of the ROX hash function and the description of the World
1, it can be seen that Pr

[
AHK(.), hK(.), RO1(.), RO2(.)(K)⇒ 1

]
= 1. We claim

that Pr
[
AF(.), SF

1 (K), SF
2 (K), SF

3 (K)(K)⇒ 1
]

= 2−min{n,2b−2n−k}. This can be

seen by noting that in World 2, the only queries that the simulator SF (K) =
(SF1 (K),SF2 (K),SF3 (K)) can see and must respond to are the queries from
O2,O3, and O4 oracles. It is worth reminding that, the simulator cannot see
query-response sequence between the adversary A and the first oracle O1 due to
the definition of indifferentiability [7, 5, 3], as these queries are answered directly
by the true VIL random oracle F in World 2. Hence referring to the description
of the adversary A, it can be seen that the simulator S just is given the first
k bits of the first message M , i.e. M1...k, and has no information about the
remaining 2b − 2n − k bits of the message M . Hence to make A output a one
(i.e. to fool A), simulator S must either guess these 2b − 2n − k unknown bits
of M (with success probability of 2−(2b−2n−k)) or guess the correct value of Z
(with success probability of 2−n) in order to be able to provide a correct value
Z ′ at step 6 of A’s differentiating attack. (Note that the success probability of

Analysis of Property-Preservation Capabilities of the ROX and ESh 163

S in guessing the correct value of these unknown bits is independent of the time
complexity of S, i.e. tS , as S has no information about these bits.) So, we have
AdvPRO

H (A) = 1− 2−min{n,2b−2n−k}. It remains to verify that 2b− 2n− k ≥ n.
According to the construction of rox − padRO2 it must be the case that b ≥ 2n
and referring to [1], typical values for k and n are suggested as k = 80 bits
and n = 160 bits for an 80-bit security level, i.e. we have k ≈ n/2. Hence
min {n, 2b− 2n− k} = n and AdvPRO

H (A) = 1− 2−n as claimed. ��

MAC Preservation Analysis of the ROX. We show that the ROX trans-
form does not preserve MAC (unforgeability). This is done by providing as a
counterexample, a compression function h which is a secure MAC but for which
the VIL hash function obtained by using ROX transform will be insecure in
MAC sense.

Assume that there is a compression function g : {0, 1}k×{0, 1}n+b → {0, 1}n−1

which is (t, q, ε)−MAC. Consider the following construction from [3] for a com-
pression function h : {0, 1}k × {0, 1}n+b → {0, 1}n, where s = �log2(n)�:

hK(C||M) =
{

gK(C||M)||C[i] if M = 〈i〉s ||0b−s for i ∈ {1, · · · , n− 1}
gK(C||M)||C[n] otherwise

It is shown in [3] that if g is (t, q, ε)−MAC then h will be (t−cq, q, ε)−MAC, where
c is a small constant. Note that h leaks the i-th bit of its chaining variable input
C to the output if its input block M equals to 〈i〉s ||0b−s, for i ∈ {1, · · · , n− 1},
and otherwise h leaks the n-th (i.e. the last) bit of C.

We use this counterexample to prove the following negative result.

Theorem 2 (Negative Result: MAC). ROX domain extension transform
does not preserve MAC.

Proof. Consider the above counterexample function h as an FIL MAC. We show
that the VIL function H(K, .) = ROXh,RO1,RO2(K, .) obtained by applying the
ROX transform on this FIL MAC h will not be a secure MAC. This is done by
describing an adversary A which can break H(K, .) in MAC sense, with success
probability ≈ 1

4 and whose computational resources are only: one query from the
random oracle RO2(.), 2(n− 1) queries from the function HK(.) with maximum
length of each query 4b− 2n bits, and a constant time complexity proportional
to n.

The idea behind the construction of the adversary A is the same “length
reduction attacks” used in [3] to show that Sh transform is not MAC preserving.
We adapt the attack for the case of ROX transform by considering the special
padding function rox-padRO2 used by the ROX. The algorithm for the adversary
A is shown in Fig. 3. It has oracle access to HK(.) and RO2(.). Note that in
definition of the MAC security notion, the key K is considered secret from the
adversary and hence A cannot compute HK(.) directly.

It selects an all zero string of length 2b− 2n bits as M = 02b−2n, for which it
tries to return a valid tag T under HK(.). To this aim, A first queries RO2 as
IP ← RO2(M1...k, 〈2b− 2n〉λ , 〈1〉) to get the 2n-bit response IP (IP stands for

164 M.R. Reyhanitabar, W. Susilo, and Y. Mu

‘internal padding’). It then queries oracle HK(.) on n−1 messages, each of length
4b−2n bits, constructed as QHi = M ||IP || 〈i〉s ||0b−s||0b−2n, and it receives the
response Yi = HK(QHi), for i ∈ {1, · · · , n− 1} . Let yi denote the last bit of
Yi, i.e. yi = Yi[n]. According to the ROX construction and the structure of the
counterexample compression function h, the value of the bit yi will be computed
as yi = HK(M)[i] ⊕ K0[i] ⊕ K2[n] with overwhelming probability of at least
1 − 2−min{2n,b−s}. This can be seen from (the Top-Right diagram in) Fig. 3
noting that the final block contains 2n bits of random padding string (denoted
by OP) as its last bits and hence this final block input to the compression
function h is not equal to 〈i〉s ||0b−s with probability at least 1− 2−min{2n,b−s},
for i ∈ {1, · · · , n− 1}, and therefore h will leak the last bit (i.e. n-th bit) of
its chaining variable input to the output Yi. Therefore with probability at least
1 − 2−min{2n,b−s}, the variable yi (for 1 ≤ i ≤ n − 1) contains the i-th bit of
the tag T for the message M (i.e. T [i] = HK(M)[i]) masked with the unknown
key bits K0[i] and K2[n]. For typical values of b and n (say b = 512, n = 160)
we can make 1 − 2−min{2n,b−s} ≈ 1 and so we assume that this probability is
approximately one, to prevent unnecessary complexity in the analysis.

Now A tries to peel off the unknown key bits K0[i], for 1 ≤ i ≤ n − 1.
It queries HK(.) on n − 1 messages, each of length 2b − 2n bits, constructed
as qHi = 〈i〉s ||0b−s||0b−2n and receives the response Zi = HK(qHi), for i ∈
{1, · · · , n− 1}. Let zi denote the last bit of the Zi, i.e. zi = Zi[n]. According
to the description of HK(.) and the structure of the counterexample function h,
the value of bit zi will be computed as zi = HK(qHi)[i] = IV [i]⊕K0[i]⊕K1[n]
with overwhelming probability of at least 1− 2−2n. This can be seen from (the
Bottom-Right diagram in) Fig. 3 noting that the final block contains 2n bits of
random padding string (denoted by OP ′

i) as its last bits and hence this final block
input to the compression function h is not equal to 〈i〉s ||0b−s with probability
at least 1 − 2−2n, for any i ∈ {1, · · · , n− 1}, and hence h will leak the last bit
(i.e. n-th bit) of its chaining variable input to the output Zi. For a typical value
of n (say n = 160 as in SHA-1) we can make 1 − 2−2n ≈ 1 and so we assume
that this (overwhelming) probability is approximately one.

Now for each i ∈ {1, · · · , n− 1} adversary builds a variable ti = yi ⊕ zi ⊕
IV [i] whose value will be ti = HK(M)[i] ⊕ K1[n] ⊕ K2[n] (with overwhelming
probability of at least (1 − 2−2n)2 ≈ 1 for typical values of n, say n = 160).
Note that the value of the remaining unknown masking bit K1[n] ⊕ K2[n] is
independent of the index i, i.e. it is the same for all ti and therefore adversary
can guess this unknown value with probability 1/2. That is, for a random guess

α
$← {0, 1} with probability 1/2 the value ti⊕α will be equal to HK(M)[i] = T [i]

(i.e. the correct tag value), for all i ∈ {1, · · · , n− 1}. It just remains to compute
the last bit of the tag T , i.e. T [n], but A just guesses this one bit and with
probability 1/2 this guess will be correct. Hence the adversary A computes a
correct MAC tag T for the message M under HK(.) with probability 1/4 (or
more precisely with probability 1

4 (1−(n−1)2−2n+1), which for any typical value
of hash size n, say n = 160, will be ≈ 1/4). Note that the message M never is
queried from HK(.) in the attack and so this is a valid forgery attack.

Analysis of Property-Preservation Capabilities of the ROX and ESh 165

Fig. 3. (Left) Description of the algorithm for an adversary A against the VIL function
HK(.) = ROXRO1,RO2(K, .) based on the (counterexample) FIL MAC function h.
(Right) The structure of the queries from HK(.) and computation of the responses
according to the ROX construction.

Referring to the algorithm for A it is seen that A is quite efficient as its
computational resources are: one query from the random oracle RO2(.), 2(n−1)
queries from the function HK(.) with maximum length of each query 4b−2n bits,
and a constant time complexity proportional to n which can be easily determined
from the description of A. ��

Theorem 3 (Positive Result: PRF). ROX domain extension transform pre-
serves PRF.

Proof. This result is just a straightforward corollary of a theorem in [3] (Theorem
5, page 407) showing that in the dedicated-key hash function setting (where the
compression function is a keyed hash function) Merkle-Damg̊ard transform and
all of its variants including Shoup are PRF preserving transforms. As shown in
[3, 4] even if the key masks (K0, K1, · · ·) in Shoup construction are made public
and only the key (K) for the compression function is kept secret then Shoup
transform will still be PRF preserving. Clearly a special case will be putting
the value of all key masks to zero in which case Shoup iteration will be the
same as Merkle-Damg̊ard iteration which is a PRF preserving transform in the
dedicated-key hash setting [4]. We note that the iteration function of the ROX
transform is exactly the same as Shoup where the key masks are generated using
a random oracle (Refer to Fig. 2). ��

166 M.R. Reyhanitabar, W. Susilo, and Y. Mu

3.2 Analysis of the ESh Transform

The following theorems show our results about the ESh. We show both negative
results and a positive result about property preservation capability of ESh.

Theorem 4 (Negative Results: Sec, aSec, Pre, and aPre). ESh domain
extension transform does not preserve any of the Sec, aSec, Pre, and aPre secu-
rity properties.

Proof. The proof is done by showing, as a counterexample, a compression func-
tion which is secure in xxx sense for xxx ∈ {Sec, aSec, Pre, aPre} but for which
the full-fledged hash function obtained using ESh domain extension transform is
completely insecure in xxx sense for xxx ∈ {Sec[δ], aSec[δ], Pre[δ], aPre[δ]} and
for any value of the parameter δ < 2λ (remember that 2λ is the maximum input
message length in bits).

Referring to the description of the strengthened chain shift padding function
(padCSs) used in ESh transform, we consider the following two cases depending
on the sizes of the parameters b, n and λ (note that for ESh, b ≥ n and typical
value of λ = 64):

– Case 1: if b ≥ n + λ then padCSs(M) = M ||10r|| 〈|M |〉λ
– Case 2: if b < n + λ then padCSs(M) = M ||10r|| 〈|M |〉λ ||0b−n

Assume that there is a compression function g : {0, 1}k×{0, 1}n+b → {0, 1}n−1

which is (t, ε)-xxx, where xxx is any of the four properties in
{Sec, aSec, Pre, aPre}. For Case 1 and Case 2, respectively, consider the fol-
lowing two compression functions h1 : {0, 1}k × {0, 1}n+b → {0, 1}n and h2 :
{0, 1}k × {0, 1}n+b → {0, 1}n:

h1(K, M) =
{

0n if Mn+b−λ+1...n+b = 〈δ〉λ
g(K, M)||1 otherwise

h2(K, M) =
{

0n if M2n+1...n+b = 0b−n

g(K, M)||1 otherwise

Construction of the counterexamples h1 and h2 are inspired from the coun-
terexamples used in [5, 1] where we make some small modifications in the con-
ditions defining these two functions to consider the effect of padCSs padding
in ESh transform. To complete the proof of the theorem we prove and combine
the following two lemmas. The first lemma shows that the compression func-
tions h1 and h2 inherit security properties xxx ∈ {Sec, aSec, Pre, aPre} from
the compression function g and the second lemma shows that ESh transform
cannot preserve these four properties while extending the domain of h1 or h2
compression functions. Note that only one of these compression functions are
used depending on which of the two conditions specified in Case 1 and Case 2
above are the case.

Lemma 1. If g is (t, ε)-xxx then h1 is (t, ε+2−λ)-xxx and h2 is (t, ε+2−(b−n))-
xxx, for any of the notions xxx ∈ {Sec, aSec, Pre, aPre}.

Analysis of Property-Preservation Capabilities of the ROX and ESh 167

Proof. The proof can be found in the full version of this paper [16].

Lemma 2. For any xxx ∈ {Sec[δ], aSec[δ], Pre[δ], aPre[δ]}, and for any value
of δ < 2λ, there is a simple adversary which can break the domain extended hash
function ESh(K, M) = fESh(K, padCSs(M)) using h1 or h2 as the compression
function.

Proof. Considering the description of the padCSs and counterexample compres-
sion functions h1 and h2, we have ESh(K, M) = 0 for any M ∈ {0, 1}δ . Hence,
in Pre[δ] and aPre[δ] attacks adversary A just needs to output any arbitrary
M ′ ∈ {0, 1}δ and wins with probability one. Similarly, in Sec[δ] and aSec[δ]
attacks A only needs to output any M ′ ∈ {0, 1}δ which is different from the
challenge message M ∈ {0, 1}δ and wins with probability one. That is, the
VIL hash function ESh : K × {0, 1}<2λ

→ {0, 1}n, defined as ESh(K, M) =
fESh(K, padCSs(M)) using h1 or h2 is completely insecure in xxx sense for xxx
∈ {Sec[δ], aSec[δ], Pre[δ], aPre[δ]} and for any value of the parameter δ, where
δ < 2λ. ��

Theorem 5 (Positive Result: ePre). If the compression function h : {0, 1}k×
{0, 1}n+b → {0, 1}n is (t, ε)−ePre then the full-fledged hash function ESh :
K × {0, 1}<2λ

→ {0, 1}n defined as
ESh(K, M) = fESh(K, padCSs(M)) will be (t′, ε)−ePre, where t′ = t− c, for a
small constant c.

Proof. Assume that there is an adversary A against ePre property of the hash
function ESh with time complexity t′ and advantage ε′. We construct an ad-
versary B which can break the compression function h in ePre sense with the
same advantage (i.e. ε = ε′) and whose time complexity is that of A plus a
small constant time (i.e. t = t′ + c). Adversary B runs A and on receiving
the value of Y from A outputs the same value Y as its own target hash value
in the first phase of ePre game. B receives K (the random key for h), gen-

erates K0|| · · · ||Kt−1
$← {0, 1}t.n, where t =

⌈
log2(2λ/b)

⌉
+ 1 and sends the

key K||K0|| · · · ||Kt−1 to adversary A as the key for the full-fledged hash func-
tion ESh. Note that because B by this phase just knows the Y and does not
know the length of the input message to the hash function ESh, it generates
a key string of maximum required length for the XOR masks, i.e. t.n bits, for
t =

⌈
log2(2λ/b)

⌉
+ 1 where 2λ/b is the maximum possible input length in blocks

and n is the hash size. Now on receiving the message M ′ from A (which is to be
a preimage for Y under ESh, i.e. Y = ESh(K||K0|| · · · ||Kt−1, M ′)), adversary
B simply outputs the value (IV2 ⊕K0)||(CL−1 ⊕Kµ)||M ′

L as a preimage for Y
(refer to Fig. 2) which is the input to the final application of the compression
function h in the construction of ESh hash function. Clearly B wins whenever A
wins. The time complexity of B is that of A plus the time required to generate t
random n-bit keys, where t = O(λ) (typically λ = 64), and the time to compute
the hash function ESh on a message of length |M ′|. ��

168 M.R. Reyhanitabar, W. Susilo, and Y. Mu

4 Can We Preserve All Properties?

In the previous section we showed that the ROX transform, which is a random
oracle variant of Shoup, does not preserve MAC and PRO notions and also
we showed that the Enveloped Shoup (ESh) transform does not preserve Sec,
aSec, Pre, aPre notions. An immediate question arises from this analysis is that
whether we can preserve all the ten properties simultaneously by a new domain
extension transform.

Using FIL Random Oracles. If we are allowed to use some FIL Random
Oracles in our construction in the same way that ROX does (i.e. uses FIL random
oracles just for padding and generation of masking keys), then our analysis
in the previous section hints us toward a candidate for such a ten-property-
preserving transform by just mixing components from both ESh and ROX. We
notice that, as shown in Fig. 2, ROX utilizes Shoup’s iteration as its underlying
iteration function and uses FIL random oracles for generation of masking keys
and padding function. Hence the natural candidate for a ten property preserving
transform in random oracle model can be a random oracle variant of ESh with
some necessary adaptation in a similar way that ROX is obtained from Sh. We
call such a transform as Random-Oracle Enveloped Shoup (RO-ESh). For more
details and analysis of properties of RO-ESh we refer to the full version of this
paper in [16].

Without Any Random Oracle. As it was shown in analysis of ESh, as a
standard model transform, the four properties, namely; Pre, aPre, Sec, and aSec
are not preserved by ESh. It appears to be a crux to preserve these four properties
(simultaneously) in the standard model by an efficient transform.

Regarding the Sec property, Andreeva and Preneel [2] proposed a keyed trans-
form to extend the domain of a keyless compression function. The proposed
dedicated-key hash construction is CR and Sec secure provided that the under-
lying keyless compression function is, respectively, CR or Sec (here CR and Sec
are defined for a dedicated-key hash function and a keyless compression func-
tion, respectively). Unfortunately the proposed scheme cannot be shown to be
Pre secure in standard model and only a random oracle argument is provided
in [2] for its Pre property. For Pre notion, the only transform in the standard
model that is pointed out in [1] to be Pre preserving is the XOR Tree scheme,
but it does not preserve aPre and aSec [1]. For aSec and aPre notions, there is
currently no transform in the literature that can preserve aSec and aPre in the
standard model.

We remind that a hash domain extension transform preserves a property P
if the constructed VIL hash function provably possesses P assuming that the
underlying compression function satisfies the same property P. This is different
from a scenario where one proves that the VIL hash function has property P if
its underlying compression function satisfies a different property P′, e.g. [19], or
a collection of different assumptions, e.g. [10, 9].

Analysis of Property-Preservation Capabilities of the ROX and ESh 169

5 Conclusion

In this paper, we analyzed two recently proposed MPP hash domain exten-
sion transforms, namely the Random-Oracle-XOR (ROX) transform and the En-
veloped Shoup (ESh) transform. We showed that ROX does not preserve MAC
and PRO notions, but it preserves PRF. We also showed that ESh does not
preserve Sec, aSec, Pre, and aPre, but it preserves ePre. Our results complete
the MPP analysis of both ROX and ESh transforms in regard to all ten security
notions of interest, namely CR, Sec, aSec, eSec (TCR), Pre, aPre, ePre, MAC,
PRF, PRO, and provide the full picture of their MPP capabilities. An interesting
open question is that whether one can (simultaneously) preserve the remaining
four properties, namely Pre, aPre, Sec, and aSec in the standard model with an
efficient transform.

Acknowledgments. We would like to thank the anonymous reviewers of ACISP
2009 for their comments and suggestions.

References

[1] Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving
Iterated Hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 130–146. Springer, Heidelberg (2007)

[2] Andreeva, E., Preneel, B.: A Three-Property-Secure Hash Function. In: Avanzi,
R., Keliher, L., Sica, F. (eds.) SAC 2008. Workshop Records, pp. 208–224 (2008)

[3] Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design
Choices and MPP Transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)

[4] Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: De-
sign Choices and MPP Transforms. Cryptology ePrint Archive, Report 2007/271
(2007), http://eprint.iacr.org/

[5] Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

[6] Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

[7] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited:
How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

[8] Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

[9] Dodis, Y., Puniya, P.: Getting the Best Out of Existing Hash Functions; or What
if We Are Stuck with SHA? In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 156–173. Springer, Heidelberg
(2008)

[10] Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

http://eprint.iacr.org/

170 M.R. Reyhanitabar, W. Susilo, and Y. Mu

[11] Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

[12] Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

[13] Mironov, I.: Collision-Resistant No More: Hash-and-Sign Paradigm Revisited. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 140–156. Springer, Heidelberg (2006)

[14] Mironov, I.: Hash Functions: From Merkle-Damg̊ard to Shoup. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 166–181. Springer, Heidelberg
(2001)

[15] Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic
Applications. In: STOC 1989, pp. 33–43. ACM Press, New York (1989)

[16] Reyhanitabar, M.R., Susilo, W., Mu, Y.: Analysis of Property-Preservation Capa-
bilities of the ROX and ESh Hash Domain Extenders. Cryptology ePrint Archive,
Report 2009/170 (2009)

[17] Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

[18] Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer,
Heidelberg (2000)

[19] Yasuda, K.: How to Fill Up Merkle-Damg̊ard Hash Functions. In: Pieprzyk, J.
(ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 272–289. Springer, Heidelberg
(2008)

Characterizing Padding Rules of MD Hash
Functions Preserving Collision Security

Mridul Nandi

National Institute of Standards and Technology
mridul.nandi@gmail.com

Abstract. This paper characterizes collision preserving padding rules
and provides variants of Merkle-Damg̊ard (MD) which are having less or
no overhead costs due to length. We first show that suffix-free property
of padding rule is necessary as well as sufficient to preserve the collision
security of MD hash function for an arbitrary domain {0, 1}∗. Knowing
this, we propose a simple suffix-free padding rule padding only log |M |
bits for a message M , which is less than that of Damgard’s and Sarkar’s
padding rules. We also prove that the length-padding is not absolutely
necessary. We show that a simple variant of MD with 10d-padding (or
any injective padding) is collision resistant provided that the underly-
ing compression function is collision resistant after chopping the last-bit.
Finally, we design another variant of MD hash function preserving all
three basic security notions of hash functions, namely collision and (2nd)
preimage, which is an improvement over a recently designed (SAC-08)
three-property preserving hash function.

Keywords: MD hash function, padding rule, suffix-free, collision
resistant.

1 Introduction

Hash function has become an essential object in many cryptographic protocols [4]
particularly in signature schemes [2,6,11]. It takes an input from a message space
M (usually {0, 1}∗ or {0, 1}≤2s−1 for some s) and it outputs a t-bit string for a
fixed t. The hash function plays role of preprocessor in many applications so that
one can work with t-bit H(M) instead of an arbitrary sized M , which essentially
helps us to keep design of a protocol simple and efficient. In most cases, securities
of these protocols rely on the collision resistance property (it is hard to find two
different messages with same hash value) of the hash function. The most popular
design of a hash function is Merkle-Damgard [5,10] or MD hash function where
a compression function f : {0, 1}b+t→ {0, 1}t is designed first. Given a message,
some additional bits may be padded to it so that it can be partitioned into several
blocks of size b. The compression function is then sequentially applied to an initial
value and to all blocks of the padded message. It seems difficult to design a hash
function, based on only simple logical or/and arithmetical operations, which can
provide absolute collision security (or provable collision security like discrete log

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 171–184, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

172 M. Nandi

based hash function [7]). But it is well known that the MD hash functions with
length strengthening (padding length of the input) preserves collision security
(i.e. the hash function is collision resistant if so is the compression function).
So we can at least reduce the infeasibility assumption of a hash function to a
smaller domain compression function.

Padding rule is essential for MD hash function (proposed by both Damgard [5]
and Merkle [10] independently in crypto-1989). However they used different
padding rules. Merkle’s padding rule can not handle arbitrary length messages.
Sarkar [15] recently introduced a padding rule which can handle arbitrary mes-
sages and the number of padding bits is O(log |M | log∗ |M |) for some slowly
growing function log∗ defined in [15]. This is asymptotically less that that of
Damgard’s padding rule where O(|M |) bits are padded. Note, if the size of
padded bits is more, it may cost more invocations of the underlying compression
function. So, in terms of efficiency of hash function, one should try to keep size
of pad as small as possible. Any arbitrary padding may not be good as the hash
function is desired to preserve collision security. Clearly, injectivity is a basic re-
quirement of a padding rule. A padding rule is said to preserve collision security
(for MD) if the hash function with this padding rule preserves collision security.
So, it is worthwhile to characterize all padding rules preserving collision security.

Our Contribution. In this paper, we first show that suffix-free property is both
necessary and sufficient to preserve collision security for MD hash function.
Damgard in [5] mentioned prefix-free padding rules. Stinson [16], Bellare and
Rogaway [3] mentioned suffix-free property while proving collision preserving
of particular padding rules. Even though sufficiency of suffix-free padding rule
seems intuitive, we do not know any paper proving it. Some observations on
Merkle’s padding rule can be found in [8]. On the other hand, the necessity of
the suffix-free property is non-trivial. We propose a simple efficient suffix-free
padding rule, padding O(log(|M |)) bits, which can handle arbitrary messages.
We see a comparison of new padding rules with known padding rules in Table 1.

Let a t-bit compression function f is collision resistant in the first (t − 1)-
bits (i.e. collision resistant after chopping the last bit). We show that a simple
variant of MD hash function (converting 0t chaining value (if any) into 0t−11)
without any length-padding (any injective padding such as 10d-padding works)
is collision resistant. We actually prove a stronger statement which says that any
collision of the new hash function reduces to either a collision of f or a collision
of the first (t − 1) bits of f with the collision value 0t−1. Thus, we are able
to remove overhead costs due to length.

We also provide an improved three property (collision, (2nd) preimage) pre-
serving salted hash function which is a variant of MD hash function and is more
efficient than recently proposed hash function [1] in terms of salt size.

Organization of the paper. We first give an overview of the security notions
of a hash function and padding rules of MD hash functions in section 2. In
section 3, we characterize the collision preserving padding rules for any fixed
initial value. We also have provided simple examples of padding rule in the same

Characterizing Padding Rules of MD Hash Functions 173

section. In the following section, we prove a simple variant can completely avoid
length-padding and still have collision security under a reasonable additional
assumption. In section 5, we study an improved variant of BCM (backward
chaining mode) hash function which preserves all basic three security notions of
a hash function.

2 Overview of MD Hash Function, Padding Rule

A hash function H : M → {0, 1}t is called a collision resistant [14,17] hash
functions if it is “hard” to find a collision pair (M, M ′) i.e., M
= M ′ such that
H(M) = H(M ′). We define collision-advantage of an algorithm A as

Advcoll
H (A) := Pr[A→ (M, M ′) : H(M) = H(M ′), M
= M ′]

where probability is calculated over the random coins of A. Informally, a hash
function is called collision resistant if, for any efficient algorithm A, the colli-
sion advantage of A for H is negligible. Unfortunately, we can not rule out the
existence of an efficient collision finding algorithm A outputting (M, M ′) which
is eventually a collision pair of the hash function H . But nobody may know or
write down this algorithm based on our current knowledge. Therefore, we can
say that a hash function is collision resistant if no efficient collision finding algo-
rithm is known for it. Rogaway formalized this approach by introducing human
ignorance model [13]. Keeping this in mind, we use the following definition of
preserving properties of hash securities.

Definition 1. A hash family H := {HIV}IV∈{0,1}t based on a compression func-
tion f is said to preserve (ε, ε′)-collision security if given an efficient algorithm
A with at least ε collision advantage for H, we can construct (write down its
code modulo the subroutine A) an efficient algorithm A′ with at least ε′ collision
advantage for f .

Merkle-Damgard Hash function. Markle-Damgard or MD hash function
has three basic components namely, (1) an underlying compression function f :
{0, 1}b+t → {0, 1}t for some b > 0, (2) an initial value IV ∈ {0, 1}t and (3)
an easily computable padding rule pad : M → ({0, 1}b)+ for some message
space M. We define the classical iterated function f+

IV : ({0, 1}b)+ → {0, 1}t
as f+

IV(M1, · · · , M�) = f(f(· · · f(IV, M1), · · ·), M�), M1, · · · , M� ∈ {0, 1}b. The
MD hash function MDf

IV,pad is defined as the composition of the following maps:

M pad−→ ({0, 1}b)+ f+
IV−→ {0, 1}t (mapping as a function)

Thus, for all M ∈ M., MDf
IV,pad(M) = f+

IV(pad(M)). An illustration is given in
figure 1. Padding rule is essential to make the message size compatible with the
domain of f+

IV as well as to keep the hash function collision preserving. In this
paper, we will mainly study padding rules of MD and its different variants.

Padding Rules. The simplest possible (must be injective) padding rule is
pad0(M) = M‖10d where d is the smallest nonnegative integer such that |M |+

174 M. Nandi

f

M1

f

M2

f

Ml. . .

h1 h2 hl-1 hl
IV = h0

Msg

Pad

. . .

Fig. 1. The classical sequential iteration of a compression function

1 + d is a multiple of b. However, pad0 may not be sufficient to show the col-
lision resistance property of MD under the only assumption that f is collision
resistant. We show that if initial value is fixed then there is a compression func-
tion f which is collision resistant but we can actually construct a collision pair
efficiently for MDf

IV,pad0
. Moreover, the same result is true for any other “simply

defined” padding rule which is not suffix-free (see Theorem 1 in section 3.3).

Definition 2. Let X, Y ∈ {0, 1}∗. We call X a suffix of Y if there exists a
binary string Z such that Y = Z‖X. A padding rule pad is called suffix-free if,
for any M
= M ′, pad(M) is not a suffix of pad(M ′).

Here, we list some known padding rules. In crypto-1989, Damgard and Merkle
independently proposed the classical MD iteration, but with different padding
rules. Besides Merkle’s and Damgard’s padding rule, Sarkar defined a generalized
version of Merkle’s padding rule which has message space {0, 1}∗ unlike Merkle’s
padding rule where message space is {0, 1}2s−1 for some fixed s.

1. Merkle’s padding rule: The message space M = {0, 1}2s−1 for some
fixed s (we usually choose s = 64 or 128) and the padding rule is defined
as padmerk(M) = M ‖ 10d ‖ lens(M) where d is the smallest nonnegative
integer such that d + (|M |+ 1 + s) is a multiple of b and lens(M) represents
the s bit binary representation of |M |. The classical MD hash function uses
Merkle’s padding rule. For example, SHA-2 hash family is nothing but MD
hash function with Merkle’s padding rule for s = 64. Note that Merkle’s
padding rule can hash messages of maximum possible size 2s − 1.

2. Damgard’s padding rule: The message space for Damgard’s padding
rule is {0, 1}∗. He used different padding rule paddamg which does not need
to pad length of the message but it pads every message block by a single
bit 0 or 1 depending on whether it is first block or not and finally, it pads
one complete block representing the amount of 0-padding. More precisely,
let M‖0d = x1‖ · · · ‖xk where |xi| = b− 1 and d is the smallest nonnegative
integer such that |M |+ d is multiple of b− 1. Now,

paddamg(M) = 0 ‖ x1 ‖ 1 ‖ x2 ‖ · · · ‖ 1 ‖ xk ‖ lenb(d)

Characterizing Padding Rules of MD Hash Functions 175

One disadvantage of using Damgard’s padding is that for large messages it
is not as efficient as Merkle’s length padding as it needs more number of
padded bits. However, unlike padmerk, it can be applied to any arbitrary
messages.

3. Sarkar’s padding rule: Sarkar defined a new padding rule which can be
applied to any tree based iteration which includes the classical sequential
iteration. The padding rule is defined as

padsarkar(M) = 0 ‖ X0 ‖ 0d0 ‖ 1 ‖ X1 ‖ 0d1 ‖ · · · ‖ 1 ‖ Xk ‖ 0dk

where X0 = M , Xi = χ(Xi−1), 1 ≤ i ≤ k and χ(x) denotes the smallest
binary representation of |x|. Let k be the least positive integer such that
|Xk| ≤ b. The di’s are smallest nonnegative integer so that |Xi| + di is a
multiple of b − 1. Note that, it can handle arbitrary messages and needs
O(log(|M |) × log∗(|M |)) many padded bits where log∗ is much slower func-
tion compare to log (see [15] for a precise definition).

It is straightforward to see that all these padding rules are suffix-free (we leave
it for readers to verify). We provide a simple example of suffix-free padding rule
padlength which needs O(log(|M |)) many bits. Basically, we apply Damgard’s
padding rule to the length of the message instead of applying it to the whole
message. The precise definition of the padding rule can be found in section 3.2
and it is parameterized by a parameter s. Note that for any choice of s, the
message space of this padding rule is {0, 1}∗. This padding is so far the most
efficient padding rule (in terms of the number of padding bits) and if the message
size is less than 263 then this padding rule with s = 64 is same as Merkle’s
padding rule. Therefore in practice, we can apply MD hash function as long as
message size is less than 263. In table 1, we make a comparison for all these
padding rules with respect to message spaceM, length of the padded bits for a
message M and how it preserves the collision security.

Table 1. A comparison table for different padding rules with an underlying compres-
sion function f : {0, 1}b+t → {0, 1}t. pad0 represents the 10d padding rule defined in
this section and padlength represents the suffix padding rule defined in the section 3.2.
Padding length is given in terms of order. The last column represents when the hash
function is collision secure.

padding rule message space padding length assumption on f

padmerk [10] {0, 1}≤2s−1 b collision-secure
paddamg [5] {0, 1}∗ |M | collision-secure
padsarkar [15] {0, 1}∗ log |M | log∗ |M | collision-secure
padlength {0, 1}∗ log |M | collision-secure
pad0 {0, 1}∗ b (t − 1)-bit collision-secure

176 M. Nandi

3 Characterization of Collision Preserving Padding Rules

In this section, we characterize all padding rules applied to MD hash function
preserving the collision resistant property. We first show that suffix-free padding
rule is sufficient to preserve collision resistant and then we provide some simple
examples of suffix-free padding rules which are better than the known padding
rules in terms of the padding size and the message space, in which padding rule
can be applied. Finally, we show that suffix-free property is also necessary to
preserve collision resistant property.

3.1 Sufficient Condition of Collision-Preserving Padding

For any f : {0, 1}b+t → {0, 1}t and h ∈ {0, 1}t we have defined the iterated
function f+

h : ({0, 1}b)+ → {0, 1}t. We can extend the definition to the domain
({0, 1}b)∗ by defining f+

h (λ) = h where λ is the empty bit string. It is easy to
see that if X1 ∈ ({0, 1}b)k1 and X2 ∈ ({0, 1}b)k2 then

f+
h (X1‖X2) = f+

h′(X2) where h′ = f+
h (X1).

Now we provide basic intuitive lemma whose immediate corollary is that the
suffix-free padding rule preserves collision resistant for MD hash function. The
lemma says that if we have free-start collision for iterated hash f+ (i.e., f+

h (X) =
f+

h′(X ′)) with same length then there must be an intermediate collision during
computations of f+

h (X) and f+
h′(X ′). A computation of f+

h (x1, · · · , xk) means
that the sequence of computations of hi = f(hi−1, xi), 1 ≤ i ≤ k, where h0 = h.

Lemma 1. (basic lemma)
Let f : {0, 1}b+t → {0, 1}t and (h, x1, · · · , xk)
= (h′, x′

1, · · · , x′
k) where h, h′ ∈

{0, 1}t and x1,x′
1,· · · , xk, x′

k ∈ {0, 1}b. Then,

f+
h (x1, · · · , xk) = f+

h′(x′
1, · · · , x′

k)⇒ f(z, xi) = f(z′, x′
i), (z, xi)
= (z′, x′

i)

where 1 ≤ i ≤ k, z = f+
h (x1, · · · , xi−1) and z′ = f+

h′(x′
1, · · · , x′

i−1).

Proof. Define h0 = h, h′
0 = h′, hi = f+

h (x1, · · · , xi) and h′
i = f+

h′(x′
1, · · · , x′

i),
1 ≤ i ≤ k. Now we restate the statement of the lemma as follows.

Given that hk = h′
k and (h0, x1, · · · , xk)
= (h′

0, x
′
1, · · · , x′

k) there must exist
0 ≤ i < k such that (hi, xi+1)
= (h′

i, x
′
i+1) but hi+1 = h′

i+1.

Thus, we have a collision f(hi, xi+1) = hi+1 = h′
i+1 = f(h′

i, x
′
i+1). To prove

that there exists above such i, we use the contradiction method. So assume that,
for all i, it is not true. Therefore, for all 1 ≤ i < k, hi+1 = h′

i+1 implies that
(hi, xi+1) = (h′

i, x
′
i+1). Starting from hk = h′

k we have (hk−1, xk) = (h′
k−1, x

′
k).

Since h′
k−1 = hk−1 we also have (hk−2, xk−1) = (h′

k−2, x
′
k−1) and so on. Thus we

must have (h0, x1, · · · , xk) = (h′
0, x

′
1, · · · , x′

k) which is not true. Hence the claim
is proved by contradiction. ��

Characterizing Padding Rules of MD Hash Functions 177

Recall that, Hf
IV,pad(M) = f+

IV(pad(M)) for a padding rule pad :M→ ({0, 1}b)+.
Here we fix an initial value IV and hence we are only interested in a single hash
function and we write H := MDf

pad. The computation of padding rule must
be injective. Otherwise we will be able to find a collision of the hash func-
tion easily for any choice of underlying compression function. More precisely,
if we have two messages M
= M ′ such that pad(M) = pad(M ′) then clearly
Hf

IV,pad(M) = Hf
IV,pad(M

′) for any f . Since we usually choose a simply defined
padding rule we can assume that we will be able to find efficiently a collision
pair (M, M ′) of the padding rule if it is not injective. Now we want to classify
all padding rules such that MD hash functions based on these padding rule pre-
serves collision security for any choice of initial value. Here we show that this
class is nothing but the set of all suffix-free padding rules.

Theorem 1. Sufficient Condition for collision-preserving padding
If pad is suffix-free padding rule then given any collision pair (M, M ′) for MDf

pad

we can construct a collision pair of f efficiently. Thus, MDf
pad is preserving

(ε, ε)-collision security for any ε > 0.

Proof. Let pad(M) = X and pad(M ′) = X ′. Without loss of generality we as-
sume that |X | ≤ |X ′|. Let X ∈ ({0, 1}b)k and X ′ = (Z, Y) where Y ∈ ({0, 1}b)k.
Define h′ = f+

h (Z). As (M, M ′) is a collision pair, f+
h (X) = f+

h (X ′) and hence
fh(X) = fh′(Y) where both X and Y are members of ({0, 1}b)k and X
= Y
(since pad is suffix-free and hence X is not a suffix of X ′). Thus, by using
the above basic lemma 1 we must have a collision for f in the computation of
f+

h (X) and f+
h′(Y). Since the computation of f+

h (X ′) includes the computation
of f+

h′(Y), we are done. The collision advantage for f is at least the collision
advantage of MD hash function. The efficiency of the collision finding for f is
simple as we need to compute at most (|M |+ |M ′|)/b computations of f where
(M, M ′) is a collision pair generated from a collision finding algorithm for MD
hash function. ��

3.2 Simple Examples of Suffix-Free Padding Rules

We would like to note that known padding rules such as Damgard’s padding
rule, Merkle’s padding rule, Sarkar’s padding rule are all suffix-free.

Proposition 1. The padding rules padmerk, paddamg, and padsarkar are suffix-
free. Hence the Merkle-Damg̊ard hash function based on these padding rules pre-
serves the collision security.

It is straightforward to verify and so we leave it for readers to verify. Recall that
Damgard and Sarkar’s padding rules have domain {0, 1}∗ whereas the Merkle’s
padding rule has domain {0, 1}2d−1 for some fixed d. Damgard padding rule
pads O(|M |) bits to the message M whereas Sarkar’s padding rule needs roughly
O(log∗ |M | log |M |) many bits pad where log∗(|M |) is much slower function com-
pared to log(|M |). Now we propose a much simpler padding rule which is suffix-
free and which takes O(log(|M |)) many padded bits.

178 M. Nandi

Let χs(|M |) denote the smallest multiple of s-bit binary representation of |M |.
One can fix a suitable integer s, such as 8,32,64 etc. In other words, we first have
a binary represent of |M | and then add a sequence of 0’s in the beginning of
the length representation so that the size becomes multiple of s. Now we write
χs−1(|M |) = p1‖ · · · ‖p�−1‖p� where |pi| = s − 1 for 1 ≤ i ≤ �. Let d be the
smallest non-negative integer such that (d + |M |+ �s) is multiple of b. Now we
define

padlength(M) = M ‖ 0d ‖ 0 ‖ p1 ‖ 1 ‖ p2 ‖ 1 ‖ · · · ‖ p�.

By definition of d the size of padlength becomes multiple of b. It is easy to see that
this padding rule pads d+�s many bits which is at most b+�log(|M |)�+� log(|M|)

s−1 �.
So the number of padding bits for this padding rule is O(log |M |). Moreover, it
can also be applied to any arbitrary message. Now we prove that it is a suffix-free
padding rule. By using theorem 1, the MD hash function with this padding rule
preserve collision security.

Lemma 2. The padding rule padlength is suffix-free.

Proof. Suppose padlength(M ′) = (X, padlength(M)) for some X, M and M ′. Let
us denote

padlength(M) = M0d0p11p2 · · · 1p�, padlength(M) = M ′0d′
0p′11p′2 · · · 1p′�′ .

Since padlength(M ′) = (X, padlength(M)) we must have �′ = � and p′i = pi,
1 ≤ i ≤ � by comparing the positions of 1 and 0 bits. So, |M | = |M ′| and hence
d = d′. Thus, |padlength(M ′)| = |padlength(M)|. So, X = λ and padlength(M ′) =
padlength(M) and hence M = M ′. This proves that padlength is suffix-free. ��

Remark 1. Note that for any messages of size up to 263 the padding rule padlength
with s = 64 is same as padmerk. So we can use Merkle’s padding rule and for any
message longer than 263 one can extend the definition by using padlength with
s = 64. One may argue that the Merkle’s padding rule is sufficient enough for all
practical messages and the new padding rule only have of theoretical interest.
However, in some applications (such as smart card) short messages appear more
frequently (message sizes are usually less than 215). In those application, we can
choose small value of s (such as 8 or 16). With this padding rule, we save at
least 16 bit padding and as a result the hash function may be faster (since we
can save sometimes one compression function invocation which is significant for
short messages) than usual Merkle’s padding rule. So, there are some applications
where this padding rules are practically useful. Note that with s = 16, we can
pad any message of arbitrary length. If we know that the message size can be
large then s = 32 a reasonable choice.

Remark 2. Instead of padding length of the message, one can pad the number
of message blocks. The padding rule capturing this notion is defined as follows:

pad′length(M) = M ‖ 10d ‖ 0 ‖ p1 ‖ 1 ‖ p2 ‖ 1 ‖ · · · ‖ p�

Characterizing Padding Rules of MD Hash Functions 179

where χs−1(� |M|
b �) = p1‖ · · · ‖p�−1‖p� and d is the smallest non-negative integer

such that (d + 1 + |M | + �s) is multiple of b. This variant actually pads the
number of blocks of the message M instead of length of the message. In terms
of order, both padding rule needs O(log |M |) many bits. However, in most cases
of message sizes, the later needs less number of padding bits.

3.3 A Necessary Condition for Collision-Preserving Padding Rule

We have shown that any suffix-free property is good for collision-preserving.
Now we show that it is also a necessary condition. To show this let us fix a
padding rule pad which is not suffix-free. Therefore, we also fix M
= M ′ such
that pad(M) is a suffix of pad(M ′). We can do so since we assume that padding
rule is simply defined function and hence it must be easy to find such a pair. Now
we first construct a compression function f given a collision secure compression
function f ′ such that (M, M ′) is a collision pair of Hf

pad. Then we prove that
finding collision of f given M and M ′ and the oracle f is as hard as finding
collision of f ′. This proves that suffix-free padding rule is necessary to have a
collision-preserving MD hash function for any compression function and for any
initial value.

Theorem 2. Suffix-free is necessary condition
Let pad be a fixed padding rule which is not suffix-free. Now, given a collision
resistant compression function f ′ there is a collision resistant compression func-
tion f . Moreover, the Merkle-Damg̊ard hash function based on f with the padding
rule pad is not collision resistant (by providing a collision pair of it).

Proof. Let us assume that there is a (t − 1)-bit collision resistant compression
function f ′ : {0, 1}b+t → {0, 1}t−1, otherwise the question is moot. Without loss
of generality, let the last bit of IV is 1. We have fixed a pair (M, M ′) such that
pad(M) is a suffix of pad(M ′). Let pad(M ′) = (X, m)‖pad(M), m ∈ {0, 1}b and
X ∈ ({0, 1}b)∗. For simplicity we first assume that X = λ. Define

f(x) =
{

f ′(x) ‖ 0 if x
= IV‖m
IV if x = IV‖m

Thus, f(IV, m) = IV, a fixed point for f . Now it is easy to see that Hf
pad(M) =

Hf
pad(M

′). Now we have to show that f is collision resistant. Suppose there
exists a collision finding algorithm A which finds collision for f . Let x
= x′ such
that f(x) = f(x′) where A returns the collision pair (x, x′). Now, it is easy to
check that (x, x′) is a collision pair of f ′ too. Since we do not know any collision
algorithm for f ′, f must be collision resistant.

Now consider the case where X ∈ ({0, 1}b)+. We first define f̃(x) = f ′(x)‖0
and compute IV′ = f̃+

IV(X). Note that the last bit of IV′ is 0 and hence it
is different from IV. Since f ′ is a collision resistant compression function, IV′

should be different from all other intermediate values in the computation of
f̃+
IV(X). Otherwise, we will be able to find collision of f ′ easily. We define

180 M. Nandi

f(x) =
{

f ′(x) ‖ 0 if x
= IV′‖m
IV if x = IV′‖m

So, f(x) and f̃(x) are same whenever x
= IV′‖m. Since IV′ is different from all
other intermediate values in the computation of f̃+

IV(X), we must have f+
IV(X) =

f̃+
IV(X) = IV. Now we can show that (M, M ′) is a collision pair of Hf

pad. Note
that, Hf

pad(M
′) = f+

IV(X, m, pad(M)) = f+
IV′(m, pad(M)) = f+

IV(pad(M)) =
Hf

pad(M). Hence Hf
pad(M) = Hf

pad(M
′). Now we show that the compression

function f is also collision resistant. Suppose not, x
= x′ and f(x) = f(x′)
then clearly f ′(x) = f ′(x′) if x, x′
= IV′‖m. Moreover x or x′ can not be IV′‖m
otherwise the last bits of f(x) and f(x′) will be different. Hence f is collision
resistant as long as f ′ is collision resistant. The collision pair (M, M ′) also does
not help to find a collision since M and M ′ are efficiently computable and we
can use M and M ′ for any collision finding algorithm for f ′. ��

4 Length Padding is Redundant for a Variant of MD

In this section, we prove that the length padding is unnecessary if we use a
small variant of Merkle-Damg̊ard hash function and the underlying compression
function is little more secure than collision resistant. We define the variant of
the Merkle-Damg̊ard hash function as follows.

Algorithm 1. A Variant of Merkle-Damg̊ard Hash Function
Require: f : {0, 1}t × {0, 1}b → {0, 1}t, M ∈ {0, 1}∗.
1: d is the remainder when we divide t − |M | − 1 by t.
2: partition M10d = M1‖ · · · ‖M�, M1, · · · , M� ∈ {0, 1}b

3: h0 = 0t

4: for i = 1 to � do
5: hi = f(hi−1, Mi)
6: if hi = 0t then
7: hi = 0t−11
8: end if
9: end for

10: return h�.

We simply apply MD hash function with pad0 padding and with a checking
in internal chaining value. If we ever come up with 0t as a chaining value then
we simply change the chaining value into 0t−11. So we can think that it is MD
hash function based on a compression function f ′ defined below.

f ′(x) =
{

f(x) if f(x)
= 0t

0t−11 if f(x) = 0t

Note that 0 = 0t is also the initial value of the Merkle-Damg̊ard hash function.
Suppose MDf ′

0 (M) = MDf ′

0 (M) with M
= M ′. Then by using simple backward

Characterizing Padding Rules of MD Hash Functions 181

induction on the padded messages, we can prove that either there is a collision
of f ′ or there is a message x ∈ {0, 1}b+t such that f ′(x) = 0. By definition of f ′,
there does not exist any such x. If (x, x′) is a collision pair of f ′ then either it is
also a collision for f or f(x) = 0t and f(x′) = 0t−11. So either we have a collision
of f or we have collision on the first (t−1) bits of f with the collision value 0t−1.
Clearly, satisfying the second condition seems much harder than finding collision
for any reasonable practical construction of a compression function. Thus, we
have proved the following theorem.

Theorem 3. Suppose it is hard to find collision of f or it is hard to find X0
and X1 such that f(X0) = 0t and f(X1) = 0t−11 then the hash function based
on f defined in Algorithm 2. is collision resistant.

Corollary 1. Suppose it is hard to find collision on the first (t − 1)-bits of a
compression function f then the hash function based on f defined in Algorithm 2.
is collision resistant.

Remark 3. In the last section, we have proved that the suffix-free padding is nec-
essary to preserve collision security for MD hash function. To do so, we provide
a pathological example of the underlying compression function (easy to get the
initial value 0t even though it is collision secure). On the contrary, in this section,
we show that any injective padding rule, not necessarily suffix-free, is sufficient
to have collision security. Actually, we make sure that the pathological case does
not appear by imposing the if condition (see step-6 of the Algorithm 2.). This is
the main reason, we do not contradict each other. Moreover, the variant actually
do not preserve collision security according to the definition 1. But, it says that
if we have little more security of the underlying compression function than colli-
sion security, then the hash function is collision secure. The additional security
assumption seems to hold for any known practical secure hash function.

5 Three-Property Preserving Hash Function

Now we consider salted hash function which outputs the hash value with a
salt K ∈ {0, 1}s which is chosen randomly and keep it public (unlike message
authentication code, hash function should be publicly computable). We denote
the salted hash function as HK(·) where K is the salt. We define three basic
securities of a hash function for a salted hash function. These are collision,
preimage and second-preimage and its corresponding advantages of adversaries
is defined as

Advcoll
H (A1) = Pr[A1(K)→ (M, M ′) : HK(M) = HK(M ′), M
= M ′]

Adv2PI
H (A3) = Pr[A3(K, M)→M ′ : HK(M) = HK(M ′), M
= M ′]

AdvPI
H (A2) = Pr[A(K, z)→M : HK(M) = z]

where probabilities are computed over the internal randomness of the adver-
saries, uniform distribution of K, z and M chosen from {0, 1}s, {0, 1}t, and

182 M. Nandi

Algorithm 2. A Variant of Merkle-Damg̊ard Hash Function BCMf
pad0

Require: f : {0, 1}t × {0, 1}b → {0, 1}t and M ∈ {0, 1}∗.
1: d is the remainder when we divide t − |M | − 1 by t.
2: partition M10d = M1‖ · · · ‖M�, M1, · · · , M� ∈ {0, 1}b

3: h0 = 0t

4: for i = 1 to � do
5: if i = � then
6: h� = f(h�−1 ⊕ K, M�)
7: else
8: hi = f(hi−1 ⊕ Mi+1[t], Mi) \\ X[t] represents the first t-bits of X.
9: end if

10: if hi = 0t then
11: hi = 0t−11
12: end if
13: end for
14: return h�.

{0, 1}� for some �, respectively. Now we define a variant of BCM [1] (backward
chaining mode) which is simpler and needs less salt size. Recall that BCM uses
the padding rule padmerk and its salt size is b + 2t. In this paper, we use salt of
size t only. We denote the hash function as BCMf

pad0
since it uses the simplest

injective padding rule pad0. One may use some other padding rules.
A hash family H := {HK}K∈{0,1}s based on a compression function f is said

to almost preserve (ε, ε′)-collision security if given an efficient algorithm A with
at least ε collision advantage for HK , we can construct (write down its code
modulo the subroutine A) an efficient algorithm A′ with at least ε′ collision
advantage for f ′ (the first t− 1 bits of f). Similarly, we define for the other two
security notions (2nd) preimage. The proof of the following theorem is given in
the full version of the paper and it hash similarity with proof given in [1].

Theorem 4. BCMpad0
almost preserve (ε, ε)-collision, (2nd) preimage security.

The preimage preserving is trivial since inverting BCMpad0
reduces to inverting

the compression function by looking at the last invocation of the compression
function. Note that preimage attacker for hash function and preimage attacker
for compression function receives a target image which is uniformly distributed.
The proof for second preimage is very much similar to the security proof for three
property preserving hash function in [1] combined with the collision preserving
security analysis for MD hash function with padding rule pad0. We provide more
details to the full version of the paper.

6 Conclusion

We study padding rules in different aspects which is very essential for designing
hash function. Appending 1 followed by a suitable size sequence of 0 and binary

Characterizing Padding Rules of MD Hash Functions 183

representation of length is a very standard way to have padding for hash function.
But, this padding rule can only be applied for messages of size at most some
specified large value. Both for theoretical and practical point of views, we can
look for padding rules which can handle arbitrary messages. Padding rules by
Damgard and Sarkar are some known examples for this. Here we have shown
that suffix-free padding rule is sufficient to preserve collision resistant and as a
result we construct a simple padding rule which is more efficient than padding
rules both by Damgard and Sarkar. We have also proved that suffix is a necessary
condition preserving collision security. Thus, it would be interesting to see that
whether padding rule is optimum or not. So we propose the following open
problem.

Open Problem: Try to find suffix-free padding rule which needs less than
logarithm number of bits. On the other hand, we can try to prove that
asymptotically any suffix-free padding rule needs at least logarithm number
of bits.

We believe that the second option is more feasible. We also have shown that
the simplest padding such as padding 10d only can be sufficient for collision
preserving property if we restrict collision resistant assumption of the underlying
compression function for the first (t−1) bits. Thus, the simplest Merkle-Damg̊ard
hash function becomes collision resistant which does not have any overhead
costs due to length of the message. We also study a simple variant of MD hash
function which preserves collision resistance, second preimage as well as preimage
resistance. Thus we believe that padding length is not needed if we choose initial
value properly.

References

1. Andreeva, E., Preneel, B.: A Three-Property-Preserving Hash Function. To appear
in: Selected Areas in Cryptography (2008)

2. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

3. Bellare, M., Rogaway, P.: Introduction to Modern Cryptography,
http://www-cse.ucsd.edu/~mihir/cse207/classnotes.html

4. Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

5. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

6. Damg̊ard, I.B.: Collision Free Hash Functions and Public Key Signature Schemes.
In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–
216. Springer, Heidelberg (1988)

7. Gibson, J.K.: Discrete logarithm hash function that is collision free and one-way.
IEE Proceedings-E 138, 407–410 (1991)

8. Don., B.J.: Improving Hash Function Padding. NIST hash workshop (2005),
http://csrc.nist.gov/groups/ST/hash/documents/Johnson_Padding.pdf

http://www-cse.ucsd.edu/~mihir/cse207/classnotes.html
http://csrc.nist.gov/groups/ST/hash/documents/Johnson_Padding.pdf

184 M. Nandi

9. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less
than 2n Work. Cryptology ePrint Archive (2004),
http://eprint.iacr.org/2004/304

10. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

11. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the Twenty First Annual ACM Symposium on
Theory of Computing, pp. 33–43. ACM Press, New York (1989)

12. NIST/NSA. FIPS 180-2 Secure Hash Standard (August 2002),
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

13. Rogaway, P.: Formalizing Human Ignorance: Collision-Resistant Hashing without
the Keys. Eprint archive (2006), http://eprint.iacr.org/2006/281.pdf

14. Rogaway, P., Shrimpton, T.: Cryptographic Hash Function Basics: Definitions, Im-
plications, and Separations for Pre-image Resistance, Second Pre-image Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

15. Sarkar, P.: Domain Extender for Collision Resistant Hash Functions: Improving
Upon Merkle-Damgard Iteration. Discrete Applied Mathematics 157(5), 1086–1097
(2009)

16. Stinson, D.R.: Cryptography: Theory and Practice, 2nd edn. CRC Press, Inc., Boca
Raton

17. Stinson, D.R.: Some observations on the theory of cryptographic hash functions.
ePrint Archive Report (2001), http://eprint.iacr.org/2001/020/

http://eprint.iacr.org/2004/304
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://eprint.iacr.org/2006/281.pdf
http://eprint.iacr.org/2001/020/

Distinguishing Attack on the Secret-Prefix MAC
Based on the 39-Step SHA-256

Hongbo Yu1 and Xiaoyun Wang2,�

1 Center for Advanced Study, Tsinghua University, Beijing 100084, China
yuhongbo@mail.tsinghua.edu.cn

2 Tsinghua University and Shandong University, China
xiaoyunwang@tsinghua.edu.cn, xywang@sdu.edu.cn

Abstract. In this paper, we present the first distinguishing attack on
the LPMAC based on step-reduced SHA-256. The LPMAC is the ab-
breviation of the secret-prefix MAC with the length prepended to the
message before hashing and it’s a more secure version of the secret-
prefix MAC. In [19], Wang et al. give the first distinguishing attack on
HMAC/NMAC-MD5 without the related key, then they improve the
techniques to give a distinguishing attack on the LPMAC based on
61-step SHA-1 in [23]. In this paper, we utilize the techniques in [23]
combined with our differential path on step-reduced SHA-256 to distin-
guishing the LPMAC based on 39-step SHA-256 from the LPMAC with
a random function. The complexity of our attack is about 2184.5 MAC
queries.

Keywords: SHA-256, distinguishing attack, MAC.

1 Introduction

Hash function play an important role in modern cryptography. One main appli-
cation of their use is for the message authentication. A message authentication
code (MAC) is a function which takes a message and a secret key as inputs and
produces an output called an authentication tag. Three earlier MACs based on
hash functions are constructed by the secret prefix method , secret suffix method
and envelope method . The two other popular MACs based on the existing hash
functions are MDx-MAC [13] and HMAC/NMAC [2].

Recent years, cryptanalysis on hash function MDx-family and SHA-family has
been extensively studied. The attacks on hash functions [5,20,21,22,24,25,27,3]
have shown that the prevailing hash functions such as MD4, HAVAL, MD5, SHA-
0, SHA-1 are not collision resistant. Therefore research on the MACs based on

� Supported by 973 Project(No.2007CB807902), 863 Project(No.2006AA01Z420) and
the National Natural Science Foundation of China(NSFC Grant No.60803125).

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 185–201, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

186 H. Yu and X. Wang

those hash functions has become a hot topic. There are three kinds of attacks
on MACs: distinguishing attack, forgery attack and key-recovery attack. In [9],
Kim et al. defined two kinds of distinguishing attack on the hash-based MACs,
named distinguishing-R and distinguishing-H attacks. The distinguishing-R at-
tacks means distinguishing a MAC with a random function, and distinguishing-H
attack checks an instantiated MAC (in which is embedded a specific hash func-
tion) from a MAC with a random function. The distinguishing-R attack is use-
ful when the cryptanalyst wants to check whether output strings are produced
from a specific MAC algorithm or a random function, while the distinguishing-
H attack is to check which cryptographic hash is embedded in a specific MAC
algorithm (in this case, the cryptanalyst somehow already knew that the output
producing MAC algorithm, for instance, using the distinguishing-R attack, but
does not know the underlying hash function). For a MAC based on an iterated
compression function, the distinguishing-R attack requires about 2n/2 messages
queries by the birthday paradox [13], where n is the length of the MAC output.
But for the distinguishing-H attack, it has no constraint of 2n/2 message queries
because there does not exist a general attack based on the birthday paradox
which distinguishing a MAC with existing hash functions from a MAC with a
random function. So the idea complexity for the distinguishing-H attack should
be the exhaustive attack. In this paper, we only focus on the distinguishing-H
attack. For simplicity, we call it as distinguishing attack.

Most of the attacks on hash-based MACs make use of collision or near-collision
differential path for the underlying compression function with probability higher
than 2−n. For MD4, HAVAL and SHA-0, it’s easy to find the differential paths
with high probability [20,26,22,3], so the distinguishing, forgery and key-recovery
(or partial key recovery) attacks can be implemented successfully [4,6,18]. For
MD5, the only differential path with high probability is the pseudo-collision
differential found by den Boer and Bosselaers [1], and we call it as a dBB dif-
ference which consists of different IVs and the same massage. So the previous
attacks on MD5 are all in related key setting [4,6,18,16]. For the MACs based
on the SHA-1, distinguishing, forgery and partial or full key recovery attacks on
NMAC/HMAC-SHA-1 with a reduced number of steps (up to 62 out of 80) are
given in [16]. For the SHA-2, the first studies on the unmodified SHA-2 is given
by Mendel et al. [10], which give a 18-step collision and a 22-step pseudo-near-
collision for SHA-256. A series of analysis results on the step-reduced SHA-2 can
be obtained in [14,11,8,15] subsequently.

Recently, Wang et al. give the first distinguishing attack on HMAC and NMAC
based on MD5 without related key in Eurocrypt 2009 [19]. They use a distin-
guisher with a pair of two-block messages, the first block is used to guarantee the
appearance of the dBB difference by the birthday attack and the second block
uses a dBB difference to make a collision. The aims of their distinguishing is to
detect a dBB-collision from other types of collisions. Furthermore in FSE 2009
[23], Wang et al. improve their techniques to distinguish the LPMAC based on
61-step SHA-1. The distinguisher also consists of a pair of two-block messages,
the first 960 bits of the messages are used to ensure the emergence of a specific

Distinguishing Attack on the Secret-Prefix MAC 187

difference in the 14-th step of the second block, and the last 64 bits are used to
ensure the establishment of the 34-step differential path. Because the outputs of
the first block are unknown, it’s more complex to detect the specific difference
than that of MD5 and it requires that the probability of last 34-step differential
path is higher than 2−n/4 where n is the length of the MAC output.

In this paper, we apply the distinguishing techniques of Wang’s [23] to the
LPMAC based on step-reduced SHA-256. We find a 25-step differential path of
SHA-256 with probability 2−41. Based on it, we can distinguish a LPMAC based
on 39-step SHA-256 with a LPMAC from a random function with complexity
2184.5. The difficulty of our attack is to deal with a large number of linear message
equations because of the non-linear message expansion of SHA-256.

This paper is organized as follows. In section 2, we define some notations
and give a brief description of SHA-256 and LPMAC. In section 3, we give an
overview of Wang et al.’s distinguishing attack on SHA-1. In section 4, we de-
scribe our distinguishing attack on the LPMAC based on 39-step SHA-2. Finally
we conclude the paper in section 5.

2 Backgrounds and Definitions

In this section, we define some notations used in this paper, and give a brief
description of the hash function SHA-256 and the secret-prefix MAC.

2.1 Notations

x‖y : concatenation of the two bitstrings x and y
xi,j : the j-th bit of xi, where xi is a 32-bit word and

xi,32 is the most significant bit
+,− : addition and subtration modular 232

∧,∨,⊕ : bitwise AND, OR, and exclusive OR
∆x : the XOR difference x ⊕ x′

∆−x : the integer modular subtration difference x − x′,
where x and x are two 32-bit words

Sn : right-rotation by n-bit
Rn : right-shift by n-bit

2.2 Description of SHA-256

The SHA-2 family was standardized by NIST in 2002 [12]. It consists of the hash
functions SHA-256, SHA-224, SHA-512 and SHA-384. For our purpose attack,
here we only describe SHA-256.

SHA-256 is an iterated cryptographic hash function based on compression
function which takes a message of length less than 264 and produces a 256-
bit hash value. The compression function takes a 256-bit chaining value Hi =
(a0, b0, c0, d0, e0, f0, g0, h0) and a 512-bit message block M i as inputs and outputs
another 256-bit chaining value Hi+1. The final chaining value is the hash value
by iterating over all the message blocks.

188 H. Yu and X. Wang

Each 512-bit block of the padded message M i is divided into sixteen 32-bit
words which are denoted as m0, m1, ..., m15. The message words are expanded
to sixty-four 32-bit words w0, w1,..., w63:

wj =
{

mj , 0 ≤ j ≤ 15;
σ1(wj−2) + wj−7 + σ0(wj−15) + wj−16, 16 ≤ j ≤ 63.

The compression function of SHA-256 consists of 4 rounds and each involves
16 steps, which is defined as follows:

– Input: sixty-four 32-bit words w0, w1,...,w63 and a 160-bit chaining value
Hi = (a0, b0, c0, d0, e0, f0, g0, h0).

– Step update: for j = 1 to 64,

T1 = hj−1 + Σ1(ej−1) + Ch(ej−1, fj−1, gj−1) + kj−1 + wj−1

T2 = Σ0(aj−1) + Maj(aj−1, bj−1, cj−1)
aj = T1 + T2

bj = aj−1

cj = bj−1

dj = cj−1

ej = dj−1 + T1

fj = ej−1

gj = fj−1

hj = gj−1

– Output: Hi+1 = (a0 + a64, b0 + b64, c0 + c64, d0 + d64, e0 + e64, f0 + f64, g0 +
g64, h0 + h64).

The Boolean functions Ch(x, y, z) and Maj(x, y, z) employed in the SHA-256
are defined as follows:

Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z)
Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)

The functions Σ0(x), Σ1(x), σ0(x) and σ1(x) are defined as follows:

Σ0(x) = S2(x) ⊕ S13(x) ⊕ S22(x)
Σ1(x) = S6(x) ⊕ S11(x) ⊕ S25(x)
σ0(x) = S7(x) ⊕ S18(x) ⊕ R3(x)
σ1(x) = S17(x) ⊕ S19(x) ⊕ R10(x)

The constants kj in each step can be referred to [12].

Distinguishing Attack on the Secret-Prefix MAC 189

2.3 Secret-Prefix MAC and LPMAC

The secret prefix method consists of prepending a secret key k to the message
M before the hashing operation: MAC(M) = h(k‖M) for h an unkeyed hash
function. If the key consists of (maybe padded) a complete block, this corre-
sponds to a hash function with a secret IV. This method was suggested for MD4
independently by Tsudik [17] and by the Internet Security and Privacy Working
Group for use in the Simple Network Management Protocol (SNMP) [7]. But this
kind of MAC is insecure: a single text-MAC pair contains information essentially
equivalent to the secret key, independent of its size. An attacker may append
any blocks to the message and update the MAC accordingly, using the old MAC
as the initial chaining variable. An countermeasure for this type of attack was
proposed by prepending the length of the unpadded message before hashing [17].
We denoted this type of MAC as LPMACk(M) = h(k‖length‖M), where M is
the padded message of M . Suppose that k‖length consists of a complete block.
The padding method we selected for the LPMAC in this paper is: if the length of
M is the multiple of 512 bits, it no need to pad; Otherwise, appending minimum
number of zeros to make a whole number of blocks.

3 Overview of Wang et al.’s Distinguishing Attack on the
LPMAC Based on 61-Step SHA-1[23]

The distinguishing attack for the LPMAC based on step-reduced SHA-1 in [23]
utilized a 47-step differential path P of SHA-1 from step 15 to 61 with prob-
ability 2−34 (See Table 2 of [23]). The basic idea of Wang et.al ’s technique in
[23] is to detect a specific difference which consists of a two-block message pair
(x‖y‖z, x′‖y′‖z′), where x and x′ are one-block messages, y and y′ are 448-bit
(14 words) messages of the second block, z and z′ are the remaining 64-bit mes-
sages, ∆y = y′⊕y and ∆z = z′⊕z are the fixed differences which are determined
by the differential path P .

Let cv and cv′ denote the output values after the first block of LPMACk

(x‖y‖z) and LPMACk(x′‖y′‖z′), and chi and ch′
i denote the outputs after step

i of the second block respectively. Then the specific difference satisfies the fol-
lowing conditions:

1. The XOR difference ∆ch14 = ch14 ⊕ ch′
14 is a fixed difference determined in

advance and ch14 satisfies 9 fixed conditions.
2. The outputs of the message pair (x‖y‖z, x′‖y′‖z′) satisfies

LPMACk(x′‖y′‖z′) − LPMACk(x‖y‖z) = δ1 + δ2 (1)

where δ1 = cv′ − cv and δ2 = ch′
61 − ch61.

For the random message pair (x‖y‖z, x′‖y′‖z′), the condition 1 holds with prob-
ability 2−169. Under the condition 1, if the LPMAC is based on 61-step SHA-1,
the condition 2 holds with probability 2−34. Otherwise, if the LPMAC is based

190 H. Yu and X. Wang

on a random function, the condition 2 is satisfied with the average probability
2−160.

Because the output difference δ1 of the first block is unknown, the specific dif-
ference can not be detected similar as the distinguishing attack on HMAC/NMAC-
MD5 in [19]. So it needs another two 64-bit messages z1 and z′1 = z1 + ∆z that
also satisfy

LPMACk(x′‖y′‖z′1) − LPMACk(x‖y‖z1) = δ1 + δ2 (2)

Combine the equations (1) and (2), we can get

LPMACk(x′‖y′‖z′1) − LPMACk(x′‖y′‖z′)

= LPMACk(x‖y‖z1) − LPMACk(x‖y‖z) (3)

So if the LPMAC is based on 61-step SHA-1, the message quadruple (x‖y‖z,
x‖y‖z1, x′‖y′‖z′, x′‖y′‖z′1) satisfies the equation (3) with probability 2−68 under
the condition 1 ; Otherwise, the equation (3) holds with probability 2−160. Ac-
cording to this probability advantage, the main idea of the distinguishing attack
in [23] is summarized as follows:

Choose about 268 sets Si randomly and each consists of 284.5 different one-
block messages. For each message x ∈ Si (0 ≤ i ≤ 268), query the MACs with
x‖y‖z, x‖y‖z1, x‖y′‖z′ and x‖y′‖z′1 where y‖z, y‖z1, y′‖z′ and y′‖z′1 are four
fixed messages and compute the following two structures of differences

Si,1 = {LPMACk(x‖y‖z1) − LPMACk(x‖y‖z)|x ∈ Si},
Si,2 = {LPMACk(x‖y′‖z′1) − LPMACk(x‖y′‖z′)|x ∈ Si}.

Find all the collisions (x, x′) in Si,1 and Si,2 (0 ≤ i ≤ 268) so that the equation
(3) holds. The total number of MAC queries are about 2154.5. It expects about
268 collisions where each set contains one collision on average. For each collision
pair (x, x′), do:

– Compute δ = LPMACk(x′‖y′‖z′) − LPMACk(x‖y‖z).
– Replace the fixed message pair (z, z′) with 234 different 64-bit message pairs

(z, z′) where each y‖z also satisfies the fix message conditions and z′ =
z+∆z. Query all the 234 message pairs (x‖y‖z, x′‖y′‖z′) and get their MACs.
For each message pair, compute δ = LPMACk(x′‖y′‖z′)−LPMACk(x‖y‖z)
and compare δ to δ.

Once a δ is found so that δ = δ, then conclude that the target MAC is a LPMAC
based on 61-step SHA-1; Otherwise, conclude that the MAC is LPMAC based on
a random function. The complexity of the distinguishing attack is about 2154.5.

Distinguishing Attack on the Secret-Prefix MAC 191

4 Distinguishing Attack on the LPMAC Based on
39-Step SHA-256

In this section, we apply the distinguisher in [23] to distinguish the LPMAC
based on 39-step SHA-256. The key step for our attack is to find a specific
differential path P1 of 39-step SHA-256 which is shown in Table 3. The differ-
ential path in Table 3 can be divided into two parts: steps 1 ∼ 14 and steps
15 ∼ 39. For the first part, we neglect the exact output differences in the first
13 steps and only focus on the output difference after step 14 which serves as
the input of the the second part. The differential path of second part from steps
15 to 39 is a pseudo-near-collision differential path with probability 2−41. The
pseudo-near-collision for the compression function can be defined as follows:

Definition. We say that (h, x) and (h′, x′) is a pseudo-near-collision for the
compression function f : {0, 1}n × {0, 1}m �→ {0, 1}n, if the Hamming distance
between f(h, x) and f(h′, x′) is small (typically, a few bits) and (h, x) �= (h′, x′).

The distinguisher for the LPMAC based on 39-step SHA-1 also consists of a
two block messages pair (x‖y‖z, x′‖y′‖z′), where x and x′ are one-block mes-
sages, y and y′ are 448-bit truncated messages of the second block, z and z′ are
the remaining 64-bit messages, and the difference ∆y = y ⊕ y′ and ∆z = z ⊕ z′

are determined by the path P1. The purpose of our attack is to distinguish the
output difference occurred after step 14 of the second block.

4.1 The Specific Differential Path for 39-Step SHA-256

The message difference ∆M = M ⊕M ′ = (∆m0, ..., ∆m15) for the 39-step SHA-
256 is selected are as follows (See Table 1):

Table 1. The message difference

∆m0 ∼ ∆m3 0x92844891 0x50824014 0x84521222 0x4a901104
∆m4 ∼ ∆m7 0x55410245 0xa1114484 0x90904111 0x04444441
∆m8 ∼ ∆m11 0x12022882 0x00104011 0x00880080 0x81544280
∆m12 ∼ ∆m15 0x0a020000 0x11002000 0x80000000 0

Let W = (w0, w1, ..., w38) and W ′ = (w′
0, w

′
1, ..., w

′
38) be the expanded message

of M and M ′ respectively. To make ∆wi = wi ⊕w′
i (16 ≤ i ≤ 38) meet the fixed

message differences in Table 3, i.e.,

∆wi = 0, 16 ≤ i ≤ 37, i �= 23,
∆w23 = 0x80000000,
∆−w38 = 213 + 224 + 228,

we need to deduce a group of sufficient conditions on message W . For example,
according to the message expansion algorithm of SHA-256,

w16 = w0 + σ0(w1) + w9 + σ1(w14),

w′
16 = w′

0 + σ0(w′
1) + w′

9 + σ1(w′
14).

192 H. Yu and X. Wang

Let ∆w16 = 0, then

w0 + σ0(w1) + w9 + σ1(w14) = w′
0 + σ0(w′

1) + w′
9 + σ1(w′

14) (4)

From the XOR difference

∆σ0(w1) = σ0(∆w1) = σ0(0x50824014) = 0xb2b458a2,
∆σ1(w14) = σ1(∆w14) = σ1(0x8000000) = 0x00205000,
∆w0 = 0x92844891,
∆w9 = 0x00104011,

we can deduce a set of sufficient conditions to guarantee the equation (4) hold:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w9,1 = w0,1,
σ0(w1)2 = w0,1 ⊕ 1,
w9,5 = w0,5,
σ0(w1)6 = w0,5 ⊕ 1,
σ0(w1)8 = w0,8 ⊕ 1,
σ0(w1)12 = w0,12 ⊕ 1,
σ0(w1)13 = σ1(w14)13 ⊕ 1,
σ0(w1)15 = σ1(w14)15 ⊕ 1,
w9,15 = w0,15 ⊕ 1,
σ0(w1)19 = w0,19 ⊕ 1,
σ0(w1)21 = w0,21 ⊕ 1,
σ0(w1)22 = σ1(w14)22 ⊕ 1,
σ0(w1)24 = w0,24 ⊕ 1,
σ0(w1)26 = w0,26 ⊕ 1,
σ0(w1)29 = w0,29,
σ0(w1)30 = w0,29 ⊕ 1.

(5)

Because σ0(x) = S7(x)⊕S18(x)⊕R3(x) and σ1(x) = S17(x)⊕S19(x)⊕R10(x),
then the j-the bit of σ0(x) and σ1(x) can be expressed as

σ0(x)j =
{

x(j+7)mod32 ⊕ x(j+18)mod32 ⊕ x(j+3)mod32, 1 ≤ j ≤ 29,
x(j+7)mod32 ⊕ x(j+18)mod32, 30 ≤ j ≤ 32.

σ1(x)j =
{

x(j+17)mod32 ⊕ x(j+19)mod32 ⊕ x(j+10)mod32, 1 ≤ j ≤ 22,
x(j+17)mod32 ⊕ x(j+19)mod32, 23 ≤ j ≤ 32.

Take σ0(x)j and σ1(x)j into the equation system (5) and arrange the items
in each equation from the higher bit to lower bit, we can get a group of message
equations:

Distinguishing Attack on the Secret-Prefix MAC 193

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1,16 = w1,5 ⊕ w0,29 ⊕ 1,
w1,20 = w1,9 ⊕ w1,5 ⊕ w0,1 ⊕ 1,
w1,22 = w1,15 ⊕ w1,11 ⊕ w1,5 ⊕ w0,8 ⊕ w0,19,
w1,24 = w1,13 ⊕ w1,9 ⊕ w0,5 ⊕ 1,
w1,26 = w1,15 ⊕ ⊕w1,11 ⊕ w0,8 ⊕ 1,
w1,29 = w1,12 ⊕ w1,1 ⊕ w0,26 ⊕ 1,
w1,30 = w1,19 ⊕ w1,15 ⊕ w0,12 ⊕ 1,
w1,31 = w1,27 ⊕ w1,10 ⊕ w0,24 ⊕ 1,
w1,32 = w1,15 ⊕ w1,4 ⊕ w0,29,
w9,1 = w0,1,
w9,5 = w0,5,
w9,15 = w0,15 ⊕ 1,
w9,21 = w1,28 ⊕ w1,24 ⊕ w1,7 ⊕ 1,
w14,25 = w14,7 ⊕ w14,9 ⊕ w14,2 ⊕ w1,29 ⊕ w1,25 ⊕ w1,22 ⊕ w1,8 ⊕ w1,1 ⊕ w1,18,
w14,30 = w14,23 ⊕ w14,9 ⊕ w14,7 ⊕ w1,31 ⊕ w1,29 ⊕ w1,25 ⊕ w1,20 ⊕ w1,16 ⊕ w1,8,
w14,32 = w14,7 ⊕ w14,9 ⊕ w1,29 ⊕ w1,25 ⊕ w1,8 ⊕ 1,

(6)

For each message word difference of ∆w16 ∼ ∆w38 in Table 3, we can deduce
a group of sufficient conditions similar to the equation system (6). There are
total 150 conditions on W = (w0, ..., w38) which are shown in Table 5 and 5.

For the pseudo-near-collision differential path from steps 15 to 39 of Table
3, the input chaining variable difference ∆ch14 = ch′

14 ⊕ ch14 is selected as (in
hexadecimal expression)

(0, 22140240, 80000000, 0, 00082200, 20040000, 80000000, 4411008c),

and the output difference ∆−ch39 = ch′
39 − ch39 is

(213 + 224 + 228, 0, 0, 0, 213 + 224 + 228, 0, 0, 0).

It’s easy to deduce the sufficient conditions on the chaining variables ch14 to
ch39 according to the properties of the Boolean functions Ch and Maj. There
are 25 conditions in ch14 and 41 conditions in ch15 ∼ ch39 altogether (See Table
4), and each condition can be fulfilled with probability 1/2. So if the 25 sufficient
conditions in ch14 and 150 conditions in message words w0 ∼ w38 are fulfilled,
the differential path from steps 15 to 39 in Table 3 holds with probability 2−41.

It deserves to note that we use the XOR difference in the first 38 steps
in Table 3, and use the integer modular subtration difference in the last step
(step 39).

4.2 The Distinguishing Algorithm on LPMAC from 39-Step
SHA-256

In this section, we give the distinguishing attack on the LPMAC based on 39-
step SHA-2 utilizing the technique in [23] combined with our new differential
path.

The first step of our attack is to select four fixed one-block messages y‖z,
y‖z1, y′‖z′, and y′‖z′1 which satisfy

194 H. Yu and X. Wang

– The messages y‖z and y‖z1 satisfies the 150 message conditions in Table 5
and 5.

– ∆y = y′ ⊕ y and ∆z = z′ ⊕ z = z1 ⊕ z′1 , ∆y‖∆z are the target message
differences in Table 1.

The purpose of our attack is to find a 512-bit message pair (x, x′) so that the
message quadruple (x‖y‖z, x‖y‖z1, x

′‖y′‖z′, x′‖y′‖z′1) satisfy the following two
conditions:

1. Let ch14 and ch′
14 denote the 14-th step outputs of the second block of

LPMACk(x‖y‖z) and LPMACk(x′‖y′‖z′) respectively. ∆ch14 satisfies the
target input difference of step 14 in Table 3 and ch14 satisfies the 25 sufficient
conditions in Table 4.

2. The LPMACs of the message quadruple satisfy the equation

LPMACk(x‖y‖z1) − LPMACk(x‖y‖z)
= LPMACk(x′‖y′‖z′1) − LPMACk(x′‖y′‖z′)

We call the message pair (x, x′) that satisfies the condition 1 and 2 above as a
W-Collision.

For a random one-block message pair (x, x′), the condition 1 above is satisfied
with probability 2−256 × 2−25 = 2−281. If the LPMAC is based on 39-step SHA-
256, the condition 2 can be satisfied when the two message pairs (x‖y‖z, x‖y′‖z′)
and (x‖y‖z1, x‖y′‖z′1) both follow the differential path from step 15 to 39 in Table
3, and the probability is 2−82; Otherwise, if the LPMAC is based on a random
function, the condition 2 holds with the average probability 2−256.

Overall, if the MAC is a LPMAC based on 39-step SHA-256, the messages
quadruple (x‖y‖z, x‖y‖z1, x

′‖y′‖z′, x′‖y′‖z′1) satisfy the condition 1 and 2 with
probability 2−281 × 2−82 = 2−363, i.e., (x, x′) consists of a W-Collision with
probability 2−363.

Then the distinguishing algorithm for the LPMAC based on 39-step SHA-256
can be described as follows:

1. Generate a message set S randomly, which consist of 2182.5 one-block mes-
sages. For each x ∈ S, query the MACs with x‖y‖z, x‖y′‖z′, x‖y‖z1 and
x‖y′‖z′ respectively, and compute the following two sets of differences:

S1 = {LPMACk(x‖y‖z1) − LPMACk(x‖y‖z)|x ∈ S},
S2 = {LPMACk(x‖y′‖z′1) − LPMACk(x‖y′‖z′)|x ∈ S}.

Find all the collisions (x, x′) between the sets S1 and S2 by the birthday
attack so that

LPMACk(x‖y‖z1) − LPMACk(x‖y‖z)
= LPMACk(x′‖y′‖z′1) − LPMACk(x′‖y′‖z′).

The set of all collisions is recorded as S3.

Distinguishing Attack on the Secret-Prefix MAC 195

2. For each collision (x, x′) ∈ S3, compute LPMACk(x′‖y′‖z′) − LPMACk

(x‖y‖z) and denote it as δ. Choose 242 different 64-bit messages pairs (z, z′)
so that (y‖z, y′‖z′) satisfy the message differences in Table 3 and y‖z satisfy
the message conditions in Table 5 and 5. Query the MACs of all the 242

message pairs (x′‖y′‖z′, x‖y‖z) and observe whether LPMACk(x′‖y′‖z′) −
LPMACk(x‖y‖z) is equivalent to δ.

3. Once a pair (z, z′) are found to match the difference δ, we conclude that
the LPMAC is based on 39-step SHA-256; Otherwise, output the MAC is
LPMAC based on a random function.

Complexity evaluation
In step 1, the number of queries is 2184.5 for all the 2182.5 messages. In addition,
it needs a table look up with the table size 2182.5. For the 2182.5 messages, it
can form about 2364 message pairs , so expected number of collisions in S3 is
about 2364−256 = 2108 in which about 2364−363 = 2 W-collisions are included.
In step 2, for each collision, it needs 242 message pairs to verify whether the
collision is a W-collision for a reasonable success rate, so the complexity in step
2 is about 2150 MAC queries. Therefore, the total time complexity of this attack
is dominant in step 1 and it’s about 2184.5 MAC queries.

Success rate:
We divide the success rate into two parts:

– If the MAC is LPMAC based on 39-step SHA-256, the attack succeeds when
we distinct a W-collision from 2108 other collisions.
The probability that there exists a W-collision among 2108 collisions is:

1 − (1 − 1
2363)2

364
= 1 − 1

e2 ≈ 0.86

The probability that the W-collision can be detected in step 3 is about

1 − (1 − 1
241)2

42
= 1 − 1

e2 ≈ 0.86

This way, if the MAC is LPMAC based on 40-step SHA-256, a W-collision
can be detected with probability 0.86 × 0.86 ≈ 0.72.

– If the MAC is LPMAC based on a random function, the attack succeeds
when no W-collision is detected. The success probability is about:

((1 − 1
2256)2

42
)2

108 ≈ 1.

Therefore, the success rate of the whole attack is about

1
2
× 0.72 +

1
2
× 1 = 0.87.

The success probability can be improved by increase the number of selected
messages.

196 H. Yu and X. Wang

5 Conclusions

In this paper, we give the first distinguishing attack on the LPMAC based on
39-step SHA-256, and the attack is also applicable to the LPMAC based on step-
reduced SHA-512. Our distinguishing attack on the LPMAC is not useful for the
HMAC/NMAC because the non-zero output difference of the inner function is
overshadowed by the outer function of HMAC/NMAC so that the W-Collision
cannot be detected.

References

1. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

3. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

4. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

5. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

6. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

7. Galvin, J.M., McCloghrie, K., Davin, J.R.: Secure management of SNMP networks.
Integrated Network Management 11, 703–714 (1991)

8. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and other Non-
Random Properties for Step-Reduced SHA-256. SAC 2008 (2008),
http://eprint.iacr.org/2008/131.pdf

9. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0, and SHA-1. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

10. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143.
Springer, Heidelberg (2006)

11. Nikolić, I., Biryukov, A.: Collisions for Step-Reduced SHA-256. In: Nyberg, K.
(ed.) FSE 2008. LNCS, vol. 5086, pp. 1–16. Springer, Heidelberg (2008)

12. National Institute of Standards and Technology (NIST). FIPS- 180-2: Secure Hash
Standard (August. 2002), http://www.itl.nist.gov/fipspubs/

13. Preneel, B., Oorschot, P.: MDx-MAC and building fast MACs from hash functions.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14. Springer,
Heidelberg (1995)

14. Sanadhya, S., Sarkar, P.: New Local Collisions for the SHA-2 Hash Family. In:
Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 193–205. Springer,
Heidelberg (2007)

http://eprint.iacr.org/2008/131.pdf
http://www.itl.nist.gov/fipspubs/

Distinguishing Attack on the Secret-Prefix MAC 197

15. Sanadhya, S., Sarkar, P.: New Collision attacks Against Up To 24-step SHA-2. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 91–103. Springer, Heidelberg (2008), http://eprint.iacr.org/2008/270.pdf

16. Rechberger, C., Rijmen, V.: On Authentication with HMAC and Non-Random
Properties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS,
vol. 4886, pp. 39–57. Springer, Heidelberg (2007)

17. Tsudik, G.: Message authentication with one-way hash functions. ACM Computer
Communications Review 22(5), 29–38 (1992)

18. Wang, L., Ohta, K., Kunihiro, N.: New Key-Recovery Attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 237–253. Springer, Heidelberg (2008)

19. Wang, X.Y., Yu, H.B., Wang, W., Zhang, H.N., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In: Eurocrypt 2009 (to appear, 2009)

20. Wang, X.Y., Lai, X.J.: Cryptanalysis for Hash Functions MD4 and RIPEMD.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer,
Heidelberg (2005)

21. Wang, X.Y., Yu, H.B.: How to Break MD5 and Other Hash Functions. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

22. Wang, X.Y., Feng, D.G., Yu, X.Y.: An attack on HAVAL function HAVAL-128.
Science in China Ser. F Information Sciences 48(5), 1–12 (2005)

23. Wang, X.Y., Wang, W., Jia, K.T., Wang, M.Q.: New Distinguishing Attack on
MAC using Secret-Prefix Method. In: FSE 2009 (to appear, 2009)

24. Wang, X.Y., Yu, H.B., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

25. Wang, X.Y., Yin, Y.L., Yu, H.B.: Finding collisions on the Full SHA-1. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

26. Yu, H.B., Wang, G.L., Zhang, G.Y., Wang, X.Y.: The Second-Preimage Attack
on MD4. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS,
vol. 3810, pp. 1–12. Springer, Heidelberg (2005)

27. Yu, H.B., Wang, X.Y., Yun, A., Park, S.: Cryptanalysis of the Full HAVAL with 4
and 5 Passes. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 89–110.
Springer, Heidelberg (2006)

http://eprint.iacr.org/2008/270.pdf

198 H. Yu and X. Wang

Appendix

Table 2. The property for the round function Ch(x, y, z) and Maj(x, y, z) of SHA-256.
∆x = 1 denotes x changes from 0 to 1, ∆x = −1 denotes x changes from 1 to 0.

∆x ∆y ∆z ∆Ch = 0 ∆Ch = 1 ∆Ch = −1 ∆Maj = 0 ∆Maj = 1 ∆Maj = −1
0 0 0 1 – – 1 – –
0 0 1 x = 1 x = 0 – x = y x �= y –
0 0 -1 x = 1 – x = 0 x = y – x �= y

0 1 0 x = 0 x = 1 – x = z x �= z –
0 1 1 – 1 – – 1 –
0 1 -1 – x = 1 x = 0 1 – –
0 -1 0 x = 0 – x = 1 x = z – x �= z
0 -1 1 – x = 0 x = 1 1 – –
0 -1 -1 – – 1 – – 1
1 0 0 y = z y = 1, z = 0 y = 0, z = 1 y = z y �= z –
1 0 1 y = 0 y = 1 – – 1 –
1 0 -1 y = 1 – y = 0 1 – –
1 1 0 z = 1 z = 0 – – 1 –
1 1 1 – 1 – – 1 –
1 1 -1 1 – – – 1 –
1 -1 0 z = 0 – z = 1 1 – –
1 -1 1 1 – – – 1 –
1 -1 -1 – – 1 – – 1

-1 0 0 y = z y = 0, z = 1 y = 1, z = 0 y = z – y �= z
-1 0 1 y = 1 y = 0 – 1 – –
-1 0 -1 y = 0 – y = 1 – – 1
-1 1 0 z = 0 z = 1 – 1 – –
-1 1 1 – 1 – – 1 –
-1 1 -1 1 – – – – 1
-1 -1 0 z = 1 – z = 0 – – 1
-1 -1 1 1 – – – – 1
-1 -1 -1 – – 1 – – 1

Distinguishing Attack on the Secret-Prefix MAC 199

Table 3. Differential path for the 39-step SHA-256

step ∆w ∆a ∆b ∆c ∆d ∆e ∆f ∆g ∆h

IV - - - - - - - -
1 92844891 - - - - - - - -
2 50824014 - - - - - - - -
3 84521222 - - - - - - - -
4 4a901104 - - - - - - - -
5 55410245 - - - - - - - -
6 a1114484 - - - - - - - -
7 90904111 - - - - - - - -
8 04444441 - - - - - - - -
9 12022882 - - - - - - - -
10 00104011 - - - - - - - -
11 00880080 - - - - - - - -
12 81544280 - - - - - - - -
13 0a020000 - - - - - - - -
14 11002000 0 22140240 80000000 0 00082200 20040000 80000000 4411008c

15 80000000 0 0 22140240 80000000 0 00082200 20040000 80000000
16 0 80000000 0 0 22140240 0 0 00082200 20040000
17 0 0 80000000 0 0 02100040 0 0 00082200
18 0 0 0 80000000 0 0 02100040 0 0
19 0 0 0 0 80000000 0 0 02100040 0
20 0 0 0 0 0 80000000 0 0 02100040
21 0 0 0 0 0 0 80000000 0 0
22 0 0 0 0 0 0 0 80000000 0
23 0 0 0 0 0 0 0 0 80000000
24 80000000 0 0 0 0 0 0 0 0

25-38 0 0 0 0 0 0 0 0 0
39 213 + 224 + 228 ∆−w38 0 0 0 ∆−w38 0 0 0

200 H. Yu and X. Wang

Table 4. Sufficient conditions for steps 14 ∼ 39 on SHA-256

ch14 f14,10 = g14,10, f14,14 = g14,14⊕1, f14,19 = b14,19⊕1, f14,20 = g14,20, f14,30 = b14,30⊕1,
a14,7 = c14,7, a14,10 = c14,10, a14,19 = c14,19, a14,21 = c14,21, a14,26 = c14,26, a14,30 =
c14,30, a14,32 = b14,32, e14,10 = b14,10 ⊕ 1, e14,14 = e14,1 ⊕ h14,8, e14,15 = e14,1 ⊕
e14,6 ⊕ e14,2 ⊕ h14,8 ⊕ h14,27, e14,19 = 0, e14,20 = e14,15 ⊕ e14,2 ⊕ h14,8 ⊕ 1, e14,23 =
e14,9 ⊕e14,14 ⊕h14,3 ⊕e14,10 ⊕h14,17, e14,24 = e14,5 ⊕e14,10 ⊕h14,31 ⊕1, e14,25 = e14,20 ⊕
e14,7 ⊕ e14,14 ⊕ g14,14 ⊕ 1, e14,27 = e14,14 ⊕h14,21 ⊕ 1, e14,28 = e14,9 ⊕ e14,14 ⊕h14,3 ⊕ 1,
e14,29 = e14,10 ⊕ e14,15 ⊕ h14,4 ⊕ 1, e14,30 = 0, e14,32 = 0

ch15 a15,32 = a14,32, a15,7 = a14,7, a15,10 = a14,10, a15,19 = a14,19, a15,21 = a14,21, a15,26 =
a14,26, a15,30 = a14,30, e15,10 = 0, e15,14 = 0, e15,20 = 0, e15,19 = 1, e15,30 = 1

ch16 a16,32 = a16,12 ⊕ a16,23 ⊕ c15,10, a16,23 = a16,21 ⊕ a16,12 ⊕ a16,9 ⊕ c15,10 ⊕ c15,19,
a16,21 = a16,9 ⊕ a16,11 ⊕ a16,20 ⊕ c15,30 ⊕ c15,19, e16,7 = e15,7, e16,10 = 0, e16,14 = 1,
e16,20 = 1, e16,21 = e15,21, e16,26 = e15,26

ch17 e17,7 = c15,7, e17,16 = e17,21 ⊕e17,3 ⊕f15,10 ⊕1, e17,21 = c15,21, e17,25 = e17,20 ⊕e17,7 ⊕
f15,14 ⊕ 1, e17,26 = c15,26, e17,31 = e17,26 ⊕ e17,13 ⊕ f15,20 ⊕ 1, a17,32 = a15,32

ch18 ∼ ch19 a18,32 = a17,32, e18,7 = 0, e18,21 = 0, e18,26 = 0, e19,7 = 1, e19,21 = 1, e19,26 = 1,
e19,32 = e18,32

ch20 ∼ ch22 e20,19 = e20,13⊕e20,18⊕e20,7⊕e20,5⊕e17,26, e20,28 = e20,13⊕e20,18⊕e20,7⊕e20,14⊕e17,21,
e20,32 = e20,13 ⊕ e20,18 ⊕ e17,7 ⊕ 1, e21,32 = 0, e22,32 = 0

Table 5. Conditions on messages for steps 1 ∼ 39 on SHA-256

wi Conditions Numbers
w1 w1,16 = w1,5 ⊕w0,29 ⊕ 1, w1,20 = w1,9 ⊕w1,5 ⊕w0,1 ⊕ 1, w1,22 = w1,15 ⊕w1,11 ⊕w1,5 ⊕

w0,8 ⊕ w0,19, w1,24 = w1,13 ⊕ w1,9 ⊕ w0,5 ⊕ 1, w1,26 = w1,15 ⊕ w1,11 ⊕ w0,8 ⊕ 1, w1,29 =
w1,1⊕w1,12⊕w0,26⊕1, w1,30 = w1,19⊕w1,15⊕w0,12⊕1, w1,31 = w1,10⊕w1,27⊕w0,24⊕1,
w1,32 = w1,4 ⊕ w1,15 ⊕ w0,29

9

w2 w2,14 = w2,4 ⊕ w2,6 ⊕ w1,3 ⊕ w1,5 ⊕ w1,18, w2,15 = w2,11 ⊕ w2,13 ⊕ w2,6 ⊕ w2,4 ⊕
w1,29 ⊕ w1,31 ⊕ w1,5 ⊕ w1,24, w2,17 = w2,6 ⊕ w1,31, w2,21 = w2,10 ⊕ w2,6 ⊕ w1,3 ⊕ 1,
w2,22 = w2,1⊕w2,18⊕w1,15⊕1, w2,23 = w2,12⊕w2,8⊕w1,5, w2,24 = w2,13⊕w2,9⊕w1,5,
w2,25 = w2,14 ⊕w2,10 ⊕w1,5, w2,27 = w2,16 ⊕w2,12 ⊕w1,5, w2,28 = w2,17 ⊕w2,13 ⊕w1,5,
w2,29 = w2,18 ⊕ w2,14 ⊕ w1,5 ⊕ 1, w2,32 = w2,4 ⊕ w2,15 ⊕ w1,29 ⊕ 1

12

w3 w3,20 = w3,9⊕w3,5⊕w2,2, w3,21 = w3,10⊕w3,6⊕w2,2⊕1, w3,24 = w3,13⊕w3,9⊕w2,6⊕1,
w3,25 = w3,4⊕w3,21⊕w2,18⊕1, w3,27 = w3,20⊕w3,16⊕w3,10⊕w2,23⊕w2,13⊕1, w3,30 =
w3,2 ⊕ w3,13 ⊕ w2,27 ⊕ 1, w3,31 = w3,20 ⊕ w3,16 ⊕ w2,13, w3,32 = w3,21 ⊕ w3,17 ⊕ w2,13

8

w4 w4,13 = w4,10⊕w4,12⊕w4,6⊕w4,7⊕w4,3⊕w3,24⊕w3,31⊕w3,21⊕1, w4,17 = w4,6⊕w3,31,
w4,18 = w4,11 ⊕w4,7 ⊕w3,3 ⊕w4,1 ⊕w3,13, w4,19 = w4,12 ⊕w4,8 ⊕w3,3 ⊕w4,2 ⊕w3,13 ⊕1,
w4,20 = w3,13 ⊕ w4,10 ⊕ w4,12 ⊕ w3,9 ⊕ w3,24 ⊕ 1, w4,21 = w4,10 ⊕ w4,6 ⊕ w3,3, w4,22 =
w4,11 ⊕ w4,7 ⊕ w3,3, w4,23 = w4,12 ⊕ w4,8 ⊕ w3,3 ⊕ 1, w4,24 = w4,3 ⊕ w4,20 ⊕ w3,13 ⊕ 1,
w4,27 = w4,16⊕w4,12⊕w3,9, w4,28 = w4,17⊕w4,13⊕w3,9, w4,29 = w4,18⊕w4,14⊕w3,9⊕1,
w4,31 = w4,20 ⊕ w4,16 ⊕ w3,13, w4,32 = w4,21 ⊕ w4,17 ⊕ w3,13

14

Distinguishing Attack on the Secret-Prefix MAC 201

Table 5. (continued)

w5 w5,17 = w5,6 ⊕ w4,31 ⊕ 1, w5,19 = w5,8 ⊕ w5,4 ⊕ w4,1 ⊕ 1, w5,21 = w5,10 ⊕ w5,6 ⊕ w4,3,
w5,22 = w5,11⊕w5,7⊕w4,3, w5,23 = w5,12⊕w5,8⊕w4,3⊕1, w5,24 = w5,3⊕w5,20⊕w4,17⊕
1, w5,25 = w5,14⊕w5,10⊕w4,7⊕1, w5,26 = w5,2⊕w5,13⊕w5,9⊕w4,27⊕w4,23⊕1, w5,28 =
w5,17 ⊕w5,13 ⊕w4,10 ⊕ 1, w5,30 = w5,2 ⊕w5,13 ⊕w4,27, w5,31 = w5,3 ⊕w5,14 ⊕w4,27 ⊕ 1

11

w6 w6,15 = w6,14⊕w6,11⊕w6,10⊕w6,8⊕w6,6⊕w6,5⊕w6,1⊕w6,4⊕w5,15⊕w5,8⊕w5,11⊕w5,3⊕
w5,21, w6,16 = w6,5⊕w5,30⊕1, w6,18 = w6,15⊕w6,11⊕w6,5⊕w6,1⊕w5,15⊕w5,17⊕w5,8⊕1,
w6,19 = w6,9 ⊕ w6,11 ⊕ w5,11 ⊕ w5,8 ⊕ w5,21 ⊕ 1, w6,21 = w6,10 ⊕ w6,6 ⊕ w5,3 ⊕ 1,
w6,22 = w6,1⊕w6,18⊕w5,15⊕1, w6,24 = w6,3⊕w6,20⊕w5,17, w6,25 = w6,4⊕w6,21⊕w5,17,
w6,26 = w6,15⊕w6,11⊕w5,8⊕1, w6,28 = w6,7⊕w6,24⊕w5,21, w6,29 = w6,14⊕w6,18⊕w5,11,
w6,30 = w6,19 ⊕ w6,15 ⊕ w5,11 ⊕ 1, w6,32 = w6,11 ⊕ w6,28 ⊕ w5,25 ⊕ 1

13

w7 w7,19 = w7,8 ⊕ w7,4 ⊕ w6,1 ⊕ 1, w7,22 = w7,18 ⊕ w7,1 ⊕ w6,15 ⊕ 1, w7,23 = w7,12 ⊕
w7,8 ⊕ w6,5 ⊕ 1, w7,24 = w7,4 ⊕ w7,15 ⊕ w7,11 ⊕ w7,7 ⊕ w6,29 ⊕ w6,21 ⊕ w6,24, w7,27 =
w7,16⊕w7,12⊕w6,9⊕1, w7,28 = w7,7⊕w7,24⊕w6,21⊕1, w7,29 = w7,1⊕w7,12⊕w6,24⊕1,
w7,31 = w7,10 ⊕ w7,27 ⊕ w6,24, w7,32 = w7,4 ⊕ w7,15 ⊕ w6,29 ⊕ 1

9

w8 w8,15 = w8,2 ⊕ w8,11 ⊕ w8,13 ⊕ w8,9 ⊕ w7,23 ⊕ w7,27 ⊕ w7,7 ⊕ 1, w8,18 = w8,2 ⊕ w8,13 ⊕
w8,9 ⊕ w8,5 ⊕ w8,1 ⊕ w7,15 ⊕ w7,19 ⊕ w7,23 ⊕ w7,27, w8,19 = w8,8 ⊕ w8,4 ⊕ w7,1 ⊕ 1,
w8,22 = w8,1⊕w8,18⊕w7,15, w8,23 = w8,2⊕w8,19⊕w7,15⊕1, w8,25 = w8,14⊕w8,10⊕w7,7,
w8,26 = w8,5 ⊕ w8,22 ⊕ w7,19 ⊕ 1, w8,27 = w8,16 ⊕ w8,12 ⊕ w7,7 ⊕ 1, w8,29 = w8,18 ⊕
w8,14 ⊕ w7,11 ⊕ 1, w8,30 = w8,9 ⊕ w8,26 ⊕ w7,23 ⊕ 1, w8,31 = w8,3 ⊕ w8,14 ⊕ w7,27 ⊕ 1

11

w9 w9,1 = w0,1, w9,5 = w0,5, w9,10 = w9,6 ⊕w8,2 ⊕w1,28 ⊕w1,7 ⊕w1,24, w9,15 = w0,15 ⊕1,
w9,16 = w9,5 ⊕w8,29 ⊕ 1, w9,17 = w9,10 ⊕w9,6 ⊕w9,4 ⊕w9,15 ⊕w8,2 ⊕w8,14 ⊕w8,29 ⊕ 1,
w9,18 = w9,1 ⊕w9,15 ⊕w9,11 ⊕w9,5 ⊕w8,8 ⊕w8,18 ⊕w8,14 ⊕1, w9,20 = w9,9 ⊕w9,5 ⊕w8,2,
w9,21 = w1,28 ⊕ w1,7 ⊕ w1,24 ⊕ 1, w9,22 = w9,1 ⊕ w9,18 ⊕ w8,14 ⊕ 1, w9,25 = w9,4 ⊕
w9,21 ⊕ w8,18, w9,26 = w9,15 ⊕ w9,11 ⊕ w8,8 ⊕ 1, w9,29 = w9,1 ⊕ w9,12 ⊕ w8,26 ⊕ 1,
w9,30 = w9,19 ⊕ w9,15 ⊕ w8,12 ⊕ 1, w9,32 = w9,21 ⊕ w9,17 ⊕ w8,14

15

w10 w10,8 = w1,5, w10,9 = w2,27⊕w10,5⊕w2,6⊕w2,23⊕w9,1, w10,13 = w10,9⊕w9,5⊕w1,24⊕1,
w10,19 = w10,8 ⊕ w10,4 ⊕ w9,1, w10,20 = w2,27 ⊕ w2,6 ⊕ w2,23 ⊕ 1, w10,23 = w10,12 ⊕
w10,8 ⊕ w9,5, w10,24 = w1,24, w10,28 = w10,7 ⊕ w10,24 ⊕ w9,21 ⊕ 1

8

w11 w11,8 = w3,26 ⊕ w3,15 ⊕ w3,11 ⊕ 1, w11,10 = w2,10 ⊕ 1, w11,15 = w2,13 ⊕ 1, w11,19 =
w3,26 ⊕ w3,5 ⊕ w3,22 ⊕ 1, w11,21 = w2,21 ⊕ 1, w11,23 = w2,23, w11,25 = w3,32 ⊕ w3,11 ⊕
w3,28 ⊕ 1, w11,26 = w11,15 ⊕ w11,11 ⊕ w10,8 ⊕ 1, w11,27 = w11,6 ⊕ w11,23 ⊕ w10,20 ⊕ 1,
w11,31 = w11,10 ⊕ w11,27 ⊕ w10,24, w11,32 = w11,11 ⊕ w11,28 ⊕ w10,24 ⊕ 1

11

w12 w12,5 = w12,1 ⊕ w11,15 ⊕ w11,19 ⊕ w4,25 ⊕ w4,4 ⊕ w4,21 ⊕ w3,26, w12,15 = w12,11 ⊕
w11,8 ⊕ w3,26, w12,17 = w12,13 ⊕ w11,10 ⊕ w3,28 ⊕ 1, w12,18 = w4,25 ⊕ w4,4 ⊕ w4,21 ⊕ 1,
w12,22 = w12,1⊕w12,18⊕w11,15⊕1, w12,24 = w12,17⊕w12,13⊕w12,7⊕w11,10⊕w11,21⊕1,
w12,26 = w3,26 ⊕ 1, w12,28 = w3,28 ⊕ 1, w12,29 = w12,18 ⊕ w12,14 ⊕ w11,10 ⊕ 1, w12,30 =
w12,9 ⊕ w12,26 ⊕ w11,23 ⊕ 1, w12,32 = w12,11 ⊕ w12,28 ⊕ w11,25 ⊕ 1

11

w13 w13,12 = w13,1 ⊕ w12,26 ⊕ w4,29, w13,14 = w5,32 ⊕ w5,21 ⊕ w5,17 ⊕ 1, w13,21 = w13,4 ⊕
w12,18w4,25, w13,25 = w4,25 ⊕1, w13,29 = w4,29 ⊕1, w13,31 = w13,3 ⊕w13,14 ⊕w12,28 ⊕1

6

w14 w14,15 = w14,7 ⊕ w14,9 ⊕ w14,4 ⊕ w13,29 ⊕ w1,29 ⊕ w1,8 ⊕ w1,25, w14,21 = w14,4 ⊕
w14,15 ⊕ w14,17 ⊕ w13,14 ⊕ w13,29, w14,25 = w14,7 ⊕ w14,9 ⊕ w14,2 ⊕ w1,29 ⊕ w1,8 ⊕
w1,25 ⊕ w1,22 ⊕ w1,1 ⊕ w1,18, w14,28 = w14,21 ⊕ w14,17 ⊕ w14,11 ⊕ w13,14 ⊕ w13,25,
w14,30 = w14,7 ⊕ w14,9 ⊕ w14,23 ⊕ w1,8 ⊕ w1,25 ⊕ w1,20 ⊕ w1,31 ⊕ w1,16 ⊕ w1,29, w14,32 =
w14,21 ⊕ w14,17 ⊕ w13,14 ⊕ 1

6

w23 w23,15 = w23,7⊕w23,9⊕w23,4⊕w10,29⊕w10,8⊕w10,25⊕1, w23,21 = w23,4⊕w23,15⊕w23,17,
w23,25 = w23,4 ⊕ w23,15 ⊕ w23,2 ⊕ w9,15 ⊕ 1, w23,28 = w23,4 ⊕ w23,15 ⊕ w23,11, w23,30 =
w23,2 ⊕ w23,25 ⊕ w23,23 ⊕ w10,20 ⊕ w10,31 ⊕ w10,16 ⊕ w9,15, w23,32 = w23,4 ⊕ w23,15

6

Inside the Hypercube

Jean-Philippe Aumasson1,�, Eric Brier3, Willi Meier1,��,
Maŕıa Naya-Plasencia2,� � �, and Thomas Peyrin3

1 FHNW, Windisch, Switzerland
2 INRIA project-team SECRET, France

3 Ingenico, France

Some force inside the Hypercube occasionally manifests itself with deadly results.
http://www.staticzombie.com/2003/06/cube 2 hypercube.html

Abstract. Bernstein’s CubeHash is a hash function family that includes
four functions submitted to the NIST Hash Competition. A CubeHash
function is parametrized by a number of rounds r, a block byte size b, and
a digest bit length h (the compression function makes r rounds, while
the finalization function makes 10r rounds). The 1024-bit internal state
of CubeHash is represented as a five-dimensional hypercube. The sub-
missions to NIST recommends r = 8, b = 1, and h ∈ {224, 256, 384, 512}.

This paper presents the first external analysis of CubeHash, with
• improved standard generic attacks for collisions and preimages
• a multicollision attack that exploits fixed points
• a study of the round function symmetries
• a preimage attack that exploits these symmetries
• a practical collision attack on a weakened version of CubeHash
• a study of fixed points and an example of nontrivial fixed point
• high-probability truncated differentials over 10 rounds

Since the first publication of these results, several collision attacks for
reduced versions of CubeHash were published by Dai, Peyrin, et al. Our
results are more general, since they apply to any choice of the parame-
ters, and show intrinsic properties of the CubeHash design, rather than
attacks on specific versions.

1 CubeHash

Bernstein’s CubeHash is a hash function family submitted to the NIST Hash
Competition. A CubeHash function is parametrized by a number of rounds r,
a block byte size b, and a digest bit length h; the 1024-bit internal state of
CubeHash is viewed as a five dimensional hypercube. The submissions to NIST
recommends r = 8, b = 1, and h ∈ {224, 256, 384, 512}.

CubeHash computes a message digest as follows:
� Supported by the Swiss National Science Foundation under project no. 113329.

�� Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.
� � � Supported in part by the French Agence Nationale de la Recherche under contract

ANR-06-SETI-013-RAPIDE.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 202–213, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Inside the Hypercube 203

• initialize a 1024-bit state as a function of (h, b, r)
• append to the message a 1 bit and enough 0 bits to reach a multiple of 8b

bits
• for each b-byte message block:

• xor the block into the first b bytes of the state
• transform the state through the r-round T function

• xor a 1 bit with the 993rd bit of the state
• transform the state through 10r-round T

• output the first h bits of the state

Let x[0], . . . , x[31] represent the 1024-bit state as an array of 32-bit words. The
transform function T makes r identical rounds, where each round computes (see
also Fig. 1):

for i = 0, . . . , 15: x[i + 16] = x[i + 16] + x[i]
for i = 0, . . . , 15: y[i⊕ 8] = x[i]
for i = 0, . . . , 15: x[i] = y[i] ≪ 7
for i = 0, . . . , 15: x[i] = x[i]⊕ x[i + 16]
for i = 0, . . . , 15: y[i⊕ 2] = x[i + 16]
for i = 0, . . . , 15: x[i + 16] = y[i]
for i = 0, . . . , 15: x[i + 16] = x[i + 16] + x[i]
for i = 0, . . . , 15: y[i⊕ 4] = x[i]
for i = 0, . . . , 15: x[i] = y[i] ≪ 11
for i = 0, . . . , 15: x[i] = x[i]⊕ x[i + 16]
for i = 0, . . . , 15: y[i⊕ 1] = x[i + 16]
for i = 0, . . . , 15: x[i + 16] = y[i]

See [5] for a more detailed description of CubeHash.
This paper presents the first external analysis of CubeHash, with

• improved standard generic attacks for collisions and preimages
• a multicollision attack that exploits fixed points
• a study of the round function symmetries
• a preimage attack that exploits these symmetries
• a practical collision attack on a weakened version of CubeHash
• a study of fixed points and an example of nontrivial fixed point
• high-probability truncated differentials over the 10-round transform

After the first publication of this article [2], Dai, Peyrin, et al. presented
a series of collision attacks [1, 8, 7, 6] on reduced versions of CubeHash. Their
best results (as of Feb. 6) are an example of collision on CubeHash3/64 and a
collision attack on CubeHash4/3 in about 2207 simple operations [6]. Our results,
however, are more general, since they apply to any choice of the parameters, and
show intrinsic properties of the CubeHash design, rather than attacks on specific
versions.

204 J.-P. Aumasson et al.

Fig. 1. Schematic view of a CubeHash round

2 Improved Standard Generic Attacks

The author of CubeHash presented [3] the following “standard preimage attack”:

• from (h, b, r) compute the initial state S0
• from the h-bit image plus some arbitrary (1024−h) bits, invert 10r rounds

and the “xor 1” to get a state Sf before finalization
• find two n-block sequences that map S0 (forward) and Sf (backward),

respectively, to two states that share the last (1024− 8b) bits

There are 2nb possible n-block inputs and one looks for a collision over (1024−8b)
bits. For a success chance 1− 1/e ≈ 0.63 one thus requires 2512−4b trials in each

Inside the Hypercube 205

direction, that is, 2nb > 1024 − 8b, i.e., n > 512/b − 4. In total the number of
evaluations of T is approximately

2×
(

512
b
− 4

)
× 2512−4b ≈ 2522−4b−log b .

Furthermore, [3] estimates that each round of T needs 211 “bit operations”; the
above formula gives about 2533−4b−log b+log r bit operations.

A speed-up of the above attack can be obtained by searching a collision not
only in the states resulting of a n-block computation, but in every distinct state
reached (i.e. also with the intermediate states). This is made possible by the
absence of message length padding. Each call to T gives a new candidate for
the collision search; we thus get rid of the (512/b − 4) multiplicative factor in
the cost estimate. This gives a cost of

2× 2512−4b = 2513−4b

evaluations of T , i.e. 2524−4b+log r bit operations.
The proposed CubeHash-512 has (h, b, r) = (512, 1, 8), our attack thus makes

2523 bit operations, against 2532 with the original attack. If r = 8, our attack
needs b > 3 to make less than 2512 bit operations, against b > 5 with the original
preimage attack. It is to note that these estimates exclude the non-negligible
communication costs.

One can use the same trick to speed-up the standard collision attack [3]; the
cost in T evaluations then drops from 2521−4b−log b to 2512−4b.

3 Narrow-Pipe Multicollisions

Based on the “narrow-pipe” attacks in [4], we show a multicollision attack on
CubeHash faster than Joux’s [10] or birthday [9,12] methods (for large b’s). Our
attack requires the same amount of computation as narrow-pipe collisions. It
exploits the fact that the null state is a fixed point for the compression function
T (regardless of r), and that the message padding does not include the message
length.

Starting from an initial state S0 derived from (h, b, r), one finds two n-block
sequences m and m′ that map S0 (forward) and the zero state (backward),
respectively, to two states that share the last (1024 − 8b) bits. One finds a
connection of the form

S0 ⊕m1
T−→ S1

S1 ⊕m2
T−→ · · ·
· · ·

· · · T−→ S′
1

S′
1 ⊕m′

2
T−→ 0⊕m′

1

206 J.-P. Aumasson et al.

Once a path to the zero state is found, one can add an arbitrary number of zero
message blocks to maintain a zero state. Colliding messages are of the form

m‖m′‖0‖0‖ . . .‖0‖m̄,

where m̄ is an arbitrary sequence of blocks.
Using the technique of §2, this multicollision attack requires approximately

2513−4b evaluations of T . In comparison, a birthday attack finds a k-collision in
(k!×2n(k−1))1/k trials, and Joux’s attacks in log k×24(128−b). For example, with
h = 512 and b = 112, our attack finds 264-collisions within 265 calls to T , against
> 2512 for a birthday attack and 270 for Joux’s.

4 State Symmetries

The documentation of CubeHash mentions [5, p.3] the existence of symmetries
through the round function, and states that the initialization of CubeHash was
designed to avoid them. However [5] gives no detail on those symmetries. In
this section, we provide a reasoning that finds all symmetries inherent in the
transformation T . In total we are able to show 15 symmetry classes of 2512

states each, and show how to exploit these.

4.1 Symmetry Classes

If a 32-word state x satisfies x[0] = x[1], x[2] = x[3], . . . , x[30] = x[31], then this
property is preserved through the transformation T , with probability equal to
1, for any number of rounds. One can represent this symmetry with the pattern
(each letter stands for a 32-bit word):

AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP .

In total we found 15 classes of symmetry:

C1 : AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP
C2 : ABABCDCD EFEFGHGH IJIJKLKL MNMNOPOP
C3 : ABBACDDC EFFEGHHG IJJIKLLK MNNMOPPO
C4 : ABCDABCD EFGHEFGH IJKLIJKL MNOPMNOP
C5 : ABCDBADC EFGHFEHG IJKLJILK MNOPNMPO
C6 : ABCDCDAB EFGHGHEF IJKLKLIJ MNOPOPMN
C7 : ABCDDCBA EFGHHGFE IJKLLKJI MNOPPONM
C8 : ABCDEFGH ABCDEFGH IJKLMNOP IJKLMNOP
C9 : ABCDEFGH BADCFEHG IJKLMNOP JILKNMPO
C10 : ABCDEFGH CDABGHEF IJKLMNOP KLIJOPMN
C11 : ABCDEFGH DCBAHGFE IJKLMNOP LKJIPONM
C12 : ABCDEFGH EFGHABCD IJKLMNOP MNOPIJKL
C13 : ABCDEFGH FEHGBADC IJKLMNOP NMPOJILK
C14 : ABCDEFGH GHEFCDAB IJKLMNOP OPMNKLIJ
C15 : ABCDEFGH HGFEDCBA IJKLMNOP PONMLKJI

Inside the Hypercube 207

Each class contains 2512 states. If a state belongs to several classes, then its
image under T also belongs to these classes; for example if S ∈ (Ci ∩ Cj), then
T (S) ∈ (Ci ∩ Cj). We have

|Ci ∩ Cj | ≤ 2256 .

By the inclusion-exclusion principle, the number of distinct symmetric states is
∣
∣∪15

i=1Ci

∣
∣ = 15× 2512 − 70× 2256 + 120× 2128 − 64× 264 ≈ 2516 .

Note that symmetry is not preserved by the finalization procedure of CubeHash
(the “xor 1” breaks any of the above symmetries).

4.2 Finding All Symmetry Classes

Now we prove that the classes C1, . . . , C15 capture all the possible symmetries of
CubeHash’s transform T . A symmetry class can be represented as a set of pairs
(i, j), where each (i, j) means x[i] = x[j]. For example, C1 can be described by
the set

(0,1) (2,3) (4,5) (6,7) (8,9) (10,11) (12,13) (14,15)
(16,17) (18,19) (20,21) (22,23) (24,25) (26,27) (28,29) (30,31)

We want a symmetry class to propagate through one round of the scheme
with probability equal to one. It is easy to see that this condition imposes that
the equality constraints at the left and at the right branch of the scheme must
be the same (because of the intra-word rotations that are only present in the
left branch of the scheme). That is, for any relation (i, j) with 0 ≤ i, j ≤ 15, we
must also have the relation (i + 16, j + 16). In other words, a symmetry pattern
is the same for the left and for the right branch. We thus only need to consider
16-word symmetry patterns.

To describe all possible symmetries, we start by fixing (0, k), for a fixed k in
{1, . . . , 15}. We then compute T backwards to indentify the relations implied by
(0, k): the first substitution and xor encountered force us to have

(0, k) (4, k ⊕ 4).

Then, the second substitution and the modular addition force to have (note that
the intra-word rotations can be omitted since they leave the symmetry pattern
unchanged)

(0, k) (4, k ⊕ 4) (1, k ⊕ 1) (5, k ⊕ 5).

The third substitution and xor yield

(0, k) (4, k ⊕ 4) (1, k ⊕ 1) (5, k ⊕ 5)
(2, k ⊕ 2) (6, k ⊕ 6) (3, k ⊕ 3) (7, k ⊕ 7).

208 J.-P. Aumasson et al.

Finally, the last substitution and the modular addition imply

(0, k) (4, k ⊕ 4) (1, k ⊕ 1) (5, k ⊕ 5)
(2, k ⊕ 2) (6, k ⊕ 6) (3, k ⊕ 3) (7, k ⊕ 7)
(8, k ⊕ 8) (12, k ⊕ 12) (9, k ⊕ 9) (13, k ⊕ 13)

(10, k ⊕ 10) (14, k ⊕ 14) (11, k ⊕ 11) (15, k ⊕ 15).

Eventually, each symmetry that contains the relation (0, k)—i.e., x[0] =
x[k]—also has the relations (i, k ⊕ i), 1, . . . , 15. Therefore, we have 15 distinct
wordwise symmetry classes, of the form

(i, k ⊕ i), i = 0, . . . , 15

for k ∈ {1, . . . , 15}. Each class contains 2512 states. For example, the case k = 1
provides directly C1, and more generally k = i corresponds to Ci.

4.3 Exploiting Symmetric States for Finding Preimages

Given a target digest, one can make a preimage attack similar to that in §2, and
exploit symmetric states for the connection. The attack goes as follows:

• from the initial state, reach a symmetric state (of any class) by using
21024−516−8 = 2500 message blocks
• from a state before finalization, reach (backwards) another symmetric state

(not necessarily of the same class)
• from these two symmetric states in classes Ci and Cj , use null message

blocks in both directions to reach two states in Ci ∩ Cj

• find a collision by trying
√
|Ci ∩ Cj | messages in each direction

Complexity of steps 1 and 2 is about 2501 computations of T . The cost of steps
3 and 4 depends on i and j; but it is upper bounded by 2× 2256 operations.

Thus, in any case, the total complexity is about 2501 calls to T . This attack,
however, finds messages of unauthorized size (more than 2256 bytes!).

One can find preimages of reasonable size by using a variant of the above
attack: suppose b > 4, from the initial state reach a state in a given class Ci, do
the same backwards from a state before finalization. For a given b, the complexity
of reaching a symmetric state depends on the Ci considered. Then one seeks a
collision within Ci by trying messages preserving the symmetry: for example, if
b = 5 and Ci = C1, then one has to preserve the equality x[0] = x[1] and shall
thus pick 5-byte messages of the form X000X (each digit stands for a byte). Since
any Ci contains 2512 states, the cost of finding a collision within Ci is about 2256

trials in each direction.
Below we give a class example Ci that is the easiest to reach, depending on

the value of b:

• 5 ≤ b < 9: one of the best classes is C1, which gives (1024−2×4×8)/2 = 480
equations to verify
• 9 ≤ b < 17: one of the best classes is C2, which give (1024− 2× 8× 8)/2 =

448 equations to verify

Inside the Hypercube 209

• 17 ≤ b < 33: one of the best classes is C4, which gives (1024−2×16×8)/2 =
384 equations to verify
• 33 ≤ b < 65: one of the best classes is C8, which gives (1024−2×32×8)/2 =

256 equations to verify

If n equations have to be verified, the cost of reaching a symmetric state is about
2n evaluations of T . Compared to the preimage attack in §2, the best speed-up
obtained from a given Ci is when b = 4d + 1, where d is the number of 32-bit
words that separate the first repetition of two words.
To illustrate this attack, let’s study in more detail the case of C1:

• if b ≡ 0 mod 8, there are (1024 − 8b)/2 = 512 − 4b equations to satisfy,
thus about 2512−4b calls to T are necessary
• if b ≡ 4 mod 8, there are only (1024 − 8b − 32)/2 = 496 − 4b equations

to satisfy, because one has no condition on the first state word not xored
with the message block
• generalizing, when b mod 8 ≤ 4, about 2512−4(b+(b mod 4)) calls to T are

necessary
• when b mod 8 > 4, there are (1024− 8b− 32 + 8(b mod 4))/2 equations to

satisfy, which gives a cost 2496−4(b−(b mod 4))

The general formula for the number of equations is

512− 32�b/8� − 32�(b mod 8)/4� − [(�(b mod 8)/4�+ 1) mod 2]× 8(b mod 4) .

In the best case (b ≡ 4 mod 8), the attack is 215 times faster than that in §2 (in
the worst case, b ≡ 0 mod 8, it has the same complexity). Note that when b = 5,
the attack makes about 2481 calls to T , against 2493 with the attack in §2.

4.4 Exploiting Symmetric States for Finding Collisions

We present a technique to find collisions for a weakened version of CubeHash,
in which we modify the IV (initial state). The initialization of CubeHash never
leads to a symmetric initial state. Here we present a practical collision attack
that would apply if the initial state were symmetric, and in C1 ∩ C2 ∩C4 ∩ C8.

Suppose that the initial state of CubeHashr/b-h is in C1 ∩ C8, i.e. is of the
form

AAAAAAAA AAAAAAAAA BBBBBBBBB BBBBBBBB .

If one hashes the b233-byte message that contain only zeros, then each of the 233

intermediate states is an element of C1 ∩ C2 ∩ C4 ∩ C8. Assuming that T acts
like a random permutation over this set, one will find two identical states with
probability about 0.63, which directly gives a collision.

210 J.-P. Aumasson et al.

5 On the Fixed Points of T

In this section we let T be the 1-round transform of CubeHash. A fixed point
for T r, r > 0, is a state x that is left unchanged by T r, i.e., T r(x) = x. Recall
that the average number of cycles of length k is 1/k for a random permutation.
If T were a random permutation, T would thus have one fixed point. Noting
that a cycle of length r gives r fixed points for T r, we have that T 2 would have
two fixed points (the one of T and one due to an average of 2× 1/2 fixed points
from cycles of length two); T 4 would have three fixed points (one for each cycle
length in 1, 2, 4), etc. More generally, the average number of fixed points for T n

would be the number of divisors of n, if T were a random permutation.
Note that each symmetry class represents a class of cycles of T , and that the

15 symmetry classes give 67 distinct subsets. Modeling T as a random permu-
tation over each of those subsets, one expects 67 fixed points. This gives for T 8

1+4×67 = 269 fixed points, where 4 is the number of divisors of 8, i.e., of cycles
length that give fixed points for T 8. Note that this results assumes a random
behavior of T with respect to fixed points over the 67 subsets considered.

Finding examples of fixed points seems difficult, however: the zero state
x[0] = · · · = x[31] = 0 is a trivial fixed point for T , and thus also for T n, n ≥ 0.
Among the states of the form x[0] = · · · = x[15], x[16] = · · · = x[31], the only
nontrivial fixed point is the state with x[0] = 54E5FC8A and x[8] = 84FE49D2.

6 Truncated Differentials over T

This section shows how to detect non-randomness over the 10-round T trans-
form. We start from a weight-64 difference to reach a weight-1 difference after 3
rounds with high probability; this nonlinear differential was discovered by simply
computing backwards from the weight-1 difference.

We consider the input difference 80000000 in x[16]. The word x[16] was
chosen because x[16] · · ·x[31] diffuse less in the first rounds than x[0] · · ·x[15].
We set a difference 80000000 to minimize the impact of carries.

We consider the following nonlinear differential. Input difference (weight-64):

18000000 10000000 08000000 30000000

00000040 00000080 00000000 00000000

00400000 00000000 00400000 01000404

00000003 80802002 00000001 81802004

40000000 08000000 00000000 E8020600

00000000 00000100 00000080 41F001C0

00400008 00000008 00400000 01000404

00000005 80802002 00000001 8080200C

Inside the Hypercube 211

Difference after one round (weight-26):
000E0000 00000000 00000000 00000000

00000000 00000040 00000080 00000040

01000004 00000000 00000004 00000000

00000000 00000000 00002000 00000000

800E0200 00000000 00000000 00000000

00000000 000000C0 00000080 000001C0

00000000 00000004 00000000 00000004

00000000 00002000 0000C000 00000000

Difference after two rounds (weight-9):

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 01000000

00000000 00002000 00000000 00002000

00000000 00000000 00000000 80000000

00000000 00000000 00000000 00100000

00000000 00000000 00000000 03000000

00000000 00002000 00000000 00002000

Difference after three rounds (weight-1):

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

80000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

which after another round gives with probability 1 the difference

80000000 00000000 80000000 00000000

00000400 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 80000000 00000000 80000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

212 J.-P. Aumasson et al.

This differential holds with negligible probability for a random input. But it
holds for the input

DFB7AA11 7B2872F1 2848B142 64CB0AF9

17DA36E7 320A7AB2 27621CD8 B6E23031

3BCE90DB 0E496C61 AF4156BD 0B4D857F

4379D4C0 D495EAC9 038BD6E5 72A114CC

29065395 824774C3 F0923C34 28F3B2DD

74251DF6 1A562265 BD8EE5E3 DEFDD839

2804D3BE 89417DC3 F001CE4A 6A5328A8

2BEC024E B2306F17 1F2A7C6C 14BC37B6

For 32 random bits in x[25] and x[26] (at positions 4, . . . , 19 in both), the differ-
ential is satisfied with probability approximately 0.985.

Note that in the linear model (i.e. when additions are replaced by xors),
a differential path starting from the weight-1 difference cycles over 47 rounds.
That is, it comes back to the difference 80000000 in x[16] after 47 rounds.

Based on the above differential, we empirically looked for high-probability
truncated differentials, based on the weight-64 input difference, and applying
to each output bit a frequency test similar to that in [11, §2.1], with decision
threshold 0.001 and 220 samples. We found 4 output bits with p-value less than
0.001, at positions 579, 778, 841, and 842. Over 11 rounds and more, no bias
was detected.

This observation is consistent with the fact that, when starting from the
weight-1 difference, we could detect non-randomness on up to 7 rounds (now
this difference is introduced three rounds later). Note that in a previous version
of this article [2], we reached 8 rounds by starting one round before the weight-1
difference.

These observations indicate that 10-round T does not act as a random permu-
tation, and that 10 rounds may not be overkill, as suggested in [4]. But note that
the settings used don’t correspond to a realistic attack scenario. Furthermore, if
we restrict ourselves to differences in the first state byte, and put random bits
in the rest of the state, then we observe non-randomness after up to 5 rounds.

References

1. Aumasson, J.-P.: Collision for CubeHash2/120-512. NIST mailing list (December
4, 2008), http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt

2. Aumasson, J.-P., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the hypercube.
Cryptology ePrint Archive, Report 2008/486, version 20081124:132635 (2008)

3. Bernstein, D.J.: CubeHash appendix: complexity of generic attacks. Submission to
NIST (2008)

4. Bernstein, D.J.: CubeHash attack analysis (2.B.5). Submission to NIST (2008)
5. Daniel, J.B.: CubeHash specification (2.B.1). Submission to NIST (2008)

http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt

Inside the Hypercube 213

6. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Attack for CubeHash-2/2 and collision
for CubeHash-3/64. NIST mailing list (local link) (2009),
http://ehash.iaik.tugraz.at/uploads/3/3a/Peyrin_ch22_ch364.txt

7. Brier, E., Peyrin, T.: Cryptanalysis of CubeHash (2009),
http://thomas.peyrin.googlepages.com/BrierPeyrinCubehash.pdf

8. Dai, W.: Collisions for CubeHash1/45 and CubeHash2/89 (2008),
http://www.cryptopp.com/sha3/cubehash.pdf

9. Diaconis, P., Mosteller, F.: Methods for studying coincidences. Journal of the Amer-
ican Statistical Association 84(408), 853–861 (1989)

10. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

11. NIST. SP 800-22, a statistical test suite for random and pseudorandom number
generators for cryptographic applications (2001)

12. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006)

http://ehash.iaik.tugraz.at/uploads/3/3a/Peyrin_ch22_ch364.txt
http://thomas.peyrin.googlepages.com/BrierPeyrinCubehash.pdf
http://www.cryptopp.com/sha3/cubehash.pdf

Meet-in-the-Middle Preimage Attacks on
Double-Branch Hash Functions:

Application to RIPEMD and Others

Yu Sasaki and Kazumaro Aoki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. We describe preimage attacks on several double-branch hash
functions. We first present meet-in-the-middle preimage attacks on
RIPEMD, whose output length is 128 bits and internal state size is 256
bits. With this internal state size, a straightforward application of the
meet-in-the-middle attack will cost the complexity of at least 2128, which
gives no advantage compared to the brute force attack. We show two at-
tacks on RIPEMD. The first attack finds pseudo-preimages and preim-
ages of the first 33 steps with complexities of 2121 and 2125.5, respectively.
The second attack finds pseudo-preimages and preimages of the interme-
diate 35 steps with complexities of 296 and 2113, respectively. We next
present meet-in-the-middle preimage attacks on full Extended MD4, re-
duced RIPEMD-256, and reduced RIPEMD-320. The best known attack
for these is the brute force attack. We show how to find preimages more
efficiently on these hash functions.

Keywords: RIPEMD, double branch, preimage, meet-in-the-middle.

1 Introduction

Hash functions are cryptographic primitives used for various purposes. They
are required to satisfy several security properties: preimage resistance, second
preimage resistance, collision resistance, and so on. Usually, if the length of
the hash is n-bit, the required security for these properties is 2n, 2n, and 2n/2,
respectively. Note that in the SHA-3 competition [22] conducted by NIST, 2n

security is required for the preimage resistance.
Various hash functions have been designed. A list of hash function types is

shown in Fig. 1. The most widely used hash functions, e.g., MD5 [18], SHA-1,
and SHA-2 [23], have a structure where the initial value, whose length is the
same as the hash value, is iteratively updated by using messages. Hereafter, we
call such a structure “single-path.” In contrast, some hash functions update two
copies of the initial value in parallel, merge each result, and finally output the
merged value as the hash value of the message. Hereafter, we call such a structure
“double-branch.” For example, RIPEMD [16], RIPEMD-128, and RIPEMD-160
[7], are double-branch hash functions.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 214–231, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 215

H0

Hash

H0 H1

Hash

H0 H1

Hash

H0 H1

Hash

MD4
MD5
SHA-1/-2

RIPEMD
RIPEMD-128

MD4-Extend
RIPEMD-256
RIPEMD-320

Cascaded
construction

RIPEMD-160

Fig. 1. Types of hash function structures

Hash functions are sometimes required to output longer hash values. For this
purpose, some hash functions define an extension to output the double-length
hash value, e.g., MD4 [17], RIPEMD-128, and RIPEMD-160. For a given input
message, two hash values are computed by using different initial values and
round constants. Finally, the concatenated value of two hash values, which is
the double-length of the original hash value, is output. Such extensions of MD4,
RIPEMD-128, and RIPEMD-160 are called Extended MD41, RIPEMD-256, and
RIPEMD-320, respectively. Efforts to strengthen the security are made in these
extensions. Intermediate chaining values after each round are swapped between
computations of two hash values so that a stronger interaction between two
computations can be achieved.

A cascaded construction, which was analyzed by Joux [10], produces a long
hash value from two short hash values. It computes two hash functions and
outputs the concatenated value.

The security of the double-branch hash functions is unclear. Intuitively, if two
hash functions are ideal, the security will be a product of two hash functions.
However, if two hash computations are similar, some attacks might be performed
because of unwanted dependencies. The designers of RIPEMD-256 and -320
consider this situation. Although the known best preimage attack on RIPEMD-
256 and -320 is the brute force attack, which costs 2256 and 2320, their security is
claimed to be 2128 and 2160, respectively. Similarly, the security of Extended MD4
is not described by its designer2. Reference [14, Fact 9.27] claims the security
of the cascaded construction is a product of each hash function; however, Joux
showed the security is damaged if iterated hash functions are instantiated [10].

1.1 Attack History

Several papers have been published on finding collisions or variants of colli-
sions on RIPEMD, RIPEMD-128, and RIPEMD-160 [6,5,4,25,12]. However, the
1 Rivest, the designer of MD4, did not name this extension. Dobbertin, the first

cryptanalyst of this extension, called it “Extended MD4.”
2 Dobbertin, in his analysis paper [5], introduced Extended MD4, which was proposed

for highest security requirements.

216 Y. Sasaki and K. Aoki

preimage resistance of double-branch hash functions has not been studied much.
Since 2008, several meet-in-the-middle preimage attacks on hash functions whose
structures are similar to MD4 have been proposed [11,2,1,20,21]. The targets of
these attacks are single-path hash functions, hence the attack techniques cannot
be applied to double-branch hash functions directly. Mendel presented preimage
attacks [13] on HAS-V [15], which is a double-branch hash function with a swap-
ping function. The attack exploits a weakness of the HAS-V step-function, which
cannot be applied to other hash functions. Saarinen [19] presented a preimage
attack on FORK-256 [8], which is a 4-branch hash function. The attack has some
similarity with ours; however, its success lies in the small number of steps in each
branch and the weak message schedule of FORK-256. At ISPEC 2009, a preim-
age attack on 29 steps of RIPEMD with a complexity of 2115.2 was presented by
Wang et al. [24]. Note that our work is independent of Ref. [24].

At CRYPTO’04, Joux analyzed the cascaded construction [10]. He showed
that the cascaded construction does not provide the security of each product if an
iterated hash function is used. Joux also explained that his technique cannot be
applied to RIPEMD-256 and -320 due to the swapping function of intermediate
values. This shows that the swapping function strengthens the security at some
point. However, whether or not it can prevent other attacks is unclear.

1.2 Our Contribution

We present preimage attacks on several double-branch hash functions. We first
present preimage attacks on step-reduced RIPEMD and then show how to find
preimages of Extended MD4, RIPEMD-256, and RIPEMD-320 faster than the
brute force attack does. The second result shows that using the swapping func-
tion does not provide the ideal security for double-branch hash functions. Details
of each result are as follows.

1. We describe two preimage attacks on RIPEMD. The first attack, with a
complexity of 2121, provides pseudo-preimages of the first 33 out of 48 steps
of RIPEMD. This can be converted to a preimage attack with a complexity
of 2125.5. Our attack is based on the meet-in-the-middle attack on MD5 and
MD4 [1]. However, because RIPEMD runs two MD4 computations, the size of
the internal state is also doubled. Therefore, the straightforward application
of the meet-in-the-middle attack does not give any advantage. We focus on
the differentials of two MD4 computations, and efficiently perform the meet-
in-the-middle attack.

The second approach, with a complexity of 296, provides pseudo-preimages
of the intermediate 35 steps of RIPEMD. This can be converted to a preimage
attack with a complexity of 2113. Technically, we use the meet-in-the-middle
attack and the idea of local collision. This strategy is partially similar to the
preimage attack on 1-block MD4 [1].

2. Extended MD4 provides 256-bit hash values. Our preimage attack on full Ex-
tended MD4 finds pseudo-preimages and preimages with complexities of 2229

and 2243.5, respectively. We also show that pseudo-preimages and preimages

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 217

of the first 62 out of 64 steps of RIPEMD-256 are found with complexities
of 2240 and 2249, respectively, and pseudo-preimages and preimages of the
intermediate 64 out of 80 steps of RIPEMD-320 are found with complexities
of 2304 and 2313, respectively.

From a technical viewpoint, we show how to avoid the swapping func-
tions. In Extended MD4, the message schedules of both sides are identical.
We show that using swapping functions in such a structure does not prevent
our attack. In RIPEMD-256 and -320, message schedules are different on
each side. However, the attacker might be able to attack even if the swap-
ping function is used. Then, by combining this idea with the splice-and-cut,
partial-matching, and partial-fixing techniques proposed in Ref. [1,21], we
attack those hash functions.

Although results in this paper do not contradict the security claims of
these hash functions, the known best attack on these hash functions is the
brute force attack, and no one knows whether or not better attacks exist.
Therefore, we believe that our analyses contribute to better understanding
of the security of double-branch hash functions.

2 Description of Hash Functions

2.1 MD4

MD4 takes arbitrary length messages as input and outputs 128-bit hash values.
MD4 was proposed in 1990 by Rivest [17] and is a basic component of RIPEMD
and Extended MD4. MD4 has the Merkle-Damg̊ard structure. The input message
is padded to be multiples of 512-bit. First, a single bit ‘1’ is appended, then bit
‘0’s are appended until the message length becomes 448 mod 512. Finally, the
binary expression of the input message length is appended to the last 64 bits.
The message is divided into 512-bit message blocks Mi. Then, the hash value is
computed as follows:

{
H0 ← IV,

Hi+1 ← md4(Hi, Mi) for i = 0, 1, . . . , n− 1,

where IV is the initial value defined in the specification, Hn is the output hash
value, and md4: {0, 1}128 × {0, 1}512 → {0, 1}128 is the compression function of
MD4 computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 15).
2. p0 is set to Hi.
3. Compute the following: pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , 47.
4. Hi+1 (= p48 + Hi) is output, where “+” denotes 32-bit word-wise addition.

In this paper, we similarly use “−” to denote 32-bit word-wise subtraction.

Rj is the step function for Step j. Let aj , bj , cj , and dj be 32-bit values that
satisfy pj = (aj , bj, cj , dj). Rj(pj , mπ(j)) is defined as follows:

aj+1 = dj , bj+1 = (aj + Φj(bj , cj , dj) + mπ(j) + kj) ≪ sj ,

cj+1 = bj, dj+1 = cj ,

218 Y. Sasaki and K. Aoki

where Φj , kj , and ≪ sj are the bitwise Boolean function, constant value, and
left rotation defined in the specification, respectively. π(j) is the MD4 message
schedule. Note that R−1

j (pj+1, mπ(j)) can be computed at almost the same com-
plexity as that of Rj .

2.2 RIPEMD

RIPEMD [16] is an extension of MD4, whose compression function consists of
two parallel copies of MD4’s compression function. These functions are identical
but for the constant number in each step. We describe chaining variables for one
side pj = (aj , bj , cj , dj) and for the other side p′j = (a′

j , b
′
j , c

′
j , d

′
j). The message

schedule π(j), the constant numbers kj and k′
j , and the rotation number sj are

different from those for MD4. These values are shown in Table 1. Finally, the out-

Table 1. Message schedule, constants, and rotation numbers of RIPEMD

π(0), π(1), . . . , π(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16), π(17), . . . , π(31) 7 4 13 1 10 6 15 3 12 0 9 5 14 2 11 8
π(32), π(33), . . . , π(47) 3 10 2 4 9 15 8 1 14 7 0 6 11 13 5 12

0 ≤ i ≤ 15 16 ≤ i ≤ 31 32 ≤ i ≤ 47
ki 0x00000000 0x5a827999 0x6ed9eba1
k′

i 0x50a28be6 0x00000000 0x5c4dd124

s0, s1, . . . , s15 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
s16, s17, . . . , s31 7 6 8 13 11 9 7 15 7 12 15 9 7 11 13 12
s32, s33, . . . , s47 11 13 14 7 14 9 13 15 6 8 13 6 12 5 7 5

put of RIPEMD’s compression function Hn+1 = (Ha, Hb, Hc, Hd) is computed
by using Hn = (IVa, IVb, IVc, IVd), p48, and p′48 as follows.

Ha = IVb + c48 + d′48, Hb = IVc + d48 + a′
48,

Hc = IVd + a48 + b′48, Hd = IVa + b48 + c′48.

2.3 RIPEMD-128, RIPEMD-160

RIPEMD-128 and RIPEMD-160, which output 128-bit and 160-bit hash values
respectively, were proposed by Dobbertin et al. in 1996 [7]. They have been
standardized by the International Organization for Standardization (ISO) [9].

A branch of RIPEMD-160 uses five 32-bit chaining variables. It computes
80 steps to produce the output value. Let the chaining variables in step j be
pj = (aj , bj , cj , dj , ej). Step function Rj(pj , mπ(j)) is as follows.

aj+1 = ej , cj+1 = bj , dj+1 = cj ≪ 10, ej+1 = dj ,

bj+1 = ((aj + Φj(bj , cj , dj) + mπ(j) + kj) ≪ sj) + ej .

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 219

Table 2. Message schedules of RIPEMD-160

r π(r), π(r + 1), . . . , π(r + 15) π′(r), π′(r + 1), . . . , π′(r + 15)
0 0 1 2 3 4 5 6 7 8 9 101112131415 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

16 7 4 13 1 10 6 15 3 12 0 9 5 2 1411 8 6 11 3 7 0 13 5 101415 8 12 4 9 1 2
32 3 1014 4 9 15 8 1 2 7 0 6 1311 5 12 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
48 1 9 1110 0 8 12 4 13 3 7 1514 5 6 2 8 6 4 1 3 1115 0 5 12 2 13 9 7 1014
64 4 0 5 9 7 12 2 1014 1 3 8 11 6 1513 121510 4 1 5 8 7 6 2 1314 0 3 9 11

Between two copies of the compression function, the order of the Boolean func-
tions, message schedules, constants, and rotation numbers are different. The
message schedules are shown in Table 2. The output of RIPEMD-160 is com-
puted in the same manner as that of RIPEMD.

A branch of RIPEMD-128 uses 4 chaining variables and consists of 64 steps.
The step function is the same as that of MD4 and RIPEMD. The Boolean
functions and rotation numbers used in RIPEMD-128 are the same as those
of the first 64 steps for RIPEMD-160, but the order is different. The message
schedule for RIPEMD-128 is the same as that of the first 64 steps for RIPEMD-
160, which is shown in Table 2. Computation for the final output is also the
same as that of RIPEMD.

2.4 Extended MD4, RIPEMD-256, and RIPEMD-320

Extended MD4 is an optional extension of MD4 proposed by Rivest to obtain
256-bit hash values [17]. Two copies of MD4 are run in parallel over the input.
The first copy is the same as MD4. The second copy is computed with different
IV and constants. To strengthen the data dependency between two copies, a
swapping function is introduced, which exchanges the values of a16 and a′

16, a32
and a′

32, and a48 and a′
48. The final output is obtained by concatenating both

results.
RIPEMD-256 and RIPEMD-320 are extensions of RIPEMD-128 and

RIPEMD-160 for obtaining the double length hash values without needing a
higher security level [7]. The output is achieved by computing the feedforward
of IV in each branch and concatenating the results at the end of every applica-
tion of the compression function. Interaction between two copies is introduced
by a swapping function, which exchanges the values of a16 and a′

16, b32 and b′32,
etc.

3 Related Works

3.1 Converting Pseudo-preimage Attack to Preimage Attack

Given a hash value Hn, a pseudo-preimage is a pair of (Hn−1, M) such that
Hash(Hn−1, M) = Hn. In x-bit iterated hash functions, a pseudo-preimage at-
tack whose complexity is 2y, y < x − 2 can be converted to a preimage attack
with a complexity of 2

x+y
2 +1 [14, Fact9.99].

220 Y. Sasaki and K. Aoki

3.2 Meet-in-the-Middle Preimage Attack

Aoki and Sasaki proposed a preimage attack based on the meet-in-the-middle at-
tack [1]. They proposed three techniques named splice-and-cut, partial-matching,
and partial-fixing.

The splice-and-cut technique considers the first and last steps of the compres-
sion function as consecutive steps. Then, the compression function is divided into
two chunks of steps so that each chunk includes independent message words,
which are called neutral words. Then, a pseudo-preimage is computed by the
meet-in-the-middle attack.

The partial-matching technique can skip messages in several steps when check-
ing the match in the meet-in-the-middle attack. It focuses on the property where
not all the chaining variables are updated in each step. With this idea, we can
partially compare two results, even if values of message words in several steps
are not known.

The partial-fixing technique enables an attacker to skip more steps. The idea
is to fix a part of the neutral words so that an attacker can partially compute a
chunk even if a neutral word for the other chunk appears. For example, consider
the inversion of MD4: aj = (bj+1 ≫ sj) − Φj(cj+1, dj+1, aj+1)−mπ(j) − kj . If
the lower n bits of mπ(j) are fixed and thus known to the attacker and if other
variables are fully known, the lower n bits of aj can be computed independently
of the higher 32− n bits.

Since the internal state size of RIPEMD is double the output size, the straight-
forward application of the meet-in-the-middle attack does not give any advantage.

3.3 Analysis on Double-Branch Hashes and Cascaded Construction

At CRYPTO 2004, Joux proposed attacks on cascaded construction [10]. Joux
showed how to generate multi-collisions of iterated hash functions and how
to find collisions and preimages of the cascaded construction by using multi-
collisions. The success of Joux’s attack lies in the independency of the two hash
functions in the cascaded construction, namely, multi-collisions of the iterated
hash functions can be generated independently of the others. Joux explained
that his technique would not be applied to RIPEMD-256 and -320 due to the
dependency of the two compression functions caused by swapping functions. In
conclusion, if swapping functions are used, no attack is known to break the
preimage resistance of double-branch hash functions.

4 Preimage Attacks on RIPEMD

We present here two preimage attacks on RIPEMD. The first attack targets the
first 33 steps and the second attack targets the intermediate 35 steps.

4.1 Attacks on First 33 Steps

Outline of Attack. Our attack is based on the meet-in-the-middle attack
introduced in Section 3.2. However, since the internal state size is double the

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 221

1st chunk 1st chunk

2nd chunk 2nd chunk

Start step

Hn

Start step
∆=∆start

∆=0k
k
k

k ’
k ’
k ’

Meet-in-the-middle

ps ps’

Fig. 2. Outline of strategy 1

output size, a direct application of the meet-in-the-middle attack cannot exceed
the brute force attack. Our strategy to solve this problem is shown in Fig. 2.
We separate the attack target so that one chunk is located in the first several
steps and the other chunk is located in the last relatively long steps, and then we
compare the results of the two chunks at the last feedforward operation which
is performed in 128 bits.

Assume ma and mb are neutral words, where ma is included in the first chunk
but is not included in the second chunk, and mb is vice versa. Remember that
message schedules for both sides are identical, hence if one side can be separated
into two chunks, the other side can always be separated in the same manner.
First, we fix all message words but ma and mb and fix chaining variables at the
border of two chunks, e.g., fix ps and p′s to compute the first and second chunks
independently. We then inversely compute the first chunk with R−1

j (pj+1, mj)
and R′ −1

j (p′j+1, mj) for j = s − 1, s − 2, . . . , 0 by trying all values of ma and
store the results in a table. Finally, we compute the second chunk with Rj(pj , mj)
and R′

j(p
′
j , mj) for j = s, s + 1, . . . , 32 by trying all values of mb and then check

whether the result matches items in the table.
For consistency with the specification of RIPEMD, the values of p0 and p′0

computed in the backward computation must be identical, because they are
originally computed from the same IV . The differences of the computations for
both sides are differences of the constant ∆k only. Therefore, we fix intermediate
chaining variables ps and p′s to have a specific difference ∆start so that ∆start

and ∆k can be cancelled out in the backward computation.

Set Up of Attack. We separate the 33 steps into 2 chunks as shown in Fig. 3.
The border of the two chunks is between Steps 2 and 3; we therefore fix p3 and
p′3 so that their difference ∆start can cancel ∆k in Steps 0–2. Now we trace the
differentials in Steps 0–2 of both sides to determine the appropriate ∆start. The
analysis is shown in Fig. 4.

222 Y. Sasaki and K. Aoki

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2© 3 4 5 6 7 8 9 10 11 12© 13 14 15

first chunk second chunk
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 7 4 13 1 10 6 15 3 12© 0 9 5 14 2© 11 8

second chunk skip
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 3 10 2© 4 9 15 8 1 14 7 0 6 11 13 5 12©

skip Excluded from the attack target

In RIPEMD, the message schedules of the two compression functions
are identical. We separate them into two chunks in the same manner.

Fig. 3. Chunks for first 33 steps of RIPEMD

a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

<<< s0

Φ0
m0

k0

<<< s1

Φ1
m1

k1

<<< s2

Φ2
m2

k2

∆k0

∆k1

∆k2

0 0 0 0

00

0

0

0 0 0(−∆k0)<<<s0

0 0(−∆k0)<<<s0

0 (−∆k0)<<<s0

(−∆k1)<<<s1

(−∆k1)<<<s1

∆v

(−∆v−∆k2)<<<s2

0?

Bold font represents the value of differences.

Fig. 4. Differences propagation in first three steps

The difference of a variable X is defined as ∆X = X ′ − X . The goal is
determining ∆a3, ∆b3, ∆c3, and ∆d3 so that ∆a0, ∆b0, ∆c0, and ∆d0 become 0.
Since message schedules for both sides are identical, ∆mπ(j) is always 0. In the
first chunk, m2 is the neutral word. Therefore, in every trial of the first chunk,
the values of m2 and corresponding chaining variables are changed. In Fig. 4,
we circled such variables. The analysis is as follows.

∆b0 = 0: This can be easily achieved by setting ∆a3 = 0.
∆a0 = 0: Assume we can achieve ∆b0 = ∆c0 = ∆d0 = 0. Then, ∆a0 = 0 can

be achieved by setting ∆d3 = (−∆k0) ≪ s0.
∆c0 = 0: Assume we have finished fixing the values of a3, a

′
3, c3, c

′
3, d3, and d′3.

Then, the value and difference of the output of Φ2 are fixed. Let this difference
be ∆v. Finally, ∆c0 = 0 is achieved by setting ∆b3 = (−∆v −∆k2) ≪ s2.

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 223

∆d0 = 0: Achieving ∆d0 = 0 is complicated. We want to guarantee ∆a1 =
0 regardless of the value of the neutral variable m2. To achieve this, we
need to fix the value of Φ1 independently of m2. Since the function Φ1 is
Φ1(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z) and ∆c1 = ∆d1 = 0, ∆Φ1 can be fixed
to 0 by setting b1 = b′1. However, this is impossible since b1 and b′1 must
have differences. Consequently, we search for the exact value of b1 and b′1 to
minimize the Hamming weight of (b1⊕b′1) so that the probability of ∆Φ1 = 0
is maximized. Remember that for each bit where b1 ⊕ b′1 = 1, the equation
∆Φ1 = 0 is satisfied with a probability of 1/2.
As we will explain later, we fix the lower 21 bits of m2 for the partial-
fixing technique. Consequently, the lower 21 bits of ∆Φ1 are fixed. Therefore,
minimizing the Hamming weight of the upper 11 bits (HW 11) of (b1 ⊕ b′1)
is enough. We tried 232 values of b1 and confirmed that no value achieves
HW 11(b1⊕b′1) ≤ 3 and many values achieve HW 11(b1⊕b′1) = 4. For example,
b1 = 0xffffffff, b′1 = 0x50a28be5 is the case. Finally, by choosing the value
of b1(= d3) to minimize the Hamming weight, the probability of ∆Φ1 = 0 is
2−4.

Partial-Matching and Partial-Fixing Techniques. As a result of comput-
ing the second chunk, we obtain p29 and p′29. By fixing the lower 21 bits of
m2, we can perform the meet-in-the-middle attack on a further 4 steps in for-
ward computation, namely, up to Step 32. The equation we use for matching
is Hb = IVc + d33 + a′

33, where Hb is given and the upper 11 bits of IVc are

a29 b29 c29 d29

a30 b30 c30 d30

a31 b31 c31 d31

<<< 11

m2

k29

<<< 13

m11

k30

all all all all

all

all all all

all all

0-20

all

11-31

11-31

11-31

24-31

a32 b32 c32 d32

<<< 12

m8

k31

all

all

11-3124-31

a33 b33 c33 d33

<<< 11

m3

k32

all

11-31 24-31

Φ29

Φ30

Φ31

Φ32

(2)

(2)

(2)

Bold font represents the bit positions of known bits.

Fig. 5. Partial-matching and partial-fixing techniques

224 Y. Sasaki and K. Aoki

produced from the first chunk. Therefore, we need to compute d33 from p29 and
a′
33 from p′29. How we compute d33 and a′

33 is shown in Fig. 5. Since m2 is
identical on both sides, the fixed bit positions in m2 are also identical on both
sides.

In Fig. 5, since the lower 21 bits of m2 are fixed, we can uniquely compute
bits 11–31 of b30. This produces bits 11–31 of Φ30. In the addition of Φ30, we
cannot determine the carried number from bit position 10 to 11. Therefore, we
consider both carried number patterns and obtain two candidates for bits 24–31
of b31 after the s30(= 13)-bit left rotation. Then, we compute the upper 8 bits
of d33 +a′

33 with consideration of the two candidates of carried number patterns
from bit position 23 to 24. In conclusion, the second chunk produces 4 candidates
for the upper 8 bits of d33 + a′

33 for given p29 and p′29, and thus, we can perform
the 8-bit matching in 33-step RIPEMD.

Remark: From a designer’s view, when results of two compression functions are
merged, adding two values from different registers seems to be a good strategy
against our attack. In fact, with only the partial-matching technique, attackers
can skip only two steps in RIPEMD, whereas attackers can skip three steps in
MD4. This is because the attacker needs to know the values of two different
registers to compute each word of the output of RIPEMD.

Attack Procedure. Our attack first finds pseudo-preimages and converts them
to preimages. Therefore, our attack finds a 2-block preimage. Hence, we fix
m13, m14, and m15 to satisfy padding for 2-block messages. Given a hash value
H2 = (Ha, Hb, Hc, Hd), the attack procedure is as follows.

1. Fix mi (i
∈ {2, 12, 13, 14, 15}) and the lower 21 bits of m2 to randomly
chosen values.

2. Fix a3, b3, c3 to randomly chosen values and d3 to 0xffffffff. Then, com-
pute a′

3, b
′
3, c

′
3, and d′3 to make ∆start, shown in Fig. 4.

3. (a) For all upper 11 bits of m2, compute R−1
j (pj+1, mπ(j)) and

R′−1
j (p′j+1, mπ(j)) for j = 2, 1, 0.

(b) If ∆p0 = 0, compute Hb − c0 and store (m2, p0, Hb − c0)s in a table.
4. Compute Rj(pj , mπ(j)) and R′

j(pj′ , mπ(j)) for j = 3, 4, . . . , 11, and store p12
and p′12.

5. (a) For all m12, compute Rj(pj , mπ(j)) and R′
j(p

′
j , mπ(j)) for j = 12, 13, . . .28.

(b) Compute bit positions 11 to 31 of b30 and b′30, then compute bit positions
24 to 31 of b31 for both carried number patterns as shown in Fig. 5. Then,
compute bits 24–31 of d33 + a′

33 by considering both carried number
patterns from bit 23 to 24.

(c) For each item in the table, check whether bits 24–31, in total 8 bits, of
d33 + a′

33 are matched with Hb − c0.
(d) If matched, compute p30 to p33 by the corresponding mi, and check

whether or not all values are matched.
(e) If all bits are matched, the corresponding message and p0 is a pseudo-

preimage.

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 225

Complexity Evaluation. Assume the complexity for computing 1 step is 1/33
33-step RIPEMD computations. The computational complexity of the above
procedure is as follows. Step 3a takes 211 · 3

33 . Since the success probability of 3b
is 2−4, 27(= 211 ·2−4) items are stored in the table. Step 4 is negligible. Steps 5a
and 5b take 232 · (17

33 + 3
33). In 5b, 234(= 232 ·2 ·2) items are produced. Therefore,

in 5c, 241(= 234 · 27) pairs are compared, and after 8-bit matching for both
carried number patterns, 233(= 241 · 2−8) pairs will remain. In 5d, we compute
p30 and p31 at the complexity of 228(= 233 · 2

64), and by applying additional 56-bit
match and checking the correctness of the guess for the carried number patterns,
2−25(= 233 · 2−56 · 2−2) pair will remain. Furthermore, by computing p31 and
p32 at negligible complexity, we obtain 2−89(= 2−25 · 2−64) pair that is matched
with 128 bits. The dominant complexity so far is 232 of 5a and 5b. Therefore, by
repeating the attack 289 times, we obtain a pseudo-preimage at the complexity
of 2121(= 232 × 289). Finally, by applying the technique in Section 3.13, this
pseudo-preimage attack is converted to the preimage attack with a complexity
of 2125.5. In the above procedure, a memory is used to store 27 (m2, p0, Hb− c0)s
at step 3b. Therefore, the memory complexity of this attack is approximately
27 × 6 words.

4.2 Attack on Intermediate 35 Steps

Similar to the attack on the first 33 steps, this attack is a meet-in-the-middle at-
tack, but the approach is different. The strategy is shown in Fig. 6. In this
approach, we start the meet-in-the-middle attack from an intermediate step
of either two copies of the compression functions. Let us start from the left
side. We separate the compression function so that one chunk includes two
neutral messages that can form a local collision. This strategy was first used
for the 1-block preimage attack on MD4 [1]. Due to the property of the local
collision, the value of a pseudo-preimage is always fixed to a constant value.
Therefore, we can consider the feedforward as constant addition and can com-
pute the second chunk independently of the first chunk. Finally, we perform
the meet-in-the-middle attack at the right side. The chunk we use is shown in
Fig. 7.

The attack procedure is similar to Aoki and Sasaki’s one-block MD4 preimage
attack [1], and how to construct a local collision in the second round is explained
in Leurent’s MD4 preimage attack [11]. Therefore, because of the limited space,
we omit the detailed attack procedure. Since both of the first and second chunks
have 232 free bits, the complexity of finding the pseudo-preimage is 296, and
this attack, at the complexity of 2113, is converted to the preimage attack. The
memory complexity is approximately 232 × 5 words.

3 Several techniques converting partial-pseudo-preimages to preimages have been pro-
posed [11,3]. However, since our attack does not find partial-pseudo-preimages effi-
ciently, these techniques cannot be applied.

226 Y. Sasaki and K. Aoki

1st chunk 1st chunk

2nd chunk 2nd chunk

Start step

Hn

Meet-in-
the-middle

m2

Local
collision

m2

m0

m6

m2

m2

m0

m6

Constant

Fig. 6. Outline of strategy 2

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0© 1 2© 3 4 5 6© 7 8 9 10 11 12 13 14 15

excluded first chunk
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 7 4 13 1 10 6© 15 3 12 0© 9 5 14 2© 11 8

first chunk 2nd chunk
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 3 10 2© 4 9 15 8 1 14 3 0© 6© 11 13 5 12

second chunk excluded

Chunk separations are identical on both sides.

Fig. 7. Chunks for intermediate 35 steps of RIPEMD

5 Cryptanalyses on Double-Branch Hash Functions

In this section, we analyze the preimage resistance of double length parallel hash
functions. Specifically we give a study of relations of the splice-and-cut technique
and swapping functions.

5.1 Extended MD4

In Extended MD4, two copies of MD4 with different IV and constants are com-
puted. The swapping function of Extended MD4 exchanges the values of a16 and
a′
16, a32 and a′

32, and a48 and a′
48.

MD4 has already been broken by using the splice-and-cut technique [1]. In this
research, we found that the swapping function of Extended MD4 cannot prevent
the splice-and-cut technique, namely, preimages are generated by almost the
same approach as MD4. This is caused by the fact that the message schedules
of two MD4 computations are exactly the same as original MD4. Due to this

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 227

fact, when we compute chunks in one side, we can also compute the value for
the other side. Since we know the values for both sides, we can exchange them
according to the swapping function. This means the swapping functions do not
contribute to prevent our attack.

The chunk separation is the same as that shown in Ref. [1, Fig.5]. However,
the partial-fixing technique can be improved for Extended MD4. In this attack,
since we compare the results of two chunks on both compression functions, the
number of bits matched by the meet-in-the-middle attack can increase. This
enables us to reduce the fixed bits in neutral words, hence free bits in neutral
words increase and the meet-in-the-middle attack becomes efficient.

By the partial-fixing technique, we fix the lower 5 bits of the neutral word and
examine the 30-bit matching (= 5 bits × 6 words). This results in the pseudo-
preimage attack4 with a complexity of 2229. This, with a complexity of 2243.5,
is converted to a preimage attack with the algorithm explained in Section 3.1.
The memory complexity is approximately 227 × 11 words.

5.2 RIPEMD-256 and RIPEMD-320

In RIPEMD-256 and -320, the message orders of two copies of the compression
functions are different. Therefore, different from Extended MD4, the attack can-
not be applied in a straightforward manner. Note that the swapping function
exchanges the value of a16 and a′

16, b32 and b′32, c48 and c′48, and so on.
To attack RIPEMD-256, we first search for a pair of neutral words that can

attack as many steps as possible on either side. Then, on the other side, we check
if we can divide the steps into two chunks so that the intermediate chaining
variables that are used in the swapping function can also be computed. Selected
neutral words and chunks are shown in Fig. 8.

As shown in Fig. 8, we skip eight steps when we attack the right side of MD4
by using the partial-matching and partial-fixing techniques. As introduced in
Ref. [1], the partial-fixing technique, which increases the matching candidate
twice, enables us to partially compute four steps in backward computation and
one step in forward computation. The partial-matching technique enables us to
skip three steps. Finally, eight steps can be skipped.

Avoid Swapping Function. In this attack, we assume that a16 and a′
16, b32

and b′32, and c48 and c′48 are exchanged. d64 and d′64 are not exchanged since
Step 63 is excluded from the attack target.

As you can see in Fig 8, b32 and b′32 are included in the second chunk and
c48 and c′48 are included in the first chunk. Therefore, by computing both sides
simultaneously, we can compute the values that follow the swapping function.
a16 and a′

16 are included in the skipped steps. When we check the matching of
the results of both chunks, we do not use the values of a16 and a′

16. Therefore,
swapping a16 and a′

16 does not affect the attack complexity.
4 If the previous attack is applied without improving the partial-fixing technique, this

complexity would be 2241.

228 Y. Sasaki and K. Aoki

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index L 0© 1 2 3 4 5 6 7 8 9 10© 11 12 13 14 15

index R 5 14 7 0© 9 2 11 4 13 6 15 8 1 10© 3 12
first chunk skip

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index L 7 4 13 1 10© 6 15 3 12 0© 9 5 2 14 11 8

second chunk
index R 6 11 3 7 0© 13 5 10© 14 15 8 12 4 9 1 2

skip second chunk

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index L 3 10© 14 4 9 15 8 1 2 7 0© 6 13 11 5 12

second chunk first chunk
index R 15 5 1 3 7 14 6 9 11 8 12 2 10© 0© 4 13

second chunk first chunk

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index L 1 9 11 10© 0© 8 12 4 13 3 7 15 14 5 6 2

first chunk excluded
index R 8 6 4 1 3 11 15 0© 5 12 2 13 9 7 10© 14

first chunk excluded

Fig. 8. Chunks for first 62 steps of RIPEMD-256

Outline of Attack Procedure. Fix messages mj , j /∈ {0, 10}, p39, and p′45,
where pj is a variable for the left side and p′j is for the right side. In the first
chunk, compute Rj(pj , mπ(j)) and R′

j(p
′
j , mπ(j)) to obtain p48 and p′48 and swap

c48 and c′48 to follow the swapping function. Then, we compute R′
j(p

′
j , mπ(j))

until we obtain p′13 and store the results in a table. In the second chunk, compute
R−1

j (pj , mπ(j)) and R′−1
j (p′j , mπ(j)) to obtain p32 and p′32 and swap b32 and b′32

to follow the swapping function. Then, we compute R′−1
j (p′j , mπ(j)) until we

obtain p′21 and check whether the result matches items in the table by using the
partial-matching and partial-fixing techniques. Hence, a pseudo-preimage for the
right side is found efficiently, and by repeating this attack 2128 times, one of the
resulting pseudo-preimages will also be the pseudo-preimage for the left side.

Complexity Estimation. When we attack the right side, we use the splice-and-
cut technique. Since the partial-fixing technique is used, the complexity to find
a pseudo-preimage of the right side is 2112. If a pseudo-preimage of the right side
is found, we check whether the message is also a pseudo-preimage of the left side.
This occurs with a probability of 2−128. Therefore, with a complexity of 2240,
we obtain a pseudo-preimage, and this, with a complexity of 2249, is converted
to a preimage. The memory complexity is approximately 216 × 9 words.

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 229

Preimage Attack on Intermediate 64 Steps of RIPEMD-320. With
the same strategy as the attack on RIPEMD-256, the intermediate 64 steps of
RIPEMD-320 can be attacked. From Steps 12–75 are our attack target, and we
select m10 and m11 as neutral words. Since the attack strategy is the same as
that of RIPEMD-256, we show details of the chunks in Appendix A, Fig. 9.

Since the partial-fixing technique is necessary, the complexity of the pseudo-
preimage attack is 2304, and this, with a complexity of 2313, is converted to a
preimage attack. The memory complexity is approximately 216 × 7 words.

6 Conclusion

We first described preimage attacks on RIPEMD. The first attack focuses on
differentials of two copies of the compression function and attacks the first 33
steps. The second attack uses local collision and attacks the intermediate 35
steps. We next analyzed the preimage resistance of double-length hash functions.
Our attacks find preimages of full Extended MD4, the first 62 steps of RIPEMD-
256, and the intermediate 64 steps of RIPEMD-320 faster than the brute force
attack does. We believe that analyses presented in this paper will contribute to
greater understanding of the security of double-branch hash functions.

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Workshop Records of SAC 2008, Sackville, Canada, pp. 82–98 (2008)

2. Aumasson, J.-P., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and
step-reduced MD5. In: Workshop Records of SAC 2008, Sackville, Canada, pp. 99–
114 (2008); ePrint version is available at IACR Cryptology ePrint Archive: Report
2008/183, http://eprint.iacr.org/2008/183.pdf

3. Canniére, C.D., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Hei-
delberg (2008); (slides on preliminary results were appeared at ESC 2008 seminar
http://wiki.uni.lu/esc/)

4. Debaert, C., Gilbert, H.: The RIPEMDL and RIPEMDR improved variants of MD4
are not collision free. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 65–74.
Springer, Heidelberg (2002)

5. Dobbertin, H.: Cryptanalysis of MD4. Journal of Cryptology 11(4), 253–272 (1997);
First result was announced at FSE 1996

6. Dobbertin, H.: RIPEMD with two-round compress function is not collision-free.
Journal of Cryptology 10(1), 51–69 (1997)

7. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996)

8. Hong, D., Chang, D., Sung, J., Lee, S., Hong, S., Lee, J., Moon, D., Chee, S.: A
new dedicated 256-bit hash function: FORK-256. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 195–209. Springer, Heidelberg (2006)

9. International Organization for Standardization. ISO/IEC 10118-3:2004, Informa-
tion technology – Security techniques – Hash-functions – Part 3: Dedicated hash-
functions (2004)

http://eprint.iacr.org/2008/183.pdf
http://wiki.uni.lu/esc/

230 Y. Sasaki and K. Aoki

10. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

11. Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

12. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the collision resistance
of RIPEMD-160. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 101–116. Springer, Heidelberg (2006)

13. Mendel, F., Rijmen, V.: Weaknesses in the HAS-V compression function. In: Nam,
K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 335–345. Springer, Hei-
delberg (2007)

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1997)

15. Park, N.K., Hwang, J.H., Lee, P.J.: HAS-V: A New Hash Function with Variable
Output Length. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 202–216. Springer, Heidelberg (2001)

16. RIPE Integrity Primitives, Berlin, Heidelberg, New York. Integrity Primitives for
Secure Information Systems, Final RIPE Report of RACE Integrity Primitives
Evaluation, RIPE-RACE 1040 (1995)

17. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991);
Also appeared in RFC 1320, http://www.ietf.org/rfc/rfc1320.txt

18. Ronald, L.R.: Request for Comments 1321: The MD5 Message Digest Algorithm.
The Internet Engineering Task Force (1992),
http://www.ietf.org/rfc/rfc1321.txt

19. Saarinen, M.-J.O.: A meet-in-the-middle collision attack against the new FORK-
256. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 10–17. Springer, Heidelberg (2007)

20. Sasaki, Y., Aoki, K.: Preimage attacks on 3, 4, and 5-pass HAVAL. In: Pieprzyk,
J.P. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg
(2008)

21. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
New York (2009)

22. U.S. Department of Commerce, National Institute of Standards and Technology.
Federal Register 72(212) (November 2, 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

23. U.S. Department of Commerce, National Institute of Standards and Technology.
Secure Hash Standard (SHS) (Federal Information Processing Standards Publica-
tion 180-3) (2008),
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

24. Wang, G., Wang, S.: Preimage attack on hash function RIPEMD. In: Bao, F.,
Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 274–284. Springer,
Heidelberg (2009)

25. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

http://www.ietf.org/rfc/rfc1320.txt
http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions 231

A Chunks for Intermediate 64-Step RIPEMD-320

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index L 0 1 2 3 4 5 6 7 8 9 10© 11© 12 13 14 15

excluded first chunk
index R 5 14 7 0 9 2 11© 4 13 6 15 8 1 10© 3 12

excluded first chunk

Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index L 7 4 13 1 10© 6 15 3 12 0 9 5 2 14 11© 8

first chunk skip
index R 6 11© 3 7 0 13 5 10© 14 15 8 12 4 9 1 2

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index L 3 10© 14 4 9 15 8 1 2 7 0 6 13 11© 5 12

skip second chunk
index R 15 5 1 3 7 14 6 9 11© 8 12 2 10© 0 4 13

second chunk

Step 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index L 1 9 11© 10© 0 8 12 4 13 3 7 15 14 5 6 2

2nd chunk first chunk
index R 8 6 4 1 3 11© 15 0 5 12 2 13 9 7 10© 14

second chunk first chunk

Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
index L 4 0 5 9 7 12 2 10© 14 1 3 8 11© 6 15 13

first chunk excluded
index R 12 15 10© 4 1 5 8 7 6 2 13 14 0 3 9 11©

first chunk excluded

Fig. 9. Chunks for intermediate 64 steps of RIPEMD-320

On the Weak Ideal Compression Functions

Akira Numayama and Keisuke Tanaka

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan

{numayam4,keisuke}@is.titech.ac.jp

Abstract. In SAC 2006, Liskov introduced the weak ideal compression func-
tions. He proved that a hash construction based on these functions is indiffer-
entiable from the random oracle. In ICALP 2008, Hoch and Shamir applied
Liskov’s idea and proved the indifferentiability of another hash construction.
However, these proofs of indifferentiability can have gaps in certain situations.
In this paper, we formalize these situations and propose the simulation method
which covers these situations. In particular, we apply our simulation method to
the latter proof of indifferentiability, and concretely analyze the security of the
latter hash construction. We can derive a lower bound to find a collision in the
concatenated hash construction, which covers the gaps of the original proof.

Keywords: random oracle, weak ideal compression function, indifferentiability,
hash construction.

1 Introduction

In cryptography, hash functions have an important role. There have been numerous re-
searches on the construction of hash functions. In order to handle messages of arbitrary
length, it is common way to design hash functions based on the Merkle-Damgård it-
erated construction [4,12], which repeatedly applies a compression function to each
successive block of the message. Let f be a compression function and let IV be a
fixed initial value. Then, the Merkle-Damgård iterated construction can be described as
follows.

H(M) = f (f (...(f (IV,m1),m2), . . .),mk),

where M = m1 ‖m2 ‖ · · · ‖mk is a k-block message. This design concept is in fact applied
to the standard hash functions like SHA-1 [13] and MD5 [15].

There are many security properties for hash functions such as collision resistance and
first-preimage resistance (one-wayness). Hash functions used in cryptography should
have these properties. In particular, SHA-1 and MD5 were expected to be collision
resistant. However, recent cryptanalyses of hash functions have found significant at-
tacks [17,18] against various hash functions, including SHA-1 and MD5. Furthermore,
there have been found many generic attacks [6,9,8] against the iterated hash functions.

1.1 Previous Works

The attacks mentioned above have brought our attention to the design of hash functions.
A number of research have studied it and its security.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 232–248, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Weak Ideal Compression Functions 233

Indifferentiability framework: The notion of indifferentiability introduced by Maurer,
Renner, and Holenstein [11] is useful in order to analyze the security of hash construc-
tions. It is similar to the concept of indistinguishability, and it describes that two systems
are indistinguishable despite having extra access to the internal structure of the systems.
If we can prove a hash function is indifferentiable from the random oracle, then it has
all the security properties of the random oracle model, including collision resistance
and first-preimage resistance.

Coron, Dodis, Malinaud, and Puniya [2] applied the indifferentiability framework
to the Merkle-Damgård iterated construction, and showed that some variants of the
Merkle-Damgård iterated construction can be proved to be indifferentiable from the
random oracles if the ideal primitives are used as the underlying compression functions.

Now, we review the formal definition of the indifferentiability. Let CΓ be a hash
construction with access to oracle Γ. Here, Γ represents the underlying ideal primitive,
and let ROh represent the random oracle which idealizes a hash function h. Then, the
indifferentiability of CΓ from ROh is defined as follows.

Definition 1 (Indifferentiability [11,2]). A construction CΓ is (q, ε) indifferentiable in
the presence of Γ from a random oracle ROh if there exists a polynomial-time simulator
S , such that for every distinguisher D which uses at most q oracle queries, the following
holds:

∣∣∣∣∣Pr[DCΓ,Γ = 1] − Pr[DRO
h,S ROh

= 1]
∣∣∣∣∣ < ε.

Notice that this definition is slightly different from that of indistinguishability in that
the simulator has to simulate the behavior of Γ maintaining consistency not only with
Γ itself but also with the random oracle ROh.

The following example illustrates the fact that a simple iterated hash construction is
not indifferentiable from the random oracle. Let CRO

f
be a simple iterated hash con-

struction built from a finite length input random oracle RO f which idealize a com-
pression function f : {0, 1}n × {0, 1}m → {0, 1}n. That is, for a k-block message M =
m1 ‖ m2 ‖ · · · ‖mk, the hash construction CRO

f
is described as follows.

CRO
f

(M) = RO f (RO f (...(RO f (IV,m1),m2), . . .),mk).

Then, two pairs (CRO
f
,RO f) and (ROh, S RO

h
) are differentiable for any simulator S .

Let (α, β) be one of the pairs. We can construct the distinguisher D as follows. First, the
distinguisher D queries the hash value of m1 to α as g1 = α(m1). Then, D queries the
hash value of (g1,m2) to β as g2 = β(g1,m2). Finally, D queries the hash value of m1 ‖m2

to α as g = α(m1 ‖ m2). If g = g2, the distinguisher returns 1, and otherwise 0. In the
case of (CRO

f
,RO f), the equality g = g2 always holds and D returns 1 with probability

1. On the other hand, in the case of (ROh, S RO
h
), the simulator S does not know m1 and

hence does not know the value g = ROh(m1‖m2) which distributes uniformly at random.
Therefore, on input (g1,m2), he cannot maintain the consistency with the random oracle
ROh. That is, he cannot make the value g2 = S RO

h
(g1,m2) such that the equality g = g2

holds. In this case, D returns 1 with negligible probability.

234 A. Numayama and K. Tanaka

The above example shows that for the indifferentiability the simulator S needs to
simulate the behavior of Γ maintaining both consistency with (1) Γ itself and (2) the
random oracle ROh.

Model of weak ideal compression functions: Liskov [10] introduced the model of weak
ideal compression functions. This model idealizes the compression functions as the ran-
dom oracle and captures the vulnerability of compression functions to the first-preimage
finding attack by the additional attack oracles. Let f : {0, 1}n × {0, 1}m → {0, 1}n be a
compression function. There are three oracles in this model, i.e., the forward oracle,
the backward oracle, and the bridging oracle. Given (x, y), the forward oracle provides
the value z = f (x, y). The backward oracle and the bridging oracle provide the first-
preimages of f . Given (y, z), the backward oracle provides one of x such that z = f (x, y)
uniformly at random. Similarly, given (x, z), the bridging oracle provides one of y such
that z = f (x, y) uniformly at random. The latter two oracles make the compression
function no longer first-preimage resistant.

In [10], he presented a new hash construction, the Zipper hash construction, and
proved indifferentiability in this model. That is, the Zipper hash construction is indif-
ferentiable from the random oracle if the underlying compression functions are weak
ideal compression functions. Moreover, Hoch and Shamir [5] applied Liskov’s idea and
showed a similar result for the XORed hash construction C(M) = F(M)⊕G(M), where
both the hash functions F and G are iterated.

1.2 Our Contributions

First, we point out that the simulators in [10,5] can have some problems in certain
situations when the simulators simulate the behavior of Γ maintaining the consistency
with Γ itself. Then, we formalize these situations and propose the simulation method
which covers these gaps. In particular, we apply our simulation method to the proof
of indifferentiability in [5], and concretely analyze the security of the XORed hash
construction. We can derive a lower bound to find a collision in the concatenated hash
construction, which covers the gaps of the original proof [5].

Problems in the previous works: Liskov [10] proposed the Zipper hash construction
and proved it indifferentiable from the random oracle in the model of weak ideal com-
pression functions. There are three oracles in this model. Let Γ represent these three
oracles. In order to prove the indifferentiability, he constructed the simulator S which
simulates the behavior of Γ maintaining both consistency with (1) Γ itself and (2) the
random oracle ROh. While the latter consistency is satisfied by his simulator, the former
consistency is not always satisfied.

The problem of Liskov’s simulator is as follows: In the simulation of the backward
oracle (resp. the bridging oracle), Liskov’s simulator always provides new x (resp. new
y). In the case of the bridging oracle, if m is sufficiently larger than n, then each pair of
(x, z) can have an adequate number of possible answers. Therefore, his simulator can
work in this case. However, in the case of the backward oracle, some of the pairs (y, z)
have multiple possible answers, but some have no answers. The simulator has to take
into account this fact in order to maintain the consistency.

On the Weak Ideal Compression Functions 235

Hoch and Shamir [5] and Numayama, Isshiki, and Tanaka [14] proposed answers to
this problem. Hoch and Shamir [5] mentioned it in the same indifferentiability context
and in the same model of weak ideal compression functions. In contrast, Numayama et
al. mentioned it in the reduction context and in a bit relaxed model.

In particular, Hoch and Shamir [5] showed it in the case that m is sufficiently larger
than n, and they mentioned that they could also do in the same way in the case that m
is not sufficiently larger than n. However, if we carefully observe what will occur in
such a case, we see that we cannot simply extend their simulator. We will describe the
problem of their simulator in Section 4.

In this paper, we formalize this problem in order to cover the case that m is not
sufficiently larger than n. We propose the simulation method of the forward oracle,
the backward oracle, and the bridging oracle. Our simulation method is based on the
simulation method in [14]. By using our simulation method, we can also prove the
indifferentiability of the Zipper hash construction and the XORed hash construction in
the case that m is not sufficiently larger than n.

A lower bound for finding collisions of the concatenated hash construction: Joux [6]
found a multicollision attack to find collisions against the concatenated hash construc-
tion H(M) = F(M) ‖ G(M) when at least one of the underlying hash functions F and
G are iterated. If the outputs of F and G are n bits, then his attack succeeds in finding
a collision in expected time O(n2n/2). This is much faster than the birthday paradox
based attack, which takes expected time O(2n) to find a collision for any function of 2n-
bit output. His result implies that the concatenated hash construction does not always
improve the security of underlying hash functions.

In Joux’s attack, he used the birthday attack to find collisions in the underlying com-
pression functions of F or G. It costs O(2n/2) time to find a collision. Joux then posed
the question whether the ability to find collisions efficiently in both the underlying com-
pression functions of F and G can help the attacker to improve the complexity of his
attack.

Hoch and Shamir [5] showed that in the model of weak ideal compression functions,
the XORed hash construction C(M) = F(M) ⊕ G(M) is indifferentiable from the ran-
dom oracle when less than O(2n/2) queries are made. They concluded that since finding
collisions in H(M) = F(M) ‖G(M) implies finding collisions in C(M) as well, the in-
differentiability of C(M) will give a lower bound on the number of queries required to
find a collision in H(M).

Their result proved that even in a powerful attack scenario where the attacker can
find not only collisions but also first-preimages in all the compression functions in unit
time, it is required O(2n/2) time to find a collision in the concatenated hash construction.
We note that they showed this result in the case that m is sufficiently larger than n,
where m, n are the parameters for the underlying compression functions f , g :{0, 1}n ×
{0, 1}m → {0, 1}n.

In contrast to their result, we formally prove the indifferentiability of C(M) including
the case that m is not sufficiently larger than n. We can derive a lower bound such that
in the same attack scenario as in [5], finding a collision in the concatenated hash con-
struction requires more than O(2m/4) or O(2n/4) time in the case that m is not sufficiently
larger than n.

236 A. Numayama and K. Tanaka

Organization: In Section 2, we review the model of weak ideal compression functions.
First, we point out the problem in [10], and consider the simulation method in a simple
restricted version in Section 3. Then, in Section 4, we point out the problem in [5], and
consider the simulation method in the full version. Section 5 shows an application of
our simulation method to the XORed hash construction. Finally, Section 6 concludes
this paper.

2 Model of Weak Ideal Compression Functions

2.1 Notation

IfD is a distribution, x← D denote that x is sampled according toD, and let fD(x) be
the probability mass function of distribution D. Let Bn(N, p) be the binomial distribu-
tion with N trials and success probability p.

Let S be a finite set. Let s← S denote that s is sampled from the uniform distribution
on S . #S denotes the number of elements in S . IfA is a probabilistic machine and x is
an input, letA(x) denote the output distribution ofA on input x.

Finally, for a table T = {(x, y)}, we define T(y) = {(x̃, ỹ) ∈ T | y = ỹ}. Similarly, for
a table T = {(x, y, z)}, we define T(y) = {(x̃, ỹ, z̃) ∈ T | y = ỹ} and T(y, z) = {(x̃, ỹ, z̃) ∈
T | y = ỹ, z = z̃}.

2.2 Model

Let X, Y, and Z be finite sets. The model of weak ideal compression functions first
introduced by Liskov [10] has a compression function f chosen randomly from all the
functions such that f : X × Y → Z. That is, f maps an element (x, y) ∈ X × Y to an
element f (x, y) = z ∈ Z.

Let T f = {(x, y, f (x, y)) | (x, y) ∈ X×Y} be the table which defines the correspondence
of all the elements in X×Y with the elements in Z. That is, there is an entry (x, y, z) ∈ T f

if and only if z = f (x, y) holds. We note that we can identify the compression function
f with the table T f .

In this model there are three oracles, i.e., the forward oracle, the backward oracle,
and the bridging oracle. These oracles are defined as follows:

Forward Oracle FwO f : Given (x, y), the forward oracle returns z such that (x, y, z) ∈
T f

Backward Oracle BwO f : Given (y, z), if there is any entry (x, y, z) ∈ T f , then the
backward oracle returns such x uniformly at random. Otherwise, it returns ⊥.

Bridging Oracle BrO f : Given (x, z), if there is any entry (x, y, z) ∈ T f , then the bridg-
ing oracle returns such y uniformly at random. Otherwise, it returns ⊥.

Remark 1. In the previous works [10,5], they identified the forward oracle and the un-
derlying compression function. However, in this paper as in [14] we explicitly
distinguish them and make the forward oracle to be the interface to the underlying
compression function. This setting helps us to make the model of weak compression
functions well-defined.

On the Weak Ideal Compression Functions 237

2.3 Difference from the Random Oracle Model

We note an important difference between the random oracle model and the model of
weak ideal compression functions. Let h : X × Y → Z be the hash function in the
random oracle model, and let Th be the table Th = {(x, y, h(x, y)) | (x, y) ∈ X × Y}.
Furthermore, let ROh be the random oracle, which provide z = h(x, y) when we query
the hash value of (x, y).

In the random oracle model, each output of the random oracle ROh is independent
of the other entry in the table Th and uniformly distributed. This property of the ran-
dom oracle model is called uniformity. In contrast to the situation in the random oracle
model, when it comes to the model of weak ideal compression functions, this property
is not easily attained.

This is because, when we query (y, z), the backward oracle uniformly returns one of
the preimages of z under the function fy(x) = f (x, y), and hence if there are nyz elements,
then it outputs one of them with probability 1

nyz
. Here, some information on nyz may be

revealed, and each entry in the table T f has some relation depending on nyz.
In order to verify this situation, let us consider the following extreme case. Let z∗ =

f (x∗, y∗) for some (x∗, y∗) ∈ X × Y, and let ny∗z∗ be the number of the preimages of
z∗ under the function fy∗ (x) = f (x, y∗). If ny∗z∗ = 1, then the backward oracle always
returns the same x∗ on input (y∗, z∗). In this case, we know the information that ny∗z∗ = 1
through the backward oracle. This implies that there is exactly one element that maps to
z∗ under the function fy∗ (x) = f (x, y∗), and for any x � x∗ the value FwO f (x, y∗) cannot
be z∗, i.e., the value FwO f (x, y∗) does not strictly follow the uniform distribution on Z.
Therefore, we no longer have the uniformity in the model of weak ideal compression
functions.

3 Our Simulation Methods (Restricted Version)

In this section, we begin by considering the simulation in the simple restricted version
where we have only the forward oracle and the backward oracle available, but not the
bridging oracle. The simulation in the full version is given in Section 4.

Before giving our methods, let us review the simulation in the random oracle model.
In the random oracle model, each entry in the table is independent and uniformly dis-
tributed. That is, the random oracle model has the uniformity. Therefore, in a standard
way, we simulate the random oracle by maintaining a table T that is initially empty as
the following algorithm Std.RO (Algorithm 1).

In contrast to the simulation in the random oracle model, when it comes to the re-
stricted model of weak ideal compression functions, there are two difficulties in the
simulation. First, in the restricted model of weak ideal compression functions, we need
to simulate the backward oracle in addition to the forward oracle, i.e., when the value
(y, z) is queried to the backward oracle, we need to uniformly return one of the preim-
ages of z under the function fy(x) = f (x, y). However, we do not know the number of the
preimages of z under the function fy(x) = f (x, y), and hence we cannot uniformly return
one of them. Second, each entry in the table is no longer independent because some in-
formation about the number of the preimages of z under the function fy(x) = f (x, y) are

238 A. Numayama and K. Tanaka

Algorithm Std.RO(x̂, ŷ)
1. If (x̂, ŷ, z) ∈ T for some z, then return z.
2. Otherwise,

(a) pick uniformly z← Z,
(b) insert (x̂, ŷ, z) in the table T, and
(c) return z.

Algorithm 1. Standard simulation method of the random oracle

revealed through the backward oracle, i.e., the model of weak ideal compression func-
tions does not have the uniformity. Therefore, in the simulation of the forward oracle,
when the hash value of (x, y) is queried, we cannot do as in the algorithm Std.RO.

3.1 Problem of Liskov’s Simulation Method

In the restricted model of weak ideal compression functions, the above two difficulties
prevent us to simply simulate both the forward oracle and the backward oracle.

Let X = Z = {0, 1}n and Y = {0, 1}m, i.e., f : {0, 1}n × {0, 1}m → {0, 1}n be the com-
pression function. The problem of Liskov’s simulator is as follows: In the simulation of
the backward oracle (resp. the bridging oracle), Liskov’s simulator always provides new
x (resp. new y). In the case of the bridging oracle, if m is sufficiently larger than n, then
each pair of (x, z) has an adequate number of possible answers. Therefore, his simulator
can work in this case. However, in the case of the backward oracle, some of the pairs
(y, z) have multiple possible answers, but some have no answers. The simulator has to
take into account this fact in order to maintain the consistency.

Hoch and Shamir [5] and Numayama et al. [14] proposed answers to this problem
independently. Hoch and Shamir proposed the simulation method in the model of weak
ideal compression functions, and considered to manage the number of preimages ac-
cording to the Poisson distribution. Their simulation method seems reasonable in the
restricted model of weak ideal compression functions. However, they did not prove it.
Numayama et al. proposed the simulation method in the weakened random oracle mod-
els where the argument of the function is restricted to one, i.e., the underlying function
is z = fy(x) = f (x, y) for fixed y. They considered to manage the number of preim-
ages according to the binomial distribution and proved that their simulation method can
simulate the random oracle and the first-preimage oracle in the weakened random or-
acle models, which correspond to the forward oracle and the backward oracle, in the
restricted model of weak ideal compression functions, respectively.

In this paper, we apply the idea of Numayama et al. to the simulation of the for-
ward oracle and the backward oracle in the restricted model of weak ideal compression
functions. This is because the simulation methods of Numayama et al. was proved their
validity.

3.2 Solution for the Problem of Liskov’s Simulation Method

In the restricted case, it is easy to simulate both the forward oracle and the backward
oracle by using the idea of Numayama et al. We show the reason why we can apply

On the Weak Ideal Compression Functions 239

Table 1.

y j

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

the simulation method of the random oracle and the first-preimage oracle, where the
underlying hash function is z = fy(x) = f (x, y) for fixed y. The correspondence of
the hash value zi j = f (xi, y j) is described in Table 1. Given (y, z), in order to simulate
the backward oracle, it only requires the number of preimages of z under the function
fy(x) = f (x, y), and this number only has an effect on the corresponding y’s column.
This effect is described by the gray color in Table 1. Furthermore, there is nothing else
except this number which has an effect on the other entries in Table 1 which are not yet
determined.

Therefore, for each y ∈ Y the function fy(x) (each y’s column in Table 1) is mutually
independent, and we can apply the simulation method proposed in [14] to each function
fy(x) in order to simulate the forward oracle and the backward oracle in this restricted
model of weak ideal compression functions where the bridging oracle is not available.
In Appendix A, we give the concrete algorithms FwOBw

R and BwOBw
R which simulate

the forward oracle and the backward oracle, respectively.
The main idea of our simulation methods is to manage the two tables T and Lyz which

are initially empty. The table T has entries (x, y, z) in order to manage the correspon-
dence of z = f (x, y) as in the standard simulation method in the random oracle model.
On the other hand, the table Lyz has entries (y, z, nyz) in order to manage the number of
the preimages of z under the function fy(x). These two tables are commonly used for
the algorithms FwOBw

R and BwOBw
R .

As for the first difficulty described at the beginning of this section, the knowledge of
the number nyz in the table Lyz enables the algorithm FwOBw

R to uniformly output one of
the preimages of queried value z under the function fy(x), i.e., return one of them with
probability 1

nyz
.

As for the second difficulty, the knowledge of the number of nyz also enables the
algorithm FwOBw

R to behave like the forward oracle considering the dependence of each
entry stemmed from some leakage through nyz. In order to verify how this idea works
well, let us consider the extreme case again. Let z = f (x, y) for some (x, y) ∈ X × Y
and nyz be the number of preimages of z under the function fy(x) = f (x, y). If nyz = 1,
then for all x′ ∈ X such that x′ � x, the value FwO f (x′, y) does not match z. Therefore,
when we query the hash value of (x′, y), the algorithm FwOBw

R (x′, y) uniformly outputs
z′ ∈ Z such that z′ � z.

Then, by using the following proposition, we can analyze the algorithms FwOBw
R and

BwOBw
R , and obtain the following theorem.

240 A. Numayama and K. Tanaka

Proposition 1 ([7]). There is a polynomial-time machine BN such that the distribution
BN(N, p) output by the algorithm BN is statistically close to the binomial distribution
Bn(N, p), where N is a positive integer and 0 ≤ p ≤ 1.

Remark 2. In order to simplify the analysis of the algorithms, we ignore the above
statistical distance. The statistical distances in Theorems 1 and 2 all arise from the
above one.

Theorem 1. We can simulate the forward oracle and the backward oracle in the re-
stricted model of weak ideal compression functions where the bridging oracle is not
available. Formally, the distribution on the outputs of the forward oracle and the back-
ward oracle is statistically close to the distribution on the outputs of the algorithms
FwOBw

R and BwOBw
R in the restricted model of weak ideal compression functions where

the bridging oracle is not available.

Proof. In this restricted case, for each y ∈ Y the function fy(x) = f (x, y) is indepen-
dent from each other, and therefore we can apply the similar simulation methods of
the random oracle and the first-preimage oracle as in the first-preimage random oracle
model [14]. ��
We note that if we replace the role of the bridging oracle and the backward oracle,
then in the same way we can obtain the algorithms FwOBr

R and BrOBr
R that simulate the

forward oracle and the bridging oracle respectively in the restricted model of weak ideal
compression functions where the backward oracle is not available.

Remark 3. There are three tables T,Lyz, and Lxz which are used in the four algorithms
FwOBw

R , BwOBw
R , FwOBr

R , and BrOBr
R . Here, we mention which algorithm manages which

table. It is helpful to keep this in mind in order to understand the simulation methods in
the (full) model of weak ideal compression functions.

All the algorithms manage the table T on the fly. Furthermore, the former two algo-
rithms FwOBw

R and BwOBw
R also manages the table Lyz, whereas the latter two algorithms

FwOBr
R and BrOBr

R also manage the table Lxz.

4 Our Simulation Methods (Full Version)

Now, we consider the simulation method of three oracles in the (full) model of weak
ideal compression functions. Given (y, z), in order to simulate the backward oracle, we
need the number nyz of preimages of z under the function fy(x) = f (x, y). Similarly,
given (x, z), in order to simulate the bridging oracle, we need the number nxz of preim-
ages of z under the function fx(y) = f (x, y).

Therefore, in the (full) model of weak ideal compression functions, in order to sim-
ulate at once both the backward oracle and the bridging oracle, we have to manage
the numbers nyz and nxz simultaneously. In this time, we manage the three tables T ,
Lxz, and Lyz. The table T has entries (x, y, z) in order to manage the correspondence of
z = f (x, y). On the other hand, the table Lxz (and Lyz, respectively) has entries (x, z, nxz)
(and (y, z, nyz), respectively) in order to manage the number of the preimages of z under
the function fx(y) = f (x, y) (and fy(x) = f (x, y), respectively).

On the Weak Ideal Compression Functions 241

4.1 Naive But Faulty Idea

We give a naive but faulty idea for the simulation of the forward oracle, and show that
this idea does not work well. The naive idea is to determine the value z = f (x, y), if and
only if the value f (x, y) is queried as the simulation method in the restricted model of
weak ideal compression functions.

Let us examine the simulation of the forward oracle according to the naive idea in
the case that the hash values of (xi, y j), (xk, yl), and (xk, y j) are queried in this order.

First, the hash value of (xi, y j) is queried. Then, we pick zi j ← Z uniformly, and insert
(xi, y j, zi j) in T. Furthermore, we also determine the numbers nxz and nyz of preimages
of z under the functions fxi (y) and fy j (x) respectively, and insert (xi, zi j, nxz) in Lxz and
insert (y j, zi j, nyz) in Lyz. Here, we note that the number nxz has an effect on the elements
of xi row which are not yet determined, i.e., these elements are not uniformly distributed
in Z. Similarly, the number of nyz has an effect on the elements of y j’s column which
are not yet determined. These effects are described by the gray color in Table 2.

Next, the hash value of (xk, yl) is queried. We have to determine the hash value f (xk, yl)
as zkl. In this time, zkl is not the gray colored element in Table 2, and hence zkl is in-
dependent from the other entries (i.e., zkl is distributed uniformly in Z). Then, we can
pick zkl ← Z uniformly, and insert (xk, yl, zkl) in T. Furthermore, we also determine the
numbers n′xz and n′yz of preimages of zkl under the functions fxk (y) and fyl (x) respectively,
and insert (xk, zkl, n′xz) in Lxz and insert (yl, zkl, n′yz) in Lyz. Then, the numbers n′xz and n′yz

have an effect on the elements of xk’s row and yl’s column, respectively (Table 3).
Finally, the value of f (xk, y j) is queried. We have to determine the hash value f (xk, y j)

as zk j. In this time, zk j is the gray colored elements in Table 3, and hence zkl is not inde-
pendent from the other entries. More properly, for (xk, zkl, nxz) ∈ Lxz and (y j, zi j, nyz) ∈
Lyz, zk j is subject to the effects of nxz and nyz. Now, let us consider the extreme case
where zi j = zkl = z, nxz = 1, and nyz = #Y. Then, zk j must not be equal to z by the effect
of nxz, whereas zk j must be equal to z by the effect of nyz. These two conditions cannot
be satisfied at the same time, and we cannot determine zk j according to this naive idea.

4.2 Problem of Hoch and Shamir’s Simulation Method

Hoch and Shamir [5] proposed an answer to the problem of Liskov’s simulation method,
and proposed the simulation method in the model of weak ideal compression functions.
In this section, we show some problem of their simulation method in a certain situation.

Table 2.

y j

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 3.

y j yl

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xk ∗ ∗ ∗ zkl ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 4.

y j yl

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xk ∗ zk j ∗ zkl ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

242 A. Numayama and K. Tanaka

Let f : {0, 1}n × {0, 1}m → {0, 1}n be the underlying compression function. In the
case that m is sufficiently larger than n, their simulation method is as follows. In order
to overcome the problem of Liskov’s simulation method, they managed the number
of preimages according to the Poisson distribution. They managed the number nyz of
preimages of z under the function fy(x) = f (x, y) in order to simulate the backward
oracle, and took nyz into account in the simulation. On the other hand, they did not
manage the number nxz of preimages of z under the function fx(y) = f (x, y) in order to
simulate the bridging oracle, and they always output new y when we query the preimage
of (x, z).

This is because there are expected to be a few possible answers to the (y, z) query,
and it is required to take care of it in order to simulate the backward oracle. In contrast,
in the case that m is sufficiently larger than n, there are expected to be a large number
of possible answers to the (x, z) query, and even if we always output new y, it does
not seem to cause much deviation from the distribution on the outputs of the bridging
oracle.

In the case that m is not sufficiently larger than n, we also need to take care of the
number nxz of preimages z under the function fx(y) = f (x, y), since there are expected
to be a few possible answers to the (x, z) query. Hoch and Shamir [5] noted, in this case,
the same special treatment as in simulation of the backward oracle can be given to the
bridging oracle. However, in [5], they did not mention the above problem described in
the naive idea caused by managing both the numbers of the preimages of z under the
functions fx(y) and fy(x). Therefore, the simulation method of Hoch and Shamir can
suffer from the same problem as in the naive idea.

4.3 Solution for the Problem of Hoch and Shamir’s Simulation Method

In this section, we propose the solution to overcome the problem in the naive idea. We
define the notion which plays an important role in our simulation method.

Definition 2. For the tables T,Lxz, and Lyz, we call as the crossed elements the ele-
ments in the table of the hash values zi j = f (xi, y j) such that they are in the gray col-
ored row and the gray colored column at once. That is, the elements (x, y) are crossed
elements if and only if there are (x, z, n) ∈ Lxz and (y, z′, n′) ∈ Lyz for some z, z′, n,
and n′ .

The problem in the naive idea appears when it comes to decide the value of crossed
elements. That is, we have to take into account at once both the effects of nxz under the
function fx(y) (gray colored x’s row) and the effects of nyz under the function fy(x) (gray
colored y’s column). In order to simulate the three oracles, we have to overcome this
problem, i.e., the dependence of two functions fx(y) and fy(x).

In the previous case, the problem is that there is a dependence of the functions fxk (y)
and fy j (x) at the time when we need to determine the value zk j of crossed element.
Therefore, in order to overcome the dependence of the two functions it will be good
idea to determine the value zk j in advance of the appearance of this dependence.

Let us carefully observe when the dependence of two functions fxk (y) and fy j (x)
appear in the same situation where the values of (xi, y j), (xk, yl), and (xk, y j) are queried
in this order. Just after the first query (xi, y j), there is only fy j (x) which affects the value

On the Weak Ideal Compression Functions 243

Table 5.

Naive idea Our idea
1. zkl zkl

2. zk j

3. n′xz n′xz

4. zil

5. n′yz n′yz

Procedure at the second query (xk, yl)
1. Uniformly pick zkl ← Z.
2. Choose zk j according to the function fy j (x).
3. Determine the number of the preimage of zk j and zkl under the function fxk (y).
4. Choose zil according to the fxi (y).
5. Determine the number of the preimage of zkl and zil under the function fyl (x).

Procedure 1.

zk j = f (xk, y j) through nyz. When the second query f (xk, yl) is made, we determine
the value zkl = f (xk, yl) and n′xz and n′yz. Here, n′xz affects the function fxk (y). Now, the
dependence of two functions fxk (y) and fy j (x) appear at the second query (xk, yl).

In order to determine the value zk j before this dependence caused through nyz and
n′xz appears, we should decide zk j in advance of the decision of n′xz at the second query.
Here, we note for the value zil, the same idea should be applied to the case that the value
f (xi, yl) is queried. Therefore, the procedure at the second query is modified as follows.
In contrast to the naive idea where we determine the values zkl, n′xz, and n′yz in this order,
we additionally decide the values zk j and zil in the following order, zkl, zk j, n′xz, zil, and
then n′yz. See Table 5 for comparison.

We can apply this idea and obtain the more precise procedure described as follows
(Procedure 1).

In Step 1, zkl is an independent entry, and we can determine the hash value of (xk, yl)
uniformly at random. In Step 2, zk j is only dependent on the y j’s column, and we can
determine the hash value of (xk, y j) according to the function fy j (x). In Step 3, zk j and
zkl are only dependent on the xk’s row, and we can determine the number of preimages
according to the function fxk (y). In Step 4, zil is only dependent on the xi’s row, and
we can determine the hash value of (xi, yl) according to the function fxi (y). In Step 5,
zkl and zil are only dependent on the yl’s column, and we can determine the number of
preimages according to the function fyl (x).

We can check the dependence of the elements at each step in the procedure as de-
scribed in Tables 6-11. Table 6 corresponds to the beginning of Step 1, and Table 10
describes the dependence after the procedure. In Tables 6-11, dark gray colored ele-
ments are subject to the effects of the number of preimages, whereas light gray colored
elements are not, like the other elements. For example, in Table 6, the hash value of
(xk, y j) (and (xi, yl), respectively) is decided according to the fy j (x) (and (fxi (y)), respec-
tively), and the hash value of (xk, yl) is uniformly distributed in Z.

244 A. Numayama and K. Tanaka

Table 6.

y j yl

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xk ∗ + ∗ + ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ + ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 7.

y j yl

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xk ∗ + ∗ zkl ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ + ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 8.

y j yl

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xk ∗ zk j ∗ zkl ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ + ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 9.

y j yl

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xk ∗ zk j ∗ zkl ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ + ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 10.

y j yl

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xk ∗ zk j ∗ zkl ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ zil ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 11.

y j yl

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xk ∗ zk j ∗ zkl ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

xi ∗ zi j ∗ zil ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

This procedure at the second query (xk, yl) is easily extended to the subsequent for-
ward oracle queries. That is, in the simulation of the forward oracle, when queried the
hash value of (x, y), we also decide the hash value of the elements which will become
crossed elements in advance of deciding the number of preimages of z = f (x, y).

Then, we can obtain the algorithm FwO which simulates the forward oracle by ap-
plying the above idea. By applying the same idea of keeping the every crossed element
determined, we can also obtain the algorithms BwO and BrO which simulate the back-
ward oracle and the bridging oracle, respectively. We give the concrete algorithms FwO,
BwO, and BrO in the full version of this paper.

Remark 4. These three algorithms are designed according to the idea described above.
Therefore, if every crossed element are determined at the beginning of each invocation
of these algorithms, then every crossed element are determined at the end of the invo-
cation. That is, these algorithms run maintaining all the crossed elements determined.

We can obtain the following theorem. The proof is given in the full version of this paper.

Theorem 2. We can simulate the forward oracle, the backward oracle, and the bridg-
ing oracle in the (full) model of weak ideal compression functions. Formally, the dis-
tribution on the outputs of the forward oracle, the backward oracle, and the bridging
oracle is statistically close to the distribution on the outputs of the algorithms FwO,
BwO, and BrO in the (full) model of weak ideal compression functions.

On the Weak Ideal Compression Functions 245

5 An Application of Our Simulation Method to the Proofs of the
Indifferentiability

In this section, we apply the simulation method in Section 4 to the proofs of the indiffer-
entiability in [10,5]. In particular, we modify the proof of [5] by applying our simulation
method instead of theirs.

Let F and G are iterated hash functions based on the compression functions f and g,
respectively. Hoch and Shamir [5] showed that the XORed hash construction C(M) =
F(M) ⊕ G(M) where both the underlying compression functions of F and G are iter-
ated, is indifferentiable from the random oracle in the model of weak ideal compression
functions.

In order to overcome the problem of the simulator in [5] described in Section 4, we
apply the simulation method in Section 4 and obtain the following theorem.

Theorem 3. Let C be the XORed hash construction C(M) = F(M) ⊕ G(M), where F
and G are iterated hash functions based on the compression functions f and g, respec-
tively. Then, the XORed hash construction C is indifferentiable from the random oracle
in the model of weak ideal compression functions.

More formally, it is stated as follows. Let f and g are the compression functions such
that f , g :{0, 1}n × {0, 1}m → {0, 1}n. Let Γ be an oracle encapsulating the forward
oracles, the backward oracles, and the bridging oracles for the compression functions
f and g. Then, there is a simulator S such that for every distinguisher D which uses at
most q oracle queries, the following holds, where α = min(m, n).

∣∣∣∣∣Pr[DCΓ,Γ = 1] − Pr[DRO
h,S ROh

= 1]
∣∣∣∣∣ � O(

q4

2α
).

In order to prove Theorem 3, we construct a simulator S which simulates Γ in poly-
nomial time. We note that the simulator S must keep consistency with both Γ itself and
the random oracle. The simulator S uses the idea of our simulation method in Section 4
for the consistency with Γ, and uses the idea of Hoch and Shamir [5] for the consistency
with the random oracle.

In the full version of this paper, we show our main lemma which is useful for the
security proof of indifferentiability in the model of weak ideal compression functions.
Then, by using this lemma, we formally prove Theorem 3.

6 Conclusion

First, we have pointed out that the previous proofs of indifferentiability [10,5] can have
some problems in certain situations. Then, we have formalized these situations and
proposed the simulation method for the forward oracle, the backward oracle, and the
bridging oracle in the model of weak ideal compression functions. By applying our
simulation method to the previous proofs, we can also prove the indifferentiability in
the situations where the original proofs does not cover.

In particular, we have applied our simulation method to the proof of indifferentia-
bility [5]. In [5], Hoch and Shamir proved that the XORed hash construction C(M) =

246 A. Numayama and K. Tanaka

F(M)⊕G(M) is indifferentiable from the random oracle in the case that m is sufficiently
larger than n, where the underlying compression functions are f , g : {0, 1}n × {0, 1}m →
{0, 1}n. Then, they derived a lower bound such that even in a powerful attack scenario
where the attacker can find not only collisions but also first-preimages in all the com-
pression functions in unit time, it required O(2n/2) time to find a collision in the con-
catenated hash construction H(M) = F(M) ‖G(M).

In contrast, we have proved the indifferentiability even in the case that m is not suffi-
ciently larger than n, and derived a lower bound such that in the same attack scenario it
requires O(2m/4) or O(2n/4) time to find a collision in the concatenated hash construction
in the case that m is not sufficiently larger than n.

References

1. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
2. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to con-

struct a hash function. In: Shoup [16], pp. 430–448
3. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg (2005)
4. Damgård, I.: A design principle for hash functions. In: Brassard [1], pp. 416–427
5. Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when all the

hash functions are weak. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 616–630.
Springer, Heidelberg (2008)

6. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded constructions.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg
(2004)

7. Kawachi, A., Numayama, A., Tanaka, K., Xagawa, K.: Approximation sampling and its ap-
plication to security proofs in cryptography. In: Symposium on Cryptography and Informa-
tion Security, pp. 3D1–1 (2009)

8. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg (2006)

9. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n

work. In: Cramer [3], pp. 474–490
10. Liskov, M.: Constructing an ideal hash function from weak ideal compression functions.

In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375. Springer,
Heidelberg (2007)

11. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reduc-
tions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

12. Merkle, R.C.: One way hash functions and des. In: Brassard [1], pp. 428–446
13. National Institute of Standards and Technology. Secure hash standard. FIPS 180-2 (August

2002)
14. Numayama, A., Isshiki, T., Tanaka, K.: Security of digital signature schemes in weakened

random oracle models. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 268–287.
Springer, Heidelberg (2008)

15. Rivest, R.L.: The MD5 message-digest algorithm. Internet Request for Comments, RFC 1321
(April 1992)

16. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
17. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup [16], pp. 17–36
18. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [3], pp. 19–35

On the Weak Ideal Compression Functions 247

A Our Simulation Algorithms (Restricted Version)

First, we consider how the algorithm FwOBw
R runs on input (x̂, ŷ) in the details. If the

hash value of (x̂, ŷ) is already determined, then the algorithm FwOBw
R returns it. Other-

wise, there are two situations depending on whether the algorithm FwOBw
R returns old

z which already appears in the table T or the algorithm FwOBw
R returns new z which

does not yet appear in the table T. There are (#X − #T(ŷ)) elements whose hash values
are not yet determined, and among them there are

∑
(ŷ,z̃,ñyz)∈Lyz

(ñyz − #T(ŷ, z̃)) elements
whose hash values are expected to be old z. Therefore, the algorithm FwOBw

R returns old
z or new z with this ratio. In case of old z, the algorithm FwOBw

R picks old z according
to the number of the preimages of each old z. In case of new z, the algorithm FwOBw

R
picks new z uniformly at random, and defines the number of preimages of z. The whole
algorithm is described in Algorithm 2.

Algorithm FwOBw
R (x̂, ŷ)

1. If (x̂, ŷ, z) ∈ T for some z, then return z.
2. Let p(ŷ) be the following probability,

p(ŷ) =

∑
(ŷ,z̃,ñyz)∈Lyz

(ñyz − #T(ŷ, z̃))

#X − #T(ŷ)
.

3. With probability p(ŷ), return old z as Steps (a)-(b).
(a) pick z← D according to the following distribution.

fD(z) =
nyz − #T(ŷ, z)

∑
(ŷ,z̃,ñz)∈Lyz

(ñyz − #T(ŷ, z̃))
for (ŷ, z, nyz) ∈ Lyz.

(b) insert (x̂, ŷ, z) in T and return z.
4. With probability 1 − p(ŷ), return new z as Steps (a)-(d).

(a) pick z← Z \⋃(ŷ,z̃,ñyz)∈Lyz
{z̃}.

(b) n′yz ← BN(#X −∑(ŷ,z̃,ñyz)∈Lyz
ñyz − 1, 1

#Z−#Lyz(ŷ)).
(c) nyz ← n′yz + 1.
(d) insert (ŷ, z, nyz) in Lyz, insert (x̂, ŷ, z) in T, and return z.

Algorithm 2. Simulation method of the forward oracle (Restricted Version)

Second, we review how the algorithm BwOBw
R runs on input (ŷ, ẑ) in the details.

If ẑ is not yet determined (i.e., the number nyz of preimages of ẑ under the function
fŷ(x) = f (x, ŷ) is not determined either), then the algorithm BwOBw

R first defines the
number nyz of preimages of ẑ. If nyz = 0, which implies that there is no preimage of
ẑ, then the algorithm BwOBw

R returns ⊥. Otherwise, there are two situations depending
on whether the algorithm BwOBw

R returns new x which does not yet appear in the table
T or the algorithm BwOBw

R returns old x which already appears in the table T. There

248 A. Numayama and K. Tanaka

are nyz elements whose hash values are expected to be ẑ under the function fŷ(x) =
f (x, ŷ), and among them there are #T(ŷ, ẑ) elements which already appear in the table
T. Therefore, the algorithm BwOBw

R returns old x or new x with this ratio. In case of
old x, the algorithm BwOBw

R picks old x according to both the current table T and the
number of the preimages of each old z defined in the table Lyz. In case of new x, the
algorithm BwOBw

R picks new x uniformly at random. The whole algorithm is described
in Algorithm 3.

Algorithm BwOBw
R (ŷ, ẑ)

1. If (ŷ, ẑ, nyz) � Lyz for any nyz, then pick nyz ← BN(#X − ∑(ŷ,z̃,ñyz)∈Lyz
ñyz,

1
#Z−#Lyz(ŷ)),

and insert (ŷ, ẑ, nyz) in Lyz.
2. If nyz = 0 for (ŷ, ẑ, nyz) ∈ Lyz, then return ⊥.
3. If nyz � 0 for (ŷ, ẑ, nyz) ∈ Lyz, then compute the probability q = #T(ŷ,ẑ)

nyz
.

4. With probability q return old x.
(a) pick one entry uniformly from T such that (x̃, ŷ, ẑ) ∈ T, and return x̃.

5. Otherwise return new x.
(a) pick uniformly x ← X such that (x, ŷ, z̃) � T.
(b) insert (x, ŷ, ẑ) in T, and return x.

Algorithm 3. Simulation method of the backward oracle (Restricted Version)

Hardening the Network from the Friend Within

L. Jean Camp

School of Informatics, Indiana University
ljcamp@indiana.edu

Abstract. The insider threat in the networked world is distinct from the
insider threat in the traditional physical business realm in that the most
dangerous networked insider may be the least intentionally malicious.
This inadvertent enemy within enables access by malicious outsiders
through technologically nave or risk-seeking behavior. These behaviors
include consistent choices (e.g., permission configurations, monotonically
increasing access control rights) and specific behaviors (e.g., opening
email attachments, clicking on video links). The risks of these actions
are invisible to the individual, and the risks are borne at least in part by
the organization. Any change in this insider behavior must include incen-
tives for risk-avoidance, risk communication, and enable risk-mitigating
choices. By developing incentive mechanisms and interactions that com-
municate these incentives, the risk behavior of the authorized insider can
be aligned with the risk posture of the organization. We have combined
game theory for incentive design, risk parameterization for pricing, and
risk communication to create risk-based access control. The presentation
will include the game formulation, presentation of the mechanism for
pricing behaviors, and the remarkable results of initial human subjects
experimentation.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, p. 249, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Reducing the Complexity in the Distributed
Computation of Private RSA Keys

Peter Lory

University of Regensburg, D-93040 Regensburg, Germany
Peter.Lory@wiwi.uni-regensburg.de

http://www.wiwi.uni-regensburg.de/lory/

Abstract. Catalano, Gennaro and Halevi (2000) present a protocol for the dis-
tributed computation of inverses over a shared secret modulus. The most impor-
tant application of their protocol is the distributed computation of the private RSA
key from the public key. The protocol is attractive, because it requires only two
rounds of communication in the case of honest but curious players. The present
paper gives a modification of this protocol, which reduces its complexity from
O(n3(log n)2 + n2(log n)(log N) + (log N)2) to O(n3 log n + n2 log N +
(log N)2) bit-operations per player, where n is the number of players and N is
the RSA modulus. The number of communication rounds is the same as in the
original protocol.

1 Introduction

Secure distributed computation is attractive, because it avoids the problem of a single
point of failure. Such an entity would have full control of the system. If it is dishonest,
it could misuse this power. Additionally, its server would be an attractive target for
malicious adversaries and has to be protected with high costs. The last two decades
have seen an exciting development of techniques for secure multiparty computations.
Classical theoretical results [1,4,9,17] show that any multiparty computation can be
performed securely, if the number of corrupted participants does not exceed certain
bounds. However already Gennaro, Rabin and Rabin [8] point out, that these generic
secure circuit techniques are too inefficient in the area of practical feasibility, which
might render them impractical. Thus, it is a high priority to optimize such techniques.

Catalano, Gennaro and Halevi [3] have presented a distributed inversion protocol,
which requires only two rounds of communication. The most interesting application is
the distributed computation of the shares of the private RSA exponent d from the public
exponent e, if the shares of Euler’s phi-funktion ϕ(N) of an RSA modulus N are given
(see Rivest, Shamir and Adleman [14]). This has several applications, among which
the construction of threshold variants of signature schemes (for a survey see [3]). The
protocol in [3] requires O(n3(log n)2 + n2(log n)(log N) + (log N)2) bit-operations
per player, where n is the number of players and N is the RSA modulus. The present
paper reduces this complexity to O(n3 log n + n2 log N + (log N)2). The suggested
modified protocol needs also only two rounds of communication. This success is made
possible by a loan from the field of numerical analysis, namely by the application of
Newton’s Methodus Differentialis.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 250–263, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Reducing the Complexity in the Distributed Computation of Private RSA Keys 251

A network of n players is assumed, that are connected by point-to-point private chan-
nels and by a broadcast channel. Failures are modeled by an adversary A, who can
corrupt at most t of the players in the “honest-but-curious” sense. This means, that the
adversary A can just read the memories of the corrupted players but not modify their
behaviour. The protocol is secure, i.e. correct and private. Correctness means that the
output values constitute a (t + 1)-out-of-n secret sharing of the inverse. Privacy is de-
fined using the usual simulation approach (see Section 4).

For the investigation of the time complexities two basic assumptions are made:

a) The addition or subtraction of two k-bit-integers requires (ρadd · k) bit-operations
and consequently its bit-complexity is O(k).

b) The multiplication of a k-bit-integer and an l-bit-integer requires (ρmult · k · l) bit-
operations and its bit-complexity is O(kl). This is a reasonable estimate for realistic
values.

The concrete values for ρadd and ρmult are implementation dependent (see e.g. Knuth
[11]).

The protocol of Catalano, Gennaro and Halevi refers to polynomial sharing over the
integers on the basis of Shamir’s seminal (t + 1)-out-of-n threshold scheme [15]. The
latter operates in the field Zq with a prime q . Polynomial sharing over Z gives rise to
some technical problems. These are discussed in detail in Catalano [2] . One of the tricks
to overcome these problems is the multiplication of the arising equations by L := n!.
This trick guarantees that the coefficients of the arising polynomials are integers instead
of fractions.

The paper is organized as follows: Section 2 presents the protocol of Catalano,
Gennaro and Halevi [3] for the reader’s convenience and investigates its complexity.
Section 3 gives basic material on Newton’s scheme of divided differences for reference
in Section 4. In this section the new protocol is presented. Section 5 investigates the
complexity of the new protocol. Final remarks are given Section 6.

2 The Inversion Protocol of Catalano, Gennaro and Halevi

Catalano, Gennaro and Halevi [3] have presented an efficient protocol to accomplish
the distributed computation of an inverse of a publicly known number e over a shared
modulus (see also Catalano [2]). For the reader’s convenience the protocol is repeated
in Figure 1. Here, L := n!, where n is the number of players.

In Round 1 of this protocol player Pi chooses integer coefficients of the polynomials
gi(z), hi(z) and ρi(z). Then this player has to evaluate these polynomials at the abscis-
sas z = j = 1, 2, . . . , n. The polynomial gi(z) is of degree at most t. Its evaluation at
z = j by Horner’s scheme

gi(j) = (. . . ((bi,tj + bi,t−1)j + bi,t−2)j + . . . bi,1)j + Lλi (1)

requires t multiplications and t additions. Please note, that the protocol employs poly-
nomial sharing over Z . For the first multiplication the operands are integers of at most
k1 bits with k1 = log(L2N3)! ≈ log(L2N3) and of at most log n! ≈ log n bits,

252 P. Lory

Public input: Prime number e with e > n, an appoximate bound N on ϕ.

Private inputs: Sharing of Lϕ using a polynomial f of degree at most t over the
integers. Player Pi has private input fi = f(i), where f(z) = Lϕ + a1z + . . . + atz

t and
aj ∈ [−L2N, L2N] for j = 1, . . . , t .

Round 1: Each player Pi does the following:

1. Choose λi ∈R [0, N2] and bi,1, . . . , bi,t ∈R [−L2N3, L2N3] .
Choose ri ∈R [0, N3] and ci,1, . . . , ci,t ∈R [−L2N4, L2N4] .
Choose ρi,1, . . . , ρi,2t ∈R [−L2N5, L2N5] .

2. Set

gi(z) = Lλi + bi,1z + . . . + bi,tz
t ,

hi(z) = Lri + ci,1z + . . . + ci,tz
t ,

ρi(z) = 0 + ρi,1z + . . . + ρi,2tz
2t .

3. Send to each player Pj the values gi(j), hi(j), ρi(j), computed over the integers.

Round 2: Each player Pj does the following:

1. Set

gj =
n∑

i=1

gi(j) , hj =
n∑

i=1

hi(j) , ρj =
n∑

i=1

ρi(j) .

(These are Pj’s shares of the polynomials

g(z) =
n∑

i=1

gi(z) , h(z) =
n∑

i=1

hi(z) , ρ(z) =
n∑

i=1

ρi(z) .)

2. Broadcast the value Fj = fjgj + ehj + ρj .

Output: Each player Pi does the following:

1. From the broadcast values interpolate the 2t-degree polynomial
F (z) = f(z)g(z) + e · h(z) + ρ(z) .

2. Using the GCD algorithm, find integers a and b such that aF (0) + be = 1.
If no such integers a and b exist, go to Round 1.

3. The inverse of e is d = ah(0) + b .
Privately output the share of the inverse, di = ah(i) + b .

Fig. 1. The inversion protocol of Catalano, Gennaro and Halevi

respectively. Here, the symbol a! denotes the smallest integer b with b ≥ a . In the
following, this sign will be suppressed for readability reasons. The result of this mul-
tiplication has k1 + log n bits. The following addition adds a k1-bit-number to this
result and delivers an integer of at most k1 + log n + 1 bits. The next multiplication
multiplies this number with a log n-bit-number. Its result has k1 + 2 log n + 1 bits etc.
Consequently, the n evaluations of the polynomial gi(z) require at most

Reducing the Complexity in the Distributed Computation of Private RSA Keys 253

nρmult

[
tk1 log n +

t(t − 1)
2

(log n)(log n + 1)
]

+

nρadd

[
tk1 +

t(t + 1)
2

log n +
t(t − 1)

2

]

bit-operations, where

k1 = log(L2N3) . (2)

Similarly, the n evaluations of the polynomials hi(z) and ρi(z) require at most

nρmult

[
tk2 log n +

t(t − 1)
2

(log n)(log n + 1)
]

+

nρadd

[
tk2 +

t(t + 1)
2

log n +
t(t − 1)

2

]

and

nρmult[2tk3 log n + t(2t − 1)(log n)(log n + 1)] +
nρadd[(2t − 1)k3 + t(2t − 1) logn + (2t − 1)(t − 1)]

bit-operations, respectively, where

k2 = log(L2N4) (3)

and
k3 = log(L2N5) . (4)

Please note that the multiplication L ·λi requires O(log L · logN2) bit-operations. This
is small in comparison to O(n2 log(L2N3) . A similar comment applies to the product
Lri . So, the following theorem is proven:

Theorem 1. Round 1 of the inversion protocol of Figure 1 requires

O(n2k1 log n + n2k2 log n + n2k3 log n + n3(log n)2)

bit-operations per player, where k1, k2 and k3 are given in Equations (2) – (4).

3 Newton’s Scheme of Divided Differences

Interesting historical remarks on Newton’s interpolation formula and on the concept
of divided differences can be found in the book of Hairer and Wanner [10]. For later
reference, the basic facts following the notation in Stoer and Bulirsch [16] are presented
here.

Let the support abscissas xi and corresponding support ordinates fi (0 ≤ i ≤ m) be
given. The divided differences are defined recursively by

fi0,i1,...,il

def
=

fi1,i2,...,il
− fi0,i1,...,il−1

xil
− xi0

(5)

and can be arranged in the divided-difference scheme (see Figure 2).
The most convenient way of computation is to start with the upper left corner and

add successive ascending diagonal rows.

254 P. Lory

l = 0 l = 1 l = 2 . . . l = m

x0 f0

f0,1

x1 f1 f0,1,2

f1,2
. . .

x2 f2
... f0,1,2,...,m

...
...

...
... fm−2,m−1,m

fm−1,m

xm fm

Fig. 2. Newton’s divided-difference scheme

4 The New Inversion Protocol

In Round 1 of the protocol of Catalano, Gennaro and Halevi [3] (see Figure 1) each player
Pi randomly chooses thecoefficientsof thepolynomialsgi(z),hi(z)andρi(z)ofdegreeat
most tand2t, respectively, and then has to evaluate thesepolynomialsatndifferentpoints.
This can be done more efficiently by using Newton’s scheme of divided differences.

Let us have a closer look at the polynomial

gi(z) = Lλi + bi,1z + . . . + bi,t−1z
t−1 + bi,tz

t .

The present paper suggests that instead of choosing the coefficients bi,1, . . . , bi,t, each
of the players Pi randomly picks t support ordinates gi(1), gi(2), . . . gi(t) for the t
abscissas z = 1, z = 2, . . . , z = t . This data and the condition

gi(0) = Lλi

implicitly define the unique interpolation poynomial gi(z) of degree at most t. Then
player Pi has to evaluate this polynomial for z = t + 1, . . . , z = n . Using Newton’s
scheme of divided differences these computations can be accomplished very efficiently.
The basic idea can be applied in other contexts of polynomial sharing, too (cf. the
multiparty multiplication of two shared values over Zq with a prime q in [12]).

The details are given in Figure 3 with g0 = gi(0), g1 = gi(1), . . . , gn = gi(n). For
readability reasons the index i is omitted. A few remarks are in place:

1. The zeros in the columns l = t+1, t+2, . . . , nof Figure 3 are not computed. Instead,
they are prescribed and force the interpolating polynomial to be of degree at most t.

2. The first t + 1 ascending diagonal rows are computed from left to right starting at
the prescribed support ordinate g0 = gi(0) = Lλi and the randomly chosen support
ordinates g1 = gi(1), . . . , gt = gi(t). The following diagonal rows are computed
from right to left starting at the prescribed zeros and ending with the function values

gt+1 = gi(t + 1), . . . , gn = gi(n) .

Reducing the Complexity in the Distributed Computation of Private RSA Keys 255

l = 0 l = 1 l = 2 . . . l = t l = t + 1 . . . l = n

0 g0

g0,1

1 g1 2! · g0,1,2

g1,2
. . .

2 g2
... t! · g0,1,...,t

...
... 0

...
... 2! · gt−2,t−1,t t! · g1,2,...,t+1

. . .

gt−1,t

...
... 0

t gt 2! · gt−1,t,t+1
...

...

gt,t+1
... 0

t + 1 gt+1
... t! · gn−t,n−t+1,...,n

...
...

...
... 2! · gn−2,n−1,n

gn−1,n

n gn

Fig. 3. Newton’s divided-difference scheme for the new inversion protocol

3. Instead of calculating the divided differences as defined in Equation (5), the numbers

gi0,i1,...,il
· (xil

− xi0) = gi1,i2,...,il
− gi0,i1,...,il−1 . (6)

are computed. This modification is the reason for the factors l! in column l of the
scheme of Figure 3 and avoids superfluous arithmetic operations.

The polynomials hi(z) and ρi(z) are treated in the same way. For reasons of con-
sistency the definition of the polynomial f(z) for the polynomial sharing of Lϕ is also
modified analogously: Whereas in the private inputs of the protocol of Figure 1 f(z) is
defined by its coefficients, it is now implicitly given by its free term f(0) = Lϕ and by
the function values f(1) = f1, . . . , f(t) = ft . The new protocol is shown in Figure 4.

Step 3 of Round 1 of this protocol is presented in Figure 5. A few comments to this
subprotocol are in place:

1. Step (a) calculates the upper left corners in the divided-difference schemes for the
two polynomials gi(z) and hi(z) . For gi(z) compare Figure 3.

2. Step (b) calculates the following t ascending diagonal rows from left to right in
the divided-difference schemes for the two polynomials gi(z) and hi(z) . For gi(z)
compare again Figure 3.

3. Step (c) calculates the following n− t ascending diagonal rows from right to left in
the divided-difference schemes for the two polynomials gi(z) and hi(z) . For gi(z)
compare again Figure 3.

256 P. Lory

Public input: Prime number e with e > n, an appoximate bound N on ϕ.

Private inputs: Sharing of Lϕ using a polynomial f of degree at most t . Player Pi

has private input f(i) . The polynomial f is defined as the unique polynomial of degree at
most t with free term Lϕ and the function values f(j) = fj for j = 1, . . . , t, where the
integers fj ∈ [−L2N, L2N] .

Round 1: Each player Pi does the following:

1. Choose an integer λi ∈R [0, N2]
and integer function values gi,1, . . . , gi,t ∈R [−L2N3, L2N3] .
Choose an integer ri ∈R [0, N3]
and integer function values hi,1, . . . , hi,t ∈R [−L2N4, L2N4] .
Choose integer function values ρi,1, . . . , ρi,2t ∈R [−L6N5, L6N5] .

2. The polynomial gi(z) of degree at most t is implicitly defined by its free term Lλi and
gi(j) = gi,j for j = 1, . . . , t .
The polynomial hi(z) of degree at most t is implicitly defined by its free term Lri and
hi(j) = hi,j for j = 1, . . . , t .
The polynomial ρi(z) of degree at most 2t is implicitly defined by its free term 0 and
ρi(j) = ρi,j for j = 1, . . . , 2t .

3. Send to each player Pj the values gi(j), hi(j), ρi(j) for j = 1, 2, . . . , n . The function
values gi(1), . . ., gi(t), hi(1), . . ., hi(t) and ρi(1), . . ., ρi(2t) are given; the remaining
values are computed by the subprotocol of Figure 5.

Round 2 and Output: These steps are identical to the corresponding steps in the inversion
protocol of Figure 1.

Fig. 4. The new inversion protocol

4. Step (d) calculates the upper left corner in the divided-difference scheme for the
polynomial ρi(z) .

5. Step (e) calculates the following 2t ascending diagonal rows from left to right in
the divided-difference scheme for the polynomial ρi(z) .

6. Step (f) calculates the following n − 2t ascending diagonal rows from right to left
in the divided-difference scheme for the polynomial ρi(z) .

It should be noted, that the polynomials f(z), gi(z), hi(z) and ρi(z) as implicitly
defined above (and in the protocol) have integer function values for z = 0, . . . , z = n .
Consider, for example, the polynomial gi(z) . The fact that gi(z) is an integer for z =
0, . . . , z = t is obvious. For z = t + 1, . . . , z = n it can be proven as follows: In the
corresponding divided-difference scheme of Figure 3 the g0, g1, . . . , gt in column l = 0
are the chosen integers Lλi, gi,1, . . . , gi,t . The entries in the tableau are computed by the
recursion formula (6). All these computations involve only subtractions and additions of
integers (cf. the subprotocol of Figure 5). Consequently, the gi(t+1), gi(t+2), . . . , gi(n)
are integers as well.

A modular inversion protocol is called correct if the output values d1, . . . , dn consti-
tute a (t + 1)-out-of-n secret sharing of d = e−1 mod ϕ. For the definition of privacy,
the view of the adversary A is considered to be the set of messages sent and received by

Reducing the Complexity in the Distributed Computation of Private RSA Keys 257

Player Pi executes the following steps:

(a) γ0 := Lλi , η0 := Lri .
(b) For j = 1, 2, . . . , t :

γj := gi,j , ηj := hi,j ,
for k = j − 1, j − 2, . . . , 0 :

γk := γk+1 − γk , ηk := ηk+1 − ηk .
(c) For j = t + 1, t + 2, . . . , n :

for k = 0, 1, . . . , t − 1 :
γk+1 := γk+1 + γk , ηk+1 := ηk+1 + ηk .

gi(j) := γt , hi(j) := ηt .
(d) σ0 := 0 .
(e) For j = 1, 2, . . . , 2t :

σj := ρi,j ,
for k = j − 1, j − 2, . . . , 0 :

σk := σk+1 − σk .
(f) For j = 2t + 1, 2t + 2, . . . , n :

for k = 0, 1, . . . , 2t − 1 :
σk+1 := σk+1 + σk .

ρi(j) := σ2t .

Fig. 5. Step 3 in Round 1 of the new inversion protocol

the bad players during a run of the protocol. The modular inversion protocol is called pri-
vate if for any adversaryA there exits a simulatorS that runs an execution of the protocol
together with A and produces for it a view that is indistinguishable from the real one.

Please note that the assumption N − ϕ = O(
√

N) in the following theorem is true
for the case we are interested in, where N is an RSA modulus and ϕ = ϕ(N) .

Theorem 2. Let N −ϕ = O(
√

N) . If all the players carry out the prescribed protocol
and n > 2t, then the protocol of Figure 4 is secure, i.e. correct and private according
to the above definitions.

Proof: The following proof sketch modifies the corresponding proof in [2] (Theorem
4) and [3] (Theorem 1).

Initial inputs. First it has to be proven that the players start from a (t + 1)-out-of-n
secret sharing of the value ϕ. It is shown that t players have no information about ϕ by
demonstrating that the distribution of t shares of the secret Lϕ with the polynomial f is
statistically indistinguishable from the distribution of t shares that result from sharing
the value LN via a polynomial f̂ .

For this purpose it is proven that with very high probability there is a sharing of LN
using a polynomial f̂ with integer function values in the same range as f such that
f̂(jk) = f(jk) for k = 1, 2, . . . , t, where j1, . . . , jt with

258 P. Lory

1 ≤ j1 < j2 < . . . < jt ≤ n

are the indices of t arbitrary shares. Thus, f̂ is defined as the unique polynomial of
degree at most t with the free term LN and the function values f̂(jk) = f(jk) for
k = 1, 2, . . . , t . In the following it is shown that f̂ is in the legal range, i.e. the func-
tion values f̂(1), . . . , f̂(t) are integers and lie with very high probability in the range
[−L2N, L2N] . For this purpose the polynomial χ is defined as χ(z) := f(z) − f̂(z) .
This is a polynomial of degree at most t and obeys χ(0) = L(ϕ − N) and χ(j1) =
. . . = χ(jt) = 0 . Consequently,

χ(z) = L(ϕ − N)
t∏

k=1

z − jk

−jk

and

χ(i) = L(ϕ − N)
t∏

k=1

jk − i

jk
for i = 1, . . . , t . (7)

Since L = n! , the values above are integers. As f̂(z) = f(z)−χ(z), the polynomial f̂

has free term LN and its function values f̂(i) are integers. An elementary calculation
shows that ∣

∣
∣∣
∣

t∏

k=1

jk − i

jk

∣
∣
∣∣
∣
≤ t! for i = 1, . . . , t . (8)

Because of Equations (7) and (8) the absolute values of χ(i) can be bounded by

|χ(i)| ≤ |ϕ − N | · L · t! for i = 1, . . . , t .

Consequently, the function values f̂(1), . . . , f̂(t) are in the range
[
−L2N − κL2

√
N, L2N + κL2

√
N

]

and the probability that these function values are outside the legal range is bounded by

t
2κL2

√
N

2(L2N + κL2
√

N)
≤ O

(
t√
N

)

which is negligible.

Correctness. It is easy to see that the protocol computes the correct output. Since all
players are honest, the interpolation at step 1 of the last round will give as the unique
polynomial F (z) a polynomial with integer function values. Thus F (0) = L2λϕ+LRe
with λ =

∑
i λi and R =

∑
i ri is an integer and its GCD with respect to e can be

computed. If e does not divide ϕ , the probability that GCD(e, F (0)) �= 1 is roughly
1/e (i. e. the probability that e divides λ). Thus, it is unlikely that the protocol has to be
repeated more than once. When aF (0) + be = 1 is obtained, it can be re-written as

a(L2λϕ + LRe) + be = 1 .

Reducing the Complexity in the Distributed Computation of Private RSA Keys 259

Taken mod ϕ the last equation becomes (aLR + b)e = 1 mod ϕ . This means that
d = aLR + b = e−1 mod ϕ . Thus, the t-degree polynomial ah(z) + b interpolates to
the correct value d and the shares di correctly lie on this polynomial.

Simulation of the inversion protocol. The simulator controls the players Pjt+1 , . . . , Pjn .

For these players it holds initial values f̂i, which result from a sharing of LN (instead
of Lϕ as discussed above).

For Round 1 the simulator simply follows the same instructions as the protocol. This
results in shared polynomials ĝ(z), ĥ(z) and ρ̂(z) and shared values Lλ̂ = ĝ(0) and
LR̂ = ĥ(0) . Obviously λ̂ and R̂ follow the same distribution as λ and R . Moreover
notice that an argument very similar to the one used for the sharing of the initial values
shows that the adversary has no information about λ̂ and R̂ .

During Round 2 the simulator publishes the values F̂ (i) = f̂(i)ĝ(i) + eĥ(i) + ρ̂(i)
for i = jt+1, . . . , jn . The function values fi are in the range [−L2N, L2N] for i =
0, . . . , t . Because of the Lagrange interpolation formula

f(j) =
t∑

i=0

fi

∏

k �=i
k=0...t

j − k

i − k
.

An elementary calculation shows that

∣
∣∣
∣
∣
∣

∏

k �=i
k=0...t

j − k

i − k

∣
∣∣
∣
∣
∣
≤ L for i = 0, . . . , t and j = t + 1, . . . , n .

Thus |f(i)| and (using an analogous argument) also |f̂(i)| are bounded by nL3N for
i = 1, . . . , n . Similarly it can be shown that |g(i)| and |ĝ(i)| are bounded by n2L3N3 .
As a consequence the function values ρ(i) and ρ̂(i) for i = 1, . . . , n are much larger
than the corresponding function values for f(z)g(z) and f̂(z)ĝ(z) . Thus both polyno-
mials F (z) and F̂ (z) follow a distribution which is statistically close to ρ(z), except
for the free term.

The 2t-degree polynomial F̂ (z) has the free term L2λ̂N + LR̂e (while in the real
execution it interpolates to L2λϕ + LRe). It is shown in Lemma 1 of [2] and [3] that
the distributions of these two values are statistically close. ��

5 Complexity of the New Inversion Protocol

In all the steps of the subprotocol of Figure 5 only additions and subtractions occur.
Each of these operations may increase the bit-length by 1. Consequently, step (b) needs
t(t + 1)/2 subtractions of two numbers with at most k1 + t bits and of two numbers
with at most k2 + t bits, where k1 = log(L2N3) and k2 = log(L2N4) . Therefore, this
step requires at most

t(t + 1)
2

ρadd(k1 + k2 + 2t)

260 P. Lory

bit-operations. The maximum bit-sizes in step (c) are k1 + t+n−1 and k2 + t+n−1,
respectively. Consequently, this step requires at most

(n − t)tρadd(k1 + k2 + 2t + 2n − 2)

bit-operations. As above, n is the number of players and t is the threshold. Step (e)
needs at most

t(2t + 1)ρadd(k′
3 + 2t)

bit-operations, where
k′
3 = log(L6N5) . (9)

Finally, step (f) requires at most

(n − 2t)2tρadd(k′
3 + 2t + n − 1)

bit-operations. Taking into account that t < 2t + 1 ≤ n, the following theorem is
proven:

Theorem 3. Round 1 of the new inversion protocol of Figure 4 requires

O(n2k1 + n2k2 + n2k′
3 + n3) (10)

bit-operations per player, where k1, k2 and k′
3 are given in Equations (2), (3) and (9).

A comparison of the above result with Theorem 1 shows the reduction of the complex-
ity. Please note that Equation (10) covers the worst case. In reality the bit sizes of the
numbers γk, ηk and σk will both increase and decrease during steps (b), (c), (e) and (f)
of Figure 5 and in the average case the bit-sizes will approximately remain constant. So
in the average case the last term in Equation (10) may be neglected.

In view of the complete protocol it remains to investigate the complexities of Round
2 and the Output, which are identical in the protocol of Figure 1 and in the new protocol
of Figure 4. The complexity of Round 2 can be neglected. The computation of F (0) in
step 1 of the Output in the protocols of Figures 1 and 4 can again be done efficiently
using a scheme of divided differences similar to that of Figure 3.

Now player Pi possesses the values F1, F2, . . . , F2t+1 and wants to compute F0 =
F (0) . These values define the first column of the scheme. First the triangle with the
base F1, . . . , F2t+1 is successively computed building the 2t + 1 corresponding as-
cending diagonal rows from left to right starting at the prescribed support ordinates
F1, . . . , F2t+1 and ending with the values F1, F1,2, . . . , (2t)! · F1,2,...,2t+1 . Then the
uppermost descending diagonal row including F0 = F (0) is computed from right to
left starting at the prescribed 0 in column 2t + 1 and using the already computed val-
ues (2t)! · F1,2,...,2t+1, . . . , F1,2, F1 in this order. These ideas are the basis of the new
algorithm given in Figure 6.

Analogously to the arguments at the beginning of this section, it follows that the
protocol of Figure 6 requires at most

t(2t + 1)ρadd(k4 + 2t) + 2tρadd(k4 + 4t) (11)

Reducing the Complexity in the Distributed Computation of Private RSA Keys 261

(a) For j = 1, 2, . . . , 2t + 1 :
γj := Fj ,
for k = j − 1, j − 2, . . . , 1 :

γk := γk+1 − γk ,
χj := γ1 .

(b) For k = 2t, 2t − 1, . . . , 1 :
χk := χk − χk+1 ,

F0 := χ1 .

Fig. 6. Efficient computation of F (0) = F0

i.e. O(n2k4 + n3) bit-operations, where k4 is the bit-size of the function values F (1),
F (2), . . ., F (2t + 1) . A simple calculation shows that k4 ≤ k′

3 + 5n and consequently
the operation count of Equation (11) is O(n2k′

3 + n3) . In the case of the original pro-
tocol the bit-sizes of F (1), F (2), . . ., F (2t + 1) are slightly different and the corre-
sponding esimate is k4 ≤ k3 +3n logn+2n . This results in a corresponding operation
complexity of O(n2k3 + n3 log n) .

The GCD algorithm in step 2 of the Output requires O((log U)2) bit-operations if
U is an upper bound of the nonnegative integers e and F (0) (see e.g. Cohen [5] or
Mao [13]). It is pointed out in the proof of Theorem 2 that if e does not divide ϕ, the
probability that GCD(e, F (0)) �= 1 is roughly 1/e. Thus it is very unlikely that the
rounds of the protocol need to be repeated several times. Finally,

F (0) ≤ nL2N3 + nLN4 ≤ 2nL2N4 .

These results together with Theorems 1 and 3 can be summarized in the following
theorem:

Theorem 4. The new inversion protocol of Figure 4 reduces the complexity from

O(n3(log n)2 + n2(log n)(log N) + (log N)2) (12)

to
O(n3 log n + n2 log N + (log N)2) (13)

bit-operations per player, where n is the number of players and N is the RSA modulus.

In the following table the two functions A(n, N) = n3(log n)2 + n2(log n)(log N) +
(log N)2 (cf. Equation (12)) and B(n, N) = n3 log n+n2 log N +(log N)2 (cf. Equa-
tion (13)) are compared for realistic values of N (= 21024) and the number n of players:

n A(n, 21024) B(n, 21024) A(n, 21024)/B(n, 21024)
25 7.11 · 106 2.26 · 106 3.15
26 3.57 · 107 6.82 · 106 5.23
27 2.21 · 108 3.25 · 107 6.80
28 1.61 · 109 2.02 · 108 7.97

The table indicates that for an increasing albeit realistic number n of players the new
protocol accelerates the original one by a factor of approximately log n . For smaller

262 P. Lory

values of n the improvement is less remarkable because there is no reduction in the
(log N)2-Term, which occurs both in (12) and in (13). Both protocols require (with
very high probability) only two rounds of communication.

6 Conclusion

The present paper reduces the complexity in the protocol in [3] for the distributed com-
putation of inverses over a shared modulus by a new technique, which applies New-
ton’s divided-difference scheme. This efficiency improvement is particularly important
for threshold variants (see [3]) of the signature schemes of Cramer and Shoup [6] and
of Gennaro, Halevi and Rabin [7]. In these signature shemes the inversion operation is
performed with a different RSA exponent e for each message signed.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: Proceedings of the 20th Annual Symposium on
Theory of Computing (STOC 1988), pp. 1–10. ACM Press, New York (1988)

2. Catalano, D.: Efficient distributed computation modulo a shared secret. In: Catalano, D.,
Cramer, R., Damgård, I., Di Crescenco, G., Pointcheval, D., Takagi, T. (eds.) Contempo-
rary Cryptology, CRM Barcelona. Advanced Courses in Mathematics, pp. 1–39. Birkhäuser,
Basel (2005)

3. Catalano, D., Gennaro, R., Halevi, S.: Computing inverses over a shared secret modulus. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 190–206. Springer, Heidelberg
(2000)

4. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Pro-
ceedings of the 20th Annual Symposium on Theory of Computing (STOC 1988), pp. 11–19.
ACM Press, New York (1988)

5. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Berlin (2000)
6. Cramer, R., Shoup, V.: Signature schemes based on the Strong RSA Assumption. ACM

Transactions on Information and System Security (ACM TISSEC) 3(3), 161–185 (2000)
7. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random ora-

cle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidel-
berg (1999)

8. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations
with applications to threshold cryptography. In: Proceedings of the 17th ACM Symposium
on Principles of Distributed Computing (PODC 1998), pp. 101–111. ACM Press, New York
(1998)

9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of
the 19th Annual Symposium on Theory of Computing (STOC 1987), pp. 218–229. ACM
Press, New York (1987)

10. Hairer, E., Wanner, G.: Analysis by Its History. Springer, New York (1995)
11. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2.

Addison-Wesley, Reading (1971)
12. Lory, P.: Reducing the complexity in the distributed multiplication protocol of two polyno-

mially shared values. In: Proceedings of the 3rd IEEE International Symosium on Security in
Networks and Distributed Systems (SSNDS 2007). AINA 2007, vol. 1, pp. 404–408. IEEE
Computer Society Press, Los Alamitos (2007)

Reducing the Complexity in the Distributed Computation of Private RSA Keys 263

13. Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall, Upper Saddle River
(2004)

14. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public
key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

15. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
16. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2002)
17. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Sym-

posium on Foundations of Computer Science (FOCS 1986), pp. 162–167. IEEE Computer
Society, Los Alamitos (1986)

Efficiency Bounds for Adversary Constructions
in Black-Box Reductions

Ahto Buldas1,2,3,�, Aivo Jürgenson2,4, and Margus Niitsoo1,3

1 Cybernetica AS, Akadeemia tee 21, 12618 Tallinn, Estonia
2 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia

3 University of Tartu, J.Liivi 2, 50409 Tartu, Estonia
4 Elion Enterprises Ltd, Endla 16, 15033 Tallinn, Estonia

Ahto.Buldas@ut.ee, Aivo.Jurgenson@elion.ee, Margus.Niitsoo@ut.ee

Abstract. We establish a framework for bounding the efficiency of cryp-
tographic reductions in terms of their security transfer. While efficiency
bounds for the reductions have been studied for about ten years, the
main focus has been the efficiency of the construction mostly measured
by the number of calls to the basic primitive by the constructed primi-
tive. Our work focuses on the efficiency of the wrapper construction that
builds an adversary for the basic primitive and has black-box access to
an adversary for the constructed primitive. We present and prove a gen-
eral upper bound theorem for the efficiency of black-box reductions. We
also provide an example about upper bound for reductions between two
security notions of cryptographic hash functions, which gives a negative
answer to the open question about the existence of linear-preserving re-
ductions from the so-called hash-then-publish time-stamping schemes to
the collision resistance of the underlying hash function.

1 Introduction

The security of cryptographic schemes is usually proved based on certain as-
sumptions. For instance, it is a well known fact that the ElGamal cryptosystem
is secure only if the Diffie-Hellman assumption holds. Assumptions used can
be very different, some being very specific computational problems and others
being far more abstract in nature. The need to use assumptions has created a
rather interesting subfield of cryptology that concerns itself with the theoretical
bounds of their use. Much research has been put into studying what exactly can
be constructed using, for instance, one-way permutations. More interestingly,
what cannot be constructed from them has also been studied rather extensively.

Research in that direction started with the seminal paper of Impagliazzo and
Rudich [7], who used the Oracle separation method from Complexity theory to
show that a black-box construction from one-way permutations to secret agree-
ment would imply a contradiction and thus concluded that such a construction
� This research was supported by the European Regional Development Fund through

the Estonian Center of Excellence in Computer Science (EXCS), by Estonian SF
grant no. 6944, and by EU FP6-15964: “AEOLUS”.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 264–275, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficiency Bounds for Adversary Constructions in Black-Box Reductions 265

cannot exist. Their result shows that any construction for a secret agreement
would need more than just black-box access to a secure one-way permutation
in order to be secure. While this approach does not completely rule out the
existence of a construction for secret agreement from one-way permutations, it
does show that the reduction would need some additional information about the
permutations. As general constructions of that type are nearly unknown, their
result is taken as strong evidence that a sensible construction cannot exist.

To date, the connections between the most basic assumptions and most impor-
tant primitives have been mapped out. Sadly, a review article of these results has
yet to be written, although most important results are covered by [7,5]. As a brief
overview, there is one equivalence class for private-key cryptology that contains
symmetric encryption, signature schemes and bit commitment and is equivalent
to assuming the existence of a one-way function. For public key primitives things
are a bit more complicated but the existence of trapdoor one-way permutations
allows one to construct just about everything and key agreement seems to be
constructible from every other public key primitive. Since it is known that key
agreement cannot be based on one-way permutations, this implies that private-
key cryptology is not enough to construct any public-key primitives. Many more
non-reducibility results are known.

With the reductions more or less mapped out with existence or non-existence
results, attention was directed towards the efficiency of the reductions. Kim,
Simon and Tetali [8] showed that a construction for a universal one-way hash
function based on a one-way permutation needs to call that permutation at least
Ω(

√
n/p(n)) times to construct a secure hash function h : {0, 1}n → {0, 1}(1−ε)n

with security 2−p(n). Their bound was later strengthened by Gennaro and Tre-
visan [6] to Ω(n/p(n)) that matches the best known construction. As much more
efficient constructions are known for certain computational assumptions, these
results can be interpreted as showing that although one-way permutations can
be used to construct universal one-way hash functions in theory, it is not rea-
sonable to do so in practice. Many other results in the same direction [3,4] seem
to verify that intuition. Therefore, these are still infeasibility results, only of a
weaker type.

Our approach, however, goes to a different direction by studying the efficiency
of the security reduction instead of the construction used for the new primitive.
While bounds on construction efficiency allow one to show just how inefficient the
new primitive has to be, bounds on the security part allow one to show just how
much assumed security has to be lost when converting from one primitive to the
other. In effect, we show that whenever an adversary to the new construction
exists, any construction that converts that adversary to one for the original
primitive has to do so at the cost of its adversarial efficiency measured by the
time/success ratio. As such, we use a definition that is a refinement of poly-
preserving reductions defined by Luby [9].

However, to state those results, we first need to introduce some new nota-
tions. We begin by defining power c-secure reductions, in which we assume we
know how the time-advantage ratio of an adversary to the newly constructed

266 A. Buldas, A. Jürgenson, and M. Niitsoo

primitive can be related to a time-success ratio of an attack against the underly-
ing assumption. We note that this is the case for nearly all the positive reduction
results known in modern cryptology. Furthermore, this definition allows us to
use the oracle separation method to construct a framework for proving the lower
bounds we desire. This article aims to provide a basis for further work on find-
ing actual lower bounds on reduction efficiency and as such is mainly concerned
with constructing the required tools for future work. However, to show how this
approach can indeed be used, we also give two examples on how the theorem we
provide can be used to obtain actual lower bounds.

2 Preliminaries and Notation

For bit-strings a and b we define a‖b as their concatenation. By x← D we mean
that x is chosen randomly according to a distribution D. If A is a probabilistic
function or a Turing machine, then x← A(y) means that x is chosen according
to the output distribution of A on an input y. By Un we denote the uniform
distribution on {0, 1}n. If D1, . . . ,Dm are distributions and F (x1, . . . , xm) is a
predicate, then Pr [x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] denotes the proba-
bility that F (x1, . . . , xm) is true after the ordered assignment of x1, . . . , xm. For
functions f, g : N → R, we write f(k) = O(g(k)) [f(k) = Ω(g(k))] if there is
c ∈ R, so that f(k) ≤ cg(k) [f(k) ≥ cg(k)] for sufficiently large k. We write
f(k) = Θ(g(k) if f(k) = O(g(k)) and f(k) = Ω(g(k)). We write f(k) = ω(g(k))
if lim

k→∞
g(k)
f(k) = 0 and f(k) = o(g(k)) if g(k) = ω(f(k)). If f(k) = k−ω(1), then

f is negligible. A Turing machine M is polynomial-time (poly-time) if it runs in
time kO(1), where k denotes the input size. By an oracle Turing machine we
mean an incompletely specified Turing machine S that comprises calls to or-
acles. The description can be completed by defining the oracle as a function
O : {0, 1}∗ → {0, 1}∗. In this case, the machine is denoted by SO. The func-
tion y ← O(x) does not have to be computable but has a conditional running
time t(x), which does not necessarily reflect the actual amount of computations
needed to produce y from x. The running time of SO comprises the conditional
running time of oracle calls where we assume that each call O(x) takes t(x) steps.
An oracle O is poly-time if t(x) =|x|O(1), where |x| denotes the bit-length of x.
We say that S is a poly-time oracle machine if SO runs in poly-time, whenever O

is poly-time. By a non-uniform poly-time oracle machine we mean an ordinary
poly-time oracle machine S together with a family A = {ak}k∈N of (advice) bit-
strings ak with length kO(1). For any oracle O and any input x it is assumed that
SO(x) has access to the advice string a|x|. Usually, the advice strings are omitted
for simplicity, but their presence must always be assumed when S is non-uniform.
In the following we do not use the non-uniformity assumption anywhere and as
such can rather safely assume that the machines can be non-uniform. We also
define Timek(A, f) as the expected running time of A on breaking fk ∈ f where
the expectation is taken over all the possible randomness of A. Analogously, we
define Advk(A, f) as the average success probability of A in breaking fk ∈ f .

Efficiency Bounds for Adversary Constructions in Black-Box Reductions 267

3 Cryptographic Reductions

Reductions have been one of the main tools of cryptologists since the beginning
of the modern era in the field. At first, reductions were just used to show that
breaking the security is as hard as some given computational problem and thus,
if we assume that the computational problem is intractable, we have a secure
system. However, as the field of cryptology expanded, reductions found use in
many other applications as well. Most importantly, they were the main tool used
in mapping out the limits of what can be constructed from the most general
assumptions such as the existence of a one-way function.

As reductions turned out to be a very effective tool, people soon took interest
in exploring the limits of their use. Inspired by the results in complexity theory
obtained by Baker, Gill and Solovay [1], Impagliazzo and Rudich [7] were the
first to formally define a so-called black-box cryptographic reduction, with the
only aim of proving that such a thing cannot exist between secret agreement and
one-way permutations.

In essence, a black-box construction of one primitive from another means
that the constructed primitive is allowed to call the underlying primitive but
is unable to gather any extra knowledge about it by any other means. This
notion might seem a little restrictive at first, but in fact most of the reductions
used in cryptology even to date still fit that model. However, even more general
reduction hierarchy was introduced by Reingold et al. [10].

We use a somewhat informal approach in defining a primitive by saying that a
primitive is a security criterion on some functions along with all the functions on
which that criterion makes sense. For example, the security criterion for a one-
way function f : {0, 1}∗ → {0, 1}∗ states that for every probabilistic poly-time
adversary A:

Advk(A) = Pr
[
x← {0, 1}k, x′ ← A(f(x)) : f(x′) = f(x)

]
= k−ω(1) .

The primitive of one-way functions is this criterion together with the class of
all functions of type f : {0, 1}∗ → {0, 1}∗ some of which might not be secure
instances. For a fully formal approach, see Reingold et al. [10].

A black-box reduction of a primitive P to a primitive Q can be formalized
as two oracle Turing machines S and P such that if f ∈ Q then Pf ∈ P and if
A breaks the security criterion of P for Pf then then SA,f breaks the security
criterion of Q for f . The definition seems somewhat complex but the idea behind
it is actually rather simple – essentially it says is that a reduction has to provide
an algorithmic means of constructing an instance of the new primitive with the
help of the old (P) and that if that new construction is insecure then the original
underlying primitive instance also has to be so as we can construct an adversary
against it with S.

4 Power c Secure Reductions

Thus far, the construction P has been the main object of study in terms of
efficiency. We, however, study the efficiency of S instead. While the efficiency

268 A. Buldas, A. Jürgenson, and M. Niitsoo

of P tells us just how effectively the new construction can be implemented, the
efficiency of S actually tells us how much security we can guarantee for the new
primitive on the assumption that the old primitive is secure in some sense.

Suppose, for instance, that the most efficient adversary for the original prim-
itive always takes at least 1000 steps to break it. Now, suppose we know that S
construction calls the adversary for the new construction 10 times to break the
old construction. This means that any adversary for the new construction has to
make at least 100 steps on each call as otherwise we could use the good adversary
in the construction S to create an adversary for the original primitive that works
in less than 1000 steps. This informal1 argument should convince the reader
that the efficiency of the construction S is indeed important in determining how
secure we can prove the new construction.

However, the number of steps the adversary takes to break a primitive is
usually not the best measure for its efficiency. Practical adversaries are usually
probabilistic and are not guaranteed to always break the primitive. This implies
that it usually makes more sense to define the efficiency of the adversary to be
its time/success ratio (the expected number of steps it takes on a run divided
by the probability of success), which can be interpreted as the expected time
to break the primitive if you just kept on running the adversary until it finally
succeeds. This motivates the following definition:

Definition 1. Let c > 0 be a positive real number. A Power c-secure fully black-
box reduction from primitive P to primitive Q is a pair (P, S) of poly-time oracle
machines, satisfying the following two conditions:

1. For any function f that implements Q, the function Pf implements P.
2. For any pair (A, f) of functions we have

Timek(SA,f , f)
Advk(SA,f , f)

≤ kO(1) ·
[
Timek(A, Pf)
Advk(A, Pf)

]c

.

The reduction is uniform, if both P and S are uniform, and non-uniform if both
of them are allowed to be non-uniform.

As said before, it is generally assumed that the adversary construction knows
nothing about the oracles that are given to it save for their basic syntactic func-
tionality and the previous definition captures that formally as well. In some
practical reductions, however, it is assumed that the construction S can actually
be dependent on the success probability δ = Advk(A, Pf) of A. For example,
choosing the number of iterations of A when constructing strong one-way func-
tions from weak ones [9] uses that knowledge in an essential way. Many other
reductions also use this extra information and as such cannot be considered fully
black-box anymore. As it turns out, however, allowing for such knowledge causes
no significant theoretical problems and so we alter our original definition slightly
to obtain:
1 Informal to the point of being incorrect unless we assume the adversaries always

make the same number of steps independent of the input. This numerical example
is here just to provide intuition to the formalization.

Efficiency Bounds for Adversary Constructions in Black-Box Reductions 269

Definition 2. We say that there exists a power c-secure success-specific black-
box reduction from primitive P to primitive Q iff there is a poly-time oracle
machine P and a polynomial p such that for every δ > 0 there is a poly-time
oracle machine Sδ so that for all A such that Advk(A, Pf) ≥ δ the following
conditions hold:

1. For any function f that implements Q, the function Pf implements P.
2. For any pair (A, f) of functions we have

Timek(SA,f
δ , f)

Advk(SA,f
δ , f)

≤ p(k) ·
[
Timek(A, Pf)
Advk(A, Pf)

]c

.

for sufficiently large values of k.

Note that black-box reductions that satisfy Def. 2 for any certain (unspecified)
c were first defined by Luby [9] and were called polynomial-preserving reductions
and the reductions with c = 1 were called linear-preserving.

5 The Lower Bound Theorem

We are now ready to prove the theorem that gives the means of proving the
lower bounds described in the introduction.

Theorem 1. If for every pair (S, P) of poly-time oracle machines and for every
δ > 0 there is a probability distribution (A, f)← ΩS,P,δ so that:

– f implements Q and Pf implements P for every (A, f) in the range of ΩS,P,δ;
– Advk(A, Pf) = δ and Timek(A, Pf) = O(kc0) for some c0 for all (A, f) in

the range of ΩS,P,δ;
– for every polynomial q(k) there exists δ(k) such that limk→∞ δ(k) = 0 and:

lim
k→∞

δ(k)c

q(k)
·

E
(A,f)←ΩS,P,δ(k)

[
Timek(SA,f , f)

]

E
(A,f)←ΩS,P,δ(k)

[Advk(SA,f , f)]
> 1 ,

then there are no power c-secure success-specific black-box reductions of P to Q.

Proof. Assume to the contrary that there exists such a reduction (Sδ, P). Then
by the assumptions there exists a polynomial p(k) so that for every δ > 0 and
for every pair (A, f) of functions such that Advk(A, Pf) ≥ δ we have

Timek(SA,f
δ , f)

Advk(SA,f
δ , f)

≤ p(k) ·
(

Timek(A, Pf)
δ

)c

(1)

for large k. This implies δc
Timek(SA,f

δ , f) ≤ p(k)tc(k)Advk(SA,f
δ , f), where

t(k) = Timek(A, Pf). Let ΩS,P,δ be the distribution guaranteed by the assump-
tion of the theorem. Then,

δc E
A,f

[
Timek(SA,f

δ , f)
]
≤ p(k)tc E

A,f

[
Advk(SA,f

δ , f)
]

,

270 A. Buldas, A. Jürgenson, and M. Niitsoo

Where (A, f)← ΩS,P,δ. Let q(k) denote a polynomial upper bound for p(k)tc(k)
(that exists because t(k) = O(kc0) for all A). Since the preceding inequality holds
for all δ, we also have

lim
k→∞

δ(k)c

q(k)
·

E
A,f

[
Timek(SA,f

δ(k), f)
]

E
A,f

[
Advk(SA,f

δ(k), f)
] ≤ 1

for every possible δ(k) such that limk→∞ δ(k) = 0, a contradiction. ��

6 A Simple Example

As an example of the use of this theorem we give a proof that any reduction
from collision-resistant functions to one-way functions has to be at least linear2.
Although the fact itself is rather straightforward, this proof serves as a toy
example to introduce the technical complexities of using Theorem 1. However,
we first need to introduce some definitions:

Definition 3. By a cryptographic (2-1) hash function we mean a function fam-
ily hk : {0, 1}p(k) × {0, 1}2k → {0, 1}k where p(k) > k is a polynomial. The first
argument is the so-called function index which is mostly chosen uniformly at
random.

Definition 4. A cryptographic 2-1 hash function h = {hk} is said to be collision
resistant if for every poly-time adversary A:

Advk(A) = Pr
[
r ← {0, 1}p(k), (x1, x2)← A(r) : x1
= x2, hk(r, x1) = hk(r, x2)

]

= k−ω(1) .

Definition 5. A cryptographic 2-1 hash function h = {hk} is said to be one-way
if for every poly-time adversary A:

Advk(A) = Pr
[
x← {0, 1}k, x′ ← A(hk(x)) : hk(x′) = hk(x)

]
= k−ω(1) .

It actually turns out we need one more technical but rather natural assumption.
Essentially, we want the running time to be relatively independent of the output
distribution of the adversary used as the black box oracle assuming that its mean
value of success is fixed and known.

Definition 6. We say that the reduction is oracle-independent if the running
time Timek(SA,f

δ , f) of S is between m(k, δ) and u(k)m(k, δ) for all oracles Ak

that achieve an advantage of δ against Pf where m is polynomial and u(k) = 2o(k)

and does not depend on δ.
2 Classical properties of hash functions and the relations (implications and separa-

tions) between them are well studied by Rogaway and Shrimpton [11]. However, it
is still not that obvious whether the known constructions are optimal in terms of
efficiency.

Efficiency Bounds for Adversary Constructions in Black-Box Reductions 271

After these definitions we can now state and prove the result:

Theorem 2. Let h = {hk} be a cryptographic 2-1 hash function that is collision-
resistant. Then for c < 1 there exist no power c-secure success-specific oracle-
independent (possibly non-uniform) black-box reductions SA,f showing that h is
also a one-way function.

Proof. Fix a c < 1 and a success-specific adversary construction family S = {Sδ}.
According to the theorem, we want to be able to exhibit oracle distributions
ΩS,P,δ (0 < δ ≤ 1) and a series of δk for any given polynomial q(k) such that

lim
k→∞

δc
k

q(k)
·

E
(Aδk

,h)←ΩS,P,δk

[
Timek(S

Aδk
,h

δk
)
]

E
(Aδk

,h)←ΩS,P,δk

[
Advk(S

Aδk
,h

δk
)
] > 1

so that δk would also converge to 0 as k goes to infinity. Therefore assume we
have a fixed polynomial q(k). Let m(k, δ) and u(k) be the functions guaranteed
by oracle-independence for Sδ. Then define the sequence δk = (ku(k)q(k))−1/ε

where ε = 1 − c. It is clear that limk→∞ δk = 0 as desired, since kq(k) is a
polynomial with degree at least 1.

We choose f to be a random oracle and choose Aδ from all the oracles that
break the given f on exactly δ fraction of inputs3 We also assume that A calls
take unit time. The best way to find a collision for a random oracle with the
help of the inversion adversary is to choose a random input x to f and then to
call A(f(x)) to try to get a second pre-image for f(x). Since A succeeds with
probability δ, the chance of not having a collision after using this method m
times is (1 − δ)m. If the one-wayness adversary is not used, the best possible
attack against a random oracle is the birthday attack, that has a probability of
success p(m, k) = O(m22−k) if k is the security parameter and m is the number
of calls to f . This gives us an upper bound for the success probability for the
construction: f(δk, m) = 1−(1−δk)m+p(m, k) < mδk+p(m, k) for large enough
k (as δk goes to 0 as k increases). This gives us:

δ1−ε
k

q(k)
·

E
(Aδk

,h)←ΩS,P,δk

[
Timek(S

Aδk
,h

δk
)
]

E
(Aδk

,h)←ΩS,P,δk

[
Advk(S

Aδk
,h

δk
)
] ≥ δ1−ε

k m(k)
q(k)f(δk, u(k)m(k))

=
δ1−ε
k m(k)

q(k)(u(k)m(k)δk + p(u(k)m(k), k))

=
δ−ε
k

q(k)u(k)(1 + O(u(k)m(k)δ−12−k))

≥ k

2
> 1

for large enough k since u(k)m(k)δ−1 = 2o(k) according to the assumptions. ��
3 We mean that the oracle distribution is a uniform distribution over all possible

f : {0, 1}2k → {0, 1}k and all Aδ that fit the given description for the given f .

272 A. Buldas, A. Jürgenson, and M. Niitsoo

7 A Practical Example

We now give another example of using Theorem 1. We stick to properties of
hash functions and introduce the property of division-resistance important in
some time-stamping applications [2] and in the security against the so-called
Nostradamus attacks [12]. As the length of the paper is limited, we will not pro-
vide an introduction into time-stamping and to Nostradamus attacks. A reader
more interested in them should refer to the two papers [2,12].

Definition 7. A cryptographic 2-1 hash function h = {hk} is said to be division-
resistant if for every poly-time adversary A = (A1, A2):

Pr
[
r←{0, 1}p(k), y←A1(r), x1←{0, 1}k, x2←A2(y, x1): hk(r, x1‖x2)=y

]
=k−ω(1) .

We are now ready to state the result. The proof is, yet again, rather technical
and the reader is advised to try to understand the previous proof before trying
this one.

Theorem 3. Let h = {hk} be a cryptographic 2-1 hash function that is collision-
resistant. Then for c < 1.5 there exist no power c-secure success-specific oracle-
independent (possibly non-uniform) black-box reductions SA,f showing that h is
also division-resistant.

Proof. We base the proof on theorem 1. As such, fix a c < 1.5 and a success-
specific adversary construction S = {Sδ}. According to the theorem, we want to
be able to exhibit oracle distributions ΩS,P,δ (where 0 < δ ≤ 1) and a series of
δk for any given polynomial q(k) such that

lim
k→∞

δc
k

q(k)
·

E
(Aδk

,h)←ΩS,P,δk

[
Timek(S

Aδk
,h

δk
)
]

E
(Aδk

,h)←ΩS,P,δk

[
Advk(S

Aδk
,h

δk
)
] > 1

so that δk would also converge to 0 as k goes to infinity. Let q(k) be a polynomial
and let m(k, δ) and u(k) be the functions guaranteed by oracle-independence for
Sδ. Define the sequence δk = (ku(k)2q(k))−1/ε where ε = 1.5− c. It is clear that
limk→∞ δk = 0 as desired, since kq(k) is a polynomial with degree at least 1.

We now begin constructing the oracle distributions ΩS,P,δ. We choose the hash
functions h = {hk} to be taken from the set of all possible 2-1 cryptographic hash
functions where πr,x(y) = h(r, x‖y) is a uniformly chosen random permutation
that is chosen independently for each choice of r and x ∈ {0, 1}k. This ensures
that we can always break division-resistance with respect to any output and
fixed first half of the input. This choice of h also makes finding collisions hard.
Without an adversary oracle A, the best possible tactic (given a fixed r) is clearly
to just choose a sequence of random inputs x1||y1, x2||y2, . . . , xm||ym so that
all yi are different and then check if any pair of them gives a collision. Denote
the probability of such an attack succeeding after at most m different h-queries

Efficiency Bounds for Adversary Constructions in Black-Box Reductions 273

by p(m, k). Clearly, the birthday bound applies and p(m, k) = O(m22−k). It is
worth noting that p(u(k)m(k, δk), k) = o(1).

We now describe the behavior of Aδ = (A1
δ , A

2
δ). The part A1

δ is always the same
– given k, it just returns 0k. The behavior of A2

δ , however, may vary for different
values of k. Let m(k) = m(k, δk). There are two possible choices for a given k
depending on m(k). If m(k) > δ−0.5

k then take as A2
δ(k, ·) an oracle that always

succeeds on a δ-fraction of randomness strings for h while always failing on the
others. Otherwise, if m(k) ≤ δ−0.5

k , choose Aδk
(k, ·) to be an oracle that breaks

hk for every randomness r but for each of them on only a δk fraction of possible
partial inputs. In both cases the oracle is not one fixed choice, but rather chosen
uniformly from amongst all the oracles matching that description. It should be
clear that the success probability of Aδ is δ. Note, however, that the two oracle
types we use are very different in terms of breaking collision-resistance. The first
one is such that if it works on the given r, we are guaranteed a collision with a
query to A1 and two queries to A2 while if it does not, the oracle is completely
useless. The second one is always somewhat useful, but we normally need a lot
more queries to find the collision.

We will now analyze the time-success ratio of Sδk
. We look at three cases for

a given k, again depending on m(k).
We first examine the case where m(k) ≤ δ−0.5

k . For an adversary to break
collision resistance, it either has to be able to find two partial inputs for which
Aδk

gives an answer or to find a collision with just h queries. The case where
we find just one input with Aδk

gives us no more information than a random h
query that just happens to give an output of 0k and as such is equivalent with
the case where we just used h queries. It is clear then, that after at most m
queries to the oracle the success function is bounded from above by

f(m, δ) = 1−mδ(1 − δ)m−1 − (1 − δ)m + p(m, k) = O
(
m2(δ2 + 2−k)

)
.

Thus

δ1.5−ε
k

q(k)
·

E
(Aδk

,h)←ΩS,P,δk

[
Timek(S

Aδk
,h

δk
)
]

E
(Aδk

,h)←ΩS,P,δk

[
Advk(S

Aδk
,h

δk
)
] ≥ m(k)δ1.5−ε

k

q(k)f(u(k)m(k), δk)

=
m(k)δ1.5−ε

k

q(k)O (u(k)2m(k)2(δ2
k + 2−k))

≥ δ1.5−ε
k

c0u(k)2q(k)δ1.5
k (1 + o(1))

=
k

2c0
,

where c0 is the constant derived from O-notation and we assume k to be large
enough so that the o(1) value is less than 1.

For the other two cases the analysis is somewhat simpler. If δ−0.5
k < m(k) ≤

δ−1.5
k then the analysis is a little bit more complicated:

274 A. Buldas, A. Jürgenson, and M. Niitsoo

δ1.5−ε
k

q(k)
·

E
(Aδk

,h)←ΩS,P,δk

[
Timek(SAδ,h

δk
)
]

E
(Aδk

,h)←ΩS,P,δk

[
Advk(S

Aδk
,h

δk
)
] ≥ m(k)δ1.5−ε

k

q(k)(δk+O(u(k)2m(k)22−k))

≥ δ−ε
k

q(k)(1+O(δ−4
k 2−k))

≥ k

2c0
.

Finally, if m(k) > δ−1.5
k then

δ1.5−ε
k

q(k)
·

E
(Aδk

,h)←ΩS,P,δk

[
Timek(S

Aδk
,h

δk
, h)

]

E
(Aδk

,h)←ΩS,P,δk

[
Advk(S

Aδk
,h

δk
, h)

] ≥ δ(k)−ε

q(k)
≥ ku(k)2 ≥ k

2c0
,

where the first inequality holds simply because the success probability of SA,h is
bounded by 1. In all three cases the value is larger than k

2c0
for large enough k

and thus goes to infinity as k does so we can apply Theorem 1. ��

As we see, the proof is quite technical and may seem too much for just an
example. However, this theorem has rather interesting implications for Merkle-
tree based hash-then-publish time-stamping schemes whose security relies on
the collision-resistance of the underlying hash function. Such schemes have been
used in practice for many years. The division-resistance condition corresponds
to the security requirement for the hash-then publish time-stamping for just two
documents and this result thus gives a bound on how much we could tighten
the security proofs of the time-stamping scheme based solely on the collision-
resistance assumption. This example result answers to the open question in [2]
about the existence of linear-preserving (i.e. with c = 1) reductions from secure
hash-and-publish time-stamping schemes to the collision-resistance of the un-
derlying hash function. Our result implies that any such reduction should have
c ≥ 1.5. All known reductions of secure hash-then-publish time-stamping sys-
tems to the collision-resistance are quadratic (c = 2) and hence, the existence of
a reduction with 1.5 ≤ c < 2.0 is still an open question.

8 Conclusions

We have presented a framework for proving lower bounds on the efficiency of
cryptographic reductions in terms of time-success ratio of black-box adversary
constructions. We have also shown that this framework can actually be used to
produce meaningful and interesting lower bounds for reductions actually used in
practice that are not too far from best constructions already known.

Our work leaves some related open questions for further study. First of all, it
would please us very much to see this framework being used to show some other
lower bounds or to even show that some construction used in practice is actually
optimal in the sense of time-advantage ratio.

Efficiency Bounds for Adversary Constructions in Black-Box Reductions 275

References

1. Baker, T., Gill, J., Solovay, R.: Relativizations of the P =?NP question. SIAM
Journal on Computing 4, 431–442 (1975)

2. Buldas, A., Saarepera, M.: On Provably Secure Time-Stamping Schemes. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg
(2004)

3. Gennaro, R., Gertner, Y., Katz, J.: Lower bounds on the efficiency of encryption
and digital signature schemes. In: Proceedings of the thirty-fifth annual ACM sym-
posium on Theory of computing, pp. 417–425 (2003)

4. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM Journal on Computing 35, 217–246 (2006)

5. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: 41st Annual Sympo-
sium on Foundations of Computer Science, Redondo Beach, California, November
2000, pp. 325–335 (2000)

6. Gennaro, R., Trevisan, L.: Lower Bounds on the Efficiency of Generic Crypto-
graphic Constructions. In: FOCS 2000, pp. 305–313 (2000)

7. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proc. of the Twenty First Annual ACM Symposium on Theory of
Computing, pp. 44–61 (1989)

8. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way permutation-
based hash functions. In: Proceedings of the 40th Annual Symposium on Founda-
tions of Computer Science, pp. 535–542 (1999)

9. Luby, M.: Pseudorandomness and cryptographic applications. Princeton University
Press, Princeton (1996)

10. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

11. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

12. Stevens, M., Lenstra, A., de Weger, B.: Chosen-prefix collisions for md5 and col-
liding x.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

Building Key-Private Public-Key Encryption
Schemes

Kenneth G. Paterson and Sriramkrishnan Srinivasan

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, U.K.
{kenny.paterson,s.srinivasan}@rhul.ac.uk

Abstract. In the setting of identity-based encryption with multiple
trusted authorities, TA anonymity formally models the inability of an ad-
versary to distinguish two ciphertexts corresponding to the same message
and identity, but generated using different TA master public-keys. This
security property has applications in the prevention of traffic analysis in
coalition networking environments. In this paper, we examine the impli-
cations of TA anonymity for key-privacy for normal public-key encryp-
tion (PKE) schemes. Key-privacy for PKE captures the requirement that
ciphertexts should not leak any information about the public-keys used
to perform encryptions. Thus key-privacy guarantees recipient anonymity
for a PKE scheme. Canetti, Halevi and Katz (CHK) gave a generic trans-
form which constructs an IND-CCA secure PKE scheme using an identity-
based encryption (IBE) scheme that is selective-id IND-CPA secure and a
strongly secure one-time signature scheme. Their transform works in the
standard model (i.e. does not require the use of random oracles). Here,
we prove that if the underlying IBE scheme in the CHK transform is TA
anonymous, then the resulting PKE scheme enjoys key-privacy. Whilst
IND-CCA secure, key-private PKE schemes are already known in the
standard-model, our result gives the first generic method of construct-
ing a key-private PKE scheme in the standard model. We then go on to
investigate the TA anonymity of multi-TA versions of well-known stan-
dard model secure IBE schemes. In particular, we prove the TA anonymity
and selective-id IND-CPA security of a multi-TA version of Gentry’s IBE
scheme. Applying the CHK transform, we obtain a new, efficient key-
private, IND-CCA secure PKE scheme in the standard model.

Keywords: public-key encryption, key-privacy, identity-based encryp-
tion, multiple trusted authorities, TA anonymity, standard model.

1 Introduction

Building public-key encryption (PKE) schemes that are secure in a very strong
sense, satisfying indistinguishability against chosen ciphertext attacks or
IND-CCA secure, remains a very active area of research. Only a handful of ap-
proaches [20,13,11] are known for constructing IND-CCA secure PKE schemes

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 276–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Building Key-Private Public-Key Encryption Schemes 277

without resorting to the Random Oracle Model [3]. In the usual public-key set-
ting, the security notion termed key-privacy has also gained increasing impor-
tance in recent years, in the context of anonymous communications [2]. While
specific schemes such as ElGamal, Cramer-Shoup and RSA-based schemes are
known to be key-private [2], no generic method is known for constructing a
key-private PKE scheme.

Following the results of Cocks [12], and the pairing-based solutions of Sakai,
Ohigishi and Kasahara [22] and Boneh and Franklin [7], identity-based cryptogra-
phy (IBC) [23] has become one of the most active areas of cryptographic research.
Canetti et al. [11] give a generic construction, now called the CHK transform, to
obtain an IND-CCA secure PKE scheme from an IBE scheme that is selective-id
IND-CPA secure, and a strong one time signature scheme. No mention is made in
[11] of the key-privacy of the PKE schemes arising from the CHK transform.

In the world of identity-based encryption (IBE), the setting of multiple trusted
authorities has recently been treated rigorously [21]. In this setting, the relatively
new security property termed trusted authority (TA) anonymity captures the in-
ability of an adversary to distinguish two ciphertexts corresponding to the same
message and identity, but generated using different TA master public-keys. At a
high level, in this paper, we prove that a key-private PKE scheme is obtained from
theCHKtransform if the underlying IBE schemehas aweak formofTAanonymity.
Our result gives the first genericmethod for constructing aPKE scheme in the stan-
dard model that is both key-private and IND-CCA secure.

Based on our current results, we argue that the relatively new notion of TA
anonymity is not only of interest in the area of anonymous communications, for
example in thwarting traffic analysis [21], but also has rather subtle cryptographic
implications for schemes that use IBE as a building block. It therefore merits fur-
ther study. We investigate the TA anonymity of multi-TA versions of well-known
IBE schemes in the standard model and we are easily able to show that they do not
satisfy the notion of TA anonymity. By contrast, we prove that a multi-TA version
of Gentry’s IBE scheme [15] is TA anonymous. Instantiating the CHK transform
with this multi-TA Gentry scheme gives us a concrete and reasonably efficient
key-private, IND-CCA secure PKE scheme in the standard model.

2 Background

Anonymous encryption was historically motivated in the context of mobile com-
munication. In the standard public-key setting, entities A and B exchange en-
crypted messages using each others’ public-keys, over a broadcast medium, where
eavesdroppers can see all ciphertexts on the network. It is reasonable to assume
that A and B will want to keep their identities hidden from such eavesdroppers
and this is possible only when ciphertexts do not leak information about the
public-keys used to create them, a notion formalized as key-privacy in [2].

In almost all the existing literature on IBE, with a small number of exceptions,
there is a single TA that issues keys to all the users in the system, and all ciphertexts
are created using the public parameters of that single TA. This TA is also known
as the private key generator (PKG) in the literature. In this traditional single-TA

278 K.G. Paterson and S. Srinivasan

identity-based setting, the notions of security roughly equivalent to the IND-CPA
and IND-CCA security notions for PKE were first formalized in [7]. In the IND-
CPA and IND-CCA games for IBE, the adversary is also given access to a private
key extraction oracle with suitable restrictions on its use.

In IBE, the security notion equivalent to key-privacy in PKE is termed re-
cipient anonymity. The systematic study of recipient anonymity was initiated
in [1], motivated both by its intrinsic interest in IBE and for its application in
constructing public-key encryption with keyword search (PEKS) schemes. Re-
cipient anonymity models the requirement that ciphertexts should not leak the
identity of their intended recipients.

It is possible to envisage scenarios with multiple, independent TAs perhaps
sharing some common system parameters. The systematic study of security of
IBE in this multi-TA setting was initiated in [21]. In such a setting, in addition to
the usual IBE security notions of indistinguishability and recipient anonymity,
the notion of TA anonymity arises naturally. TA anonymity captures the re-
quirement that an adversary should find it difficult to distinguish ciphertexts
produced using different TA master public-keys, even if the ciphertext is for
the same message and identity string. TA anonymity has practical significance,
again in the context of anonymous communications. For example, if a coalition
of TAs operate in a wireless setting where all ciphertexts can be captured from
the network by an adversary, and if the ciphertext were to somehow leak the
identity of the TA, this would open up avenues for traffic analysis [21]. However,
the cryptographic implications of TA anonymity for schemes that use IBE as a
building block have as yet not been studied.

3 Our Contributions

We consider the CHK transform in the setting of multiple public keys that is
needed when studying key-privacy. This quite naturally gives rise to a multi-TA
IBE setting of the type considered in [21]. We show how to modify the CHK
construction to reflect this setting. We then prove that the key-privacy of the
PKE scheme resulting from our modified CHK transform follows from a weak
form of TA anonymity for the underlying multi-TA IBE scheme. Our result gives
us the first generic method of constructing a PKE scheme in the standard model
that is key-private, as well as being IND-CCA secure.

We note that the transform of Boneh and Katz [8] builds on the ideas of [11]
to give a more efficient construction of PKE from IBE. We can prove similar
results for the Boneh-Katz transform. (The results from both [11,8] appear in
[6].) Due to constraints of space and bearing in mind that the proof of security
in [8] is more involved and that the our aim in this paper has been to highlight
the significance of TA anonymity, especially with relation to building key-private
PKE schemes, we have limited our discussions to the original CHK transform.

To obtain concrete PKE schemes that are key-private and IND-CCA se-
cure, we study the TA anonymity properties of multi-TA versions of the known
standard-model IND-CPA secure IBE schemes. We are able to prove that a
multi-TA version of the scheme of Gentry [15] is TA anonymous. We are also

Building Key-Private Public-Key Encryption Schemes 279

able to show that multi-TA versions of the two popular standard model schemes
of Boneh and Boyen in [5], termed BB1 and BB2 in the literature, and multi-TA
versions of the schemes related to the BB1 scheme, such as those of Waters [24]
and Naccache [19], trivially do not meet the notion of TA anonymity.

4 Definitions

In this section, we provide basic definitions needed for the remainder of the
paper. Here, we omit standard definitions for PKE, IBE and strongly secure
one-time signatures which can be found in the full version of this paper or for
example in [6].

Definition 1. A pairing-friendly group generator PairingGen is a polynomial
time algorithm with input 1k and output a tuple (G, GT , e, p, g). Here G, GT are
groups of prime order p, g generates G, and e : G × G → GT is a bilinear,
non-degenerate and efficiently computable map.

For ease of presentation, we work exclusively in the setting where e is symmetric;
our definitions and results can be generalised to the asymmetric setting where e :
G1×G2 → GT , with G1 and G2 being different groups. Further details concerning
the basic choices that are available when using pairings in cryptography can be
found in [14].

Definition 2. We define the advantage of an algorithm A in solving the Trun-
cated Decisional �-Augmented Bilinear Diffie-Hellman Exponent (�-TDABDHE)
problem in (G, GT) to be:

Adv-TDABDHE
A (k) = |Pr(A(g′, g′(l+2), g1, g2, . . . , gl, e(g(l+1), g

′)) = 1)

−Pr(A(g′, g′(l+2), g1, g2, . . . , gl, Z) = 1)|

where α
$← Z∗

p, Z
$← GT , g′ $← G, gi = g(αi) and g′i = g′(α

i). Here, we implicitly
assume that parameters (G, GT , e, p, g) are given to A as additional inputs. The
distribution on the left is referred to as PABDHE and that on the right is referred
to as RABDHE .

We note that this is the same assumption that is used to prove the security of
the IBE scheme presented in [15].

Definition 3. We say that the (t, ε, �)-TDABDHE problem is hard in (G, GT) if
no t-time algorithm has advantage at least ε in solving the �-TDABDHE problem
in (G, GT).

Definition 4. A function ε(k) is said to be negligible if, for every c, there exists
kc such that ε(k) ≤ k−c for every k ≥ kc.

5 Multi-TA IBE

A multi-TA IBE scheme is defined in [21] in terms of five algorithms:

280 K.G. Paterson and S. Srinivasan

– CommonSetup: On input 1k, outputs params , a set of system parameters
shared by all TAs; T = {tai : 1 ≤ i ≤ n} will represent the set of (labels of)
TAs, where n = n(k) ∈ N.

– TASetup: On input params , outputs a master public-key mpk (which includes
params), and a master secret key msk . This algorithm is randomized and
executed independently for each TA in T .

– KeyDer, Enc, Dec: These are all as per a normal IBE scheme.

Following the reasoning in [21] we note that for the concrete schemes and
transforms considered in this paper, common parameters are needed in order
to achieve the notion of TA anonymity; doing so without having some (non-
trivial) common parameters is an interesting open problem. We note that it
is not unreasonable to assume that the different TAs may share some common
system parameters (e.g. the output of a pairing parameter generator) [21]. In fact
the possibility of TAs sharing parameters becomes much more likely when we
consider the greater complexity of setting up an IBE scheme (where consideration
has to be given, among other things, to the choice of elliptic curves, groups
used in Pairings, the representation of elements etc.) compared to the “relative
simplicity” of setting up, say an RSA scheme. The IEEE P1363.3 working group
aims to produce a set of standards specific to identity-based cryptography to
address these difficulties. Indeed, sharing of common parameters is inevitable
if any kind of interoperability is desired between TAs and such scenarios are
becoming more and more desirable [4].

5.1 Security Models for Multi-TA IBE

In all the security games that follow, we associate to an adversary A and a bit
b ∈ {0, 1}, the advantage of the adversary for a “notion-attack” combination,
which is defined to be:

Advnotion-atk-b
A (k) =

∣
∣
∣Pr[Expnotion-atk-1

A (k) = 1] − Pr[Expnotion-atk-0
A (k) = 1]

∣
∣
∣ .

A scheme is said to be “notion-atk”-secure if the advantage of all PPT adver-
saries is negligible as a function of the security parameter k.

We detail the m-IND-RA-TAA-CCA experiment as defined in [21] that si-
multaneously captures message indistinguishability, recipient anonymity and TA
anonymity in the multi-TA IBE setting, against chosen ciphertext adversaries.
This model also gives the adversary access to a Corrupt oracle that returns the
master secret key for a TA of the adversary’s choice.

In the security game defined below, TASet represents the set of TAs that have
been corrupted, i.e. queried for their master secret keys, IDSetta represents
the set of identities queried for private keys for each ta ∈ T , while CSetta
represents the set of identity/ciphertext pairs on which decryption queries have
been performed for each ta ∈ T . In these games, MPK = {mpkta : ta ∈ T } and
MSK = {mskta : ta ∈ T } represent the set of all master public-keys and all
master secret keys, respectively.

Building Key-Private Public-Key Encryption Schemes 281

Experiment Expm-IND-RA-TAA-CCA-b
A (k)

params ← CommonSetup(1k)
TASet ← ∅
∀ta ∈ T , (mpk ta,msk ta) ← TASetup(params),
IDSetta ← ∅ and CSetta ← ∅
(ta0, ta1, id0, id1,m0,m1, state) ←

ACorrupt,KeyDer,Dec(find,MPK)
c∗ ← Enc(mpktab

, idb,mb)

b′ ← ACorrupt,KeyDer,Dec(guess, c∗, state)
If {m0, m1} � MsgSp or |m0| �= |m1|
then Return 0
If (ta0 = ta1 and id0 = id1 and m0 = m1)
then Return 0
If ta0 /∈ TASet , ta1 /∈ TASet , id0 /∈ IDSetta0

,
id1 /∈ IDSetta1

, (id0, c
∗) /∈ CSetta0

and (id1, c
∗) /∈

CSetta1
then Return b′ else Return 0

Oracle Corrupt(ta)
TASet ← TASet ∪ {ta}
Return mskta

Oracle KeyDer(ta, id)
IDSetta ← IDSetta ∪ {id}
uskid ,ta ← KeyDer(mskta , id)
Return uskid ,ta

Oracle Dec(ta , id , c)
CSetta ← CSetta ∪ {(id , c)}
uskid ,ta ← KeyDer(mskta , id)
m ← Dec(mpkta , uskid ,ta , c)
Return m

By placing suitable restrictions on the m-IND-RA-TAA-CCA security notion,
we can define other, weaker security notions appropriate to the multi-TA IBE
setting. For example, CPA secure versions can be defined by removing the ad-
versary’s access to the decryption oracle. By removing the adversary’s access to
the Corrupt oracle we define “restricted” versions, and appropriate selective-id
versions can be defined by having the adversary commit ahead of time to the
identities used in the challenge query. Furthermore, setting m0 = m1, id0 = id1
or ta0 = ta1 gives security notions appropriate to specific circumstances. We will
elaborate on some of these security models as we encounter them in this paper.

6 Key-Privacy of the CHK Transform

Canetti et al. [11] give a construction that builds an IND-CCA secure PKE
scheme from a selective-id IND-CPA secure IBE scheme and a strongly secure
one-time signature scheme.

We first describe a security notion for PKE which we term IND-IK-CCA and
which simultaneously captures message indistinguishability and key-privacy. We
then define the selective-id r-m-IND-TAA-CPA security notion for IBE, this
being a weakened version of the m-IND-RA-TAA-CCA notion defined above.
We then modify the CHK construction from [11] to reflect the setting of mul-
tiple users. Finally we show that the IND-IK-CCA security of the public-key
encryption scheme built using the (modified) CHK transform follows from the
selective-id r-m-IND-TAA-CPA security of the underlying IBE scheme.

We note that we do not require recipient anonymity of the IBE scheme to ob-
tain our result. Rather, the security property needed from the IBE scheme is the
form TA anonymity which is captured in our selective-id r-m-IND-TAA-CPA se-
curity notion. In section 7.1 we will prove that a multi-TA version of Gentry’s IBE
scheme meets the stronger m-IND-RA-TAA-CPA security notion. This is sufficient

282 K.G. Paterson and S. Srinivasan

for the application of our result. Instantiating the CHK transform with the multi-
TA Gentry scheme and any strongly secure one-time signature scheme will give us
a concrete construction of a key-private and IND-CCA secure PKE scheme.

6.1 IND-IK-CCA Security for PKE

Bellare et al. [2] define two notions, IK-CPA and IK-CCA security, that cap-
ture the notions of key-privacy under chosen plaintext attacks and chosen ci-
phertext attacks, respectively. For our purposes, we define a combined security
notion which simultaneously captures both message indistinguishability and key-
privacy. We term this IND-IK-CCA security.

Experiment ExpIND-IK-CCA-b
A (k)

I
$← CommonSetup(1k)

(PK 0,SK 0)
$← KeyGen(I)

(PK 1,SK 1)
$← KeyGen(I)

CSetSK 0
← ∅, CSetSK 1

← ∅
(m0,m1, state) ← ADec(find,PK 0,PK 1)
c∗ ← Enc(PK b, mb)
b′ ← ADec(guess, c∗, state)
If |m0| �= |m1| or m0 = m1 then Return 0
If c∗ /∈ CSetSK 0

and c∗ /∈ CSetSK 1

then Return b′ else Return 0

Oracle Dec(PK b, c)
CSetSK b

← CSetSK b
∪ {c}

m ← Dec(SK b, c)
Return m

6.2 Security for Multi-TA IBE

We define the selective-id r-m-IND-TAA-CPA security notion for multi-TA IBE.
A single identity is used in the challenge phase in this model, i.e. id0 = id1.
Furthermore, the adversary commits to this identity at the start of the game.
The adversary is not allowed to make decryption or Corrupt queries.

Experiment Exps-id r-m-IND-TAA-CPA-b
A (k)

id∗ ← A(1k)
params ← CommonSetup(1k)
TASet ← ∅
∀ta ∈ T , (mpk ta,msk ta) ← TASetup(params),
IDSetta ← ∅
(ta0, ta1,m0,m1, state) ←

AKeyDer(find,MPK)
c∗ ← Enc(mpktab

, id∗,mb)

b′ ← AKeyDer(guess, c∗, state)
If {m0, m1} � MsgSp or |m0| �= |m1| or m0 = m1

then Return 0
If ta0 = ta1 then Return 0
If ta0 /∈ TASet , ta1 /∈ TASet , id∗ /∈ IDSetta0

,
id∗ /∈ IDSetta1

then Return b′ else Return 0

Oracle KeyDer(ta, id)
IDSetta ← IDSetta ∪ {id}
uskid ,ta ← KeyDer(mskta , id)
Return uskid ,ta

Building Key-Private Public-Key Encryption Schemes 283

6.3 The Modified CHK Transform

Let Π ′ = {CommonSetup′, TASetup, KeyDer, Enc′, Dec′} be a multi-TA IBE
scheme for identities of length n.

Let Sig = {Gen, Sgn, Vrfy} be a one-time signature scheme in which the
verification keys output by Gen have length n.

Define Π = {CommonSetup, KeyGen, Enc, Dec} as follows

– CommonSetup: Runs CommonSetup′ to obtain params .
– KeyGen: Runs TASetup to obtain mpk ,msk . The public-key is PK = mpk

(PK includes params , as mpk by definition includes params) and the secret
key is SK = msk .

– Enc: To encrypt a message m using public-key PK , the sender first runs Gen
to obtain a verification key vk and the corresponding signing key sk (with
|vk | = n). Then, the sender computes c = Enc(PK ,m) = Enc′(mpk , vk ,m)
(i.e. the sender encrypts the message m with respect to identity vk for recip-
ient with public-key PK = mpk) and σ = Sgn(sk , c). The final ciphertext
is (vk , c, σ).

– Dec: To decrypt (vk , c, σ) using the secret key msk , the recipient first checks
whether Vrfy(vk , c, σ) ?= 1. If not, the receiver outputs ⊥. Otherwise, the
receiver computes uskvk = KeyDer(msk , vk) and outputs m = Dec(SK , c) =
Dec′(mpk , uskvk , c).

Theorem 1. If Π ′ is an IBE scheme which is selective-id r-m-IND-TAA-CPA
secure and Sig is a strongly secure one-time signature scheme, then Π is an
IND-IK-CCA secure PKE scheme.

Proof. Our proof follows closely the proof of [11] with suitable modifications to
reflect the setting of multiple users. In the following, expressions of the form
PrA,S [Event] denote the probability that an Event occurs when an adversary A
interacts with a scheme S in a specified security game.

Let A be an IND-IK-CCA adversary against Π . We say a ciphertext (vk , c, σ)
is valid if Vrfy(vk , c, σ) = 1. Let (vk∗, c∗, σ∗) denote the challenge ciphertext
received by A during a particular run of the experiment and let Forge denote
the event that A submits a valid ciphertext (vk∗, c, σ) to its decryption oracle.

Claim 1: PrA,Π [Forge] is negligible.

Proof of Claim 1: A is an IND-IK-CCA adversary against the PKE scheme
Π . We use A to construct an adversary F that forges a signature with respect
to the one-time signature scheme Sig , with probability PrA,Π [Forge].

F is given a verification key vk . F first runs KeyGen to obtain (PK 0,SK 0)
and (PK 1,SK 1). It gives A the two public-keys PK 0 and PK 1. Note that F can
answer any decryption queries of A.

If A happens to submit a valid ciphertext (vk∗, c, σ) to its decryption oracle
before requesting the challenge ciphertext then F simply outputs the forgery
(c, σ) and stops.

284 K.G. Paterson and S. Srinivasan

Otherwise, when A outputs messages m0 and m1, it chooses a random bit
b and computes c∗ = Enc′(mpk b, vk

∗, mb) and obtains from its signing oracle a
signature σ∗ on the message c∗, i.e. σ∗ = Sgn(sk , c∗) where sk is the signing key
corresponding to vk . F gives A the challenge ciphertext (vk∗, c∗, σ∗)

Subsequently, if A submits a valid ciphertext (vk∗, c, σ) to its decryption or-
acle, (note that we must have (c, σ) �= (c∗, σ∗)) F simply outputs (c, σ) as its
forgery.

It is easy to see that F ’s success probability is exactly PrA,Π [Forge].

Claim 2: |PrA,Π [Succ∧ Forge] + 1
2 PrA,Π [Forge] − 1

2 | is negligible.

Proof of Claim 2: We now use A to construct a selective-id r-m-IND-TAA-
CPA attacker B against the IBE scheme Π ′.

Adversary B acts as a Challenger for A as follows.
B runs Gen(1k) to obtain (sk∗, vk∗) and outputs a target identity id∗ = vk∗

to its Challenger C.
C gives B MPK , the set of all master public-keys in the multi-TA IBE scheme.

Adversary B gives A the two public-keys PK 0 = mpk ta0
and PK 1 = mpk ta1

.
A is a IND-IK-CCA attacker against the public-key scheme. When A makes

decryption queries on ciphertexts of the form (vk , c, σ), it specifies whether
it wants the decryption corresponding to PK 0 or PK 1. B answers decryption
queries as follows.

– If vk = vk∗ then B checks whether Vrfy(vk∗, c, σ) = 1. In this case, B does
not know the corresponding IBE secret key corresponding to the identity vk∗

and it is not allowed to make this query to its Challenger C. Consequently,
B aborts and outputs a random bit. If Vrfy(vk∗, c, σ) �= 1 then B responds
with ⊥.

– If vk �= vk∗ and Vrfy(vk , c, σ) �= 1 then B responds with ⊥.
– If vk �= vk∗ and Vrfy(vk , c, σ) = 1 then B,

• Makes the oracle query KeyDer(tai, vk) where PK i is specified in the
challenge query and obtains uskvk ,tai

.
• Computes m = Dec′(mpktai

, uskvk ,tai
, c) and responds with m.

At some point during the simulation A outputs two equal length messages
m0 and m1. B forwards (ta0,m0) and (ta1,m1) to its Challenger. B is given the
challenge ciphertext c∗ = Enc′(mpk tab

, id∗, mb). B computes σ∗ = Sgn(sk∗, c∗)
and gives A (vk∗, c∗, σ∗).

A continues to make decryption oracle queries which are answered by B as
before.

Finally A outputs a guess b′ and this same guess is output by B and B wins
if b′ = b. We note that B provides a perfect simulation for A as well as a legal
strategy for attacking the IBE scheme. In particular it never requests the secret
key corresponding to the target identity vk∗ for either of the target TAs.

Therefore we have

|PrB,Π′ [Succ] − 1
2 | = |PrA,Π [Succ ∧ Forge] + 1

2 · PrA,Π [Forge] − 1
2 |.

Building Key-Private Public-Key Encryption Schemes 285

Claim 2 then follows as we know the left hand side of the above equation is
negligible by the assumed security of the IBE scheme.

Finally, we have

|PrA,Π [Succ] − 1
2 |

≤ |PrA,Π [Succ ∧ Forge] − 1
2 · PrA,Π [Forge]|

+|PrA,Π [Succ ∧ Forge] + 1
2 PrA,Π [Forge] − 1

2 |
≤ 1

2 · PrA,Π [Forge] + |PrA,Π [Succ ∧ Forge] + 1
2 PrA,Π [Forge] − 1

2 |.

The proof of the result follows from the proofs of claims 1 and 2.

7 Anonymity of Standard Model IBE Schemes

To obtain a standard-model-secure key-private PKE scheme by applying the
CHK transform, we need a multi-TA IBE scheme that is suitably TA anonymous
under chosen plaintext attacks, in the standard model. While the TA anonymity
of multi-TA versions of some popular IBE schemes in the Random Oracle Model
has been previously studied in [21], the TA anonymity of multi-TA versions of
standard model IBE schemes has not as yet been investigated.

A multi-TA version of the BB1 IBE scheme from [5] can be sketched similar
to the multi-TA version of Gentry’s IBE scheme in section 7.1

We can easily show that such a multi-TA BB1 scheme is not TA anonymous.
Let us consider an adversary that requests the encryption of a message m to
identity id in either ta0 or ta1, in its challenge. The challenge ciphertext it
receives is of the form:

c∗ = (ê(g1, g2)s · m, gs, F (id)s) = (A, B, C).

Since
paramsta0

= (params , g1, g2, ê(g1, g2), h, F)

and
paramsta1

= (params , g′1, g
′
2, ê(g

′
1, g

′
2), h

′, F ′)

the adversary simply checks if

ê(B, g1
id · h) = ê(C, g) or ê(B, g′1

id · h′) = ê(C, g)

to find, with overwhelming probability, which TA’s parameters were used.
Multi-TA analogues of schemes related to the BB1 scheme, such as those of

Waters [24] and Naccache [19], as well as the multi-TA analogue of the BB2
scheme [5], are also not TA anonymous for similar reasons.

The original scheme by Gentry [15] is recipient anonymous and we now show
that a multi-TA version of this scheme is TA anonymous.

286 K.G. Paterson and S. Srinivasan

7.1 Multi-TA Gentry

We first sketch a multi-TA version of Gentry’s IBE scheme. We assume identities
are elements in Z∗

p and messages are elements in GT . Later, we will need identities
that are bit-strings of a fixed length; such identities can easily and securely be
converted into elements of Z∗

p by applying a suitable collision-resistant hash
function.

CommonSetup(1k):

– (G, GT , e, p, g) ← PairingGen(1k).
– Output params = (G, GT , e, p, g).

TASetup(params):

– Pick α
$← Z∗

p. Set g1 = gα.

– Pick h
$← G.

– Define function
F : Z∗

p → G st F (x) = g1 · g−x.
– Set mpk =

(params , g1, h, e(g, g), e(g, h), F).
– Set msk = α.
– Output (mpk ,msk).

KeyDer(ta, id):

– Pick rid
$← Z∗

p.
– Output uskta ,id = (rid , hid)

where hid = (h · g−rid)
1

α−id .

Enc(ta , id ,m):

– Pick s
$← Z∗

p.
– Output c =

(F (id)s, e(g, g)s, e(g, h)−s · m).

Dec(ta , id , c):

– Parse c as (u, v, w).
– Parse uskta ,id as (d0, d1).
– Output m = w · e(u, hid)vrid .

The Multi-TA Gentry scheme.

Anonymity of Multi-TA Gentry: We will first show that the multi-TA ver-
sion of Gentry’s IBE scheme meets the r-m-IND-RA-TAA-CPA security notion
under the q-TDABDHE assumption. This gives us a reduction that has tightness
similar to the original single-TA scheme. Our proof follows closely the proof of
[15] with suitable modifications to reflect the multi-TA setting.

Theorem 2. Let q = qid + 1 where qid is the maximum number of private
key extraction queries allowed by the adversary per TA. Assume the (t, ε, q)-
TDABDHE assumption holds in (G, GT). Then, the above multi-TA IBE scheme
is (t′, ε′, qid) r-m-IND-RA-TAA-CPA secure for t′ = t − O(texp · n · q2) and
ε′ = ε + (4/p) where texp is the time required to exponentiate in G.

Proof. The proof is given in the appendix.

The above proof can be modified slightly to enable B to respond to Corrupt
queries as well, thereby giving us a proof of security for the m-IND-RA-TAA-
CPA security for the multi-TA version of Gentry’s IBE scheme, under the same
assumptions:

Building Key-Private Public-Key Encryption Schemes 287

Theorem 3. Let q = qid + 1 where qid is the maximum number of private
key extraction queries allowed by the adversary per TA. Assume the (t, ε, q)-
TDABDHE assumption holds in (G, GT). Then, the above multi-TA IBE scheme
is (t′, ε′, qid) m-IND-RA-TAA-CPA secure for t′ = t − O(texp · n · q2) and
ε′ = (ε + (4/p)) ·

(
n
2

)
where texp is the time required to exponentiate in G.

Proof. B simply generates two related q-TDABDHE challenges from the original
input challenge and uses these to respond to private key extraction queries for
two specific TAs indexed by tax, tay ∈ T . It cannot respond to Corrupt queries
on these two TAs and the success of the proof relies on A choosing these two
TAs in its Challenge query (thereby reducing the tightness of the reduction).

For all other TAs {tai ∈ T : i �= x, i �= y}, B simply generates the master
public-keys and master secret keys itself and can therefore respond to private
key extraction and Corrupt queries on these TAs. Further details are similar to
the proof of Theorem 2.

Final Observations: The multi-TA version of Gentry’s IBE scheme that we
have given meets stronger notions of security than those required for the appli-
cation of Theorem 1. We can therefore instantiate the modified CHK transform
with the multi-TA version of Gentry’s IBE scheme (and any strongly secure one-
time signature scheme) to obtain an IND-IK-CCA PKE scheme. This scheme is
quite efficient. Ciphertexts consist of 3 group elements plus a signature and a
verification key from the one-time signature scheme. Encryption and decryption
cost roughly the same as encryption and decryption in Gentry’s scheme, with
the additional requirement of generating or verifying one-time signatures.

8 Conclusion and Future Work

We have shown that the key-privacy of the PKE scheme resulting from the appli-
cation of the CHK transform follows from the TA anonymity of the underlying
IBE scheme, giving us the first generic method to construct a key-private PKE
scheme. We have investigated various IBE schemes in the standard model and
shown that a multi-TA version of Gentry’s IBE scheme meets the notion of TA
anonymity. We have also constructed a key-private PKE scheme by instantiating
the CHK transform with the multi-TA version of Gentry’s IBE scheme.

We believe that the relatively new notion of TA anonymity in the setting of
multiple TAs has rather subtle cryptographic implications on schemes that use
IBE as a building block, but these have not been studied rigorously. For example,
Holt [16] also considered security of IBE in the multi-TA setting, motivated by
earlier work on anonymous credential systems [17,9]. However, the TA anonymity
requirements for these applications are yet to be formally investigated.

Acknowledgements

This research was sponsored in part by the US Army Research Laboratory and
the UK Ministry of Defence and was accomplished under Agreement Number

288 K.G. Paterson and S. Srinivasan

W911NF-06-3-0001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the US Army Research Laboratory, the
US Government, the UK Ministry of Defense, or the UK Government. The US
and UK Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

The second author is supported by a Dorothy Hodgkin Postgraduate Award,
funded by EPSRC and Vodafone and administered by Royal Holloway, University
of London.

We are grateful to the anonymous referees for valuable comments and sugges-
tions and Gaven Watson for proofreading parts of this work.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Boklan, K.D., Klagsbrun, Z., Paterson, K.G., Srinivasan, S.: Flexible and Secure
Communications in an Identity-Based Coalition Environment. In: IEEE Military
Communications Conference, 2008. MILCOM 2008, pp. 1–6 (2008)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin and Camenisch [10], pp. 223–238

6. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

7. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

8. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

9. Bradshaw, R.W., Holt, J.E., Seamons, K.E.: Concealing complex policies with
hidden credentials. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Con-
ference on Computer and Communications Security, pp. 146–157. ACM, New York
(2004)

10. Cachin, C., Camenisch, J.L. (eds.): EUROCRYPT 2004. LNCS, vol. 3027. Springer,
Heidelberg (2004)

11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin and Camenisch [10], pp. 207–222

12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

Building Key-Private Public-Key Encryption Schemes 289

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk [18], pp. 13–25

14. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Cryp-
tology ePrint Archive, Report 2006/165 (2006), http://eprint.iacr.org/

15. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

16. Holt, J.E.: Key privacy for identity based encryption. Cryptology ePrint Archive,
Report 2006/120 (2006), http://eprint.iacr.org/

17. Holt, J.E., Bradshaw, R.W., Seamons, K.E., Orman, H.K.: Hidden credentials. In:
Jajodia, S., Samarati, P., Syverson, P.F. (eds.) WPES, pp. 1–8. ACM Press, New
York (2003)

18. Krawczyk, H. (ed.): CRYPTO 1998. LNCS, vol. 1462. Springer, Heidelberg (1998)
19. Naccache, D.: Secure and practical identity-based encryption. Information Security,

IET 1(2), 59–64 (2007)
20. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-

phertext attacks. In: STOC, pp. 427–437. ACM Press, New York (1990)
21. Paterson, K.G., Srinivasan, S.: Security and anonymity of identity-based encryption

with multiple trusted authorities. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing
2008. LNCS, vol. 5209, pp. 354–375. Springer, Heidelberg (2008)

22. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000
Sympoium on Cryptography and Information Security, Okinawa, Japan, January
2000, pp. 26–28 (2000)

23. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

Appendix

Proof of Theorem 2

Proof. Let A be an adversary that (t′, ε′, qid) breaks the r-m-IND-RA-TAA-CPA
security of the multi-TA Gentry IBE scheme described. Here qid is the maximum
number of private key extraction queries allowed by the adversary per TA. We
construct an algorithm B that solves the q-TDABDHE problem, as follows.

B takes as input a random q-TDABDHE challenge (g′, g′q+2, g1, g2, . . . , gq, Z)
where Z is either e(gq+1, g

′) or a random element of GT and the expected addi-
tional inputs (G, GT , e, p, g). (Recall that gi = g(αi).)

Algorithm B proceeds as follows.
For an n TA system, T = {tai : 1 ≤ i ≤ n} represents the set of (labels

of) TAs, where n = n(k) ∈ N. B uses the input challenge to generate n re-
lated q-TDABDHE challenges, one for each TA in T . Let CHALi denote the
q-TDABDHE corresponding to tai ∈ T .

For tai ∈ T , B first draws βi
$← Z∗

p and sets CHALi equal to:

(g′, g′q+2
(βi

(q+2))
, g1

(βi), g2
(βi

2), . . . , gq
(βi

q), Z(βi
(q+1)))

http://eprint.iacr.org/
http://eprint.iacr.org/

290 K.G. Paterson and S. Srinivasan

or
(g′, g′((αβi)q+2)

, g((αβi)), g((αβi)2), . . . , g((αβi)q), Z(βi
(q+1))).

We make a few important observations. Firstly, note that if Z = e(gq+1, g
′)

then Z(βi
(q+1)) is the correct response for the corresponding input challenge

CHALi. That is, if the original input q-TDABDHE challenge is drawn from
PABDHE , then so are all the CHALis. Similarly, if Z is random in GT then
so is Z(βi

(q+1)), i.e. if the original challenge is drawn from RABDHE then so are
all the CHALis.

Secondly, we note that the g′ value is the same in all the n “related” challenges.
This does not present a problem as g′ is used only once to construct the challenge
ciphertext.

– CommonSetup: B sets params equal to (G, GT , e, p, g).
– Setup: For each tai ∈ T , B generates a random polynomial fi(x) ∈ Zp[x] of

degree q. It sets hi = gfi(αβi), computing hi from g, g1
(βi), g2

(βi
2), . . . , gq

(βi
q).

It sets the public-key for tai to mpk i = (params , g1
(βi), hi, e(g, g), e(g, hi), Fi)

where Fi : Z∗
p → G is such that Fi(x) = g1

βi · g−x and sends all the n
master public-keys to A. Since g, α are uniformly random, the βi values and
the polynomials fi(x) are chosen uniformly at random, the g1

(βi) and hi

values are also uniformly random. Therefore the master public-keys have a
distribution identical to that in an actual construction. (At this stage, we
have essentially succeeded in using the single q-TDABDHE challenge to set
up n independent TAs.)

– Phase 1: A makes key generation queries on (ta, id). B responds to a query
on ta = tai ∈ T and id ∈ Z∗

p as follows.
B checks if gid = gαβj in each CHALj . If the equality holds, this implies that
id = αβj and B uses αβj to solve the q-TDABDHE challenge immediately
by computing the target response to the challenge itself.
Else, let Fid,i(x) denote the q − 1 degree polynomial

Fid,i(x) = (fi(x) − fi(id))/(x − id).

B sets the private key for id in tai to

(rid,i, hid,i) = (fi(id), gFid,i(αβi)).

This is a valid private key since gFid,i(αβi) = (hi · g−fi(id))1/(αβi−id).
– Challenge: A outputs TAs ta0, ta1 (which correspond to tax and tay ∈ T

respectively), identities id0, id1 and messages m0,m1.
Again, as in phase 1, B checks if either of gid 0 or gid 1 is equal to gαβj in
each CHALj . If the equality holds, this implies that one of id0 or id1 is equal
to αβj and B uses αβj to solve the q-TDABDHE challenge immediately by
computing the target response to the challenge itself.
Else, B generates a bit b ∈ {0, 1} and computes a private key didb,x =
(ridb,x, hidb,x) for id b in tax if b = 0 or didb,y = (ridb,y, hidb,y) for id b in tay

if b = 1 as in Phase 1.

Building Key-Private Public-Key Encryption Schemes 291

Now, let g2(x) = x(q+2) and F2,idb
(x) = (g2(x) − g2(idb))/(x − idb) which is

a (q + 1) degree polynomial. Then F2,idb
(x) can be written as

F2,idb
(x) =

q+1∑

i=0

F2,idb,i · xi = xq+1 +
q∑

i=0

F2,idb,i · xi

where F2,idb,i is the coefficient of xi in F2,idb
(x).

B sets the ciphertext c = (u, v, w) as follows. In the following β = βx corre-
sponding to tax if b = 0 or β = βy corresponding to tay if b = 1.
B sets u = g′(g2(αβ)−g2(idb)), v = Z(β(q+1)) · e(g′,

∏q
i=0 gF2,idb,i·(αβ)i

)
and w = m0/(ê(u, hid0,x) · vrid0,x) if b = 0 and w = m1/(ê(u, hid1,y) · vrid1,y)
if b = 1.
To see that c = (u, v, w) is a valid and appropriately distributed ciphertext
when Z = e(gq+1, g

′), first let s = logg(g′) · F2,idb
(αβ).

Note that s is uniformly random as logg(g
′) is uniformly random and the βi

values are chosen uniformly at random. We will show that c is constructed
using “implicit” randomness s. Now

g′ = gs/(F2,idb
(αβ)) = g(s(αβ−idb))/(g2(αβ)−g2(idb)).

Therefore, u = gs(αβ−idb). If Z is a random element in GT then v is random
in GT . On the other hand, if Z = e(gq+1, g

′), then v = e(g, g)s since it can
be shown that

e(g′,
q∏

i=0

gF2,idb,i·(αβ)i

) = e(g′, gF2,idb
(αβ)−(αβ)q+1

)

and therefore, it can be shown that

v = Z(β(q+1)) · e(g′,
q∏

i=0

gF2,idb,i(αβ)i

) = e(g, g)s.

Finally, note that for any private key didb,i = (ridb,i, hidb,i) corresponding to
tai ∈ T , it can be shown that

e(u, hidb,i) · vridb,i = e(g, hi)s.

Therefore, w = mb · e(g, hx)−s if b = 0 and w = mb · e(g, hy)−s if b = 1.
– Phase 2: A continues to make key extraction queries and B responds as in

Phase 1.
– Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. If b = b′ then B

outputs 0 indicating that Z = e(gq+1, g
′); otherwise, it outputs 1.

We have already shown that the public-keys and ciphertexts are appropriately
distributed. We now show that the private keys issued by B are appropriately
distributed as well. If Ii denotes the set consisting of αβi, id b and all the identities
queried by A for tai then |Ii| ≤ (q + 1). Then, from A’s view the values {fi(a) :
a ∈ I} are uniformly random and independent and this follows from the fact
that fi(x) is a uniformly random polynomial of degree q.

292 K.G. Paterson and S. Srinivasan

Probability Analysis: As we have already seen, if Z = e(g(q+1), g
′), then the

simulation is perfect and A will guess the bit b with probability (1/2) + ε′.
On the other hand, if Z is a random element in GT then, u, v are uniformly

random and independent elements in G, GT respectively. It remains to reason
about w.

Now, w = mb/(ê(u, hidb,i) · vridb,i) where i is x or y corresponding to tax or
tay. The value in the denominator can be expressed as follows:

e(u, hidb,i) · vridb,i = e(u, hi)1/(αβi−idb) · (v/e(u, g)1/(αβi−idb))fi(idb).

Now fi(idb) is independent of A’s view. Therefore as long as the inequalities
v �= e(u, g)1/(αβx−id0), v �= e(u, g)1/(αβx−id1) and v �= e(u, g)1/(αβy−id0), v �=
e(u, g)1/(αβy−id1) hold (and they hold with probability (1 − 4/p)), the value
e(u, hidb,i) · vridb,i is random and independent of A’s view. Consequently the
value w is random and independent of A’s view. This implies that if Z is a
random element then (u, v, w) can impart no information regarding the bit b.

Assuming that no queried identity equals αβj such that gαβj is in one of the
challenges CHALj , (which would only increase B’s success probability), we can
see that:

∣
∣
∣Pr(B(g′, g′(q+2), g1, g2, . . . , gq, e(g(q+1), g

′), Z) = 1) − 1/2
∣
∣
∣ ≤ (4/p)

when (g′, g′(q+2), g1, g2, . . . , gq, e(g(q+1), g
′), Z) is sampled from RABDHE .

However,
∣∣
∣Pr(B(g′, g′(q+2), g1, g2, . . . , gq, e(g(q+1), g

′), Z) = 1) − 1/2
∣∣
∣ ≥ ε′

when (g′, g′(q+2), g1, g2, . . . , gq, e(g(q+1), g
′), Z) is sampled from PABDHE .

Thus, for uniformly random g, g′, α, Z we have:

|Pr(B(g′, g′(l+2), g1, g2, . . . , gl, e(g(l+1), g
′))

−Pr(A(g′, g′(l+2), g1, g2, . . . , gl, Z)| ≥ ε′ − (4/p).

Time-Complexity: In the simulation, B’s overhead is dominated by computing
gFid,i(αβi) in response to A’s key generation query on identity id for tai ∈ T ,
where Fid,i(x) is a polynomial of degree (q−1). Each such computation requires
O(q) exponentiations in G. Since A makes at most (q − 1) such queries for each
TA, t = t′ + O(texp · n · q2).

Multi-recipient Public-Key Encryption
from Simulators in Security Proofs

Harunaga Hiwatari1, Keisuke Tanaka2,
Tomoyuki Asano1, and Koichi Sakumoto1

1 Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo, 108-0075, Japan

{Harunaga.Hiwatari,Tomoyuki.Asano,Koichi.Sakumoto}@jp.sony.com
2 Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
keisuke@is.titech.ac.jp

Abstract. In PKC 2003, Bellare, Boldyreva, and Staddon proposed
the reproducibility test. The test determines whether a single-recipient
public-key encryption scheme is adapted to transform into an efficient
multi-recipient public-key encryption scheme. In this paper, we propose a
new approach to design an efficient multi-recipient single-message public-
key encryption scheme. We focus on a certain simulator which appears in
the security proof of an ordinary (single-recipient) public-key encryption
scheme. By considering the behavior of the simulator, we construct two
efficient multi-recipient single-message public-key encryption schemes.
These schemes show that there exist schemes which can be transformed
into efficient multi-recipient schemes, even they do not pass the repro-
ducibility test.

Keywords: public-key encryption, multi-recipient, broadcast encryp-
tion, simulator, IND-CCA.

1 Introduction

1.1 Background

Multi-recipient public-key encryption (PKE) is a technology to encrypt mes-
sages for several recipients. Suppose that there are n recipients. In a trivial
multi-recipient PKE scheme, a ciphertext consists of n independently encrypted
messages by an ordinary (single-recipient) PKE scheme. However, this trivial
scheme requires n times of the encryption cost and the ciphertext length of the
underlying single-recipient PKE scheme. In [13], Kurosawa constructed more
efficient schemes from specific single-recipient PKE schemes by reusing the ran-
domness across the single-recipient PKE algorithms with the distinct public
keys of the recipients. This randomness-reuse technique produces efficient multi-
recipient PKE schemes, however, may weaken the security.

In order to provide a generic construction of secure and efficient multi-recipient
PKE schemes from single-recipient ones, Bellare, Boldyreva, and Staddon [2] in-
troduced the notion of reproducibility. This notion is used to determine whether

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 293–308, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

294 H. Hiwatari et al.

the randomness-reuse technique for the single-recipient PKE scheme maintains
the security of the multi-recipient PKE scheme.

In [2,13], they also proposed multi-recipient single-message PKE schemes
which allow a sender to broadcast a single message for all recipients. They con-
structed these schemes as hybrid versions.

In [15], Smart proposed the MKEM/DEM framework as a multiple-recipient
version of the KEM/DEM framework. He divided a multi-recipient single-message
hybrid encryption scheme into a multi-recipient key encapsulation mechanism
(MKEM) and a data encapsulation mechanism (DEM). An MKEM is used to
encrypt a single session key for multiple recipients.

In [2,13,15], they also proposed the MKEMs by using the same structure such
that:

1. Generate a single session key at random.
2. Encrypt the session key by using a multi-recipient single-message PKE scheme.
3. Output the session key and the ciphertext of it.

In the above structure, they require a multi-recipient single-message PKE scheme.
It is the difference between a PKE and a KEM whether the encrypted data

is a message chosen by sender or a random string. In general, a KEM is more
efficient than a PKE scheme. If an MKEM can be constructed without using a
multi-recipient single-message PKE scheme, one might design a more efficient
MKEM. Two different techniques which realize such MKEMs were proposed
in [1,10,16].

pk1, ..., pkn

KEM KEM

pk1

φn

pkn...

...

dk1 dkn...

DEM DEM χn
...PRNG

dk dk

dk

φ1

χ1

MKEM

Fig. 1. The structure of the MKEM proposed in [16]

In [16], Yasuda, Kobayashi, Aoki, Fujisaki, and Fujioka proposed a generic
transformation from KEMs and DEMs into an MKEM. We describe the structure
of the MKEM in Fig. 1 and the procedure as follows:

1. Generate a single session key dk at random.
2. Generate multiple intermediate keys (dk1, dk2, . . . , dkn) and their ciphertexts

(φ1, φ2, . . . , φn) by invoking a KEM multiple times with distinct user’s public
keys (pk1, pk2 . . . , pkn).

Multi-recipient Public-Key Encryption from Simulators in Security Proofs 295

3. Encrypt the session key dk by using a DEM with intermediate key dki for
each i ∈ {1, . . . , n}.

4. Output the session key dk, the multiple ciphertexts of the session key
(χ1, χ2, . . . , χn), and the ciphertexts of the intermediate keys (φ1, φ2, . . . , φn).

In general, a KEM does not guarantee to generate a same session key with
distinct public keys. Their idea is to encrypt a single session key with distinct
intermediate keys of the users by using a DEM. This technique can be applied
to any KEM. If we apply the conversion to the Kurosawa-Desmedt scheme [14],
we can obtain an efficient MKEM. However, a DEM is invoked multiple times
in the resulting scheme. They proved its security by using the hybrid argument,
and the reduction efficiency of the security proof becomes lower in proportion
to the number of the recipients.

In [1], Barbosa and Farshim proposed a KEM. The proposed KEM can guar-
antee to generate the same session key when using the same random coin with
distinct public keys. This property allows us to convert the KEMs into the
MKEMs without using a DEM. We describe the structure of MKEM in Fig. 2
and the procedure as follows:

1. Using the randomness-reuse technique, generate a session key dk and cipher-
texts (φ1, φ2, . . . , φn) by invoking a KEM multiple times with distinct user’s
public keys (pk1, pk2 . . . , pkn). Note that although we do not explicitly state
for illustrative purposes, one can batch the same computation and ciphertext
by using the randomness-reuse technique.

2. Output the session key dk and the multiple ciphertexts of the session key
(φ1, φ2, . . . , φn).

Since the MKEM consists of a KEM without a DEM, one may prove the security
of the MKEM without using the hybrid argument. Therefore, the reduction
efficiency of the security proof may be tight. However, proving the security of
the proposed KEM in [1] remains as an open problem.

pk1, ..., pkn

KEM KEM

pk1

φn

pkn...

...

dk dk...

dk

φ1

MKEM

...

Fig. 2. The structure of the MKEM proposed in [1]

296 H. Hiwatari et al.

In [10], Hofheinz and Kiltz proposed a provable secure and more efficient KEM
which has the above property. Both of the proposed schemes in [1] and [10] were
designed by modifying specific single-recipient KEMs.

1.2 Our Contribution

We propose a new approach to design efficient MKEMs which have the structure
described in Fig. 2. We focus on a certain simulator which appears in the secu-
rity proof of a single-recipient PKE scheme. By observing the behavior of the
simulator, we construct two efficient MKEMs based on the schemes proposed
in [5] and [9], respectively.

The proposed scheme based on [5] is the most efficient scheme among the
MKEMs which are secure against chosen-ciphertext attacks under the hashed
decisional Diffie-Hellman (HDDH) assumption without MAC. The other pro-
posed scheme based on [9] is one of the most efficient schemes among the
MKEMs whose reduction efficiency of the security proof is tight, and which is
secure against constrained chosen-ciphertext attacks introduced in [11] under the
HDDH assumption.

Our constructions show that there exist single-recipient PKE schemes which
can be transformed into efficient multi-recipient schemes, even they do not pass
the reproducibility test.

1.3 Relation to Broadcast Encryption

MKEM is related to a previously proposed primitive called public-key broadcast
encryption [3]. This primitive requires the key generation center to generate
public/secret key pairs of all users at the setup phase. In MKEM, each user
generates its own public/secret key pair by themselves. Therefore, users can join
the system any time without help of the third party. On the other hand, in
many broadcast encryption schemes, the number of users must be fixed at the
setup phase. There are only few schemes with the dynamic join property, e.g.,
recently proposed scheme in [8]. Even in these schemes, users must require the
key generation center to generate their own key pairs when they join the system.

1.4 Organization

The organization of this paper is as follows. In Section 2, we review some defi-
nitions. In Section 3, we propose a new approach to design efficient MKEMs. In
Section 4 and 5, we construct new schemes. We conclude in Section 6.

2 Preliminaries

2.1 Hashed Decisional Diffie-Hellman Assumption

In this section, we review the definition of the hashed decisional Diffie-Hellman
(HDDH) assumption.

Multi-recipient Public-Key Encryption from Simulators in Security Proofs 297

Let G be an abelian group of order p, where p is a large prime, and let
h : G → D be a function.

Definition 1. For a probabilistic polynomial-time algorithm A that outputs a
single bit, we define Advhddh,A to be

| Pr
g∈RG,x,y∈RZp

[A(g, gx, gy, h(gxy)) = 1]

− Pr
g∈RG,x,y∈RZp,Z∈RD

[A(g, gx, gy, Z) = 1]|.

The hashed decisional Diffie-Hellman (HDDH) assumption is that, for any A,
Advhddh,A is at most εhddh as a negligible function of the security parameter.

If h is the identity function from G to G, the above assumption is identical to
the HDDH assumption. It is known that the HDDH assumption is not stronger
than the DDH assumption.

2.2 Target Collision Resistant Hash Function

In this section, we review the definition of the target collision resistant hash
function.

Definition 2. For a probabilistic polynomial-time algorithm A, we define
Advtcr,A to be

Pr
x∈RG,h∈RH

[A(x, h) = y|h(x) = h(y)]

where h ∈ H is a hash function and G is a domain of this function. H is target
collision resistant family of hash functions if for any A, Advtcr,A is at most εtcr

as a negligible function of the security parameter.

2.3 Key Encapsulation Mechanisms

In this section, we review the KEM/DEM framework which is used for construc-
tion of secure hybrid encryption schemes [7].

Hybrid encryption schemes are a kind of PKE scheme which use PKE tech-
niques for key distribution and secret-key encryption techniques for message
encryption. If we encrypt a message using a hybrid encryption scheme, we take
the two steps as follows.

1. Generate a random session key and a ciphertext of it using public key en-
cryption techniques with recipient’s public key.

2. Encrypt the message using symmetric key encryption techniques with the
session key which is generated in step 1.

Cramer and Shoup showed that these two steps can be separated and security
criteria can be defined for each section individually [7]. The first and second steps
are known as key encapsulation mechanisms (KEM) and data encapsulation
mechanisms (DEM), respectively.

The KEMs consist of the following algorithms. Through this paper, we use λ
and KD to describe a security parameter and a key space of DEM, respectively.

298 H. Hiwatari et al.

– A probabilistic polynomial-time common-key generation algorithm Gkem,
which takes as input a security parameter 1λ, outputs a common key I.
For given I, a randomness space R(I) is uniquely determined.

– A probabilistic polynomial-time key generation algorithm Kkem, which takes
as input a common key I, outputs a public/secret key pair (pk, sk).

– A probabilistic polynomial-time encryption algorithm Ekem, which takes as
input a common key I and a public key pk, outputs a pair (dk, φ) where dk is
a key for DEM and φ is a ciphertext of dk, using a random coin r ∈R R(I).

– A deterministic polynomial-time decryption algorithm Dkem, which takes as
input a common key I, a secret key sk and a ciphertext φ, outputs a key dk
or the special symbol reject.

A common-key generation algorithm is usually omitted or included in a key
generation algorithm. In this paper, for convenience of explanation, we explicitly
describe the common-key generation algorithm. A common key I may include
the description of group and hash function.

We require that, for any λ ∈ N, if I ← Gkem(1λ) and (pk, sk) ← Kkem(I),

Pr
r∈RR(I)

[dk �= Dkem(sk, φ, I)|(dk, φ) ← Ekem(pk, I; r)] ≤ ε,

where ε denotes negligible.
We review the indistinguishability against chosen ciphertext attacks (IND-

CCA) for KEM.

Definition 3. Let Πkem = (Gkem,Kkem, Ekem,Dkem) be a KEM and let A be
an adversary. For λ ∈ N, we define the advantage of A as

Advind-cca
Πkem,A(λ) = |Pr[Expind-cca-0

Πkem,A (λ) = 1] − Pr[Expind-cca-1
Πkem,A (λ) = 1]|

where, for b ∈ {0, 1},

Experiment Expind-cca-b
Πkem,A (λ)

I ← Gkem(1λ); (pk, sk) ← Kkem(I);
(dk0, φ

∗) ← Ekem(pk, I); dk1 ∈R KD; b ∈R {0, 1};
d ← AO(dkb, φ

∗, pk, I);
return d

where O answers Dkem(sk, φ, I), when A queries φ (�= φ∗). We say that Πkem

is secure in the sense of IND-CCA, if for any A, Advind-cca
Πkem,A(λ) is negligible.

2.4 Multi-recipient KEMs

In this section, we review the definition of MKEMs which are introduced by
Smart [15]. A multi-recipient hybrid encryption scheme consists of MKEM and
DEM. The MKEMs are defined similarly to KEMs, however, the encryption
algorithm takes multiple public keys pk (:= (pk1, pk2, . . . , pkn)) as input.

Multi-recipient Public-Key Encryption from Simulators in Security Proofs 299

– A probabilistic polynomial-time common-key generation algorithm Gmkem,
which takes as input a security parameter 1λ, outputs a common key I.

– A probabilistic polynomial-time key generation algorithm Kmkem, which
takes as input a common key I, outputs a public/secret key pair (pk, sk).

– A probabilistic polynomial-time encryption algorithm Emkem, which takes as
input a common key I and a vector of public keys pk = (pk1, pk2, . . . , pkn),
outputs a pair (dk, φ) where dk is a key for DEM and φ is a ciphertext of
dk.

– A deterministic polynomial-time decryption algorithm Dmkem, which takes
as input a common key I, a ciphertext φ, a secret key ski, and an index i
which corresponds to the index of pki used in the Emkem algorithm, outputs
a key dk or the special symbol reject.

We review IND-CCA for MKEM.

Definition 4. Let Πmkem = (Gmkem,Kmkem, Emkem, Dmkem) be a MKEM and
let A be an adversary. For λ ∈ N, we define the advantage of A as

Advind-cca
Πmkem,A(λ) = |Pr[Expind-cca-0

Πmkem,A(λ) = 1] − Pr[Expind-cca-1
Πmkem,A(λ) = 1]|

where, for b ∈ {0, 1},

Experiment Expind-cca-b
Πmkem,A(λ)

I ← Gmkem(1λ);
for i = 1, . . . , n

(pki, ski) ← Kmkem(I);
(dk0, φ

∗) ← Emkem(pk, I); dk1 ∈R KD; b ∈R {0, 1};
d ← AO(dkb, φ

∗, pk, I);
return d

where O is the decryption oracle. It answers Dmkem(i, ski, φ, I), when A queries
(i, φ) such that the ciphertext φ does not contain a target ciphertext for user i. We
say that Πmkem is secure in the sense of IND-CCA, if for any A, Advind-cca

Πmkem,A(λ)
is negligible.

2.5 Constrained Chosen-Ciphertext Security for MKEMs

Hofheinz and Kiltz [11,10] proposed a relaxed security notion of IND-CCA, which
is called indistinguishable against constrained chosen ciphertext attacks (IND-
CCCA). Intuitively, an adversary A is only allowed to make a decryption query
when A already has some a priori knowledge about the session key. They denoted
the priori knowledge by an efficiently computable boolean predicate pred : KD →
{0, 1}. If pred(dk) = 1, then the session key is returned, and ⊥ otherwise. They
showed that though IND-CCCA was weaker than IND-CCA, IND-CCCA KEM
was sufficient for constructing a secure hybrid encryption scheme if authenticated
symmetric encryption scheme was used as a DEM.

300 H. Hiwatari et al.

We can easily extend the above composition theorem for MKEM/DEM frame-
work. The IND-CCCA security for MKEM is defined as follows.

Definition 5. Let Πmkem = (Gmkem,Kmkem, Emkem, Dmkem) be a MKEM and
let A be an adversary. For λ ∈ N, we define the advantage of A as

Advind-ccca
Πmkem,A(λ) = |Pr[Expind-ccca-0

Πmkem,A(λ) = 1]

− Pr[Expind-ccca-1
Πmkem,A(λ) = 1]|

where, for b ∈ {0, 1},

Experiment Expind-ccca-b
Πmkem,A(λ)

I ← Gmkem(1λ);
for i = 1, . . . , n

(pki, ski) ← Kmkem(I);
(dk0, φ

∗) ← Emkem(pk, I); dk1 ∈R KD; b ∈R {0, 1};
d ← ACO(dkb, φ

∗, pk, I);
return d

where CO is the constrained decryption oracle. When A issues a query (i, φ, pred)
to CO, if pred(Dmkem(i, ski, φ, I)) = 1, then the session key is returned, and ⊥
otherwise. We define uncertA = (1/Qd)

∑
1≤j≤QD

Prdk∈RKD [predj(dk) = 1].
The adversary A must control uncertA to be negligible. We say that Πmkem is
secure in the sense of IND-CCCA, if for any A, Advind-ccca

Πmkem,A(λ) is negligible.

3 Our Approach for Construction of MKEMs

Bellare, Boldyreva, and Staddon [2] introduced the notion of reproducibility.
Intuitively, if a PKE scheme is reproducible, one can convert a ciphertext which
is an encryption of message m1 for user ua into another ciphertext which is an
encryption of message m2 for user ub without changing a randomness used in
these ciphertexts.

This notion is used to determine whether the randomness-reuse technique for
the single-recipient PKE scheme maintains the security of the multi-recipient
PKE scheme. The reproducibility test is useful, however the reduction efficiency
of the security proof of the multi-recipient PKE scheme becomes lower in pro-
portion to the number of recipients. They also proposed concrete schemes whose
reduction efficiency is tight by using the random self-reducibility of the discrete
logarithm problem, however these multi-recipient PKE schemes are not obtained
through the reproducibility test.

Barbosa and Farshim [1] proposed weakly reproducibility for multi-recipient
single-message PKE schemes, by restricting the reproducibility test to be used in
the single message setting. They also proposed the direct reproducibility test to
construct schemes whose reduction efficiency is tight. However, all of the above

Multi-recipient Public-Key Encryption from Simulators in Security Proofs 301

reproducibility tests are not used to construct efficient MKEMs, since a session
key of each user becomes different, even using the randomness-reuse technique.

We observe that the above proposed reproducibility tests are designed based
on the behavior of a simulator which appears in the security proof of PKE
schemes. The simulator runs as follows:

1. Obtain an instance of the problem that the simulator tries to solve (e.g. the
DDH instance).

2. Generate public key from the instance as an input to an adversary against
the PKE.

3. Construct a target ciphertext from the instance and the public key.

In fact, if a scheme passes the test, we can construct another simulator which
given a public key, can simulate the environment of an adversary against the
multi-recipient scheme.

Although the previous results capture the above behavior of the simulator,
we consider that they do not capture another type of simulator which uses an
algebraic trick from selective-ID secure identity-based encryption. We call such a
simulator the sID simulator. It has a feature that it can simulate the decryption
oracle without a real secret key. It runs as follows:

1. Obtain an instance.
2. Generate a part of a target ciphertext from the instance.
3. Generate a public key with a witness from the instance and the part of the

target ciphertext.
4. Construct an entire target ciphertext.

At first, given an instance, the sID simulator generates a part of a target ci-
phertext. Next, it generates a public key and some witness from the generated
part of the target ciphertext and then constructs the entire target ciphertext.
It can simulate a decryption oracle by using the witness. Though the witness
is not a secret key, it enables the simulator to decrypt almost all of the cipher-
texts. This technique is used in the proof of the most recently proposed PKE
schemes [5,9,10,12].

Our approach for construction of an efficient MKEM applies the behavior of
the sID simulator as key generation and decryption algorithms of KEM. In gen-
eral, an MKEM can be designed on the basis of a KEM, by sharing a partial
public key as a common public key among the users and by using the randomness-
reuse technique. Sharing as many parts of public keys as possible for the purpose
of batch process results in more efficient MKEMs. However, the users can share
only some restricted parts of public keys which do not correspond to any individ-
ual secret information of users. We find that the behavior of the sID simulator
is useful for the achievement of the above purpose.

Recall that in a security proof of PKE schemes, the sID simulator sets a part
of an instance of a problem (e.g. the DDH problem) as a part of a public key
and generates the entire public key and some witness. It simulates the decryption
oracle by using the witness instead of a secret key (e.g. the discrete logarithm of
the part of the instance) corresponding to the partial public key.

302 H. Hiwatari et al.

Table 1. The table intuitively shows the relation ship between items used in the sID
simulator and the proposed MKEM

sID simulator proposed MKEM

a part of instance common key
public key individual public key
witness secret key

a part of target ciphertext a part of secret key

behavior of the simulator MKEM based on the simulator

how to generate a public key with a witness key generation algorithm
how to simulate the decryption oracle decryption algorithm

In the multi-recipient setting, we set the partial public key (of the sID simu-
lator) as a common public key, and generates each user’s individual public key
and secret key using the common public key and the witness. Therefore, if users
mimic the behavior of the sID simulator, they can decrypt almost all of the ci-
phertexts by using the secret key. Only the ciphertexts a user can not decrypt are
ones using the same random value as selected by the user in the key generation
phase, and the probability is 1/p.

4 Our Scheme: Cash-Kiltz-Shoup Variant

In this section, we propose an MKEM based on the KEM [5]. The proposed
scheme is the most efficient scheme among the MKEMs which is secure under the
HDDH assumption without MAC. We construct the scheme from the behavior
of the simulator which appears in the security proof [5].

Gmkem(1λ): Choose a multiplicative group G with prime order p, a target colli-
sion resistant hash function TCR : G → Z∗

p, and a hash function h : G → KD.
Then, pick two generators g, c1 ∈R G at random and set the common key
I := (p, G, g, c1, TCR, h).

Kmkem(I): Pick s, t, w1, w2, α̂ ∈R Zp at random, compute c2 ← gsc−t
1 , d1 ←

c−α̂
1 gw1 , and d2 ← c−α̂

2 gw2 . Then, set the public key pk := (c2, d1, d2) and
the secret key sk := (s, t, w1, w2, α̂).

Emkem(pk, I): Pick r ∈R Zp at random and compute u ← gr and α ← TCR(u).
Then, parse pk as each user’s public key (pk1, pk2, . . . , pkn), and for i =
1, 2, . . . , n, parse pki as (c2,i, d1,i, d2,i) and compute v1,i ← (cα

1 d1,i)r and
v2,i ← (cα

2,id2,i)r for each user. Finally, compute the data key dk ← h(cr
1)

and set the ciphertext φ := (u, v1, v2) where vj := (vj,1, vj,2, . . . , vj,n) for
j ∈ {1, 2}.

Multi-recipient Public-Key Encryption from Simulators in Security Proofs 303

Dmkem(i, ski, φ, I): Parse φ as (u, v1, v2), compute α ← TCR(u), and check
whether α

?= α̂. If satisfied, output the special symbol reject. Otherwise
parse vj as (vj,1, vj,2, . . . , vj,n) for j ∈ {1, 2}, compute ṽ1 ← (v1,iu

−w1)1/(α−α̂)

and ṽ2 ← (v2,iu
−w2)1/(α−α̂), and check whether ṽt

1ṽ2
?= us. If not, output

reject. Otherwise, compute the session key dk ← h(ṽ1).

Note that the event that reject ← Dkem(i, ski, φ, I) such that (dk, φ) ←
Ekem(pk, I) occurs with negligible probability. Firstly, to show the security of
above scheme, we review the following lemma which is introduced in [5].

Lemma 1 (Trapdoor Test [5]). Let G be a cyclic group of prime order p, and
g be a element in G. Suppose c1 ∈R G and s, t ∈R Zp. We define c2 := gsc−t

1 and
denote u, v1, v2 are elements in G. Then we have: (1) c2 is uniformly distributed
over G; (2) c1 and c2 are independent; (3) if c1 = gx1 and c2 = gx2 , then the
probability that the truth value of vt

1v2
?= us does not agree with the truth value

of v1
?= ux1 ∧ v2

?= ux2 is at most 1/p.

Theorem 1. Let G be an abelian group of order p, where p is a large prime, and
let TCR be a target collision resistant hash function. Then, the above scheme is
secure in the sense of IND-CCA under the HDDH assumption on a hash function
h. In particular, for any adversary A which makes at most Qd decryption queries,

Advind-cca
Πmkem,A(λ) ≤ εtcr + εhddh + Qd/p.

Proof. We consider a sequence of games. In this proof, Si denotes the event that
b = d in Game i and φ = (u∗, v∗

1, v
∗
2) and α∗ denote the target ciphertext and

TCR(u∗).

Game 0. Let Game 0 be the original game.

Advind-cca
Πmkem,A(λ) = |Pr[S0] − 1/2|.

Game 1. Let Game 1 be like Game 0, but with the following difference. If an
adversary asks a ciphertext containing u �= u∗ such that TCR(u) = TCR(u∗),
Game 1 aborts. Using a property of target collision resistant hash functions,
it is easy to show that

|Pr[S1] − Pr[S0]| ≤ εtcr.

Game 2. Let Game 2 be like Game 1, but with the following difference. For
computing the secret key, instead of choose α̂i at random for i = 1, 2, . . . , n,
the experiment picks r∗ at random, computes u∗ ← gr∗

, and sets α̂i ←
α∗(:= TCR(u∗)) for all i. Moreover, we modify the decryption oracle. If
the adversary asks a ciphertext containing u∗, then the decryption oracle
immediately outputs reject. Using Lemma 1, we show that

|Pr[S2] − Pr[S1]| ≤ Qd/p.

304 H. Hiwatari et al.

Even if α̂i is fixed, c2,i, d1,i, and d2,i are uniformly distributed over G.
The distribution of public keys in Game 2 is same as that in Game 1.
From the view of adversary, for all i, there are many potential secret key
corresponding to the given public key. For any potential secret key
(w1,i, w2,i, α̂i) except for (·, ·, α∗), the decryption algorithm would compute
ṽ1 ← (v1,i(u∗)−w1,i)1/(α∗−α̂i) and ṽ2 ← (v2,i(u∗)−w2,i)1/(α∗−α̂i) for a cipher-
text containing u∗. If ṽti

1 ṽ2 = (u∗)si , Lemma 1 guarantees with overwhelming
probability that (u∗)logg c1 = ṽ1 and (u∗)logg c2,i = ṽ2.

(u∗)logg c1 = ṽ1 ∧ (u∗)logg c2,i = ṽ2

⇐⇒ c
r∗(α∗−α̂i)
1 = (v1,i(g−w1,i)r∗

) ∧ c
r∗(α∗−α̂i)
2,i = (v2,i(g−w2,i)r∗

)

⇐⇒ v1,i = (cα∗

1 c−α̂i
1 gw1,i)r∗

∧ v2,i = (cα∗

2,ic
−α̂i

2,i gw2,i)r∗

⇐⇒ v1,i = (cα∗

1 d1,i)r∗ ∧ v2,i = (cα∗

2,id2,i)r∗

⇐⇒ v1,i = v∗1,i ∧ v2,i = v∗2,i

Therefore, for any potential secret key, the probability that the decryption
algorithm does not output reject for a ciphertext containing u∗ queried by
an adversary is at most 1/p.

Furthermore, we show that

|Pr[S2] − 1/2| ≤ εhddh.

We assume that there is an adversary A which breaks Game 2. We construct
an algorithm B which solves the HDDH problem using the adversary A.
For a given HDDH instance (g, gā, gb̄, Z), B sets u∗ := gā and c1 := gb̄.
The algorithm B slightly changes the key generation algorithm to always
set α̂i ← α∗(:= TCR(u∗)) for all i. Then, for each i, B computes v∗1,i ←
(u∗)w1,i(:= (cα∗

1 d1,i)ā) and v∗2,i ← (u∗)w2,i(:= (cα∗

2,id2,i)ā) and sets (u∗, v∗
1, v

∗
2)

as a target ciphertext. Next, B provides A with (Z, (u∗, v∗
1, v

∗
2)). If A makes

decryption query, B simulates the decryption oracle in Game 2 by using
secret keys that B generates. Finally, A outputs a bit d as his guess, and B
outputs the same bit d. ��

5 Our Scheme: Hanaoka-Kurosawa Variant

In this section, we propose an MKEM based on the KEM [9]. The proposed
scheme is one of the most efficient schemes among the MKEMs whose reduction
efficiency is tight and which is secure under the HDDH assumption. Similar
to our scheme based on [5], we construct the scheme from the behavior of the
simulator which appears in the security proof [9].

Gmkem(1λ): Choose a multiplicative group G with prime order p, a target colli-
sion resistant hash function TCR : G → Z∗

p, and a hash function h : G → KD.
Then, pick two generators g, y0 ∈R G at random and set the common key
I := (p, G, g, y0, TCR, h).

Multi-recipient Public-Key Encryption from Simulators in Security Proofs 305

Kmkem(I): Pick s, t, Fs, Ft ∈R Zp at random, define the quadratic polynomial
f(x) := a0+a1x+a2x

2 over Zp such that (f(0), f(s), f(t)) = (logg y0, Fs, Ft),
and for i ∈ {1, 2}, compute yi ← gai without the knowledge of ai. Then, set
the public key pk := (y1, y2) and the secret key sk := (s, t, Fs, Ft).

Emkem(pk, I): Pick r ∈R Zp at random and compute u ← gr and α ← TCR(u).
Then, parse pk as each user’s public key (pk1, pk2, . . . , pkn), and for i =
1, . . . , n, parse pki as (y1,i, y2,i) and compute vi ← yr

0y
rα
1,iy

rα2

2,i (:= ufi(α)) for
each user. Finally, compute the data key dk ← h(yr

0) and set the ciphertext
φ := (u, v1, v2, . . . , vn).

Dmkem(i, ski, φ, I): Parse φ as (u, v1, v2, . . . , vn), compute α ← TCR(u), and
check whether α ∈ {s, t}. If satisfied, output the special symbol reject.
Otherwise, define the quadratic polynomial f ′(x) over Zp such that
(f ′(α), f ′(s), f ′(t)) = (logu vi, Fs, Ft) and compute the data key dk ← h(uf ′(0))
by using the Lagrange interpolation method.

Theorem 2. Let G be an abelian group of order p, where p is a large prime, and
let TCR be a target collision resistant hash function. Then, the above scheme is
secure in the sense of IND-CCCA under the HDDH assumption on a hash func-
tion h. In particular, for any adversary A which makes at most Qd decryption
queries,

Advind-ccca
Πmkem,A(λ) ≤ εtcr + εhddh + uncertA · Qd.

The security proof is almost the same proof in [9]. However, unlike the orig-
inal scheme, invalid ciphertexts only get rejected implicitly using the security
properties of DEM in the above proposed scheme. When an adversary sends a
query including a part of target ciphertext, the analysis is slightly different from
the proof in the original scheme.

Proof. We consider a sequence of games. In this proof, Si denotes the event that
b = d in Game i and φ = (u∗, v∗1 , v∗2 , . . . , v∗n) and α∗ denote the target ciphertext
and TCR(u∗).

Game 0. Let Game 0 be the original game.

Advind-cca
Πmkem,A(λ) = |Pr[S0] − 1/2|.

Game 1. Let Game 1 be like Game 0, but with the following difference. If an
adversary asks a ciphertext containing u �= u∗ such that TCR(u) = TCR(u∗),
Game 1 aborts. Using a property of target collision resistant hash functions,
it is easy to show that

|Pr[S1] − Pr[S0]| ≤ εtcr.

Game 2. Let Game 2 be like Game 1, but with the following difference. For
computing the secret key, instead of choose si at random for i = 1, 2, . . . , n,
the experiment picks r∗ at random, computes u∗ ← gr∗

, and sets si ←

306 H. Hiwatari et al.

α∗(:= TCR(u∗)) for all i. Moreover, we modify the decryption oracle. If
the adversary asks a ciphertext containing u∗, then the decryption oracle
immediately outputs reject. We show that

|Pr[S2] − Pr[S1]| ≤ uncertA · Qd.

Suppose (i, (u, v1, v2, . . . , vn), pred) is a query of A such that pred(h(uf ′
i(0))) =

1, but ufi(0) �= vi. We notice that for any f(x), α∗, and α(:= TCR(u)), the
value f ′(0) takes many different points according to different points for ti
included in the secret key of user i. This can be proven by a contradiction as
follows: Fix f(x), α∗, α, and F ′

α �= f(α). For ti ∈ (Zp \{α∗, α}), let fti(x) be
a polynomial of degree at most two such that fti(α∗) = f(α∗), fti(α) = F ′

α,
and fti(ti) = f(ti). Then, we will show that for any (ti, t̄i) ∈ (Zp \ {α∗, α})2
and ti �= t̄i, fti(0) �= ft̄i

(0). Suppose that fti(0) = ft̄i
(0). Then fti(x) =

ft̄i
(x) because they intersect at three points, x = 0, α∗ and α. In this case,

f(x) = fti(= ft̄i
) since they intersect at three points, x = α∗, ti, and t̄i.

However, this is a contradiction since fti(α) = F ′
α �= f(α). Hence, even if

A has unlimited computational power, the event that pred(h(uf ′(0))) = 1
occurs with the probability of uncertA.

Furthermore, we show that

|Pr[S2] − 1/2| ≤ εhddh.

We assume that there is an adversary A which breaks Game 2. We construct
an algorithm B which solves the HDDH problem using the adversary A. For a

Table 2. Comparison for IND-CCA secure MKEMs. For efficiency, we count the num-
ber of pairings, multi (or sequential)-exponentiations, and single-exponentiations for
encryption and decryption. For ciphertext length, we denote the length of a group,
an authentication tag, and ciphertext length of secret key encryption scheme by |G|,
|mac|, and |ske|, respectively. We explicitly separate a DEM into an authentication tag
and ciphertext of secret key encryption scheme. For comparison with other schemes,
we apply randomness-reuse technique and transformation technique introduced in [16]
to original KEMs. The schemes applied transformation technique which can convert
KEM into MKEM by using DEMs have a property that reduction efficiency becomes
lower in proportion to the number of recipients.

based scheme security reduction encryption decryption key size ciphertext

assumption cost #pairings + #[multi, single]-exp (I/pk/sk) length

CS98 [6] DDH 1 0 + [n, n + 2] 0 + [1, 1] 2/3/5 2n|G|
KD04 [14] DDH 1/n 0 + [n, 2] 0 + [1, 0] 2/2/4 2|G| + n|mac| + n|ske|
BMW05 [4] BDH 1/n 0 + [n, n + 1] 1 + [1, 0] 2/3/3 n|G| + n|ske|
Kiltz07 [12] GHDDH 1/n 0 + [n, n + 1] 0 + [1, 0] 1/2/2 n|G| + n|mac| + n|ske|
HK07 [10] HDDH 1 0 + [n, 2] 0 + [1, 0] 2/2/3 n|G| + |mac|
CKS08 [5] HDDH 1/n 0 + [2n, n + 1] 0 + [1, 0] 1/4/4 2n|G| + n|ske|
HK08 [9] HDDH 1/n 0 + [n, n + 1] 0 + [1, 0] 1/3/3 n|G| + n|mac| + n|ske|
Ours (CKS08) HDDH 1 0 + [2n, 2] 0 + [2, 2] 2/3/5 2n|G|
Ours (HK08) HDDH 1 0 + [n, 2] 0 + [1, 0] 2/2/4 n|G| + |mac|

Multi-recipient Public-Key Encryption from Simulators in Security Proofs 307

given HDDH instance (g, gā, gb̄, Z), B sets u∗ := gā and y0 := gb̄. The algo-
rithmB slightly changes the key generation algorithm to always set si ← α∗(:=
TCR(u∗)) for all i. Then, for each i, B computes vi ← (u∗)Fsi (:= (u∗)fi(α∗))
and sets (u∗, v∗1 , v∗2 , . . . , v∗n) as a target ciphertext. Next, B provides A with
(Z, (u∗, v∗1 , v∗2 , . . . , v∗n)). If A makes decryption query, B simulates the decryp-
tion oracle in Game 2 by using secret keys that B generates. Finally, A outputs
a bit d as his guess, and B outputs the same bit d. ��

6 Concluding Remarks

In this paper, we have proposed a new approach to design efficient MKEMs. We
have focused on the simulator which uses an algebraic trick from selective-ID
security in the security proof of a KEM. By observing the behavior of the sim-
ulator, we have constructed two efficient MKEMs. Our proposed scheme based
on [5] is the most efficient scheme among the MKEMs which are secure in the
sense of IND-CCA under the HDDH assumption without MAC. The other pro-
posed scheme based on [9] is one of the most efficient schemes among the MKEMs
whose reduction efficiency of the security proof is tight, and which is secure in
the sense of IND-CCCA under the HDDH assumption. We show the compari-
son of previously proposed MKEMs and ours in Table 2. Our constructions also
show that there exist single-recipient PKE schemes which can be transformed
into efficient multi-recipient schemes, even they do not pass the reproducibility
test.

References

1. Barbosa, M., Farshim, P.: Randomness reuse: Extensions and improvements. In:
Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 257–
276. Springer, Heidelberg (2007)

2. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient en-
cryption schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99.
Springer, Heidelberg (2003)

3. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

4. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM Conference
on Computer and Communications Security, pp. 320–329. ACM, New York (2005)

5. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

6. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

7. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

308 H. Hiwatari et al.

8. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007)

9. Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryp-
tion under the computational Diffie-Hellman assumption. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)

10. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
Cryptology ePrint Archive, Report 2007/288 (2007), http://eprint.iacr.org/

11. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

12. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-
Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–
297. Springer, Heidelberg (2007)

13. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer,
Heidelberg (2002)

14. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

15. Smart, N.P.: Efficient key encapsulation to multiple parties. In: Blundo, C., Cimato,
S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg (2005)

16. Yasuda, K., Kobayashi, T., Aoki, K., Fujisaki, E., Fujioka, A.: Multicast in the kem-
dem framework. In: Proceedings of Symposium on Cryptography and Information
Security, SCIS 2005, Japan (2005)

http://eprint.iacr.org/

Fair Threshold Decryption with
Semi-Trusted Third Parties

Jeongdae Hong1, Jinil Kim1, Jihye Kim2, Matthew K. Franklin3, and Kunsoo Park1

1 School of Computer Science and Engineering, Seoul National University
{jdhong,jikim,kpark}@theory.snu.ac.kr

2 ISaC and Department of Mathematical Sciences, Seoul National University
jihyek@snu.ac.kr

3 Department of Computer Science, University of California, Davis
franklin@cs.ucdavis.edu

Abstract. A threshold decryption scheme is a multi-party public key
cryptosystem that allows any sufficiently large subset of participants
to decrypt a ciphertext, but disallows the decryption otherwise. Many
threshold cryptographic schemes have been proposed so far, but fairness
is not generally considered in this earlier work. In this paper, we present
fair threshold decryption schemes, where either all of the participants can
decrypt or none of them can. Our solutions employ semi-trusted third
parties (STTP) and off-line semi-trusted third parties (OTTP) previ-
ously used for fair exchange. We consider a number of variants of our
schemes to address realistic alternative trust scenarios. Although we de-
scribe our schemes using a simple hashed version of ElGamal encryp-
tion, our methods generalize to other threshold decryption schemes and
threshold signature schemes as well.

1 Introduction

A threshold decryption scheme is a multi-party public key cryptosystem that
allows any sufficiently large subset of participants to decrypt a ciphertext, but
disallows the decryption otherwise. In a threshold decryption scheme, a secret
key is typically split into secret key shares for the participants using a threshold
secret sharing scheme. When a sufficiently large subset of participants wants to
decrypt a ciphertext, each party computes a partially decrypted value using its
secret key share. Any party who collects sufficiently many partially decrypted
values can decrypt.

In this paper, we focus on fairness of threshold decryption, which is not easy
to achieve without a fully trusted third party (TTP). In many scenarios, it is very
desirable that all participants in a threshold decryption procedure should receive
the correct decrypted plaintext simultaneously, even when those participants are
mutually mistrustful. In a stand-alone setting, where valuable data is encrypted,
it is a security problem if some cheating participants to the threshold decryption
procedure can recover the plaintext while the other participants cannot. In a
more complex setting, where the threshold decryption is part of a larger secure

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 309–326, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

310 J. Hong et al.

multi-party protocol (e.g., [31]), the security of the overall protocol may be
compromised unless ciphertexts can be decrypted with fairness. Although we
focus on threshold decryption in this work, essentially all of our methods hold
for the case of threshold signatures as well (which is also an important primitive
in many scenarios).

The previous threshold decryption schemes sometimes include a party called
Combiner, who collects the decryption shares and computes the plaintext. With
respect to fairness, Combiner would need to be a trusted third party (TTP) since
it obtains the plaintext earlier than others. However, TTP is typically undesir-
able because all of the parties should totally trust it. Alternatively, each party
in the threshold decryption can become a Combiner by himself if he knows
the combining algorithm and all the decryption shares are exchanged among
the parties. In that case, however, unfairness occurs when the first party who
obtains all of the decryption shares quits the protocol without sending his de-
cryption share. Even worse, a malicious party may obtain all decryption shares
exclusively by repeating decryptions without sending his decryption share. Ro-
bust threshold decryption can be helpful here, but it does not by itself yield
fairness.

We employ semi-trusted third parties (STTP) and off-line semi-trusted third
parties (OTTP).1 The STTP is an additional participant that follows the pre-
scribed protocol correctly, while recording all communication in an attempt to
learn something more about plaintexts (“semi-honest” or “honest-but-curious”
adversary). The STTP is an on-line participant, since it connects to all the par-
ties before the protocol starts, and communicates with them during the protocol
even when all the parties are honest.

Our first solution uses a single STTP to achieve fair threshold decryption.
However, in practice, the reconstructing parties may fail to agree on a mutually
satisfactory STTP. For example, imagine a situation where the parties of orga-
nization A trust only STTP α, while the parties of organization B trust only
STTP β. To cover this kind of situation, we give a second solution that uses
multiple “weak” STTPs to achieve fair threshold decryption. A “weak” STTP
works semi-honestly for all the parties that trust it, but may work maliciously for
the other parties. We present fair threshold decryption schemes for two natural
variants of the multiple weak STTPs setting.

Our third solution uses a single OTTP to achieve fair threshold decryption.
The OTTP is a semi-honest additional participant that is not involved in the
protocol unless one or more of the reconstructing parties crashes or attempts
to cheat. The OTTP is an off-line participant, since it does not connect to any
of the parties during normal protocol execution. This kind of protocol is often
called “optimistic”, since troubles are resolved afterwards rather than prevented
beforehand.

For all of our solutions, no information leaks to the sender about the decryp-
tion policy (i.e., encryption looks like ordinary public key encryption). This has

1 Some previous work in fair exchange used the term “OTTP” to indicate off-line third
party which is fully-trusted rather than semi-trusted.

Fair Threshold Decryption with Semi-Trusted Third Parties 311

always been an essential design principle for threshold cryptography, and it rules
out simple approaches where the sender splits his message and encrypts using
multiple keys.

Related Work: Many threshold cryptographic schemes have been proposed so
far [15,37,24,27,25,39,19,23], but fairness is not generally considered in this ear-
lier work. Cleve [13] showed the impossibility of completely fair protocols without
an honest majority for arbitrary functions, but Gordon et al. [30] reopened the
question for specific functions of interest. Particularly, if t < n/3 where n is
the total number of parties and t is the number of corrupted parties, fairness
for secure multi-party computation (MPC) protocols can be achieved without
information-theoretic or computational assumptions [5,12,29,28]. If n/3 ≤ t <
n/2, a broadcast channel is necessary to achieve fairness [36,29,28]. Our con-
sideration is on the general case where t can be any value between 1 and n.
The “gradual release” paradigm can give a relaxation of complete fairness that
is useful in many contexts (see, e.g., [6,34,4,8,9,35,22,21]). On-line semi-trusted
parties have been used for fair exchange and related functions (e.g., [20,41,14]).
Off-line semi-trusted parties have been used for “optimistic” fair exchange (e.g.,
[1,2,3,40,7,17,16]) and two-party optimistic fair secure computation [10]. Lin-
dell [33] considers a related setting in which the off-line semi-trusted party is
replaced with a legal infrastructure that respects digital signatures. Lepinski
et al. [32] used physical assumptions to realize fair secure function evaluation
(SFE), which includes fair MPC as a special case.

The rest of the paper is organized as follows. Section 2 gives some preliminary
cryptographic background. We present security models and definitions in Sec-
tion 3. We present fair threshold decryption with (on-line) STTP (both strong
and multiple weak) in Section 4 and optimistic fair threshold decryption with
OTTP in Section 5.

2 Cryptographic Background

In this section, we briefly review the scenario of threshold decryption and a
threshold version of Hash-ElGamal cryptosystem.

2.1 Threshold Decryption

The scenario of (t+1, �) - threshold decryption is as follows. There are a dealer, �
shareholders who can participate in the decryption, and a combiner who actually
decrypts the ciphertext. The dealer initializes a public key/secret key pair of the
underlying non-threshold cryptosystem and splits the secret key into � secret
key shares. Each shareholder Pi keeps the corresponding secret key share si

privately. Anyone can encrypt a message by the public key. When a group of
t + 1 shareholders wants to decrypt a ciphertext, each shareholder computes a
partially decrypted value called decryption share by its secret key share. Then,
the combiner collects t + 1 decryption shares and obtains the plaintext by the
combining algorithm. Throughout this paper, we use the following notations.

312 J. Hong et al.

– secret key share - denotes a piece of the secret key shared by the secret
sharing scheme.

– decryption share - denotes a partially decrypted value of a ciphertext by a
secret key share.

– reconstruction group - denotes a group of t + 1 parties participating in the
decryption process.

2.2 Threshold Version of Hash-ElGamal Cryptosystem

Throughout the paper, we use the threshold version of Hash-ElGamal cryp-
tosystem [18], which allows us to focus on the main ideas of our schemes and
the security arguments introduced by the fairness.

Set-Up: Let G be a multiplicative group of large prime order q. Let H be a
hash function from G to plaintext-length bitstrings. Let g be a generator of G.

Key Generation: A dealer does the following:

1. Chooses a secret key SK = x ∈R [1..q−1] and computes public key PK = gx.
2. Picks a random polynomial f(·) with degree t for Shamir’s secret sharing

scheme [38] whose coefficients are picked in [0..q − 1] and f(0) = x.
3. For all 1 ≤ i ≤ �, computes secret key share si = f(i) mod q , verification

key V Ki = gsi , sends si to party Pi, and publishes g, PK, {(i, V Ki)}1≤i≤
.

Encryption: To encrypt a message m, one randomly chooses r ∈R [1..q − 1]
and computes E(m) = (gr, m ⊕ H(grx)).

Threshold Decryption: Let E(m) = (u, v), and let S ⊆ [1..�] be a recon-
struction group with |S| = t + 1. For each i ∈ S, Pi sends its decryption share
wi = grsi to the combiner. The combiner computes grx =

∏
i∈S(wi)λi , where

{λi}i∈S are the appropriate Lagrange coefficients (i.e., λi =
∏

b∈S\{i}
i

b−i). Then
the combiner computes v ⊕ H(grx) = m.

Robust Threshold Decryption: Pi also sends to the combiner a zk-proof of
equality of discrete logarithms that disclogg(V Ki) = discloggr (wi). The com-
biner rejects the decryption share from Pi unless this zk-proof is good.

This threshold decryption scheme is semantically secure against a chosen
plaintext attack if H is modeled as a random oracle, and if the Computational
Diffie-Hellman problem (CDH) is hard in G (where the chosen plaintext attack
is performed by an adversary that can see up to t shares of the decryption key).
The robust threshold decryption scheme has similar security if (in addition) the
proof of equality of discrete logarithms is sound, complete and zero knowledge.

3 Security Models and Definitions

In this section, we introduce members of our scenarios and define fairness of
threshold decryption.

Fair Threshold Decryption with Semi-Trusted Third Parties 313

3.1 Members and Security Models

The members of our fair threshold decryption scheme consist of a dealer D, �
shareholders and additional semi-trusted third parties (STTPs).

- Dealer. A dealer D initializes the scheme as in the usual threshold decryp-
tion. If desired, a distributed key generation protocol can replace this trusted
dealer using standard methods (e.g., [26]).

- Shareholder. A shareholder is a legal member with a secret key share who
can participate in the decryption. We assume that each shareholder works
in a malicious model. That is, it may arbitrarily deviate from a specified
protocol. It may refuse to participate in the protocol or abort the protocol
prematurely.

- Strong STTP. A strong STTP is an STTP trusted to work semi-honestly
by all the shareholders. Only one strong STTP suffices in our fair threshold
decryption scheme.

- Weak STTP. A weak STTP is an extended notion of STTP which is trusted
to work semi-honestly by other weak STTPs and some of the shareholders
but not trusted by others. To all the shareholders who trust it, it faithfully
works in semi-honest model, while it can work maliciously to other share-
holders. In our schemes with multiple weak STTPs, several weak STTPs
work together like one strong STTP.

- Off-line STTP (OTTP). An off-line STTP is an STTP trusted by all
the shareholders but it does not attend the protocol if all the shareholders
behave honestly.

Every on-line (strong or weak) STTP has its secret key share distributed
privately during the key generation and can compute its decryption share like a
shareholder.

Communication Model: We assume that every pair of participants have a
private and reliable communication channel connecting them. This includes all
combinations of shareholder-to-shareholder, shareholder-to-STTP, and STTP-
to-STTP communication.

3.2 Formal Definition of Fairness

We define fairness of (t + 1, �)-threshold decryption as follows.

Definition 1. (Fairness of threshold decryption) If any shareholder Pi decrypts
a ciphertext, then there exists at least one reconstruction group S with Pi ∈ S
and |S| = t + 1 such that all the shareholders of S can get the plaintext.

In the above definition, fairness means that all the shareholders of S can obtain
the plaintext or no shareholder can. Any shareholder out of S should not be able
to decrypt the ciphertext unless some shareholders of S send the plaintext to it.
This requirement is important for applications in which the plaintext should be
kept secret among the participants (e.g., [31]).

314 J. Hong et al.

Our definition of fairness implies that any fair threshold decryption scheme
should be robust against such an attack whereby malicious shareholders initiate
two or more reconstruction protocols for the same ciphertext (e.g., with disjoint
subsets of honest shareholders), aborting so that no honest shareholder succeeds
in any single reconstruction effort, while the malicious shareholders can decrypt
by combining honest decryption shares from all of the reconstruction efforts.

When the number of corrupted shareholders is less than (t+1)/2 (i.e. majority
of any reconstruction group is honest), fairness can be achieved by general results
of fair MPC [5,12,29,28]. We employ STTPs to cover the general case where up to
t shareholders are corrupted. The following definition states fairness of threshold
decryption when STTPs are involved in.

Definition 2. (Fairness of threshold decryption with STTPs) A threshold de-
cryption with STTPs is fair if all the shareholders achieve fairness in Definition 1
with the help of STTPs, while no STTP can learn anything about the decrypted
message in polynomial time.

4 Fair Threshold Decryption with (On-Line) STTP

4.1 Security Notions

We formally define two security notions,STTP-assistance andSTTP-obliviousness
by challenge-adversary games. Informally, STTP-assistance means that if any one
of STTPs does not contribute its decryption share, no coalition of shareholders
can decrypt any ciphertext even with the secret key shares of the other STTPs.
And STTP-obliviousness means that no STTP, even with t secret key shares of
shareholders, can learn anything about the decrypted message during polynomial
number of decryptions on any ciphertexts.

STTP-assistance. We say that a threshold scheme satisfies STTP-assistance
if any polynomially bounded adversary A cannot win the following game with
non-negligible probability. The game proceeds between A and a challenger CH
where there are k STTPs:

1. CH runs Set-Up and Key Generation algorithms taking a security parameter.
CH gives A the resulting common parameters.

2. A receives all the secret key shares of � shareholders and k − 1 secret key
shares of the STTPs from CH.

3. A adaptively makes a polynomial number of queries to CH on any messages.
For each message M , CH generates encryption C of M and responds with
C and the corresponding decryption share of the remaining STTP with zk-
proof.

4. A selects two target messages (M0, M1). CH picks one message Mb by se-
lecting a random bit b ← {0, 1} and sends a ciphertext Cb of Mb to A.

5. Repeat step 3.
6. A outputs b′ (and wins if b′ = b).

Fair Threshold Decryption with Semi-Trusted Third Parties 315

STTP-obliviousness. We say that a threshold scheme with STTP satisfies
STTP-obliviousness if it satisfies any polynomially bounded adversary A can-
not win the following game with non-negligible probability. The game proceeds
between A and a challenger CH where there are k STTPs:

1. CH runs Set-Up and Key Generation algorithms taking a security parameter.
CH gives A the resulting common parameters.

2. A is given all the secret key shares of k STTPs and t secret key shares of
shareholders.2

3. A adaptively makes a polynomial number of queries to CH on (M, S) where
S ⊆ [1..�], |S| = t + 1. For each (M, S), CH generates encryption C of M ,
and responds with C and the corresponding decryption shares with zk-proofs
following the protocol on behalf of the shareholders of S.

4. A selects two target messages (M0, M1). CH picks one message Mb by se-
lecting a random bit b ← {0, 1} and sends a ciphertext Cb of Mb to A. CH
simulates executions of all the shareholders so that A can participate in the
decryption of Cb on behalf of the STTPs.

5. Repeat step 3.
6. A outputs b′ (and wins if b′ = b).

4.2 Strong STTP Fair Threshold Hash ElGamal

Description: The main idea of this scheme is that the secret key is split into
� + 1 secret key shares instead of � secret key shares so that a secret key share
is assigned for the strong STTP. However, we define the secret key share of the
strong STTP as a special one, thus even more than t+1 shareholders cannot de-
crypt a ciphertext without the decryption share of the strong STTP. The strong
STTP can trigger the decryption by sending its decryption share after the share-
holders of S exchange their decryption shares with one another. This scenario is
applicable to all schemes which follow the general threshold decryption scenario.
Fig. 1 shows this scenario graphically. The details of the protocol are as follows.

Key Generation: D chooses x, R ∈R [1..q − 1], and computes PK = gx,
V KSTTP = gR. D picks an otherwise random degree t polynomial f(·) with
coefficients in [0..q−1] such that f(0) = (x−R) mod q. Then for all i (1 ≤ i ≤ �),
D computes si = f(i) mod q, V Ki = gsi , and sends si to shareholder Pi. D sends
sSTTP = R to the STTP. Lastly, D publishes g, PK, V KSTTP , {(i, V Ki)}1≤i≤
.

Strong STTP Fair Threshold Decryption: Let E(m) = (u, v), and let
S ⊆ [1..�], |S| = t + 1. The STTP do not have to know (u, v) or S.

For each i, j ∈ S, Pi sends wi = usi and a zk-proof that disclogg(V Ki) =
disclogu(wi) to Pj . If Pi succeeds in verifying t + 1 decryption shares (including
her own), then Pi sends a (READY, S, (u, v)) signal to the STTP. When the
STTP receives consistent and well-formed READY signals from at least t + 1
shareholders, the STTP sends to each READY signaller wSTTP = usST TP and
2 This can be regarded as a passive collusion among the STTPs and t shareholders

where the colluding shareholders provide the STTPs with their secret key shares.

316 J. Hong et al.

Fig. 1. Fair Threshold Decryption with one strong STTP

a zk-proof that disclogg(V KSTTP) = disclogu(wSTTP). If Pi was a READY
signaller, and if the STTP sent a valid decryption share, then Pi can now decrypt,
since grx = wSTTP ·

∏
i∈S wλi

i where λi =
∏

b∈S\{i}
i

b−i .

Non-Threshold Access Structure: Instead of viewing this as a (t + 1)-out-
of-� threshold decryption scheme with � shareholders (P1, . . . , P
) and a separate
STTP, we can view it as a “non-threshold” access structure with � + 1 share-
holders (STTP, P1, . . . , P
). Specifically, the access structure Γ ′ for successful
decryption is STTP ∧Γt+1,
, where Γt+1,
 is the (t+1)-out-of-� threshold access
structure on {P1, . . . , P
}. Strong STTP Fair Threshold Decryption is possible
whenever this non-threshold access structure Γ ′ can be realized.

Communication Cost: Each shareholder’s communication cost is O(t) and
the total communication cost is O(t2) except the key generation step. These
costs are necessary for each shareholder to collect decryption shares from t + 1
shareholders.

Security Proof of Strong-STTP Version: Now we prove that the strong-
STTP protocol satisfies STTP-assistance, STTP-obliviousness, and fairness from
the CDH assumption.

Theorem 1. (STTP-assistance) Under the CDH assumption, the strong-STTP
protocol satisfies STTP-assistance in the random oracle model.

Proof. Let us assume the existence of an adversary A able to break STTP-
assistance. We now describe that a challenger CH can solve the CDH problem
using the adversary A with non-negligible probability. When starting the STTP-
assistance game, CH gets an instance of CDH problem (g, gx, gy) whose goal is
computing gxy.

In step 1, CH chooses a random polynomial f(·) with degree t. He simulates the
strong-STTP protocol with initializing PK = gx, s1 = f(1), ..., s
 = f(�). Then,
sSTTP is automatically chosen as sSTTP = x − f(0) but CH knows neither x
nor sSTTP . The verification keys are easily computed by V K1 = gs1 , ..., V K
 =

Fair Threshold Decryption with Semi-Trusted Third Parties 317

gs� , V KSTTP = gx/gf(0). CH sends common parameters (PK, V K1, ..., V K
,
V KSTTP) to A.

In step 2, CH sends (s1, ..., s
) to A. A cannot distinguish these from a set of
normal parameters because all of them are valid.

In step 3, for each query M of A, CH generates a ciphertext Enc(M) =
(gr, M ⊕ H(grx)) where r ∈R [0..q − 1] and responds with Enc(M), wSTTP =
(V KSTTP)r with the corresponding simulated zk-proof.

In step 4, for given two messages M0, M1 from A, CH picks one message
Mb by selecting a random bit b ← {0, 1} and generates a dummy ciphertext:
ˆEnc(Mb) = (gy, Mb ⊕ h) where h ∈R [0..q − 1]. CH sends ˆEnc(Mb) to A.
In step 5, for every query M , CH works the same way as in step 3. Finally, A

outputs b′ such that Pr[b′ = b] is non-negligibly higher than 1/2.

Claim 1: Unless A queries gxy to the random oracle H(·), A cannot obtain any
non-negligible advantage in guessing Mb.

If A does not query gxy to the random oracle, Mb ⊕h in ˆEnc(Mb) is the same
as the one-time pad whose key is h. Since the one-time pad has perfect secrecy,
A cannot obtain anything from Mb ⊕h. It implies no such adversary can obtain
non-negligible advantage from any dummy ciphertext.

Claim 2: If A queries gxy to the random oracle, CH can solve the CDH problem
with non-negligible probability.

The number of queries, qh, recorded in the random oracle is polynomially
bounded due to A’s running time. If A has a non-negligible advantage Adv, A
can solve the CDH problem with probability Adv/qh which is also non-negligible.
It contradicts the CDH assumption.

By both claims, no adversary can obtain non-negligible advantage from the
above game if the CDH problem is hard. That implies STTP-assistance holds
for the strong-STTP protocol under the CDH assumption in the random oracle
model.

Theorem 2. (STTP-obliviousness) Under the CDH assumption, the strong-
STTP protocol satisfies STTP-obliviousness in the random oracle model.

Proof. The proof is similar to that of Theorem 1 except simulation setup. In step
1, CH simulates verification keys V K1 = gs1 , ..., V Kt = gst , V KSTTP = gR. For
each i ∈ [t+1..�], CH sets V Ki = (PK

V K
λ1
1 ...V K

λt
t ·V KSTT P

)1/λi . CH sends common

parameters (PK, V K1, ..., V K
, V KSTTP) to A. In step 2, CH sends t secret key
shares (s1, ..., st) and STTP’s secret key share R to A.

Then, since Claim 1, 2 of Theorem 1 hold in the same way, no adversary
can obtain non-negligible advantage from the above game if the CDH problem
is hard. That leads to STTP obliviousness under the CDH assumption in the
random oracle model.

Theorem 3. (Fairness) The strong-STTP protocol satisfies fairness of thresh-
old decryption with STTP in Definition 2

Proof. By Theorem 1, no t shareholders can succeed in decryption without fol-
lowing the protocol until the STTP’s sending its decryption share. The STTP

318 J. Hong et al.

contributes its decryption share only after all the shareholders of S exchange
their decryption shares with one another. Since the STTP sends its share to the
shareholders at the same time, it guarantees that they can get the decrypted
message simultaneously. From this and Theorem 2, the strong-STTP protocol
satisfies the fairness with STTP in Definition 2.

4.3 Multiple-Weak STTP Fair Threshold Hash ElGamal

Description. When all the shareholders cannot agree on a mutually satisfactory
STTP, they can make use of several weak STTPs instead of one strong STTP.
The members of this scenario are a dealer D, � shareholders and k weak STTPs.
We assume that each shareholder trusts at least one weak STTP. Moreover, we
assume that any subset of less than t + 1 shareholders has at least one common
trustworthy weak STTP, which we call the technical covering condition.

The reliability between weak STTPs and all the shareholders is public. Let
S be a reconstruction group of t + 1 shareholders that collaboratively want to
decrypt the ciphertext. Before introducing our scheme, we formally define the
technical covering condition as follows.

Definition 3. (Technical Covering Condition) Given a reconstruction group S
with |S| = t + 1, and k weak STTPs, let Ti ⊆ [1..k] be the subset of indices
of the weak STTPs that Pi trusts (i.e., Pi’s trustworthy weak STTPs), and let
Ui = [1..k] − Ti be that of the weak STTPs that Pi do not trust (i.e., Pi’s
untrustworthy weak STTPs). For any subset F ⊂ [1..�] with |F | ≤ t, if ∩i∈F Ti

is non-empty, then we say the technical covering condition is satisfied.

Once we assume that the technical covering condition is satisfied, we can use the
following scheme for fair threshold decryption. In this scenario, each shareholder
Pi of S collects the decryption shares of Ui (his untrustworthy weak STTPs) so
that it can proceed the threshold decryption without doubting them. Then, all
the shareholders of S exchange their decryption shares with one another and send
READY signals to all the weak STTPs. When each weak STTP receives READY
signals from all the shareholders of S, it sends its own READY signals to all
other weak STTPs. When each weak STTP receives READY signals from all
the remaining weak STTPs, it triggers the decryption by sending its decryption
share to the shareholders who trust it. Fig. 2 shows this scenario graphically.
The details of the protocol are as follows.

Key Generation: D chooses random x, R1, . . . , Rk ∈ [1..q − 1], and computes
PK = gx, V KSTTP1 = gR1 , . . . , V KSTTPk

= gRk . D picks an otherwise random
degree t polynomial f(·) with coefficients in [0..q − 1] such that f(0) = (x −∑k

i=1 Ri) mod q. Then for all i, 1 ≤ i ≤ �, D computes si = f(i) mod q, V Ki =
gsi , and sends si to Pi. Then for all j, 1 ≤ j ≤ k, D sends sSTTPj = Rj to
STTPj. Lastly, D publishes g, PK, {(j, V KSTTPj)}1≤j≤k, {(i, V Ki)}1≤i≤
.

Multiple-Weak STTP Fair Threshold Decryption: Let E(m) = (u, v),
and let S ⊆ [1..�], |S| = t + 1. Let Ti and Ui be the same as those of Definition
3.1. We assume that the technical covering condition is satisfied. We assume that
the STTPs know (u, v), S and {Ti}i∈S .

Fair Threshold Decryption with Semi-Trusted Third Parties 319

Fig. 2. An example of fair threshold decryption with weak STTPs where t+1 = 4, k =
2. Odd-numbered shareholders trust STTP1 but do not trust STTP2, while even-
numbered shareholders trust STTP2 but do not trust STTP1. Dotted line indicates
that each STTP sends its decryption share to the shareholders who do not trust it in
step 1, and solid line indicates that each STTP sends it to the shareholders who trust
it in step 4.

1. For every j ∈ [1..k], and for every i ∈ [1..�] such that j ∈ Ui, STTPj sends
wSTTPj = uRj and a zk-proof that disclogg(V KSTTPj) = disclogu(wSTTPj)
to Pi.

2. Each Pi checks the decryption shares it received from Ui (its untrustworthy
weak STTPs) and it halts if any is bad. Otherwise, Pi sends wi = usi and a
zk-proof that disclogg(V Ki) = disclogu(wi) to every shareholder in S. When
Pi receives good decryption shares from all the other shareholders in S, then
Pi sends a READY signal to all the STTPs.

3. Each STTP waits for READY signals from all the shareholders in S, and
then sends its own READY signal to all the other STTPs. Each STTP goes
on to the next step after receiving READY signals from all the other STTPs.

4. For every j ∈ [1..k], and for every i ∈ [1..�] such that j ∈ Ti, STTPj sends
wSTTPj and a zk-proof that disclogg(V KSTTPj) = disclogu(wSTTPj) to Pi.

5. Each Pi can now decrypt, since grx =
∏

1≤j≤k wSTTPj ·
∏

i∈S wλi

i where
λi =

∏
b∈S\{i}

i
b−i .

Non-Threshold Access Structure: Instead of viewing this as a (t+1)-out-of-
� threshold decryption scheme with � shareholders (P1, . . . , P
) and k separate
STTPs (STTP1, . . . , STTPk), we can view it as a non-threshold access structure
with �+k shareholders (STTP1, . . . , STTPk, P1, . . . , P
). Specifically, the access
structure Γ ′ for successful decryption is (STTP1 ∧ . . .∧STTPk)∧Γt+1,
, where
Γt+1,
 is the (t+1)-out-of-� threshold access structure on {P1, . . . , P
}. Multiple-
Weak STTP Fair Threshold Decryption is possible whenever this non-threshold
access structure Γ ′ can be realized.

Communication Cost: Each shareholder’s communication cost is O(t+k) and
the total communication cost is O((t + k)2).

320 J. Hong et al.

Security of Multiple Weak-STTP Version: The formal proof of the secu-
rity is a simple extension of that for the strong STTP protocol, which will be
presented in the full version.

5 Optimistic Fair Threshold Decryption

5.1 Security Notions

Our notion of optimistic fair threshold decryption uses an OTTP which is semi-
honest but not attending the protocol if all the shareholders behave honestly.
We do not require optimistic protocols to satisfy STTP-assistance because any
t+1 honest shareholders can decrypt the ciphertext without OTTP. We use the
following security notions for optimistic fair threshold decryption.

Security for threshold decryption. Informally, a (t + 1)-threshold decryp-
tion scheme is secure if t number of shareholders cannot decrypt any ciphertext.
Formally, we say that a threshold scheme is semantically secure if any polyno-
mially bounded adversary A cannot win the following game with non-negligible
probability. The game proceeds between A and CH:

1. CH runs Set-Up and Key Generation algorithms taking a security parameter.
CH gives A the resulting common parameters and t secret key shares.

2. A adaptively makes a polynomial number of queries to CH on (M, S) where
S ⊆ [1..�], |S| = t+1. For each (M, S), CH generates encryption C of M and
responds with C and the messages each shareholder sends in the execution
of optimistic decryption on (C, S).

3. A adaptively queries for OTTP’s responses to CH.
4. A selects two target messages (M0, M1). CH picks one message Mb by se-

lecting a random bit b ← {0, 1} and sends a ciphertext Cb of Mb to A. CH
also sends to A all the intermediate information except decryption shares.

5. Repeat step 2.
6. A outputs b′ (and wins if b′ = b).

OTTP obliviousness. We say that a threshold scheme is OTTP-oblivious if
any polynomially bounded adversary A cannot win the following game with
non-negligible probability. The game proceeds between A and CH:

1. CH runs Set-Up and Key Generation algorithms taking a security parameter.
CH gives A the resulting common parameters and OTTP’s secret key.

2. A adaptively makes a polynomial number of queries to CH on (M, S) where
S ⊆ [1..�], |S| = t+1. For each (M, S), CH generates encryption C of M and
responds with C and the messages each shareholder sends in the execution
of optimistic decryption on (C, S).

3. A selects two target messages (M0, M1). CH picks one message Mb by se-
lecting a random bit b ← {0, 1} and sends a ciphertext Cb of Mb to A. A
participates in a decryption protocol on (Cb, S) on behalf of the OTTP.

4. Repeat step 2.
5. A outputs b′ (and wins if b′ = b).

Fair Threshold Decryption with Semi-Trusted Third Parties 321

5.2 Optimistic Fair Threshold Hash ElGamal

Description: The main idea of this protocol is that all the shareholders of S
exchange the promises of decryption shares before they exchange the decryption
shares. A promise of decryption share is an encrypted value containing partial
information of the decryption share using OTTP’s public key. It assures the
receiver that he can obtain the decryption shares with the help of OTTP. Thus,
once each shareholder receives all the promises, it can obtain all the decryption
shares even when some shareholders behave maliciously.

In this protocol, the OTTP does not respond to any query before all the
promises are exchanged. To guarantee this, each shareholder sends its signed
READY signal to all the other shareholders of S, so that only shareholders who
receive all the signed READY signals can query to the OTTP in order to get the
decryption shares that they have not received. The OTTP accepts only queries
enclosed with all the signed READY signals of S. (We can regard it as OTTP’s
decryption policy.) Once the OTTP receives a query with the signed READY
signals, it can be assured that the shareholders of S already received all the
promises of S. At this moment, the OTTP sends all the signed READY signals
to the other shareholders of S. It guarantees that the shareholders have the right
to query to the OTTP.

One main tool is verifiable encryption, which allows someone to prove that
an encrypted value is the discrete logarithm of an unencrypted value (with re-
spect to an unencrypted base). Let ENC be a public key encryption scheme
that supports verifiable encryption as in Camenisch-Shoup [11]. The details of
the protocol are as follows.

Key Generation: A dealer initializes common parameters of ordinary threshold
Hash-ElGamal as in Section 2.2. OTTP creates a key pair (SKOTTP , PKOTTP)
for ENC(·).
Optimistic Fair Threshold Decryption: Let E(m) = (u, v), S ⊆ [1..�], |S| =
t + 1. We assume that all of the shareholders agree on the session information
inf which includes S, E(m).

1. In Round 1, for every i, j ∈ S:
(a) Pi sends the following promise to Pj (unfair, blinded, partially signed):

(αi, βi, inf, gr/αi , ENCOTTP (βisi), σi, proof(disclogg(V Kβi

i) = βisi)),
where αi, βi ∈R [1..q − 1] chosen by Pi and σi is the signature by Pi

of (inf, gr/αi, ENCOTTP (βisi)). The disclog proof is Camenisch-Shoup
style on the verifiably encrypted value βisi.

(b) Pj checks if the promise from Pi is valid: well-formed, well-signed, well-
blinded, disclog proof.

(c) If Pi receives t + 1 valid promises of S (including its own), Pi proceeds
to Round 2.

2. In Round 2, for every i ∈ S:
(a) Pi sends (READY, inf) and its signature to the other shareholders in S.

322 J. Hong et al.

(b) If Pi receives t + 1 signed (READY, inf) signals of S (including its own)
from S or (possibly) OTTP, Pi proceeds to Round 3.

3. In Round 3, for every i ∈ S:

(a) Pi sends to the other shareholders in S: (grsi , proof(discloggr (grsi) =
disclogg(V Ki))). Here the proof is an ordinary zk-proof for equality of
discrete logs.

(b) If Pi receives t + 1 good decryption shares (including its own), then Pi

decrypts as in ordinary (robust) threshold decryption, and halts. Other-
wise, Pi proceeds to Round 4.

4. In Round 4, for every i ∈ S:

(a) Let Ŝ be the subset of S which did not send Pi a good decryption share
in Round 3.

(b) Pi sends OTTP all the signed (READY, inf) signals of S, and the par-
tially signed promise (inf, gr/αj , ENCOTTP (βjsj), σj) from every share-
holder j in Ŝ.

(c) OTTP checks all the signed (READY, inf) signals of S and all the signed
part of promises of Ŝ. If any of them is invalid, OTTP rejects the query.

(d) If it is the first query of the session inf, OTTP sends all the signed
(READY, inf) signals of S to all the shareholders of S to finish their
waiting in Round 2.

(e) OTTP notifies each Pj in Ŝ that Pi asks OTTP so that Pj does not wait
for Pi’s decryption share in Round 3.

(f) OTTP decrypts all the (ENCOTTP (βjsj))j∈Ŝ .

(g) OTTP computes and sends to Pi all the ((gr/αj)βjsj)j∈Ŝ .

(h) Pi now unblinds all the ((gr/αj)βjsj)j∈Ŝ using all the (αj , βj)j∈Ŝ . Pi can
obtain the plaintext as in ordinary threshold decryption, and halts.

Remark 1: The promises of step 1 are “blinded” so that the OTTP cannot
compute any decryption share even if it responds to a number of queries. In
the blinded promises, we use two random numbers αi, βi to hide the secret
key shares and the decryption shares from the OTTP. Any shareholder, who
receives a blinded promise, can verify its validity by checking (gr/αi)αi = gr and
proof(disclogg(V Kβi

i) = βisi).

Remark 2: This protocol does not satisfy a useful property timely termina-
tion [2] with which a shareholder can leave the protocol immediately in a fair
manner without waiting for the responses of other shareholders. For instance,
let’s consider the following case in which a shareholder Pi is in Round 2, and
the other shareholders in Round 3 do not send their decryption shares for a long
time. In this case, Pi can neither go to Round 3 since he has not collected all
the signed READY signals, nor leave the protocol since the other shareholders
will succeed in decryption by querying the OTTP. Nevertheless, this protocol is
fair since Pi can succeed in decryption whenever another shareholder succeeds
in decryption if he has not leaved the protocol. We can modify this protocol so

Fair Threshold Decryption with Semi-Trusted Third Parties 323

that timely termination is satisfied. For space constraints, this variant will be
presented in the full version.

Communication Cost: Each shareholder’s communication cost is O(t) and the
total communication cost is O(t2).

Security Proof of OTTP Version

Theorem 4. (Security for threshold decryption) Under the CDH assumption,
unforgeability of the signature scheme and the security of verifiable encryption,
the above optimistic protocol is a semantically secure threshold decryption pro-
tocol in the random oracle model.

Proof. The proof is very similar with the proof for Theorem 2. Assume that A able
to break security for threshold decryption. Using this adversary A, we can build
an algorithm to solve the CDH problem with non-negligible probability: Given an
instance of CDH problem (g, gx, gy), the algorithm computes gxy. CH initializes
PK = gx, s1, ..., st ∈R [0..q − 1], and V K1 = gs1 , ..., V Kt = gst . For each i ∈ [t +
1..�], CH sets V Ki = (PK

V K
λ1
1 ...V K

λt
t

)1/λi . CH also generates (SKOTTP , PKOTTP).

A is given public parameters (PK, V K1, ..., V K
, PKOTTP) and t secret key
shares (s1, ..., st). In step 2, for each query (M, S) of A, CH responds with t + 1
decryption shares {wj = (V Kj)r}j∈S . He also computes t + 1 promises with the
simulated signatures σi and zk-proofs proof(disclogg(V Kβi

i = βisi). In step 4, for
given two messages M0, M1 fromA, CH picks one message Mb and sends a dummy
ciphertext ˆEnc(Mb). CH also simulates promises, signatures and zk-proofs. Un-
der the unforgeability of the signature scheme, A’s query to the OTTP on input
created by A cannot pass the validity test of the input. Moreover, under the se-
curity of verifiable encryption, no information is revealed from the promises in
Round 1. READY signals in Round 2 do not contain any information about the
plaintext. Thus, similar to Theorem 2, A can win the game in polynomial time
with non-negligible probability only by querying gxy to the random oracle, which
contradicts to the CDH assumption.

Theorem 5. (OTTP-obliviousness) Under the CDH assumption, the optimistic
fair threshold satisfies OTTP-obliviousness.

Proof. The proof is the same as the proof for Theorem 4 except: A is given
SKOTTP instead of t secret shares. Still, it is clear that unless αi, βi are given,
A cannot learn anything about si from the partially signed promises. Thus, the
only way to win the game is to make a query on gxy. Again, it contradicts to
the CDH assumption.

Theorem 6. (Fairness) Under the CDH assumption, unforgeability of the sig-
nature scheme, security of the verifiable encryption, the optimistic protocol sat-
isfies fairness of threshold decryption with OTTP in Definition 2.

Proof. Let F be a coalition of at most t cheating shareholders. All the infor-
mation which F can receive comes from the promises in Round 1, the READY

324 J. Hong et al.

signals in Round 2, and the decryption shares in Round 3. Since READY sig-
nals have nothing to do with any secret information, we only need to consider
promises and decryption shares.

Claim 1: If F decrypts the ciphertext without querying to the OTTP, all the
honest shareholders of S can decrypt it too.

If F does not receive decryption shares from the shareholders in Round 3,
F fails to decrypt by Theorem 4. Otherwise, there exists at least one honest
shareholder Pi in Round 3 who sends its decryption share to F . In Round 1 and
2, Pi received all the promises and the signed READY signals of S. It implies
that Pi can obtain all the decryption shares with the help of the OTTP whenever
it wants. Furthermore, from the signed READY signals which Pi received, it is
obvious that all the honest shareholders had received all the promises in Round
1 and proceeded to (at least) Round 2. When Pi queries to the OTTP, all
the honest shareholders in Round 2 can proceed to Round 3 due to the signed
READY signals from the OTTP. Then, all the honest shareholders of S can
decrypt the ciphertext with the help of the OTTP and Claim 1 holds.

Claim 2: If F decrypts the ciphertext by querying to the OTTP, all the honest
shareholders of S can decrypt it too.

F can query to the OTTP only when he has all the signed READY signals. It
implies that all the shareholders of S have sent their signed READY signals to
F . It also implies that all the honest shareholders had received all the promises in
Round 1 and proceeded to Round 2. Thus, whenever F queries to the OTTP, all
the honest shareholders can proceed to Round 3 by receiving the signed READY
signals which the OTTP sends. Then, all the honest shareholders of S can query
to the OTTP and Claim 2 holds.

By both claims, F cannot cause any unfairness whatever they do. Thus, the
OTTP protocol satisfies the fairness of Definition 1.

Acknowledgments

This work was supported by Korea Research Council of Fundamental Science
and Technology. The ICT at Seoul National University provides research facilities
for this study. Jihye Kim was supported by the Korea Science and Engineering
Foundation (KOSEF) grant funded by the Korea government (MEST) (No. R01-
2008-000-11287-0, No. 20090058574).

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
ACM Conference on Computer and Communications Security, pp. 7–17 (1997)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE J. Selected Areas in Communication 18(4), 593–610 (2000)

3. Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with
off-line TTP. In: Proceedings of IEEE Symposium on Security and Privacy, pp.
77–85 (May 1998)

Fair Threshold Decryption with Semi-Trusted Third Parties 325

4. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing
contracts. IEEE Transactions on Information Theory 36(1), 40–46 (1990)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988: Proceedings
of the twentieth annual ACM symposium on Theory of computing, pp. 1–10. ACM,
New York (1988)

6. Blum, M.: How to exchange (secret) keys. ACM Trans. Comput. Syst. 1(2), 175–
193 (1983)

7. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

8. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

9. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the so-
cialist millionaires’ problem. Discrete Applied Mathematics 111(1-2), 23–36 (2001)

10. Cachin, C., Camenisch, J.L.: Optimistic fair secure computation. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

11. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

12. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC 1988: Proceedings of the twentieth annual ACM symposium on Theory
of computing, pp. 11–19. ACM Press, New York (1988)

13. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC, pp. 364–369 (1986)

14. Cox, B., Tygar, J.D., Sirbu, M.: Netbill security and transaction protocol. In: First
USENIX workshop on Electronic Commerce, pp. 77–88 (1995)

15. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

16. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

17. Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from PODC
2003. In: Digital Rights Management Workshop, pp. 47–54 (2003)

18. ElGamal, T.: A public key cryptosystem and signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

19. Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of voting of
lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

20. Franklin, M.K., Reiter, M.K.: Fair exchange with a semi-trusted third party. In:
Proceedings of the 4th ACM Conference on Computer and Communications Secu-
rity (CCS), pp. 1–5 (April 1997)

21. Garay, J.A., MacKenzie, P., Yang, K.: Efficient and secure multi-party computation
with faulty majority and complete fairness. Cryptology ePrint Archive, Report
2004/009 (2004), http://eprint.iacr.org/

22. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

23. Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T.: Threshold RSA for dynamic
and ad-hoc groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 88–107. Springer, Heidelberg (2008)

http://eprint.iacr.org/

326 J. Hong et al.

24. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and Efficient Sharing of
RSA Functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172.
Springer, Heidelberg (1996)

25. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. Inf. Comput. 164(1), 54–84 (2001)

26. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptology 20(1), 51–83 (2007)

27. Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of
RSA functions. J. Cryptology 13(2), 273–300 (2000)

28. Goldreich, O.: Secure multi-party computation (working draft, version 1.2) (2000),
http://www.wisdom.weizmann.ac.il/oded/pp.html

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987: Proceedings of the nineteenth annual ACM symposium on Theory of com-
puting, pp. 218–229. ACM Press, New York (1987)

30. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: STOC, pp. 413–422 (2008)

31. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

32. Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair sfe and coalition-
safe cheap talk. In: PODC 2004: Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing, pp. 1–10. ACM, New York
(2004)

33. Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In:
Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidel-
berg (2008)

34. Luby, M., Micali, S., Rackoff, C.: How to simultaneously exchange a secret bit by
flipping a symmetrically-biased coin. In: FOCS, pp. 11–21 (1983)

35. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

36. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: STOC 1989: Proceedings of the twenty-first annual ACM sym-
posium on Theory of computing, pp. 73–85. ACM Press, New York (1989)

37. Santis, A.D., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: STOC, pp. 522–533 (1994)

38. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
39. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)
40. Zhou, J., Deng, R.H., Bao, F.: Some remarks on a fair exchange protocol. In: Imai,

H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 46–57. Springer, Heidelberg
(2000)

41. Zhou, J., Gollmann, D.: An efficient non-repudiation protocol, pp. 126–132. IEEE
Computer Society Press, Los Alamitos (1997)

http://www.wisdom.weizmann.ac.il/oded/pp.html

Conditional Proxy Broadcast Re-Encryption�

Cheng-Kang Chu1, Jian Weng1,2,
Sherman S.M. Chow3, Jianying Zhou4, and Robert H. Deng1

1 School of Information Systems
Singapore Management University, Singapore
{ckchu,jianweng,robertdeng}@smu.edu.sg

2 Department of Computer Science
Jinan University, Guangzhou 510632, P.R. China

3 Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

4 Institute for Infocomm Research, Singapore
jyzhou@i2r.a-star.edu.sg

Abstract. A proxy re-encryption (PRE) scheme supports the delega-
tion of decryption rights via a proxy, who makes the ciphertexts de-
cryptable by the delegatee. PRE is useful in various applications such
as encrypted email forwarding. In this paper, we introduce a more gen-
eralized notion of conditional proxy broadcast re-encryption (CPBRE).
A CPBRE scheme allows Alice to generate a re-encryption key for some
condition specified during the encryption, such that the re-encryption
power of the proxy is restricted to that condition only. This enables a
more fine-grained delegation of decryption right. Moreover, Alice can
delegate decryption rights to a set of users at a time. That is, Alice’s
ciphertexts can be re-broadcasted. This saves a lot of computation and
communication cost. We propose a basic CPBRE scheme secure against
chosen-plaintext attacks, and its extension which is secure against re-
playable chosen-ciphertext attacks (RCCA). Both schemes are unidirec-
tional and proved secure in the standard model. Finally, we show that
it is easy to get a unidirectional RCCA-secure identity-based proxy re-
encryption from our RCCA-secure CPBRE construction.

Keywords: proxy re-encryption, conditional proxy re-encryption, broad-
cast encryption, hierarchical identity-coupling broadcast encryption.

1 Introduction

Proxy re-encryption (PRE) schemes enable (by delegating a transformation-key
to) a semi-trusted proxy to transform Alice’s ciphertext into one encrypting the
same message which is decryptable by Bob, without allowing the proxy any abil-
ity to perform tasks outside of the delegation. PRE found applications [3,8] in

� Funded by A*STAR project SEDS-0721330047.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 327–342, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

328 C.-K. Chu et al.

digital rights management, distributed file storage systems, and email forward-
ing. For example, users can assign their email server as the proxy such that it
can re-encrypt the emails for different users without knowing the email content.

Although PRE is useful in many applications, we found that sometimes we
need more than the basic. In corporate email forwarding, Alice may ask the proxy
to re-encrypt her emails to her colleague Bob when she is on leave. However, this
is not enough in the following scenarios:

1. Alice does not want Bob to read all her private emails.
2. For some business emails, Alice has to forward them to more than one col-

league other than Bob, in an extreme case, the whole staff of the company.

Using a traditional PRE, a proxy is too powerful as it has the ability to re-
encrypt all Alice’s emails to Bob once the re-encryption key is given. For more
than one delegatees, Alice needs to generate a re-encryption key for each staff
member, and the proxy also needs to re-encrypt emails for each of them.

We believe there is a better way to handle these situations. We envision a
more generalized notion of Conditional Proxy Broadcast Re-Encryption (CP-
BRE). Alice can specify a condition to generate a conditional re-encryption key,
such that the re-encryption power of the proxy is restricted to that condition
only. Moreover, Alice can delegate the decryption rights to a set of users at a
time, which means Alice’s ciphertexts can be re-broadcasted. In this paper, we
formalize this notion, propose a basic CPBRE scheme secure against chosen-
plaintext attacks (CPA), and an extension that is secure against replayable
chosen-ciphertext attacks (RCCA) [9]. RCCA is a weaker variant of chosen-
ciphertext attack (CCA) in which a harmless mauling of the challenge ciphertext
is tolerated. Both schemes are unidirectional and secure in the standard model.

The new CPBRE is much more flexible. Back to our email-forwarding ex-
ample, Alice can use the keywords “business”, “private” and “golf” as the con-
ditions, to allow forwarding of her encrypted emails to her colleagues, family
members, and golf club members respectively. For each group, Alice only re-
quires to produce one re-encryption key and the proxy only requires to transform
a single ciphertext. This saves a lot of computation and communication cost.

Finally, being a generalization of PRE, it is easy to use our RCCA-secure CP-
BRE construction to build a RCCA-secure unidirectional identity-based proxy
re-encryption (IB-PRE), which is the first of its kind.

1.1 Related Works

Following Blaze, Bleumer and Strauss’s seminal work [3] which presented a bidi-
rectional CPA-secure PRE scheme, many PRE schemes have been proposed.
Ateniese et al. [1] presented a CPA-secure unidirectional PRE. Canetti and
Hohenberger [8] presented a CCA-secure bidirectional PRE. Later, Libert and
Vergnaud [14] presented a RCCA-secure unidirectional PRE. These PRE schemes
[1,8,14] rely on the somewhat costly bilinear pairings. Without pairings, Deng et
al. [11] proposed a CCA-secure bidirectional PRE. Subsequently, Weng et al. [19]
and Shao and Cao [16] presented CCA-secure unidirectional PRE.

Conditional Proxy Broadcast Re-Encryption 329

Proxy re-encryption has also been studied in identity-based encryption (IBE)
settings. Based on Boneh-Boyen IBE [4], Boneh, Goh and Matsuo [6] described
a hybrid proxy re-encryption system. Green and Ateniese [12] presented a CPA-
secure IB-PRE and a CCA-secure IB-PRE, which are proven in the random
oracle model and only support single-use (i.e., the ciphertext can only be re-
encrypted once). Matsuo [15] also proposed a CPA-secure IB-PRE scheme. Later,
Chu and Tzeng [10] tried to propose a CCA-secure multi-use IB-PRE scheme
without random oracles. However, as Shao and Cao [16] stated, [12,10] are unable
to resist a “chain collusion attack” (described later). Up to now, there is still no
CCA-secure (or RCCA-secure) IB-PRE scheme in the standard model.

Tang [17] introduced the primitive of type-based proxy re-encryption, which
allows the proxy to re-encrypt a specific type of delegator’s ciphertexts. Inde-
pendently, Weng et al. [18] introduced a similar primitive named “conditional
proxy re-encryption”, in which the proxy can re-encrypt a ciphertext under a
specific condition iff he has the re-encryption key with respect to this condition.
However, both of these schemes are proved in the random oracle model. Finally,
Libert and Vergnaud [13] introduced the notion of traceable proxy re-encryption,
where malicious proxies leaking their re-encryption keys can be identified.

2 Definition

We briefly describe the assumptions and underlying encryption schemes that
will be used in our constructions, then the definition of CPBRE will be given.

2.1 Pairing and Related Computational Assumption

Let G and GT be two (multiplicatively) cyclic groups of prime order p. Let
e : G×G→ GT is a map with the following properties:

– Bilinear: for all g1, g2 ∈ G and a, b ∈ Z, e(ga
1 , gb

2) = e(g1, g2)ab.
– Non-degenerate: for some g ∈ G, e(g, g)
= 1.

We say that G is a bilinear group if the group operations in G and GT , and the
bilinear map are efficiently computable.

Our schemes are based on the Decisional Bilinear Diffie-Hellman Exponent
(BDHE) problem in (G, GT) [5] – given 2n + 1 elements

(g̃, g, gα, gα2
, . . . , gαn

, gαn+2
, . . . , gα2n

) ∈ G2n+1,

and an element R ∈ GT , decide if R = e(g, g̃)αn+1
.

In the rest of this paper, we will use gi to denote the term gαi

.

Definition 1. The Decisional n-BDHE assumption holds in (G, GT) if no poly-
nomial time algorithm A has non-negligible advantage in solving the Decisional
n-BDHE problem in (G, GT), where the advantage of A is ε if

∣
∣
∣
∣
∣
Pr[A(g̃, g, g1, g2, . . . , gn, gn+2, . . . , g2n, e(gn+1, g̃)) = 1]

− Pr[A(g̃, g, g1, g2, . . . , gn, gn+2, . . . , g2n, R) = 1]

∣
∣
∣
∣
∣
≥ ε.

330 C.-K. Chu et al.

2.2 Hierarchical Identity-Coupling Broadcast Encryption

Attrapadung, Furukawa and Imai [2] proposed a notion of Hierarchical Identity-
Coupling Broadcast Encryption (HICBE). We review its model and security
definition here. For an identity ID = {id1, id2, . . . , idl}, we denote IDj as
{id1, id2, . . . , idj} for 1 ≤ j ≤ l. An HICBE consists of the following algorithms.

– Setup(n): on input the maximum number of users, output the public key
PK and master secret key MK.

– KeyGen(PK, MK, i): on input the public key PK, the master secret key
MK and an index i ∈ {1, 2, . . . , n}, output the root secret key ski of user i.

– Derive(PK, ski,IDl−1 , i, ID): on input the public key PK, the secret key
ski,IDl−1 of user i coupling with the (l − 1)-level identity IDl−1, an index
i ∈ {1, 2, . . . , n} and an l-level identity ID, output the secret key ski,ID.

– Encrypt(PK, S, ID, m): on input the public key PK, an index set S ⊆
{1, 2, . . . , n}, an identity ID and a message m, output the ciphertext C.

– Decrypt(PK, ski,ID , i, S, ID, C): on input the public key PK, the secret
key ski,ID, an index i, a set S, an identity ID and a ciphertext C, output
the plaintext m.

The selective identity-and-set security of HICBE is defined by the following
game between an adversary A and a challenger. Both are given n as input.

1. Init. A picks a set S∗ ⊆ {1, 2, . . . , n} and an identity ID∗ to be attacked.
2. Setup. Perform Setup(n) to get (PK, MK) and give PK to A.
3. Query phase 1. A can issue the following queries:

– Extract(i, ID): if i /∈ S∗ or ID is not a prefix of ID∗ or ID∗ itself, return
ski,ID ← Derive(PK, ski, i, ID) where ski ← KeyGen(PK, MK, i);
otherwise, return ‘⊥’.

– Decrypt(i, S, ID, C): return m ← Decrypt(PK, ski,ID, i, S, ID, C),
where ski,ID ← Derive(PK, ski, i, ID), ski ← KeyGen(PK, MK, i).

4. Challenge. A presents (m0, m1). Return C∗ ← Encrypt(PK, S∗, ID∗, mb)
to A, where b ∈R {0, 1}.

5. Query phase 2. A continues making queries as in Query phase 1 except that
A cannot issue the decryption query on (i, S∗, ID, C∗) such that i ∈ S∗ and
(ID = ID∗ or ID is a prefix of ID∗).

6. Guess. A outputs the guess b′ ∈ {0, 1}.
We say A wins the game if b′ = b. The advantage of A is defined as |Pr[b′ =
b]− 1

2 |. An HICBE scheme is IND-sID-sSet-CCA-secure if for any probabilistic
polynomial-time algorithm A, the advantage of A in this game is negligible. The
CPA security is defined in the same way as CCA security except that A is not
allowed to issue the decryption queries.

Attrapadung, Furukawa and Imai provided two constructions based on BGW
[5] broadcast encryption. In this paper, we use the HICBE based on BB-IBE [4]
to build our CPBRE constructions. The security of this HICBE can be asserted
by the following theorem, details can be found in [7] and the full version of [2].

Theorem 1. Suppose theDecisionaln-BDHEassumptionholds.The (BGW+BB)
HICBE scheme for n users is IND-sID-sSet-CCA-secure.

Conditional Proxy Broadcast Re-Encryption 331

2.3 Conditional Proxy Broadcast Re-Encryption

We define our new notion of conditional proxy broadcast re-encryption as follows.

Definition 2. A conditional proxy broadcast re-encryption scheme consists of
the following algorithms:

– Setup(n): used for the generation of the system public key and master secret
key of n users. On input the maximum number of users, output the public
key PK and master secret key MK.

– KeyGen(PK, MK, i): used for the generation of user i’s secret key. On
input the public key PK, the master secret key MK and an index i ∈
{1, 2, . . . , n}, output the secret key ski.

– Encrypt(PK, S, w, m): used for the generation of a regular ciphertext of m
for the set S under condition w. On input the public key PK, an index set
S ⊆ {1, 2, . . . , n}, a condition w and a message m, output the ciphertext C.

– RKGen(PK, ski, S
′, w): used for the generation of a re-encryption key from

i to S′ under condition w. On input the public key PK, the secret key ski,
an index set S′ and a condition w, output the re-encryption key di→S′|w.

– ReEnc(PK, di→S′|w, i, S, S′, w, C): used for the generation of a re-encrypted
ciphertext from C. On input the public key PK, the re-encryption key di→S′|w,
the original recipient i, the original set S, the new set S′, the condition w and
a ciphertext C, output the re-encrypted ciphertext CR or ‘⊥’.

– Decrypt-I(PK, ski, i, S, w, C): used for the decryption of the regular cipher-
text C. On input the public key PK, the secret key ski, an index i, a set S,
a condition w and a ciphertext C, output the plaintext m or ‘⊥’.

– Decrypt-II(PK, ski′ , i, i′, S, S′, w, CR): used for the decryption of the re-
encrypted ciphertext CR. On input the public key PK, the delegatee’s secret
key ski′ , two indices i and i′, two sets S and S′, a condition w and a re-
encrypted ciphertext CR, output the plaintext m or ‘⊥’.

Correctness. For any integer n, any sets S and S′, any indices i ∈ S and
i′ ∈ S′, any condition w and any message m,

Pr

[
Decrypt-I(PK, ski, i, S, w, C) = m : (PK, MK)← Setup(n),

ski ← KeyGen(PK, MK, i), C ← Encrypt(PK, S, w, m)

]

= 1,

Pr

⎡

⎢
⎢
⎢
⎣

Decrypt-II(PK, ski′ , i, i′, S, S′, w, CR) = m :
(PK, MK)← Setup(n), ski ← KeyGen(PK, MK, i),

ski′ ← KeyGen(PK, MK, i′), di←S′|w ← RKGen(PK, ski, S
′, w),

C ← Encrypt(PK, S, w, m), CR ← ReEnc(PK, di←S′|w, i, S, S′, w, C)

⎤

⎥
⎥
⎥
⎦
=1.

Now, we proceed to define the security model for CPBRE. Here we consider
the security in the replayable CCA sense [9,8,14]. For traditional public key
cryptosystems, in such a relaxed security notion, an adversary who can simply
modify a given ciphertext into another encryption of the same plaintext is not
deemed successful [14]. To define the RCCA security for CPBRE systems, we

332 C.-K. Chu et al.

here disallow the adversary to ask for a decryption of any re-randomized version
of the -encrypted ciphertext re-encrypted from the challenge ciphertext.

Definition 3. The chosen-ciphertext security of a CPBRE scheme against a
static adversary is defined by the following game between an adversary A and a
challenger. Both the challenger and A are given n as input.

1. Init. A chooses a set S∗ ⊆ {1, 2, . . . , n} and a condition w∗ that it wants to
attack.

2. Setup. Perform Setup(n) to get (PK, MK) and give PK to A.
3. Query phase 1. We define the following oracles.

(a) Extract(i): return ski ← KeyGen(PK, MK, i).
(b) RKExtract(i, S′, w): return di→S′|w ← RKGen(PK, ski, S

′, w), where
ski ← KeyGen(PK, MK, i).

(c) ReEncrypt(i, S, S′, w, C): returnCR ← ReEnc(PK, di→S′|w, C), where
di→S′|w ← RKGen(PK, ski, S

′, w) and ski ← KeyGen(PK, MK, i).
(d) Decrypt-I(i, S, w, C): return m← Decrypt-I(PK, ski, i, S, w, C),

where ski ← KeyGen(PK, MK, i).
(e) Decrypt-II(i, i′, S, S′, w, CR): compute ski′ ← KeyGen(PK, MK, i′)

and return m← Decrypt-II(PK, ski′ , i, i′, S, S′, w, CR).
A can issue these queries except
– Extract(i) for any i ∈ S∗ and
– both RKExtract(i, S′, w∗) and Extract(i′) for any S′, i ∈ S∗ and

i′ ∈ S′.
4. Challenge. A presents (m0, m1). Return C∗ = Encrypt(PK, S∗, w∗, mb) to
A, where b ∈R {0, 1}.

5. Query phase 2. A continues making queries as in the Query phase 1, except
for the following queries
– Extract(i) for any i ∈ S∗;
– RKExtract(i, S′, w∗) and Extract(i′) for any S′, i ∈ S∗ and i′ ∈ S′;
– Decrypt-I(i, S∗, w∗, C∗) for any i ∈ S∗;
– ReEncrypt(i, S′, w∗, C∗) and Extract(i′) for any S′, i ∈ S∗ and

i′ ∈ S′;
– Decrypt-II(i, i′, S∗, S′, w∗, C∗

R) for any S′ and C∗
R, where i ∈ S∗, i′ ∈

S′ and
Decrypt-II(PK, ski′ , i, i′, S∗, S′, w∗, C∗

R) ∈ {m0, m1}.

6. Guess. A outputs the guess b′ ∈ {0, 1}. We say A wins the game if b′ = b.

The advantage of A is defined as |Pr[b′ = b] − 1
2 |. A CPBRE scheme is IND-

sCond-sSet-RCCA-secure if for any probabilistic polynomial-time algorithm A,
the advantage of A in this game is negligible. The CPA security is defined in the
same way as RCCA security except that A is not allowed to query ReEncrypt,
Decrypt-I and Decrypt-II oracles, similar to the definition in [12].

3 CPA-Secure CPBRE

We start by presenting a CPA version of our final scheme. Without loss of gen-
erality, we assume a condition is always specified for every encryption.

Conditional Proxy Broadcast Re-Encryption 333

3.1 Construction

The basic CPBRE scheme is described as follows.

– Setup(n). Pick a prime p and generates groups G, GT , bilinear map e and
a generator g as defined in Section 2.1. Randomly choose α, γ ∈R Zp and
compute gi = gαi ∈ G for i = 1, . . . , n, n + 2, . . . , 2n. Define the function
F (x) = gx

1h, where h ∈R G. Let H ′ : GT → G be a target collision resistant
(TCR) hash. Compute v = gγ . Output the public/secret key:

PK = (v, g, g1, . . . , gn, gn+2, . . . , g2n, F, H ′), MK = γ.

– KeyGen(PK, MK, i). The private key for i is defined as

ski = gγ
i .

– Encrypt(PK, S, w, m). For the set S ⊆ {1, 2, . . . , n} and the condition w ∈
Zp, pick t ∈R Zp, the ciphertext for message m ∈ GT is output as

C = (c1, c2, c3, c4) = (m · e(g1, gn)t, gt, (v ·
∏

j∈S

gn+1−j)t, F (w)t).

– RKGen(PK, ski, S
′, w). Randomly choose s ∈ Zp, output

di→S′|w = (ski · F (w)s, C′), where C′ ← Encrypt’(PK, S′, gs),

where the algorithm Encrypt’(PK, S, m) for S ⊆ {1, 2, . . . , n} and m ∈ G
picks t ∈R Zp, σ ∈R GT and outputs the ciphertext as

C′ = (c′0, c
′
1, c

′
2, c

′
3) = (m ·H ′(σ), σ · e(g1, gn)t, gt, (v ·

∏

j∈S

gn+1−j)t).

– ReEnc(PK, di→S′|w, i, S, S′, w, C). Let C = (c1, c2, c3, c4) and di→S′|w =
(d, C′). Compute

c̃1 = c1 · e(d ·
∏

j∈S,j �=i

gn+1−j+i, c2)/e(gi, c3) and c̃2 = c4.

The re-encrypted ciphertext is output as

CR = (c̃1, c̃2, C
′).

– Decrypt-I(PK, ski, i, S, w, C). Let C = (c1, c2, c3, c4). Output

m = c1 · e(ski ·
∏

j∈S,j �=i

gn+1−j+i, c2)/e(gi, c3).

– Decrypt-II(PK, ski′ , i, i′, S, S′, w, CR). Let CR = (c̃1, c̃2, C
′) and C′ =

(c′0, c
′
1, c

′
2, c

′
3). Recover

gs ← c′0/H ′(c′1 ·
e(ski′ ·

∏
j∈S′,j �=i′ gn+1−j+i′ , c′2)

e(gi′ , c′3)
)

and output
m = c̃1/e(gs, c̃2).

334 C.-K. Chu et al.

Discussion. For the regular encryption, the scheme is just the same as the un-
derlying BGW+BB HICBE scheme, hence we enjoy a constant-size ciphertext.
For the re-encryption key under condition w, we encrypt gs, one of the two ele-
ments of ski,w, under the key of the recipient set. Again, its size is independent
of the number of delegatees. The same hold trues for re-encrypted ciphertext.
The regular decryption procedure is proceeded in ReEnc, except for the can-
cellation of the term e(gs, f(w)t). In Decrypt-II, the recipient can decrypt C′

to get gs first, and then cancel e(gs, f(w)t) to get m.

Correctness. For any integer n, any sets S and S′, any indices i ∈ S and i′ ∈ S′,
any condition w and any message m, we can see that

– for Decrypt-I,

c1 · e(ski ·
∏

j∈S,j �=i gn+1−j+i, c2)/e(gi, c3)
= c1 · e(gγ

i ·
∏

j∈S,j �=i gn+1−j+i, g
t)/e(gi, (v ·

∏
j∈S gn+1−j)t)

= c1 · e(
∏

j∈S,j �=i gn+1−j+i, g
t)/e(gi,

∏
j∈S gt

n+1−j)
= c1/e(g, gt

n+1) = m · e(g1, gn)t/e(g, gt
n+1) = m;

– for Decrypt-II,

c̃1/e(gs, c̃2)
= (c1 · e(d ·

∏
j∈S,j �=i gn+1−j+i, c2)/e(gi, c3))/e(gs, c4)

= (c1 · e(ski · F (w)s ·
∏

j∈S,j �=i gn+1−j+i, c2)/e(gi, c3))/e(gs, c4)
= (c1 · e(ski ·

∏
j∈S,j �=i gn+1−j+i, c2)/e(gi, c3))e(F (w)s, c2)/e(gs, c4)

= m · e(F (w)s, gt)/e(gs, F (w)t) (via Decrypt-I)
= m.

3.2 Security

Theorem 2. Suppose the decisional n-BDHE assumption holds and H ′ is a
TCR hash function, the basic CPBRE scheme for n users described above is
IND-sCond-sSet-CPA-secure.

Proof. Suppose there is an adversary A breaking our basic CPBRE scheme with
non-negligible advantage. Initially, A outputs a selected set S∗ and a selected
condition w∗. Then we construct another algorithm B breaking the underlying
HICBE scheme as follows.

Given the public key PK of HICBE, B simulates the security game of basic
CPBRE. Initially, B prepares two tables:

– EX with an index list: a track of Extract queries.
– RK with columns (i, S′, w, d): d is the re-encryption key from index i to the

set S′ under the condition w.

Moreover, we use ∗ to denote the wildcard symbol.

1. Init. B outputs S∗ and w∗ as the target set and target identity of HICBE.
2. Setup. Choose a TCR hash function H ′. B sends PK along with H ′ to A.

Conditional Proxy Broadcast Re-Encryption 335

3. Query phase 1. B answers the following queries issued by A:
(a) Extract(i): if i ∈ S∗, or (j, S′, w∗, ∗) exists in the RK table, where

j ∈ S∗, i ∈ S′, B responds ‘⊥’. Otherwise, B forwards the query to the
key extraction oracle of HICBE, and responds the received ski. B records
i in the EX table.

(b) RKExtract(i, S′, w): if there is a tuple (i, S′, w, di→S′|w) in the RK
table, B responds di→S′|w to A. Otherwise, we have the following cases:
– i /∈ S∗ or w
= w∗: B queries i’s secret key under identity w from

the challenger of HICBE, and responds the re-encryption key as the
real scheme (except that gs is given by the challenger). B records the
tuple (i, S′, w, di→S′|w) in the RK table.

– i ∈ S∗, w = w∗ and S′ ∩ EX
= ∅: B responds ‘⊥’.
– i ∈ S∗ and w = w∗, but S′∩EX = ∅: B picks d, d′ ∈R G and responds

a random re-encryption key di→S′|w = (d,Encrypt’(PK, S′, d′)). B
records the tuple (i, S′, w, di→S′|w) in the RK table.

4. Challenge. A sends (m0, m1) to B. B forwards it to the challenger of HICBE.
When the challenger returns ciphertext C∗, B responds C∗ to A.

5. Query phase 2. B responds A’s queries as in phase 1.
6. Guess. When A outputs the guess b′, B outputs b′.

We can see that B successfully simulates A’s view in the attack except for a
case of re-encryption key queries (when i ∈ S∗ and w = w∗). For a randomly
chosen key di→S′|w = (d, C′), there must be a value s′ ∈ Zp such that d =
ski · F (w)s′

. Therefore the problem is equivalent to the indistinguishability of
C′ and the encryption of some value gs′

. This is implied by the CPA security
of HICBE and the TCR hash function. So, B has non-negligible advantage in
breaking the HICBE scheme. By Theorem 1, B has non-negligible advantage in
breaking the decisional n-BDHE assumption. �

Note that our constructions can withstand the below attack mentioned in [16].

Chain collusion attack. Suppose Alice is the attack target in a proxy re-encryption
scheme. Although the adversaryA cannot get the re-encryption key from Alice to
Bob and Bob’s private key at the same time,A can get the re-encryption key from
Bob to Carol and Carol’s private key instead. If Bob’s private key can be derived
with these two keys, then Alice’s private key can be derived as well by just asking
for the re-encryption key from Alice to Bob.

In our constructions, we assume a condition w for each encryption. It means all
re-encryption keys given to the proxy are coupled with a condition. The collusion
of the proxy and the delegatee can recover the decryption key for some condition
only. However, the ciphertext C′ in the re-encryption key can be decrypted by
the root private key only. So the above attack cannot be applied.

4 RCCA-Secure CPBRE

The RCCA-secure CPBRE scheme follows the structure of the basic CPBRE.
However, it is challenging to design a RCCA-secure CPBRE scheme because it

336 C.-K. Chu et al.

involves two kinds of secret keys (regular decryption keys and re-encryption keys)
and two kinds of ciphertexts (regular ciphertexts and re-encrypted ciphertexts).
Again, we assume a condition is always specified for every encryption.

4.1 Construction

– Setup(n). Pick a prime p and generates groups G, GT , bilinear map e and
a generator g. Randomly choose α, γ ∈R Zp and compute gi = gαi ∈ G for
i = 1, . . . , n, n+2, . . . , 2n. Define the functions bit(i, x) be the i-th bit of a bit-
string x, F1(x) = gx

1h1 and F2(x) = u′ ∏ ui
bit(i,x) where h1, u, u1, · · · , uη ∈R

G Let H : {0, 1}∗ → Zp and H ′ : GT → G be two TCR hash functions.
Compute v = gγ . Output the public key and the secret key:

PK = (v, g, g1, . . . , gn, gn+2, . . . , g2n, F1, F2, H, H ′), MK = γ.

– KeyGen(PK, MK, i). The private key for i is defined as

ski = gγ
i .

– Encrypt(PK, S, w, m). For the set S ⊆ {1, 2, . . . , n} and the condition w ∈
Zp, the ciphertext for message m ∈ GT can be output as

C = (c1, c2, c3, c4, c5) = (m · e(g1, gn)t, gt, (v ·
∏

j∈S

gn+1−j)t, F1(w)t, F2(h)t),

where t ∈R Zp and h = H(c1, c2, c3, c4).
– RKGen(PK, ski, S

′, w). Pick s ∈R Zp. Output the re-encryption key as

di→S′|w = (ski · F1(w)s, C′), where C′ ← Encrypt’(PK, S′, gs).

The algorithm Encrypt’(PK, S, m) for S ⊆ {1, 2, . . . , n} and m ∈ G outputs

C′ = (c′0, c
′
1, c

′
2, c

′
3, c

′
4) = (m·H ′(σ), σ ·e(g1, gn)t, gt, (v ·

∏

j∈S

gn+1−j)t, F2(h′)t),

where t ∈R Zp, σ ∈R GT and h′ = H(c′0, c
′
1, c

′
2, c

′
3).

– ReEnc(PK, di→S′|w, i, S, S′, w, C). Let C = (c1, c2, c3, c4, c5) and di→S′|w =
(d, C′). Compute h = H(c1, c2, c3, c4). Check that

e(c2, v ·
∏

j∈S gn+1−j)
?=e(g, c3), e(c2, F2(h)) ?=e(g, c5), e(c2, F1(w)) ?=e(g, c4).

If any of the equations does not hold or i /∈ S, output ‘⊥’. Otherwise,
compute

d′1 = d · F2(h)s′
, and d′2 = gs′

.

Output the re-encrypted ciphertext

CR = (C, C′, d′1, d
′
2).

Conditional Proxy Broadcast Re-Encryption 337

– Decrypt-I(PK, ski, i, S, w, C). Let C = (c1, c2, c3, c4, c5). Compute h =
H(c1, c2, c3, c4) and check that

e(c2, v ·
∏

j∈S gn+1−j)
?=e(g, c3), e(c2, F2(h)) ?=e(g, c5), e(c2, F1(w)) ?=e(g, c4).

If any of the equations does not hold or i /∈ S, output ‘⊥’. Otherwise, output

m = c1 ·
e(ski ·

∏
j∈S,j �=i gn+1−j+i, c2)

e(gi, c3)
.

– Decrypt-II(PK, ski′ , i, i′, S, S′, w, CR). Let CR = (C, C′, d′1, d
′
2) where C =

(c1, c2, c3, c4, c5) and C′ = (c′0, c
′
1, c

′
2, c

′
3, c

′
4). Compute h = H(c1, c2, c3, c4)

and h′ = H(c′0, c′1, c′2, c′3). Check that

e(c2, v ·
∏

j∈S gn+1−j)
?= e(g, c3), e(c′2, v ·

∏
j∈S′ gn+1−j)

?= e(g, c′3)

e(c2, F1(w)) ?= e(g, c4), e(c2, F2(h)) ?= e(g, c5),
e(c′2, F2(h′)) ?= e(g, c′4) and i ∈ S.

(1)

If any of the equations does not hold, output ‘⊥’. Otherwise, perform

gs = c′0/H ′(c′1 ·
e(ski′ ·

∏
j∈S′,j �=i′ gn+1−j+i′ , c′2)

e(gi′ , c′3)
).

and check that

e(d′1, g) ?= e(gi, v)e(F1(w), gs)e(F2(h), d′2). (2)

If the equation does not hold, output ‘⊥’. Otherwise output

m = c1 ·
e(d′1 ·

∏
j∈S,j �=i gn+1−j+i, c2)

e(gi, c3)e(gs, c4)e(d′2, c5)
.

Correctness. The decryption of regular ciphertexts is just the same as our basic
CPBRE. For the re-encrypted ciphertexts, we first check the decryption of C′:

c′0/H ′(c′1 ·
e(ski′ ·∏j∈S′,j �=i′ gn+1−j+i′ ,c′

2)
e(gi′ ,c′

3)
)

= c′0/H ′(c′1 · e(g
γ
i′ ·

∏
j∈S′,j �=i′ gn+1−j+i′ , gt)/e(gi′ , (v ·

∏
j∈S′ gn+1−j)t))

= c′0/H ′(c′1 · e(
∏

j∈S′,j �=i′ gn+1−j+i′ , gt)/e(gi′ ,
∏

j∈S′ gt
n+1−j))

= c′0/H ′(c′1/e(g, gt
n+1)) = gs ·H ′(σ)/H ′(σ · e(g1, gn)t/e(g, gt

n+1)) = gs.

Once gs is correctly computed, we can compute the message:

c1 ·
e(d′

1·
∏

j∈S,j �=i gn+1−j+i,c2)
(e(gi,c3)e(gs,c4)e(d′

2,c5))

= c1 ·
e(gγ

i F1(w)sF2(h)s′ ·∏j∈S,j �=i gn+1−j+i,g
t)

(e(gi,c3)e(gs,F1(w)t)e(gs′ ,F2(h)t))
= c1 · e(gγ

i ·
∏

j∈S,j �=i gn+1−j+i, g
t)/e(gi, (v ·

∏
j∈S gn+1−j)t)

= c1 · e(
∏

j∈S,j �=i gn+1−j+i, g
t)/e(gi,

∏
j∈S gt

n+1−j)
= c1/e(g, gt

n+1) = m · e(g1, gn)t/e(g, gt
n+1) = m;

Moreover, it is easy to verify the checking equations are correct. Therefore the
correctness of this construction holds.

338 C.-K. Chu et al.

4.2 Security

In this scheme, we get the RCCA security from the conversion technique of [7].
The scheme involves one more identity level for hash values. This ensures C
and C′ will not be modified. We did not check the integrity of the re-encrypted
ciphertext as a whole. but we use Equation 1 and Equation 2 to check the
validity of C, C′, d′1, d′2 and their relationships to i, S, w. In Lemma 1, we show
that if all of these equations hold, C will be decrypted to the original message
by d′1, d′2 and gs encrypted in C′. Therefore, the challenger is able to reject
any re-randomization of the re-encrypted ciphertexts or any re-encryption of
the challenge ciphertext.

Lemma 1. If a re-encrypted ciphertext CR = (C, C′, d′1, d
′
2) passes Equation 1

and 2, then CR will be decrypted to the same message as the decryption of C.

Proof. By Equation 1, we know that C is indeed an encryption under the set
S coupling with identity w, C′ is an encryption under the set S′, and i ∈ S.
Then Equation 2 implies that CR will be decrypted to the same message as the
decryption of C, since

c1 ·
e(d′

1·
∏

j∈S,j �=i gn+1−j+i,c2)
e(gi,c3)e(gs,c4)e(d′

2,c5)

= c1 ·
e(d′

1·
∏

j∈S,j �=i gn+1−j+i,g
t)

e(gi,c3)e(gs,F1(w)t)e(d′
2,F2(h)t) = c1 ·

e(
∏

j∈S,j �=i gn+1−j+i,g
t)e(d′

1,g)t

e(gi,c3)e(gs,F1(w)t)e(d′
2,F2(h)t)

= c1 ·
e(

∏
j∈S,j �=i gn+1−j+i,g

t)e(gi,v)te(F1(w),gs)te(F2(h),d′
2)

t

e(gi,c3)e(gs,F1(w)t)e(d′
2,F2(h)t) (by Equation 2)

= c1 ·
e(

∏
j∈S,j �=i gn+1−j+i,g

t)e(gi,v)t

e(gi,c3)
= c1 ·

e(ski·
∏

j∈S,j �=i gn+1−j+i,c2)
e(gi,c3)

.

�

Theorem 3. Suppose the decisional n-BDHE assumption holds and H, H ′ are
two TCR hash functions, the CPBRE scheme for n users described above is
IND-sCond-sSet-RCCA-secure.

Proof. Suppose there is an adversary A breaking our CPBRE scheme with
non-negligible advantage. Initially, A outputs a selected set S∗ and a selected
condition w∗. Then we construct another algorithm B breaking the underlying
CCA-secure HICBE scheme (CCA-HICBE) as follows.

Given the public key PK of CCA-HICBE, B simulates the RCCA game of
CPBRE. Initially, B prepares the following tables:

– EX with (i): a track of Extract queries.
– RK with columns (i, S′, w, d, C′, gs, br, bq): the records of re-encryption key

(d, C′) returned by B, where C′ ← Encrypt’(PK, S′, gs); br and bq indicate
whether the key is randomly chosen or output by RKExtract oracle.

– RE with column (S′): a track of ReEncrypt(i, S, S′, w∗, C∗) queries, where
i ∈ S∗ and C∗ is the challenge ciphertext.

We use ∗ to denote the wildcard symbol. Note that the intermediate ciphertext
C′ with a different form cannot be issued to Decrypt oracle.

Conditional Proxy Broadcast Re-Encryption 339

1. Init. B outputs S∗ and w∗ as the target set and identity of CCA-HICBE.
2. Setup. Pick a TCR hash function H ′. B sends PK along with H ′ to A.
3. Query phase 1. B answers the following queries issued by A:

(a) Extract(i): if i ∈ S∗, or (j, S′, w∗, ∗, ∗, ∗, ∗, 1) exists in the RK table,
where j ∈ S∗, i ∈ S′, B responds ‘⊥’. Otherwise, B forwards the query
to the key extraction oracle of CCA-HICBE, and responds the received
ski. B records i in the EX table.

(b) RKExtract(i, S′, w): if there is a tuple (i, S′, w, d, C′, gs, ∗, ∗, 1) in the
RK table,B responds (d, C′) toA. Otherwise,B answers the re-encryption
key for the following cases:
– i /∈ S∗ or w
= w∗: B queries i’s secret key under identity w from

the challenger of CCA-HICBE, and computes and responds the re-
encryption key (d, C′) as the real scheme (except that gs is given by
the challenger). B records (j, S′, w∗, d, C′, gs, 0, 1) on RK.

– i ∈ S∗, w = w∗ and S′ ∩ EX
= ∅: B responds ‘⊥’.
– i ∈ S∗ and w = w∗, but S′ ∩ EX = ∅: if the RK table contains

(i, S′, w, d, C′, gs, 1, 0), B responds (d, C′) to A and sets bq of this
tuple to 1. Otherwise, B responds a random re-encryption key (d, C′),
where d is randomly chosen from G and C′ ← Encrypt’(PK, S′, gs)
for some random s ∈ Zp. B records the tuple (i, S′, w, d, C′, gs, 1, 1)
in the RK table. Note that in this case, any Extract(i′) query for
i′ ∈ S′ is forbidden, so the re-encryption key cannot be verified.

(c) ReEncrypt(i, S, S′, w, C): B proceeds depending on the following cases:
– i /∈ S∗ or w
= w∗: if there is no tuple (i, S′, w, ∗, ∗, ∗, ∗, ∗) on RK, B

performs RKExtract(i, S′, w) to get the re-encryption key (d, C′)
and records (i, S′, w∗, d, C′, gs, 0, 0) on RK. Then B re-encrypts C
using the re-encryption key on RK as in the real scheme.

– i ∈ S∗, w = w∗: if (i, S′, w, ∗, ∗, ∗, 1, 1) exists on RK, B re-encrypts
C using the re-encryption key on RK as in the real scheme. Other-
wise, B issues the key extraction query on (i, (w, h)) to the challenger
of CCA-HICBE where h = H(c1, c2, c3, c4), and gets back the pri-
vate key (d1, d2, d3) = (skiF1(w)sF2(h)s′

, gs, gs′
). Then B computes

C′ = Encrypt’(PK, S′, d2) and responds (C, C′, d1, d3). B records
(i, S′, w∗, d, C′, d2, 1, 0) on RK, where d ∈R G.

(d) Decrypt-I(i, S, w, C): B forwards (i, S, w, C) to the decryption oracle
of CCA-HICBE and responds the result to A.

(e) Decrypt-II(i, i′, S, S′, w, CR): let CR = (C, C′, d′1, d
′
2). B issues C′ to

the decryption oracle of CCA-HICBE scheme to obtain gs first1. If the
result is ‘⊥’, B responds ‘⊥’ as well. For (i, S′, w), check whether there

1 We cannot issue C′ to the decryption oracle of CCA-HICBE directly. However, we
can modify the CCA-HICBE scheme (removing the ID part and adding the TCR
part) to get a new scheme which encrypts messages as in Encrypt’. The resulting
scheme is like another way of making the BGW [5] scheme CCA-secure using the
conversion technique of [7]. It is easy to show that the obtained scheme is IND-sSet-
CCA secure assuming the decisional n-BDHE assumption and a TCR hash function.

340 C.-K. Chu et al.

exists a tuple (i, S′, w, d̂, Ĉ, gs, 1, 1) on RK. If there does not exist such
tuple, B decrypts the ciphertext as in the real scheme. Otherwise, check

e(d′1, g) ?= e(d̂, g)e(F2(h), d′2) and C′ ?= Ĉ.

If both equations hold, CR is re-encrypted by the random re-encryption
key given by B. So B issues a query (i, S, w, C) to the decryption oracle
of CCA-HICBE and responds the result to A. Otherwise, B decrypts the
ciphertext as in the real scheme.

4. Challenge. A sends (m0, m1) to B. B forwards it to the challenger of CCA-
HICBE. When the challenger returns ciphertext C∗, B responds C∗ to A.

5. Query phase 2. A continues making the following queries as in phase 1, except
for the restrictions described in the definition.
(a) Extract(i): If i ∈ S′ for some S′ on RE, B responds ‘⊥’. Otherwise, B

responds the queries as in Query phase 1.
(b) RKExtract(i, S′, w): B responds as in Query phase 1.
(c) ReEncrypt(i, S, S′, w, C): If C = C∗, S = S∗, w = w∗, i ∈ S and

S′ ∩ EX
= ∅, B responds ‘⊥’. Otherwise, B responds the queries as in
Query phase 1. B records S′ on RE if it did not respond ‘⊥’ and C = C∗.

(d) Decrypt-I(i, S, w, C): If if C = C∗, S = S∗, w = w∗ and i ∈ S, B
responds ‘⊥’. Otherwise, B responds the queries as in Query phase 1.

(e) Decrypt-II(i, i′, S, S′, w, CR): let CR = (C, C′, d′1, d
′
2). B responds the

queries as in Query phase 1 except for the case C = C∗, S = S∗, w = w∗

and i ∈ S. For the latter case, B simply responds with ‘⊥’. We explain
this by considering the following two cases for i ∈ S:
– CR does not pass Equation 1 or 2: B should return ‘⊥’.
– CR passes Equation 1 and 2: by Lemma 1, CR must be decrypted

into mb. According to our security definition, this query is forbidden.
6. Guess. When A outputs the guess b′, B outputs b′.

A is successfully simulated except for randomly chosen re-encryption keys. For
a randomly chosen re-encryption key (d, C′), there must be a value s′ ∈ Zp such
that d = ski ·F (w)s′

. Therefore the distinguishability of these keys is equivalent
to the distinguishability of C′ and the encryption of some value gs′

. By the
CCA security of CCA-HICBE and the TCR hash function, this distinguishability
is negligible. Moreover, if A uses a randomly chosen re-encryption key to re-
encrypt a ciphertext and issues it to Decrypt-II oracle, B can make a decryption
query on the original ciphertext and respond with a correct message. So, B has
non-negligible advantage in breaking the CCA-HICBE, and hence breaking the
decisional n-BDHE assumption, by Theorem 1. �

5 RCCA-Secure Identity-Based Proxy Re-Encryption

Since CPBRE is a generalization of PRE, we can build RCCA-secure IB-PRE
from our RCCA-secure CPBRE by letting the broadcast size be 1 and w be user
ID. We briefly explain the changes here. Details are deferred to the full paper.

Conditional Proxy Broadcast Re-Encryption 341

The key generation center executes Setup. For user key generation, each
user gets a 1-level secret key (gγ

1F1(id)s, gs) for his identity id. Everyone has
to encrypt a message under a 2-level identity: recipient’s identity and a dummy
identity t. In RKGen, gs is encrypted under the recipient’s (1-level) identity.
Then a proxy colluding with a third party can only get the decryption key of
delegator’s 2-level identity, which cannot be used to get gs.

In short, a user Alice with the secret key (gγ
1 F1(“Alice”)s, gs) delegates the

decryption right to Bob by giving the re-encryption key (gγ
1 F1(“Alice”)sF2(t)s′

,
Encrypt’(PK, “Bob”, gs), gs′

) to a proxy. The proxy re-encrypts an Alice’s ci-
phertext C in the form (C, C′, d′1, d

′
2). Then Bob can use his own secret key

(gγ
1F1(“Bob”)s′

, gs′
) to decrypt C′ first, and get the decryption of C. The secu-

rity proof is almost the same as that for the RCCA-secure CPBRE scheme.
We say that a PRE scheme is multi-use if the proxy can re-encrypt a ciphertext

multiple times, e.g. re-encrypt from Alice to Bob, then re-encrypt the result from
Bob to Carol. To do that in our construction, the proxy only needs to re-encrypt
C′ to further transform the re-encrypted ciphertext.

6 Conclusions

We introduce conditional proxy broadcast re-encryption, which allows a user to
delegate the decryption rights of ciphertexts to a group of users, restricted to
a certain condition, via the help of a proxy. Our final scheme is unidirectional
and secure against replayable chosen-ciphertext attacks in the standard model,
which also gives a unidirectional ID-based proxy re-encryption scheme.

Acknowledgement

Thanks to Junzuo Lai for the discussion that improves our initial construction.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: Proceedings of the
Network and Distributed System Security Symposium (NDSS 2005). The Internet
Society (2005)

2. Attrapadung, N., Furukawa, J., Imai, H.: Forward-secure and searchable broadcast
encryption with short ciphertexts and private keys. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 161–177. Springer, Heidelberg (2006)

3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

4. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

342 C.-K. Chu et al.

5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

6. Boneh, D., Goh, E.-J., Matsuo, T.: Proposal for P1363.3 proxy re-encryption
(2006), http://grouper.ieee.org/groups/1363/IBC/submissions

7. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security - CCS 2005, pp. 320–329. ACM Press, New York (2005)

8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of ACM Conference on Computer and Communications Security (CCS
2007), pp. 185–194. ACM Press, New York (2007)

9. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

10. Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random
oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007)

11. Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-ciphertext secure proxy re-
encryption without pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.)
CANS 2008. LNCS, vol. 5339, pp. 1–17. Springer, Heidelberg (2008)

12. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

13. Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 332–
353. Springer, Heidelberg (2008)

14. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

15. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 247–267. Springer, Heidelberg (2007)

16. Shao, J., Cao, Z.: CCA-secure proxy re-encryption without pairings. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidelberg
(2009)

17. Tang, Q.: Type-based proxy re-encryption and its construction. In: Soomaruga,
G. (ed.) Formal Theories of Information. LNCS, vol. 5363, pp. 130–134. Springer,
Heidelberg (2008)

18. Weng, J., Deng, R.H., Ding, X., Chu, C.-K., Lai, J.: Conditional proxy re-
encryption secure against chosen-ciphertext attack. In: Proceedings of ACM Sym-
posium on Information, Computer & Communication Security (ASIACCS 2009).
ACM Press, New York (to appear, 2009)

19. Weng, J., Deng, R.H., Liu, S., Chen, K., Lai, J., Wang, X.: Chosen-ciphertext secure
proxy re-encryption schemes without pairings. Technical report, Cryptology ePrint
Archive: Report 2008/509 (Version 3) (2008)

http://grouper.ieee.org/groups/1363/IBC/submissions

Security on Hybrid Encryption with the
Tag-KEM/DEM Framework

Toshihide Matsuda1, Ryo Nishimaki2, Akira Numayama1, and Keisuke Tanaka1

1 Tokyo Institute of Technology
W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan
{matsuda5,keisuke,numayam4}@is.titech.ac.jp

2 NTT Laboratories,
3-9-11 Midori-cho Musashino-shi Tokyo 180-8585, Japan

nishimaki.ryo@lab.ntt.co.jp

Abstract. The tag-KEM/DEM framework has been proposed by Abe, Gennaro,
Kurosawa, and Shoup to explain why the Kurosawa-Desmedt PKE is secure in the
sense of IND-CCA2, yet the KEM part are not secure in the sense of IND-CCA2.
They have concluded that the Kurosawa-Desmedt KEM satisfies the IND-CCA2
security for tag-KEM. They have shown that an IND-CCA2 secure PKE system
can be constructed from an IND-CCA2 tag-KEM system and an IND-OT secure
DEM system.

Herranz, Hofheinz and Kiltz have shown the necessary and sufficient condi-
tions for the KEM/DEM framework. They also have studied implications and
separations among the security notions of KEM.

In this paper, we study the necessary and sufficient conditions for the tag-
KEM/DEM framework. Moreover, we study implications and separations among
the security notions of tag-KEM. By these studies, we show gaps between KEM
and tag-KEM about weak and strong non-malleability with respect to the neces-
sary and sufficient conditions in order to obtain the same security levels.

1 Introduction

1.1 Background

An important task of cryptography is to transmit messages safely through a public chan-
nel. For this purpose, there exist two ways, i.e., public-key encryption (PKE) systems and
symmetric-key encryption (SKE) systems. Hybrid encryption systems are constructed
from the combination from both sides, which are employed to utilize the advantage of
both of them. In these systems, a ciphertext consists of two parts: a ciphertext of a sym-
metric key with the public-key encryption system and a ciphertext of the message with
the symmetric-key encryption system by using the symmetric key. Constructions of hy-
brid encryption systems have been improved and formalized as key encapsulation mech-
anism (KEM) and data encapsulation mechanism (DEM) by Cramer and Shoup [4,10].

In the KEM/DEM framework, if the KEM and DEM systems are secure in the sense
of IND-CCA2, then the hybrid encryption system is also secure in the sense of IND-
CCA2 [4]. It was believed that these conditions were necessary and sufficient. How-
ever, Kurosawa and Desmedt have constructed a hybrid encryption system such that the

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 343–359, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

344 T. Matsuda et al.

KEM system does not satisfy the IND-CCA2 security, but the hybrid encryption system
constructed from it satisfies the IND-CCA2 security [7,6].

Abe, Gennaro, Kurosawa, and Shoup have proposed the tag-KEM/DEM framework
in order to formalize the security notions that the Kurosawa-Desmedt hybrid encryp-
tion system satisfies[1]. The tag-KEM/DEM framework applies the output of DEM
to the input of tag-KEM as a tag. In this framework, if the tag-KEM system satisfies
the IND-CCA2 security and the DEM system satisfies the IND-OT security, the hy-
brid encryption system is secure in the sense of IND-CCA2. They explained why the
Kurosawa-Desmedt system satisfies the IND-CCA2 security within the tag-KEM/DEM
framework.

Herranz, Hofheinz, and Kiltz [5] have classified the security notions of KEM into
nine security notions, IND-{CPA, CCA1, CCA2}, wNM-{CPA, CCA1, CCA2}, sNM-
{CPA,CCA1,CCA2}, and the security notions of DEM into ten security notions, IND-
{OT, CPA, CCA1, OTCCA2, CCA2}, NM-{OT, CPA, CCA1, OTCCA2, CCA2}. They
have analyzed implications and separations among these security notions, and shown
the necessary and sufficient conditions for the security levels of the hybrid encryption
systems.

1.2 Motivations

It is not clear the necessary and sufficient conditions for the tag-KEM/DEM frame-
work, in contrast to the KEM/DEM framework [5]. There are differences between
the KEM/DEM framework and the tag-KEM/DEM framework as illustrated by the
Kurosawa-Desmedt system, for example. Therefore, it is important to study the nec-
essary and sufficient conditions for the tag-KEM/DEM framework and to understand
the differences between the KEM/DEM and the tag-KEM/DEM frameworks for sev-
eral security notions. In the contrast to the KEM/DEM framework, we may not need
strong security notions to construct a hybrid encryption system which satisfies a certain
security notion with the tag-KEM/DEM framework.

1.3 Our Contributions

(1) We define the security notions on non-malleability for tag-KEM, i.e. weak non-
malleability (wNM), comparison non-malleability (CNM), and simulation non-
malleability (SNM), by following the definitions of KEM [5,8]. We define, in
addition to the above notions, the security notion related to non-malleability for
tag-KEM, i.e. indistinguishability under parallel chosen ciphertext attack based on
non-malleability (PNM), by following the definitions of KEM [8].

(2) We prove the equivalence among the CNM-ATK security, the SNM-ATK security,
and the PNM-ATK security for tag-KEM, as in the case of KEM [8]. We call these
security notions strong non-malleability(sNM). We note that the wNM-ATK secu-
rity is not equal to the sNM-ATK security.

(3) We analyze implications and separations between each pair of the security notions
on tag-KEM, as in the case of KEM [5]. This result is described in Fig. 1.

(4) We study the necessary and sufficient conditions for the security level of the hybrid
encryption system with the tag-KEM/DEM framework, as in the case of KEM [5].
This result is described in Fig. 2.

Security on Hybrid Encryption with the Tag-KEM/DEM Framework 345

sNM-CPA sNM-CCA1.5sNM-CCA1 sNM-CCA2

IND-CPA IND-CCA1.5IND-CCA1 IND-CCA2

wNM-CPA wNM-CCA1.5wNM-CCA1 wNM-CCA2

Fig. 1. Relations among the security notions of tag-KEMs

IND-{OT,CCA2} DEM

wNM-{CPA, CCA1, CCA1.5, CCA2} tag-
KEM

< IND-CPA PKE (Theorem 7)
√

IND-CPA tag-KEM
≥ IND-CPA PKE (This is trivial from [1].)
< NM-CPA, IND-CCA1 PKE

sNM-CPA tag-KEM
≥ NM-CPA PKE (Theorem 6)

√
< IND-CCA1 PKE (the proof in the full paper)

IND-{CCA1,CCA1.5} tag-KEM
≥ IND-CCA1 PKE (This is trivial from [1].)
< NM-CPA PKE (the proof in the full paper)

sNM-{CCA1,CCA1.5} tag-KEM
≥ NM-CCA1 PKE (Theorem 6)

√
< IND-CCA2 PKE (the proof in the full paper)

IND-CCA2 tag-KEM ≥ IND-CCA2 PKE [1] �

Fig. 2. Necessary and sufficient conditions for hybrid encryptions

In Fig. 1, solid arrows from X to Y mean that every tag-KEM system which satisfies
the security notion X also satisfies the security notion Y. Dotted arrows from X to Y
means that the security notion X always implies the security notion Y in the case of
KEM system. “X � Y” means that the security notion X does not always imply the
security notion Y. From Fig. 1, for each two notions, an implication or a separation can
be derived.

346 T. Matsuda et al.

In Fig. 2, the symbol ≥ means that, for any combination of tag-KEM and DEM with
security notions in the cells, the hybrid encryption system from them satisfies the se-
curity notions in the cells. The symbol < means that there exists a certain combination
of tag-KEM and DEM with the security notions in the cells, such that PKE from them
does not satisfy the security notions in the cells. The mark � indicates a known result.
The mark

√
indicates our contributions.

Definitions of the Security Notions on Tag-KEM. We define the security notions
on non-malleability for tag-KEM, i.e. weak non-malleability (wNM), comparison non-
malleability (CNM), and simulation non-malleability (SNM), by following the defini-
tions of KEM [5,8]. We define, in addition to the above notions, the security notion
related to non-malleability for tag-KEM, i.e. indistinguishability under parallel chosen
ciphertext attack based on non-malleability (PNM).

We only consider adversaries which are non-copying in experiments about non-
malleability for tag-KEM (resp. PKE): In each experiment of non-malleability for tag-
KEM (resp. PKE), adversary does not output the same encapsulation and tag (resp.
ciphertext) as the challenge encapsulation and tag (resp. ciphertext). It was proved that
three definitions, except for weak non-malleability, are equivalent in the case of public-
key encryption systems and KEM for non-copying adversaries [2,3,8]. We prove these
equivalence on tag-KEM for non-copying adversaries, and call these security notions
strong non-malleability (sNM). We note that three definitions for copying adversaries
are not equivalent in the case of PKE [9].

In contrast to the definitions of the security notions for KEM and PKE which are
formalized in two stages, the definitions of the security notions for tag-KEM are for-
malized in three stages. So, we classify the attacks into four types, i.e. CPA, CCA1,
CCA1.5, and CCA2. These notions of the security are classified by the adversary’s ac-
cess to the decryption oracle in each stage. Furthermore, we classify the goals into IND,
sNM, and wNM as in the case of KEM [5]. Consequently, the notions of the security
are classified into twelve types as in Fig. 1.

The security notion of CPA is that the adversary does not always have access to
the decryption oracle, and the security notion of CCA2 is that the adversary always
has access to the decryption oracle without sending to the challenge ciphertext. The
security notions of CCA1 and CCA1.5 is limited with access to the decryption oracle.
The former can access the decryption oracle only in the first stage, and cannot in the
second and third stages. The latter can access the decryption oracle only in the first and
second stages, and cannot in the third stage.

Implications and Separations among the Security Notions on the Tag-KEM. In the
case of KEM, the wNM-{CPA, CCA1} security implies the IND-{CPA, CCA1} secu-
rity and the inverse implication does not hold1. In other words, the wNM-{CPA, CCA1}
security is a strictly stronger security notion than the IND-{CPA, CCA1} security.

In contrast, in the case of tag-KEM, these implications do not hold. That is, even
the wNM-CCA2 security does not imply the IND-CPA security in the case of tag-
KEM. The wNM-CCA2 security does not also imply the sNM-CPA security in the

1 The wNM-CCA2 security does not always imply the IND-CCA2 security, even for KEM.

Security on Hybrid Encryption with the Tag-KEM/DEM Framework 347

cases of both KEM and tag-KEM. The other implications are almost similar in the case
of KEM [5].

Sufficient and Necessary Conditions for Hybrid Encryption Systems. Let KEM,
TKEM, and DEM denote a KEM system, a tag-KEM system, and a DEM system, re-
spectively. Let PKEKEM,DEM denote a hybrid encryption system which consists of KEM
and DEM with the KEM/DEM framework. Let PKETKEM,DEM denote a hybrid encryp-
tion system which consists of TKEM and DEM with the tag-KEM/DEM framework.

In the case of the KEM/DEM framework, it is known that the sufficient and necessary
conditions for the security of the hybrid encryption systems [5]. However, in the case of
the tag-KEM/DEM framework, it is only known that if TKEM satisfies the IND-CCA2
security and DEM satisfies the IND-OT security, PKETKEM,DEM satisfies the IND-CCA2
security [1].

We make it clear the characterization of the other security notions for the tag-
KEM/DEM framework with the twelve notions of tag-KEM and two notions of DEM.
That is, when a tag-KEM system satisfies a certain security notion and a DEM system
satisfies a certain security notion, we characterize the security notions that the hybrid
encryption systems satisfy.

We consider only the two security notions IND-{OT, CCA2} on DEM. The rea-
son is that the IND-OT security is considered as the weakest security notion and the
IND-CCA2 security is considered as the strongest security notion. The IND-OT se-
curity gives a lower bound on the security level of the hybrid encryption system with
tag-KEM/DEM framework, and the IND-CCA2 security gives an upper bound on the
security level of the hybrid encryption system. Another reason is that the security level
of hybrid encryption systems from the tag-KEM/DEM framework is hardly affected by
the security level of DEM as shown in Fig. 2.

Discussion on the Gap between KEM/DEM and Tag-KEM/DEM An example was
shown that there exists PKEKEM,DEM which does not always satisfy the IND-CCA2 se-
curity even if KEM satisfies the IND-CCA2 security and DEM satisfies the IND-OT se-
curity [5]. As far as we know, this is the first result on the gap between the KEM/DEM
and the tag-KEM/DEM frameworks. We describe this gap as indicated by the mark �
in Fig. 2.

Nagao, Manabe, and Okamoto have proposed the security notions of non-
malleability for KEM [8]. Herranz et al. called those notions strong non-malleability
(sNM) [5]. They showed that PKEKEM,DEM may not be NM-{CPA, CCA1} secure in
the KEM/DEM framework, even if KEM is sNM-{CPA, CCA1} secure and DEM is
IND-OT secure. In contrast, we show that PKETKEM,DEM is NM-{CPA, CCA1} secure
in the tag-KEM/DEM framework, if TKEM is sNM-{CPA, CCA1} secure and DEM is
IND-OT secure.

We prove that there exists TKEM and DEM such that PKETKEM,DEM is not secure in
the sense of the IND-CPA security even if TKEM satisfies the wNM-CCA2 security and
DEM satisfies the IND-CCA2 security. This gap between KEM and tag-KEM depends
on their different structures for a tag.

348 T. Matsuda et al.

We simply define the wNM security on tag-KEM by following the definition in the
case of KEM from [5] and obtain the negative fact on the wNM security (i.e. wNM-
CCA2 tag-KEM + IND-CCA2 DEM� IND-CPA PKE). This security notion does not
seem to grasp suitably the notion of non-malleability in the case of the tag-KEM/DEM
framework. It may be interesting to consider other security notions which have weaker
properties than the properties of the sNM security and adequately grasp the notion of
non-malleability.

The most noticeable result in this paper is the fact that, if a tag-KEM system satisfies
the sNM-{CPA,CCA1} security and a DEM system satisfies the IND-OT security then
the PKE system with the tag-KEM/DEM framework satisfies the NM-{CPA,CCA1}
security. The reason is that this fact shows the essential differences between the tag-
KEM/DEM framework and the KEM/DEM framework. The other sufficient and nec-
essary conditions for the hybrid encryption system are almost similar to [5], and their
proofs are almost similar to [5].

1.4 Organization

In Section 2, we review some definitions of tag-KEM, DEM, and PKE. Then, we re-
call the tag-KEM/DEM framework. In Section 3, we define the security notions on
tag-KEM, i.e. the wNM security, the CNM security, the SNM security, and the PNM
security. In Section 4, we present three theorems. One of them means the equivalence
on the CNM security, the SNM security, and the PNM security. The others mean the
difference between the KEM/DEM and the tag-KEM/DEM frameworks. One theorem
is positive and the other is negative. In Section 5, we give their proof sketches.

2 Preliminaries

Notations If k ∈ N then 1k denote the string of k ones. If S is a set then s ←
S represents an operation of picking an element s in S at uniformly random. We
write l-dimensional vectors as 〈ai〉li=1 = (a1, a2, . . . , al) and similarly 〈ai, bi〉li=1 =

((a1, b1), (a2, b2), . . . , (al, bl)). We write y ← A(x1, x2, · · · , xn) to indicate that A is a
probabilistic algorithm which receives n inputs x1, x2, · · · , xn and then outputs y. In the
case that an algorithm A has access to oracles O1(·),O2(·), · · · ,Om(·), we write it as
AO1(·),O2(·),··· ,Om(·)(x1, x2, · · · , xn).

Requirement of Adversaries in each Experiment We only consider adversaries which
are legitimate in each experiment for tag-KEM (resp. DEM and PKE): in every CCA2
experiment for tag-KEM (resp. DEM and PKE), adversaries does not query to its de-
cryption oracle with the same challenge encapsulation and the tag (resp. the challenge
ciphertext) in the CCA2 experiment.

2.1 Key Encapsulation Mechanism with Tag

A key encapsulation mechanism with tag (tag-KEM) system TKEM = (TKEM.Gen,
TKEM.Key, TKEM.Enc, TKEM.Dec) consists of four algorithms. Formally, (pk, sk)←

Security on Hybrid Encryption with the Tag-KEM/DEM Framework 349

TKEM.Gen(1k) is a probabilistic algorithm that generates a public key pk and a private
key sk. The public key pk is used to encapsulate a session key, and the secret key sk
is used to decapsulate an encapsulation. (w,K) ← TKEM.Key(pk) is a probabilistic
algorithm that generates a session key K ∈ K and internal state information w. The
session key K is used for encryption of DEMs. C ← TKEM.Enc(w, τ) is a probabilistic
algorithm that encrypts K into C by using τ, where τ is called a tag. We describe a
tag space as T . K ← TKEM.Dem(sk,C, τ) is a deterministic algorithm that recovers K
from C and τ. For every sk, K, C, and τ associated with the above three functions, we
claim TKEM.Dec(sk,C, τ) = K.

Here, we only consider tag-KEM systems that produce uniformly distributed keys. In
the other words, we require that for every public key pk, the second element of an output
of TKEM.Enc(pk) has the uniform distribution on key space K . We keep generality
on our discussion since most KEM systems and tag-KEM systems have this property.
Furthermore, key spaceK is restricted to l(k) bits space {0, 1}l(k), where k is the security
parameter and l is some polynomial. We only consider this setting, since tag space T is
equal to DEM’s ciphertext space in the case of the tag-KEM/DEM framework.

2.2 Data Encapsulation Mechanism

A data encapsulation mechanism (DEM) system DEM = (DEM.Enc, DEM.Dec) con-
sists of two algorithms and key space K . Formally, τ ← DEM.Enc(K,m) is a proba-
bilistic algorithm that encrypts m into τ by using K, where a key K is chosen uniform
randomly in K . m ← DEM.Dem(K, τ) is a deterministic algorithm that recovers m
from K and τ. For every K, m, and τ associated with the above DEM.Enc, we claim
DEM.Dec(K, τ) = m. We require key space K is restricted to l(k) bits space {0, 1}l(k),
where k is the security parameter and l is some polynomial.

2.3 Public Key Encryption

A public-key encryption (PKE) PKE = (PKE.Gen, PKE.Enc, PKE.Dec) consists of
three algorithms. Formally, (pk, sk) ← PKE.Gen(1k) is a probabilistic algorithm that
generates a public key pk and a secret key sk. The public key pk is published and used
to encrypt messages. The secret key sk is unpublished and used to decrypt the ciphertext
into the message. γ← PKE.Enc(pk,m) is a probabilistic algorithm that encrypts m into
γ by using pk. γ is called a ciphertext. m← PKE.Dec(sk, γ) is a deterministic algorithm
that recovers m from γ by using sk. For every pk, m, and γ associated with the above
two algorithm, we claim PKE.Dec(sk, γ) = m.

2.4 PKE Constructed from the Tag-KEM/DEM Framework

Abe et al. proposed the tag-KEM/DEM framework to capture the formulation for the
Kurosawa-Desmedt KEM/DEM [1,7,6]. In this paper, we only consider public-key
encryption systems constructed from the tag-KEM/DEM framework. Let TKEM =

(TKEM.Gen,TKEM.Key,TKEM.Enc,TKEM.Dec) be a tag-KEM system and DEM =
(DEM.Enc,DEM.Dec) a DEM system. We assume that the tag-KEM’s key space is
equal to the DEM’s key space. Then we can construct PKE system PKETKEM.DEM =

(PKE.Gen,PKE.Enc,PKE.Dec) as follows.

350 T. Matsuda et al.

PKE.Gen(1k):
(pk, sk)← TKEM.Gen(1k)
return (pk, sk)

PKE.Enc(pk,m):
(w,K)← TKEM.Key(pk)
τ← DEM.Enc(K,m)
C ← TKEM.Enc(w, τ)
γ← (C, τ)
return γ

PKE.Dec(sk, γ):
parse (C, τ)← γ
K ← TKEM.Dec(sk,C, τ)
m← DEM.Dec(K, τ)
return m

3 The Security Notions of Tag-KEM

In this section, we define the security notions on tag-KEM, i.e. wNM-ATK, CNM-
ATK, SNM-ATK, and PNM-ATK. In order to simplify the description, we use unified
definitions on ATK ∈ {CPA, CCA1, CCA1.5, CCA2} in each experiment as follows.

If ATK = CPA, then O1 = O2 = O3 = ⊥.
If ATK = CCA1, then O1 = TKEM.Dec(sk, ·, ·) and O2 = O3 = ⊥.
If ATK = CCA1.5, then O1 = O2 = TKEM.Dec(sk, ·, ·) and O3 = ⊥.
If ATK = CCA2, then O1 = O2 = O3 = TKEM.Dec(sk, ·, ·).

We denote by n a polynomial in the security parameter k in the following definitions.

3.1 wNM-ATK Tag-KEM

We define weak non-malleability for tag-KEM by following in [5]. Roughly speaking,
the wNM experiment means that the adversary A cannot modify the challenge encap-
sulation C∗ and the tag τ∗ into other encapsulations and tags related to (C∗, τ∗) without
receiving challenge keys (K∗c ,K∗1−c). The most importance in this definition is that the
adversary does not receive the challenge keys (K∗c ,K∗1−c). As explained in Section 1.3,
one of the differences between KEM and tag-KEM depends on the fact that the adver-
sary which does not know the real key K∗0 must make a tag τ∗.

Definition 1 (wNM-ATK tag-KEM). Let TKEM be a tag-KEM system. We define the

advantage AdvwNM-ATK
TKEM, A (k)

def
= | Pr[ExptwNM-ATK

TKEM, A (k, 0) = 1] − Pr[ExptwNM-ATK
TKEM, A (k, 1) = 1]|

for a legitimate and non-copying adversary A as follows. If for every legitimate and
non-copying adversary A = (A1, A2, A3), AdvwNM-ATK

TKEM, A (k) is negligible in the security
parameter k, then we say that TKEM satisfies the wNM-ATK security, where ATK ∈
{CPA, CCA1, CCA1.5, CCA2}.

ExptwNM-ATK
TKEM, A (k, b):

(pk, sk)← TKEM.Gen(1k); st1 ← AO1(·)
1 (pk)

(w,K∗0)← TKEM.Key(pk); K∗1 ← K
(st2, τ∗)← AO2(·)

2 (st1); C∗ ← TKEM.Enc(w, τ∗)
(Rel, 〈Ci, τi〉ni=1)← AO3(·)

3 (st2,C∗)
for every i, Ki ← TKEM.Dec(sk,Ci, τi)
if Rel(K∗b , 〈Ki〉ni=1) = 1, then return 1
else return 0

Security on Hybrid Encryption with the Tag-KEM/DEM Framework 351

We can define the wNM-ATK experiment which consists of only two stages by merging
the first and the second stages. However, we choose the definition which consists of
three stages in order to integrate the definitions of the IND-ATK and the sNM-ATK
experiments.

3.2 sNM-ATK Tag-KEM

We define strong non-malleability (sNM) for tag-KEM as comparison non-malleability,
simulation non-malleability, and indistinguishability under parallel chosen ciphertext
attack based on non-malleability. We show three security notions are equivalent in The-
orem 6. We only give a proof sketch in this paper, and a detailed proof can be found full
version of this paper. In contrast, the wNM-ATK security is strictly weaker property
than the sNM-ATK security.

CNM-ATK Tag-KEM. We define comparison non-malleability (CNM) for tag-KEM
by following [8]. Roughly speaking, the CNM experiment expresses whether the adver-
sary A can modify the challenge encapsulation C∗ and the tag τ∗ into other encapsula-
tions and tags related to (C∗, τ∗).

Definition 2 (CNM-ATK tag-KEM). Let TKEM be a tag-KEM system. We define

the advantage AdvCNM-ATK
TKEM, A (k)

def
= | Pr[ExptCNM-ATK

TKEM, A (k) = 1] − Pr[Ẽxpt
CNM-ATK
TKEM, A (k) = 1]|

for a legitimate and non-copying adversary A as follows. If for every legitimate and
non-copying adversary adversary A = (A1, A2, A3), AdvCNM-ATK

TKEM,A (k) is negligible in the
security parameter k, then we say that TKEM satisfies the CNM-ATK security, where
ATK ∈ {CPA, CCA1, CCA1.5, CCA2}.

ExptCNM-ATK
TKEM, A (k):

(pk, sk)← TKEM.Gen(1k)
st1 ← AO1(·)

1 (pk)
(w,K∗0)← TKEM.Key(pk); K∗1 ← K
c← {0, 1}; X ← (K∗c ,K∗1−c)

(st2, τ∗)← AO2(·)
2 (st1, X)

C∗ ← TKEM.Enc(w, τ∗)
(Rel, 〈Ci, τi〉ni=1)← AO3(·)

3 (st2,C∗)
for every i, Ki ← TKEM.Dec(sk,Ci, τi)
if Rel(K∗0 , 〈Ki〉ni=1) = 1, then return 1
else return 0

Ẽxpt
CNM-ATK
TKEM, A (k):

(pk, sk)← TKEM.Gen(1k)
st1 ← AO1(·)

1 (pk)
(w,K)← TKEM.Key(pk); K∗0 ,K

∗
1 ← K

c← {0, 1}; X ← (K∗c ,K∗1−c)

(st2, τ∗)← AO2(·)
2 (st1, X)

C∗ ← TKEM.Enc(w, τ∗)
(Rel, 〈Ci, τi〉ni=1)← AO3(·)

3 (st2,C∗)
for every i, Ki ← TKEM.Dec(sk,Ci, τi)
if Rel(K∗1 , 〈Ki〉ni=1) = 1, then return 1
else return 0

From the definitions of the wNM-ATK experiment and the CNM-ATK experiment,
the CNM-ATK security implies the wNM-ATK security. Because, for any wNM-ATK
adversary A, we can construct the adversary A′ against the CNM-ATK security with the
same advantage as the advantage of the adversary A. The adversary A′ does the same
thing of the adversary A except that the adversary A′ ignores X = (K∗c ,K∗1−c). We have
that the experiment ExptCNM-ATK

TKEM, A′ (k) is equal to the experiment ExptwNM-ATK
TKEM, A (k, 0), and

352 T. Matsuda et al.

Ẽxpt
CNM-ATK
TKEM, A′ (k) is equal to the experiment ExptwNM-ATK

TKEM, A (k, 1). As a conclusion, we have
AdvCNM-ATK

TKEM, A′ (k) = AdvwNM-ATK
TKEM, A (k).

SNM-ATK Tag-KEM. We define simulation non-malleability (SNM) for tag-KEM by
following in [8]. Roughly speaking, there exists a simulator S which output encapsula-
tions without keys, where these encapsulations are the same as those the adversary with
keys outputs.

Definition 3 (SNM-ATK tag-KEM). Let TKEM be a tag-KEM system. We de-

fine the advantage AdvSNM-ATK
TKEM, A, S(k,Rel)

def
= | Pr[ExptSNM-ATK

TKEM, A (k,Rel) = 1] −
Pr[ExptSNM-ATK

TKEM, S (k,Rel) = 1]| for a legitimate and non-copying adversary A, a rela-
tion Rel, and a simulator S as follows. If, for every legitimate and non-copying ad-
versary A = (A1, A2, A3) and relation Rel, there exists some simulator S such that
AdvSNM-ATK

TKEM, A, S(k,Rel) is negligible in the security parameter k, then we say that TKEM
satisfies the SNM-ATK security, where ATK ∈ {CPA, CCA1, CCA1.5, CCA2}.

ExptSNM-ATK
TKEM, A (k,Rel):

(pk, sk)← TKEM.Gen(1k)
st1 ← AO1(·)

1 (pk)
(w,K∗0)← TKEM.Key(pk)
K∗1 ← K ; c← {0, 1}; X ← (K∗c ,K∗1−c)

(st2, τ∗)← AO2(·)
2 (st1, X)

C∗ ← TKEM.Enc(w, τ∗)
(〈Ci, τi〉ni=1, σ)← AO3(·)

3 (st2,C∗)
for every i, Ki ← TKEM.Dec(sk,Ci, τi)
if Rel(K∗0 , 〈Ki〉ni=1, σ) = 1, then return 1
else return 0

ExptSNM-ATK
TKEM, S (k,Rel):

(pk, sk)← TKEM.Gen(1k)
st1 ← S O1(·)

1 (pk)

K∗0 ,K
∗
1 ← K ; c← {0, 1}; X ← (K∗c ,K∗1−c)

st2 ← S O2(·)
2 (st1, X)

(〈Ci, τi〉ni=1, σ)← S O3(·)
3 (st2)

for every i, Ki ← TKEM.Dec(sk,Ci, τi)
if Rel(K∗0 , 〈Ki〉ni=1, σ) = 1, then return 1
else return 0

PNM-ATK Tag-KEM. We define indistinguishability under parallel chosen ciphertext
attack based on non-malleability (PNM) for tag-KEM by following [8]. This definition
is proposed in order to prove the equivalence between the IND-CCA2 and the NM-
CCA2 security for PKE and KEM[2,3,8]. We also use the PNM-ATK security in order
to prove the equivalence between the IND-CCA2 and the sNM-CCA2 security for tag-
KEM.

Definition 4 (PNM-ATK tag-KEM). Let TKEM be a tag-KEM system. We define

the advantage AdvPNM-ATK
TKEM, A (k)

def
= | Pr[ExptPNM-ATK

TKEM, A (k) = 1] − 1
2 | for a legitimate and

non-copying adversary A as follows. If for every legitimate and non-copying adversary
A = (A1, A2, A3, A4), AdvPNM-ATK

TKEM, A (k) is negligible in the security parameter k, then we
say that TKEM satisfies the PNM-ATK security, where ATK ∈ {CPA, CCA1, CCA1.5,
CCA2}.

Security on Hybrid Encryption with the Tag-KEM/DEM Framework 353

ExptPNM-ATK
TKEM, A (k):

(pk, sk)← TKEM.Gen(1k); st1 ← AO1(·)
1 (pk)

(w,K∗0)← TKEM.Key(pk); K∗1 ← K ; b← {0, 1}
(st2, τ∗)← AO2(·)

2 (st1,K∗b); C∗ ← TKEM.Enc(w, τ∗)
(st3, 〈Ci, τi〉ni=1)← AO3(·)

3 (st2,C∗)
for every i, Ki ← TKEM.Dec(sk,Ci, τi)
b′ ← A4(st3, 〈Ki〉ni=1)
if b′ = b, return 1
else return 0

We remark that the PNM-ATK security implies the IND-ATK security by the definitions
of the experiments, since the IND-ATK experiment is equal to the PNM-ATK experi-
ment except for the one-time parallel decryption operation between the third stage and
the forth stage. Moreover, the inverse implication holds in the case of CCA2 since the
adversary with access to the decryption oracle does not need the one-time parallel de-
cryption operation.

4 Theorems

In this section, we present main theorems in this paper. We omit the other theorems and
their detailed proofs. They can be found in the full version of this paper. In Section 5,
we only present the proof sketches of the main theorems.

Theorem 5 (Equivalence among three definitions for sNM-ATK). Let TKEM be a
tag-KEM system and ATK ∈{CPA, CCA1, CCA1.5, CCA2}. TKEM satisfies the CNM-
ATK security, if and only if TKEM satisfies the SNM-ATK security. Similarly, TKEM
satisfies the CNM-ATK security, if and only if TKEM satisfies the PNM-ATK security.

It has been already proved that the CNM-ATK, the SNM-ATK, and the PNM-ATK secu-
rity are equivalent for any non-copying adversary in the case of PKE and KEM [2,3,8],
but not yet proved in the case of tag-KEM. We prove the equivalence among these
definitions.

Theorem 6 (sNM-{CPA, CCA1} tag-KEM + IND-OT DEM⇒NM-{CPA,CCA1}
PKE). If TKEM is an sNM-{CPA, CCA1} secure tag-KEM system and DEM is an IND-
OT secure DEM system, then PKETKEM,DEM is NM-{CPA,CCA1} secure .

This theorem means that PKETKEM,DEM is NM-ATK secure, whenever TKEM is sNM-
ATK secure and DEM is IND-OT secure. In contrast, it is proved by Herranz that this
implication for the KEM/DEM framework does not hold [5].

Theorem 7 (wNM-CCA2 tag-KEM + IND-CCA2 DEM� IND-CPA PKE). There
exists TKEM which is a wNM-CCA2 secure tag-KEM system and DEM which is an
IND-CCA2 secure DEM system, such that PKETKEM,DEM is not IND-CPA secure.

In the case of KEM, if a KEM system satisfies the wNM-{CPA, CCA1} security and
a DEM system satisfies the IND-OT security, a PKE system from them satisfies the

354 T. Matsuda et al.

IND-{CPA, CCA1} security [5]. The reason is that the wNM-{CPA, CCA1} security
implies the IND-{CPA, CCA1} security. However, in the case of tag-KEM, even if a
tag-KEM system satisfies the wNM-CCA2 security and a DEM system satisfies the
IND-CCA2 security, a PKE system from them satisfies the IND-CPA security. The
wNM security for tag-KEM is insufficient to construct hybrid encryption systems with
the weakest security, i.e. the IND-CPA security.

5 Proof Sketches of Theorem 5, Theorem 6, and Theorem 7

In this section, we present the proof sketches of Theorem 5, Theorem 6, and Theorem 7.
The detailed proofs can be found in the full version of this paper.

5.1 Proof Sketch of Theorem 5

The proof of this theorem is clearly proved by Lemma 8, Lemma 9 and Lemma 10. In
order to prove, we modify the proofs of these lemmas in [8].

Lemma 8 (CNM-ATK ⇒ SNM-ATK). Let TKEM be a tag-KEM system. If TKEM
satisfies the CNM-ATK security, then TKEM satisfies the SNM-ATK security.

Lemma 9 (SNM-ATK ⇒ PNM-ATK). Let TKEM be a tag-KEM system. If TKEM
satisfies the SNM-ATK security, then TKEM satisfies the PNM-ATK security.

Lemma 10 (PNM-ATK⇒ CNM-ATK). Let TKEM be a tag-KEM system. If TKEM
satisfies the PNM-ATK security, then TKEM satisfies the CNM-ATK security.

First, we present the proof sketch of Lemma 8. We prove that TKEM is not secure
in the sense of CNM-ATK if TKEM is not secure in the sense of SNM-ATK. Let A
= (A1, A2, A3) be the adversary against the SNM-ATK security. Using the adversary A,
we construct the adversary B = (B1, B2, B3) against the CNM-ATK security and the
simulator S̃ = (S̃ 1, S̃ 2, S̃ 3) in the SNM-ATK experiment as follows.

B1(pk)O1(·):
st1 ← AO1(·)

1 (pk)
return st1

BO2(·)
2 (st1, X):

(st2, τ∗)← AO2(·)
2 (st1, X)

return (st2, τ∗)

BO3(·)
3 (st2,C∗):

(〈Ci, τi〉ni=1, σ)← AO3(·)
3 (st2,C∗)

define Rel′,
as bind σ to the last input of Rel
return (Rel′, 〈Ci, τi〉ni=1)

S̃ 1(pk)O1(·):
st1 ← AO1(·)

1 (pk)
return st1||pk

S̃ O2(·)
2 (st1||pk, X):

(st2, τ∗)← AO2(·)
2 (st1, X)

return (st2||pk||τ∗, τ∗)

S̃ O3(·)
3 (st2||pk||τ∗):

(K,w)← TKEM.Key(pk)
C ← TKEM.Enc(w, τ∗)
(〈Ci, τi〉ni=1, σ)← AO3(·)

3 (st2,C)
if (Ci, τi) � (C, τ∗) for every i,
then return (〈Ci, τi〉ni=1, σ)
else abort

Security on Hybrid Encryption with the Tag-KEM/DEM Framework 355

The adversary B in the experiment ExptCNM-ATK
TKEM, B perfectly simulates the SNM-ATK

experiment for A, when B received X which is a pair of real and random keys. The
simulator S̃ in the experiment ExptSNM-ATK

TKEM, S̃
can perfectly simulate the act of B in the

experiment Ẽxpt
CNM-ATK
TKEM, B . Hence, we have

AdvCNM-ATK
TKEM, B (k) = | Pr[ExptCNM-ATK

TKEM, B (k) = 1] − Pr[Ẽxpt
CNM-ATK
TKEM, B (k) = 1]|

= | Pr[ExptSNM-ATK
TKEM, A (k) = 1] − Pr[ExptSNM-ATK

TKEM, S̃
(k) = 1]|

= AdvSNM-ATK
TKEM, A, S̃

(k,Rel).

Second, we present the proof sketch of Lemma 9. We prove that TKEM is not secure
in the sense of SNM-ATK if TKEM is not secure in the sense of PNM-ATK. Let A be the
adversary against the PNM-ATK security. Using the adversary A = (A1, A2, A3, A4), we
construct the adversary B = (B1, B2, B3) against the SNM-ATK security and a relation
Rel as follows.

B1(pk)O1(·):
st1 ← AO1(·)

1 (pk)
return st1

BO2(·)
2 (st1, X):

parse X = (K,K′)
(st2, τ∗)← AO2(·)

2 (st1,K)
return (st2||X, τ∗)

BO3(·)
3 (st2||X,C∗):

(st3, 〈Ci, τi〉ni=1)← AO3(·)
3 (st2,C∗)

r ← {0, 1}k
σ′ ← (st3, r, X)
return (〈Ci, τi〉ni=1, σ

′)

Rel(Y, 〈Ki〉ni=1, σ
′):

parse σ′ = (st3, r, X), X = (K,K′)
if Y = K, then g = 0
else if Y = K′, then g = 1
otherwise, return 0
g′ ← A4(st3, 〈Ki〉ni=1; r)
if g = g′, then return 1
else return 0

We note that r chosen by B3 is used to A4’s random input. We define the events Real
that Y = K in Rel and Random that Y = K′ in Rel. From the construction of B and Rel,
we have

Pr[ExptSNM-ATK
TKEM, B (k,Rel) = 1|Real] = Pr[ExptPNM-ATK

TKEM, A (k) = 1|b = 0]

Pr[ExptSNM-ATK
TKEM, B (k,Rel) = 1|Random] = Pr[ExptPNM−AT K

TKEM, A (k) = 1|b = 1].

Hence, we have

Pr[ExptSNM-ATK
TKEM, B (k,Rel) = 1]

=
1
2

(Pr[ExptSNM-ATK
TKEM, B (k,Rel) = 1|Real] + Pr[ExptSNM-ATK

TKEM, B (k,Rel) = 1|Random])

=
1
2

(Pr[ExptPNM-ATK
TKEM, A (k) = 1|b = 0] + Pr[ExptPNM-ATK

TKEM, A (k) = 1|b = 1])

= Pr[ExptPNM-ATK
TKEM, A (k) = 1].

356 T. Matsuda et al.

Next, let S be a simulator in the SNM-ATK security. We define the event Bad that
Y � K ∧Y � K′ in the SNM-ATK experiment for simulators. Then, for every simulator
S , we have

Pr[ExptSNM-ATK
TKEM, S (k,Rel) = 1] = Pr[g = g′ ∧ ¬Bad] ≤ 1

2
.

Hence, we conclude

AdvSNM-ATK
TKEM, B, S (k,Rel) = | Pr[ExptSNM-ATK

TKEM, B (k,Rel) = 1] − Pr[ExptSNM-ATK
TKEM, S (k,Rel) = 1]|

≥ | Pr[ExptPNM-ATK
TKEM, A (k) = 1] − 1

2
| = AdvPNM-ATK

TKEM, A (k).

Finally, we present the proof sketch of Lemma 10. We prove that TKEM is not secure
in the sense of PNM-ATK if TKEM is not secure in the sense of CNM-ATK. Let A =
(A1, A2, A3) be the adversary against the CNM-ATK security. Using the adversary A, we
construct the adversary B = (B1, B2, B3, B4) against the PNM-ATK security as follows.

B1(pk)O1(·):
st1 ← AO1(·)

1 (pk)
return st1

BO2(·)
2 (st1, X0):

X1 ← K ; c← {0, 1}
X ← (Xc, X1−c)
(st2, τ∗)← AO2(·)

2 (st1, X)
return (st2||X0, τ

∗)

BO3(·)
3 (st2||X0,C∗):

(Rel, 〈Ci, τi〉ni=1)← AO3(·)
3 (st2,C∗)

st3 ← (Rel, X0)
return (st3, 〈Ci, τi〉ni=1)

B4(st3, 〈Ki〉ni=1):
if Rel(X0, 〈Ki〉ni=1) = 1,
then b′ ← 0
else b′ ← 1
return b′

From the construction of B, we have

Pr[ExptPNM-ATK
TKEM, B (k) = 1|b = 0] = Pr[Rel(X0, 〈Ki〉ni=1) = 1|X0 is a real key]

= Pr[ExptCNM-ATK
TKEM, A (k) = 1],

Pr[ExptPNM-ATK
TKEM, B (k) = 0|b = 1] = Pr[Rel(X0, 〈Ki〉ni=1) = 1|X0 is a random key]

= Pr[Ẽxpt
CNM-ATK
TKEM, A (k) = 1].

Therefore, we conclude

AdvPNM-ATK
TKEM, B (k) = | Pr[ExptPNM-ATK

TKEM, B (k) = 1] − 1
2
|

=
1
2
| Pr[ExptPNM-ATK

TKEM, B (k) = 1|b = 0] + Pr[ExptPNM-ATK
TKEM, B (k) = 1|b = 1] − 1|

=
1
2
| Pr[ExptPNM-ATK

TKEM, B (k) = 1|b = 0] − Pr[ExptPNM-ATK
TKEM, B (k) = 0|b = 1]|

= | Pr[ExptCNM-ATK
TKEM, A (k) = 1] − Pr[Ẽxpt

CNM-ATK
TKEM, A (k) = 1]|

= AdvCNM-ATK
TKEM, A (k).

Security on Hybrid Encryption with the Tag-KEM/DEM Framework 357

5.2 Proof Sketch of Theorem 6

First, we only consider the case of CCA1. Let TKEM be a tag-KEM system satisfies
the PNM-CCA1 security and DEM be a DEM system satisfies the IND-OT security.
Then, PKETKEM,DEM is a hybrid encryption system from them with the tag-KEM/DEM
framework. We show PKETKEM,DEM satisfies the NM-CCA1 security by modifying the
NM-CCA1 experiment into the games, Game0(b), Game1(b), Game2(b). The game
Game0(b) is equal to the experiment ExptNM-CCA1

PKETKEM,DEM , A(k, b).

Game0(b):
(pk, sk)← TKEM.Gen(1k)
(st,M)← AO1(·)

1 (pk)
m∗0,m

∗
1 ←M

(w,K∗)← TKEM.Key(pk)

τ∗ ← DEM.Enc(K∗,m∗0)
C∗ ← TKEM.Enc(w, τ∗)
γ∗ ← (C∗, τ∗)
(Rel, 〈γi〉ni=1)← A2(st, γ∗)
for every i,
mi ← PKE.Dec(sk, γi)
if Rel(m∗b, 〈mi〉ni=1) = 1,
return 1
else return 0

Game1(b):
(pk, sk)← TKEM.Gen(1k)
(st,M)← AO1(·)

1 (pk)
m∗0,m

∗
1 ←M

(w,K∗)← TKEM.Key(pk)
K′ ← K
τ∗ ← DEM.Enc(K′,m∗0)
C∗ ← TKEM.Enc(w, τ∗)
γ∗ ← (C∗, τ∗)
(Rel, 〈γi〉ni=1)← A2(st, γ∗)
for every i,
mi ← PKE.Dec(sk, γi)
if Rel(m∗b, 〈mi〉ni=1) = 1,
return 1
else return 0

Game2(b):
(pk, sk)← TKEM.Gen(1k)
(st,M)← AO1(·)

1 (pk)
m∗0,m

∗
1 ←M

(w,K∗)← TKEM.Key(pk)
K′ ← K
τ∗b ← DEM.Enc(K′,m∗b)

C∗b ← TKEM.Enc(w, τ∗b)

γ∗b ← (C∗b, τ
∗
b)

(Rel, 〈γi〉ni=1)← A2(st, γ∗b)

for every i,
mi ← PKE.Dec(sk, γi)
if Rel(m∗0, 〈mi〉ni=1) = 1,
return 1
else return 0

We denote modified parts by underlines. On this modification, we state the following
claims.

Claim 11. For every b ∈ {0, 1} and every adversary B = (B1, B2, B3, B4),

| Pr[Game0(b) = 1] − Pr[Game1(b) = 1]| ≤ AdvPNM-CCA1
TKEM, B (k).

Claim 12. For every adversary C = (C1,C2),

| Pr[Game2(0) = 1] − Pr[Game2(1) = 1]| ≤ AdvIND-OT
DEM, C(k).

We can prove Claim 11 and Claim 12 with reduction to the PNM-CCA1 security for
TKEM and the IND-OT security for DEM, respectively. Since changes between Game1

and Game2 are purely conceptual, we have Pr[Game2(b) = 1] = Pr[Game1(b) = 1]
for every b. From Claim 11 and Claim 12, we have

AdvNM-CCA1
PKETKEM,DEM , A

= | Pr[ExptNM-CCA1
PKETKEM,DEM , A(k, 0) = 1] − Pr[ExptNM-CCA1

PKETKEM,DEM , A(k, 1) = 1]|
= | Pr[Game0(0) = 1] − Pr[Game0(1) = 1]|
≤ 2AdvPNM-CCA1

TKEM, B (k) + AdvIND-OT
DEM, C(k).

358 T. Matsuda et al.

Therefore, we can prove Theorem 6 in the case of CCA1. Similarly, we can prove it in
the case of CPA, since the only difference between CCA1 and CPA is whether A1 has
access to OA(·) or not.

Incidentally, we can consider this proof to be another proof of the well-known the-
orem in [1] that PKETKEM,DEM is IND-CCA2 secure, where TKEM is an IND-CCA2
secure tag-KEM system and DEM is an IND-OT secure DEM system.

5.3 Proof Sketch of Theorem 7

Assume there exists a wNM-CCA2 secure tag-KEM TKEM = (TKEM.Gen,
TKEM.Key, TKEM.Enc, TKEM.Dec) and an IND-CCA2 secure DEM DEM =

(DEM.Enc,DEM.Dec). We modify DEM and TKEM into a new DEM′ and TKEM′,
respectively.

DEM′.Enc(K,m):
parse K = K1||K2

τ′1 ← DEM.Enc(K1,m)
τ′2 ← K2

return τ′ = τ′1||τ′2

DEM′.Dec(K, τ′):
parse K = K1||K2 and τ′ = τ′1||τ′2
if K2 = τ

′
2, then m′ ← DEM.Dec(K1, τ

′
1)

else m′ ← ⊥.
return m′

Claim 13. DEM′ is secure in the sense of IND-CCA2.

The adversary A against the IND-CCA2 security of DEM can simulate the view of the
adversary B against the IND-CCA2 security of DEM′. The adversary A only picks K2

and checks that least significant bits of a ciphertext τ′ is equal to K2.
Next, we also modify TKEM to use DEM with key space {0, 1}2k into a new

TKEM′ = (TKEM′.Gen, TKEM′.Key, TKEM′.Enc, TKEM′.Dec) with the same key
space, which still satisfies the wNM-CCA2 security. We set TKEM′.Gen = TKEM.Gen
and the others as follows.

TKEM′.Key(pk):
(w,K)← TKEM.Key(pk)
divide K = K1||K2

w′ ← w||K1||K2

return (w′,K1||K2)

TKEM′.Enc(w′, τ′):
parse w′ = w||K1||K2 and τ′ = τ′1||τ′2
if K2 = τ

′
2,

then C′1 ← DEM.Dec(K1, τ
′
1)

and C′2 ← K1||K2

else C′1 ← TKEM.Enc(w, τ′1)
and C′2 ← ⊥
return C′1||C′2

TKEM′.Dec(sk,C′1||C′2, τ′):
parse τ′ = τ′1||τ′2
if C′2 = ⊥, then return TKEM.Dec(sk,C′1, τ

′
1)

else
parse C′2 = K1||K2

if K2 = τ
′
2 and C′1 = DEM.Dec(K1, τ

′
1),

then return K1||K2

else return ⊥

Security on Hybrid Encryption with the Tag-KEM/DEM Framework 359

Claim 14. TKEM′ is secure in the sense of wNM-CCA2.

The adversary A against the wNM-CCA2 security of TKEM can simulate the view of
the adversary B against the wNM-CCA2 security of TKEM′. If K2 � τ′2, then A can
perfectly simulate the view of the adversary B against the wNM-CCA2 security of
TKEM′. The probability that K2 = τ

′
2 is negligible since K2 is perfectly secret and

uniformly random. Therefore, we can ignore this event.

Claim 15. PKETKEM′,DEM′ is not secure in the sense of IND-CPA.

We consider the adversary A = (A1, A2) against the IND-CPA security of
PKETKEM′,DEM′ . In the first stage, A1 outputs (0k, 1k) as challenge messages. By the
definitions of TKEM′ and DEM′, if 0k is encrypted in the IND-CPA experiment, then
A2 receives (0k||K∗1 ||K∗2 ,DEM.Enc(K∗1 , 0

k)) as the challenge ciphertext. Similarly, if 1k is
encrypted in the IND-CPA experiment, then A2 receives (1k||K∗1 ||K∗2 ,DEM.Enc(K∗1 , 1

k)).
Since these ciphertexts are distinguishable, PKETKEM′,DEM′ is not secure in the sense of
IND-CPA.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Framework for
Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions of Secu-
rity for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Bellare, M., Sahai, A.: Non-malleable Encryption: Equivalence between Two Notions, and
an Indistinguishability-Based Characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

4. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes
Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing 33 (2003)

5. Herranz, J., Hofheinz, D., Kiltz, E.: KEM/DEM: Necessary and Sufficient Conditions for
Secure Hybrid Encryption (2006), http://eprint.iacr.org/2006/265

6. Herranz, J., Hofheinz, D., Kiltz, E.: The Kurosawa-Desmedt Key Encapsulation is not
Chosen-Ciphertext Secure (2006), http://eprint.iacr.org/2006/207

7. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)

8. Nagao, W., Manabe, Y., Okamoto, T.: On the Equivalence of Several Security Notions of
Key Encapsulation Mechanism (2006), http://eprint.iacr.org/2006/268

9. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations Among Notions of Non-malleability for
Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 519–535.
Springer, Heidelberg (2007)

10. Shoup, V.: A proposal for an ISO standard for public key encryption (version 2.1)
(manuscript, 2001), http://www.shoup.net/papers/

http://eprint.iacr.org/2006/265
http://eprint.iacr.org/2006/207
http://eprint.iacr.org/2006/268
http://www.shoup.net/papers/

A Highly Scalable RFID Authentication
Protocol

Jiang Wu and Douglas R. Stinson�

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada
{j32wu,dstinson}@uwaterloo.ca

Abstract. In previous RFID protocols, a hash-chain is used to achieve
good privacy. Each tag is associated with a chain of Q hash values. To
identify one tag out of a total of N tags, a server searches a table of
size NQ. A naive search takes either Θ(NQ) time or Θ(NQ) memory,
and therefore it does not scale well. A time-space tradeoff technique
can mitigate the scalability problem. However, with the time-memory
tradeoff, either time or space is still at least Θ((NQ)2/3).

In this paper, we propose a novel RFID protocol to solve the scalability
problem. The server “solves”, instead of “searches”, for a tag ID. The
protocol is based on polynomial operations, and its security and privacy
is based on the difficulty of reconstructing a polynomial with noisy data.
The protocol supports very large values of the product NQ. In our demo
implementation where N = 232 and Q = 13700, the server takes 0.1
seconds and 10K bytes memory to identify a tag. As a comparison, a
hash-chain based protocol enhanced with a time-memory tradeoff will
require about 67 seconds and a 1G bytes memory.

1 Introduction

Radio Frequency Identification (RFID) is an automated object identification
technology. RFID systems consist of two main components: tags and readers.
Tags are small radio transponders. They contain the identification information
of objects to which they are attached. Readers query these tags for the identifying
information about the objects. Readers often have secure access to a back-end
database. For simplicity, a reader and a back-end database can be treated as a
single entity.

While being promising in a wide range of applications such as supply chain,
anti-counterfeiting, and libraries, RFID also raises privacy and security concerns.
Since RFID tags respond to radio interrogation automatically, malicious scan-
ning of tags is a plausible threat. Even if the information emitted by a tag is
encrypted, the information may be used to track the tag, thus causing privacy
issues. An equally significant problem is authentication. One purpose of RFID

� Research supported by NSERC discovery grant 203114-06.

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 360–376, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Highly Scalable RFID Authentication Protocol 361

tags is to prove the authenticity of objects. If an RFID tag can be scanned and
replicated, then a counterfeit tag can be made to impersonate the authentic one.

RFID protocols must provide privacy and security under those possible at-
tacks. A common attack model is as follows. There is an adversary who is able
to eavesdrop the communications between the tags and readers, interrogate the
tags, and compromise some tags. The goal of the adversary is to impersonate or
track uncompromised tags. Correspondingly, an RFID protocol needs to meet
two requirements: be secure against impersonation and be untraceable.

In addition to the security and privacy requirements, an RFID protocol needs
to be scalable on the reader side and efficient on the tag side. An RFID system
may have a large number, say, millions to billions, of tags. The RFID protocol
must be scalable to allow the reader to deal with such a large number of tags. On
the other hand, a tag has very limited resources in computation and memory, so
the protocol must be efficient on the tag side. For cryptographic tools, symmetric
key techniques are usually considered feasible for some RFID tags while public
key techniques are considered unsuitable for any of them.

To design an RFID protocol satisfying all the desired privacy, security, scala-
bility, and efficiency properties is challenging. Privacy makes RFID authentica-
tion different from conventional cryptographic authentication. Using symmetric
key techniques, secure authentication relies on a symmetric key shared between
a tag and reader. For privacy, a tag cannot identify itself to a reader before an
authentication interaction, thus the reader does not know which key to use in the
interaction. A straightforward solution is to try every key. This is prohibitively
costly when the number of tags becomes large. This is known as the key search
problem. Literature in this area has sought to reduce the cost of key search.
Every such protocol proposed so far involves some kind of tradeoff among the
desired properties [13].

Our Contributions. In this paper, we propose a novel RFID protocol to solve
the key search problem. The server “solves”, instead of “searches”, for a tag ID
in an identification process. The operation is based on polynomial computations
and its security and privacy is based on the difficulty of reconstructing polyno-
mials with noisy data. The protocol supports a very large number of tags as well
as a very large number of queries on one tag, which is impractical for previous
protocols. At the same time, the protocol is secure and privacy-preserving.

Organization. The remainder of the paper is organized as follows. In Section
2, we review RFID protocols addressing the scalability issue. In Section 3, we
present our scheme. Section 4 gives the security analysis. Section 5 gives the
performance analysis, and Section 6 concludes the paper.

2 Related Work

In this section, we review previous approaches and solutions to the key search
problem in the literature. In [13], Juels gave a comprehensive survey of RFID

362 J. Wu and D.R. Stinson

security and privacy, including the key search problem. Here we briefly review
the existing solutions.

Tree approach. In [16], Molnar and Wagner proposed a scheme to reduce the
key search cost to Θ(log n) where n is the total number of keys. The scheme uses
d sets of keys K1, . . . , Kd. Each set contains b keys. Each tag is assigned with d
keys k1 ∈ K1, . . . , kd ∈ Kd. The key assignment can be represented as a tree of
depth d and each node has d children. The scheme can accommodate up to bd

tags in total. In an identification session, the tag runs d rounds of interaction
with the reader. In the ith round, the tag uses the key ki, and the reader searches
Ki. In a session, the reader needs to search through db keys.

Since a key will be used in more than one tag, compromise of one tag results
in compromise of keys in other tags; hence this leads to privacy infringements [2].

Synchronization approach. The basic idea in the synchronization approach is
for the reader and tags to maintain a synchronized state. For example, every tag
Ti maintains a counter ci. On interrogation, the tag outputs E = fki(ci) where
f is a keyed hash function and ki is a secret key shared between the reader and
Ti, then increases ci. The reader can compute all possible outputs of all tags and
store the results in a searchable table. In each interrogation, the reader searches
the response from the tag in the table.

There are several variants of the above approach in the literature, e.g., Ohkubo,
Suzuki, and Kinoshita [19], Henrici and Müller [11], Juels [12], and Dimitriou [8].

Time-space tradeoff approach. In [3] and [2], Avoine, Dysli, and Oechslin
used a time-space trade-off to achieve Θ(n

2
3) in both memory and time com-

plexity for key search. Time-space tradeoff is used as an enhancement to the
synchronization approach. The basic idea is to organize all future response val-
ues of all tags in chains. Each chain consists of a sequence of response values as
follows. The reader chooses a random function f to map a response value x to a
pair (i, j), then the response of tag i at the jth query will be the successor of x
in the chain. Only the head and the tail of a chain is stored. When receiving a
response x, the reader can apply f to get its successors. The reader searches x
and its successors in all the tails of the chains to locate the chain which contains
x. Then it starts from the head of the chain, applies f repeatedly, and locates
(i, j) of x.

3 Scheme Description

In this section, we present our RFID protocol. We assume that there are N tags
and one reader (here the reader refers to an entity consisting of the actual reader,
the database that stores the tag information, and perhaps an application server
which processes the data). We also assume that a tag is capable of generating
random bits, computing cryptographic hash functions, and modular multiplica-
tion over a field F2l . Such tags would fall into the category of symmetric-key
tags in [13].

A Highly Scalable RFID Authentication Protocol 363

3.1 Initial Setup

The initial setup configures the reader and the tags as follows.

– Choose an l-bit block cipher and a secret key. Let E be the encryption
function and D be the decryption function.

– Generate m random bivariate polynomials f1(x, y), . . . , fm(x, y) over a finite
field F2l . The degree of x and y in each fi is at most k.

– Assign the m polynomials to the reader.
– For tag i, 1 ≤ i ≤ N , compute xi = E(i) as its meta ID, then

• store m univariate polynomials f1,i(y) = f1(xi, y), . . . , fm,i(y) = fm(xi, y)
in the tag in a randomly permuted order.

• Set a counter c to 0.
• Set an interrogation threshold Qmax, which is the maximum number of

queries that the tag will answer correctly.
• Set a number b, which will be used in the protocol.

– Choose a secure hash function h : {0, 1}∗ �→ {0, 1}l which will be used by
readers and tags.

Note that the meta ID xi is not stored in the tag or the reader. We will discuss
the parameter selection for l, m, b, k, and Qmax in the analysis and performance
sections.

3.2 Authentication

The authentication process between a reader and a tag i is as follows.

1. The reader generates r ∈ F2l uniformly at random, then sends r to the tag.
2. If c > Qmax, then the tag responds with b random points in F2l × F2l .

Otherwise, the tag does the following:
(a) Generate r′ ∈ F2l uniformly at random, and compute y′ = h(r||r′).
(b) Choose g from {f1,i, . . . , fm,i} randomly, and compute z′ = g(y′).
(c) Generate b − 1 pairs of points (r1, z1) . . . , (rb−1, zb−1) ∈ F2l × F2l uni-

formly at random.
(d) Send the b points (r′, z′), (r1, z1), . . . , (rb−1, zb−1) to the reader in a ran-

dom order.
(e) Set c = c + 1.

3. After receiving the b points, for each point (r′, z′) and each polynomial
f ∈ {f1, . . . , fm}, the reader solves the equation z′ = f(x, h(r||r′)). The
reader needs to solve mb such equations, and each equation generates up to
k solutions. If any solution x is a valid meta ID, i.e., 1 ≤ D(x) ≤ N , then
the reader identifies the tag ID as D(x).

Remark. In Step 2 (b), to pick a polynomial, the tag can use two different
approaches. One is random choice and the other is random permutation. In ran-
dom choice, each time, the tag chooses one polynomial from the m polynomials
uniformly at random. In random permutation, the choice of g in m consecutive
authentication sessions is a random permutation of the m polynomials assigned
to the tag. In the following parts, we assume the random permutation approach.

364 J. Wu and D.R. Stinson

Correctness. If the reader receives b points from a valid tag with ID i, then
one of the points (r′, z′) will satisfy z′ = f(E(i), h(r||r′)) for a polynomial f ∈
{f1, . . . , fm}. At the reader side, E(i) will be the solution of x to the equation
z′ = fj(x, h(r||r′)). So the valid tag will be correctly identified.

The server will also get up to mbk − 1 other solutions in one authentication
session. The distribution of the meta IDs can be considered to be uniformly at
random in F2l , so the probability that one or more of these solutions happen to
be valid meta IDs is estimated to be

1 −
(

1 − N

2l

)mbk−1

. (1)

4 Security Analysis

In this section, we analyze the security and privacy properties of our protocol.
Recall that in the attack model, the adversary can eavesdrop and query any tag,
and it can compromise some tags. The goal of the adversary is to impersonate
or trace the uncompromised tags.

4.1 Query and Recovery

First, we consider the query-and-recovery attack. In this attack, the adversary
repeatedly queries a tag, collects the responses, and then tries to recover the
polynomials assigned to the tag. This is an intermediate step toward imperson-
ation and tracing.

Our security analysis for the query-and-recover attack is based on the hardness
of the noisy polynomial interpolation problem, which is related to the well-known
polynomial reconstruction problem. Next we present existing results about these
problems in the literature, followed by our analysis.

Preliminary. First we review the polynomial reconstruction (PR) problem [15]
and the noisy polynomial interpolation (NPI) problem [18].

Definition 1. (Polynomial reconstruction)
Input: Integers k and t, and T points {(xi, yi) : i ∈ [1, T]} where xi, yi ∈ F2l .
Output: All univariate polynomials P of degree at most k such that P (xi) = yi

for at least t values i ∈ [1, T].

The best known algorithm to solve this problem is the Guruswami-Sudan al-
gorithm [10]. It solves the problem when t >

√
Tk in time polynomial in T .

When t ≤
√

Tk, the current state of knowledge suggests that the problem may
be difficult even in the light of recent extensions of list or average case decoding
for related families of codes [15].

A variant of the PR problem, denoted as the noisy polynomial interpolation
(NPI) problem, is as follows:

A Highly Scalable RFID Authentication Protocol 365

Definition 2. (Noisy Polynomial Interpolation)
Input: S sets of points generated as follows: Pick a random polynomial P over

F2l of degree at most k. Generate S ≥ k + 1 sets, each containing B points. The
x coordinate of each point is randomly chosen from F2l subject to the condition
that all x values are distinct and different from 0. In each set there is exactly one
point (x, y) which satisfies y = P (x). For the other B−1 points, the y coordinate
is chosen randomly.

Output: the polynomial P .

The NPI problem is presented in [18]. A previous version of this problem was
presented in [17] in which the points in the same set all have the same x coordi-
nate. In [5], Bleichenbacher and Nguyen show that having the same x coordinate
allows meet-in-the-middle attacks and lattice attacks. However, it is unknown
how to employ these attacks against NPI. It appears that, although there is more
information given in NPI than in the PR problem, NPI may be as hard as the
PR problem.

Parameter Selection for NPI. In [18], Noar and Pinkas also proposed a
cryptographic assumption based on the NPI problem. They assumed that, if
S, B and k are polynomial in the security parameter and S <

√
SBk, then

the problem is hard. Here we further analyze the security level under concrete
parameter settings.

First we review the analysis of parameter choices for the PR problem in [14].
In [14], the best approach to solve the PR problem is assumed to be one of the
two choices: (1) choose k + 1 points to recover a polynomial and then test all(

T
k+1

)
polynomials, or (2) delete d points, where t >

√
(T − d)k, and use the GS

algorithm on the remaining T − d points. We call the first approach exhaustive
search; its idea is clear. The idea of the second approach is to delete d points. If
all the d points are not on the polynomial P , then it happens that t >

√
(T − d)k

so that GS will output the proper P . We call this approach exhaustive deletion.
We note that the idea of exhaustive search and exhaustive deletion can be

generalized to selecting n points where k + 1 ≤ n ≤ T . We use this generalized
idea for the NPI problem and consider the following new probabilistic algorithm
A as shown in Algorithm 1 to solve NPI.

Algorithm 1. A

choose n sets of points
choose β points from each set
use the nβ points as input to the GS algorithm, and output all polynomials of
degree at most k that fit at least k + 1 points.

Note that A may output more than one polynomial. If P is among them, we
consider A successful in solving the problem.

Let PNPI(S, B, k, n, β) be the probability that P will be outputted. Let t be
the number of points in the set of nβ points that satisfy y = P (x). It is clear

366 J. Wu and D.R. Stinson

that 0 ≤ t ≤ n and t follows a binomial distribution with parameters (β
B , n). If

t >
√

nβk, then P will be outputted. It holds that

PNPI(S, B, k, n, β) = Pr[t >
√

nβk] (2)

=
n∑

i=�√nβk+1

Pr[t = i]

=
n∑

i=�√nβk+1

(
n

i

)(
β

B

)i (
1 − β

B

)n−i

.

Remark. Note that, when β = 1 and n = k + 1, the algorithm becomes an
exhaustive search and

PNPI(S, B, k, k + 1, 1) =
(

1
B

)k+1

.

When β = B, the algorithm is deterministic for given n. In this situation, if
n ≤ Bk, then �

√
nBk� + 1 > n so that PNPI(S, B, k, n, B) = 0. If n > Bk, then

PNPI(S, B, k, n, B) =
n∑

i=�√nBk+1

(
n

i

)
0n−i = 1.

Regarding the hardness of NPI, we make the following assumption to estimate
the concrete security level.

Assumption 1. Let

AdvNPI
S,B,k = max{PNPI(S, B, k, n, β) : 1 ≤ β ≤ B, k + 1 ≤ n ≤ S}. (3)

Let n0, β0 be the optimal choices of n, β for A to achieve AdvNPI
S,B,k. Let τ be the

running time of the A using n0, β0. We assume that no algorithm can solve NPI
with probability more than AdvNPI

S,B,k using time at most τ .

AdvNPI
S,B,k can be estimated as

AdvNPI
S,B,k = max

{(
1
B

)k+1

, PNPI

(
S, B, k, S,

⌈
S

k

⌉
− 1

)}

(4)

(See Appendix A for a detailed analysis).

Security Under Query-and-Recovery. Now we relate the difficulty of the
query-and-recover attack to the difficulty of solving the NPI problem.

Recall that in the protocol, to answer a challenge r, the tag computes z′ =
g(h(r||r′)) where r′ is a random number generated by the tag. h(r||r′) can be
considered as random to the adversary. This point (z′, r′) is sent along with other
b−1 random points. In a query-and-recovery attack, the adversary queries a tag
Q times. In every consecutive m queries, the tag uses each of its m polynomials
once and in a random order. The problem for the adversary is to recover these
polynomials after Q queries. We have the following result.

A Highly Scalable RFID Authentication Protocol 367

Theorem 2. Suppose Assumption 1 holds. If the adversary queries a tag Q
times (where we assume that m|Q), then the probability that it can recover any
polynomial of the tag within time τ is at most

AdvNPI
Q/m,mb−m+1,k. (5)

Proof. We reduce an NPI problem with parameters (S = Q/m, B = mb−m+1)
to a query-and-recover problem. We choose m−1 random polynomials. For each
polynomial, we generate Q/m points from Q/m random x values, and put the
Q/m points in the Q/m sets. This becomes a query-and-recover problem of Q
queries, m polynomials of degree k, and b points in each answer.

Given ε, m, b, and k, there is a Qmax such that for Q ≤ Qmax, it holds that

AdvNPI
Q/m,mb−m+1,k ≤ ε.

Therefore, Qmax is the maximum number of queries allowed for one tag. Qmax

can be estimated as

Qmax ≈ ((b − 1)m2 + m)k (6)

(See Appendix B for a detailed analysis).
Equation (6) indicates that Qmax increases linearly with m2 and k. mk in-

dicates the memory overhead to store the m polynomials of degree k in a tag.
Qmax also increases linearly with b, which indicates the communication overhead
and the number of random points the tag needs to generate.

4.2 Compromise and Recovery

In this attack, the adversary compromises some tags, obtains the polynomials
assigned to these tags, and tries to recover the bivariate polynomials used in the
server side. This is an intermediate step toward impersonation and tracing.

First we express the polynomial assignment in the form of a matrix compu-
tation. Let

X =

⎛

⎜
⎜
⎜
⎜
⎝

1 x1 . . . x1
k

. . .
. . .

1 xn . . . xn
k

⎞

⎟
⎟
⎟
⎟
⎠

,

where x1, . . . , xn are the meta IDs assigned to the n tags. Let M1, . . . , Mm be
(k + 1) × (k + 1) matrices, which are matrix representations of the bivariate
polynomials f1, . . . , fm. Let Yi = XMi. Then Yi is an n × (k + 1) matrix, and
row j of Mi corresponds to the univariate polynomial generated using fi and
assigned to tag j.

We use M [r] to denote the rth row of a matrix M , and M [r][c] to denote the
entry at the rth row and cth column of M . It is clear that Yj [i] = X [i]Mj, and
the univariate polynomials assigned to tag i are Y1[i], . . . , Ym[i].

368 J. Wu and D.R. Stinson

For the adversary to recover an Mi, it is necessary to know Yi. Suppose the
adversary obtains Yi. He then needs to solve the following system of n(k + 1)
equations with n + (k + 1)2 unknown variables:

Yi[r][c] =
k∑

j=0

xr
jMi[j][c], (7)

where 0 ≤ r ≤ n − 1, 0 ≤ c ≤ k.

A necessary (but maybe not sufficient) condition to solve (7) is n ≥ (k+1)2

k .

We assume that when n ≥ (k+1)2

k , the adversary can solve (7) in a practical time
period τ .1

However, when Y1[i], . . . , Ym[i] are assigned to the tag xi, their order is ran-
domly permuted. So by compromising n tags, the adversary does not know which
n polynomials in the n tags are generated from the same M . We assume that
the best he can do is to draw one polynomial from each tag as a row of Yi, and
solve x1, . . . , xn and Mi in (7). With probability 1/mn−1, the polynomials in
Yi are generated from the same bivariate polynomial f . Therefore, we estimate
that the probability that the adversary can compute one Mi in time τ is

AdvCR =
1

mn−1 (8)

≤ 1

m

⌈
(k+1)2

k

⌉
−1

= m−k−2.

Remark. After the adversary has compromised n tags, if he also knows the
meta IDs x1, . . . , xn of the tags, then he can use the GS algorithm to recover
M1, . . . , Mm. However, when x1, . . . , xn are unknown, the GS algorithm is no
longer applicable, and we assume that there is no efficient algorithm to solve the
problem. It is worthwhile to further investigate the validity of this assumption.

4.3 Impersonation

In the impersonation attack, the adversary tries to impersonate a uncompro-
mised tag to a reader. In the RFID literature, this is often named counterfeiting
or cloning. Since cloning implies replicating a tag, we think that impersonation
may describe the goal of the adversary better. For example, the adversary may

1 (7) is a system of nonlinear polynomial equations. For general systems of nonlinear
polynomial equations where number of unknown variables u equals the number of
equations v, there is no efficient algorithm. If the system is overdefined, i.e., v >
u, then the linearization technique may sometimes be used to solve the problem
efficiently [7]. But for (7), the linearization technique does not work. On the other
hand, we cannot rule out the possibility that the special form of (7) may make some
efficient algorithms possible. Here we assume that (7) can be solved efficiently. This
assumption may underestimate the security of the protocol.

A Highly Scalable RFID Authentication Protocol 369

combine the information gathered from a tag to generate new messages to imper-
sonate a tag, or use the information gather from one tag to impersonate another
tag. In both cases, the adversary tries to cheat the reader in a way other than
by replicating.

The impersonation attack model for RFID should be much weaker than that
for conventional cryptographic entity authentication. For example, concurrent
attacks (where the adversary concurrently executes multiple sessions with the
prover (tag)) and intruder-in-the-middle attacks (where the adversary intercepts
and manipulate the messages between the prover (tag) and the verifier (reader))
do not seem to apply to RFID. These attacks originated in the Internet com-
munication model and have not been considered for RFID in the literature. The
main concern for RFID is that, in a authentication session, the adversary might
be able to use the information collected before to make the reader accept it as a
valid and uncompromised tag. This is similar to the smartcard communication
model. We analyze the protocol in this scenario.

After receiving a challenge r, to make the reader accept it as a valid tag, the
adversary A needs to generate a point (r′, z′) such that z′ = g(h(r||r′)) where g
is a polynomial assigned to the tag. As we have analyzed, the adversary cannot
learn the polynomials assigned to a tag by querying a tag or compromising
other tags. Since A does not know g, he cannot compute z′ by evaluating g().
Then A may choose a z′ previously generated by the tag. A can do this in a
probabilistic way: after observing a query and response from the tag, A randomly
picks one point from the response. With probability 1/b, A gets r0, r

′
0, and z′0

where z′0 = f(h(r0||r′0)). Then A needs to find r′ such that h(r||r′) = h(r0||r′0).
When r is a random challenge, and the hash function h() is modelled as a random
oracle, then the probability that A chooses r such that h(r||r′) = h(r0||r′0) is

Pr[h(r ‖ r′) = h(r0 ‖ r′0)] (9)
= Pr[h(r ‖ r′) = h(r0 ‖ r′0) ∧ r = r0] + Pr[h(r ‖ r′) = h(r0 ‖ r′0) ∧ r �= r0]
≤ Pr[r = r0] + Pr[h(r ‖ r′) = h(r0 ‖ r′0)|r �= r0]

=
1
2l

+
1
2l

=
1

2l−1 .

A may just send random points and hope that at least one of them satisfies
z′ = f(x′, h(r||r′)) for a polynomial f ∈ {f1, . . . , fm} and a valid meta ID x′.
The probability that this happens is similar to (1).

4.4 Tracing

Now we consider the tracing problem. Suppose that the adversary observes or
participates in two authentication sessions as a reader. The problem for the
adversary is to tell if the two sessions involve the same tag.

The output of a tag is b points. b − 1 of them are random points, and only
one point (r′, g(h(r||r′))) contains the information related to the tag. As we have

370 J. Wu and D.R. Stinson

analyzed, the adversary cannot learn the polynomials of an uncompromised tag.
Without knowing g, only when y1 = h(r||r′1) = y2 = h(r||r′2), the adversary
can tell that two points (y1, g(y1)) and (y2, g(y2)) are generated by the same
polynomial. When r′1 and r′2 are generated by the tag at random, and the hash
function h() is modelled as a random oracle, the probability that the adversary
can trace a tag by its response is

Pr[h(r||r′1) = h(r||r′2)] ≤ Pr[r′1 = r′2] + Pr[h(r||r′1) = h(r||r′2)|r′1 �= r′2] (10)

=
1
2l

+
1
2l

=
1

2l−1 .

Note that if a tag has been queried more than Qmax times, and the adversary
can get more information than the tag’s response (i.e., if an authentic reader
accepts the tag), then the adversary may trace the tag.

5 Performance

We discuss the performance of the protocol under a concrete parameter setting.
We set l = 64, m = 16, k = 8, b = 8, and Qmax = 13700.

5.1 Security and Privacy

The security and privacy provided by the protocol is as follows.

– The adversary queries a tag and tries to recover the secret polynomials held
by the tag. In each trial, the probability that the adversary can succeed is
at most 2−60 (by (5)).

– The adversary compromises several tags and tries to determine the secret
bivariate polynomials held by the server. In each trial, the probability that
the adversary can succeed is at most 2−40 (by (8)).
Note that, with probability 2−40, the adversary only obtains a correct system
of nonlinear equations. The system consists of (k + 1)2 + k + 3 unknowns
and (k + 1)2 + k + 3 equations. It is not clear whether there is any efficient
algorithm to solve the system.

– The adversary tries to compute a valid response using messages previously
generated by a tag. In each trial, the probability that the adversary can
succeed is 2−63 (by (9)).

– The adversary answers a query with random responses. In each interaction
with the reader, the probability that the adversary is identified as a valid
tag is at most 2−22 when N ≤ 232 (by (1)).

– The adversary tries to determine if two responses are from the same tag.
For each pair of responses from one tag, the probability that the adversary
succeeds is at most 2−63 (by 10).

A Highly Scalable RFID Authentication Protocol 371

– The adversary launches a Denial of Service (DOS) attack against a tag by
repeatedly querying a tag. After being queried for 13700 times, a tag cannot
be accepted by an authentic reader. In addition, an adversary may be able
to trace the tag using information in addition to the tag’s response, e.g., if
the tag is accepted by an authentic reader.

5.2 Tag

In each session, a tag needs to generate 2b−1 random numbers in F2l , evaluate a
polynomial of degree k over F2l , and compute a hash function. Random number
generation and hash computation are considered suitable for symmetric-key tags
and have been used in most previous RFID protocols. The tag needs to store m
polynomials over F2l , each of degree k. So it needs to store m(k+1) items of size
l. For m = 16, k = 8, l = 64, it takes 9216 bit ROM, corresponding to 9216 gates
in hardware. Using Horner’s rule, it takes k modular multiplication over F2l to
evaluate a polynomial of degree k. A 64 bit modular multiplier takes several
hundred gates in hardware. Therefore, in our protocol, a tag needs about 10000
more gates in hardware than a regular tag capable of hashing computation. As
a comparison, if pubic key techniques are used to solve the scalability problem
while preserving privacy, then about 20000 gates are required to implement an
ECC processor for RFID tags to perform public key computations [9].

5.3 Server

The server stores m bivariate polynomials of degree k. This requires m(k +
1)2l/8 ≈ 10K bytes memory.

In each session, for each bivariate polynomial f(x, y) and each received point
(z′, r′), the reader needs to solve an equation z′ = f(x, h(r||r′)). Then it checks
if the roots are valid meta IDs. There are efficient algorithms to solve polynomi-
als over finite fileds, e.g., Berlekamp’s algorithm [4] and the Cantor-Zassenhaus
algorithm [6]. After a meta ID is computed, it takes constant time to check if it
is valid. Solving the polynomials dominates the total time in an authentication
process.

We implemented the reader algorithm based on NTL [1]. On a P4 3.2G PC
with 1G RAM running Linux, when m = 16, k = 8, b = 8, and l = 64, the
running time using the Cantor-Zassenhaus algorithm in average case (solving
mb/2 polynomials of degree k on F2l where l = 64) is about 0.1 seconds for one
query.

5.4 Scalability

N (the maximum number of tags) is at most l bits. N is also limited by the
false positive probability given in (1). Given the fixed parameters m = 16, k = 8,
b = 8, and l = 64, when the false positive probability is less than 2−22, N can
be as large as 232, which is sufficient for almost all conceivable applications.
Therefore the protocol is highly scalable.

372 J. Wu and D.R. Stinson

5.5 Comparison

We compare our protocol with OSK/AO [3]. Both protocols are secure and
untraceable, and both are designed to solve the key search problem to provide
good scalability.

Time and Space. OSK/AO has a query threshold Qm, which is the length of
its hash chain. OSK/AO needs to store a precomputed table of size M . The time
for each query follows the rule

T = µ
(NQm)2

M2

where µ is a constant. For N = 220, Qm = 128, and M = 1GByte, OSK/AO
takes 0.004 milliseconds for one query. However, when the number of tags in-
creases, without increasing the table size, the time increases fast. Let M, Qm be
fixed, and let T1, T2 be the time for tag number N1, N2 respectively. It holds
that

T2 =
(

N2

N1

)2

T1.

If we consider a system of N = 232 tags, then, OSK/AO will take 67 seconds for
one query, using an 1G bytes precomputed table. As a comparison, our protocol
takes 0.1 seconds and 10K bytes memory in the server.

Query Threshold. In OSK/AO, if a tag is queried more than Qm = 128 times
by an adversary between two queries by an authentic server, then the tag cannot
be recognized by an authentic reader. In our protocol, if a tag is queried a total
Qm = 13700 times, then it cannot be recognized by an authentic reader. In
OSK/AO, the time for one query increases in Qm

3 (instead of Qm
2). In our

protocol, the time increases in
√

Qm. Therefore, the query threshold Qm in our
protocol is much higher. However, OSK/AO does not have a limit on the total
number of queries for a tag, although it is more susceptible to tag disable attacks
where an adversary repeatedly queries a tag in a short time. On the contrary, our
scheme is more resilient to tag disable attacks, but there is a limit on the total
number of times that a tag can be queried. Which approach is better depends on
how frequently a tag is queried. For example, in a library RFID system where a
tag may be queried several times a day, the OSK/AO scheme may be desirable.
In some other applications such as e-passport where a tag is queried every several
weeks or months, our protocol may be preferable.

Tag Hardware. The main drawback of our protocol compared to OSK/AO
may be the hardware cost on the tag side, which is about 10000 more gates in
hardware.

6 Conclusion

In this paper, we proposed a novel RFID protocol to solve the key search prob-
lem in RFID identification protocols. In previous RFID protocols, a hash-chain

A Highly Scalable RFID Authentication Protocol 373

is used to achieve good privacy. In such protocols, to identify a tag, a sever needs
to search a table of size NQ, where N is the number of tags and Q is the length
of the hash chain. The search takes either Θ(NQ) time or Θ(NQ) memory, and
therefore it does not scale well. A time-memory tradeoff technique can mitigate
the scalability problem. However, with the time-memory tradeoff, either the time
or the space is still at least Θ((NQ)2/3). In our protocol, the server “solves”,
instead of “searches”, for a tag ID. The protocol is based on polynomial opera-
tion, and its security and privacy is based on the difficulty of reconstructing a
polynomial with noisy data. The protocol supports very large NQ values. In our
demo implementation where N = 232, Q = 13700, the server takes 0.1 seconds
and 10K bytes memory to identify a tag. As a comparison, a hash-chain protocol
enhanced with time-memory tradeoff will take 67 seconds with the support of a
1G bytes pre-computed table. At the same time, our protocol preserves security
and privacy.

References

1. NTL: A library for doing number theory, http://www.shoup.net/ntl/
2. Avoine, G., Dysli, E., Oechslin, P.: Reducing time complexity in RFID systems. In:

Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306. Springer,
Heidelberg (2006)

3. Avoine, G., Oechslin, P.: A scalable and provably secure hash-based RFID protocol.
In: PerCom Workshops, pp. 110–114. IEEE Computer Society, Los Alamitos (2005)

4. Berlekamp, E.R.: Factoring polynomials over finite fields. Bell Systems Technical
Journal (46), 1853–1859 (1967)

5. Bleichenbacher, D., Nguyên, P.Q.: Noisy Polynomial Interpolation and Noisy Chi-
nese Remaindering. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 53–69. Springer, Heidelberg (2000)

6. Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over
finite fields. Math. Comp. 36(154), 587–592 (1981)

7. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations (2000)

8. Dimitriou, T.: A lightweight RFID protocol to protect against traceability and
cloning attacks. In: SECURECOMM 2005: Proceedings of the First International
Conference on Security and Privacy for Emerging Areas in Communications Net-
works, Washington, DC, USA, pp. 59–66. IEEE Computer Society, Los Alamitos
(2005)

9. Fürbass, F., Wolkerstorfer, J.: ECC processor with low die size for RFID appli-
cations. In: ISCAS, pp. 1835–1838. IEEE Computer Society Press, Los Alamitos
(2007)

10. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory 45(6), 1757–1767
(1999)

11. Henrici, D., Müller, P.: Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifiers. In: PerCom Workshops,
pp. 149–153. IEEE Computer Society Press, Los Alamitos (2004)

12. Juels, A.: Minimalist cryptography for low-cost RFID Tags. In: Blundo, C., Cimato,
S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 149–164. Springer, Heidelberg (2005)

http://www.shoup.net/ntl/

374 J. Wu and D.R. Stinson

13. Juels, A.: RFID security and privacy: a research survey. IEEE Journal on Selected
Areas in Communications 24(2), 381–394 (2006)

14. Kkiayias, A., Yung, M.: Directions in polynomial reconstruction based cryptog-
raphy. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer E87-A(5), 978–985 (2004)

15. Kkiayias, A., Yung, M.: Cryptographic hardness based on the decoding of Reed-
Solomon codes. IEEE Transactions on Information Theory 54(6) (2008)

16. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices, and
architectures. In: CCS 2004: Proceedings of the 11th ACM conference on Computer
and communications security, pp. 210–219. ACM Press, New York (2004)

17. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC 1999:
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pp. 245–254. ACM Press, New York (1999)

18. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

19. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based RFID privacy
protection scheme. In: International Conference on Ubiquitous Computing Ubi-
comp, Workshop Privacy: Current Status and Future Directions (2004)

Appendix

A Discussion on NPI and Exhaustive Search and
Deletion

We discuss the optimal choices of n and β for A to achieve AdvNPI
S,B,k. It is

difficult to give an analytic result, so here we discuss this question based on
some simulations.

Figure 1 shows PNPI(S, B, k, n, β) as a function of n and β for 1 ≤ n ≤
Bk + 1, 1 ≤ β ≤ B, B = 5 and k = 5. We see that when n approaches Bk + 1
and β approaches B, PNPI increases sharply to 1. That indicates that if there
are enough sets of points (s ≥ Bk+1), then the adversary can easily recover the
polynomial.

Figure 2 shows PNPI(S, B, k, n, β) as a function of n and β for 1 ≤ n ≤ S, 1 ≤
β ≤ B, B = 5, k = 5 and S = 83 ≤ Bk. There are two points that have peak
values among their vicinities in the graph. One is at n = k + 2 and β = 1, the
other is at n = 83 = S and β = 13.

We note that, if we use the exhaustive search approach, we will choose n =
k + 1 and β = 1, and then we have PNPI(S, B, k, k + 1, 1) = 0.1 × 10−7 which
is lower than the peak value where PNPI(S, B, k, k + 2, 1) = 0.8× 10−7, but the
difference is small in view of their magnitudes. Also, the point (n = k+1, β = 1)
for exhaustive search is close to that for the peak value at (n = k + 2, b = 1).

If we take the exhaustive deletion approach, then we will choose n = S =
83, β = S

k !−1 = 16, and have PNPI(S, B, k, 83, 16) = 0.4×10−8 which is lower
than the other peak value PNPI(S, B, k, 83, 15) = 0.4 × 10−7, but difference is
small in view of their magnitudes. Also the point for exhaustive search (n =
83, β = 16) is close to that for the peak value at (n = 83, β = 15).

A Highly Scalable RFID Authentication Protocol 375

5

10

15

20

b

0

20

40

60

80

100

n

0

0.2

0.4

0.6

0.8

1

P

Fig. 1. PNPI when S ≥ Bk + 1
.

5

10

15

20

b

0

20

40

60

80

n

0

2e–08

4e–08

6e–08

8e–08

P

Fig. 2. PNPI when S < Bk
.

The above observation leads to the conjecture that, for S < Bk+1, the results
of exhaustive search and exhaustive deletion are close to the best strategy for
the adversary. Then the advantage of the adversary may be estimated as

376 J. Wu and D.R. Stinson

AdvNPI
S,B,k = max

{(
1
B

)k+1

, PNPI

(
S, B, k, S,

⌈
S

k

⌉
− 1

)}

.

B Discussion on Interrogation Threshold

For the protocol to be secure, we require that the advantage of the adversary
is no more than a given ε. It is not clear how to directly compute Qmax (or
equivalently nmax = Qmax/m) for given ε. We give the following estimate. In
Figure 1, we see that P (S, B, k, n, k) = 1 when n = Bk + 1, and P (S, B, k, n, k)
decreases sharply to 0 when n decreases. This implies that nmax is less than
Bk and may be close to Bk. Correspondingly, in the query-and-recovery attack,
Qmax is close to ((b − 1)m2 + m)k. We compare Qmax for given ε and different
sets of m, b, k values and ((b − 1)m2 + m)k in Table 1.

Table 1. Estimation of Qmax

m Qmax ((b − 1)m2 + m)k Qmax

((b−1)m2+m)k

5 420 525 0.80
10 1860 2050 0.90
15 4290 4575 0.94
20 7720 8100 0.95
25 12150 12625 0.96
30 17580 18150 0.97
35 24010 24675 0.97
40 31440 32200 0.98
45 39870 40725 0.98
50 49300 50250 0.98

The results show that Qmax and ((b − 1)m2 + m)k are close. Therefore, we
can estimate that

Qmax ≈ ((b − 1)m2 + m)k.

Strengthening the Security of Distributed
Oblivious Transfer

K.Y. Cheong, Takeshi Koshiba, and Shohei Nishiyama

Division of Mathematics, Electronics and Informatics,
Graduate School of Science and Engineering, Saitama University

255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
{kaiyuen,koshiba,shohei}@tcs.ics.saitama-u.ac.jp

Abstract. We study the distributed oblivious transfer first proposed by
Naor and Pinkas in ASIACRYPT 2000, and generalized by Blundo et al.
originally in SAC 2002 and Nikov et al. in INDOCRYPT 2002. One ma-
jor objective of distributed oblivious transfer is to achieve information
theoretic security under specified conditions through the distribution of
the functions of traditional oblivious transfer to a set of neutral parties.
In this paper we revise the definition of distributed oblivious transfer in
order to deal with stronger adversaries and clarify possible ambiguities.
Under the new definition, we observe some impossibility results and de-
rive the upper bounds for the system parameters (with respect to the
size of coalition). The weak points of previously proposed schemes based
on threshold secret sharing schemes using polynomial interpolation are
reviewed and resolved. We generalize the results and prove that, by ad-
justing some technical details, a previous scheme proposed by Nikov et
al. is unconditionally secure. This protocol is efficient and achieves the
parameter bounds at the same time.

Keywords: oblivious transfer, secret sharing scheme, information theo-
retic security.

1 Introduction

Oblivious Transfer (OT) is a two-party cryptographic protocol. In the first OT
system introduced by Rabin [12], a message is received with probability 1/2 and
the sender does not know whether his message reaches the other side. Later,
Even et al. defined the 1-out-of-2 OT [6], where the sender has two secrets ω0
and ω1 and the receiver can choose one and only one of them in an oblivious
manner. That is, the sender cannot know the receiver’s choice σ ∈ {0, 1} and the
receiver cannot know any information on ω1−σ as he gets ωσ. The more general
1-out-of-N OT (where the sender has N secrets), the more specific 1-out-of-2 bit
OT (where the secrets are one bit long), are similarly defined and the reductions
among them have been discussed [2,3,5]. Also, Rabin’s OT and the 1-out-of-2 OT
are equivalent, as shown by Crépeau in [4]. In this paper we focus on the 1-out-
of-2 OT. OT protocols are important building blocks of modern cryptography.
Most notably, any secure multi-party computation can be based on OT [8,9,14].

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 377–388, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

378 K.Y. Cheong, T. Koshiba, and S. Nishiyama

By simple arguments it can be shown that OT can only be computation-
ally secure for either the sender or receiver, without involving extra parties or
special communication channels. If information-theoretic security is desired for
both sides, some more structures are needed. Distributed OT (DOT), proposed
by Naor and Pinkas [10], achieves this. In their DOT, the sender interacts with
M servers to distribute the secrets. After that, the receiver communicates with
any m servers to get one secret. The scheme makes use of properties of polynomi-
als as in Shamir’s classic secret sharing scheme [13], which gives the fundamental
framework of most other DOT schemes proposed later. For example, Blundo et
al. [1] extended the work of [10] to the case of 1-out-of-N OT. Also in [1], the
first DOT scheme not using polynomials was proposed. Taking the idea of [10],
another DOT scheme has been suggested by Nikov et al. in [11], using only a
different polynomial. In their work, the 1-out-of-2 OT can also be extended to
1-out-of-N OT. Moreover, they gave a general access structure protocol imple-
menting the 1-out-of-N OT. Also, some general lower bounds for computational
resources and system parameters (with respect to the size of coalition) in DOT
have been derived in [1] and [11] respectively.

Recently, Ghodosi [7] revealed some weak points of the DOT scheme in [10]
and showed some possible attacks. As the protocol in [10] uses a restricted form
of Shamir’s threshold secret sharing scheme based on polynomial interpolation,
Ghodosi pointed out that such restriction causes the weak points of the DOT
scheme even though the original secret sharing scheme is perfectly secure. These
attacks may apply to similar schemes in [1] too. The protocol in [11] is mostly
immune to the attacks but still not perfectly secure.

In this paper, we work on polynomial-based DOT, but the essential properties
of the general DOT are first discussed in Section 2. We try to define DOT in
simpler terms and to cope with stronger adversaries. Under the new definition,
in Section 3 we derive some upper bounds for system parameters measuring the
strength of adversaries, partially similar to the results in [11]. The framework
by [10] for all DOT schemes based on polynomials is then introduced in Section
4.1. Problems related to Ghodosi’s attacks are discussed in details in Section 4.2.
Based on the results of [11], we then construct a protocol in Section 5.1. We use
it to develop a scheme with provable security in information theoretic sense.

2 Defining DOT

In this paper, we try to define DOT generally. The desired properties of a DOT
system are listed, though some of them may be optional. As in traditional OT,
a 1-out-of-2 DOT protocol involves a sender with secrets (ω0, ω1) and a receiver
with a choice σ ∈ {0, 1}. In addition, in DOT there is a set of m neutral servers.
The sender interacts with the servers to dedicate the task of OT to them. The
receiver follows the protocol to get ωσ from the servers. In our definition of DOT,
the interactions between all parties have the following properties:

1. Each single party has a secure and private communication channel with any
other party. This is the basic assumption even if some channels are not used.

Strengthening the Security of Distributed Oblivious Transfer 379

2. The sender and the receiver do not communicate with each other.
3. If all parties are honest, the interactions between the sender and the servers

are finished before the interactions between the receiver and the servers
begin. In practice, the servers may have to notify the receiver when it is
possible for him to start his part of the protocol.

With the properties of DOT described above, when the sender has finished his
part of protocol, it is possible for the receiver to halt the protocol for some
time before he starts it again, if he ever does. The presence of the sender is
not required during that time. This gives an advantage in various situations, for
example, if it is uncertain when the receiver will request the OT, or if the sender
is not supposed to know (or predict) the identity of the receiver. Next, the DOT
protocol must guarantee the following functional properties:

1. Correctness: If all parties are honest, when the protocol is finished the re-
ceiver can always compute ωσ.

2. Receiver’s privacy: The (malicious) sender cannot get any information about
σ of an honest receiver, even if he is in coalition with λ1 corrupted servers.

3. Sender’s privacy against receiver: For any coalition of the receiver and λ2
servers, if they obtain any information about one secret of the honest sender,
then they get no information about the other secret.

4. Sender’s privacy against servers: A coalition of λ3 corrupted servers gains no
information about any of the honest sender’s secrets.

Our DOT has three system parameters as shown above. The larger they are,
the more secure the protocol is. If λ1 = λ2 = λ3 = 0 then this DOT is a trivial
OT achieved through a trusted third party. When giving the parameters, we
assume a corrupted party is corrupted the whole time the protocol is run. In
our definition of DOT, the security requirements are made as simple as possible.
This is not only for simplicity but also for the largest freedom of the adversaries.
We have three parameters due to three possible types of malicious parties, each
going after a different objective:

1. A party not including the receiver may try to obtain information on σ.
2. A party including the receiver but not the sender may try to obtain infor-

mation on both ω0 and ω1, while they are entitled to only one of them.
3. A party including neither the sender nor the receiver may try to obtain

information on ω0, ω1, or both.

By simple arguments it is known that traditional OT is automatically secure
against eavesdropping. Therefore the last type of adversary above is related to
DOT only.

Note that our definition of DOT is slightly different from the previous schemes
[1,10,11]. First, we do not assume the existence of a measure to limit receiver’s
access to the servers, so the receiver will contact all servers rather than a subset
of them. Next, in all previous DOT schemes, the definition of receiver’s privacy
is against the servers only. The sender is assumed to be honest and not discussed.
In our study the sender may actively cheat.

380 K.Y. Cheong, T. Koshiba, and S. Nishiyama

Also, in the DOT definitions in [10] and [11], the sender can only send one
message to each server. After that, only one round (two messages) of commu-
nication is allowed between the receiver and each server. This one-round DOT
assumption suffices for polynomial-based schemes, but is not true for a general
DOT. For example, in [1] a two-round DOT was proposed. In this paper we
do not limit the number of rounds of communication between any parties, such
that a larger family of possible DOT protocols will be included. We believe our
definition of DOT is simpler than others as a result. It also copes with stronger
adversaries due to larger freedom on the possible malicious behaviors.

3 The Upper Bounds

We now show a simple upper bound for the system parameters λ1 and λ2 for a
fixed m. We show that m > λ1 +λ2. For contradiction, consider m ≤ λ1 +λ2. As
a party can always corrupt fewer servers than allowed, it suffices to show that
even the case m = λ1 + λ2 leads to insecurity of the DOT.

We now proceed to the proof of insecurity. Assume in one case, due to the
absence of neutral servers, the sender agree to simulate by himself the first λ1
servers and the receiver the remaining λ2 servers, in order to achieve the function
of a traditional OT. If both sides are fully honest, this clearly will give the desired
result in terms of correctness. In traditional OT, information-theoretic security
cannot be achieved for both sides, even for the semi-honest model. Therefore,
one side (Alice) is at most only protected computationally. Replace the other
side (Bob) with a semi-honest but computationally unlimited machine, it is
clear that Bob will violate Alice’s privacy without being detected. Next, replace
all servers with neutral ones. But the malicious Bob can corrupt the servers
which have been simulated by him earlier. He can then act semi-honest with the
corrupted servers. Alice and the honest servers will not detect anything wrong
while security is actually broken.

As a result, DOT can only be achieved if m > λ1 +λ2. This is the same as the
bound shown in [11], but in [11] it is only shown for one-round DOT. Actually
this is true in general. Note that this bound is tight in two ways. First, DOT
can be achieved with m = λ1 +λ2 +1. The actual protocols are discussed in this
paper. Also, our new definition of DOT is closely related to this new bound, as
DOT schemes overcoming this bound in some ways have been constructed in [1]
by assuming that the sender is honest.

On the other hand, for λ3, it is clear that m > λ3 because all OT functions
are dedicated to the m servers when the sender finishes his part of protocol and
goes offline. A coalition of m servers can get all of the sender’s secrets. In this
paper we show that DOT can be achieved for m = λ3 + 1.

4 DOT Based on Polynomials

4.1 The Original Scheme

First proposed by [10], a DOT scheme based on polynomials has the following
structure:

Strengthening the Security of Distributed Oblivious Transfer 381

1. Sender starts with two secret numbers (ω0, ω1) smaller than security pa-
rameter p and generates in finite field Fp (modulus p) a random polynomial
Q(x, y) such that Q(0, 0) = ω0 and Q(0, 1) = ω1.

2. There are m servers, named by integer 1 to m. To each server i the sender
sends Q(i, y) as a polynomial in y.

3. The receiver generates S(x) such that S(0) = σ, his choice of secret. He
sends S(i) to each server i.

4. Define R(x) = Q(x, S(x)). Server i calculates R(i) = Q(i, S(i)) and sends it
to the receiver.

5. The receiver now has m points of R(x) to interpolate the polynomial. Then
he calculates R(0) = Q(0, S(0)) = ωσ.

There are a number of different ways of choosing Q(x, y) and S(x) that differen-
tiate the few schemes proposed previously. For correctness, we have to make sure
R(x) is of degree m− 1 or lower. Apparently, for receiver’s privacy S(x) should
be of degree λ1 or above. The structure of the polynomials has to be specified
but all coefficients should be randomly selected to provide the best security.

In [10], two actual schemes were proposed. In both schemes, S(x) is random
with degree ds. The only difference is Q(x, y). In the first scheme, we have:

Q(x, y) =
m−1∑

j=1

ajx
j + b1y + b0. (1)

In [10] it is known that this choice of Q(x, y) is insecure when one server is
corrupted by the receiver. This is because the receiver can run the DOT honestly
to obtain ω0 = b0 and then the corrupted server can get ω1 = b1 + b0 because
b1 is known by all servers. To avoid this problem, the second scheme in [10] is
proposed. The choice of Q(x, y) is a full polynomial:

Q(x, y) =
dy∑

l=0

dx∑

j=0

aj,lx
jyl (2)

with dx + dyds = m− 1. However, in [7], this scheme is also shown to have some
security problems.

4.2 Security Concerns

First of all, as shown in the first attack in [7], if S(x) is restricted to be of degree
ds = λ1, a problem for receiver’s privacy will occur. A coalition of ds servers has
a small advantage of guessing σ = S(0). With probability 1

p−1 the value of σ
is exposed with certainty. Therefore, with this attack, the overall probability of
guessing σ is 1

2 + 1
2p−2 rather than the neutral 1

2 , if σ is uniformly distributed
in the first place.

Actually, we can generalize this observation to show that, with a coalition of
even fewer corrupted servers, a slight advantage for guessing S(0) always exists.

382 K.Y. Cheong, T. Koshiba, and S. Nishiyama

Using the same method in [7], we define:

S(x) =
ds∑

j=0

sjx
j

S′(x) =
dc∑

j=0

s′jx
j (3)

where S(x) is the secret polynomial and S′(x) is constructed by the dc +1 points
of S(x) obtained by the cheating servers such that S(x) = S′(x) at these points.
If ds = dc then S(x) can be fully determined. Otherwise dc < ds and the equation
S(x)− S′(x) = 0 is expressed as

(s0− s′0)+ (s1− s′1)x+ . . . +(sdc − s′dc
)xdc + sdc+1x

dc+1 + . . .+ sdsx
ds = 0. (4)

For the sake of convenience we define s′j = 0 for ds ≥ j > dc. Now, as
a hypothesis concerning the unknown S(x), consider the possible case that
(s0, s1, . . . sds−dc−1) = (s′0, s

′
1, . . . s

′
ds−dc−1). Then the equation of (4) may be

reduced to

(sds−dc−s′ds−dc
)xds−dc +(sds−dc+1−s′ds−dc+1)x

ds−dc+1+. . .+(sds−s′ds
)xds = 0.

(5)
Denote by βi the identity of the ith cheating server, this gives

⎛

⎜
⎜⎜
⎝

βds−dc
1 βds−dc+1

1 . . . βds
1

βds−dc
2 βds−dc+1

2 . . . βds
2

...
. . .

...
βds−dc

dc+1 βds−dc+1
dc+1 . . . βds

dc+1

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

sds−dc − s′ds−dc

sds−dc+1 − s′ds−dc+1
...

sds − s′ds

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎝

0
...
0

⎞

⎟
⎠ (6)

leading to the conclusion that sds = 0 by solving this system of equations with
nonzero Vandermonde determinant. This is a contradiction because the degree
of S(x) is ds. Therefore the hypothesis is refuted and we know for certain that
(s0, s1, . . . sds−dc−1)
= (s′0, s

′
1, . . . s

′
ds−dc−1). This eliminates one possibility on

the value of (s0, s1, . . . sds−dc−1). As σ = s0, if it happens that s′0 equals 0 or 1,
then we can conclude that s′0 = 1 − σ is slightly more likely than s′0 = σ. For
the case where dc = ds− 1 as shown in [7], we can simply know that s′0 = 1− σ.
Therefore, the receiver’s privacy is not perfectly protected. Furthermore, even
in the case of a coalition of ds servers, the coalition can simulate a coalition of
fewer servers. Combining the results, the adversary can actually guess σ with a
probability larger than 1

2 + 1
2p−2 in this new attack.

Next, in the second scheme of [10] as shown in (2) above, the degree of R(x) =
Q(x, S(x)) is dependent on S(x). This is a security problem for the honest sender
if the receiver is cheating. As illustrated in the second attack in [7], the minimum
degree of R(x) is dx when S(x) has zero degree. The receiver can use S(x) = 0
to communicate with the first dx + 1 servers to obtain ω0, and use S(x) = 1
to interact with the next dx + 1 servers to get ω1. This attack works when

Strengthening the Security of Distributed Oblivious Transfer 383

m ≥ 2dx + 2, even if no server is corrupted. If λ2 servers are corrupted by the
receiver the attack can work for m ≥ 2dx + 2 − λ2. Also, this attack seems to
apply to one of the schemes in [1] having the same type of structure.

4.3 Ideas on Security Fix

The first problem is for receiver’s security. To resolve it we simply allow more
freedom on the choice of S(x). We can set S(x) to be random with degree no
larger than λ1. The actual degree is only known by the receiver. This is enough
to ensure correctness as the degree of R(x) will not be increased. The only
restriction is S(0) = σ. That is:

S(x) =
λ1∑

j=1

sjx
j + σ (7)

where each sj is uniformly distributed in Fp. In this case the value of S(0) is
uniformly distributed, thus perfectly secret, in the view of any party knowing
fewer than λ1 + 1 other points of S(x).

The second security issue threatens sender’s privacy. One solution is to ensure
that the degree of R(x) is not dependent on S(x). This can be done by the
following general construction. The structure of Q(x, y) is slightly modified to

Q(x, y) =
∑

j,l∈N

aj,lx
jyl (8)

where j, l are nonnegative integers and aj,l is random if j + lλ1 ≤ m − 1,
otherwise aj,l = 0. This is a more general form of Q(x, y) compared with (2)
and the number of coefficients aj,l is increased. With this Q(x, y), it is clear
that the degree of R(x) does not exceed m − 1 as long as the degree of S(x)
does not exceed λ1. Also, the degree of R(x) is independent of S(x) such that
the attack in [7] against the sender no longer works. This general structure is
provably secure. In the next section we provide a specific scheme for it.

5 The Secure DOT Scheme

5.1 A Sub-protocol

In this paper we introduce a DOT protocol and prove its security in information
theoretic sense, leaving no doubt on how secure it is. Also, m = λ1 + λ2 + 1 =
λ3 +1, reaching the upper bounds of the parameters. First, by choosing a special
case of the general case in (8), we give the following much simplified Q(x, y) by
setting aj,l = 0 when l > 1. Practically this limits the degree of y in Q(x, y) to
one, and it becomes

Q(x, y) = B0(x) + B1(x)y (9)

where B0(x) has degree at most m− 1 and B1(x) is of degree at most λ2. These
polynomials are the same as those in the scheme of [11] except the specifications

384 K.Y. Cheong, T. Koshiba, and S. Nishiyama

on their degrees. Only B0(0) and B1(0) are relevant to sender’s secrets and all
other coefficients are random in Fp.

Next, we use this structure as a sub-protocol, as it is still not fully secure
for the sender, because the receiver can actually get a linear combination of the
sender’s secrets. In particular, if S(0) = α then the receiver can get B0(0) +
αB1(0) for any value of α, without being detected that α may not be zero or
one. In the full DOT scheme this will be handled. But for the sub-protocol we
allow this to happen, and the receiver will get B0(0) + αB1(0) for any α of his
choice but nothing more. To summarize we have the following structure:

1. The sender begins with secret numbers a0 and b0, the receiver begins with
secret α, all in Fp. The receiver is allowed to obtain a0 +αb0 while the sender
should get nothing.

2. The sender generates randomly (a1, . . . am−1) and (b1, . . . bλ2) all in Fp and
constructs:

B0(x) =
m−1∑

j=1

ajx
j + a0

B1(x) =
λ2∑

j=1

bjx
j + b0

Q(x, y) = B0(x) + B1(x)y (10)

3. The receiver generates randomly (s1, . . . sλ1) in Fp to construct:

S(x) =
λ1∑

j=1

sjx
j + α (11)

4. There are m servers named 1 to m. The sender sends each server i the values
of B0(i) and B1(i). The receiver sends each server i the value of S(i).

5. Let R(x) = Q(x, S(x)). Each server i calculates R(i) = B0(i) + B1(i)S(i)
and sends it to receiver.

6. The receiver interpolates m points of R(x) to solve it fully. After that the
value of R(0) = a0 + b0α can be calculated.

5.2 Correctness and Security

If the protocol above is followed, correctness is straightforward as the degree of
R(x) is at most m− 1. Next, it is clear that the receiver’s privacy is ensured. As
S(x) is a random polynomial of degree no larger than λ1, the view for α = S(0)
is uniformly distributed given λ1 or fewer other values of S(x).

For sender’s privacy against receiver, we show that the receiver can obtain
at most a linear combination of the sender’s two secret numbers, fulfilling the
objective of the sub-protocol. A receiver corrupting server i can do no better
than obtaining B0(i) and B1(i) directly. On the other hand, if server i is not
corrupted, the receiver can get B0(i) + B1(i)yi for any yi selected. As there are

Strengthening the Security of Distributed Oblivious Transfer 385

m − λ2 honest servers, the collection of all these yi implicitly corresponds to
some S(x) of degree at most m−λ2−1 = λ1 such that S(i) = yi. Therefore, the
choice of yi of any malicious receiver will actually be the same as some honest
receiver choosing S(x). The value of S(x) is known by the receiver:

S(x) =
λ1∑

j=0

sjx
j . (12)

So the malicious receiver will at least know the value of a0 +b0s0. If we can show
that the receiver can only get a linear combination of a0 and b0, this is exactly
what he gets.

The receiver gets 2λ2 equations from the corrupted servers, and m−λ2 equa-
tions in the form of B0(i)+B1(i)S(i) = vi from honest server i. All the coefficients
of B0(x) and B1(x) are the unknowns and therefore there are m+λ2+1 of them.
There are more unknowns than equations so it is impossible to solve them fully.
In particular, with all the information on B1(x) from the cheating servers alone,
the receiver gets the vector

⎛

⎜
⎝

1 β1 β2
1 . . . βλ2

1
...

. . .
...

1 βλ2 β2
λ2

. . . βλ2
λ2

⎞

⎟
⎠

⎛

⎜
⎝

b0
...

bλ2

⎞

⎟
⎠ (13)

where βi is the identity of the ith cheating server. Using the property of Vander-
monde matrices, the receiver can now express each of (b1, b2, . . . bλ2) as a linear
function of b0, as there is one more unknowns than equations. From this, for
any i the value of B1(i)S(i) is now also a linear function of b0. An honest server
i would give the receiver the value of vi = B0(i) + B1(i)S(i). In such a case
B0(i) = vi − B1(i)S(i) can also be expressed as a linear function of b0. On the
other hand, if i is a cheating server then B0(i) is known directly as a number.
Collectively all information about B0(x) can now be expressed:

⎛

⎜
⎜
⎜
⎝

1 1 1 . . . 1
1 2 22 . . . 2m−1

...
. . .

...
1 m m2 . . . mm−1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎝

a0
...

am−1

⎞

⎟
⎠ =

⎛

⎜
⎝

u1
...

um

⎞

⎟
⎠ (14)

where every ui is a known linear function of b0 (or a constant, which is still a
linear function of b0). Using Vandermonde matrices again, it is clear that the
receiver can solve a0 as a linear function of b0. This implies that the value of
a0 + αb0 can be known for some α, while the exact value of (a0, b0) is unknown.
To conclude, in every possible case, the view of the receiver allows him to know
a0 + s0b0 only. Other than that, the freedom of a0 and b0 remains. Therefore,
a0 + s0b0 is all the receiver can get, fulfilling the security requirement of the
sub-protocol.

For sender’s privacy against servers, it is clear that a coalition of λ3 servers
gets no information about a0 due to missing information on B0(x). But they can

386 K.Y. Cheong, T. Koshiba, and S. Nishiyama

get b0 (as λ3 > λ2), which means they also seem to get a linear combination of
secrets. The important difference is that they do not have the freedom to choose
the combination. Due to this, in the next section we can show the security of
the full protocol.

5.3 Full Protocol Avoiding Linear Combination

We note that it is important to prevent the receiver from getting a linear com-
bination of the secrets. In particular, OT security should not depend on what
is already known about the secrets when the protocol is started. For example,
if ω0 is known to be a multiple of a number K, and ω1 is smaller than K, then
the knowledge of ω0 + ω1 can reveal both secrets.

To ensure the receiver really only gets one secret, the method suggested in
[10] is used. The sub-protocol is run twice in parallel. For the first time, two
random values of γ0 and γ1 are generated by the sender and the sub-protocol
is run with a0 = γ0 and b0 = γ1 − γ0. For the second time, the values of γ0ω0
and γ1ω1 are used, where (ω0, ω1) are the real secrets. In this run a0 = γ0ω0 and
b0 = γ1ω1−γ0ω0. The receiver then starts his part of protocol but only one S(x)
is used, with each honest server i receiving yi = S(i) only once. This effectively
allows the receiver to get Aγ0 + Bγ1 and Aγ0ω0 + Bγ1ω1 for any A and B with
A+ B
= 0 mod p. The receiver is honest whenever A = 0 or B = 0. In this case,
the required secret ωσ can be obtained directly. Otherwise, the receiver gets the
value of the vector: (

A B
Aω0 Bω1

)(
γ0
γ1

)
(15)

such that each possible pair of (ω0, ω1) with ω0
= ω1 corresponds to a unique
pair of (γ0, γ1), giving no information on (ω0, ω1). To make sure ω0
= ω1 we need
to add some special rules to the DOT. For example, it can be that all sender’s
secrets are odd numbers, but the sender can randomly choose to add one to
any of them before putting them as the input of the DOT. In the case that the
two secrets are equal, one and only one of them is changed to an even number.
Although the message space is reduced by half, it can be handled by choosing a
larger p.

On the other hand, for sender’s privacy against λ3 servers, it is now obvious
that all the malicious servers get is the vector in (15) with A = −1 and B = 1.
Therefore they receive no information about the sender’s secrets in the DOT
scheme.

This protocol achieves full security of DOT, and reaches the upper bounds
for all parameters. The protocol is highly efficient for the servers, as each of
them only receives five numbers and returns two simple functions of them. With
a fixed value of m, parameters λ1 and λ2 can be adjusted freely before the
protocol begins. This gives an advantage when one of the sender or receiver is
more trustworthy than the other.

Strengthening the Security of Distributed Oblivious Transfer 387

6 Extension and Concluding Remarks

Our scheme can be extended to 1-out-of-N DOT. The result is basically same
as [11]. The only difference is that all polynomials should be allowed to have
any degree smaller than their corresponding maximum. Techniques to keep the
receiver from getting a linear combination of secrets are required too.

This scheme can also be extended to the case where M servers are available,
but the receiver is only allowed to communicate with any m of them, including
the servers corrupted by him. In this case, exactly the same protocol can be
used, with the sender communicating with all servers and the receiver only m of
them.

To conclude, in this paper we revise the definition of DOT with stronger
adversaries and fewer other assumptions. Then we generalize the concept of
[10] in order to construct a secure DOT protocol based on polynomials. After
considering some known attacks, we show a secure example based on [11]. For
the first time, we prove the DOT security explicitly. We also show the general
bounds of DOT, which are reached by the system parameters of our scheme.

References

1. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.: On unconditionally secure
distributed oblivious transfer. Journal of Cryptology 20(3), 323–373 (2007); A pre-
liminary version appeared in Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 291–309. Springer, Heidelberg (2003)

2. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.
IEEE Transactions on Information Theory 42(6), 1769–1780 (1996)

3. Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification.
Journal of Cryptology 16(4), 219–237 (2003)

4. Crépeau, C.: Equivalence between two flavours of oblivious transfer. In: Pomerance,
C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg (1988)

5. Crépeau, C., Savvides, G.: Optimal reductions between oblivious transfers using
interactive hashing. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 201–221. Springer, Heidelberg (2006)

6. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

7. Ghodosi, H.: On insecurity of Naor-Pinkas’ distributed oblivious transfer. Informa-
tion Processing Letters 104(5), 179–182 (2007)

8. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proc. 19th ACM
Symposium on Theory of Computing, pp. 218–229 (1987)

9. Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th ACM Sym-
posium on Theory of Computing, pp. 20–31 (1988)

10. Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000)

388 K.Y. Cheong, T. Koshiba, and S. Nishiyama

11. Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure dis-
tributed oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002.
LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002)

12. Rabin, M.: How to exchange secrets by oblivious transfer, Technical Report TR-81,
Aiken Computation Laboratory, Harvard University (1981)

13. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

14. Yao, A.C.-C.: Protocols for secure computations. In: Proc. 23rd IEEE Symposium
on Foundations of Computer Science, pp. 160–164 (1982)

Towards Denial-of-Service-Resilient
Key Agreement Protocols

Douglas Stebila1 and Berkant Ustaoglu2

1 Information Security Institute, Queensland University of Technology,
Brisbane, Australia
douglas@stebila.ca

2 NTT Information Sharing Platform Laboratories, Tokyo, Japan
bustaoglu@cryptolounge.net

Abstract. Denial of service resilience is an important practical consid-
eration for key agreement protocols in any hostile environment such as
the Internet. There are well-known models that consider the security of
key agreement protocols, but denial of service resilience is not considered
as part of these models. Many protocols have been argued to be denial-
of-service-resilient, only to be subsequently broken or shown ineffective.

In this work we propose a formal definition of denial of service re-
silience, a model for secure authenticated key agreement, and show how
security and denial of service resilience can be considered in a common
framework, with a particular focus on client puzzles. The model accom-
modates a variety of techniques for achieving denial of service resilience,
and we describe one such technique by exhibiting a denial-of-service-
resilient secure authenticated key agreement protocol. Our approach
addresses the correct integration of denial of service countermeasures
with the key agreement protocol to prevent hijacking attacks that would
otherwise render the countermeasures irrelevant.

1 Motivation

Reliable, fast, and secure communication is essential for commercial success on
today’s Internet. Slow web pages could motivate clients to switch to an alterna-
tive business, leading to a loss in customer base for the service provider. However,
maintaining sufficiently powerful servers can be an expensive venture. Servers
have limited resources in terms of the amount of traffic that can be handled,
the time required to establish a connection, and the number of active concur-
rent connections. This effectively bounds the number of connections a company’s
server can honour in a given period in time.

Malicious parties have recognized that they can benefit by depleting the lim-
ited resources of others’ servers. Denial of service attacks aim to disrupt, destroy,
or render services unavailable. A typical denial of service attack exhausts the tar-
get’s resources. The server is rendered unavailable for honest clients, who then
proceed to request similar services from competitors. To prevent malicious re-
quests, a server needs to filter out bogus connection requests and honour those
from legitimate clients. Recognizing legitimate clients is difficult. We will view

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 389–406, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

390 D. Stebila and B. Ustaoglu

a client as having legitimate intentions if it is willing to perform an expensive
computation; it still could be malicious, but we may have no further way of dis-
tinguishing legitimate from malicious connections with a priori authentication.

Security is an important aspect of online services. Many connections between a
client and a server need to be secured against third parties; financial transactions
are the most common case. Key agreement is used to produce a shared secret
that can be used to encrypt subsequent communication. Key exchange involves
computationally expensive algorithms, and hence may dominate server-side run
time, limiting the number of clients serviced. This makes key agreement an
enticing target for denial of service attacks since a malicious party can easily
issue many key agreement requests. Hence, it is advantageous to try to reject
as many bogus connections as possible during key agreement. In this paper we
are concerned with deterring malicious parties from initiating denial of service
attacks based on key agreement, without compromising on security.

Practitioners and standardization bodies have recognized the importance of
denial of service resilience, but researchers have been slow to respond with a
formal treatment of the subject. In some sense, addressing denial of service
resembles the initial approach to key agreement: rather than constructing an
overall model, a list of ad hoc goals is selected and then it is shown that a
protocol meets those goals. As a result, it is difficult to evaluate the strength and
usefulness of denial of service countermeasures when integrated into protocols.

Our Contributions. We give a formal definition of denial of service resilience for
key agreement protocols in the context of the extended Canetti-Krawczyk (eCK)
model for secure key agreement. Our definition for denial of service resilience is
sufficiently strong that it prevents known attacks that arose against protocols
once thought to be denial of service resilient. Puzzles have been previously used
as a denial of service countermeasure, but in an ad hoc manner. Compared to
previous work, our contribution models the careful integration of two orthogonal
issues: key agreement security and denial of service resilience.

It is well established that improper use of cryptographic algorithms can ren-
der them useless. For example, even the most secure password-based system is
of no use if weak passwords are used. Similar reasoning applies for DoS coun-
termeasures: even good solutions are useless if they are not used properly. For
example, if a proof-of-work in the form of a puzzle solution does not indicate
who is the intended recipient, when the solution was created, or who created the
solution, then the door is open for misuse. Without careful integration into the
overall protocol, DoS countermeasures may not achieve their goal.

Additionally, we present the DoS-CMQV protocol which is a secure key agree-
ment protocol and uses client puzzles to offer denial of service resilience in our
model, showing how to achieve security and denial of service resilience together.

2 Previous Work

Key Agreement. Key agreement is an important cryptographic primitive used for
building confidential channels. Designing and analyzing key agreement protocols

Towards Denial-of-Service-Resilient Key Agreement Protocols 391

is a non-trivial task. Formal models, which allow complexity-theoretic security
arguments for authenticated key agreement, were first proposed by Bellare and
Rogaway [1] and Blake-Wilson, Johnson, and Menezes [2]. The work of Canetti
and Krawczyk [3] is one of the most influential extensions to the original models.
Their work was later augmented by Krawzcyk [4] and LaMacchia, Lauter and
Mityagin [5] to capture a wider range of desirable security properties; we refer
to this as the extended Canetti-Krawczyk (eCK) model.

In all of the above models the adversary controls all communication links.
It is not immediately clear how denial of service can be considered alongside
key establishment when the adversary may not deliver messages to destinations.
However, even in this setting there are meaningful DoS-related goals that can
be incorporated into the model; we discuss our extension in Sect. 3.1.

Denial of Service. There are two main types of denial of service attacks (see
[6, §1.6.6], for example): resource depletion attacks and connection depletion
attacks. In resource depletion attacks a malicious party attempts to drain a
server’s computational or memory resources. By contrast, connection depletion
attacks aim to exhaust the number of allowed connections to the server. A DoS
countermeasure can aim to defend against either or both of these types of attacks.

Distributed denial of service (DDoS) attacks, in which many distributed client
computers attack a single server, are of significant concern on the Internet today.
These types of attacks are very difficult to defend against. One known technique,
which we use in this paper, is to allow a server to adjust its denial of service
countermeasure based on the load it experiences. Puzzle auctions [7] are one
such implementation of tunable puzzles.

Aura and Nikander [8] introduced the notion of stateless connections, in which
stateful connections are transformed into stateless ones by attaching the state
information to the message and using a message authentication code for in-
tegrity. This gives some protection against denial of service by saving the server
from having to store session information until later in the exchange when more
assurance is possible.

Meadows [9] offered the first formal framework for denial-of-service-resilient
protocols, based on the causal sequencing language of fail-stop protocols of Gong
and Syverson [10]. To avoid connection depletion, Meadows suggests that each
message be authenticated with increasingly complex levels of authentication.
Meadows then applies this framework to the Station-to-Station protocol [11] to
identify potential DoS attacks but does not provide a denial-of-service-resilient
protocol. An application of Meadow’s cost-based framework to the JFK protocol
revealed a potential DoS attack, and a solution to this problem was proposed
using client puzzles [12]. This underscores the ability of formal models to reveal
flaws and the need for the formalization of denial of service resilience.

Cookies. One of the first techniques used to defend protocols against denial of
service attacks was cookies. Introduced in the Photuris protocol (published in
1999 as [13] but introduced earlier), cookies are small authentication tokens re-
turned by a server upon initial connection by the client. In order for the client to

392 D. Stebila and B. Ustaoglu

be allowed to continue with the connection, the client must echo the cookie back
to the server. The server does not store the cookie, instead using the stateless
connection technique to check the authenticity of the cookie which the client in-
cludes in subsequent messages. Cookies can be applied in Meadows’ framework
as an early level of authentication.

Krawczyk’s SIGMA protocol [14] was proposed as a successor of the Internet
Key Exchange (IKE) protocol used in IPsec, and was adapted to have denial
of service resilience in the form of cookies in its implementation in IKEv2 [15].
Cookies are also used in the Just Fast Keying protocol (JFK) proposed by Aiello
et al. [16]. JFK allows the server to reuse its ephemeral private-public key pair
across multiple sessions to reduce the server’s computational load, at the expense
of increasing the potential damage should an ephemeral private key be leaked.

Cookies are a valuable first-order denial of service countermeasure and have
been used extensively as described above. However, they are a weak form of
denial of service resilience because they do not require an attacker to do anything
other than faithfully relay a previously received cookie.

Protocols using cookies can also be susceptible to other types of attacks. Mao
and Paterson [17, §2.2] described a denial of service attack against IKEv2. In
their attack, a malicious party who controls a popular server M̂ can redirect
legitimate traffic from M̂ towards another target server M̂ ′, thereby effecting a
denial of service attack against M̂ ′. The attack only costs M̂ bandwidth, not
computation or memory, and is resilient to cookie-based DoS countermeasures.
This attack is possible because there is no strong binding between the DoS
countermeasure and the identity of the server to which the client wishes to
connect: we codify this notion in our security criterion DoS-2 in Sect. 3. Despite
key agreement and denial of service being orthogonal issues, combining them is
no trivial task, as demonstrated by this attack.

Puzzles. Dwork and Naor [18] introduced the notion of client puzzles to defend
against denial of service attacks. A server under a denial of service attack can
require clients to find the solution to a puzzle before the server allocates re-
sources: the puzzle should be hard to solve but the solution should be easy to
verify. Back [19] and Juels and Brainard [20] suggested using a hash function so
that a client must perform a large number of operations to find the solution; this
is a computation-bound puzzle. We build on their approach by specifying how
puzzles should be integrated with key agreement. Puzzles where computing the
solution is more dependent on memory access time, called memory-bound puz-
zles, have also been suggested for use [21]; these offer less varied running times
across different hardware platforms because memory access times vary less than
processor speed. Waters et al. [22] described how puzzles can be distributed
across multiple servers for coordinated access.

Aura, Nikander, and Leiwo [23] gave a framework for using hash function
preimages as a denial of service in authentication protocols, and lay out the basic
principle that “the client should always commit its resources to the authentica-
tion protocol first and the server should be able to verify the client commitment
before allocating its own resources”. We use this principle to develop a model for

Towards Denial-of-Service-Resilient Key Agreement Protocols 393

denial-of-service-resilient key agreement. The technique of [23] is not sufficient
to defend against the attack of Mao and Paterson [17]; our approach is.

This principle of clients committing resources before the server does applies
well to preemptive DoS countermeasures. The server obtains assurance that the
client committed resources, but this is no guarantee that the client will complete
the request. If a client does not finish a request then what should the actions of
the server be? What should a server do if a client takes too long to respond after
presenting its proof-of-work? Even though such open connections have important
practical significance, preemptive measures do not completely cover the problem
of open connections, such as the half-open connections of TCP SYN flood attacks
[24]; a common countermeasure is to discard old uncompleted open connections.

3 Modelling Denial of Service Resilience and Security

We begin with an informal description of the goals of a denial-of-service-resilient
protocol and then proceed to outline a formal model for integrating denial of
service resilience and secure key agreement protocols. While the goals of denial
of service resilience and secure key agreement are, as others such as Krawczyk
[14, §2.3] have noted, orthogonal issues, it is useful to be able to discuss them in
a common framework. We must be careful to integrate the two issues sufficiently
well to avoid the types of attacks proposed by Mao and Paterson [17].

Denial of Service Resilience Intuition. We are concerned about the situation in
which a malicious party on the network can cause a server to perform many
expensive operations (and key agreement is one such expensive operation) for
no good reason, eventually consuming all of the server’s available resources. But
since the server is willing to place itself on the network for the use of all users, how
can the server know if it is doing work for a good reason or not? Distinguishing
legitimate requests from malicious requests is an essential element of denial of
service resilience.

While one can never be certain about the good intentions of another party on
the network, it is plausible to believe that a client is making a legitimate request if
the client is willing to commit some expensive resources – computation, memory,
etc. – to the connection request. However, if a client does do something expensive
to prove its good faith, then a good protocol should protect the client from being
exploited by a malicious party aiming to steal the client’s work. Last but not
least, a server should be able to adapt its procedures to resist being flooded by
many “honest” requests that may be coordinated for maximum impact.

These ideas lead us to the following five informal criteria for a denial-of-
service-resilient protocol:

DoS-1. An uncompromised honest server B̂ does not perform any expensive
operations with a client unless it is convinced the client is trying to
make a legitimate connection.

DoS-2. Moreover, a server B̂ does not perform any expensive operations un-
less it is convinced that the client wants to talk to B̂ and not another
server M̂ .

394 D. Stebila and B. Ustaoglu

DoS-3. A client Â who commits significant resources to prove its legitimate
intentions cannot have her work stolen: the work that Â does to convince
B̂ that it wants to communicate legitimately with B̂ cannot convince
anyone of anything else.

DoS-4. A malicious party1 must use a very large amount of resources if it wishes
to prepare sufficiently many connection requests and “flood” a server
with many valid connection requests.

DoS-5. A server can adjust the amount of work a client has to do in times of
higher or lower load.

In Sect. 3.1, we give a formal definition of denial of service resilience and describe
in Sect. 3.2 how it achieves each of the goals DoS-1 through DoS-4; goal DoS-5
is a property of a particular countermeasure and not of the formal model.

The first two goals aim to protect the server from performing unnecessary
expensive operations. While what qualifies as an expensive operation can vary
depending on the setting, we identify three main classes of expensive operations
for the purposes of denial of service: memory denial of service attacks, in which
the server is forced to perform slow, expensive memory reads or writes or use
large amounts of memory; computational denial of service attacks, in which the
server is forced to perform operations requiring significant computational time
(such as exponentiation, elliptic curve point multiplication, or many simpler
operations such as hash function or MAC evaluations); and transmission denial
of service attacks, in which the server is forced to expend resources available
to send and receive communications. In various situations, different notions of
expensive can apply; for example, in mobile environments, transmitting and
receiving take a lot of time and power.

To achieve denial of service resilience, we require that a client answer a puzzle
that takes significant computational or memory resources to solve, but is easy
for a server to prepare and verify. The key idea is to tightly bind the puzzles
with the identities of the parties involved to prevent attacks in which work can
be stolen or redirected. This allows a server to be more convinced of a client’s
legitimate intention to engage in a key agreement protocol.

Secure Key Agreement Intuition. As noted in Sect. 2, secure key agreement has
been extensively studied. The goal of an adversary in the eCK model is to learn
any information about the session key established by a pair of uncompromised
participants. If an adversary cannot distinguish such a session key from a ran-
domly selected string with non-negligible probability, then the session key is
viewed as secure and suitable for use in bulk encryption. The model is formally
described in Sect. 3.1 and the definitions of security are given in Sect. 3.1.

3.1 Formal Model Description

Our model is based on the extended Canetti-Krawczyk (eCK) model proposed
in [5]. However, instead of all exchanged messages we use a fingerprint of
exchanged messages to identify session.
1 A malicious party can be a single entity or a collection of entities working together.

Towards Denial-of-Service-Resilient Key Agreement Protocols 395

A protocol takes place among n parties Parties = {Â, B̂, . . .}, where a party
is a probabilistic polynomial-time Turing machine. In addition to the certified
and validated static key pair, each party also possesses static information that is
not certified. If non-empty, the non-certified information may be either private
or public. Parties are activated via incoming messages, which are then processed
within the party. As a result a party either returns its outgoing response or
indicates if the processing resulted in failure or success.

Pre-session and Session Creation. An execution of the protocol is called a ses-
sion. A party may receive an incoming request to initiate a session via a message
(i) (Â, B̂) or (ii) (Â, B̂, “hello”). In the former case Â is called the client or
initiator, and reacts by creating a separate session request (B̂, Â, “hello”) desig-
nated for B̂. In the latter case, Â is called the server or responder, and creates
a separate session request (B̂, Â, “hello”) designated for B̂. Server Â selects a
fresh (unique within Â) challenge ch and sends (B̂, Â, “hello”, ch) to B̂. Within
a party the execution of the subroutines between the session request and either
accepting or rejecting the request to initiate a session is called a pre-session. The
model does not prevent a protocol from accepting multiple distinct responses to
the same challenge.

The motivation for the pre-session is to include the denial of service counter-
measure in the pre-session and leave expensive operations and resources commit-
ment by a server for the session. A session can only be reached after a successful
pre-session: in other words, expensive resources will only be committed by the
server once the denial of service countermeasure are passed.

A party Â can be activated to create a session with a message of the form
(i) (Â, B̂, “hello”, ch) or (ii) (Â, B̂, ch, re). If the activation is of type (i) then Â,
who is the initiator, prepares re that passes all protocol conditions and creates
an active session. The string re must be unique within Â; the outgoing message
is (B̂, Â, ch, re). If the activation is of type (ii) then Â, who is the responder in
this case, verifies that (Â, B̂, ch, re) satisfies the protocol requirements; if so a
new active session is created, otherwise the message is ignored. If a responder
Â creates a new session, then the outgoing message is (Ψ, mesg), where mesg
is prepared by Â in accordance with the protocol and Ψ is the session string
identifier, a string used to identify sessions within Â and B̂, which is derived from
(ch, re) and possibly other publicly known parameters. The conditions imposed
on ch and re allow for the derivation of a string unique within both Â and B̂.

Session State. Upon creating a session, Â also creates a separate session state
that contains both private and public session-specific information. The private
information is needed to derive a secret session key. The public information is
(Â, B̂, Ψ, role, otherinfo), where B̂ is the purported session peer ; role is either
“initiator” or “responder” and otherinfo is any other public information required
by the protocol. Globally the session is identified via sid = [Â, B̂, Ψ] and Ψ
identifies the session within Â. For sid = [Â, B̂, Ψ] we call Â the owner and
together Â and B̂ are the communicating partners of sid. Sessions sid = [Â, B̂, Ψ]
and sid∗ = [Ĉ, D̂, Ψ′] are matching if Ψ = Ψ′, Â = D̂, and Ĉ = B̂.

396 D. Stebila and B. Ustaoglu

As in the eCK model, Â can be activated to update a session via a message
of the form (Ψ, mesg). Upon receipt of such a message, Â performs validation
procedures similar to the eCK model and updates its state. At any stage a session
is in exactly one of the following states: active, completed or aborted.

Adversary. The adversaryM is a probabilistic Turing machine that controls all
communications and party activation via the query Send(·). Parties present M
with their outgoing messages. Leakage of private information to M is modelled
via the following adversary queries:

– StaticKeyReveal(Â): M obtains Â’s static private key.
– EphemeralKeyReveal(sid): M obtains the ephemeral private key of Â in ses-

sion sid = [Â, B̂, Ψ].
– SessionKeyReveal(sid): If sid has completed then M obtains the session key

in sid.
– Establish(M̂, M): M registers an adversary-controlled party M̂ with static

public key M ∈ G. If a party is not adversary-controlled it is said to be
honest.

– DoSExpose(Â):M obtains the non-certified private information belonging to
an honest Â, excluding the session-related ephemeral private keys. Parties
against which this query was issued are called DoS-exposed, otherwise they
are called DoS-unexposed.

The role of the new DoSExpose query in our model is to allow us to identify
the parties which ought to still be resilient to denial of service attacks, namely
those parties which are DoS-unexposed. For example, adversary-controlled par-
ties are not relevant to the DoS portion of the protocol. Moreover, a separate
DoSExpose query allows us to separate denial of service resilience from key agree-
ment security: compromise of key agreement secrets can be an orthogonal issue
to compromise of denial of service.

Key Agreement Security Definitions. Security is defined via indistinguisha-
bility. At any time during the experiment M can make one special query,
Test(sid), to a session sid that must remain fresh throughout the experiment.
The goal of M is to guess whether the response to the query is sid’s key or a
random key.

Definition 1 (Fresh session). Let sid be the identifier of a completed session,
owned by an honest party Â with peer B̂, who is also honest. Let sid∗ be the
identifier of the matching session of sid, if it exists. Then sid is fresh if none of
the following conditions hold:

1. M issued SessionKeyReveal(sid) or SessionKeyReveal(sid∗) (if sid∗ exists).
2. sid∗ exists and M issued one of the following: either

(a) both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or
(b) both StaticKeyReveal(B̂) and EphemeralKeyReveal(sid∗).

Towards Denial-of-Service-Resilient Key Agreement Protocols 397

3. sid∗ does not exist and M issued one of the following: either
(a) both StaticKeyReveal(Â) and EphemeralKeyReveal(sid), or
(b) StaticKeyReveal(B̂).

Definition 2 (Secure key agreement protocol). A key agreement protocol
is secure if the following conditions hold: (i) two honest parties that complete
matching sessions then, except with negligible probability they compute the same
session key; and (ii) no polynomially bounded adversary M can distinguish the
session key of a fresh session from a randomly chosen session key with probability
greater than 1

2 plus a negligible fraction (in the security parameter).

Denial of Service Definitions. In the protocol there is a test that the server
performs on some of the messages received to determine if the client has done
sufficient work to merit the server performing expensive operations. The client’s
work, modelled by a puzzling relation, is used to define the protocol’s denial of
service resilience.

Definition 3 (Puzzling relation). Let Challenges and Responses be sets. A
relation R ⊆ Parties× Parties× Challenges× Responses is a puzzling relation if

1. deciding if (Â, B̂, ch, re) ∈ R is “easy”, and
2. given Â, B̂, ch, and an oracle U that, on input (Â′, B̂′, ch′), returns re′ with

(Â′, B̂′, ch′, re′) ∈ R, it is “hard” to produce re such that (Â, B̂, ch, re) ∈ R
and re was not a response generated by the oracle U upon input (Â, B̂, ch).

The notion of “expensive operation”, “easy”, and “hard” will depend on the
application context. Although we have left these notion vague, they can be for-
malized, for example as a proof of work [25]. We omit this formalization as the
focus of our work is on the integration of denial of service resilience techniques
into key agreement protocols, not the construction of suitable puzzles.

Definition 4 (Acceptable pre-session). A pre-session [Â, B̂, ch] is an ac-
ceptable pre-session for B̂ if B̂ generated ch.

Definition 5 (Denial-of-service-resilient protocol). Let R be a puzzling
relation. A protocol Π is denial-of-service-resilient if the following hold for every
DoS-unexposed server B̂:

1. B̂ only performs expensive operations (a) in a session, or (b) for some (low
frequency) periodic update of its non-certified private information ρ, and

2. B̂ only establishes a session [B̂, Â, ch, re] if the pre-session [Â, B̂, ch] was an
acceptable pre-session for B̂ and (Â, B̂, ch, re) ∈ R.

Note that we have explicitly avoided merging Definitions 4 and 5 (as Definition 4
could be part of Condition 2 of Definition 5) because we acknowledge that there
may be situations that require a different notion of acceptable pre-session, for
example one-pass key agreement protocols where both ch and re are generated
by the initiator. In particular, it appears to suffice that B̂ has an assurance that
ch was generated independently at random before re.

398 D. Stebila and B. Ustaoglu

3.2 Model Implications

In this section we explain how our formal model of denial of service resilience in
Definition 5 satisfies the informal goals for denial of service resilience of Sect. 3.

DoS-1. An uncompromised honest server B̂ does not perform any expensive
operations with a client unless it is convinced the client is trying to make a
legitimate connection.

By condition 1 of Definition 5, a server B̂ does not perform any expensive
operation with a client until it has established a session, and by condition 2
it will not establish a session until it received a response to its challenge that
satisfies the puzzling relation. In order to satisfy the puzzling relation, the client
must do a significant amount of work because of condition 2 of Definition 3;
by doing this work, the client convinces the server that it is trying to make a
legitimate connection. Moreover, since sessions are unique within a party, replay
attacks of legitimate connection requests are prevented.

DoS-2. Moreover, a server B̂ does not perform any expensive operations unless
it is convinced that the client wants to talk to B̂ and not another server M̂ .

Condition 2 of Definition 3 allows us to meet this criterion: even if an adversary
obtains any tuple (Â, M̂, ch, re) ∈ R, the tuple (Â, B̂, ch, re) is unlikely to be inR
and moreover it remains hard to produce a response re′ such that (Â, B̂, ch, re′) ∈
R. Since it is hard to create such a tuple given oracle access to R, then it is still
hard to construct any tuple in R without oracle access.

Our approach avoids the attack of Mao and Paterson [17] against IKEv2
in which an attacker can redirect traffic from her server towards other servers
and can cause the receiving server to deplete its connection resources at low
expense to the attacker. That attack is possible because there is no cryptographic
binding between the denial of service countermeasure and the identities of the
parties involved. By including the names of the client and server in the puzzling
relation, a server B̂ can be assured that whoever solved the puzzle intended to
communicate with B̂.

DoS-3. A client Â who commits significant resources to prove its legitimate
intentions cannot have her work stolen: the work that Â does to convince B̂ that
it wants to communicate legitimately with B̂ cannot convince anyone of anything
else.

Suppose B̂ is a DoS-unexposed server and suppose an honest client Â starts a
pre-session [Â, B̂, ch], and then finds a value re such that (Â, B̂, ch, re) ∈ R. The
client wishes that the response value should not be useful to anyone else trying
to establish a session; in other words, no one should be able to steal Â’s work
and use it in another pre-session.

Suppose [Â′, B̂′, ch′] is another pre-session. Given these values, it is hard to
produce re′ such that (Â′, B̂′, ch′, re′) ∈ R, even with help from another pre-
session such as [Â, B̂, ch], because R is a puzzling relation. The help given by the
other pre-session can be modelled as one response of the oracle U in Definition 3

Towards Denial-of-Service-Resilient Key Agreement Protocols 399

for another pre-session, and this is of no help in a puzzling relation. Thus, an
honest client’s work in solving a puzzle is of no use to anyone else responding to
a different challenge, or with a different server, or with a different user name.

If the adversary M simply relays Â’s entire response and then participates
in Â’s place, the server will proceed with key agreement but this session will
ultimately fail, since it is secure in the sense of Definition 2 key agreement
protocols, and thusM cannot complete a session masquerading as Â.

DoS-4. A malicious party must use a very significant amount of resources if it
wishes to prepare sufficiently many connection requests and “flood” a server with
many valid connection requests.

As noted in DoS-1, a server will only perform expensive operations if it has
been convinced that the client is trying to make a legitimate connection, meaning
the client has solved an instance of the puzzling relation, which is “hard” and
requires a significant amount of resources. Suppose that for an attacker to start
a session requires t steps of computation (e.g., t may be the number of cycles
it takes to solve a computationally bound puzzling relation), and a server has
enough computational resources to support n connections per second. Then,
roughly speaking, an attacker’s computers must be able to perform tn steps of
computation per second to sustainably render the server unavailable through a
denial of service attack, which may require distributed resources. By registering
many dishonest parties the above attack can be incorporated in our model. While
not completely defending against such powerful distributed attacks, we can at
least allow the amount of denial of service resilience to be tuned in the event of
heavy traffic. On the other hand what our model assures is that the adversary
cannot use honest parties to mount such distributed attacks. For example, a
DoS-resilient protocol guards against the attack where the adversary registers
a single malicious party M̂ , initiates pre-sessions between honest parties and
M̂ , and then forwards messages from the honest parties to create many sessions
at an honest server. That is, the model defends against Mao-Patterson type of
attacks.

Consider also the case of replay attacks, in which an attacker resends the same
message many times to a server. Suppose in particular that an attacker replays a
response value re for a pre-session [Â, B̂, ch]. This set of values leads to the server
session [B̂, Â, ch, re], which already exists in the server. Since sessions identifiers
are unique in the model, the server will not start a new session and hence commit
no new resources as a result of this replay. This requires the server to store a
table of session identifiers, but this does not result in a denial of service attack
in theory since the server commits memory resources for the entries in the table
only once the puzzling relation has been passed. To limit the size of the table, the
server could change the non-certified information ρ periodically. When receiving
a previous challenge and response, an entirely acceptable action would be for
the server to respond to the replay with the same response it gave previously;
this prevents puzzle stealing attacks where the adversary responds to a puzzle
faster than a legitimate client. Now, if the attacker were to compute a different
response value re′ for the pre-session [Â, B̂, ch], then the server would commit

400 D. Stebila and B. Ustaoglu

new resources to the new session, but this is acceptable since the attacker solved
the puzzling relation, just as a legitimate client must.

Since in the Canetti-Krawczyk model we allow the adversary to control the de-
livery of messages, an adversary may choose not to deliver the final message from
the client to the server and leave the server with an incomplete session (similar
to the half-open connections of TCP SYN flood attacks [24]). Our model does
not view this as a denial of service attack, because the server has been assured
that the other party performed many expensive computations to create the con-
nection. This type of attack can be mitigated, without affecting the security
assurance nor preventive DoS countermeasures, by conventional server policies
to deal with open connections that are not completed for a predefined period
of time. Such countermeasures can be separately addressed once the server is
assured about the correct connection between the proof of work, the client’s
identity and the client’s intended recipient – exactly what our model provides.

4 A Secure DoS-Resilient Key Agreement Protocol

Our DoS-CMQV protocol, given in Fig. 1, is an adaptation of the CMQV [26]
secure authenticated key agreement protocol. We use the problem of finding
preimages for a random hash function as the expensive puzzle at the heart of
the puzzling relation that a client needs to solve.

The notation L[i] refers to the ith component in the tuple L. H0 and H1 are
random hash functions [1] that return bit strings; all other hash functions return
random integers between 1 and q, the order of the group G generated by g. We
use x[1...w] to denote the first w bits of x. We note that in practice H1 should be
chosen so as to be unique to the protocol so that puzzles cannot be outsourced
to another protocol; for example, H1(. . .) = SHA-256(“DoS-CMQV”, 1, . . .).

4.1 Security Analysis

Theorem 1. If H0, H1, . . . , H5 are random oracles [1], and G is a group where
the Gap Diffie-Hellman (GDH) assumption [27] holds, then DoS-CMQV is a
secure key agreement protocol.

Argument. The DoS-CMQV security argument is similar to the argument pre-
sented for CMQV in [26]. We proceed to outline the argument. Verifying condi-
tion 1 of Definition 2 is straightforward. It remains to verify condition 2.

In the model here parties possess additional (non-certified) private information
ρ, which the adversary can obtain via DoSExpose query. For each of the events
in the analysis of CMQV, the solver establishes and simulates the parties similar
to the CMQV analysis. The main difference is that when parties are established
the solver selects randomly the value ρ for each party. The DoSExpose queries
are answered faithfully and they do not affect the freshness of the session. Since
the new adversary query is not relevant to the security analysis of the events, the
solver can transform the DoS-CMQV adversary to a GDH solver with similar
success and running time as a CMQV adversary. Hence a polynomially bounded
DoS-CMQV adversary contradicts the assumptions in the theorem. ��

Towards Denial-of-Service-Resilient Key Agreement Protocols 401

DoS-CMQV with security parameter λ

Client Â Server B̂

0. g, a, A = ga, B g, b, B = gb, A, ρ ∈R {0, 1}λ

1. “hello”,Â,B̂−−−−−−→ i ∈R {0, 1}λ

2. j = H0(ρ, Â, B̂, i)
3. store x̃ ∈R {0, 1}λ ch←−−−−−− ch = (i, j)
4. x = H2(x̃, a), X = gx

5. find � s.t.
H1(Â, B̂, ch, X, �)[1...20] = 0 . . . 0

6. re = (X, �), Ψ = (ch, re)

7. establish session [Â, B̂, Ψ] Â,ch,re−−−−−−→ verify ch[2] = H0(ρ, Â, B̂, ch[1])
8. verify H1(Â, B̂, ch, re)[1...20] = 0 . . . 0
9. establish unique session [B̂, Â, ch, re]
10. store Â, Ψ = (ch, re)
11. X = re[1]
12. verify X ∈ G
13. ỹ ∈R {0, 1}λ, y = H2(ỹ, b)
14. store Y = gy

15. d = H3(X, Â, B̂), e = H3(Y, Â, B̂)
16. σ = (XAd)y+eb

17. store M1 = H4(“server finished”,

Â, B̂, ch, re, Y, σ)
18. store M2 = H4(“client finished”,

Â, B̂, ch, re, Y, σ)
19. verify Y ∈ G Ψ,Y,M1←−−−−−− store K = H5(Â, B̂, ch, re, Y, σ)
20. d = H3(X, Â, B̂), e = H3(Y, Â, B̂)
21. σ = (Y Be)x+da

22. verify M1

23. M2 = H5(“client finished”,

Â, B̂, ch, re, Y, σ)
24. K = H5(Â, B̂, ch, re, Y, σ) Ψ,M2−−−−−−→ verify M2

Fig. 1. DoS-CMQV: A denial-of-service-resilient adaptation of the CMQV protocol

4.2 Denial of Service Resilience Analysis

In this section we show that the DoS-CMQV protocol given in Fig. 1 is denial-of-
service-resilient according to Definition 5. Since this definition (and the related
definition of a puzzling relation) includes the intentionally vague terms “expen-
sive operation”, “easy”, and “hard”, we need to define what these terms mean
for a concrete instantiation of the definition.

For our purposes, an expensive operation is one of the following operations:
storing a per-connection or per-session value in memory (other than a long-term
value), performing a group exponentiation, or making a large number of calls
(say, more than 210) to a hash oracle.

We first establish, via the following lemma, that the relation used in the DoS-
CMQV protocol is a puzzling relation and then show that our protocol is resilient
to denial of service attacks

402 D. Stebila and B. Ustaoglu

Lemma 1. Let R be the relation defined such that (Â, B̂, ch, re) ∈ R if and only
if H1(Â, B̂, ch, re)[1...20] = 0 . . . 0, where H1 is a random hash function. Then
R is a puzzling relation, where “hard” means requiring approximately 220 hash
function queries on average, and “easy” is something that is not an “expensive
operation” as defined above.

Argument. Deciding membership in R is easy for a particular tuple because it
involves only a single call to H1.

Moreover, given Â, B̂, and a random ch, producing a value re such that
H1(Â, B̂, ch, re)[1...20] = 0 . . . 0 is hard and requires approximately 220 hash oracle
queries on average. To find such an re requires finding a preimage for the random
hash function. The oracle U helps us find other preimages of H1. Our task, then
is to find a preimage of the correct format involving Â, B̂, ch. But since H1 is a
random hash function, other outputs do not help in finding a preimage for this
input. Since H1 is a random hash function outputting 20 bits, this is a hard task
that requires approximately 220 queries on average.

This hash puzzle is similar to the partial inversion proof of work (PIPOW)
problem of Jakobsson and Juels [25, §3.1]. By their Claim 1, we know that
any prover Â with memory bounded by m who performs on average at most
w steps of computation and is given (Â, B̂, ch) can find a response re such that
(Â, B̂, ch, re) ∈ R with probability at most p + o(m/220) where p = 1/(220−w).

Theorem 2. The DoS-CMQV protocol is a denial-of-service-resilient protocol,
where “easy”, “hard”, and “expensive operation” are defined as above.

Argument. By the Lemma above, R is a puzzling relation.
Let [Â, B̂, ch] be a pre-session. According to the protocol, B̂ does not perform

any expensive operation until line 10, which is not reached unless the server’s
checks on lines 7 and 8 are passed and a new session is established on line 9.

If the check on line 8 is passed, namely if H1(Â, B̂, ch, re[1], re[2])[1...20] =
0 . . . 0, then (Â, B̂, ch, re) ∈ R. If the check on line 7 is passed, namely if ch[2] =
H0(ρ, Â, B̂, ch[1]), then, except with negligible probability, ch[2] was generated
only be someone who knew both ρ and ch[1]. Since B̂ is a DoS-unexposed party,
no DoSExpose(B̂) query could have been issued and since ρ is only ever used as
an input to a random oracle, only B̂ knows ρ. Thus, [Â, B̂, ch] is an acceptable
pre-session.

Hence, B̂ establishes a session only if the corresponding pre-session is accept-
able and the tuple is in the puzzling relation. Note that since sessions must be
unique within a party, the server only performs these expensive operations once
per session. Thus, DoS-CMQV is a denial-of-service-resilient protocol.

Tuning the Puzzling Relation. The puzzle used in DoS-CMQV can be tuned by
the server based on its load. The client must find a hash function preimage; for
concreteness, we have specified that the first 20 bits should be zeros, but the
length could be a parameter w set by the server depending on its current load.

Towards Denial-of-Service-Resilient Key Agreement Protocols 403

The server would need to include w in the computation of j on line 2, return w
as part of ch on line 3, and include w in the check on line 7 to avoid spoofing.

In practice, H1 could be implemented by using a standard cryptographic hash
function, such as SHA-1, and truncating the output to the first w bits. In times
of light load, the server could require that clients truncate only to the first 5 or
10 bits of output, but in heavier load could require that clients truncate to 20 or
25 bits of output to make the cost of mounting a denial of service attack higher.
It takes just under 3 seconds to perform 220 SHA-1 evaluations on one core of
our 2 GHz Intel Core 2 Duo processor using OpenSSL 0.9.7�. This may be an
acceptable computational burden for the client in many scenarios.

5 Other Denial of Service Constructions

Memory-Bound Puzzling Relations. While the protocol given in Sect. 4 uses a
puzzling relation based on finding preimages in a hash function, other types of
puzzling relations can be used, demonstrating the flexibility of our framework.
Abadi et al. [21], for example, described puzzles in which memory access time
provides an expected lower bound on the time it takes to solve the puzzle, re-
moving disparities in processor speed between large computers and small devices.
However, care must be taken in choosing parameters for memory-bound puzzles:
the cost incurred by a server in setting up one of these memory-bound puzzles,
while much less expensive than the cost incurred by a client solving the puz-
zle, can still be significant. For the memory-bound puzzles of [21], it took a 2.4
GHz Pentium 4 server approximately 2−7 seconds to create a puzzle that takes
approximately 22 seconds to solve. By comparison, the time to do one 1024-bit
modular exponentiation on a computer of similar speed is less: only 2−9 seconds.

JFKi. In the JFKi protocol of [16, §2.3], the denial of service resilience goal for
the server is to avoid expensive operations unless the client performs resource-
heavy operations, namely group exponentiations. There are two main ideas used:
reuse of ephemeral public keys and use of a keyed hash function. The purpose of
reusing ephemeral public keys is to distribute the cost of an expensive operation
across multiple sessions. This allows the authors to argue the client must perform
her share of the work first, in terms of bearing the cost of establishing a round
communication trip. The keyed hash function is used by the server to verify
that the client indeed executed the round. Note that the server does not need
to dedicate any resources to verify the challenge was created by the server. This
can be viewed as the pre-session stage of the protocol since the goal of the first
round trip is to filter out bogus connections.

JFKi can be described in our model of denial of service resilience, but with
weak definitions of “hard” in the puzzling relation. In the implied puzzling rela-
tion in JFKi, the client must echo back to the server all the received values and
the preimage of the client’s nonce. If the puzzling relation test passes, then the
server establishes a new session and computes the shared Diffie-Hellman key.

The problem with JFKi’s puzzling relation is that there is no binding between
the client’s ephemeral public key and the solution to the puzzling relation. A

404 D. Stebila and B. Ustaoglu

dishonest client can use the same solution to the puzzling relation with different
ephemeral public keys (and it can generate these ephemeral public keys very
cheaply, for example, by generating gi, g · gi = gi+1, g · gi+1 = gi+2, . . .) to cause
the server to perform many exponentiations with little cost to the client. Thus,
given the JFKi puzzling relation and a single solution to the puzzling relation,
generating more solutions is easy, contradicting Condition 2 of Definition 3.

Hence, JFKi does not satisfy informal goal DoS-4: the protocol is not resilient
to flooding attacks. DoS-CMQV avoids this problem: producing a solution to the
puzzling relation means finding a preimage in the hash function and the values
cannot be repeated if the server is to establish a new session.

One approach to fixing the denial of service resilience of JFKi was given by
Smith et al. [12]. They note that JFKi is not denial-of-service-resilient when
analyzed under Meadows’ framework [9]. They use a hash function preimage
puzzle as well to bind the puzzle solution to the key exchange session at hand.
There construction still preserves a fundamental design characteristic of JFKi:
the responder must reuse its ephemeral private key in order to achieve denial of
service resilience, preventing full freshness in the Canetti-Krawczyk model.

Host Identity Protocol. The Host Identity Protocol (HIP) [28] was designed to
offer protection against denial of service attacks. HIP (in [28, §4.1.1]) uses a
similar puzzling relation to that of Sect. 4: the client must find a preimage in
SHA-1 such that the k lowest-order bits of the output are zero. HIP includes
the identities of the initiator and responder in the hash function computation as
we have done. Our model provides a theoretical interpretation of the security of
HIP against denial of service attacks and the value of including the client and
server identities in the hash function computation.

6 Conclusion and Open Problems

We have given the first formal definition of denial of service resilience for secure
key agreement protocols. Our model uses puzzles solved by the client as an
indication of interest in a legitimate connection, and a variety of puzzles, both
memory-bound and computation-bound, can be used. We described a protocol,
DoS-CMQV, that provides resilience to denial of service attacks and offers secure
key agreement. Additionally, we analyzed the existing JFKi and HIP protocols
to compare their notions of denial of service resilience.

Denial of service resistance countermeasures often depend on the freshness of
challenges. Our model could be extended to explicitly consider the update of
puzzle freshness and how past puzzles affect current denial of service resilience.

This new framework for analyzing denial of service resilience can be applied
in conjunction with other goals for key agreement protocols. For example, the
JFK protocols [16] aim to offer privacy features: JFKi protects the initiator’s
identity and JFKr protects the responder’s identity. Future work could involve
designing denial-of-service-resilient protocols with similar privacy measures.

This model can also be applied to give denial of service resilience to other types
of key agreement protocols, for example password-authenticated key agreement

Towards Denial-of-Service-Resilient Key Agreement Protocols 405

protocols. Adapting this technique for use in IPsec or TLS would provide denial
of service resilience in important Internet protocols.

Acknowledgements. This work was performed while the authors were at the
University of Waterloo. D.S. was supported by an NSERC Canada Graduate
Scholarship. The authors are grateful for the helpful advice of Alfred Menezes
and Ian Goldberg.

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

2. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355. Springer, Heidelberg (1997)

3. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

4. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

5. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

6. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2003)

7. Wang, X., Reiter, M.: Defending against denial-of-service attacks with puzzle auc-
tions. In: Proc. 2003 IEEE Symposium on Security and Privacy (SP 2003), pp.
78–92. IEEE Press, Los Alamitos (2003)

8. Aura, T., Nikander, P.: Stateless connections. In: Han, Y., Okamoto, T., Qing, S.
(eds.) ICICS 1997. LNCS, vol. 1334, pp. 87–97. Springer, Heidelberg (1997)

9. Meadows, C.: A formal framework and evaluation method for network denial of
service. In: Proc. 1999 IEEE Computer Security Foundations Workshop (CSFW),
vol. 4, IEEE Computer Society Press, Los Alamitos (1999)

10. Gong, L., Syverson, P.: Fail-stop protocols: An approach to designing secure pro-
tocols. In: Proceedings of the 5th IFIP Working Conference on Dependable Com-
puting for Critical Applications (DCCA-5), pp. 44–55 (September 1995)

11. Diffie, W., van Oorschot, P., Wiener, M.J.: Authentication and authenticated key
exchanges. Designs, Codes and Cryptography 2(2), 107–125 (1992)

12. Smith, J., Gonzalez-Nieto, J., Boyd, C.: Modelling denial of service attacks on
JFK with Meadows’s cost-based framework. In: Buyya, R., Ma, T., Safavi-Naini,
R., Steketee, C., Susilo, W. (eds.) Proc. 4th Australasian Information Security
Workshop – Network Security (AISW-NetSec) 2006. CRPIT, vol. 54, pp. 125–134.
Australian Computer Society (2006)

13. Karn, P., Simpson, W.A.: Photuris: Session-key management protocol, RFC 2522
(March 1999)

406 D. Stebila and B. Ustaoglu

14. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

15. Kaufman, C.: Internet Key Exchange (IKEv2) protocol, RFC 4306 (December
2005)

16. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D.,
Reingold, O.: Just Fast Keying: Key agreement in a hostile Internet. ACM Trans-
actions on Information and System Security 7(2), 1–30 (2004)

17. Mao, W., Paterson, K.G.: On the plausible deniability feature of Internet protocols
(manuscript, 2002)

18. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

19. Back, A.: A partial hash collision based postage scheme (1997),
http://www.hashcash.org/papers/announce.txt

20. Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: Proc. Internet Society Network and Distributed
System Security Symposium (NDSS), pp. 151–165. Internet Society (1999)

21. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. In: Proc. Internet Society Network and Distributed System Se-
curity Symposium (NDSS 2003). Internet Society (2003)

22. Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New client puzzle outsourcing
techniques for DoS resistance. In: Proc. 11th ACM Conference on Computer and
Communications Security (CCS), pp. 246–256. ACM, New York (2004)

23. Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puzzles.
In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols
2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001)

24. Eddy, W.M.: TCP SYN flooding attacks and common mitigations, RFC 4987 (Au-
gust 2007)

25. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In: Preneel,
B. (ed.) Proceedings of the IFIP TC6/TC11 Joint Working Conference on Secure
Information Networks: Communications and Multimedia Security. IFIP Conference
Proceedings, vol. 152, pp. 258–272. Kluwer Academic Publishers, Dordrecht (1999)

26. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Designs, Codes and Cryptography 46(3), 329–342 (2008)

27. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

28. Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.R.: Host Identity Protocol,
Internet-Draft (February 2004)

http://www.hashcash.org/papers/announce.txt

A Commitment-Consistent Proof of a Shuffle

Douglas Wikström

CSC KTH Stockholm, Sweden
dog@csc.kth.se

Abstract. We introduce a pre-computation technique that drastically
reduces the online computational complexity of mix-nets based on ho-
momorphic cryptosystems.

More precisely, we show that there is a permutation commitment
scheme that allows a mix-server to: (1) commit to a permutation and effi-
ciently prove knowledge of doing so correctly in the offline phase, and (2)
shuffle its input and give an extremely efficient commitment-consistent
proof of a shuffle in the online phase.

We prove our result for a general class of shuffle maps that general-
ize all known types of shuffles, and even allows shuffling ciphertexts of
different cryptosystems in parallel.

1 Introduction

Consider a situation where N senders S1, . . . , SN each have some input and
wish to compute the sorted list of their inputs without revealing who submit-
ted which message. A trusted party can do this by waiting until all senders
have submitted some input, and then sort and output the list of all inputs. A
protocol that emulates the trusted party is called a mix-net and the parties
M1, . . . , Mk that execute the protocol are referred to as mix-servers. As long as
a certain fraction of the mix-servers are honest, the result should be correct and
nobody should learn the correspondence between input ciphertexts and output
messages. The obvious application for mix-nets is to conduct electronic elections,
and this is also one of the applications Chaum [6] had in mind when he introduced
mix-nets.

Many constructions of mix-nets are proposed in the literature, but few have
provable security properties and many are actually flawed. The basic approach
of all mix-nets with provable properties are based on ideas of Sako and Kilian
[23]. The first rigorous definition of security was given by Abe and Imai [1],
but they did not construct a scheme satisfying their construction. Wikström
[25] gives the first definition of a universally composable (UC) mix-net, the first
UC-secure construction, and also a more efficient UC-secure scheme [26]. An
important building block in the construction of a mix-net is a so called proof
of a shuffle that allows the mix-servers to prove that they follow the protocol.
The first efficient proofs of shuffles were given by Neff [18] and Furukawa and
Sako [13].

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 407–421, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

408 D. Wikström

1.1 Mix-Nets Based on Homomorphic Cryptosystems

Recall the mix-net of Sako and Kilian [23]. They present their scheme in terms
of the El Gamal cryptosystem [14], but the idea works for any homomorphic
cryptosystem.

A homomorphic cryptosystem CS = (Kg, E, D) that allows threshold decryp-
tion is employed. A cryptosystem is said to be homomorphic if for every pub-
lic key pk ∈ PK, the plaintext spaceMpk , the randomness space Rpk , and the
ciphertext space Cpk are groups, and for every m0, m1 ∈ Mpk and r0, r1 ∈
Mpk : Epk(m0, r0)Epk (m1, r1) = Epk(m0m1, r0r1). A joint public key pk is gen-
erated somehow such that each mix-server holds a secret share of the correspond-
ing secret key sk . Each sender Si, holding a message mi, computes a ciphertext
c0,i = Epk(mi), and then somehow submits it to the mix-servers. The mix-servers
then take turns at re-encrypting and permuting these ciphertexts. Let L0 =
(c0,1, . . . , c0,N) be the list of submitted ciphertexts. For j = 1, . . . , k, Mj chooses a
permutation π and rj,i ∈ Rpk randomly, computes cj,i = cj−1,π(i)Epk (1, rj,π(i)) for
i = 1, . . . , N , and then publishes Lj = (cj,1, . . . , cj,N). In other words, each mix-
server randomly re-encrypts each ciphertext and then outputs the resulting cipher-
texts in random order. Then it proves, using a proof of a shuffle, that it formed Lj

from Lj−1 in this way. Finally, the mix-servers jointly threshold-decrypt Lk and
output the resulting list of plaintexts. The idea is that since all mix-servers have
randomly permuted the ciphertexts and the cryptosystem is assumed secure, it is
infeasible to tell which plaintext corresponds to which original ciphertext in L0.

The above description is simplified in that the senders submit homomorphic
ciphertexts directly, which is not secure [22]. In a provably secure construction,
the plaintexts of corrupted senders must be extractable by the simulator with-
out the secret key of the cryptosystem. Until recently, all known submission
schemes were either only heuristically secure, or involved costly interaction, but
there is now a provably secure solution to this problem for several well known
homomorphic cryptosystems [27].

Alternative Constructions. In the scheme of Furukawa et al. [12], each mix-server
not only re-encrypts and permutes its input, but also partially decrypts it. As a
result, the final list Lk essentially contains the plaintexts and no joint decryption
step is needed. In the scheme of Wikström [26], re-encryption is also eliminated
entirely, i.e., each mix-server only partially decrypts and permutes its input. In
a preliminary unpublished version of Neff [18] a proof of a shuffle for the first
type of mix-net is described as well [19]. These schemes have special advantages
over the above, but do not lend themselves well to pre-computation, since partial
decryption must be done sequentially.

Very few other approaches to constructing mix-nets have any provable security
properties [16] and several are actually flawed [1,9,24].

1.2 Previous Work On Improving Efficiency

There are more or less obvious techniques that can be used to reduce the compu-
tational complexity of a mix-net. If a threshold below k is used for the decryption

A Commitment-Consistent Proof of a Shuffle 409

key, then all mix-servers do not need to take part in the mixing process. In
the execution of a public-coin honest verifier proof of knowledge the random
challenge of the honest verifier must be generated jointly by the mix-servers,
which is costly. But if unpredictability suffices, then longer challenges can be
extracted from a random seed using a PRG. Pre-computation can also be used in
the coin-flipping protocols. The re-encryption factors can also be pre-computed
and batch proof techniques [4] can be used to reduce the complexity of the proofs
of correctness needed during joint decryption.

If such optimizations and pre-computations are used, the main computational
cost lies in the proofs of shuffles. Thus, most previous work on reducing the
complexity, e.g. [12,13,18,15,26], focus on reducing the complexity of a particular
proof of a shuffle. Some parts of these proofs can easily be pre-computed as well.

An alternative approach is used by Adida and Wikström [3], who show that
when the number of senders is relatively small, ideas from homomorphic election
schemes [5] can be used to construct a mix-net where the online phase only
requires decryption of a single ciphertext. The public-key obfuscated shuffle of
Adida and Wikström [2] may also be viewed as a form of pre-computation, but
their goal is not improved efficiency. In fact, their scheme is quite inefficient.

1.3 Our Contribution

We showhow to split a proof of a shuffle into twoprotocols. Thefirst protocol is used
byamix-server in theofflinephase toproveknowledgeof how toopenacommitment
to a permutation. The second protocol is used by a mix-server in the online phase
to prove that it uses the permutation it committed to also during shuffling.

The first protocol is almost as efficient as the known proofs of shuffles; in fact it
can be constructed from these, e.g., [13,15,18,26]. Even without any standard op-
timization techniques such as simultaneous exponentiations, the computational
complexity of the second protocol is half an exponentiation per sender in the El
Gamal case and has similar properties for other cryptosystems. Thus, our pre-
computation technique reduces the online computational complexity of virtually
all mix-nets.

We also show that all known types of shuffles are instances of a generalized
shuffle, where some homomorphic map φpk : Cpk ×Rpk → Cpk is applied to each
ciphertext and randomizer pair, and the resulting ciphertexts are permuted. In
fact, we prove our results for this generalized shuffle. The generality of our result
immediately gives that ciphertexts can be shuffled in parallel. Even ciphertexts
of different cryptosystems can be shuffled in parallel, and distinct homomorphic
maps can be used for ciphertexts of different cryptosystems.

The inspiration of this work comes from both Neff [18] and Furukawa and
Sako [13]. Neff writes as follows about his “simple shuffle”: “A single instance of
this proof can be constructed to essentially ‘commit’ a particular permutation”,
but we are unable to derive our results starting from his “commitment”. On the
other hand, the Pedersen permutation commitment scheme used implicitly in
the proof of a shuffle of Furukawa and Sako is perfectly suitable for constructing
a fast commitment-consistent proof of a shuffle.

410 D. Wikström

1.4 Notation

Natural numbers and integers are denoted by N and Z respectively. The ring of
integers modulo n is denoted by Zn, Z∗

n denotes its multiplicative group, and
SQn denotes the subgroup of squares in Z∗

n. We use κ as the main security
parameter, but also introduce several related parameters, e.g., the bit-size of
challenges κc. We identify the set of κ-bit strings and the set of positive integers
in [0, 2κ−1] when convenient. A function ε(κ) is negligible if for every constant c
and sufficiently large κ it holds that ε(κ) < κ−c. A function f(κ) is overwhelming
if 1− f(κ) is negligible. We denote the set of N -permutations by SN .

The Discrete Logarithm (DL) assumption for a group Gq with generator g
states that given a random element y ∈ Gq, it is infeasible to compute x such that
y = gx. The decision Diffie-Hellman (DDH) assumption states that when x, y, r ∈
Zq are randomly chosen, then it is infeasible to distinguish the distributions of
(gx, gy, gxy) and (gx, gy, gr). See full version for formal definitions.

We view a commitment scheme as consisting of a parameter generation algo-
rithm Gen and a deterministic commitment algorithm Com. On input 1κ, Gen out-
puts a parameter ck which defines a message setMck , a polynomially sampleable
randomness space Rck , and a commitment space Kck . We write CK for the set of
commitment parameters. On input ck ∈ CK, m ∈Mck , and r ∈ Rck , Com outputs
a commitment. To open a commitment the message and randomness is revealed.

We write CS = (Kg, E, D) for a homomorphic cryptosystem and Mpk , Rpk ,
and Cpk for the abealian groups of messages, randomness, and ciphertexts defined
by a public key pk . We let PK denote the set of all public keys. A homomorphic
cryptosystem satisfies Epk(m1, r1)Epk (m2, r2) = Epk (m1m2, r1r2) for every pk ∈
PK, m1, m2 ∈Mpk , and r1, r2 ∈ Rpk .

We denote the set {1, . . . , l} by [l] and sometimes denote a list of elements
(a1, . . . , al) by a[l].

Throughout we assume that the order of the largest cyclic subgroup of Cpk ,
and the order of any groups on which we base our commitment schemes, are
bounded by 2κ.

2 Background and Informal Description

Before we give details, it is worthwhile to recall some properties of batch proofs
of discrete logarithms and proofs of shuffles. We also give a brief informal de-
scription of our commitment-consistent proof of a shuffle.

Batch Proofs. Consider a setting where many group elements y1, . . . , yN in some
prime order group Gp with generator g are given, and the prover knows xi ∈ Zp

such that yi = gxi

i . It is expensive to prove knowledge of each logarithm xi

independently, but the use of batching [4] decreases this cost substantially as
the following example shows.

1. Verifier picks e1, . . . , eN ∈ Zp randomly and hands them to prover.
2. Both parties compute y =

∏N
i=1 yei

i .

A Commitment-Consistent Proof of a Shuffle 411

3. Prover shows that it knows the logarithm w such that y = gw using a
standard honest verifier zero-knowledge proof of knowledge.

The reason that this is a proof of knowledge is that the extractor may rewind the
prover to the first step several times until it has found N linearly independent
vectors ej = (ej,1, . . . , ej,N) in ZN

p for j = 1, . . . , N and extracted logarithms
w1, . . . , wN such that

∏N
i=1 y

ej,i

i = gwj . Note that linear independence imply that
for every l = 1, . . . , N there are dl,j such that

∑N
j=1 dl,jej is the lth standard

unit vector in ZN
p . This gives

yl =
∏N

j=1

(∏N

i=1
y

ej,i

i

)dl,j

=
∏N

j=1
(gwj)dj,i = g

∑N
j=1 dl,jwj ,

which means that the logarithm of every individual element yl can be computed
as xl =

∑N
j=1 dl,jwj . We remark that the components of the vectors can be cho-

sen randomly in {0, 1}κe for a κe much smaller than κ. From now on we use κe to
denote the bit-size of components of random vectors as the above. Another impor-
tant observation, used to reduce the need for jointly generated randomness when
the honest verifier is implemented jointly by several parties, is that it suffices that
the vectors are unpredictable, e.g., the verifier may instead choose a random seed
z for a PRG, hand it to the prover, and define (e1, . . . , eN) = PRG(z).

Proofs of Shuffles. Due to space restrictions, we can not go into the details of
any particular proof of a shuffle, but we can explain one of the ideas that appear
in different forms in all known efficient schemes.

Consider a homomorphic cryptosystem such that the order of every non-trivial
element in Cpk equals a prime p. Given are a public key pk and ciphertexts
(c1, . . . , cN) and (c′1, . . . , c

′
N) that are related by c′i = cπ(i)Epk (1, rπ(i)) for some

permutation π and randomness r1, . . . , rN .
A key observation, first made by Neff [18] and Furukawa and Sako [13], is that

batch proofs are in some sense invariant under permutation and that this means
that we can use batch techniques to construct an efficient proof of a shuffle. The
idea can be described as follows, where we use a PRG to expand a seed into an
unpredictable vector.

1. V picks a seed z ∈ {0, 1}κ randomly and hands it to P .
2. Both parties compute c =

∏N
i=1 cei

i , where (e1, . . . , eN) = PRG(z) and ei ∈
[0, 2κe − 1].

3. P computes c′ =
∏N

i=1(c
′
i)

eπ(i) , hands it to V , and convinces V that it is
formed correctly.

4. P proves knowledge of r ∈ Rpk such that c′ = cEpk (1, r).

Note that the linear independence argument used in the basic batch proof
above carries over to the shuffle setting, despite that some of the exponents
are permuted (see Proposition 3 in full version for details). The above descrip-
tion is simplified in that the prover must blind c′ to avoid leaking knowledge. The

412 D. Wikström

problem of convincing the verifier that the original exponents, re-ordered using
a fixed permutation π, are used to form c′ is non-trivial, and solved differently
in the various proofs of shuffles. If we ignore the cost of Step 3, then the above
protocol is very efficient.

2.1 Commitment-Consistent Proofs of Shuffles

We observe that we can design Step 3 in such a way that almost all of it can be
moved to the offline phase. Generators g1, . . . , gN of a group Gp of prime order
p are given as part of the setup of the proof of a shuffle, and it is assumed to be
infeasible to compute any non-trivial relations among these (this follows from
the DL assumption).

Suppose that each mix-server commits to a permutation π using Peder-
sen commitments [21] (a1, . . . , aN) = (gr1gπ−1(1), . . . , g

rN gπ−1(N)) for random
r1, . . . , rN ∈ Zp, and also proves knowledge of the ri and π such that (a1, . . . , aN)
was formed in this way. Then in the online phase the verifier can choose, and hand
to the prover, a random seed z ∈ {0, 1}κ, set (e1, . . . , eN) = PRG(z), and compute

a =
∏N

i=1
aei

i =
∏N

i=1
grieigei

π−1(i) = gr
∏N

i=1
g

eπ(i)
i ,

where r =
∑N

i=1 riei. Note that a is of a perfect form for executing a standard
proof of knowledge of equal exponents. More precisely, we may now replace Step
3 above in the online phase by:

– Prover computes c′ =
∏N

i=1(c
′
i)

eπ(i) and hands it to the verifier.
– Prover proves knowledge of r′ ∈ Zp and e′1, . . . , e

′
N ∈ {0, 1}κe with

a = gr′ ∏N

i=1
g

e′
i

i and c′ =
∏N

i=1
(c′i)

e′
i .

The above is simplified in that some blinding factors are missing. The proof
of knowledge of the exponents r′, e′1, . . . , e′N , combined with the computational
binding property of multi-base Pedersen commitments implies that e′i = eπ(i)
for some permutation π(i). The computational complexity of the above protocol
is very low, since almost all exponents have very few bits also in the proof of
knowledge of equal exponents.

3 A Commitment-Consistent Proof of a Shuffle

In this section we first give more details of the commitment scheme and explain
how any of the known proofs of shuffles can be used to prove knowledge of an
opening of the commitment to a permutation. Then we present the commitment-
consistent proof of a shuffle.

A Commitment-Consistent Proof of a Shuffle 413

3.1 Permutation Commitments

We formalize the property we need from the Pedersen commitments above. A
permutation commitment should allow the committer to compute a commitment
Com�(π) of a permutation π, but obviously any string commitment can be used
to commit to a permutation. The special property of a permutation commitment
is that if the receiver holds a list (e1, . . . , eN), it can transform the permutation
commitment into a commitment Come(eπ(1), . . . , eπ(N)), of another type, of the
the list elements, but in order defined by π. Here κcom denotes the maximal bit
size of each component of a list commitment.

Definition 1. Let (Gen�, Com�) be a commitment scheme for SN and let
(Gene, Come) be a commitment scheme for [0, 2κcom − 1]N . The former is a κcom-
permutation commitment scheme of the latter if Gen� = Gene and there exist
deterministic polynomial time algorithms Map and Rand s.t. for every ck ∈ CK,
r� ∈ R�

ck , π ∈ SN and e = (e1, . . . , eN) ∈ [0, 2κcom − 1]N

Mapck (Com�
ck (π, r�), e) = Come

ck ((eπ(1), . . . , eπ(N)), Rand(r�, e)) .

Construction 1 (Pedersen Commitment). The generation algorithm Gen�

outputs random generators g1, . . . , gN ∈ Gq, where Gq is a cyclic group of
known order q =

∏t
i=1 pi with pi ≥ 2κcom . On input π ∈ SN and r1, . . . , rN ∈

Zq, the commitment algorithm Com� computes ai = grigπ−1(i), and outputs
(a1, . . . , aN). The parameter algorithm Gene is identical to Gen�. On input
(e1, . . . , eN) ∈ [0, 2κcom − 1]N and r ∈ Zq, the algorithm Come computes
a = gr

∏N
i=1 gei

i , and outputs a.

The idea of using (generalized) Pedersen commitments [21] to commit to per-
mutations is not novel, e.g., it is used implicitly in [13], but the observation that
a commitment of the first kind can be transformed into a commitment of the
second kind seems new.

Proposition 1. Both (Gen�, Com�) and (Gene, Come) of Construction 1 are per-
fectly hiding and computationally binding under the DL assumption. The former
is a permutation commitment of the latter.

The proof of the binding property is well known for prime order groups. A proof
is given in the full version.

We will later make use of the following relation that corresponds to breaking
a commitment scheme, i.e., finding two different ways to open a commitment.

Definition 2. The relation R twin
ck consists of all pairs

(
ck , (s[l], s0, s

′
[l], s

′
0)
)

such
that s[l]
= s′[l] and Come

ck(s[l], s0) = Come
ck (s′[l], s

′
0).

Suppose a committer produces a permutation commitment a� and the verifier
computes a = Mapck(a�, (e1, . . . , eN)). Then we expect that the committer only
can open a as (eπ(1), . . . , eπ(N)) for a fixed permutation π, i.e., if we repeat this
procedure with different lists (e1, . . . , eN) the same permutation must be used

414 D. Wikström

by the committer every time. We can not prove this, but it is easy to see that if
it also can open a� to a permutation π, then it must use this permutation every
time. Recall that in our application, each mix-server proves knowledge of how
to open a� during the offline phase. Thus, if a witness for the following relation
can be extracted in the online phase we reach a contradiction. This suffices to
prove the overall security of a mix-net.

Definition 3. The relation Rperm
ck consists of all

(
ck , (a�, s[N], s0, s

′
[N], s

′
0)
)

such that Mapck(a�, s[N]) = Come
ck ((sπ(1), . . . , sπ(N)), s0), Mapck (a�, s′[N]) =

Come
ck ((s′π′(1), . . . , s

′
π′(N)), s

′
0), π
= π′, and si
= sj and s′i
= s′j for all i
= j.

3.2 Proof of Knowledge of Opening

We now explain how we can construct, from any proof of a shuffle of El Gamal
ciphertexts over a prime order group Gp, a proof of knowledge that a Pedersen
permutation commitment indeed is a commitment to a permutation.

Definition 4. The relation Ropen
ck consists of all

(
(ck , a�), (π, r�)

)
such that a� =

Com�
ck (π, r�).

Protocol 1 (Proof of Knowledge of Correct Opening).
Common Input: Pedersen commitment parameters g, g1, . . . , gN ∈ Gp and a com-
mitment (a1, . . . , aN) ∈ GN

p .
Private Input: Permutation π ∈ SN and exponents r1, . . . , rN ∈ Zp such that
ai = grigπ−1(i).

1. P chooses r′
i ∈ Zp and h ∈ Gp randomly, computes a′

i = gr′
iai and bi = hri+r′

i ,
and hands (a′

1, . . . , a
′
N) and (h, b1, . . . , bN) to V.

2. P proves to V that it knows r′
i such that a′

i = gr′
iai.

3. P and V view (h, g) as an El Gamal public key, and P uses its random com-
mitment exponents r1 + r′

1, . . . , rN + r′
N to give a proof of a shuffle that the

list (b1, a
′
1), . . . , (bN , a′

N) is a re-encryption and permutation of the list of trivial
ciphertexts (1, g1), . . . , (1, gN) using the public key (h, g), i.e., it proves that it
knows some r′′

i such that (bi, ai) = (hr′′
i , gr′′

i gπ−1(i)).

Proposition 2. The protocol inherits properties of the proof of a shuffle.

1. If the proof of a shuffle is public-coin, overwhelmingly (computationally)
sound, and a proof of knowledge, then so is the protocol above.

2. If the proof of a shuffle is honest verifier (computationally under assumption
A) zero-knowledge, then the above protocol is computationally zero-knowledge
under the DDH assumption (and assumption A).

A proof is given in the full version. Without the blinding exponent r′i the protocol
is not even computationally zero-knowledge, since the adversary could in prin-
ciple know ri. Some proofs of shuffles do not satisfy the standard computational
versions of soundness, proof of knowledge, and zero-knowledge. In those cases

A Commitment-Consistent Proof of a Shuffle 415

the correspondingly more complicated security properties are also inherited, but
we use the above proposition for simplicity. Readers with deeper understanding
of proofs of shuffles should note that the basic principles of any proof of a shuffle
can be used directly to construct a more efficient protocol, but this is not our
focus here. We stress that the above simple solution is presented for completeness
and ease of presentation. It is non-trivial to extend the above result to groups
of composite order such as those considered in Construction 1.

3.3 Proof of Knowledge of Equal Exponents

Recall from our sketch in Section 2.1 that in our commitment-consistent proof
of a shuffle, the prover essentially hands the product

∏N
i=1(c

′
i)

eπ(i) to the ver-
ifier and shows that the exponents used are those committed to in a commit-
ment Come(eπ(1), . . . , eπ(N)). More precisely, we assume that: {h1, . . . , hk} is
a generator set of the group Cpk of ciphertexts, ck is a commitment param-
eter, and that the prover hands

∏N
i=1(c

′
i)

eπ(i) to the verifier in blinded form,
i.e., it hands

(
Come

ck (s[k], s0),
∏k

i=1 hsi

i

∏N
i=1(c

′
i)

eπ(i)
)

to the verifier for random
exponents s[k] (and s0 ∈ Rck), and then proves that it knows all of these
exponents and that they are consistent with the exponents committed to in
Come

ck ((eπ(1), . . . , eπ(N)), e0) for some e0 ∈ Rck . Thus, we construct a protocol
for the following relation.

Definition 5. From a scheme (Gene, Come) for [0, 2κcom − 1]N , a commit-
ment parameter ck output by Gene, and a public key pk ∈ PK we define
Req

ck,pk to consist of all
(
(pk , ck, h[k], c[N], a, b1, b2), (e0, e[N], s0, s[N])

)
satisfying

a = Come
ck (e[N], e0), b1 = Come

ck (s[k], s0), and b2 =
∏k

i=1 hsi

i

∏N
i=1 cei

i .

If the largest cyclic subgroup of Cpk has order q =
∏t

i=1 pi with pi ≥ 2κc , and a
group Gq of order q is available for which the DL problem is hard, then a sigma
protocol with the challenge chosen from [0, 2κc − 1], can be constructed using
fairly standard methods. For completeness we give such a protocol in the full
version.

Otherwise, we can either use Pedersen commitments over some prime order
group Gp and use a proof of equal exponents over groups of different orders
using a Fujisaki-Okamoto commitment [11] as a “bridge”, or we can replace
the permutation commitment by a corresponding Fujisaki-Okamoto commitment
directly. It is not hard to derive a shuffle of such commitments from Wikström’s
shuffle [26]. The drawback of using Fujisaki-Okamoto commitments is that they
are based on the use of an RSA modulus, and such moduli are costly to generate
in a distributed setting. We detail both solutions in the the full version.

3.4 Shuffle-Friendly Maps

To randomly shuffle a list of homomorphic ciphertexts (c1, . . . , cN) usually means
that each ciphertext is randomly re-encrypted and the resulting ciphertexts ran-
domly permuted, but there are other possible shuffles. For the El Gamal cryp-
tosystem, one can also partially decrypt during shuffling [12], or if a special key

416 D. Wikström

set-up is used one can avoid random re-encryption entirely [26]. There are also at
least two types of shuffles of (variants of) Paillier [20] ciphertexts. A careful look
at these shuffles reveal that they are all defined by evaluating a homomorphic
map and permuting the result.

Definition 6. A map φpk is shuffle-friendly for a public key pk ∈ PK of a
homomorphic cryptosystem if it defines a homomorphic map φpk : Cpk ×Rpk →
Cpk .
Example 1. Using the El Gamal cryptosystem over a group Gp with public key
pk = (g, y), where y = gx and x is the secret key, we haveMpk = Gp, Rpk = Zp,
and Cpk = Gp × Gp. Then φ(g,y)((u, v), r) = (gru, yrv) describes re-encryption
when r ∈ Zp is randomly chosen. If yi = gxi , y = y1y2y3, and x = x1 + x2 + x3,
then φx1

(g,y)((u, v), r) = (gru, (y/y1)ru−x1v) denotes partial decryption and re-
encryption using the secret share x1 and randomness r. The decryption shuffle
in [26] can be described similarly.

Example 2. Using the Paillier cryptosystem with a public key pk = n consisting
of a random RSA modulus, we haveMpk = Zn, Rpk = Z∗

n, and Cpk = Z∗
n2 with

encryption defined by Epk(m, r) = (1 + n)mrn mod n2. Re-encryption is then
defined by φn(c, r) = crn mod n2.

Suppose we wish to prove that a ciphertext c′ is the result of invoking a particular
shuffle-friendly map φpk on another ciphertext c. If the shuffle-friendly map φpk

is public, e.g., it represents re-encryption, then what is needed is a proof that
there exists some randomness r such that φpk (c, r) = c′. If the shuffle-friendly
map itself is not public, e.g., re-encryption and partial decryption, then the map
φpk must then be defined by some hidden parameters. Without loss we assume
that the map is defined by some relation to the public key. In the typical cases,
the public key defines a secret key and the shuffle-friendly map is defined by the
secret key. We consider a situation where the output ciphertext c′ is committed
to as (Come

ck ((s1, . . . , sk), s0), c′
∏k

i=1 hsi

i), and define a relation for a shuffle-
friendly map as follows.

Definition 7 (Shuffle-Friendly Relation). Let pk ∈ PK, let φpk be a
shuffle-friendly map for pk and let ck be a commitment parameter. We de-
fine Rmap

φpk
to consist of all pairs

(
(pk , ck , h[k], c, b1, b2), (r, s0, s[k])

)
such that

b1 = Come
ck (s[k], s0) and b2 = φpk (c, r)

∏k
i=1 hsi

i .

Example 3 (Example 1 continued). Note that Cpk = Gp × Gp is generated by
h1 = (g, 1) and h2 = (1, g) with component-wise multiplication. If we consider
a re-encryption and permutation shuffle and use Pedersen commitments over
the group Gp with parameter ck = (g1, g2), then the relation consists of all
pairs

(
((g, y), (g1, g2), (u, v), b1, b2), (r, s0, s1, s2)

)
such that b1 = gs0gs1

1 gs2
2 and

b2 = hs1
1 hs2

2 (gru, yrv).

For the typical shuffle-friendly maps of the El Gamal and Paillier cryptosystems,
it is well known how to construct sigma protocols [7] for the corresponding
shuffle-friendly relation using standard methods. We give some examples in the
full version.

A Commitment-Consistent Proof of a Shuffle 417

3.5 Details of the Commitment-Consistent Proof of a Shuffle

Next we give a detailed description of the protocol that allows a mix-server to
prove in the online phase that it re-encrypted and permuted its input and that
the permutation used is the same permutation it committed to in the offline
phase. We denote by κr a parameter that decides how well the commitments
hide the committed values.

The two subprotocols can be executed in parallel and the second step of the
protocol can be combined with the first move of the combined subprotocols.

Protocol 2 (Commitment-Consistent Proof of a Shuffle).
Common Input: A public key pk of a cryptosystem CS, a generating set {h1, . . . , hk}
of Cpk , a commitment parameter ck , a permutation commitment a� ∈ Kπ

ck , cipher-
texts (c1, . . . , cN) ∈ CN

pk , and (c′
1, . . . , c

′
N) ∈ CN

pk .
Private Input: Permutation π ∈ SN , s� ∈ R�

ck and r1, . . . , rN ∈ Rpk such that
a� = Com�

ck (π, s�), and c′
i = φpk(cπ(i), rπ(i)).

1. V chooses a seed z ∈ {0, 1}κ randomly and hands it to P . Then both par-
ties set (e1, . . . , eN) = PRG(z), where ei ∈ {0, 1}κe , and computes a =
Mapck(a

�, (e1, . . . , eN)).
2. P chooses t0 ∈ Rck and t1, . . . , tk ∈ [0, 2κ+κr − 1] randomly, and computes and

hands to V

b1 = Come
ck ((t1, . . . , tk), t0) and b2 =

∏k

i=1
hti

i

∏N

i=1
(c′

i)
eπ(i) .

3. P proves, using a proof of equal exponents, that it knows exponents
t0, . . . , tk, (e′

1, . . . , e
′
N) (computed as (eπ(1), . . . , eπ(N))), and e0 (computed as

Rand(s�, (e1, . . . , eN))) such that

b1 = Come
ck ((t1, . . . , tk), t0) , b2 =

∏k

i=1
hti

i

∏N

i=1
(c′

i)
e′

i , and

a = Come
ck ((e

′
1, . . . , e

′
N), e0) .

4. P proves, using a proof of a shuffle map, that it knows exponents t0, . . . , tk and
r (computed as

∏N
i=1 rei

i) such that

b1 = Come
ck ((t1, . . . , tk), t0) and b2 =

∏k

i=1
hti

i φpk

(∏N

i=1
cei
i , r

)
.

Note that the protocol and the proposition below are quite general; they
apply for all the usual homomorphic cryptosystems, any shuffle-friendly map,
and any number of ciphertexts shuffled in parallel (this is considered as a separate
case in [18]). It even applies to mixed settings where ciphertexts from different
cryptosystems are shuffled in parallel. To state the security properties of the
protocol we need to define a relation that captures a shuffle.

Definition 8. Let pk ∈ PK, let φpk be a shuffle-friendly map for pk.
Then we define the shuffle relation Rshuf

φpk
to consist of all pairs of the form

(
(pk , c[N], c

′
[N]), (π, r[N])

)
with c′i = φpk (cπ(i), rπ(i)).

418 D. Wikström

In the proposition we consider the relation Rshuf
φpk
∨R twin

ck ∨Rperm
ck . In general, for

two relations R1 and R2, the relation R1 ∨ R2 denotes the relation consisting
of all pairs ((x1, x2), w) such that (x1, w) ∈ R1 or (x2, w) ∈ R2.

Proposition 3. Let the subprotocols be overwhelmingly complete sigma proto-
cols for the relations Req

ck,pk∨R twin
ck and Rmap

φpk
respectively, and let the commitment

scheme be statistically hiding.
Then for every pk ∈ PK and ck ∈ CK, the protocol is an sound public-coin

honest verifier statistical zero-knowledge proof of the relation Rshuf
φpk
∨R twin

ck ∨Rperm
ck ,

and overwhelmingly complete for witnesses of Rshuf
φpk

.
It is a proof of knowledge with negligible knowledge error of a string w such

that Rshuf
φpk

(
(pk , c[N], c

′
[N]), (w, r[N])

)
= 1, R twin

ck (ck , w) = 1, or Rperm
ck (ck , w) = 1, is

satisfied for some randomness r[N] ∈ Rpk , where we use the notation for inputs
to the protocol as defined above.

Remark 1. It is observed in [26] that it does not suffice that a proof of a re-
encryption and permutation shuffle is sound to be used in a provably secure mix-
net. The permutation used by the mix-server to shuffle must also be extractable.
However, extracting the permutation suffices.

A proof of the proposition is given in the full version. The basic idea is explained
already in Section 2.1, except that in the general case the order q of the maximal
cyclic subgroup of Cpk may not be prime or may even be unknown. Note that
if q is not prime, then the “random vectors” are in fact defined over a ring
and not over a field, and consequently they are not vectors at all. Thus, not
all elements are invertible, which potentially is a problem when trying to find a
linear combination of the “random vectors” equal to any standard unit vector,
which is needed to extract a witness. Since we assume that all factors of the
order of Cpk are large and all elements that must be inverted are random, this
is not a problem and a witness can be extracted. However, if it is infeasible to
compute the factorization of the order of Cpk , or if the order itself is unknown,
then this seems difficult. Fortunately, it suffices for the overall security of the
mix-net that only the permutation can be extracted.

4 Application To Mix-Nets

At this point the reader should be comfortable with the idea that a proof of a
shuffle can be split into a relatively costly offline part (Protocol 1) and a very
efficient online part (Protocol 2), but how exactly do they fit into a mix-net?

Below we give a brief informal description of a mix-net based on the El Gamal
cryptosystem over a group Gp of prime order p. This illustrates how our protocols
are used and gives an idea of the complexity of a complete mix-net using our
approach.
Offline Phase

1. The mix-servers, M1, . . . , Mk, run a distributed key generation protocol to
generate a joint public key (g, y) such that the corresponding secret key x,
with y = gx, is secret shared among the mix-servers.

A Commitment-Consistent Proof of a Shuffle 419

2. Mj chooses rj,i ∈ Zp randomly and computes (grj,i , yrj,i) for i = 1, . . . , N .
3. Mj chooses a random permutation πj ∈ SN , publishes a permutation com-

mitment a�
j = Com�(πj), and proves knowledge of the committed permu-

tation using Protocol 1 (and verifies the proofs of knowledge of all other
mix-servers).

Online Phase

4. Si chooses ri ∈ Zp randomly, computes (u0,i, v0,i) = E(g,y)(mi, ri), where
mi ∈ Zp is its message, and publishes this ciphertext.

5. Let L0 = (u0,i, v0,i)N
i=1 be the input ciphertexts. For l = 1, . . . , k:

(a) If l = j, then Mj computes (uj,i, vj,i) = (grj,iuj−1,πj(i), y
rj,ivj−1,πj(i)),

publishes Lj = (uj,i, vj,i)N
i=1, and proves using Protocol 2 that Lj−1 and

Lj are consistent with a�
j .

(b) If l
= j, then Mj verifies the proof of Ml, i.e., that Ll−1 and Ll are
consistent with a�

l .
6. The mix-servers perform a threshold decryption of Lk using their shares of

x and output the list of plaintexts (mπ(1), . . . , mπ(N)), where π = πk · · ·π1.

The random challenges needed in the subprotocols are generated jointly using
a coin-flipping protocol over a broadcast channel or bulletin board. Thus, all
verifiers jointly either accept or reject proofs. It is natural to ask why the secu-
rity property of our commitment-consistent proof suffices, since it is sound for
Rshuf

φpk
∨R twin

ck ∨Rperm
ck and not for Rshuf

φpk
. This follows from the proof of knowledge

property. For any successful prover there exists an extractor that outputs: a
valid permutation π used to shuffle, a witness for R twin

ck , or a witness for Rperm
ck .

The second type of output directly contradicts the security of the commitment
scheme. The third type of output combined with knowledge of how to open a�

j

(such an opening can be extracted during the offline phase), also contradicts the
security of the commitment scheme. Thus, in a simulation the extractor out-
puts the permutation with overwhelming probability, which suffices to prove the
overall security of the mix-net.

Depending on the secret sharing threshold, all mix-servers may not need to
shuffle the ciphertexts, and there are obvious ways to avoid the assumption
that all senders submit an input. Many details are of course missing from the
above description, but in the El Gamal case all subprotocols missing from the
description are available. Distributed key generation can be done using Feld-
man and Pedersen secret sharing [10,21]. The submission of inputs must allow
extraction of the plaintexts of corrupt senders without using the secret key of
the cryptosystem. This can be done [27] based on the Cramer-Shoup cryptosys-
tem [8] in such a way that each mix-server essentially pays the cost of checking
the validity of N Cramer-Shoup ciphertexts. Batch techniques [4] can be used
to reduce this further if most ciphertexts are expected to be valid, and valid-
ity checks can be done concurrently with receiving new ciphertexts. Random
challenges can be generated using Pedersen verifiable secret sharing [21]. The
sharing phase of many coins can be pre-computed, but since we only need a

420 D. Wikström

small number of bits in each challenge this type of optimization does not give
much. Finally, during threshold decryption each mix-server must exponentiate
N group elements to decrypt, but proving that this was done correctly can be
done using batch proofs [4]. To summarize, the online running time of the mix-
net is roughly the time to: validate N Cramer-Shoup ciphertexts, run the prover
or verifier of k commitment-consistent proofs of shuffles of lists of ciphertexts of
length N , decrypt N El Gamal ciphertexts, and prove or verify correctness of
joint decryption, which is done using a batch proof.

Recall that κe denotes the bit-size of elements in random “vectors”, κc denotes
the bit-size of challenges, and κr decides the statistical error in simulations and
also the completeness of our subprotocols. For practical security parameters,
e.g., κ = 1024, κe = κc = 80 and κr = 20, we estimate the complexity of our
protocol to N/2 square-and-multiply exponentiations. This can be reduced by
a factor of 1/5 if simultaneous exponentation [17] is used, giving a complexity
corresponding to N/10 square-and-multiply exponentations (see full version for
details).

Thus, our commitment-consistent proof of a shuffle is several times faster in
the online phase than any of the known proofs of shuffles. As far as we know
this makes our mix-net faster in the online phase than any previous mix-net.

Acknowledgments

We thank Jun Furukawa and Andy Neff for helpful comments.

References

1. Abe, M., Imai, H.: Flaws in some robust optimistic mix-nets. In: Safavi-Naini, R.,
Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 39–50. Springer, Heidelberg
(2003)

2. Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007)

3. Adida, B., Wikström, D.: Offline/online mixing. In: Arge, L., Cachin, C., Ju-
rdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 484–495.
Springer, Heidelberg (2007)

4. Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to cryp-
tography and checking. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS,
vol. 1380, pp. 170–191. Springer, Heidelberg (1998)

5. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: 26th ACM Sym-
posium on the Theory of Computing (STOC), pp. 544–553. ACM Press, New York
(1994)

6. Chaum, D.: Untraceable electronic mail, return addresses and digital pseudo-nyms.
Communications of the ACM 24(2), 84–88 (1981)

7. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

A Commitment-Consistent Proof of a Shuffle 421

8. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

9. Desmedt, Y., Kurosawa, K.: How to break a practical MIX and design a new one.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 557–572. Springer,
Heidelberg (2000)

10. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 427–438.
IEEE Computer Society Press, Los Alamitos (1987)

11. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

12. Furukawa, J., Miyauchi, H., Mori, K., Obana, S., Sako, K.: An implementation of
a universally verifiable electronic voting scheme based on shuffling. In: Blaze, M.
(ed.) FC 2002. LNCS, vol. 2357, pp. 16–30. Springer, Heidelberg (2003)

13. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

14. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

15. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003)

16. Jakobsson, M., Juels, A., Rivest, R.: Making mix nets robust for electronic voting
by randomized partial checking. In: 11th USENIX Security Symposium, pp. 339–
353. USENIX (2002)

17. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, Boca Raton (1997)

18. Neff, A.: A verifiable secret shuffle and its application to e-voting. In: 8th ACM
Conference on Computer and Communications Security (CCS), pp. 116–125. ACM
Press, New York (2001)

19. Neff, A.: Private communication (May 2008)
20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

22. Pfitzmann, B.: Breaking an efficient anonymous channel. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 332–340. Springer, Heidelberg (1995)

23. Sako, K., Killian, J.: Reciept-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

24. Wikström, D.: Five practical attacks for “optimistic mixing for exit-polls”. In:
Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 160–174.
Springer, Heidelberg (2004)

25. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 315–335. Springer, Heidelberg (2004)

26. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005)

27. Wikström, D.: Simplified submission of inputs to protocols. Cryptology ePrint
Archive, Report 2006/259 (2006), http://eprint.iacr.org/

http://eprint.iacr.org/

Finite Field Multiplication Combining AMNS
and DFT Approach for Pairing Cryptography

Nadia El Mrabet1 and Christophe Negre2

1 LIRMM Laboratory, I3M, CNRS, University Montpellier 2, France
elmrabet@lirmm.fr

2 DALI/ELIAUS, University of Perpignan, France

Abstract. Pairings over elliptic curves use fields Fpk with p ≥ 2160 and
6 < k ≤ 32. In this paper we propose to represent elements in Fp with
AMNS sytem of [1]. For well chosen AMNS we get roots of unity with
sparse representation. The multiplication by these roots are thus really
efficient in Fp. The DFT/FFT approach for multiplication in extension
field Fpk is thus optimized. The resulting complexity of a multiplication
in Fpk combining AMNS and DFT is about 50% less than the previously
recommended approach [2].

Keywords: Pairing, finite fields, AMNS, discrete Fourrier transform.

1 Introduction

Bilinear pairing in cryptography got an increasing interest during the past decade.
Pairings were first use to attack discrete logarithm problem over elliptic curves
like in MOV attack [3]. Since 2001, they are used also in a constructive way.
Specifically, new important and original protocols using bilinear pairing have
been proposed (e.g. Identity Based Cryptography [4] or Short Signature [5]).
The most popular pairings used in pairing cryptography are defined over elliptic
curves E(Fqk) (namely the Weil, Tate, ηT and Ate pairings [6]). Pairing evalua-
tion over elliptic curve E(Fqk) involves arithmetical operations as multiplications
and additions in the field Fqk [2].

Fields Fqk used in elliptic pairings are specific : q must have bit length bigger
than 160 for security reasons and 6 < k < 32 for optimization and security
reasons. For now, the principal method [2] proposed to multiply elements in Fqk

uses a mix of Karatsuba and Toom-Cook multiplications methods. Consequently,
they focus on k of the form k = 2i3j, the resulting fields are called friendly field
and the cost of a multiplication in Fqk is equal to 3i5j multiplications in Fq.

Recently Discrete Fourier Transform approach has been proposed [7] to imple-
ment multiplication in Fq6 where q = 3n. In practice Discrete Fourier Transform
approach is interesting for quite large extension degree k. But here the under-
lying fields are quite big, so if the use of DFT can save even a small number of
multiplications in Fq this can be advantageous.

In this paper, we extend the use of DFT for fields Fpk where p is now a
prime integer. The multiplication with DFT requires, in the best case, 2k − 1

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 422–436, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Finite Field Multiplication Combining AMNS and DFT Approach 423

multiplications in Fp and O(k2) multiplications by roots of unity. If FFT can be
used, the cost of DFT approach becomes O(n log(n)) operations in Fp. If the field
Fp is represented in usual way, the DFT approach remains too costly. Indeed,
in this case the roots of unity are generally not nice (e.g. with a dense binary
representation) and multiplications by these roots are costly. We propose here
to use the AMNS system of Fp defined in [1]. In this situation we can manage
to get roots of unity with nice representation, providing multiplications which
are almost cost free. These multiplications can thus be neglect and the resulting
multiplication algorithm in Fpk requires only 2k − 1 multiplications in Fp.

The paper is organized as follows : in Section 2 we recall the definition of the
AMNS for representing integers modulo p and the arithmetic in this system. In
Section 3 we recall the discrete Fourier transform approach for multiplication
in Fpk and extend it to specific cases in Subsection 3.3. We then focus on DFT
friendly fieds (Section 4) which get benefit of a combination of AMNS and DFT
for field multiplicattion. We evaluate the complexity of our approach for several
field extensions and compare them to friendly fields. We finally conclude in
Section 5.

2 Prime Field Arithmetic in AMNS System

Modular arithmetic operations like addition or multiplication modulo p consist
to add or multiply two integers 0 ≤ a, b < p and reduce the result modulo p if it
is bigger than p.

Efficient arithmetic modulo a prime integer p is generally deeply related to the
system of representation used to represent the elements. Generally integers are
expressed as a sum a =

∑

i=0 aiγ

i where 0 ≤ ai < γ and γ
 has approximately
the size of p. In practice γ is often chosen as 2w where w is the size of computer
words.

Here we will use an original system of representation in Fp introduced in [1]
by Bajard, Imbert and Plantard called the Adapted Modular Number System.
The main idea of the AMNS consists to relax the fact that γ ∼= p1/
. We take γ
freely in [0, p] such that each 0 ≤ a < p can be written as a =

∑

i=0 aiγ

i mod p
with ai ∈ [0, p1/
]. The advantage is that γ can be taken as γ
 = λ mod p where
λ is small.

Definition 1 (AMNS [1]). An Adapted Modular Number System B, is a
quadruple (p, �, γ, ρ)E, where E = t
 − λ such that γ
 − λ = 0 mod p and such
that for all positive integers 0 ≤ a < p there exists a polynomial a(t) =

∑
−1
=0 ait

i

satisfying
a(γ) = a mod p,
deg(a(t)) < �,
‖a‖∞ = max

i=1 |ai| < ρ.
(1)

The polynomial a(t) is a representation of a in B.

Generally in AMNS we have γ ∼= p and small coefficients |ai| < ρ ∼= p1/
.

424 N. El Mrabet and C. Negre

Table 1. The elements of Z17 in B = MNS(17, 3, 7, 2)

0 1 2 3 4 5
0 1 −t2 1 − t2 −1 + t + t2 t + t2

6 7 8 9 10 11
−1 + t t 1 + t −t − 1 −t −t + 1

12 13 14 15 16
−t − t2 1 − t − t2 −1 + t2 t2 −1

Example 1. In Table 1, we give the representation in the AMNS B = (17, 3, 7, 2)
for each element modulo p = 17.

In particular, we can verify that if we evaluate (−1 + t + t2) in γ, we have
−1+γ +γ2 = −1+7+49 = 55 ≡ 4 mod 17. We have also that ‖−1+ t+ t2‖∞ =
1 < 2.

In [8] the authors showed that it is possible to build an AMNS of length � when
it is possible to compute a polynomial m(γ) = 0 mod p with ‖m‖∞ small.

Proposition 1. Let p be a prime integer and λ ∈ Z, � ∈ N such that the poly-
nomial E = t
 − λ admits a root γ in Fp. Then the following statements are
true.

i) There exists a polynomial m such that m(γ) = 0 and ‖m‖∞ ≤ (�!)1/
p1/
.
ii) Let σ = ‖m‖∞ and ρ = 2|λ|�σ then the system B = (p, �, γ, ρ)E is an AMNS

of Fp.

Fields used in cryptographic pairing have a p randomly constructed. Thus
multiplication modulo p cannot use some rare property of p, like the primes con-
sidered in [1]. The better algorithm in AMNS which does not use rare property
of prime p is the Montgomery-like multiplication presented in [8].

Algorithm 1: AMNS Multiplication

Input : a, b ∈ B = (p, �, γ, ρ)E with E = t
 − λ
Data : m a polynomial such that m(γ) ≡ 0 (mod p)

an integer φ and m′ = −m−1 mod (E, φ)
Output: r(t) such that r(γ) = a(γ)b(γ)φ−1 mod p
begin

c ← a × b mod E;
q ← c × m′ mod (E, φ) ;
r ← (c + q × m mod E)/φ;

end

According to [8] this algorithm is correct if φ ≥ 2�λρ. Concerning the imple-
mentation of Algorithm 1, it requires essentially three polynomial multiplications
where polynomial coefficients are smaller than ρ and φ.

Finite Field Multiplication Combining AMNS and DFT Approach 425

Such polynomial multiplication can be implemented using classical approach
: for really small length � schoolbook method are generally recommended, for
bigger � Karatsuba or Toom-Cook should be better. We will use here � ≤ 60,
thus, we will always use one of this two methods.

3 Field Extension Arithmetic

An extension field Fpk can be seen as the set of polynomials with coefficient in
Fp and degree less than k

Fpk = {U(X) ∈ Fp[X] s.t. deg U < k} .

Arithmetic in this set is done modulo an irreducible polynomial P with degree
k. Since p is large, the polynomial P can be taken, in general, with a binomial
form Xk −α with small α (cf. [2,9]). In this situation the multiplication modulo
P of two elements

U =
∑k−1

i=0 uiX
i and V =

∑k−1
i=0 viX

i

consists first to compute the product W = U × V and then to reduce it modulo
P . Since P is a binomial, the reduction modulo P is simple. We split W =
W + XkW with deg W ≤ k and compute W + αW since Xk ≡ α mod P . The
main challenge is thus to perform efficiently the polynomial multiplication U×V .

3.1 Polynomial Multiplication Using DFT

We recall here the Discrete Fourier Transform (DFT) approach for polyno-
mial multiplication. This approach is a special case of the multi-evaluation/
interpolation strategy [10]. Multi-evaluation/interpollation perform a polyno-
mial multiplication of two polynomials U and V by evaluating both of them
in n ≥ 2k − 1 elements of Fp. Then we deduce the evaluation of W = U × V
by computing term by term the evaluation of U and V . Finally we perform a
Lagrange interpolation to get the polynomial form of W .

In the DFT approach the evaluation set used is the set of n-th roots of unity.
Specifically, let ω ∈ Fp be a primitive root of unity, then the DFT works as
follow.

1. Multi-evaluation. Let U, V be two polynomials in Fp[X] with degree k. We
compute the multi-evaluation of U

Û = DFTω(U) = (U(1), U(ω), . . . , U(ωn−1)).

This operation is usually called the Discrete Fourier Transform of U . The
same is done for V . This operation can be done through a matrix vector
product

426 N. El Mrabet and C. Negre

Û =

⎡

⎢
⎢
⎢
⎣

1 ω ω2 · · · ωk−1

1 ω2 ω4 · · · ω(k−1)2

...
...

1 ωn−1 ω2(n−1) · · · ω(k−1)(n−1)

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

u0
u1
...

uk−1

⎤

⎥
⎥
⎥
⎦

.

2. Term by term multiplications. They are performed on Û and V̂

Ŵ = (û1 × v̂1, û2 × v̂2 . . . , ûn × v̂n),

we get the multi-evaluation of W where W = U × V .
3. Interpolation. The interpolation consists to compute the polynomial form of

W knowing its multi-evaluation in ω = (1, ω, ω2, . . . , ω(n−1)).

Lemma 1. Let Fp be a prime field and ω be a primitive n-th root of unity.
Let

Ω =

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω(n−1)2

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

⎤

⎥
⎥
⎥⎥
⎥
⎦

(2)

its inverse is given by

Ω−1 =
1
n

⎡

⎢
⎢⎢
⎢
⎢
⎣

1 1 1 · · · 1
1 ω′ ω′2 · · · ω′n−1

1 ω′2 ω′4 · · · ω′(n−1)2

...
...

1 ω′n−1 ω′2(n−1) · · · ω′(n−1)(n−1)

⎤

⎥
⎥⎥
⎥
⎥
⎦

(3)

where ω′ = ω−1 = ωn−1.

In this situation the interpolation is computed by applying Ω−1 to Ŵ and
keeping only the first 2k − 1 coefficients. We obtain

W =
1
n

⎡

⎢⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1
1 ω′ ω′2 · · · ω′n−1

1 ω′2 ω′4 · · · ω′(n−1)2

...
...

1 ω′2k−2 ω′2(2k−2) · · · ω′(n−1)(2k−2)

⎤

⎥⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

ŵ1
ŵ2
...

ŵn

⎤

⎥
⎥
⎥
⎦

.

Remark 1 (Montgomery representation.). We can avoid the division by n in the
interpolation process. Indeed, if we use a Montgomery representation (cf [11]) of
U and V

Ũ =
1
n

U and Ṽ =
1
n

V.

Finite Field Multiplication Combining AMNS and DFT Approach 427

If we perfom DFT approach without the division by n to multiply Ũ and Ṽ we
get

nŨṼ = n(
1
n

U) × (
1
n

V) = W̃ ,

where W = U × V . In other words DFT multiplication without division by n
is stable in Montgomery representation. This representation is also stable under
addition and reduction modulo P . It can thus be used in a chain of multiplica-
tion/addition, like in pairing evaluation over elliptic curves.

3.2 Fast Fourier Transformation (FFT)

Let U =
∑n−1

i=0 uiX
i ∈ Fp[X] and ω be a primitive root of unity. The fast Fourier

transform (FFT) is an algorithm which performs efficiently the evaluation of U
in ω = (1, ω, ω2, . . . , ωn−1). The FFT process is based on the following two-way
splitting of U

U1 =
∑n/2−1

j=0 a2jX
2j ,

U2 =
∑n/2−1

j=0 a2j+1X
2j ,

such that U = U1 + XU2 .
Let Û [i] = U(ωi) be the i-th coefficient of Û = DFTω(U). Let us also denote

by Û1[i], Û2[i] the coefficients of DFTω2(U1) and DFTω2(U2) in {1, ω2, ω4, . . . ,
(ω2)n/2−1}. If we evaluate U = U1 + XU2 in ωi and ωi+n/2 = −ωi, i < n/2 we
get

Û [i] = Û1[i] + ωiÛ2[i]
Û [i + n/2] = Û1[i] − ωiÛ2[i]

The computation DFTω(U) is thus reduced to the computation of DFTω2(U1)
and DFTω2(U2). These computations can be done recursivelly. The resulting
algorithm has a cost of n

2 log2(n) multiplications by ωi in Fp and n log2(n) ad-
ditions/subtractions.

3.3 Multiplication with DFT When n ≤ 2k − 2

DFT approach for multiplication uses evaluations and interpolation in a set of
n ≥ 2k−2 roots of unity in order to get the correct product W . In some situations
there is no primitive n-th root of unity with n ≥ 2k− 1 and n close to 2k− 1. In
these situations DFT approach is not practical. We present here an extension of
the DFT approach when there exists primitive a n-th root of unity smaller than
2k−1. We focus here on two cases n = 2k−2 and n = 2k−4, which correspond
to practical situations (see Section 4). The following approach generalizes the
method presented in [7] when k = 3 and n = 6 to other value of k.

Lemma 2. Let Fp be a prime field, ω be a primitive n-th root of unity and Ω

and Ω−1 be the matrices defined in Lemma 1. We consider U =
∑k−1

i=0 uiX
i,

V =
∑k−1

i=0 viX
i and W = U × V and we assume that n = 2k − 2. Then W can

be computed as follow.

428 N. El Mrabet and C. Negre

1. Û = DFTω(U), V̂ = DFTω(V).
2. w2k−2 = uk−1 × vk−1
3. The coefficients wi for i = 0, . . . , 2k − 3 are computed as

⎡

⎢
⎢
⎢
⎣

w0
w1
...

w2k−3

⎤

⎥
⎥
⎥
⎦

= Ω−1 ·

⎡

⎢
⎢
⎢
⎣

ûi × v̂i − w2k−2
ûi × v̂i − w2k−2

...
ûi × v̂i − w2k−2

⎤

⎥
⎥
⎥
⎦

. (4)

Proof. Since n = 2k − 2 and U and V have degree k − 1 then U × V = W =∑n
i=0 wiX

i has degree n and W =
∑n

i=0 wiX
i. The evaluation Ŵ of W in the

n elements ωi gives
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ŵ0 = W (1) = w0 + w1 + . . . + wn−1 + wn

ŵ1 = W (ω) = w0 + w1ω + . . . + wn−1ω
n−1 + wnωn

ŵ2 = W (ω2) = w0 + w1(ω2) + . . . + wn−1(ω2)n−1 + wn(ω2)n

...
...

ŵn−1 = W (ωn−1) = w0 + w1(ωn−1) + . . . + wn−1(ωn−1)n−1 + wn(ωn−1)n

.

Now, since ωn = 1, we have (ωi)n = 1 for i = 1, . . . , n− 1. The right part of the
previous equations rewrites as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ŵ0 = W (1) = w0 + w1 + · · · + wn

ŵ1 = W (ω) = w0 + w1ω + · · · + wnωn−1 + wn

ŵ2 = W (ω2) = w0 + w1(ω2) + · · · + wn−1(ω2)n−1 + wn

...
...

ŵn−1 = W (ωn−1) = w0 + · · · + wn−1(ωn−1)n−1 + wn

(5)

The coefficient wn is already known since wn = w2k−2 = uk−1vk−1. Using (5),
we remark that the vector (ŵ0 − wn, ŵ1 − wn, . . . , ŵn−1 − wn) is the discrete
Fourier transform of the polynomial W ′ =

∑n−1
i=0 wiX

i. Thus we get back to the
coefficients of W ′ by computing

Ω−1 ·
[
ŵ0 − wn ŵ1 − wn · · · ŵn−1 − wn)

]t
.

This corresponds to Eq. (4).

We focus now on the case n = 2k − 4.

Lemma 3. Let Fp be a prime field and ω ∈ Fp a primitive n-th root of unity.
Let U =

∑k−1
i=0 uiX

i and V =
∑k−1

i=0 viX
i in Fp[X]. Let W = U ×V and assume

that n = 2k − 4, then the coefficients of W can be computed as follows.

1. Û = DFTω(U), V̂ = DFTω(V).
2. w2k−2 = uk−1 × vk−1, w0 = u0 × v0

3. w2k−3 = uk−1 × vk−2 + uk−2 × vk−1

Finite Field Multiplication Combining AMNS and DFT Approach 429

4. The coefficients wi for i = 1, . . . , 2k − 4 are computed as
⎡

⎢
⎢
⎢
⎢⎢
⎣

w1
w2
w2
...

wn

⎤

⎥
⎥
⎥
⎥⎥
⎦

= Ω−1 ·

⎡

⎢
⎢
⎢
⎢⎢
⎣

ŵ0 − w0 − wn+1 − wn+2
(ŵ1 − w0 − wn+1ω − wn+2ω

2)ω−1

(ŵ2 − w0 − wn+1ω
2 − wn+2(ω2)2)ω−2

...
(ŵn−1 − w0 − wn+1ω

n−1 − wn+1(ωn−1)2)ω−(n−1)

⎤

⎥
⎥
⎥
⎥⎥
⎦

(6)

where Ω−1 is defined in Eq. (3).

Proof. The proof is similar to the proof Lemma 2. Since n = 2k − 4 and U and
V have degree k − 1 then U × V = W =

∑n+2
i=0 wiX

i has degree n + 2 = 2k − 2.
The evaluation Ŵ of W in the n elements ωi gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ŵ0 = W (1) = w0 + w1 + · · · + wn + wn+1 + wn+1
ŵ1 = W (ω) = w0 + w1ω + · · · + wnωn + wn+1ω

n+1 + wn+2ω
n+2

ŵ2 = W (ω2) = w0 + w1(ω2) + · · · + wnωn + wn(ω2)n + wn+2(ω2)n+2

...
...

ŵn−1 = W (ωn−1) = w0 + w1(ωn−1) + · · · + wn(ωn−1)n

+wn+1(ωn−1)n+1 + wn+2(ωn−1)n+2

Now, since ωn = 1, we have (ωi)n+1 = ωi and (ωi)n+2 = (ωi)2for i = 1, . . . , n−1
in the right part of the previous equations. We get for ŵi

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ŵ0 = W (1) = w0 + w1 + · · · + wn + wn+1 + wn+2
ŵ1 = W (ω) = w0 + w1ω + · · · + wnωn + wn+1ω + wn+1ω

2

ŵ2 = W (ω2) = w0 + w1(ω2) + · · · + wn(ω2)n + wn+1ω
2 + wn+2(ω2)2

...
...

ŵn−1 = W (ωn−1) = w0 + · · · + wn(ωn−1)n + wn+1ω
n−1 + wn+2(ωn−1)2

The three coefficients w0, wn+1, wn+2 are already known. Then we rewrite the
previous equations as follows
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ŵ0 − w0 − wn+1 − wn+2 = w1 + · · · + wn−1

(ŵ1 − w0 − wn+1ω − wn+2ω
2)ω−1 = w1 + · · · + wnωn−1

(ŵ2 − w0 − wn+1ω
2 − wn+2(ω2)2)ω−2 = w1 + · · · + wn−1(ω2)n−1

...
...

(ŵn−1 − w0 − wn+1ω
n−1 − wn+1(ωn−1)2)ω−(n−1) = w1 + · · · + wn−1(ωn−1)n−1

We remark now that the right part corresponds to the evaluation of the poly-
nomial W ′ =

∑n−1
i=0 wi+1X

i. Consequently we get the coefficients of W ′ by
computing the matrix vector product

⎡

⎢
⎢⎢
⎢
⎢
⎣

w1
w2
w2
...

wn

⎤

⎥
⎥⎥
⎥
⎥
⎦

=
1
n

Ω ·

⎡

⎢
⎢⎢
⎢
⎢
⎣

ŵ0 − w0 − wn+1 − wn+2
(ŵ1 − w0 − wn+1ω − wn+2ω

2)ω−1

(ŵ2 − w0 − wn+1ω
2 − wn+2(ω2)2)ω−2

...
(ŵn−1 − w0 − wn+1ω

n−1 − wn+1(ωn−1)2)ω−(n−1)

⎤

⎥
⎥⎥
⎥
⎥
⎦

430 N. El Mrabet and C. Negre

This corresponds to Eq. (6).

The previous Lemmas are just special cases. They can be extended to smaller
value of n by increasing the number of precomputed wi for small indices i =
1, 2, . . . and big indices i = 2k − 2, 2k − 3, . . . before the interpolation process
using Ω−1.

Remark 2. In the two situations of Lemma 2 and Lemma 3 we can use also
Montgomery representation of polynomials to avoid division by n. For example
if Lemma 2 is applied without the division by n to Ũ = 1

nU and Ṽ = 1
nV , we

obtain the coefficients w̃i of W̃ = 1
nU ×V for i = 0, . . . , 2k−2. Only w̃2k−1 must

be computed separatly w̃2k−2 = 1
nw2k−1 to get all the coefficients of W̃ . The

same strategy can be applied to Lemma 3 with 3 more multiplications by 1
n .

3.4 Complexity of Different DFT Methods

We evaluate the complexity of the different DFT approaches. We distinguished
the cases where DFT is performed through a matrix vector product and where
DFT is performed using FFT algorithm. We express the costs in term of the
number of operations in Fp : the number of multiplication by roots of unity,
addition/subtraction, and multiplication. For multi-evaluation and interpolation
we used the fact that the entries in Ω and Ω−1 are all powers of ω. We also
assume that multiplication are done in Montgomery representation, in order to
avoid the division by 1

n (cf. Remark 1 and Remark 2). We obtain the complexity
given in Table 2.

Table 2. Complexity of DFT approaches

Method # Mult. by ωi # Mult. # Add.
General DFT 4nk − 3n n 4nk − 3n

General FFT 3n
2 log2(n) n 3n log2(n)

Lemma 2 3(2k − 3)2 2k (2k − 2)(6k − 8)
Lemma 2 with FFT 3(k − 1) log2(2k − 2) 2k 3(2k − 2) log2(2k − 2) + (2k − 2)

Lemma 3 3(2k − 5)2 + 2(2k − 5) 2k + 3 3(2k − 4)(2k − 4 − 1) + 2(2k − 4)
Lemma 3 with FFT 3(k − 2) log2(2k − 4) + 3(2k − 5) 2k + 3 3(2k − 4)(log2(2k − 4) + 1)

4 DFT Friendly Field

We focus in this section on specific fields called DFT friendly fields. These fields
admit an AMNS which provide efficient multiplication by roots of unity.

4.1 Definition of DFT Friendly Field

The main goal is to find a way to obtain fields Fp with n-roots of unity such
that n ∈ {2k − 1, 2k− 2, 2k− 3} and such that the multiplication by these roots
are really efficient. We propose to consider fields Fpk satisfying the following
definition.

Finite Field Multiplication Combining AMNS and DFT Approach 431

Definition 2 (DFT Friendly Field). We call a DFT friendly field an exten-
sion field Fpk such that Fp admits an AMNS B = (p, �, γ, ρ)E of length � and
such that one of the following conditions holds

1. λ = 1 and � ∈ {2k − 1, 2k − 2, 2k − 4} and γ is primitive �-th root of unity.
2. λ = −1 and � ∈ {k − 1, k − 2} and γ is primitive 2�-th root of unity.

Since we have roots of unity with appropriate order, we can use DFT ap-
proaches presented in Section 3 to perform the multiplication of elements in
Fpk . Indeed the condition on � in each cases of Definition 2 enables us to use at
least one of the strategies expressed in Subsection 3.1 or Lemma 2 and Lemma 3.

In DFT Friendly fields, the roots of unity are the elements ±γi. The multi-
plication by these roots can be done using the formula stated in the following
Lemma.

Lemma 4. Let an AMNS B = (p, �, γ, ρ)E and a =
∑n−1

i=0 aiγ
i be expressed in

B. The multiplication of a by the power γi of γ is given by

aγi = λan−i + λan−i+1γ + · · · + λan−1γ
i−1 + a0γ

i + · · · + an−i−1γ
n−1

Proof. The proof is a direct consequence of the definition of an AMNS.

In our case, the field Fp is represented with an AMNS where λ = ±1. Conse-
quently the multiplication by ±γi consists of only a cyclic shift, with eventually
some changes of sign. The multiplication by ±γi is almost free of computations.
Consequently, they do not add multiplications. The total cost of an AMNS mul-
tiplication in term of operations on the finite field is given in Table 3.

4.2 Fields Used Pairing Cryptography

We recall here different methods used to construct ordinary elliptic curves and
corresponding finite fields providing pairing. The curve order #E(Fp) must have
a big prime factor, called r and an extension degree 6 < k ≤ 32. To get such
curve the most used method is based on Complex Multiplication (CM).

The construction of a curve with the CM method requires to solve a system
of equations (7) where the indeterminates are an integer D, the embedding
degree k, the prime factor r, t the trace of the Frobenius on E(Fp) and p the
characteristic of the finite field:

⎧
⎨

⎩

r | p + t − 1,
r | pk − 1, for primes r, p,

Dy2 = 4p − t2 for some integer y.
(7)

Several methods exist to solve this system. An overview of these different
methods is given in [12]. We recall here the two following methods

– The Miyaji-Nakabayashi-Takano (MNT) strategy is one of the first CM
method [13] to construct elliptic curves suitable for ECC. It was extended

432 N. El Mrabet and C. Negre

by Barreto and Naehrig [14] to construct elliptic curves with embedding de-
gree 12. These curves with embedding degree 12 are given by the following
parametrization:

k = 12,

p = x4 + 36x3 + 24x2 + 6x + 1,

r = 36x4 + 36x3 + 18x2 + 6x + 1,

t = 6x2 + 1.

– The second method which could be used in order to build curves with ar-
bitrary embedding degree k is the Cocks-Pinch method [15]. This method
generates curves with arbitrary r, such that #E(Fp)/r ≈ 2. The extension of
the Cocks-Pinch method given in [16] provides smaller value for #E(Fp)/r.
Their method can be applied for general embedding degree. For example
in [16] they generated a family of curves with embedding degree 16. This
family is given by the following polynomials:

k = 16, for x ≡ ±25 mod(70)
p = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4

+625x2 + 2398x + 3125)/980,

r = (x8 + 4x4 + 625)/61250,

t = (2x5 + 41x + 35)/35.

For all these constructions, the prime p is constructed randomly. Proposition
1 tells us that if there exists a primitive �-th (or 2�-th) root of unity, where �
satisfies the conditions of Definition 2, then we can construct an AMNS satisfying
Definition 2.

For a random prime p, the probability that it has a primitive �-th root of unity
is roughly 1/(� − 1). Indeed p has a root of unity if and only if p ≡ 1 mod �.
But prime are equally distributed in the set of classes modulo �. Consequently
for small value of �, we can easily find a DFT friendly field Fp and an elliptic
curve over this field providing practical pairing.

4.3 Complexity Comparison

We present in Table 3 the complexity of a multiplication in DFT friendly fields Fpk

for different sizes of k. This complexity is given in term of the number of multipli-
cations and additions in Fp. The complexity is deduced from Table 2 : we neglect
the cost of the multiplication by a root of unity since it is almost cost free. Indeed,
a multiplication by a root of unity consists only in cyclic shifts. We also specify if
we use FFT or not. Table 3 we also give the complexity of the multiplication in
friendly field using Karatsuba and Toom Cook multiplications [9].

We remark that even for small value of k, DFT approach seems competi-
tive regarding to the number of multiplications. When no FFT can be used,
the number of additions increases significantly and should make our approach
incompetitive in these special cases.

Finite Field Multiplication Combining AMNS and DFT Approach 433

Table 3. Complexity comparison for practical extension degree k

Method k Cost of MultF
pk

Add. in Fp # Mult. in Fp

Karatsuba/Toom-Cook [2,9] 6 60 15
Karatsuba/Toom-Cook [2,9] 8 72 27

Subsection 3.1 with FFT and E = t8 + 1 8 192 16
Karatsuba/Toom-Cook [2,9] 9 160 25

Lemma 2 with FFT and E = t8 + 1 9 208 18
Lemma 3 with FFT and E = t8 + 1 10 240 23
Subsection 3.1 with E =

∑10
i=0(−t)i 11 902 22

Karatsuba/Toom-Cook [2,9] 12 180 45
Lemma 2 with E =

∑10
i=0(−t)i 12 1408 24

Lemma 3 with E =
∑10

i=0(−t)i 13 1430 28
Karatsuba/Toom-Cook [2,9] 16 248 81

Subsection 3.1 with FFT and E = t16 + 1 16 480 32
Lemma 2 with FFT and E = t16 + 1 17 512 34
Lemma 3 with FFT and E = t16 + 1 18 576 39

Karatsuba/Toom-Cook [2,9] 24 588 135

5 Conclusion

We have presented in this paper a new approach for multiplication in fields Fpk

used in pairing cryptography. We used AMNS [1] to represent elements in Fp

and DFT approach for extension field arithmetic. Specificaly we pointed out
that some AMNS provide efficient multiplication by roots of unity and thus
optimize DFT approach. Our approch decrease the number of multiplications,
but increase the number of additions in Fp in order to compute a multiplication in
Fpk . However, the number additional additions is not so important compared to
the saved multiplications. The resulting multiplication in the extension field Fpk

requires less multiplications in Fp for different practical sizes of k than previously
recommended method [2,9]. Specifically for k ≥ 12 combined AMNS and DFT
approach in DFT friendly fields, proposed in this paper, decreases the number
of multiplications in Fp by 50%.

References

1. Plantard, T.: Modular arithmetic for cryptography. PhD thesis, LIRMM, Univer-
sité Montpellier 2 (2005)

2. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

3. Menezes, A., Vanstone, S., Okamoto, T.: Reducing elliptic curve logarithms to
logarithms in a finite field. In: STOC 1991: Proceedings of the twenty-third annual
ACM symposium on Theory of computing, pp. 80–89. ACM Press, New York (1991)

434 N. El Mrabet and C. Negre

4. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

6. Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the ate
and twisted ate pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007.
LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007)

7. Gorla, E., Puttmann, C., Shokrollahi, J.: Explicit formulas for efficient multipli-
cation in F36m . In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 173–183. Springer, Heidelberg (2007)

8. Negre, C., Plantard, T.: Efficient modular arithmetic in adapted modular number
system using lagrange representation. In: Proceedings of Australasian Conference
on Information Security and Privacy (ACISPP 2008) (2008)

9. Bajard, J., Mrabet, N.E.: Pairing in cryptography: an arithmetic point of view. In:
Advanced Signal Processing Algorithms, Architectures and Implementations XVI,
SPIE (August 2007)

10. ZurGathen, J.V., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, New York (2003)

11. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

12. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Cryptology ePrint Archive (2006), http://eprint.iacr.org/2006/372

13. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for fr-reduction (2001)

14. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg
(2006)

15. Cocks, C., Pinch, R.: Identity-based cryptosystems based on the Weil pairing (2001)
16. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography.

Designs Codes and Cryptography 37(1), 133–141 (2005)
17. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing friendly

elliptic curves using elements in the cyclotomic field. In: Pairing 2008: Proceedings of
the 2nd international conference on Pairing-Based Cryptography, pp. 126–135 (2008)

6 Annexe

We present in this section some examples of curves with embedding degree 6 <
k ≤ 32 over DFT friendly field.

We first briefly recall the method given in [8] to construct an AMNS for a
fixed prime p. We choose a polynomial E(t) = t
 − λ of degree � and compute γ
a root of E in Fp. Then we construct the matrix M :

M =

⎡

⎢
⎢⎢
⎢
⎢
⎣

p 0 0 · · · 0
−γ 1 0 · · · 0
−γ2 0 1 · · · 0

...
. . .

...
−γ(
−1) 0 · · · 0 1

⎤

⎥
⎥⎥
⎥
⎥
⎦

http://eprint.iacr.org/2006/372

Finite Field Multiplication Combining AMNS and DFT Approach 435

We apply LLL algorithm to this matrix and we obtain a short vector m sat-
isfying m(γ) = 0 mod p. We finally get ρ = 2�|λ|‖m‖∞.

6.1 Curves with Embedding Degree k = 12

We use the parametrization of Barreto and Naehrig [14] which provides elliptic
curves with embedding degree 12:

k = 12,

p = 36x4 + 36x3 + 24x2 + 6x + 1,

r = 36x4 + 36x3 + 18x2 + 6x + 1,

t = 6x2 + 1.

We use also the polynomial E(t) =
∑ 10

i=0(−t)i to build the AMNS of p.
For a security level of 80 (i.e. the best attack requires 280 operations) we find
the following example:

x = 1099511637026,

p = 52614060714492069992659260093542155440429911322253,

r = 52614060714492069992659252839987115706863666574197,

t = 7253555039733566244748057,

γ = 14348622953168487070046731700990451973985348345534,

m(X) = 12376 − 49167X + 48460X2 + 18281X3 + 15213X4 − 10299X5

+11263X6 − 70120X7 − 13636X8 − 18106X9.

For a security level of 160 we found:

x = 18446744073709692895,

p = 41685152125435107379370057363152675115521120051443074052763868100

45976396949971,

r = 41685152125435107379370057363152675115500703109427817432219558905

25925116063821,

t = 2041694201525662054430919520051280886151,

γ = 3777110808431704610730298619816519741988385386404769931764

1286502190684739139,

m(X) = 8053715 − 20923230X + 23417521X2 − 26826999X3 + 19243643X4

+1059907X5 − 41954237X6 − 42180723X7 + 5371359X8 − 19196965X9 .

6.2 Curves with Embedding Degree k = 16

We use the parametrization of [17]:
k = 16,

p = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125)/980,

r = (x8 + 48x4 + 625)/61250,

t = (2x5 + 41x + 35)/35.

436 N. El Mrabet and C. Negre

We use the polynomial E(t) = t16 + 1.

For a security level of 80 we found the following example:

x = 74156485,

p = 5131747716031925180698577911272774150920883965678805953616840478

933959934561,

r = 14930934707260179303940284190066288525962852908481890536993,

t = 128146760584932038247348983414439772062,

γ = 3869682865821773894755186582406048635100954822997767338413

19721386977404674,

m(X) = 7400X + 49262X2 − 3010X3 − 14335X4 + 34360X5

+43021X6 + 6813X7 + 5184X8 + 13206X9 + 10037X10

+2540X11 − 7384X12 − 66117X13 − 57557X14 + 32450X15 .

For a security level of 160 we found :

x = 300650886015,

p = 6157420379412900644319875864344339428999761290450062716759615209

367079614301451112752451271493775945297121074689,

r = 1089917965628569491882686378264600130698430055744221456154539259

930378582049607058754993,

t = 140370029614552009401267496693144064107592433030506438440,

γ = 551737151471267013665906013312108810638488413639246814149706

947418249015319821682977158544996914977939922628908,

m(X) = 11792 + 15441X − 25387X2 + 11348X3 + 20103X4 + 25605X5

−8716X6 + 9091X7 + 19039X8 + 13855X9 − 22021X10 − 15182X11

−4543X12 + 1417X13 − 26776X14 + 11502X15 .

Random Order m-ary Exponentiation

Michael Tunstall

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol BS8 1UB, United Kingdom
tunstall@cs.bris.ac.uk

Abstract. This paper describes a m-ary exponentiation algorithm
where the radix-m digits of an exponent can be treated in a somewhat
random order without using any more group operations than a stan-
dard right-to-left m-ary exponentiation. This paper demonstrates that
the random order countermeasure, commonly used to protect implemen-
tations of secret key cryptographic algorithms, can be applied to public
key cryptographic algorithms.

Keywords: Exponentiation algorithms, random order countermeasure,
side channel analysis.

1 Introduction

Implementations of exponentiation algorithms in microprocessors need to be
resistant to side channel analysis. For example, it has been demonstrated that
a private key used in RSA [21] can be derived by observing a suitable side
channel, such as power consumption [15] or electromagnetic emanations [11,20].
These attacks targeted implementations of the square and multiply algorithm,
where an exponent is read bit-by-bit and a zero in the exponent results in a
squaring operation, whereas a one results in a squaring operation followed by a
multiplication. Bits of a private key can be seen directly if these two operations
can be distinguished by observing a suitable side channel while an exponentiation
is being computed.

The first proposed countermeasure was to always compute a squaring oper-
ation followed by a (possibly fake) multiplication for each bit of an exponent,
referred to as the square and multiply always algorithm [10]. This algorithm has
a large impact on the efficiency of the computation of an exponentiation. An
alternative was proposed in [9] that proposed efficient algorithms with a fixed
structure, i.e. a structure independent to the value of the exponent. A further
suggestion was made in [8], where it was proposed that a squaring operation and
a multiplication be rendered indistinguishable via a side channel.

More complex attacks are proposed in [15], where numerous acquisitions are
taken and an attacker attempts to observes a statistical relationship between an
observed side channel and an intermediate state. In order to prevent this class of

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 437–451, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

438 M. Tunstall

attack individual variables are combined with random values generated for each
instantiation of an algorithm [6].

In block ciphers the order in which variables are treated can also be ran-
domised to augment the side channel resistance of an implementation [17]. In
this paper an algorithm is proposed that allows an exponentiation to be com-
puted in a random order, although not all orders will occur with with the same
probability. This algorithm is intended to allow an exponentiation to be com-
puted without the currently used blinding algorithms. However, the proposed
algorithm could also be used to augment the security of an exponentiation im-
plementation, and will inhibit attacks that allow operations to be distinguished
from one acquisition. The proposed algorithm requires a large amount of mem-
ory. However, some modern smart card chips are using 32-bit architectures and
one can expect to have around 4k of RAM available [4,18]. This would allow for
the proposed algorithm to be implemented for elliptic curve cryptography, but
it is unlikely to be possible for exponentiation in (Z/NZ)∗.

The rest of this paper is organised as follows. In the next section, we review
some methods for evaluating an exponentiation. In Section 3 we describe the
methods of side channel analysis that could potentially be used to attack an
exponentiation. The previously published uses of random values as a counter-
measure to side channel analysis is described in Section 4. In Section 5 we detail
an exponentiation algorithm where the digits can be treated in a random order.
In Section 6 we describe how an attacker would try to derive information by side
channel analysis. Finally, we conclude in Section 7.

2 Exponentiation Algorithms

2.1 The Square and Multiply Algorithm

The simplest algorithm for computing an exponentiation is the square and mul-
tiply algorithm. This is where an exponent is read left-to-right bit-by-bit, a zero
results in a squaring operation being performed, and a one results in a squaring
operation followed by a multiplication with the original message. This algorithm
is detailed in Algorithm 1, where we define the function bit(n, i) as a function
returning the i-th bit of n. The input is an element x in a (multiplicatively writ-
ten) group G and a positive �-bit integer n; the output is the element z = xn

in G. This algorithm requires two group elements in memory and, on average,
1.5 (�log2 n� − 1) group operations to compute xn.

2.2 Left-to-Right m-Ary Exponentiation

In order to compute z = xn more efficiently it is possible to use an algorithm
that is described in [13]. In this algorithm one precomputes some values that are
small powers of x and the exponent is broken up into � words in base m (this
is called the m-ary expansion and � is called the m-ary length). Typically, m is

Random Order m-ary Exponentiation 439

Algorithm 1: The Square and Multiply Algorithm
Input: x ∈ G, n ≥ 1, � the binary length of n (i.e. 2�−1 ≤ n < 2�)
Output: z = xn

A ← x
R ← x
for i = � − 2 down to 0 do

A ← A2

if (bit(n, i)�= 0) then A ← A · R
end

return A

chosen to be equal to 2k, for some convenient value of k, to enable the relevant
digits to simply be read from the exponent. The m-ary algorithm is shown in
Algorithm 2, where we define the function digit(n, i) as a function returning
the i-th radix-m digit of n. This algorithm requires m group elements in memory
and, on average,

(
m + m−1

m

)
(�logm n� − 1)+m−2 group operations to compute

xn.

Algorithm 2: Left-to-Right m-ary Exponentiation Algorithm
Input: x ∈ G, n ≥ 1, � the m-ary length of n
Output: z = xn

Uses: A, R[i] for i ∈ {1, 2, . . . , m − 1}
R[1] ← x
for i ← 2 to m − 1 do R[i] ← R[i − 1] · x

b ← digit(n, � − 1)
A ← R[b]

for i = � − 2 down to 0 do
A ← Am

b ← digit(n, i)
if (b �= 0) then A ← A · R[b]

end

return A

2.3 Right-to-Left m-Ary Exponentiation

A right-to-left version of Algorithm 2 was described in [24]. This algorithm is
detailed in Algorithm 3, and requires slightly more operations than the left-
to-right algorithm. The structure of the algorithm is different as the effect of
the value of each digit is not taken into account until the final stage of the
algorithm. This algorithm requires (m − 1) + 1 = m group elements in mem-
ory and, on average,

(
m−1

m + m
)
(�logm n� − 1) + 2m − 3 group operations to

compute xn.

440 M. Tunstall

Algorithm 3: Right-to-Left m-ary Exponentiation
Input: x ∈ G, n ≥ 1
Output: z = xn

Uses: A, R[j] for j ∈ {1, . . . , m − 1}
for j = 1 to m − 1 do R[j] ← 1G

A ← x
while (n ≥ m) do

d ← n mod m
if (d �= 0) then R[d] ← R[d] · A
A ← Am

n ← �n/m	
end
R[n] ← R[n] · A

A ← R[m − 1]
for j = m − 2 down to 1 do

R[j] ← R[j] · R[j + 1]
A ← A · R[j]

end

return A

3 Side Channel Analysis

3.1 Simple Side Channel Analysis

The most basic form of side channel analysis is to simply inspect one acquisition
of a suitable side channel, referred to as Simple Side Channel Analysis (SPA).
This involves observing a suitable side channel whilst a computation is taking
place. An attacker will then try and make deductions about what calculations
are being performed based on these observations. If we consider the square and
multiply algorithm, it has been shown that bit values of an exponent can be
distinguished by observing a suitable side channel, such as the power consump-
tion [15] or electromagnetic emanations [11,20].

3.2 Differential Side Channel Analysis

It has been demonstrated that in microprocessors the instantaneous power con-
sumption is typically proportional to the Hamming weight of data being manip-
ulated at a given point in time [5], and the same relationship has been observed
in electromagnetic emanations [11,20]. This difference in Hamming weight was
first exploited in [15] to attack block ciphers. This was extended in [5] to give a
more complete analysis of the power consumption.

In this attack, an attacker acquires M power consumption traces (wi for
i ∈ {1, 2, . . . , M}) during the computation of a cryptographic algorithm, and
chooses one word, b, of an intermediate state generated while the acquisition is
taking place. For a given hypothesis for a key value (or portion of the key) K

Random Order m-ary Exponentiation 441

the Hamming weight of b is predicted and the correlation between this value and
the instantaneous power consumption is calculated. A significant correlation will
confirm the hypotheses, allowing an attacker to derive information on the key.

In order to attack an exponentiation, an attacker could use this to confirm
hypotheses on an intermediate state of a multiplication at an arbitrary point
in the computation to derive portions of the exponent. A significant correlation
would indicate that the hypothesised exponent bits are correct.

4 Using Random Values as a Countermeasure

In this section we describe some of the countermeasures that can be used to
prevent side channel analysis. We concentrate on countermeasures that are spe-
cific to exponentiation algorithms. The interested reader is referred to [16] for a
discussion of countermeasures to side channel analysis in more general terms.

4.1 Blinding

The use of random values to modify the behaviour of an exponentiation has taken
many different forms. One of the first proposals was to modify all the variables
in a modular exponentiation [14]. If we consider the modular exponentiation
z = xn mod m, this could be implemented as

z =
(
(x + r1 ·m)n+r2·φ(m) mod r3 ·m

)
mod m ,

where r1, r2 and r3 are random values and φ is Euler’s Totient function. Typi-
cally, the bit lengths of r1, r2 and r3 are chosen to increase x, d and m by one
word of the processor computing the exponentiation. The above equation is spe-
cific to (Z/NZ)∗, but equivalent algorithms exist for exponentiation algorithms
in other groups (e.g. elliptic curves over Fp and F2q [10]).

4.2 Randomised Algorithms

When implementing block ciphers one would combine masking with a random
ordering. For example, if a given function were to be applied to a series of bytes,
one would implement the function such that the bytes were treated in some
random order. If an attacker were to try and predict a byte value occurring at
a given point in time, the prediction would only be correct a small proportion
of the time. This has a direct impact on the computed correlation coefficient,
discussed in Section 3.2, since an attacker’s prediction will often be incorrect.

An equivalent countermeasure for exponentiation algorithms has not previ-
ously been proposed in the literature, but other methods of randomising the
computation of an exponentiation have been proposed. In this section we review
some of these methods.

442 M. Tunstall

Random Digit Sizes

A right-to-left m-ary exponentiation algorithm is proposed in [23] where the
radix of the digits of the exponent is varied during the computation of an expo-
nentiation. The algorithm proceeds as described in Algorithm 3, but the radix of
the digits of the exponent digits is chosen randomly between 2,3 and 5 whenever
a new digit is required during the main loop of the algorithm.

Overlapping Exponent Digits

Another algorithm that modifies the exponent digits every time an exponentia-
tion is computed is presented in [12]. When the exponent digits are read from
the exponent the number if bits is extended such that the bits of one digit will
overlap with the bits of the neighbouring digits. The digits are modified such
that the sum of the effect of the overlapping digits is equivalent to the desired
exponent. Given that there are numerous combinations of overlapping digits that
are equivalent to the desired exponent, some bits of each digit can be randomly
set each time the algorithm is executed.

5 Random Order Exponentiation

In this section we define a right-to-left m-ary exponentiation algorithm, where
the radix-m digits of the exponent are treated in a random order. Before the al-
gorithm is defined we demonstrate that, if enough memory is available, the digits
of an exponent could be treated in an arbitrary order when using Algorithm 3.

Consider the right-to-left m-ary exponentiation algorithm to compute z = xn.
We can write the radix-m expansion of the exponent as n =

∑�−1
i=0 di mi. Then

z =
∏

0≤i≤�−1
di=1

xmi ·
∏

0≤i≤�−1
di=2

x2·mi · · ·
∏

0≤i≤�−1
di=j

xj·mi · · ·
∏

0≤i≤�−1
di=m−1

x(m−1)·mi

=
m−1∏

j=1

(R[j])j where R[j] =
∏

0≤i≤�−1
di=j

xmi

.

In Algorithm 3, each R[j] for j ∈ {1, . . .m− 1} is computed and then combined
in the final loop to raise each R[j] to the power of j and compute the product
of the results, i.e.

∏
j (R[j])j .

We can note that each R[j] is the product of xmi

for all i ∈ {0, . . . , � − 1}
where di is equal to j. This can be computed in any order if all the values xmi

are
known. Therefore, if it would be possible to precompute and store all the group
elements xmi

, for i ∈ {0, . . . , �− 1}, they could be multiplied with the relevant
R[j] in an arbitrary order. A worked example of this is shown in Appendix A.
However, there would need to be enough memory available to store all � group
elements.

Random Order m-ary Exponentiation 443

If we consider the bit lengths of variables in exponentiations that would be of
use in cryptography, it is unlikely that all the values of xmi

, for i ∈ {0, . . . , �−1},
could be stored in the memory of a microprocessor.

However, if we assume that there is enough memory available to store r group
elements, we can precompute and store xmi

, for i ∈ {0, . . . , r−1}. Suppose these
are stored in an array

S = {x, xm, xm2
, . . . , xmr−1

} ,

and list the first r digits of the exponent as

D = {d0, d1, d2, . . . , dr−1} .

If we initialise a set of registers R[i], for i ∈ {1, . . . , m − 1}, to 1G. We can
treat the r values held in S and D in some arbitrary order, where, for each
j ∈ {0, . . . , r− 1}, we compute R[D[j]] = R[D[j]] ·S[j]. The contents of R[i], for
i ∈ {1, . . . , m− 1}, will then contain the same group elements one would expect
if the standard right-to-left m-ary exponentiation had treated the first r digits
of the exponent (see Algorithm 3). One could then assign the next r values that
would be required to continue computing the exponentiation to S and D, which
then become

S = {xmr

, xmr+1
, xmr+2

, . . . , xm2r−1} ,

and
D = {dr, dr+1, dr+2, . . . , d2r−1} .

These values could also be treated in some arbitrary order, as for for each j ∈
{0, . . . , r − 1} we compute R[D[j]] = R[D[j]] · S[j]. After which the values held
in R[i], for i ∈ {1, . . . , m − 1}, will be the same as if the standard right-to-left
m-ary exponentiation has treated the first 2r digits of the exponent. This could
be continued until all the digits of the exponent have been treated.

However, we can do better by noting that once R[D[j]] = R[D[j]] · S[j] has
been computed, for a given j ∈ {0, . . . , r − 1}, then D[j] and S[j] are no longer
required by the exponentiation algorithm. These values in memory can be safely
overwritten. Consider again the initial state of S and D

S = {x, xm, xm2
, . . . , xmr−1} , D = {d0, d1, d2, . . . , dr−1} .

If we compute R[D[j]] = R[D[j]] · S[j], for some arbitrary j ∈ {0, . . . , r− 1}, we
can replace D[j] with dr and S[j] with xmr

. If, for example, we take j = 1 then,
after computing R[D[1]] = R[D[1]] · S[1], we can replace D[1] and S[1]. That is,

S = {x, xmr

, xm2
, . . . , xmr−1} ,

and
D = {d0, dr, d2, . . . , dr−1} .

This could be repeated for another D[j] and S[j], for some arbitrary
j ∈ {0, . . . , r − 1}, and the j-th values of S and D replaced with xmr+1

and

444 M. Tunstall

dr+1 respectively. For an �-bit exponent this could be repeated � − r times, at
which point one would be unable to include any new digits in D. One could then
compute R[D[j]] = R[D[j]] · S[j] for each j ∈ {0, . . . , r − 1} without replacing
any of the values in D or S. After which, all of the digits of the exponent, i.e.
all di for i ∈ {0, . . . , � − 1}, will have been treated. A worked example of this
process is given in Appendix A.

An example of how this could be implemented to produce an exponentiation
algorithm where the digits are treated in some random order is shown in Al-
gorithm 4, where we define the function RandomInteger(x, y) as returning a
random integer in the interval [x, y].

In order to minimise the number of operations required it is necessary to keep
track of which element of S contains the largest power of x, so that xmi

can be
computed from xmi−1

with a minimum, and constant, number of operations. In
Algorithm 4 we use the variable γ as a pointer to the largest power of x present
in S.

It is interesting to note that this algorithm does not require any more group
operations than Algorithm 3 so the performance should remain unaffected. How-
ever, this does assume that random values can be generated instantly. The dif-
ference in performance between Algorithm 3 and Algorithm 4 will be the time
required to generate �− r random values.

Algorithm 4 requires significantly more memory than Algorithm 3, as (m −
1) + r + 1 = m + r group elements need to be stored in memory. A further r
radix-m digits will also need to be held in memory.

6 Security Analysis

In this section we describe how an attacker would attempt to derive digits of the
exponent used in an implementation of Algorithm 4 by side channel analysis.

6.1 Simple Side Channel Analysis

Algorithm 4 is, to a certain extent, vulnerable to Simple Side Channel Analysis.
It would be expected that an attacker would be able to detect when zero digits
are treated. In order to counter this, the multiplication and squaring operations
can be implemented such that they use identical code and, therefore, cannot be
distinguished [8]. There are methods of statistically distinguishing a multiplica-
tion and a squaring operation based on the design [2] or the distribution of the
bits of single-precision operations [3]. It is expected that similar attacks may be
possible on a single acquisition using template attacks [7].

If an attacker is able to distinguish multiplications from squaring operations
the amount of information available is limited. An attacker would be able to de-
termine the total number of zero digits in an exponent, but only approximately
where they are in an exponent. The position of the first zero digit in the expo-
nent could be determined by taking enough acquisitions that it is possible to
determine the earliest in an exponentiation that a zero digit is visible in a side

Random Order m-ary Exponentiation 445

Algorithm 4: Random Order Right-to-Left m-ary Exponentiation
Input: x ∈ G, n ≥ 1, r number of values to store in memory.
Output: z = xn

Uses: A, R[j] for j ∈ {1, . . . , m − 1}, D[i] for i ∈ {0, . . . , r − 1}, S[i] for
i ∈ {0, . . . , r − 1}

for j = 1 to m − 1 do R[j] ← 1G

S[0] ← x
for i = 1 to r − 1 do S[i] ← S[i − 1]m

for i = 0 to r − 1 do
D[i] ← n mod m
n ← �n/m	

end
γ ← r − 1

while (n > 0) do
τ = RandomInteger(0, r − 1)
if D[τ] �= 0 then

R[D[τ]] ← R[D[τ]] · S[τ]
end
S[τ] ← S[γ]m

D[τ] ← n mod m
n ← �n/m	
γ ← τ

end

for i = r − 1 down to 0 do
R[D[i]] ← R[D[i]] · S[i]

end

A ← R[m − 1]
for i = m − 2 down to 1 do

R[i] ← R[i] · R[i + 1]
A ← A · R[i]

end

return A

channel. However, it is unclear how an attacker would derive further zero digits
unless they occur infrequently in an exponent, i.e. an attacker is able to locate
the earliest point each zero digit is used during the computation of an expo-
nentiation. This is unlikely to be the case, especially if the number of elements
in D and S is of a similar size to the radix of the digits being taken from the
exponent, in which case we would expect, statistically, there to be one zero digit
in D most of the time.

In [19], Möller describes a recoding algorithm for m-ary exponentiation where
each digit that is equal to zero is replaced with −m, and the next most significant
digit is incremented by one. This leads to an exponent recoded with digits in the
set {1, . . . , m−1}∪{−m}. An unsigned version of Möller’s algorithm is described
in [22] where the digits are recoded with digits in the set {1, . . . , m}. Where

446 M. Tunstall

each zero digit is replaced with m and the next digit is decremented by one,
which removes the need to compute a potentially costly inversion. Both of these
algorithms render a subsequent m-ary exponentiation regular, and, therefore,
resistant to simple side channel analysis.

6.2 Differential Side Channel Analysis

In order to conduct a side channel attack using differential side channel analysis,
an attacker needs to construct hypotheses on data being manipulated at a specific
point in time for each acquisition in a set of acquisitions. An attacker can then
attempt to confirm these hypotheses by computing the correlation between them
and each instant in time of during the acquisitions.

In this section we describe how differential side channel analysis could be
applied to Algorithm 4. We assume that an attacker has acquired sufficient traces
of a side channel to conduct a differential side channel attack, as described in
Section 3.2, on Algorithm 4. We also assume that the exponent has been recoded
such that the digits are in the set {1, . . . , m}, as described above.

If an attacker were to try and conduct an differential side channel attack it
would be assumed that the digit treated at the �-th round is the (� + r − 1)-th
digit of the exponent (counting from the right). This is because at this at this
point the (� + r − 1)-th digit will just have been included into the digits from
which the algorithm will randomly select a digit to treat and will occur at this
point with the highest frequency.

This can be seen if we consider that once a digit has been included, it has a
probability of 1/r of being used in the next round. It has the same probability
of being used in the following round but this can only occur if the digit was
not treated in the previous round, so the probability of the digit not being used
in the first round but being used in the second round is

(
1− 1

r

) 1
r . In general,

we can say that the probability of a digit being treated θ rounds after being
included is 1

r

(
1− 1

r

)θ−1. The highest probability occurs one round after a digit
is included when θ = 1.

In [5] it is pointed out that if the correlation coefficient of η independent
bits amongst δ is calculated, a partial correlation still exists and its size can be
predicted as a function of the coefficient that would be generated if all the bits
of δ were included. This is given as:

ρη/δ = ρ

√
η

δ

where ρ is the correlation if everything is known and ρη/δ is the predicted partial
correlation.

This also applies to η intermediate states being correctly predicted out of a
total of δ. Therefore, in conducting a side channel attack against a random order
exponentiation the correlation coefficient seen would be reduced to

√
1/r of the

correlation coefficient that would be seen if a non-randomised algorithm were
under attack if R is known. This would indicate to an attacker which previously
treated digits of the exponent are equal to the (� + r − 1)-th digit.

Random Order m-ary Exponentiation 447

However, the state of R will not be known to an attacker. To conduct a
differential side channel attack an attacker would be obliged to form hypotheses
on the number and positions of the digits with the same value as the (�+r−1)-th
digit and therefore predict the state of R. An attacker would then be obliged
to generate a correlation trace from the acquired traces for all of the possible
values of R.

The state of R will be different for each execution since the digits that have
not been treated at the �-th round will vary from one execution to another.
An attacker would, therefore, be obliged to predict the most likely state of R
and assume this is the state for every acquisition. This will further reduce the
correlation coefficient visible via a differential side channel attack.

An attacker can, therefore, expect to be able to derive a correlation whose
size is reduced to

√
1/r of what one would be able to produce when attacking a

näıve implementation in the first round of the algorithm. In subsequent rounds
the largest correlation an attacker could hope to produce will diminish rapidly.
It is not clear exactly how the correlation will diminish, and it is left as open
problem, as to exactly how an attacker would attempt to derive the exponent
via differential side channel analysis.

7 Conclusion

In this paper we present a method of computing an exponentiation where radix-
m digits can be treated in a random order. The algorithm is intended to provide
resistance to side channel analysis, and some informal arguments are given as
to the side channel analysis resistance of this algorithm. However, we can note
that not all the possible orderings of exponent digits will be equally likely.

Algorithm 4 will most likely find use as a supplement, rather than as a replace-
ment, to the blinding countermeasure described in Section 4.1. This is because
it may be possible to derive the digits used in an m-ary exponentiation from one
trace using template attacks [7]. In the example given, d + φ(m) gives a value
equivalent to the private key and could be used to start to make attempts at
factoring m. If Algorithm 4 were also used, an attacker would have to test all the
possible orderings of the exponent to find d+φ(m). This is an advantage over the
previously proposed randomised exponentiation algorithms [12,23], described in
Section 4.2, that would provide a value equivalent to the exponent if one were
able to derive the digits of an exponent from one acquisition.

Another advantage over previously proposed countermeasures [12,23], is that
the digit size can be chosen such that it evenly divides a computer word. It is,
therefore, not necessary to read digits that will have bits on two computer words,
which has implications for both security and efficiency.

As stated in the introduction, Algorithm 4 requires a large amount of memory,
as Algorithm 4 requires m+ r group elements to be stored in memory. There are
32-bit secure microprocessors that have enough memory to allow exponentiation
in Fp or F2q to be implemented [4,18]. More recently, processors with larger
memories are being studied with regard to their side channel resistance [1], on

448 M. Tunstall

which one would be able to implement Algorithm 4 in (Z/NZ)∗. This is unlikely
to be possible on a smart card microprocessor unless a cryptographic coprocessor
with a large amount of registers is included.

The side channel resistance of the algorithm proposed in this paper is only
briefly analysed. There are some open problems that arise from this work.

The most obvious question is exactly how one would mount a side channel
attack against Algorithm 4. Some brief details are given, but the magnitude of
the correlation coefficient one would expect to be able to observe for a given r
is not defined. Indeed, it remains to be shown what values of r would provide a
suitable level of random ordering.

Another question is how one would attack Algorithm 4 if it were combined
with other countermeasures. For example, one could easily combine Algorithm 4
with Walter’s MIST algorithm [23] where the radix of the digits read from an
exponent is also randomised.

Acknowledgements

The author would like to thank Elisabeth Oswald and Dan Page for their helpful
comments related to the ideas presented in this paper. The author would also like
to thank Steven Galbraith for his help in preparing the final version of this paper.
The work described in this paper has been supported in part by the European
Commission IST Programme under Contract IST-2002-507932 ECRYPT and
EPSRC grant EP/F039638/1 “Investigation of Power Analysis Attacks”.

References

1. Side-channel attack standard evaluation board (SASEBO),
http://www.rcis.aist.go.jp/special/SASEBO

2. Akishita, T., Takagi, T.: Power analysis to ECC using differential power between
multiplication and squaring. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D.
(eds.) CARDIS 2006. LNCS, vol. 3928, pp. 151–164. Springer, Heidelberg (2006)

3. Amiel, F., Feix, B., Tunstall, M., Whelan, C., Marnane, W.P.: Distinguishing mul-
tiplications from squaring operations. In: SAC 2008. LNCS. Springer, Heidelberg
(2008)

4. ARM. SecurCore family,
http://www.arm.com/products/CPUs/families/SecurCoreFamily.html

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards approaches to counteract
power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
398–412. Springer, Heidelberg (1999)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

http://www.rcis.aist.go.jp/special/SASEBO
http://www.arm.com/products/CPUs/families/SecurCoreFamily.html

Random Order m-ary Exponentiation 449

8. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing sim-
ple side-channel analysis: Side-channel atomicity. IEEE Transactions on Comput-
ers 53(6), 760–768 (2004)

9. Clavier, C., Joye, M.: Universal exponentiation algorithm. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg
(2001)

10. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

11. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

12. Itoh, K., Yajima, J., Takenaka, M., Torii, N.: DPA countermeasures by improving
the window method. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002.
LNCS, vol. 2523, pp. 303–317. Springer, Heidelberg (2003)

13. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley, Reading (1981)

14. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks — Revealing the Se-
crets of Smart Cards. Springer, Heidelberg (2007)

17. Messerges, T.S.: Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois, Chicago (2000)

18. MIPS-Technologies. SmartMIPS ASE, http://www.mips.com/content/Products/
19. Möller, B.: Securing elliptic curve point multiplication against side-channel at-

tacks. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324–334.
Springer, Heidelberg (2001)

20. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

21. Rivest, R., Shamir, A., Adleman, L.M.: Method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

22. Vuillaume, C., Okeya, K.: Flexible exponentiation with resistance to side channel
attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp.
268–283. Springer, Heidelberg (2006)

23. Walter, C.D.: MIST: An efficient, randomized exponentiation algorithm for resist-
ing power analysis. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 53–66.
Springer, Heidelberg (2002)

24. Yao, A.C.: On the evaluation of powers. SIAM Journal on Computing 5(1), 100–103
(1976)

A Worked Example

We wish to compute z = xn, where n is set to 738530 (B44E2 in hexadecimal)
and the digits will be read from this exponent two bits at a time, i.e. m = 4. The
digits and powers of x (variable A) computed in the main loop of Algorithm 3

http://www.mips.com/content/Products/

450 M. Tunstall

are shown below. If enough memory were available then xmi

for i ∈ {0, . . . , 9}
could all be precomputed. Then we can set

S = {x, x4, x16, x64, x256, x1024, x4096, x16384, x65536, x262144} ,

and
D = {2, 0, 2, 3, 0, 1, 0, 1, 3, 2} .

The exponentiation can be computed by treating the elements of S and D in
an arbitrary order. We initially set R[j] for j ∈ {1, 2, 3} to 1G. An arbitrary
j ∈ {0, . . . , 9} is chosen, and we compute R[D[j]] = R[D[j]] · S[j] except when
D[j] is equal to zero when no operation is performed. This is repeated once for
each possible value of j, which will result in:

R[1] = S[5] · S[7] = x1024 x16384 = x17408

R[2] = S[0] · S[2] · S[9] = xx16 x262144 = x262161

R[3] = S[3] · S[8] = x64 x65536 = x65600

where z = R[1] · R[2]2 · R[3]3 = x17408 x2·262161 x3·65600 = x738530, which is
computed by the final loop in Algorithm 3.

If the above computation of z = xn were conducted using Algorithm 4, where
we set r = 6 so that there is only enough memory to store six group elements in
S. The initial values in memory would be xmi

for i ∈ {0, . . . , 5}, i.e.

S = {x, x4, x16, x64, x256, x1024} ,

and the corresponding digits of the exponent would be

D = {2, 0, 2, 3, 0, 1} .

Again, initially set R[j] for j ∈ {1, 2, 3} to 1G. An arbitrary j ∈ {0, . . . , 5} is
chosen, and we compute R[D[j]] = R[D[j]] · S[j]. As above, all R[j] for j ∈
{1, 2, 3} are initialised to 1G. We will take j = 3 which give S[3] = x64 and
D[3] = 3, and we compute R[3] = R[3] · x64. The values in S[3] and D[3] are no
longer required and can be replaced. We, therefore set S[3] = xm7

= x4096 and
D[3] = 0. The values contained in memory would then be

S = {x, x4, x16, x4096, x256, x1024} ,

and
D = {2, 0, 2, 0, 0, 1} .

Another arbitrary j ∈ {0, . . . , 5} can then be selected. We will take j = 0, which
will mean we will compute R[2] = R[2] · x. After which S[0] and D[0] can be
replaced with xm8

and 1 respectively, giving

S = {x16384, x4, x16, x2048, x256, x1024} ,

Random Order m-ary Exponentiation 451

and
D = {1, 0, 2, 0, 0, 1} .

Next, we take j = 4. D[4] is equal to zero, so no operation is conducted with
S[4], and these elements can be replaced with 3 and xm9

, giving

S = {x16384, x4, x16, x4096, x65536, x1024} ,

and
D = {1, 0, 2, 0, 3, 1} .

We now take j = 1. Again, the chosen digit, D[1], is equal to zero and no
operation takes place. S[1] and D[1] can be replaced with xm10

and the last
digit of the exponent, giving

S = {x16384, x262144, x16, x4096, x65536, x1024} ,

and
D = {1, 2, 2, 0, 3, 1} .

There are now no remaining digits that could be D, so there is no further need to
select digits to be replaced. The remaining digits can be treated, where for each
j ∈ {0, . . . , 5} we compute R[D[j]] = R[D[j]] · S[j] except when D[j] is equal
to zero when no operation is performed. This can be performed in an arbitrary
order and will result in:

R[1] = S[7] · S[5] = x16384 x1024 = x17408

R[2] = S[0] · S[9] · S[2] = xx262144 x16 = x262161

R[3] = S[3] · S[8] = x64 x65536 = x65600

This is exactly the same result as given where all the xmi

for i ∈ {0, . . . , 9}
are precomputed. The only difference being the order in which the xmi

, for
i ∈ {1, . . . , 10}, are multiplied together. The final stage is the same as described
above, since z = R[1] · R[2]2 ·R[3]3 = x17408 x2·262161 x3·65600 = x738530.

Jacobi Quartic Curves Revisited

Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson

Information Security Institute,
Queensland University of Technology, QLD, 4000, Australia

{h.hisil,kk.wong,g.carter,e.dawson}@qut.edu.au

Abstract. This paper provides new results about efficient arithmetic
on Jacobi quartic form elliptic curves, y2 = dx4 + 2ax2 + 1. With recent
bandwidth-efficient proposals, the arithmetic on Jacobi quartic curves
became solidly faster than that of Weierstrass curves. These proposals
use up to 7 coordinates to represent a single point. However, fast scalar
multiplication algorithms based on windowing techniques, precompute
and store several points which require more space than what it takes
with 3 coordinates. Also note that some of these proposals require d = 1
for full speed. Unfortunately, elliptic curves having 2-times-a-prime num-
ber of points, cannot be written in Jacobi quartic form if d = 1. Even
worse the contemporary formulae may fail to output correct coordinates
for some inputs. This paper provides improved speeds using fewer co-
ordinates without causing the above mentioned problems. For instance,
our proposed point doubling algorithm takes only 2 multiplications, 5
squarings, and no multiplication with curve constants when d is arbi-
trary and a = ±1/2.

Keywords: Efficient elliptic curve arithmetic, point multiplication,
Jacobi model of elliptic curves.

1 Introduction

Cryptology as a computational science has been a driving force behind the arith-
metic of elliptic curves in the past few decades. The demand for more speed led
researchers to propose new formulae/algorithms/point-representations for sev-
eral different elliptic curve models. However, the speed limitation for performing
arithmetic on elliptic curves —like many other computational problems— is still
an open question.

The historical roots of the topic dates back to late 18th and early 19th century:
the time of Euler, Abel and Jacobi. An outline of the previous work restricted
to the efficient arithmetic on Jacobi quartic curves is as follows. Chudnovsky
and Chudnovsky [8] introduced the first inversion-free algorithms for performing
group operations using a weighted projective point representation. Billet and
Joye [2] used Jacobi quartic curves for protection against side-channel attacks
with a point addition speed record for that time of 10M+3S+1D. In this paper,
M stands for a field multiplication; S for a field squaring; D for a multiplication
by a curve constant; I for a field inversion. This notation is borrowed from

C. Boyd and J. González Nieto (Eds.): ACISP 2009, LNCS 5594, pp. 452–468, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Jacobi Quartic Curves Revisited 453

[6]. Duquesne [11] improved this operation count by 1M + 1S with a variant
of Billet/Joye unified point addition algorithm. Duquesne’s method converts
the base point in weighted projective coordinates to a new point representation
with 4 coordinates, performs the scalar multiplication within the new coordinate
system, and outputs the final result in original weighted projective coordinates.
Duquesne’s improvement was followed by additional results in [5], [17], and [18].
However, the latter proposals tend to use more space —up to 7 coordinates per
point— despite their speed advantage. Further disadvantages have already been
mentioned in the abstract. We will extend our discussion on these aspects in §2.

In this paper, we carefully optimize the arithmetic of Jacobi quartic curves
targeting more efficient scalar multiplication operations. Our proposal performs
faster and uses less space than [11], [5], [17], and [18].

The paper is organized as follows. A review of Jacobi quartic curves is given
in §2. Efficient algorithms/formulae/point-representations are introduced in §3,
§4, and §5. Implementation timings are given in §6. We draw our conclusions
in §7.

2 Background

This section gives definitions for Jacobi quartic curves. Some of the results in-
volved in this section are analogous to our earlier work [19].

Let K be a field with char(K)
= 2. A Jacobi quartic form elliptic curve over
K is defined by

EJ,d,a : y2 = dx4 + 2ax2 + 1

where a, d ∈ K with ∆ = 256d(a2 − d)2
= 0. The j-invariant of this curve is
given by 64d−1(a2 − d)−2(a2 + 3d)3 ∈ K.

Billet and Joye remark in [2] that any elliptic curve, E/K, can be written
as EJ,d,a/K if E(K) has an element of order 2 and provide the transformations
between a Weierstrass elliptic curve y2 = x3+ax+b of even order and a projective
Jacobi quartic curve.

We first review the most popular addition formulae. Let (x1, y1), (x2, y2) ∈
EJ,d,a(K). Assuming that (x3, y3) is defined we have (x1, y1)+(x2, y2) = (x3, y3)
where

x3 =
x1y2 + y1x2

1 − dx2
1x

2
2

, (1)

y3 =
(y1y2 + 2ax1x2)(1 + dx2

1x
2
2) + 2dx1x2(x2

1 + x2
2)

(1 − dx2
1x

2
2)2

. (2)

Formula (1) appears in one of Euler’s historical works [13]. Formula (2) is
adapted from [2]. With this selection of the algebraic expressions, the identity
element becomes the point (0, 1). The negative of a point (x, y) is (−x, y). The
point (0,−1) is of order 2. EJ,d,a is non-singular provided that ∆
= 0. On the
other hand, there is a singular point at infinity —denoted by (0 : 1 : 0)— in the
projective closure of EJ,d,a if and only if d is a square in K. Resolving this
singularity yields two more points of order 2 (both are written as (0 : 1 : 0)).

454 H. Hisil et al.

The following lemma shows that formulae (1) and (2) are complete if d is not
a square in K. The term complete is used to emphasize that addition formulae
are defined for all inputs, see [6].

Lemma 1. Let d, x1, x2 ∈ K. Assume that d is non-square. Then dx2
1x

2
2
= 1.

Proof. Suppose that dx2
1x

2
2 = 1. So d, x1, x2
= 0. But then d = (1/(x1x2))2. ��

Lemma 1 is similar to Theorem 3.3 of [6]. In the case of Jacobi quartic form, the
statement of the lemma and its proof is shorter.

We can prevent dx2
1x

2
2 = 1 even if d is a square in K. Lemma 2 states a

sufficient condition. This lemma and its proof are similar to Corollary 1 in [19].

Lemma 2. Let a, d, x1, y1, x2, y2 ∈ K such that d(a2−d)
= 0. Assume that P =
(x1, y1) and Q = (x2, y2) are points of odd order on EJ,d,a. Then 1− dx2

1x
2
2
= 0.

We provide a proof in Appendix A. By elementary group theory, multiplying a
point of even order with some power of 2 yields a point of odd order.

More formulae. Jacobi elliptic functions give rise to many addition formulae,
cf. [24], [8], and [2]. The original reference is [20]. The following formulae are
congruent via the algebraic relations sn(·)2+cn(·)2 = 1 and k2sn(·)2+dn(·)2 = 1.

sn(u1 + u2) =
sn(u1)cn(u2)dn(u2) + cn(u1)dn(u1)sn(u2)

1 − k2sn(u1)2sn(u2)2
(3)

=
sn(u1)2 − sn(u2)2

sn(u1)cn(u2)dn(u2) − cn(u1)dn(u1)sn(u2)
. (4)

To see the congruence, either take the arithmetic cross product and write

sn(u1)2cn(u2)2dn(u2)2 − cn(u1)2dn(u1)2sn(u2)2 =

(sn(u1)2 − sn(u2)2)(1 − k2sn(u1)2sn(u2)2)

—the rest follows when cn(·) is replaced with 1 − sn(·)2 and dn(·) is replaced
with 1− k2sn(·)— or simply run the Maple script

> simplify(expand(
JacobiSN(u1 + u2, k) - (

(JacobiSN(u1, k)*JacobiCN(u2, k)*JacobiDN(u2, k) +
JacobiSN(u2, k)*JacobiCN(u1, k)*JacobiDN(u1, k))/
(1 - k^2*JacobiSN(u1, k)^2*JacobiSN(u2, k)^2))));

0

Formula (3) is analogous to (1) as pointed out in [2] via the relation (xi, yi) =
(sn(ui), cn(ui)dn(ui)). Similarly, the analog of (4) is given by

x3 =
x2

1 − x2
2

x1y2 − y1x2
. (5)

This formula is not defined if (x1, y1) = (x2, y2). This formula is independent
of a and d. There are several other ways to derive (5). For instance, one may use

Jacobi Quartic Curves Revisited 455

the strategy applied in [19] for the derivation of dedicated addition formulae on
twisted Edwards curves. Formula (5) is of minimal total degree. Therefore, the
Monagan/Pearce minimal total degree algorithm in [23] can be used to derive
this same formula (or maybe an alternative formula of same total degree if there
exists one) departing from (1) or any other valid formula.

Lemma 2 can be rewritten for (5). The proof is similar to the proof of
Lemma 2.

Lemma 3. Let a, d, x1, y1, x2, y2 ∈ K such that d(a2 − d)
= 0. Assume that
P = (x1, y1) and Q = (x2, y2) are points of odd order on EJ,d,a. Assume that
P
= Q. Then x1y2 − y1x2
= 0.

The choices for computing y3 are abundant. For instance, each of the following
formulae computes y3 (except for a few exceptional inputs):

y3 =
(x2

1 + x2
2)(y1y2 − 2ax1x2) − 2x1x2(1 + dx2

1x
2
2)

(x1y2 − y1x2)2
, (6)

y3 =
(x1y2 − y1x2)(y1y2 + 2ax1x2) + 2(x2y2 − x1y1)

(x1y2 − y1x2)(1 − dx2
1x

2
2)

, (7)

y3 =
x1y1(2 + 2ax2

1 − y2
1) − x2y2(2 + 2ax2

2 − y2
2)

(x1y2 − y1x2)(1 − dx2
1x

2
2)

. (8)

Relevant Work. Efficient implementations often use inversion-free point dou-
bling and point addition formulae. To the best of our knowledge all such pro-
posals for Jacobi quartic curves reference from weighted projective coordinates
which represent the points as (X : Y : Z)[1,2,1] = (λX : λ2Y : λZ) for all nonzero
λ ∈ K.

Chudnovsky and Chudnovsky [8] proposed two inversion-free point addition
and two inversion-free point doubling formulae using a slightly different quartic
equation given by

EJ̃ ,a′,b′ : y2 = x4 + a′x2 + b′

and using weighted projective coordinates. The formulae in [8, (4.10) on p.418]
are analogous to (5) with the minor detail that the identity element is moved
to one of two points at infinity. The arithmetic of this curve is similar to that
of EJ,a,b due to the symmetry in the right hand side of the weighted projective
equations Y 2 = X4 + a′X2Z2 + b′Z4 and Y 2 = dX4 + 2aX2Z2 + Z4.

Billet and Joye [2] proposed a faster inversion-free unified addition algorithm
using (1) and (2). The term unified is used to emphasize that point addition
formulae remain valid when two input points are identical, see [10, §29.1.2]. By
Lemma 2, the Billet/Joye algorithm is complete if d is not a square in K and
needs 10M + 3S + 1D. We remark that no faster way of inversion-free gen-
eral point addition is known to date in (X : Y : Z)[1,2,1] coordinates. It remains
an open question whether it is possible to speed up the addition in weighted
(X : Y : Z)[1,2,1] coordinates. Nevertheless, the speed of the Billet/Joye algo-
rithm was improved by Duquesne in [11] with the proposal of (X2 : XZ : Z2 : Y)
coordinates. Duquesne’s variant addition algorithm needs 9M + 2S + 1D sav-
ing 1M + 1S over the Billet/Joye algorithm by using slightly more space to

456 H. Hisil et al.

represent the points. Bernstein and Lange [5] extended this representation to
(X : Y : Z : X2 : 2XZ : Z2) and (X : Y : Z : X2 : 2XZ : Z2 : X2 + Z2) saving an
extra M − S (i.e. M-S trade-off) over Duquesne’s algorithm. A more detailed
overview of these algorithms and operation counts can be found in the origi-
nal papers or in the Explicit-Formulas Database (EFD) [5] which also reports
1M+9S+1D doubling algorithm by Bernstein/Lange, 2M+6S+2D doubling
algorithm by Hisil/Carter/Dawson, and 2M + 6S + 1D doubling algorithm by
Feng/Wu in (X : Y : Z)[1,2,1]. Duquesne coordinates (X2 : XZ : Z2 : Y)[2,2,2,2]
use less space than redundant coordinates but need special treatment in the
scalar multiplication to obtain the original coordinates (X : Y : Z)[1,2,1] of the
final result. The original representation as (X : Y : Z)[1,2,1] in [2] uses even less
space however this representation has to date been slower than the redundant
coordinates.

Hisil, Wong, Carter, and Dawson [17] introduced new point doubling for-
mulae together with a fast point doubling algorithm costing only 3M + 4S in
(X : Y : Z : X2 : Z2) if d = 1. Roughly at the same time essentially the same for-
mulae were independently derived by Feng and Wu, see EFD [5]. These formulae
were adapted to (X : Y : Z : X2 : 2XZ : Z2) coordinates with the same operation
count in EFD.

Later Hisil, Wong, Carter, and Dawson [18] introduced (for the case d = 1) new
unified addition formulae which use 7M + 3S + 1D in (X : Y : Z : X2 : Z2 : XZ)
and 7M + 4S + 1D in (X : Y : Z : X2 : Z2) and newer doubling formulae which
need 2M + 5S + 1D in (X : Y : Z : X2 : Z2) and (X : Y : Z : X2 : Z2 : XZ).

The redundant representations such as

(X : Y : Z : X2 : 2XZ : Z2 : X2 + Z2)[1,2,1,2,2,2,2],
(X : Y : Z : X2 : 2XZ : Z2)[1,2,1,2,2,2],

(X : Y : Z : X2 : Z2 : X2 + Z2)[1,2,1,2,2,2],
(X : Y : Z : X2 : Z2)[1,2,1,2,2],

(X : Y : Z : X2 : Z2 : XZ)[1,2,1,2,2,2]

help in the development of faster algorithms for performing point operations and
their overall performance only slightly differs from each other. However, they all
share one serious drawback. They need more space for storing the points in
comparison to earlier proposals. Despite the speed advantage of these coordi-
nate systems, the large space requirement makes the practical use of Jacobi
quartic curves questionable since windowing techniques in scalar multiplication
algorithms precompute and store several points.

We aim to solve this disadvantage in subsequent sections. Furthermore we
propose a faster doubling algorithms.

Even more formulae. All of the affine formulae given in this section involve
inversions in K. In cryptographic applications K is finite and computing inverses
in a finite field can be very costly in comparison to the multiplication and ad-
dition operations. In §3 and §4 we will introduce inversion-free formulae which
are simply derived by the adaptation of affine formulae to a suitable projective
point representation. However, formulae given so far do not necessarily lead to

Jacobi Quartic Curves Revisited 457

the fastest inversion free algorithms to perform the basic operations; point dou-
bling and point addition. Therefore we propose new affine point doubling and
point addition formulae to assist following sections.

Let (x1, y1) ∈ EJ,d,a(K). Assuming that (x3, y3) is defined we have 2(x1, y1) =
(x3, y3) where

x3 = µx1, (9)

y3 = µ(µ − y1) − 1 (10)

with µ = 2y1/(2+2ax2
1−y2

1). In the derivations of (9) and (10) we were inspired
by the results in [6] and [18]. If d is a square in K then these point doubling
formulae work for all inputs i.e. (x3, y3) is defined for all inputs. If d is a square
in K then there exist two points at infinity of order two. The double of these
points is (0, 1). If (2 + 2ax2

1 − y2
1) = 0 then (x1, y1) is a point of order 4 and the

output is a point at infinity.
Further let (x2, y2) ∈ EJ,d,a(K). Assuming that (x3, y3) is defined we have

(x1, y1) + (x2, y2) = (x3, y3) where x3 is defined as in (5) and

y3 =
(x1 − x2)2

(x1y2 − y1x2)2
(
y1y2 − 2ax1x2 + 1 + dx2

1x
2
2
)

− 1. (11)

In addition, if s ∈ K such that d = s2 then we can also write

y3 =
(1 + sx1x2)2

(1 − dx2
1x

2
2)2

(y1y2 + 2ax1x2 + sx2
1 + sx2

2) − sx2
3 (12)

where x3 is given by (1).
Formulae (11) and (12) compute the same result as (2), (6), (7), and (8).

Formula (12) is defined if (x1, y1) = (x2, y2). Formula (11) is not defined if
(x1, y1) = (x2, y2). Both formulae are incomplete, i.e. (x3, y3) is not defined for
a few special inputs.

3 Homogeneous Projective Coordinates, Q

Projective coordinates are used as basic tools in designing inversion-free algo-
rithms to carry out group arithmetic on elliptic curves. In the case of Jacobi
quartic curves, we consider homogenous projective coordinates (X : Y : Z)[1,1,1]
for efficiency purposes for the first time. From now on we omit the informative
subscript [1, 1, 1] for these coordinates.

In homogeneous projective coordinates each point (x, y) is represented by the
triplet (X : Y : Z)which satisfies the projective equationY 2Z2 = dX4+2aX2Z2+
Z4 and corresponds to the affine point (X/Z, Y/Z) with Z
= 0. The identity el-
ement is represented by (0 : 1 : 1). The negative of (X : Y : Z) is (−X : Y : Z). In
the following subsection, we provide efficient point doubling formulae.

3.1 Point Doubling in Q
We remark that the fastest-so-far three-coordinate point doubling algorithm in
[5, dbl-2007-fw-2] costs 2M+6S+1D in (X : Y : Z)[1,2,1]. We also remark that
this algorithm assumes d = 1.

458 H. Hisil et al.

In this section we introduce new efficient doubling formulae. Given (X1 : Y1 : Z1)
with Z1
= 0 the point doubling can be performed as 2(X1 : Y1 : Z1) = (X3 : Y3 : Z3)
where

X3 = 2X1Y1(2Z2
1 + 2aX2

1 − Y 2
1),

Y3 = 2Y 2
1 (Y 2

1 − 2aX2
1) − (2Z2

1 + 2aX2
1 − Y 2

1)2,

Z3 = (2Z2
1 + 2aX2

1 − Y 2
1)2.

(13)

We obtained these formulae from (9). With these formulae a point doubling
takes 2M + 5S + 1D where 1D is multiplication with a. These formulae do not
depend on d. Therefore keeping d arbitrary has no effect on the cost of (13).

If a = ±− 1/2 then a point doubling takes 2M+5S. Note 2a can be rescaled
to −1 via the map (x, y) �→ (x/

√
−2a, y) provided that

√
−2a ∈ K. This map

transforms the curve y2 = dx4 + 2ax2 +1 to y2 = (d/(4a2))x4−x2 +1. Alterna-
tively, a curve having a = −1/2 can be selected without rescaling. We comment
that similar arguments apply to the case a = 1/2.

For justifications and more on operation counts see DBL-Q-x in the Appendix
B. The proposed algorithm(s) are faster than other three-coordinate point dou-
bling algorithms for Jacobi quartic curves.

3.2 Point Addition in Q
It would be convenient to give an efficient point addition algorithm for the pro-
jective coordinates. However, the fastest point addition algorithms that we could
design were quite uncompetitive in comparison to the previous proposals in other
coordinate systems. Therefore, we leave this as an open question. As a remedy
to this, we will introduce fast point addition algorithms on a new coordinate
system in the next section and show that the new point addition algorithms can
be efficiently combined with the fast doubling algorithms from §3.1.

4 Extended Homogeneous Projective Coordinates, Qe

Jacobi quartic curves not only have a rich body of formulae but also allow us
to use various efficient point representations. We have already given a detailed
review in §2.

This section introduces a new representation of points on Jacobi quartic curves
and provides efficient algorithms to perform group operations on Jacobi quartic
form elliptic curves. Some of the results in this section are analogous to our
earlier work [19].

In the new system a point (x, y) ∈ EJ,d,a(K) is represented by (X : Y : T : Z)
where T = X2/Z and (X : Y : T : Z)[1,1,1,1] = (λX : λY : λT : λZ)=(x : y : x2 : 1)
for all nonzero λ ∈ K. From now on we omit the informative subscript [1, 1, 1, 1]
for these coordinates. Each quadruplet (X : Y : T : Z) simultaneously satisfy the
homogeneous projective equations

{
X2 − TZ = 0

Y 2 − dT 2 − 2aX2 − Z2 = 0
(14)

Jacobi Quartic Curves Revisited 459

or simply the homogeneous projective equation

Y 2Z2 = dX4 + 2aX2Z2 + Z4 (15)

where T is omitted in the latter case. A point representation (X : Y : Z)
satisfying (15) can be converted to the new coordinates by computing
(XZ : Y Z : X2 : Z2) with Z
= 0 in 1M + 3S. This coordinate system will be
denoted by Qe in the rest of the paper. The identity element is represented by
the quadruplet (0 : 1 : 0 : 1). The negative of (X : Y : T : Z) is (−X : Y : T : Z).

4.1 Dedicated Point Doubling in Qe

Given (X1 : Y1 : T1 : Z1) with Z1
= 0 satisfying (15), point doubling can be
performed as 2(X1 : Y1 : T1 : Z1) = (X3 : Y3 : T3 : Z3) where X3, Y3, and Z3 are
the same as (13) and

T3 = (2X1Y1)2. (16)

If a = −1/2 then the operations can be performed with a 0M+8S algorithm.
Again the formulae do not depend on d. Therefore keeping d arbitrary has no
effect on the cost of (13). There are many M/S trade-offs possible for doubling
in Qe when a is arbitrary or when a = −1/2. For justifications and more on
operation counts see DBL-Qe-x in Appendix B.

In §5, we will mix Qe with Q to benefit from faster doubling algorithms
proposed in §3.1. In §5, we will use point doubling from this section to develop
a double-and-add algorithm.

4.2 Dedicated Point Addition in Qe

Given (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) with Z1
= 0 and Z2
= 0 and
(X1 : Y1 : T1 : Z1)
= (X2 : Y2 : T2 : Z2), a dedicated addition can be performed as
(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 − Y1X2)(T1Z2 − Z1T2),

Y3 = (Y1Y2 − 2aX1X2)(T1Z2 + Z1T2) − 2X1X2(Z1Z2 + dT1T2),

T3 = (T1Z2 − Z1T2)2,

Z3 = (X1Y2 − Y1X2)2.

(17)

We derived these formulae using (5) and (6) in §2. Without any assumptions
on the curve constants, Y3 can alternatively be written as

Y3 = (T1Z2 + Z1T2 − 2X1X2)
(
Y1Y2 − 2aX1X2 + Z1Z2 + dT1T2

)
− Z3. (18)

We obtained these formulae from (11). If a = −1/2 then the dedicated addition
costs 7M+3S+2D with the use of (18). For justifications and more on operation
counts see ADD-Qe-x in Appendix B.

460 H. Hisil et al.

4.3 Unified Point Addition in Qe

Given (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) with Z1
= 0 and Z2
= 0, a
unified addition can be performed as (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) =
(X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 + Y1X2)(Z1Z2 − d T1T2),

Y3 = (Y1Y2 + 2aX1X2)(Z1Z2 + d T1T2) + 2dX1X2(T1Z2 + Z1T2),

T3 = (X1Y2 + Y1X2)2,

Z3 = (Z1Z2 − d T1T2)2.

(19)

These formulae are analogous to (1) and (2) hence complete1 by Lemma 1 if
d is not a square in K.

Let s ∈ K such that d = s2. Alternatively, we can write

Y3 = (Z1Z2 + dT1T2 + 2sX1X2)(Y1Y2 + 2aX1X2 + sT1Z2 + sZ1T2) − sT3. (20)

We obtained this formula from (12) and following the derivation notes in [18,
§2.1]. In this case, the addition is still unified. However, the completeness is
lost. Nevertheless, logical checks can be eliminated if the inputs are selected
as indicated in Lemma 2. As indicated before these algorithms do not strictly
require d = 1.

For justifications and more on operation counts see UADD-Qe-x in Appendix
B. The new representation is solidly faster than the representation in [2]. The
new representation can be equally fast as (or even faster than) the representa-
tion [11]. The special treatment in [11] for obtaining the original coordinates is
also removed since (X3 : Y3 : T3 : Z3) satisfies the homogeneous projective Jacobi
quartic curve. The new representation can be equally fast as the representations
in [5], [17], and [18]. However this is achieved by using only 4 coordinates rather
than 5, 6, or 7 coordinates.

5 Mixed Homogeneous Projective Coordinates, Q + Qe

The construction in this section is the same as [19, §4.3] and is closely linked
with [9]. Therefore, we only give a brief outline of the technique. The details can
be extracted from the original papers.

Most of the efficient scalar multiplication implementations are based on a
suitable combination of signed integer recoding (such as NAF, MOF), fast pre-
computation and left-to-right sliding fractional-windowing techniques. The re-
sulting algorithm is doubling intensive. Roughly for each bit of the scalar one
doubling is performed. Additions are accessed less frequently. Excluding the ad-
ditions used in the precomputation phase, approximately l/(w+1) additions are
needed where l is the number of bits in the scalar and w is the window length.
w is used to control space consumption and optimize the total running time.
1 If d is not a square in K then the point (0 : 1 : 0) is not defined over K and should

be omitted though it seems to satisfy the curve equation (15).

Jacobi Quartic Curves Revisited 461

An abstract view of the scalar multiplication is composed of several repeated-
doublings each followed by a single addition. In our specific case, these operations
are performed in the following way:

(i) If a point doubling is followed by another point doubling, use Q ← 2Q.
(ii) If a point doubling is followed by a point addition, use

1. Qe ← 2Q for the point doubling step; followed by,
2. Q ← Qe +Qe for the point addition step.

Suppose that a repeated-doubling phase is composed of m doublings. In (i),
m−1 successive doublings inQ are performed with the fastest DBL-Q-x algorithm
explained in §3.1 and given in Appendix B. In (ii), the remaining doubling is
merged with the single addition phase to yield a combined double-and-add step;
a similar approach to [12]. To perform the double-and-add operation we first
compute the doubling step with the fastest DBL-QtoQe-x algorithm explained in
§4.1 and given in Appendix B. This algorithm is suitable to compute Qe ← 2Q
since the inputs are only composed of the coordinates X , Y , Z and the output is
still produced in Qe. We then perform the addition in Qe using ADD-Qe-2 which
is explained in §4.2 and given in Appendix B but output only the coordinates of
Q. Note that the last operation of ADD-Qe-2 (i.e. T3 ← T 2

3) can be confidently
removed to save 1S since the result is in Q (not Qe).

If we use DBL-Q-1 for repeated doubling operations and a combination of
DBL-QtoQe-1 and ADD-Qe-2 for double-and-add operations then we need only
2M + 5S for each doubling and we effectively need ((8S) + (8M + 2S + 2D −
1S))− (2M + 5S) = 6M + 4S + 2D for each addition step.

We should note that the precomputed points are kept inQe which is composed
of 4 coordinates rather than 3. On the other hand, we do not need 5, 6, or 7
coordinates as is the case in [5], [17], and [18].

By lemma 3, all logical checks to handle exceptional inputs can be eliminated
if the base point is of odd order.

6 Experimental Results

This section provides implementation timings for single-variable-point-single-
variable-scalar elliptic curve scalar multiplication. We have used a single core of
Intel Core 2 Duo (E6550) processor in our experimentations.

Finite field operations. Following the implementation notes from [15] and
[14], we have written a hand-crafted finite field layer using x86-64 instruction
set and GCC extended inline assembly. We have designed our field arithmetic
layer to serve for fields Fp where p is of the form 2256 − c such that c is smaller
than or equal to 64 bits. In our experimentations we have fixed c = 587.

Elliptic curve operations. We have selected Q-DBL-2 as the doubling algo-
rithm and a combination of Q-DBL-2 and Qe-ADD-2 as the double-and-add al-
gorithm. This decision is due to the fact that the cost of additions is not so
negligible in 64 bit applications. This was previously discussed in [15].

462 H. Hisil et al.

Scalar multiplication algorithm. We have implemented Algorithm 3.38 in
[16] by modifying Steps 4.3 and Steps 4.4 as we discussed in §5.
Integer recoding. We have used Avanzi’s w-LtoR integer recoding algorithm
[1]. We have determined w = 5 to be the optimal window length in our imple-
mentation. We have not incorporated fractional windowing techniques [22] to
our implementation following the comments in [14].

Lookup table. To accommodate the 5-LtoR technique 3P, 5P, . . . , 15P are pre-
computed by the sequence of operations 2P, 2P + P, 2P + 3P, . . . , 2P + 13P . A
new precomputation strategy in [21] is of interest for implementation. We have
not implemented this approach yet. In our implementation I/M ≈ 121. There-
fore we have not normalized the precomputed values following the analysis [3].
Also following the same reference, we have derived and implemented double and
add algorithms in Qe with Z = 1. These special operations save time in the
precomputation.

Table 1 summarizes measured average clock cycles for primitive operations
for a single-variable-point-single-variable-scalar multiplication on EJ,−1/2,d for
some fixed d.

Table 1. 256-bit scalar multiplication on Intel Core 2 Duo (E6550)

Operation Cycles
Precomputation 17,000
Main loop 345,000
Normalization 14,000
Total 376,000

We should warn the reader that we have detected these cycle counts with
our local benchmarking tools. Unfortunately, we have not yet integrated our im-
plementation to the commonly accepted toolkit SUPERCOP, a benchmarking
framework within eBACS, the benchmarking project of ECRYPT II [4]. There-
fore we do not claim verifiability at this stage.

We should also warn the reader that our implementation is a variable-single-
point-variable-single-scalar multiplication. In the case where the base point is
fixed the timings can be dramatically improved by using Algorithm 3.44 or Al-
gorithm 3.45 in [16]. Indeed such an approach was used in [14] for Diffie-Hellman
key pair generation where the base point is fixed. Note also that our implemen-
tation does not incorporate the Galbraith-Lin-Scott (GLS) homomorphism [14]
which has been recently shown to yield faster results.

In our implementation, a scalar multiplication on EJ,−1/2,d takes approxi-
mately 1162M+ 1110S+ 102D. In addition, there are approximately 1796 calls
to faster field operations (such as addition, subtraction, division by 2, etc.).

As the comparative part of our work, we have also covered Weierstrass (a =
−3) and twisted Edwards (a = −1) curves in our implementation. For the twisted
Edwards implementation we have followed [19, §4.3]. We have used doubling

Jacobi Quartic Curves Revisited 463

formulae from [7]. For the Weierstrass implementation we have collected the most
efficient formulae from EFD [5]. In our implementation, a scalar multiplication
on the Weierstrass curve y2 = x3 − 3x + b for some fixed b with w = 5 —
optimum— takes approximately 1598M + 1156S + 0D. In addition, there are
approximately 2896 calls to faster field operations (such as addition, subtraction,
division by 2, etc.). In our implementation, a scalar multiplication on the twisted
Edwards curve −x2 + y2 = 1 + dx2y2 for some fixed d with w = 6 —optimum—
takes approximately 1202M + 969S + 0D. In addition, there are approximately
2025 calls to faster field operations (such as addition, subtraction, division by 2,
etc.). We have not tested the performance of formulae in [18] yet.

Table 2 summarizes measured average clock cycles for a single-variable-point-
single-variable-scalar multiplication on different representations of elliptic curves.

Table 2. 256-bit scalar multiplication on Intel Core 2 Duo (E6550)

Curve Cycles
Weierstrass (a = −3), Jacobian 418,000
Jacobi quartic (a = −1/2), Q + Qe 376,000
Twisted Edwards (a = −1), E + Ee 362,000

In this implementation Jacobi quartic curves runs significantly faster than
Weierstrass curves and slightly slower than twisted Edwards curves.

7 Conclusion

We introduced new results for performing arithmetic on Jacobi quartic curves.
In §2, we proved that earlier formulae (1) and (2) in the literature are complete

provided that d is a not a square in the underlying field K. We explored several
affine formulae some being known to date and some being new.

In §3 and §4, we carefully selected the most suitable affine formulae and then
with suitable point representations converted them to projective form. In this
context, for the first time we used homogeneous projective coordinates on Jacobi
quartic curves for efficiency purposes and introduced new and faster doubling
algorithms. In addition, we introduced a new point representation namely ex-
tended homogeneous projective coordinates, Qe, for Jacobi quartic curves. This
coordinate system allows very efficient point addition operations using fewer
coordinates in comparison to recent proposals for Jacobi quartic curves.

In §6 we reported our experimental results using state-of-art formulae for
Jacobi quartic, twisted Edwards, and Weierstrass curves. In our implementation
Jacobi quartic curves are approximately 20% faster than Weierstrass curves.

With our proposal Jacobi quartic curves can provide similar speeds to twisted
Edwards curves in variable-point-and-variable-scalar multiplications. The point
doubling on a Jacobi quartic curve is slightly faster than that of Edwards curves.
Note that doubling is the most frequently accessed elliptic curve group opera-
tion in variable-point-and-variable-scalar multiplications. On the other hand,

464 H. Hisil et al.

Jacobi quartic curves seem to be slower on the double-and-add operation (§5)
in comparison to twisted Edwards curves. In overall timings for variable-single-
point-variable-single-scalar multiplication Jacobi quartic curves are competitive
with (but slightly slower than) twisted Edwards curves. It should be noted here
that there are elliptic curves of order 2-times-a-prime where our methods are
applicable with the use of the Jacobi quartic curves with a = −1/2. However,
such curves cannot be written (over the base field) in twisted Edwards form.

References

1. Avanzi, R.M.: A note on the signed sliding window integer recoding and its left-to-
right analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 130–143. Springer, Heidelberg (2004)

2. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643,
pp. 34–42. Springer, Heidelberg (2003)

3. Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar
multiplication. In: Finite Fields and Applications Fq8. Contemporary Mathemat-
ics, American Mathematical Society, vol. 461, pp. 1–18 (2008)

4. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems (2008), http://bench.cr.yp.to

5. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD

6. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

7. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

8. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Advances in Applied
Mathematics 7(4), 385–434 (1986)

9. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

10. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy. CRC Press, Boca Raton (2005)

11. Duquesne, S.: Improving the arithmetic of elliptic curves in the Jacobi model.
Information Processing Letters 104(3), 101–105 (2007)

12. Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic
and improved Weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS,
vol. 2612, pp. 343–354. Springer, Heidelberg (2003)

13. Euler, L.: De integratione aequationis differentialis mdx/
√

1 − x4 =
n dy/

√
1 − y4. Novi Commentarii Academiae Scientiarum Petropolitanae

6, 37–57 (1761); Translated from the Latin by Langton, S.G. On the
integration of the differential equation mdx/

√
1 − x4 = n dy/

√
1 − y4,

http://home.sandiego.edu/~langton/eell.pdf
14. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-

tography on a large class of curves. In: EUROCRYPT 2009. LNCS, vol. 5479, pp.
518–535. Springer, Heidelberg (2009)

http://bench.cr.yp.to
http://www.hyperelliptic.org/EFD
http://home.sandiego.edu/~langton/eell.pdf

Jacobi Quartic Curves Revisited 465

15. Gaudry, P., Thomé, E.: The mpFq library and implementing curve-based key ex-
changes. In: SPEED 2007, pp.49–64 (2007),
http://www.loria.fr/~gaudry/publis/mpfq.pdf

16. Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptogra-
phy. Springer, New York (2003)

17. Hisil, H., Carter, G., Dawson, E.: New formulae for efficient elliptic curve arith-
metic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 138–151. Springer, Heidelberg (2007)

18. Hisil, H., Wong, K.K., Carter, G., Dawson, E.: Faster group operations on elliptic
curves. In: Australasian Information Security Conference (AISC 2009), Wellington,
New Zealand (January 2009); Conferences in Research and Practice in Information
Technology (CRPIT), vol. 98, pp. 7–19 (2009)

19. Hisil, H., Wong, K.K., Carter, G., Dawson, E.: Twisted Edwards curves revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008)

20. Jacobi, C.G.J.: Fundamenta nova theoriae functionum ellipticarum. Sumtibus
Fratrum Borntræger (1829)

21. Longa, P., Gebotys, C.: Novel precomputation schemes for elliptic curve cryptosys-
tems. In: ACNS 2009. LNCS. Springer, Heidelberg (to appear, 2009)

22. Möller, B.: Improved techniques for fast exponentiation. In: Lee, P.J., Lim, C.H.
(eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)

23. Monagan, M., Pearce, R.: Rational simplification modulo a polynomial ideal. In:
ISSAC 2006, pp. 239–245. ACM, New York (2006)

24. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Univer-
sity Press, Cambridge (1927)

A Appendix

Proof (Lemma 2). Points at infinity (over the extension of K where they exist)
are of order 2. Assume that P and Q are of odd order. Thus, P , Q and P + Q
cannot be the points at infinity. Since the formulae (1) and (2) are complete
provided that the points at infinity are not involved, the denominator 1− dx2

1x
2
2

must be nonzero.
An algebraic approach is as follows. Suppose that 1−dx2

1x
2
2 = 0. Then x1, x2
=

0 and we can write x2
1 = 1/(dx2

2).
Suppose that P = ±Q. Then 1 − dx2

1x
2
2 = 1 − dx4

1 = 1 − dx4
2 = 0. It follows

that R = 2P and S = 2Q are points at infinity. Therefore P and Q must be of
order 4 which contradicts the hypothesis. From now on we assume P
= ±Q.

We now have 1− dx4
1
= 0 and 1 − dx4

2
= 0. Using the relations x2
1 =1/(dx2

2),
y2
2 = dx4

2 + 2ax2
2 + 1 and formulae (1) and (2) we get

x(R)2 =
(2x1y1)2

(1 − dx4
1)2

=
2(1/(dx2

2))(d(1/(dx2
2)2 + 2a(1/(dx2

2) + 1)
(1 − d(1/(dx2

2))2)2
=

(2x2y2)2

(1 − dx4
2)2

=x(S)2,

y(R) =
(1 + dx4

1)(y2
1 + 2ax2

1) + 4dx4
1

(1 − dx4
1)2

=
(1 + d(1/(dx2

2))2)((d(1/(dx2
2)2 + 2a(1/(dx2

2) + 1)+2a(1/(dx2
2)))+4d(1/(dx2

2))2

(1 − d(1/(dx2
2))2)2

=
(1 + dx4

2)(y2
2 + 2ax2

2) + 4dx4
2

(1 − dx4
2)2

= y(S).

http://www.loria.fr/~gaudry/publis/mpfq.pdf

466 H. Hisil et al.

Hence, R = ±S. But then R ∓ S = 2P ∓ 2Q = 2(P ∓Q) = (0, 1). It follows
that P ∓Q is a point of order 2 since P
= ±Q.

Now either P is a point of even order or Q is a point of even order or both
P and Q are points of even order. All conditions contradict the hypothesis. In
conclusion 1− dx2

1x
2
2
= 0. ��

B Appendix

These algorithms are optimized in a way that X1-X2-X3, Y1-Y2-Y3, T1-T2-T3,
and Z1-Z2-Z3 are allowed to be the same registers. The algorithm uses ti as
temporary registers. a stands for an addition or a subtraction or a multiplication
by 2 or a division by 2.

2M + 5S + 7a, DBL-Q-1, assumes a = −1/2, (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1); t1 ← X1 + Y1,
X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , t1 ← t21, X3 ← X3 + Y3, t1 ← t1 − X3, Z3 ← 2Z3, Y3 ← X3 · Y3,
Y3 ← 2Y3, Z3 ← Z3 − X3, X3 ← t1 · Z3, Z3 ← Z2

3 , Y3 ← Y3 − Z3.

3M + 4S + 4a, DBL-Q-2, assumes a = −1/2, (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1); t1 ← X1 · Y1,
X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , X3 ← X3 + Y3, X3 ← X3/2, Y3 ← Y3 · X3, X3 ← Z3 − X3,
Z3 ← X2

3 , Y3 ← Y3 − Z3, X3 ← t1 · X3.

2M+5S+1D+8a, DBL-Q-3, (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1); t1 ← X1 +Y1, X3 ← X2
1 , Y3 ← Y 2

1 ,
Z3 ← Z2

1 , t1 ← t21, t1 ← t1−X3, t1 ← t1−Y3, X3 ← kX3 , X3 ← Y3 +X3, Z3 ← 2Z3, Y3 ← X3 ·Y3,
Y3 ← 2Y3, Z3 ← Z3 − X3, X3 ← t1 · Z3, Z3 ← Z2

3 , Y3 ← Y3 − Z3.

3M+4S+1D+4a, DBL-Q-4, (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1); t1 ← X1 ·Y1, X3 ← X2
1 , Y3 ← Y 2

1 ,
Z3 ← Z2

1 , X3 ← kX3 , X3 ← X3 + Y3, X3 ← X3/2, Y3 ← Y3 · X3, X3 ← Z3 − X3, Z3 ← X2
3 ,

Y3 ← Y3 − Z3, X3 ← t1 · X3.

0M + 8S + 13a, DBL-Qe-1, DBL-QtoQe-1, assumes a = −1/2, (X3 : Y3 : T3 : Z3) =
2(X1 : Y1 : T1 : Z1); T3 ← X1 + Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , T3 ← T 2
3 , X3 ← X3 + Y3,

T3 ← T3 − X3, Z3 ← 2Z3, Z3 ← Z3 − X3, X3 ← T3 + Z3, T3 ← T 2
3 , Z3 ← Z2

3 , X3 ← X2
3 ,

X3 ← X3 − T3, X3 ← X3 − Z3, Z3 ← 2Z3, Y3 ← 2Y3, Y3 ← Y 2
3 , Y3 ← Y3 + T3, Y3 ← Y3 − Z3,

T3 ← 2T3.

1M+7S+9a, DBL-Qe-2, DBL-QtoQe-2, assumes a = −1/2, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1);
T3 ← X1 + Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , T3 ← T 2
3 , X3 ← X3 + Y3, T3 ← T3 −X3, Z3 ← 2Z3,

Z3 ← Z3 − X3, X3 ← T3 · Z3, Z3 ← Z2
3 , T3 ← T 2

3 , Y3 ← 2Y3, Y3 ← Y 2
3 , Y3 ← Y3 + T3, Y3 ← Y3/2,

Y3 ← Y3 − Z3.

2M+6S+6a, DBL-Qe-3, DBL-QtoQe-3, assumes a = −1/2, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1);
T3 ← X1 · Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , X3 ← X3 + Y3, X3 ← X3/2, Z3 ← Z3 − X3,
X3 ← T3 · Z3, Z3 ← Z2

3 , T3 ← T 2
3 , Y3 ← Y 2

3 , Y3 ← Y3 + T3, Y3 ← Y3/2, Y3 ← Y3 − Z3.

3M+5S+4a, DBL-Qe-4, DBL-QtoQe-4, assumes a = −1/2, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1);
T3 ← X1 · Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , X3 ← X3 + Y3, X3 ← X3/2, Y3 ← Y3 · X3,
X3 ← Z3 − X3, Z3 ← X2

3 , Y3 ← Y3 − Z3, X3 ← X3 · T3, T3 ← T 2
3 .

0M + 8S + 2D + 14a, DBL-Qe-5, DBL-QtoQe-5, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1); T3 ←
X1 + Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , T3 ← T 2
3 , T3 ← T3 − X3, t1 ← T3 − Y3, X3 ← kX3 ,

X3 ← X3 + Y3, Z3 ← 2Z3, Z3 ← Z3 − X3, T3 ← t21, X3 ← t1 + Z3, X3 ← X2
3 , Z3 ← Z2

3 ,
X3 ← X3 −T3, X3 ← X3 −Z3, Z3 ← 2Z3, t1 ← kT3 , T3 ← 2T3, Y3 ← 2Y3, Y3 ← Y 2

3 , Y3 ← Y3 + t1,
Y3 ← Y3 − Z3.

1M + 7S + 1D + 12a, DBL-Qe-6, DBL-QtoQe-6, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1); t1 ←
X1 + Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , t1 ← t21, t1 ← t1 − X3, t1 ← t1 − Y3, X3 ← kX3 ,
X3 ← X3 + Y3, Z3 ← 2Z3, Y3 ← X3 · Y3, Z3 ← Z3 − X3, T3 ← t21, X3 ← t1 + Z3, Z3 ← Z2

3 ,
Y3 ← 2Y3, Y3 ← Y3 − Z3, X3 ← X2

3 , X3 ← X3 − T3, X3 ← X3 − Z3, X3 ← X3/2.

1M + 7S + 2D + 10a, DBL-Qe-7, DBL-QtoQe-7, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1); t1 ←
X1 + Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , t1 ← t21, t1 ← t1 − X3, t1 ← t1 − Y3, X3 ← kX3 ,
X3 ← X3 + Y3, Z3 ← 2Z3, Z3 ← Z3 − X3, X3 ← t1 · Z3, T3 ← t21, Z3 ← Z2

3 , Y3 ← 2Y3, Y3 ← Y 2
3 ,

t1 ← kT3 , Y3 ← Y3 + t1, Y3 ← Y3/2, Y3 ← Y3 − Z3.

Jacobi Quartic Curves Revisited 467

2M + 6S + 1D + 8a, DBL-Qe-8, DBL-QtoQe-8, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1); T3 ←
X1 + Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , T3 ← T 2
3 , T3 ← T3 − X3, T3 ← T3 − Y3, X3 ← kX3 ,

X3 ← Y3 + X3, Z3 ← 2Z3, Y3 ← X3 · Y3, Y3 ← 2Y3, Z3 ← Z3 − X3, X3 ← T3 · Z3, Z3 ← Z2
3 ,

Y3 ← Y3 − Z3, T3 ← T 2
3 .

2M+6S+2D+6a, DBL-Qe-9, DBL-QtoQe-9, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1); t1 ← X1 ·Y1,
X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , X3 ← kX3, X3 ← X3+Y3, X3 ← X3/2, Z3 ← Z3−X3, X3 ← t1·Z3,
Z3 ← Z2

3 , T3 ← t21, Y3 ← Y 2
3 , t1 ← kT3 , Y3 ← Y3 + t1, Y3 ← Y3/2, Y3 ← Y3 − Z3.

3M + 5S + 1D + 4a, DBL-Qe-10, DBL-QtoQe-10, (X3 : Y3 : T3 : Z3) = 2(X1 : Y1 : T1 : Z1); T3 ←
X1 · Y1, X3 ← X2

1 , Y3 ← Y 2
1 , Z3 ← Z2

1 , X3 ← kX3 , X3 ← X3 + Y3, X3 ← X3/2, Y3 ← Y3 · X3,
X3 ← Z3 − X3, Z3 ← X2

3 , Y3 ← Y3 − Z3, X3 ← T3 · X3, T3 ← T 2
3 .

7M + 3S + 2D + 19a, ADD-Qe-1, assumes a = −1/2, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) +
(X2 : Y2 : T2 : Z2); t1 ← T1 + Z1, t2 ← dT2, t2 ← t2 + Z2, t1 ← t1 · t2, t2 ← Z1 · T2, T3 ← T1 · Z2,
t1 ← t1 − T3, t3 ← dt2, t1 ← t1 − t3, t3 ← T3 + t2, T3 ← T3 − t2, Z3 ← X1 − Y1, t2 ← X2 + Y2,
Z3 ← Z3 · t2, t2 ← X1 · X2, Y3 ← Y1 · Y2, Z3 ← Z3 − t2, Z3 ← Z3 + Y3, Y3 ← Y3 + t1, t1 ← 2t2,
t1 ← t3 − t1, Y3 ← Y3 + t2, Y3 ← t1 · Y3, X3 ← Z3 + T3, X3 ← X2

3 , Z3 ← Z2
3 , Y3 ← Y3 − Z3,

X3 ← X3 − Z3, T3 ← T 2
3 , X3 ← X3 − T3, X3 ← X3/2.

8M + 2S + 2D + 15a, ADD-Qe-2, assumes a = −1/2, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) +
(X2 : Y2 : T2 : Z2); t1 ← T1 + Z1, t2 ← dT2, t2 ← t2 + Z2, t1 ← t1 · t2, t2 ← Z1 · T2, T3 ← T1 · Z2,
t1 ← t1 − T3, t3 ← dt2, t1 ← t1 − t3, t3 ← T3 + t2, T3 ← T3 − t2, Z3 ← X1 − Y1, t2 ← X2 + Y2,
Z3 ← Z3 · t2, t2 ← X1 · X2, Y3 ← Y1 · Y2, Z3 ← Z3 − t2, Z3 ← Z3 + Y3, Y3 ← Y3 + t1, t1 ← 2t2,
t1 ← t3 − t1, Y3 ← Y3 + t2, Y3 ← t1 · Y3, X3 ← Z3 · T3, Z3 ← Z2

3 , Y3 ← Y3 − Z3, T3 ← T 2
3 .

7M + 3S + 3D + 19a, ADD-Qe-3, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2);
t1 ← T1 + Z1, t2 ← dT2, t2 ← t2 + Z2, t1 ← t1 · t2, t2 ← Z1 · T2, T3 ← T1 · Z2, t1 ← t1 − T3,
t3 ← dt2, t1 ← t1 − t3, t3 ← T3 + t2, T3 ← T3 − t2, Z3 ← X1 − Y1, t2 ← X2 + Y2, Z3 ← Z3 · t2,
t2 ← X1 · X2, Y3 ← Y1 · Y2, Z3 ← Z3 − t2, Z3 ← Z3 + Y3, Y3 ← Y3 + t1, t1 ← 2t2, t1 ← t3 − t1,
t2 ← kt2 , Y3 ← Y3 + t2, Y3 ← t1 · Y3, X3 ← Z3 + T3, X3 ← X2

3 , Z3 ← Z2
3 , Y3 ← Y3 − Z3,

X3 ← X3 − Z3, T3 ← T 2
3 , X3 ← X3 − T3, X3 ← X3/2.

8M + 2S + 3D + 15a, ADD-Qe-4, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2);
t1 ← T1 + Z1, t2 ← dT2, t2 ← t2 + Z2, t1 ← t1 · t2, t2 ← Z1 · T2, T3 ← T1 · Z2, t1 ← t1 − T3,
t3 ← dt2, t1 ← t1 − t3, t3 ← T3 + t2, T3 ← T3 − t2, Z3 ← X1 − Y1, t2 ← X2 + Y2, Z3 ← Z3 · t2,
t2 ← X1 · X2, Y3 ← Y1 · Y2, Z3 ← Z3 − t2, Z3 ← Z3 + Y3, Y3 ← Y3 + t1, t1 ← 2t2, t1 ← t3 − t1,
t2 ← kt2 , Y3 ← Y3 + t2, Y3 ← t1 · Y3, X3 ← Z3 · T3, Z3 ← Z2

3 , Y3 ← Y3 − Z3, T3 ← T 2
3 .

7M + 3S + 1D + 18a, UADD-Qe-1, assumes d = 1, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) +
(X2 : Y2 : T2 : Z2); t1 ← T1 + Z1, t2 ← T2 + Z2, T3 ← T1 · T2, Z3 ← Z1 · Z2, t1 ← t1 · t2,
t2 ← Z3 + T3, Z3 ← Z3 − T3, t1 ← t1 − t2, T3 ← X1 + Y1, t3 ← X2 + Y2, X3 ← X1 · X2,
Y3 ← Y1 · Y2, T3 ← T3 · t3, t3 ← T3 − X3, t3 ← t3 − Y3, T3 ← t23, Y3 ← Y3 + t1, t1 ← 2X3,
t1 ← t1 + t2, t2 ← kX3, Y3 ← Y3 − t2, Y3 ← Y3 · t1, Y3 ← Y3 − T3, X3 ← t3 + Z3, X3 ← X2

3 ,
Z3 ← Z2

3 , X3 ← X3 − Z3, X3 ← X3 − T3, X3 ← X3/2.

8M + 2S + 1D + 14a, UADD-Qe-2, assumes d = 1, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) +
(X2 : Y2 : T2 : Z2); t1 ← T1 + Z1, t2 ← T2 + Z2, T3 ← T1 · T2, Z3 ← Z1 · Z2, t1 ← t1 · t2,
t2 ← Z3 + T3, Z3 ← Z3 − T3, t1 ← t1 − t2, T3 ← X1 + Y1, t3 ← X2 + Y2, X3 ← X1 · X2,
Y3 ← Y1 · Y2, T3 ← T3 · t3, t3 ← T3 − X3, t3 ← t3 − Y3, T3 ← t23, Y3 ← Y3 + t1, t1 ← 2X3,
t1 ← t1 + t2, t2 ← kX3 , Y3 ← Y3 − t2, Y3 ← Y3 · t1, Y3 ← Y3 − T3, X3 ← t3 · Z3, Z3 ← Z2

3 .

7M + 3S + 5D + 18a, UADD-Qe-3, assumes d = s2, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) +
(X2 : Y2 : T2 : Z2); t1 ← sT1, t2 ← sT2, T3 ← t1t2, t1 ← t1 + Z1, t2 ← t2 + Z2, Z3 ← Z1 · Z2,
t1 ← t1 · t2, t2 ← Z3 +T3, Z3 ← Z3 −T3, t1 ← t1 − t2, T3 ← X1 +Y1, t3 ← X2 +Y2, X3 ← X1 ·X2,
Y3 ← Y1 ·Y2, T3 ← T3 ·t3, T3 ← T3−X3, t3 ← T3−Y3, Y3 ← Y3+t1, T3 ← t23, t1 ← 2s, t1 ← t1 ·X3,
t1 ← t1 + t2, t2 ← kX3, Y3 ← Y3 − t2, Y3 ← Y3 · t1, t1 ← sT3, Y3 ← Y3 − t1, X3 ← t3 + Z3,
X3 ← X2

3 , Z3 ← Z2
3 , X3 ← X3 − Z3, X3 ← X3 − T3, X3 ← X3/2,

8M + 2S + 5D + 14a, UADD-Qe-4, assumes d = s2, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) +
(X2 : Y2 : T2 : Z2); t1 ← sT1, t2 ← sT2, T3 ← t1 · t2, t1 ← t1 + Z1, t2 ← t2 + Z2, Z3 ← Z1 · Z2,
t1 ← t1 · t2, t2 ← Z3 +T3, Z3 ← Z3 −T3, t1 ← t1 − t2, T3 ← X1 +Y1, t3 ← X2 +Y2, X3 ← X1 ·X2,
Y3 ← Y1 · Y2, T3 ← T3 · t3, T3 ← T3 − X3, t3 ← T3 − Y3, Y3 ← Y3 + t1, T3 ← t23, t1 ← 2s,
t1 ← t1 · X3, t1 ← t1 + t2, t2 ← kX3 , Y3 ← Y3 − t2, Y3 ← Y3 · t1, t1 ← sT3, Y3 ← Y3 − t1,
X3 ← t3 · Z3, Z3 ← Z2

3 .

8M + 3S + 2D + 17a, UADD-Qe-5, assumes a = −1/2, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) +
(X2 : Y2 : T2 : Z2); t1 ← T1 + Z1, t2 ← T2 + Z2, T3 ← T1 · T2, Z3 ← Z1 · Z2, t1 ← t1 · t2,
t1 ← t1 − T3, t1 ← t1 − Z3, T3 ← dT3, t2 ← Z3 + T3, Z3 ← Z3 − T3, T3 ← X1 + Y1, t3 ← X2 + Y2,

468 H. Hisil et al.

X3 ← X1 · X2, Y3 ← Y1 · Y2, T3 ← T3 · t3, T3 ← T3 − X3, T3 ← T3 − Y3, t1 ← t1d, t1 ← t1 · X3,
t1 ← 2t1, Y3 ← Y3 −X3, Y3 ← Y3 · t2, Y3 ← Y3 + t1, X3 ← Z3 +T3, X3 ← X2

3 , T3 ← T 2
3 , Z3 ← Z2

3 ,
X3 ← X3 − T3, X3 ← X3 − Z3, X3 ← X3/2.

9M + 2S + 2D + 13a, UADD-Qe-6, assumes a = −1/2, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) +
(X2 : Y2 : T2 : Z2); t1 ← T1 + Z1, t2 ← T2 + Z2, T3 ← T1 · T2, Z3 ← Z1 · Z2, t1 ← t1 · t2,
t1 ← t1 − T3, t1 ← t1 − Z3, T3 ← dT3, t2 ← Z3 + T3, Z3 ← Z3 − T3, T3 ← X1 + Y1, t3 ← X2 + Y2,
X3 ← X1 · X2, Y3 ← Y1 · Y2, T3 ← T3 · t3, T3 ← T3 − X3, T3 ← T3 − Y3, t1 ← dt1, t1 ← t1 · X3,
t1 ← 2t1, Y3 ← Y3 − X3, Y3 ← Y3 · t2, Y3 ← Y3 + t1, X3 ← Z3 · T3, T3 ← T 2

3 , Z3 ← Z2
3 .

8M + 3S + 3D + 17a, UADD-Qe-7, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2);
t1 ← T1 + Z1, t2 ← T2 + Z2, T3 ← T1 · T2, Z3 ← Z1 · Z2, t1 ← t1 · t2, t1 ← t1 − T3, t1 ← t1 − Z3,
T3 ← dT3, t2 ← Z3 + T3, Z3 ← Z3 −T3, T3 ← X1 +Y1, t3 ← X2 + Y2, X3 ← X1 ·X2, Y3 ← Y1 ·Y2,
T3 ← T3 · t3, T3 ← T3 − X3, T3 ← T3 − Y3, t1 ← dt1, t1 ← t1 · X3, t1 ← 2t1, X3 ← kX3 ,
Y3 ← Y3 − X3, Y3 ← Y3 · t2, Y3 ← Y3 + t1, X3 ← Z3 + T3, X3 ← X2

3 , T3 ← T 2
3 , Z3 ← Z2

3 ,
X3 ← X3 − T3, X3 ← X3 − Z3, X3 ← X3/2.

9M + 2S + 3D + 13a, UADD-Qe-8, (X3 : Y3 : T3 : Z3) = (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2);
t1 ← T1 + Z1, t2 ← T2 + Z2, T3 ← T1 · T2, Z3 ← Z1 · Z2, t1 ← t1 · t2, t1 ← t1 − T3, t1 ← t1 − Z3,
T3 ← dT3, t2 ← Z3 + T3, Z3 ← Z3 −T3, T3 ← X1 +Y1, t3 ← X2 + Y2, X3 ← X1 ·X2, Y3 ← Y1 ·Y2,
T3 ← T3 · t3, T3 ← T3 − X3, T3 ← T3 − Y3, t1 ← dt1, t1 ← t1 · X3, t1 ← 2t1, X3 ← kX3 ,
Y3 ← Y3 − X3, Y3 ← Y3 · t2, Y3 ← Y3 + t1, X3 ← Z3 · T3, T3 ← T 2

3 , Z3 ← Z2
3 .

Author Index

Ahmed, Irfan 44
Aoki, Kazumaro 214
Asano, Tomoyuki 293
Aumasson, Jean-Philippe 202

Boztaş, Serdar 122
Brier, Eric 202
Buldas, Ahto 264

Camp, L. Jean 249
Carter, Gary 452
Cheong, K.Y. 377
Chew, Guanhan 73
Chow, Sherman S.M. 327
Choy, Jiali 73
Chu, Cheng-Kang 327

Dawson, Ed 452
Delwadia, Vipul 8
Deng, Robert H. 327

El Mrabet, Nadia 422

Fleischmann, Ewan 60
Franklin, Matthew K. 309

Gorski, Michael 60

Henricksen, Matt 108
Hisil, Huseyin 452
Hiwatari, Harunaga 293
Hong, Jeongdae 309
Hong, ManPyo 44

Jürgenson, Aivo 264

Kesdogan, Dogan 26
Khoo, Khoongming 73
Kim, Jihye 309
Kim, Jinil 309
Kocair, Çelebi 90
Komisarczuk, Peter 8
Koshiba, Takeshi 377

Lhee, Kyung-suk 44
Lory, Peter 250
Lucks, Stefan 60

Matsuda, Toshihide 343
Meier, Willi 202
Miyaji, Atsuko 134
Mu, Yi 153

Nandi, Mridul 171
Naya-Plasencia, Maŕıa 202
Negre, Christophe 422
Niitsoo, Margus 264
Nishimaki, Ryo 343
Nishiyama, Shohei 377
Numayama, Akira 232, 343

Özen, Onur 90

Park, Kunsoo 309
Paterson, Kenneth G. 276
Peyrin, Thomas 202
Pham, Dang Vinh 26
Puglisi, Simon J. 122

Reyhanitabar, Mohammad Reza 153

Sakumoto, Koichi 293
Sasaki, Yu 214
Seifert, Christian 8
Shin, Hyunjung 44
Simpson, Leonie 108
Srinivasan, Sriramkrishnan 276
Stebila, Douglas 389
Stinson, Douglas R. 360
Stirling, David 8
Sukegawa, Masahiro 134
Susilo, Willy 153

Tanaka, Keisuke 232, 293, 343
Tezcan, Cihangir 90
Tunstall, Michael 437
Turpin, Andrew 122

Ustaoglu, Berkant 389

470 Author Index

Varıcı, Kerem 90
von Solms, Basie 1

Wang, Xiaoyun 185
Welch, Ian 8
Weng, Jian 327
Wikström, Douglas 407

Wong, Kenneth Koon-Ho 452
Wu, Jiang 360

Yap, Huihui 73
Yap, Wun-She 108
Yu, Hongbo 185

Zhou, Jianying 327

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Lecture
	Is the Information Security King Naked?
	How Well Is the Information Security King Dressed?
	Should There Be a Worry about the Information Security King’s Dress?
	The Strategic Defense Initiative (SDI) and David Parnas
	What Should We Do?
	Information Security Professionals
	Summary
	References

	Network Security
	Measurement Study on Malicious Web Servers in the .nz Domain
	Introduction
	Related Work
	Threats to Internal and External Validity
	Apparatus (Client Honeypot)
	Subjects (Web Page(s))
	Stimuli (Making the Request)

	Comparative Measurement
	Methodology
	Results

	Comprehensive Measurement
	Methodology
	Results

	Term Measurement
	Methodology
	Results

	Conclusion
	Future Work
	References

	A Combinatorial Approach for an Anonymity Metric
	Introduction
	Background
	The Mix Model
	The Hitting-Set Attack

	Properties of Minimal Hitting Sets
	Number ofMinimal Hitting Sets
	Structuring Minimal Hitting Sets
	Extensive Hypotheses

	Modelling Anonymity States
	Full Disclosure
	Partial Disclosure
	Beyond Unambiguous Identification of Peers

	Conclusions
	References

	On Improving the Accuracy and Performance of Content-Based File Type Identification
	Introduction
	Related Work
	Assumptions and Dataset Details
	Assumptions for Byte-Frequency Distributions of File Types
	Dataset

	Cosine Similarity: An Efficient Measure to Compare Byte Frequency Vectors
	Cosine Similarity
	Performance Comparison between Cosine Similarity and Mahalanobis Distance

	Accuracy of Wei-Hen Li et al.’s Single- and Multi-centroid Models
	The Proposed File-Type Identification Scheme
	Building a Representative Model of a File Type
	Detection Algorithm

	Evaluation of Our Scheme
	Cluster Analysis to Group Similar Byte-Frequency Distribution Files
	Linear Discriminant Analysis to Classify Each File Type

	Comparison of Single- and Multi-centroid Models with the Proposed Scheme
	Conclusion and Future Work
	References

	Symmetric Key Encryption
	Attacking 9 and 10 Rounds of AES-256
	Introduction
	Description of the AES
	The Related-Key Boomerang Attack
	Related-Key Boomerang Attack on 9-Round AES-256
	The Related-Key Differential E^0 for Rounds 1 − 5
	The Related-Key Differential $E^{1^{-1}}$ for Rounds 9 − 6
	The Related-Key Differential $E^{0^{-1}}$ for Rounds 6 − 1
	The Attack
	Analysis of the Attack

	Related-Key Boomerang Attack on 10-Round AES-256
	Conclusion
	References

	Cryptographic Properties and Application of a Generalized Unbalanced Feistel Network Structure
	Introduction
	Definitions and Preliminaries
	Differential Cryptanalysis
	Linear Cryptanalysis

	Description of the Structure
	Differential Probability
	Linear Hull Probability
	Frequencies of Differential and Linear Hull Probabilities and Expected Value
	Impossible Differential Characteristics
	Integral Attack
	Application: New Block Cipher Four-Cell
	Security of Four-Cell
	Implementation Considerations

	References
	Tables
	Figures

	Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT
	Introduction
	The Block Ciphers PRESENT and HIGHT
	Notation
	PRESENT
	HIGHT

	The Related-Key Attacks on PRESENT
	The Related-Key Rectangle Attack on PRESENT-128-17

	Impossible Differential Attacks on HIGHT
	Impossible Differential Attack on HIGHT-26
	Related-Key Impossible Differential Attack on HIGHT-31

	Conclusion
	References
	A Brief Description of Related-Key Rectangle Attack
	Key Schedule Properties of HIGHT

	Improved Cryptanalysis of the Common Scrambling Algorithm Stream Cipher
	Introduction
	Specification of the CSA-SC
	Generating Keystream
	A Note on Previous Representations

	Some Observations on CSA-SC
	State Update Functions during Keystream Generation
	The Ratio of State Size to Key Size

	Exploring the State Cycles of FSR-A
	Cryptanalysis of CSA-SC
	The Weinmann and Wirt Attack
	Time-Memory Tradeoff Attacks

	Discussion and Conclusion
	References
	CSA-SC S-Boxes

	Testing Stream Ciphers by Finding the Longest Substring of a Given Density
	Introduction
	Locating the Longest Substring with Given Density
	Exploiting θ-Primitives
	Exploiting Mismatches
	Experimental Results on BSD Function {\sf Random}

	Application to Randomness Testing of Stream Ciphers
	Testing {\sf Dragon} Using the Erdös-Rényi Strong Law of Large Numbers
	Testing {\sf Dragon} Using the Law of the Iterated Logarithm

	Conclusions and Discussion
	References

	New Correlations of RC4 PRGA Using Nonzero-Bit Differences
	Introduction
	Preliminary
	State Analysis of Permutations with Some Differences
	Overview of Analysis
	Transitions of $\Delta {\sf State}[0]$ Before the Nonzero Bit Difference
	Transitions of $\Delta {\sf State}[0]$ on the Nonzero Bit Difference

	Correlation between Outputs and State Transitions
	Outputs before the Nonzero-Bit Difference
	Outputs on the Nonzero-Bit Difference

	Experimental Results and New Bias
	Experimental Results of {\sf Event}[3]
	Experimental Results of Outputs
	Experimental Results of Biases in $S_{0}[1]$ and $S_{0}[2]$

	A New Cryptanalytic Analysis
	Conclusion
	References

	Hash Functions
	Analysis of Property-Preservation Capabilities of the ROX and ESh Hash Domain Extenders
	Introduction
	Preliminaries
	Notations
	Definition of Security Notions
	Hash Domain Extension

	Property Preservation Analysis of the Transforms
	Analysis of the ROX Transform
	Analysis of the ESh Transform

	Can We Preserve All Properties?
	Conclusion
	References

	Characterizing Padding Rules of MD Hash Functions Preserving Collision Security
	Introduction
	Overview of MD Hash Function, Padding Rule
	Characterization of Collision Preserving Padding Rules
	Sufficient Condition of Collision-Preserving Padding
	Simple Examples of Suffix-Free Padding Rules
	A Necessary Condition for Collision-Preserving Padding Rule

	Length Padding is Redundant for a Variant of MD
	Three-Property Preserving Hash Function
	Conclusion
	References

	Distinguishing Attack on the Secret-Prefix MAC Based on the 39-Step SHA-256
	Introduction
	Backgrounds and Definitions
	Notations
	Description of SHA-256
	Secret-Prefix MAC and LPMAC

	Overview of Wang $et al.$’s Distinguishing Attack on the LPMAC Based on 61-Step SHA-1[23]
	Distinguishing Attack on the LPMAC Based on 39-Step SHA-256
	The Specific Differential Path for 39-Step SHA-256
	The Distinguishing Algorithm on LPMAC from 39-Step SHA-256

	Conclusions
	References

	Inside the Hypercube
	CubeHash
	Improved Standard Generic Attacks
	Narrow-Pipe Multicollisions
	State Symmetries
	Symmetry Classes
	Finding All Symmetry Classes
	Exploiting Symmetric States for Finding Preimages
	Exploiting Symmetric States for Finding Collisions

	On the Fixed Points of T
	Truncated Differentials over T
	References

	Meet-in-the-Middle Preimage Attacks on Double-Branch Hash Functions: Application to RIPEMD and Others
	Introduction
	Attack History
	Our Contribution

	Description of Hash Functions
	MD4
	RIPEMD
	RIPEMD-128, RIPEMD-160
	Extended MD4, RIPEMD-256, and RIPEMD-320

	Related Works
	Converting Pseudo-preimage Attack to Preimage Attack
	Meet-in-the-Middle Preimage Attack
	Analysis on Double-Branch Hashes and Cascaded Construction

	Preimage Attacks on RIPEMD
	Attacks on First 33 Steps
	Attack on Intermediate 35 Steps

	Cryptanalyses on Double-Branch Hash Functions
	Extended MD4
	RIPEMD-256 and RIPEMD-320

	Conclusion
	References

	On theWeak Ideal Compression Functions
	Introduction
	PreviousWorks
	Our Contributions

	Model ofWeak Ideal Compression Functions
	Notation
	Model
	Difference from the Random Oracle Model

	Our Simulation Methods (Restricted Version)
	Problem of Liskov’s Simulation Method
	Solution for the Problem of Liskov’s Simulation Method

	Our Simulation Methods (Full Version)
	Naive But Faulty Idea
	Problem of Hoch and Shamir’s Simulation Method
	Solution for the Problem of Hoch and Shamir’s Simulation Method

	An Application of Our Simulation Method to the Proofs of the Indifferentiability
	Conclusion
	References

	Invited Lecture
	Hardening the Network from the Friend Within

	Reducing the Complexity in the Distributed Computation of Private RSA Keys
	Introduction
	The Inversion Protocol of Catalano, Gennaro and Halevi
	Newton’s Scheme of Divided Differences
	The New Inversion Protocol
	Complexity of the New Inversion Protocol
	Conclusion
	References

	Public Key Cryptography
	Efficiency Bounds for Adversary Constructions in Black-Box Reductions
	Introduction
	Preliminaries and Notation
	Cryptographic Reductions
	Power c Secure Reductions
	The Lower Bound Theorem
	A Simple Example
	A Practical Example
	Conclusions
	References

	Building Key-Private Public-Key Encryption Schemes
	Introduction
	Background
	Our Contributions
	Definitions
	Multi-TAIBE
	Security Models for Multi-TA IBE

	Key-Privacy of the CHK Transform
	IND-IK-CCA Security for PKE
	Security for Multi-TA IBE
	The Modified CHK Transform

	Anonymity of Standard Model IBE Schemes
	Multi-TA Gentry

	Conclusion and Future Work
	References

	Multi-recipient Public-Key Encryption from Simulators in Security Proofs
	Introduction
	Background
	Our Contribution
	Relation to Broadcast Encryption
	Organization

	Preliminaries
	Hashed Decisional Diffie-Hellman Assumption
	Target Collision Resistant Hash Function
	Key Encapsulation Mechanisms
	Multi-recipient KEMs
	Constrained Chosen-Ciphertext Security for MKEMs

	Our Approach for Construction of MKEMs
	Our Scheme: Cash-Kiltz-Shoup Variant
	Our Scheme: Hanaoka-Kurosawa Variant
	Concluding Remarks
	References

	Fair Threshold Decryption with Semi-Trusted Third Parties
	Introduction
	Cryptographic Background
	Threshold Decryption
	Threshold Version of Hash-ElGamal Cryptosystem

	Security Models and Definitions
	Members and Security Models
	Formal Definition of Fairness

	Fair Threshold Decryption with (On-Line) STTP
	Security Notions
	Strong STTP Fair Threshold Hash ElGamal
	Multiple-Weak STTP Fair Threshold Hash ElGamal

	Optimistic Fair Threshold Decryption
	Security Notions
	Optimistic Fair Threshold Hash ElGamal

	References

	Conditional Proxy Broadcast Re-Encryption
	Introduction
	Related Works

	Definition
	Pairing and Related Computational Assumption
	Hierarchical Identity-Coupling Broadcast Encryption
	Conditional Proxy Broadcast Re-Encryption

	CPA-SecureCPBRE
	Construction
	Security

	RCCA-Secure CPBRE
	Construction
	Security

	RCCA-Secure Identity-Based Proxy Re-Encryption
	Conclusions
	References

	Security on Hybrid Encryption with the Tag-KEM/DEM Framework
	Introduction
	Background
	Motivations
	Our Contributions
	Organization

	Preliminaries
	Key Encapsulation Mechanism with Tag
	Data Encapsulation Mechanism
	Public Key Encryption
	PKE Constructed from the Tag-KEM/DEM Framework

	The Security Notions of Tag-KEM
	wNM-ATK Tag-KEM
	sNM-ATK Tag-KEM

	Theorems
	Proof Sketches of Theorem 5, Theorem 6, and Theorem 7
	Proof Sketch of Theorem 5
	Proof Sketch of Theorem 6
	Proof Sketch of Theorem 7

	References

	Protocols
	A Highly Scalable RFID Authentication Protocol
	Introduction
	Related Work
	Scheme Description
	Initial Setup
	Authentication

	Security Analysis
	Query and Recovery
	Compromise and Recovery
	Impersonation
	Tracing

	Performance
	Security and Privacy
	Tag
	Server
	Scalability
	Comparison

	Conclusion
	References

	Strengthening the Security of Distributed Oblivious Transfer
	Introduction
	Defining DOT
	The Upper Bounds
	DOT Based on Polynomials
	The Original Scheme
	Security Concerns
	Ideas on Security Fix

	The Secure DOT Scheme
	A Sub-protocol
	Correctness and Security
	Full Protocol Avoiding Linear Combination

	Extension and Concluding Remarks
	References

	Towards Denial-of-Service-Resilient Key Agreement Protocols
	Motivation
	Previous Work
	Modelling Denial of Service Resilience and Security
	Formal Model Description
	Model Implications

	A Secure DoS-Resilient Key Agreement Protocol
	Security Analysis
	Denial of Service Resilience Analysis

	Other Denial of Service Constructions
	Conclusion and Open Problems
	References

	A Commitment-Consistent Proof of a Shuffle
	Introduction
	Mix-Nets Based on Homomorphic Cryptosystems
	Previous Work On Improving Efficiency
	Our Contribution
	Notation

	Background and Informal Description
	Commitment-Consistent Proofs of Shuffles

	A Commitment-Consistent Proof of a Shuffle
	Permutation Commitments
	Proof of Knowledge of Opening
	Proof of Knowledge of Equal Exponents
	Shuffle-Friendly Maps
	Details of the Commitment-Consistent Proof of a Shuffle

	Application To Mix-Nets
	References

	Implementation
	Finite Field Multiplication Combining AMNS and DFT Approach for Pairing Cryptography
	Introduction
	Prime Field Arithmetic in AMNS System
	Field Extension Arithmetic
	Polynomial Multiplication Using DFT
	Fast Fourier Transformation (FFT)
	Multiplication with DFT When $n \leq 2k-2$
	Complexity of Different DFT Methods

	DFT Friendly Field
	Definition of DFT Friendly Field
	Fields Used Pairing Cryptography
	Complexity Comparison

	Conclusion
	References
	Annexe
	Curves with Embedding Degree k = 12
	Curves with Embedding Degree k = 16

	Random Order m-ary Exponentiation
	Introduction
	Exponentiation Algorithms
	The Square and Multiply Algorithm
	Left-to-Right m-Ary Exponentiation
	Right-to-Left m-Ary Exponentiation

	Side Channel Analysis
	Simple Side Channel Analysis
	Differential Side Channel Analysis

	Using Random Values as a Countermeasure
	Blinding
	Randomised Algorithms

	Random Order Exponentiation
	Security Analysis
	Simple Side Channel Analysis
	Differential Side Channel Analysis

	Conclusion
	References

	Jacobi Quartic Curves Revisited
	Introduction
	Background
	Homogeneous Projective Coordinates, \mathcal{Q}
	Point Doubling in \mathcal{Q}
	Point Addition in \mathcal{Q}

	Extended Homogeneous Projective Coordinates, \mathcal{Q}^{e}
	Dedicated Point Doubling in \mathcal{Q}^{e}
	Dedicated Point Addition in \mathcal{Q}^{e}
	Unified Point Addition in \mathcal{Q}^{e}

	Mixed Homogeneous Projective Coordinates, \mathcal{Q} + \mathcal{Q}^{e}
	Experimental Results
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

