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Preface

As computers and communications technology advance, greater opportunities
arise for intelligent mathematical computation. While computer algebra, auto-
mated deduction and mathematical publishing each have long and successful
histories, we are now seeing increasing opportunities for synergy among them.
The Conferences on Intelligent Computer Mathematics (cicm 2009) is a col-
lection of co-located meetings, allowing researchers and practitioners active in
these related areas to share recent results and identify the next challenges. The
specific areas of the cicm conferences and workshops are described below, but
the unifying theme is the computerized handling of mathematical knowledge.

The successful formalization of much of mathematics, as well as a better un-
derstanding of its internal structure, makes mathematical knowledge in many
ways more tractable than general knowledge, as traditionally treated in artificial
intelligence. Similarly, we can also expect the problem of effectively using math-
ematical knowledge in automated ways to be much more tractable. This is the
goal of the work in the cicm conferences and workshops. In the long view, solv-
ing the problems addressed by cicm is an important milestone in formulating
the next generation of mathematical software.

The first cicm was held in Birmingham, UK, in 2008. Although combina-
tions of the constituent meetings had been held together previously, this was
the first time this set of conferences and workshops were held together under
the cicm name. In some sense this was a symbolic step, recognizing that these
areas shared common challenges that should be addressed together. The anchor
meetings were the Artificial Intelligence and Symbolic Computation (aisc) con-
ference, the 15th Symposium on the Integration of Symbolic Computation and
Mechanized Reasoning (Calculemus 2008) and the 7th International Conference
on Mathematical Knowledge Management (mkm 2008). A number of related
workshops also joined the meeting.

Those participating in cicm 2008 felt the meeting worked well and wished
to hold a federated event again in 2009. The Ontario Research Centre for Com-
puter Algebra (orcca) at the University of Western Ontario offered to host the
meeting on the shore of Lake Huron in Grand Bend, Ontario. The governing
bodies of both Calculemus and mkm agreed to co-locate at cicm 2009. Aisc

could not participate because it was held only every second year. Two of the
workshops of cicm 2008, Mathematical User Interfaces and Towards a Digital
Mathematics Library, as well as a number of additional workshops also decided
to hold their next event at cicm 2009. Thus, the cicm 2009 meeting included
two long-standing international conferences:

• 16th Symposium on the Integration of Symbolic Computation & Mechanized
Reasoning (Calculemus 2009)

• 8th InternationalConference on MathematicalKnowledgeManagement (mkm

2009)
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as well as the following inter-related workshops:

• Second Compact Computer Algebra Workshop (cca 2009)
• Second Workshop Towards a Digital Mathematics Library (dml 2009)
• W3C Workshop on Ink in Multimodal Applications (InkMMI 2009)
• 4th Mathematical User Interfaces Workshop (MathUI 2009)
• 22nd OpenMath Workshop (OpenMath 2009)
• Third Pen-Based Mathematical Computation (PenMath 2009)

Each of these conferences and workshops had its own successful predecessors,
but for each of them it was the first time to be held in North America.

cicm 2009 featured a range of distinguished plenary speakers, representing
the interests of the participants. These invited speakers and their hosting events
were:

• Rob Arthan (Lemma 1 Ltd and Queen Mary, University of London, uk),
“Computational Logic and Continuous Mathematics, Pure and Applied,”
Calculemus.

• Dorothea Blostein (Queen’s University, Canada), “Math-Literate Comput-
ers,” mkm and PenMath.

• Jacques Calmet (U. Karlsruhe, Germany), “Abstraction-Based Information
Technology: A Framework for Open Mechanized Reasoning,” Calculemus.

• John Fitch (University of Bath, uk), “Camal 40 Years On — Is Small Still
Beautiful?” cca.

• Georges Gonthier (Microsoft Research Cambridge, uk), “Software Engineer-
ing for Mathematics,” mkm.

• Patrick Ion (Mathematical Reviews, ams, usa), “Some Traditional Mathe-
matical Knowledge Management,” mkm and OpenMath.

• Marko Panić (Microsoft Development, Serbia), “Math Handwriting Recog-
nition in Windows 7 and Its Benefits,” MathUI and PenMath.

• David Ruddy (Cornell University, usa), “Assembling the Digital Mathemat-
ics Library,” dml.

This volume represents the formal proceedings of cicm 2009. It includes a
record of the invited talks and the conference papers accepted for the proceed-
ings. Work presented at the workshops and in-progress work presented at the
conferences was made available in informal proceedings.

We now describe in more detail the goals and objectives of the constituent
meetings of cicm 2009, and the process by which papers were selected for these
proceedings.

16th Symposium on the Integration of Symbolic Computation and
Mechanized Reasoning (Calculemus 2009)

Calculemus is a series of conferences dedicated to the integration of computer al-
gebra systems and systems for mechanized reasoning, interactive theorem provers
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or proof assistants and the automated theorem provers. Currently, symbolic com-
putation is divided into several more or less independent branches: traditional
ones (e.g., computer algebra and mechanized reasoning) as well as newly emerg-
ing ones (on user interfaces, knowledge management, theory exploration, etc.)
The main concern of the Calculemus community has been to bring these devel-
opments together in order to facilitate the theory, design and implementation
of integrated systems for computer mathematics that will routinely be used by
mathematicians, computer scientists and engineers in their everyday business.
The scope of Calculemus covers all aspects of the interplay of mechanized rea-
soning and computer algebra, including cross-fertilization between those two
research areas, as well as the development of integrated systems that transcend
both computer algebra and theorem proving.

Since 1999, to ensure interaction with both the deduction and computer
algebra communities, Calculemus has co-located with closely related conferences:
Federated Logics Conference 1999 (Trento, Italy), issac 2000 (St. Andrews,
UK), ijcar 2001 (Siena, Italy), aisc 2002 (Marseilles, France), tphols and
tableaux 2003 (Rome, Italy), ijcar 2004 (Cork, Ireland), Formal Methods 2005
(Newcastle upon Tyne, uk), issac 2006 (Genoa, Italy), mkm 2007 (Hagenberg,
Austria), and with aisc and mkm within cicm 2008 (Birmingham, uk).

There were 17 full papers submitted to Calculemus 2009. Each of these re-
ceived at least three reviews, followed by an author response phase. Of these
submissions, 10 were accepted for full presentation at the conference and publi-
cation in this volume. In addition to these papers, extended abstracts were also
solicited to provide a venue for discussion of work in progress. A supplemen-
tary proceedings for the work in progress is available at the Calculemus website
http://www.calculemus.net .

9th International Conference on Mathematical Knowledge
Management (MKM 2009)

The Mathematical Knowledge Management conferences arose similarly from
common requirements at the boundaries of neighbouring fields. Mkm lies at the
intersection of mathematics and computer science with the goal of developing ef-
fective techniques, based on formal mathematics and software technology, to take
advantage of the enormous knowledge available in current mathematical sources
and to organize mathematical knowledge in new ways. Dually, due its very nature,
the realm of mathematical information is an attractive candidate for testing inno-
vative theoretical and technological solutions for content-based systems, interop-
erability, management of machine understandable information, and the Semantic
Web. This led to a series of conferences spanning the decade, with meetings held
in Hagenberg, Austria (2001), Bertinoro, Italy (2003), Bia�lowieża, Poland (2004),
Bremen, Germany (2005), Wokingham, uk (2006), Hagenberg, Austria (2007),
Birmingham, uk (2008) and Grand Bend, Ontario, Canada (2009).
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mkm 2009 solicited research contributions of two forms: longer papers of
about 15 pages and short communications. There were 28 long papers and 6 short
communications submitted. Each paper received between 2 and 5 anonymous
reviews, for a total of 100 reports. Long paper submissions were also considered
for the short communication category. In the end, 16 submissions were accepted
as long papers and 6 as short communications for these proceedings. In addition,
seven more preliminary submissions were accepted for oral presentation and
electronic publication.

Second Compact Computer Algebra Workshop (CCA 2009). The art
of compact computer algebra is experiencing a resurgence in relevance and im-
portance. New directions for symbolic computing include the migration from
workstations to hand-held devices and the changing role from stand-alone appli-
cations to lightweight services within integrated systems. Whether running on a
graphing calculator or as support of a client-side web application, certain appli-
cations of computer algebra require compact data representation, space-efficient
algorithms and effective memory management. The purpose of this workshop
was to communicate efforts in research, design, development and applications of
compact computer algebra.

Second WorkshopTowards aDigitalMathematics Library (DML2009).
Mathematicians dream of a digital archive containing all peer-reviewed mathe-
matical literature ever published, properly linked and validated/verified. It is
estimated that the entire corpus of mathematical knowledge published over the
centuries does not exceed 100,000,000pages, an amount easily manageable by cur-
rent information technologies. The workshop’s objectives were to formulate the
strategy and goals of a global mathematical digital library and to summarize the
current successes and failures of ongoing technologies and related projects.

W3C Workshop on Ink in Multimodal Applications (InkMMI 2009).
The goal of this workshop was to identify and prioritize requirements for changes,
extensions and additions to digital ink standards, especially in multimodal ap-
plications developed based on the W3C’s MMI Architecture and as a means of
making InkML more useful in current and emerging contexts.

4th Mathematical User Interfaces Workshop (MathUI 2009). This work-
shop was intended to bring together researchers working on mkm but from the
perspective of mathematics manipulated by end users. Accordingly, an emphasis
was on providing users with interfaces and software systems that enhance their
mathematical working experience. The topics of the workshop centered around
presentation and manipulations of mathematical knowledge, workflows induced
by mathematical knowledge representations, human communication ofmathemat-
ical content, user studies with mkm tools or other mathematical interfaces and
other novel interfaces to mathematics software.

22nd OpenMath (OpenMath 2009). With the development of MathML 3,
OpenMath entered a new phase of its evolution. Topics to be discussed at the
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workshop included convergence of OpenMath and MathML 3, reasoning with
OpenMath, software using or processing OpenMath, as well as new OpenMath
Content Dictionaries.

Third Pen-Based Mathematical Computation (PenMath 2009). The
use of the pen to enter, edit, and manipulate mathematical expressions can lead
to a qualitative improvement in the ease of use of mathematical software. The
purpose of this workshop was to explore this area, including pen-based math-
ematical interfaces for computer algebra and document processing, expression
entry editing and manipulation, data collection and analysis, structural analy-
sis, semantic methods, on-line and off-line mathematical handwriting recognition
and to receive reports on implementations and experiments. The first workshop
in this series was held as a special session of the 2005 Applications of Computer
Algebra conference in Nara, Japan, and the second workshop was held as a spe-
cial session of the conference Communicating Mathematics in the Digital Era
conference in Aveiro, Portugal.

Numerous people contributed to making cicm 2009 happen. A list of organiz-
ers is to be found on the following pages. We thank them for their very substantial
collective effort. To make the meeting as accessible as possible, a number of orga-
nizations were approached for financial contributions. We are most grateful for
the generosity of the Fields Institute for Research in Mathematical Sciences, our
principal sponsor. We also wish to thank McMaster University, the University of
Waterloo, the University of Western Ontario (Faculty of Science and Research
Western), Wilfrid Laurier University and Maplesoft for financial support. We
thank the Ontario Research Centre for Computer Algebra and its members for
their assistance and Acm Sigsam for recommending in cooperation status for
cicm 2009.

We are at a special point in the development of mathematical software, where
systems in each of their individual niches have grown extremely powerful. In con-
tinuing to expand their capabilities, they have invariably reached the boundaries
of their domains of origin and have started expanding into adjoining areas. A
clear understanding of what should happen at these boundaries is essential to
lay the foundation for future generations of versatile, integrated and intelligent
systems for mathematics. It has been our hope that the discussions at cicm are
a fruitful step in this direction.

April 2009 Jacques Carette
Lucas Dixon

Claudio Sacerdoti Coen
Stephen M. Watt
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Computational Logic and
Continuous Mathematics, Pure and Applied

Rob Arthan

Lemma 1 Ltd.
2nd Floor, 31A Chain Street, Reading RG1 2HX, UK

and
QMUL, School of Electronic Engineering and Computer Science,

Queen Mary, University of London, London E1 4NS, UK
rda@lemma-one.com

Continuous problem domains are of ever-increasing importance in the application
of computational logic to problems in systems engineering and to problems in
mathematics and theoretical computer science. I will outline some recent work
both “pure” and “applied” with issues for mechanized reasoning and computer
algebra in mind.

For some years, I have been involved with tools used for formally specifying
and verifying digital subsystems of avionics control systems. The models used
in this work typically have discrete time and continuous data. These discrete
models emerge only at the end of a chain of refinements starting from a purely
continuous top-level model of the overall system. I will describe a strand of work
on methods for dealing with linear continuous systems and discuss issues for
mechanized reasoning that are highlighted by this methodological research.

I will sketch some joint work with Robert M. Solovay and John Harrison
into decidability and undecidability for various theories of normed spaces and
inner product spaces. These are theories that occur naturally both in engineering
applications and in applying mechanized reasoning to pure mathematics. On the
positive side, we have decision procedures for inner product spaces and for the
some fragments of the theory of normed spaces. On the negative side, we can
prove undecidability for the theory of normed spaces in general. However, there
are still interesting open problem areas to investigate. It is noteworthy that one
of the constructions used in the undecidability results provides an interesting
challenge problem for mechanized proof and computer algebra.
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Abstract. Math notation is a familiar, everyday tool widely used in society. 
Computers need math literacy – the ability to read and write math notation – in 
order to assist people with accessing mathematical documents and carrying out 
mathematical investigations. In this paper, we discuss issues in making com-
puters math-literate. Software for generating math notation is widely used. 
Software for recognition of math notation is not as widely used: to avoid the in-
trusiveness and unpredictability of recognition errors, people often prefer to en-
ter and edit math expressions using a computer-oriented representation, such as 
LaTeX or a structure-based editor. However, computer recognition of math no-
tation is essential in large-scale recognition of mathematical documents; as 
well, it offers the ability to create people-centric user interfaces focused on 
math notation rather than computer-centric user interfaces focused on com-
puter-oriented representations. Issues that arise in computer math literacy in-
clude the diversity of math notation, the challenges in designing effective user 
interfaces, and the difficulty of defining and assessing performance. 

 

1   Introduction 

Math notation is a widely-used two-dimensional language for expressing and reason-
ing about mathematics. This notation developed over centuries, with many variants 
and dialects. Math notation is fluid, with users creating new forms of math notation as 
the need arises. Historically, math notation was written and read by people. The re-
cent invention of the computer has lead to widespread use of electronic representa-
tions of mathematical expressions. Electronic representations support services such as 
typesetting, search, and automated reasoning. We need math-literate computers in 
order to best combine the convenience of paper-based math notation with the power 
of computer-based math representations.   

Currently, computer generation of math notation is common, but recognition is less 
commonly used: the task of translating math notation into a computer-processable 
form is often done manually. With continuing advances in math recognition software, 
the need for manual entry of computer-oriented math formats will decrease. 

Input and output of math notation is carried out in various contexts. Here is an in-
formal description of a few scenarios, with and without math-literate computers. 

• A person creates a document containing math expressions: 

- With a math-literate computer, this can be done via handwritten entry. The 
computer software must be able to cope with the variability of handwriting.  
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Handwritten expressions can be scanned, or the user can write directly on a 
data tablet; the tablet has the advantage of making stroke-timing information 
available for use in the recognition process. The user receives feedback about 
the recognition result, and is thus available to correct recognition errors. 

- With manual entry, a person directly enters the structure of a math expression 
by typing an ASCII form of the expression (as in LaTeX), or by issuing a se-
quence of commands to a structure-based math editor. 

• Paper documents are converted to electronic form:   

- With a math-literate computer, scanned documents are interpreted by docu-
ment-recognition software. Layout analysis is used to separate the document 
into text regions, math expressions, and figures. Text regions are interpreted 
by optical character recognition (OCR), math regions are interpreted by math 
recognition, and figures are interpreted by graphics recognition software 
[32][34]. When a small number of documents are converted, a person can per-
form checking and correction of the results. When a large document collection 
is involved, people perform only very limited checking and correction. In that 
case, subsequent software must make allowance for the possibility of recogni-
tion errors in the electronic documents. 

- With manual entry, a person directly enters the structure of the math expres-
sions in the documents. This is can be done for small-scale applications, but is 
infeasible for large document collections. If manual entry is infeasible and 
automatic interpretation of math expressions is unavailable, then the math ex-
pressions can be left uninterpreted: this leaves math expressions as image  
regions that can be displayed, but cannot be queried by word-based or symbol-
based searches. 

• A math document is converted from a notation-oriented electronic form to an in-
formation-oriented electronic form (for example, from LaTeX to a symbolic algebra 
format such as Maple):   

- With a math-literate computer, this conversion is done automatically. External 
information is required, for example to distinguish function names from vari-
able names  (see Section 3.1). 

- With manual entry, a person directly enters the symbolic algebra form of the 
math expressions. 

• A math document is converted from an electronic form to paper (or to display on a 
computer monitor):   

- This is typically done by computer software. Present-day computers are math-
literate in the writing direction. 

Computer math-literacy is a practically-important subject that offers fascinating re-
search opportunities. In this paper, I present my opinions about challenges and issues 
that arise in this area. Please note that I am not up-to-date in all the latest publications, 
but am supplying a retrospective view of the developments in computer processing of 
math notation over the past twenty years.   
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2   Diagrams and Notational Conventions 

A diagram expresses information using a two-dimensional layout of symbols. Nota-
tional conventions are the constraints that define the mapping between information and 
two-dimensional layout. A math expression is an example of a diagram, expressed using 
the notational conventions of math notation. A page of sheet music is another example 
of a diagram, expressed using the notational conventions of music notation. As illus-
trated in Figure 1, knowledge of notational conventions is needed both for diagram rec-
ognition (reading the notation) and for diagram generation (writing the notation).   

 Diagram Generation       

 Diagram Recognition     

Conventions for 
drawing symbols 
(font definition)

Conventions for 
symbol recogntion 
(font defintion; how 
symbols overlap)

Conventions for  
decoding information 
(spatial and logical 
symbol relationships)

Conventions for 
encoding information; 
readability conventions

Notational 
Conventions

Information
2D Symbol 

Arrangement Diagram
Symbol 
Drawing

Information 
Encoding

Information
2D Symbol 

Arrangement
Diagram

Symbol 
Recognition

Symbol-
arrangement 

Analysis

 

Fig. 1. Notational conventions are used for diagram generation and recognition [4]. When a 
diagram is generated, notational conventions guide the creation of an aesthetically pleasing 
diagram that encodes the given information. When a diagram is recognized, notational conven-
tions guide the recognition of symbols and their logical relationships, and dictate how to infer 
information from this symbol arrangement. This figure illustrates sequential processing steps, 
but symbol recognition and symbol-arrangement analysis can be concurrent, allowing the use 
of contextual information to improve symbol-recognition results. 

The mapping between information and diagram is not one to one. Many diagrams 
represent the same information using different layouts. A diagram with good layout is 
easy to read, and is aesthetically appealing. Ideally, diagram generation software auto-
matically chooses a good layout, while diagram recognition software recognizes the 
information conveyed by the diagram, no matter what the layout of the diagram. 



 Math-Literate Computers 5 

There is significant overlap in the notational conventions used for generation and 
recognition. However, notational conventions are treated differently due to differ-
ences in the two diagram processing tasks. Aesthetic considerations are central in dia-
gram generation: users want nice-looking, readable diagrams. In contrast, diagram 
recognition systems pay less attention to aesthetics: they are trying to recover the in-
formation conveyed by the diagram, and are not trying to judge how nice the diagram 
layout is. Noise and uncertainty are central in diagram recognition: there is uncer-
tainty about symbol segmentation, symbol recognition, interpretation of the relative 
placement of symbols, and so on. These problems do not arise in generation. It is in-
teresting to generalize this line of thought, to consider the relationship between the 
fields of computer vision and computer graphics [21]. 

The acquisition, representation and exploitation of notational conventions are cen-
tral to computer math literacy. Notational conventions are equally important in proc-
essing other types of two-dimensional notation. The research community as a whole is 
gradually developing general computational approaches to diagram recognition, 
which are useful in interpreting diagrams of various types. Much has been published 
about recognition of various types of diagrams, such as math expressions, engineering 
drawings, maps, music notation, and bar charts [20][31][32][34].  Publications about 
diagram generation include graph drawing [36] and visual languages [33].  Many as-
pects of diagrams are discussed in the Diagrams conferences [35]. 

2.1   Hard and Soft Notational Conventions 

We call a notational convention hard if it is used consistently, and soft if its use is op-
tional. Hard conventions specify how information is encoded in the two-dimensional 
notation, and soft conventions specify how to make the diagram readable. Here are 
some examples, informally expressed. In graph drawing, a hard convention is that “an 
edge drawn between two nodes represents a relation between the nodes”. A soft con-
vention is “choose a graph layout that minimizes the number of edge crossings”. In 
math notation, a hard convention is “division can be encoded by drawing a horizontal 
line with the dividend expression placed above the line and the divisor expression 
placed below the line”. A soft convention is “when breaking an expression into multi-
ple lines, put the break before a major operator”. Petre provides related observations 
about hard and soft conventions, using the term secondary notation for the layout as-
pects of a diagram [28]. 

Soft conventions can be applied to a greater or lesser degree, and can be ignored in 
exceptional circumstances. For example, a soft convention in music notation is “leave 
more space after long notes than after short notes” [2]. However, this convention is 
sometimes ignored when music notation is printed very densely, in order to end the 
page at a pause that gives the performer time to turn the page.   

The same information can be represented by a large set of diagrams. These dia-
grams differ in readability and aesthetic appeal. As an example, the layout of a circuit 
diagram can be changed; this affects the appearance of the diagram without changing 
the information being conveyed. 

Most diagram recognizers ignore soft conventions, relying wholly on the hard con-
ventions. Poor diagram layout is not noticed, and good diagram layout is not exploited. 
If diagram recognizers could be expanded to make greater use of soft conventions, this 
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could increase the robustness of recognition: the recognizer can make use of layout and 
spacing cues. To achieve this, the recognition software needs the ability to reason with 
constraints that hold “most of the time”. 

Since diagram generators already use soft conventions, the question arises whether 
diagram recognizers can be improved by exploiting the knowledge and experience 
embodied in diagram generators [6]. Specifically, LaTeX software is in widespread 
use and encodes sophisticated knowledge about the formatting of math notation. Can 
this generation-oriented knowledge be exploited to improve math-notation recogniz-
ers? Possible approaches include reusing generator code to proofread and correct  
recognizer output, building a model of the generation process into the recognition 
software, and using a generator to construct cases for a recognizer that uses case-
based reasoning [6]. 

2.2   Sources of Information about the Definition of Math Notation 

The design of a math-literate computer system should begin with a definition of math 
notation: a definition of the syntax and semantics of the two-dimensional language 
used to express mathematics. Unfortunately, math notation, like most diagram nota-
tions, is not formally defined. Rather, it is informally established through common 
usage. Math notation is only semi-standardized, allowing many variations and draw-
ing styles. The same is true of natural languages, such as English. Building a software 
model of the notational conventions used in math notation is a complex and time-
consuming task.  

Sources of information about math notation include written descriptions of math 
notation, sample documents, coded descriptions built into software for recognizing 
math notation, coded descriptions built into software for generating math notation, 
and human experts [5]. Most written descriptions are oriented toward generation of 
the notation rather than recognition of the notation. Descriptions of math notation for 
people who want to solve typesetting problems include [12][18][40], and descriptions 
of math notation oriented toward computational typesetting include [22]. Almost 40 
years ago, Martin suggested that the first step in automating the processing mathe-
matical notation is to make a study of the notation, and he went on to present a brief 
list of the notational conventions found in use in technical publications [25]. 

Many factors influence how mathematical symbols should be grouped during the 
recognition of math notation. Some grouping factors are defined for math notation in 
general; these include operator range and operator precedence. Other grouping factors 
arise within a particular mathematical expression; these include symbol identity 
(which often determines whether the symbol is an operator or an operand), relative 
symbol placement, and relative symbol size and case. Further discussion and related 
references are provided in [5]. 

2.3   Electronic Representations of Math Notation 

A variety of electronic representations of math notation are in active use, including 
pixel-oriented representations such as JPEG, symbol-oriented representations such as 
PDF and PostScript, syntax-oriented representations such as LaTeX, and symbolic-
algebra representations such as Maple. Research is needed to better understand these 
representations: how to define the equivalence of documents and the distance between  
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documents, how to mathematically characterize the mapping between document repre-
sentations, how to characterize the external information needed to carry out these map-
pings, and how to characterize the differences between the forward and inverse  
mappings that occur during document analysis and document production [9]. 

3   Recognition of Math Notation 

In developing software for recognition of math notation, much can be learned from 
existing research into recognition of other types of diagrams [4]. Over time, our collec-
tive experience in recognizing various types of diagrams is giving rise to a general 
technology for diagram recognition. An appealing analogy is provided by compiler 
technology: the first compilers were difficult to write, but over time the community 
developed general techniques for parsing and code generation, which greatly simplify 
the task of constructing compilers for new source and target languages. Diagram-
recognition methods are difficult to generalize, due to the great diversity among dia-
gram notations, and due to the complexity of handling noise and uncertainty. However, 
algorithms can be shared for common subproblems such as symbol recognition 
[13][37]. Document recognition contests provide standardized task definitions, includ-
ing training and testing data, as well as evaluation metrics. Contests have been held for 
such as dashed-line detection, raster to vector conversion, arc segmentation, symbol 
recognition, page segmentation, handwriting segmentation, and Arabic handwriting 
recognition [15].   

3.1   External Information Needed for Math Recognition 

Math expressions are not self-contained.  External information is needed in order to 
fully understand them. Some of this information, such as the definition of symbols, 
comes from other parts of the source document. Other information is external: for 
example, knowledge of symbolic algebra can be applied to find errors in a printed 
expression or its interpretation.  Many dialects of math notation are in use, varying by 
discipline; the choice of dialect is implicit, and must be inferred by some external 
means, typically involving familiarity with the math notation used in related publica-
tions. Other diagram notations have an analogous need for external information: for 
example, engineering drawings rely on reader’s knowledge of disassembly and kine-
matics [38], and music notation relies on the reader’s knowledge of music theory and 
performance practice.  

The acquisition, representation, and use of external knowledge is a broad and inter-
esting topic, one that is important to the future development of math-literate computers. 
Without external information, a simple expression such as a(b) can be interpreted up to 
a notation-oriented format such as LaTeX, but further interpretation up to the symbolic 
algebra level is impossible without the knowledge of whether a is a function name or a 
variable name. When subexpressions are used repeatedly in a document, noticing and 
exploiting this repetition helps increase the robustness of a recognizer. 
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3.2   Challenges in Recognizing Math Notation 

Many challenges arise in the recognition of math notation [5]. Small symbols, such as 
dots and commas, are commonly used and are critical to the meaning of the notation; 
these small symbols are difficult to distinguish from noise. Symbol recognition is dif-
ficult because there is a large character set (Roman letters, Greek letters, operator 
symbols) with a variety of typefaces (normal, bold, italic), and a range of font sizes. A 
few common symbols in math notation have several possible roles: a dot can repre-
sent a decimal point, a multiplication operator, a symbol annotation such as x

.
 , or 

noise; a horizontal line can indicate a fraction line or a minus sign. The meaning of 
such symbols must be determined through the contextual information provided by 
surrounding symbols. 

A major challenge in math recognition is identification of the logical meaning of 
spatial relationships. Implicit mathematical operators are defined entirely by spatial 
relationships, with no explicit operator symbol; these include superscripts, subscripts, 
implied multiplication, and matrix structure. Examples of difficult cases are given in 
many publications from [25] onward. In handwritten notation, the ambiguity of spatial 
relationships is greatly increased, due to free placement and alignment of symbols. 
Many researchers (e.g. [39]), have studied the problem of distinguishing horizontal 
adjacency from superscripts and subscripts: the continuous range of possible symbol 

placements 2x  2x  2x  2x  2x makes this difficult.  
Offsetting these challenges, two characteristics of math notation make it relatively 

easier to process than many other types of diagram notations. Firstly, most symbols in 
a math expression are surrounded by white space, which greatly simplifies symbol 
segmentation.  (An exception is handwritten mathematical notation, which may con-
tain overlapping symbols; these can be difficult to segment, particularly if off-line 
data is used.) Secondly, math notation has a relatively regular and recursive syntax, 
which makes it well-suited for processing using grammar-based and compiler-like 
techniques. 

3.3   Finding the Math Expressions in a Document 

Computer math literacy depends on having automated ways of finding math expres-
sions, or having convenient user interfaces for the user to indicate the location of math 
expressions of interest. This is not a problem in on-line recognition systems, where a 
person writes input on a data tablet: in this case, text and math expressions are gener-
ally not mixed. The situation is different for paper documents, where math expres-
sions are typically mixed with text, either as offset expressions, or embedded directly 
into a line of text.  The first step in math recognition is to identify where expressions 
are located on the page.  This topic, and document layout analysis in general, has been 
subject of much research e.g. [34][41]. 

3.4   Computational Methods for Recognizing Math Notation 

Many approaches to math recognition have been explored, including syntactic me- 
thods, graph transformation, projection-profile cutting, and procedurally-coded rules 
[5][10][11]. Noise and uncertainty can be handled by producing lists of alternatives  
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that are passed from one recognition stage to the next, or by executing recognition stages 
concurrently, using contextual feedback to compensate for noisy input or to reject erro-
neous input [4]. The many proposals for how to organize a math recognition system are 
fascinating; each has its own merits and its own advocates.  It is difficult to judge which 
organization is best for a given application. 

I have had long-standing interest in development of a general software technology 
for diagram recognition.  My first informal comments, at a workshop in 1990 [1], 
described a goal of a diagram-recognition technology, analogous to the existing tech-
nology available for compilers. Compiler technology makes it (relatively) easy to 
create compilers with new source and target languages, and similarly a diagram-
recognition technology would make it (relatively) easy to create recognizers for new 
types of diagrams. However, diagram recognition faces added problems due to noise, 
due to the huge range of types of diagram notations, and due to the natural-language 
aspects of diagram notations.   

Many compiler techniques can be adapted to pattern recognition [7].  Techniques 
that have been imported include the use of grammars (array grammars, tree gram-
mars, set grammars, graph grammars), and parsing technologies (for example, CYK 
and Early algorithms for context free grammars, and linear-time LR and LL parsing 
algorithms for more restricted languages). We illustrate the use of two additional 
compiler techniques in a math-notation recognition system: use of trees and tree trans-
formation, and a multi-pass control structure, with a clear separation between layout, 
lexical, syntactic, and semantic analysis [7][42]. The main steps are to (1) find linear 
structures in the input, and use these as a basis for finding secondary linear structures; 
(2) organize the linear structures into a tree; (3) divide processing into passes for lay-
out, lexical analysis, syntax, and semantics; (4) use a simple, fixed control structure, 
such as a sequence of passes; and (5) use tree transformation technology, which pro-
vides highly efficient techniques for manipulating trees, and notations for expressing 
manipulations in a concise, readable form. 

3.5   Users Reaction to Math Recognition: The User Interface 

Math-recognition software is far less widely used than math generation software.  
Some of this is due to availability, and to the maturity of the technology. But there are 
additional, social factors that work against recognition systems. Here are some specu-
lative comments of these factors, with the aim of stimulating discussion and new di-
rections for development of recognition systems. 

It seems that the recognition errors made by a computer are quite intrusive, because 
they are different from the interpretation problems that a person has when reading 
messy or noisy text. If a person is struggling to read your document, her or she will 
ask you about semantics: what do you mean here? In contrast, the computer asks 
about marks on the page: is this a w, is that item over there one symbol or two sym-
bols?  The computer does not state these questions directly, but a user who is proof-
reading recognition output – to correct symbol recognition and symbol segmentation 
errors – is implicitly answering questions like this. Users would find recognition 
software more inviting if it could move in the direction of allowing users to think 
more about the meaning of the notation, and less about the marks on the paper. Com-
puter-Human Interaction is a heavily-researched subject that has many ideas to offer 
[29][30]. 
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Predictability and blame-assignment are two reasons why recognition software 
isn’t as popular as it could be. Consider the case of a user who types a big LaTeX 
expression, and gets an error because of unbalanced parentheses. Is this user upset at 
the LaTeX software?  No, instead the user blames himself or herself: that was my 
stupid mistake, I forgot a parenthesis, next time I will do better. Consider instead a 
user of a pen-based math entry system who gets an error because of a misrecognized 
symbol. This user is likely to blame the recognition software: what stupid software, 
even my four-year-old son is better at symbol recognition than that, I hope the soft-
ware will do better next time -- but it is hard for me to figure out how to help it do 
better. 

A basic question is: do people really want automated recognition of math expres-
sions (assuming that the recognition rate is suitably high)? The answer is certainly yes 
for the case of document recognition, but for manual entry of math expressions, the 
answer probably depends on the person. I will begin by discussing entry of text, and 
then move on to entry of math expressions. For entering text, I personally would 
rather type on a keyboard than handwrite on a data tablet – this is because I can type 
much faster than I can write by hand. On the other hand, a slow typist may prefer 
writing on a data tablet (with application of OCR software) over typing on a key-
board. In the case of math expressions, my personal preference is to have an entry 
method that is focused on the 2D math notation. However, it is possible that some 
people prefer to use LaTeX because they are so practiced that they can type expres-
sions faster than they can handwrite them.  

Before designing a user interface for math recognition, it is worth reviewing the at-
tractive properties of paper: ergonomics, contrast, resolution, weight, viewing angle, 
durability, cost, life expectancy, and editorial quality [19]. Paper also has limitations: 
erasing is difficult, it is not possible to “make extra room” to expand parts of a dia-
gram, it is hard to find information in a large stack of paper, and so on. A goal for 
future computer interfaces is to retain the advantages of paper while also providing 
the editing and search capabilities lacking in paper. Designers reject the use of com-
puters in the early, conceptual, creative phases of designing, preferring to use paper 
and pencil, which permits ambiguity, imprecision, and incremental formalization of 
ideas [16]. Computer based tools force designers into premature commitment, de-
mand inappropriate precision, and are often tedious to use when compared with pencil 
and paper. For further discussion, see [8]. 

4   Generation of Math Notation 

Less is published on the generation of diagram notations than on the recognition of 
diagram notations.  Diagram generation technology is mature and often proprietary.  
Prominent among publications on diagram generation is Knuth’s work on math nota-
tion [22]. We extend ideas from Knuth’s text spacing algorithm [23] to music spacing 
[17]. Also, much has been published on algorithms for graph drawing [36]; many dia-
gram notations are based on graphs. 

Interesting issues arise in providing a user interface to generated notation. The user 
should be allowed to modify the generated notation, without the need to repeat all the 
modifications when the notation is regenerated [3]. 
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5   Performance Evaluation Issues 

Although performance evaluation is an active research area in document image analy-
sis, there are few formally defined performance metrics for diagram generation or 
recognition. Informally, a generator is successful if it generates information-bearing 
images that the user finds aesthetically pleasing. There are no ground-truth models of 
ideal generator output. A generator is debugged on a test suite of diagrams, and in 
response to user feedback. Evaluating the performance of diagram recognition sys-
tems involves defining requirements, characterizing the system’s range of inputs and 
outputs, interpreting published performance evaluation results, reproducing perform-
ance evaluation experiments, choosing training and test data, and selecting perform-
ance metrics [24]. 

The user interface is critical to the success of a diagram recognition system. It is 
difficult to define precise goals for a user interface, and even more difficult to quan-
tify performance of a user interface [8]. Separating user-interface performance from 
recognition performance is difficult: the time that a user spends correcting recognition 
errors depends both on the number of recognition errors and on the qualities of the 
user-interface facilities for finding and correcting errors. The performance of different 
types of visual feedback in a math recognition system is studied in [43]. One possible 
performance measure is to compare the time and accuracy of automated and unauto-
mated entry of diagrams, as discussed in [8]. Neilsen defines usability attributes: 
learnability, efficiency, memorability, errors and satisfaction [26]. Measurable usabil-
ity parameters include subjective user preference measures, which assess how much 
the users like the system, and objective performance measures, which measure the 
speed and accuracy with which users perform tasks on the system [27].   

6   Conclusion 

Computers should serve people, assisting them in their work.  Making computers 
math literate is an important step in this direction, allowing people to work using the 
familiar math notation, avoiding the need for them to learn new notations for the con-
venience of the computers. Computer math literacy provides a smooth transition be-
tween paper documents and electronic documents, combining the best properties of 
paper with the advanced search and evaluation capabilities offered by electronic docu-
ments. This paper has summarized some of the issues involved in creating math liter-
ate computers. Much progress has been made, and many interesting problems remain 
to be addressed. 
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1 Introduction

OMRS (Open Mechanized Reasoning Systems) [10] were designed for Auto-
mated Theorem Proving (ATP) and then extended to Computer Algebra (CA)
[2] .These are the two domains at the heart of the Calculemus approach. An
obvious question is to assess whether such an approach can be extended to new
domains either within AI or outside of AI. There have been several attempts to
turn the world into a computational system (model of everything [7], Fredkin’s
view of the universe [8] as a global cellular automaton, Stephen Wolfram’s defi-
nition of computing [18] or simply diverse models of the philosophy of sciences
[9]). Within AI the very early work of John McCarthy and Patrick Hayes [13]
did investigate philosophical problems from the standpoint of AI. Our approach
stays away from such general attempts and introduces a framework that is fully
set within AI. It extends the basic concepts of OMRS to diverse fields ranging
from information technology to sociology through law as illustrated by selected
examples. The main motivation is to claim that whatever the selected approach,
Artificial Intelligence is gaining enough strength and power to reach new frontiers
and to turn challenges that are not a priori of a purely computational nature
into AI domains.
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The relationship between Calculemus and mathematics cannot be overlooked.
We outline some mathematical concepts, such as works of Jacobi and Herbrandt
or the problems for the Millenium of the Clay institute, in the framework of
ATP and CA. We will survey briefly their links to mechanized reasoning.

Another motivation for our work has its roots in information technology. We
are entering an area which will see methodologies based upon artificial intelli-
gent surpassing human capabilities. At the same time knowledge is becoming
the building stone of our society. The amount of available knowledge is blow-
ing up. This implies that knowledge management must be modeled along new
abstraction paradigms. In other words, artificial artifacts will be substituted to
humans in constructive ways enabling an ”average” person to mechanize several
arts of reasoning in an AI fashion. It will take several years before mathematics
delivers constructive methods applicable to ATP or CA in many domains. AI
offers ways to design in the near future approaches that can be implemented
and used in real world applications. To this goal, we rely more bottom-up (as
opposed to top-down) knowledge methodologies. Indeed, the increase in avail-
able knowledge leads to huge knowledge whare-houses which are not prone to an
easy handling. Using the concept of virtual enterprises (and virtual knowledge
community) that is gaining importance in today globalized economy, we try to
illustrate that we can approach problems that where never attempted within AI.
For instance, we propose an approach to mechanize cultural reasoning that is
fully disconnected from today solutions to resolve intercultural differences. These
are becoming sensitive issues in today globalized and virtual economy. We ex-
tend thus the concept of open mechanized reasoning beyond computer science
to cognitive sciences in general.

It is worth noticing that the attempts to introduce abstraction mechanism in
Artificial Intelligence (AI) were found mainly in reasoning. Abstraction supposes
here a generic process that is proven to lead to the right processing of a problem.
This goes beyond the selection of a specific logic since the abstraction concept
must be goal oriented, not method oriented. This requires some sort of abstrac-
tion mechanism. Abstraction is a paradigm with very many different meanings,
usually specialized to a field or subfield of a discipline. For instance, computer
science favors abstraction described in the language of category theory but it
must compete with different ones (type, semantics, specification, algorithms ...).
The paper is structured as follows. The next section reminds classical concepts
and facts from mathematics or philosophy which have been investigated along
the years and that we do not use as a framework of our work. In section 3
we introduce the open mechanized reasoning framework and the basic results
obtained in the domains of theorem proving and symbolic computation. Open
means that the methodology is generic and not specific to a particular method-
ology. The original framework for this approach lies at the heart of AI. Indeed,
to mechanize mathematics was indeed a goal of the founding fathers of the field
at the Dartmouth meeting in 1956. The achieved results show that successful
ones have a three level structure: a theory, a control on this theory and a well-
understood interaction with the computing environment. The following section
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points out that this structure can be extended to almost any domain of knowl-
edge, including law. This leads to the concept of Abstraction Based Information
Technology (ABIT). The next section illustrates and discusses this concept in
different fields of science and humanities including mechanized legal reasoning.
The next section illustrates how a possible implementation can be easily designed
in the framework of multiagent systems and virtual knowledge communities. The
last section is devoted to some concluding remarks.

2 Mathematics, Philosophy and AI

In a recent paper, the philosopher of sciences, with an education in physics,
Michel Ghins [9] asks whether we need a metaphysics to understand the laws of
nature. He describes a scientific theory as a set of models together with a set
of propositions some of which are laws. This is in fact a study in philosophy in
the line of Descartes. There is, as often in this domain of philosophy, a link to
logic reasoning. This is not an isolated research track. For instance, the books of
Bruno Latour entitled ”Science in Action” and ”Politics of Nature” are attempts
to discover exactly how science works. They are suggested as a worthwhile read-
ing by philosophers and sociologists to computer scientists. A possible reason is
the link of Latour to the ”actor theory network” and the sociology of knowledge.
These are two references, among very many available, towards a possible frame-
work to set a universal model of computation. But, it does not suits the idea of
mechanization well.

Conversely, McCarthy and Hayes write in [13] ”A computer program capable
of acting intelligently in the world must have a general representation of the
world in terms of which its inputs are interpreted. Designing such a program re-
quires commitments about what knowledge is and how it is obtained. Thus, some
of the major traditional problems of philosophy arise in artificial intelligence”.
They go on mentioning that the philosophical problems to be solved become
clearer with so-called reasoning programs. Their choice for a world-model was
the automaton. This view that the universe is a computer or more specifically a
cellular automaton was expressed recently by several computer scientists adopt-
ing the point of view that there is computational model of everything [7]. Cellular
automaton and Turing machines have often be proposed as a generic computa-
tional model. The suggestion of Wolfram is in the framework of complex systems
but looks to fall in this class . Another very recent and interesting approach to
understand the evolution of scientific ideas is found in [11]. The authors propose
a network linking the different fields as a way to learn this evolution. For our
purposes, it is enough to state that these models are controlled theories without
an interaction to an application universe and thus not suitable for our purposes.

Central to logic and ATP is the concept of universe introduced by Herbrandt.
Jacques Herbrand wrote his doctoral thesis in 1930 at the age of 22 years. He
died in an accident the year after. He set the framework for mechanical reason-
ing but no one could guess that at that time. As pointed out in [17], he was
attending the famous Hadamard’s seminar with André Weil, Jean Dieudonné
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and Claude Chevalley who are legends in French mathematics. This means that
mechanized reasoning or a theory for demonstration did not take a very long
time to mature. Another student of this Hadamard seminar was Albert Laut-
man who was working on mathematical structures [12]. It is nowadays probably
better known as a mathematical philosopher. However, Lautman was among the
founder of the Bourbaki saga. All these mathematicians are central to CA since
they do cover algebra and geometry. It may be that the constructive approach
of Bourbaki did inspire CA where solutions to problems must be constructive
and complete. A side remark is that it looks like Hadamard was a boring lec-
turer but his legacy is enormous. Some other famous names are quoted in [17],
namely Vessiot, Frechet and Picard. They are a prototypical link to on-going
research problems of interest to the Calculemus community: the investigation
of symbolic solutions to systems of partial differential equations (PDE). When
the work in logic of Herbrandt took only a few years to demonstrate its use-
fulness, the PDE question is around for a few centuries. In [5] it is shown that
articles of Jacobi, never previously translated from Latin, have inspired modern
mathematics. Computation of normal forms using a sequence of derivations and
eliminations, change of orderings, resolvents, characterization of possible normal
forms by the rank of Jacobian matrices, a priori bounds on the order of a sys-
tem, . . . these posthumous papers of Jacobi develop many themes quite familiar
to contemporay research in differential computer algebra. Picard’s and Vessiot’s
works are still acknowledged when attempting to design symbolic solutions of
PDEs. Furthermore, it is known that physics and part of biology are PDE-based.
This is thus an area where the challenges are high and no solution can be ex-
pected in the near future. Some of the problems for the Millenium listed in the
web site of the Clay institute, such as the Riemann Hypothesis or the Poincaré
Conjecture, need to be solved before CA can propose a constructive solution
to this problem. One may think that the abstracted view of algebra, geometry
and topology proposed by Grothendiek must be adopted before any significant
chance of getting a solution does exist. This is a domain of mathematics where
computation is not primarily the main issue which is to understand the suitable
mathematical theory and to select a meaningful representation in which to set
the problem. We did already mention that the proposed abstraction framework
includes a theory, a control and an environment. Therefore, PDEs illustrate that
a pure mathematical approach is still a dream and thus, it is not yet suitable for
open mechanized reasoning.

3 The Open Mechanized Reasoning Framework

In [10], the Open Mechanized Reasoning System (OMRS) architecture was in-
troduced as a mean to specify and implement reasoning systems (e.g., theorem
provers) as logical services.

Reasoning Theory = Sequents + Rules
Reasoning System = Reasoning Theory + Control

Logical Service = Reasoning System + Interaction
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In [2], a similar approach was designed for symbolic computer algebra systems
under the name of Open Mechanized Computational System architecture.

Computation Theory = Objects + Algorithms
Computation System = Computation Theory + Control
Algorithmic Service = Computation System + Interaction

In [1], an unified description of both classes of systems was derived and called
Open Mechanized Symbolic Computation Systems (OMSCS). It synthesizes the
previous definitions into that of Symbolic Mathematical Service. It is based
upon definitions of symbolic entities and operations which include the previous
definitions of sequents and objects, and of rules and algorithms respectively.

Symbolic Computation Theory = Symbolic Entities + Operations
Symbolic Computation System = Symbolic Computation Theory + Control
Symbolic Mathematical Service = Symbolic Computation System + Interaction

A key feature is that this is the only example where such a generic approach
(e.g., open) is clearly available. Indeed, for logical services and symbolic com-
putation it is possible to prove that a computation always exists and always
terminates. In plain words, we have a theory as the initial level, we exercise
some control on this theory in the second level while the third one describes how
the controlled theory is linked to any environment. In these specific cases, the
environment is a computer universe. In [3] an extension to scientific computing
was investigated. In this case there is no longer a generic approach but, one may
either rely on the standardized arithmetic operations in floating-point arithmetic
(IEEE-754 standard) or on specific arithmetics (interval arithmetic for instance)
or on routines specific to a given available software. In terms of the previous
analysis, this means that instead of considering a generic theory, one may con-
sider various possible theories. For each selected theory, one has to specify the
control imposed upon it and the way the interaction with the environment is
managed. A general remark is that even for the domains where the problem
may be seen as solved, to identify a theory and to analyze its control are rather
simple tasks while to formalize the interaction with the environment is always a
challenging task. This remark is fully relevant for computational systems where
a solution does exist but is often challenging to exhibit it.

4 Abstraction Based Information Technology

A first motivation to extend this work is coming from the state-of-the-art of
artificial intelligence (AI) resulting from the extraordinary progresses achieved
in recent years by computer technology, both at the hardware and software lev-
els. The claim that within a few years computers will be more efficient than
(most) human brains can no longer be disregarded, although this may sound
very unpleasant for many scientists or sociologists or humanists. In addition, the
hypothesis that brains have mainly a virtual perception of the world enables to
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investigate a concept of abstraction in AI. A reason is that the images transmit-
ted by the retina to the brain are possibly virtual images. A second motivation is
the need to investigate inter/multi/trans-disciplinary problems. The meaning of
these concepts have been thoroughly discussed by the French philosopher Edgar
Morin, sometimes in collaboration with computer scientists in the framework of
complex systems. This implies that we need a common abstraction framework
valid for as many disciplines as possible. An underlying assumption is that AI
is not simply a subfield of CS but a paradigm to mechanize reasoning processes
when dealing with the real world. A second assumption is that we interact with
the world through computers and thus we need to model information technol-
ogy through abstract models. We call this abstraction ABIT (Abstraction Based
Information Technology). It is summarized as follows.

– A theory,
– a control on this theory,
– an embedding environment.

It turns out that the three levels of the open mechanized reasoning framework
can be used as a basis to design such an abstraction. A further step is to recognize
that this ABIT approach is suitable to introduce a concept of abstraction into
domains as diverse as physics, philosophy, sociology or even culture [6]. A possible
exception is Mathematics, a domain where only theories look to be meaningful
since control and link to the environment belong to applications rather than to
Mathematics itself.

5 Examples of Abstraction in Various Fields

We present now some simple examples of how ABIT can be defined in various
fields of science and humanities.

5.1 Computer Algebra

This is a direct application of the previous sections.

– A theory is a module of algorithms,
– the control consists of a programming language,
– the environment is the computing environment.

5.2 Legal Reasoning

Legal reasoning is thoroughly introduced in [15] that we adopt for reference
purposes. The second part of the volume, entitled Legal Logic, provides a large
collection of possible theories. Each section or even sub-section can be selected to
be a theory. The choice is not limited however to this second part since already
in the first part several facets of legal reasoning are presented. The domain is
known to be very complex and fragmented. It is thus not surprising to be faced
with a large number of optional theories. Some notions, such as for instance
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doxification [15] , could be used to describe a possible control on theories as well
as the embedding into an environment. However, we select a different scheme
to introduce legal reasoning. The three following facets define mechanized legal
reasoning in ABIT.

– A theory is a set of laws (as voted by legislators),
– the control consists in application decrees,
– the environment is defined by jurisprudence and litigation procedures.

A first limitation is that such a scheme is not universal. For instance, the
second step does not look to exist per se in the UK. In fact, laws are valid in a
country or in a cluster of countries as anyone working on ciphering for instance
quickly notice. The attempt to define, implement and enforce a so-called Eu-
ropean law is a good illustration of the complexity of the system. The above
mentioned scheme may appear as an over simplified view of legal reasoning but
it is very often the view non-experts have. Also, it is suitable to be extended
to less trivial approaches. The control may be extended to rules and regulations
also as shown for plagiarism or copyright protection. In fact the theory and the
control are defined by the administrative, political and judicial instances. They
are also responsible for the third level. Law is a domain where electronic agents
are investigated for many years and is offering high level conferences such as
Jurix or ICAIL or LEA for instance. Thus, there is a proximity to distributed
AI. As a summary, straightforward applications amount to select one of the
methodologies described in [15] and to verify that the three level architecture is
indeed technically suitable. We need to select a specific application to check the
third level of ABIT. A natural choice for us is publication rights and plagiarism.
The following comments are obviously from a non legal expert. In fact some of
the questions we raised were put to lawyers and always got as generic answer:
there is a solution since there are laws governing this domain (lawyers without
computer culture) or this is under investigation (lawyers with computer culture).
It turns out that either as the editor-in-chief of a journal, or as researcher in-
vestigating security of mobile systems or as a professor having to fire a student
from the university because of a stupid case of plagiarism, some disturbing fea-
tures and consequences of fully relevant laws have been encountered. This is a
motivation to introduce a heuristic tool at the third level: a legal social network.
Indeed, plagiarism in projects or thesis is becoming increasingly bothering in
the education world with the facilities provided by internet. Tools exist, such
as the Turnitin or Copy Tracker or Plagium or Nopliagia or many others soft-
ware, to check whether part of a report is extracted from a previous publication.
Plagiarism is reaching enormous growth since it has been estimated that 20 %
of all German master thesis suffer from some sort of plagiarism. We need fast
an informative tool to make the students aware of the existence of plagiarism
detectors. Since a student signs a form stating that the thesis work presented
is his/her own only, plagiarism has legal consequences and a guilty student is
thrown out of the university. A legal social network could be very helpful but in
any case, mechanized legal reasoning is a requirement.
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5.3 Mathematics

Throughout the paper abstraction means solely the abstraction we did intro-
duce. There are obviously many meanings to this word and the next sentences
might sound controversial in any other context. A theory is not necessarily an
abstraction. Mathematics is about building theories, such as differential algebra
for instance, but cares less to set a control on these theories and investigates the
link to the environment when moving to applied mathematics. This means that
we adopt the old-fashioned distinction between pure and applied mathematics.
Thus, differential algebra is a theory. and will become an abstraction when it
can be labelled computer algebra. This happens when modules of algorithms
are designed. They are controlled by a programming language and the links to
the computing universe is fully mastered and understood. Other similar exam-
ples are scientific computing or ATP. Topology is another fascinating case. It
is obviously a theory but seldom constructive. Although we do not request an
abstraction to be constructive, it must be since to master the embedding in a rel-
evant universe, one must master all possible links. The Kenzo specialized system
of Francis Sergeraert, an expert on constructive homological algebra, is available
from his home page. It is however very difficult to use by non-expert users mean-
ing that the control is not optimal. Thus, we cannot rate the state-of-the-art in
this domain to be an abstraction. This is, surprisingly, the only branch of science
or humanities that is not concerned with our concept of abstraction although
it is the branch where the most abstract knowledge, in the usual meaning, is
available.

5.4 Physics

Physics underlines the fact that an abstraction can be time dependent since it
depends on our understanding of a domain. Most parts of physics are without
doubt abstractions. This statement is also valid for nanotechnology or quantum
optics (lasers). But, this is not always true since theoretical physics is still un-
der development. An example taken from history was the computation of the
anomalous magnetic moment of leptons to prove that quantum electrodynam-
ics is a theory. This amounted to validate the existence of a renormalization
group model. By the way, such computations have certified computer algebra
systems as reliable computational tools. When the integration into the theory
of the weak and strong interactions became necessary, the model evolved. For
instance, one way to extend the renormalization group model to gravity, leads
to the so-called string theory. This may be seen as successive theories with some
control but, in the case of string theory, with little understanding of the link to
environment since it is virtually impossible to probe this model experimentally.
Quantum computing is a fascinating area since it is still an open question to
know whether an efficient quantum computer will ever be available. Without
entering a detailed discussion, one may say that we have an abstraction based
on quantum mechanics as a theory, quantum computing provides the control
on this theory while the link to the universe is the assumption that quantum
computers will be built when technology is adequate.
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5.5 Sociology and Political Sciences

Sociology is an area attracting lot of research activities nowadays and where
some sort of mechanization is looked for. We will outline in the next section an
abstraction in the domain of multiagent systems (MAS) which could be dupli-
cated here. But, on a very general level, we adopt the point of view that sociology
is concerned with many possible theories expressing what is the role of agents
(human or artificial). The control on the agents with their given roles defines a
society. The abstraction is defined as:

– A theory is a set of agents with well defined actions,
– The control consists in defining a society based upon the theory,
– The environment is defined by how this society is governed.

Theories and their control in this abstraction constitute what is usually de-
fined as sociology while the step society to government is the domain of political
science. History tends to show however that the form of society implies some
constraints on governance. Thus, it is possible to introduce as third level a sim-
ulation of the society activities for instance.

5.6 Culture

This is a topic with facets in, at least, philosophy, sociology, psychology, econ-
omy, geography, education or business. Consulting companies are training em-
ployees of international companies to solve problems arising from intercultural
differences. An international transport company such as Hamburg-Sud equips
its employees with a booklet listing some trivial cultural differences in the coun-
tries they do business with. Numerous examples of cultural problems result from
setting up international companies or exchanging international students. Three
simple examples are listed here.

– A French-German company hires engineers. They have a health insurance
coverage: meaning?

– Exchange of students: What is the aim of education in different cultures?
– Process of decision making in international enterprises.

We want to make such problem solving part of information technology. This
means that understanding intercultural differences ought to be an assigned goal
of AI. This is only possible when an abstract view of the problem is available.
Mechanized cultural reasoning is better described in [6]. A simple introduction
is to state that the theory is an ontology, the control is to infer facts from this
ontology. Finally, the environment consists in specializing these facts to a specific
culture. Technically, this requires that we can abstract cognitive problems.

5.7 From an Ontology to a Methodology

We have so far outlined a possible paradigm for abstraction that is fairly straight-
forward. Since the goal is to design and implement a mechanized reasoner, we
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have to define the methods and techniques required to reach this goal. They are
based upon the following assumptions. First, we adopt the framework of dis-
tributed AI and of multiagent systems. Second, the basic ingredients consist of
knowledge. Third, we adopt a bottom-up approach. This means that we want
to tailor the solution of a problem to the needs and means of potential users.
An overall goal is to define a framework where mechanized reasoning, as under-
stood in AI, is available. A second goal is to design systems that can be used
easily by customers. We investigate whether it is possible to use a constructive
approach for cognitive systems or complex systems. Consider as example the
first cultural problem above. When a company is facing intercultural troubles, it
usually calls on a consulting company that will propose a solution. This is very
similar to calling on a psychiatrist to solve psychological disorders. We want
to design systems using AI mechanized reasoning as a substitute to consulting
companies. By the way, health insurance is a generic word with very different.
specific meanings in different social systems. Similarly, it is astonishing to set up
a double diploma open to top students of two countries, Germany and France
specifically, and to notice that after one year of studies these top students do
not really understand what is the goal of studying in the partner country. These
students will be labelled to have an international experience and probably hired
as manager in international enterprises. Then, the third intercultural trouble will
likely surface. This is a new goal of AI that we wish to derive from mechanized
reasoning and establish as an item in the agenda of AI. We may simply state
that culture belongs to the corporate knowledge of a country. This is likely to
be received as an horrible point of view by most humanists or cultural experts.

6 Knowledge Methodologies

This section outlines very briefly some methods that have been designed and do
enable to propose a meaningful solution for the ABIT framework describe in the
previous sections.

6.1 Agent Methodology

We set our approach in the framework of multiagent systems (MAS). They were
originally designed as a tool in distributed artificial intelligence. In [4] an Agent
Oriented Abstraction (AOA) was proposed to abstract a multiagent system and
also to specify what is a society of agents along the line of Weber’s fundamental
work in Sociology. AOA is based upon six definitions itemized as follows.

– An agent is an entity made of annotated knowledge coupled to a decision
mechanism.

– The decision mechanism of an agent is the process by which an agent can
reach its assigned goals. It is based upon the contents of the knowledge
component. A decision mechanism is characterized by its utility.

– Knowledge annotations are classes or types structuring the knowledge pos-
sessed by or associated to agents.
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– The utility of a decision mechanism is a measure of the efficiency of this
mechanism. It is structured into utility classes.

– A society of agents is the societal organization arising from the actions per-
formed by individual agents in the agent world assigned to a problem.

– A specialization is an implementation of the abstract classes for knowledge
or utility.

In our abstraction framework, definitions 1 to 3 define a theory, definitions 4
and 5 define the control on this theory while the last definition acknowledges the
link to the environment. A facet of the Agent Oriented Abstraction (AOA) men-
tioned previously is to enable to select virtual knowledge communities (VKC)
as a methodology to represent knowledge.

6.2 Virtual Knowledge Communities

Virtual organizations (VO) are emerging in the information society as a re-
quirement for a new information distribution scheme. They can be defined as a
collection of individuals, companies or organizations which have agreed to work
together to achieve a purpose. The concept of virtual knowledge communities
(VKC) is an specific aspect of knowledge management in the frame of VO. A
reasonable denition for VKC can be: Groups of people or agents with similar
interests and purposes communicating and interacting by means of information
technologies. VKCs are built upon three ground concepts: different entities (the
members), similar interests of the members, and electronic communication chan-
nels. Since VOs are based on interaction between different entities, it appears
natural to consider the concept of virtual knowledge communities within an
agent-based abstraction. Indeed, MAS are based on the model of autonomous
entities (agents) interacting with each others. AOA considers that agents are
composed of two entities: A knowledge component and a decision mechanism.
There are several ways to define the knowledge component. VKC is one of them.
It is then possible to design the basic operations that can be performed on
VKCs and to implement them. Several VKC’s implementations have been per-
formed including one for portable devices. Relevant references can be found in
[14] and [16].

7 Conclusion

Our goal is to demonstrate that the very basic ideas that are at the source of
Calculemus can be extended to provide an abstract framework for most fields
of science and humanities. We have outlined a string of ideas and methods to
assess that it is possible to switch from logical frameworks to cognitive systems
to identify abstraction concepts.

An important motivation lies in the belief that artificial intelligence will be
more effective than human actors shortly. At a time when a car is able to run
1,000 km without a driver, we may expect that managing and exploiting knowl-
edge bases may be partly mechanized. Here knowledge is assumed to come in
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many different arts. We also acknowledge that our technical view of the world is
becoming more and more virtual. This concept is changing the way enterprises
do collaborate. It is worth designing methodologies that will enable to think
of collaborative international management and cultural systems. Although the
features of decision making and trust are not considered in this paper, they are
central to any knowledge management methodology. Our approach suits this
concern.

The first part of the paper is attempting to remind that the search for an
universal computational model as always been a goal of humanity. We tried
very hard to assert that we do not set our approach within philosophy or any
such attempts. A second remark was that although we do believe strongly that
pure mathematics will enable breakthroughs towards mechanizing reasoning, we
do not set our approach in the framework of mathematics. We have mentioned
briefly in the last section bits and pieces that are being shaped up as tools
to design abstraction based information technology. A testbed is probably to
demonstrate that cultural mechanized reasoning does exist.
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Software Engineering for Mathematics
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Despite its mathematical origins, progress in computer assisted reasoning has
mostly been driven by applications in computer science, like hardware or protocol
security verification. Paradoxically, it has yet to gain widespread acceptance in
its original domain of application, mathematics; this is commonly attributed to
a “lack of libraries”: attempts to formalize advanced mathematics get bogged
down into the formalization of an unwieldly large set of basic resuts.

This problem is actually a symptom of a deeper issue: the main function
of computer proof systems, checking proofs down to their finest details, is at
odds with mathematical practice, which ignores or defers details in order to ap-
ply and combine abstractions in creative and elegant ways. Mathematical texts
commonly leave logically important parts of proofs as “exercises to the reader”,
and are rife with “abuses of notation that make mathematics tractable” (accord-
ing to Bourbaki). This (essential) flexibility cannot be readily accomodated by
the narrow concept of “proof library” used by most proof assistants and based on
19th century first-order logic: a collection of constants, definitions, and lemmas.

This mismatch is familiar to software engineers, who have been struggling
for the past 50 years to reconcile the flexibility needed to produce sensible user
requirements with the precision needed to implement them correctly with com-
puter code. Over the last 20 years object and components have replaced tra-
ditional data and procedure libraries, partly bridging this gap and making it
possible to build significantly larger computer systems.

These techniques can be implemented in compuer proof systems by exploiting
advances in mathematical logic. Higher-order logics allow the direct manipula-
tion of functions; this can be used to assign behaviour, such as simplification rules,
to symbols, similarly to objects. Advanced type systems can assign a secondary,
contextual meaning to expressions, using mechanisms such as type classes, sim-
ilarly to the metadata in software components. The two can be combined to
perform reflection, where an entire statement gets quoted as metadata and then
proved algorithmically by some decision procedure.

We propose to use a more modest, small-scale form of reflection, to implement
mathematical components. We use the type-derived metadata to indicate how
symbols, definitions and lemmas should be used in other theories, and functions
to implement this usage — roughly, formalizing some of the exercize section of
a textbook. We have applied successfully this more engineered approch to com-
puter proofs in our past work on the Four Color Theorem, the Cayley-Hamilton
Theorem, and our ongoing long-term effort on the Odd Order Theorem, which
is the starting point of the proof of the Classification of Finite Simple Groups
(the famous ”monster theorem” whose proof spans 10,000 pages in 400 articles).

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, p. 27, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Some Traditional Mathematical Knowledge
Management
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What is mathematical knowledge and how can it be managed? There are not
only differing views around on the management aspect but there is no real clarity
or consensus on what mathematical knowledge is; indeed there are questions as
to what knowledge is and what mathematics is. For the sake of definiteness
I will adopt a particular stance from which to work, namely that aspect of
organizing the knowledge of mathematics represented by Mathematical Reviews,
for which I have worked since 1980. From that platform we can explore and
speculate both historically and prospectively. Some new results of bibliometric
and other machine-enabled examination of the mathematical literature will also
be discussed.

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, p. 28, 2009.
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Nowadays, writing a math paper in a word processing application or performing
calculations in a computational engine often requires spending a considerable
amount of time creating math expressions using either a complex UI model with
a multitude of drop-down buttons or a complicated and difficult to remember
linear format input. As of Windows 7, Microsoft provides users with the most
natural and efficient way of inputting math - handwriting recognition, as part
of its operating system. Microsoft has taken a completely new approach to this
problem and raised math handwriting recognition to a whole new level in terms
of functionality, performance and area coverage.

A key power of the math handwriting recognizer in Windows 7 lies in the
fact that it outputs the recognition result in MathML format, a standardized
mathematical markup language. Any expression written and recognized reaches
destination applications in a completely editable form - the output can be in-
serted and edited just like any other text.

Due to considerable time spent researching and identifying as many areas
of math as possible and practically endless different math notations, the final
result is a great coverage of high school and college level math, and of even more
advanced areas.

The recognizer, developed at Microsoft Development Center Serbia, is exposed
through two UI components: Math Input Panel and Math Input Control.

Math Input Panel is a standalone Windows 7 accessory that enables inputting
math using handwriting into any MathML-aware Windows application via clip-
board interaction.

Math Input Panel

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 29–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Math Input Control is an ActiveX UI control designed for tighter integration
into Windows applications, such as those for word processing, computation and
note taking. For applications the added benefit of integrating Math Input Con-
trol, as opposed to using Math Input Panel, is better discoverability, process
control and a degree of customizability.

Math Input Control

Math Input Panel and Math Input Control are designed to be used with a
tablet pen on a Tablet PC, but they can be used with any input device such as
a touchscreen, external digitizer or even a mouse. The user interaction model is
designed to be very easy and straightforward. Math expressions are handwritten
just like with pencil and paper and the recognizer takes care of the rest.

As no recognizer is perfect, another key power of Windows 7 math handwriting
recognition UI is in its ability to provide a great correction experience. In case
handwritten math is misrecognized, any part of it (individual symbols or whole
sub-structures) can be corrected either by selecting alternates or by rewriting
part of the expression.

Therefore, Math Input Panel and Math Input Control bring great benefits to
Windows 7 users by providing a painless method of inputting math into their
desired applications, using handwriting recognition.
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Since discussions of a Digital Mathematics Library (DML) were first formalized,
it has been recognized that such a collection would be federated, consisting of
a ”network of institutions.” Implicit in this conception, and explicit in much
of the early DML planning documents, is the assumption that this network
would be organized in some manner–coordinated and held together by formally
accepted policies and practices regarding collection, management, access, and
preservation.

This DML, so conceived, has not come to pass. I suggest this is not because
the early vision of a DML was particularly flawed, but because, for one, it was
enormously more complex than we thought, and two, the approach taken was be-
yond our capabilities. However inevitable such an approach was, it was unrealistic
given our capacity and understanding. We did not, and still do not, possess the
technical understanding, the organizational capabilities, or the institutional and
political willingness to implement such a grand vision in the manner proposed.

I will argue that the way forward need not abandon the larger vision but rather
set aside many of the constructs upon which we assumed it needed to be realized.
Chief among these is the notion of a coordinated, planned, or even sensible
approach to building the DML–the idea that a central organizing network of
institutions will establish, through some formal process, a plan to accomplish
the goals of the DML. The future DML, if we can even call it a library, will not
be ”organized” (in any conventional sense of the word), at least for many years,
if ever.

This is not, in my opinion, bad news or even pessimistic. It is rather a natu-
ral and expected evolution in our progress. And there has been progress, most
notably in our thinking about large scale document networks. There are, fur-
ther, I will argue, constructive areas of work ahead. For one, we can encourage
and promote low-barrier local practices that we are increasingly confident will
contribute to a large scale federated digital collection. Such local efforts include
digitization methods, local data management practices, and adopting less fearful
and more constructive procedures for exposing content. Second, we can engage
in more exploration of how to operate in a messy information space, not with
the goal of curating or exerting control over a disparate set of data, but aimed
at connecting the dots. We should recognize that it is the relationships among
exposed content that deserve our attention in this effort. What we may find frus-
trating about these relationships, their dynamic, shifting, multitudinous nature,
is in fact the living nature of our future information environment and the source
of its richness.

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, p. 31, 2009.
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Abstract. Over forty years ago an algebra system was written in Cam-
bridge, UK, designed to assist in a number of calculations in celestial
mechanics and later in relativity. I present the hardware environment
and the main design decisions that led this system, later dubbed CA-
MAL, to be used in many applications for twenty years. Its performance
is investigated, both in its own era, and more recently. It is argued that
a compact data representation as in CAMAL has real benefits even in
today’s larger memory world.

1 Introduction

This paper considers a period in my early academic career, when not only was
computer algebra a novel idea but the idea of having a computer at all was close
to fantasy. In 1964 I started as an undergraduate at the University of Cambridge,
and my first encounter in the first week with the teaching staff was with David
Barton, a research student, who was to supervise me in applied mathematics
for that term. I still remember that hour with a mixture of amazement and
embarrassment at my stupidity. Four years later, having survived a degree and
a postgraduate qualification in Computing, I started working for and later with
David Barton on his algebra system, which was at that time unnamed.

I wish to impart some of the flavour of that system, why it was written and how
it worked. The system survived for over twenty years in some form or other, but
I wish to concentrate on the original three systems, and to give some benchmark
figures for the performance of the system.

2 The Original Problem and System

David Barton was a research student at the Institute of Theoretical Astronomy,
University of Cambridge. His area of interest was celestial mechanics, and the
algebra system came into existence in order to solve one problem, to determine
the orbit of the moon[2].

Charles Delaunay[7] published the methodology and results of a major hand-
calculation. The two-volume book produced an algebraic expression for the orbit
of the Moon round the Earth, as perturbed by the Sun in its orbit. The basic
methodology was to consider the orbit as an instantaneous ellipse as explained
by Newton’s laws of motion, but the ellipse will evolve under the influence of
the distant Sun (see figure 1).

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 32–44, 2009.
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Fig. 1. The Lunar Theory of Delaunay

The problem is posed in terms of 6 variables and 6 angles, and all the variables
are “small”; that is the solution is developed as an approximation1 expanded to
a certain level in variables like the eccentricity of the orbits, the ratio of the
distances Earth-Moon to the Earth-Sun, and so on. This problem leads to a
number of design decisions that at the time were obvious.

All expressions were Fourier series whose coefficients are polynomials in a
small fixed number of variables over the rational numbers. The arguments to
the sine and cosine functions are linear sums of the six angles. The general form
of all expressions is thus∑

P (a, b, c, d, e, f, g, h)
sin
cos

(
λu + μv + .. + γz

)

2.1 Hardware Base

The University of Cambridge at that time had an Atlas2 computer, also known
as Titan[15]. This computer had a 48 bit word which could hold a floating point
1 After all the 3-body problem is not solvable in gravitation.
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number, an instruction, or two 24 bit half-words. The memory was addressed
in words by the top 21 bits of a halfword, or in half-words by the top 22 bits.
Conceptually a word could also hold 8 six-bit characters, but there was little
hardware support for this. The design would probably nowadays be described
as three-address, as most instructions had two registers and an address, and the
machine was RISC-like, having 128 registers (mainly 24bit); there was also a
floating point accumulator.

Titan initially had 64K words of memory (that is 1.5 megabits), although
this was soon extended to 128K words. The memory had a cycle time of about 4
μsecs2, and the second bank was a little faster. There was in addition a 32 word
“slave store” which was an instruction cache, working at 300 nanosecond cycle
time, although this hardware was often turned off as it was unreliable.

Memory was divided into blocks of 512 words, and this was the basic unit
of allocation. Programs had to be in contiguous memory, and there were other
restrictions due to the use of an OR rather than a ADD in the base register
system, but they do not concern us regarding the algebra system.

To the programmers at the time the real delight of Titan was its B-registers;
there where 88 general purpose registers, together with zero in register 0, and
register 90 was the subroutine return address. Registers 119-122 were special,
and the user’s program counter was in register 127. What this means is that
programming in assembler was fun and offered many opportunities for optimi-
sation. This was good, but the programming languages available were less so.
There was Titan Autocode, a version of Fortran, and a promise of CPL.

The original algebra system was written in the commonest assembler, IIT
(Intermediate Input for Titan).

2.2 A Polynomial

The polynomials of the system were held as packed structures. There are only 8
variables, and as the application was approximation, there is no need for expo-
nents to be larger than 31 – there was no hope of that accurate an approximation
for the lunar orbit, 10 or 12 being the aim. This remark shows that all variables
would be held in one 48 bit word, allowing 5 bits for the exponent and a guard
bit to check for exponent overflow. The allocation is fixed, and every term in
the polynomial will have a representation for all 8 variables. The advantage in
algorithmic terms was that the multiplication of two terms could be achieved
using two halfword additions3, with a mask to check overflow.

The coefficients were held as two integers, in a word each. This was extended
later as described below (section 3). Perhaps the only innovation in this section
was that the rational was not reduced to lowest terms unless it was being printed
or it was about to overflow.

The last part of polynomial design is the list of terms, ordered in increasing
total order, that is, the sum of the exponents. By maintaining polynomials in
2 The manual says 2.25 but that was not achieved.
3 Integers were always in halfwords, and words were only for instructions and floating

point.
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increasing maximum order it is possible to truncate the multiplication of two
polynomials when the terms get too small for the degree of approximation. As-
sume that we are multiplying the two polynomials

A = a0 + a1 + a2 + . . .

B = b0 + b1 + b2 + . . .

If we are generating the partial answer

ai(b0 + b1 + b2 + . . .)

then if for some j the product aibj vanishes, then so will all products aibk for
k > j. This means that the later terms need not be generated. In the product
of 1 + x + x2 + x3 + . . . + x10 and 1 + y + y2 + y3 + . . . + y10 to a total order
of 10 instead of generating 100 term products only 55 are needed. The ordering
can also make the merging of the new terms into the answer easier.

2.3 A Fourier Series

The Fourier series part was similarly held as a packed structure with all 6 angles
having multipliers packed into the structure. With 8-bit fields there is space for
a signed number and a guard bit. The rest of the structure is made from two
half-word pointers, one to the polynomial coefficient and one for the primary
sum chain. The difference between a sine and cosine term was coded in a single
bit on the polynomial pointer; remember that on Titan the bottom 2 bits are
ignored on memory access. This is shown in figure 2.

The algorithms for performing the algebra are straightforward for addition,
multiplication, differentiation and restricted integration. The product of the
Fourier terms are subjected to the linearisation rules.

cos θ cosφ ⇒ (cos(θ + φ) + cos(θ − φ))/2,

yu v w x z

Polynomial

Next Fourier

sine/cos bit

Fig. 2. The Fourier Representation
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cos θ sin φ ⇒ (sin(θ + φ) − sin(θ − φ))/2,

sin θ sin φ ⇒ (cos(θ − φ) − cos(θ + φ))/2,

cos2 θ ⇒ (1 + cos(2θ))/2,

sin2 θ ⇒ (1 − cos(2θ))/2.

Substitution of one Fourier series into another is a more complex operation,
but it relies on the approximation mechanism:

sin(θ + A) ⇒ sin(θ){1 − A2/2! + A4/4! . . .} +
cos(θ){A − A3/3! + A5/5! . . .}

cos(θ + A) ⇒ cos(θ){1 − A2/2! + A4/4! . . .} −
sin(θ){A − A3/3! + A5/5! . . .}

The actual coding of the operation was not as expressed above, but by the use
of Taylor’s theorem. It should be noted that the differentiation of a harmonic
series is particularly easy.

3 The Bourne-Again CAMAL

Steve Bourne’s PhD work was on the Hill formulation of the Lunar theory[3].
This is similar to the Delaunay theory except that it uses a Cartesian coordinate
system, and needs more variables and also complex coefficients. In addition some
of the coefficients got larger. In order to accommodate these changes Bourne
rewrote the system, still in assembler, to add an extended rational coefficient
with numerator and denominator up to 276 − 1, a possibility for overflow to
floating point, and four more variables, i through l. The variable i was the
complex number and replacement of i2 by -1 was managed internally always.
The final polynomial structure is shown in figure 3.

The other innovation for this second incarnation was the production of a
programming language. Prior to this programs were sketched in an informal
language and then coded in assembler. The new language[1] was very similar
to Titan Autocode, except that the lowercase letters were algebraic variables
and angles, and programming variables were single uppercase letters, with A-
H and U-Z being algebraic type and I-T being integer. Multiplication was by
juxtaposition as in Autocode and there was a looping construct and jumps.
There were no subroutines as commonly understood now, but the form → 60 →
could be used to jump to label 60, and store a return link on a stack. The compiler
was implemented in a syntax-directed compiler system called Psyco[16,18]

3.1 Memory

The other innovation that was incorporated in the compiler was related to
memory allocation. As is appropriate for list processing on a small memory



CAMAL 40 Years on – Is Small Still Beautiful? 37

a − d e − h

P

Q
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Q’

i − lOrder

Sign

Floating point
Marker

(only present if necessary)
Double Length Block

Next Term

Fig. 3. The Polynomial Term

machine[10] the system worked with an explicit return system. With two sizes
for allocation the mechanism was simply two free-chains. However the important
feature was the division of operations into those that “naturally” destroyed their
arguments and those that did not.

Consider the addition of two polynomials; this is a merge of two chains, and
so is a simple example of the first kind of operation. Others include polynomial
differentiation and integration. The operation of polynomial multiplication on
the other hand does not consume its arguments. The compiler ensured that the
necessary copying of structures was made before destructive transformations,
if necessary. If the operation was then the first argument must be copied but

A = B + 5abs

not the second. More importantly the user language allowed a colon to follow a
variable to indicate that it was not required after use, and the compiler could
either not copy or insert a lose call as appropriate. This mechanism, used care-
fully, could save much memory and allow calculations to complete despite the
memory limitations of Titan.

Another feature of the language scheme that was developed over time was
to compile into a half-word encoding which was interpreted at run time. The
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argument at the time was that the basic operations took much longer that the
time in the user program. Later a mixed system was used, especially in the third
version.

4 Getting the Hump

The work of my PhD was largely in relativity, gravity waves and Einstein
space[12]. For this neither the polynomials nor Fourier series were sufficient and
so the third algebra system in Cambridge was constructed. The system handled
sums and products of elementary functions, with possibly nested arguments,
but used the polynomial component of the earlier system as a subsystem. In this
way it inherited many of the compact store attributes while providing a faster
implementation base.

This code, later called CAMAL(H) or Hump, was not written in assembler,
but in a language like the user language, which was compiled into assembler for
integer and pointer operations, and into interpreter half-words for polynomial
algebra. The compiler was again written in Psyco. This system also introduced
use-counts for memory structures and a hashing system to save memory on
repeated polynomials.

5 Overall Structure

At this stage in the development of the algebra system we had a collection of
systems, polynomial, Fourier, elementary functions and a tensor package (writ-
ten in the same way as Hump, see [14]), and these could be used together in
various ways. A small (1024 word) control program handled space, stacks, and
the interpreter, and each component supplied a jump table to the functions,
in a pre-defined order. In some ways this pre-echoes the internal structure of
Scratchpad/2 much later. It was this system that was first named The Cam-
bridge Algebra System, abbreviated to CAMAL[4,5]. The sizes of the code for
various configurations is given in table 1.

Table 1. Sizes of Various CAMAL Systems in Blocks(512 words)

Polynomial System 2 + 5 = 7
Fourier System 2 + 7 = 9
Elementary Functions System 2 + 4 + 12 = 18
Fourier Tensors System 2 + 7 + 7 = 16
Elementary Function Tensor System 2 + 4 + 12 + 7 = 25

The last system described there used three levels of code, linked via inter-
pretation. There are few extant examples of this particular scheme but it was
operational.
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6 Subsequent History

The CAMAL system, as it was now called, continued for about twenty years as an
application tool. Titan was turned off in 1973, and replaced by an IBM370/165.
CAMAL was rewritten, first in a dialect of ALGOL68 and then in BCPL[19].
The assembler sections were hand recoded, and the components written in the
CAMAL language were compiled to BCPL, again with Psyco. The algorithms
and data structures were largely the same, except that the opportunity was
taken to allow arbitrary numbers of polynomial variables, fixed for any run, and
to allow similar licence for the maximum exponents. The masks and shifts were
computed at initialisation time, but the fundamental algorithms were the same.
Also arbitrary (unfixed) precision coefficients were introduced, and some hand
adjustment of the automatic BCPL code made.

This incarnation was later ported to other architectures, including SUN work-
stations and VAXen. It fell out of maintenence in the late 1980s, although there
was a working version reconstructed in 1999 using an automated BCPL to C
translator, which when compared to REDUCE on the same computer showed
remarkable speed.

7 Performance

In this paper so far the concentration has been on the design and data structures.
This is only of interest if we also can see how this translates into performance.

In the 1970s there was a flurry of small benchmarks that were used in com-
paring the variety of algebra systems then in existence. The first of these was to
calculate the f and g series.

7.1 f and g

The f and g series arise in the solution of orbits, and were first proposed as an
algebra benchmark by Sconzo et al.[20] in FORMAC. It was widely used for a
few years. The series are defined by simple recurrence relations:

.
μ = −3μσ
.
σ = ε − 2σ
.
ε = −σ(μ + 2ε)
fn =

.

fn−1 −μgn−1

gn = fn−1+
.
gn−1

f1 = 1
g1 = 0

A CAMAL program to calculate this is shown in figure 2.
A table of reported timings is shown in table 3 from about 1973. It is hard

to get complete comparisons, but note that the storage requirement of CAMAL
is small and the time is short. CAMAL was noted at the time for its speed,
but that was never the design. We held to the mantra that memory was finite
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Table 2. CAMAL Program for f & g series

F[19]; G[19]

F[0] = 1; G[0] = 0; U = -3ab; V = c-2bb; W = -b(a+2c)

FOR N=1:1:19

F[N] = UdF[N-1]/da + VdF[N-1]/db + WdF[N-1]/dc - aG[N-1]

G[N] = UdG[N-1]/da + VdG[N-1]/db + WdG[N-1]/dc + F[N-1]

REPEAT

PRINT[F[19]]; PRINT[G[19]]

PRINT[TIME]

STOP

END

Table 3. 1973 Comparisons for f & g series

System Computer Word Cycle × time Order Time Memory
ALTRAN GE 625/635 36 1.5 6 19 158 51K
CAMAL Titan 48 4 7 19 6.4 3.8K
CLAM CDC 6600 60 0.8 1 15 10.6 30K

FORMAC IBM 7094 32 2 10 12 58.2 ??
Korsvald IBM 7094 32 2 10 12 178.2 ??

MATHLAB PDP 10 36 1 10 12 20 ??
PM IBM 7094 32 2 10 27 105 ??

REDUCE PDP 10 36 1 10 10 68 38K
SAC-1 CDC 1604 48 4.8 36 12 75.9 21

SAC-1/Asm CDC 1604 48 4.8 36 12 38.5 21

but time infinite4 and we were pleased by the Memory column of this table. To
assist in interpretation the graph of figure 4 shows the growth graphs in time in
seconds and memory on 100s of words.

At the 1971 SYMSAC/2 conference there were attempts to run this program
on all systems being demonstrated; unfortunately some crashed or apparently
looped5.

For comparison, a recent investigation of the f and g series using contemporary
algebra systems and hardware can be found in [6].

7.2 Legendre Polynomials

Another simple benchmark is the calculation of the Legendre Polynomials, which
can be defined by the relations

4 although on Titan the time between failures was quite short!
5 The same was true of a much hyped system in the 1980s.
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Fig. 4. Time and Memory for f & g series in CAMAL

nPn = (2n − 1)xPn−1 − (n − 1)Pn−2
P0 = 1
P1 = x

The same polynomials can be calculated by Rodrigues’ formula

Pn(x) =
1

2nn!
dn

dxn
(x − 1)n

and the simple benchmark is to check that these give the same answers. This
is one of the tests made on the 1998 Camal-in-C translation6. To order 30 this
verification and printing took 0.380s, while the same program in REDUCE on the
same computer took 1.071s. Unfortunately my records do not give the memory
used.

7.3 Other Benchmarks

Amongst the other benchmarks there is a series published in the SIGSAM Bul-
letin together with solutions and timings. The f and g series was re-designated as
Problem #1, and there were a total of 11 problems proposed. Those interested
can find papers reporting timings from March 1972 until the end of the decade.
I want here to consider just problem #3, the reversion of a double series[17].
Solutions were proposed by Fitch[8] and by Hall[13] in ALTRAN. Hall’s method

6 Unpublished work of Arthur Norman and myself.
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Table 4. Comparisons of two algorithms for Problem #3 on PDP10

Fitch Hall
n Time Store time Store
1 0.224 203 0.250 143
2 0.993 561 0.712 491
3 3.526 1781 2.147 1723
4 12.376 5431 6.759 5401

was to reduce the problem to one of calculating a recurrence problem, while
Fitch used repeated approximation, to which CAMAL is well suited. The tim-
ing superiority of the CAMAL program led to an inaccurate statement that the
algorithm was superior. Later implementations of Hall’s method on CAMAL[11]
showed that Hall’s program used less memory and ran faster (see table 4, time
in seconds, memory in words). A compact representation can be deceiving.

But do note the memory sizes. As this is an explicit return system these
memory sizes are invariant; in addition there was 14K of program and 3K of
fixed data.

7.4 Lunar Disturbing Function

The last comparison I wish to make is in the calculation of the Delaunay Lunar
Disturbing Function, which is the first stage of the Delaunay Lunar theory. The
details can be found elsewhere(for example [9]) but this is a Fourier series cal-
culation which was bread and butter to the original CAMAL. In 1993 I wrote a
module for REDUCE that used as close as I could the CAMAL data structure
for Fourier series, while using the standard REDUCE polynomials for coeffi-
cients. This system runs significantly faster than the same problem in normal
REDUCE(see table 5)

This showed that even within a general purpose algebra system there is scope
for a compact subcomponent. For the whole calculation, using both lists and
balanced trees, the figures were interesting:

Order of DDF Reduce Camal Linear Camal Tree
2 23.68 11.22 12.9
4 429.44 213.56 260.64
6 >7500 3084.62 3445.54

What came as a surprise at the time was the direct comparison with CAMAL.
The CAMAL Disturbing function program could calculate the tenth order with
a maximum of 32K words (about 192Kbytes) whereas this system failed to cal-
culate the eighth order in 4Mbytes (taking 2000s before failing). I also have in
my archives the output from the standard CAMAL test suite, which includes
a sixth order DDF on an IBM 370/165 run on 2 June 1978, taking 22.50s and
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Table 5. Solving Kepler’s Equation in Reduce and CAMAL-module

Solving Kepler’s Equation

Order REDUCE Fourier Module
5 9.16 2.48
6 17.40 4.56
7 33.48 8.06
8 62.76 13.54
9 116.06 21.84
10 212.12 34.54
11 381.78 53.94
12 692.56 82.96
13 1247.54 125.86
14 2298.08 187.20
15 4176.04 275.60
16 7504.80 398.62
17 13459.80 569.26
18 *** 800.00
19 *** 1116.92
20 *** 1536.40

using a maximum of 15459 words of memory for heap — or about 62Kbytes.
One is tempted to ask if we have made any progress...

8 Conclusions

This paper has presented the design, performance and experience with an early
computer algebra system that was designed to run on a small memory computer.
Throughout its various incarnations the need to keep memory usage as low as
possible was always present. Data structures were packed, memory allocation was
simple and explicit, and we always ensured that all memory use was accounted.
The polynomial subsystem was especially tuned to approximation techniques,
with algorithms that took care of components that were too small to form part
of an answer. There were actually many other features that are not mentioned
here to keep the focus on the compact data structures and associated algorithms.
Clearly the system was designed at a time when computers were much smaller
memoried and much slower at execution than that to which we are used today;
but there are still applications where memory is at a premium, or battery power
considerations indicate slow processing. While not suggesting that CAMAL is
necessarily the answer to modern problems, I assert that it still has many things
to teach us.

I would like to express my thanks to David Barton (who taught me not to
comment code), Steve Bourne from whom I learnt much about assembler, and
many others in the CAMAL and algebra communities. I would also give my
special thanks to Arthur Norman for the many suggestions he has made over
many years that have served to improve CAMAL.
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E.T.S. Ingenieŕıa Informática, Universidad de Sevilla,
Avda. Reina Mercedes s.n. 41012-Sevilla, Spain

{garanda,jborrego,lebron}@us.es

Abstract. We present a specialised (polynomial-based) rule for the
propositional logic called the Independence Rule, which is useful to com-
pute the conservative retractions of propositional logic theories. In this
paper we show the soundness and completeness of the logical calculus
based on this rule, as well as other applications. The rule is defined by
means of a new kind of operator on propositional formulae. It is based
on the boolean derivatives on the polynomial ring F2[x].
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1 Introduction

A theory T is a conservative extension of a theory T ′ (or T ′ is a conservative
retraction) if every consequence of T in the language of T ′ is a consequence of T ′

already. Conservative extensions have been deeply investigated in Mathematical
Logic, and they allow to formalize several notions concerning refinements and
modularity in Computer Science (for example, in formal verification [20,1,21]).
In this paper we investigate how to compute a conservative retraction of a theory.
In particular, we are interested in the following problem:

Conservative Retraction Problem (CRP):
• Input: A finite theory T in a language L, and L′ ⊆ L.
• Output: A conservative retraction of T to the language L′.

Given a sublanguage L′ of the language of T , a conservative retraction on L′

has two basic properties:
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– There always exists a conservative retraction of T . For example, such a theory
is

{F ∈ Form(L′) : T |= F} (†)
– Any two conservative retractions of T in the same sublanguage are equivalent

theories.

We will denote by [T, L′] a conservative retraction of T to the sublanguage L′

throughout the paper.This paper is concerned with the problem of computing
(finitely axiomatized) conservative retractions. The importance of the computing
of conservative retractions, in any logic, is based on its potential applications.
For example:

– Location principle for Knowledge Based Systems (KBS) reasoning: Suppose
that KB is a knowledge base, and let F be a formula. Suppose also that the
language of F is L′. The question

KB
?
|= F

can be solved in two steps:

• A conservative retraction [KB, L′] has to be computed
• We have to decide whether [KB, L′] |= F

Note that the second question usually has lower complexity than the orig-
inal one, due to relatively small size of L′. This observation is extremely
interesting when KB is a huge ontology.

– It is usual to approach the retraction by means of syntactic analysis, in
order to locate the reasoning on certain axioms ([23]). In these cases, the
conservative retraction would be very useful.
For example, let us consider the following ontology, in Propositional Descrip-
tion Logic (see [3] and [16] for details):

Σ =

⎧⎨
⎩

Virus � Animal � MobileEntity
Mammals � Animal � MobileEntity

Animal � ¬Plant

Suppose that we want to specialize the reasoning in the concepts {Virus,
Mammals, Plants, Animal} (because the concept MobileEntity is not contained
in the superconcept LivingBeing), but we do not want to lose any knowledge
about these concepts originally entailed by Σ. Note that it could be very
hard, or not possible, to transform the ontology to obtain the conservative
retraction by a syntactic analysis. Since this case is a propositional descrip-
tion logic ontology, it is possible to apply the method presented in this paper,
obtaining thus the conservative retraction

∂MobileEntity(Σ) =
{

Animal � ¬Plant
Mammals � Animal

At higher levels of expressivity, one can observe that existing tools provide
syntactic modularity, but no semantic modularity.
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– Contextual reasoning. In a similar way as in the above example, the conser-
vative retraction [KB, L′] ensures the maximality of context knowledge with
respect to the ontology source.
A similar problem, in the complex case of ontological reasoning in OWL,
is the use of partitioning methods by means E-connections ([15]). Indeed
the partitioning to an E-connection provides modularity benefits; it typi-
cally contains several “free-standing” components, that is, sub-KBs which
do not “use” information from any other components (observation also made
in [15]).

– In SAT-based planning, the number of propositional variables is bigger than
the size of any formula. Since the formulas without variables of L′ are not
used for the computing of a conservative retraction (as we will see in this
paper), then computing conservative retractions may be a good strategy
to synthetize partial plans. Similar ideas can be applied to obtain better
partition-based reasoning algorithms for propositional logics ([2]).

– With regard to the specific case of the use of Computer Algebra Systems
(CAS) for reasoning with knowledge-based systems in real problems (see e.g.
[19]), the rule presented in this paper has interesting features. The use of
CAS is based on a faithful translation of logical formulas into polynomials on
finite fields. The algebraic counterpart of the Independence Rule, in algebraic
geometry terms, is a tool for projecting varieties in positive characteristics.
This interpretation is very useful to design new applications of Gröbner basis
to Knowledge Based Systems.

On the one hand, to the best of our knowledge, there is no calculus specifically
focused on the computing of conservative retractions. The main reason for this
is that the notion of conservative extension is more interesting (for example in
incremental specification/verification of systems). For instance, the Isabelle and
ACL2 theorem provers adopt this methodology by providing a language for con-
servative extensions by definition (even for the specification and verification of
the logic itself, see e.g. [1]). Another example are the formal approaches to On-
tological reasoning and extending (see e.g. the conservative extensions generated
by definitional methodologies [6]). And finally, weaker notions than conservative
extensions are used in methods for ontological extensions assisted by automated
reasoning systems (see [8,9]).

On the other hand, although the conservative retraction of theories can be
interesting itself, in expressive logics (like first order logic) the retraction may
not be finitely axiomatized (for example, in first order theories of arithmetic).
It is even possible that it involves undecidable problems. In the concrete case of
propositional logics, computing conservative retractions are feasible. One can, for
example, translate the theory to clauses and then select a conservative retraction
from the saturation by resolution of the clausal translation.

The main contribution of this paper is a new propositional rule, called Inde-
pendence Rule, specifically designed to compute (and to deal with) conservative
retractions. This is the first tool designed for effectively computing conserva-
tive retractions. The Independence Rule allows the systematic elimination of
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propositional variables outside the sublanguage preserving, at the same time,
the logical consequences in the sublanguage. Moreover, the rule is also useful to
deal with other propositional logical problems, as it will be described.

Finally, it is necessary to note that the theoretical existence shown in (†) does
not illustrate how to obtain a finite axiomatization of the conservative retraction.
The method presented in this paper outputs a finite axiomatization of [T, L′].

The paper is organized as follows. The next section reviews the relationship
between propositional logic and the ring F2[x]. In the third section the boolean
derivatives are introduced. Section 4 shows the soundness and completeness of
a complete calculus based on them. Section 5 presents basic properties of the
rule which are useful to simplify the computing. In section 6 we formalize the
location principle as a basis for the computing of the conservative retraction.
Section 7 is devoted to show other interesting applications of the Independence
Rule, such as theory merging and conservative extensions built by hierarchical
merging. We conclude with some remarks about future work.

2 Propositional Logic and the Ring F2[x]

The algebraic translation of Propositional Logic into Polynomial Algebra is based
on a well known translation of propositional logic in this kind of algebras (see [18],
and also [12]). There exist several approaches and applications of this traslation,
which allow the use of algebraic tools (as Gröbner Basis) for solving logical
problems (see e.g. [5,13,10] and the application given in [19]). This section is
devoted to review the main features.

We fix a propositional language PV = {p1, . . . , pn}, PForm denotes the set of
propositional formulas in this language, and var(F ) denotes the set of variables
of F .

The ring we work on is F2[x] (where x = x1, . . . , xn). A key ideal is I2 :=
(x1 + x2

1, . . . , xn + x2
n). To clarify the reasoning, we fix an identification pi �→ xi

(or p �→ xp) between PV and the set of indeterminates.
Given α = (α1, . . . , αn) ∈ Nn, let us define |α| := max{α1, . . . , αn}, and

sg(α) := (δ1, . . . , δn), where δi is 0 if αi = 0 and 1 otherwise. If a(x) ∈ F2[x],

deg∞(a(x)) :=max{|α| : xα is a monomial of a},

and degi(a(x)) is the degree w.r.t. xi. If deg∞(a(x)) ≤ 1, a(x) is called a poly-
nomial formula.

Three maps represent the standard starting point for the translation from
propositional logic into F2[x]:

– The flatening map Φ : F2[x] → F2[x] is defined by

Φ(
∑
α∈I

xα) :=
∑
α∈I

xsg(α)

Note that Φ satisfies

Φ(I2) = (0) and Φ(a · b) = Φ(Φ(a) · Φ(b))
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– The polynomial interpretation P : PForm → F2[x] assigns a polynomial
to each logical formula. This is achieved by assigning to each propositional
variable pi a monomial xi and defining, for each connective, the function as
follows:
• P (⊥) = 0, P (pi) = xi, P (¬F ) = 1 + P (F )
• P (F1 ∧ F2) = P (F1) · P (F2)
• P (F1 ∨ F2) = P (F1) + P (F2) + P (F1)P (F2)
• P (F1 → F2) = 1 + P (F1) + P (F1)P (F2)
• P (F1 ↔ F2) = 1 + P (F1) + P (F2)

– The propositional interpretation Θ : F2[x] → PForm is defined by:
• Θ(0) = ⊥, Θ(1) = �, Θ(xi) = pi,
• Θ(a · b) = Θ(a) ∧ Θ(b), and
• Θ(a + b) = ¬(Θ(a) ↔ Θ(b)).

We have that
Θ(P (F )) ≡ F and P (Θ(a)) = a

Since we shall be frequently applying Φ ◦ P , we take π := Φ ◦ P , called the
polynomial projection.

Next we list some basic results that we will use later on.

Lemma 1. Let v : PV → {0, 1} be a valuation with v(pi) = δi. Then for every
F ∈ PForm, v(F ) = P (F )(δ1, . . . δn).

From any subset X of Fn we can cook up an ideal I(X), the ideal of polynomials
vanishing on X . From any subset I of F2[x] we can cook up an algebraic set
V (I), the “vanishing set” of the ideal. The behaviour of the ideals of F2[x] is
well known:

– If A ⊆ (F2)n, then V (I(A)) = A,
– For every I ∈ Ideals(F2[x]), it holds that I(V (I)) = I + I2.

Therefore F ≡ F ′ if and only if P (F ) = P (F ′) (mod I2) which is also equiv-
alent to Φ ◦ P (F ) = Φ ◦ P (F ′).

The following theorem states the main relationship between propositional
logic and F2[x]:

Theorem 1. The following conditions are equivalent:

1. {F1, . . . , Fm} |= G.
2. 1 + P (G) ∈ (1 + P (F1), . . . , 1 + P (Fm)) + I2.
3. NF(1+P (G), GB [(1 + P (F1), . . . , 1 + P (Fm)) + I2]) = 0. (where GB denotes

Gröbner basis) and NF denotes normal form.

3 Boolean Derivatives and Non-clausal Theorem Proving

Boolean derivative is a well known tool in Boolean Function Calculus (cf. [22]).
We introduce here the operator on propositional formulas as a translation of
the usual derivation on F2[x]. Recall that a derivation on a ring R is a map
d : R → R verifying:
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1. d(a + b) = d(a) + d(b)
2. d(a · b) = d(a) · b + a · d(b)

Definition 1. A map ∂ : PForm → PForm is a boolean derivation if there
exists a derivation d on F2[x] such that the following diagram commutes:

PForm
∂→ PForm

π ↓ # ↑ Θ

F2[x] d→ F2[x]

That is,
∂ = Θ ◦ d ◦ π

If the derivation on F2[x] is d = ∂
∂xp

, we denote ∂ as ∂
∂p . This derivation has an

interesting property : The formula ∂
∂p (F ) represents the change of truth value

of F if the truth value of p is changed (recall that F{p/G} denotes the formula
obtained by substitution of p by the formula G in F ).

Proposition 1. ∂
∂pF ≡ ¬(F{p/¬p} ↔ F ).

Proof. It is easy to see that

π(F{p/¬p})(x) = π(F )(x1, . . . , xp + 1, . . . , xn).

Since ∂
∂xa(x) = a(x + 1) + a(x) holds for polynomial formulas, one has

P (
∂

∂p
F ) =

∂

∂xp
◦ π(F )(x) = π(F )(x1, . . . , xp + 1, . . . , xn) + π(F )(x)

hence

∂

∂xp
◦ π(F )(x) = Φ(P (F{p/¬p}) + P (F )) = π(¬(F{p/¬p} ↔ F )).

By application of Θ we have that ∂
∂pF ≡ ¬(F ↔ F{p/¬p}).

An important feature of the boolean derivative above defined is that the value
of ∂

∂pF with respect to a valuation does not depend on p. Thus, we can apply
any valuation on PV \{p} to this formula. That is, since for polynomial formulas

Θ(
∂

∂x
a) ≡ ∂

∂p
Θ(a)

we can assume that
∂

∂p
F := Θ(

∂

∂xp
π(F ))

so p /∈ var( ∂
∂pF ).
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Definition 2. The Independence Rule (or ∂-rule) on polynomial formulas a1, a2
∈ F2[x] is defined as:

∂x(a1, a2) :=
a1, a2

1 + Φ
[
(1 + a1 · a2)(1 + a1 · ∂

∂xa2 + a2 · ∂
∂xa1 + ∂

∂xa1 · ∂
∂xa2)

]
In terms of polynomial coefficents, if we write ai = bi + xp · ci, with degxp

(bi) =
degxp

(ci) = 0 (i = 1, 2), then

∂xp(a1, a2) :=
b1 + xp · c1, b2 + xp · c2

Φ [1 + (1 + b1 · b2)[1 + (b1 + c1)(b2 + c2)]]

Note that the rule is symmetric. The Independence Rule on formulas is defined
by translating the above rule to formulas:

∂p(F1, F2) := Θ(∂xp(π(F1), π(F2))).

This is the propositional interpretation of the result of applying the (polynomial)
independence rule to the polynomial projection of the formulas.

For example,

∂b(c → a ∨ b, d → a ∧ b) = Θ[∂b(1 + c(1 + a)(1 + b), 1 + d(1 + ab))]
= ¬c ∨ a ∨ ¬d

Lemma 2. Let F ∈ PForm and p be a propositional variable. There exists
F0 ∈ PForm, such that p /∈ var(F0) and

F ≡ ¬(F0 ↔ p ∧ ∂

∂p
F )

Proof. Consider the polynomial formula a = π(F ). Since degxp
(a) ≤ 1, there

exists b ∈ F2[x] such that degxp
(b) = 0 and a = b + xp · ∂

∂xp
a.

By applying Θ, we conclude that

F ≡ Θ(b + xp · ∂

∂xp
a) ≡ ¬(Θ(b) ↔ p ∧ ∂

∂p
F )

4 Soundness and Completeness of Independence Rule

The Independence Rule induces a concept of proof in the standard way, that we
denote as �∂ .

Proposition 2. The Independence Rule is sound.

Proof. It is sufficent to see that {F1, F2} |= ∂p(F1, F2). If π(Fi) = ai, with
a = bi + xp · ci and degxp

(bi) = degxp
(ci) = 0, then Fi ≡ ¬[Θ(bi) ↔ p ∧ Θ(ci)]

(i = 1, 2).
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Assume that v satisfies v(F1) = v(F2) = 1. If v(p) = 1 then

v(¬[Θ(bi) ↔ Θ(ci)]) = 1;

if v(p) = 0 then v(Θ(bi)) = 1. Both cases imply that

{F1, F2} |=
∧

i=1,2

¬[Θ(bi) ↔ Θ(ci)] ∨
∧

i=1,2

Θ(bi)

By application of π to the right-hand formula, and knowing that ci = ∂
∂xp

π(Fi),
one obtains the result by rewriting.

As seen in the above proof, degi(∂xi(a1, a2)) = 0, and the valuations are con-
sidered with respect to every possible value on p. Therefore, it is straightforward
to prove the following property:

Corollary 1. Let v : PV \{p} → {0, 1}. The following conditions are equivalent:

1. v |= ∂p(F1, F2).
2. Some extension of v to PV is a model of {F1, F2}.

For example, consider the propositional formula p1 ∧ ¬p2. It has that

π(p1 ∧ ¬p2) = x1(1 + x2)

We have that
∂x1(x1(1 + x2), x1(1 + x2)) = 1 + x2,

so the valuation v such that v(¬p2) = 1 is the only one that we can extend to a
model of p1∧¬p2. In the case of that ∂p(π(F1), π(F2)) = 1, every partial valuation
is extendable to a model of {F1, F2}. Analogously, if ∂p(π(F1), π(F2)) = 0, then
there is no valuation extendable to a model of both formulas.

The refutation procedure can be applied to formulas or their equivalent poly-
nomials formulas. Let us see an example. An ∂-refutation for the set π[{p →
q, q ∨ r → s,¬(p → s)}] is

1. 1 + x1 + x1x2 [[π(p → q)]]
2. 1 + (x2 + x3 + x2x3)(1 + x4) [[π(q ∨ r → s)]]
3. x1(1 + x4) [[π(¬(p → s)]]
4. 1 + x1 + x3 + x1x4 + x3x4 + x1x3 + x1x3x4 [[∂x2 to (1), (2)]]
5. 0 [[∂x1 to (3), (4)]]

The following theorem states the refutational completeness of ∂-rule:

Theorem 2. If Γ is inconsistent then Γ �∂ ⊥.

Proof. Let ∂k[Γ ] (k ≤ n) be the set of formulas defined by recursion as follows:
∂0[Γ ] := Γ and, if k ≥ 1,

∂k[Γ ] := {∂pk
(F1, F2) : F1, F2 ∈ ∂k−1[Γ ]}
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Note that if F ∈ ∂k[Γ ], then var(F ) ⊆ {pk+1, . . . pn}. Thus ∂n[Γ ] ⊆ {�,⊥}.
Therefore it is sufficent to prove that Γ is inconsistent if and only if ⊥ ∈ ∂n(Γ ).

Since the rule is sound, if ⊥ ∈ ∂n[Γ ], the set Γ has no models.
Assume now that ∂n[Γ ] = {�}. Then the constant valuation 1 is a model of

∂n[Γ ]. By applying induction on k up to 0, it is sufficent to prove that one can
extend a model of ∂k[Γ ] to a model of ∂k−1[Γ ].

Let v : {pk+1, . . . , pn} → {0, 1} be a model of ∂k[Γ ], and assume that v can not
be extended to a model of ∂k−1[Γ ]. That is, if vi = v∪{(pk, i)}, then there exists
F i ∈ ∂k−1[Γ ] such that vi(F i) = 0 (i = 0, 1). Note that vi(∂pk

(F 0, F 1)) = 1
(i = 1, 2).

By rewriting F i as in lemma 2,

F i ≡ ¬(F i
0 ↔ pk ∧ ∂

∂pk
F i).

We conclude then that v0(F 0
0 ) = 0, and hence v(F 0

0 ) = 0. Furthermore,

v(¬(F 1
0 ↔ ∂

∂pk
F 1)) = v1(¬(F 1

0 ↔ p ∧ ∂

∂pk
F 1)) = 0.

Both facts imply that v(∂pk
(F 0, F 1)) = 0, leading to a contradiction, because

v |= ∂k[Γ ].
Applying induction, a model of ∂0[Γ ] = Γ can be found.

The above proof suggests how to find models of Γ (when it is consistent). The
decision procedure sketched in the proof is based on the partial saturation of Γ
by the ∂-rule. Therefore the method can have a high cost, O(|Γ |2n

).

5 Properties of the Independence Rule

The following result lists some basic properties that facilitate the computations:

Proposition 3. Let F, G be propositional formulas

1. ∂p(p, F ) ≡ F{p/�}
2. If p /∈ var(F ) then ∂p(F, G) ≡ F ∧ ∂p(G, G)
3. If p /∈ var(F ) ∪ var(G) then ∂p(F, G) ≡ F ∧ G
4. ∂p(G, G) ≡ G{p(⊥)} ∨ ¬(G{p/�} ↔ G{p/⊥})
5. ∂(F1 ∧ F2, F3) ≡ ∂p(F1, F2 ∧ F3)
6. ∂p(F1 ∨ F2, F3) ≡ ∂p(F1, F3) ∨ ∂p(F2, F3)
7. ∂p(F1, F2) ≡ ∂p(F2, F1)

Proof. The proofs are based on algebraic manipulation of polynomial translation,
except property (4), which follows from corollary 1.

Entailment can also be reduced by means of the Independence Rule:

Proposition 4.
Γ |= G =⇒ ∂p[Γ ] |= ∂p(G)
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6 Location Principle as Conservative Retraction of
Theories

Given Q = {q1, . . . , qk} ⊆ PV the operator ∂Q := ∂q1 ◦ · · · ◦ ∂qk
is well defined

modulo logical equivalence. This follows from corollary 1, because for every p, q ∈
PV ,

∂p ◦ ∂q[Γ ] ≡ ∂q ◦ ∂p[Γ ]

A consequence of corollary 1 and theorem 2 (its proof) is that entailment problem
can be reduced to another one where only appears the variables of the goal:

Corollary 2. (Location principle) Γ |= F ⇐⇒ ∂PV \var(F )[Γ ] |= F

Proof. If Γ |= F then ∂PV \var(F )[Γ ]∪{F} is inconsistent (if not, a model of this
set can be extended to a model of Γ ∪{F} by corollary 1). The other implication
is true because Γ |= ∂PV \var(F )[Γ ].

The corollary states that ∂PV \L′ [Γ ] is an conservative retraction of Γ to L′ (an
instance of [Γ, L′]). Thus, CRP problem is solved in this way for propositional
logic.

From here, to simplify the notation, we identify [Γ, L′] with ∂PV \L′ [Γ ].

7 Theory Merging and Hierarchical Theory Merging

In this section we describe how the Independence Rule can be used for theory
merging. The following theorem can be considered a version of Craig’s Interpo-
lation Lemma for conservative retractions:

Theorem 3. Let T1 and T2 be consistent theories with languages L1 and L2
respectively. The following conditions are equivalent:

1. T1 ∪ T2 is consistent.
2. [T1, L1 ∩ L2] ∪ [T2, L1 ∩ L2] is consistent.

Proof. (1) =⇒ (2) follows from the soundness of the Independence Rule, because
a model of T1 ∪ T2 is model of both retractions.

(2) =⇒ (1) follows from the completeness of the Independence Rule: if

v |= [T1, L1 ∩ L2] ∪ [T2, L1 ∩ L2]

then there exists two extensions of v, v1 and v2, such that v1 |= T1 and v2 |= T2.
Since the common variables to L1 and L2 are in the domain of v, we have that
v1 ∪ v2 is a well defined valuation which models T1 ∪ T2.

The above theorem establishes a necessary and sufficent condition for theory
merging. However, there are some situations where the merging is inconsistent
but it would be interesting to extend one of the theories with consistent knowl-
edge entailed by the other one. For example, when we aim to merge ontologies
which have uncertain concepts.
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Consider the ontology

Σ′ =

⎧⎨
⎩

Bacteria � Animal � MobileEntity
Fish � Animal � MobileEntity

MobileEntity � ¬Mammals

It has that Σ ∪ Σ′ entails Mammals ≡ ⊥, thus the union is inconsistent.
However, it is feasible to extend Σ with knowledge from Σ′. The idea is to
retract the second theory to interesting concept symbols, for example to the set

{Bacteria, Fish, Animal, Mammals}

In this case, the resultant ontology is consistent:

Σ ∪ ∂MobileEntity(Σ
′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Virus � Animal � MobileEntity
Mammals � Animal � MobileEntity

Animal � ¬Plant
Bacteria � Animal

Fish � Animal

It is also possible for the ontology obtained in this way to be inconsistent.
The following result shows a case in which the extension of the ontology source
is consistent:

Lemma 3. Let T1 and T2 be consistent theories in the languages L1 and L2,
respectively. The theory T1 ∪ ∂L1∩L2(T2) is consistent

In order to formalize the above ideas, we introduce the notion of hierarchical
merging.

Definition 3. Let T1 and T2 be consistent theories in the languages L1 and L2,
respectively. A hierarchical merging of T1 and T2, is a theory T such that:

1. T is a conservative extension of T1.
2. For any formula F in the language of L2 \ L1,

T |= F ⇐⇒ T2 |= F

3. Whenever theory T ′ satisfies (1) and (2), T ′ |= T is verified.

Thus, the Independence Rule is useful to show that the hierarchical merging
of two theories is unique modulo equivalence (when it exists). The result is
straightforward from the properties of ∂:

Theorem 4. Under the conditions of the above definition, T1 ∪ ∂L1∩L2(T2) is a
hierarchical merging of T1 and T2.



56 G.A. Aranda-Corral, J. Borrego-Dı́az, and M.M. Fernández-Lebrón

8 Related Work, Conclusions and Future Work

A related rule is the general resolution (cf. [4]):

Resp(F, G) :
F, G

F{p/�} ∨ G{p/⊥}
(although it is expressed with respect to propositional variables, the original rule
allows substitution of any subformula). For polynomial formulas a1, a2 ∈ F2[x]
the rule is translated as follows:

Resx(a1, a2) :
a1, a2

Φ(1 + (1 + a1 + (x + 1) ∂
∂xa1)(1 + a2 + x ∂

∂xa2))

The general resolution is sound and refutationally complete. It is easy to see
that

|= ∂x(F, G) → Resx(F, G)

but in general it is not an equivalence1.
Throughout the paper we pointed out related work using similar tools to

the used here. To the best of our knowledge, no work on algebraic methods
applied to conservative retraction was ever done. However, it is possible to use
the elimination theorem on Gröbner basis in order to obtain a conservative
retraction (see [14]). However, the elimination of polynomial variables depends
on the selected lex ordering on variables for computing the Gröbner basis.

The future work may follow two lines. The first one is the extension to many-
valued logics and their applications (see e.g. [19]). For this, a careful generaliza-
tion of boolean derivatives, with nice logical meaning, seems necessary (in that
case, it seems interesting to use another kind of derivations on polynomials on
finite fields, as for example the Hasse-Schmidt derivations, see [17]). In the short
term we are working on the extensions of ∂p-rule to certain Description Logics
with limited expressivity (as EL logic, [20], and some members of the DL− lite
family of Description Logics, see [11]), as well as the use of this rule for solving
problems about definability in these logics.
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Abstract. Formal verification of numerical programs is notoriously dif-
ficult. On the one hand, there exist automatic tools specialized in floating-
point arithmetic, such as Gappa, but they target very restrictive logics.
On the other hand, there are interactive theorem provers based on the
LCF approach, such as Coq, that handle a general-purpose logic but that
lack proof automation for floating-point properties. To alleviate these is-
sues, we have implemented a mechanism for calling Gappa from a Coq
interactive proof. This paper presents this combination and shows on
several examples how this approach offers a significant speedup in the
process of verifying floating-point programs.

1 Introduction

Numerical programs typically use floating-point arithmetic [1]. Due to their lim-
ited precision and range, floating-point numbers are only an approximation of
real numbers. Each operation may introduce an inaccuracy and their total con-
tribution is called the rounding error. Moreover, some real operations may not
be available as sequences of floating-point operations, e.g., infinite sums or inte-
grals. This introduces another inaccuracy called the method error. Both errors
make it somehow complicated to know what floating-point programs actually
compute with respect to the initial algorithms on real numbers.

One way to proceed is to give a program a precise specification of its accuracy.
Generally speaking, a specification explains what can be expected from the result
given facts about the inputs. Typically, it bounds the sum of both rounding and
method errors. For example, the specification for a function float cos defined
on the double type of floating-point numbers may be the following:1

∀x : double, |x| ≤ 2π ⇒
∣∣∣∣cos(x) − float cos(x)

cos(x)

∣∣∣∣ ≤ 2−53.

� This research was partially supported by projects ANR-05-BLAN-0281-04 “Cer-
PAN” and ANR-08-BLAN-0246-01 “F

∮
ST”.

1 Note that π/2 cannot be represented by a floating-point number, therefore cos(x)
cannot be zero.
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Such an inequality is typically proved using pen and paper. It can be deduced
from the specification of each floating-point operation and the mathematical
properties of the cosine function. Such proofs are notoriously difficult and
error-prone.

Ideally, the code of a software would be analyzed by a certification tool, which
would answer whether it is correct or not. In order to increase the confidence in
the answer (and therefore in the software), the tool may rely on formal methods.
Obviously, such a tool is not conceivable, but we aim at making this process as
automatized as possible.

In this paper, we will describe how we have combined existing tools to help in
the process of formally certifying numerical codes. From a user point of view, the
first step is to annotate the source code with the specifications of the software.
This annotated code is sent to a first tool that produces proof obligations cor-
responding to the correctness of the software. The examples of this paper are C
programs and we are using the Caduceus tool (Section 2.1). By computing weak-
est preconditions based on the code and the annotations, it generates theorem
statements to be verified by automated theorem provers or proof assistants.

Some theorems, hopefully most of them, will be automatically discharged.
For instance, numerical properties may be discharged by the Gappa tool
(Section 2.3), which is very efficient at proving bounds, especially on rounding
errors. But Gappa only tackles the floating-point fragment of a program, so prop-
erties that involve more than just floating-point arithmetic may not be handled.

The remaining theorems will have to be manually handled by the user in a
proof assistant with a suitable floating-point formalization. The paper focuses on
the use of Coq for this task (Section 2.2). When using a proof assistant, the user
issues tactics to split the goal into simpler subgoals. Examples of such tactics are
logical cut, case analysis, or induction. This will become tedious if the user has
to repeat this process until all the subgoals are discharged, which may require a
high number of explicit proof steps. Especially frustrating is the fact that, once
simplified, the subgoals may fit into specific logic fragments, which some tools,
such as Gappa, could handle automatically outside Coq.

In order to benefit from Gappa inside Coq, we have implemented a mechanism
for calling the tool from an interactive proof. From a technical point of view, Gappa
is called as an external prover. This does not weaken the confidence in Coq formal
proofs since Gappa produces a proof trace that is checked by Coq (Section 4).

This combination of Coq and Gappa does not radically change the way to
tackle rounding and method errors. It simply eases the use of traditional ap-
proaches in a formal setting. C programs illustrating this point are given in
Section 3. The combination of all these tools (Caduceus, Coq, Gappa) makes it
possible to formally verify a source code while benefiting from automation.

There have been previous work on formally proving numerical components
(especially hardware ones) while relying on automated tools. Among them, the
certification of the IEEE-compliance [1] of a gate-level design for the Pentium
Pro processor used Forte, a combination of two model checkers and a lightweight
theorem prover [2]. Another work made the ACL2 theorem prover interact
with a VHDL verification tool in order to prove the correctness of a hardware
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multiplier [3]. While not at the source-code level, two other proof assistants have
been thoroughly used for verification of floating-point properties: both PVS and
HOL Light provide some automation for performing error analysis [4,5].

2 Caduceus, Coq, and Gappa

2.1 Verification of C Programs

The Why platform2 is a set of tools for deductive verification of Java and C
programs [6]. In this paper, we only focus on verification of C programs but
the results would apply to Java programs as well. The verification of a given C
program proceeds as follows. First, the user specifies requirements as annota-
tions in the source code, in a special style of comments. Then, the annotated
program is fed to the tool Caduceus [7], which is part of the Why platform, and
verification conditions (VCs for short) are produced. These are logical formulas
whose validity implies the soundness of the code with respect to the given spec-
ification. Finally, the VCs are discharged using one or several theorem provers,
which range from interactive proof assistants such as Coq to purely automatic
theorem provers such as Alt-Ergo [8]. The workflow is illustrated on Figure 1.

annotated C source code

verification conditions

interactive proof assistants
(Coq, Isabelle, PVS, ...)

automatic theorem provers
(Simplify, Alt-Ergo, Z3, ...)

Caduceus

Fig. 1. The Caduceus tool

Annotations are inserted in C source code using comments with a leading @.
They are written in first-order logic and re-use the syntax of side-effect free C
expressions. For instance, here is a code excerpt where an array t is searched for
a zero value.

//@ invariant 0 <= i

��� (i = 0; i < n; i++) {

�� (t[i] == 0) �����;

}

//@ assert i < n => t[i] == 0

The for loop is given a loop invariant, as in traditional Hoare logic [9]. (In that
case, the invariant could be found automatically.) A loop invariant typically

2 Available at http://why.lri.fr/

http://why.lri.fr/
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generates two VCs: one to show that it holds right before the loop is entered;
and one to show that it is preserved by the loop body. In this example, an
assertion is also manually inserted right after the loop, which results in a VC for
this program point. Additional VCs are produced to establish the safe execution
of the code, i.e., that the program does not perform any division by zero or any
array access out of bounds. In this example, a VC requires to show that t[i] is
a legal array access, which may or may not be provable depending on hypotheses
regarding t and n.

Verification with Caduceus is modular: each function is given a contract and
proved correct with respect to the contracts of the functions it calls.3 For in-
stance, a partial contract for a function sorting an array of integer could be

/*@ requires

@ 0 <= n && \valid_range (t, 0, n-1)

@ assigns

@ t[0..n-1]

@ ensures

@ \forall int i,j; 0 <= i <= j < n => t[i] <= t[j] */

	��
 sort(��� *t, ��� n);

The contract contains three clauses. Keyword requires introduces a precondi-
tion, that is a property assumed by the function and proved at the caller site. In
this example, it states that n is nonnegative and that all indices from 0 to n-1
in t can be safely accessed. Conversely, keyword ensures introduces a postcon-
dition, that is a property provided by the function, right before it returns. Here
it states that the array is sorted in increasing order.4 Finally, keyword assigns
introduces the memory locations possibly modified by the function, which means
that any other memory location is left unchanged by a call to this function. Here,
it states that only the array elements t[i] for 0 ≤ i < n are possibly assigned.

Caduceus handles a large fragment of ANSI C, with the notable exception
of pointer casts and unions. It handles floating-point arithmetic, using a model
where each floating-point number is seen as a triple of real numbers [10]. The
first component is the floating-point number itself, as it is computed. The second
component is the real number that would have been computed if roundings
were not performed. The third component is a ghost variable attached to the
floating-point number and which represents the ideal value that the programmer
intended to compute. Annotations are written using real numbers only, and
the three components of a floating-point variable x can be referred to within
annotations: x itself stands for the first component; \exact(x) for the second
one; and \model(x) for the third one. Thus the user can refer to the rounding
error as the difference between the first two, and to method error as the difference
between the last two. Examples are given in Section 3.

3 That means we only establish partial correctness of recursive functions.
4 For the specification to be complete, the postcondition should also state that the

array is a permutation of its initial value. It can be done, but is omitted here for the
sake of simplicity.
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Since the general-purpose automatic provers do not support this model of
floating-point arithmetic, we have formalized it in the Coq proof assistant.

2.2 The Coq Proof Assistant

The Coq proof checker [11,12] is a proof assistant based on higher-order logic.
One may express properties such as “there exists a function which has such and
such properties” or “every relation that verifies such hypothesis has a certain
property” and check proofs about these. Proofs are built using tactics (such as
applying a theorem, rewriting, computing, etc.). A Coq file contains the state-
ment of lemmas and their proofs as a sequence of tactics in the Coq language.

The Coq standard library contains an axiomatization of real numbers [13].
Few automation is provided to reason about real numbers. As a consequence,
the proof of a typical lemma such as 0 < 1 − 2−52 is already a few lines long:

1 ���� OneMinusUlpPos : (0 < 1 - powerRZ 2 ( -52))%R.

2 �����.

3 apply Rlt_Rminus .

4 unfold powerRZ.

5 rewrite <- Rinv_1 at 3.

6 apply Rinv_1_lt_contravar ; auto with real.

7 ��
.

The proof is done backward, by transforming the conclusion until it triv-
ially derives from the hypotheses. This proof starts by applying the theorem
Rlt Rminus (line 3) since 0 < 1 − 2−52 is a consequence of 2−52 < 1. The defi-
nition of powerRZ is then unfolded (line 4) so that 2−52 is converted to (252)−1.
We replace 1 by 1−1 (theorem Rinv 1, line 5). At this point, the goal has be-
come (252)−1 < 1−1. After applying theorem Rinv 1 lt contravar (line 6), the
remaining goals are 1 < 252 and 1 ≤ 1, which are solved automatically by the
tactic auto (line 6).

A high-level formalization of floating-point arithmetic [14,15] is also avail-
able in Coq. A floating-point number is a pair of integers (m, e) which repre-
sents the real number m × 2e. The value of the mantissa m and the exponent e
are bounded according to the floating-point format. For example, in IEEE-754
double-precision format [1], the pair verifies |m| < 253 and −1074 ≤ e. This
library5 contains a large number of floating-point definitions and theorems and
has been used to prove many old and new properties [16].

Most floating-point proofs rely on computations on real numbers, such as
deciding 0 < 1 − 2−52 or bounding method error. Such goals can be addressed
using the interval tactic [17]. This reflexive tactic, based on interval arithmetic,
decides inequalities by bounding real expressions thanks to guaranteed floating-
point arithmetic. Once done with method error, the user is left with VCs related
to rounding errors, which Gappa is typically designed for.

5 Available at http://lipforge.ens-lyon.fr/www/pff/

http://lipforge.ens-lyon.fr/www/pff/
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2.3 The Gappa Tool

Gappa6 is a tool dedicated to proving arithmetic properties on numerical pro-
grams [18,19]. Given a logical proposition expressing bounds on mathematical
real-valued expressions, Gappa checks that it holds. The following is such a
proposition and below is its transcription in Gappa’s input language.

∀x, y ∈ IR, |x| ≤ 2 ∧ y ∈ [1, 9] ⇒ x × x +
√

y ∈ [1, 7]

� |x| <= 2 �� y �� [1,9] �� x * x + sqrt(y) �� [1,7] �

In order to verify the proposition, Gappa first analyzes which expressions
may be of interest. Then it tries to enclose them in intervals by performing
a saturation over its library of theorems on interval arithmetic, forward error
analysis, and algebraical identities. Gappa stops when it reaches enclosures small
enough to be compatible with the right-hand side of the proposition or when the
saturation does no longer improve the enclosures.

Once Gappa has verified the proposition, it generates a formal proof. To in-
crease confidence, this proof script can then be mechanically checked by an
independent proof system, such as Coq or HOL Light.7

If Gappa fails to prove the proposition, the user can suggest to the tool that it
should perform a bisection—splitting input intervals until the proposition holds
on each sub-intervals—or augment the library of theorems with new mathemat-
ical identities. Gappa will then assume these equalities hold; they will appear as
hypotheses of the generated formal proof.

Expressing Floating-Point Programs. In addition to universally-quantified
variables on IR, basic arithmetic operators (+, −, ×, ÷,

√
·), and numerical

constants, Gappa expressions can also contain rounding operators. The integer-
part functions, �·� and �·�, are instances of such operators. Since the IEEE-754
standard [1] mandates that “a floating-point operator shall behave as if it was
first computing the infinitely-precise value and then rounding it so that it fits in
the destination floating-point format”, having appropriate rounding operators is
sufficient to express the computations of a floating-point program.

The following script is similar to the previous one, but all the expressions are
now as if they had been computed in single precision with rounding to nearest
(tie-breaking to even mantissa).

@rnd = float <ieee_32 ,ne >;

z = rnd(rnd(x * x) + rnd(sqrt(y)));

� |x| <= 2 �� y �� [1,9] �� z �� [1,7] �

Note that Gappa only manipulates expressions on real numbers. As a con-
sequence, infinities and NaNs (Not-a-Numbers) are no part of this formalism:

6 Available at http://lipforge.ens-lyon.fr/www/gappa/
7 The generated proofs depend on a library of facts written for the target system.

Currently, this formalization has been proved for Coq only.

http://lipforge.ens-lyon.fr/www/gappa/
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rounding operators return a real value and there is no upper bound on the mag-
nitude of the input numbers. This means that NaNs and infinities will not be
generated nor propagated as they would in IEEE-754 arithmetic.

We can, however, use Gappa to prove that a given code does not produce any
of these exceptional values. Indeed, if one proves that a Gappa-rounded value
is smaller than the biggest floating-point number in the working format, then
the actual IEEE-754 computation is guaranteed not to overflow, by definition of
overflow. Therefore, in order to check that computations in the previous example
are overflow-safe, one can run Gappa on the following script:8

@rnd = float <ieee_32 ,ne >;

z = rnd(rnd(x * x) + rnd(sqrt(y)));

� |x| <= 2 �� y �� [1,9]

�� z �� [1,7] �� |rnd(x * x)| <= 0x1.FFFFFEp127 ��

|rnd(sqrt(y))| <= 0x1.FFFFFEp127 �

The absence of infinities and NaNs is not a deficiency, as reasoning about
them is usually done by case analysis. This can be easily performed using Coq
traditional tactics. For the cases without infinities and NaNs, which are the
complicated ones, the Gappa tactic applies.

Verifying Accuracy. While the previous examples show that Gappa can bound
ranges of floating-point variables, this is only a small part of its purpose. This
tool was designed to prove bounds on computation errors, which also happen
to be real-valued expressions. Let us assume that the developer actually needed
the infinitely-precise result Mz = x2 +

√
y. Is the computed result z sufficiently

close to this ideal value Mz? This can be answered by bounding the absolute
error z − Mz:9

@rnd = float <ieee_32 ,ne >;

Mz = x * x + sqrt(y);

z = rnd(rnd(x * x) + rnd(sqrt(y)));

� |x| <= 2 �� y �� [1,9] �� |z - Mz| <= 1b-21 �

For the sake of simplicity, Mz has the same operations as z, but without
rounding. This is not a requirement, as Gappa is also able to bound errors when
Mz is a completely different expression. Note also that Gappa is not limited to
absolute errors; it can handle relative errors in a similar way, which is especially
important when proving floating-point properties.

3 Proving Floating-Point Programs

Before describing the inner working of the Coq-Gappa combination, we illustrate
its use on the verification of three typical floating-point programs.
8 The number 0x1.FFFFFEp127 is the biggest finite floating-point numbers for IEEE-

754 single-precision format, written with the notation of the standard of the ISO C
language (1999).

9 The number 1b-21 means 2−21, which is almost the optimal upper bound on the
specified absolute error.
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3.1 Naive Cosine Computation

The first example is an implementation of the cosine function for single-precision
floating-point arithmetic. To present a complete Coq proof, we have simplified
the function by removing its argument-reduction step. Thus, input x is required
to have already been reduced to a value close to zero; only the polynomial
evaluation has to be performed. The specification of the function states that,
for |x| smaller than 2−5, the computed value \result is equal to cos(x) up
to 2−23.

/*@ requires |x| <= 1./32

@ ensures |\result - cos(x)| <= 2^^( -23)

@ */

����� toy_cos(����� x) {

������ 1.f - x * x * .5f;

}

Note that 2−23 is a tight bound on the error of this function. It ensures that the
computed result is one of the floating-point numbers close to the mathematical
value cos(x).

Given this annotated C code, Caduceus generates a VC stating the accuracy
of the result, which can be formally proved with the Coq script below.10

1 �����.

2 intros; why2gappa ; unfold cos.

3 assert ( Rabs ((1 - (f*f) * (5/10)) - Rtrigo_def .cos f)

4 <= 7/134217728 )%R

5 by interval with (i_bisect_diff f).

6 gappa.

7 ��
.

The first part of the proof script (line 2) turns the goal into a user-friendly
form: the why2gappa tactic cleans the goal by expanding and rewriting some
Caduceus-specific notations. At this point, assuming that ◦(·) is the rounding
operation from a real number to the nearest single-precision floating-point num-
ber, the user has to prove the following goal:

∀x : float, |x| ≤ 1
32 ⇒

| ◦(◦(1) − ◦(◦(x × x) × ◦(5/10))) − cos(x)| ≤ 2−23.

As would be done with a pen-and-paper verification, the formal proof of this
goal starts by computing and proving a bound on the method error. Since the
polynomial is chosen so that the computed result is close to the cosine, the
method error is known beforehand. A typical way to obtain a polynomial ap-
proximation and its error is to use a computer algebra system.

10 The Coq script is reproduced verbatim. In particular, some terms are obfuscated due
to Coq renaming them to prevent conflicts. So f designates in fact the variable x;
and Rtrigo def.cos is the name of the cosine function in Coq’s standard library.
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Here, the method error is smaller than 7 × 2−27. So we are asserting this
property in Coq (lines 3 and 4) and we prove it (line 5). The assertion is proved by
the interval tactic [17]. Its option i bisect diff tells the tactic to recursively
perform a bisection on the interval enclosure [−2−5, 2−5] of x, until a first-order
interval evaluation of the method error (1 − (x × x) × (5/10)) − cos(x) gives a
compatible bound on all the sub-intervals.

Once the assertion is proved and hence available as an hypothesis, the user
has to prove the following property:

∀x : float, |x| ≤ 1
32 ⇒

|(1 − (x × x) × (5/10)) − cos(x)| ≤ 7 · 2−27 ⇒
| ◦(◦(1) − ◦(◦(x × x) × ◦(5/10))) − cos(x)| ≤ 2−23.

This is achieved by the gappa tactic (line 6). It calls Gappa and then uses the
Coq script that the tool generates in order to finish the proof. Note that the
Gappa tool takes advantage of the inequality proved by the interval tactic as
it knows nothing about the cosine.

3.2 Discretization of a Partial Differential Equation

The second example is a numerical code about acoustic waves by F. Clément [20].
Given a rope attached at its two ends, a force initiates a wave, which then
undulates according to the following mathematical equation:

∂2u(x, t)
∂t2

− c2 ∂2u(x, t)
∂x2 = 0.

The value u(x, t) gives the position of the rope at the abscissa x and the
time t. It is discretized both in space and time with steps (Δx, Δt). The result
is a matrix p of size ni × nk where p[i][k] = pk

i is the position of the rope at the
abscissa i×Δx and the time k ×Δt. The matrix p is computed by the following
piece of code [21], where a is an approximation of an exact constant A derived
from c, ni, and nk:

/*@ invariant 1 <= k <= nk

&& analytic_error (p,ni,ni,k,a) */

��� (k=1; k<nk; k++) {

p[0][k+1] = 0.;

/*@ invariant 1 <= i <= ni

&& analytic_error (p,ni ,i-1,k+1,a) */

��� (i=1; i<ni; i++) {

dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];

p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;

}

p[ni][k+1] = 0.;

}
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The predicate analytic error states the exact analytical expression of the
rounding error. It also states that the rounding error of a single iteration is
smaller than a known value. More precisely, it bounds the absolute value of

εk+1
i := pk+1

i − (2pk
i − pk−1

i + A × (pk
i+1 − 2pk

i + pk
i−1)).

Under some hypotheses on A and the ranges of (pk
i ), we could prove that

|εk+1
i | ≤ 85 × 2−52 (and a similar property concerning the initialization of

the p1
i ) [21]. The original Coq proof amounts to 735 lines of tactics. Thanks

to the gappa tactic, we were able to

– improve the result: we now have the formal proof that |εk+1
i | ≤ 80 × 2−52;

– drastically cut off the size of the proof script: the 735 lines of tactics reduce
to 10.

This is a tremendous improvement. Not only is the new proof script dramati-
cally shorter and simpler to write, but it is also more amenable to future changes
and maintenance. Indeed, if the program is to be modified in such a way that
the error slightly increases, the initial proof would be completely broken and
only a small part could be re-used. Using Gappa, the situation is different: while
the statement of the theorem would change, the proof would probably be robust
enough to remain valid.

3.3 Preventing Overflows

Another type of proof that greatly benefits from automation is overflow proofs.
Typically, one wants to guarantee that no overflows happen. To do so, it is usu-
ally sufficient to bound the program inputs. The resulting VCs are especially te-
dious to prove. As a consequence, the bounds are often over-estimated in order
to simplify the demonstrations. This is the case for the following example. This
program computes an accurate discriminant using Kahan’s algorithm [22]. The
accuracy is measured in ulps (unit in the last place), which is the distance between
two consecutive floating-point numbers. The discriminant algorithm relies on the
exactmult function which computes the rounding error of a multiplication.

/*@ requires xy==round(x*y) &&

@ (x*y==0 || 2^^( -969) <= |x*y|) &&

@ |x| <= 2^^995 && |y| <= 2^^995 && |x*y| <= 2^^1022

@ ensures \result==x*y-xy

@ */


����� exactmult (
����� x, 
����� y, 
����� xy);

/*@ requires

@ (b==0 || 2^^( -916) <= |b*b|) &&

@ (a*c==0 || 2^^( -916) <= |a*c|) &&

@ |b| <= 2^^510 && |a| <= 2^^995 && |c| <= 2^^995 &&

@ |a*c| <= 2^^1021
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@ ensures \result ==0 ||

@ |\result -(b*b-a*c)| <= 2*ulp(\ result)

@ */


����� discriminant (
����� a, 
����� b, 
����� c) {


����� p,q,d,dp ,dq;

p=b*b;

q=a*c;

�� (p+q <= 3*fabs(p-q))

d=p-q;

���� {

dp=exactmult (b,b,p);

dq=exactmult (a,c,q);

d=(p-q)+(dp-dq);

}

������ d;

}

The formal proofs for this program (including overflows) have been presented
in [23,24]. Here we only focus on the overflows of the discriminant; we do not
care about the exactmult function.

All the overflow proofs were first done prior to the gappa tactic. For seven proof
obligations, it took more than 420 lines of Coq. Using the tactic, the proofs reduce
to 35 lines (about 5 lines per theorem). The Coq compilation time, however, is
about 5 times greater.11 Nevertheless, the profit is clear in the verification process
as the time for developing the proof overwhelms the time for compiling it.

It is also interesting to note that the specification is also improved. The hy-
pothesis |a × c| ≤ 21020 in the original proof [24] was too strong; we proved
instead that |a × c| ≤ 21021 is sufficient to guarantee that no overflows occur.
The proof was not modified at all after changing the annotations. This means
that the automation is sufficient to use exactly the same proof when modifying
slightly the specification. This is really worthwhile for proof maintenance.

4 Implementation Details

The gappa tactic is part of the standard V8.2 Coq distribution.12 It relies on
Gappa, which is an external stand-alone tool and comes with its own library of
Coq theorems.

Figure 2 describes the process of performing a formal certification of a C pro-
gram using Coq and Gappa. Starting with an annotated C program, Caduceus
generates VCs corresponding to the specification of this C code. Lots of these
proof obligations can be discharged by automatic provers. The most complicated

11 Should Coq only check proofs generated by Gappa instead of embedding them, the
compilation time would be equivalent. See end of Section 4.

12 Available at http://coq.inria.fr/

http://coq.inria.fr/
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Fig. 2. Dataflow in the Coq and Gappa combination

ones, especially those involving floating-point properties, are left to the user. The
Caduceus tool therefore generates template Coq scripts (Step ①), and the user
has to fill in the blanks.

At this point, the Coq goals are expressed in the floating-point model of
Caduceus. As usual with a proof assistant, the user issues tactics in order to
split the goal into simpler subgoals that can be handled automatically. If one
subgoal is in the scope of the Gappa tool, the user can proceed as follows.

First of all, the goal has to be translated to the floating-point model of Gappa.
Stored in an auxiliary library, some theorems state that both models are equiv-
alent. In particular, if a floating-point number is the closest to a real number in
the Caduceus model, then it is the result of a rounding function in the Gappa
model, and reciprocally. The why2gappa tactic automatically applies these the-
orems to rewrite the goal and its context (Step ②). It also unfolds the Caduceus
model of floating-point numbers, with its floating-point, exact, and model parts.
At this point, the goal is made of inequalities between real-valued expressions
potentially containing rounding operators matching Gappa’s ones.

Now, the user can launch the Gappa tool to finish the proof, thanks to a single
call to the gappa tactic (Steps ③, ④, ⑤, and ⑥). During Step ④, some OCaml code
embedded into Coq reads the goal and outputs a text file suitable for Gappa.
This code then runs Gappa and asks for a Coq script of the result (Step ⑤).
Another OCaml code loads this script into Coq, checks it, and generates the
corresponding λ-term, and uses it to finish the proof (Step ⑥).

This process will succeed only if the type of the Gappa λ-term matches ex-
actly the Coq goal of the user. Otherwise, Coq would rightfully complain that
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the overall proof is not well-typed. For instance, the user goal could mention
the inverse x−1 of a variable, while the generated proof would consider 1/x
instead. Although equal, these two terms are not convertible, so type-checking
would fail. Rather than transforming the generated script afterward, we decided
to transform the goal beforehand. The gappa prepare tactic (Step ③), called
internally by the gappa tactic, makes sure that the goal will not leave any margin
of interpretation to the OCaml code nor to Gappa.

This subtactic is written in Ltac, the tactic language embedded into Coq
and available to user scripts. It transforms all the hypotheses and the goal so
that they are enclosures of the form m1 · 2e1 ≤ expr ≤ m2 · 2e2 , with m1,
e1, m2, and e2 explicit integers. Moreover, the expr part should only contain
the basic arithmetic operators (+, −, ×, ÷,

√
·, and | · |), rounding operators,

identifiers, and constants (m · 2e or m · 10e). For instance, if a proposition is
| exp(x) + 5 × y| ≤ 3/8, the tactic will generalize exp(x) to a fresh identifier
e everywhere. Then it will replace the proposition by the (equivalent yet not
convertible) proposition 0 · 20 ≤ |e + (5 · 20) × y| ≤ 3 · 2−3.

In order to transform the propositions, the tactic could perform some pattern-
matching to find all the sub-terms that look unadapted and apply rewriting
theorems to them. This method is easy to implement but slow, as a huge number
of rewriting operation may be needed, especially for constants. (For instance, the
real number 11 is implicitly stored by Coq as 1+(1+1)× (1+(1+1)× (1+1)).)
Instead, the tactic builds an inductive object that represents the syntax tree of
the expressions. Some Coq functions (defined in the logic language, not in the
tactic language) then implement the previous transformations. We have proved
they generate a syntax tree whose evaluation as a real-valued expression gives
the same result as the previous expression. Hence applying this single theorem
is enough to get a suitable goal. In other words, the tactic simplifies the goal by
convertibility and reflexivity [25,17], which is both time- and space-efficient.

Step ④ is then trivial: the OCaml code just has to select the propositions
that are enclosures, to visit the nodes of their simplified syntax trees, and to
produce the corresponding Gappa script. If Gappa succeeds in verifying the
script (Step ⑤), the OCaml code can then load the produced proof and have
Coq check it. It takes only a few seconds for the gappa tactic to reach this point
after it is called.

We, however, wanted Coq not only to check the generated proof, but also to
embed it into the current user λ-term. Therefore, the gappa tactic, while calling
an external prover, does produce a complete Coq proof of the goal. Unfortu-
nately, Coq is unable to deal with two scripts at once. So the tactic first launches
a separate Coq session that produces a λ-term in the context of Gappa’s libraries.
Then it runs another separate session to get a λ-term with fully-qualified names
and no notations. This last λ-term can finally be loaded in the original user
session, without interfering with user-defined names and notations. This incurs
a noticeable slowdown for the user. It could be fixed in two ways: enhance Coq
so that other scripts can be checked in the same session, or enhance Gappa so
that it directly produces a plain λ-term. Embedding the proof script into the
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user proof hardly increases the confidence though, since the script has already
been checked by Coq. So, Step ⑥ could be reduced to type-checking the Gappa
proof, creating an axiom with its type, and applying this axiom to the goal. This
would ensure that the gappa tactic takes a few seconds only, without having to
modify either Coq or Gappa.

Lastly, note that the gappa tactic accesses only a small part of Gappa’s fea-
tures. Indeed, when using the tool directly, the user can pass hints regarding
properties of the problem, such as mathematical identities, to guide it. As long
as the goals do not need any particular user hint, the tactic is as powerful as the
tool.

5 Conclusion

We have presented an integration of the Gappa automated prover in the Coq
proof assistant. This greatly eases the verification process of numerical programs.
As shown with realistic examples, the gappa tactic significantly reduces the size
of Coq proofs, and improves their maintainability. This tactic is part of the V8.2
Coq standard distribution.

This paper focuses on C programs verified with the Caduceus tool. However,
this approach is generic enough to apply to other verification tools, such as
Frama-C13 for C programs or Krakatoa for Java programs [6]. Indeed, our work
builds upon the Why platform, which provides a common backend for Caduceus,
Frama-C/Jessie, and Krakatoa. Said otherwise, any verification technology using
Why to produce Coq verification conditions can benefit from the gappa tactic.

The current gappa tactic does not encompass all the features of the Gappa
tool. As explained before, there is no way to pass hints to Gappa, such as interval
bisection or equalities. Moreover, while the tool can infer enclosures for variables
and expressions, the tactic does not offer a way to query them. This feature would
relieve the user from the burden of guessing logical cuts.

The Gappa tool is limited to a small logical fragment dedicated to floating-
point arithmetic, and so is the gappa tactic. A more ambitious perspective is
to integrate Gappa to a state-of-the-art SMT solver such as Alt-Ergo [8]. This
would result in more VCs discharged automatically but also in more automation
when invoked from Coq.
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22. Kahan, W.: On the Cost of Floating-Point Computation Without Extra-Precise
Arithmetic (November 2004),
http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf

23. Boldo, S., Daumas, M., Kahan, W., Melquiond, G.: Proof and certification for
an accurate discriminant. In: 12th IMACS-GAMM International Symposium on
Scientific Computing, Computer Arithmetic and Validated Numerics, Duisburg,
Germany (September 2006)

24. Boldo, S.: Kahan’s algorithm for a correct discriminant computation at last for-
mally proven. IEEE Transactions on Computers 58(2), 220–225 (2009)

25. Boutin, S.: Using reflection to build efficient and certified decision procedures.
Theoretical Aspects of Computer Software, 515–529 (1997)

http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf


A Comparison of Equality in Computer Algebra
and Correctness in Mathematical Pedagogy

Russell Bradford1, James H. Davenport1, and Christopher J. Sangwin2

1 Department of Computer Science
University of Bath, Bath BA2 7AY, United Kingdom

{R,J.Bradford,J.H.Davenport}@bath.ac.uk
2 Maths Stats & OR Network, School of Mathematics

Birmingham, B15 2TT, United Kingdom
C.J.Sangwin@bham.ac.uk

Abstract. How do we recognize when an answer is “right”? This is a
question that has bedevilled the use of computer systems in mathemat-
ics (as opposed to arithmetic) ever since their introduction. A computer
system can certainly say that some answers are definitely wrong, in the
sense that they are provably not an answer to the question posed. How-
ever, an answer can be mathematically right without being pedagogically
right. Here we explore the differences and show that, despite the appar-
ent distinction, it is possible to make many of the differences amenable
to formal treatment, by asking “under which congruence is the pupil’s
answer equal to the teacher’s?”.

1 Introduction

The purpose of this paper is to examine current computer aided assessment
(CAA) practise from a theoretical computer science point of view. In partic-
ular, we envisage a student being asked a mathematical question in an online
automated assessment system such as the following, “what is d sin2 2x

dx ?”. Such
online assessments are becoming rather commonplace, and an example from the
STACK system [27] is shown in Figure 1. Neverthless, the field is still at the
‘craft’ stage, and is bedevilled by the various meanings attached to the concept
of “right answer”. This paper aims to provide a more formal underpinning than
has existed hitherto, which we hope will allow better communication, collabora-
tion and understanding.

In this paper we are not concerned with the very real difficulties of mathemat-
ical input, see for example [29]. Note in Figure 1, for example, the student has
not been diligent in making every multiplication explicit, although the feedback
interpreting this one-dimensional string in traditional format has. We are instead
interested in automatically establishing equality of two expressions. Henceforth,
we assume we have valid parse trees which represent the student’s answer.

While a computer algebra system can typically only say “right or wrong”
(coded here as T or F), a teacher using CAA normally requires three outcomes.
The first is a numerical mark (also called a score), which we will normalise to

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 75–89, 2009.
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Fig. 1. Typical computer aided assessment

be out of 1. The second outcome is feedback, which is text given to the student.
Figure 1 shows these two outcomes. The last outcome is a note for the teacher.
Typically in CAA questions are randomly generated and the feedback, if given,
may contain manipulated expressions which depend on the random parameters,
or student’s answer. Hence, if the teacher wishes to generate statistics of the
outcomes, the feedback and score are not helpful. Instead the note records the
logical outcome, regardless of the exact question asked, or precise answer given.
Some typical answers to the question in Figure 1 are given in Table 1.

No. 1 represents the correct answer, in the expected form. No. 2 evaluates
to the correct answer, however in practice we would not allow restatements of
the question like this as a valid answer. For this example, such behaviour could
be by disabling the the ‘derivative’ key on the input palette or similar, but in
other circumstances this is harder to prevent. When we consider the equality of
two expressions, we do so here with the differentiation operator being a noun
in the student’s expression. In no. 3 and no. 4 it is, arguably, clear the student
is operating along sensible lines, and so some partial credit has been awarded.
Perhaps some feedback “don’t forget that differentiating the square gives you a
factor of two, and the factor of 2x gives you a factor of two” might be appropriate
in no. 3. Regarding no. 5 as correct assumes we had configured our algebra system
to use trigreduce or the equivalent, and this emphasises the importance of a
relatively sophisticated algebra engine to mark even relatively simple exercises.
In no. 7 the student has integrated by mistake, and this is a situation we can
anticipate and for which we may provide helpful feedback, though this is outside
the main scope of this paper.

There are many examples of CAA which evaluate student’s answers in a so-
phisticated mathematical way. An early example using Maple was AiM [20,31].
While this system was, and remains, useful for assessing many questions, it can-
not provide some kinds of detailed feedback, particularly at an elementary level.
Other Computer Algebra Systems (CAS) have been used, e.g. the STACK sys-
tem uses Maxima, see [27,28]. It is not necessary to use a mainstream CAS to
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process students’ responses in a CAA system. For example, CALM (see [1]), Met-
ric (see [24]) and Aplusix (see [9]) developed their own mathematical libraries.
We argue these are “computer algebra” in its broadest sense. Fundamental to
all these systems is the need to compare two mathematical expressions using
computer algebra of some kind. This is the issue we examine in the remainder
of this paper. We note that systems like WebWorK, [16], check for mathemat-
ical correctness by evaluating at a number of points. They are therefore essen-
tially testing extensional equivalence and so do not fall within the scope of this
paper, although in practice there is probably considerable scope for a hybrid
approach.

Table 1. Typical human-marked answers

No. Student’s answer C.A. Score
1. 4 sin 2x cos 2x T 1
2. d sin2 2x

dx
T 0

3. 2 sin 2x cos 2x F 0.7
4. 2 × 2 sin 2x cos 2x T 0.8
5. 2 sin 4x T? 1
6. 2 sin 2x cos 2x + 2 sin 2x cos 2x T 0.8
7. x/4 − sin(4x)/8 F 0

2 What Is a ‘Right’ Answer (Pedagogically)?

Ever since its introduction (probably in [25], see [6, (I), p. 165]), the sign ‘=’
has had several meanings. There are at least six senses in which this synonym
is currently used in traditional written notation (and even in computer algebra,
equality has many meanings [12]):

(i) assignment of a value to a variable (x = 1);
(ii) to denote an equation yet to be solved (x2 + 1 = 0);
(iii) definition of a function (f(x) = x2);
(iv) as notation for λ-reduction, or combinatory reduction, as in “KMN = M”

[2, Corollary 2.1.26], and hence informally as in “what is 1+1 equal to?”;
(v) as a “variant” of ∈, as in f(x) = O(x2) [13, Section 8]; and
(vi) as a Boolean infix operator, returning either TRUE or FALSE.

It is not symmetric in uses (i), (iii) and (v), and not always in (iv).
It is the last sense we wish to examine in detail in this paper, since it is

a crucial component in mathematical pedagogy, particularly in the assessment
process. But here we are not concerned with = as an operator on statements of
predicate logic, but in establishing the equality of mathematical expressions —
yet another potential usage for this symbol.
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Furthermore, we are concerned with getting, not merely “a correct” answer,
but also “the right” answer. As a further example, let us assume a teacher has
asked a student to

expand out (x + 1)2 (1)

and the response they have from one student is x2+x+x+1. This is “correct” in
the sense that it is algebraically equivalent to (x + 1)2 and is in expanded form
(actually two separate mathematical properties) but “incorrect” in the sense
that the student has not gathered like terms by performing an addition x + x.
We might say that the student has fallen at one of the two hurdles:

explicit task — do the expansion;
implicit task — do the necessary tidying up afterwards.

What about a response 2x + x2 + 1? This is, arguably, better in the sense that
the terms are gathered, but the student here has not ordered terms to write their
expression in the conventional form1. We might say that it is:

mathematically correct, in that it is equal to the question posed;
pedagogically correct, in that the student has done the task required;
aesthetically incorrect, in that there are more conventional ways of writing the

answer.

We will not go further into aesthetic correctness here except to point out that
it is more difficult, and subjective, than it seems — Table 2 shows two different
questions with what most people would agree to be the aesthetically correct
answers. Note that the aesthetic answers, while different, are mathematically
the same, and indeed on a deeper level the questions are the same. Nevertheless,
we hope the three-fold classification above is useful.

Table 2. Aesthetically correct answers

Question Aesthetic answer
Simplify x5−1

x−1
x4 + x3 + x2 + x + 1

First five terms of Maclaurin series for 1
1−x

1 + x + x2 + x3 + x4

We should note that we have refrained from using the word “simplify” here.
The word is ambiguous and indeed it can be used for the opposite mathematical
operations. For example, in [33] the word “simplify” is usually taken to mean
(e.g. p. 11, Ex 8) “simplify by removing brackets and collecting like terms”.
(Arguably “removing” should be “expanding” here). But, “simplify” is also later
used to implicitly mean factor and cancel like terms. For example,

p. 139, (77) Simplify
a4 + a2b2 + b4

a3 − b3 .

1 We might use the phrase “canonical form”, but this has a technical meaning in
computer algebra [14, p. 79].
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This is typical2 of contemporary usage. “Simplify” may mean little more than
“do what I’ve just shown you”3: a more refined vocabulary is necessary.

In formal computer science however, for two equivalent expressions A and
B, [8] argued that A was simpler than B when “the length of the description
of A is shorter then the length of the description of B”. Applying his formal
definitions to binary encodings of the integers and operations +, ×, − and ex-
ponentiation he argued that 27 is more complex than 128, but that 28 is simpler
than 256. However, given two explicit integers n and m “it is never the case that
the algebraic expression n + m is simpler than the integer q equal to n + m.”
A restricted version of this, but adequate for our purposes, is implemented in
Maple’s simplify(. . . ,size).

These issues might, at first, appear utterly trivial. The expert does not worry
about such distinctions: a hallmark of their expertise is that they work mod-
ulo such “technicalities”. But, during elementary mathematical instruction this
is the point of the work. One application of computer algebra is to automatic
computer aided assessment of mathematics and current systems go well beyond
multiple choice or similar question types. In particular, students are expected
to provide a mathematical expression as their answer and a computer algebra
system seeks to establish its properties. On the basis of these properties feedback
is provided. In our examples above the teacher might like to say, for example,
“yes, but . . . ”. Only if such fine grained distinctions can be made may sufficiently
sophisticated feedback be provided. But why is it important to provide such de-
tailed feedback? Is it not sufficient to provide only a binary correct/incorrect
outcome, an associated mark and give a student a summary percentage at the
end? It is a paradigm in education that “feedback promotes learning”. But a
closer inspection reveals a much more complex picture. The meta-analysis of
[21] examined about 3000 educational studies and found that over one third of
feedback interventions decreased performance: a counterintuitive and largely ig-
nored outcome. It is not feedback, per se, but the nature of the feedback which
determines its effectiveness. In particular, feedback which concentrates on spe-
cific task related features and on how to improve is found to be effective, whereas
feedback which focuses on the self is detrimental. A low end of test summary
mark — hardly a specific form of feedback — may be interpreted as a personal
and general comment on the ability of the student, whereas detailed feedback
on each task points to where improvement can be made.

2 The quality and variety of exercises in [33] is, in the opinion of the third author,
somewhat better than many current algebra textbooks. C. O. Tuckey was a very
well respected teacher, president of the Mathematical Association, author of many
books and widely circulated reports (e.g. [34]) into effective teaching. This example
is not a personal criticism, but rather an example of typical usage.

3 This was brought out when the second author taught a summer school of teachers
in the French “classes préparatoires” — a system that does not fit into the Bologna
framework [4], but is part of the higher education system [3]. The teachers eventually
admitted that “simplify” (actually “simplifier”, but in this case the English and
French words seem to be in close correspondence) meant “give me what I expect”.
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3 Theoretical Models of Computer Algebra

We have seen there is a big difference between pedagogically correct and math-
ematically correct, so it might be thought that it might be difficult to reconcile
the two, but it is our thesis that it is possible to make the differences amenable
to formal treatment. To do this we need to set up some formalism.

While computer algebra has a long history (early approaches include [19,22]),
it was largely aimed at supporting specific calculations, and theoretical under-
pinnings were slower to emerge. The most relevant for our point of view is the
“universal algebra” approach underpinning Axiom [18] and Magma [7].

This is generally considered via the ‘multi-sorted approach’ [32], though in fact
algebra systems in practice use an ‘order-sorted’ approach [17], for the reasons
given in [15]. Such a typed approach is very relevant for mathematics as, although
the Zermelo-Frankel formalisation of mathematics is untyped, most mathematics
in practice is typed, and the mathematical operations have a type structure. In
this approach we introduce various operators, so a trivial construction of the
integers would introduce pred and succ operators to define predecessors and
successors of numbers, and we introduce axioms, such as the axiom

pred(succ(z))=z. (2)

We then let ≡ be the congruential closure of our given axioms, such as (2),
i.e. the smallest relation containing the axioms and satisfying

R for all t, t ≡ t;
S if t1 ≡ t2, then t2 ≡ t1,
T if t1 ≡ t2 and t2 ≡ t3, then t1 ≡ t3;
C if t1 ≡ t2, then

f(u1, . . . , uk−1, t1, uk+1, . . . , un) ≡ f(u1, . . . , uk−1, t2, uk+1, . . . , un),

where f is any n-ary operator.

Because of condition C, the operators are well-defined on the equivalence classes
of ≡. ≡ is then said to be a congruence, and the corresponding logical system
“equality up to ≡” is said to be congruential [12, Definition 1]. Note that we
are not saying that computer algebra systems are implemented this way, merely
that one can formalise what they are doing in this structure.

Hence the first question one can ask of a computer algebra system is the
following.

Question 1. Which axioms generate the congruence =?

Most algebra systems do not answer this question in full generality, with fully-
typed systems such as Axiom and Magma coming the nearest, in the sense that
one can inspect the code for that component of = acting on a particular sort.
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As far as the authors4 can determine, for Maple acting explicitly5 on Laurent
polynomial objects built up from the integers and variables (or expressions which
behave like variables) with +, -, * and raising to explicit integer6 powers, the
following axioms generate Maple’s equality.

1. Associativity of addition (essentially by regarding it as an n-ary operation).
2. Associativity of multiplication (also by regarding it as an n-ary operation).
3. Commutativity of addition.
4. Commutativity of multiplication.
5. Arithmetic evaluations on integer sub-expressions.
6. Collection of mZ + nZ into (m + n)Z, where m, n are integers.
7. Replacing m(Z1+Z2) by mZ1+mZ2 where7 we have precisely a two-element

product.
8. Collection of ZmZn into Z(m+n), where m, n are integers (and possibly not

explicit if they are 1, though they are stored as such internally).
9. Suppression of +0.

10. Suppression of ∗1.
11. Replacing Z0 by 1.

We note that this does not include the general distributive law for multiplication
(or its corollary, the expansion of powers). Other systems may vary here.

Where practicable, algebra systems go further, and wish to create a canonical
representation [14, p. 79], i.e. reduce every element of an equivalence class to one
particular representation. In the case just mentioned above, Maple does this by
applying rules (5–11) in the left-to-right sense, and storing the components of
sums and products in a unique order determined by Maple’s internal hash coding
system [10]. It is this internal order that causes apparently strange results, e.g.

simplify
(

x105 − 1
x − 1

)
= 1 + x + x88 + x89 + x104 + x90 + · · · .

Even apart from this problem, asking that a student return the canonical rep-
resentation is normally too strong. For example, only one of these two expressions
can be canonical:

sinx cosx or cosx sin x, (3)

but it would be a rare teacher who marked one right and the other wrong.

4 They are grateful to Jacques Carette for his assistance here, but the authors bear
the responsibility for any misconceptions.

5 That is to say, where every sub-expression in the expression is built up this way,
rather than by having more complicated operators ‘cancel’.

6 Including negative integers. Note that, while Maple prints x^ (-2) as 1
x2 , it is in fact

stored as x−2. Similarly, x is stored as x1.
7 This caveat means that Maple’s = relation is not actually a congruence.
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4 Theoretical Models of Computer-Assisted Pedagogy

This section contains examples, which commonly occur in pedagogy, of senses
in which two expressions are the same. It is rare that when assessing a ques-
tion the teacher considers a single property. In fact, they make a number of
separate judgements and construct feedback on the basis of these multiple out-
comes. Hence, in a particular situation, the teacher might wish to consider a
number of comparisons to build the appropriate feedback. Exactly what out-
comes, i.e. mark, feedback and note, to assign is highly context dependent. For
example, successfully establishing equivalence to an incorrect answer known to
arise from a common misconception may result in no mark, but helpful feedback.
Typically, the first test is to establish that the student’s answer is “equal” to the
correct answer given by the teacher.

There are many senses in which two expressions are considered “equal”. We
shall describe some of these now, from the most restrictive to the most liberal
senses. We provide examples where establishing this sense of equality is a crucial
component in the assessment of a mathematical question. However, we do not
comment at this stage of the technical feasibility or the efficiency (i.e. computa-
tional cost) of doing so.

== The most restrictive sense of equality is absolutely identical expressions.
For example, the teacher may want exactly x2 + 2x + 1. The order of the
terms here is a key component. This kind of equality is closely related to the
equality of the parse trees representing the two expressions.

=AC The next notion of equality is that up to commutativity and associativity of
the basic arithmetic operations. However, the basic arithmetical operations
are assumed to be nouns. This means they represent the operation, but do
not perform the calculation. Hence, 2x + y =AC y + 2x but x + x + y �=AC

2x + y. This is a very useful test for checking that an answer is the “same”
but “simplified”. Since distribution amounts to doing multiplication we have
2(x + 1) �=AC 2x + 2.

=ext Extensional equivalence is perhaps the most common notion of equivalence.
Take two expressions ex1 and ex2, which might contain multi-variables, be
an equation, list, set, matrix, etc. If when values are assigned to the vari-
ables (from some agreed sets) they always evaluate identically then ex1 and
ex2 are extensionally equivalent. This notion of equivalence carries over to
equations and inequalities. From a technical point of view, we cannot simply
evaluate an expression over an infinite set, such as the real numbers. Hence,
the starting point for CAS-supported CAA was to evaluate the difference
of two expressions symbolically and look for a zero result. There are signifi-
cant difficulties in establishing extensional equivalence for complex (inverse)
trigonometrical expressions [5], and even the apparently trivial

log
(

1
x

)
= − logx (4)

is true everywhere except on a set of measure zero (the branch cut for log,
traditionally (−∞, 0)). It is also not immediately clear how in practice to
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establish whether two equations are extensionally equivalent. Systems of in-
equalities are similarly difficult.

=α Consider the following question.
A rectangle has length 8cm greater than its width. If it has an area
of 33cm2, write down an equation which relates the side lengths to
the area of the rectangle.

The kind of answer the teacher is looking for is x(x+8) = 33, or l(l−8) = 33,
or indeed l2 + 8l − 33 = 0, or . . . . One might argue that the phrase “use
x to denote the length of the shortest side” could be used here to reduce
the technical difficulty of automatically assessing the answer. However, this
might significantly reduce the level of difficulty of the problem for the stu-
dent by making a crucial choice in precisely the modeling step the problem is
designed to assess. Given two expressions ex1 and ex2, we need to establish
whether there exists a substitution of the variables of ex2 into ex1 which
renders ex1 extensionally (or whatever other kind of equivalence we are ask-
ing for) equivalent to ex2. This is the idea of α-equivalence, denoted ≡α in
[2, Definition 2.1.11].

This last notion of equality, i.e. modulo variable names used, might be ex-
tended to other kinds of equalities. Indeed, we might well want to know whether
there exists a substitution of the variables of ex2 into ex1 which renders the new
parse tree for the substituted version of ex1 identical to the parse tree for ex2.

5 Unifying the Approaches

Let us assume that we are trying to use a computer algebra system to get close
to intensional equivalence, which in the pedagogic context could be described
as “does it mean the right thing?”.

Notation 1. Let us suppose we have a question, to which the teacher has sup-
plied a formula as the answer, fT , and the pupil has supplied an answer fP .

There are various questions we might ask.

1. Is fP identical to fT , written fP == fT ? We should note that this question
is not trivial to answer, even at the level of MathML-Presentation [11], how-
ever, we will assume that it is answerable. If so, the answer is presumably
mathematically, pedagogically and even aesthetically correct.

2. Is fP mathematically equal to fT , at least as far as our algebra system can
deduce it, written fP =CAS fT ? Note that =CAS may well have to be more
sophisticated than just =Maxima or =Maple. To get answer 5 for Table
1 correct, we need to use =Maxima:trigexpand and so on. If this is the
case, the student has produced a mathematically, even if not pedagogically,
correct answer. If not, there are then logically two possibilities.
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– The algebra system is wrong (or at least inadequate). This is one of
those “should not happen” cases, but might, particularly if the problem-
setter (e.g. teacher) has allowed a more powerful input syntax than was
intended, as might happen if a (troublesome) pupil answered (1) with

x2 +
(

max
n∈N

∃x, y, z ∈ N∗xn + yn = zn

)
x + 1. (5)

Of course, it is only since the Wiles–Taylor proof that we have known that
this was well-defined, never mind correct. In this category also belong all
the “computer algebra is undecidable” paradoxes [26], which in practice
do not crop up, and can generally be excluded syntactically — after all
what business has a pupil got using syntax like (5) at this level?

– The pupil’s answer is definitely wrong. This system can do no more
to help, and we may wish to look at “buggy rules” (see [23]) or other
techniques to determine how much partial credit to allow.

So we are left with a mathematically correct answer, and the question is “how
many marks, if any, should be allocated?” (recalling that, in Table 1, one correct
answer got no marks), with a supplementary of “what feedback do I need to
give?”. To be concrete, consider the example of Figure 1, for which we have to
add more rules to (1–11) above, say the following.

12. dun

dx = nun−1 du
dx .

13. d sin(g(x))
dx = cos(g(x))dg(x)

dx .
14. duv

dx = u dv
dx + v du

dx .
15. dx

dx = 1.
16. dn

dx = 0 (n a number).

Furthermore, we will only let these rules act from left to right (matters might
be different if we were setting integration problems rather than differentiation
ones). Let us classify the rules into three classes.

underlying: those which we believe do not really change the expression in form
as well as substance, and which “ought” to be part of ==. Call this class U ,
and the congruence generated by U ≡U . In our case, U would be (1)–(4).

venial: those which the pupil ought to have used, and which should not be left
in the pupil’s answer. Call this class V , and the congruence generated by
U ∪ V ≡V . In our case, V would be (5)–(11).

fatal: those which the pupil had to apply, and which must not be left in the
pupil’s answer. Call this class F , and the congruence generated by U ∪V ∪F
≡F . In our case, F would be (12)–(16).

In fact, ≡F should be =CAS, i.e. everything that our algebra system can prove.
Then we can propose the following strategy (Table 3) for our automated

marker, depending on the finest relation R for which fP RfT . This leads to the
results in Table 4, where we see two differences from Table 1: item 3 is simply
marked wrong, rather than being given 0.7, and item 5 is marked wrong, whereas
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Table 3. Putative Strategy

Relation Score Feedback
≡U 1.0 Well done
≡V 0.8 OK, but there are better ways of writing it
≡F 0.0 You were meant to do the differentation
— 0.0 I’m sorry, that’s not right

in fact it is right. The first of these is a “buggy rule” issue, as discussed earlier.
As regards the second, the problem is that we have not told the system about
trigonometric contraction. This involves adding a new rule

17. sin x cosx = 1
2 sin 2x

as well as various rules about fractions, which should pretty certainly be added
to class V . Before we can discuss the correct classification of rule 17, we need a
digression.

Table 4. Table 1 according to table 3

No. Student’s answer Score Feedback
1. 4 sin 2x cos 2x 1 Well done
2. d sin2 2x

dx
0 do the differentation

3. 2 sin 2x cos 2x 0 I’m sorry, that’s not right
4. 2 × 2 sin 2x cos 2x 0.8 better ways of writing it
5. 2 sin 4x 0 I’m sorry, that’s not right
6. 2 sin 2x cos 2x + 2 sin 2x cos 2x 0.8 better ways of writing it
7. x/4 − sin(4 ∗ x)/8 0 I’m sorry, that’s not right

6 What Is a ‘Right’ Answer (Algorithmically)?

This is an important question. If we are following [16] and generating questions ,
we must also generate answers , as well as mark schemes on the lines of Table 3.
Here we follow the suggestion of [8] and say that a ‘right’ answer a must be:

(a) equivalent under U ∪ V ∪ F to the question asked (a is mathematically an
answer);

(b) invariant under the application of the rules in F (a isn’t the question re-
stated);

(c) a smallest such member, i.e. there is no a′ with a≡V a′ and |a′| < |a| for
some size measure | · | .

Quite what we take as our definition of | · | is not clear, and probably needs
further experimentation. For the moment we are taking the number of printed
characters in the answer, though a case could certainly be made for including
&InvisibleTimes; and &FunctionApplication; as well. In this context, as-
suming (17) is not in F , we see that 2 sin 4x is ‘a’ right answer, and indeed ‘the’
right answer.
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6.1 Trigonometric Contraction Revisited

With this preamble, we can now ask about the classification of (17). If we are
concerned merely about differentiation, we could class it with U . If we had al-
ready taught trigonometric contraction, we could class it in V . Alternatively, we
could be more subtle. Suppose we had taught it before, and wanted to give the
students a gentle reminder of it. We could define ≡U ′ to be the congruence gen-
erated by U∪{(17)}, and use the score and feedback from Table 5. Alternatively,
we may have made the point before, and want to reinforce it. Then could define
≡V′ to be the congruence generated by U ∪ V ∪ {(17)}.

Table 5. Putative Strategy Refined

Relation Score Feedback
≡U 1.0 Well done
≡U ′ 0.9 Well done, but you forgot about trigonometric contraction
≡V 0.8 OK, but there are better ways of writing it
≡V′ 0.6 You really should use trigonometric contraction
≡F 0.0 You were meant to do the differentation
— 0.0 I’m sorry, that’s not right

6.2 (1) Revisited

To resolve (1) in this framework, we would let U be rules (1)–(4), V be rules
(5)–(11), and F be the following (interpreted as left→right rules).

18. Zn = Z · Zn−1.
19. n-ary distributive law.

This gives us the results in Table 6.

Table 6. Question 1 according to table 3

No. Student’s answer Congruence Score Feedback
1. x2 + 2x + 1 ≡U 1 Well done
2. (x + 1)(x + 1) ≡F 0 do the expansion
3. x2 + 2x + 2 — 0 I’m sorry, that’s not right
4. x2 + x + x + 1 ≡V 0.8 better ways of writing it

6.3 Other Issues

The way systems deal with numbers is also crucial. The representation 0.5 ac-
tually means five tenths. Students are apt to write things such as 0.5x2 + 1/3,
a perfectly accurate representation for x2/2 + 1/3, but one which does not con-
form to notational conventions. So, the system should establish an equality when
floating point numbers are used within expressions. However, 0.33 is often not
an acceptable approximation for 1/3. Whether the teacher will reject all expres-
sions containing floating point numbers, or whether they wish to say “yes you



A Comparison of Equality in Computer Algebra 87

are correct, but we don’t normally use floats” is a matter of pedagogy and should
not be a work around a technical restriction. Some of these issues can be solved
in our framework: for example we could have a rule converting decimals into the
corresponding rationals, and place it into U (no penalty), V , or possibly some
V ′′ with a penalty, and feedback, of its own.

Lastly, particularly for assessment of science, we would like to deal with units.
Here is is necessary to establish whether the student has the correct value and
correct units, or the “correct value” using different but dimensionally consistent
units to that of the teacher. This area requires its own reasoning [30], but which
could nevertheless be incorporated into this framework by asking which rules
(OpenMath Formal Mathematical Properties) were used, and whether their use
incurs a penalty.

We highlight some closely related issues. For example, a näıve set is a collection
of objects, without duplication. Given the many senses of equality above, it is
necessary to be explicit about how the set construction function decides on the
equality of two given expressions. Rarely is extensional equivalence actually used.
For example, in Maple 9.5 we have the following session:

> S:={x^2-1,(x-1)*(x+1)};

S :=
{
(x − 1)(x + 1), x2 − 1

}
> map(simplify,S);

S :=
{
x2 − 1

}
When written in different algebraic forms, Maple is happy to tolerate duplicates
in sets. The default notion of equality is not that of extensional equivalence.
Indeed, for many CAS the notion of equality for the purposes of sets is simply
that of identity of internal representations, once any default “simplification”
has been done. Here again we would need a set of rules, some underlying (e.g.
order of elements in a set doesn’t matter), some venial or fatal (e.g. removal of
duplicates), depending on the pedagogical point being stressed.

7 Conclusion

This paper has looked at the question “how hard is it to use computer algebra
to decide if a ‘Calculus 101’ answer is correct?”, and, we hope, convinced the
reader that it is rather harder than it looks. No matter which CAS we use, =CAS
is simultaneously too strong and and too weak for what we want.

Too strong: it may decide that simple restatement of the questions are “cor-
rect”, because they are algebraically equivalent to the answer.

Too weak: the built-in =CAS does not apply enough rules, such as trigonomet-
ric contraction.

Too coarse: it cannot produce the “mostly right but” answers we have allo-
cated 0.8 to above. Of course, the number of marks is, of course, a matter
of taste for each teacher to decide and our somewhat arbitrary allocations
should not be taken too seriously.
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Too inflexible: the set of rules allowed, and their status within the marking
scheme, will vary during a single course, never mind between courses.

This is not to say that computer algebra is not useful, and indeed =CAS will
probably be an important component of any scheme. But such a scheme will
need to have different levels of equality. For simplicity, we have illustrated a
linear hierarchy, but in practice one would probably have a lattice of various
classes of “venial” rules.
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(2003), ftp://trf.education.gouv.fr/pub/edutel/sup/cpge/historique.pdf

4. Bergen Conference of European Ministers Responsible for Higher Education. The
framework of qualifications for the European Higher Education Area (2005),
http://www.bologna-bergen2005.no/EN/BASIC/050520_Framework_

qualifications.pdf

5. Bradford, R.J., Davenport, J.H.: Towards Better Simplification of Elementary
Functions. In: Mora, T. (ed.) Proceedings ISSAC 2002, pp. 15–22 (2002)

6. Cajori, F.: A history of mathematical notations. Open Court (1928)
7. Cannon, J., Playoust, C.: An Introduction to MAGMA. Springer, Heidelberg (1997)
8. Carette, J.: Understanding expression simplification. In: Gutierrez, J. (ed.) Pro-

ceedings of ISSAC 2004, pp. 72–79 (2004)
9. Chaachoua, H., Nicaud, J.F., Bronner, A., Bouhineau, D.: APLUSIX, a learning

environment for algebra, actual use and benefits. In: Proceedings of the Inter-
national Congress on Mathematics Education (ICME-10), Copenhagen, Denmark
(2004)

10. Char, B.W., Geddes, K.O., Gentleman, M.W., Gonnet, G.H.: The Design of
MAPLE: A Compact, Portable and Powerful Computer Algebra System. In: van
Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 101–115.
Springer, Heidelberg (1983)

11. World-Wide Web Consortium. Mathematical Markup Language (MathML) Ver-
sion 2.0, 2nd edn. (2003), http://www.w3.org/TR/MathML2/

12. Davenport, J.H.: Equality in computer algebra and beyond. J. Symbolic Comp. 34,
259–270 (2002)

13. Davenport, J.H., Libbrecht, P.: The Freedom to Extend OpenMath and its Utility.
Mathematics in Computer Science (to appear, 2009)

14. Davenport, J.H., Siret, Y., Tournier, E.: Computer Algebra, 2nd edn. Academic
Press, London (1993)

15. Doye, N.J.: Automated Coercion for Axiom. In: Dooley, S. (ed.) Proceedings ISSAC
1999, pp. 229–235 (1999)

ftp://trf.education.gouv.fr/pub/edutel/sup/cpge/historique.pdf
http://www.bologna-bergen2005.no/EN/BASIC/050520_Framework_qualifications.pdf
http://www.bologna-bergen2005.no/EN/BASIC/050520_Framework_qualifications.pdf
http://www.w3.org/TR/MathML2/


A Comparison of Equality in Computer Algebra 89

16. Gage, M., Pizer, A., Roth, V.: WeBWorK: Generating, delivering, and checking
math homework via the Internet. In: Proc. ICTM2 international congress for teach-
ing of mathematics at the undergraduate level (2002),
http://www.math.uoc.gr/~ictm2/Proceedings/pap189.pdf

17. Goguen, J.A., Meseguer, J.: Order-sorted Algebra I: Equational deduction for mul-
tiple inheritance, polymorphism and partial operations. Theor. Comp. Sci. 105,
217–293 (1992)

18. Jenks, R.D., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer,
Heidelberg (1992)

19. Kahrimanian, H.G.: Analytic differentiation by a digital computer. M.A. Thesis,
Temple University (1953)

20. Klai, S., Kolokolnikov, T., Van den Bergh, N.: Using Maple and the web to grade
mathematics tests. In: Proceedings of the International Workshop on Advanced
Learning Technologies, Palmerston North, New Zealand, December 4–6 (2000)

21. Kluger, A.N., DeNisi, A.: Effects of feedback intervention on performance: A his-
torical review, a meta-analysis, and a preliminary feedback intervention theory.
Psychological Bulletin 119(2), 254–284 (1996)

22. Nolan, J.: Analytic differentiation on a digital computer. M.A. Thesis, M.I.T.
(1953)

23. O’Shea, T.: A self improving quadratic tutor. In: Sleeman, D., Brown, J.S. (eds.)
Intelligent Tutoring Systems, ch. 13, pp. 309–336. Kluwer, Dordrecht (1982)

24. Ramsden, P.: Fresh Questions, Free Expressions: METRIC’s Web-based Self-test
Exercises. Maths Stats and OR Network online CAA series (June 2004),
http://www.mathstore.ac.uk/repository/mathscaa_jun2004.pdf

25. Recorde, R.: The Whetstone of Witte. J. Kyngstone, London (1557)
26. Richardson, D.: Some Unsolvable Problems Involving Elementary Functions of a

Real Variable. Journal of Symbolic Logic 33, 514–520 (1968)
27. Sangwin, C.J.: STACK: making many fine judgements rapidly. In: CAME (2007)
28. Sangwin, C.J.: What is a Mathematical Question? In: Proceedings of the JEM

conference, Lisbon (Feburary 2007)
29. Sangwin, C.J., Ramsden, P.: Linear syntax for communicating elementary mathe-

matics. Journal of Symbolic Computation 42(9), 902–934 (2007)
30. Stratford, J.D., Davenport, J.H.: Unit Knowledge Management. In: Autexier, S.,

Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Cal-
culemus 2008, and MKM 2008. LNCS, vol. 5144, pp. 382–397. Springer, Heidelberg
(2008)

31. Strickland, N.: Alice interactive mathematics. MSOR Connections 2(1), 27–30
(2002), http://ltsn.mathstore.ac.uk/newsletter/feb2002/pdf/aim.pdf

32. Thatcher, J.W., Wagner, E.G., Wright, J.B.: Data Type Specification: Parame-
terization and the Power of Specification Techniques. ACM TOPLAS 4, 711–732
(1982)

33. Tuckey, C.O.: Examples in Algebra. Bell & Sons, London (1904)
34. Tuckey, C.O.: The teaching of algebra in schools. A Report for the Mathematical

Association. G. Bell & Sons (1934)

http://www.math.uoc.gr/~ictm2/Proceedings/pap189.pdf
http://www.mathstore.ac.uk/repository/mathscaa_jun2004.pdf
http://ltsn.mathstore.ac.uk/newsletter/feb2002/pdf/aim.pdf


Exploring a Quantum Theory with Graph
Rewriting and Computer Algebra

Aleks Kissinger

Oxford University Computing Laboratory
alexander.kissinger@comlab.ox.ac.uk

Abstract. It can be useful to consider complex matrix expressions as
circuits, interpreting matrices as parts of a circuit and composition as
the “wiring,” or flow of information. This is especially true when de-
scribing quantum computation, where graphical languages can vastly
reduce the complexity of many calculations [3,9]. However, manual ma-
nipulation of graphs describing such systems quickly becomes untenable
for large graphs or large numbers of graphs. To combat this issue, we
are developing a tool called Quantomatic, which allows automated and
semi-automated explorations of graph rewrite systems and their under-
lying semantics. We emphasise in this paper the features of Quantomatic
that interact with a computer algebra system to discover graphical rela-
tionships via the unification of matrix equations. Since these equations
can grow exponentially with the size of the graph, we use this method
to discover small identities and use those identities as graph rewrites to
expand the theory.

1 Introduction

Quantomatic1 is a tool designed to use automated graph rewriting techniques
in conjunction with a computer algebra system to expand and enrich graphical
theories. The primary contribution of this paper is an exposition of the methods,
features and limitations of this tool, as well as a detailed look at its application
to a real problem.

Quantomatic was created to explore the theory of complementary classical
structures (CCS), which witness in an abstract sense the interaction of non-
commuting observables in quantum states and protocols [5]. The theory of CCS
is primarily expressed in the language of monoidal categories and builds upon
a large body of work concerned with formalising quantum information within
category theory (see for example [1,4,18,20,21,22]). Certain kinds of monoidal
categories lend themselves well to graphical representations [12,13], which often
provide a simpler and more intuitive interpretation of concepts like entanglement

1 Quantomatic is being developed by the author, Lucas Dixon, and Ross Dun-
can. The source code, including a series of Mathematica[19] notebooks used
in this paper, is currently available for Subversion checkout. For details, see
http://dream.inf.ed.ac.uk/projects/quantomatic.

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 90–105, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://dream.inf.ed.ac.uk/projects/quantomatic
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and generalised information flow. In the interest of providing a minimal intro-
duction to the motivating theory for Quantomatic, many of the results from this
body of work are given in their concrete form, where the monoidal category is
taken to be FdHilb, the category of finite-dimensional Hilbert spaces and linear
maps.

In section 2 we provide a summarised definition of typed graph rewriting, as
defined in [9,14]. In section 3, we provide an algebraic construction of classical
structures and the related notions of unbiased points, complementarity, and the
spider theorem. We then introduce a graphical notation for CCS using graphs
of black and white dots and give a short exposition of the theory in terms of
a graph rewrite system. We also explain how the algebraic constructions from
the previous section provide a concrete semantics for the graphical language.
In section 5, we explain in more detail the current and future methods that
Quantomatic employs to automatically apply rewrites and to communicate with
a computer algebra system to deduce new rules in the theory. In section 6, we
work through a short case study, using Quantomatic to build a graph identity,
then exporting a system of phase equations to Mathematica for reduction. We
then illustrate the solution to these equations being fed back into Quantomatic
to deduce a non-trivial aspect of the behaviour of a genuinely entangled state
called the W state.

2 Graph Rewrite Systems

Definition 2.1. For a partial order (T,≤), we define a T -graph as a pair
(G, τG), where G is a directed graph and τG : VG → T is called the typing
function of G.

Definition 2.2. A T -graph homomorphism f : G → H is a graph homomor-
phism (fV , fE) with an additional component fT : T → T that is monotone
with respect to ≤ and is consistent with the typing functions of G and H, i.e.
fT ◦ τG = τH ◦ fV .

Remark 2.1. Defining T -graph isomorphisms in the usual way, we have by anti-
symmetry that fT = idT . Therefore, as in the case of untyped graphs, it is
natural to say that isomorphic T -graphs are “essentially” the same.

Remark 2.2. If we think of the elements of T as formal expressions, then it is
useful to think of ≤ as a unifiability or pattern-matching condition.

Definition 2.3. If T has a bottom element ⊥, we call this the boundary type.
We call vertices of this type boundary vertices and all other vertices internal
vertices. We say a T -graph G is well-bounded if each of its boundary vertices is
incident to exactly one edge. If the boundary vertex is the source of an edge, it
is called an input, and if it is the destination of an edge, it is called an output.

Definition 2.4. For the set of well-bounded T -graphs G, a graph rewrite system
(GRS) is a set S of triples (L, R, ρ), where L, R ∈ G and ρ is a bijection on the
boundary vertices of L and R.
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To see how we actually perform rewrites, we need the concept of a matching.

Definition 2.5. A T -graph homomorphism f : G → H is strict on a set of
vertices V ′ ⊆ VG if for all vertices v ∈ V ′ and all edges e ∈ H that are incident
to fV (v), e is in the image of fE.

Definition 2.6. For L, G well-bounded, a T -graph matching m : L → G is a
T -graph homomorphism such that m is injective on edges and strictly injective
on internal vertices.

For a well-bounded T -graph G, a rewrite rule (L, R, ρ), and a matching m :
L → G we perform a rewrite by replacing the sub-graph matched by L with
R, “gluing” on ρ. For an explicit definition, see [14] or [9]. We let the resultant
graph be called G[(L, R, ρ), m] and make the following definition.

Definition 2.7. For a graph rewrite system (G, S), we define the reduction re-
lation →S as follows.

G →S H ⇔ ∃(L, R, ρ) ∈ S, m : L → G. G[(L, R, ρ), m] ∼= H

It is often useful to describe infinite sets of graph rewrites using pattern graphs.

Definition 2.8. [9] A pattern graph is a well-bounded T -graph G with a pair-
wise disjoint family B of subsets of VG called !-boxes (bang-boxes). We introduce
a refinement order � on pattern graphs. G � H if and only if H can be obtained
from G via the following !-box operations.

copy: copies a !-box B ∈ B. For v ∈ B, add a new vertex v′ of the same
type, as well as a new e′ for every edge incident to v′, including those
connected to vertices outside of the !-box. Form a new !-box B′ of
all the new vertices.

drop: remove B from B, leaving the vertices of G intact.
kill: remove all v ∈ B from G and remove B from B.
merge: if the vertices of two !-boxes B1, B2 ∈ B share no edges, merge them

into a new !-box B1 ∪ B2.

We represent !-boxes graphically by drawing a box around sets of vertices. We
can extend this definition to rewrites in the obvious way. For a rewrite (L, R, ρ),
we can associate !-boxes BL and BR, subject to the following conditions.

� � � � �

Fig. 1. Operations on !-boxes. Left to right: copy, merge, copy, drop, kill.
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– A bijection μ : BL → BR exists
– For each B ∈ BL, the restriction of ρ to B is a bijection from the boundary

vertices in B to the boundary vertices in μ(B).

Let r = (L, R, ρ,BL,BR, μ) be a pattern rewrite. For B ∈ BL and some operation
op from definition 2.8, obtain a new rewrite r′ by applying op(B) to L and
op(μ(B)) to R then applying the suitable restriction or extension of ρ. If we
define pattern graph homomorphisms as T -graph homomorphisms f : G → H
such that for each B ∈ BG, f(B) ∈ BH , we recover a suitable definition of
pattern graph matching and rewriting.

3 Classical Structures, Algebraically

Within the standard, pure-state theory of quantum mechanics [16], vectors in
a Hilbert space are called states2 and self-adjoint linear maps are called ob-
servables [11]. States represent a physical system, and observables represent the
measurable, physical quantities of the system, such as position or momentum of
a particle. In this paper, we shall focus on non-degenerate observables, or those
observables O in a Hilbert space H with dim(H) distinct eigenvalues. In such a
case, the (normalised) eigenvectors of O form an orthonormal basis of H.

The eigenvalues of an observable can be interpreted as the possible outcomes
of measuring it, and the associated eigenvectors are the classical physical states
that correspond to these outcomes. For this reason, we call the eigenvectors of an
observable classical points. An arbitrary quantum state is then a superposition
of one or more classical points. A property that is unique to classical data (as
opposed to quantum data) is that it can be copied and deleted. To witness this,
we can define a classical structure on an observable [5].

Definition 3.1. For a non-degenerate observable O and an orthnormal basis
{uj}j of eigenvectors of O, a classical structure is a pair of maps (δO, εO) defined
as follows.

δO : H → H ⊗ H :: uj �→ uj ⊗ uj

εO : H → C :: uj �→ 1

Let (−)† be the linear adjoint (conjugate-transpose) of a map. For a classical
structure (H, δO, εO), any vector ψ induces a map Oψ : H → H := δ†O ◦ (1⊗ ψ).

Remark 3.1. In general, a classical structure is any triple (A, δ : A → A ⊗ A, ε :
A → I) in a †-symmetric monoidal category (C,⊗, I, (−)†) that induces a special
commutative Frobenius algebra. We shall omit the details of this construction
here (see for example [5,7]) and only consider the case where C = FdHilb, the
category of finite-dimensional Hilbert spaces and linear maps, ⊗ is the normal
tensor product, and I = C, the complex numbers.
2 In this paper, we shall use the terms vector, state, and point interchangeably.
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Definition 3.2. If Oψ is unitary, we say ψ is unbiased with respect to O. If
δO ◦ ψ = 1√

dim(H)
(ψ ⊗ ψ), we say ψ is classical with respect to O.

Remark 3.2. For an observable O ∈ C⊗C with an eigenbasis {uj}j, any unbiased
point can be represented as eiβ

(
u1 + eiαu2

)
for α, β ∈ [0, 2π). Furthermore, we

don’t distinguish two points that differ by only a global phase, so we can write
all unique unbiased points as simply p(α) := u1 + eiαu2. Note also that the
induced map Op(α) is diagonal with respect to the basis {uj}j , so it commutes
with δO.

For classical structures, we have a result called the “spider theorem.” This the-
orem exists in various guises in the literature [5,15,18]. Its statement for finite-
dimensional Hilbert spaces is as follows, where u⊗n

j is the tensor product of n
copies of uj .

Theorem 3.1. (Spider in FdHilb) For a classical structure (H, δ, ε), any map
f : H⊗m → H⊗n containing only arbitrary compositions and tensor products of
(δ, ε, δ†, ε†) and swaps σ : ψ ⊗ϕ �→ ϕ⊗ψ can be expressed as

⊗
k fk, where each

component fk : H⊗r → H⊗s is of the form:

fk(ψ) =

{
λu⊗s

j if ψ = λu⊗r
j for some j, λ

0 otherwise

The name “spider” is due to the graphical interpretation of classical structures,
which we shall see shortly. We now consider a space particularly important to
quantum computing, the two-dimensional space Q := C ⊗ C. Elements of Q are
referred to as quantum bits, or qubits. A common choice for observables in Q
are the Pauli spin matrices. We shall focus on these two:

Z :=
(

1 0
0 −1

)
X :=

(
0 1
1 0

)

Let {|0〉, |1〉} be an orthonormal basis of eigenvectors of Z. We fix {|+〉, |−〉}
as an eigenbasis with respect to X , where

|+〉 := 1√
2

(|0〉 + |1〉) and |−〉 := 1√
2

(|0〉 − |1〉).

For the two-dimensional Hilbert space Q, we shall define the classical struc-
tures (Q, δZ , εZ) and (Q, δX , εX) as above. By remark 3.2, we shall represent the
unbiased points

zα = |0〉 + eiα|1〉
xβ = |+〉 + eiβ |−〉

and their associated maps Zα, Xβ as above. Note that X0 =
√

2 · |0〉, Xπ =√
2 · |1〉, Z0 =

√
2 · |+〉, and Zπ =

√
2 · |−〉. Note that X0 and Xπ are classi-

cal points with respect to Z and vice-versa. This means that X and Z induce
complementary classical structures.
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Definition 3.3. Two classical structures A = (H, δA, εA) and B = (H, δB, εB)
are called complementary if the classical points of A are unbiased with respect
to B and the classical points of B are unbiased with respect to A.

Complementary classical structures (or CCS) have a rich set of identities, which
are most easily explained in a graphical language.

4 Classical Structures, Graphically

We represent classical structures as the following graphs.

δZ := εZ := zα := α Zα := α

δX := εX := xβ := β Xβ := β

Since both δZ and δX are commutative, we can compose by “gluing” graphs
together on the boundary nodes and we can tensor by simple juxtaposition.
Taking the adjoint (−)† of a map flips its graph upside-down and reverses the
sign of all the phase angles.

We employ spiders as a short-hand for trees of δZ , δ†Z , εZ , and ε†Z . Writing ◦
for graph composition, this is defined as follows.

spZ(m, n) := sp′Z(n) ◦ sp′Z(m)†

sp′Z(0) := εZ

sp′Z(1) := 1
sp′Z(n) := (δZ ⊗ 1) ◦ sp′Z(n − 1)

We define spX similarly, using δX , and εX . Note that spZ and spX both
generate matrices that are sparse in their respective bases. This plays a key
role in optimising matrix output from a graph. In short, we make the following
definitions.

:= . . . := . . .

As such, we have an equivalent statement of the spider theorem.

Theorem 4.1. (Spider, graphical) Any connected graph of a single colour is
uniquely determined by the number of inputs and outputs.
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One can see the connection between this theorem and thm. 3.1 if one thinks of
each fk from the previous theorem as analogous to connected graph components.
By rem. 3.2, unbiased maps commute through dots of the same colour, so we
often write the sum of all the phases contained in a spider on its vertex. Thus,
our most general graph components are

α β

We define the types of these vertices as follows. For a set of free variables F , let
LR[F ] ⊂ Q[F ∪ {π}] be the set of linear polynomials with rational coefficients
over F ∪{π}. Then, for B = {X, Z}, our set of vertex types is T = (B×LR[F ])∪
{⊥}. Type subsumption ≤ is defined as:

(b1, e1(ᾱ)) ≤ (b2, e2(β̄)) ⇐⇒ (b1 = b2) ∧
(
∃σ : F → LR[F ]. e1(σ(ᾱ)) = e2(β̄)

)
This means one vertex matches another if it is the same colour and there exists a
substitution on F such that e1 can be unified with e2. Using this typing, a vertex
with m inputs, n outputs, and type (Z, α) has an interpretation as a linear map.

spZ(α, m, n) := spZ(1, n) ◦ Zα ◦ spZ(m, 1)

Unrolling the recursion, we get the map:

spZ(α, m, n) :: |0〉⊗m �→ |0〉⊗n, |1〉⊗m �→ eiα|1〉⊗n, other �→ 0

sp(0, r, s) then corresponds to the definition of fk given in the spider theorem
for FdHilb (thm. 3.1).

Every term involving classical structures has an interpretation as a directed
acyclic graph. Furthermore, every graph can be represented as a term, including
those with cycles. To understand this, we introduce the notion of map-state
duality.

Proposition 4.1. For any finite-dimensional Hilbert space H, linear maps from
H⊗m to H⊗n are in bijective correspondence to the elements of H⊗(m+n).

We shall use this to discuss states as linear maps or vice-versa. In quantum com-
putation, it is common to view entangled states as a channel for information flow.
This interpretation is the basis of protocols such as quantum teleportation[2].

Remark 4.1. We can change the direction of any internal edge in a graph of
classical structures without changing the contents of its matrix representation.
This is a non-trivial result of the spider theorem, the compact closure of FdHilb,
and map-state duality. Therefore we can take graphs to be undirected or directed
acyclic whenever it is convenient. For details, see [8,7].

It is useful to think of the spider theorem as a graph identity that lets us merge
adjacent vertices of the same colour. By this philosophy, we can express the
spider theorem as the following rewrite patterns.
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α

β

→ α + β
α → α →

From the complementarity of X and Z, we can derive several other rewrites
[5]. In order to avoid expanding spiders, we use versions of these rules that are
locally confluent with “sp.” Here are two examples.

α → α
α

β

→
α

β

5 Quantomatic

Quantomatic was created to explore theories based on graph rewrite systems.
It consists of a core written in ML and a GUI based on a Java graph library
called JUNG [17]. We also make use of a small library of support functions,
written as a Mathematica package, for generating matrices with free variables
from Quantomatic output. The most notable functions are T[], the n-ary ten-
sor product, xsp[] and zsp[], which implement spX(α, m, n) and spZ(β, m, n)
respectively, and sig[], which implements the generalised tensor swap function
σ(p) described in eqn. (2).

The features of Quantomatic fall into two operational components: a graphical
component that operates on a rewrite theory, and an algebraic component that
operates on the semantics of the theory. Using just the graphical component, a
theory can be expanded with derived rewrites and completions as follows.

1. A potential LHS is constructed in Quantomatic.
2. Rewrites and converse rewrites are performed to yield a new RHS.
3. The rule “LHS → RHS” can be included back into the theory as a derived

rewrite if only rewrites were used and as a completion if rewrites and converse
rewrites were used.

We draw the distinction between derived rewrites and completions because the
first has no affect on the confluence and termination properties of the rewrite
theory, whereas the latter might. We can also use the graphical and algebraic
components together to systematically develop a theory. In general, this process
is as follows.

1. A graphical identity G(ᾱ) = H(β̄) is conjectured, where ᾱ and β are lists of
free variables such as phase angles.

2. G and H are input into Quantomatic and potentially normalised with respect
to a reduction strategy.

3. Quantomatic exports the interpretations of G and H as tensor terms (i.e.
terms constructed with ⊗ and ◦).
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4. The CAS is used to search for a substitution σ : {β̄} → LR[ᾱ] and a scalar
λ such that G(ᾱ)=λH(σ(β)). This amounts to solving a system of equations
of the following form, for unknowns {αk}, with coefficients cjl, djkl ∈ R.⎧⎨

⎩
∑

j

cjle
i
∑

k djklαk = 0

⎫⎬
⎭

l

(1)

5. If a substitution is found, a new rewrite G(ᾱ) → λH(σ(β)) is incorporated
into the theory.

Remark 5.1. Solving general systems in the form of (1) with a CAS is a hard
problem. However, sometimes a certain choice of LU or ILO representative of a
graph (see sec.6) separates some or all of the variables. The techniques described
here could be greatly improved by finding general methods for doing this, either
graphically or algebraically.

5.1 Dag-Ification and Tensor Term Export

By remark 4.1, we can choose any ordering for the edges of a graph G.

Proposition 5.1. For a finite graph G, we can always form a semantically
equivalent directed acyclic graph G′, called the dag-ification.

Proof. Remove all self-loops from G with the “tr” rewrite, then define a strict
order < on the vertices of G such that any two connected vertices are comparable.
Such an order always exists because, for example, a strict linear order on the
vertices of G will work. Form G′ from G by directing all edges such that u → v
iff u < v.

G′ depends heavily on the choice of < and is not unique in general. Once we have
dag-ified a graph, we can reconstruct a term using components. A component is
a triple (i, t, o), where i and o are lists of edges and t is a tensor term generated
by spX , spZ , 1, and a tensor permutation function σ, defined as follows for a
permutation p.

σ(p) :: ψ1 ⊗ ψ2 ⊗ . . . ⊗ ψn �→ ψp(1) ⊗ ψp(2) ⊗ . . . ⊗ ψp(n) (2)

σ acts as a generalised swap function. We can recover the “normal” swap
function as σ((2 1)). We construct components recursively as follows.

– For a single vertex v of type ⊥, let �v� = ([e], 1, [e]), where e is the unique
edge connected to v. Otherwise, v has type (b, α) with in-edges inv and
out-edges outv, let �v� be a component (inv, spb(α, #inv, #outv), outv).

– For components c1 = (i1, t1, o1) and c2 = (i2, t2, o2) that share no edges:

c1 ⊗ c2 = (i1 · i2, (t1 ⊗ t2), o1 · o2)

– For components c1 and c2 where o1 and i2 share some edges, we can make
c′1 and c′2 be such that o′1 and i′2 share all edges by padding out c1 and c2
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with identity components ([e], 1, [e]). After finding a permutation p such that
p(o′1) = i′2, we form composition as:

c2 ◦ c1 = (i′1, (t′2 ◦ σ(p) ◦ t′1), o′2)

A component is total on G if it contains every vertex in G. Any total com-
ponent will then represent a valid semantic interpretation of G. For a dag-ified
graph G′, we can always chose a sequence of tensors and compositions that will
construct a total component. Take, for instance, a partition of the vertices of G′

into dag ranks. Tensoring together the vertices of each rank and composing the
ranks yields a total component.

Given suitable definitions for the constructors, composition, and tensor prod-
uct, we can import the generated tensor term into a computer algebra and eval-
uate it as a matrix.

5.2 Rewrite Strategies

Quantomatic will implement a variety of different strategies for automatic graph
rewrites. We describe two strategies here, both designed to reduce the total
number of vertices, edges, and non-zero phase angles.

Strategy: CONV

Method: for R = {sp, tr, el, ha, cc}, do G ↓ R

Termination: G is a normal form with respect to R

It was shown in [14] that R is confluent and terminating, so this strategy
always terminates with unique normal forms with respect to R.

If we consider each undirected rewrite as a set of directed rewrites, one for
each possible ordering, we can make a finer-grained choice of rewrites to apply
in a strategy. We’ll define an example of this kind of strategy to reduce phase
angles.

α
→ α α →

α

π

α
→

π

−α α

π
→

−α

π α

β
→ α + β
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Note that these rewrites move white angles strictly downward. If we take G
to be a dag-ification of an undirected graph, normalising with respect to these
rewrites will always terminate. Let A1 be the above rewrites and A2 be the same
with the colours swapped. We define the directed angle push strategy as follows.

Strategy: DAP

Method: repeatedly normalise first with respect to A1, then A2

Termination: G is a fixed point

Proposition 5.2. DAP is a terminating strategy.

Proof. A1 and A2 terminate individually for directed acyclic graphs. For each
vertex v ∈ VG, let w(v) be the size of the longest directed walk from v. For all the
vertices V ′ ⊆ VG that are labeled with a non-zero angle, let W =

∑
v∈V ′ w(v).

All of the above rewrites are strictly non-increasing on W . If G ↓ A1 ↓ A2
preserves W , then all the angles are blocked and G is a fixed point, otherwise
W decreases. Since W ≥ 0, this procedure terminates.

6 Example: Exploring Tripartite Entanglement3

Often when classifying entangled states, one wants to know which states can be
transformed into one another using local operations.

Definition 6.1. Two states ψ, ϕ ∈ Hn are ILO-equivalent if there exist n in-
vertible operators Li : H → H such that (L1 ⊗ . . . ⊗ Ln) ◦ ψ = ϕ. If each Li is
unitary, ψ and ϕ are said to be LU-equivalent.4

We can now use Quantomatic to explore the behaviour and ILO-equivalence
classes of 3-qubit states. If any part of the state is separable, the problem reduces
to that of 2-qubit states, which is trivial. Therefore, we shall only consider true
entangled states. From [10], we know that there are only two ILO-equivalence
classes, represented by the following maps:

GHZ :: {|0〉 �→ |0〉 ⊗ |0〉, |1〉 �→ |1〉 ⊗ |1〉} and

W :: {|0〉 �→ (|0〉 ⊗ |1〉) + (|1〉 ⊗ |0〉) , |1〉 �→ (|0〉 ⊗ |0〉)}

Note that GHZ = δZ . Figure 2 shows the W state, up to a scalar.
For this example, we shall work mainly with the W state. We start by finding

a more general form of W -like (ILO-equivalent) states. We shall then identify
a rewrite rule for supplementary angles that induces a new kind of graphical
behaviour for W -like states.
3 Much of this case study follows notes by Bob Coecke and Bill Edwards, see [6].
4 LU is commonly referred to in quantum information literature by the (equivalent)

condition of local operations with classical communication (LOCC), and ILO is often
referred to as stochastic LOCC, or SLOCC. For details, see [10].
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Fig. 2. The W state as a graph

6.1 Finding a Better Representative for W -Like States

We postulate that we can find an ILO-equivalence to the W state for any state
of the form given by Fig. 3.

α β

γ

Fig. 3. A general form for the W state

To help with our search, we narrow down the types of linear maps we will
look for. Since we’re trying to change the unbiased-Z angles, we’ll look at various
kinds of Z phase shifts. We try the standard, unitary shifts Zα as well as the
two “partial” shifts Zucα and Zdcα.

Zα :=
(

1 0
0 eiα

)
Zucα :=

(
cosα 0

0 1

)
Zdcα :=

(
1 0
0 cosα

)

Using Quantomatic and Mathematica, we discovered that conjugation by
Zucα yields a unification. To do this, we first define Zucα in graphical terms
(Fig. 4). We then feed the equation in Fig. 5 into Quantomatic and export the
matrix terms to Mathematica.

A first call to Reduce[eq] yields the condition (a + b + c = π) ∧ (. . .). So,
letting c = π − a − b, and calling Reduce[] again, we find a substitution

σ =
{

d �→ π

2
− a − b, e �→ π

2
− b, f �→ π

2
− a
}

that satisfies the equation in Fig. 5. Therefore any state of the form given by (3)
such that the angles sum to π is ILO-equivalent to the W state.
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α := α −α

π

π

=
„

e−iα + eiα 0
0 2

«
= 2 α

Fig. 4. The definition of Zucα

b

c

a ?= π
3

π
3

π
3

d

fe

Fig. 5. Equation, conjugating by Zuc, in Quantomatic, then Mathematica

6.2 Supplementary Angle Condition

To aid in the reduction of entangled states, we’ll search for angles that induce
the following graph disconnect.

α β
?=

γ

δ

We use Quantomatic to export this identity as a matrix equation. We use
Mathematica to solve for phase angles and a scaling factor k.
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⎛
⎜⎜⎜⎜⎝

k = 1
eiα+eiβ

∧ γ = π
∧ δ = π
∧ π = α + β
∧ π �= α − β

⎞
⎟⎟⎟⎟⎠ ∨

⎛
⎜⎜⎜⎜⎝

k = 1

1+ei(α+β)

∧ γ = 0
∧ δ = 0
∧ π = α − β
∧ π �= α + β

⎞
⎟⎟⎟⎟⎠

From these conditions, we can deduce that the angles α and β on the LHS are
precisely those that are both non-zero and their sum or difference is π. Therefore,
we call these identities supplementary angle identities. We can now introduce two
new rewrite rules to the theory.

α π − α → π

π
α π + α →

6.3 Emergent Property

Let CONV+SA be the strategy CONV, but with rules R′ = R ∪ {sa1, sa2}.
CONV+SA still terminates because all of the rules are strictly reductive on
the graph complexity. If we consider the definition of the W state as a map,
it behaves like a controlled two-qubit entanglement. That is, an input of |0〉
yields (|0〉 ⊗ |1〉)+(|1〉 ⊗ |0〉), which is a fully entangled state called the Einstein-
Podolsky-Rosen (EPR) state. An input of |1〉 yields the separable state |0〉⊗ |0〉.
If we note the following representations,

π
|0〉

0
|1〉

π

0

π
3

π
3

π
3

π

ππ

π

π
3

π
3

π
3

π

ππ

↓ ∗ ↓ ∗
π
3π
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then alternate applications of CONV+SA and DAP, we get the following
normalisations.

Taking any W -like state, we can apply the rewrite derived in section 6.1 in
conjunction with the method above to prove that a |1〉 input yields a separable
state and a |0〉 yields a state that is ILO-equivalent to the EPR state.

7 Conclusion and Future Work

We have shown that Quantomatic is already a useful tool for working with
a graphical theory. The example in this paper expanded on some important
properties of tripartite states that are W-like, namely that they permit a general
form and behave like a controlled EPR state. To follow on from this, the natural
next step is to give a similar treatment to tripartite states that are GHZ-like.
When the angles in Fig. 3 do not add up to π, we conjecture that the state is ILO-
equivalent to the GHZ state. We hope to find local linear maps that are easy to
express in the graphical language to prove this identity. After this, the next step
is to explore states involving more qubits or higher-dimensional generalisations
of qubits such as qutrits for 3 dimensions and qudits for d dimensions.

Quantomatic itself also could benefit from a more flexible theory engine, bet-
ter support for strategies and cleaner interaction with the computer algebra
system. Also, the use of a general-purpose CAS can be limiting in the class of
equations it can solve. A specialised CAS that can better cope with phase equa-
tions and periodic unknowns could reduce the amount of manual help that is
needed to push systems of equations through a reduction routine. Also, a bet-
ter implementation of sparse matrices that takes into account the properties of
classical structures and tensor products could drastically reduce the resource
requirements and increase the effective size limits CAS-based methods.
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Abstract. Kenzo is a Computer Algebra system devoted to Algebraic
Topology, and written in the Common Lisp programming language. It is
a descendant of a previous system called EAT (for Effective Algebraic
Topology). Kenzo shows a much better performance than EAT due,
among other reasons, to a smart encoding of degeneracy lists as integers.
In this paper, we give a complete automated proof of the correctness of
this encoding used in Kenzo. The proof is carried out using ACL2, a sys-
tem for proving properties of programs written in (a subset of) Common
Lisp. The most interesting idea, from a methodological point of view, is
our use of EAT to build a model on which the verification is carried out.
Thus, EAT, which is logically simpler but less efficient than Kenzo, acts
as a mathematical model and then Kenzo is formally verified against it.

1 Introduction

The Kenzo system [8] is a Common Lisp program, developed by F. Sergeraert
and devoted to Algebraic Topology. It was written mainly as a research tool
and has got relevant results which have not been confirmed nor refuted by any
other means. Being a compact program (around 16000 lines of Common Lisp,
implementing complicated algorithms), the question of Kenzo reliability (beyond
testing) came up in a natural way.

Several approaches based on Formal Methods have been used to undertake
this problem, ranging from the Algebraic Specification of its data structures
([12], [7], and recently computer aided with Coq [6]) to the application of Proof
Assistants to study the correctness of algorithms implemented in Kenzo. In this
second line, the most important contributions have been the Isabelle/HOL proof
of the Basic Perturbation Lemma [3] and the project by Coquand and Spiwack
which is based on Constructive Type Theory and Coq [5]. As it is well-know, Coq
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proofs carry their corresponding programs, and also some work has been done to
produce running code from Isabelle/HOL proofs in this context [4]. Nevertheless,
the extracted programs are not comparable with the real Kenzo system, both
from the efficiency and the programming languages points of view (OCaML or
ML code instead of Common Lisp).

Due to this drawback of the approaches based on Isabelle and Coq, a new
research line was launched, focused on the ACL2 theorem prover. ACL2 is orien-
ted to prove properties of Common Lisp programs, and thus it could seem, at
first sight, very promising to verify Kenzo. Nevertheless, since the ACL2 logic is
first-order, the full verification of Kenzo is not possible, since it uses intensively
higher order functional programming (to encode, in particular, topological spaces
of infinite dimension). This observation, however, does not close the possibility
of verifying first order fragments of Kenzo with ACL2. Some preliminary works
in this line have been published in [1] and [2]. It is worth noting that in those
papers we undertake the problem of verifying some Common Lisp programs
about simplicial topology (in particular, algebraic manipulation and simplicial
properties of Kenzo algorithms), but that no actual Kenzo fragment was studied.

In this paper we present for the first time the verification of a Kenzo fragment
within the ACL2 theorem prover. The verified fragment is small in number of
lines, but it is central to the efficiency got by Kenzo. This is compared to the pre-
decessor of Kenzo, another Common Lisp system called EAT [15], based on the
same Sergeraert’s ideas, but whose performance was much poorer than that of
Kenzo. One of the reasons why Kenzo performs better than EAT is because of a
smart encoding of degeneracy lists. These combinatorial objects are usually pre-
sented in the Simplicial Topology literature as decreasing lists of natural num-
bers, and so they were encoded in EAT. On the contrary, in Kenzo degeneracy
lists are encoded as natural numbers. Since to generate and compose degeneracy
lists are operations which appear in an exponential manner in most Kenzo calcu-
lations (through the Eilenberg-Zilber theorem [14]), it is clear that the benefits of
having a better way for storing and processing degeneracy lists is very important.
But, on the negative side, the algorithms are somehow obscured in Kenzo, with
respect to the clean and comprehensible approach in EAT. Therefore, to prove
the correctness of the implementation of degeneracy algorithms in Kenzo seems
to be a good test-bed to apply computer-aided formal methods.

A complete ACL2 proof of the correctness of the degeneracy programs in
Kenzo is described in this paper. The main methodological contribution of the
proof is, in our opinion, using EAT to build a model with respect to the veri-
fication is carried out. Thus, EAT, which is logically simpler (i.e., easier to be
verified) but less efficient than Kenzo, acts as a mathematical model and then
Kenzo is formally verified against it.

The organization of the rest of the paper is as follows. In Section 2, we in-
troduce briefly both Simplicial Topology and the role of degeneracy operators
in it. In Section 3, we give a brief introduction to the ACL2 system. Even if a
first order fragment of Kenzo (and EAT) has been chosen, the Kenzo functions
cannot be directly defined in ACL2 (due to Common Lisp features, like loops
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or destructive updates, which are not available in ACL2). Thus, in Section 4 we
explain how to obtain actual ACL2 functions from Kenzo and EAT degeneracy
programs, in a safe and reliable way. Sections 5 and 6 are devoted to the descrip-
tion of the ACL2 proof of correctness and other important properties. Finally
we comment some conclusions and point out possible further work.

Due to the lack of space, we will not give here details about the proofs obtained
and some function definitions will be omitted. The interested reader may consult
[13], where the complete development is available.

2 The Role of Degeneracy Operators in Simplicial
Topology

Simplicial Topology [14] is a subarea of Topology devoted to replace topologi-
cal spaces by combinatorial models, in order to ease their study. The simplest
combinatorial model of a topological space is a simplicial complex. Let V be a
set together with a partial order < on it. A n-simplex is a list [v0, v1, . . . , vn]
where v0 < v1 < . . . < vn are elements of V . For each index i we consider the
i-face operator ∂i that given a n-simplex constructs a (n−1)-simplex deleting the
element at position i. A simplicial complex K (over (V, <)) is a set of simplices
closed with respect to the face operators.

Each n-simplex can be realized as an affine geometrical simplex (for instance,
a 0-simplex is realized as a point, a 1-simplex as a segment, a 2-simplex as a tri-
angle, a 3-simplex as a tetrahedron and so on). Thus, simplicial complexes are
models for triangulated spaces, which are a class of topological spaces sufficiently
large to develop much of the general and algebraic topology. Nevertheless, simpli-
cial complexes have a severe drawback: one needs many simplices to model rela-
tively simple spaces. For instance, to model a sphere with a tetrahedron we need
4 vertices, 6 edges and 4 triangles. Since the topological notions are quite flexi-
ble, we could use a much more efficient way of representing a sphere: by means
of a triangle where all the edges and vertices are collapsed to just one point. The
problem with this new representation is the “dimension jump”: there is one ele-
ment of dimension 2 (the triangle) and one element of dimension 0 (the point),
and then this set of simplices is not closed with respect to the face operators.

The solution to this problem is to move from simplicial complexes to sim-
plicial sets. In addition to the face operators, new operators of degeneracy are
considered. These operators create “artificial” simplexes (with no geometrical
meaning) but allowing “jumping” among dimensions. To give an idea of this so-
phisticated instrument let us comment briefly on how a simplicial complex can
be viewed as a simplicial set. The trick is to accept simplexes that are ordered
but not necessarily strictly ordered; that is, repeated elements are allowed. Then
for each index i with 0≤ i≤n, we define the i-degeneracy operator ηi that given
a n-simplex constructs a (n+1)-simplex repeating the element at position i.

Based on this idea, we define a simplicial set as a graded set {Kq}q∈N of
abstract simplexes (i.e. not necessarily lists of elements) with the i-face and
i-degeneracy operators, satisfying the following simplicial identities (see [14] for
details):
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∀i < j ∂i∂j = ∂j−1∂i

∀i ≤ j ηiηj = ηj+1ηi (1)
∀i < j ∂iηj = ηj−1∂i

∀i, j ∂iηi = Id = ∂j+1ηj

∀i > j + 1 ∂iηj = ηj∂i−1

A simplicial set represents a topological space in a much less expensive
manner than a simplicial complex. For instance, a sphere of dimension n can
be represented with just two non-degenerate simplices: one in dimension n and
other in dimension 0 (geometrically, all the faces on the affine n-simplex are
collapsed over a unique point, producing a topological sphere; think in a seg-
ment where the two extremes are identified, producing a circle, a 1-sphere).

A simplex is degenerate if it is obtained as the application of some operator ηi.
It could be proved that given a simplex x there exists a unique non-degenerate
simplex y and a unique strictly decreasing list of natural numbers [i0, i1, . . . , in]
such that ηi0ηi1 . . . ηin(y) = x. (This fundamental result of Simplicial Topology
has been proved in ACL2 as documented in [2]). We call this list of indices
[i0, i1, . . . , in] a degeneracy list and we say that x is obtained applying the de-
generacy list [i0, i1, . . . , in] to y.

In general, the application of degeneracy lists to simplexes is a very common
operation in Kenzo, even for degenerate simplexes. Let us note that the appli-
cation of a degeneracy list [i0, . . . , in] to an degenerate simplex x, that is the
result of applying another degeneracy list [j0, . . . , jm] to a non-degenerate sim-
plex y, is the result of applying the composition of the two degeneracy lists,
[i0, . . . , in] ◦ [j0, . . . , jm], to y. The composition of two degeneracy lists is de-
fined as the composition of the degeneracy operators: [i0, . . . , in] ◦ [j0, . . . , jm] =
ηi0 . . . ηinηj0 . . . ηjm ; repeatedly applying equation (1) above, this could be trans-
formed again into a degeneracy list. The implementation in Kenzo of this com-
position operation is central in the system as a whole. For example, the com-
position of the degeneracy lists [3, 1] and [5, 3, 0] is η3η1η5η3η0, and applying
repeatedly the equation ηiηj = ηj+1ηi, when i ≤ j, we successively obtain
η3η6η1η3η0, η3η6η4η1η0, η7η3η4η1η0 and finally η7η5η3η1η0, that is, the degene-
racy list [7, 5, 3, 1, 0].

The strategy Sergeraert devised was to interpret a degeneracy list [i0, . . . , in]
as a binary representation of an integer. He stores the degeneracies as integers
(with the corresponding memory saving) and implements the composition of
degeneracy lists by using very efficient Common Lisp primitives dealing with
binary numbers (like logxor, ash, and so on). This is one of the reasons why
Kenzo improves dramatically the performance of its predecessor EAT. Neverthe-
less, this efficient composition operator called dgop*dgop in Kenzo has a more
obscure semantics than its corresponding in EAT, called cmp-ls-ls. This paper
is devoted to describe the certification in ACL2 of the correctness of dgop*dgop,
using cmp-ls-ls as a formal specification, and then proving additional proper-
ties like equation (1) of simplicial sets or associativity of dgop*dgop.
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3 An Introduction to the ACL2 System

ACL2 ([10],[11]) stands for “A Computational Logic for an Applicative Common
Lisp”. Roughly speaking, ACL2 is a programming language, a logic and a theo-
rem prover. Thus, the system constitutes an environment in which algorithms
can be defined and executed, and their properties can be formally specified and
proved with the assistance of a mechanical theorem prover.

As a programming language, it is an extension of an applicative subset of
Common Lisp1 [16]. The logic considers every function defined in the pro-
gramming language as a first-order function in the mathematical sense. For
that reason, the programming language is restricted to the applicative subset of
Common Lisp. This means, for example, that there are no side-effects, no global
variables, no destructive updates and no higher-order features. Even with these
restrictions, there is a close connection between ACL2 and Common Lisp: ACL2
primitives that are also Common Lisp primitives behave exactly in the same
way, and this means that, in general, ACL2 programs can be executed in any
compliant Common Lisp.

The ACL2 logic is a first-order logic, in which formulas are written in prefix
notation; they are quantifier–free and the variables in it are implicitly universally
quantified. The logic includes axioms for propositional logic (with connectives
implies, and,. . . ), equality (equal) and those describing the behavior of a sub-
set of primitive Common Lisp functions. Rules of inference include those for
propositional logic, equality and instantiation of variables. The logic also pro-
vides a principle of proof by induction that allows to prove a conjecture splitting
it into cases and inductively assuming some instances of the conjecture that are
smaller with respect to some well–founded measure.

An interesting feature of ACL2 is that the same language is used to define
programs and to specify properties of those programs. Every time a function is
defined with defun, in addition to define a program, it is also introduced as an
axiom in the logic (whenever it is proved to terminate for every input). Theorems
and lemmas are stated in ACL2 by the defthm command, and this command
also starts a proof attempt in the ACL2 theorem prover.

The main proof techniques used by ACL2 in a proof attempt are simplification
and induction. The theorem prover is automatic in the sense that once defthm
is invoked, the user can no longer interact with the system. However, in a deeper
sense the system is interactive: very often non-trivial proofs are not found by
the system in a first attempt and then it is needed to guide the prover by adding
lemmas, suggested by a preconceived hand proof or by inspection of failed proofs.
These lemmas are then used as rewrite rules in subsequent proof attempts. This
kind of interaction with the system is called “The Method” by its authors.

4 From Kenzo and EAT to ACL2

Before giving the ACL2 definition of the composition of degeneracy lists (and the
statements of the theorems we have proved), let us present the Kenzo code for
1 In this paper, we will assume familiarity with Common Lisp.
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that operation. As we have said before, Kenzo deals with degeneracy lists using
a smart encoding. Basically, every degeneracy list can be seen as the natural
number whose binary notation represents the characteristic function of the set
of elements of the list. Let us explain this with an example: the degeneracy list
[5, 3, 0] can equivalently be seen as the binary list [1, 0, 0, 1, 0, 1] in which 1 is in
position i if the number i is in the degeneracy list, 0 otherwise. This list, seen
as a binary number in the reverse order, is the natural number 41. Thus, Kenzo
encodes the above degeneracy list as 41.

Let us now explain how Kenzo implements composition of degeneracy lists.
This is better understood if we think first in the binary representation. Let
us consider the composition of the degeneracy lists [3, 1] and [5, 3, 0]. Applying
repeatedly the equation ηiηj = ηj+1ηi, when i ≤ j, we obtain [7, 5, 3, 1, 0]. Using
binary notation, this means that the composition of [0, 1, 0, 1] and [1, 0, 0, 1, 0, 1]
is [1, 1, 0, 1, 0, 1, 0, 1]. In general (although it is not obvious), composition between
two degeneracy lists in binary notation can be described as sequentially replacing
the 0’s in the first list by the successive elements of the second list, until one
of the lists is exhausted; and then completing the result with the remaining
elements of the other list.

As we have said before, Kenzo does not directly use the binary notation:
it uses the natural number that this binary notation represents. Common Lisp
logical operations on numbers, like logxor and ash, are used to reflect the corres-
ponding manipulations on binary lists. The following is the real Common Lisp
code of Kenzo for composition of degeneracy lists2:

(defun dgop*dgop (dgop1 dgop2)
(declare (type fixnum dgop1 dgop2))
(let ((dgop 0) (bmark 0))
(declare (fixnum dgop bmark))
(loop (when (zerop dgop1)

(return-from dgop*dgop (logxor dgop (ash dgop2 bmark))))
(when (zerop dgop2)

(return-from dgop*dgop (logxor dgop (ash dgop1 bmark))))
(cond ((evenp dgop1)

(when (oddp dgop2) (incf dgop (2-exp bmark)))
(setf dgop2 (ash dgop2 -1)))

(t (incf dgop (2-exp bmark))))
(setf dgop1 (ash dgop1 -1))
(incf bmark))))

This definition receives as input two fixnum natural numbers dgop1 and dgop2
(encoding two degeneracy lists) and executes a loop that uses two local variables
dgop and bmark storing respectively the (partially computed) result, and the
number of elements of dgop already scanned. When one of the degeneracy lists
is exhausted, it stops and returns the concatenation of dgop and the remaining
elements of the other list. Otherwise, it updates the two local variables (according
to the values of the first elements of dgop1 and dgop2) and executes again the
body of the loop, removing the first element of dgop1, and eventually the first
element of dgop2.

2 In the following, to distinguish ACL2 code from general Common Lisp code, we will
use italics for the latter.
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Since the function dgop*dgop deals with natural numbers, we emphasize again
that logical operators are used to treat them as binary lists. For example, com-
puting (logxor dgop (ash dgop2 bmark)) is equivalent to “concatenate” dgop
and dgop2 (since bmark is the length of dgop). Or, for example, (ash dgop1 -1)
is equivalent to remove “the first element” of dgop1. These logical operators on
fixnum numbers are usually computed in Common Lisp very efficiently, and this
is one of the reasons why Kenzo performs much better than EAT. On the negative
side, the formal verification of dgop*dgop seems a hard task. In the rest of this
section, we present a definition of dgop*dgop in ACL2 (trying to keep as close
as possible to its original Common Lisp definition) and we state the theorem we
want to prove in order to increase our confidence in the way Kenzo deals with
degeneracy lists.

4.1 Definition of dgop*dgop in ACL2

Since the ACL2 programming language is a subset of Common Lisp, the defi-
nition of dgop*dgop in ACL2, based on the above Common Lisp code, is quite
direct. Nevertheless, due to the applicative nature of ACL2, there are some things
that have to be defined in a different (but equivalent) way. In particular, the only
way to iterate in ACL2 is by means of recursion. Thus, we use an auxiliary recur-
sive definition implementing the internal loop, trying to be as faithful as possible
to the original version. Also, since destructive updates are not allowed in ACL2,
we consider the local variables dgop and bmark as extra input parameters. Fi-
nally, since ACL2 functions have to be total, we have to define a result just in
case the inputs were not of the intended type ((type fixnum dgop1 dgop2)).
Taking all these considerations into account, the following is the ACL2 definition
of the loop3:

(defun dgop*dgop-loop (dgop1 dgop2 dgop bmark)
(if (and (natp dgop1) (natp dgop2))

(cond ((zerop dgop1) (logxor dgop (ash dgop2 bmark)))
((zerop dgop2) (logxor dgop (ash dgop1 bmark)))
((evenp dgop1)
(dgop*dgop-loop (ash dgop1 -1) (ash dgop2 -1)

(if (oddp dgop2)
(+ dgop (ash 1 bmark))
dgop)

(+ bmark 1)))
(t (dgop*dgop-loop (ash dgop1 -1) dgop2

(+ dgop (ash 1 bmark)) (+ bmark 1))))
0))

Finally, the ACL2 definition of dgop*dgop is a call to the above auxiliary
function, with suitable initial zero values for dgop and bmark:

(defun dgop*dgop (dgop1 dgop2)
(dgop*dgop-loop dgop1 dgop2 0 0))

We claim that the ACL2 version is faithful with the original Kenzo definition,
since we have tried to keep it as similar as possible. As we have said, the fact that
3 (2-exp n) returns 2n, the same as (ash 1 n); we will comment more on this in the

conclusions.
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ACL2 is a subset of Common Lisp makes this translation almost direct. Anyway,
we strengthened our claim by an intensive testing. Since both definitions can be
executed on any compliant Common Lisp, it was very easy to (successfully)
test that they return the same result for all pairs of inputs n and m, with
n, m ≤ 10000.

4.2 Stating the Correctness Property of dgop*dgop

We now describe how we state the main theorem about the correctness of the
above ACL2 definition. It is clear that we would like to prove that the function
computes, using the natural number encoding, the composition of two degene-
racy lists. Degeneracy lists have been defined in Section 2 as strictly decreasing
lists of natural numbers.

Therefore, the first thing we have to define in ACL2 is the composition of
degeneracy lists, represented as strictly decreasing lists. That will be our “specifi-
cation” of the intended behavior of any implementation of composition of degene-
racy lists. Note that, in principle, the computation carried out by dgop*dgop has
nothing to do with the definition given in section 2. While the original definition
is based on successive applications of degeneracy operators onto a degeneracy
list, the function dgop*dgop makes some kind of “merge” between the binary
representation of degeneracy lists. As we have said before, the EAT system (the
Kenzo predecessor) used strictly decreasing lists of natural numbers to represent
degeneracy lists. Thus, it seems a good idea to prove the equivalence (modulo
the change of representation) of the Kenzo function with the corresponding EAT
function.

In EAT, the composition of degeneracy lists is defined as an iterative appli-
cation of the equation ηiηj = ηj+1ηi, when i ≤ j. The following is the real
code for the EAT definition of composition. Note that the auxiliary function
cmp-s-ls implements the application of a degeneracy operator to a degeneracy
list; this function is iteratively used by the main function cmp-ls-ls to define
composition:

(defun cmp-s-ls (s ls)
(declare (type fixnum+ s) (type list ls))
(do ((p ls (cdr p))

(rsl (list ) (cons (1+ (car p)) rsl)))
((endp p) (nreverse (cons s rsl)))

(declare (type list p rsl))
(when (> s (car p)) (return (nreconc (cons s rsl) p)))))

(defun cmp-ls-ls (ls1 ls2)
(declare (type list ls1 ls2))
(do ((p (reverse ls1) (cdr p))

(rsl ls2 (cmp-s-ls (car p) rsl)))
((endp p) rsl)

(declare (type list p rsl))))

We have defined ACL2 versions of these functions, trying to keep as faithful
as possible with the original code. Analogously to the previous subsection, a do
loop has to be replaced by auxiliary recursive functions. These are our ACL2
definitions for composition of degeneracy lists:
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(defun cmp-s-ls-do (s p rsl)
(cond ((endp p) (reverse (cons s rsl)))

((> s (car p)) (nreconc (cons s rsl) p))
(t (cmp-s-ls-do s (cdr p) (cons (1+ (car p)) rsl)))))

(defun cmp-s-ls (s ls)
(cmp-s-ls-do s ls nil))

(defun cmp-ls-ls-do (p rsl)
(cond ((endp p) rsl)

(t (cmp-ls-ls-do (cdr p) (cmp-s-ls (car p) rsl)))))

(defun cmp-ls-ls (ls1 ls2)
(cmp-ls-ls-do (reverse ls1) ls2))

Again, the translation from the real Common Lisp code of EAT to the ACL2
version is quite straightforward. But in order to strengthen even more our confi-
dence in this “model”, we did intensive testing, checking that they compute the
same results for 100000 inputs randomly generated.

We now have to define functions relating the encoding used by Kenzo and the
representation of degeneracy list used by EAT. First, the function dgop-ext-int
transforms a degeneracy list represented as a strictly decreasing list of natural
numbers (checked by the function dgl-p) to its corresponding representation as
a natural number. Note the use of logical arithmetic operators:
(defun dgop-ext-int (ext-dgop)

(if (dgl-p ext-dgop)
(if (endp ext-dgop)

0
(logxor (ash 1 (car ext-dgop))

(dgop-ext-int (cdr ext-dgop))))
0))

We also define the function dgop-int-ext, its inverse. For that, we use an
auxiliary recursive definition that simulates a do loop, with the input variables
rslt and bmark, that work as extra parameters for storing respectively the
result (partially) computed and the number of binary digits analyzed. The main
function simply calls this auxiliary definition with suitable initial values for the
extra parameters. This is our ACL2 definition:
(defun dgop-int-ext-do (dgop rslt bmark)

(if (natp dgop)
(if (zerop dgop)

rslt
(if (oddp dgop)

(dgop-int-ext-do (ash dgop -1) (cons bmark rslt) (1+ bmark))
(dgop-int-ext-do (ash dgop -1) rslt (1+ bmark))))

nil))

(defun dgop-int-ext (dgop)
(if (natp dgop)

(dgop-int-ext-acc dgop nil 0)
nil))

It should be emphasized that these definitions are defined trying to be as close
as possible to the corresponding Kenzo definitions of these operations (although
due to the lack of space we do not include here this part of the Kenzo code).

We have now defined all the functions that we need for stating the correctness
property of dgop*dgop. This property expresses that for every pair of degeneracy
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lists represented as strictly decreasing lists of natural numbers, the result of
computing dgop*dgop on their corresponding encoding as natural numbers is
equal to the encoding of the result of the composition carried out by the EAT
system. The following is the corresponding ACL2 theorem stating that property:

(defthm dgop*dgop-cmp-ls-ls
(implies (and (natp dgn1) (natp dgn2))

(equal (dgop*dgop dgn1 dgn2)
(dgop-ext-int (cmp-ls-ls (dgop-int-ext dgn1)

(dgop-int-ext dgn2)))))

In the next section, we will explain how we carried out a mechanical proof of
this theorem in ACL2.

5 The Proof: Transforming the Domain

The ACL2 proof of the above result is not simple, mainly for two reasons. Firstly,
the functions dgop*dgop (Kenzo) and cmp-ls-ls (EAT) deal with different re-
presentations of degeneracy lists. Secondly, the Kenzo function implements an
algorithm which is not intuitive and quite different from the algorithm of the
EAT version, which is closely related to the mathematical definition. A suitable
strategy to attack the proof is to try to solve the above two questions separately.
Thus, it seems natural to consider an intermediate representation of degeneracy
lists based on the binary lists described at the beginning of Section 4.

Our plan will be to define a function dgb*dgb implementing composition of
degeneracy lists represented as binary lists, following the same algorithm than
dgop*dgop, except for the use of this intermediate representation. This will
allow us to prove the equivalence of dgop*dgop and dgb*dgb dealing only with
the encoding aspects. After that, we will prove the equivalence of dgb*dgb and
cmp-ls-ls, focusing only on the algorithmic aspects of the Kenzo definition.
Schematically, if DL

g denotes the set of strictly decreasing lists of natural num-
bers, DB

g the set of binary lists and DN
g the set of natural numbers, we will prove

the commutativity of the following diagram (in which, for the sake of clarity, we
have omitted the names for the encoding and decoding functions between the
different representations):

cmp-ls-ls dgb*dgb dgop*dgop

DL
g ×DL

g DB
g ×DB

g DN
g ×DN

g

DN
gDL

g DB
g

The rest of this section will be devoted to explain our proof. We will describe
separately the properties concerning each of the three representations (or do-
mains) considered, and finally we will show how we compose all these results to
achieve the desired theorem.
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5.1 The Domain DL
g

The tail-recursive definitions of functions cmp-s-ls and cmp-ls-ls that we
adopted (since we wanted to keep as close as possible to the EAT version) are not
the best option for reasoning in ACL2. Therefore, we proved that these functions
verify the following simple recursive schemata, which are much more suitable for
the induction heuristics of the ACL2 prover:

(defthm cmp-s-ls-recursive
(equal (cmp-s-ls s ls)

(cond ((endp ls) (list s))
((> s (car ls)) (cons s ls))
(t (cons (1+ (car ls)) (cmp-s-ls s (cdr ls)))))))

(defthm cmp-ls-ls-recursive
(equal (cmp-ls-ls ls1 ls2)

(cond ((endp ls1) ls2)
(t (cmp-s-ls (car ls1) (cmp-ls-ls (cdr ls1) ls2))))))

If we use these alternative recursive schemata, instead of the original versions,
it turns out that some properties of cmp-ls-ls (for example, its associativity)
can be proved very easily in ACL2.

5.2 The Domain DB
g

The following is the definition of the functions dgl->dgb and dgb->dgl imple-
menting the change of representation between the domains DL

g and DB
g :

(defun dgb-pos (n)
(cond ((zp n) ’(1))

(t (cons 0 (dgb-pos (- n 1))))))

(defun dgb-app (dgb1 dgb2)
(cond ((endp dgb1) dgb2)

((endp dgb2) dgb1)
(t (cons (car dgb1) (dgb-app (cdr dgb1) (cdr dgb2))))))

(defun dgl->dgb (dgl)
(cond ((endp dgl) nil)

(t (dgb-app (dgl->dgb (cdr dgl)) (dgb-pos (car dgl))))))

(defun 1+ls (lst)
(cond ((endp lst) nil)

(t (cons (1+ (car lst)) (1+ls (cdr lst))))))

(defun dgb->dgl (dgb)
(cond ((endp dgb) nil)

((eql (car dgb) 0) (1+ls (dgb->dgl (cdr dgb))))
(t (append (1+ls (dgb->dgl (cdr dgb))) (list 0)))))

These functions are bijections between DL
g and DB

g , and therefore they are
indeed a change of representation between two different encodings. The follo-
wing theorems proved in ACL2 establish that fact (where dgl-p and dgb-p are
respectively functions checking membership to DL

g and DB
g ):
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(defthm dgb->dgl-dgl->dgb
(implies (dgl-p dgl)

(equal (dgb->dgl (dgl->dgb dgl)) dgl)))

(defthm dgl->dgb-dgb->dgl
(implies (dgb-p dgb)

(equal (dgl->dgb (dgb->dgl dgb)) dgb)))

Now we define the composition of degeneracy lists in DB
g , following the same

algorithmic procedure than in the Kenzo version. Recall from section 4 that
the result of composing two binary lists dB

g 1
◦ dB

g 2
, is obtained by sequentially

replacing the 0’s in the first list by the successive elements of the second list,
until one of the two lists is exhausted; and then completing the result with the
remaining elements of the other list. This is precisely what the recursive function
dgb*dgb does:
(defun dgb*dgb (dgb1 dgb2)

(if (and (dgb-p dgb1) (dgb-p dgb2))
(cond ((endp dgb1) dgb2)

((endp dgb2) dgb1)
((eql (car dgb1) 0)
(cons (car dgb2) (dgb*dgb (cdr dgb1) (cdr dgb2))))

(t (cons 1 (dgb*dgb (cdr dgb1) dgb2))))
nil))

As expected, the following theorem can be proved, establishing the equivalence
of the function dgb*dgb in DB

g and the function cmp-ls-ls, based on the EAT
version:
(defthm dgb*dgb-cmp-ls-ls

(implies (and (dgb-p dgb1) (dgb-p dgb2))
(equal (dgb*dgb dgb1 dgb2)

(dgl->dgb (cmp-ls-ls (dgb->dgl dgb1)
(dgb->dgl dgb2))))))

5.3 The Domain DN
g

The following is the definition of the functions dgb->dgn and dgn->dgb imple-
menting the change of representation between the domains DB

g and DN
g . Recall

that this is simply done by considering the elements of DB
g as the reverse of the

binary notation of a natural number:
(defun dgb->dgn (dgb)

(cond ((endp dgb) 0)
(t (+ (car dgb) (ash (dgb->dgn (cdr dgb)) 1)))))

(defun dgn->dgb (dgn)
(cond ((zp dgn) nil)
(t (cons (if (evenp dgn) 0 1) (dgn->dgb (ash dgn -1))))))

As in the previous subsection, it can be proved that these functions define
a change of representation between two different encodings. That is, they are
bijections between DB

g and DN
g , as established by the following theorems:

(defthm dgb->dgn-dgn->dgb
(implies (natp dgn)

(equal (dgb->dgn (dgn->dgb dgn)) dgn))))

(defthm dgn->dgb-dgb->dgn
(implies (dgb-p dgb)

(equal (dgn->dgb (dgb->dgn dgb)) dgb)))
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The following theorem proves the equivalence between the functions dgb*dgb
and dgop*dgop (modulo the change of representation):
(defthm dgop*dgop-dgb*dgb

(implies (and (natp dgn1) (natp dgn2))
(equal (dgop*dgop dgn1 dgn2)

(dgb->dgn (dgb*dgb (dgn->dgb dgn1)
(dgn->dgb dgn2))))))

5.4 Correctness of Kenzo Degeneracy Lists Composition

Having proved the equivalences of both dgop*dgop and cmp-ls-ls with the
intermediate function dgb*dgb, the final step is to prove that the functions
dgop-int-ext and dgop-ext-int are equivalent to the composition of the
corresponding transformations between the domains DL

g , DB
g and DN

g . That is:

(defthm dgop-int-ext-dgb->dgl-dgn->dgb
(implies (natp dgn)

(equal (dgop-int-ext dgn) (dgb->dgl (dgn->dgb dgn)))))

(defthm dgop-ext-int-dgb->dgn-dgl->dgb
(implies (dgl-p dgl)

(equal (dgop-ext-int dgl) (dgb->dgn (dgl->dgb dgl)))))

Now we only have to glue together the different pieces, using these last pro-
perties and the equivalences of the previous subsections, and finally obtaining
the main correctness property we wanted to prove:
(defthm dgop*dgop-cmp-ls-ls

(implies (and (natp dgn1) (natp dgn2))
(equal (dgop*dgop dgn1 dgn2)

(dgop-ext-int (cmp-ls-ls (dgop-int-ext dgn1)
(dgop-int-ext dgn2))))))

That is, we have established the correctness of the function dgop*dgop (based
on the Kenzo code) with respect to the specification defined by the function
cmp-ls-ls (based on the EAT code).

6 Translating Properties from DL
g to DN

g

Once we have proved the main correctness theorem, it is easy to prove a pro-
perty about dgop*dgop by first proving the property about cmp-ls-ls (which
is usually much simpler) and then translating it to dgop*dgop, by means of the
above theorem. Let us illustrate this with an example.

One of the properties assumed as an axiom in the definition of simplicial set
is the following equation between degeneracy operators: ηiηj = ηj+1ηi, ∀i ≤ j.
That is, for every pair of natural numbers i ≤ j and every degeneracy list dg, we
have ηi(ηj(dg)) = ηj+1(ηi(dg)). With respect to the composition of degeneracy
lists, the property is stated as follows:

∀i, j ∈ N, ∀dg ∈ Dg : i ≤ j → [i] ◦ ([j] ◦ dg) = [j + 1] ◦ ([i] ◦ dg)

This property should be true for any implementation of the composition
operation. In particular, that is the case for the function cmp-ls-ls, as shown in
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the theorem below. ACL2 can prove this property immediately, using the simpler
recursive schemata presented in subsection 5.1:

(defthm cmp-ls-ls-property
(implies (<= i j)

(equal (cmp-ls-ls (list i) (cmp-ls-ls (list j) dg))
(cmp-ls-ls (list (+ 1 j)) (cmp-ls-ls (list i) dg)))))

Now, this allows us to prove in a quite straightforward manner the correspon-
ding version of this theorem for dgop*dgop. It is an easy consequence of the above
theorem, the theorem dgop*dgop-cmp-ls-ls of the previous section, and the re-
lations between the functions dgop-int-ext and dgop-ext-int and the trans-
formations between the domains DL

g , DB
g and DN

g . This results in the following:

(defthm dgop*dgop-property
(implies (and (natp dgop) (natp i) (natp j) (<= i j))

(equal (dgop*dgop (dgop-ext-int (list (+ 1 j)))
(dgop*dgop (dgop-ext-int (list i)) dgop))

(dgop*dgop (dgop-ext-int (list i))
(dgop*dgop (dgop-ext-int (list j)) dgop))))

In a similar way, we have also proved that the function dgop*dgop is associa-
tive, from the same property for cmp-ls-ls, whose proof is very simple.

7 Conclusions and Further Work

In this paper we have described an ACL2 proof of the correctness of a first-order
fragment of the Kenzo system. Concretely, the Kenzo programs dealing with
degeneracy lists have been certified. Although the verified fragment is short in
number of lines, it is important for efficiency reasons in Kenzo.

As for the proof effort, we followed “The Method” described in [10] and out-
lined in Section 3. We recall that although every proof attempt of the system
is fully automatic, the system can be seen as interactive, since the appropriate
lemmas has to be previously proved in order to obtain the proof. Thus, and follo-
wing “The Method”, when a proof attempt of a result failed, we inspected its
output to discover which lemmas were needed to lead the prover to a successful
proof. Most of the resulting proofs were carried out by induction and simplifica-
tion. In most cases, the heuristics of the prover were able to automatically find a
suitable induction scheme. Only in a few cases, we needed to supply an explicit
induction scheme. All our interaction with the prover resulted in a collection of
27 definitions and 112 theorems. It is interesting to point out that we had no
preconceived proof in mind, and that all we did was to follow the suggestions
from the failed proof attempts. We urge the interested reader to consult the
complete development in [13].

From a practical point of view, a library of results about the logical arithmetic
operands was very useful. This library contains results previously proved by other
ACL2 users and comes with the ACL2 distribution. Thus, we think this is a good
example of reusability.

It is also worth pointing out the methodology devised to formally verify a sys-
tem written in Common Lisp. Obviously, we are not directly verifying the actual



120 F.J. Mart́ın-Mateos, J. Rubio, and J.L. Ruiz-Reina

code, due to limitations of the ACL2 programming language. But since ACL2 is
a subset of Common Lisp, a “model” very closely related to the original code can
be defined. And since ACL2 functions can be executed in any compliant Common
Lisp, we could do intensive testing to strengthen even more the assumption that
our model is faithful. Another remarkable point is our use of a previous version
of Kenzo, called EAT, as a main component of the specification of the intended
properties. This also increases the trust in the correctness of the methods appea-
ring in both EAT and Kenzo.

In this paper, we have not dealt with efficiency issues. In fact, there are two
technical details in the verified ACL2 function which make it less efficient than
its Kenzo counterpart. The first one is that the ACL2 function dgop*dgop-loop
has an explicit test in its body, checking that its first two arguments are natural
numbers. This is needed to ensure termination of the function on all possible
inputs, as required by the principle of definition of the ACL2 logic ([10]). That
explicit condition has a negative impact on the efficiency of the ACL2 algorithm,
since it is checked in every recursive call. The other technical detail that affects
efficiency has to do with how 2n is computed by Kenzo: at initialization, a lookup
table is built, with the powers of two until the biggest fixnum; after that, every
time a power of two is needed, the function (2-exp n) used by Kenzo simply
retrieves the value from position n of the table. In contrast, our ACL2 function
computes (ash 1 n), which is an equivalent, but less efficient method. Although
in a first stage we have not dealt with this issues, both technical details can be
solved in ACL2, using the defexec and stobj features, respectively (see the
users manual in [11] for details). We plan to introduce these improvements in
our ACL2 code and formally verify them, in order to obtain a certified algorithm,
comparable in efficiency with the Kenzo algorithm.

The work presented here is a first approach on using ACL2 with the purpose of
certifying fragments of an already implemented system as Kenzo (that is, we do
not want to reimplement the system, but to certify the existing code). This case
study shows the benefits of the fact that both systems (Kenzo and ACL2) deal
with the same programming language. Nevertheless, further research has to be
done to test how ACL2 will behave with two important issues not addressed here.
First, the mathematical theory underlying most Kenzo computations (algebraic
topology) is more complex than the needed by this example. Second, Kenzo
intensively uses higher order programming, not allowed in ACL2.

Thus, our future work will follow two lines of research: first, we intend to forma-
lize in ACL2 some results of algebraic topology, which will allow us to tackle more
difficult algorithms, such as the one extracted from the Eilenberg-Zilber theorem,
where the combinatorial explosion of simplicial degeneracy shuffles appears [14].
Or for example to verify the Kenzo builders (to construct spheres, Moore spaces,
projective spaces, . . . ) which are used as primitives in the reKenzo graphical user
interface [9]. Other line of research will be to study how we can model the higher-
order features used by the Common Lisp Kenzo code, in a first-order Common
Lisp ACL2 code; after that, we will be able to compare this approach with the
alternative of using higher-order theorem provers like Coq, PVS or HOL.
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Abstract. Methods for deciding quantifier-free non-linear arithmetical
conjectures over R are crucial in the formal verification of many real-
world systems and in formalised mathematics. While non-linear (rational
function) arithmetic over R is decidable, it is fundamentally infeasible:
any general decision method for this problem is worst-case exponential
in the dimension (number of variables) of the formula being analysed.
This is unfortunate, as many practical applications of real algebraic deci-
sion methods require reasoning about high-dimensional conjectures. De-
spite their inherent infeasibility, a number of different decision methods
have been developed, most of which have “sweet spots” – e.g., types of
problems for which they perform much better than they do in general.
Such “sweet spots” can in many cases be heuristically combined to solve
problems that are out of reach of the individual decision methods when
used in isolation. RAHD (“Real Algebra in High Dimensions”) is a theo-
rem prover that works to combine a collection of real algebraic decision
methods in ways that exploit their respective “sweet-spots.” We discuss
high-level mathematical and design aspects of RAHD and illustrate its
use on a number of examples.

1 Introduction

RAHD (“Real Algebra in High Dimensions”) is a tool for proving high-
dimensional (many variable) quantifier-free non-linear theorems in the language
of ordered fields over real closed fields (RCF)1. While the elementary theory of
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with respect to a language of quantified boolean combinations of real polynomial
equations and inequalities. This language is often referred to as the language of
ordered rings.
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the real numbers in this language2 is decidable, it is fundamentally infeasible:
any general decision method must take time exponential in the dimension of
the formula being analysed. This is unfortunate, as many important applica-
tions of decision methods over RCF require reasoning about high-dimensional
conjectures. To combat this difficulty, we focus not on the general decision prob-
lem, but instead upon deciding certain classes of sentences that arise in prac-
tice. We exploit the fact that most RCF decision methods have “sweet spots,”
e.g. types of problems for which they perform much better than they do in
general, and such “sweet spots” can be heuristically combined to solve prob-
lems that are out of reach of the individual decision methods when used in
isolation.

For the examples in this article, we focus especially upon the combination of a
“sweet-spot” in the cylindrical algebraic decomposition procedure (for topolog-
ically open constraints), Gröbner basis calculations, Sturm chains, simple Pos-
itivstellensatz witnesses, and dimensional reduction techniques stemming from
sound approximations to computations induced by real radical ideals.

1.1 Background

Since Tarski [17] established that the full elementary theory of RCF admits
quantifier elimination (QE) by giving a QE procedure of non-elementary com-
plexity, perhaps the most important practical3 break-through for theorem prov-
ing over RCF has been the cylindrical algebraic decomposition (CAD) algorithm
devised by Collins in the 1970s [3]. Collins’ community of students have been
prolific in their theoretical and practical improvements to CAD over the last
twenty-five years, culminating in Brown’s actively supported QEPCAD-B [1]
system. In addition to QEPCAD-B, versions of CAD have also been imple-
mented in Mathematica, REDLOG/Reduce, and Maple, and a perusal of the
literature shows CAD implementations finding vigorous use in many sciences,
both of applied and theoretical character. In addition to CAD, a number of other
RCF QE procedures have been developed and implemented in working tools
since the 1980s, including Weispfenning’s method of virtual term substitution
[21] (as implemented in Reduce/Redlog), and the Harrison-McLaughlin proof

2 Classical work on RCF decision problems usually takes place over the language
of ordered rings, not the language of ordered fields, as partial functions such as
real division complicate the model theory. RAHD supports the language of ordered
fields by pre-processing away division in literals in terms of equivalent multiplicative
constraints.

3 This is not to say that Collins’s break-through was only of a practical nature: The
geometrical insight contained within the CAD procedure has led to huge advances in
the topological and model-theoretic understanding of ordered structures admitting
quantifier elimination (e.g. o-minimality theory and tame topology). In these cases,
the properties of RCF exploited by the CAD procedure have been generalized into
the notion of “cellularly decomposable structures” and now bear rich mathematical
fruits. [20]



124 G.O. Passmore and P.B. Jackson

producing version of the Cohen-Hörmander method (in the HOL Light proof
assistant) [15]. The version of Weispfenning’s method available in Reduce/Redlog
(implemented and enhanced by Dolzmann and Sturm [7]) performs especially
well on many difficult high-dimensional problems (see Section 3).

While work on improved RCF QE methods is of lasting importance, for many
practical applications, full elementary QE is overkill. For these domains (such as
program analysis [19], hardware verification [11], hybrid systems [18], and even
ongoing large-scale projects in formalised mathematics [10]), simply deciding the
satisfiability of boolean combinations of polynomial equations and inequalities
over the real numbers is often sufficient. This problem is equivalent to QE for the
purely ∃ (dually purely ∀) sentential fragment of the elementary theory of RCF,
in which all formulas considered are sentences consisting only of a single block of
non-alternating quantifiers. As will be discussed in Section 1.2, this fragment of
the elementary theory of RCF admits an exponential speed-up over general RCF
QE, though this fact has unfortunately not led to algorithms for this fragment
that are in practice superior to the known general QE ones.

That said, the fundamental observation driving our current research is the
following: While all RCF decision methods are constrained by the known com-
plexity lower-bounds, most decision methods have types of problems for which
they perform much better than their worst-case time complexity analysis would
suggest. We refer to these more feasible fragments of a decision method’s in-
put domain as “sweet spots” of the decision method under investigation. We
work in RAHD to orchestrate the heuristic combination of a number of decision
methods for different RCF fragments by attempting to automatically massage
difficult problem instances into equisatisfiable sequences of simpler problems that
fit within known “sweet spots” of the decision methods RAHD provides. We will
describe RAHD in more detail in Section 2.1.

1.2 Existential Decisions over Real Closed Fields

Let us make the fundamental decision problem in which we are interested precise.

Question 1 (Fundamental Decision Problem). Let t1(x), . . . , tk(x) ∈ R(x)

where R(x) = { p
q | p, q ∈ R[x1, . . . , xn], q �= 0}. Let ϕ be a quantifier-free boolean

combination of atoms of the form (ti " 0) with " ∈ {<, ≤, =, ≥, >} (1 ≤ i ≤ k).
Is ϕ satisfiable over Rn? That is, does

〈R, +, −, ∗, <, 0, 1〉 |= ∃x1 . . . xn(ϕ)?

Though this decision problem has long been known to have a positive solution,
available general purpose decision methods, such as the aforementioned CAD [3]
or the Cohen-Hörmander procedure [2], have a very high worst-case time com-
plexity. For instance, when given an n-dimensional existential RCF conjecture
such as ∃xϕ(x), the computing time for the CAD algorithm is dominated by a
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function doubly exponential in n. For the full theory of RCF (e.g., with arbitrary
quantification), such doubly-exponential lower-bounds are known to be tight for
quantifier elimination: Due to Davenport-Heinz [4], there are known families of n-
dimensional RCF formulas of length O(n) whose only quantifier-free equivalences
must contain polynomials of degree 22Ω(n)

and of length 22Ω(n)
.

For the question of decidability over the purely existential fragment, a number
of more efficient algorithms have been proposed, including those of Grigor’ev-
Vorobjov [9] and Renegar [16]. Both of these decision methods deliver a the-
oretical exponential speed-up over CAD for the existential fragment of RCF,
requiring time dominated by a function only singly exponential in the underly-
ing dimension. Despite their apparent complexity-theoretic advantages, neither
procedure appears to have been implemented. Analysis by Hong [12] suggests
that even though the procedures of Grigor’ev-Vorobjov and Renegar are theoret-
ically advantageous over CAD (e.g., for sufficiently large inputs), for practically
sized examples, CAD remains superior. This is due to infeasibly large constant
factors lurking behind the asymptotic analyses of these singly exponential
procedures.

2 The RAHD System

In this section, we begin by touching upon the mathematics of some of RAHD’s
different proof techniques. Then, we turn to the question of how these techniques
can be fruitfully combined to solve problems beyond their reaches when they are
used in isolation. This leads us to a discussion of design and control aspects of
RAHD’s automatic heuristic proof procedure, the so-called “waterfall.”

2.1 RCF Decision-Theoretic “Sweet Spots”

We begin by describing some decision-theoretic “sweet spots” that are combined
and exploited in RAHD.

Full and Fragmentary Open CAD (CAD-MD). In 1993, McCallum
showed how CAD could be heavily modified and made much more efficient if
the semialgebraic set defined by the formula being analysed was known to be
an open set in the Euclidean topology on Rn [14]. This can be guaranteed if the
formula under analysis consists only of strict inequality relations. The basic idea
is that in these cases, rational sample points can be selected from the cells in
the CAD, avoiding the need for costly irrational algebraic number computations
that are in general required during normal CAD operation.

This more feasible fragment of CAD is used heavily in RAHD, and as will
be discussed in Section 2.3, RAHD’s design is centered around breaking difficult
problems into simpler ones that are in a precise sense closer to being able to make
use of this “sweet spot.” When RAHD encounters a problem that it can see falls
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into this fragment, Brown’s QEPCAD-B is used in a special mode4 designed for
making decisions about the emptiness of open sets.

Gröbner bases. Though one usually associates Gröbner basis calculations with
decisions over algebraically closed fields, much use can be made out of them for
existential RCF decisions. The reason is two-fold: First, if it can be shown that
a collection of equational constraints in a formula being analysed is unsatisfiable
over Cn, then this collection is of course unsatisfiable over Rn. Even if one is
not so lucky, all term reductions induced by the equational constraints when
interpreted over Cn are still valid over Rn, and so one can make use of Gröbner
basis calculations to simplify polynomials in the midst of RCF decisions. In
practice, these reductions are often a tremendous boon, leading to simplified
terms that are then more amenable to subsequently invoked decision methods.
As will be seen in Section 2.2, RAHD also exploits Gröbner basis calculations for
a number of other techniques centered around reducing a problem’s dimension,
and these techniques can derive new equations which then further enhance the
reduction power of the Gröbner bases for the problem. RAHD uses a caching
mechanism for sharing already computed Gröbner bases and term reductions
among these different system components. RAHD has its own implementation
of algorithms for computing with ideals that tend to work well for non-linear
problems in six or less variables. When a non-linear problem is handed to RAHD
in greater than six variables, RAHD will attempt to use the CoCoA computer
algebra system for its ideal computations if it is available.

Simple Positivstellensatz certificates. Recent work exploiting Stengle’s
Weak Positivstellensatz, an RCF analogue of Hilbert’s Nullstellensatz for al-
gebraically closed fields, has led to a number of computational advances for the
fundamental decision problem, and a simplified form of this result is currently
used in RAHD.

Theorem 1 (Stengle’s Weak Positivstellensatz). Given pi(x), qi(x), si(x)
∈ R[x] = R[x1, . . . , xn], the conjunctive constraint system

ϕ =

⎛
⎝ p1(x) = 0 ∧ . . . ∧ pk(x) = 0

∧ q1(x) ≥ 0 ∧ . . . ∧ ql(x) ≥ 0
∧ s1(x) > 0 ∧ . . . ∧ sm(x) > 0

⎞
⎠

is unsatisfiable over Rn iff

∃P(x) ∈ Ideal(p1, . . . , pk)
∃Q(x) ∈ Cone(q1, . . . , ql)
∃R(x) ∈ Mon(s1, . . . , sm)

s.t. P + Q + R2 = −1

4 To use this mode, one replaces all existential quantifiers in the constraint in question
with special “exists infinitely many” quantifiers which are equivalent over open sets
and cause many irrational algebraic number calculations to be avoided.
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where

Ideal(p1, . . . , pk) =

{
k∑

i=1

piqi | qi ∈ R[x]

}
,

Cone(q1, . . . , ql) =

{
r +

v∑
i=1

tiui | r, ti ∈
∑

(R[x])2, ui ∈ Mon(q1, . . . , qv) | v ∈ N

}
,

Mon(s1, . . . , sm) =

{
m∏

i=1

(si)j | j ∈ N

}
,

∑
(R[x])2 =

{
v∑

i=1

(pi)2 | pi ∈ R[x] | v ∈ N

}
.

Given such an unsatisfiable ϕ, the equation P +Q+R2 = −1 is called a Pos-
itivstellensatz (Psatz) certificate for ϕ’s unsatisfiability. It is the finding of such
certificates that has seen impressive modern advances: Building upon the work
of Choi, Lam, Powers, Reznick, and Wörmann, Parrilo developed in his 2000
dissertation a feasible method for finding Psatz certificates, by translating the
search for them into a convex optimization (semidefinite programming) problem
that is in principle amenable to polynomial-time interior point methods. The
complexity-theoretic difficulty lies in the fact that each polynomial-time solv-
able optimization problem only searches for a Psatz certificate up to a set mul-
tivariate total degree, and the known bounds on such degrees are at least triply
exponential in ϕ. Still, many difficult problems are routinely solved by Psatz
methods. In our experience, however, it is rare5 to find a ϕ feasibly solvable by
Psatz methods and not by CAD, and so we currently use only a very simplified
restriction of Psatz methods in RAHD that does no convex optimization but is
nevertheless useful for many practical problems.

The family of simple Positivstellensatz witnesses RAHD considers are those
which contain constraints of the following form:

(p = 0) s.t. RC(p) > 0 ∧ p ∈

⎧⎨
⎩

k∑
j=1

m2 | m=
n∏

j=1

cjx
α(j)
j | cj ∈ Q, α(j), k ∈ N

⎫⎬
⎭

where p ∈ Q[x] and RC(p) is the degree-zero rational coefficient of p. RAHD also
looks for related Psatz certificates when p is constrainted via a strict inequality.
Such certificates can be found simply by examining the degree parity of the
monomials arising in p after polynomial canonicalization, which is a polynomial-
time process all terms in RAHD undergo before Gröbner basis calculations.
5 For those interested in foundational theorem proving, however, Psatz methods do

have a clear advantage over CAD: The fact that Psatz certificates are simple algebraic
identities guarantees that if found, they can be verified and translated into founda-
tional proof objects easily. Harrison has made use of this fact for his REAL SOS
tactic in HOL Light [11].
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Sturm chains for univariate constraints. Sturm’s theorem prescribes a
method for counting the number of real roots of a univariate polynomial p in
a half-open interval through the analysis of the number of sign changes (SC)
in the so-called Sturm chain induced by p and the interval in question. Despite
the fact that Sturm chains have well-known pathological numerical properties,
we have found them to be useful in RAHD on many practical problems. The
family of formulas amenable to Sturm chain analysis in RAHD are those which
contain constraints of the form [(p > 0) ∧ (x > q1) ∧ (x < q2)] s.t. p( q2−q1

2 ) ≤
0, #SC(p, (q1, q2)) = 0, and q1 < q2 with p ∈ Q[x].

2.2 Dimensional Reduction Techniques

As the time complexities of many algebraic decision methods applicable to RCF
formulas are at least exponential in dimension, methods for reducing the dimen-
sion of a formula under analysis (e.g. the elimination of variables) are crucial
to the feasible solubility of high-dimensional problems. This process is a cen-
tral component of RAHD’s automatic waterfall procedure, which spawns lower-
dimensional equisatisfiable subgoals and calls itself recursively upon them when
the dimension of a constraint under analysis has been reduced. Because of this
subgoaling process, dimensional reductions in RAHD are allowed to eliminate a
variable in terms of any finite number of lower-dimensional values, with each
such value inducing a separate subgoal to be checked for satisfiability. For ex-
ample, the transformation

(
x4 − 16 = 0 ∧ P(x, y, z)

)
→ (P(2, y, z) ∨ P(−2, y, z))

is a valid6 dimensional reduction for an RCF predicate P from R3 to R2.

Approximating real radical ideals. Over C, the correspondence between
ideals and varieties is elucidated by Hilbert’s Strong Nullstellensatz.

Theorem 2 (Hilbert’s Strong Nullstellensatz)

IC[x](VC(IC[x](p1, . . . , pk))) =
√

IC[x](p1, . . . , pk)

=
{

p ∈ C[x] | ∃i ∈ N s.t. pi ∈ IC[x](p1, . . . , pk)
}

.

That is, given pi, q ∈ C[x] the decision problem for universal Horn formu-
las over C can be reduced to an ideal membership check for radical ideals as
follows:
6 It is interesting to note that while this reduction is valid over R, it is not valid

over C: Consider the non-trivial quartic roots of unity e±
πi
2 . Thus, this reduction

would not be computed from any Gröbner basis for
√I(x4 − 16). This motivates

the need for computations over real radical ideals, so that such reductions can be
deduced.
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〈C, +, −, ∗, 0, 1〉 |=
(

k∧
i=1

pi = 0

)
=⇒ q = 0

⇐⇒

q ∈
√

IC[x](p1, . . . , pk)

which can then be effectively solved using Buchberger’s algorithm. Modulo ideal
membership checking, the important step here is the construction, from a set of
generators for an ideal I over C[x], to a set of generators for the radical ideal
containing I. This is a classically studied problem in algebraic geometry and
most modern computer algebra systems provide efficient algorithms for complex
ideal radicalization [13].

Over R, however, things are not so simple. The algebraic structure analogous
to a radical ideal for real algebraic varieties, the so-called real radical ideal,
has to take into account the order structure of R by incorporating polynomial
summands that are sums of squares. That is, letting I = IR[x](p1, . . . , pk),

IR[x](VR(I)) = R
√

I =
{

p ∈ R[x] | p2i + s ∈ I | s ∈
∑

(R[x])2, i ∈ N

}
.

Known methods for transforming an ideal into its real radical are computa-
tionally infeasible for non-trivial problems, so we seek a method in RAHD that
approximates real radicalization to obtain some practically useful membership
decisions in an efficient way. The following is an example inference rule that
captures some of this desired behavior:

(p1 = 0), . . . , (pk = 0) ∈ C ∃m ∈ N s.t. (x2m − q) ∈ I(p1, . . . , pk) 2m
√

q ∈ Q

C |= (x = 2m
√

q ∨ x = − 2m
√

q)

where C is a conjunctive RCF constraint. Note that the q above need not be
guessed, as if the antecedent holds, one can obtain q by reducing x2m modulo
GB(p1, . . . , pk). This reduction process can be done incrementally for heuristi-
cally selected terms in a formula, with m ranging from 1 to some degree bound
computed as a function of the generators of GB(p1, . . . , pk). Indeed, many im-
portant dimensional reductions in RAHD are accomplished in this way.

Reverse Rabinoswitch encodings. Over R, the following equivalences hold:

pq = 0 ⇐⇒ (p = 0 ∨ q = 0) (1)
k∑

i=1

p2
i = 0 ⇐⇒

k∧
i=1

pi = 0. (2)

Equivalence (1) can be used to reduce a constraint ϕ to an equisatisfiable
disjunction ϕ1 ∨ ϕ2 s.t. (i) dim(ϕi) < dim(ϕ) in the special case that pq is a
monomial, or (ii) each ϕi has additional polynomial vanishing assumptions (and
hence Gröbner bases with enhanced reduction power) in the general case. Equiv-
alence (2) can be used to reduce a constraint ϕ to an equisatisfiable constraint
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ϕ′ which contains new, simpler equations which enrich the equational structure
of ϕ and increase the reduction power of the Gröbner bases it induces. It is
interesting to note that the integral domain property (1) is valid over C, while
(2) is valid only over R. As in the restricted version of the Psatz used by RAHD,
instances of (2) are recognized only for sums of squares of monomials.

Gröbner bases induced solving for variables and interval techniques.
RAHD contains a number of additional techniques that use Gröbner bases and
term orderings to solve for variables by orienting equations, constructing elim-
ination ideals, and dividing equations through by polynomials that RAHD can
prove, via spawned subgoals, to be non-vanishing under constraint hypotheses.
RAHD also has a number of simple interval arithmetic reasoning mechanisms
that work together with Gröbner basis reductions. This is because interval-based
inconsistencies in formulas are often easier to recognize when the polynomials
appearing in formula inequalities have been canonicalized through Gröbner basis
reductions.

2.3 Proof Strategy

Preprocessing of goals into goal-sets. RAHD sessions begin with the in-
stallation of a goal. In RAHD, a goal can be any quantifier-free formula in the
language of ordered fields. All variables in RAHD goals are implicitly existen-
tially quantified. We consider that a goal G in n variables has been “proved” if it
has been shown to be unsatisfiable over Rn. Equivalently, the semialgebraic set
defined by G (e.g., the set S = {x ∈ Rn | 〈R, +, −, ∗, <, 0, 1〉 |= G(x)}) is empty.
Mathematically, the theorem proved is the universal dual of the existential goal
being analysed. If in the process of trying to prove unsatisfiability of a goal RAHD
instead finds it to be satisfiable, then this is reported as a counter-example to
the conjecture installed as the current goal.

Once a goal is installed, its satisfiability cannot be decided until it has been
pre-processed into a goal-set, GS. A goal-set for a goal is an equivalent formula
in disjunctive normal form (DNF). We consider the DNF formula as set of cases,
each case being one of the conjunctions of literals. This pre-processing a goal
into a goal-set also involves some normalisation transformations. For example, all
occurrences of division are eliminated, each non-strict inequality is transformed
into an equivalent disjunction consisting of an equation and a strict inequality,
and each disequality is transformed into an equivalent disjunction of two strict
inequalities. The result is that every literal in a goal-set is either an equality or
a strict inequality, and every arithmetic expression is a polynomial. The next
paragraph explains why we do this pre-processing.

Recall two important “sweet spots” mentioned previously: First, CAD can
be made much more efficient if the semialgebraic set defined by the formula
being analysed is known to be an open set. This openness can be guaranteed if
the relation symbols in the formula being analysed are only strict inequalities.
Second, terms appearing in formulas that contain equational constraints can
be simplified by injecting those terms into the quotient ring induced by the
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ideal generated by the equational constraints. This can be done feasibly using
Gröbner basis calculations. By decomposing non-strict inequalities into their
requisite strict inequality and equational cases, we get closer to being able to
exploit both “sweet spots”: one of the two cases of our formula is now closer to
being topologically open and thus suitable for CAD-MD, while the other case
now has a richer equational structure inducing a potentially larger ideal, which
can be exploited by Gröbner basis calculations resulting in more substantial
term reductions7. Moreover, as members of the goal-set are purely conjunctive,
we can exploit the following property (given c ∈ GS):

{l1, . . . , lk} ⊆ c ∧ {x ∈ Rn | 〈R, +, −, ∗, <, 0, 1〉 |=
∧k

i=1 li(x)} = ∅
{x ∈ Rn | 〈R, +, −, ∗, <, 0, 1〉 |= c(x)} = ∅ .

That is, to prove the unsatisfiability of some case c ∈ GS, it suffices to prove
the unsatisfiability of any subset of c. Considering this fact in conjunction
with the aforementioned “sweet spots,” we see now another way this strict-
inequational/equational splitting can help us use the more feasible open frag-
ment of CAD, even on the equational branch of a split non-strict inequality. We
illustrate this by an example.

Example 1. Let ϕ = ((p1 ≤ 0) ∧ ψ) s.t. (WLOG) ψ consists only of conjoined
strict inequalities and equations. Let ϕ be split into ϕ1 = ((p1 < 0) ∧ ψ) and
ϕ2 = ((p1 = 0) ∧ ψ), which will both be checked for satisfiability. Observe that
the ideal generated by the equations in ϕ2, I(ϕ2), is a (possibly non-strict)
superset of the corresponding ideals of ϕ and ϕ1. Now, fix a term ordering and
reduce all polynomials appearing in the strict inequalities in ϕ2 with respect
to GB(I(ϕ2)) to obtain an equisatisfiable formula ϕ′

2. Observe that the strict
inequalities in ϕ′

2 have now been potentially enriched with information contained
in the equations of ϕ2. We can now use the above observation on unsatisfiable
subsets of conjoined constraints and examine the satisfiability of only the strict-
inequational fragment of ϕ′

2. As this fragment is open, we may now use CAD-
MD to decide its satisfiability, and an answer of “UNSAT” would imply the
unsatisfiability of the equational branch of ϕ, ϕ2.

Case manipulation functions. Each of the techniques discussed in Sec. 2.1
and Sec. 2.2 is embodied in one or more case manipulation functions (CMF s). A
CMF operates on a single case, a conjunction of equalities and strict inequalities.
A CMF first checks the structure of the case to see if it is of a form on which
it can make progress. For example, the CMF for applying Full Open CAD first
checks that all literals are strict inequalities. A CMF can have several outcomes.

– It can determine that the case is satisfiable. In this event, the initial goal is
immediately also known to be satisfiable and RAHD terminates.

7 Observe that super-ideals correspond to sub-varieties, and thus increasing an ideal
takes one closer to the empty variety, which is the geometric object corresponding
to an unsatisfiable formula.



132 G.O. Passmore and P.B. Jackson

– It can determine that the case is unsatisfiable
– It can return the case it was applied to unchanged, if its initial structure

check fails, for example.
– It can make progress and return a simplified case, consisting again of a

conjunction of equalities and strict inequalities, that is equisatisfiable with
the case the CMF is applied to.

– It can return some Boolean formula equisatisfiable with the case the CMF
is applied to. In general this formula might contain disjunctions, non-strict
inequalities and division operations.

Sequencing proof steps. The set of cases in a goal-set can be considered
the fringe of a partial proof tree of the initial goal. RAHD makes progress by
applying CMFs to cases in the fringe. Our strategy for applying CMFs is simple
but nevertheless effective.

We arrange our CMFs in a master sequence with the idea that we work on
a case by applying each CMF from the master sequence in turn, so long as the
CMFs return either identical cases or single simplified cases. This application of
CMFs in sequence to a case extends the branch of the proof tree corresponding
to that case. When the application of a CMF finds the case it is applied to
unsatisfiable, the branch of the proof tree is closed or completed. In the event a
general Boolean formula is output by a CMF, we apply the preprocessing step to
generate new normalised cases to work on further. Usually there is more than one
of these cases, so this introduces branching into the proof tree. When working
on these new cases, we start again with the CMF at the beginning of the CMF
sequence.

RAHD terminates either when some CMF finds the case it applied to satisfi-
able, in which case we have a counter-example to the original goal, or all proof
branches are completed, in which case the original goal is proven.

We currently ensure that — at the level of CMFs — RAHD cannot diverge by
requiring that, if a CMF outputs a more general boolean formula and restarts
processing of the master sequence, it must reduce dimension: its output formula
must contain fewer variables than the case it was applied to.

We refer sometimes to this master sequence of CMFs as the RAHD waterfall
by analogy with the organisation of proof strategies in the NQTHM and ACL2
theorem provers.

Ordering of case manipulation functions. We describe here some of the
main elements of our ordering of CMFs in the master sequence. The first principle
of this ordering is that the more expensive CMFs should be postponed until
later in the sequence, giving the less expensive CMFs priority in their attempts
at closing and reducing cases. For instance, one should check if the univariate
fragment of a case is unsatisfiable with the Sturm sequence analysis CMF before
one tries any Open CAD CMF upon the case. The next principle is that given
two CMFs of roughly equivalent expense, they should be ordered such that the
result of one has the chance to inform and improve the result of the other, if
possible. For example, the sums of squares based PD CMF, which will record
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the fact that a polynomial is positive definite if its canonicalization is a sum
of squares of monomials plus a positive rational constant, should be run before
the aforementioned Sturm sequence inequality CMF, as this has the potential
to make more case inconsistencies explicit for the Sturm sequence CMF. The
last principle we will mention is that a given CMF, A, should be included in the
sequence in more than one place if the CMFs executed subsequent to A’s last
execution have a good chance of making the cases that remain more amenable
to A. In this way, the lightest interval analysis CMF appears in the beginning of
the master sequence, then again after Gröbner basis reductions have taken place
as this may make inequality inconsistencies more explicit, and then again after
reductions have taken place through the real radical ideal approximation CMF
for the same reason.

At a very high level, the master sequence goes as follows: light arith. simp. and
interval analysis → sos/positivstellensatz search → sturm chain analysis → full
Open CAD → ideal triviality checking → term canonicalization → GB based
rewriting → light arith. simp. and interval analysis → sos/positivstellensatz
search → fragmentary Open CAD (as described in Example 1) → real radical
ideal approximation → light arith. simp. and interval analysis → reverse rabi-
noswitch encodings → general CAD.

3 Experimental Results

Table 1 shows RAHD’s performance on twenty-four example problems8 and com-
pares this performance to that of QEPCAD-B and two quantifier elimination pro-
cedures available in Reduce/Redlog: Rlqe, which is an enhanced implementation
by Dolzmann and Sturm of Weispfenning’s virtual term substitution (VTS) [21] ,
and Rlcad, which is an implementation by Seidl, Dolzmann and Sturm of Collins-
Hong’s partial CAD [6]. One interesting feature of this Rlqe procedure is that it
performs VTS as long as it can (e.g., as long as the degree restrictions required
for the method are not violated in a way irreparable by Redlog’s simplification
and degree-reduction mechanisms), and then sends the resulting formula to the
Rlcad procedure if VTS alone was not sufficient. This approach is referred to
as fallback quantifier elimination. Experiments were performed on an Intel Xeon
Quad Core 2.8GHz machine with 4GB physical memory.

Table 2 presents a listing of seven of the twenty-four problems considered in
Table 1.

The results of these experiments can be broadly summarized as follows:

– RAHD is able to solve a number of high-dimension, high-degree problems
that QEPCAD-B, Redlog/Rlqe, and Redlog/Rlcad are not.

– Redlog/Rlqe is able to solve a number of high-dimension, high-degree prob-
lems that QEPCAD-B and Redlog/Rlcad are not.

8 A copy of these problems may be obtained from http://homepages.inf.ed.ac.uk/

s0793114/calculemus09/

http://homepages.inf.ed.ac.uk/s0793114/calculemus09/
http://homepages.inf.ed.ac.uk/s0793114/calculemus09/
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Table 1. A comparison of RAHD, QEPCAD-B, Redlog/Rlqe and Redlog/Rlcad

dim deg div |GS| |PT | #p #m simp simp sos strm rad open gen rahd qb rq rc

arith gb ideal cad cad

P0 5 4 N 1024 1024 42 55 1717 0 23 60 0 128 0 16.36 409* 36.6 -

P1 6 4 N 3072 3072 48 60 5371 3 99 156 0 378 0 74.09 -* - -

P2 5 4 N 768 768 40 61 1419 0 0 96 0 99 0 10.54 -* - -

P3 5 4 N 768 768 40 61 2187 0 0 96 0 99 0 10.87 -* - -

P4 5 4 N 768 768 40 61 1448 0 8 88 0 99 0 9.84 -* - -

P5 14 2 N 4 4 64 176 4 4 0 0 0 0 0 .89 -* 427 -

P6 11 5 N 8 14 24 31 124 20 6 0 6 0 2 28.23 -* <.01 <.01

P7 8 2 N 1 1 8 18 1 0 1 0 0 0 0 <.01 .08 <.01 <.01

P8 7 32 N 64 94 30 34 352 152 0 0 30 34 0 182.98 9.72 <.01 -

P9 7 16 N 128 158 34 38 672 264 0 0 30 66 0 26.9 .29 .01 18.5

P10 7 12 N 32768 32795 66 165 78051 998 344 4 54 155 0 62.4 -* - -

P11 6 2 Y 32 32 28 28 14 16 0 0 0 31 1 2.99 .01 .01 .05

P12 5 3 N 16 16 22 23 86 4 0 0 0 2 4 .85 .02 .01 .07

P13 4 10 N 256 256 34 63 503 0 14 6 0 22 0 4.4 -* <.01 <.01

P14 2 2 N 256 259 32 54 889 57 0 30 7 5 10 2.45 .01 - -

P15 4 3 Y 8 8 14 15 8 0 0 0 0 0 8 1.32 .01 .06 .26

P16 4 2 N 128 132 28 44 662 128 17 0 1 39 9 6.11 .02 <.01 <.01

P17 4 2 N 4 6 14 19 34 3 3 0 0 0 1 .4 .28 .02 .61

P18 4 2 N 16 16 18 30 55 16 7 0 5 1 3 1.03 .01 .28 -

P19 3 6 Y 256 256 30 310 1248 0 0 0 0 256 0 24.69 .02 .01 .39

P20 3 4 N 16 16 18 21 77 18 0 0 1 3 5 1.19 .01 <.01 .23

P21 3 2 N 64 64 26 31 179 0 0 12 0 7 0 .6 .02 .04 .27

P22 2 4 N 2 2 8 10 3 1 0 0 0 1 0 .09 .01 <.01 .01

P23 2 2 Y 8 8 12 12 16 0 0 0 0 0 0 <.01 .01 <.01 <.01

Explanation of columns:
High-level problem features: [dim] dimension, [deg] maximal total multivariate degree
of polynomials, [div] problem contains division operator.
Properties of RAHD’s internal translation of the problem: [|GS|] # of cases in the
generated goal-set, [|PT |] # of leaves in constructed proof tree, [#p] # of polynomials,
[#m] # of monomials.
Number of reduction or refutation steps made by RAHDCMFs: [simp arith] light
weight arithmetical simplifiers and interval analysis, [simp GB] Gröbner bases based
rewriting and canonicalization, [sos] sums of squares / real nullstellensatz / posi-
tivstellensatz witness extraction, [strm] sturm chain sign change analysis, [rad ideal]
dimensional reduction by radical ideal approximations, [open CAD] open CAD or
open fragmentary CAD (using QEPCAD-B and ∃∞), [gen CAD] general CAD (using
QEPCAD-B and ∃).
Timing: (in seconds) [RAHD] RAHD , [QB] QEPCAD-B, [RQ] Redlog/Rlqe (fallback
QE), [RC] Redlog/Rlcad (p-CAD)
A mark of (-) in any of the timing columns means the system listed was unable to solve
the problem in 600 seconds. A mark of (*) in the QB column means that QEPCAD-
B’s default resource settings were raised in order to avoid reaching resource limits. For
problems involving division, the Redlog translation flag RLNZDEN was used both for
Rlqe and Rlcad runs as well as for generating the multiplicative translations of the
problems for QEPCAD-B.
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Table 2. Seven of the twenty-four problems considered in Table 1

P0 a2 + ab − 2ac + a + 21b4 − 84b3c + 126b2c2 − 84bc3 + 21c4 + c2 + d2 − 2de + d
+e2 < 0 ∧ e − 1 ≤ 0 ∧ e ≥ 0 ∧ d − 1 ≤ 0 ∧ d ≥ 0 ∧ c − 1 ≤ 0 ∧ c ≥ 0
∧ b − 1 ≤ 0 ∧ b ≥ 0 ∧ a − 1 ≤ 0 ∧ a ≥ 0

P1 a2b + a2 − 2ac2 + 3b2 − 6bc + c4 + 3c2 + d2 − 2de + d + e2 + f + 1 < 0
∧ (f − 2 = 0 ∨ f − 1 = 0 ∨ f = 0) ∧ e − 1 ≤ 0 ∧ e ≥ 0 ∧ d − 1 ≤ 0
∧ d ≥ 0 ∧ c − 1 ≤ 0 ∧ c ≥ 0 ∧ b − 1 ≤ 0 ∧ b ≥ 0 ∧ a − 1 ≤ 0 ∧ a ≥ 0

P5 (y6 �= 0 ∨ x6 �= 0) ∧ x2
6 − 2x6x7 + x2

7 + y2
6 − 2y6y7 + y2

7 − 4 > 0 ∧ x2
5 − 2x5x7

+x2
7 + y2

5 − 2y5y7 + y2
7 − 4 = 0 ∧ x2

5 − 2x5x6 + x2
6 + y2

5 − 2y5y6 + y2
6 − 4 = 0

∧ x2
4 − 2x4x7 + x2

7 + y2
4 − 2y4y7 + y2

7 − 4 = 0 ∧ x2
4 − 2x4x6 + x2

6 + y2
4 − 2y4y6

+y2
6 − 4 = 0 ∧ x2

4 − 2x4x5 + x2
5 + y2

4 − 2y4y5 + y2
5 − 4 = 0 ∧ x2

3 − 2x3x7 + x2
7

+y2
3 − 2y3y7 + y2

7 − 4 = 0 ∧ x2
3 − 2x3x6 + x2

6 + y2
3 − 2y3y6 + y2

6 − 4 = 0 ∧ x2
3

−2x3x5 + x2
5 + y2

3 − 2y3y5 + y2
5 − 4 = 0 ∧ x2

3 − 2x3x4 + x2
4 + y2

3 − 2y3y4 + y2
4

−4 = 0 ∧ x2
2 − 2x2x7 + x2

7 + y2
2 − 2y2y7 + y2

7 − 4 = 0 ∧ x2
2 − 2x2x6 + x2

6 + y2
2

−2y2y6 + y2
6 − 4 = 0 ∧ x2

2 − 2x2x5 + x2
5 + y2

2 − 2y2y5 + y2
5 − 4 = 0 ∧ x2

2 − 2x2x4

+x2
4 + y2

2 − 2y2y4 + y2
4 − 4 = 0 ∧ x2

2 − 2x2x3 + x2
3 + y2

2 − 2y2y3 + y2
3 − 4 = 0 ∧

x2
1 − 2x1x7 + x2

7 + y2
1 − 2y1y7 + y2

7 − 4 = 0 ∧ x2
1 − 2x1x6 + x2

6 + y2
1 − 2y1y6 + y2

6

−4 = 0 ∧ x2
1 − 2x1x5 + x2

5 + y2
1 − 2y1y5 + y2

5 − 4 = 0 ∧ x2
1 − 2x1x4 + x2

4 + y2
1

−2y1y4 + y2
4 − 4 = 0 ∧ x2

1 − 2x1x3 + x2
3 + y2

1 − 2y1y3 + y2
3 − 4 = 0 ∧ x2

1 − 2x1x2

+x2
2 + y2

1 − 2y1y2 + y2
2 − 4 = 0 ∧ x2

7 + y2
7 − 4 = 0 ∧ x2

6 + y2
6 − 4 = 0 ∧ x2

5 + y2
5

−4 = 0 ∧ x2
4 + y2

4 − 4 = 0 ∧ x2
3 + y2

3 − 4 = 0 ∧ x2
2 + y2

2 − 4 = 0 ∧ x2
1 + y2

1 − 4
= 0

P6 45dxy − g + 45xy = 0 ∧ g − g1 − g2 − 82 > 0 ∧ w + 1 < 0 ∧ −x + y ≥ 0 ∧ x
−1 ≥ 0 ∧ a = 0 ∧ −a + wz = 0 ∧ x3y2 − z = 0 ∧ −3g2

1g2 + 12g1x3x7 − xy
−11x ≥ 0

P10 (−a + fg + 11f + g2 + 13g + 22 = 0 ∨ a4b2cd3f2 + 2a4b2cd3fg + a4b2cd3g2−
a4b2cdf2 − 2a4b2cdfg − a4b2cdg2 − a4b2d2f2 − 2a4b2d2fg − a4b2d2g2 + a4b2f2+
2a4b2fg + a4b2g2 − 2a3b3c2d2f2 − 4a3b3c2d2fg − 2a3b3c2d2g2 + 2a3b3c2f2+
4a3b3c2fg + 2a3b3c2g2 + 2a3b3d2f2 + 4a3b3d2fg + 2a3b3d2g2 − 2a3b3f2 − 4a3b3fg
−2a3b3g2 + a2b4c3df2 + 2a2b4c3dfg + a2b4c3dg2 − a2b4c2f2 − 2a2b4c2fg − a2b4c2g2

−a2b4cdf2 − 2a2b4cdfg − a2b4cdg2 + a2b4f2 + 2a2b4fg + a2b4g2 − 2a2b2c3df2−
4a2b2c3dfg − 2a2b2c3dg2 + 4a2b2c2d2f2 + 8a2b2c2d2fg + 4a2b2c2d2g2 − 2a2b2c2f2

−4a2b2c2fg − 2a2b2c2g2 − 2a2b2cd3f2 − 4a2b2cd3fg − 2a2b2cd3g2 + 4a2b2cdf2+
8a2b2cdfg + 4a2b2cdg2 − 2a2b2d2f2 − 4a2b2d2fg − 2a2b2d2g2 + a2c3d3f2+
2a2c3d3fg + a2c3d3g2 − a2c2d2f2 − 2a2c2d2fg − a2c2d2g2 − a2cd3f2 − 2a2cd3fg
−a2cd3g2 + a2d2f2 + 2a2d2fg + a2d2g2 − 2abc3d3f2 − 4abc3d3fg − 2abc3d3g2+
2abc3df2 + 4abc3dfg + 2abc3dg2 + 2abcd3f2 + 4abcd3fg + 2abcd3g2 − 2abcdf2−
4abcdfg − 2abcdg2 + b2c3d3f2 + 2b2c3d3fg + b2c3d3g2 − b2c3df2 − 2b2c3dfg−
b2c3dg2 − b2c2d2f2 − 2b2c2d2fg − b2c2d2g2 + b2c2f2 + 2b2c2fg + b2c2g2 < 0) ∧
f2g + 2g5 − g = 0 ∧ f4 − 1 = 0 ∧ e3f3 + g − 2 = 0 ∧ g − 1 ≤ 0 ∧ f − 1 ≤ 0
∧ e − 1 ≤ 0 ∧ d − 1 ≤ 0 ∧ c − 1 ≤ 0 ∧ b − 1 ≤ 0 ∧ a − 1 ≤ 0 ∧ g ≥ 0 ∧

f ≥ 0 ∧ e ≥ 0 ∧ d ≥ 0 ∧ c ≥ 0 ∧ b ≥ 0 ∧ a ≥ 0

P16 c2 + cd − d2 + 1 ≤ 0 ∧ 2a + b − 1 ≥ 0 ∧ a2 + ab − b2 − 1 ≥ 0 ∧ d − 1 ≥ 0 ∧
c ≥ 0 ∧ b ≥ 0 ∧ ad + bc + bd ≤ 0

P19 x �= 1 ∧ y �= 1 ∧ z �= 1 ∧ x2/(x − 1)2 + y2/(y − 1)2 + z2/(z − 1)2 < 1 ∧ xyz = 1
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– Redlog/Rlqe is able to solve a number of problems significantly faster than
RAHD, Redlog/Rlcad, and QEPCAD-B.

– For the problems QEPCAD-B is able to solve, using QEPCAD-B directly
tends to be much faster than using RAHD’s waterfall.

4 Future Work

We see many ways RAHD can be improved. First, based upon the fact that
QEPCAD-B outperforms the RAHD waterfall on many low-dimension, low-
degree problems, we should develop heuristics that use structural features of
a problem to evaluate a priori its suitability for a direct handling by QEPCAD-
B, causing RAHD in those cases to bypass both its inequality splitting pre-
processing and all other CMFs in the waterfall.

Second, as the Redlog/Rlqe procedure solves a number of problems much
faster than all of the others, it seems fruitful to investigate heuristics for incor-
porating Redlog/Rlqe into the RAHD waterfall.

Finally, in terms of RAHD’s inequality splitting and translation of resulting
problems into a (DNF) goal-set, the potential exponential blow-up this causes
will become prohibitive for problems with large boolean structure. There are
many more sophisticated techniques we will need to employ if we wish for RAHD
to be applicable to these types of problems. The infeasibility of normal form con-
versions has motivated huge algorithmic advances in the SAT and SMT com-
munities [8], and it would be very interesting to build a new version of RAHD
that uses DPLL-like [5] case-analysis mechanisms instead of an explicit DNF
conversion.

5 Conclusion

In closing, we have shown that a thoughtfully orchestrated heterogeneous combi-
nation of decision methods for fragments of the existential theory of the reals can
be made to solve problems previously beyond the reach of automatic methods.
In particular, we have shown one way that ideal-theoretic computations and
restricted variants of CAD for topologically open predicates can be fruitfully
combined. It is interesting that while this combination involves an exponential
blow-up in its reliance on a DNF normalisation, for many problems the increase
in complexity caused by this blow-up is overshadowed by the decrease in com-
plexity of the CAD computations this process induces.
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Abstract. In previous work we have developed procedures to analyse,
compute with and reason about abstract matrices, that is, matrices rep-
resented with symbolic dimensions and with a mixture of terms and
ellipsis symbols to describe their structure. A central component in this
are the so-called “support functions”, which enable the representation
of abstract matrices in closed forms. A key issue in making reasoning
about such structures effective is controlling the complexity of the inter-
nal term structure of the closed form, which, in turn, hinges critically on
the design of the support functions used.

Our earlier support functions were simple, easy to work with and suf-
ficient to capture arithmetic of general partitioned matrices fully. They
explicitly represent each potential homogeneous region, usually a trian-
gle or a rectangle, of an abstract matrix with a single term. However,
adding or multiplying a sequence of matrices can result in exponentially
many different cases of possible regions that have to be represented, and
the existence of many of these is mutually exclusive. As this represen-
tation can become unwieldy in certain situations, we experiment with a
different type of support function that allows us to represent only one
of the possible cases explicitly, and have all other cases captured by the
representation implicitly.

In this paper we discuss this new support function and develop the
full abstract matrix addition algorithm for this representation. We show
that we indeed obtain much more concise and intuitive closed forms,
retaining the properties necessary for reasoning with abstract matrices
and being able to recover the human readable region structure from the
combination of abstract matrices under addition. This representation
reduces the time and space complexity of performing K abstract matrix
additions from O(NdK) to O(KdNd), for d the number of boundary
directions (1 � d � 4) and N the maximum number of boundaries in
any direction in the argument matrices.

1 Introduction

Through the contributions of many authors over the past few decades, computer
algebra systems have become very effective at computing with values from a va-
riety of mathematical domains. For example, polynomial, linear and differential
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algebra can be performed effectively with coefficients being arbitrary precision
rational numbers, elements of finite fields, algebraic numbers, and so on. Com-
puter algebra systems have had more difficulty working, not with a particular
values from one of these domains, but rather with objects representing sets of
values of particular forms. Simple examples would be to factor x2n − 1 or com-
pute the determinant of the diagonal matrix diag(1, 4, . . . , n2) without specifying
n. We call this working with “symbolic” or “abstract” values. In previous work
we have given algorithms for a number of problems on such symbolic polyno-
mials [8,9,10] and abstract matrices [5,6,7]. The common feature of this work is
that it allows computations that simultaneously treat a number of cases.

In this article we concentrate on the problem of expressing abstract matrix
arithmetic in a manner that allows more effective reasoning about the cases
represented. As before, we consider the problem of arithmetic on structured
symbolic matrices. These matrices will be made up of various regions, where
a region is a closed polygonal area that can be homogeneously evaluated by a
single term. Non-zero regions must be convex. The line segments that compose
the region boundaries define lines that we call boundary lines. We allow the size of
the matrices and the locations of the boundaries between the regions to be given
symbolically, for example, an (h+k)×(n+m) matrix made up of h×n, h×m, k×n
and k × m blocks and defines a horizontal and a vertical boundary line (aside
from the outer boundaries of the matrix). Our goal is to support automated
reasoning and precisely stated algebraic algorithms on abstract matrices of this
sort. We will refer throughout to special cases of block matrices, where the
regions are rectangular submatrices, and banded matrices, where non-zero entries
are confined to a diagonal band, comprising the main diagonal and zero or more
diagonals on either side. We treat elsewhere the separate problem of obtaining
the closed form expressions for each region from forms that express skipped
entries with ellipses.

It would be a natural choice to represent these abstract matrices as having
elements that are piecewise defined functions of the indices. However, matrix
arithmetic quickly leads to an intractable situation. A chain of N arithmetic
operations on matrices with K cases in their piecewise elements requires the
analysis of KN cases, each requiring simplification of boolean expressions to
determine feasibility. Useful progress has been made in the scalar case for this
problem [1], but we find that with matrices another approach is more fruitful.

Instead of representing the cases as logical conditions, we encode them al-
gebraically with “support functions”, in a manner we shall shortly make more
precise. We are then able to handle multiple logical cases simultaneously via
algebraic operations. We encounter one problem, however: when doing arith-
metic without knowing how the region boundaries in one matrix relate to the
region boundaries in the other, the generic case becomes overly complicated,
with certain terms becoming mutually exclusive. For example, when adding an
(h1 + k1) × (n1 + m1) to an (h2 + k2) × (n2 + m2) block matrix, the form of the
result must satisfy all possible relative orderings h1 � h2, n1 � n2. Our earlier
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choice of support functions can cope with this issue, and, indeed, we have pre-
viously presented full abstract matrix addition and multiplication algorithms in
this context, but at a cost of a high complexity in the number of terms in the
result as a function of the number of terms in the abstract matrix operands.
In this paper we explore using another class of support functions that allow the
generic case to be written more more concisely (with asymptotically fewer terms)
and with consequent advantages for space and time efficiency, and we present
the solution for the addition case.

2 Motivation

Before developing the full support function we are aiming for, we motivate
its need considering a simpler, interval based support function. While it is
slightly different to the support function we have employed to define a full ab-
stract matrix addition and multiplication algorithms in [7], it exhibits similar
problems.

Definition 1. Let x, y, z ∈ N then we define the support function ξ̂(x, y, z) as

ξ̂(x, y, z) =

{
1 if y � x < z

0 otherwise

Thus ξ̂ acts as a characteristic function for a particular interval. We shall use
ξ̂x,y,z as a more compact notation for ξ̂(x, y, z).

Now consider the following two abstract vectors

u = [a1, . . . , ah−1, bh . . . bn−1] v = [c1, . . . , ck−1, dk . . . dn−1] (1)

Using our ξ̂ functions, the elements of these vectors, uj , vj , for j ∈ {1..n − 1}
can be written:

uj = ξ̂j,1,h aj + ξ̂j,h,n bj vj = ξ̂j,1,k cj + ξ̂j,k,n dj (2)

Observe that j is here used as the horizontal index. Throughout this paper we
will reserve i, j as vertical and horizontal index variables.

For simplicity, we will drop the indices on the a, b, c and d terms. If we add
these two vectors, we get

(u + v)j = ξ̂j,1,h a + ξ̂j,h,n b + ξ̂j,1,k c + ξ̂j,k,n d (3)

However, the four terms in these expressions define overlapping regions in the
resultant vector, so we cannot easily visualise the shape of the regions in the
result. To fix this, we need to identify the set of disjoint regions in the result,
and calculate the term that is valid with each of these regions. We will do this in
a slightly long-winded way in order to motivate the algorithms to follow. To find
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these disjoint regions we construct the characteristic functions of all intersec-
tions of regions from the original vectors. This can be done by multiplying the
ξ̂ components of each term from u with that of each term from v. Since the
two regions from u are disjoint, as are the two regions from v, we do not have
to worry about intersections between the a and b regions or between c and d
regions and we are left with 4 regions, each of which we can describe with ξ̂
functions:

a ∩ c region: ξ̂j,1,h ξ̂j,1,k = ξ̂j,1,min(h,k) b ∩ c region: ξ̂j,h,n ξ̂j,1,k = ξ̂j,h,k

a ∩ d region: ξ̂j,1,h ξ̂j,k,n = ξ̂j,k,h b ∩ d region: ξ̂j,h,n ξ̂j,k,n = ξ̂j,max(h,k),n

Having identified the disjoint regions, we need to find the terms that will be
valid within each region. We can do this by multiplying each region charac-
teristic function by the full term for the sum of u and v and simplifying. The
characteristic functions will ensure that any component that does not belong
with the requisite region will simplify to zero. We show the working in detail for
the a ∩ c region:

ξ̂j,1,min(h,k) (u + v)j = ξ̂j,1,min(h,k)

(
ξ̂j,1,h a + ξ̂j,h,n b + ξ̂j,1,k c + ξ̂j,k,n d

)
= ξ̂j,1,min(h,k) ξ̂j,1,h a + ξ̂j,1,min(h,k) ξ̂j,h,n b+

ξ̂j,1,min(h,k) ξ̂j,1,k c + ξ̂j,1,min(h,k) ξ̂j,k,n d

= ξ̂j,1,min(h,k) a + ξ̂j,1,min(h,k) c

= ξ̂j,1,min(h,k) (a + c)

Working out the terms for the other regions and adding, we get:

(u + v)j = ξ̂j,1,min(h,k)(a + c) + ξ̂j,k,h(a + d) + ξ̂j,h,k(b + c) + ξ̂j,max(h,k),n(b + d) (4)

Thus our expression contains four terms, apparently describing four disjoint
regions. However, the two middle terms are mutually exclusive. In any concrete
case, either h < k, h = k or h < k. Depending on which case holds, one or both
of the middle terms will reduce to 0. Thus we have a representation that, while
correct, explicitly represents every region that can occur in any case obtainable
by varying the ordering of the matrix parameters (in this case, h and k).

We can generalise this analysis. If, instead of two vectors with two regions
each, we were to add K matrices with N regions each with all the boundaries
parallel, we would arrive at a result with NK terms describing potential regions.
This is worse than just leaving the original sum with KN terms symbolic. Note
that for any particular choice of region boundaries there will be at most K(N−1)
regions in the resulting sum. We next describe a choice of support functions
that allow the resulting generic expression to have exactly this many terms. If
we were to add K block matrices with N × M regions, using the first choice
of support functions would give a result with (N × M)K describing potential
regions.



142 A.P. Sexton, V. Sorge, and S.M. Watt

3 Definitions

At this point we can introduce the full ξ functions. The idea behind them is
that, for the most part, they act like the ξ̂ interval characteristic functions, but
that they let us commit to a single case, i.e., a single ordering of the unknowns
in the matrix expression, and, if that ordering is wrong, the negative part of the
ξ function will compensate so that the correct result is obtained. In particular,
the result will contain one term for each region that occurs in that single case,
and hence shows directly the structure of the result for that case. However, if
we wish to investigate a different case, we can apply a reordering of the matrix
parameters, normalise the expression with respect to this new reordering, and
then have our expression directly represent this new case.

Definition 2. Let x, y, z ∈ N then we define the support function ξ(x, y, z) as

ξ(x, y, z) =

⎧⎪⎨
⎪⎩

1 if y � x < z

−1 if z � x < y

0 otherwise

We will again use ξx,y,z as compact notation. The following properties follow
immediately from the definition:

ξu,x,x = 0 (5)
ξu,x,y = −ξu,y,x (6)

ξu,x,y + ξu,y,z = ξu,x,z (7)

In this paper, we will restrict our use of ξ support functions to a particular class
thereof; namely that of parallel ξ support functions:

Definition 3. A parallel ξ support function is a ξX,Y,Z function where X is an
integer expression restricted to one of the forms i, j, i + j or i − j for respective
matrix row and column index variables i and j, and where Y and Z are integer
expressions that do not contain any matrix index variables.

We observe that ξ itself is not a characteristic function, as it can lead to negative
values for the interval it represents. We therefore define a characteristic function
based on ξ using its absolute value.

Definition 4. Let x, y, z ∈ N. The characteristic function of ξx,y,z is |ξx,y,z|.

In general, a ξx,y,z function defines both an interval, ξ̂x,min(y,z),max(y,z) or |ξx,y,z|,
and a contribution factor, namely +1 or −1, depending on the strict ordering
of y and z. We follow a similar procedure to that above, but start by already
committing to an ordering, let us say 1 < h < k < n. In fact, we are not changing
the meaning of the expression, merely normalising it with respect to a particular
ordering of the parameters. Now we get 3 regions as the fourth simplifies to 0:

a ∩ c region: |ξj,1,h| |ξj,1,k| = |ξj,1,h| b ∩ c region: |ξj,h,n| |ξj,1,k| = |ξj,h,k|
a ∩ d region: |ξj,1,h| |ξj,k,n| = 0 b ∩ d region: |ξj,h,n| |ξj,k,n| = |ξj,k,n|
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Now multiply these in to the full ξ version of the resultant vector. We again
show the working in detail for the a ∩ c region, bearing in mind our choice of
ordering of 1 < h < k < n:

|ξj,1,h| (u + v)j = |ξj,1,h| (ξj,1,h a + ξj,h,n b + ξj,1,k c + ξj,k,n d)
= |ξj,1,h| ξj,1,h a + |ξj,1,h| ξj,h,n b + |ξj,1,h| ξj,1,k c + |ξj,1,h| ξj,k,n d

= ξj,1,h a + ξj,1,h c

= ξj,1,h (a + c)

Doing the same for the other two regions and adding the three terms we get a
final result of:

(u + v)j = ξj,1,h (a + c) + ξj,h,k (b + c) + ξj,k,n (b + d) (8)

Now suppose our choice of ordering was incorrect and, in fact, k < h. We can
show that Equation (8) is still correct by rearranging it with judicious applica-
tions of (6) and (7):

(u + v)j = ξj,1,h (a + c) + ξj,h,k (b + c) + ξj,k,n (b + d)
= (ξj,1,k + ξj,k,h) (a + c) − ξj,k,h (b + c) + (ξj,k,h + ξj,h,n) (b + d)
= ξj,1,k (a + c) + ξj,k,h ((a + c) − (b + c) + (b + d)) + ξj,h,n (b + d)
= ξj,1,k (a + c) + ξj,k,h (a + d) + ξj,h,n (b + d)

This final result is precisely the form that we would get if we had started with
the assumption that k < h.

With this choice of support functions, our previous example of adding K
matrices with N regions each and all boundaries parallel would give a result
with K(N − 1) + 1 regions, corresponding to any arbitrary choice of relative
order of the region boundaries among the arguments. Each region would have
a sum of K elements, one from each matrix. So the total size of the generic
element expression would be K

(
K(N − 1) + 1

)
. If each of the matrices had L

elements, the cost to compute a specialisation of this abstract sum would be
O(LK2N). This compares to a cost of O(LK) if the specialisation is known in
advance. If the specialisation were not known in advance, and the sum were not
reorganised to represent a generic case, then the cost to compute a specialisation
would be LKN . So the cost to present the generic form of the result is a factor
of K. If we were to add K block matrices, each with N ×M regions, using the ξ
support functions would give

(
K(N −1)+1

)(
K(M −1)+1

)
regions each with K

terms.

4 Describing Regions

We need some tools to describe the spatial extent of regions and their comple-
ments. For brevity, we will henceforth refer to the characteristic function of a
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1 Y Z N 1 Y Z N

(a) |ξj,Y,Z | (b) |ξj,Y,Z | = |ξi,1,Mξj,1,N (ξj,1,Y + ξj,Z,N )|

Fig. 1. ξ complement example

region or of the complement of a region simply as the region or the complement
of the region.

We need the following equations to be satisfied by the complement A of a
region A: (i) A A = 0 (ii) A = A.

The complement of the region described by a single ξ expression will be the
absolute value of the sum of the two ξ expressions that describe the spatial
extent of the entire matrix minus the region described by the ξ (c.f. Fig. 1):

Definition 5. The characteristic function of the complement |ξX,Y,Z | of the re-
gion described by a parallel ξ support function with respect to an abstract matrix
of dimension (M − 1) × (N − 1) is defined to be:

ξX,Y,Z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|ξi,1,M ξj,1,N (ξi,1,Y + ξi,Z,M )| if X has the form i

|ξi,1,M ξj,1,N (ξj,1,Y + ξj,Z,N )| if X has the form j

|ξi,1,M ξj,1,N (ξi+j,1,Y + ξi+j,Z,M+N−1)| if X has the form i + j

|ξi,1,M ξj,1,N (ξi−j,2−N,Y + ξi−j,Z,M−2)| if X has the form i − j

(9)

We can now define the complement of a region described by the product of ξ
support functions as follows:

Definition 6. Let Ξ = ξ1ξ2 . . . ξn, where each ξi is a parallel ξ support function
of the form ξXi,Yi,Zi . The complement of |Ξ|, |Ξ|, is defined to be:

|Ξ| = |ξ1| +
∣∣∣ξ1|ξ2|

∣∣∣+
∣∣∣ξ1ξ2|ξ3|

∣∣∣+ · · · +
∣∣∣ξ1 . . . ξn−1|ξn|

∣∣∣ (10)

Further expressions for complements can be found using elementary set theory:
e.g., for sets A, B, A ∪ B = A ∩ B, hence |ξ1| + |ξ2| =

(
|ξ1|

) (
|ξ2|

)
, etc.
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5 Abstract Matrix Addition

We now present a worked example considering the following abstract matrices:

A :=

⎡
⎢⎢⎢⎣

a . . . a
... . .

.

a
0

⎤
⎥⎥⎥⎦ B :=

⎡
⎢⎢⎢⎢⎣

b . . . b c . . . c
...

...
...

...
...

...
...

...
b . . . b c . . . c

⎤
⎥⎥⎥⎥⎦

A = ξi,1,p ξj,1,p ξi+j,2,p+1 a B = ξi,1,n ξj,1,q b + ξi,1,n ξj,q,n c

Here both matrices are of dimension n − 1 × n − 1, the a triangle ellipses are of
length p−1, i.e., columns and rows 1 . . . p−1, the b rectangle fills columns 1 . . . q−1
and all rows and the c rectangle fills columns q . . . n − 1 and all rows. All the −1
terms in these dimensions are just to make the ξ function subscripts simpler.

When we evaluate A + B, we can get a number of different cases. For any
non-trivial matrix we always have that 1 < n. However, we can consider p to be
anywhere in the range 1..2n − 1 and q in the range 1..n. In the extreme cases,
p = 1, p = 2n − 1, q = 1 or q = n, one or more of the regions disappear. For the
purposes of our example, we will restrict ourselves to two cases: 1 < p < q < n
and 1 < q < p < n, shown in Fig 2.

1 p

p

q

n

n

a + b

cb

(a) 1 < p < q < n

1 p

p

q

n

n

a + b a + c

c

b

(b) 1 < q < p < n

Fig. 2. Example: two of the possible orderings of 1, p, q, n

Writing out the terms for the sum of the matrices, we get

(A + B)i,j = ξi,1,p ξj,1,p ξi+j,2,p+1 a + ξi,1,n ξj,1,q b + ξi,1,n ξj,q,n c (11)

This has three terms, but the terms describe potentially overlapping regions.
To be able to extract the shape of the resulting regions, as shown in Fig. 2,
we need to choose an ordering and normalise the expression with respect to
that ordering. To normalise to this order, we start by identifying every potential
region as the intersection of every region from A with every region from B.
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Note that A has a 0 region, which is not explicitly represented in the expression
for A. To get the characteristic function for this region, we need to find the
characteristic function of the complement of the a region. Since the a region is
|ξi,1,p ξj,1,p ξi+j,2,p+1|, we can calculate its complement as

|ξi,1,p ξj,1,p ξi+j,2,p+1| = |ξi,1,p| +
∣∣∣ξi,1,p |ξj,1,p|

∣∣∣ +
∣∣∣ξi,1,p ξj,1,p |ξi+j,2,p+1|

∣∣∣
= |ξi,1,n ξj,1,n (ξi,1,1 + ξi,p,n)| +

∣∣∣ξi,1,p |ξj,1,p|
∣∣∣ +

∣∣∣ξi,1,p ξj,1,p |ξi+j,2,p+1|
∣∣∣

= |ξi,p,n ξj,1,n| +
∣∣∣ξi,1,p |ξj,1,p|

∣∣∣ + ∣∣∣ξi,1,p ξj,1,p |ξi+j,2,p+1|
∣∣∣

= |ξi,p,n ξj,1,n| + |ξi,1,p |ξi,1,n ξj,1,n (ξj,1,1 + ξj,p,n)|| +
∣∣∣ξi,1,p ξj,1,p |ξi+j,2,p+1|

∣∣∣
= |ξi,p,n ξj,1,n| + |ξi,1,p ξj,p,n| +

∣∣∣ξi,1,p ξj,1,p |ξi+j,2,p+1|
∣∣∣

= |ξi,p,n ξj,1,n| + |ξi,1,p ξj,p,n| + |ξi,1,p ξj,1,p |ξi,1,n ξj,1,n(ξi+j,2,2 + ξi+j,p+1,2n−1)||
= |ξi,p,n ξj,1,n| + |ξi,1,p ξj,p,n| + |ξi,1,p ξj,1,p ξi+j,p+1,2n−1| (12)

= |ξi,1,n ξj,1,n ξi+j,p+1,2n−1| (13)

The step from (12) to (13) is valid, but obscure. Consider the middle summand:
ξi,1,p ξj,p,n. We can multiply this by ξi+j,p+1,2n−1 without changing its value for
any i, j in the range of the matrix, as it already implies that 1 + p � i + j <
min(p + n, 2n − 1) � 2n − 1. If we do that multiplication, we can then combine
it with the final summand to replace both with ξi,1,p ξj,1,n ξi+j,p+1,2n−1. We can
similarly fold in the first summand to get the required result.

Note that (12) shows that the complement of the a is constructed it as a
sum (union) of three disjoint regions (c.f. Fig. 3). The step to (13) is simply
reconstructing the single region from the three partial ones.

(a) a-region (b) Complement of a-
region

Fig. 3. a region and its complement

Now that we can produce a expression for every region, including 0 regions, in
the component matrices, we can choose an order and normalise to it. We choose
1 < q < p < n. We can construct the disjoint region descriptions of the result
by intersecting each of the two regions of A with each of the two regions of B
and simplifying under the assumption that 1 < q < p < n:
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a ∩ b region: |ξi,1,p ξj,1,p ξi+j,2,p+1 ξi,1,n ξj,1,q| = |ξi,1,p ξj,1,q ξi+j,2,p+1|
a ∩ c region: |ξi,1,p ξj,1,p ξi+j,2,p+1 ξi,1,n ξj,q,n| = |ξi,1,p ξj,q,p ξi+j,q+1,p+1|
a ∩ b region: |ξi,1,n ξj,1,n ξi+j,p+1,2n−1 ξi,1,n ξj,1,q| = |ξi,1,n ξj,1,q ξi+j,p+1,n+q|
a ∩ c region: |ξi,1,n ξj,1,n ξi+j,p+1,2n−1 ξi,1,n ξj,q,n| = |ξi,1,n ξj,q,n ξi+j,p+1,2n−1|

Thus we have now identified that in the case that 1 < q < p < n there are four
disjoint regions. We still have to obtain the full term for each region, but that
is easily done by multiplying each region expression by the full original abstract
expression to get the full projection of the abstract matrix expression onto each
disjoint region. We show the detailed derivation for the a ∩ b region:

|ξi,1,p ξj,1,q ξi+j,2,p+1| (ξi,1,p ξj,1,p ξi+j,2,p+1 a + ξi,1,n ξj,1,q b + ξi,1,n ξj,q,n c)
= ξi,1,p ξj,1,q ξi+j,2,p+1 a + ξi,1,p ξj,1,q ξi+j,2,p+1 b + 0 (14)
= ξi,1,p ξj,1,q ξi+j,2,p+1 (a + b) (15)

The final result is then obtained by adding the terms obtained.

ξi,1,p ξj,1,q ξi+j,2,p+1 (a + b)+
ξi,1,p−q ξj,q,p ξi+j,q+1,p+1 (a + c)+
ξi,1,n ξj,1,q ξi+j,p+1,n+q−1 b+
ξi,1,n ξj,q,n ξi+j,p+1,2n−1 c (16)

Equation (16) clearly corresponds to Fig. (2b). As a final check, we recon-
sider (16) in the alternative case of 1 < p < q < n. We try reversing the order
of p and q and depend upon the reversing properties of the ξ support functions
to retrieve the situation.

Eq. (16) = ξi,1,p ξj,1,q ξi+j,2,p+1 (a + b)+
ξi,1,n ξj,1,q ξi+j,p+1,n+q−1 b + ξi,1,n ξj,q,n ξi+j,p+1,2n−1 c (17)

= ξi,1,p (ξj,1,p + ξj,p,q) ξi+j,2,p+1 (a + b)+
ξi,1,n ξj,1,q ξi+j,p+1,n+q−1 b + ξi,1,n ξj,q,n ξi+j,p+1,2n−1 c (18)

= ξi,1,p ξj,1,p ξi+j,2,p+1 (a + b) + ξi,1,p ξj,p,q ξi+j,2,p+1 (a + b)+
ξi,1,n ξj,1,q ξi+j,p+1,n+q−1 b + ξi,1,n ξj,q,n ξi+j,p+1,2n−1 c (19)

= ξi,1,p ξj,1,p ξi+j,2,p+1 (a + b)+
ξi,1,n ξj,1,q ξi+j,p+1,n+q−1 b + ξi,1,n ξj,q,n ξi+j,p+1,2n−1 c (20)

= ξi,1,p ξj,1,p ξi+j,2,p+1 (a + b)+
ξi,1,n ξj,1,q ξi+j,p+1,n+q−1 b + ξi,1,n ξj,q,n c (21)

The steps involved in this derivation can be explained as follows:

(16) −→ (17): The coefficient of (a + c) is 0 within the matrix if p < q because
p − q is negative and ξi,1,p−q is only non-zero outside the matrix bounds.

(17) −→ (18): use of (7)
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(18) −→ (19): distributing sum
(19) −→ (20): The coefficient of the second (a + b) term is 0 because ξi,1,p ξj,p,q

and p < q implies that i + j is in the range p + 1 . . . p + q, but ξi+j,2,p+1 is
always zero in this range.

(20) −→ (21): ξi,1,n ξj,q,n already limits i + j to the range q + 1 . . . 2n − 1, and
p < q, so the ξi+j,p+1,2n−1 is redundant and can be dropped.

Equation (21) clearly corresponds to Fig. (2a) and so we have been able to
represent the matrix using one term for each region of only one case, but still
capture, with this expression, the information required for the alternative case.

However, it is important to note that this transformation can not be achieved
in all possible cases, only certain representations contain implicitly all possible
shapes of the abstract matrix. For example, if we had chosen the ordering 1 <
p < q < n initially we could have not reached the matrix shape for the ordering
1 < q < p < n. The desired implicit representation needs to have a certain
maximality property with respect to the reachability of all cases for the abstract
matrix. We will define this notion more precisely in the next section.

6 Matrix Addition Algorithm

The primary advantage of our choice of ξ support functions is that they allow
the entire set of possible relative orderings to be represented immediately by one
generic order choice for certain important classes of matrices. If all boundaries
are vertical and horizontal or all boundaries are diagonal or all boundaries are
anti-diagonal, then the form of the generic sum can be written down by picking
an arbitrary relative order of the boundaries of each kind and directly writing
the resulting generic term. In particular, this situation includes the classes of
block matrices and banded matrices as special cases. The class of block matrices
is closed under addition (adding block matrices gives a block matrix, possibly
with smaller blocks) as is the class of banded matrices (with all boundaries along
diagonals with i − j = constant). It is not necessary in these cases to attempt
to merge regions or use region complements. We need the following definitions
before giving the algorithm for this matrix addition:

Definition 7. A generic placement of a boundary in an abstract matrix is one
that intersects all boundary lines to which it is not parallel in the abstract matrix
and does not cause an intersection of three boundaries at one point.

Definition 8. An abstract matrix is in a generic configuration if all its boundary
lines have generic placement.

Algorithm 1 (Special Matrix Addition)
Input:

Two abstract matrices A and B for which one of the following holds
1. both are abstract block matrices
2. both are abstract banded matrices with diagonal region boundaries
3. both are abstract banded matrices with anti-diagonal region boundaries.
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Output:

An abstract matrix of the same form as the two inputs, with an expression
for a generic entry.

Method:

1. Form the sets v(A), h(A), d(A), a(A) containing the expressions for j =
expr, i = expr, i − j = expr i + j = expr defining the region boundaries
in A. Likewise for B. If d(A) or d(B) are non empty, then the other sets
must be empty. If a(A) or a(B) are non empty, then the other sets must be
empty. If any of v(A), v(B), h(A), h(B) are non empty then the diagonal
and anti-diagonal sets will be empty.

2. Impose an arbitrary order on each of these sets (if one has not been imposed
already).

3. Form the sets v(C) = v(A)∪v(B), h(C) = h(A)∪h(B), d(C) = d(A)∪d(B),
and a(C) = a(A) ∪ a(B)
Impose an arbitrary order on the sets v(C), h(C), d(C) and a(C) that
(a) is consistent with the orders on v(X), h(X), d(X) and a(X) for X = A

and X = B

(b) places the resulting abstract matrix in generic configuration.
Let v(C)k, h(C)k, d(C)k and a(C)k denote the k-th element of the corre-
sponding set in the imposed order.
Let v(C)0 = 1, v(C)#v(C)+1 = #cols + 1
Let h(C)0 = 1, v(C)#h(C)+1 = #rows + 1
Let d(C)0 = 1 − #cols, d(C)#d(C)+1 = #rows
Let a(C)0 = 2, a(C)#d(C)+1 = #rows + #cols + 1

4. Form the regions, depending on input cases 1 to 3 respectively,
1: ξi,h(C)h,h(C)h+1 ξj,v(C)k,v(C)k+1 for h = 0..#h(C), k = 0..#v(C),
2: ξi−j,d(C)h,d(C)h+1 for h = 0..#d(C),
3: ξi−j,a(C)h,a(C)h+1 for h = 0..#a(C)

5. Construct the expression. Multiply the ξ term for each region by the corre-
sponding sum of a term from A and a term from B.

Theorem 1. Algorithm 1 gives an expression that correctly evaluates all ele-
ments of A+B under any permitted reordering of the boundaries.

We omit the proof for theorem 1 as it is a lengthy and tedious case analysis.
Instead we now consider the general case.

In order to generalise algorithm 1, we observe that to represent the maximal
number of possible regions in a matrix, we have to choose boundary placements
such that at most two boundary lines intersect at a single point. However, the
generic configuration of an abstract matrix then possibly has intersection points
of two boundary lines outside the boundaries of the matrix. But it is easy to see
that we can always embed a given abstract matrix as a rectangular submatrix
into a larger abstract matrix that contains the intersection points, such that at
most two boundary lines intersect, as summarised in the following two results:
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Lemma 1. Every abstract matrix may be written as a submatrix of an abstract
matrix in generic configuration, possibly after a shift of indices.

Theorem 2. Given two abstract matrices A, B in generic configuration. Then
let (v(A), h(A), d(A), a(A)) and (v(B), h(B), d(B), a(B)) be the correspond-
ing vertical, horizontal, diagonal, and anti-diagonal boundary sets as defined in
algorithm 1. It is then possible to impose orders on the unions of the boundary
sets (v(A)∪v(B), h(A)∪h(B), d(A)∪d(B), a(A)∪a(B)) such that the resulting
boundaries are in generic placement, possibly in a submatrix of a larger matrix.

Again we omit the proofs and now present a method for the addition of general
abstract matrices based on the results. Although we have not discovered any
counterexamples, we have not as yet proven its correctness in all cases.

Algorithm 2 (General Matrix Addition)
Input:

Two abstract matrices A and B in generic configuration.
Output:

An abstract matrix in generic configuration and an expression for the
generic entry.

Method:

1. Form the sets v(A), h(A), d(A), and a(A) containing the expressions for
j = expr, i = expr, i − j = expr i + j = expr defining the region boundaries
in A. Likewise for B.

2. Impose an arbitrary order on each of these sets (if one has not yet been
imposed).

3. Form the sets v(C) = v(A)∪v(B), h(C) = h(A)∪h(B), d(C) = d(A)∪d(B),
and a(C) = a(A) ∪ a(B)
Impose an arbitrary order on the sets v(C), h(C), d(C) and a(C) that
(a) is consistent with the orders on v(X), h(X), d(X) and a(X) for X = A

and X = B

(b) places the resulting abstract matrix in generic configuration.
It may be necessary to embed in a larger matrix to do this.
Let v(C)k, h(C)k, d(C)k and a(C)k denote the k-th element of the corre-
sponding set in the imposed order.
Let v(C)0 = 1, v(C)#v(C)+1 = #cols + 1
Let h(C)0 = 1, v(C)#h(C)+1 = #rows + 1
Let d(C)0 = 1 − #cols, d(C)#d(C)+1 = #rows
Let a(C)0 = 2, a(C)#d(C)+1 = #rows + #cols + 1

4. Form the regions
ξi,h(C)h,h(C)h+1 ξj,v(C)k,v(C)k+1 ξi−j,d(C)l,d(C)l+1 ξi−j,a(C)m,a(C)m+1

for h = 0..#h(C), k = 0..#v(C), l = 0..#d(C), m = 0..#a(C)
Note: if any of the sets are empty, the corresponding ξ factors are 1.

5. Construct the expression.
Multiply the ξ term for each region by the corresponding sum of a term from
A and a term from B.
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7 Block Matrix Example

As a further example of our matrix addition algorithm we consider the problem
of adding two 2 × 2 block matrices An−1×m−1 + Bn−1×m−1:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a . . . a b . . . b
...

...
...

...
a . . . a b . . . b
c . . . c d . . . d
...

...
...

...
c . . . c d . . . d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a′ . . . a′ b′ . . . b′

...
...

...
...

a′ . . . a′ b′ . . . b′

c′ . . . c′ d′ . . . d′

...
...

...
...

c′ . . . c′ d′ . . . d′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

ak×l bk×m−l

cn−k×l dn−k×m−l

]
+
[

a′
k′×l′ b′k′×m−l′

c′n−k′×l′ d′
n−k′×m−l′

]

We get 4 different shapes for the combination of the blocks in the sum matrix:

(a)
[ ]

(b)

⎡
⎣

⎤
⎦ (c)

[ ]
(d)

⎡
⎣

⎤
⎦

which leads to nine different cases, depending on the order of the index variables
k, l, , k′, l′:

(a): k = k′, l = l′

(b): k < k′, l = l′ or k > k′, l = l′

(c): k = k′, l < l′ or k = k′, l > l′

(d): k < k′, l < l′ or k > k′, l < l′ or k < k′, l > l′ or k > k′, l > l′

Observe that we assume that the index variables are strictly within the bound-
aries, i.e., none of the blocks in the original matrices vanish.

After constructing all possible disjoint regions we get the following sum of
region terms:

ξi,1,kξj,1,lξi,1,k′ξj,1,l′(a + a′) + ξi,1,kξj,1,lξi,1,k′ξj,l′,m(a + b′)

+ ξi,1,kξj,1,lξi,k′,nξj,1,l′(a + c′) + ξi,1,kξj,1,lξi,k′,nξj,l′,m(a + d′)

+ ξi,1,kξj,l,mξi,1,k′ξj,1,l′(b + a′) + ξi,1,kξj,l,mξi,1,k′ξj,l′,m(b + b′)

+ ξi,1,kξj,l,mξi,k′,nξj,1,l′(b + c′) + ξi,1,kξj,l,mξi,k′,nξj,l′,m(b + d′)

+ ξi,k,nξj,1,lξi,1,k′ξj,1,l′(c + a′) + ξi,k,nξj,1,lξi,1,k′ξj,l′,m(c + b′)

+ ξi,k,nξj,1,lξi,k′,nξj,1,l′(c + c′) + ξi,k,nξj,1,lξi,k′,nξj,l′,m(c + d′)

+ ξi,k,nξj,l,mξi,1,k′ξj,1,l′(d + a′) + ξi,k,nξj,l,mξi,1,k′ξj,l′,m(d + b′)

+ ξi,k,nξj,l,mξi,k′,nξj,1,l′(d + c′) + ξi,k,nξj,l,mξi,k′,nξj,l′,m(d + d′)

Our algorithm now selects one maximal expression, which is one of the 3 × 3
matrices under case (d), e.g., the first case with order (k < k′, l < l′). This
corresponds to the left matrix below. Observe, that the choice of variable order-
ings is independent for the vertical and horizontal parameters in this particular
case.
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1 < k < k′ < n; 1 < l < l′ < m 1 < k′ < k < n; 1 < l′ < l < m⎡
⎣a + a′ b + a′ b + b′

c + a′ d + a′ d + b′

c + c′ d + c′ d + d′

⎤
⎦

⎡
⎣a + a′ a + b′ b + b′

a + c′ a + d′ b + d′

c + c′ c + d′ d + d′

⎤
⎦

We now observe what happens if we rewrite the expression for the left matrix
above into the right matrix above by changing the variable ordering. Here the
right hand side to the last case in (d), respectively. Firstly, after fixing the order
for the chosen maximal representation we get the following reduced sum of region
expressions.

ξi,1,kξj,1,l(a + a′) + ξi,1,kξj,l,l′(b + a′) + ξi,1,kξj,l′,m(b + b′)

+ ξi,k,k′ξj,1,l(c + a′) + ξi,k′,nξj,1,l(c + c′) + ξi,k,k′ξj,l,l′(d + a′)

+ ξi,k,k′ξj,l′,m(d + b′) + ξi,k′,nξj,l,l′(d + c′) + ξi,k′,nξj,l′,m(d + d′)

After changing the ordering of variables the ξ terms are rewritten using the
algorithm of the previous section, which will introduce sums of ξ terms as well
as negative regions:

(ξi,1,k′ξj,1,l′ + ξi,1,k′ξj,l′,l + ξi,k′,kξj,1,l′ + ξi,k′,kξj,l′,l)(a + a′)

+ (−ξi,1,k′ξj,l′,l − ξi,k′,kξj,l′,l)(b + a′)

+ (ξi,1,k′ξj,l′,l + ξi,1,k′ξj,l,m + ξi,k′,kξj,l′,l + ξi,k′,kξj,l,m)(b + b′)

+ (−ξi,k′,kξj,1,l′ − ξi,k′,kξj,l′,l)(c + a′)

+ (ξi,k′,kξj,1,l′ + ξi,k,nξj,1,l′ + ξi,k′,kξj,l′,l + ξi,k,nξj,l′,l)(c + c′)

+ (ξi,k′,kξj,l′,l)(d + a′)

+ (−ξi,k′,kξj,l′,l − ξi,k′,kξj,l,m)(d + b′)

+ (−ξi,k′,kξj,l′,l − ξi,k,nξj,l′,l)(d + c′)

+ (ξi,k,nξj,l′,l + ξi,k′,kξj,l,m + ξi,k′,kξj,l′,l + ξi,k,nξj,l,m)(d + d′)

Finally subsequent simplification of the above sum yields a new expression
that corresponds indeed to the desired result matrix. Moreover, the result is
again a maximal representation and thus would allow for further transformation
into any one of the 8 other cases.

ξi,1,k′ξj,1,l′ (a + a′) + ξi,1,k′ξj,l′,l (a + b′) + ξi,k′,kξj,1,l′ (a + c′)

+ ξi,k′,kξj,l′,l (a + d′) + ξi,1,k′ξj,l,m (b + b′) + ξi,k′,kξj,l,m (b + d′)

+ ξi,k,nξj,1,l′ (c + c′) + ξi,k,nξj,l′,l (c + d′) + ξi,k,nξj,l,m (d + d′)

8 Conclusion
We have presented an approach to abstract matrix addition, that enables rea-
soning on arithmetic closure properties for classes of structured matrices. The
approach addresses the shortcomings of our previous approach as presented
in [7] that uses half-plane constraints as support functions and that can suffer
combinatorial problems in that all regions of all resulting matrix cases have to
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be represented explicitly. The new approach instead works with a more compact
representation that implicitly contains all possible cases and therefore scales up
better during a sequence of computations.

The work can use our previously developed parsing procedure for abstract ma-
trices that determines their meaning and represents them in terms of the homo-
geneous regions they contain, thereby making them available as templates for
concrete matrices [4]. Our work is related to previous work by Fateman in Mac-
syma [2], in which indefinite matrices can be subjected to some basic algebraic
manipulations. While his matrices are indefinite in size, their elements are fixed
to one particular functional expression and cannot be of arbitrary composition.
The work is also similar in spirit to earlier work by Watt [9,10], which presented
algorithms for GCD, factorisation and functional decomposition of polynomials
with terms of symbolic degree and to work by Knauers and Schneider [3] on in-
definite symbolic summation using unspecified sequences of summands.

While in [7] we have presented a full system for abstract matrix arithmetic,
i.e., addition, multiplication, and their combination, our approach presented in
this paper so far only extends to addition. Since the primary property of ξ relies
on cancellation of region elements when orders of parameters are reversed, a
comparable approach for multiplication would need to involve division by the
region elements. A first approach of lifting ξ expressions to abstract matrix
multiplication has been presented in [6], which had the drawback that abstract
matrix representations for addition and multiplication were incompatible. This
is a problem to be addressed further in the future.
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Abstract. A test in terms of invariants for the existence of a factoriza-
tion of a bivariate, non-hyperbolic third-order Linear Partial Differential
Operator (LPDO) which has a given factorization of its principal symbol
is found. The invariants that are used are with respect to known gauge
transformations, which is together with constructive factorization itself
are essentially involved in modern exact integration algorithms. The in-
variants, and even a generating system of those were found in previous
paper using Moving Frames methods.

In order to find the expressions in terms of invariants that guaran-
tee the existence of a factorization of a certain type, we show that the
operation of taking the formal adjoint can be also defined in terms of in-
variants, that is for equivalence classes of LPDOs, and explicit formulae
defining this operation in the space invariants are obtained. The opera-
tion of formal adjoint is highly interesting for factorization of LPDOs for
if the initial operator has a factorization, its adjoint has also one, and
they are related. (informally, the factorization types are symmetric).

1 Introduction

The factorization of Linear Partial Differential Operators (LPDOs) is an es-
sential part of recent algorithms for the exact solution for Linear Partial Dif-
ferential Equations (LPDEs). Examples of such algorithms include numerous
generalizations and modifications of the 18th-century Laplace Transformations
Method [1,2,3,4,5,6,7,8], the Loewy decomposition method [9,10,11], and others.

Thus a constructive factorization algorithm for a general LPDO is in heavy
need for it will be a part of the exact integration algorithms of LPDEs imple-
mented in a computer algebra system and then perhaps “trusted” by a proof
assistant. In the present paper we suggest a test, or in other words a set of
constrains on invariants of the given LPDO, which if satisfied, guarantee exis-
tence of a factorization of this or another type. We use the invariants, or more
exactly, the generating systems of invariants obtained in [12]. These invariants
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are invariants under the gauge transformations of the operator L, L → Lg =
g(x, y)−1 ◦ L ◦ g(x, y). The transformations are widely used in the mentioned
integration algorithms.

In the present paper we use generating systems of invariants found in [12]. In
addition we give a constructive prove that the generating systems of invariants
obtained there indeed generate all other possible differential invariants, while the
moving frames paper [12] based its results on the theoretical foundation of the
Moving Frames theory [13,14,15,16]. Given two LPDOs L1, L2 that have exactly
the same values of the corresponding invariants of the system of invariants of [12],
we show how to construct g = g(x, y) such that L = Lg = g(x, y)−1 ◦ L ◦ g(x, y).

Or many properties appearing in connection with the factorization of an
LPDO are invariant. Given a generating set of (differential) invariants under
such transformations, these invariant properties can be expressed in terms of
the generating invariants only. Factorization itself is invariant under the gauge
transformations. Indeed, if for some LPDO L, L = L1 ◦ L2, then Lg = Lg

1 ◦ Lg
2.

The highest order terms in the factors of such factorizations are invariant also.
The classical Laplace-Darboux-Transformations Method [17] for hyperbolic

operators of the second order,

L = Dx ◦ Dy + aDx + bDy + c , a = a(x, y) , b = b(x, y) , c = c(x, y) , (1)

is an example of the use of invariants (with respect to the gauge transformations)
to describe certain invariant properties. If L has a factorization, the equation
corresponding to L, L(z) = 0 can be solved in quadratures. If L has no factor-
ization, only two incomplete factorizations of (1) are possible:

L = (Dx + b) ◦ (Dy + a) + h , (2)
= (Dy + a) ◦ (Dx + b) + k , (3)

where h = c − ax − ab and k = c − by − ab. These functions are invariants of
(1) with respect to gauge transformations, and are called the Laplace invariants.
Also it can be proved that two Laplace invariants form together a minimal
generating set of invariants of (1) with respect to the gauge transformations.
Then one can easily define the property of the existence of a factorization (of
certain factorization type) invariantly. The definition of factorization type is
given in Sec. 2. We have that type (X)(Y ), viz. (2), requires h = 0, and type
(Y )(X), viz. (3), requires k = 0.

In Laplace’s case, the generating invariants h and k could be simply obtained
from the incomplete factorizations, and moreover it was easy to derive the in-
variant definition of the property of the existence of a factorization (of certain
factorization type). For hyperbolic operators of higher order, the situation is dras-
tically different: the “remainder” of an incomplete factorization is not invariant
in the generic case; the invariant conditions of the existence of a factorization are
not trivial. The third-order case was first addressed by [18], who found a com-
plete generating set for third-order bivariate hyperbolic operators, and later [19]
found, for the same operators, invariant necessary and sufficient conditions for
factorizations extending given factorizations of the operator’s principal symbol.
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In the present paper we study the problem of (constructive) factorization of
non-hyperbolic LPDOs, which is very rarely a subject of investigations. The main
difficulty lies in the non-uniqueness of factorizations of such LPDOs. This is in
contrast to other situations. For example, given two irreducible factorizations of a
Linear Ordinary Differential Operator, they have the same number of factors and
the factors are pairwise “similar” in some transposed order [20]; for a hyperbolic
LPDO, the factorization is determined uniquely by a factorization of the oper-
ator’s (principal) symbol [9]. This is contrasted by the case of non-hyperbolic,
non-ordinary LPDOs, for which there is an interesting example given by Landau
[21]: the operator L = D3

x + xD2
xDy + 2D2

x + (2x + 2)DxDy + Dx + (2 + x)Dy

has two factorizations into different numbers of irreducible factors:

L = Q ◦ Q ◦ P = R ◦ Q ,

for the operators P = Dx+xDy, Q = Dx +1, R = Dxx +xDxy +Dx +(2+x)Dy.
Parametric factorizations can appear, and their structure for LPDOs of orders
2, 3, 4 has been described in [22]. No invariants of non-hyperbolic LPDOs of
orders higher than two were been known before the recent work [12], where
methods of regularized moving frames have been applied to describe a way to
obtain generating sets of invariants for hyperbolic and non-hyperbolic LPDOs
of arbitrary orders and also for pairs of operators.

The present paper uses the results above to describe the property of the
existence of a factorization of all possible factorization types for the equivalence
classes of third-order bivariate non-hyperbolic LPDOs, or in other words in terms
of invariants. Since the coefficients of LPDOs cannot be expressed in terms of
invariants (since the coefficients are not invariants), then the constraints on the
invariants that guarantee the existence of a factorization of some factorization
type cannot be obtained trivially.

Also as it was already noticed in [9], the problem of factorizations of even
hyperbolic operators can be solved algebraically up to solution of a Ricatti equa-
tion. Here some of the results have similar requirements.

Also in the scope of the paper we investigate the classical operation of taking
the formal adjoint of an operator, define it on the equivalence classes of the con-
sidered LPDOs, and obtain explicit formulae in the space of invariants. Some
instances of the latter result allow us to reduce the number of case considera-
tions when finding an invariant definition of the property of the existence of a
factorization.

The paper is organized as follows. In Section 2 preliminaries facts and def-
initions are given. In Sections 3 and 4, operators with the (principal) symbols
X2Y and X3 are considered, respectively. Alternative constructive proofs (to
ones from [12]) of the theorems that certain sets of invariants form a complete
generating set of invariants for such operators are given. The properties of the
existence of a factorization of some main factorization types are described in
the space of invariants. In Section 5, the operation of taking of the formal ad-
joint is considered. Such an operation can be defined on the equivalence classes of
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operators, and explicit formulae for all the cases of non-hyperbolic third-order
operators are given. Based on these formulae and the invariant definitions of
the properties of the existence of a factorization of the main factorization types
obtained in the Sections 3 and 4, we compute the invariant definitions for the
rest factorization types.

2 Preliminary Facts

Consider a field K with commuting derivations ∂x, ∂y acting on it. Consider
the ring of linear differential operators K[D] = K[Dx, Dy], where Dx, Dy corre-
spond to the derivations ∂x, ∂y, respectively. Any operator L ∈ K[D] is of the
form L =

∑d
i+j=0 aijDi

xDj
y, where aij ∈ K. In K[D] the variables Dx, Dy com-

mute with each other but not with elements of K. For f ∈ K we have the relation
Dif = fDi + ∂i(f) for i = {x, y}, and, therefore, there is non-commutativity,
which starts with the second-highest order terms. Thus, the highest order terms
of LPDOs in K[D] commute, and the (principal) symbol Sym(L) of an opera-
tor, which is a polynomial representation of the highest-order terms within the
operator is a basic concept of the theory. The commutativity of symbols implies
that any factorization of an LPDO extends some factorization of the polynomial
Sym(L). These factorizations have to be considered as non-commutative due to
the non-commutativity of the considered LPDOs. Thus, if some factorization
L = F1 ◦ · · · ◦ Fk, Fi ∈ K[D] extends Sym(L) = S1 · · · · · Sk, we say that this
factorization of L is of the factorization type (S1) . . . (Sk). In general, given a
factorization of the polynomial Sym(L), an extension to a factorization of L is
not unique.

An operator L ∈ K[D] is said to be hyperbolic if its symbol is completely
factorable (all factors are of first order) and each factor has multiplicity one.
Otherwise the operator is non-hyperbolic.

Let K∗ denote the set of invertible elements in K. Then for L ∈ K[D] and
every g ∈ K∗ consider the gauge transformation L → g−1 ◦ L ◦ g. Then an
algebraic differential expression I in coefficients of L is invariant under the
gauge transformations (we consider only such invaraints in the present paper)
if it is unaltered by these transformations. Trivial examples of an invariant are
coefficients of the symbol of the operator. A complete generating set of invariants
is a basis in which all possible differential invariants can be expressed. Also
the property of having a factorization (or a factorization extending a certain
factorization of the symbol) is invariant. Indeed, let L = F1 ◦ F2 ◦ · · · ◦ Fk,
for some operators Fi ∈ K[D]. Then for every g ∈ K∗ we have g−1 ◦ L ◦ g =(
g−1 ◦ F1 ◦ g

)
◦
(
g−1 ◦ F2 ◦ g

)
◦ · · · ◦

(
g−1 ◦ Fk ◦ g

)
.

In the present paper we consider LPDOs that are of third-order and non-
hyperbolic and their principal symbols has a factorization into first-order fac-
tors. For such operators there is a normalized form that the (principal) symbol
becomes X2Y or X3.
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3 Operators of Symbol X2Y

Consider class of operators of the form

L = Dxxy +
2∑

i+j=0

aijDi
xDj

y , aij = aij(x, y) . (4)

Theorem 1. [12] For LPDOs (4) the followings form a generating set of in-
variants.

I1 = a02 ,
I2 = a11y − 2a20x ,
I3 = a10 − a20a11 − 2a20x ,
I4 = a01 − 1

4a2
11 − 2a02a20 − 1

2a11x ,
I5 = a00 − 1

2a10a11 − a01a20 + 1
2a20a2

11 − a02a20y + a02a2
20 − a20xx .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5)

As we promise in the introductory section, we give (right below) a constructive
proof of this theorem, while the work [12] provides a non-constructive one using
the properties of the regularized moving frames.

Proof. One can verify by straightforward computations that the five functions
from the statement of the theorem are invariants. Then if

g−1Lg = L1 , (6)

holds for two operators L, L1 of the form (4), then they belong to the same
equivalence class, and the corresponding invariants are the same.

Now prove the opposite direction. Suppose we have two operators L, L1 of
the form (4) (let the coefficients of L be denoted by aij and those of L1 by
bij), and the values of the invariants are same correspondingly. We construct
such g that (6) holds. It is convenient to consider g in the form g = exp(f),
f = f(x, y) ∈ K. The equality of the invariants I1 of the operators implies
b02 = a02. Then using this substitutions for the equalities of the invariants
I3, I4, I5, we have b10 = −a10 + a20a11 − b20b11 + 2(a20 − b20)x, b01 = −a01 +
1/4(a2

11 − b2
11) + 2a02(a20 − b20) + 1/2(a11 − b11)x, b00 = a00 + a02(b20 − a20)2 +

a01(b20 − a20) + b11(b20 − a20)x + a02(b20 − a20)y + (b20 − a20)xx + 1/4b20(b2
11 −

a2
11) + 1/2(a10 − a11a20)(b11 − a11) + 1/2b20(b11 − a11)x. Using these for (6), the

equality of the second order terms on the both sides of (6) implies

fx = (b11 − a11)/2 , fy = b20 − a20 . (7)

As the equality of the invariants I2 of the operators L and L1 implies

(b11 − a11)y = 2(b20 − a20)x , (8)

we have that the equalities (7) define f , and therefore g, uniquely up to a
multiple.
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Now we verify that such f connects operators L and L1. Using the expressions
for fx and fy, we have that the equality (6) holds if and only if 0 = 2b20x−2a20x−
b11y + a11y, 0 = b20xx − 1/2b11yb11 + 1/2a11yb11 − a20xx − 1/2b11xx + 1/2a11xy +
b11b20x − b11a20x. The first equality holds as an immediate application of (8).
The right hand side of the second one equals Cx/2 + Cb11/2, where C is the
difference of left and right hand sides of (8), and, therefore, the second equality
holds.

Necessary and sufficient conditions of existence of a factorization of certain fac-
torization type can be easily written out in terms of the coefficients of the given
LPDO. As, in general, the coefficients are not invariant, and therefore, cannot be
expressed in terms of invariants only, which means that we cannot have invariant
conditions gratis (as it is in the Laplace case).

Proposition 1 (factorizations of the types (Y )(X2) and (Y )(X)(X)).
Consider an equivalence class of (4) defined by the values I1, I2, I3, I4, I5 of in-
variants (5). The operators of the class has a factorization of the factorization
type (Y )(X2) if and only if

I5 = −I1yy +
1
2

I2x + I4y & I2 = I3 . (9)

Such factorization is unique when exists. For the existence of a factorization of
the type (Y )(X)(X) in addition to the two conditions above it is necessary that

I1 = 0

holds for the class.

Proof. First we express all the coefficients of L but a20 and a11 in terms of these
invariants:

a02 = I1 , a10 = I3 + a20a11 + 2a20x ,
a01 = I4 + 2a20I1 + 1

4 (a2
11 + 2a11x) ,

a00 = I5 + (a2
20 + a20y)I1 + a11

2 I3 + a20I4+
a11a20x + a20xx + (a20a2

11 + 2a20a11x)/4 .

⎫⎪⎪⎬
⎪⎪⎭ (10)

Then a factorization F(Y )(X2) = (Dy + r) ◦ (Dxx + aDx + bDy + c), where all the
coefficients are functions of x and y, takes place if and only if L − F(Y )(X2) = 0.
The latter occurs if and only if a = a11, r = a20, b = I1, c = I4 + a20I1 − I1y +
(a2

11 + 2a11x)/4 (and therefore, all the coefficients of the factorization have been
determined), and the following two conditions hold: 0 = I5 + I3a11/2 − I4y +
I1yy − (a11a11y + a11xy − 2a11a20x − 2a20xx)/2, 0 = I3 + 2a20x − a11y. Employing
the expression for I2 from (5), one can prove that this system is equivalence to
the system (9). The second factor of F(Y )(X2) may be factorable only if b = 0,
that is I1 = 0 hold.

Proposition 2 (factorizations of the types (X)(XY ), (X)(X)(Y ), and
(X)(Y )(X)). Consider an equivalence class of (4) defined by the values of the
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invariants I1, I2, I3, I4, I5. Operators of the class are factored with the factoriza-
tion type (X)(XY ) if and only if[

A : I3 �= 0 & I1 = 0 & 0 = I4 + I2
6 + I6x , or

B : I3 = I1 = I5 = 0 & Ricatti equation 0 = I4 + u2 + ux can be solved ;

with the factorization type (X)(X)(Y ) if and only if the set of conditions B
holds, and with the factorization type (X)(Y )(X) if and only if⎡

⎣ A & I2/2 − I3 − I6y = 0 , or
B & I2 �= 0 & I2 − I7y = I2/2 , or
B & I2 = 0 & I4y = 0 ,

where denote invariants I6 = (I5 − I3x)/I3, I7 = (I4y + I2x/2)/I2.

Proof. Consider when a factorization F(X)(XY ) = (Dx+r)◦(Dxy+aDx+bDy+c)
exist for for an operator L of the equivalence class.

Let I3 �= 0 for the given equivalence class, then the latter equality holds
if and only if I1 = 0, a = a20, b = a11 − r, c = I3 + a20a11 + a20x − ra20,
r = (2I5+a11I3−2I3x)/(2I3), and 0 = I4+(I2

5−3I5I3x+2I2
3x)/I2

3+(I5x−I3xx)/I3.
The latter can be rewritten in the form 0 = I4 + (I6)

2 + (I6)x, where we denote
I6 = (I5 − I3x)/I3

The second factor of the factorization F(X)(XY ) is a second order hyperbolic
LPDO in the normalized form, and therefore, it can be decomposed if and only
if one of the Laplace invariants h and k is zero. Substituting obtained above
expressions, we compute h = −I3, k = −I3 − a20x + a11y − (2I5y + a11yI3 +
a11I3y − 2I3xy)/(2I3)+1/2(2I5 + a11I3 − 2I3x)/I2

3I3y . As I3 �= 0, we have h �= 0,
and, therefore, the operators of the given equivalence class can never have a
factorization of the factorization type (X)(X)(Y ), provided I3 �= 0 holds for
this class. The expression for k can be simplified employing (5) as k = I2/2 −
I3 − I5y/I3 + I3xy/I3 + I3yI5/I2

3 − I3yI3x/I2
3 , which can be rewritten as k =

I2/2 − I3 − (I6)y . Thus, the operators of an equivalence class for which I3 �= 0
holds have a factorization of the factorization type (X)(Y )(X) if and only if
I2/2 − I3 − I6y = 0.

Let now I3 = 0. Then the factorization F(X)(XY ) of L takes place if only if
I1 = 0, a = a20, b = a11 − r, c = a20a11 + a20x − ra20, and the following two
equalities hold: I5 = 0, and 0 = I4 + a2

11/4 − a11x/2 − ra11 + r2 + rx. The latter
can be rewritten in the form

0 = I4 + u2 + ux , u = r − a11

2
, (11)

and this is a defining equation for r.
Compute the Laplace invariants for the second factor of the factorization

F(X)(XY ) substituting the obtained above expressions, we have: h = 0, k =
−ry + a11y

2 +I2/2 = −uy +I2/2. Thus, for the considered equivalence classes, the
second factor of F(X)(XY ) has a factorization of the factorization type (X)(Y )
always, and that of the factorization type (Y )(X) if and only if uy = I2/2.
Consideration of factorizations of the second factor of F(X)(XY ) makes sense only
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if there is a factorization of the operators of the class of the factorization type
(X)(XY ), the condition (11) should be satisfied. Differentiating the both sides
of this condition with respect to y, we have 0 = I4y +2uuy +(uy)x = I4y +uI2 +
I2x/2, and, therefore, u = −(I4y+I2x/2)/I2, provided I2 �= 0. Thus, the condition
of factorization of the type (Y )(X) in this case is − ((I4y + I2x/2)/I2)y = I2/2.

Suppose now I2 = 0, then the second factor of F(X)(XY ) has a factorization
of the factorization type (Y )(X) if and only if k = −uy = 0, that is u = u(x). In
this case condition (11) implies that I4 does not depends on y, that is I4y = 0.
Then the solution of such equations is of the form u = u0(x) + F1(y), where
u0(x) is solution of the equation as an ordinary differential equation, and F1 is
an arbitrary function. Thus for every I4 = I4(x) we have u = u0 which satisfy
condition u = u(x).

4 LPDOs of Symbol X3

Consider class of operators of the form

L = D3
x +

2∑
i+j=0

aij(x, y)Di
xDj

y . (12)

Further below we denote aij = aij(x, y). The class admits gauge transformations,
and a complete generating sets of invariants has been recently obtained [12]:

Theorem 2. Consider class of operators (12). Then Ia02 = a02 and Ia11 = a11
are invariants.

1. For the equivalence classes of (12) having the property Ia02 �= 0 five invari-
ants

Ia11 = a11 , Ia02 = a02 ,
Ia10 = a10 − 1

2 a01a11/a02 − 1
3 a2

20 + 1
6 a2

11a20/a02 − a20x ,
Ia01
x = a01x + a02x(1

3 a11a20 − a01)/a02 − 1
3 (a11a20)x − 2

3 a02a20y ,
Ia00 = a00 + a11a20(a01 − 1

6a11a20)/(6a02) − 1
3a10a20 − 1

4a02
a2
01

+ 2
27a3

20 − a01y

2 + a11ya20−a11a20y

6 − a20xx

3
+a02y(1

2a01 − 1
6a11a20)/a02 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13)

form together a complete generating set of invariants.
2. For the equivalence classes of (12) possessing the both properties Ia02 = 0

and Ia11 �= 0 four invariants

Ia11 = a11 ,
Ia10
x = a10x − 2

3a20a20x + a11x(1
3a2

20 − a10 + a20x)/a11−
1
3a11a20y − a20xx ,

Ia01 = a01 − 1
3a11a20 ,

Ia00 = a00 + a01(a20x − a10)/a11 − 1
27a3

20−
1
3 (a11a20y + a20a20x + a20xx − a01a2

20/a11) .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(14)

form together a complete generating set of invariants.
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3. For the equivalence classes of (12) possessing the both properties Ia02 = 0
and Ia11 = 0 three invariants

Ia10 = a10 − 1
3a2

20 − a20x , Ia01 = a01 ,
Ia00
x = a00x − 1

3 (a10a20 + a20xx)x − 1
3a01a20y + 2

9a2
20a20x

+ 1
3 a01x(a10a20 + a20xx − 2

9 a3
20 − 3a00)/a01 .

⎫⎬
⎭ (15)

form together a complete generating set of invariants.

Again we give a constructive proof of the theorem, while a non-constructive one,
as well as the formulae for the invariants have been obtained in [12].

Proof. It is easy to verify that the functions from the statement of the theorem
are invariants. Then if (6) holds for two operators L, L1 of the form (12), then
they belong to the same equivalence class, and the corresponding invariants are
the same.

Now prove the opposite direction. Suppose we have two operators L, L1 of the
form (12) (let the coefficients of L be denoted by aij and those of L1 by bij), and
the values of the invariants are same correspondingly. We construct such g that
(6) holds. It is convenient to consider g in the form g = exp(f), f = f(x, y) ∈ K.

1. The equality of the invariants Ia11 , Ia02 of the operators implies b02 = a02,
b11 = a11. Then using this substitutions for the equalities of the invariants
Ia10 , Ia00 , we (by means of straightforward computation) have expressions for
b10 and b00 in terms of b20, b01 and the coefficients aij . When we apply all the
obtained substitutions for (6), the equality of the terms at Dxx and Dy on the
both sides of (6) implies

fx = (b20 − a20)/3 , fy = (b01 − a01 − a11(b20 − a20)/3)/(2a02) . (16)

The equality of the invariants I4 of the operators L and L1 guarantees that if we
differentiate the first equation with respect to y, the second with respect to x,
and then subtract, then we will have a true equality. Thus, f is defined uniquely
up to a multiple.

Such f connects operators L and L1, which one can (in this case straight-
forwardly) verify by the substitution of the expressions (16) for fx and fy into
(6).

2. Analogously, one can prove that some function f is defined uniquely up to
a multiple by the equalities fx = (b20 − a20)/3, fy = (b10 − a10 + (a2

20 − b2
20)/3−

(b20 − a20)x)/a11, and such f connects L and L1.
3. Analogously, one can prove that some function f is defined uniquely up to

a multiple by the equalities fx = (b20 − a20)/3, fy = (3b00 − 3a00 − a10(b20 −
a20) − (b20 − a20)xx − b20(b20 − a20)x + a2

20b20/3 − 2a3
20/9 − b3

20/9)/(3a01), and
such f connects L and L1.

Proposition 3 (factorizations of the type (X)(X2)). Consider the equiva-
lence classes of (12) given by the values of the invariants from Theorem 2.
1. Operators of the classes having the property Ia02 �= 0 have no factorizations
of the factorization type (X)(X2).
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2. Operators of a class having the both properties Ia02 = 0 and Ia11 �= 0, and
are given by the values I1, I2, I3, I4 of the invariants Ia11 , Ia01 , Ia10

x , Ia00 , corre-
spondingly, have a factorization of the factorization type (X)(X2) if and only
if

(I1xxx − I2xx)I2
1 + (6I2 − 11I1x)I1xI2 + (5I2x − 6I1xx)I1I1x − 3I2I2xI1 +

4I2I1xxI1 + (I4 − I3)I3
1 − I3

2 + 6I3
1x = 0 . (17)

3. If the operators of a class having the both properties Ia02 = 0 and Ia11 = 0,
and is given by the values of the invariants Ia10 , Ia01 , Ia00

x can be factored with
the factorization type (X)(X2) then

Ia01 = 0

holds for this class. That is only equivalence classes of ordinary differential op-
erators may have such factorizations.

Proof. 1. Consider an operator (12), and (formally) its factorization F(X)(X2) =
(Dx + r) ◦ (Dxx + aDx + bDy + c), where all the coefficients are functions of x
and y. The equality L − F(X)(X2) = 0 implies Ia02 = 0 .

2. Let Ia02 = 0 and Ia11 �= 0. Then, by the Theorem 2, the values of four
invariants (14) uniquely define such equivalence class. We start with expressing
as many as possible coefficients (12) in terms of these basic invariants and the
remained coefficients. Thus, we have, for example,

a11 = I1 , a01 = I2 + 1
3a20I1 ,

a00 = I4 + (a10 − 1
3a2

20 − a20x − 2
27a3

20)I2/I1 + 1
3a10a20

+ 1
3a20yI1 + 1

3a20xx ,

⎫⎬
⎭ (18)

provided I1 �= 0. Employing these expressions, we have that L − F(X)(X2) = 0
holds if and only if a = a20−r, b = I1, c = a10−ra20+r2−a20x+rx, r = 1

3 (3I2+
a20I1 − 3I1x)/I1 (that is we determined all the coefficients of the factorization)
and some equality in terms of I1, I2, I3, I4, a20, a10 and their derivatives holds.
One can simplify the latter constraint using the one for the invariant I3, which
is the only uninvolved yet invariant, and have (17).

If for the operators of an equivalence class of (12) possessing the property
I1 = 0 factorizations of the form F(X)(X2) exist, then Ia01 = 0, that is all the
operators of the class are ordinary differential operators.

Remark 1. Factorizations of the type (X)(X)(X) can exist only for operators
of the equivalence classes having the properties Ia02 = 0 and Ia11 = 0, and
Ia01 = 0.

5 Formal Adjoint

In this section we consider the operation of taking the formal adjoint of an LPDO,
and define such operation on the equivalence classes of third-order bivariate non-
hyperbolic LPDO. At the end of the section we apply this knowledge to complete
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the cases’ consideration in the finding of invariant condition of the property of
the existence of a factorization of certain factorization type.

For an operator L =
∑

|J|≤d aJDJ , where aJ ∈ K, J ∈ Nn and |J | is the sum
of the components of J , the formal adjoint is defined as

L†(f) =
∑
|J|≤d

(−1)|J|DJ(aJf) , ∀f ∈ K .

The formal adjoint possesses the following useful factorization-theoretic proper-
ties:

(L†)† = L , (L1 ◦ L2)† = L†
2 ◦ L†

1 , SymL = (−1)ord(L)SymL† .

The property of having a factorization is invariant under the operation of taking
the formal adjoint, while the property of having a factorization of certain fac-
torization type is not invariant, and an operator L has a factorization of some
factorization type (S1)(S2) (where SymL = S1S2) if and only if L† has that of
factorization type (S2)(S1).

Lemma 1. The operation of taking the formal adjoint can be defined on the
equivalence classes of LPDOs.

Proof. Show that operation of taking the formal adjoint and the gauge trans-
formations of LPDOs commute. For every g ∈ K∗, and f = g−1 we have
(g−1 ◦ L ◦ g)† = g† ◦ L† ◦ (g−1)† = g ◦ L† ◦ g−1 = f−1 ◦ L† ◦ f . This finishes the
proof. Indeed, every operator L2 that belongs to the same equivalence class as
L has the form L2 = g−1 ◦L ◦ g for some g = g(x, y). The commutativity proved
above implies that L†

2 = f−1 ◦ L† ◦ f , and, therefore, L†
2 belong to the same

equivalence class as L†. Thus under the operation of taking the formal adjoint
an equivalence class transforms into another equivalence class.

Example 1 (LPDOs of order 2). For operators of the form L = Dxy + aDx +
bDy + c there is a complete generating set of invariants that consists of first-
order invariants: h = c − ax − ab and k = c − by − ab. For the formal adjoint
L† = Dxy −aDx−bDx+c−ax−by they are h† = c−by−ab and k† = c−ax−ab,
and so h† = k, k† = h.

For LPDOs of the odd orders the symbol changes the sign under the operation of
taking the formal adjoint. On the other hand, formulae of invariants are usually
given for the symbol in a normalized form. Thus, when considering the common
adjoint for the operator of odd orders, the normalized form of symbols is not
preserved. On the other hand, invariants of the operator L and −L are not the
same (or the same up to a sign) in general case. The following lemma shows how
to treat this problem.

Lemma 2. Let a function I of the coefficients aJ of an operator L of some
family of operators with the same symbol Sym be an invariant. Then given p ∈ K,
p �= 0, the result of the substitution aJ/p for aJ for every J in I is an invariant
of the family of operators {pL}.
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Proof. Since p �= 0 we can multiply the operator pL by p−1 on the left, and get
some new operator L1 = SymL +

∑
|J|<d

aJ

p DJ . The invariants of the operator
L and L1 are the same, and the latter are known.

Proposition 4 (formal adjoint for classes with Sym = X2Y ). Consider
the equivalence classes of (4) given by the values of the invariants I1, I2, I3, I4, I5
(5). Then the operation of taking of the formal adjoint is defined by the following
formulae

I†
1 = −I1 ,

I†
2 = −I2 ,

I†
3 = I3 − I2 ,

I†
4 = I4 − 2I1y ,

I†
5 = −I5 + I3x + I4y − I1yy − 1

2I2x .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19)

Proof. Consider an operator L (4) of some equivalence class. and use the ob-
tained above expressions (10) to substitute some of the coefficients of L by the
expressions of the five invariants and the remained coefficients. Then compute the
formal adjoint: L† = −Dxxy+a20Dxx+a11Dxy+I1Dyy−(I3+a20a11−a11y)Dx+
(−I4 − 1

4a2
11 −2a20I1 + 1

2a11x +2I1y)Dy + I5 +a20I4 + 1
2a11I3 +(−a20y +a2

20)I1 −
I3x − 1

2a20a11x + 1
4a20a2

11 − I4y − 1
2a11a11y −2a20I1y + 1

2a11xy + I1yy. By lemma 2
and Theorem 1 compute the invariants of a complete generating set of invariants.
Then it is easy to guess expressions in terms of basic invariants of L: I†

1 = −I1,
I†
2 = −a11y + 2a20x = −I2, I†

3 = I3 − a11y + 2a20x = I3 − I2, I†
4 = I4 − 2I1y,

I†
5 = −I5 + I3x + I4y − 1

2a11xy − I1yy + a20xx = −I5 + I3x + I4y − I1yy − 1
2I2x.

Corollary 1 (factorizations of the types (X2)(Y ) and (X)(X)(Y )). Con-
sider an equivalence class of (4) given by the values of the invariants I1, I2, I3,
I4, I5. Operators of the class has a factorization of the factorization type (X2)(Y )
if and only if

I5 = I3 = 0

Such factorization is unique when exists. If in addition

I1 = 0 ,

then we have necessary conditions of the existence of the factorization type
(X)(X)(Y ) for the operators of the class.

Proof. Operators of the given equivalence class are factored with the factor-
ization type (X2)(Y ) if and only if their formal adjoints are factored with the
factorization type (Y )(X2). The equivalence class of their formal adjoints is given
by the values I†

1 , . . . , I†
5 of (19) computed using the given values of I1, . . . , I5. By

the proposition 1, the operators of this class are factored with the factorization
type (Y )(X2) if and only if I†

5 = −I†
1yy + 1

2I†
2x + I†

4y & I†
2 = I†

3 , which after
the substitutions have the forms 0 = −I5 + I3x, I3 = 0, and further I5 = I3 = 0.
Analogously we get the last statement of the corollary.
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Corollary 2 (factorizations of the types (XY )(X) and (Y )(X)(X)). Con-
sider an equivalence class of (4) given by the values I1, I2, I3, I4, I5 of the invari-
ants (5). Operators of the class are factored with the factorization type (XY )(X)
if and only if[

A : I3 �= I2 & I1 = 0 & 0 = I4 + (I8)2 + I8x , or
B : I3 = I2 & I1 = 0 & I9 = 0 ,

with the factorization type (X)(X)(Y ) if and only if the set of conditions B
holds, where I8 = I9/(I3 − I2) and I9 = −I5 + I4y + 1

2I2x.

Proof. The proof is analogous to the proof of the corollary (1)

Lemma 3. Consider the equivalence classes of (12), which are uniquely defined
by the values of the invariants Ia02 and Ia11 and some other invariants given in
the Theorem 2. The property of Ia02 and Ia11 to be zero is invariant under the
operation of the taking of the formal adjoint.

Proof. The formal adjoint of an operator L (12) has the form L† = −Dxxx +
a20Dxx +a11Dxy +a02Dyy +T1, where T1 denotes the terms of orders lower than
two. Then the statement implies from the fact that Ia02 = a02 and Ia11 = a11.

Proposition 5 (formal adjoint for classes with Sym = X3). Consider the
equivalence classes of (12), which is defined by the values of the invariants Ia02

and Ia11 , and the rest invariants as they are given in the Theorem 2.
1. For an equivalence class that possesses the property Ia02 �= 0, and the

corresponding values I1, I2, I3, I4, I5 of the basic invariants Ia02 , Ia11 , Ia10 , Ia01
x ,

Ia00 , the following formulae define the operation of taking of the formal adjoint:

I†
1 = −I1 ,

I†
2 = −I2 ,

I†
3 = I3 − I2y + I2(1

2I2x + I1y)/I1 ,

I†
4 = I4 − I2xx − 2I1xy + I1x(I2x + 2I1y)/I1 ,

I†
5 = −I5 + 1

2I2I4/I1 + I3x − 1
2I2xy + I2x(1

4I2x + 1
2I1y)/I1 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

2. For an equivalence class that possesses the both properties Ia02 = 0 and Ia11 �= 0,
and the corresponding values I1, I2, I3, I4 of the basic invariants Ia11 , Ia01 , Ia10

x ,
Ia00 , the following formulae define the operation of taking of the formal adjoint:

I†
1 = −I1 ,

I†
2 = I2 − I1x ,

I†
3 = I3 − I1xy + I1xI1y/I1 ,

I†
4 = −I4 + I3 + I2y − I1xy + I1y(I1x − I2)/I1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

3. For an equivalence class that possesses the both properties Ia02 = 0 and Ia11 = 0,
and the corresponding values I1, I2, I3 of the basic invariants Ia01 , Ia10 , Ia00

x , the
following formulae define the operation of taking of the formal adjoint:
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I†
1 = I1 ,

I†
2 = I2 ,

I†
3 = −I3 − I1x(I2x − I1y)/I1 + I2xx + I1xy .

⎫⎬
⎭

Proof. Consider the first case. Expressing as many as possible coefficients of
an operator L of the class in terms of these basic invariants and the remained
coefficients, we can have a02 = I1, a11 = I2, a10 = I3 + 1

3a2
20 + 1

2a01I2/I1 −
1
6a20I2

2/I1 + a20x, a00 = I5 + 1
3a20I3 + 1

27a3
20 + (1

4a2
01 − 1

36a2
20I2

2 + 1
61a20I1yI2 −

1
21a01I1y)/I1 + 1

3a20a20x + 1
6I2a20y + 1

2a01y − 1
6I2ya20 + 1

3a20xx. We substitute
these expressions for the coefficient of L and compute the formal adjoint L†:
L† = −Dxxx + a20Dxx + I2Dxy + I1Dyy + (−a01 + I2x + 2I1y)Dy + (a20x −
I3 − 1

3a2
20 + 1

6I2(I2a20 − 3a01)/I1 + I2y)Dx + c†00, where the free coefficient c†00 is
I5 + ( 1

18I2
2 (6a20x − a2

20) + 1
3I2a20(I2x + 2I1y)− (I2a01)x − I1ya01 + 1

2a2
01)/(2I1)+

1
6I1xI2(3a01 − I2a20)/I2

1 + 1
3a20xx − I3x − 1

3a20a20x + 1
3a20I3 + 1

27a3
20 + 1

6I2a20y −
1
2a01y − 1

6I2ya20 + I2xy + I1yy. Applying lemma 2 to the case 1. of Theorem 2
we can find the formulae for invariants of a complete generating set of invariants
for such operators. Computing the invariants of L†, and then having some easy
guessing, we can obtain expressions of the invariants in the terms of exclusively
I1, . . . , I5.

Consider the second case of the statement of the theorem. Substituting for the
coefficients of an operator L of such equivalence class expressions (18), compute
L†: L† = −Dxxx+a20Dxx+I1Dxy+(2a20x−a10+I1y)Dx−(I2+ 1

3a20I1−I1x)Dy+
I4−I2(1

3a2
20−a10+a20x)/I1−I2y− 1

3a20I1y+I1xy+ 4
3a20xx−a10x+ 1

3a10a20− 2
27a3

20.
Applying lemma 2 to the case 2. of Theorem 2 we can find the formulae for
invariants of a complete generating set of invariants for such operators. Then
computing the invariants of L†, and then having some easy guessing, we can
obtain expressions of the invariants in the terms of exclusively I1, . . . , I4.

Consider the third case of the statement of the theorem. Expressing maximal
number of coefficients in terms of the remained ones and the basic invariants, we
can get a01 = I1, a10 = I2+ 1

3a2
20+a20x. Using these expressions, we compute L†:

L† = −Dxxx + a20Dxx(a20x − I2 − 1
3a2

20)Dx − I1Dy − I2x − 2
3a20a20x + a00 − I1y .

Applying lemma 2 to the case 3. of Theorem 2 we can find the formulae for
invariants of a complete generating set of invariants for such operators. Then
computing the invariants of L†, and involving some easy guessing, we can obtain
expressions of the invariants in the terms of exclusively I1, I2, I3.

Corollary 3 (factorizations of the type (X2)(X)). Consider the equivalence
classes of (12), which are defined by the values of the invariants Ia02 and Ia11 ,
and the rest invariants as they are given in the Theorem 2.
1. Operators of the classes having the property Ia02 �= 0 has no factorizations of
the factorization type (X2)(X).
2. Operators of a class having the both properties Ia02 = 0 and Ia11 �= 0, and is
given by the values I1, I2, I3, I4 of the invariants Ia11 , Ia01 , Ia10

x , Ia00 , correspond-
ingly, have a factorization of the factorization type (X2)(X) if and only if
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−3I1I2I2x − I2
1I2I1y + I3

2 + 3I2
2I1x + 2I2I2

1x − I3
1 I4 + I3

1I2y

+I2
1I2xx − I1I2I1xx − 2I1I1xI2x = 0 . (21)

3. If the operators of a class having the both properties Ia02 = 0 and Ia11 = 0,
and is given by the values of the invariants Ia10 , Ia01 , Ia00

x can be factored with
the factorization type (X2)(X) then

Ia01 = 0

holds for this class.

Proof. The proof is analogous to the proof of the corollary (1)

6 Conclusions

In the present paper we found a test, in other words some constraints on invari-
ants of a bivariate, non-hyperbolic third-order Linear Partial Differential Op-
erator to guarantee its factorization for every factorization type. The test can
be implemented (in fact has been implemented) in a computer algebra system
and be a part of an exact integration algorithm for LPDEs and then perhaps
“trusted” by a proof assistant. The invariants that are used are with respect to
known gauge transformations, which is together with constructive factorization
itself are heavily involved in modern exact integration algorithms. Therefore,
they are a natural basis for such a test. The expression for invariants in terms of
the coefficients an LPDO are found explicitly before in [12] and we used them.
However, as one can consult with [12], it is easy to recompute them at any time
using computer algebra systems. As a by-product of the investigations we de-
termined how invariants of an equivalence class of an LPDO is changed under
the operation of taking the formal adjoint. In fact explicit formulae have been
found. This subresult is interesting by itself for the formulae are attractive. Also
it can be used in some factorization connected algorithms due to the factorization
property of adjoint operators.
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Abstract. As a variation on the known theme of Gödel numberings,
isomorphisms defining data type transformations in a strongly typed
functional language are organized as a finite groupoid using a higher
order combinator language that unifies popular data types as diverse
as natural numbers, finite sequences, digraphs, hypergraphs and finite
permutations with more exotic ones like hereditarily finite functions,
sets and permutations.1

Keywords: computational mathematics in Haskell, data type transfor-
mations, ranking/unranking,Gödel numberings, higher order combina-
tors, hylomorphisms.

1 Introduction

Analogical/metaphorical thinking routinely shifts entities and operations from a
field to another hoping to uncover similarities in representation or use [1]. Com-
pilers convert programs from human centered to machine centered representa-
tions - sometime reversibly. Complexity classes are defined through compilation
with limited resources (time or space) to similar problems [2]. Mathematical
theories often borrow proof patterns and reasoning techniques across close and
sometime not so close fields. A relatively small number of universal data types
are used as basic building blocks in programming languages and their runtime
interpreters, corresponding to a few well tested mathematical abstractions like
sets, functions, graphs, groups, categories etc.

In their simplest form, isomorphisms between data types show up as encodings
to some canonical representation, for instance natural numbers. Such encodings
can be traced back to Gödel numberings [3,4] associated to formulae, but a
wide diversity of common computer operations, ranging from data compression
and serialization to wireless data transmissions and cryptographic codes are
indirectly related.

1 A (very) long version of this paper is available at http://arXiv.org/abs/0808.2953.
Like this paper, it is organized as a literate Haskell program while also including
Haskell sources as a separate file.
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We will show in this paper how such isomorphisms can be organized naturally
as a finite groupoid i.e. a category [5] where every morphism is an isomorphism,
with objects provided by the data types and morphisms provided by their trans-
formations.

One can see these encodings as a first step towards a “theory of everything”
meant to provide a uniform view of the basic building blocks of various com-
putational artifacts. We hope this can help refactoring the enormous ontology
exhibited by computer science and engineering fields that have resulted over a
relatively short period of evolution in unnecessarily steep learning curves limiting
communication and synergy between fields.

The paper is organized as follows: section 2 describes our data transformation
framework, section 3 introduces isomorphisms between finite sequences, sets and
natural numbers and section 4 shows their lifting to hereditarily finite structures.
Ranking/unranking of permutations and hereditarily finite permutations as well
as Lehmer codes and factoradics are covered in section 5. Section 6 describes
encodings for digraphs and hypergraphs. Sections 7 and 8 discuss related work
and conclusions.

2 An Embedded Data Transformation Language

We will start by designing an embedded transformation language as a set of
operations on a groupoid of isomorphisms. We will then extended it with a set
of higher order combinators mediating the composition of the encodings and the
transfer of operations between data types.

2.1 The Groupoid of Isomorphisms

We implement an isomorphism between two objects X and Y as a Haskell data
type encapsulating a bijection f and its inverse g. We will call the from function
the first component and the to function the second component defining the
isomorphism.

X Y
................................................................................................................................................................................................................................................................................... ............

f = g−1

...............................................................................................................................................................................................................................................................................................

g = f−1

data Iso a b = Iso (a→b) (b→a)

from (Iso f _) = f

to (Iso _ g) = g

compose :: Iso a b → Iso b c → Iso a c

compose (Iso f g) (Iso f’ g’) = Iso (f’ . f) (g . g’)

itself = Iso id id

invert (Iso f g) = Iso g f

Assuming that for any pair of type Iso a b, f ◦ g = idb and g ◦ f = ida, we
have:
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Proposition 1. The data type Iso defines a groupoid, i.e. for all cases when it
is defined, the compose operation is associative, itself acts as an identity element
and invert computes the inverse of an isomorphism.

We can see the combinators from, to, compose, itself, invert as part
of an embedded data transformation language. In the general case, as composition
is only a partial function (i.e. f : A → B can be composed with g : B′ → C
only if B = B′), the resulting finite groupoid can be seen as a disjoint union of
connected categories corresponding to the weakly connected components of the
underlying graph.

Choosing a Root in a connected groupoid Within each connected groupoid, to
avoid defining n(n − 1)/2 isomorphisms between n objects, we can choose a
Root object to/from which we will actually implement isomorphisms. Then we
can extend our embedded combinator language using the groupoid structure of
the isomorphisms to connect any two objects through isomorphisms to/from the
Root.

2.2 The Gödel groupoid

Let us, from now on, focus on the connected groupoid of isomorphisms mapping
various data types to natural numbers (Nat). It makes sense to call it the Gödel
groupoid as traditionally such mappings have been investigated in his work on
arithmetization of formulae in the proofs of his incompleteness theorems.

Within each connected groupoid, choosing a Root object is somewhat arbi-
trary, but it makes sense to pick a representation that is relatively easily convert-
ible to various others, efficiently implementable and, last but not least, scalable
to accommodate large objects up to the runtime system’s actual memory limits.

With this in mind, instead of the obvious choice Nat, let us chose as our
Root object for the Gödel groupoid as the set of Finite Sequences of Natural
Numbers. They can also be seen as as finite functions from an initial segment of
Nat, say [0..n], to Nat, or as words on an alphabet with an infinite supply of
symbols. We will represent them as lists i.e. their Haskell type is [Nat]. As we
will show in subsection 3.1 such sequences will be mapped one to one to Nat
while accommodating large objects more efficiently.

type Nat = Integer

type Root = [Nat]

We can now define an Encoder as an isomorphism connecting an object to Root

type Encoder a = Iso a Root

together with the combinators with and as providing an embedded transformation
language for routing isomorphisms through two Encoders.

with :: Encoder a→Encoder b→Iso a b

with this that = compose this (invert that)

as :: Encoder a → Encoder b → b → a

as that this thing = to (with that this) thing



A Groupoid of Isomorphic Data Transformations 173

The combinator with turns two Encoders into an arbitrary isomorphism, i.e.
acts as a connection hub between their domains. The combinator as adds a
more convenient syntax such that converters between A and B.

Root

A B

.............
.............
.............
..............
.............
.............
.............
..............
.............
.............
.............
.......................
............

b

............
.............

............
.............

............
.............

............
.............

.............
.............

............
................................

a−1

......................................................................................................................................................................
..
............

b−1

.............................................................................................................................................................. ..........
..

a

................................................................................................................................................................................................................................................................................... ............a2b = as B A

...............................................................................................................................................................................................................................................................................................
b2a = as A B

We will provide use cases for these combinators as we populate our groupoid
of isomorphisms. Given that [Nat] has been chosen as the root, we will define our
finite function data type fun simply as the identity isomorphism on sequences in
[Nat].

fun :: Encoder [Nat]

fun = itself

3 Extending the Groupoid of Isomorphisms

We will now populate our groupoid of isomorphisms with combinators based on
a few primitive encoders.

3.1 A Ranking/Unranking Algorithm for Finite Sequences

A ranking/unranking function defined on a data type is a bijection to/from
the set of natural numbers (denoted Nat through the paper). We start with an
unusually simple but (at our best knowledge) novel ranking/unranking algorithm
for finite sequences of arbitrary unbounded size natural numbers. Given the
definitions

cons :: Nat→Nat→Nat

cons x y = (2^x)∗(2∗y+1)

hd :: Nat→Nat

hd n | n>0 = if odd n then 0 else 1+hd (n ‘div‘ 2)

tl :: Nat→Nat

tl n = n ‘div‘ 2^((hd n)+1)

nat2fun :: Nat→[Nat]

nat2fun 0 = []

nat2fun n = hd n : nat2fun (tl n)

fun2nat :: [Nat]→Nat

fun2nat [] = 0

fun2nat (x:xs) = cons x (fun2nat xs)
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Proposition 2. fun2nat is a bijection from finite sequences of natural numbers
to natural numbers and nat2fun is its inverse.

This follows from the fact that cons and the pair (hd, tl) define a bijection
between Nat − {0} and Nat × Nat and that the value of fun2nat is uniquely
determined by the number of applications of tl and the sequence of values
returned by hd.

∗ISO> hd 2008

3

∗ISO> tl 2008

125

∗ISO> cons 3 125

2008

We can define the Encoder

nat :: Encoder Nat

nat = Iso nat2fun fun2nat

working as follows

∗ISO> as fun nat 2008

[3,0,1,0,0,0,0]

∗ISO> as nat fun [3,0,1,0,0,0,0]

2008

Note also that this isomorphism preserves “list processing” operations i.e. if one
defines:

app 0 ys = ys

app xs ys = cons (hd xs) (app (tl xs) ys)

then the isomorphism commutes with operations like list concatenation:

Proposition 3. (as fun nat n) ++ (as fun nat m) ≡ as fun nat (app n m)
as nat fun (ns ++ ms) ≡ app (as nat fun ns) (as nat fun ms)

Given the definitions:

unpair z = (hd (z+1),tl (z+1))
pair (x,y) = (cons x y)-1

shifting by 1 turns hd and tl in total functions on Nat such that unpair 0 = (0, 0)
i.e.

Proposition 4. unpair : Nat → Nat×Nat is a bijection and pair = unpair−1.

Note that unlike hd and tl, unpair is defined for all natural numbers:

∗ISO> map unpair [0..7]

[(0,0),(1,0),(0,1),(2,0),(0,2),(1,1),(0,3),(3,0)]

As the cognoscenti might notice, this turns out to be in fact a classic pairing/un-
pairing function that has been used, by Pepis, Kalmar and Robinson in some
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fundamental work on recursion theory, decidability and Hilbert’s Tenth Prob-
lem in [6,7,8] and hd,tl,cons,0 define on Nat an algebraic structure isomorphic
to the one introduced by CAR,CDR,CONS,NIL in John McCarthy’s classic LISP
paper [9].

With the isomorphism defined by pair and unpair we obtain the Encoder:

type Nat2 = (Nat,Nat)

nat2 :: Encoder Nat2

nat2 = compose (Iso pair unpair) nat

working as follows:

∗ISO> as nat2 nat 123

(2,15)

∗ISO> as nat nat2 (2,15)

123

3.2 An Isomorphism to Finite Sets of Natural Numbers

We can rank a set represented as a list of distinct natural numbers by mapping
it into a single natural number, and, reversibly, by observing that it can be seen
as the list of exponents of 2 in the number’s base 2 representation. We obtain
the Encoder:

set :: Encoder [Nat]

set = compose (Iso set2nat nat2set) nat

nat2set n | n≥0 = nat2exps n 0 where

nat2exps 0 _ = []

nat2exps n x = if (even n) then xs else (x:xs) where

xs=nat2exps (n ‘div‘ 2) (x+1)

set2nat ns = sum (map (2^) ns)

Note that in this case sets are sharing with sequences the underlying list rep-
resentation [Nat]. The injection between sets represented by ordered sequences
of distinct numbers and arbitrary sequences requires implementing a predicate
is set (see [10]) to enforce such constraint on each set argument. To keep our
code simpler, we will assume in this paper that such constraints implicitly hold
when required.

4 Generic Unranking and Ranking Hylomorphisms

The ranking problem for a family of combinatorial objects is finding a unique
natural number associated to it, called its rank. The inverse unranking problem
consists of generating a unique combinatorial object associated to each natural
number.
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4.1 Pure Hereditarily Finite Data Types

The unranking operation is seen here as an instance of a generic anamorphism
(an unfold operation), while the ranking operation is seen as an instance of
the corresponding catamorphism (a fold operation) [11]. Together they form a
mixed transformation called hylomorphism. We will use such hylomorphisms to
lift isomorphisms between lists and natural numbers to isomorphisms between a
derived tree data type and natural numbers.

The data type representing such hereditarily finite structures will be a generic
multi-way tree with a single leaf type [].

data T = H Ts deriving (Eq,Ord,Read,Show)

type Ts = [T]

The two sides of our hylomorphism rank and unrank are parameterized by two
transformations f and g forming an isomorphism Iso f g:

unrank :: (a → [a]) → a → T

unranks :: (a → [a]) → [a] → Ts

unrank f n = H (unranks f (f n))

unranks f ns = map (unrank f) ns

rank :: ([b] → b) → T → b

ranks :: ([b] → b) → Ts → [b]

rank g (H ts) = g (ranks g ts)

ranks g ts = map (rank g) ts

Both combinators can be seen as a form of “structured recursion” that propa-
gates a simpler operation guided by the structure of the data type. We can now
combine an anamorphism+catamorphism pair into an isomorphism hylo defined
with rank and unrank on the corresponding hereditarily finite data types:

hylo :: Iso b [b] → Iso T b

hylo (Iso f g) = Iso (rank g) (unrank f)

hylos :: Iso b [b] → Iso Ts [b]

hylos (Iso f g) = Iso (ranks g) (unranks f)

As its most general type shows, hylo lifts an isomorphism from b to [b] to
an isomorphism between trees of type T and b. In our case b is Nat but the
mechanism is more general - for instance it would also work if b is instantiated
to Church numerals or bitstrings instead of Nat.

Hereditarily Finite Sets. Hereditarily Finite Sets [12] will be represented as
an Encoder for the tree type T:

hfs :: Encoder T

hfs = compose (hylo (Iso nat2set set2nat)) nat
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Otherwise, hylomorphism induced isomorphisms work as usual with our embed-
ded transformation language:

∗ISO> as hfs nat 2008

H [H [H [],H [H []]],H [H [H [H []]]],H [H [H []],H [H [H []]]],

H [H [],H [H []], H [H [H []]]],H [H [H [],H [H []]]],H [H [],

H [H [],H [H []]]],H [H [H []],H [H [],H [H []]]]]

One can notice that we have just derived as a “free algorithm” Ackermann’s
encoding [13] from Hereditarily Finite Sets to Natural Numbers:

f(x) = if x = {} then 0 else
∑

a∈x 2f(a)

together with its inverse

ackermann = as nat hfs

inverse_ackermann = as hfs nat

Hereditarily Finite Functions. The same tree data type can host a hylomor-
phism derived from finite functions instead of finite sets:

hff :: Encoder T

hff = compose (hylo nat) nat

The hff Encoder can be seen as a “free algorithm”, providing data compres-
sion/succinct representation for Hereditarily Finite Sets. Note, for instance, the
significantly smaller tree size in:

∗ISO> as hff nat 2008

H [H [H [],H []],H [],H [H []],H [],H [],H [],H []]

that can be also expressed as ((()())()(())()()()()) using a parenthesis
language [10].

One can represent the action of a hylomorphism unfolding a natural number
into a hereditarily finite set as a directed graph with outgoing edges induced by

1

0

2 3

46 7 8 910

2008

(a) as a HFS

0

1

0

3

1 0

2008

6 5 4 3 1

2 0

(b) as a HFF

Fig. 1. Hereditarily finite representations of 2008
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by applying the inverse ackermann function as shown in Fig. 1 (a). Similarly,
a hereditarily finite function is expressed as a directed ordered multi-graph as
shown in Fig. 1 (b). Note that in this case the mapping as fun nat generates
a sequence where the order of the edges matters. This order is indicated by
integers starting from 0 labeling the edges.

5 Permutations and Hereditarily Finite Permutations

We have seen that finite sets and their derivatives represent information in an
order independent way, focusing exclusively on information content. We will now
look at data representations that focus exclusively on order in a content inde-
pendent way - finite permutations and their hereditarily finite derivatives. To
obtain an encoding for finite permutations we will first review a ranking/un-
ranking mechanism for permutations that involves an unconventional numeric
representation, factoradics.

5.1 The Factoradic Numeral System

The factoradic numeral system [14] replaces digits multiplied by a power of a
base n with digits that multiply successive values of the factorial of n. In the
increasing order variant fr the first digit d0 is 0, the second is d1 ∈ {0, 1} and
the n-th is dn ∈ [0..n]. For instance, 42 = 0 ∗ 0! + 0 ∗ 1! + 0 ∗ 2! + 3 ∗ 3! + 1 ∗ 4!.
The left-to-right, decreasing order variant fl is obtained by reversing the digits
of fr.

fr 42

[0,0,0,3,1]

rf [0,0,0,3,1]

42

fl 42

[1,3,0,0,0]

lf [1,3,0,0,0]

42

The function fr generating the factoradics of n, right to left, handles the special
case of 0 and calls a local function f which recurses and divides with increasing
values of n while collecting digits with mod:

fr 0 = [0]

fr n = f 1 n where

f _ 0 = []

f j k = (k ‘mod‘ j) :

(f (j+1) (k ‘div‘ j))

The function fl, with digits left to right is obtained as follows:

fl = reverse . fr

The function lf (inverse of fl) converts back to decimals by summing up results
while computing the factorial progressively:
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rf ns = sum (zipWith (∗) ns factorials) where

factorials=scanl (∗) 1 [1..]

Finally, lf, the inverse of fl is obtained as:

lf = rf . reverse

5.2 Ranking and Unranking Permutations of Given Size with
Lehmer Codes and Factoradics

The Lehmer code of a permutation f of size n is defined as the sequence l(f) =
(l1(f) . . . li(f) . . . ln(f)) where li(f) is the number of elements of the set {j >
i|f(j) < f(i)} [15].

Proposition 5. The Lehmer code of a permutation determines the permutation
uniquely.

The function perm2nth computes a rank for a permutation ps of size>0. It starts
by first computing its Lehmer code ls with perm2lehmer. Then it associates a
unique natural number n to ls, by converting it with the function lf from
factoradics to decimals. Note that the Lehmer code ls is used as the list of
digits in the factoradic representation.

perm2nth ps = (l,lf ls) where

ls=perm2lehmer ps

l=genericLength ls

perm2lehmer [] = []

perm2lehmer (i:is) = l:(perm2lehmer is) where

l=genericLength [j |j←is,j<i]

The function nat2perm provides the matching unranking operation associating
a permutation ps to a given size>0 and a natural number n. It generates the
n-th permutation of a given size.

nth2perm (size,n) =
apply_lehmer2perm (zs++xs) [0..size-1] where

xs=fl n

l=genericLength xs

k=size-l
zs=genericReplicate k 0

The following function extracts a permutation from a “digit” list in factoradic
representation.

apply_lehmer2perm [] [] = []

apply_lehmer2perm (n:ns) ps@(x:xs) =
y : (apply_lehmer2perm ns ys) where

(y,ys) = pick n ps

pick i xs = (x,ys++zs) where

(ys,(x:zs)) = genericSplitAt i xs
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Note also that apply lehmer2perm is used this time to reconstruct the per-
mutation ps from its Lehmer code, which in turn is computed from the permu-
tation’s factoradic representation.

One can try out this bijective mapping as follows:

∗ISO> nth2perm (5,42)

[1,4,0,2,3]

∗ISO> perm2nth [1,4,0,2,3]

(5,42)

∗ISO> nth2perm (8,2008)

[0,3,6,5,4,7,1,2]

∗ISO> perm2nth [0,3,6,5,4,7,1,2]

(8,2008)

5.3 A Bijective Mapping from Permutations to Natural Numbers

One more step is needed to to extend the mapping between permutations of
a given length to a bijective mapping from/to Nat: we will have to “shift to-
wards infinity” the starting point of each new block of permutations in Nat as
permutations of larger and larger sizes are enumerated.

First, we need to know by how much - so we compute the sum of all factorials
up to n!.

sf n = rf (genericReplicate n 1)

This is done by noticing that the factoradic representation of [0,1,1,..] does just
that.

To know by how much we have to shift our mapping, we want to decompose n
into the distance to the last sum of factorials smaller than n, n m and the index
in the sum, k.

to_sf n = (k,n-m) where

k=pred (head [x |x←[0..],sf x>n])
m=sf k

Unranking of an arbitrary permutation is now easy - the index k determines the
size of the permutation and n-m determines the rank. Together they select the
right permutation with nth2perm.

nat2perm 0 = []

nat2perm n = nth2perm (to_sf n)

Ranking of a permutation is even easier: we first compute its size and its rank,
then we shift the rank by the sum of all factorials up to its size, enumerating
the ranks previously assigned.

perm2nat ps = (sf l)+k where

(l,k) = perm2nth ps
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It works as follows:

∗ISO> nat2perm 2008

[0,2,3,1,4]

∗ISO> perm2nat [0,2,3,1,4]

42

∗ISO> nat2perm 2008

[1,4,3,2,0,5,6]

∗ISO> perm2nat [1,4,3,2,0,5,6]

2008

We can now define the Encoder as:

perm :: Encoder [Nat]

perm = compose (Iso perm2nat nat2perm) nat

The Encoder works as follows:

∗ISO> as perm nat 2008

[1,4,3,2,0,5,6]

∗ISO> as nat perm it

2008

∗ISO> as perm nat 1234567890

[1,6,11,2,0,3,10,7,8,5,9,4,12]

∗ISO> as nat perm it

1234567890

5.4 Hereditarily Finite Permutations

By using the generic unrank and rank functions defined in section 4 we can
extend the isomorphism defined by nat2perm and perm2nat to encodings of
Hereditarily Finite Permutations (HF P ).

nat2hfp = unrank nat2perm

hfp2nat = rank perm2nat

The encoding works as follows:

∗ISO> nat2hfp 42

H [H [],H [H [],H [H []]],H [H [H []],H []],

H [H []],H [H [],H [H []],H [H [],H [H []]]]]

∗ISO> hfp2nat it

42

We can now define the Encoder as:

hfp :: Encoder T

hfp = compose (Iso hfp2nat nat2hfp) nat

The Encoder works as follows:

∗ISO> as hfp nat 42

H [H [],H [H [],H [H []]],H [H [H []],H []],

H [H []],H [H [],H [H []],H [H [],H [H []]]]]

∗ISO> as nat hfp it

42
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6 Encoding Directed Graphs and Hypergraphs

We will now show that more complex data types like digraphs and hypergraphs
have extremely simple encoders.

6.1 Encoding Directed Graphs

We can find a bijection from directed graphs (with no isolated vertices, corre-
sponding to their view as binary relations), to finite sets by fusing their list of
ordered pair representation into finite sets with a pairing function:

digraph2set ps = map pair ps

set2digraph ns = map unpair ns

The resulting Encoder is:

digraph :: Encoder [Nat2]

digraph = compose (Iso digraph2set set2digraph) set

working as follows:

∗ISO> as digraph’ nat 2009

[(0,0),(2,0),(0,2),(0,3),(3,0),(0,4),(1,2),(0,5)]

∗ISO> as nat digraph it

2009

Fig. 2 shows the digraph associated to 2009.

0

2 3 4 5

1

Fig. 2. 2009 as a digraph

6.2 Encoding Hypergraphs

A hypergraph (also called set system) is a pair H = (X, E) where X is a set
and E is a set of non-empty subsets of X . We can derive a bijective encoding of
hypergraphs, represented as sets of sets:

set2hypergraph = map nat2set

hypergraph2set = map set2nat

The resulting Encoder is:

hypergraph :: Encoder [[Nat]]

hypergraph = compose (Iso hypergraph2set set2hypergraph) set
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working as follows

∗ISO> as hypergraph nat 2008

[[0,1],[2],[1,2],[0,1,2],[3],[0,3],[1,3]]

∗ISO> as nat hypergraph it

2008

Discussion. For digraphs understood as subsets of N × N , i.e. provided that a
canonical mapping of vertices to an initial segment of N is assumed, our repre-
sentations are clearly bijections. Once the mapping is fixed, a digraph is seen as
a list of edges, each mapped to a distinct natural number using a pairing func-
tion. As all edges are distinct, the resulting list represents a set - which then is
mapped to a unique natural number. Note also that digraphs can be disconnected
and isolated vertices can be represented simply as vertices not occurring in the
list of edges, assuming that the canonical mapping to vertices is such that the
last vertex is connected to at least one other vertex. Under these assumptions,
“digraphs” consisting only of isolated vertices collapse to the same encoding as
the empty digraph. To avoid this problem, one can pair the representation of a
digraph with a number indicating how many such vertices are considered part
of the digraph after the last connected vertex occurring in an edge.

Similar reasoning applies to hypergraphs which are represented as lists of
(distinct) hyperedges - i.e. sets of natural numbers that are then mapped to a
unique natural number.

7 Related Work

The closest reference on encapsulating bijections as a Haskell data type is [16]
and Conal Elliott’s composable bijections module [17], where, in a more complex
setting, Arrows [18] are used as the underlying abstractions. While our Iso
data type is similar to the Bij data type in [17] and BiArrow concept of [16],
the techniques for using such isomorphisms as building blocks of an embedded
composition language centered around encodings as Natural Numbers are new.

Ranking functions can be traced back to Gödel numberings [3,4] associated
to formulae. Together with their inverse unranking functions they are also used
in combinatorial generation algorithms [19,20,21]. However the generic view of
such transformations as hylomorphisms obtained compositionally from simpler
isomorphisms, as described in this paper, is new. Note also that Gödel number-
ings are typically injective but not onto applications, and can only be turned
into bijections by exhaustive enumeration of their range. By contrast our rank-
ing/unranking functions are designed to be “genuinely” bijective, usually with
computational effort linear in the size of the data types.

Pairing functions have been used in work on decision problems as early as [8].
A typical use in the foundations of mathematics is [22]. An extensive study of
various pairing functions and their computational properties is presented in [23].

Natural Number encodings of Hereditarily Finite Sets have triggered the inter-
est of researchers in fields ranging from Axiomatic Set Theory and Foundations
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of Logic to Complexity Theory and Combinatorics [12,24,25]. Contrary to the
well known hereditarily finite sets, the concepts of hereditarily finite functions
and permutations as well as their encodings, are likely to be new, given that our
sustained search efforts have not lead so far to anything similar.

8 Conclusion

We have described encodings for various data types in a uniform framework
as data type isomorphisms with a groupoid structure. The framework has been
extended with hylomorphisms providing generic mechanisms for encoding hered-
itarily finite sets, functions and permutations. In addition, by using pairing/un-
pairing functions we have also derived unusually simple encodings for graphs,
digraphs and hypergraphs.

While we have focused on the Gödel groupoid providing isomorphisms to/from
natural numbers and finite sequences of natural numbers, similar techniques can
be used to organize bijective transformations in fields ranging from compilation
and complexity theory to data compression and cryptography.

We refer to [10] for implementations of a number of other encoders, covering
data types as diverse as functional binary numbers, BDDs, multigraphs, paren-
thesis languages, multisets, primes, Gauss integers, as well as applications rang-
ing from succinct encodings and generation of random instances of complex data
types to experiments in number theory, boolean logic and circuit minimization.
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Abstract. Recent work has detailed the conditions under which uni-
variate Laurent polynomials have functional decompositions. This pa-
per presents algorithms to compute such univariate Laurent polynomial
decompositions efficiently and gives their multivariate generalization.

One application of functional decomposition of Laurent polynomi-
als is the functional decomposition of so-called “symbolic polynomi-
als.” These are polynomial-like objects whose exponents are themselves
integer-valued polynomials rather than integers. The algebraic indepen-
dence of X, Xn, Xn2/2, etc, and some elementary results on integer-
valued polynomials allow problems with symbolic polynomials to be
reduced to problems with multivariate Laurent polynomials. Hence we
are interested in the functional decomposition of these objects.

1 Introduction

Determining whether a univariate polynomial may be written as the functional
composition of others of lower degree is a question that has been studied for
almost a century. Ritt [1] considered the case of polynomials with complex co-
efficients and showed the decomposition factors and their degrees are unique up
to certain transformations. Engstrom [2] and Levi [3] generalized Ritt’s results,
showing they hold for arbitrary fields of characteristic zero.

Polynomial decompositions can be useful because they reveal the structure
of a problem. This may allow certain problems to be solved explicitly that oth-
erwise could not be. Decomposable polynomials of a given degree form a low-
dimensional subspace of the space of all polynomials of that degree. A polynomial
that is the composition of two others of degrees r and s has degree rs, but in-
stead of requiring rs + 1 coefficients to describe, it can be specified by the r + s
independent coefficients of its composition factors.

Algorithms by Barton and Zippel [4] and more recently by Kozen and Lan-
dau [5] have been incorporated in many computer algebra systems. Generaliza-
tions have been studied for functional decomposition of rational functions [6],
algebraic functions [7] and multivariate polynomials [8]. More recent work by
Zieve [9] has shown the conditions under which univariate Laurent polynomials
may be decomposed, and gives results analogous to those of Ritt.
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Separately, we have been interested in the problem of reasoning about and
performing algebraic operations on families of polynomials parameterized their
exponents [10,11,12]. This work explores algorithms that work in the generic
case, and can be specialized uniformly by evaluating the exponent parameters.
Other work considers case-based structure [13,14,15].

As defined more precisely in [10,11], the so-called “symbolic polynomials”
resemble ordinary polynomials with exponents that are integer-valued polyno-
mials. For example, X(n2−n)/2 − X2nmY m − 4 would belong to a particular ring
of symbolic polynomials. Taking the integer-valued polynomials as an abelian
group gives the symbolic polynomials an obvious group ring structure. Using
the fact that integer-valued polynomials have integer coefficients when written
in a binomial basis (in this example,

(
n
i

)(
m
j

)
for i, j ≥ 0) and on the algebraic

independence of the polynomial variables raised to different monomial powers
(in this example X, Xn, X(n

2), Xnm, Y m), it is possible to reduce many problems
on symbolic polynomial to problems on multivariate Laurent polynomials.

Most recently, the problem of functional decomposition of symbolic polynomi-
als has been studied, and reduced to the functional decomposition of multivariate
Laurent polynomials [16]. In this article we now explore the algorithmic aspects
of finding such functional decompositions of Laurent polynomials. We present
two algorithms for univariate Laurent polynomial decomposition: one that re-
duces the problem to polynomial decomposition and one that solves the problem
directly. We also present their multivariate generalization.

The paper is organized as follows: First, Section 2 gives some initial definitions
and notations. Then Section 3 presents the decomposition problem for univariate
Laurent polynomials. We note that the important case, from an algorithms point
of view, is when a Laurent polynomial f decomposes as f = g ◦ h with g a
polynomial and h a Laurent polynomial. The main body of the paper is devoted
to showing how to compute such decompositions. The first method uses the
leading and trailing coefficients of f to find the leading and trailing coefficients
of h. Section 4 gives the required mathematical justification for the method and
Section 5 gives the algorithm. This method has the advantage that it may be
implemented using an existing polynomial decomposition library, but it has the
disadvantage that it may require trying multiple candidate values for h. The
second method avoids this problem and determines the coefficients of h from a
single triangular system involving the leading coefficients of f . Section 6 gives the
mathematical background for the method and Section 7 presents the algorithm.
The multivariate generalization of these methods is discussed in Section 8 and
Section 9 concludes the paper.

2 Preliminaries

We begin by establishing certain notation and conventions we use throughout.

Notation 1 (Univariate Laurent polynomials). For a ring R R, we denote
by R[(X)] the ring of Laurent polynomials R[X, X−1]/〈XX−1 − 1〉.
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Notation 2 (Multivariate Laurent polynomials). For a ring R R, we de-
note by R[(X1, . . . , Xn)] the ring of multivariate Laurent polynomials

R[X1, . . . , Xn, X−1
1 , . . . , X−1

n ]/〈X1X
−1
1 − 1, . . . , XnX−1

n − 1〉.
Notation 3 (Coefficient). Given f ∈ R[(X)], we denote the coefficient of Xk

in f as [Xk]f or fk.

Notation 4 (Multiplication time). We denote by M(m, n) the time to mul-
tiply polynomials of degrees m and n. If m = n, we write M(n).

Definition 1 (Degree of univariate Laurent polynomial)
Let h ∈ R[(X)] be a Laurent polynomial with a pole of order t at 0 and of order
s at ∞. Then the degree of h is deg h = 〈−t, s〉.

Definition 2 (Degree of multivariate Laurent polynomial)
Let h ∈ R[(X1, . . . , Xv)] be a Laurent polynomial with poles in Xi of order ti at 0
and of order si at ∞. Then the degree of h is deg h=〈(−t1, . . . , −tv), (s1, . . . , sv)〉.

Definition 3 (Total degree of multivariate Laurent polynomial)
Let h =

∑
i ciX

e1i
1 · · · Xeni

n ∈ R[(X1, . . . , Xn)] and w ∈ Zn
>0. Then the total

degree of h with weight vector w is tdegw h = maxi

∑n
j=1 ejiwj. If no weight

vector is specified, then w = (1, . . . , 1) is assumed.

Convention 1 (Empty sequence). The sequence ha, ..., hb is empty if b < a.

3 Univariate Decomposition

We phrase the functional decomposition problem for univariate Laurent polyno-
mials over a field K as follows:

Problem 1 (Univariate Laurent polynomial decomposition).
Given f ∈ K[(X)], K a field, and r ≥ 2 ∈ Z, do there exist g ∈ K[X ] of degree
r and h ∈ K[(X)] such that f = g ◦ h? If so, find such g and h.

We justify below why we consider g ∈ K[X ] and h ∈ K[(X)] as opposed to
g, h ∈ K(X) or g, h ∈ K[(X)].

For the discussion in later sections we fix the following: We let deg f =
〈−rt, rs〉. Supposing g and h exist, we let

g =
r∑

i=0

giX
i, h =

s∑
i=−t

hiX
i f =

rs∑
i=−rt

fiX
i . (1)

We place certain conditions on r, s and t to concentrate on the problem of
interest. We assume t > 0 since otherwise f, g, h ∈ K[X ] and we have the usual
polynomial decomposition. We require the inverse of r in K. In the following,
we let � = s + t and N = �r. Then h has � + 1 coefficients, g has r + 1 and f has
N + 1.

We now discuss our restriction that g ∈ K[X ], h ∈ K[(X)]. This relates to
the ways in which a Laurent polynomial may decompose. The following result
of Zieve [9] describes the situation when K = C.
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Lemma 1 (Zieve). For f ∈ C(X)\C, the fields between C(X) and C(f) are
precisely the fields C(h), where g, h ∈ C(X) satisfy f = g ◦ h; moreover, for
h, H ∈ C(X), we have C(h) = C(H) if and only if there is a degree-one μ ∈ C(X)
such that h = μ ◦ H. If f is a Laurent polynomial (respectively, polynomial) and
f = g ◦ h with g, h ∈ C(X), then there is a degree-one μ ∈ C(X) such that both
g ◦ μ and μ−1 ◦ h are Laurent polynomials (respectively, polynomials).

With this result we may show the following:

Lemma 2. For f = g◦h ∈ C[(X)], g, h ∈ C(X), there is a degree-one μ ∈ C(X)
such that both g ◦ μ ∈ C[(X)] and μ−1 ◦ h ∈ C[(X)] and either (i) g ◦ μ ∈ C[X ]
or (ii) μ−1 ◦ h = Xs for some s ∈ Z, or both.

Proof. Let ĝ = g ◦ μ, ĥ = μ−1 ◦ h ∈ C[(X)] which exist by Lemma 1. Suppose
that ĥ is not a monomial and ĝ �∈ C[X ]. We then have ĝ = X−nG, G ∈ C[X ], n >

0 ∈ Z. Because ĥ is not a monomial, it will have a finite non-zero root. This will
be a pole of f due to the X−n factor of ĝ. This contradicts the fact that f can
have poles only at zero and infinity. ��

The case where h is a monomial may be handled trivially, so we restrict our
attention to the situation where g ∈ K[X ].

4 Facts about Univariate Laurent Polynomials

We now present some elementary facts about Laurent polynomials that are re-
quired to justify our first algorithm.

Engstrom [2] observed that for polynomial composition the leading coefficients
of f and grhr agree and, if h(0) = 0, give a triangular system for the coefficients
of h. The polynomial decomposition algorithm of Kozen and Landau [5] is based
on this fact. We develop generalizations of these ideas for Laurent polynomials.
We begin by showing that both the leading s terms and trailing t terms of f and
grhr agree.

Lemma 3. The coefficients of X i in f and grhr agree for i > rs − s and for
i < −rt + t.

Proof. Let f = grhr+F for F =
∑r−1

i=0 gih
i. The degree of F is 〈−t(r−1), s(r−1)〉

so F has vanishing support for X i, i > rs − s and i < −rt + t. ��

Next we show that the leading and trailing terms of f depend, respectively, only
on the positive and negative degree terms of h.

Lemma 4. Let h+ =
∑s

i=1 hiX
i and h− =

∑t
i=1 h−iX

−i so h = h+ + h0 + h−.
Then the coefficients of X i in f and grhr

+ agree for i > rs − s. Likewise, the
coefficients of X i in f and grhr

− agree for i < −rt + t.

Proof. Let f = grhr + F . The only fi with i < −rt + t or i > rs − s arise
from grhr = gr

∑
r++r0+r−=r

(
r

r+ r0 r−

)
h

r+
+ hr0

0 h
r−
− . If both r+ andr0 + r− are
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non-zero, then 1 ≤ deg(hr+
+ ) ≤ (r − 1)s and −(r − 1)t ≤ deg(hr0

0 h
r−
− ) ≤ 0 so

−rt+t+1 ≤ deg(hr+
+ hr0

0 h
r−
− ) ≤ rs−s. Only when r+ = r can the degree exceed

rs−s. Therefore [X i]f = [X i]grhr
+ when i > rs−s. Similarly, [X i]f = [X i]grhr−

when i < rt − t. ��

The following is the observation of Engstrom, where we leave hs unrestricted in
order to make certain statements easier later.

Lemma 5. The coefficients of h+ are determined, up to a choice of hs, by the
triangular system

gr = frs/hr
s

hs−i = frs−i/(rgrhr−1
s ) + Ps−i(hs, . . . , hs−i+1, gr), 1 ≤ i ≤ s − 1

}
(2)

where Ps−i is a polynomial function of i + 1 variables.

Proof. Lemma 4 and multinomial expansion of grhr
+. ��

A similar result holds for the trailing terms:

Lemma 6. The coefficients of h− are determined, up to a choice of h−t, by the
triangular system

gr = f−rt/hr
−t

h−t+i = f−rt+i/(rgrhr−1
−t ) + P−t+i(h−t, . . . , h−t+i−1, gr), 1 ≤ i ≤ t − 1

}
(3)

where P−t+i is a polynomial function of i + 1 variables.

Proof. As for Lemma 5. ��

We will also require the following simple fact.

Lemma 7. Given k �= 0 ∈ K, there exist ĝ ∈ K[X ], ĥ ∈ K[(X)], such that
f = ĝ ◦ ĥ, ĥs = k, ĥ0 = 0, deg g = deg ĝ, deg h = deg ĥ.

Proof. Take ĝ = g◦(X
a − b

a ) and ĥ = (aX+b)◦h where a = k/hs and b = −h0/hs.
Then ĥs = k, ĥ0 = 0 as desired, and ĝ ◦ ĥ = g ◦ h by the associativity of ◦. ��

5 The Two-Ended Algorithm

5.1 Finding h

It is possible to find the decomposition of Laurent polynomials using the ideas
presented in Section 4. Given f ∈ K[(X)] of degree 〈−rt, rs〉 we may find a candi-
date inner composition factor hcand of degree 〈−t, s〉 by independently finding the
positive degree terms, hcand+, and negative degree terms, hcand−. By Lemma 7,
the constant term, hcand0, can be set to zero. Once hcand is chosen, the outer
composition factor g, if it exists, may be found easily by a number of methods.

There is one point that requires particular attention, however. While it is
possible to specify an arbitrary leading coefficient or trailing coefficient for hcand,
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they may not be chosen independently. Lemmas 5, 6 and 7 show that we are free
to choose h0 and we can find all the other coefficients of h if we know hs and
h−t. We choose hs = 1 and set h0 = 0. Then requiring gr to be the same in the
systems for both leading and trailing coefficients gives

hr
−t = f−rt/frs . (4)

Depending on the field K, there may be up to r possible values for h−t satisfying
this equation. These do not normally all lead to decompositions of f .

Example 1. Let

f = X4 + 4X3 + 4X2 + 6X + 3 − 20X−1 + 9X−2 − 30X−3 + 25X−4.

We set r = 2, h2 = 1 and find h+ = X2 + 2X . The possibilities for h−2 are then
±

√
25. Choosing h−2 = −5 gives f = (X2 + 1) ◦ (X2 + 2X + 3X−1 − 5X−2).

Choosing h−2 = +5 gives htrial = X2 + 2X − 3X−1 + 5X−2. Composing with
generic g and equating coefficients with f gives an inconsistent system. There is
therefore no g such that f = g ◦ h with h2 = 1 and h−2 = 5. ��

It is possible to try each of the r possible choices for h−t until one leads to
a decomposition. This is the main idea of our “two-ended” algorithm. We shall
explain this in more detail shortly. We first present a few pre-requisites.

The first component is an algorithm to find a candidate h+, given f the
degree and the desired leading coefficient for h. This is used twice in the two-
ended algorithm — once to find h+ from f and once to find ĥ− = h−/h−t from
f(1/X).

Algorithm 1 (Positive Degree Terms of h)

Input:

f ∈ K[(X)] of degree 〈−rt, rs〉 and r ≥ 2 ∈ Z.
Output:

A monic polynomial h+ ∈ K[X ], such that if there exist g ∈ K[X ],
h ∈ K[(X)], deg g = r, f = g◦h, then a choice of h has

∑s
i=1 hiX

i = h+.
Note, it may be that there do not exist g, h of the required degrees such
that f = g ◦ h.

Method:

1. Let p := Xs.
2. For k from 1 to s − 1,

(a) Let c := 1
r [Xrs−k](f/frs − pr).

(b) Let p := p + cXs−k.
3. Return h+ = p.

Theorem 1. Algorithm 1 solves the polynomial system (2).

Proof. Let c(k) and p(k) be the values of c and p after k iterations of the loop.
We have frs−k = [Xrs−k]grhr

+ by Lemma 4 so step 2a computes

c(k) =
1
r
[Xrs−k]

((
p(k−1) + hs−kXs−k + O(Xs−k−1)

)r − pr
(k−1)

)
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Induction on k shows p(k) =
∑k

i=0 hs−iX
s−i so p(s−1) = h+. The system (2) is

triangular and introduces each variable linearly so the solution is unique. ��

5.2 Finding g

In the case of polynomials, Kozen and Landau find g by solving the triangular
linear system A ·g = f with entries Aij = [X is]hj , gi = gi, fi = fis, 0 ≤ i, j ≤ r.
They observe that the coefficients Aij can be saved during the construction of
h and that hr

(k) may be computed using values from previous iterations.
For Laurent polynomials, finding g by solving a linear system would require

the coefficients Aij = [X is](h+ + h−tĥ−)j for a choice of h−t. These are not
immediately available as the two applications of Algorithm 1 produce [X is]hj

+

and [X is]ĥj
−. We may nevertheless compute the matrix A, given h+, ĥ− and

h−t, but the advantage of using saved values from the construction of h is lost.
Moreover, we generally need to construct this matrix for several choices of h−t.
While it is possible to do this, depending on the field, it may be more convenient
to find g by interpolation.

Finding g by linear system solving

Suppose we have h+, ĥ−, h−t and f and wish to find g by solving a linear system.

1. Find the (r + 1)2 coefficients Aij = [X is](h+ + h−tĥ−)j for 0 ≤ i, j ≤ r.
Computing Aij can be done in time

∑r
i=1 M(�, i�). This can be done in

time O(r2�2) = O(M(r�)) with classical polynomial multiplication or time
O(r2� log(r�)) = O(rM(r�)) with fast arithmetic.

2. Solve the triangular system A · g = f , which can be done in time O(r2).

If up to r such systems must be solved, with Aij being computed afresh each
time, then time O(r3�2) is required for classical arithmetic or O(r3� log(r�)) for
fast arithmetic.

Finding g by interpolation

Suppose we have h+, ĥ−, h−t and f and wish to find g by interpolation

1. Evaluate h+, ĥ− and f at points, α1, . . . , αq ∈ K, until r + 1 distinct values
are found for h+ + h−tĥ−. This requires 2q(r + 1)� operations.

2. Interpolate the points {(h+(αj) + h−tĥ−(αj), f(αj)) | 1 ≤ j ≤ q} to obtain
g. This requires O(r2) = O(M(r)) operations with classical arithmetic or
O(r log2 r) = O(log rM(r)) operations for fast arithmetic.

If multiple such interpolations must be performed, the values of h+, ĥ−, f need
not be recomputed. Only the q sums h+ + h−tĥ− need be recomputed, requir-
ing 2q operations. If up to r interpolations are required, the total time is then
O(qr� + r3) for classical arithmetic or O(qr� + r2 log2 r) for fast arithmetic. If
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the field is large enough, q = r +1 with high probability. Thus we have expected
time O(r2� + r3) with classical arithmetic and expected time O(r2� + r2 log2 r)
with fast arithmetic. In the worst case, because there may be up to � values of
X such that h = α, it is theoretically possible to require as many as q = (r +1)�
evaluations of h. The worst case is thus O(r2�2 + r3) for classical arithmetic or
O(r2�2 + r2 log2 r) for fast arithmetic.

Comparison

The complexity of finding the outer composition factor g by linear system solving
and by interpolation is summarized in the table below. The first two columns
give the time complexity if only one candidate for h is tried and the second pair
of columns give the time complexity if O(r) possibilities for h−t must be tried.

1 Linear Sys. 1 Interp. r Linear Sys. r Interp.
Expected Classical O(r2�2) O(r2�) O(r3�2) O(r2� + r3)
Expected Fast O(r2� log(r�)) O(r2�) O(r3� log(r�)) O(r2� + r2 log2 r)
Worst Case Class. O(r2�2) O(r2�2) O(r3�2) O(r2�2 + r3)
Worst Case Fast O(r2� log(r�)) O(r2�2) O(r3� log(r�)) O(r2�2 + r2 log2 r)

Provided the field has sufficiently many elements, the only situation where
solving a linear system is superior to interpolation is when all of the following
conditions hold:

1. the worst case number of evaluations is required (unlikely),
2. O(r) candidates for h must be tried,
3. fast arithmetic is used, and
4. O(r log(r�)) < O(�), e.g. when searching for g of fixed low degree.

Under normal circumstances, therefore, interpolation should be used. This may
be done as described in Algorithm 2.

Algorithm 2 (Interpolation of g)

Input:

f ∈ K[(X)] with deg f = 〈−rt, rs〉,
h+ ∈ K[X ] with h+ monic, deg h− = s,
ĥ− ∈ K[(X)] with ĥ−(X−1) ∈ K[X ], ĥ−(X−1) monic, deg ĥ−(X−1) = t
T a finite set of values {τi ∈ K}.

Output:

If there exit g ∈ K[X ] and τ ∈ T , such that f = g ◦ (h+ + τĥ−), then
returns g and τ . Otherwise returns FAIL.

Method:

1. Choose r + 1 values αj ∈ K, and compute Fj = f(αj), H+j = h+(αj),
H−j = ĥ−(αj), j = 1, . . . , r + 1.
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2. For each value τi ∈ T ,
(a) Compute the values Hj = H+j + τiH−j, j = 1, . . . , r + 1
(b) While the values Hj are not all distinct, say Hj1 = Hj2 , choose a new

for αj1 and recompute Fj1 , H+j1 , H−j1 , Hj1 .
(c) Form g by interpolating the points (Hj , Fj), j = 1, . . . , r + 1.

(d) Test whether f = g ◦ (h+ + τiĥ−). If so, return g and τi.
3. Return FAIL.

5.3 Two-Ended Univariate Laurent Polynomial Decomposition

The above results may be combined to give an algorithm for the decomposition of
univariate Laurent polynomials. The leading coefficients for h+ and the trailing
coefficients for a multiple of h− are found, and the possible values of h−t are
tried to put them together.

Algorithm 3 (Two-Ended Univariate Laurent Polynomial Decomposition)

Input:

f ∈ K[(X)] of degree 〈−rt, rs〉 and r ≥ 2 ∈ Z.
Output:

If there exist g ∈ K[X], h ∈ K[(X)] such that deg g = r, f = g ◦ h,
returns a choice of g and h. Otherwise, returns FAIL.

Method:

1. Apply Algorithm 1 to f(X) and r to compute monic h+(X) ∈ K[X].

2. Apply Algorithm 1 to f( 1
X ) and r to compute monic ĥ−( 1

X ) ∈ K[X].
3. Compute the set T = {τ ∈ K | τ r = f−rt/frs}.
4. Apply Algorithm 2 to f(X), h+(X), ĥ−(X) and T to find g and τ .

If Algorithm 2 returns FAIL, return FAIL.
5. Let h−t = τ and return g and h+ + h−tĥ−.

Although this method requires up to r attempts to find the inner composition
factor h, it is easy to implement in a setting where polynomial decomposition is
already provided. Also, in some important cases the trailing coefficient equation
has only a few solutions, and possibly only one. For example, when K = R there
are one or two alternatives for h−t according as r is odd or even.

If implementing Laurent polynomial decomposition ab initio, it is possible to
find a candidate for h by examining only the leading coefficients of f and without
having to try alternatives. For this we need a few more properties of Laurent
polynomials.

6 Further Facts about Univariate Laurent Polynomials

For the second algorithm for Laurent polynomial decomposition it is useful to
consider more leading and trailing coefficients than contemplated by Lemma 3.
The following obviously generalizes to i > (r − k)s and i < −(r − k)t, but we
need only k = 2.
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Lemma 8. The coefficients of X i in f and grhr+gr−1hr−1 agree for i > (r−2)s
and for i < −(r − 2)t.

Proof. As for Lemma 3.

The leading coefficients are related as follows:

Lemma 9. Let T = min(t, s−1). The coefficients of g, h and the leading s+T +1
coefficients of f are related by a system of polynomial equations of the form

frs = grhr
s

frs−i = rgrhr−1
s hs−i + Ps−i(hs, . . . , hs−i+1, gr), 1 ≤ i ≤ s − 1

frs−i = rgrhr−1
s hs−i + gr−1hr−1

s + Ps−i(hs, . . . , hs−i+1, gr) i = s

frs−i = rgrhr−1
s hs−i + Ps−i(hs, . . . , hs−i+1, gr, gr−1), s + 1 ≤ i ≤ s + T .

Proof. Lemma 8 and multinomial expansion of grhr + gr−1hr−1. ��

The key observation that allows a one-ended algorithm is that the triangular
system (2) can be extended, as a triangular system, if h0 is restricted to be 0. We
see this as follows: From Lemma 8 we know frs−s = [Xrs−s](grhr + gr−1hr−1).
A degree counting argument shows that this coefficient can depend only on
hi, i ≥ 0, gr and gr−1. Higher degree coefficients of f give all of these but h0 and
gr−1 by (2). Then restricting h0 = 0 determines gr−1. We then have a triangular
system that introduces each of the coefficients of h and gr−1 linearly.

Lemma 10. If f ∈ K[(X)] and r ≥ 2 ∈ Z invertible in K, such that f = g ◦ h
for some g ∈ K[X ] of degree r and h ∈ K[(X)] of degree 〈−t, s〉, then gr, gr−1
and all coefficients of h, save possibly h−t, can be determined by a triangular
system of the form:

gr = Qs (frs)
hs−i = Qs−i(frs−i, hs−1, . . . , hs−i+1, g−1

r , gr) 1 ≤ i ≤ s − 1
gr−1 = Q0 (frs−s, hs−1, . . . , h1, g−1

r , gr)
hs−i = Qs−i(frs−i, hs−1, . . . , h1, h−1, . . . , hs−i+1, g−1

r , gr, gr−1)
s + 1 ≤ i ≤ s + T

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)
where T = min(t, s−1) and each Qs−i is a polynomial function of i+1 variables.
The coefficient h−t is also determined if t < s.

Proof. As allowed by Lemma 7, we set hs = 1, h0 = 0 and specialize the system
of Lemma 9. ��

The above results are sufficient for our purposes when t < s, but the following
will be necessary when t = s.
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Lemma 11. If f ∈ K[(X)] is of degree 〈−rs, rs〉, and f = g◦(hsXs+h−sX−s),
then

fis =
� r−i

2 �∑
n=0

(
2n + i

n + i

)
g2n+ih

n+i
s hn

−s 0 ≤ i ≤ r , (6)

hi
−sfis = hi

sf−is − r ≤ i ≤ r , (7)

fj = 0 j �= is, −r ≤ i ≤ r . (8)

Proof. Use induction on r, noting
∑� r−i

2 �
n=� r−1−i

2 �+1
is empty if r − i is odd and

otherwise gives one term with n = (r − i)/2. ��

7 The One-Ended Algorithm

We now show how to decompose a Laurent polynomial by solving a triangular
system derived from its leading coefficients. In the following we assume 0 < t ≤ s.
This does not exclude any Laurent polynomials: If t = 0, the problem reduces
to ordinary polynomial decomposition. If t > s, the algorithm can be applied to
f( 1

X ). Under these assumptions, we are able to determine all the coefficients of
h, except possibly h−t, from the leading 2s coefficients of f . The coefficient h−t

is also found if t < s. The following algorithm computes h, possibly minus its
trailing term.

Algorithm 4 (Determining h − η)

Input:

f ∈ K[(X)] and r ≥ 2 ∈ Z, with deg f = 〈−rt, rs〉, s ≥ t.
Output:

If there exist g ∈ K[X ], deg g = r and h ∈ K[(X)] such that f = g ◦ h,
returns a choice of h − η, where η = h−sX−s. (Note η = 0 if s > t.)

Method:

1. Let p := Xs.
2. For k from 1 to s − 1,

(a) Let c := 1
r [Xrs−k](f/frs − pr).

(b) Let p := p + cXs−k.
3. Let g1 := [Xrs−s](f/frs − pr).
4. For k from s + 1 to s + min(s − 1, t),

(a) Let c := 1
r [Xrs−k](f/frs − pr−1(p + g1)).

(b) Let p := p + cXs−k.
5. Return h = p.
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Theorem 2. Algorithm 4 solves the polynomial system (5).

Proof. We take hs = 1, h0 = 0. Step 2 gives the values for hs−1, . . . , h1 by
Theorem 1. A similar argument shows that Step 3 computes g1 = gr−1 and that
Step 4a computes c(k) = [Xrs−k]

(
f/frs − (hr + gr−1hr−1)

)
. By Lemma 8, these

give the unique values for h−1, . . . , h−T , T = min(s − 1, t). ��

Algorithm 4 gives h if s > t, but if s = t the coefficient h−t is not found.
Depending on the form of h, it is possible to find this remaining coefficient in
one of two ways. If the h− η computed by Algorithm 4 has more than one term,
then we may compute decompositions of f(X) and f( 1

X ) and use the ratio of a
pair of corresponding interior coefficients to determine h−t. Otherwise, a special
method is used for h = Xs+h−s/Xs. These two procedures are described below.

Algorithm 5 (Determining h−s when s = t, h �= hsXs + h0 + h−sX−s)

Input:

f ∈ K[(X)] of degree 〈−rs, rs〉, h−h−sX−s ∈ K[(X)] such that f = g◦h,
g ∈ K[X ], h �= hsXs + h0 + h−sX−s.

Output:

Returns h−s.
Method:

1. Find the smallest i, s − 1 ≤ i ≤ −s + 1, such that hi �= 0.
2. Apply Algorithm 4 to compute h̄ − h̄−sX−s from f( 1

X ) and r.
Algorithm 4 may be terminated early, as soon as h̄−i is computed.

3. Return h−s = h−i/h̄i.

Note that here h0 = h̄0 = 0 and one hi �= 0 by the input requirements.

Algorithm 6 (Determining h−1 when h = X + h−1X−1)

Input:

f ∈ K[(X)] of degree 〈−r, r〉 such that f = g ◦ h for some g ∈ K[X ] and
h = X + h−1X−1.

Output:

Returns h−1.
Method:

1. Let m = gcdi∈I(i) where I = {i | i > 0, fi �= 0}.
2. If m = 1,

(a) Compute ci = f−i/fi, i ∈ I. Note ci = h−1
i, by (7).

(b) Use the extended Euclidean algorithm to find mi,
∑

i∈I mii = 1.

(c) Return h−1 = a where a =
∏

i∈I cmi

i . Note
∏

i∈I cmi

i = h−1

∑
i∈I mii.

3. If m > 1,
(a) Recursively find G◦H =

∑r/m
i=−r/m fmiX

i, deg G = r/m, H = X +A/X.
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(b) Return h−1 = a for any a such that am = A.

We now have all the ingredients of the one-ended algorithm for univariate
Laurent polynomial decomposition. We require s ≥ t so that, with the restriction
h0 = 0 and hs = 1, the first 2s coefficients of f give a triangular system for gr,
gr−1 and all the coefficients of h, except possibly h−s. As stated earlier, if s < t
we apply the algorithm to f( 1

X ).

Algorithm 7 (One-Ended Univariate Laurent Polynomial Decomposition)

Input:

f ∈ K[(X)] of degree 〈−rt, rs〉, s ≥ t and r ≥ 2 ∈ Z.
Output:

If there exist g ∈ K[X], h ∈ K[(X)] such that deg g = r, f = g ◦ h,
returns a choice of g and h. Otherwise, returns FAIL.

Method:

1. Apply Algorithm 4 to f and r to obtain h − η.
2. If s > t, then η = 0 and we have h.
3. If s = t, then

(a) If h − η is a monomial, then
i. If any fj �= 0 for s � |j, return FAIL.
ii. Form F =

∑
i=−r rfisXi.

iii. Apply Algorithm 6 to F to compute h−s

(b) If h − η is not a monomial, then
i. Apply Algorithm 5 to f and h − η to compute h−s.

We now have a candidate for h.
4. Construct the corresponding g by interpolation or by solving the linear system

A · g = f where Aij = [Xis]hj, gi = gi, fi = fis, 0 ≤ i, j ≤ r.
The coefficients Aij computed by Algorithm 4 in Step 1 may be reused.

5. Test whether f = g ◦ h. If so, return g and h. Otherwise return FAIL.

8 Multivariate Laurent Polynomial Decomposition

The functional decomposition of Laurent polynomials can be extended to the
multivariate case. We consider the following problem:

Problem 2 (Multivariate Laurent polynomial decomposition)
Given f ∈ K[(X1, . . . , Xv)], K a field, and r ≥ 2 ∈ Z, do there exist g ∈ K[Y ] of
degree r and h ∈ K[(X1, . . . , Xv)] such that f = g ◦ h? If so, find such g and h.

We reduce this to univariate Laurent polynomial decomposition. The reduction
is not entirely trivial because the univariate algorithm sets h0 = 0 and the usual
multivariate reduction techniques may require h0 �= 0.

To discuss the problem we set the following notation. Let f ∈ K[(X1, . . . , Xv)].
We seek a decomposition f = g ◦ h with g ∈ K[Y ] with deg g = r. We require



Algorithms for the Functional Decomposition of Laurent Polynomials 199

that r have an inverse in K and let deg f = 〈(−rt1, . . . , −rtv), (rs1, . . . , rsv)〉.
We use the notation pi1...iv = [X i1

1 · · · X iv
v ] p where convenient.

Our univariate decomposition methods are based on the degrees of monomials.
We will therefore employ techniques that preserve monomial degree. The first
problem is then to find a weight vector such that no term of f , other than the
constant term, has weighted total degree 0. This gives the following problem.

Problem 3 (Finding a constant-isolating weight vector)
Given a finite set of vectors v(1), . . . , v(N) ∈ Zn, find a vector w ∈ Zn such that
v(j) · w ⇔ v(j) = 0.
Finding such a weight vector is straightforward. Finding such a weight vector
that, for efficiency, minimizes the weighted degree of f requires more attention.

Once such a weight vector is found, we may make substitutions Xi �→ αiX
wi
1 ,

αi ∈ K, 2 ≤ i ≤ v to obtain a univariate problem. Because of the choice of
w, setting h0 = 0 in the univariate image omits only the constant term in the
multivariate problem. Finding multiple images of h under different substitutions
allows h to be constructed by dense or sparse interpolation. The outer compo-
sition factor g need be computed only once. As before, it is necessary to test
whether the candidate h gives f = g ◦h since not all of the coefficients of f were
examined to construct the composition factors.

In practice, we have found it to be more convenient avoid interpolation and to
construct a multivariate h candidate directly. This can be achieved by adapting
Algorithm 4 to use polynomials of homogeneous weighted degree d wherever a
monomial of degree d is used in the original algorithm.

9 Conclusions
Motivated by the desire to reason about symbolic polynomials, we have studied
the problem of Laurent polynomial decomposition. We have presented two algo-
rithms to find the functional decomposition, if one exists, of a Laurent polyno-
mial f as g ◦ h, where g is a polynomial of a specified degree. The “two-ended”
method constructs h from the leading and trailing coefficients of f and can
be implemented in terms of an existing polynomial decomposition library. The
“one-ended” method is more efficient and constructs h from only the leading
coefficients of f . Multivariate Laurent polynomial decomposition can be given
in terms of either of these methods.

These methods may be used to give the complete decomposition of a Lau-
rent polynomial into irreducible composition factors. Both of these methods are
susceptible to the same techniques to improve asymptotic complexity as the
polynomial decomposition method of Kozen and Landau. Test implementations
have been made in the Maple computer algebra system.
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Abstract. Many approaches have been proposed over the years for the
recognition of mathematical formulae from scanned documents. More
recently a need has arisen to recognise formulae from PDF documents.
Here we can avoid ambiguities introduced by traditional OCR approaches
and instead extract perfect knowledge of the characters used in formulae
directly from the document. This can be exploited by formula recognition
techniques to achieve correct results and high performance.

In this paper we revisit an old grammatical approach to formula recog-
nition, that of Anderson from 1968, and assess its applicability with re-
spect to data extracted from PDF documents. We identify some problems
of the original method when applied to common mathematical expres-
sions and show how they can be overcome. The simplicity of the original
method leads to a very efficient recognition technique that not only is
very simple to implement but also yields results of high accuracy for the
recognition of mathematical formulae from PDF documents.

1 Introduction

In this paper we consider the problem of extracting mathematical formulae from
Adobe PDF files, analysing their content and generating LATEX output that
reliably reflects the presentation of the formulae in the document. Furthermore,
it is our intention that the LATEX that we produce should not be dissimilar to that
which a human user who commonly uses LATEX might produce. In particular,
this means that

1. we reject the option of simply independently placing every character found
in the document at its correct location using LATEX’s picture environment.
This would produce results that are only a visually accurate reproduction of
the original but that lose a human writer’s intention in the source text.

2. the produced LATEX is clean and simple, often cleaner and simpler than the
author’s original source, if that source was indeed in LATEX.

3. the produced PDF may actually improve upon the original because of LATEX
features that may not have been included in the original, or indeed, because
the original was not formatted with LATEX.
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It is our hope that such a system would be of benefit to the sight-impaired,
who are otherwise excluded from reading the mathematical content of normal
PDF documents, as well as providing some first steps towards improved usability
of scientific documents to scientists, engineers, teachers and students; namely via
the ability to easily extract potentially complicated formulae from documents
and enter them into software tools such as computer algebra systems, function
graphing packages, program code generation tools or theorem provers.

There is a moderately large and growing body of work on mathematical for-
mula recognition from optically scanned images of documents. However, there is
also a large number of scientific papers and texts available in PDF and, to date,
very little work on taking advantage of the PDF document format to improve
the accuracy, reliability and speed of formula recognition. Indeed, the most so-
phisticated and widely available tool for mathematical formula recognition at
this time, Suzuki’s Infty system [15], currently processes PDF documents by
rendering the pages to an image format and applying its image analysis on that
image. However, we claim that there are considerable benefits that can be ob-
tained, albeit after a certain investment of effort, by analysing the PDF contents
directly, rather than just analysing its rendered image. For a certain wide range
of PDF documents we have the following advantages:

1. PDF documents contain proper character names for each character, obviat-
ing the need for the naturally error-prone and complex task of identifying
characters from their shapes.

2. PDF documents unambiguously identify the font names and families that the
characters are from. This is a particular source of complexity in mathematical
formula recognition from scanned images, as font differences can be subtle
but much more significant in mathematical texts than in normal text.

3. Other font metrics are directly available from the PDF document that can
be extremely difficult to robustly obtain from images. These include the
baseline position, the font weight, the italic angle, the capital and x height.

4. Mapping to Unicode can be obtained via the Adobe Glyph List, which, in
particular, would simplify translation to MathML.

Unfortunately, not all PDF files provide these advantages. Some PDF documents
store their page content only as images, in which case no advantage can accrue
to the PDF analyser. Also, different versions of the PDF format require differ-
ent algorithms for analysing them. Finally, PDF supports different font types.
Type 1 and true type fonts are embedded in the PDF document with the meta
information available as described above. Type 3 fonts, however, contain only
rendered versions of the characters and the meta-information in not usually ob-
tainable. Our research prototype currently works only with PDF versions 1.3
and 1.4 [1] using type 1 fonts.

By default TEX and LATEX produce files suitable for our analysis, but other
document processing systems (e.g., Troff) do so as well. Of course, if the source
PDF has been originally produced from LATEX, one could argue that it might
be preferable to immediately work with the LATEX source rather than the PDF,
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thus avoiding the entire recognition problem. A counterargument to this is that,
firstly, most documents are only available as PDF files without the corresponding
sources, even if generated from LATEX. Secondly, analysing a LATEX document
with possibly multiple, nested layers of author defined macros might turn out
to be more difficult and potentially less precise than working with the rendered
result in form of a PDF document. This is especially the case when authors
indulge in constructing symbols by overlaying multiple characters with explicit
positioning — we have found this to be, unfortunately, relatively common in
papers in Logic and Computer Science, even though correct symbols are available
in the appropriate fonts.

Previous work in this area includes work by Yang and Fateman [16], who
worked with mathematics contained in postscript files. By using font informa-
tion contained within the file and heuristics based on changing fonts, sizes and
using certain symbols, they were able to detect mathematics, which could then be
recognised and parsed. Yuan and Liu [17] and Anjwierden [4] have both analysed
the contents of PDF files in order to extract content and structure, however nei-
ther considered recognition of mathematics. Blostein and Grbavec [6] and Chan
and Yeung [7] have written general reviews on mathematical formula recognition.

Our process to recognise mathematical formulae from PDF documents begins
with identifying a clip region to analyse and extracting the information about
the glyphs in the clip region from the PDF file, c.f. Section 2. We employ a two
phase approach to parsing the formula itself, described in Section 3. The first
phase is based on Anderson’s original linearizer [3], adapted and extended to
overcome some of its limitations, to turn a two dimensional mathematical for-
mula into a linear representation, followed by a standard Yacc-style LALR parser
to analyse the resulting expression into an abstract syntax tree. In Section 4 we
present our LATEX driver that walks this tree to generate the LATEX output. We
summarise our experiments in Section 5.1, discuss the issues resulting from this
work (Section 5 and present our conclusions and future work in Section 6.

2 Extracting Information from PDF Files

We have previously presented the problems of, and our solutions to, extracting
precise information about the characters from the PDF file [5], but summarise
our approach here. PDF documents are normally presented in a compressed
format. We currently use the open source Java program, Multivalent [11] to de-
compress them. At this point we can extract the PDF’s bounding box (PDFBB)
information about the characters as well as their font and Unicode metadata.
Unfortunately, the PDFBB data obtained is a gross overestimate of each char-
acter’s true size and only a rough guide to its position. This information is good
enough for the analysis of normal text but inadequate for the fine distinctions
required for two dimensional mathematical formula recognition. In particular,
the PDFBBs for characters overlap significantly, even if the underlying charac-
ters are fully disjoint. In order to obtain the true bounding boxes, we render the
PDF page to a tiff image and identify the true glyph bounding boxes (GBBs)



204 J.B. Baker, A.P. Sexton, and V. Sorge

from the image. Then we need to register the GBBs with the PDFBBs from
the PDF file to produce the final symbol structures, which contain the character
information together with a true, minimal bounding box.

The overlap in PDFBBs is great enough that, even in simple cases, the true
character bounding boxes will intersect with a number of different PDF bounding
boxes, making identification of the correct registration difficult. To overcome
this problem we uniformly shrink the PDF bounding boxes by calculating the
standard PDFBBs for the characters using the standard algorithm, but on the
basis of a font size that is ten times smaller than the true one. This ensures that
baseline information is preserved but also that the PDFBBs no longer overlap
in most cases. For many cases, checking for intersection between this reduced
PDF bounding boxes and the true bounding boxes is sufficient to identify the
correct registration between glyph and character. However there are a number
of special cases that still need to be dealt with. Some glyphs are composed of
multiple overlapping characters, e.g., extended brackets or parentheses. Some
characters are composed of multiple separate glyphs, e.g., the equals sign. The
true bounding box for some symbols will necessarily intersect the bounding boxes
of some different characters, e.g., the true bounding box for a square root symbol
will typically intersect that of all of the symbols in the expression under it.

We handle these cases using the following algorithm where a syntactic unit is
a structure identifying the symbol and its true bounding box and is the analogue
of a single character in a one dimensional parser. The resulting set of syntactic
units forms the input for the next step in the process.

Algorithm 1 (GlyphMatch)

Input: A set of glyph bounding boxes and a set of PDF characters
Output: The set of syntactic units with exact bounding boxes and metadata.
Method:

1. Extenders: The fence extenders have indicative names, so use the names and
the fact that their reduced PDF bounding boxes intersect the glyph bounding
box of the fence glyph to register, and consume, the connected set of charac-
ters with the fence glyph.

2. Roots: A root symbol is composed of a radical character and a horizontal line.
The former is clearly identified in the PDF file but, because its glyph bound-
ing box is large and may contain many other characters, including nested
root symbols, some care is required. The reduced PDFBB for the radical is
always contained within the GBB for the root symbol, although the appro-
priate GBB may not be the smallest GBB that encloses it. Iterate through
the radical characters in the clip in topmost, leftmost order. For each such
symbol, register with it, and consume, the largest enclosing GBB.

3. One-One: Now we can safely register and consume every single glyph with a
single character where the GBB of the glyph intersects only the PDFBB of
the character and vice versa.

4. One-Many: Any sets of characters whose PDFBBs intersect only the same
single glyph are registered and consumed.
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5. Many-Many: This usually occurs in cases such as the definite integral, where
the integral and the limits do not touch, but the PDFBB of the limits intersect
the GBB of the much larger integral character. For a group where more than
one GBB intersects, identify a character whose PDFBB intersects only one
of the GBBs, Register and consume that character with that GBB. If all
characters have not yet been consumed, repeat from Step 3.

3 2D Parser

3.1 Anderson’s System

In Anderson’s thesis [3], which describes a coordinate grammar approach, he
presented two algorithms. The first is a backtracking algorithm and does not
scale well with large mathematical expressions. The second was far more efficient
and it is this upon what we have based our work. This approach produces a single
string representing a 2-d mathematical expression using a recursive function
called Linearize. It takes as input a list of syntactic units, ordered by left-to-
right and top-to-bottom bounds. Each symbol in the list is either output or used
to partition the remainder of the list into sets that are recursively processed by
Linearize in a strict order and output with special characters which identify
their spatial relationships, which we call a linearised structure string. This string
can then be parsed by a normal one-dimensional grammar to produce a parse
tree. Unfortunately, it was only designed to work with a relatively simple algebra,
working on a subset of the rules for mathematics described in his thesis.

The grammar itself has many restrictions, and relies on very carefully typeset
mathematics, e.g., upper and lower limits in symbols such as

∑
had to be

bounded horizontally by the symbol itself. Hence limits which occur to the right
of the symbol, common in inline mathematics, or which extend past the right or
left horizontal extent of the

∑
symbol itself, would not be correctly recognised.

It was limited in the number of operators it recognised and could not cope with
multi-line expressions at all. Despite these limitations, it provides a base that
can be extended and modified to deal with a far larger set of mathematics.

3.2 Linearizer for PDF Data

In this section we present our modified Linearize algorithm, extending that
of Anderson to manage a much larger range of mathematical expressions. We
start by grouping some syntactic units into terminal symbols. In many cases,
the terminal symbols are just syntactic units, but a set of syntactic units that
together make up an integer, a floating point number or a mathematical keyword
(e.g., sin, cos, log etc.) are grouped together to form single terminal symbols.

Algorithm 2 (Lex)

Input: A set of syntactic units
Output: A set of terminal symbols
Method:
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1. Find groups of syntactic units whose baseline is common and whose horizon-
tal displacement is within a predefined grouping threshold

2. For each group, if their syntactic units match a regular expression pattern
for an integer, a floating point number or a mathematical keyword, construct
the corresponding grouped terminal symbol and add it to the output set

3. All remaining syntactic units are added to the output set

Next the Linearize algorithm transforms the set of terminal symbols pro-
duced by Lex to a linearised structure string for our one-dimensional LALR
parser:

Algorithm 3 (Linearize)

Input: A set of terminal symbols
Output: A linearised structure string for single or multiple line formulae
Method:

1. The set of terminal symbols is maximally partitioned by horizontal bars of
a predefined width of unbroken white space and each group is sorted lexico-
graphically by increasing leftmost and decreasing topmost boundary position.

2. If the partition contains more than one group (i.e., line), note the horizontal
position of the first symbol of the second group, output the token multiline,
“(”, and call Linearize recursively on each group, inserting an alignat token
at the noted position in the first, and at the start of each remaining group,
finally output a terminating “)”

3. Otherwise, call LinearizeGroup on the single group

The Linearize algorithm uses a utility method, LinearizeGroup, that pro-
cesses the specific cases that can occur within a single group of tokens:

Algorithm 4 (LinearizeGroup)

Input: A list of terminal symbols, in left-to right, top-to-bottom order for a
single line formula
Output: A linearised structure string for the single line formula
Method:

1. Consume the elements of the input list in order, taking the following action
depending on the value of the first element:

Symbol with limits, e.g.,
∑

or
∫
: If a symbol which often has limits as-

sociated with it is identified, then the remaining list is scanned and the sym-
bols partitioned into 3 sets: upper, lower and others. The head symbol is then
output with the appropriate limits.

Horizontal line: This signals a division. The symbols forming the numer-
ator and denominator are partitioned. Then Linearize is run on each par-
tition followed by the remainder of the list.
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Radical: If a radical symbol occurs then all symbols occurring within its
bounding box are collected — typically, the extreme leftmost tip of the radical
is to the left of any index symbol of the root. Any symbols in the top left corner
of this bounding box are identified as the index of the root and the rest are
passed to Linearize as the body of the root.
Fence symbol: Search for the closing fence.
(a) If one exists, and the symbols bounded by these fences can be split into

multiple lines, it is treated as a matrix and processed line by line, identi-
fying column boundaries by horizontal whitespace. Each cell is processed
as a single group by Linearize

(b) Otherwise, if no matching fence was found and all of the remaining
symbols can be partitioned into more than one line, then it is treated as
a case statement and each line in the case is processed by Linearize.

(c) Otherwise, the fence is treated as a standard symbol and output.
None of the above: If none of the above cases apply then a lookahead
check is made on the next terminal symbol in the input
(a) if the next symbol is directly above or below the current one (normally

such a case indicates an accent, bar, underbrace, etc.), the current symbol
and all subsequent symbols that are similarly covered by the same accent
are collect into a group, passed to LinearizeGroup to be output and
an under or over token is output followed by the symbol identified to
be placed or over under the group.

(b) Otherwise, if the the baseline of the next symbol differs from that of
the current by a predefined minimum and maximum threshold, and the
horizontal positions differ by no more than a predefined threshold, the
next symbol is assumed to define a superscript or subscript group and
this group is identified, partitioned and processed by Linearize

(c) Otherwise the current symbol is treated as a standard symbol and output

Our modified Linearize algorithm can now recognise everything listed in
Anderson’s grammar, along with A. case statements, which are discussed, but
not included in his grammar, B. accents, underbraces, underlines and overlines,
C. limits, whether they occur as sub/superscripts or above or below a symbol,
D. more mathematical operators, such as det and lim, E. Formulae spanning
multiple lines, including simple alignment.

4 Drivers

Once we have the extracted the available mathematical content in linearized
form we can further process it to regain the intended mathematical structure
for both syntactic and semantic analysis. Furthermore, parsing the linearized
expressions into a parse tree can already expose problems in the recognised
expression, such as formulae that have been composed without using standard
command structures (see Section 5 for more details).
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Currently we focus primarily on the faithful reconstruction of formulae for
presentation purposes. We first generate parse trees that are used as an inter-
mediate representation for subsequent translation into mathematical markup.
Concretely we have implemented drivers for LATEX and MathML.

4.1 Syntax Trees

The parse trees we generate from the linearised expressions contains nodes of
different types that reflect the different structures we have recognised during the
linearization algorithm. We define the data structure STree of parse trees via
its single components as follows:

Leaf Nodes: The following leaf nodes are of type STree.

Empty: is the empty node.
Alignat: is a marker node to mark alignment positions in multiline expressions.
Number(d): where d is either an integer or a floating point number.
Name(n): where n is a string composed of alphanumeric characters.

Inner Nodes: Let s, s′, s′′, s1, . . . , sn be structures of type STree that are not
Empty, let t, t′ be structure of type STree that are potentially Empty, let
l1, . . . , ln be lists of STree structures and let n, n′ be strings composed of al-
phanumeric characters. Then the following are of type STree:

Linear(s, s′): meaning that s is followed by s′.
Div(s, s′): s is divided by s′.
Functor(n, s): n contains s.
Super(s, s′): s′ is superscript of s.
Sub(s, s′): s′ is subscript of s.
SuperSub(s, s′, s′′): s′ is superscript of s and s′′ is subscript of s.
Limit(s, t′, t′′): s is an expression with possibly empty limits t and t′.
Over(s, s′): s′ is on top of s.
Under(s, s′): s′ is underneath s.
Case(n, s1, . . . , sm): where si, i = 1, . . . , m represent vertical lines and n repre-
sents a, possible empty, left fence.
Multiline(s1, . . . , sm): where si, i = 1, . . . , m represent stacked expression lines.
Matrix(n, n′, l1, . . . , lm): where li, i = 1, . . . , m are rows in a matrix that is has
left fence n and right fence n′.

4.2 LATEX Driver

The concrete syntax trees are particularly well suited to generate LATEX code,
and its translation is straightforward. The tree is recursively descended and re-
placed with proper LATEX expressions. Leaf nodes are either translated into the
empty string (Empty), a number (Number), or mapped using a lookup ta-
ble (Name). This lookup either translates the given name into a corresponding
LATEX command or leaves it unchanged if it can not find one. We constructed the
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lookup table by extracting the Adobe names from a special PDF file composed
of 579 commonly used characters taken from a database of LATEX symbols [13].
While this special file is currently constructed by hand, and is therefore incom-
plete, we plan for a more exhaustive, automatic mechanism in the future.

As for the inner nodes, the translation of Super, Sub, and SuperSub
is straightforward. Limit nodes are translated in a similar manner to
super-subscript nodes. Linear represents linear concatenation and Div is trans-
lated with the \frac command. A node of the form Functor(n, s) is translated
by taking n as a prefix command for s. Thus if n represents the square root sym-
bol, we generate \sqrt{s}. Expressions in Under nodes are vertically stacked.

Over nodes on the other hand are interpreted as accents. Here the translation
algorithm has to explicitly handle the case of multi-accented characters: While
in PDF accents are stacked bottom up, in LATEX, multi-accent characters are
constructed recursively from the inside out. For example, the character ̇ω has
to be translated from the syntax tree Over(omega, Over(vector, dotaccent))
into the LATEX command \dot{\vec{\omega}}.

Case nodes are translated into left aligned arrays with the single fence char-
acter to the left. Matrix nodes are likewise translated into arrays with their cor-
responding left and right fences. The column number of the array is determined
by the maximal number of expressions given in a single row. Finally, Multiline
nodes are translated into amsmath split environments, with each Alignat nodes
translated into & symbols to handle the alignment.

4.3 MathML Driver

The MathML driver is similar to the LATEX driver, but has some significant dif-
ferences. Empty nodes are again translated to empty strings and numbers are
marked up with the <mn> tag. Name nodes are again mapped using a lookup
table as before, but we employ a translation table1 that maps all of Adobe’s 4281
PDF characters to their corresponding Unicode values. This has the advantage
that we should not come across any character that is not mapped. On the other
hand, mapping to Unicode values, rather than to actual characters or commands
as in LATEX, looses information that could be useful for a future, more detailed
semantic analysis. The result of this mapping is uniformly put between <mi>
tags, thus operators, normally marked up by <mo> tags, are currently not distin-
guished. This could be achieved with another lookup table. However, we believe
this is best left to a proper semantic markup such as an OpenMath driver, as
we can then exploit the semantic knowledge given in content dictionaries rather
than employing a handcrafted lookup table.

We combine consecutive Linear nodes recursively to put them into a single
<mrow> tag. Div nodes are translated into <mfrac> tags and Sub, Super and
Supersub nodes are mapped to the MathML environments <msub>, <msup>,
and <msubsup>, respectively. Over and Under nodes are translated to <mover>
and <munder> tags, where we set the parameter accent to true for the former

1 http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt
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and false for the latter. As opposed to the LATEX driver, in MathML we have to
explicitly sort out nested over and under expressions in order to put them into
<munderover>. Similarly, Limit nodes are mapped to <munderover> environ-
ments rather than represented as sub- and superscripts.

In terms of Functor nodes we currently only handle root symbols, which are
either mapped to <msqrt>, or to <mroot> if the expression is combined with an
additional Sup node, where the latter is then taken as the index value. Again
this analysis is not necessary in the LATEX case as it is handled automatically by
LATEX’s conventions.

Finally, Case, Matrix, and Multiline nodes are all handled by <mtable>
environments. For the latter the alignment is achieved by using MathML’s special
alignment tags <maligngroup/>.

5 Discussion

We present our experimental setup to test the effectiveness our developed ap-
proach and discuss the obtained results as well as some of the general advantages
and deficiencies of the current procedure.

5.1 Experiments

While we developed the PDF extraction and matching algorithms with bespoke,
hand-crafted examples, for the design and debugging of our grammar we have
used a document of LATEX samples [12]. The document contains 22 expressions,
covering a broad range of mathematical formulae of varying complexity. For our
experiments we then chose parts of two electronic books from two complementary
areas of Mathematics:

1. Sternberg’s “Semi-Riemannian Geometry and General Relativ-
ity” [14]. We have extracted all the 79 displayed mathematical expressions
on the first 22 pages of that book.

2. Judson’s “Abstract Algebra – Theory and Applications” [8]. We
have taken 49 mathematical expressions from the first 31 pages.

Note, that we had to choose books that are not only freely available, but
also in the right format, that is, they needed to be in the right PDF format
and have accessible content in the sense that it was created from LATEX and not
given as embedded images or encrypted. Note also that from Judson’s book we
have used a selection of expressions concentrating on complex and thus from our
point of view interesting formulae, as many of the expressions on these pages are
of similar structure or fairly trivial (e.g., simple sequences of elements or linear
formulae) and we still do the clipping manually.

The evaluation of the results was carried out using the LATEX output, as it is
more easily comparable with the original expressions and therefore gives a better
indication as to the faithfulness of the recognition.
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∫ √√√√ n−1∑
i,j=1

Qij (y (t))
dyi

dt
(t)

dyj

dt
(t)dt

γ′ (t) =
n−1∑
j=1

Xj (y (t))
dyj

dt
(t)

y (t) =
(
y1 (t) , . . . , yn−1 (t)

)

‖γ′ (t) ‖2 =
n−1∑
i,j=1

Qij (y (t))
dyi

dt
(t)

dyj

dt
(t)

∫
‖γ′ (t) ‖dt

Q =
(

E F
F G

)

e = N · Xuu

=
1√

EG − F 2
Xuu · (Xu × Xv)

=
1√

EG − F 2
det (Xuu,Xu,Xv)

detQ = EG − F 2

Fig. 1. Formulae from [14]. Left column contains rendered images from the PDF, right
column contains the formatted latex output of the generated results.

In Figure 1, we show the images of a sample of equations as clipped from
rendered images of pages of this book together with the equations as extracted
to LATEX and subsequently formatted. In Figure 2, we show the generated latex
code for the first expression in Figure 1. We have tidied up the white space
in this code for presentation purposes, but not modified any non white space
characters.

From the 79 expressions of the first book, only 1 failed to be recognised when
creating the parse tree. An additional 13 were rendered slightly differently to
the original, but with no loss of semantic information. From the 49 expressions
of book two, 2 could be recognised but produced incorrect LATEX and a further
5 had rendering differences with respect to font inconsistencies.
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\[ \int ^{}_{} \sqrt{ \sum ^{ n - 1 }_{ i , j = 1 }

Q _{ i j } \left( y \left( t \right) \right)

\frac{ d y ^{ i }}{ d t } \left( t \right)

\frac{ d y ^{ j }}{ d t } \left( t \right) } d t \]

Fig. 2. Sample generated LATEX code for first equation in Figure 1

J : =

(
∂u

∂∂vu′
∂u′

∂u
∂∂vv′
∂v′

)

Lij = −
(

N,
∂2X

∂yi∂yj

)

Fig. 3. Some of the incorrectly recognised formulae; original rendered image on the
left, formatted LATEX output of the generated results on the right

A more detail analysis of the results for both books show:

Fences: Within the sample formulae were 186 pairs of fences, of which 182
were rendered correctly. The other 4 pairs were rendered larger than those in
the sample formulae. However, even though they were a different size, it actu-
ally improved the readability of the mathematics. This is shown in the bottom
formula of Fig. 3 where the parentheses now enclose the whole expression.
Horizontal Whitespace: Of 137 lines of formulae, 122 were spaced equiva-
lently to the original samples. Of the 14 cases where spacing was different, 5
did not include appropriate spacing in between pairs of equations separated by
commas, 8 had too much spacing between the : and = symbols, and 2 had too
much spacing between a function denoted by a Greek letter and its bracketed
argument. All formulae that spanned several lines were aligned correctly.
Matrices: All but two of the 19 matrices were identified and rendered correctly.
One could not be translated into a syntax tree as the right bracket had a su-
perscript that is not yet handled by our second phase grammar that parses the
linearized expressions. The second incorrect matrix, given in the lower formula
of Fig. 3, contained no whitespace between the two rows. Therefore the matrix
was recognised as a bracketed expression, with the elements being recognised as
superscripts and subscripts of each other. This case will often occur when text
has been badly manipulated for formatting purposes.
Superscripts and Subscripts: Over 250 super and subscripts occurred, all of
which were recognised correctly. Also no text was incorrectly identified as being
a script. Two expressions could not be formatted in LATEX as they contained
accent characters in unexpected places, which caused problems with the generic
LATEX translation. See the next section for more details.
Font Problems: Except for 5 expressions all formulae rendered in the correct
Math fonts. 2 of the formulae contained blackboard characters for number sets
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which rendered as normal Roman characters and a further 3 contained inter-
spersed text, which was not recognised as such. For a more general discussion of
this and other shortcomings of our current procedure see Sec. 5.3.

5.2 Advantages

We have already discussed the improvements of our algorithm over the original
approach by Anderson previously. Some additional advantages are:

Super- and subscript detection: Since our algorithm for the detection of
super- and subscripts is based on the characters’ true baseline and not on their
centre points on the vertical axis, we gain a reliable method to recognise sub-
and superscript relations. Our experimental results confirm that the algorithm
does indeed yield perfect results, even in the case where the author has used
unusual ways of producing superscripts (e.g., by abusing an accent character).
This is not only a clear improvement of the original, threshold based procedure of
Anderson, but also over comparable approaches. For example, Aly, Uchida, and
Suzuki present an elaborate approach for the detection of super and subscripts
in images [2]. While it yields very good results, it is still based on statistical data
and cannot compete with the advantages of having true baseline information.
Limits: As with super- and subscripts, we also obtain limits of operators like
summations and integrals purely via baseline analysis, yielding perfect results.
Characters vs. Operators: A common problem for regular OCR systems is
to distinguish alphabetical characters representing operators such as sums or
products from their counterpart representing the actual character, for example,
recognising the difference between

∑n
i=0 from Σ∗. In PDF these symbols are

usually flagged by character name such as “summationtext” or “summationdis-
play” as opposed to “Sigma”, which makes their distinction easy, yielding the
their semantics automatically. But, in case the author has not adhered to the
normal LATEX conventions, a “Sigma” can still be given upper and lower limits
as they will be caught as super and subscripts.
Enclosing symbols: These pose a traditional problem for OCR systems. An
example is the square root symbol for which it is generally difficult either to
determine their extension or to get to the enclosed characters in the first place.
However, both pieces of information are straight forward to collect from PDF
and our experiments yield perfect results on square roots so far.

5.3 Shortcomings

We have identified some shortcomings of our current procedure, both from the
experimental results and from general considerations of the algorithm.

Matrices: Matrices are not identified if there is no whitespace between rows,
instead, they are recognised as an expression enclosed by fences. This can lead
to undesired formatting, in which elements are recognised as superscripts and
subscripts of each other.
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Character abuse and manual layout: Problems can occur if authors have
used LATEX commands contrary to their intended purposes. For example we
have come across expressions of the form Á where we have recognised the prime
character ´ to be in fact an accent character acute. In other words the author
has most probably used a command combination like A\acute{} to achieve the
desired effect. Our grammar, however, views the character as a superscript rather
than an accent, since the character is in the right top corner rather than above
another character. As a consequence our mapping leads to a subsequent LATEX
error. On the other hand a direct translation of the recognised character into
Unicode and translating into MathML as superscript would not yield a problem.
These situations can occur if expressions have been manufactured by moving
characters manually into place (e.g., by using explicit positioning commands) to
achieve a desired presentational effect or if single characters have been created by
overlapping several characters. Then the likelihood to recognise the correspond-
ing character is higher using a conventional OCR engine than our technique.
Brackets and fences: In our current approach we simply translate bracket
symbols into corresponding LATEX commands and pre-attach a \left or \right
modifier depending on the orientation of the bracket. Obviously this does not
necessarily correspond to the actual form or size of brackets in the original
presentation and it could also pair brackets that are not meant to be opening
and closing to each other, in particular if the author has inserted some solitary
brackets.

In case there is an imbalanced number of fences, we add the necessary \right.
or \left. at the beginning or end of the expression, respectively, to avoid LATEX
errors. Obviously this form of error correction is prone to introduce presentation
errors, as it is not evident which superfluous brackets have to be matched up
and where.

Moreover, not all potential fence symbols can be identified in this way. In
particular, neutral fence symbols (i.e., symbols for which the left and right ver-
sion are identical) like bars but also customary fence symbols can not be handled
this way. A simple heuristic could aim to identify all characters in the PDF with
vertical extenders, excluding some specialist symbols like integral signs. How-
ever, since sometimes even characters of small vertical extension can contain
extenders, this heuristic could not be failsafe. Moreover, one would still have to
pair fences in order to recognise which is a left and which is a right fence, thus
even if fences were always recognised, in case some fence occurs alone, as is often
the case with single bars for example, it is not yet clear how to judge whether
the symbol functions as a left or a right fence to some expression.
Matrix alignment: Matrices are aligned by putting them into bracketed ar-
rays. The horizontal extension of the array is determined by the maximal number
of expressions given in a single row. Since the length of each row can indeed vary,
e.g., in case the author has omitted elements and left free space, the matrix will
appear left aligned and some of the elements of the recognised matrix are not
necessarily at a the position originally intended. This problem can be overcome
by extending the purely grammatical approach and exploiting the actual spatial
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information on the elements in the matrix that can be obtained from the PDF.
We plan to adapt Kanahori and Suzuki’s approach to correctly align OCRed
matrices [9,10] to work with the additional special character information.
Multiline formula alignment: We currently employ a simple method to align
multiline formulae. This works well in most common cases of equational align-
ments. However, we anticipate that it will not necessarily yield good results for
more customised alignments chosen by authors. A more advanced approach will
have to take more detailed spatial information from the PDF into account.
Interspersed text: Regular text within mathematical expressions is currently
not recognised as such and therefore not properly grouped. We intend to em-
ploy improved segmentation techniques that will identify large portions of text
between mathematical expressions. Segmentation would, however, not work for
small areas of text as can often be found, for example, in a definition by cases.
Here a promising approach is to perform text grouping by recognising the font
as non-mathematical.
Specialist fonts: In general we are not yet making use of the specific font
information that we acquire during the PDF extraction phase. The grammatical
recognition phase is purely based on the character information pertaining to
size and relative special positions. In the future we intend to attach the font
information to the recognised symbols and exploit it in the drivers by mapping
it to the appropriate LATEX or MathML fonts.

6 Conclusions

We have presented an approach at recognising mathematical content directly
from PDF documents rather than going the route via traditional OCR. As a
continuation of our previous work in which we revisit traditional heuristic for-
mula recognition techniques and turn them into more analytical approaches in
the light of perfect data, we have presented an adaptation and extension of An-
derson’s original linear grammar to process the PDF data. The result yields a
faithful recognition of the formulae in a predominant number of cases in both
LATEX and MathML translation. Our experiments so far have shown that the
approach is very effective, and although there are some current shortcomings,
they are not of a type that appear to be insolvable within the linear grammar
approach.

To address these shortcomings we want to exploit more of the information
extracted from the PDF explicitly, in particular information on fonts and multi-
line alignments. This would also help to identify additional operator names,
similar to sin, cos, etc., that are not mapped directly to LATEX commands.

We subsequently want to run a case study with a much larger selection of
books and expressions. Thereby the major drawback is still that the segmen-
tation of the mathematical expressions has to be done manually. However, we
want to combine our approach with an automatic segmentation algorithm for
PDF documents, such as the one used in Infty [15].
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A good proof is a proof that makes

us wiser. Manin [41, p. 209].

Abstract. Hilbert’s concept of formal proof is an ideal of rigour for
mathematics which has important applications in mathematical logic,
but seems irrelevant for the practice of mathematics. The advent, in the
last twenty years, of proof assistants was followed by an impressive record
of deep mathematical theorems formally proved. Formal proof is practi-
cally achievable. With formal proof, correctness reaches a standard that
no pen-and-paper proof can match, but an essential component of math-
ematics — the insight and understanding — seems to be in short supply.
So, what makes a proof understandable? To answer this question we first
suggest a list of symptoms of understanding. We then propose a vision of
an environment in which users can write and check formal proofs as well
as query them with reference to the symptoms of understanding. In this
way, the environment reconciles the main features of proof: correctness
and understanding.

1 Introduction

From Pythagoras and Euclid to Hilbert and Bourbaki, mathematical proofs were
essentially based on axiomatic-deductive reasoning. This view was repeatedly
expressed by the most prominent mathematicians. For Bourbaki [11], Depuis
les Grecs, qui dit Mathématique, dit démonstration, and for Mac Lane [37], If
a result has not yet been given valid proof, it isn’t yet mathematics: we should
strive to make it such.

A formal proof is written in a formal language consisting of certain strings
of symbols from a fixed alphabet. Formal proofs are precisely specified without
any ambiguity because all notions are explicitly defined, no steps (no matter
how small) are omitted, no appeal to any kind of intuition is made. They satisfy
Hilbert’s criterion of mechanical testing:

The rules should be so clear, that if somebody gives you what they claim
is a proof, there is a mechanical procedure that will check whether the
proof is correct or not, whether it obeys the rules or not.

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 217–232, 2009.
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By making sure that every step is correct, one can tell once and for all whether
a proof is correct or not, i.e. whether a theorem has been proved.

Hilbert’s concept of formal proof is an ideal of rigour for mathematics which
has important applications in mathematical logic (computability theory and
proof theory), but seems irrelevant for the practice of mathematics.

An informal (pen-on-paper) proof is a rigorous argument expressed in a mix-
ture of natural language and formulae (for some mathematicians an equal
mixture is the best proportion) that is intended to convince a knowledgeable
mathematician of the truth of a statement, the theorem. Routine logical infer-
ences are omitted. “Folklore” results are used without proof. Depending on the
area, arguments may rely on intuition. Informal proofs are the standard of pre-
sentation of mathematics in textbooks, journals, classrooms, and conferences.
They are the product of a social process.

In theory, each informal proof can be converted into a formal proof. However,
this is rarely, almost never, done in practice1. Bourbaki, who came closer to
formal proving than most mathematicians, still declared that formalized math-
ematics cannot in practice be written down in full, a goal that is an absolutely
unrealizable program.

Gödel’s Incompleteness Theorem [25] shows that in every formal system sat-
isfying a modicum of natural assumptions certain statements are true but not
provable. In this sense, the formal approach to mathematics is not universal, not
everything can be formally proved. Still, no universal alternative is available. Al-
though a formal proof cannot guarantee 100% correctness because, for example,
one cannot prove the correctness of the formal prover itself (a well-known result
in computability theory, [24]) the certainty achieved is close to “certain”2.

The advent, in the last twenty years, of proof assistants was followed by an
impressive record of deep mathematical theorems formally proved. The list in-
cludes Gödel Incompleteness Theorem (1986)3, the Fundamental Theorem of
Calculus (1996), the Fundamental Theorem of Algebra (2000), the Four Colour
Theorem (2004), Jordan’s Curve Theorem (2005), the Prime Number Theorem
(2008), see [32]. The December 2008 issue of the Notices of AMS includes four
papers on formal proof: three general overviews [32, 33, 66] and one study case,
the formal proof of the Four-Colour Theorem [29]. Hilbert’s standard of proof is
practicable, it’s becoming reality.

An automatic prover can be used not only to check the validity of a formalised
proof of a known mathematical result (as in the list of famous theorems enu-
merated above), but also to interactively help to “prove” new theorems. The
informal proof of the main result in [19] benefited substantially from the process

1 Russell and Whitehead 2,500-page opus Principia Mathematica [65] is a famous
exception: a fully formalised mathematical book. Russell believed that no human
being will ever read through it.

2 Not all agree. Practically, I am “certain” that the HW+OS+ML/Compiler/Runtime
+ Isabelle implementation is not fully trustable, [62].

3 It’s ironic to have this theorem — which limits the power of formal proving — as
the first formally proved important theorem.
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of formalisation in the interactive theorem prover Isabelle [48] of one of the key
results in algorithmic information theory, the Kraft-Chaitin Theorem.

The correctness achieved by formal proofs cannot be matched by pen-and-
paper proofs. However, an essential component of mathematics — the insight
and understanding — seems to be in short supply. So, what makes a proof
understandable? While correctness can be formally defined, understanding is
subjective, so much more difficult to pin down. Our solution is to suggest a list
of symptoms of understanding and, with reference to these symptoms, to propose
a framework that reconciles correctness and understanding.

The paper is organised as follows. In Section 2 we discuss a list of symptoms
of understanding. In Section 3 we present an envisioned environment that pro-
vides services regarding these symptoms. Section 4 concludes the paper with a
summary of services supporting symptoms and describes future work.

2 Understanding Mathematical Proof

The gap between correctness and understanding seems to be widening (see [15,
18, 16]). Should one abandon the axiomatic-deductive model, should one sacrifice
understanding for efficiency, should one try other avenues?

Although most mathematicians agree that understanding is paramount to
mathematics there is little consensus regarding the understanding of understand-
ing. Understanding in mathematics may mean many things, but, usually, math-
ematicians have no difficulties in recognising it. In contrast with correctness,
understanding is subjective and probably cannot be rigorously defined.

Inspired by the analysis in [8, p. 9–10] we propose a list of symptoms for
detecting the understanding of a proof. We use the term symptom in analogy with
its medical meaning. The list is not exhaustive, not all symptoms are necessary
to identify understanding, and some symptoms overlap. Not all symptoms are
equally important and ranking seems almost impossible. Many mathematicians
may argue that the first two symptoms are the most important ones. Symptoms
are discussed and illustrated sometimes with reference to the following lemma,
which is presented with three proofs, one informal and two formal ones. The
formal proofs were generated with Isabelle. The complete proof script, written
by N. Hay, appears in [34]; it is part of a more complex proof for the Kraft-Chaitin
Theorem [19]. The formal proof in Isar [64] was written by M. Wenzel [62].

Lemma 1. For all (binary) strings x, y, xy extends x.

Proof. (Informal) The relation ‘n extends v’ (written u ⊃ v) is defined by the
following two rules: a) for every string u, u ⊃ u, b) for every strings u,v, if u ⊃
v then ui ⊃ v, for every i ∈ {0, 1}.

Take two strings x, y. If y is the empty string then xy = x ⊃ x by a). If xy ⊃ x and
i ∈ {0, 1}, then x(yi) = (xy)i ⊃ x by associativity of concatenation, hypothesis,
and b). ��

Proof. (Formal: Isabelle proof script using recursive definitions)
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fun extends :: "’A list ⇒ ’A list ⇒ bool"

where
"extends [] [] = True"

| "extends [] (y#ys) = False"

| "extends x [] = True"

| "extends (x#xs) (y#ys) = ((x=y) & (extends xs ys))"

lemma extends1 : "extends A [] "

apply (induct A) apply(simp all)

done

lemma extends2 : "extends (A@B) A "

apply (induct A) apply(simp all) apply(simp only: extends1)

done

Proof. (Formal: Isar proof using Natural Deduction rules)

theory Extends

imports Main

begin

definition extends :: "’a list ⇒ ’a list ⇒ bool"

where "extends A B ←→ (∃ C. A = B @ C)"

lemma extendsI [intro]:

assumes "A = B @ C" shows "extends A B"

using assms unfolding extends_def by blast

lemma extendsE [elim]:

assumes "extends A B" obtains C where "A = B @ C"

using assms unfolding extends_def by blast

lemma extends0: "extends A A"

proof
show "A = A @ []" by simp

qed

lemma extends1: "extends A []"

proof
show "A = [] @ A" by simp

qed

lemma extends2: "extends (A @ B) A"

proof
show "A @ B = A @ B" by simp

qed

lemma extends3:

assumes "extends A’ A"

shows "extends (A’ @ B) A"

proof -

have "extends A’ A" by fact

then obtain C’ where "A’ = A @ C’" ..
then have "A’ @ B = A @ (C’ @ B)" by simp

then show ?thesis ..
qed
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lemma "extends A A" by auto

lemma "extends A []" by auto

lemma "extends (A @ B) A" by auto

end

��
The following list describes symptoms of understanding a mathematical proof
as the ability to perform various tasks. These symptoms have been motivated
by the understanding of mathematics in general.

Symptom 1: Fill in simple details of the proof, like explication of notation and
definitions. Understanding implies the ability to answer questions about con-
cepts, their properties, and relations: What is the domain of variables x, y used
in the informal proof? What happens when x has a value outside its domain,
say x = 102, y = 10? For the first formal proof one can query: What is bool?
What is the relation between True or False or 0 or 1? What is list, @, [], etc.?
What is = and # and what properties do these two relations have?

The level of detail in definitions and concepts is different in the two proofs.
For example, one can query the definitions and properties of =, #, or lists in
the Isabelle formal proof, but hardly in the informal proof.

Symptom 2: Justify other results implicitly used in the proof and inferences. The
property of associativity and the proof by induction are assumed to be known
in the informal proof for Lemma 1 above.

Symptom 3: Give presentations of the proof for different audiences having vari-
ous degrees of expertise. Users can be experts in the subject, experts in the area
but not in the subject, professional mathematicians, graduate students, under-
graduate students, non-mathematicians with interest in the subject, readers of
a science magazine, etc. For example, for an expert the proof of Lemma 1 above
is too detailed, in fact the lemma itself may be omitted. For a beginner, the de-
tailed proof for the irrationality of

√
2 is suitable, see [30, p. 37]. A mathematical

theory is not to be considered complete until you have made it so clear that you
can explain it to the first man whom you meet on the street says Hilbert.

Symptom 4: Cast the proof in different terms. For example, by varying the
proportion of natural language and formulae, by varying the level of detail, or
by using the language of a different area of mathematics4. The irrationality of the
golden ratio can be presented from various perspectives, geometrical, algebraic,
[30, p. 41–45].

Symptom 5: Motivate the proof. Explain why certain notions/constructions are
natural, necessary, in contrast with other potential candidates. For example, one
may ask what is the natural representation of strings in Isabelle and what are
the basic operations with strings [19].

4 The word language does not only refer to the terminology and notation only, but to
the whole “spirit” of an area of mathematics.
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Symptom 6: Indicate key or novel points in the argument. The solution of Post’s
Problem [24, p.237] requires a new ingredient, the priority argument. The argu-
ment is highlighted several times in the proof of the Friedberg-Muchnik Theorem
presented in [24, p.238].

Symptom 7: Give natural examples and counter-examples for various notions
used in the proof. Follow the proof of Lemma 1 and justify why xy ⊃ x for various
groups of strings like x = 10111, y = 10 or x = 102, y = 10.

Symptom 8: Indicate where certain hypotheses are needed. The Banach-Tarski
Paradox shows how to cut a solid sphere into pieces and then reassemble them
without bending, stretching or distorting them to finally obtain two (or ten)
solid spheres equal in volume with the original one — the analog of the “Ponzi-
type” effect in economics. This is possible because by cutting the sphere into
non-measurable pieces one loses information about the initial volume. Is this
possible? Solovay [58] proved that if one doesn’t use the Axiom of Choice one
can construct a set theory in which the Banach-Tarski Paradox is impossible
because every set of reals is measurable. However, in the standard set theory
with the Axiom of Choice the answer is affirmative.

Symptom 9: View the proof in a broader context, for example, as a generalisation
or adaptation of another proof. Many results in different areas of mathematics,
from theoretical computer science to dynamics, can be seen as some kind of
fixed-point construction [31] and, as a consequence, their proof can be phrased
in this general type of argument.

Symptom 10: Discuss interesting generalisations of the proof. Category theory
is one of the important tools for generalisations. Goguen [28] showed that the
construction of the minimal Moore automaton can be lifted to a pair of adjunct
functors between the category of Moore automata and the category of their
behaviours, a more general/deep presentation of minimisation.

Symptom 11: Discuss interesting modifications of hypotheses and their corre-
sponding modifications of conclusions. Solovay’s result discussed above shows
the existence of two set theories, one in which there are non-measurable sets of
reals, and another one in which all sets of reals are measurable.

Symptom 12: Explore alternative proofs. One correct proof is enough to justify
a theorem, but different proofs illustrate the same mathematical phenomenon
from different angles. Pythagoras’ Theorem has at least 367 essential different
proofs [40], Pythagoras’ proof, Euclid’s proof, algebraic proof, various types of
geometric proof, proof by re-arrangement, proof using differential equations, even
a proof by an American President, James A. Garfield. There are four different
proofs for the completeness of the predicate calculus, leading to four techniques
to build models.

Symptom 13: Discuss analogies between notions involved in the proof, between
proofs, between theories, analogies between analogies. This symptom was
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discussed by many authors, see for example [51]. The notion of Hilbert space —
which evolved into a branch of mathematics [68] — appeared when David Hilbert
realised that some important mathematical proofs were structurally the same,
so at an appropriate level of generality they could be regarded as the same type
of argument. Algorithmic information theory shows that the quantity of infor-
mation can be equally defined in complexity terms, without using Shannon’s
probabilistic approach [20, 14].

Symptom 14: Calculate a quantity used in the proof. Chaitin’s Omega number
is a well-defined mathematical real which is random, hence non-computable,
and, as a consequence, only finitely many digits of its binary expansion may be
calculated; in [17] exact values for the initial 40 bits of an Omega number have
been calculated offering a new understanding of its uncomputability.

Symptom 15: Provide an explicit description of an object whose existence is
guaranteed by the theorem. Chaitin’s Omega numbers are computably enumer-
able and (algorithmically) random, but are there other such reals? The answer
is negative, every computably enumerable random real is the Omega number
of a prefix-free Turing machine [14], a more “concrete” description of a general
notion.

Symptom 16: Provide a diagram or visual argument illustrating the proof. The
diagram used in in [30, p. 49] for illustrating a short proof of Pythagoras’ The-
orem is very useful in understanding the proof.

Symptom 17: Identify the main idea of the proof and use it in other contexts.
For example, the standard proof of the irrationality of

√
2, a widely discussed

proof, can be easily adapted for infinitely many other reals,
√

3,
√

5, etc., but it
fails for π (why?).

Symptom 18: Apply the theorem in different contexts. Solovay’s Theorem uses
“forcing” — a technique invented by Cohen [23] for proving consistency and
independence results in set theory — for a different type of problem. In fact,
the important results in mathematics re-appear in contexts different from the
original one. Group theory [55] sprang from number theory into the theory of al-
gebraic equations, and from geometry, developed as an abstract subject, and has
many applications not only in mathematics, but also in physics and chemistry,
even in image processing and arts.

Symptom 19: Recognise the constructive or non-constructive character of a
proof. A constructive proof gives more insight than a non-constructive argu-
ment [12]. To illustrate this delicate point we consider the following

Theorem 1. There exist two irrationals x, y > 0 such that xy is
rational.

Proof. The proof indicates how to ‘construct’ the reals x and y subject
to the conditions of Theorem 1. We distinguish two cases: a) the real
√

2
√

2
is irrational, b) the real

√
2
√

2
is rational.
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In case a) we choose x =
√

2
√

2
, y =

√
2; in case b) we choose x = y =

√
2.

To verify that our choice is correct we proceed again by cases. In case a)
x is irrational by hypothesis, y =

√
2 is well known to be irrational and

xy = (
√

2
√

2
)
√

2 =
√

2
2

= 2. In case b) x = y =
√

2 are irrationals and

xy =
√

2
√

2
is rational by hypothesis. ��

The proof depends on whether
√

2
√

2
is irrational or not, and for the time being

this is an open problem. This proof is not constructive as it doesn’t return values
for the reals x, y: the proof produces two pairs of reals, exactly one satisfying
the requirements of the theorem. The proof above is less non-constructive than
the following one [39]:

Proof. Take the equation xy = 2, and let x run through all irrational
numbers greater than 1. This gives uncountably many corresponding
values of y, which are all different (as x increases y decreases). The
conclusion follows as it is not possible for all these values of y to be
rational because there are only countably many rationals. ��

The second proof gives more information than the first one, as it shows that
there are infinitely many pairs satisfying the conditions of the theorem.

Symptom 20: Program (parts of) the proof in a programming language. Formal-
isation of a proof requires full understanding; once formalised, the correctness of
the proof can be verified and checked. In the process of formalisation, authors
can debug their proof, e.g. they can fix syntactical mistakes, check whether they
used the correct definition and description of all symbols, and whether all sym-
bols have been used correctly and consistently. To me, you understand something
only if you can program it. (You, not someone else!) . . . programming something
forces you to understand it better, it forces you to really understand it, since you
are explaining it to a machine says Chaitin [21, p. xiiii].

The symptoms discussed above are just illustrative for the diversity of meaning
of understanding of proof. Even by contrasting our extremely simple proofs for
Lemma 1 one can see that the informal proof is more intuitive while the formal
proofs are more rigorous. The first formal proof is more compact than the second
one, which is closer in spirit to the informal proof. For deeper proofs this divide
is sharper: see for example the informal proof of the Kraft-Chaitin Theorem in
[14] and the Isabelle proof in [34]. It is worth observing that the Kraft-Chaitin
Theorem has two “roles”: one to be executed as an algorithm, the other to be
analysed and validated. Previous formalisation efforts focused only on the first
part [20]; the work in [19] was directed towards the second.

Informal proofs have many problems (correctness, for example), but also a
glorious history of achievements. What are the problems with formal proofs?
Some may argue that there is no problem whatsoever. Nelson [46] makes a strong
point that syntax is all:
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As to whether or not a string of formulas is a proof there is no dispute:
one simply checks the rules of formation. This is the syntax of mathe-
matics. Is that all there is to mathematics? Yes, and it is enough.

We believe that understanding of formal proofs is the main obstacle. Because of
high complexity, most formal proofs cannot be checked by humans, so we can
ask with Graham: If no human being can ever hope to check a proof, is it really
a proof? Bluntly, can we understand formal proofs to the extent they can be
used instead of pen-on-paper proofs in the practice of mathematics?

3 An Environment for Correctness and Understanding

Our answer to the last question is emphatically affirmative and is described in
the form of an envisioned environment, called active proof environment (APE),
in which users can write and check formal proofs as well as query them with
reference to the symptoms of understanding. In particular, an APE supports
the following services:

– discover or verify a formal proof,
– query for theorems and their proofs,
– formalise informal proofs for verification and checking,
– explore proofs at different levels of abstraction and in various forms of pre-

sentation,
– support queries corresponding to our symptoms of understanding,
– publish mathematical results at an appropriate level of detail and formality.

Various technologies supporting the above services already exist, but no
unique system providing all services. An APE includes a proof assistant and
an intelligent interface

Much research is done in the field of proof assistants, such as Mizar [44],
Isabelle, Coq [10], or Ωmega [56], which include libraries of highly interlinked
formal proofs and theorems [44, 1], the backbone of our environment.

Fig. 1 illustrates three alternative intelligent interfaces: proof assistant inter-
faces, web applications that are integrated with the proof assistant, and web ap-
plications that rely on a mathematical knowledge base that communicates with
a proof assistant. Proof assistant interface implement some features of an APE’s
intelligent interface: Isabelle uses the Proof General Emacs Interface [2] and the
Intelligible semi-automated reasoning language (Isar) [64] producing structured
proof documents. Coq provides a TeXMacs [59] interface for authoring [3] and
a MathML integration for publishing mathematics on the web. The mediator
PlatΩ [6] connects TeXMacs with Ωmega and allows users to develop, publish,
formalise, and query mathematical proofs.

However, the list of symptoms discussed in the previous section shows the
necessity of enhancing existing interfaces to implement services for understand-
ing. Web application implement additional features that can support some of
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Fig. 1. An Active Proof Environment

our symptoms. Users of the vdash wiki [60] can collaboratively formalise math-
ematical proofs. Initial submissions can be verified or marked as sketches to be
fully formalised later. Other mathematical web applications, such as the semantic
wiki SWiM [38] and the document reader panta rhei [45], are not integrated with
proof assistants but work with a central repository of mathematical knowledge
represented in OpenMath [50] and OMDoc [35].

In the following we enumerate available services of proof assistants and pro-
pose new services, focusing on web-based technologies for OMDoc.
Service 1: Query different levels of details for a proof. (Symptom 1)
Authors of formal proofs write proof scripts, including instructions and defini-
tions, for the proof assistant with just enough information to generate a formal
proof for a given theorem. Users are usually presented with an extract of the
fully formalised proof, but can explore the proof on different levels of abstrac-
tions (e.g. see the proof plan data structure PDS [7, 22] in Ωmega [4, 56] or
high-level proofs in [13]), or request the system to print all steps, declarations,
and definitions.

OMDoc representations can include the fully formalised proof. Folding and
elisions of proofs allow one to hide and display different steps and to interactively
adapt the level of detail. SWiM includes static cross-links between OMDoc and
OpenMath representations of symbols and their definitions.

Service 2: Query for justification of proving steps. (Symptom 2)
Proof assistants can automatise the generation of justification for any proving
step. OMDoc uses a markup of informal justification that allows users to link
manually supplied justification with automatically generated inferences.
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Service 3: Write the proof in different levels of expertise. (Symptom 3)
Isabelle/HOL generates formal representations of formal proofs for further com-
putation and export the proof into human-readable formats. Ωmega provides
a graphical map of the proof tree, a linearised presentation of the proof nodes
with their formulae and justifications, a term browser, and a natural language
presentation of the proof [26], [57, p. 370]. Furthermore, interactive natural lan-
guage explanation and justifications of proofs can be generated. PlatΩ supports
the presentations of proofs (generated in Ωmega) for different audiences and can
adapt the level of detail, the proportion of formal and natural languages, or the
mathematical notations [6, 54], as well as interactive stepwise explorations of
mathematical proofs [6, 7].

Service 4: Produce the proof in a specific natural language with different propor-
tions of text and formulae. (Symptoms 3, 4)
Isabelle is a generic framework for human-readable formal proof documents gen-
erated by Isar [63]. PlatΩ supports automatic translations from programming
code to natural language [6, 54]. OMDoc includes a multilingual markup for
proofs [35]. The conversion from OMDoc to XHTML is based on a collection
of XSLT [36] stylesheets, which can be parametrised with the user’s preferred
language or level of formality.

Service 5: Query the motivation for the proof. (Symptom 5)
In OMDoc all fragments of a document are uniquely identified with an Uniform
Resource Identifier [9] and are classified and interlinked according to mathe-
matical categories [35]. This system allows to interlink fragments of a proof with
complementary information, such as a motivation, and can answer corresponding
queries. For example, SWiM represents these categories and relations as RDF
triples [42] and uses SPARQL [52] to process the queries.

Service 6: Query novel points. (Symptom 6)
OMDoc can be extended by rhetorical markup for “novel points” or “obsta-
cle” [27, 35]; XSLT stylesheets can be extended with appropriate visual markers.

Service 7: Query examples and counter examples. (Symptom 7)
The Archive of Formal Proofs (AFP) [1] is a collection of proof libraries, includ-
ing examples, formally verified with Isabelle. Isabelle/HOL provides a counter-
example search based on Quickcheck [47] and Refute [61]. OMDoc supports the
annotation of proofs with examples and counter-examples. SWiM includes static
cross-links to examples and dynamically embeds a list of examples into a page.

Service 8: Query why certain hypotheses are needed and explore consequences if
they are changed or omitted. (Symptoms 8, 11)
Isabelle can be used to experiment and explore consequences of changing various
hypotheses.

Service 9: Produce other proofs that relate to the proof and apply theorems in
different contexts. (Symptoms 9, 10, 18)
Proof assistants organise their mathematical theorems and proofs into contexts
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(or mathematical theories) and morphisms, which are used to transfer entities
from one context to another. Isabelle theories are organised as a graph, so users
can apply a theorem in a new context and explore related theorems and proofs.

OMDoc uses the markup of mathematical theories and theory morphisms [35,
53, 49]. Theories are interlinked via theory morphisms, supporting the reuse of
previously defined concepts. These logical dependencies build up a theory graph
from which one can infer relations between theorems, proofs, or examples.

Service 10: Query for alternative proofs. (Symptom 12)
The formal proofs for Lemma 1 use different techniques: the first one recursion,
the second one natural deduction. Proof assistants can be used to discover or
verify alternative proofs. In OMDoc requests such as “retrieve all proofs for
lemma X” can be processed (Service 6).

Service 11: Query for analogies. (Symptom 13)
Analogies are very important in mathematics and more work, such as [43], has
to be invested to deliver them in APE.

Service 12: Query for calculations. (Symptom 14)
Ωmega integrates external systems such as computer algebra systems (CAS) for
symbolic computation; see [5] for an overview of further technologies.

Service 13: Produce visual illustrations. (Symptom 16)
Some proof assistant generate diagrams and other visual illustrations [67].

Service 14: Query for the main idea. (Symptom 17)
For OMDoc, [27] proposes the markup of “nucleus”, a compact presentation of
the proof from which the full argument can be easily reconstructed. For example,
the nucleus of the second proof of Theorem 1 is “examine the cardinality of the
solutions of the equation xy = 2, when x runs through all irrational positive
numbers greater than one”.

Service 15: Query whether a proof is constructive or not. (Symptom 19)
For Coq, which uses constructive logic, this query is easy to answer. In gen-
eral, partial answers can be obtained by identifying non-constructive rules of
inference.
Service 16: Program parts of the proof. (Symptom 20)
This symptom is automatically satisfied by formal proofs.

4 Conclusion

The main features of mathematical proof are correctness and understanding.
Correctness is easy to define, but there is little consensus regarding the under-
standing of understanding. To address this, we have proposed a list of symptoms
for detecting the understanding of proofs. We have presented a vision of an en-
vironment that provides services addressing the symptoms of understanding, in
which users can write, check, an query formal proofs. In such an environment,
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formal proofs are not only theoretical concepts. Because they guarantee a high
level of certainty and provide understanding, formal proofs can become the stan-
dard of mathematical proof.

In the table below we summarise the technologies that support understanding
of formal proofs, which should be integrated into a unique system. The proposal
is preliminary and needs more extensive experimentation, implementation, and
evaluation. Our analysis mainly refers to the proof assistants Isabelle and Ωmega,
and the OMDoc projects. Our choice doesn’t imply any value judgement on
technologies.

The second author is developing an active document environment [45] in which
users can produce, edit, query their documents, and use the following services:
– configurable layouts and output formats,
– presentations with varying level of detail, expertise, or formality, including

multilingual presentations and consistent use of mathematical notations,
– enrichment of the documents with definitions, motivations, examples, or jus-

tifications and clarification of novel points and main ideas.

Symptom Services Symptom Services
1 PDS/ Ωmega, High-level

proofs, OMDoc
2 proof assistants, OMDoc
3 Isabelle/HOL, PlatΩ/Ωmega
4 Isabelle/Isar, PlatΩ/Ωmega,

OMDoc/ XSLT
5 OMDoc/ SWiM/ RDF/

SparQL
6 extension of OMDoc
7 AFP, Isabelle/HOL, OMDoc/

SWiM
8 Isabelle

9 Isabelle, OMDoc
10 Isabelle, OMDoc
11 Isabelle
12 proof assistants, OMDoc

(RDF/SparQL)
13 [43]
14 CAS
16 [67]
17 OMDoc
18 Isabelle, OMDoc
19 Coq
20 formal proofs
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Abstract. Mathematical Knowledge Management (MKM), as a field,
has seen tremendous growth in the last few years. This period was one
where many research threads were started and the field was defining
itself. We believe that we are now in a position to use the MKM body
of knowledge as a means to define what MKM is, what it worries about,
etc. In this paper, we review the literature of MKM and gather various
metadata from these papers. After offering some definitions surrounding
MKM, we analyze the metadata we have gathered from these papers, in
an effort to cast more light on the field of MKM and its evolution.

1 Introduction

In 2001 Bruno Buchberger and Olga Caprotti organized the First International
Workshop on Mathematical Knowledge Management [10, 11] which was held
September 24–26, 2001 at the Research Institute for Symbolic Computation
(RISC) in Hagenberg, Austria. The MKM 2001 workshop, attended by 60 or so
participants from 10 countries, launched the field of Mathematical Knowledge
Management (MKM)1 and was the first in a series of international [10,11,4,3,29,
7, 27, 6] and regional [31, 33, 34, 35] conferences and workshops on MKM. Since
its inception, the MKM community has struggled with questions like “What
does it mean to manage mathematical knowledge?”, “What should the field of
MKM be?”, “Should MKM have a wide focus?”, if not, “What topics should
MKM focus on?”, “In what direction is MKM heading?”, and “Is MKM making
progress?”. We agree with those who point out that this field is about “(MK)M”
rather than “M(KM)”.

In this paper we seek to answer these and similar questions by reviewing
the literature of MKM, particularly the papers presented at the previous seven
international MKM conferences (MKM 2001, 2003, 2004–8). By gathering and

� This research was supported by NSERC.
1 We will use “MKM” exclusively to mean the field of Mathematical Knowledge Man-

agement that started with MKM 2001 and “mathematical knowledge management”
to mean the activity of managing mathematical knowledge that started centuries
before MKM 2001.

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 233–246, 2009.
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analyzing various metadata about the MKM papers of the past we would like
to show where MKM is today and lay the groundwork for future work that can
trace its evolution.

Our aim with this paper is both to survey the current state of MKM and to
give future surveyors clear data (and hopefully a clear analysis) of the beginnings
of MKM. We also want to offer a tested framework for classifying and analyzing
future MKM research.

In the next section, we cover our understanding of MKM, and in section 3,
we review the history of “mathematical knowledge management”, as a survey of
the context in which we understand the field. In section 4, we outline our data
gathering and data analysis methodology. In the following section, we lay out
the raw results we have obtained, and in section 6, we analyze them. We close
with a conclusion.

2 What Is MKM?

In 2004 in the article [20], we described MKM as follows:

MKM is a new interdisciplinary field of research in the intersection of
mathematics, computer science, library science, and scientific publishing.
The objective of MKM is to develop new and better ways of managing
mathematical knowledge using sophisticated software tools. MKM is ex-
pected to serve mathematicians, scientists, and engineers who produce
and use mathematical knowledge; educators and students who teach and
learn mathematics; publishers who offer mathematical textbooks and dis-
seminate new mathematical results; and librarians and mathematicians
who catalog and organize mathematical knowledge.

Although mathematical knowledge possesses several characteristics that sharply
distinguish it from other kinds of knowledge, MKM also has a nontrivial inter-
section with the field of general knowledge management [21].

MKM is indeed a new field of research, but mathematicians have been con-
cerned with managing mathematical knowledge for hundreds, if not thousands,
of years. A short history of mathematical knowledge management is given in
the next section. However, mathematical knowledge management is now a much
greater concern to mathematicians and other mathematics practitioners than
it ever was before. There are several reasons for a new heightened interest in
managing mathematical knowledge.

First, since World War II there has been an explosion in the mathemati-
cal knowledge produced by mathematicians. The evidence for this statement is
abundant. One only has to examine the growth in mathematics articles, reviews,
journals, conferences, etc.

Second, there has also been a parallel explosion in the mathematical knowl-
edge produced by scientists and engineers as a by-product of their work. Perhaps
the best example of this explosive growth is seen in software development. Com-
puter scientists and software engineers produce millions of software artifacts—
requirements specifications, design documents, pieces of computer code—that



A Review of Mathematical Knowledge Management 235

are essentially mathematical objects. The development and analysis of these
artifacts generates an overwhelming amount of highly specific, but still quite
valuable, mathematical knowledge.

Third, due to the rise in computer and communication systems, how math-
ematical knowledge is managed—that is, articulated, organized, disseminated,
and accessed—is in the midst of a profound transformation. One example is that
a large, and quickly growing, body of mathematical knowledge is now represented
either axiomatically by logical theories or algorithmically by symbolic compu-
tation programs. Another example is the many new ways that mathematical
knowledge is being disseminated, particularly involving the web.

The field of MKM was established to address the large and increasing need for
effective mathematical knowledge management. In the eight years since MKM
2001, researchers have approached the task of managing mathematical knowl-
edge from different points of view and have pursued different topics. It is our
contention that the collection of these views and topics is a strong indication of
what MKM is and where it is heading. Consequently, our review will focus on
extracting from the MKM literature the dominant MKM views and topics.

3 History

While mathematical knowledge management has been named as a separate en-
deavor only recently, its history goes back much further at least to Euclid’s great
and extraordinarily influential Elements.

For the formalist, certainly one important milestone is Frege’s Begriffsschrift
[22], to whom we owe modern logic. In Hilbert’s hands, this became his famous
Program, while Russell and Whitehead produced the Principia Mathematica [42],
to which we owe type theory. While Gödel’s incompleteness theorem [23] certainly
put an understandable damper on these developments, luckily many nevertheless
persevered. Of course, one must mention the Bourbaki project as extolling the
virtues of a formal library of mathematics.

But Bourbaki was hardly the first to try to design such a library. Leibnitz,
frequently credited as having founded both library science and information the-
ory [16], deserves first-mover credit here. The issues of managing large amounts of
information (including substantial parts of mathematics) were already brough to
the fore by Denis Diderot’s Encyclopédie ou dictionnaire raisonné des sciences,
des arts et des métiers [18].

Other aspects of mathematical knowledge management have a similarly ex-
tended history. Those interested in mathematical presentation would be well
advised to read Cajori’s monumental 1929 A History of Mathematical Nota-
tions [14]. For the ones more concerned with interactivity, watching Douglas
Engelbart’s 1968 Mother of All Demos [19] is humbling.

For those most interested in mechanizing mathematics, it is well worth
revisiting the early pioneers like Turing and von Neumann (in particular [39]).
Completely indispensable is a thorough reading of the Automath papers [17,36]—
some recent MKM work just “rediscovers” some of de Bruijn’s early insights.
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Similarly, the QED Manifesto [9] has helped frame the discussion around formal-
ized mathematics for a very long time (see [43] as an enlightening and readable
example).

The more recent history of many parts of MKM have been covered elsewhere
(although a unified treatment is still missing), and we will not repeat that here.
However, we felt that it was important to remind our readers that mathematical
knowledge management actually has a very long history, if one just knows where
to look. This history is for us the proper context in which to evaluate the recent
work explicitly labeled as Mathematical Knowledge Management.

4 Methodology

Before writing this paper, we first agreed on the methodology we should follow.
First and foremost, although our results will inevitably be colored by some of
our biases, we wanted our results to reflect the field itself. This meant that we
have to carefully follow a bottom-up data gathering process where we would
systematically review the MKM literature for metadata.

We decided that the refereed proceedings of the previous seven international
MKM conferences should be considered the “primary sources”. The refereeing
process serves two purposes: insuring a minimal level of quality as well as assert-
ing that the contributions are “on topic”. While there are secondary sources of
useful information on MKM, choosing amongst these would have required too
much subjective judgment on our part. We will come back to this issue in a later
section.

More specifically, this meant that we had to review all 143 papers contained
in [11,4, 3,29,7,27, 6] (which also contain papers for co-located conferences but
which are not counted here). A first pass was done to extract the main “topics”
which were discussed in every paper, in the author’s vernacular. Although at least
one of us has looked through every page of every paper (more than once!), we
relied heavily on the abstract to extract these “topics”. We then formed groups of
topics which seemed closely related: for example, some authors speak of libraries,
while others of repositories. We came up with labels and descriptions for each
of these.2 At no point did we ever discuss whether any topic was important (or
not), interesting (or not), relevant, etc. When abstracting from the specifics to
get general topics, the only criterion was: Is “mathematical knowledge” a crucial
aspect? In some cases, for example issues relating to distributed systems, we
decided that the topic (as it appeared in the papers under review) was core
computer science rather than containing specific MKM issues.

As we still ended up with a rather long list of topics, it was natural to try to
organize the list somehow. At first, we näıvely attempted to create a hierarchy3

out of these topics—and failed miserably. This is when we realized that we
were oversimplifying the problem and, firmly inspired by the field of software
2 Although we believe the extraction of important topics was objective, the grouping

and labeling is inevitably somewhat more subjective.
3 Especially näıve as both of us had read [38].
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architecture, we saw that these papers differed not only in their topics, but also
in their points of view. The next section explains this in more detail. We then had
to re-review each paper to extract the author’s point-of-view, as this information
could not be obtained from the list of topics. We again tried to shorten the list
of topics, and although some topics seem to overlap, each seemed to be about
a separate enough concern that we did not feel justified in narrowing the list
further.

5 Results

This section presents the results of our investigation of the MKM literature.
More specifically, we present the points of view, topics and quantitative data
relating to these.

5.1 Views

In our investigation of the MKM literature we identified six major lenses through
which researchers view MKM. These views are not incompatible; more than one
view is often exhibited in the same research paper.

1. Document. Mathematical knowledge is traditionally communicated via
mathematical documents. The document view of MKM sees the manage-
ment of mathematical knowledge as largely happening inside documents, and
managing these documents is a central concern. The documents, however,
can have several forms. Some examples are articles in journals, hypertext
documents on the web, and theory files produced using theorem provers. An
example of a recent MKM 2008 paper written from the document view is
“On Correctness of Mathematical Texts from a Logical and Practical Point
of View” by K. Verchinine et al. [41]. It is concerned with formalized math-
ematical documents. Other examples are [37,2].

2. Library. One major view of mathematics is that it is a huge body of math-
ematical facts. According to the library view of MKM, the main objective
of MKM is to design and implement libraries, repositories, and archives in
which a part of the body of mathematical facts is assembled, organized,
and made accessible in various ways. How a mathematical library works is
the primary concern; what is held in a library and how it is represented are
secondary concerns. The MKM 2008 paper “Cross-Curriculum Search for In-
tergeo” by P. Libbrecht [30] takes a library view of MKM. It describes how
a library of interactive geometry resources is organized so that it facilitates
search. Other examples are [40,44].
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3. Formal. Mathematical knowledge is highly structured and interrelated. In
the formal view of MKM, mathematical knowledge is managed according
to how it is structured and interrelated. Deduction and computation are
a very important part of this view since they are the principal means by
which the structure of mathematical knowledge is created, discovered, and
communicated. A formal view is taken in the MKM 2007 paper “Formal
Representation of Mathematics in a Dependently Typed Set Theory” by
F. F. Horozal and C. E. Brown [26]. It studies the relationship between an
informal presentation of introductory real analysis and a formal presentation
of it in the Scunak type theory. Other examples are [13, 15].

4. Digital. Like almost all other kinds of knowledge, there is a strong impe-
tus to digitize mathematical knowledge so that it can be handled by com-
puter and communication systems. The digital view of MKM considers the
essence of managing mathematical knowledge to be managing digital objects
that encode mathematical knowledge. The digital view, in particular, is con-
cerned with how mathematical knowledge can be put on and accessed via the
web. A. S. Youssef’s MKM 2007 paper “Methods of Relevance Ranking and
Hit-Content Generation in Math Search” [45] takes a digital view. It pro-
poses techniques for searching digital mathematics libraries. Other examples
are [1,24].

5. Interactive. Mathematical knowledge is created, discovered, and communi-
cated by human-to-human and human-to-tool interaction. The basis of the
interactive view of MKM is that mathematical knowledge can only be prop-
erly managed within the context of this interaction. This view emphasizes
the central role of mathematical knowledge in how mathematics is learned,
produced, and applied. The MKM 2008 paper “Specifying Strategies for Ex-
ercises” by B. Heeren et al. [25] exhibits an interactive view. It investigates
the specification of strategies for use in exercise-solving systems. Other ex-
amples are [32, 5].

6. Process. Another major view of mathematics is that it is a process in which
mathematical models are created, explored, and interconnected. The process
view of MKM focuses on how mathematical knowledge is produced. Man-
aging mathematical knowledge is thus seen as managing the process that
produces mathematical knowledge. This view includes a concern for the
community of mathematicians, scientists, and engineers who produce mathe-
matical knowledge. Process is the dominant view taken in A. Bundy’s MKM
2008 paper “ Automated Signature Evolution in Logical Theories” [12]. It
argues that logical theories evolve over time and, as a consequence, their
signatures need to be managed. Other examples are [8,28].

5.2 Topics

A great many topics have been addressed in the MKM literature. From the top-
ics our investigation has found, we have consolidated a list of 25 topics which
the MKM community, through MKM literature, has concerned itself with. It is
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Fig. 2. The 25 topics of MKM

important to remember that these topics were chosen because some papers made
the point that these topics were of special concern for “mathematical knowledge
management”.

1. Representation. Techniques and devices for representing mathematical
knowledge including data structures, logics, formal theories, normalization,
diagrams, etc.

2. Case-study. Work that focuses on a particular example of mathematical
knowledge, most often as a requirements gathering and analysis exercise.

3. Mechanized. Systems, such as theorem provers and computer algebra sys-
tems, that provide mathematical services that mechanize certain aspects of
the mathematics process.

4. Markup. Markup languages for expressing mathematics such as XML,
MathML, OpenMath, and OMDoc.

5. Presentation. Techniques and devices for presenting mathematical knowl-
edge (like notation and diagrams).

6. Extraction. Techniques for extracting or inferring mathematical knowledge
(like AMS classification or internal but implicit cross-references) from math-
ematical documents and other sources.

7. Search. Searching and querying collections of mathematical knowledge as
well as mathematical services.

8. Practice. Today’s practice of mathematics by mathematicians, scientists,
and engineers including issues like the mathematical vernacular, mathemat-
ics communities, and the role of context and convention.

9. Process. The process of creating, discovering, exploring, and applying math-
ematical knowledge.

10. Translation. The meaning-preserving translation of mathematical knowl-
edge from one representation to another, including parsing techniques.

11. Usability. Techniques for making mathematical knowledge more usable.
12. Web. The fundamental use of the web to communicate mathematical knowl-

edge and to support mathematics practice.
13. Organization. The organization of mathematical knowledge, including the

use of ontologies and metadata.
14. Natural-language. Mathematical knowledge expressed via natural

languages.
15. Library. Libraries, repositories, and archives of mathematical knowledge.
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16. Document. Mathematical documents of all forms.
17. Education. MKM in, and for, mathematical education.
18. Integrity. The consistency, correctness, and certification of mathematical

knowledge.
19. Environment. The development and use of software environments for man-

aging mathematical knowledge.
20. Maintenance. The maintenance and version control of collections of math-

ematical knowledge.
21. Philosophy. The impact of the philosophy of mathematics on MKM.
22. Communication. The communication of mathematical knowledge between

systems, particularly heterogeneous systems.
23. Framework. Frameworks for managing mathematical knowledge.
24. Publishing. Issues concerning the publication of mathematical knowledge.
25. Interactivity. Human-to-human and human-to-tool interaction involving

mathematical knowledge.

5.3 Statistics

Fig. 3. Views

In Figure 3, we see the sorted distribution
of weighted views for all papers. Each pa-
per is assigned a total weight of 1, and
this weight is divided evenly amongst all
points of view espoused by the paper.
Figure 4 is the similar histogram for top-
ics. We also looked at the unweighted
data, and for both views and topics, the
ordering was essentially the same, i.e. the
only changes were when views/topics al-
ready had statistically indistinguishable
counts.

We have also broken down the data in
these two figures by year, rescaling the re-
sults as percentages per year. We can ex-
tract some information from the view-per-year data (see Appendix A), but there
is not enough data (143 papers in 25 × 7 = 175 bins) to extract meaningful re-
sults from a similar breakdown of the topics data. We were unable to find a
meaningful clustering of the topics that might allow trends (if any) to become
visible.

6 Analysis

What can we extract from this data? It is very clear that the community tends to
favor a formal view of mathematics. While that is not totally unexpected, looking
that the problem of MKM, it would probably be healthier if the points of
view were more uniformly distributed. Statistically speaking, the document and
digital views are tied for second, and process and library third, with interactivity
getting the least attention. We believe that the large ratio (4 : 1) between formal
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Fig. 4. Topics

and interactivity is mainly due to
the current makeup of the commu-
nity (many coming from formal back-
grounds and otherwise working on
highly mathematical problems) and
the current state of the field (it is
difficult to build a novel interactive
system atop quicksand and convince
formalists of its worth). In between,
considering the amount of time and
energy it takes to build a reasonable
library of mathematics, it is probably
unsurprising that this viewpoint has
not received equal attention, espe-
cially since MKM has not attracted
many system builders.

The distribution of topics clearly
indicates that representation issues
get the highest share of the commu-
nity’s attention (with the related is-
sues surrounding markup joining in
at number 4). More interesting is the
second-place showing of case-study:
we take this as a sign of a burgeon-
ing field which takes the scientific
method seriously and is doing some
amount of requirements analysis be-
fore diving in with solutions.4

We can also analyze the correlations between views (seen as depending on the
topics) and vice-versa (raw data is shown in Appendix B). For the views, the
most significant correlation (0.7) is between the library and digital views, which
basically says that no one today is looking at large repositories of mathematics
outside the digital domain. There is no correlation (0.0) between digital and
interactive; this is potentially an artifact of how we chose to assign views, but
not clearly so: the emphasis in the digital view is on mathematical knowledge
being digital, while the interactive view emphasizes human interaction (most
often on computers). It is reassuring that there are no negative correlations,
which would have indicated a real flaw in our choices!

Analyzing the correlations between topics, there is a very strong pairwise
correlation (> 0.87) between the 4 topics representation, case-study, mecha-
nized and usability. In other words, regardless of point of view, these topics tend
to appear together. This can also be interpreted to indicate that MKM has a
strong affinity for the topics covered by the Calculemus conference, and would

4 A lack of requirements analysis very often leads to interesting solutions to problems
which did not need solving.
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further justify the co-location of these conferences for 2007, 2008 and 2009. At
the other extreme, the pairs (markup, education), (extraction , education), and
(process , web) are strongly negatively correlated (−0.9, −0.95 and −0.89 respec-
tively). This also makes sense as, no matter how one looks at MKM topics, nei-
ther markup nor techniques for information extraction are (currently) relevant
to MKM issues in education, nor is the advances in web technology as discussed
in MKM papers (currently) relevant to the process of creating mathematics.5

Looking at the per-year data, only a couple of trends appear to be statistically
significant: the process view is gaining some traction, while the formal view
appears to be slowly losing its dominance.

6.1 Secondary Sources

Did we miss something important by ignoring some secondary sources? If we look
at the topics and views covered in the different regional workshops and less formal
conference proceedings [10,31,33,34,35], we see6 that this is not the case. In fact,
the topics and views of the talks at these other meetings seem to fall even more
neatly into our categories than many papers in the MKM proceedings! What we
do notice is a different emphasis, with the formal view being less prominent, but
otherwise all views and essentially all topics are represented.

6.2 Discussion

One must remember that neither our “views” nor our “topics” are exclusive clas-
sifications, nor are they meant to be exhaustive with respect to future research
in MKM. Another important point is that a view, like “document”, should not
be misunderstood as labeling papers which are about mathematical documents,
but rather papers which focus on document-level issues. While documents and
libraries are clearly inter-related, document-level issues and library-level issues
and concerns differ significantly.

Some topics may seem unbalanced—like representation spanning from data-
structures to formal theories. However, the papers on this topic all had one thing
in common: how to encode (via some representation) some important piece of
mathematical knowledge. As the knowledge being represented varied across dif-
ferent scales, so do the tools used. Some topics, like representation and presen-
tation, are in some sense dual to each other; nevertheless, many papers deal
exclusively with one of these topics, while others focus on the highly non-trivial
relationship between presentation and representation. To muddy things further,
some mechanisms (like diagrams) are used to denote both syntax and semantics,
i.e. presentation and representation, often simultaneously.

Some topics may in fact overlap sufficiently that, if the community agrees,
they should be merged. While there are significant differences in the papers that
5 Even though mathematicians routinely use web 1.0 mechanisms as part of the social

fabric of creating mathematics.
6 A similar data-gathering effort was done on these sources, but that data was not

included in our results.
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deal with “organization” versus those dealing with “frameworks”, perhaps that
has more to do with the points of view than the topic. Similarly, the two au-
thors absolutely agree with one reviewer who mentioned that “communication”
and “translation” ought to be the same topic—however this is not (yet?) the
community view, and so we did not feel like we should impose our view onto the
topics in that way. Some topics rely on another (like extraction on document),
but as topics of concern for a paper, they center of very different issues. Simi-
larly, translation can be seen as the strongest possible form of extraction, but
in practice these two topics are treated by very different techniques, and thus
seemed to deserve separate classifications.

7 Conclusion

Our review of the MKM literature has produced a two-dimensional framework
based on views and topics for classifying and analyzing MKM research. Although
some bias on our part has certainly crept into our analysis, we have made a
concerted effort to let the literature speak for itself. Our results show that the
MKM community is pursuing a wide range of topics from a reasonably balanced
set of view points. Our analysis shows that some trends and correlations are
clearly evident such as the persistent interest in the formal view and the strong
correlation between the formal view and the representation topic.

What stands out most in this work are the views. MKM researchers take dif-
ferent points of view when they do their research and write their results. The
six views we have identified appear to cover, either individually or in combina-
tion, the views exhibited in the MKM literature. The views embody the different
ways people see mathematical knowledge as well as the different ways people see
mathematics itself. Like Parnas [38], we refuse to oversimplify MKM and shoe-
horn it into a hierarchy. More productive is to frankly embrace its complexity,
and try to tame it with tools appropriate for a complex field rather than to do
forensics on a carcass.
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A View by Year Data

Percentage of weighted papers for each view, per year.

2001 2003 2004 2005 2006 2007 2008
formal 39.4 35.3 37.8 28.2 54.5 19 32.5
document 12.1 16.7 23.1 26.3 2.27 9.52 20
digital 19.7 31.4 11.5 11.5 9.09 9.52 20
process 4.55 5.88 10.9 12.8 13.6 23.8 15
library 15.2 8.82 8.97 13.5 11.4 23.8 5
interactivity 9.09 1.96 7.69 7.69 9.09 14.3 7.5
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B View-Topic Data

Total number of weighted papers for each combination of view and topic.

formal document digital process library interactive
representation 22 7.3 3.8 6.5 4 3.8
case-study 16 2 4.5 5.3 6.3 3.5
mechanized 18 1.5 0 2.8 1.3 6
markup 6.2 6.2 7.7 1.8 3.3 2.8
presentation 6.3 7.3 3.5 0.83 3.5 4.5
extraction 7.5 3 6.5 1 3.5 0.5
search 2 0.5 7.5 2.5 6 0.5
practice 4 4.5 2.5 5.5 0.5 1
process 2.5 0.5 0.5 0 1 2.5
translation 0.5 1.5 0.5 0 0 1.5
usability 4.8 1 3 3.3 1.8 0
web 5.5 5 0.5 5 1.5 2.5
organization 2 2 3 1 0 0
natural-language 0.83 6.2 0.83 0.33 0.83 0
library 7 4.5 3 0 0.5 0
document 1.3 0 0.33 1 1.3 3
education 3.5 3.5 0.5 0 0.5 0
integrity 1 1.5 0.5 0.5 1.5 0
environment 5.5 1 1 2 0 1.5
maintenance 1 0 0 3 0 0
philosophy 1.3 1.2 6 1.5 2.7 3.3
communication 4.2 0.33 3.2 0.33 4 0
framework 1 2 0 1 2 3
publishing 0 1.3 0.33 0 1.3 0
interactivity 0 1 0 3 1.5 3.5
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Abstract. We document the creation of a new set of OpenMath content
dictionaries to support the expression of quantities and units under the
International System of Units (SI). While preserving many of the con-
cepts embodied in the original content dictionaries, these new content
dictionaries provide a foundation for quantities and units that is compli-
ant with international standards. We respond to questions raised in prior
efforts to create content dictionaries for units and dimensions by propos-
ing and applying some rationalized criteria for the creation of content
dictionaries in general. The results have been released and submitted to
the OpenMath website as contributed content dictionaries.

1 Introduction

We are interested in the creation of a scientific markup for representing physics
based models. In pursuing this objective, we have not found a sufficient body
of markup for creating documents representing physics based models, rather
we find we must develop further markup constructs in order to create such
documents. Luckily, we find that we can build upon a developing body of work
in mathematical markup. The first step in this endeavor, from a bottom-up
perspective, is to properly address the representation of quantities and units.

OpenMath [1] represents a significant effort amongst the various attempts at
representing mathematical knowledge, particularly in the problem area of repre-
senting mathematical semantics using web-oriented standards. Scientific knowl-
edge is a mixture of mathematical representations and references to experiments
and measurements. One of the fundamental intersections of this dual nature of
scientific knowledge is in the representation of quantities and units. An initial
attempt to capture some units and physical dimensions [2], [3] has resulted in
several OpenMath content dictionaries (CDs). The prior OpenMath CDs we re-
fer to are: dimensions1, units metric1, units imperial1, units us1, units time1,
units siprefix, units ops1, and physical consts1. In these efforts, some attention
has been paid to observing conventions specified in the International System of
Units, or Le Système International d’Unités, hereinafter simply referred to as SI,
as expressed in [4], [5], and [6]. In these efforts there is an admitted incomplete-
ness with respect to adherence to the SI in the implementation of the associated
OpenMath CDs for units and dimensions.
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Our work here is an attempt to improve the representation of dimensions and
units within OpenMath by building an new set of explicit SI CDs, following
the current SI standard [7]. We do this in an attempt to close the gap between
OpenMath CDs for units and dimensions and the expression of the formal stan-
dards of units and dimensions embodied in the SI. In this paper, we document
a proposed restructuring of OpenMath CDs for units and dimensions, as well as
attempt to provide answers to questions raised in prior efforts.

1.1 Guiding Principles

Prior to beginning this exposition, we review some of the guiding principles
that we have developed and used. First, the SI represents a few things: a long-
standing, slowly evolving international consensus; a well developed set of coher-
ent standards for quantities and units; and a standard that dominates other,
similar standards. Other standards, such as Imperial units and United States
units, many of which predate the SI, have, over time, typically been redefined in
terms of SI standards, and are largely in a process of being officially phased out.
One of the purposes of the SI is to provide, from a few defined standard units, a
way to repeatably measure all physical quantities. As such, the SI is, foremost,
a standard based on physical measurement, not a mathematical standard. The
definition of quantities, units, and their properties is essentially a posteriori, fol-
lowing from observation. While it is not generally anticipated that there would
be major changes in these observations, in principle, if there were a distinct
change, the meanings of what are defined in the SI would change. This being
said, there is an observed mathematical structure to the concepts of quantities
and units. This observed mathematical structure constitutes a physical theory,
rather than mathematical truth: our acceptance of its truth rests primarily on
consistency with observation and measurement. Being mathematical in nature,
a physical theory’s truth requires mathematical consistency, but the simplicity
or complexity of its mathematical nature does not determine its validity. Neither
can the mathematical nature of a physical theory be determined a priori. Much
of the mathematical structure of quantities and units is described in the SI, and
we intend to capture it as far as possible within the OpenMath framework.

While most non-specialists are familiar with the concept of units, the con-
cept of quantities is perhaps somewhat more esoteric, particularly as the SI
addresses it. Most importantly, some care is required in discussions of quantities
and units, as colloquial usage may often be incorrect with respect to the SI.
Many preconceptions may have to be abandoned for old habits to be replaced
with SI compliant usage.

While embarking on this effort we were faced with several issues regarding how
to make best use of OpenMath CDs. OpenMath and Content MathML [8] both
embrace the concept that it is not only possible, but desirable, to separate the
expression of mathematical semantics from the expression of the presentation of
various mathematical symbols commonly in use. We advocate observing this
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distinction and avoiding the temptation to mix them more than might be neces-
sary. In the development of content markup, we also suggest applying the following
three criteria, as defined below: lack of ambiguity, convenience, and simplicity.

Ambiguity is anathema to content markup. Different from presentation
markup, content markup loses utility if there is ambiguity in semantics. We
suggest that ambiguity in mathematical semantics is tolerable, even desirable,
in presentation markup. Presentation options of a given concept may overlap
with presentation options of other concepts, potentially giving rise to ambigu-
ity. In presentation, ambiguity is usually balanced with economy in the space
allotted to symbols, relying on a context of implicit conventions. Presumably, a
coherent set of presentation options can, and should, be documented in a style
guide and perhaps implemented using a style sheet based translator operating
on a document having content markup. Such an accompanying style guide can
alleviate problems of ambiguity in the presentation markup.

By simplicity in content markup, one thing we mean is that we try to avoid
implementing redundant constructs. While having multiple ways to express the
semantics of a particular concept is not wrong, simplicity in a content markup
language, i.e., having only one principal way to express a certain concept, seems
desirable. Simplicity means fewer symbols to remember and will otherwise aid in
the use of content markup, for example, in minimizing the job of writing transla-
tors for presentation of content. In Content MathML and OpenMath, operators
and functions are currently represented in prefix form without much redundancy.
For example, a prefix divide symbol represents the concept of division. While a
presentation markup certainly does support alternative symbolic expressions of
the operation of division, it is unnecessary for content markup to do so. Infix
variations of division operators are not needed in content markup. Consequently,
we do not insist that content markup include the various symbolic representa-
tions of division: an obelus symbol, a vinculum symbol, or a virgule or solidus
symbol. By contrast, we suggest that this type of simplicity is not as impor-
tant in presentation markup as it is in content markup. Presentation options of
particular concepts need to be as numerous as the presentation conventions one
intends to support, such as all of the above representations of the operation of
division.

This does not mean there should never be any overlapping semantics: divide is
redundant with exponentiation with negative integers. We find this redundancy
acceptable because it is convenient to support both divide and power symbols,
and it can be done without ambiguity. By convenience we mean that we may
implement a possibly redundant set of concepts, usually because it is easier to
do so than not to do so. Clearly, there are trade-offs between simplicity and
convenience and the decision as to what is right and proper is subjective: the
overarching consideration is overall economy of effort for the whole enterprise of
implementation and use of the markup.

In sum, when faced with a question of what is the best way to represent a
particular concept, we find we must first consider whether it relates to: a scientific
or measurement issue; a presentation issue; or a mathematical semantic issue.
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Secondly, in deciding whether to represent a particular concept, we must consider
how to justify it based on principles of simplicity, convenience, and resolving
ambiguity. We apply these guiding principles in the following sections.

2 SI Quantities

Quantities are a fundamental concept within the SI, where quantity is defined
[7] as a “property of a phenomenon, body, or substance, where the property has
a magnitude that can be expressed by means of a number and a reference”. This
reference means a reference amount of the same kind of quantity, called a unit.
The magnitude is the number of unit amounts of the quantity required to be
equal to the amount possessed by the object of interest.

The concept of quantities arises in multiple physical contexts, from the very
specific to the abstract. For example, we can refer to the length of the specific
piece of furniture standing in front of us, the wavelength of an arbitrary frequency
of light, or the general concept of length. The objective is to be able to express
all of these. From the SI definition, one can see that the concept of quantity is
complex, and must have a combination of properties, which include a dimension,
a kind, a unit, and a magnitude. The dimension, kind, and unit properties each
have label, or name, values, and the dimension and unit properties also have SI
symbol values, essentially abbreviated aliases of the names. A magnitude must
have a numerical value expressed in some unit. These are discussed below.

2.1 Quantity Dimension

The most primitive concept of physics markup is that of physical dimension.
With this property, mathematics is transformed to enable representation of phys-
ical quantities. We here define physical dimension, according to common usage,
to include that which is defined as the quantity dimension in the SI standard. In
this usage, the term physical dimension, such as is used in dimensional analysis,
refers not only to the SI quantity dimension, but also to general SI quantities,
including SI derived quantities.

The use of the term dimension in SI, as it relates to physical dimension, is,
however, much more restrictive. The quantity dimensions in systems of quantities
and units are given by the products of powers of a set of base quantities. As
such, the base quantities form a basis for the space of quantity dimensions.
Any system of quantities can, using its own set of base quantities, define a
basis with which to span some space of physical dimensions. For the SI, there
are seven base quantities: length, mass, time, electric current, thermodynamic
temperature, amount of substance, and luminous intensity. The full set of SI
quantity dimensions are generated by products of powers of these specific base
quantities. Physical dimensions that are not in this set of SI quantity dimensions
are not referred to as dimensions within SI. A different system of quantities might
define a separate set of base quantities, consequently having a different set of
quantity dimensions.
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Derived quantities, as defined by SI, are quantities, in a system of quantities,
which are defined in terms of the base quantities of that system. The SI requires
that all quantities in the system be defined in terms of a product of powers of the
base quantities. The SI introduces the concept of a mapping, dim, which maps a
derived quantity to a quantity dimension. The requirement that all SI quantities
be defined in terms of products of powers of base quantities essentially constitutes
the definition of this mapping, dim. The SI does not bound the number of derived
quantities that may be introduced.

Mathematical Structure of Quantity Dimensions. The mathematical
structure of quantity dimensions in SI is summarized as follows: There are seven
base quantities, length, mass, time, electric current, thermodynamic tempera-
ture, amount of substance, and luminous intensity. The base quantities, with the
inclusion of an eighth, variously named quantity of dimension one, or dimen-
sionless quantity, form an abelian generating set for the infinite abelian group of
objects variously referred to as quantity dimensions, dimensions of a quantity,
or just dimensions. The group multiplication operator is compatible with the
multiplication operator for the field of real numbers. In addition to the base
quantities, there is an unbounded set of derived quantities, which, in the SI, are
defined by a name and a non-injective mapping to a quantity dimension,

dim : derived quantities → quantity dimensions. (1)

When two quantities, Q1 and Q2, are said to be dimensionally equivalent, this
means that dim(Q1) = dim(Q2). In addition to multiplication, each quantity
dimension may be raised to any real power, though only rational powers ever
seem necessary.

2.2 Kind of Quantity

The next property of a quantity is that of the kind of quantity. The kind of
a quantity distinguishes between different quantities that may have the same
quantity dimensions. The SI concedes that the concept of the kind of a quantity
is to some extent arbitrary. Nevertheless, it is a necessary distinction. Perhaps
the best illustration is by way of examples. The salinity of a solution is typi-
cally stated as a mass fraction, i.e. the mass of dissolved salt per unit of mass
of solution. As such, salinity is a dimensionless quantity, i.e., mass/mass = 1.
Angle is also dimensionless, given, for example, in radians as the ratio of the
length of the subtended circular arc and the radius of the same circle. While di-
mensionally equivalent, one still considers salinity and angle to be distinct kinds
of quantities. There are many dimensionless quantities distinguished by kind.
Similarly, the quantities torque and energy have the same quantity dimension
but are distinguished from each other by being different kinds of quantities.

Similar to the mapping, dim, we introduce the concept of another map-
ping, kind, implicit in the SI, which maps a quantity to a quantity kind. Com-
plete equivalence of two quantities, Q1 and Q2, can only occur when both
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dim(Q1) = dim(Q2) and kind(Q1) = kind(Q2) are true. While the SI recognizes
that quantities may differ in kind, it does not standardize the definition of kind.

Distinction of quantities by kind can have rather fundamental consequences.
The distinction between inertial mass, the resistance to acceleration due to an
applied force in Newton’s second law, and gravitational mass, the proportional
factor by which an object influences other objects through the force of gravity
in Newton’s law of universal gravitation, was once debated. This debate was
famously settled with Einstein’s principle of equivalence and subsequent exper-
imental measurements. We discuss later the import of differences in kinds of
quantities.

2.3 Units

A unit is a defined reference amount of a given quantity. Having a unit, any
quantity of the same kind may then be expressed as equivalent to some numer-
ical amount of the reference quantity. For example, an arbitrary mass may be
expressed as a numerical amount times a reference amount of mass. In the SI
system of units, there are seven base units: the metre, kilogram, second, am-
pere, kelvin, mole, and candela, corresponding to the seven SI base quantities.
There is a necessary one-to-one mapping between the base quantities and the
base units. An additional unit, one, is added, corresponding to the dimensionless
base quantity.

The essential reason for identifying the base units is that they serve as the
measurement standards for most physical measurements. If, for example, we
wanted to measure the length of something, we would need to calibrate our
length-measuring device using a standard length. In SI, that standard length is
the metre, and its definition is in terms of a measurement procedure. The same
is true for all of the base units: each is defined in terms such that they may be
readily used to calibrate measurement equipment for the corresponding physical
quantity. This is referred to as the practical realization of the base units.

Similar to the dim mapping, the SI also posits a unit mapping with a range
that is the set of products of powers of the SI base units, i.e., the set of coherent
derived units. The domain of the unit mapping is the set of all quantities defined
within the SI. As there is for each derived quantity a mapping to an SI quantity
dimension, so too is there a mapping to a coherent derived unit. Because of this,
the meaning of a quantity is defined in physically measurable terms, i.e., the
base unit definitions. There can be no circular definitions, or any definitions of
measurable quantities that are not rooted in definable measurements.

A limited number of coherent derived units are given special names. These
named coherent derived units are: radian, steradian, hertz, newton, pascal, joule,
watt, coulomb, volt, farad, ohm, siemens, weber, tesla, henry, degree Celsius,
lumen, lux, becquerel, gray, sievert, and katal.

Mathematical Structure of Units: The mathematical structure of units in
SI is summarized as follows: There are seven base units, metre, kilogram, second,
ampere, kelvin, mole, and candela. The base units, with the inclusion of the unit
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named one, with symbol, 1, form an abelian generating set for the infinite abelian
group of objects called the coherent derived units. The multiplication operator
of this group of coherent derived units is compatible with the multiplication
operator for the field of real numbers.

There is a one-to-one mapping of quantity dimensions to coherent derived
units,

unit : quantity dimensions → coherent derived units. (2)

The unit of any quantity, Q, is given by unit(dim(Q)).

2.4 Magnitude of a Quantity

The magnitude of a specific scalar physical quantity represents the amount of
that quantity, i.e., a mathematical product of a real number and a reference
quantity, or unit. For example, the kilogram is the reference mass that resides at
the International Bureau of Weights and Measures (BIPM) in Sèvres, France. In
the SI system, the masses of all other physical objects are measured in propor-
tion to that standard kilogram, where the proportion is expressed as a limited
precision real number. There is also an accompanying error value, representing
an estimate of the standard deviation, were an ensemble of such measurements
to have been conducted. By default, when not specified, the error in a number
is assumed to be half of the place value of the least significant digit expressed.

The SI introduces the concept of an operator that returns the numerical value
of a quantity. We denote this mapping, num:

num : quantities → real numbers. (3)

Any quantity, Q, may be represented in the system by the unique product
num(Q) · unit(Q). Clearly, while an arbitrary quantity is independent of unit
system, num and unit are specific to a particular system of units, e.g., the SI.

Vector quantities, including complex numbers and tensors, are used in some
situations. A full treatment of these is not possible here, partly because Open-
Math currently expresses Cartesian vectors, but not vectors in other coordinates,
e.g., spherical coordinates. When vector quantities are used, they may either be
heterogeneous, where each component may be a distinct quantity, or homoge-
neous, where the components are pure numbers and the unit may be represented
as a distinct factor. It should be noted that multiplication of base units with vec-
tor magnitudes is very much like scalar multiplication: when vector quantities
fail to commute, it is the num parts of the quantities that fails to commute, not
the unit parts. Extending the definition of the num mapping is straightforward
for the much more common case of homogeneous Cartesian vectors of quantities,
for example,

num((3m, 5m, 7m)) = (3, 5, 7). (4)

The representation of standard error with vector quantities is typically in terms
of a covariance structure, a subject not elaborated in the SI, or here.
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3 Operations on Quantities and Units

There are several operations that are defined on quantities and units. There are
those that are specific to a system of quantities and units, namely dim, kind, unit,
and num. The SI explicitly defines the dim, unit, and num mappings. In the SI,
the unit mapping is symbolically represented with square brackets, and the num
symbol is represented with curly braces. We add to this the kind mapping which
provides some distinction between quantities which may be dimensionally equiv-
alent. The equivalence of two quantities requires the equivalence of all four of
these properties, i.e., two arbitrary quantities, Q1 and Q2, are equivalent if and
only if dim(Q1) = dim(Q2), kind(Q1) = kind(Q2), and num(Q1) = num(Q2).
(If dim(Q1) = dim(Q2), then unit(Q1) = unit(Q2)). The SI also specifies the
multiplication, division, and raising of quantities to powers as required for the
meaningful construction of quantities and units. If a quantity, say Qx , is ex-
pressed in a non-SI unit, say Ux , conversion may be effected by having defined
unit(Ux) when Ux itself is defined. Such conversions must be linear transforma-
tions: affine, or additive conversion, such as the conversion of thermodynamic
temperature from kelvin to degree Fahrenheit, are not defined within this space
of units and these operators. On the other hand, conversion of kelvin to degree
Rankine is well defined.

3.1 Other Operations

There are several natural language usages which, with respect to dimensions
and units, imply various mathematical operations. We partition these into the
following categories: one, times, per, and plus; SI prefixes; cube, cubic, square,
and squared.

One, Times, Per, and Plus: The dimensionless base quantity, one, and its
corresponding unit, one, are essentially synonymous with the mathematical sym-
bol of the same name. The presence of the unit or quantity dimension one in
a quantity expression that we may want to represent in markup is generally
implied, though rarely required explicitly. In text, multiplication is implied by
juxtaposition of quantity names, using either a space (invisible times), a dot
symbol, a hyphen, etc., and encoding such expressions into markup should fol-
low those implications. As we have stated, multiplication of base quantities and
base units is associative, commutative and otherwise compatible with multipli-
cation of the real numbers, so the order of the encoded terms with respect to
each other and numerical scalars is, in general, not semantically significant.

The term per, as in metre per second, implies an infix division operator, and
could be encoded as such as long as it is unambiguously used.

The arbitrary addition of quantities, as pointed out for temperature, for exam-
ple, in [3], is not always physically meaningful. In general, the SI does not discuss
addition of quantities. We point out here that addition of quantities is undefined
for quantities that are not of the same kind, without leaving out the possibil-
ity of additional constraints on addition of quantities. Similarly, the arithmetic
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relational operators equals, greater than, less than, etc., are only meaningful
when quantities are of the same kind. The question as to whether quantities
are of the same kind is really only answered by experimental validation of a
law of physics. A law of physics is typically phrased as an arithmetic relation
of quantities, implying the additivity of quantities involved. Arbitrary relations
of quantities may be mathematically well defined without possessing physical
meaning. Sometimes, as in the case of temperature, it is possible to identify
different kinds of temperature, e.g., absolute (thermodynamic) temperature and
relative temperature. The SI allows the definition, presumably by any user, of
such derived quantities. The assignment of a value to the kind mapping in the
definition of any such quantity, is also, presumably, left to the user, as is the
task of ensuring the validity of the physical semantics.

SI Prefixes: SI prefixes are normally used by prepending a single prefix to
an SI base unit, with the exception of the kilogram. For mass quantities, the
prefix is prepended to the term gram as if it were the base unit, though gram is
not presented without such a prefix. SI prefixes act like multiplicative numerical
constants, each an integer power of 10. Normally, it is the user’s choice to express,
for example, 1000 microgram, 1 milligram, or 10−6 kilogram. Whichever choice
is of no consequence for semantic content.

For capture of the semantic value of SI prefixes, we suggest the following: a) the
use of an empty element for each occurrence of a named prefix; b) the allowance
in content markup of multiple occurrences of prefixes (forbidden by SI in presen-
tation); c) the abandonment of an OpenMath prefix symbol in the units ops1 CD
in preference to the multiplication operator, times. The enforcement of the SI-
required, normal form of only using single prefixes is a presentation constraint,
without mathematical meaning. It may be recommended practice in content
markup, but should not be required.

Cube, Cubic, Square, Squared: The derived units square metre, cubic me-
tre, metre squared, metre cubed are cases where the terms square and cubic act
like prefix exponent operators, and squared and cubed act like postfix exponent
operators. If used, a hyphen is interpreted as an infix multiplication operator.
Similarly, metre per second and metre/second are cases where the symbols per
and “/” act like infix division operators. In each of these cases, unless there is a
compelling reason for supporting infix, postfix, or alternative, redundant prefix
operators, simplicity and maintaining compatibility with the existing OpenMath
mathematical CDs with times, divide, and power symbols suggests using the ex-
isting prefix forms of these same operations.

3.2 Appending of Units

While it may, in the expression of a quantity in markup, be good practice to
append units to a numerical expression, this has no mathematical semantic value.
The associativity and commutativity of multiplication of units with each other
and with the numerical magnitudes makes the meaning clear regardless of order.
The SI requirement to express the units of a quantity after the numerical value
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is strictly a prescription of a standard presentation form. Its practice may be
recommended, but should not be required in content markup.

4 Number Representations

There are three requirements for numerical representations of quantities: range
of absolute magnitudes, precision, and uncertainty. Magnitudes of physical con-
stants and their uncertainties range from 10−72 to 1050 in SI units. The known
material universe is estimated to be made up of approximately 1080 nucleons.
Expressed in Planck units (not typically used for everyday physics) the overall
size of the known universe is on the order of 1062 Planck lengths, the age is on
the order of 1062 Planck times, and the mass of the order 1062 Planck masses.
Any number representation should be able to support expression of numbers
of these magnitudes. The current upper limit of precision of measurement for
physical constants is about twelve to thirteen significant decimal digits, such as
for the Rydberg constant.

While it may be ideal to have a format for arbitrary precision and arbitrary
magnitude measurable values, IEEE double precision format [9] provides about
16 significant decimal digits and magnitudes spanning 10308 to 10−308. While it
is not inconceivable that physics-based computations may exceed the dynamic
range the IEEE double precision format, for most practical purposes, that format
appears adequate for the present.

Unambiguous representation of a limited precision real number requires the
use of a scientific notation with significand of limited length and an exponent.
Scientific notation is needed to express, for example, exactly two significant digits
of 6.2 × 103, instead of writing 6200, the latter being ambiguous. Depending on
how the significand of a double precision format is interpreted, the semantics of
the precision limit of a measurement can be lost in the conversion to and from
machine double precision. Machine formats do not typically support an inherent
precision of a number which is distinct from the machine precision. From a
semantic perspective, the machine precision is merely the maximum precision
that may represented in a machine word, not the actual precision of the value
that needs to be represented.

The IEEE double precision format does not in itself support the expression
of measurement precision, which is really a form of uncertainty. Considering
that in the conversion of a double precision literal to a machine double the
limit of precision expressed in the literal is usually lost, it appears necessary to
provide a separate mechanism for explicitly expressing the limit of precision, or
for expressing the uncertainty. As such, we find it necessary to represent the
concept of standard error for representing measured quantities, i.e., an estimate
of the standard deviation, as a way to capture adequately the normal expression
of uncertainty for scalar numerical magnitudes. Interpretation of uncertainties
as bounded ranges, for example, is not standard practice. Proper treatment of
uncertainty is sufficiently complex that we do not here provide a solution to
this requirement, but suggest that more information, either an accompanying
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integer to represent the number of significant digits, or an accompanying float
magnitude, will be needed to represent the standard error.

5 Physical Constants and Other Measured Quantities

Historically, the standardization of units began with units of practical interest,
and as such are inherently anthropocentric. Over time, these have been sup-
planted with units having sizes that are still anthropocentric, but being defined
in ways more amenable to increasingly precise scientific measurement. Neverthe-
less, any measurement device will have bounded precision. As a result, there are
many scientifically measurable quantities that are difficult to capture adequately
using only SI units.

The SI base units provides a set of units for representing the bulk of every-
day quantities. It is possible, however, due to limits of precision in measurement
apparatus, that macroscopic standards, such as the kilogram, are inadequate for
measuring very small or very large quantities, such as the masses of quantities
smaller than a microgram. It is known, for example, that the standard kilogram
varies on the scale of micrograms, so it is not well defined to a corresponding
precision. Electron and nucleon masses are significantly smaller than this. To ad-
equately represent measurements of quantities having a combination magnitude
and precision that fall outside the SI base units, and measurement equipment
that uses them, the SI provides some other, off-system, measured units. The
values of these in terms of SI units are obtained experimentally. These units are
the electronvolt, the dalton, and the astronomical unit as units of energy, mass,
and length, respectively.

An alternative system of units that is frequently used by physicists, for exam-
ple, in studying cosmology and quantum gravity, are Planck units. The magni-
tudes of Planck units and the measurement apparatus required to gauge them
make them inappropriate for use in anthropocentric applied physics. Planck units
are sometimes called “God’s units”, as they comprise a natural or intergalac-
tic standard set of units, completely defined using universal constants. The five
Planck units are the Planck length, Planck mass, Planck time, Planck charge,
and Planck temperature. They are completely defined in terms of the following
five universal physical constants: the Newton’s gravitational constant, the re-
duced Planck constant, the speed of light, the Coulomb force constant, and the
Boltzmann constant. They are largely defined by experimental measurement,
and updated measured values are published periodically by, for example, the
international organization CODATA. These Planck units and the constants that
define them are intrinsic to the physical laws that appear to describe the origins
of the universe and physics as we know it. Consequently, other unit systems and
fundamental constants are seen as derivative with respect to these.

6 Proposed Modifications to the OpenMath CD Library

We agree with prior work on the definition of quantity dimensions and units
as empty XML elements. This appears to be their most natural representation.
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We do, however, recommend the reorganization of the dimension and unit CDs
appropriate to the properties of the SI quantities and units.

We believe that SI quantity and unit CDs should be specifically labeled as
such, and the base units and quantities separately identified. Other systems
having their own base quantities and units should similarly be distinctly labeled.
Non-SI units and quantities should not be freely intermixed with SI quantities
and units, but should be coupled in some way so as to distinguish them from
units defined with respect to a different system. For example, while the contents
of the dimensions1 CD may all be thought of as dimensions, in SI there are only
seven base quantities serving as quantity dimensions. Other quantity dimensions
are products of powers of these base quantities, i.e., derived via mathematical
rules of construction, and generally need not be individually defined. For these
reasons, we introduce the SI BaseQuantities1 CD and suggest the deprecation
of any SI base quantities from the dimensions1 CD. The SI BaseQuantities1
CD defines length, mass, time, current, temperature, amount of substance, and
luminous intensity. We additionally introduce the corresponding SI BaseUnits1
CD and suggest the deprecation of SI base units from the existing CDs where
they occur. The SI BaseUnits1 CD defines metre, kilogram, second, ampere,
kelvin, mole, and candela. For completeness, in both the SI BaseQuantities1
and SI BaseUnits1 CDs we include the symbol one, equating it to the symbol of
the same name found in the OpenMath alg1 CD.

As the SI base quantities and units are defined as standards, the definition
and a reference to the defining documents should be explicitly cited within those
CDs. These definitions are generally sufficiently brief to be described within the
OpenMath Description elements. Typically, new unit standards are ratified by
a standards body at a periodically held conference, so a citation should, for
example, name the conference and year. A change in SI definitions should prompt
new versions of these CDs.

Derived quantities are those that are defined in terms of the base quantities.
Some derived quantities are defined in the SI, particularly when they have names
that are not mathematically constructed, or have corresponding specially named
units. While the SI admits an unlimited number of derived quantities, and can
only specify rules for their creation, it is reasonable to identify as SI quantities
and units those that are specifically mentioned in the standard. For this reason
we introduce SI DerivedQuantities1, which defines angle, solid angle, frequency,
force, pressure, energy, power, charge, voltage, capacitance, resistance, conduc-
tance, magnetic flux, magnetic flux density, inductance, Celsius temperature,
luminous flux, illuminance, radioactivity, absorbed dose, equivalent dose and
catalytic activity which all have named SI units.

Correspondingly, we define in SI NamedDerivedUnits1 the radian, steradian,
hertz, newton, pascal, joule, watt, coulomb, volt, farad, ohm, siemens, weber,
tesla, henry, degree Celsius, lumen, lux, becquerel, gray, sievert, and katal. We
also include in SI NamedDerivedUnits1 the exceptional implied unit, gram. We
include the gram because, even though its SI compliant presentation requires
use of a prefix, the gram is the semantic root of all SI mass units. In the interest
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of simplicity, we believe that unit names that reflect mathematical construction,
such as metre per second, or metre squared, should not be included in CDs.

SI DerivedQuantities1 may, in principle, include all derived quantities that
are compliant with SI. There is no mathematical bound in the number of such
quantities that may be defined. OpenMath custom is to not make content dictio-
naries arbitrarily large. No clear means of restricting the size in general suggests
itself. We include in SI DerivedQuantities1, somewhat arbitrarily, the quantities
area, volume, speed, momentum, moment of force, density, concentration, heat,
and entropy along with those quantities that have their own SI units, simply
because these additional quantities are specifically mentioned within the SI.

6.1 SI Symbols

Each SI base quantity and base unit, and the named units corresponding to some
derived quantities, have names with prescribed spellings, as well as associated
SI symbols which act as abbreviated names, such as “m” for metre. In the spirit
of first identifying what is necessary for semantic capture and in the spirit of
simplicity, we use the SI names of quantities and units for their OpenMath sym-
bol names in the CDs, choosing those over the short, SI symbols as being less
ambiguous and less subject to errors in usage. In OpenMath, the presentation of
many symbols is not emphasized. For example, the gradient operator does not
reference the nabla symbol. Accordingly, it seems that we can, in general, ne-
glect the representation of the semantically redundant SI symbols in OpenMath
CDs. As a compromise, we suggest that symbols be identified in the Description
element of the CDDefinition for reference purposes.

6.2 Capitalization and Abbreviation

Persons names are not capitalized in SI unit names, with the single exception of
“degree Celsius”. Person’s names are capitalized when used in quantity names.
Otherwise capitals are only used when the dimension and unit names begin
a sentence. The SI symbols for units may have capitals: one should consult
the standard for specific values. Abbreviations of unit and quantity names are
explicitly barred. While these are principally presentation considerations, we
follow these conventions in the symbol definitions within the CDs.

6.3 Non-SI Units

There are many non-SI units in use, with varying degrees of status with re-
spect to the SI. There are the following four categories of units: coherent SI
units; non-SI units accepted for use with the SI; non-SI units that have been
deprecated; other non-SI units. Off-system, or non-SI units are those that are
not coherent SI units. For example, minute, hour, and day are off-system units,
defined in terms of the second of time and retained for use with the SI. The
degree, minute, second, and gon of arc, and the litre are all defined in terms
of SI units and retained for use with SI units. Similarly, the measured units
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mentioned earlier, the electronvolt, the dalton, and the astronomical unit, are
off-system units, but used with SI. We propose two CDs to represent the cate-
gory of non-SI units accepted for use with the SI: SIUsed OffSystemUnits1 and
SIUsed OffSystemMeasuredUnits1. We choose to distinguish the Planck units
and the physical constants that define them in their own CD, called Universal-
PhysicalConstants.

We decline to propose CDs for other non-SI units at this time. Instead, we
suggest some criteria for their construction. Many, if not most, non-SI units have
been redefined in terms of SI units. Units not defined or mentioned in the SI
should appear in non-SI CDs with their corresponding definition in terms of SI
units. For example, the most common foot is the international foot. Since the
international foot overrides other foot standards, we would recommend its Open-
Math symbol be merely named foot, not international foot. In 1958 the United
States and countries of the Commonwealth of Nations defined the length of the
international foot to be equal to 0.3048 metre. This should be defined using
formal mathematical property statements, and both the unit and num symbols,
in this case, unit(foot) = metre and num(foot) = 0.3048. (Following this conven-
tion of defining non-SI units will allow straightforward unit conversions). Other,
less common, foot units may have an OpenMath symbol distinguished in name,
such as the United States survey foot. In any case, an OpenMath Description
element should make it unambiguous which unit is being identified by citing an
appropriate standards document, as described above. Other units that are both
non-SI and undefined in terms of SI units must, of metrological necessity, be de-
fined within other unit systems. Other unit systems may be rooted in their own
content dictionaries. Units defined within other unit systems in general will have
no exact, mathematical conversions to SI units, only approximate, metrological
conversions.

6.4 Interaction with Other OpenMath Content Dictionaries

OpenMath symbols applicable to quantities and units from existing OpenMath
CDs include: zero, one, divide, minus, plus, power, product, root, sum, times,
unary minus, eq, eqs, lt, gt, neq, leq, geq, and approx.

In [2] an interesting proposal was made for using the names of physical di-
mensions as types for units. Due to questions, we do not here provide the Small
Type System (STS) CDs for the SI units and dimensions. Certainly the SI dimen-
sions would appear to qualify as being of type PhysicalDimension. One could
possibly create a new, more restrictive sub-type of PhysicalDimension, called
SI Dimension. As for an STS type for units, if we were to follow the suggestion
of using SI dimensions as types for units, there would be an infinite number of
possible types, i.e., certainly all of the possible quantity dimensions. Certainly
such a type system would be well structured. We have the means to construct
any of them, but not to list them all. It is not clear why a single type, say
Unit, would not suffice. One of the purposes for having each physical dimension,
or quantity dimension, be a type for units, is to perform type checking. This
purpose, as well as unit checking and unit conversions for different units of the
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same quantity dimension, would seem to be adequately served with the use of
the mappings, kind, dim, unit, and num.

7 Summary

In total, we propose eight new OpenMath CDs, which have been released and
submitted to the OpenMath website as contributed content dictionaries. Our
proposed SI CDs for quantities, SI BaseQuantities1 and SI DerivedQuantities1,
and the proposed criteria for accepting dimension definitions, largely make ob-
solete the prior dimensions1 OpenMath CD. Our proposed SI CDs for units,
SI BaseUnits1, and SI NamedDerivedUnits1, and the proposed criteria for ac-
cepting unit definitions, largely make obsolete the prior units metric1 Open-
Math CD. We do not suggest replacement of the units siprefix CD, though
we suggest deprecation of the units ops1 CD. We incorporate the above de-
scribed dim, kind, unit, and num symbols into a CD named SI Functions1.
Our proposed FundamentalPhysicalConstants1 is redundant with some sym-
bols defined in physical consts1, but also introduces the non-SI Planck units.
SIUsed OffSystemUnits1 replaces minute, hour, day of time in units time1.
SIUsed OffSystemMeasuredUnits1, does not affect existing CDs.

We do not comment on any particulars regarding the units imperial1 and
units us1 CDs, at this time, other than to say that since they have not been
explicitly defined in terms of SI unit CDs, we may want to redefine them in
CDs, with appropriate citations, in terms of SI units, if appropriate standards
organizations have done so.

Overall, these new CDs, as proposed, isolate the essentially physics-
based SI content into two CDs: the SI BaseUnits1, and the SIUsed OffSystem
MeasuredUnits1. The additional FundamentalPhysicalConstants1 is also essen-
tially physics-based, as would be any definition of measured constants or non-SI
base units of other systems. The other CDs are principally mathematical in na-
ture, where any of their properties attributable to the measurement process is
derived by association to symbols defined in the physics-based CDs.

Finally, we have, for lack of space and time, neglected to elaborate on the
general representation of vector quantities and the uncertainties of quantities.
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Abstract. One of the fundamental and seemingly simple aims of math-
ematical knowledge management (MKM) is to develop and standardize
formats that allow to “represent the meaning of the objects of mathemat-
ics”. The open formats OpenMath and MathML address this, but differ
subtly in syntax, rigor, and structural viewpoints (notably over calculus).
To avoid fragmentation and smooth out interoperability obstacles, effort
is under way to align them into a joint format OpenMath/MathML 3.
We illustrate the issues that come up in such an alignment by looking at
three main areas: bound variables and conditions, calculus (which relates
to the previous) and “lifted” n-ary operators.

Whenever anyone says “you know what I mean”, you can be pretty
sure that he does not know what he means, for if he did, he would tell
you. — H. Davenport (1907–1969)

1 Introduction

One of the fundamental and seemingly simple aims of mathematical knowledge
management (MKM) is to develop and standardize representation formats that
allow one to specify the meaning of the objects and documents of mathematics.
The open formats OpenMath and MathML address the key sub-problem of repre-
senting mathematical objects from a content markup perspective: mathematical
objects are represented as expression trees. As the formats were developed by dif-
ferent communities, they differ subtly in syntax, rigor, and structural viewpoints
(notably over calculus). The efforts to mitigate the interoperability problem by
establishing translations between the formats have done more to unearth subtle
problems than to completely solve them in the past.

Both efforts shared the goal of representing mathematics “as it is”, rather
than “as it ought to be”. A relevant example of the difference is given by [12],
where the original text is

The function
√

|x| is not differentiable at 0 (1)

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 263–278, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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while its formalised equivalent is

¬(λx:R(
√

|x|) is differentiable at 0). (2)

The key features are the typing of x as being in R, and the conversion of
√

|x|
from an expression to a function. Both OpenMath and MathML, the latter
explicitly as one of its design goals

“Encode mathematical material suitable for teaching and scientific com-
munication at all levels” [5, 1.2.4],

wish to encode both styles, or levels of formality, of mathematics. This is a
particular problem for calculus. MathML and OpenMath have rather different
views of calculus, which goes back to a fundamental duality in mathematics.
These views can, simplistically, be regarded as:

– what one learned in calculus/analysis about functions , which we will write
as Dεδ: the “differentiation of ε–δ analysis” (similarly d

dεδx , and its inverse
εδ

∫
);

– what is taught in differential algebra about (expressions in) differential fields,
which we will write as DDA: the “differentiation of differential algebra” (sim-
ilarly d

dDAx , and its inverse DA
∫

).

(2) is unashamedly the former, while (1) talks about a function, but actually
gives an expression. This duality shows up whenever one talks about variables:
while

2x �= 2y, (3)

(λx.2x) =, or at least ≡α, (λy.2y). (4)

So does
dx2

dx
=

dy2

dy
? (5)

The variables are clearly free in (3) and bound in (4). Any system which at-
tempted to force either interpretation on (5) would not meet the goal stated
above.

In this paper we report on an ongoing effort of the W3C MathML Working
group and members of the OpenMath Society to merge the ontologies1 on which
the OpenMath and MathML formats are based and thus align the formats, so
that they only differ in their concrete XML encodings. This task proves to be
harder than might initially be expected. We explain why, motivated by a study
of four areas (which in fact turn out to be inter-related):
1 Here we use the word “ontology” in its general, philosophical meaning as the study

of the existence of objects, their categories and relations amongst each other, and not
in the Semantic Web usage, where it is restricted to formal systems with tractable
inference properties (description logics). Note furthermore that we are speaking as
much about a “meta-ontology” of mathematical representation concepts as about
“domain ontologies” that describe the mathematical concepts themselves. Having
made this distinction, we will conveniently gloss over it in the rest of the paper.
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1. constructions with bound variables;
2. the <condition> element of MathML;
3. the different handling of calculus-related operations in the two;
4. the “lifting” of n-ary operators, such as + to

∑
.

This paper is a short version of [10], which contains the details of the con-
structions. OpenMath-specific details of the proposals are in [9,8].

2 OpenMath and MathML

We will now recap the two formats focusing on their provenance and repre-
sentational assumptions and then sketch the measures taken for aligning the
languages. Sections 3, 4, 6, and 7 will detail the problem areas identified above.
The first two leading to an extension proposal for OpenMath Objects and strict
content MathML in Section 5, which is evaluated in the latter two. Section 7
concludes the paper.

2.1 MathML

MathML is an XML-based language for capturing mathematical the presenta-
tion, structure and content of mathematical formulae, so that they can be served,
received, and processed on the World Wide Web. Thus the goal of MathML is
to provide a similar functionality that HTML has for text. The present rec-
ommended version of MathML format is MathML 2 (second edition) of Octo-
ber 2003 [5]. MathML 1 had been recommended in April 1998 and revised as
MathML 1.01 in July 1999.

MathML, starting from version 1.0, had a split into presentation MathML,
describing what mathematics “looked like”2, and content MathML, describing
what it “meant”. In this paper we will concentrate on content MathML, since
the role of presentation MathML as a high-level presentation format for Math
on the Web is (largely) uncontested. MathML’s Content markup has ambitious
goals:

The intent of the content markup in the Mathematical Markup Language
is to provide an explicit encoding of the underlying mathematical struc-
ture of an expression, rather than any particular rendering for the ex-
pression. [5, section 4.1.1]

This mandate is met in MathML 1/2 by representing mathematical formulae
as XML expression trees that follow the applicative structure of operators and
their arguments: function application is represented by the apply elements where
the first child is interpreted as the operator and the remaining children as their
arguments. MathML 2 supplies about 90 built-in elements for mathematical
operators, and the csymbol extension mechanism described later. The language
has a fairly limited vision of what might be in “content”:
2 Which could include “sounded like” (for aural rendering) or “felt like” (e.g. for

Braille), and MathML included a range of symbols such as &InvisibleTimes; to
help with this task.
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The base set of content elements are chosen to be adequate for simple
coding of most of the formulas used from kindergarten to the end of high
school in the United States, and probably beyond through the first two
years of college, that is up to A-Level or Baccalaureate level in Europe.
[5, 4.1.2]

This is often referred to as the K-14 fragment of mathematics, by analogy with
some countries use of “K–12” for the range of school mathematics. Since Version
2, MathML does have an extension mechanism via the csymbol elements and
their definitionURL attributes, but this was rarely used except to achieve some
form of OpenMath interoperability, or for proprietary extensions (e.g. Maple).

MathML tries to cater to the prevalent representational practices of mathe-
maticians, and provides a good dozen structural XML elements for special con-
structions, e.g. set, interval and matrix constructors, and allows to “lift” various
associative operators to “big operators” acting on sets and sequences simply by
associating them by bound variables and possibly qualifier elements to specify
the domain of application.

The MathML approach to specifying the “meaning” of expression trees largely
follows a “you know what I mean” approach that alludes to a perceived consensus
among mathematical practitioners on the K-14 fragment. The meaning of a
construction is alluded to via examples rather than defined rigorously, intending
to be “formal enough” to cover “a large number of applications” [5, 4.1.2], while
remaining flexible enough not to preclude too many.

2.2 OpenMath

OpenMath [4] is a standard for the representation and communication of mathe-
matical objects. It has similar goals to content MathML and focuses on encoding
the meaning of objects rather than visual representations to allow the free ex-
change of mathematical objects between software systems and human beings.
OpenMath has been developed in a long series of workshops and (mostly Euro-
pean) research projects that began in 1993 and continues through today. The
OpenMath 1.0 and 2.0 Standards were released by the OpenMath Society in
February 2000 and June 2004. OpenMath 1 fixed the basic language architec-
ture, while OpenMath2 brought better XML integration, structure sharing and
separated the notion of OpenMath Content Dictionaries from their encoding.

Like content MathML, OpenMath represents mathematical formulae as ex-
pression trees, but concentrates on an extensible framework built on a mini-
mal structural core language with a well-defined extension mechanism. Where
MathML supplies more than a dozen elements for special constructions, Open-
Math only supplies concepts for function application (OMA), binding construc-
tions (OMBIND; MathML 2 lacks an analogous element and simply uses apply
with bound variables, hence the (inferred) Rule 1 below). Where MathML pro-
vides close to 100 elements for the K-14 fragment, OpenMath gets by with
only an OMS element that identifies symbols by pointing to declarations in an
open-ended set of Content Dictionaries (see below).
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An OpenMath Content Dictionary (CD) is a document that declares names
(OpenMath “symbols”) for basic mathematical concepts and objects. CDs act
as the unique points of reference for OpenMath symbols (and their encodings
the OMS elements) and thus supply a notion of context that situates and disam-
biguates OpenMath expression trees. To maximize modularity and reuse, a CD
typically contains a relatively small collection of definitions for closely related
concepts. The OpenMath Society maintains a large set of public CDs, including
CDs for all pre-defined symbols in MathML 2. There is a process for contributing
privately developed CDs to the OpenMath Society repository to facilitate discov-
ery and reuse. OpenMath does not require CDs be publicly available, though in
most situations the goals of semantic markup will be best served by referencing
public CDs available to all user agents.

The fundamental difference to MathML is in terms of establishing meaning for
mathematical objects. Rather than appealing to mathematical intuition, Open-
Math defines a free algebra O of “OpenMath Objects” which acts as (initial)
model for encodings of mathematical formulae. OpenMath Objects are essen-
tially labeled trees, with α-conversion for binding structures and Currying for
nested semantic annotations. Note that since O is initial it is essentially unique
and identifies (in the sense of “declares to be the same”) fewer objects than
any other model. As a consequence two mathematical objects must be identical,
if their OpenMath representations are, but may coincide, even if their repre-
sentations are different. The OpenMath standard therefore considers OpenMath
objects as primary citizens and views the “OpenMath XML encoding” as just an
incidental design choice for an XML-based markup language. In fact OpenMath
specifies another encoding: the “binary encoding” designed to be more space
efficient at the cost of being less human-readable. “OpenMath XML encoding”
as just an incidental design choice for an XML-based3 markup language.

The initial algebra semantics of OpenMath objects is intentionally weak to
make the OpenMath format ontologically unconstrained and thus universally
applicable. It basically represents the accepted design choice of representing ob-
jects as formulae. Any further (meaning-giving) properties of an object o are
relegated to the content dictionaries referenced in o, where they can be specified
formally (“Formal Mathematical Properties” as FMP elements which are them-
selves OpenMath objects) or informally (“Commented Mathematical Proper-
ties” as CMP elements containing text). Thus the precision of OpenMath as a
representation language can be adapted by allowing CDs to range from fully for-
mal (by providing CDs based on some logical system) to fully informal (where
CDs are essentially empty). While this can be seen as a failure of OpenMath to
supply semantics (“OpenMath is only syntax”), we see it as being as flexible as
mathematical vernacular that gives the same freedom.

The question “does this OpenMath object o have formal semantics?” does not
have an unambiguous answer. Rather, o has a meaning for the system S if each
OpenMath symbol in o either:

3 OpenMath also has a more space-efficient binary encoding.
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1. is built into the OpenMath ↔ S phrasebook or
2. has enough semantics deducible in S from the FMPs (which may be a recursive

process).

Here S might be either a software system, or a logical system such as ZF.

2.3 The OpenMath/MathML 3 Alignment Process

Most of these differences between MathML and OpenMath can be traced to
the different communities who developed these representation formats. MathML
came out of the “HTML Math Module”, an attempt to develop LATEX-quality
presentation of mathematical on the Web, something sorely missing from the
otherwise very successful HTML. The guiding goal for OpenMath on the other
hand was to develop an open interchange format among computer algebra sys-
tems, which resulted in a much stronger emphasis on the meaning of objects to
make the exchange of sub-problems safe.

Even though interoperability between OpenMath and and MathML was al-
ways a strong desideratum for both communities, the two representation formats
evolved independently and in line with the fundamental assumptions outlined
in the two previous sections. Interoperability was attempted from the MathML
side by integrating the csymbol element in MathML 2 and specifying parallel
markup, i.e. allowing OpenMath representations to be embedded into MathML
with fine-grained cross-referencing. The OpenMath Society developed CDs with
analogues for “all predefined operators” and specified the correspondence be-
tween expression trees in [3]. Although 30 pages long, the fact that this document
is still incomplete may serve as an indication that the problem is not trivial. As
we will see below, mapping the MathML operators is not enough in the presence
of different structural elements in the formats.

In June 2006 the W3C rechartered the MathML Working Group to produce a
MathML 3 Recommendation, and the group identified the lack of regularity and
specified meaning as a problem to be remedied in the charter period. The group
decided to establish meaning for content MathML expressions based on Open-
Math objects without losing backwards compatibility to content MathML 2. In
the end, content MathML was extended to incorporate concepts like binding
structures and full semantic annotations from OpenMath and a structurally reg-
ular subset of the extended content MathML was identified that is isomorphic to
OpenMath objects. This subset is called strict content MathML to contrast
it to full content MathML that was seen to strike a more pragmatic balance
between regularity and human readability. Full content MathML borrows the
semantics from strict MathML by a mapping specified in the MathML 3 specifi-
cation that defines the meaning of non-strict (pragmatic) MathML expressions
in terms of strict MathML equivalents. The division into two sub-languages
serves a very important goal in standardization: to clarify and codify best (engi-
neering) practices without breaking legitimate uses in legacy documents. In the
current third version of MathML, the latter is a primary concern.

In June 2007, the OpenMath society chartered a group of members which
includes the authors of this paper to work on version 3 of the OpenMath standard
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which would recognize content MathML 3 as a legitimate OpenMath encoding,
to help define the pragmatic to strict mapping MathML, and to provide the
necessary CDs, which would be endorsed by the W3C Math Group and the
OpenMath Society. The discussions and the resulting CDs are online in the
SWiM Wiki [16] [15]

Subsequent sections describe the problem areas that came up during the work
and needed to be circumnavigated.

3 Set Constructors in MathML

With the K-14 scope discussed above, MathML found that it needed more so-
phisticated concepts, such as bound variables, to express the concepts that are
manipulated informally at that level. One conspicuous example from K-14 is
that of sets constructed by rules [5, 4.2.1.8].

A typical use of a qualifier is to identify a bound variable through use
of the bvar element [. . . ] The condition element is used to place con-
ditions on bound variables in other expressions. This allows MathML to
define sets by rule, rather than enumeration, for example. The following
markup, for instance, encodes the set {x | x < 1}:

1 <set>
<bvar><ci>x</ci></bvar>
<condition>

<apply><lt/><ci>x</ci><cn>1</cn></apply>
</condition>

6 </set>

Here (with the benefit of a great deal of hindsight, it should be pointed out) we
can see the start of the problem. What would we have meant if we had changed
the second4 x to y? We would, of course, have written the MathML equivalent
of {x | y < 1}, and the MathML would be as eccentric as that set of symbols.
We therefore deduce the following (undocumented) rule, which corresponds to
OpenMath’s formal rules for OMBIND.

Rule 1 (MathML). Variables in bvar constructions ‘bind’ the corresponding
variable occurrences in the scope of the parent of the bvar. However, the variable
may (e.g. ∀) or may not (e.g. d

dx) be bound in the sense of α-convertibility.

Here the first problem of interpreting pragmatic MathML elements raises its
ugly head. In OpenMath, we can represent the set5 {x ∈ R|x < 1} by the
representation

4 Changing both of them would have been an α-conversion.
5 Note that the OpenMath CDs require a larger set to be specified (to avoid Russell’s

paradox). It would not be a problem to provide a CD for what is often called “näıve
set theory” that leaves out this safety device. However, such a system would have
the same difficulties that the MathML above has: do we mean (−∞, 1) or [0, 1), and
is this a subset of Z or R?
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<OMOBJ version=”2.0”>
<OMA>

<OMS cd=”set1” name=”suchthat”/>
<OMS cd=”setname1” name=”R”/>
<OMBIND>

<OMS cd=”fns1” name=”lambda”/>
<OMBVAR><OMV name=”x”/></OMBVAR>
<OMA>

<OMS cd=”relation1” name=”lt”/>
<OMV name=”x”/>
<OMI> 1 </OMI>

</OMA>
</OMBIND>

</OMA>
</OMOBJ>

This makes use of a binding construction (OMBIND) with a λ operator that con-
structs functions6 from an expression with a bound variable. This kind of con-
struction is standard in logical systems and λ-calculus, for which is is motivated
as follows in a standard introductory textbook (our emphasis):

To motivate the λ-notation, consider the everyday mathematical expres-
sion ‘x − y’. This can be thought of as defining either a function f of x
or g of y . . . And there is need for a notation that gives f and g different
names in some systematic way. In practice mathematicians usually avoid
this need by various ‘ad hoc’ special notations, but these can get very
clumsy when higher-order functions are involved. [11, p. 1]

To achieve interoperability with OpenMath objects, MathML 3 introduces the
bind element in analogy to the OpenMath OMBIND. It could be argued that the
“K–14” brief of MathML rules out higher-order functions, but in the example
above we can see here the need, in a purely first-order case, to resort to “well, you
know what I mean” without it. Extending MathML 3 with a bind element that
encodes an OpenMath binding object takes the guessing of Rule 1 out of MathML
and makes the meaning unambiguous. The MathML 3 specification does however
need to specify the strict content MathML equivalent for the MathML 2 example
above in order to give it an OpenMath Object semantics.

4 Calculus Issues

MathML and OpenMath have rather different views of calculus, which goes back
to the fundamental duality in mathematics mentioned earlier.

Roughly speaking, the MathML encoding corresponds more closely to Dεδ

and the OpenMath one to DDA. If we were to look at the derivative of x2 as
in Figure 1, we might be tempted to see only trivial syntactic differences: in
the MathML encoding we see a differential operator that constructs a function

6 Here we also make use of the duality between sets and Boolean-valued functions that
are their characteristic functions
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<apply>
<diff/>

<bvar><ci>x</ci></bvar>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>

</apply>

<OMA>
<OMS cd=”calculus1” ”name=”diff”/>
<OMBIND>

<OMS cd=”fns1” name=”lambda”/>
<OMBVAR><OMV name=”x”/></OMBVAR>
<OMA>

<OMS cd=”arith1” name=”power”/>
<OMV name=”x”/>
<OMI>2</OMI>

</OMA>
</OMBIND>

</OMA>

Fig. 1. MathML 2 and OpenMath2 differentiation compared

from an expression with a bound variable7 declared by a bvar element. The
OpenMath encoding sees the differential operator as a functional that transforms
one function (the square function) into another (its derivative). It is possible
to do this without any variables, as in sin′ = cos. Given the history of the
two standards, this difference of encoding is not surprising, since DDA is what
computer algebra systems do (and what humans do, most of the time, even while
interpreting the symbols as Dεδ), whereas human beings generally think they are
doing Dεδ and communicate mathematics that way.

For partial differentiation we see the same general picture, but the concrete
representations drift further apart: For dm+n

dxmdyn f(x, y), MathML would use

<apply>
<partialdiff/>
<bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>
<bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>
<degree><apply><plus/><ci>m</ci><ci>n</ci></apply></degree>
<apply><ci type=”function”>f</ci><ci>x</ci><ci>y</ci></apply>

</apply>

using degree qualifiers inside the bvar elements for the orders of partial dif-
ferentiations and a degree qualifier outside for the total degree. The following
representation is proposed in [3]:

<OMA>
<OMS cd=”calculus1” name=”partialdiff”/>
<OMA>

<OMS cd=”list1” name=”list”>
<OMV name=”m”/>
<OMV name=”n”/>

</OMA>
<OMBIND>

<OMS cd=”fns1” name=”lambda”/>
<OMBVAR><OMV name=”x”/><OMV name=”y”/></OMBVAR>
<OMA><OMV name=”f”><OMV name=”x”/><OMV name=”y”/></OMA>

</OMBIND>
</OMA>

For the problems caused by wishing to represent dk

dxmdyn f(x, y), see [13] and the
proposed solution in [8].
7 With the insights from the last section, MathML 3 would probably use a bind ele-

ment, emphasizing the role of the differentiation operator as a function constructor.



272 J.H. Davenport and M. Kohlhase

Integration is even more problematic than differentiation. MathML interprets
integration as an operator on expressions in one bound variable and presents as
paradigmatic examples the three expressions below, which differ in which ways
the bound variables are handled.

a:
∫ a

0 f(x)dx b:
∫

x∈D
f(x)dx c:

∫
D

f(x)dx

<apply>
<int/>
<bvar>

<ci>x</ci>
</bvar>
<lowlimit>

<cn>0</cn>
</lowlimit>
<uplimit>

<ci>a</ci>
</uplimit>
<apply><ci>f</ci>

<ci>x</ci>
</apply>

</apply>

<apply>
<int/>
<bvar>

<ci>x</ci>
</bvar>
<condition>

<apply><in/>
<ci>x</ci>
<ci>D</ci>

</apply>
</condition>
<apply><ci>f</ci>

<ci>x</ci>
</apply>

</apply>

<apply>
<int/>
<bvar>

<ci>x</ci>
</bvar>
<domainofapplication>

<ci>D</ci>
</domainofapplication>
<apply><ci>f</ci>

<ci>x</ci>
</apply>

</apply>

OpenMath can model usages (a) and (c) easily enough, via its defint operator:
in fact usage (a) is modeled on the lines of (c), as

∫
[0,a] f(x)dx, which means

that we need to give an eccentric8 meaning to ‘backwards’ intervals in order to
encode the traditional mathematical statement∫ b

a

f(x)dx = −
∫ a

b

f(x)dx. (6)

A more logical view is to regard the two notations as different, and define εδ

∫
[a,b]

(via limits of Riemann sums, or whatever other definition is appropriate), and
then

εδ

∫ b

a

f =

{
εδ

∫
[a,b] f a ≤ b

−εδ

∫
[b,a] f a > b

, (7)

whereas

DA

∫ b

a

f =
(

DA

∫
f

)
(b) −

(
DA

∫
f

)
(a) (8)

by definition.
Usage (b) might not worry us too much at first, since it is apparently only a

variant of (c). The challenge comes when we move to multidimensional integra-
tion (in the εδ

∫
sense). [2, p. 189] has a real integral over a curve in the complex

plane,
1
2π

∫
|t|=R

∣∣∣∣ f(t)
tn+1

∣∣∣∣ |dt| (9)

8 Along the lines of “the set [b, a] is the same as [a, b] except that, where it appears as
a range of integration, we should negate the value of the integral”! [13]. It is possible
to regard ‘backwards integration’ as an “idiom” and (6) as the explanation of that
idiom, but this seems circular.
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whereas [1, p. 413, exercise 4, slightly recast] has an integral where we clearly
want to connect the variables in the integrand to the variables defining the set:∫ ∫ ∫

{
x2
a2 + y2

b2
+ z2

c2
≤1

}
(

x2

a2 +
y2

b2 +
z2

c2

)
dxdydz (10)

5 A Radical Proposal: Enhanced Binding Operators

The multiple points of view in the εδ vs. DA discussion can be seen in other
situations, as witnessed by the difference between the OpenMath and MathML
representations of the set {x|x < 1} above. There seem to be two styles of think-
ing about mathematical objects. The first one — we will call it the first-order
style — manifests itself as the εδ-style in calculus. This style avoids passing
around functions and sets as arguments to operators and uses expressions with
bound variables instead. The second style — which we will call the higher-
order style — allows functions and sets as arguments and relies heavily on
this feature for conceptual clarity. It can be argued that the higher-order style is
more modern9, but arguably the first-order style still permeates much of math-
ematical practice. And if we take the use of mathematics in the Sciences and
Engineering into account probably accounts for the vast majority of mathemat-
ical communication. Therefore we argue that both representational styles must
be supported by MathML and OpenMath (and strict content MathML)

Examples like (9) and (10) show that the binding objects in OpenMath are
too weak representationally to accomodate the first-order style of representation
faithfully, and so force the reader into a higher-order style: we want the triple
integration operator in (10) to range over a restricted domain of integration, and
we want to give this domain as an expression over the integration variables10, at
least in εδ variant of integration. Moreover, given the discussion in Section 3 we
need these variables to participate in α-conversion. How might we encode this
in OpenMath? Figure 2 shows 4 alternatives11:

1. In the binder We can interpret ∫ ∫ ∫ {
x2

a2 + y2

b2
+ z2

c2
≤1

} as a complex binding

operator, as in forallin and try to use that in a binding object. But this

9 It has gained traction in the second half of the 20th century with the advent of
category theory in Math and type theories in Logic.

10 The original formulation in [1], which was “
∫ ∫ ∫

S
. . . where S = {· · ·}”, transcends

the scope of both MathML and OpenMath, which restrict themselves to mathemat-
ical formulae. In fact MathML 2 had limited support for inter-formula effects with
the declare element, but deprecates this element in MathML 3 since it cannot be
defined on an intra-formula level. Thus the (important) issue of connecting bindings
between different formula must be relegated to representation formats that transcend
individual formulae, such as the OMDoc format [14].

11 We use boxed formulae as placeholders for their (straightforward but lengthy) Open-
Math2 encodings.
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runs foul of the OpenMath2 dictum that the binding operator is not subject
to α-conversion by its own variables; so this avenue is closed.

2. In the body On the other hand we can interpret the domain restriction as
part of the binding object, and represent (10) as (2) in Figure 2. But this is
impossible in OpenMath2, since only one OpenMath object after the OMBVAR
element is allowed.

3. In the body (2) We can solve this problem by inventing a mathematically
meaningless “gluing” operator

4. separately It is possible to represent an integration formula in OpenMath2
that is supposedly equivalent mathematically to (10) using the Differential
Algebra approach: but this is, from the εδ point of view, totally unnatural,
since it is α-equivalent to the expression in Figure 3 which is unreadable for
a human, and also destroys commonality of formulae.

1. <OMBIND>
<OMA>

<OMS cd=”calculus new”
name=”tripleintcond”/>

x2

a2 + y2

b2
+ z2

c2
≤ 1

</OMA>

<OMBVAR> x, y, z </OMBVAR>

x2

a2 + y2

b2
+ z2

c2

</OMBIND>

2. <OMBIND>
<OMS cd=”calculus new”

name=”tripleintcond”/>

<OMBVAR> x, y, z </OMBVAR>

x2

a2 + y2

b2
+ z2

c2
≤ 1

x2

a2 + y2

b2
+ z2

c2

</OMBIND>

3. <OMBIND>
<OMS cd=”calculus new”

name=”tripleintcond”/>

<OMBVAR> x, y, z </OMBVAR>

<OMA>
<OMS cd=”calculus new”

name=”tripleint inner”/>

x2

a2 + y2

b2
+ z2

c2
≤ 1

x2

a2 + y2

b2
+ z2

c2

</OMA>
</OMBIND>

4. <OMA>
<OMS cd=”calculus new”

name=”tripleintcond”/>

λx, y, z. x2

a2 + y2

b2
+ z2

c2
≤ 1

λr, s, t. r2

a2 + s2

b2
+ t2

c2

</OMA>

Fig. 2. The Alternatives

<OMA>
<OMS cd=”calculus new”

name=”tripleintcond”/>

λx, y, z. x2

a2 + y2

b2
+ z2

c2
≤ 1

λz, y, x. z2

a2 + y2

b2
+ x2

c2

</OMA>

Fig. 3. α-equivalent of 4 above

Solution 1 makes bound variables
have an unusual, to say the least, scope,
and solution 4 is higher-order style, so
we are left with the other two. They
have quite a lot in common, since they
both achieve the fundamental goal of
making both the region and the inte-
grand subject to the same binding op-
eration. We can summarise the points
as follows.
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2: pro: Mathematically elegant; fits into both the XML and binary encodings
of OpenMath.

2: con : Requires a change to the abstract description of the OpenMath stan-
dard.

3: pro: No change to the OpenMath standard.
3: con : Needs a new, mathematically meaningless, symbol such as

tripleint_inner for each symbol such as tripleintcond.

Option 2 is our preferred route, and the rest of this paper assumes that, but
the changes to adopt option 3 should be obvious. The changes to the OpenMath
standard to adopt option 2 are in the Appendix of the full paper [10].

6 Conditions in MathML

Our proposal above still leaves us with the problem to figure out the meaning
of the condition from the examples and to specify their meaning in terms of
OpenMath3 objects. MathML 2 introduces 23 examples of its usage, described
in Table 1 of [10], and a further 31 in Appendix C, described in Table 2 of [10].
These can be roughly categorised as follows (where a + b means “a in Chapter
4 and b in Appendix C”).

5+14 are used to encode ∃n ∈ N or ∀n ∈ N (or equivalents). Strictly speaking,
these usages are not necessary, because of the equivalences below.

∃v ∈ S p(v) ⇔ ∃v (v ∈ S) ∧ p(v) (11)
∀v ∈ S p(v) ⇔ ∀v (v ∈ S) ⇒ p(v) (12)

However, in practice, it would be better to have a convenient shorthand
for these, hence the proposal in [9] for OpenMath symbols existsin and
forallin, which are constructors for complex binding operators that include
restricting the domain of quantification.

6+4 can be replaced by the OpenMath suchthat construct [10, 10, 1]
2+2 are solved by the use of map in OpenMath.

Pragmatic MathML Strict MathML
<apply> W

<bvar>X</bvar>
<condition>Y </condition>
Z

<apply>

<bind> W ′

<bvar>X</bvar>
Z
Y

<bind>

Fig. 4. Translating MathML with condition

So we see that for
all concrete operators,
we have a natural strict
content MathML/Open-
Math equivalent. In the
other cases we use the
translation in Figure 4
afforded by OpenMath-
/strict MathML extended according to our proposal. Here W is a binding oper-
ator and X stands for any number of variables in the bvar construct and Y , Z
are arbitrary MathML expressions. Since we have treated all concrete operators,
W must be either a ci, cn, a complex MathML expression, or a csymbol ele-
ment.We believe the first two cases have not been used, since there is no plausible

tripleint_inner
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way to give them meaning; we propose to deprecate such usages in MathML 3. In
contrast to that, the csymbol case is an eminently legitimate use, and therefore
have to provide a W ′ in the rule above. But in MathML 2, a csymbol element only
has a discernible meaning, if it carries a definitionURL attribute that points to
a description D of the symbols’ meaning, which will specify the meaning of the
expression in terms of X , Y and Z. This description can be counted as (or turned
into) a CD D′ that declares a binary binding operator that can be referenced by a
csymbol element W ′ which points to this declaration. Note that if D described a
usage of the operator W without a condition qualifier, then D′ must also declare
the unary binding operator W ; this must be different from W ′, since OpenMath
operators have fixed arities. Finally, note that the case where W is a complex ex-
pression is analogous to the previous cases depending on the head symbol of W .

7 Lifting Associative Operators

Binary associative operators have notational peculiarities of their own. While
we tend to write then as binary, as “a + b + c”, we recognise that this is “re-
ally” one addition of three numbers, and both MathML-Content and OpenMath
would represent this as a plus with three arguments. Mathematica distinguishes
such operators as Flat and OpenMath’s Simple Type System [6] as nassoc. It
therefore makes sense to think of applying them to collections of arguments, and
mathematical notation does this all the time (see table 5).

“small” a1 + a2 + a3 a1a2a3 a1 ∩ a2 ∩ a3 a1 ∪ a2 ∪ a3 a1 ⊗ a2 ⊗ a3 a1 ∨ a2 ∨ a3

small Unicode 225C 225B 220A 225F
“big”

∑3
i=1 ai

∏3
i=1 ai

⋂3
i=1 ai

⋃3
i=1 ai

⊗3
i=1 ai

∨3
i=1 ai

big Unicode 1350 1351 1354 1353 134E 1357

Fig. 5. “Big” operators

With the exception of
∑

and
∏

, which [7] regarded as being among the
“irregular verbs” of mathematical notation, we can see a familiar pattern: the
operator that applies to a collection of argument is “bigger” than its infix binary
equivalent. The designers of Unicode have done as well as might be hoped for
in mapping these symbols to ‘related’ code points in Unicode space for the
corresponding glyphs.

How are these “big” operators going to be represented? For those it “knows”
about [5, 4.2.3.2] (the list is, with our decorations. given in Figure 6: the ones
marked P are no longer n-ary in strict MathML 3),

plus, times, max∗, min∗, gcd∗, lcm∗, mean‡, sdev‡, variance‡, median‡, mode‡,
and∗, or∗, xor†, union∗, intersect∗, cartesianproduct†, compose†, eqP,
leqP, ltP, geqP, gtP

Fig. 6. MathML 2’s n-ary operators
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<apply>
<or/>

<bvar><ci>i</ci></bvar>
<lowlimit><cn>1</cn></lowlimit>
<uplimit><cn>3</cn></uplimit>
ai

</apply>

<OMA>
<OMS name=”apply to list” cd=”fns2”/>
<OMS name=”or” cd=”logic1”/>
<OMA>

<OMS cd=”list1” name=”make list”/>

1 3 λi.ai

</OMA>
</OMA>

Fig. 7.
∨

in OpenMath and MathML

MathML can use bound variables and conditions, so the last item from Fig-
ure 5 would be shown on the left in Figure 7. It is not clear from [5] whether
the same construct can be applied to a user-defined operator, but it would
be reasonable. OpenMath, on the other hand, has an explicit lifting operator
apply to list, see Figure 7 right.

Many of the operators ⊕ listed in Figure 6, those we have marked ∗, have two
additional properties:

idempotence ∀f f ⊕ f = f ;
monotonicity There is some discrete order & such that ∀f, g f ⊕ g & g.

The first means that it make sense to apply ⊕ to a set , i.e.
⊕

S. The second
means that it makes sense to talk about

⊕∞
i=1 si, as being the point where the

construct stabilises under &, or some kind of infinite object otherwise. Open-
Math’s construction has no problem with, say,

∨
F , but MathML has to write

this as
∨

p∈F p and use condition to represent the p ∈ F .
The statistical operators (marked ‡), when applied to discrete sets, and those

marked †, only make sense over finite collections, but
∑

and
∏

, as well as being
lexically irregular in not being the infix operators writ large, are different in that
they can have a calculus connotation. Here neither OpenMath nor MathML 3
make any clear distinctions, nor, in their defence, do the vast majority of mathe-
matics texts. Is that sum meant to be absolutely convergent or only conditionally
convergent? Only a careful analysis of the surrounding text will show, if then.

To help those authors who wish to make such distinctions, OpenMath prob-
ably ought to have a CD of symbols with finer distinctions, just as it should for
the various kinds of integrals such as Cauchy Principal Value.

8 Conclusion

We have listed four areas where MathML (1–2) and OpenMath have taken differ-
ent routes to the expressivity of mathematical meaning. In the case of MathML’s
condition, we have seen one very general concept that does not have a single
formalisation, and this led to the pragmatic/strict distinction in MathML 3.
We have seen the utility of “restricted” quantifiers, even though they are not
logically necessary, and [9] proposes their addition to OpenMath.

In the case of the calculus operations, this reflected a genuine split in the
approaches to the calculus operations, whether one viewed them as algebraic
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or analytic operations. Since neither is ‘wrong’, but the two are different (for
example the “Fundamental Theorem of Calculus” is a theorem from the ana-
lytic point of view, but a definition in the algebraic view), a converged view at
MathML/OpenMath 3 should incorporate both.
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Abstract. Active mathematical documents are distinguished from tra-
ditional paper-oriented ones by their ability to interactively adapt to a
reader’s inputs. This includes changes in the presentation of the content
of the document as well as changes of that content itself.

We have developed the JOBAD architecture, a client/server infras-
tructure for active mathematical documents. A server-side module gen-
erates active documents, which a client-side JavaScript library makes
accessible for user interaction. Further server-side modules – in the same
backend, or distributed web services – dynamically respond to callbacks
invoked when the user interacts with the client. These three compo-
nents are tied together by the JOBAD active document format, which
backwards-compatibly enhances MathML by information about
interactivity.

JOBAD is designed to be modular in the specific web services offered.
As examples, we present folding and elision in mathematical expressions,
type and definition lookup of symbols, as well as conversion of physical
units. We evaluate our framework with a case study where a large col-
lection of lecture notes is served as an active document.

1 Introduction and Related Work

Documents are an important interface for distributing mathematical knowledge.
Recently, the technological development has shifted attention more and more
towards digital documents and the added-value they can offer. This has led to
a number of research efforts on interactive mathematical documents involving
features such as adapting mathematical documents, interactive exercises, and
connecting to mathematical web services.

The ActiveMath project investigates how to aggregate documents from a
knowledge base such that the resulting document contains exactly the topics that
the reader wants to learn and their prerequisites [Act08]. Interactive Exercises
have been realized in ActiveMath and MathDox [GM08, CCK+08, CCJS05].
Here, the user enters the result into a form and then gets feedback from a
solution checker in the server backend. ActiveMath comes with its own web
services [MGH+06], and MathDox has originally been designed for talking to
computer algebra systems but can also connect to other services via MONET
(see below). Gerdes et al. have developed a reusable exercise feedback service for

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 279–293, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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exercises that has also been integrated with MathDox [GHJS08]. Besides sup-
porting MathDox’s own communication protocol, Gerdes’s service also complies
to the XML-RPC and JSON data exchange standards [GHJS08]. The services
developed within the MathDox and ActiveMath projects, such as the Active-
Math course generator, are potentially open to any client, but have not been
used with any frontend other than their primary one so far [Ull08, MGH+06].

There are also elaborate web service architectures for mathematical web ser-
vices that have been designed for integration with many systems, such as the
ones developed in the SCIEnce [SCI09] and MONET projects [Mon05]. SCIEnce
explicitly targets symbolic computation and grid computing and does not con-
sider documents as user interfaces. MONET is an architecture that, in principle,
allows for any kind of mathematical web service. Still, mainly computational
web services have been developed and evaluated within that framework. Web
services can register with a central MONET broker that accepts requests, which
do not directly call a web service but consist of a problem description (e. g., solve
an equation, given as an OpenMath expression). The broker then forwards the
request to the best-matching service. The above-mentioned MathDox allows for
access to MONET web services via a document interface.

Asynchronous communication with a server backend (AJAX) allows for client/-
server interaction without submitting forms. It is a prerequisite for responsive
browser-based applications: A client-side script can exchange small data packets
with a server backend and insert responses from the server into the current
page. This technique is employed by MathDox [CCK+08] and Gerdes’s frontend
to their feedback service [GHJS08].

Despite the efforts mentioned above, there is still a lot of static mathematical
content on the web. Where documents act as frontends to web services, as in
the above-mentioned systems, they have usually been designed to give access to
a small selection of web services performing very specific tasks (mostly giving
feedback to exercises and symbolic computation) – as is the case with ActiveMath
and MathDox.

Our goal is to facilitate the integration of diverse web services into mathe-
matical documents – inspired by the Web 2.0 technology of mashups [O’R05,
AKTV08]. Originally, mashups were handcrafted JavaScripts pulling together
web services from different sites. Since then several mashup development kits
have been developed, e.g., Yahoo! Pipes [Yah09] or Ubiquity [Moz09]. We aim
at a similar development kit for mathematical applications. Our vision of an
interactive document is a document that the user can not just read, but adapt
according to his preferences and interests while reading it – not only by customiz-
ing the display of the rendered document in the browser, but also by changing
notations (which requires re-rendering) or retrieving additional information from
services on the web. Consider a student reading lecture notes: Whenever he is
not familiar with a mathematical symbol occurring in some formula, he should
be able to look up its definition without opening another document, but right
in his current reading context. Or consider the problem of converting between
physical units (e. g., imperial vs. SI). There are lots of unit converters on the
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web (see [Str08] for a survey), but instead of manually opening one and copying
numbers into its entry form, we want to enable an in-place conversion.

In [KMR08, KMM07], we investigated how OMDoc documents containing con-
tent markup can be rendered as XHTML with embedded presentation MathML.
The rendering was relative to context dimensions such as the native language of
the reader or the field of knowledge. This approach used notation definitions to
translate content markup into presentation markup. It focused on generating doc-
uments before the user gets to read them. In the present paper, we continue this
line of research and introduce JOBAD as the client-side counterpart. JOBAD is a
JavaScript API for OMDoc-based Active Documents. While its primary intended
application is to be part of the active documents served by our server, it is in-
dependent of the server and can be flexibly reused to enable any mathematical
document to interact with the reader or web services. Our contribution includes
the JOBAD interactive document format, an XHTML+MathML-based interface
language between server- and client-side computation.

In Section 2, we present the main component of JOBAD, a collection of small
JavaScript modules that add interactive services to a mathematical document.
Here we assume a broad notion of “service” including local interactive func-
tionality as well as any service with an HTTP interface, regardless of whether it
complies with a “heavyweight” web service standard like XML-RPC or MONET.
In Section 3, we present several web services that we have implemented and de-
scribe how to integrate third-party services. In Section 4, we briefly describe a
first JOBAD case study, and we conclude in Section 5.

2 An Architecture for Active Documents

The JOBAD architecture is divided into the actual mathematical services, the
user interface elements, and generic communication and document manipulation
functions (see figure 1). On the client side, JOBAD consists of a JavaScript main

Fig. 1. JOBAD Architecture. Note the central role of the rendering service, which both
generates JOBAD-compliant documents and is needed for many other services.
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module and one independent module for each service. The server controls the
available functionality by loading a collection of service modules into the docu-
ment. We distinguish three kinds of interactive services by the amount of data
they exchange with the web service backend: 1. services that merely draw on
data embedded into the document, 2. services that send a symbol identifier and
an action verb to the backend in order to retrieve additional information, 3. and
services that send complex mathematical content expressions to the backend.The
decision which kind of service should be used for a particular functionality de-
pends considerably on the format used for interactive documents: Some meta-
information about the current appearance may be embedded into the document
to permit local interaction, for example, alternative presentations or parallel con-
tent markup. If this is not feasible, further information must be embedded that
instructs the JOBAD client how to retrieve the external document fragments.

2.1 A Document Format That Enables Services

The MathML specification leaves some details about the structure of a document
to application developers [W3C]. Therefore, for JOBAD, we pose some additional
requirements:

1. Alternative displays, among which the user can switch, should1 be realized
by maction elements and an @actiontype attribute that indicates the
type of service [W3C, section 3.6.1]. Particularly, services that rewrite a
formula should retain the previous state of the formula as an alternative to
which the user can switch back.

2. Unless subterms are already part of a grouping operator (e. g. radicals, or
super-/subscripts, or fractions; see [W3C, table 3.1.3.2] for a complete list),
they must be grouped using the invisible mrow element (which is optional
in MathML).

3. For services that need access to the semantics of mathematical expressions,
the latter must be provided as parallel content markup [W3C, chapter 5.4].
There must be cross-links from the subterm-grouping elements of Item 2
to the corresponding content elements. Content elements may be annotated
with additional attributions.

4. If services that directly operate on the presentation markup to customize
its display require annotations that will be interpreted in a service-specific
way, it may be considered impractical to add them to the parallel content
markup and look them up there. In such a case, annotations may be added
directly to presentation markup elements as attributes from another names-
pace (see [W3C, section 2.4]). It is recommended that such annotations
require considerably less additional space than parallel markup; otherwise
parallel markup should be preferred.

Requirements 2 and 4 lead to a linear overhead in the size of the formulas
(with a small factor), requirement 3 as well but with a factor of 2 to 4, as content
1 We use these capitalized keywords in accordance with RFC 2119 [Bra97].
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markup, element IDs, and references to those IDs are added. Requirement 1
can lead to an exponential overhead when alternative displays are nested. This
could be avoided if Presentation MathML allowed for structure sharing between
expressions (which only Content MathML allows so far).

As these requirements are hard to satisfy by manual authoring, this markup
is generated by our rendering service that generates presentation from con-
tent markup using pattern matching-based notation definitions for all symbols
(cf. section 3.1). In the following, we will describe these requirements in more
detail by discussing how they are used in a variety of services we implemented.

Switching between Alternative Displays. An maction element can have
multiple children, one of which is displayed at a time, controlled by the
@selection integer attribute – whose value can be changed at runtime. The
MathML specification suggests possible @actiontype values but does not pre-
scribe a fixed semantics for them. We have introduced several values for that
attribute and clearly specified the desired behavior of the services using them.

In particular, we use maction, with the action type abbrev, for author-
defined abbreviations of complex expressions. Consider a physics document,
where the author wants to provide Wpot(R) (potential energy) as an instructive
abbreviation of the complex term −e2

4πε0R/2 . We introduce the OpenMath symbol
folding#abbrev that serves as an attribution key. Our rendering algorithm
uses the value of such an attribution as an alternative display. For example,

<OMATTR>
<OMATP>

<OMS cd="f o l d i n g " name="abbrev"/>
Wpot(R)

</OMATP>
−e2

4πε0R/2

</OMATTR>

is rendered as

<maction act ion type="abbrev" s e l e c t i o n="1">
−e2

4πε0R/2

Wpot(R)
</maction>

Other JOBAD services create mactions on the fly (using the name of the
service as the value of the @actiontype attribute) whenever they rewrite a
term t into t′ (e. g. by converting units; see Sect. 3.3). This allows for making
interactions undoable: The previous state t of a term is preserved in the second,
hidden child of the maction, and the user can switch back to it. Not only do
interactions become undoable locally, but they also become redoable: When in-
formation from a remote web service has been used to rewrite t � t′, as is the
case with unit conversion, e. g., and the user switches back to t, he can recover t′

folding#abbrev
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without causing the information to be retrieved from the web once more, as it
is still cached in the maction.

Grouping Subterms for Interactive Folding. Besides author-defined ab-
breviations, we have implemented interactive folding of arbitrary subterms, so
that a reader can hide them if he feels distracted. Any subterm that is properly
grouped (see requirement 2 above) is eligible for folding. When the user requests
folding of a subexpression for the first time, we put both the original subterm
and its folded version into an maction element with actiontype folding
for making the action undoable (see above).

As an example, consider the expression [1 + [2 · x]], where square brackets
denote mrows. Suppose the user selects [part of] the subterm 2 · x or right-clicks
somewhere in that term and requests it to be folded. Then, the formula will
display as [1 + . . . ]. Clicking on the dots and selecting the “unfold” action from
the user interface (e. g. the context menu) will restore the original appearance.

Cross-Linked Parallel Markup. MathML provides the ability to attach se-
mantic annotations to presentation markup as so-called parallel markup [W3C,
chapter 5.4]. We use this to obtain the content counterpart of presentation ex-
pressions selected by the user. The direction of such cross-links is generally un-
specified in MathML, but we fix it to “presentation→content” as that is the
most natural direction for looking up a formal representation of the user’s selec-
tion. Moreover, it is the only direction in which associative infix operators can
be cross-linked, as multiple presentation operators have to link to one content
symbol (cf. Fig. 2).

Therefore, we require links from symbols, numbers, identifiers, and subterm-
grouping presentation elements to corresponding content elements, given by
@xref attributes. If a content expression is to be looked up for a given se-
lection of presentation elements, we locate the closest common ancestor of all
selected XML elements that carries an @xref attribute and dereference it to
obtain the corresponding content expression. An example is given in Figure 2.

Since our rendering algorithm supports pattern-matching-based and thus non-
compositional translations from content to presentation markup, not every con-
tent subexpression corresponds to a presentation expression. For example, in
the presentation element corresponding to sin2 x, there will be no subexpression
pointing to the content expression sin x.

Lightweight Annotations for Flexible Elisions. The rendering algorithm
that we introduced in [KMR08] enables a flexible elision of redundant brackets.
We now describe how to utilize the output generated by that algorithm – and
thus our rendering service, cf. Sect. 3.1 – for deferring the decision which brackets
to elide until the document is read.

When rendering a content expression f(t1, . . . , tm), brackets around the ren-
dering of ti = g(s1, . . . , sn) are redundant if the operator f binds weaker than
g. Binding strength is determined by comparing the i-th input precedence of f
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<semantics>

<!-- a+b
2

c -->
<mrow xref="#E">
<mi xref="#E.1">a</mi>
<mo xref="#E.0">+</mo>
<mrow xref="#E.2">

<msup xref="#E.2.1">

<mi xref="#E.2.1.1">b</mi>

<mn xref="#E.2.1.2">2</mn>

</msup>

<mo xref="#E.2.0">&#x2062;

<!-- INVISIBLE TIMES -->

</mo>

<mi xref="#E.2.2">c</mi>

</mrow>
<mo xref="#E.0">+</mo>
<mi xref="#E.3">d</mi>

</mrow>

<annotation-xml encoding="OpenMath">
<OMA id="E">
<OMS cd="arith1" name="plus"
id="E.0"/>

<OMV name="a" id="E.1"/>
<OMA id="E.2">

<OMS cd="arith1" name="times"

id="E.2.0"/>

<OMA id="E.2.1">

<OMS cd="arith1" name="power"

id="E.2.1.0"/>

<OMV name="b" id="E.2.1.1"/>

<OMI id="E.2.1.2">2</OMI>

</OMA>

<OMV name="c" id="E.2.2"/>

</OMA>
<OMV name="d" id="E.3"/>
</OMA>

</annotation-xml>
</semantics>

Fig. 2. Parallel markup: Presentation markup elements point to content markup ele-
ments. The light gray range is the user’s selection, with the start and end node in bold
face. We first look up their closest common ancestor that points to content markup,
and then look up its corresponding content markup – here: E.2.

with the output precedence of g. Redundant brackets are retained in the out-
put document, but annotated with the difference between these precedences as
the elision level. Besides brackets, our rendering service supports other elision
groups, e. g., for type annotations, some of which are essential whereas others
can be inferred. Then brackets are the special case of the elision group fence.

All visible Presentation MathML elements and all grouping elements can
carry the attributes @egroup and @elevel from the OMDoc namespace. The
value of the former can be any string with the value fence being reserved for
brackets. The value of the latter can be any integer or the strings infinity
and -infinity. In case an element is member of multiple elision groups, the
@egroup and @elevel attributes can contain a space-separated list. For ex-
ample, a left bracket, annotated with elision information, looks as follows:

<mo fence="true" omdoc:egroup="fence" omdoc:elevel="100">(</mo>

Our elision service allows the user to choose one visibility threshold for each
elision group. If Tg is the threshold of elision group g, then all elements of group
g whose elision level is above Tg are invisible. This is realized by using maction
elements with action type elision that switch between an expression and
an invisible mspace element. This also permits a document to provide initial
visibility status for its elements.
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2.2 User Interface

JOBAD offers various user interface elements for input and output. By right-
clicking, a context menu can be requested for the object under the cursor or
for the range of selected objects. A selection can be made in the usual way
of dragging the mouse, or by repeated clicking on any part of a formula. In the
latter case, the selection is extended step by step, always advancing to the parent
grouping element. While performing actions on the current selection makes sense
for services like folding or definition lookup (cf. Sect. 3.2), other services, such
as elision, are also made available globally: If desired, bracket elision can be
controlled document-wide by hotkeys from 0 (no redundant brackets displayed)
to 9 (all redundant brackets displayed), and a collapsible toolbar placed next
to each formula offers one slider per elision group for controlling the thresholds
locally.

Calls to services are represented by generic action objects, which allows for
providing diverse access to them. The same elision action can, e. g., be triggered
via a local context menu, from a formula-local toolbar, and via a global keyboard
shortcut.

Besides rewriting formulae, JOBAD offers tooltip-like popups for displaying
information on demand. These can be annotations hidden in the document, but
we mainly use it for displaying responses from web services, such as the definition
of a symbol that the user wanted to look up (cf. Sect. 3.2).

3 Web Services and Their Integration

The easiest way of realizing a mathematical web service is to expose functionality
via an HTTP interface. When adopting the REST pattern [Fie00], URLs directly
represent mathematical resources (e. g., OpenMath symbols). This can be used,
for example, to retrieve the definition of a symbol. We call such services symbol-
based. More complex services act on the selected expression. In those cases, we
use parallel markup to obtain the corresponding content expression and include
it in the body of the HTTP request. We call such services expression-based.

In the JOBAD framework, we do not commit to a fixed set of web services.
Rather do we specify a way of how a JOBAD-compliant document server adver-
tises available web services. For each service (client-side service or web service)
the document server chooses to offer in the active documents it serves, it must
serve the corresponding JOBAD JavaScript module to the client. In the head
of an active document, each JavaScript module must be initialized. To modules
that access web services, a description of a web service backend they can con-
nect to must be provided. In the case of an integrated backend, these can be
components of that backend, but it can also be remote web services that the
document server is aware of.

The description of a symbol-based service must consist of a name that is
displayed to the user and a URL that invokes the service. The URL may contain
placeholders for cdbase, cd, and name of the symbol. Similarly, the description
of an expression-based service must consist of a name and a URL.
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Listing 1.1. Service initialization code in a document

<!−− u t i l i t y f unc t i on s (module loading , document manipulation ,
c l i e n t / s e r v e r communication ) −−>

<script src=" . . / s c r i p t s / jobad . j s "/>
<!−− our own i n i t i a l i z a t i o n f o l l ow s −−>
<script type=" tex t / j a v a s c r i p t ">
// GUI e lements to be enabled
j obad In i t ( " contextmenu" ) ; // loads the context menu
// In−document s e r v i c e s
j obad In i t ( " e l i s i o n " ) ;
// Web s e r v i c e s
j ob ad In i t ( " d e f i n i t i o n −lookup " , "Look␣up␣ d e f i n i t i o n " ,

" http :// jobad . mathweb . org /backend? act ion=d e f i n i t i o n −lookup
␣&cdbase=$cdbase&cd=$cd&name=$name" ) ;
</ script>

3.1 Rendering

The rendering service is a prerequisite for making output from other services
human-readable. In its simplest form, it accepts as input (in the body of an
HTTP POST request) a fragment of OpenMath and returns the result of ren-
dering it to JOBAD-enriched Presentation MathML. In the following, we will
use render(c) for the result of rendering a content markup fragment c.

Our rendering service is implemented using the JOMDoc library, which im-
plements the rendering algorithm described in [KLM+09, KMR08]. It has access
to a collection of notation definitions, which map content markup patterns to
presentation markup templates [KMR08].

3.2 Definition and Type Lookup

The definition lookup service sends the ID of a symbol σ to the server and
expects as a response a content-markup formula containing a term that defines
σ. The type of a symbol can be looked up analogously. Our implementation
uses the RESTful URI format introduced at the beginning of this section. The
information that we want to look up is encoded by the value of the action
parameter, either definition-lookup or type-lookup. In the following,
we will use def(σ) and type(σ) for the definition of a symbol, or the type, resp.,
as looked up by this service.

On the server side, the lookup is enabled by representing content dictionaries
(CDs) in OMDoc [Koh06]. There, a symbol with type declaration and definition
is represented as shown below, which allows for easy retrieval, e. g., using XPath.
The situation in an OpenMath CD is similar, but as “definitional mathematical
properties” (DefMPs) have not yet been specified, there is no way of identifying
a definition of a symbol among its various mathematical properties.

<!−− Content markup omitted here to save space −−>
<symbol name="s in">

definition-lookup
type-lookup
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<type><OMOBJ>C → C</OMOBJ></type>
</symbol>
<d e f i n i t i o n f o r="#s in " type="simple">

<OMOBJ>sin z = 1
2i

(eiz − e−iz)</OMOBJ>
</d e f i n i t i o n >

Our current client-side implementation displays render(def(σ)) in a tooltip
overlay at the cursor position. Alternatively, definition expansion is possible,
which replaces the selected occurrence of a symbol with its definition and re-
renders the formula. The original formula before definition expansion is kept as
an maction alternative using the actiontype definition-expansion. In
contrast to definition expansion, which can only be offered for simple (σ := expr)
or pattern-based (f(x) := expr(x)) definitions, and for inductive definitions,
if applied for a single step, definition lookup can even be offered for implicit
definition. (See [Koh06, chapter 15.2] for definition types supported by OMDoc.)

Fig. 3. Looking up a definition (left: selecting the action, right: the result); example
taken from our lecture notes; cf. Sect. 4

As the desired MIME type of the response can be given in the HTTP request
header for so-called content negotiation, we can distinguish requests for content
markup from requests for a rendered formula while still using the same URL:

GET /backend?action=lookup-definition
&cdbase=...&cd=transc1&name=sin HTTP/1.1

Host: jobad.mathweb.org
Accept: application/openmath+xml

Analogously, the MIME type application/xhtml+xml would be used to
obtain a response rendered in XHTML with Presentation MathML.

3.3 Unit Conversion

The unit conversion service assumes the OpenMath encoding for units as spec-
ified in [DN03]: Base units are symbols in special CDs; derived units can be
formed by multiplication or division of base units with numeric factors or other
base units. For example:
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<OMA>
<OMS cd="arith1" name="times"/>
<OMI>1</OMI>
<OMS cd="units_metric1" name="metre"/>

</OMA>

The unit conversion service accepts one such expression o, plus a target unit
u. If a conversion is possible, the result is returned as an OpenMath expression,
which we denote by uc(o, u). On the client side, this result has to be integrated
into the current formula. Let p with o = c(p) be the presentation markup that
the user selected; then we add p′ = render(uc(o, u)) as an maction-alternative
for p to the document.

We have not implemented our own unit converter but use the one developed
by Stratford and Davenport [SD08, Str08], which performs conversions according
to the OpenMath FMPs of the unit symbols involved. In its current version, their
web service does not talk OpenMath but uses string input/output, so we have
to convert values between their OpenMath and string representation (e. g. “1
metre”).

3.4 Integrated Backends and Environments

For a clean conceptual model, we have treated our web services separately. From
an efficiency point of view it does, however, make sense to arrange multiple ser-
vices in an integrated backend. Consider unit conversion: Stratford’s unit conver-
sion web services internally relies on OpenMath CDs that declare one symbol per
unit and define conversion rules for obtaining derived units [Str08]. Definitions of
symbols are looked up from CDs as well. Last but not least, the rendering service
needs notation definitions for the unit symbols, and CD authors often provide
default notations for their symbols. Thus, offering those three services indepen-
dently requires redundantly storing knowledge about symbols in three places. An
integrated backend also saves time, as can be seen for definition lookup: With
separate lookup and rendering services, the client-side active document has to
connect to two web services in succession. An integrated backend could, how-
ever, offer readily rendered definitions by composing two of its internal functions
and only minimally extending its external HTTP interface (cf. Sect. 3.2). We
have implemented an integrated backend that performs rendering and definition
lookup, and acts as a proxy for communicating with third-party web services on
different domains to avoid security problems due to cross-site scripting.

4 Evaluation

Proof-of-concept demonstrations of individual JOBAD services can be tried at
the JOBAD web site [JOB09]. Besides that, we conducted two evaluations to
analyze the feasibility and scalability of our framework: 1. We loaded a large
OMDoc document into our server and activated the elision, subterm folding,
and definition lookup services. 2. We integrated an external unit conversion
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service, which was added after the main phase of the development, to get an
understanding of the investment needed to integrate further services.

The former involved the complete lecture notes of a first-year undergradu-
ate computer science course. These lecture notes are originally maintained in
LATEX with semantic annotations, which can be automatically converted to OM-
Doc [Koh08]. The annotations in the source documents comprise content-markup
formulae, informal definitions of symbols, and notation definitions. The OMDoc
representation is then rendered into the JOBAD format, which is viewed using
the JOBAD client, which offers flexible bracket elision, subterm folding, and
definition lookup [JOB09]. So far, we have used this as a stress test, but for the
Fall lecture we plan an evaluation where one group of our students will work
with the static XHTML version of the lecture notes and a second group with
the JOBAD-enriched active document.

The most complicated step in the latter evaluation was adapting the string-
oriented interface of Stratford’s unit conversion web service to our OpenMath
interface. Most of the other required functionality turned out to be already
available and just had to be composed. We chose the context menu interface and
added a submenu containing the target units2. Checking whether the selected
term was a quantity with a unit reduced to looking up its corresponding content
markup (cf. Sect. 2.1) and performing a simple XPath node test on the latter.
Sending a string to the web service and waiting for the response is a standard
JavaScript function. Rendering the result of conversion (after converting it back
to OpenMath) is done by another service. Finally, replacing two XML subtrees
in a formula (both in the presentation and the content markup) and hiding the
previous presentation tree in an maction, is a utility function provided by the
JOBAD core and also used by other services.

5 Conclusion and Future Work

We presented JOBAD, our architecture for active mathematical documents. Our
documents are generated dynamically from content-markup and viewed in a web
browser, via which the reader can change interactively both content and form
of the document. JOBAD constitutes the reader interaction component of our
research group’s framework for mathematical documents. As such, it is fully
integrated into the authoring [Koh08, Lan08], notation management [KMR08],
and storage [TNT09] work flows developed by our group.

We gently extended the Presentation MathML format to create an interface
language, in which the document server can embed into the served document
information about interactivity or instructions on how to retrieve that informa-
tion. This extension is backwards compatible in the sense that the markup is still
valid MathML, and switching off JavaScript yields the same static documents
as before.
2 A static list at the moment; obtaining admissible target units for a given input is

neither supported by our client-side implementation nor by the unit conversion web
service at the moment.
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We have implemented and evaluated an initial set of services that constitute
a representative selection of the possibilities we envision. Folding and flexible
elision work locally, type and definition lookup retrieve additional information
based on a symbol URI, unit conversion sends a content markup object as an
argument to a web service. The former service is based on presentation markup
generated by the server a priori. For the latter two, the JOBAD modules are
passed initialization parameters that instruct them about the server and its
URL format. For the latter one, parallel markup is utilized to obtain the content
representation of a presentation expression.

A specific design feature of JOBAD is its extensibility. Offering new services
for documents in the JOBAD interactive document can be achieved by adding
very little new JavaScript code. Adding new user interaction components and
binding them to JOBAD services is possible with minimal effort. Finally, the
JOBAD client code requires only very few properties of the specific server back-
ends, so that the same client can be easily used with different web services even
in the same document.

Future work will be based on this, and we intend to rapidly develop more
services, but also to invite contributions from external developers. Due to the
modularity of our framework, we expect that this work load can be divided
into small and manageable units that can be handled efficiently by students. In
particular, we intend to approach the following services:

Notation selection: Our rendering service can already annotate every ren-
dered symbol with a reference to the notation definition in the backend that
was used for rendering it [KLM+09]. This information can be used to ask
the backend for alternative notations, to allow the user to select from them,
and have the current formula re-rendered accordingly.

Guided tour (extension of lookup): This service generates a linear tutorial
containing an explanation of every symbol in the current selection, and of
every symbol occurring in these explanations, and so on, until some founda-
tional theory is reached.

Flattening: Many documents consist of components that are combined by a
module system (see [RK08]). A flattening service replaces import links with
the (possibly translated) copy of the imported document.

Search: Our group has developed a semantic search engine for mathematical
formulae [KAJ+08]. Therefore, a service that searches the web (or the server
database) for the selected expression will be easy to realize.

Links to web resources: The OpenMath wiki [Lan09] not only provides sym-
bol definitions, but also hosts discussions about them. Its architecture allows
for linking symbols to further web resources, e. g. Wikipedia articles about
mathematical concepts, which can then be made available in a document.

Adaptive display of statement-level structures: On the level of definitions,
theorems, andproofs,we generate a different kind of parallelmarkup fromOM-
Doc sources, namely XHTML+RDFa [ABMP08]. We have already used this
for visualizing rhetorical structures in mathematical documents (cf. [Gic08];
demo available at [JOB09]) and plan to extend it to structured proofs.
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Editing: Our group has developed the Sentido formula editor [LGP08]. An edit
service will pass the selected term to a Sentido popup window and eventually
replace it in the current document.

Saving: After a user has adapted a document, it is desirable to upload its
configuration to the database.

Furthermore, we will integrate the JOBAD architecture into our various inte-
grated document management systems, such as the semantic wiki SWiM [LGP08],
and the panta rhei document browser and community tool [pan].
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Abstract. Interactive exercises play a major role in an adaptive learn-
ing environment ActiveMath. They serve two major purposes: training
the student and assessing his current mastery, which provides a basis for
further adaptivity. We present the current state of the knowledge repre-
sentation format for interactive exercises in ActiveMath. This format
allows for representing multi-step exercises, that contain different inter-
active elements. The answer of the learner can be evaluated semantically.
Various types of feedback and hint hierarchies can be represented. Exer-
cise language possesses a construction for specifying additional compo-
nents generating (parts of) the exercise. One example of such component
is a Randomizer, which allows for authoring parametrized exercises. An-
other example is so-called Domain Reasoner Generator, that automat-
ically generates exercise steps and refined diagnosis upon the learner’s
answer. This turns ActiveMath system into an ITS as soon as some Do-
main Reasoner is connected to it. Finally, several tutorial strategies can
be applied to the same exercise. This strategies control feedback and
the way the exercise is navigated by the learner, and can adapt to the
learner.

1 Introduction

This paper describes knowledge representation for interactive exercises in the
ActiveMath learning environment and shows how this knowledge representa-
tion allows for encoding exercises that are reusable with different tutorial and
presentation strategies. This knowledge representation is a refinement of the
format described in [4] as explained in the section 2. A need for such a refine-
ment arose from the requirements of several research projects using Active-

Math system for exploring different tutorial strategies for interactive exercises.
Such strategies have been developed in ActiveMath for the needs of the Ger-
man research projects ATuF (Adaptive Tutorial Feedback) and ALOE (Adaptive
Learning On Errors). We describe the tutorial and presentation strategies in the
section 5.

ActiveMath is a web-based learning platform for mathematics. It incorpo-
rates the set of tools for learner and teacher that facilitate learning process. In
addition to its adaptive course generation [12] and student model [2] a central
component is its subsystem for interactive exercises that features ActiveMath’s
main functionalities of ’intelligent tutoring’ including the student input’s diag-
nosis. Exercise subsystem serves two fundamental purposes. On one hand, it

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 294–309, 2009.
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provides the student model with an assessment of the learner’s knowledge, that
serves as a basis for further adaptivity. On the other hand, exercises train the
learner in order to increase his mastery of the domain concepts.

ActiveMath is not specific to any particular mathematical domain. Among
the current courses are e.g. calculus, fraction arithmetics, statistics, analytic
and algebraic geometry, optimization and operation research, etc. For diagnosis
in multiple mathematical domains ActiveMath needs services of Computer
Algebra Systems (CAS) and multiple domain reasoners. In the section 3.1 we
briefly describe the semantic broker architecture for distributed mathematical
diagnosis services developed in ActiveMath.

OpenMath
1 representation for mathematical formulas ensures interoperabil-

ity with external CAS and other formal mathematical reasoning systems via
using so-called phrasebooks, that transform OpenMath representation into the
syntax of a particular reasoning service and then translate the results back to
OpenMath. A specific generic query language has been defined in Active-

Math for querying external services for diagnosis upon the learner’s answer and
retrieving (parts of) correct solution.

ActiveMath uses OMDoc standard for mathematical documents2 for its
course contents. Knowledge representation of interactive exercises extends OM-

Doc. It reuses the micro-structure elements CMP (Commented Mathematical
Property) of OMDoc and their contents for representing static content of exer-
cise steps. This includes text, formulas, images, formatting elements. By using
several CMPs with different values for language attribute, we obtain multilingual
exercises. Complex internal structure for multi-step interactive exercises with
various types of interactivity and rich set of annotations for classifying feedback
is defined. This representation can serve as a natural replacement of an OMDoc

quiz module, which can represent only single-step multiple-choice exercises.

2 Knowledge Representation of Exercises

An exercise in ActiveMath is represented as a finite state machine of states
representing tutorial actions of the system and transitions between those states
representing reactions upon learner’s answers to the tasks in the exercise states.
Transitions are triggered by some conditions satisfied upon the learner’s input.
This representation resembles a tutorial dialogue consisting of consequent actions
of a student and tutor.

Exercises representation in ActiveMath is designed to be domain indepen-
dent, and low level enough to be suitable for automatic generation, descriptive
in its nature and suitable for authoring.

Exercise states and transitions have themselves complex internal structure.
Several types of interactive elements such as fill-in blanks, multiple-choice ques-
tions, mappings and re-orderings are supported. Transitions can represent com-
plex constraints upon single or multiple answers and their combinations. Each
1 see http://www.openmath.org
2 see http://www.omdoc.org

http://www.openmath.org
http://www.omdoc.org
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state is annotated with metadata, and each transition is annotated with diag-
nosis information.

In comparison, the quiz module of OMDoc represents only single step exer-
cises that consist of the block of multiple-choice questions with answers attached
to each choice.

In ActiveMath each exercise state either represents a task for a learner,
feedback to the previous action of the learner, or interaction in which the learner
provides the solution to the task and submits it into the system. Each state apart
from the terminal one issues one or more transitions to following states.

A transition represents a move from the current state to the next one, in
conditional transitions the learner’s answer should satisfy a particular condition
that triggers the transition. Each transition contains a pointer to the target
state.

Schematically, nodes and transitions of an exercise are shown in the Figure 1.
The feedback loop consists of:

– presenting a task to the learner
– interaction, in which the learner enters the answer to the current task
– presenting feedback to the learner

In comparison to the previous version of exercise format ([4]), each component
of a feedback loop is represented as a separate node. This separation facilitates
application of tutorial strategies to the exercise.

Fig. 1. Structure of an exercise

Consider a simple exercise, in which the learner has to differentiate the func-
tion f(x) = 2 · x. The finite state automaton for this exercise is shown in the
Figure 2. The first state (task1) of our finite state machine defines a task to
calculate (2x)′ and forwards the learner to the interactive step interaction1. If
the learner’s answer is equal to 2 ·(x)′ the next state will be feedback1, followed
by the new task (task2) via unconditional transition. After this the next inter-
action interaction2 is presented. In case the learner entered the final correct
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answer 2 he is forwarded directly to the state feedback3. In all other cases, the
default transition is triggered and the learner is forwarded to the feedback2.
The states that do not issue any transitions are terminal. As soon as the ter-
minal state is reached the exercise is finished. In our example feedback2 and
feedback3 are terminal.

Fig. 2. A simple exercise graph

2.1 Types of Exercise States

Exercise states can be static – representing problem statements for tasks and
feedback to the learner, and interactive – representing different types of interac-
tion with learner such as fill-in-blanks, multiple choice questions, mappings and
orderings. Figure 3 shows examples of interactive elements in ActiveMath.
Different styles of fill-in-blanks are shown in the screen shots. When entering
mathematical formulas, complex palettes as well as simple input fields can be
used. Multiple choice questions can be presented as radio buttons or drop-down
menus and so on.

Static states issue an unconditional transition to the following static or inter-
active state. Interactive states can contain more then one conditional transition
and a default transition for the case if none of the defined conditional transitions
are triggered.

2.2 Metadata of Exercise States

In order to achieve accurate assessment of the learner’s knowledge and enable
automatic application of tutorial strategies to the exercise representation exercise
states have to be annotated with metadata. Depending on the type of the state
it can be assigned different metadata.

Metadata of Tasks. Each task is training or assessing mastery of a particular
cognitive processes w.r.t. the focus concepts of the task at a certain difficulty
level. These are domain concepts represented as items in the knowledge base of
the ActiveMath system.
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Fig. 3. Interactivity in ActiveMath exercises

There are two main reasons for annotating the tasks of the exercise states
with these metadata. Firstly, the Learner Model needs information about the
the concepts and cognitive processes that are mastered in the task together
with the diagnosis upon the learner’s answer to this task in order to update
the learner’s mastery values. The quality of this updating defines the whole
estimation of learner’s current literacy in the domain that in its turn defines the
further tutorial actions of the system.

Secondly, in an automated tutorial strategy that needs to generate feedback
for the current state the metadata can be used in various ways. For example,
in order to generate a conceptual hint it is necessary to know which concept is
trained in the task.

Therefore, exercise tasks are annotated with the following metadata:

– relation to the identifier of the domain concept
– competency describing the cognitive process trained/assessed by the task
– competency level describing the degree of the resource within the set of

competencies
– difficulty describing the difficulty of the task (relative to learning context

of the student)

The value set for competency has been the subject of constant refactoring
in ActiveMath. The first competency scheme that was used in ActiveMath

was derived from a Bloom’s taxonomy of learning goal levels. This scheme was
exchanged by the adoption of PISA standard methodology (see e.g. [8]) within
LeActiveMath project (see [6]), and finally the new scheme was derived in
collaboration with TU Dresden, as described in [9].

Feedback Metadata. Within a research project ATuF, we classify the feedback
content, deriving our classification from the previous feedback classification of
feedback in the LeActiveMath

3 project enriched with feedback components
3 see http://www.leactivemath.org

http://www.leactivemath.org


Representation for Interactive Exercises 299

from Narciss’s conceptual framework for feedback in interactive instruction (see
[10,11]). Also the form, and timing of feedback presentation is varied by Ac-

tiveMath’s exercise presentation strategies (see section 5.3).
We differentiate the following types of feedback:

– conceptual feedback provides information about the domain concepts, their
interrelations, information about task constraints and so on

– procedural feedback is informative and can suggest how to proceed in the
solution (e.g. which rules to apply, how to simplify the task and so on)

– product feedback is giving out (parts of) correct solution
– meta-cognitive feedback informs of or suggests the meta-cognitive behavior

of the learner, it refers to aspects such as motivation, help seeking etc.

Each of these dimensions of feedback is further subdivided into components
which are adopted from Narciss’ content-related classification of feedback com-
ponents (see, e.g. [10]). This subdivision is shown in the table 1.

Table 1. Components of feedback types

Another dimension of feedback that ActiveMath currently uses is the type of
instruction that the feedback represents. The possible values of instruction
are feedback, hint, explanation, and guiding question.

Such annotations provide a basis for automated application of tutorial strate-
gies, defining algorithms for feedback selection within an internal feedback loop
in the exercise, as we show in the section 5.

2.3 Structure of Transitions

There are two types of transitions – conditional and unconditional. Uncondi-
tional transitons connect static nodes to each other or to the following interac-
tive nodes. Conditional transitions represent conditions that have to be satisfied
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upon the learner’s answer for this transition to be triggered. Conditions rep-
resent three basic types of comparisons, that are syntactic, numeric and se-
mantic equivalences. Syntactic equivalence represents a literal comparison of the
learner’s answer to the given value. Numeric equivalence means equivalence of
real numbers modulo given ε. For more complex comparisons a generic query
compare can be used, as defined in the section 3.2. Finally, a default transition
is triggered when none of the defined transitions fire.

Each conditional (and default) transition contains a diagnosis element. Di-
agnosis represents information on learner’s success w.r.t. the task in case the cur-
rent transition fires, represented using achievement element. In case of wrong
answer it can also contain references to misconceptions if any diagnosed in the
condition.

<exercise id="deriv_2x" for="mbase://openmath-cds/calculus1/diff">

<metadata>...</metadata>

<task id="task1">

<taskmetadata>

<relation type="for">

<ref xref="mbase://calculus/diff_rules/const_mult"/>

</relation>

<competency value="solve" subvalue="apply_algorithms"/>

</taskmetadata>

<CMP xml:lang="en">Calculate $(2x)’$</CMP>

<transition xref="interaction1"/>

</task>

<interaction id="interaction1">

<CMP xml:lang="en"><with for="blank1"/></CMP>

<interaction_map><blank id="blank1"/></interaction_map>

<transition_map>

<transition xref="feedback1">

<diagnosis><achievement value="1.0"/></diagnosis>

<condition><syn_eq>$2(x)’$</syn_eq></condition>

</transition>

<transition xref="feedback3">

<diagnosis><achievement value="1.0"/></diagnosis>

<condition><syn_eq>$2$</syn_eq></condition>

</transition>

<default xref="feedback2">

<diagnosis><achievement value="0.0"/></diagnosis>

</default>

</transition_map>

</interaction>

<feedback id="feedback1" type="procedural" component="kr">

<CMP xml:lang="en">Correct!</CMP>

<transition xref="task2"/> ...

</exercise>

Fig. 4. Excerpt from exercise encoding
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2.4 Sample Exercise Representation

Consider again the sample exercise from the Figure 2. An excerpt from the
representation of this exercise is shown in the Figure 4 (OpenMath formulas are
represented using latex syntax to save space). The task metadata defines relation
to the focus concept of the step - constant multiplication rule and a competency
trained to be ’solve/apply algorithms’. In the interacion the interactive elements
are separated from the rest content and grouped separately within an element
interaction map. This is needed for exercises in multi-lingual exercises, in which
placeholders from CMPs with different languages have to be assigned to the same
interactive element using relation for.

The states either contain one unconditional transition or a list of conditional
transitions within a container element transition map.

Feedback has attributes type and component assigned, instruction attribute is
not assigned and takes the default value ’feedback’.

3 Exercise Subsystem Architecture

Figure 5 shows components of the exercise system architecture. The central com-
ponent of the exercise subsystem is the Exercise Manager, which coordinates
the other components and controls the exercise process. Another important com-
ponent is the Exercise Generator which is responsible for generating the nodes
of the exercise.

This nodes can either be obtained from an authored part of the exercise rep-
resentation, or generated automatically. The Diagnoser remotely connects via
a Query Broker to external services capable of intelligent diagnosis. Based on
the diagnosis of the user action provided by a CAS or by a domain reasoner,
the Feedback Generator component generates feedback automatically or se-
lects appropriate authored feedback from the exercise representation. Various
Tutorial Strategies can be applied to the exercises that define, e.g., what
type of feedback has to be generated depending on the situation of the student,
his previous activities and the strategy’s pedagogical approach.

3.1 Diagnosis of the Learner’s Answer

Conditional transitions represent conditions to be satisfied upon the learner’s
answer for this transition to be triggered. ActiveMath possesses a framework
for distributed semantic evaluation services, realized via a Query Broker shown
in the Figure 5.

This broker receives a query from the Diagnoser component that is matched
against the list of available semantic services and the service that can answer
this query is automatically selected based on the semantic context of the query.
After selecting appropriate service, the OpenMath representation of the expres-
sion to be evaluated is translated to the language of the corresponding external
evaluation service via so-called phrasebooks. The evaluated expression returned
to ActiveMath is then translated back into OpenMath.
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Fig. 5. Exercise subsystem architecture

Currently, ActiveMath integrates and communicates with the foll-
owing CASs: YACAS4, Maxima5, and WIRIS6; phrasebooks for Maple7 and
Mathematica8 are available too.

3.2 Query Language

In ActiveMath we defined a generic format for queries used to access a di-
agnosis service. A context included into queries defines (sub-)sets of rules and
functions that a domain reasoner or a CAS is allowed to use for the diagnosis.
The background for this restriction is that depending on the learner’s activity
history, situation and on the pedagogical approach, different rules (and func-
tions) should be usable. The query representation includes:

– action of the query (e.g. getResults, getUserSolutionPaths, compare)
– (list of) expressions e.g., task, user answer, correct answer
– context of action identifying the set of applicable rules
– number of iterations domain reasoner should perform in the given context

In the following, e, e1, e2, are OpenMath expressions, C is a context of
a query, N is the number of iterations. A solution path is a list of results of
consecutive rule applications, which are annotated with rule identifiers.
4 see http://yacas.sourceforge.net
5 see http://maxima.sourceforge.net
6 see http://www.wiris.com
7 see http://www.maplesoft.com
8 see http://www.wolfram.com

http://yacas.sourceforge.net
http://maxima.sourceforge.net
http://www.wiris.com
http://www.maplesoft.com
http://www.wolfram.com
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Currently the following queries to diagnostic services are used in
ActiveMath:

– query(getResults, e, C, N) - returns the list of final nodes of all paths of
length N starting at e in the context C

– query(compare, e1,e2, C, N) - returns true if there exists a path of the length
N from e1 to e2 in the context C, false otherwise

– query(getRules, e, C) - returns the list of the identifiers of expert rules
applicable to e in context C

– query(getBuggyRules, e1, e2, C, N) - returns the list of the identifiers of
all buggy rules that belong to a path from e1 to e2 in the context C. This
query is possible for those domain reasoners that can reason with (typical)
buggy rules and some CASs, which can be extended to do so.

– query(getUserSolutionPaths, e1, e2, C, N) - returns the list of all paths
of length N from e1 to e2 in the context C

– query(getExpertSolutionPaths, e, C, N) - returns the list of all paths of
length N starting at e in the context C. In this query C can consist of expert
rules only.

– query(getNumberOfStepsLeft, e, C) - returns the number of steps left to
reach the final node of the shortest expert solution path in context C

– query(getRelevance, e1, e2, C) - returns ’true’ if the expression e2 is closer
than e1 to the actual solution in the context C,

Exercises using CAS evaluation mostly use the query compare and its special
cases syn eq, num eq, and sem eval to compare the learner’s answer to the
correct solution and the query getResults to get the final correct result. In the
section 4 we give usage examples of other queries.

4 Generating Exercises

Exercise Generator provides a generic interface for other custom generators
that can generate the exercise knowledge representation in their own way.

Each generator can define a custom diagnosis service which is a subclass of
a standard Diagnoser component. The custom Diagnoser can send more ad-
vanced queries to domain reasoner services, that helps to diagnose learner’s errors
more deeply and generate error related and remedial feedback.

Consider some examples of automatically generated exercises and other tools
reusing exercise representation and running engine.

4.1 Randomized Exercises

Using a custom instance of an Exercise Generator, so-called Randomizer com-
ponent of ActiveMath and an extension mechanism present in the knowledge
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representation of exercises, one can author whole classes of parametrized exer-
cises. Such an extension mechanism offers specifying the name of the
Exercise Generator and the parameters it uses together with the set of their
possible values. The Randomizer generator receives as input an exercise rep-
resentation, parametrized using a set of meta-variables. This variables can be
used for problem definition and the solution of the exercise. They can be also
used in the conditions, comparing the learner’s answer to the correct solution.
Randomizer also receives the set of possible values of these meta-variables which
randomly substitutes each time the new instance of the exercise is started.

This approach has its limitations, authors have to carefully design their ex-
ercises, since although Randomizer provides basic functionality for avoiding se-
mantic inconsistencies such as singularities in the process of substitution, still it
is not easy to avoid all possible inconsistencies that might appear in the process
of solution. See [1] for more advanced features of the Randomizer.

4.2 CAS Console and Domain Reasoner Console

Computer Algebra Console is a small tool that is realized via a custom Exercise
Generator in which the learner can just type a mathematical expression that is
evaluated by the exercise subsystem and the result is presented to the learner
in form of feedback. This tool allows the learner to use any back-end Computer
Algebra System connected to ActiveMath using a single user interface.

Similar to a CAS console, a Domain Reasoner Console allows the learner to
define a problem he wants to tackle and then solve it receiving feedback pow-
ered by the back-end domain reasoner system. Currently, ActiveMath defines
a Domain Reasoner Console for solving problems for symbolic differentiation.
For more information about the domain reasoner currently connected to Ac-

tiveMath, see [3].
In order to create such an explorative ’multi’-exercise, a specific Exercise

Generator is programmed. This generator, similarly to the CAS console, sends
queries to the Query Broker that forwards them to the appropriate Domain
Reasoner service. These queries request diagnosis upon learner’s answers, and
(parts of) following correct solution paths. Based on this information, the new
states of the exercise are generated.

If the domain reasoner is capable of diagnosing typical errors, such diagnosis
can be used for generating informative or remedial error-related feedback. For
example, the query getBuggyRules returns the buggy rules that have been di-
agnosed for the learner’s answer, the query getUserSolutionPaths returns the
full erroneous paths the user might have taken.

The query getRules returns the set of applicable rules that can be suggested
to the learner in a procedural hint.

Queries getResults and getExpertSolutionPaths can give out (parts of)
correct solutions and solution paths that can be given to the learner in a bottom-
out hint.
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5 Tutorial and Presentation Strategies

We define a solution space of an exercise to be an (authored or generated) collec-
tion of all possible solution paths of this exercise, possibly including erroneous
paths.

A tutorial strategy for a multi-step interactive exercise defines the way the
learner navigates through the solution space of an exercise together with form
and content of feedback presented to the learner in the solution process.

Tutorial strategy specifies, e.g. how many times the learner is allowed to repeat
the current step in case of wrong answer, what kind of feedback the learner
receives and in which sequence. Tutorial strategy can decide to reveal (parts of)
correct problem solving strategy.

Each domain reasoner defines its own problem solving strategy for the given
domain. Recent research, described in [7] allowed to realize different problem
solving strategies. It is ongoing work to integrate the domain reasoners men-
tioned in [7] and combine tutorial strategies of ActiveMath with different
problem-solving strategies in the domains of propositional logic, linear algebra
and fraction arithmetics.

A presentation strategy defines graphical presentation of the exercise, the
placement of feedback, highlighting, folding, and other aspects that might seem
to be secondary, but play a big role in the perception of the exercise content.

5.1 Applying Tutorial Strategies

Consider in more detail the mechanism for applying tutorial strategies. The
Exercise Generator consults the strategy before producing the current state
of the exercise. The Local Learner Model contains procedural information such
as how many trials the learner already had to tackle the current task, how many
and what type of hints have been already presented to the learner, what is the
current mastery level of the learner w.r.t. the task and so on. This information is
received by the Exercise Generator and matched against the current tutorial
strategy. Based on this information the next step is created in which feedbacks
of appropriate type and component are generated or extracted from the knowl-
edge representation of the exercise. The assembled exercise step is passed to
the Exercise Manager. The latter forwards the processed exercise step to the
Presentation Engine which applies the current presentation strategy.

Tutorial and presentation strategies are not attached to concrete exercises, but
can be freely assigned to exercises by the configuration of the system, or by any
component of ActiveMath that calls the exercise. In this sense, the exercises
are reusable within different educational scenarios, using various tutorial and
presentation strategies.

5.2 Sample Tutorial Strategies

In the Figure 6 two different feedback strategies are shown, that are used in the
ATuF project, mentioned above.
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Fig. 6. ATuF Feedback Strategies

The first strategy is providing the learner with sequenced feedback - first a con-
ceptual hint, then a conceptual explanation and then the correct solution. The
second strategy is providing a sequence - procedural hint, procedural explanation
and the correct solution. Using different variations these feedback sequences in
the ongoing school experiment the researchers of TU-Dresden are collecting em-
piric results aiming to analyze the effect of procedural and conceptual feedback
components in the problems with fraction addition.

Other tutorial strategy partially shown in the Figure 8 is used within the
project ALOE in which the effect of erroneous examples on is investigated -
classroom studies are running in several schools in Germany. In this strategy the
learner has to find an error in a given solution and correct it. In the interaction
the learner has a possibility to modify any step, not only the erroneous one.

For more tutorial strategies in ActiveMath exercises, see [5].

5.3 Presentation Strategies

In the Figure 7 different presentation strategies for the same exercise are shown.
Both of the strategies allow the learner to add or delete intermediate steps in his
calculation, but the first strategy provides a graphical palette and pre-defined
templates for kinds of steps he might want to perform.

Another two strategies that are aiming at immediate feedback are shown in
the Figure 8 as opposed to the delayed feedback strategies in the Figure 7. In
the Figure 8, the screen shot at the left hand side shows similar interface to the
left hand side image in the Figure 7, but here the learner can only make one step
at a time. The image on the right hand side of the second Figure shows several
steps at once, but the learner can not add or remove steps here and has to edit
and evaluate all steps in one iteration.
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Fig. 7. Different Presentation Strategies for the same exercise

Fig. 8. Different Presentation Strategies for the same exercise

6 Conclusion and Future Work

In this paper we gave an overview of the current updates of knowledge represen-
tation for interactive exercises in ActiveMath learning environment, discussed
its architecture, and tutorial and presentation strategies that can be automati-
cally applied to exercises.

Currently the tutorial strategies are realized as programs extending the stan-
dard Exercise Generator. One interesting direction of future work is finding a
generic representation for the tutorial strategies instead of programming those.

We hope to be able to derive such representation from the results of cur-
rently running research projects such as ATuF and ALOE, aiming to explore
how different tutorial strategies for interactive exercises can improve learning.
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Another direction of ongoing research is establishing connection to several
new domain reasoners developed at Open University of Netherlands, which im-
plement strategies described in [7]. This would facilitate automatic generation
of interactive exercises for the domains of fraction arithmetics, linear algebra,
and first order propositional logic, including generating error-related and infor-
mative feedback. Another CAS being connected to ActiveMath is a powerful
Computer Algebra System for polynomial computation SINGULAR9 that will
be used for powering interactive exercises for the course of algebraic geometry.
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Abstract. Effective communication and collaboration of symbolic and
quantitative knowledge requires the digitization of mathematical ex-
pressions. The multi-dimensionality of mathematical notation creates
a challenge for mathematical software editors. There are two different
approaches for handling the multi-dimensionality of mathematical nota-
tion: either using a two-dimensional writing environment in which sym-
bols can be placed freely (unit-based) or using an environment in which
single-dimensional structural elements can be nested (structure-based).
The structure-based approach constrains how users write expressions.
These constraints may conflict with how mathematics is normally writ-
ten. A study is reported that examines how users write mathematical
expressions using two graphic based editors: one that is structure-based
and one that allows the free-form manipulation of selected symbols in a
diagrammatic fashion (unit-based). The results are contrasted with how
users handwrite mathematics in a physical medium and implications are
drawn for future software design.

1 Introduction

Mathematical expressions are a fundamental tool for representing knowledge.
The successful communication of mathematical expressions is heavily depen-
dent on the use of visual representations. Indeed, even verbal communication of
mathematics relies heavily on intermediary interfaces such as pen-and-paper or
chalk-and-chalkboard. In order to facilitate knowledge transfer and the real-time
communication and sharing of mathematical expressions, it is therefore critical
that people be able to write mathematical expressions fluently and easily. The
widespread use of digital communication technologies for knowledge dissemina-
tion, discussion and collaboration, suggests that achieving efficient communica-
tion of mathematics requires that mathematical expressions be easily digitized.
The purpose of the present paper is to examine how people normally handwrite
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mathematical expressions and examine how the characteristics of the writing
environments affect how people write.

The digitization of mathematics is usually achieved using personal computers
and relies on software programs to overcome limitations in the hardware inter-
face. There are two major challenges for mathematics; (1) a large symbol set
(the symbol problem) and (2) mathematical notation has a two-dimensional lay-
out (the layout problem). Broadly speaking there are three different approaches
to writing digital expressions; (1) use a text-based description, (2) use a digital
pen, or (3) use a palette-based graphic editor. Next we briefly discuss how each
of these approaches has solved the symbol problem and the layout problem.

The Symbol Problem

One solution to the symbol problem is to use a keyboard to write text-based syn-
onyms of the graphic symbols. For example, {\cal F} \cap \Upsilon, is the
TEX [5] representation for F ∩ Υ . The keyboard interface is quick and efficient
for this form of writing. However, the mapping between the text-based and the
conventional graphic-based representation is not always transparent. Therefore,
efficient use of this approach to writing mathematical expressions requires learn-
ing a potentially large lexicon of terms (e.g., MathML [1], provides access to over
2,000 symbols). Another solution is to use a keyboard and mouse in combination
to select symbols from graphical palettes. This method allows for a transparent
mapping between the visual representation of symbols written on paper and the
ones written in the digital environment. One obstacle for this type of interface
is that graphical symbols compete for a limited amount of space on the display,
consequently (1) only a subset of mathematical symbols may be visible at any
one time and (2) the symbols may be organized in a manner that is not imme-
diately intuitive. Consequently, it can take a long time to enter even a simple
expression if the appropriate symbols cannot be located right away. A third so-
lution to the symbol problem is to use a digital pen so that the user can enter
the symbols directly into the digital writing environment. This avoids many of
the problems associated with the other two interfaces because the symbols are
both transparent and are not hidden from the user. At present, these interfaces
are still being refined so that they can correctly recognize the full range of user-
drawn symbols (e.g., ·, •, O, o, 0, ◦, ◦, ", ⊗, ⊕, ', ∅, φ, (, θ, Θ, · · · , ), which is a
formidable task in computing.

The Layout Problem

Text-only programs tend to use a writing environment that requires that ex-
pressions have a one-dimensional layout (i.e., a single string of characters). Con-
sequently, they use nested grouping symbols (e.g., brackets & parentheses) to
create sub-expressions so that a formula typically written with a two-dimensional
layout can be written in a single dimension. For example,

\frac{\frac{a}{b}}{\frac{c}{d}+\frac{e}{f}}
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is a TEX representation for
a
b

c
d + e

f
. The mapping between this one-dimensional

and its traditional two-dimensional layout is not transparent. Thus, users are
required to develop a certain level of expertise with the syntax of the language
before being able to use the technology properly. In addition, given that the
two-dimensional layout often conveys metaphorical properties of an expression,
many of these will be lost in a one-dimensional representation [6].

A second solution to the layout problem is provided by digital pen-based
technologies for writing mathematical expressions, such as FFES [17], which
allow users to draw symbols anywhere on a virtual page. These interfaces have
the promise of writing as easily as pen-and-paper with the additional benefit
of having the software identify the expression. Great strides have been made
in developing this interface, however, the potential for a robust interface for
handwritten mathematics has yet to be achieved.

Two solutions to the layout problem have been developed for palette-based ed-
itors. The visual display of an expression in these editors has a two-dimensional
layout. However, for the majority of palette-based editors the writing environ-
ment for the expression consists of nested one-dimensional structures (e.g., Mi-
crosoft Equation Editor and BrEdiMa [9]). For example, a fraction is typically
created by selecting a fraction structure from the palette. The fraction structure
usually inserts a fraction bar into the expression that is bound to empty one-
dimensional writing slots above and below it (see [11]). Each slot may then be
populated with their own nested sub-expressions. These slots are sub-divisions
of the main writing space and are often indicated with outline boxes or back-
ground shading. While the graphical presentation of the expression may be
two-dimensional for the reader, for the writer this approach can be thought
of as a simple extension of the text-only method (i.e., indirect access to the
two-dimensional layout) with grouping symbols replaced by slots. This type of
writing environment affords a structure-based writing style because it constrains
the order in which symbols are added to an expression by giving precedence to
symbols that affect the expression’s layout. Creating a correct visual represen-
tation of an expression, therefore, often requires understanding the deep layout
structure of the expression and which symbols parse the physical layout of the
expression, before writing.

A second solution that exists in palette-based editors is to allow users to
“draw” their expressions by placing symbols on a virtual canvas with direct
access to a two-dimensional space (i.e., Xpress [12]). Once the expression is
drawn a spatial analysis algorithm, similar to those from pen-based systems,
is applied to identify the expression. As the symbols are chosen from palettes
and “placed” by the user on a virtual canvas, there is little doubt about the
identity of the symbols and their intended locations. This greatly reduces the
complexity of expression identification as compared to handwritten mathematics.
It also reduces the complexity of editing expressions in that in a two-dimensional
space, items are directly accessible and users are not required to first choose
among spatial units and then particular items. The two-dimensional writing
environment allows users to select symbols from palettes in any order and place
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them anywhere they wish. This type of writing environment affords a unit-based
writing style because it does not place any constraints on the order in which
symbols are written.

In summary, at least three writing environments have been developed as solu-
tions to the layout problem (1) a one-dimensional layout with multiple embedded
substructures, (2) a two-dimensional layout, and (3) a two-dimensional layout
constructed from nesting one-dimensional structures.

The Present Study

Although many studies have examined different solutions to writing digital ex-
pressions, it has not been possible to disentangle how writing is uniquely affected
by solutions to the symbol and the layout problems. The recent development of
Xpress, a palette-based editor with a two-dimensional writing environment,
provides a unique opportunity to examine how different solutions to the layout
problem affect writing behaviour. The purpose of the present study, therefore,
is to examine how the characteristics of a writing environment affect how people
write mathematical expressions. Here we focus on two different writing environ-
ments that are palette-based.

Although writing environments have their own set of rules governing the types
of actions that are permitted and how space is allocated, it is unclear whether
this will result in actual behavioural differences in how mathematical expres-
sions are written. Here we follow the suggestion that user behaviour can only
be understood when (1) the types of behaviours permitted (i.e., affordance),
actual use (i.e., effectivity), and goals, motives and perceptions (i.e., intentional-
ity) are considered simultaneously [3,4]. To understand how the characteristics
of a writing environment affect how people write expressions, people were ob-
served as they wrote mathematical expressions by hand and using two different
graphics based software environments. A handwriting condition was included to
assess how people would write the expressions under natural conditions. The
two software environments ( BrEdiMa and Xpress) were selected because they
use similar interface technologies (i.e., keyboard and mouse) and representations
(graphic symbols) to enter mathematical expressions, and therefore only the
rules governing how symbols are arranged in the environments are qualitatively
different. Novice users were examined to control for expertise. If the editors re-
quire that users change their writing style, then the use of novices will allow us
to document some of the challenges that they encounter.

2 Method

2.1 Subjects

Seven members of the Cognitive Ethology Lab at Trent University participated
in the present study, four of which were undergraduate students, two were grad-
uate students, and one was a faculty member. One subject was left-handed.
The subjects were all familiar with simple mathematical and logical notation,
although none had previous experience using either of the software editors.
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2.2 Stimuli

Eight different mathematical expressions were used (see Table 1). The stimuli
were split into two sets, each set was typeset and printed a separate sheet of
paper. The first set (Expressions 1–4) had fewer symbols (mean=7.5) than the
second set (Expressions 5–8; mean=25.5).

Table 1. The two expression sets used in the study. Expression number is indicated
in parenthesis.

Expression Set 1 Expression Set 2

(1) A ∧ B ∨ C (5) x =
−b ±√

b2 − 4ac

2a

(2) A ∧ B ∨ C (6) rxy =
∑

(xi − x̄)(yi − ȳ)
(n − 1)sxsy

(3)
3
√

x2 + 1
2x

(7) rxy =
n
∑

xiyi −∑
xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2
i − (

∑
yi)2

(4)
100∑
i=1

i2 (8) lim
h→0

f(x + h) − f(x)
h

2.3 Apparatus

In the handwriting sessions, mathematical expressions were written using dry-
erase markers on a 36” x 48” whiteboard affixed to the wall of a small conference
room. Although the whiteboard environment is different than paper in a number
of aspects (e.g., orientation of the writing surface, thickness of the writing instru-
ment, and physical size of the written expression), the principles of the writing
environments are assumed to be the same for the whiteboard and paper. The
writing sessions were video recorded using a Canon HG10 video camera. The
camera was operated by the experimenter and hand-held to allow for adequate
observation of hand movements and written symbols.

In the software writing sessions, mathematical expressions were written in
a small office using BrEdiMa and Xpress. Comparing BrEdiMa and Xpress

allowed us to control many input and representation features and to isolate
the difference between one- and two-dimensional writing environments. Both
are standalone browser-based editors, and both have an AJAX-based front-end
that allows users to create their expression and then submit their expression to
a server which returns a LATEX preview. None of the subjects had used either
interface before. Although the palettes in Xpress contain more symbols than
those in BrEdiMa (138 to 50), both are minimal editors relative to commercial
alternatives.
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Data was collected using an Acer personal computer with a core-2-quad pro-
cessor, a 19” LG Flatron LCD screen and running Windows XP operating
system. The editors were run inside the Mozilla Firefox Web browser (version
2.0.0.16). The writing sessions were recorded using in video format using SnagIt
9.0 by TechSmith (http://www.techsmith.com), which recorded all occurrences
on the computer screen during a writing trial.

2.4 Procedure

Data collection was spread over six separate sessions (2 expression sets × 3
writing environments) that lasted approximately 20 minutes each. Thus each
mathematical expression was written three times (once for each interface) and
each interface was used on two separate occasions (once for each expression set).
The conditions were always completed in the same order. The short expression
set was used in sessions 1–3 and the long-expression set was used in sessions 4–6.
Furthermore, the order of the writing environment was the same for each set,
first with the whiteboard, then BrEdiMa, and finally Xpress. On average, there
was a 24-hour interval between each session, for each subject. The order of the
sessions was chosen to control transfer between writing platforms. For instance,
having the subjects use BrEdiMa before Xpress enabled us to observe the way
subjects prefer to write in the latter environment after being exposed to both
writing methods.

At the beginning of each session, subjects were given a sheet containing the
expressions to be written. Subjects were able to refer to the expressions before
and during the writing process. Subjects were instructed to write the expressions
one at a time and in the order on the sheet. They were encouraged to go quickly,
but not to sacrifice accuracy for speed.

In the handwriting condition, subjects were instructed to signal the exper-
imenter when they were starting an expression and when they were finished
writing an expression. The whiteboard was erased between expressions, so that
only one expression appeared on the whiteboard at any one time.

In the software editor conditions, the editors were loaded via the Internet
before subjects arrived in the lab. Subjects were not given any instruction con-
cerning how to use the interfaces, nor regarding the specific use of keyboard
or mouse. However, they were asked to re-load the software using the browsers
refresh button, after completing each expression, so that only one expression
appears on the screen at any time.

3 Results

Data analysis began by coding over 4,800 discrete behavioural events in the
video recordings. An event was defined as any action that had a direct effect on
the mathematical symbols represented in the writing environment (e.g., adding a
symbol). The timing of an event was linked to when changes occurred in the writ-
ing environment. An event did not need to be a correct step towards a successful
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Table 2. Overall writing time (in seconds), number of events and time per event for
each writing platform and as a function of each type of action event

Whiteboard BrEdiMa Xpress

Overall
Total Time 168.9 1007.1 951.6
Number of Events 138.4 218.3 197.1
Time per event 1.2 4.5 4.8

Adding Units
Total Time 164.9 852.3 684.0
Number of Events 135.9 196.0 152.3
Time per event 1.2 4.3 4.5

Deleting Units
Total Time 1.4 154.9 37.4
Number of Events 0.7 22.3 10.7
Time per event 2.0 6.9 3.5

Modifiying Units
Total Time 2.6 NA 230.1
Number of Events 1.9 NA 34.1
Time per event 1.4 NA 6.7

completion of a desired formula. Three broad classes of events were identified;
Addition events consisted of all events directly required to add elements to the
display; Deletion events included any action that was directly implicated in the
removal of a unit; and Modification events included any action that directly
changed either the spatial location or physical appearance of an element in the
display. The data were analyzed using a repeated measures ANOVA with writing
platform (Whiteboard, BrEdiMa, and Xpress) as the repeated factor. Unless
otherwise specified the degrees of freedom for all tests are 2 (treatment) and 12
(error) and significant findings are reliable at the .05 level.

As can be seen in Table 2, the writing environments differed dramatically in
how long it took users, on average, to write the expressions (F= 36.4,
MSE = 42285). Mathematical expressions were written fastest in the handwriting
condition, followed by BrEdiMa and Xpress, which were not reliably different
(t(6) < 1). To better understand why users took longer to write the expressions
using BrEdiMa and Xpress we further examined the number of events that
occurred during the writing process and how long users spent per event.

We assumed that changes in the number of events made while writing would
indicate a change in the writing process. Consequently, we hypothesized that
if the number of events changed across writing environments, then this would
indicate that the properties of the different writing environments affected how
people write the expressions. Consistent with users changing how they write
expressions when using the software interfaces, they required substantially more
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events compared to the handwriting condition, F = 21.4, MSE = 560. Although
BrEdiMa had 21 more events on average per subject than did Xpress, the
difference was not reliable (t(6) = 1.5, p > .10).

We also hypothesized that the average time per event would provide insight
into how easily users were able to interact with the environment. Unsurprisingly,
the average duration of an event was also substantially longer for the software
editors compared to the handwriting condition, F = 64.2, MSE = .429. Given
that BrEdiMa and Xpress are both palette-based editors we anticipated that
they would not differ on this dimension. Consistent with the difficulty of navigat-
ing the palettes being similar, the software editors did not differ in the average
duration of an event, (t(6) = 1.1, p > .10).

Types of Events

In order to better understand how users were writing the expressions we exam-
ined performance as a function of the types of events that people engaged in.
Three types of events were examined Additions, Deletions and Modifications.

Addition and Deletion Events

As can be seen in Table 2, users spent substantially more time adding and
deleting symbols when using the software editors than they did when using the
whiteboard (F= 28.7, MSE = 31333 and F=14.0, MSE = 3223, respectively).
More time was spent adding and deleting symbols with the software editors
because (1) the users made more addition and deletion events with the software
editors, (F = 12.4, MSE = 545 and F = 25.5, MSE = 31.9, respectively), and (2)
it took users more time to execute addition and deletion events with the software
editors (F = 50.0, MSE = .467, and F = 4.9, MSE = 22.6, respectively).

In order to examine how the characteristics of the writing environments af-
fected performance independent of interface type (pen vs. palette), we compared
performance for BrEdiMa and Xpress. We expected that Xpress would require
fewer addition events because the one-dimensional canvas used in BrEdiMa of-
ten requires the user to add new spatial locations for those elements that do
not belong to the same structural domain (e.g., a suprascript location). Consis-
tent with this hypothesis, 44 more addition events per subject were made with
BrEdiMa than Xpress (t(6) = 2.8, p < .05).

Furthermore, there were 12 more deletion events per subject when using
BrEdiMa compared to Xpress, consistent with giving precedence to structure
symbols (for creating new one-dimensional writing canvases) increasing the dif-
ficulty of writing expressions (t(6) = 3.3, p < .05). Interestingly, despite taking
twice as long to make a deletion event in BrEdiMa compared to Xpress, the
difference was not reliable (t < 1). The reason was a large amount of variabil-
ity in duration of the deletion events in BrEdiMa. As it turns out, deleting or
changing parts of an expression in a structure-based environment requires se-
lecting the appropriate space. This can cause confusion since being in one space
makes other spaces inaccessible for editing. In response to this inaccessibility,
users tended to clear the writing environment (by refreshing the browser) and
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start over instead of removing an unwanted part of an expression. There were 23
re-starting events in BrEdiMa (more than 3 per subject), by comparison there
were none in either Xpress or handwriting conditions.

Writing Order

The nature of the writing environment can also affect a users writing style.
As noted above, a two-dimensional writing space affords a unit-based writing
style because symbols can be written in any order and placed at any loca-
tion. In contrast, constructing a two-dimensional spatial layout using nested
one-dimensional canvases affords a structure-based writing style because prece-
dence must be given to symbols that affect the spatial layout of the expression.
These predictions were assessed by examining how much variability in the order
that symbols were added to the expression (writing order) was explained by the
unit- and structure- based writing styles. The initial writing order was used as
a measure of how people attempted to write the expression. The final writing
order was used as a measure of how people ended up writing the expression. The
variance explained by each writing style was calculated independently for each
subject and each formula.

Our implementation of the unit-based writing style presumed writing order
would be left-to-right and top-to-bottom (as opposed to random). Our rationale
was that (1) equations are typically read left-to-right, top-to-bottom irrespec-
tive of the direction of a cultures text-based writing (e.g., Persian), and (2) this
structure is argued to be linked to peoples understanding of the mathemati-
cal relationships (see [6]). Similarly, our implementation of the structure-based
writing style presumed that precedence would be given to only those symbols
that were required to add new one-dimensional writing slots (thus single line
operators such as ∗, +, or ÷ were not seen as having special priority). It was as-
sumed that within the one-dimensional structures, a unit-based approach would
be employed.

Handwriting. As can be seen in Table 3, the unit-based writing style best cap-
tured overall writing order, F(1, 6) = 26.1, MSE = .211. Indeed, only one person,
a computer science major, wrote using the structure-based style. Given that the
whiteboard interface very closely approximates writing with a pen and paper we
expected that people would not change their writing style while writing an ex-
pression. Consistent with this prediction, the unit-based writing style captured
both peoples initial- and final- attempts to write an expression equally well
(F(1, 6) = 3.7, p > .10, MSE = .004). In order to assess whether people ad-
justed their writing style, but did so only once while writing the first expression,
we examined performance for Expressions 1 and 2 more closely. The unit-based
method accounted for 86% of the variability in Expression 1 and 87% in Expres-
sion 2, whereas the structure-based method explained only 16% of the variability
in Expression 1 and 8% of the variability in Expression 2. Furthermore, there was
difference between initial and final writing order (F<1), consistent with people
not needing to adjust their writing style with this writing environment because
it is similar to paper.
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Table 3. Amount of variability (R2) in initial- and final- symbol placement order as a
function of writing style (unit-based vs. structure-based) and writing environment

Interface Attempt Unit-based Structure-based

Whiteboard Initial .84 .53
Final .83 .51

BrEdiMa Initial .55 .78
Final .41 .92

Xpress Initial .78 .57
Final .77 .52

An informal analysis of peoples writing behaviour revealed that deviations
from the writing order predicted by the unit-based style primarily arose from
violations of our left-to-right and top-to-bottom assumption. For instance, in
Expression 3 people would often write the index of the radical after writing the
radicand. Another violation is captured with Expression 4 (which was unique
in that it was the only expression for which the unit and structure-based styles
predicted the same writing order). Despite both writing styles making the same
predictions, they only explained 74% of the variability in writing order. The
reason: people added the “

∑
” first and then were essentially random as to

whether they would add the initial condition or the upper bound portions of the
expression next.

BrEdiMa. As expected, writing order was best captured by the structure-based
writing style, F(1, 6) = 683.4, MSE = .011. Unlike the handwriting condition,
writing style tended to change as people wrote each expression. The unit-based
writing style best captured peoples initial attempt to write an expression, whereas
the final attempt was best captured by the structure-based style, F(1, 6) = 66.3,
MSE = .016. This is consistent with people changing their writing style to give
precedence to structure symbols that create the two-dimensional layout.

In order to better examine how people adjusted their writing style, we exam-
ined performance for Expressions 1 and 2 more closely. The unit-based writing
style best captured the initial attempt at writing Expression 1, explaining 84% of
the variability compared to 18% for the structure-based style. The final attempt
at writing the expression was best explained by the structure-based writing style
(100%) compared to the unit-based style (2%). This suggests that people quickly
and efficiently adjusted to the demands of writing a two-dimensional expression
using nested one-dimensional slots. This change in writing style persisted when
users wrote Expression 2, which is of the same general form as Expression 1.
This time, the unit-based style explained less than 1% of the variance in per-
formance whereas the structure-based account explained 99% and the structure
based account captured both the initial- and final- attempts. For each of the
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remaining expressions, however, (except for Expression 4, see below) there was
a change between the initial and final writing order. In each case there was a
reduction in the explanatory power of the unit-based writing style over time,
with the structure-based method increasing in explanatory power. This suggests
that subjects initial approach is to employ a unit-based writing style and adapt
their approach as the situation warrants.

Deviations from the writing order predicted by the structure-based writing
style primarily arose from two sources (1) when individual symbols need to
be corrected (see below) and (2) when a symbol added more than one writing
dimension and placed the cursor at an unpredicted location. One example of this
is captured with Expression 3 in which the cursor was placed inside the radicand
instead of at the index location.

XPRESS. Similar to the handwriting condition, writing order was best cap-
tured by the unit-based writing style, F(1, 6) = 8.7, MSE = .297. It is impor-
tant to highlight that this was true despite carry over effects from having used
the structure-based editor in the previous session. The amount of variability ex-
plained by both writing styles decreased from the initial attempt to the final
attempt at writing an expression, F(1, 6) = 17.4, MSE = .024. This reduction
in the explanatory power of both approaches was related to people modifying
the appearance of symbols (see below).

Once again we examined performance for Expressions 1 and 2 separately. The
initial writing order for Expression 1 was best explained by the unit-based writing
style (70%) compared to the structure-based style (30%). The unit-based writing
style captured even more variance in the final writing order (82%) compared to
a decrease in the structure-based style (22%) suggesting that users were once
again changing their writing style. This is consistent with some carry over from
writing with a structure-based in BrEdiMa, but that people ultimately preferred
the unit-based writing style. This change appears to have stabilized as early as
Expression 2, were the unit-based writing style accounted for 82% of the variance
in symbol placement order compared to 12% for the structure-based style. There
was no difference between the initial and final writing order.

Deviations from the unit- and structure- based writing styles predominantly
arose from violations of our assumption that people would write left-to-right and
top-to-bottom and were very similar to the violations that occurred in the hand-
writing condition. Another source of error, above and beyond those observed with
in the handwriting condition, concerned the modification of symbols. Sometimes
people would replace a symbol if it was not an appropriate size.

Modification Events

Modifications accounted for approximately 1% of all events in the handwriting
condition and 17% of all events for Xpress. Modifications were not observed for
BrEdiMa because the overall structure and the spatial relations among symbols
are determined automatically by the structure-units that specify the spatial lay-
out. Compared to the handwriting condition, substantially more time was spent
modifying symbols in Xpress, (F(1, 6) = 41.9, MSE = .362). This increase
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in time was a consequence both of more modification events, (F(1, 6) = 77.7,
MSE = .004), and more time being spent per modification event, (F(1, 6) =
63.6, MSE = 1.17). Modification events within the handwriting condition typ-
ically consisted of extending the length of horizontal lines. In contrast, almost
all types of symbols were resized in Xpress. In Xpress it was possible for users
to change the structural position of a symbol by dragging it to a new location.
Such changes in spatial location would require a deletion and an addition event
when using either the whiteboard or BrEdiMa. If the majority of modification
events were of this type, then this could have important implications for how
we understand the consequences of having to change writing styles. The data
were therefore reanalyzed to examine how many events involved changes in lay-
out that were structural in nature and that could be conceptualized as a simple
deletion-addition event when using the whiteboard, BrEdiMa and Xpress (due
a movement in the structural position of a symbol as opposed to subtle changes
in relative spacing). This analysis revealed that no such events occurred with
the whiteboard, 1.7 events with BrEdiMa and 2 events with Xpress. Together,
these data suggest that no change is required in how the addition, deletion, and
modification data are understood.

4 General Discussion

The purpose of the present study was to examine how differences in the charac-
teristics of writing environments affect how people write mathematical expres-
sions. Handwriting and writing with the two-dimensional software environment
were largely characterized by a unit-based writing style in which individual sym-
bols were added in a left-to-right, top-to-bottom fashion. In contrast, writing
with the one-dimensional software platform was characterized by a structure-
based writing style in which precedence was given to symbols that created
additional one-dimensional writing spaces. Thus, the indirect access to the two-
dimensional writing space led users to change how they write. Although users
were able to adjust to the demands of the structure-based writing style, there
is evidence that it was less than intuitive. First, users seemed to adjust their
writing style on an as-needed basis, after encountering problems. This suggests
that they are able to remember specific instances were they have had to adjust,
but have difficulty generalizing this knowledge to new contexts. Second, users
found the environment difficult to navigate; this was most evident in the number
of times symbols were deleted and the number of times users elected to rewrite
an expression from scratch rather than fix an error. One concern is that the in-
creased cognitive load that arises from having to operate in an unfamiliar writing
environment may result in more dramatic performance deficits in time-pressured
situations [16]. For instance it is well known that reading performance is dra-
matically impaired when having to perform a second task, even if it requires
independent sensory and effector systems (e.g., [10,13]).

Although the two-dimensional software environment was more intuitive than
the one-dimensional editor, users spent approximately the same amount of time
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using both editors. Users of the two-dimensional writing system spent a substan-
tial amount of time modifying the display. The fact that 17% of the time using
Xpress was spent adjusting the cosmetic features of the users input, despite the
software correctly recognizing the correct equations and reformatting the final
output through LATEX, suggests that sizing is an important issue that needs to be
addressed in two-dimensional environments. The sizing issue is largely avoided
when users handwrite an expression because they tend to draw symbols at an
appropriate size. The size of a symbol is typically not an issue for most structure-
based editors because sizing is accomplished automatically through the nested
structure of the environment. One solution, therefore, to this problem in two-
dimensional software environments might be to analyze structure on-the-fly to
provide automated assistance with symbol sizing and association.

At present it is unclear how and whether using a pen-based digital interface
will result in modification events. Given that handwriting seldom results in mod-
ifications (we did not observe any here), we anticipate that modifications would
have to arise as a consequence of the handwriting recognition process. Failures
recognizing written symbols will require users to clean-up or resize what they
have written. Similarly, an error in layout analysis might require a user to man-
ually resize, delete, and/or move a symbol in a written expression.

Although we discussed two violations of the left-to-right, top-to- bottom writ-
ing order, more occurred. Documenting violations of the “normal” reading and
writing order may help develop a more intuitive structural interface and provide
insight into the cognitive factors that influence mathematical writing. In some
instances, violations occurred because the standard form of the expression vio-
lated the standard writing order (yet some people still apply the left-to-right and
top-to-bottom order), as was true of the summation operator. In other instances,
it is less clear why violations occurred. For instance, users may have waited to
write the index in the third-root component of Expression 4 because (1) users
understanding of the expression is incomplete, (2) there is forward momentum in
the writing process, (3) users conceptualize the index as analogous to an accent,
or (4) users are most familiar with writing the square root, which does not re-
quire an index. Presently there is insufficient evidence to discriminate among the
many alternatives. One important objective for future research, therefore, is to
more thoroughly document when violations of the left-to-right, top-to- bottom
assumption occur.

Two additional lines of inquiry that are relevant for software development
concern (1) writing expressions from memory and (2) how writing environments
affect learning. For instance, in the handwriting condition people wrote brackets
in the order they appeared. However, people may wait until all of the necessary
symbols are written before using brackets to nest the symbols when writing from
memory. With respect to learning, one-dimensional editors may improve fluency
in mathematics because they require users to understand the deep structure
of an expression. Consistent with this possibility, the nature of a writing tech-
nology has been shown to affect how people think about the material they are
writing [2]. Interestingly, it may be possible to improve a user’s understanding
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by implementing visual coding of structure given that the abstract meaning of
an expression is cognitively related to the details of its actual representation
[7,8]. Given that the size of symbols and their relative spacing are often used in
mathematics to perceptually organize an expression it may be possible to exam-
ine the relative importance of these visual cues by examining how users make
cosmetic changes to their written expressions using Xpress (e.g., 4+ 4 × 2 + 2
vs. 4 + 4 × 2 + 2).

In the present study we examined how the writing environment affects writing
behavior, and did not focus on the usability of particular interfaces. However,
for future work, this does raise the issue that there are no standard methodolo-
gies and benchmarks for the scientific comparison of mathematical input inter-
faces. In comparison, the usability of text-input interfaces has been well studied.
For example, there are widely used methodologies like the Roberts and Moran
Methodology [14] that examine the usability of text editors in terms of time,
error and learning. Our study does raise the issue about whether a methodology
for comparing mathematical input interfaces should also consider if a mathemat-
ical interface forces changes in a users writing behavior, potentially increasing
their cognitive load, irrespective of differences in performance measures such as
time and accuracy.

5 Conclusions

Traditionally interfaces for mathematical expression entry were found mainly
in document creation environments and computer algebra systems. The explo-
sion of Web-based technologies has created a demand for new applications, such
as online collaboration and assessment tools, many of which can be considered
real-time applications. At the same time there have been several recent attempts
(e.g., Xpress, pen-computing) to develop two-dimensional mathematical writing
environments. In this paper we have shown that two-dimensional environments
allow users to write mathematical expressions in a more intuitive way than one-
dimensional environments. Therefore, continued research into two-dimensional
interfaces may have important implications for the development of future math-
ematical interfaces, especially real-time ones, where the main goal is to commu-
nicate quickly and effectively.
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Abstract. Interactive exercise assistants support students in practicing
exercises, and acquiring procedural skills. Many mathematical topics can
be practiced in such assistants. Ideally, an interactive exercise assistant
not only validates final answers, but also comments on intermediate steps
submitted by a student, provides hints on how to proceed, and presents
worked-out examples. For these purposes, fine control over the symbolic
simplification procedures of the underlying mathematical machinery is
needed.

In this paper, we introduce views for mathematical expressions. A
view defines an equivalence relation by choosing a canonical form of
mathematical expressions. We use views to track and recognize inter-
mediate answers, to help in presenting expressions to a user, and to
control the granularity of the steps in worked-out examples. We develop
the concept of a view, discuss the laws it satisfies, and show how views
are composed, which means that they can be used for multiple exercise
classes.

1 Introduction

An interactive exercise assistant supports a student who stepwise solves an ex-
ercise. A student gets an exercise, for example about solving a system of linear
equations, and takes steps towards the solution. Examples of interactive exercise
assistants for mathematics are the Digital Mathematics Environment (DWO) of
the Freudenthal Institute [5], MathDox [7], Aplusix [6], MathPert [3], WIMS [8],
ActiveMath [9], and many more. Here is an example of a series of (correct) steps
a student makes when solving a linear equation:

1 − 4x + 2
3 = 3x − 5x − 1

4
⇐⇒ 12 − 4(4x + 2) = 36x − 3(5x − 1) times 12
⇐⇒ 12 − 16x − 8 = 36x − 3(5x − 1) distribution
⇐⇒ 12 − 16x − 8 = 36x − 15x + 3 distribution
⇐⇒ 4 − 16x = 21x + 3 merging
⇐⇒ 4 − 37x = 3 minus 21x
⇐⇒ −37x = −1 minus 4
⇐⇒ x = 1

37 divide by −37

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 325–340, 2009.
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Most interactive exercise assistants would accept this derivation: they check
that each step is correct by calculating that the solution of the equation has not
changed. The comments on the right-hand side suggest that a single rewrite rule
is applied at each step. However, simplification steps are silently performed at
all these steps. For instance, unraveling the simplification of the left-hand side
after the first step (multiply both sides by 12) gives:

(1 − 4·x + 2
3 )·12

⇐⇒ 1·12 − 4·x + 2
3 ·12 (a − b)·c = a·c − b·c

⇐⇒ 12 − 4·x + 2
3 ·12 constant folding

⇐⇒ 12 − (4·x + 2)·12
3

a
b ·c = a·c

b
⇐⇒ 12 − 12·(4·x + 2)

3 a·b = b·a
⇐⇒ 12 − 12

3 ·(4·x + 2) a·c
b = a

b ·c
⇐⇒ 12 − 4·(4·x + 2) constant folding

The single step in the first derivation actually consists of around 15 basic rewrite
steps. Expanding the steps in this derivation would make it very lengthy.

The first derivation shows a sequence of simplified terms that are in some
canonical form. A canonical form of a mathematical expression is a standard
way of (re)presenting that expression. These canonical forms play an important
role in interactive exercise assistants, for instance for simplifying terms. The
exercise assistants we have tested all have some notion of canonical forms, but
their application is often rather subtle.

Most of the exercise assistants mentioned earlier can perform rewrite steps,
followed by automatic simplification to some canonical form, and they can check
that a student has not changed the solution of the exercise, which would indicate
an error. These tools do not have explicit knowledge about strategies for solving
the exercise, however. Therefore, they do not check whether the step made by
the student is on the optimal path to the solution, whether the student makes
progress, or give hints to students that are stuck. For these purposes we use
strategies [10] in our feedback services. A strategy for an exercise describes ex-
actly how to stepwise obtain a solution to an exercise. Strategies can be used to
monitor progress, to check whether or not a step submitted by a student follows
the strategy, to give hints, and to generate worked-out solutions.

Strategies have to include knowledge about canonical forms of expressions:
we do not want to show the basic simplification steps in our hints or worked-out
solutions, and we also do not want to force students to perform these simple
rewriting steps. In this paper, we investigate the following research questions:

– Economy of rules (Section 2). How can we describe rewrite rules on a mathe-
matical domain using a limited set of rules? For example, we want the rewrite
rule a

b + c
b = a + c

b , but not also −a
b + c

b = −a + c
b and a

b − c
b = a − c

b .
– Canonical form (Section 2). How can we ensure that we only show intuitive

representations of expressions to users in worked-out examples? For example,
a + (−b) should be presented as a − b. And we should never show −0.
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– Granularity (Section 3). How can we describe rewrite steps of different granu-
larity, to mimic the typical steps users take? Users with different backgrounds
will take steps of different granularity: a university student will usually take
fewer steps in a calculation than a 10-year old.

– Recognizing strategy steps (Section 4). How can we determine that a student
has performed a step that matches the step prescribed by the strategy? A
user might have performed a step, but forgotten some of the simplification
steps we assume. We want to accept automatic simplification, but we also
want to accept partly simplified steps.

In this paper we present so-called views [18] to address these questions. Views
are used to describe and calculate canonical forms, at each step. Our main con-
tributions are the development of views, and the description of a derivation step
in terms of a rewrite rule and a view in which the rule is applied. We use the
functional programming language Haskell [14] to explain our ideas, and to show
some actual code snippets of our implementation.

2 Views

In this section, we gradually explore the concepts of views and canonical forms.
Our views are based on the views proposed by Wadler [18]. His views make
it possible to combine pattern matching with abstract data types, and have
their origin in research on programming languages. We use views for a very
different purpose, namely for rewriting in the context of an interactive exercise
assistant. Our views abstract over algebraic laws, and help to hide the underlying
representation of mathematical objects.

We start by introducing a representation for mathematical expressions in
Section 2.1, which we use in an exercise to perform some basic calculations
with fractions. This will be our running example throughout this section. We
discuss a number of definitions for matching expressions (Section 2.2), and show
how these functions can be combined in Section 2.3. In the last two sections we
make the concept of a view more precise with some definitions and properties,
and we focus on choosing the canonical form of a view.

2.1 Abstract Syntax

We use the following abstract syntax to represent mathematical expressions.
Abstract syntax is represented by a data type in Haskell, the programming
language in which we have implemented our exercise assistants.

data Expr = Nat Integer | Var String | Negate Expr
| Expr :+: Expr | Expr :�: Expr | Expr :−: Expr | Expr :/: Expr

Expressions are constructed from the natural numbers (Nat) and variables (Var),
and can be combined into larger expressions using unary negation and the bi-
nary operators for addition, multiplication, subtraction, and division. The Nat
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constructor can only have a non-negative number, and we will maintain this
invariant. Hence, the constant value −5 is represented by Negate (Nat 5). This
data type is close to the concrete syntax of mathematical expressions, which
makes it suitable for interactive exercise assistants since we can truthfully repre-
sent terms that are entered by users of the exercise assistants. The disadvantage
of this representation is that it complicates the formulation of rules and strate-
gies. We have to deal with atypical expressions, such as x + (−2) or −0, and we
want to avoid reporting these to our users.

In the remainder of the paper, we use the infix constructors surrounded by
colons for the abstract representation of mathematical objects. Other represen-
tations, such as OpenMath [15] and MathML [17], are quite similar, be it more
verbose.

2.2 Matching with Views

Consider the exercise of adding two fractions, targeted at primary school pupils.
A first step would be to let the fractions have the same denominator, and for
this one typically computes the lowest common denominator (lcd). Given an
expression of type Expr , the following function returns its lcd :

lcd :: Expr → Maybe Integer
lcd ((a :/: Nat b) :+: (c :/: Nat d)) = Just (lcm b d)
lcd = Nothing

where lcm is a predefined function which calculates the lowest common multiple
of two integers. The function lcd is partial, which is reflected by the Maybe
type constructor. The function only works for expressions of the same form as
the left-hand side pattern: for all other values, the function fails in computing
the lcd (that is, Nothing is returned). In fact, our intuitive definition of lcd is
unsuitable for our Expr data type:

– Suppose we also want to use lcd when subtracting one fraction from another,
e.g., 2

3 − 1
4 . This requires an extra case for our definition, in which we match

on the constructor :−: at top-level.
– What if the first fraction is negative, as in −1

4 + 2
3? In combination with

support for subtraction, this requires a substantial number of new cases.
– The denominator can also be negative ( 1

−4 + 2
3), leading to even more com-

binations that have to be considered.

In this scenario, pattern matching is not going to work because the number of
cases will grow rapidly. Instead, we introduce views [18] to gain the flexibility we
are searching for, without obscuring lcd ’s definition. A view allows us to represent
a collection of expressions by means of expressions of a particular canonical form.
A view consists of two components: a function for mapping an expression to a
canonical form, and a function mapping a canonical form back to an expression.
We now introduce the former component, and defer the latter to Section 2.4.
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Addition :
[A1] a + (b + c) = (a + b) + c
[A2] a + b = b + a
[A3] 0 + a = a

Multiplication :
[M1] a·(b·c) = (a·b)·c
[M2] a·b = b·a
[M3] 0·a = 0
[M4] 1·a = a
[M5] a·(b + c) = (a·b) + (a·c)

Equation :
[E1] (a = b) = (a + c = b + c)
[E2] (a = b) = (a·c = b·c) (c �= 0)

Negation :
[N1] − (−a) = a
[N2] a − a = 0
[N3] a − b = a + (−b)
[N4] − (a + b) = (−a) + (−b)
[N5] − (a·b) = (−a)·b
[N6] − (a / b) = (−a) / b

Division :
[D1] a / a = 1 (a �= 0)
[D2] a / 1 = a
[D3] a / (b / c) = a·(c / b) (c �= 0)
[D4] (a / b) / c = a / (b·c)
[D5] a·(b / c) = (a·b) / c
[D6] (a + b) / c = (a / c) + (b / c)

Fig. 1. Basic algebraic laws

Let the type Match a b be an abbreviation for a partial function from type a
to type b:

type Match a b = a → Maybe b

The intuition is that we view a value of type a in some specific way, and possibly
as a value of a different type.

At top-level, lcd is expecting an addition, and we can apply some algebraic
laws to put an expression into the expected form (if possible). Figure 1 lists a
number of basic algebraic laws. The function matchPlus tries to match a plus at
top-level, and uses laws [N3] and [N4] to do so. If it succeeds, it returns a pair
containing the operands of the addition.

matchPlus :: Match Expr (Expr , Expr)
matchPlus (a :+: b) = Just (a, b)
matchPlus (a :−: b) = Just (a, Negate b) -- law [N3]
matchPlus (Negate a) = do (x , y) ← matchPlus a

Just (Negate x , Negate y) -- law [N4]
matchPlus = Nothing

In the case for negation, we call the function recursively on the negated term.
If the call succeeds with a pair (x , y), both operands are negated. Preferably, a
helper-function is used (instead of the constructor Negate) that removes double
negations (law [N1]). More laws could be used in the above definition, such as
the distribution rule [M5]. The challenge was to define lcd for adding fractions.
Given our targeted audience, we want this distribution to be performed by the
user prior to the addition. Therefore, we do not incorporate the law in matchPlus .



330 B. Heeren and J. Jeuring

In the same fashion, we introduce a function to match a division. Here, we
only push negations into the numerator.

matchDiv :: Match Expr (Expr , Expr)
matchDiv (a :/: b) = Just (a, b)
matchDiv (Negate a) = do (x , y) ← matchDiv a

Just (Negate x , y) -- law [N6]
matchDiv = Nothing

The third match-function alleviates the problems caused by the Nat constructor
only accepting non-negative constants. This function matches a natural number
preceded by one or more negations, and returns an integer value.

matchCon :: Match Expr Integer
matchCon (Nat n) = Just n
matchCon (Negate e) = do c ← matchCon e

Just (−c) -- constant folding
matchCon = Nothing

Note that (−c) is the primitive negation operation applied to integer c.

2.3 Composing Match-Functions

With the helper-functions for matching expressions, we can define lcd . With
some “plumbing” in the Maybe monad, this is not too difficult. However, we
first present a number of combinators for composing match-functions, which
will make it even more straightforward to write lcd .

The type constructor Match precisely fits the Arrow interface [13], which
is a general interface to computation. In our case, we modeled partiality by
introducing the Maybe monad, which turns Match into a Kleisli arrow: an arrow
of type a → m b for some monad m. The advantage of turning Match into an
arrow is that this gives us a set of combinators, without too much effort. The
combinator (>>>), for example, has type Match a b → Match b c → Match a c,
and allows us to sequentially combine two matches: m >>> n first matches
with m and then with n. Other arrow combinators are (∗∗∗), which performs
two matches in parallel, and second , which performs a match on the second
component of a pair.

With the arrow combinators, we define matchTwoFractions , which views an
expression as the sum of two fractions with constants in the denominators.

matchTwoFractions :: Match Expr ((Expr , Integer), (Expr , Integer))
matchTwoFractions = matchPlus >>> (matchFraction ∗∗∗ matchFraction)

where
matchFraction :: Match Expr (Expr , Integer)
matchFraction = matchDiv >>> second matchCon
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For each match-function we have made explicit the laws on which it is based.
Therefore, it is easy to determine the laws involved in combinations of match-
functions such as matchTwoFractions . We give an improved definition for lcd :

lcd :: Expr → Maybe Integer
lcd e = do ((a, b), (c, d)) ← matchTwoFractions e

Just (lcm b d)

2.4 Defining Views

This section defines views. We explain how views are used to calculate canonical
forms, and which properties they satisfy. The definitions are given in Haskell.

So far, only functions for matching have been considered. With each partial
function from a to b, we associate a build function which returns a value in the
original domain. A view pairs a match and build function.

data View a b = View{match :: Match a b, build :: b → a }

For each view we assume that the two functions define a canonical form. We
make this idea more precise in the definition of the function canonical , which
returns the canonical form of an element under a given view:

canonical :: View a b → a → Maybe a
canonical view a = do b ← match view a

Just (build view b)

We apply the match function of the view on an element, and on a successful
match, we use the build function to return to the original domain. For conve-
nience, we also define a simplification function, which returns the value at hand
on a failing match:

simplify :: View a b → a → a
simplify view a = fromMaybe a (canonical view a)

The following properties of the simplify function should hold for all views,
establishing a property for match and build pairs.

Property 1 (Idempotence). For every view v , simplify v is expected to be an
idempotent function. If this is not the case, we say that view v is improper.

Property 2 (Soundness). Simplification with a view v should preserve the se-
mantics of an object. Let a be some element in the domain of view v , and let
� · � denote the semantics of that domain. Then �a� = �simplify v a�.

Because each proper view defines a canonical form, it also defines an equivalence
relation. Two elements can be tested for equivalence under a view by comparing
their canonical forms. We use simplify to do the job:

viewEquivalent :: Eq a ⇒ View a b → a → a → Bool
viewEquivalent view x y = simplify view x ≡ simplify view y
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The overloaded equality operator ≡ belongs to the Eq type class, and is normally
implemented as equality on the abstract syntax. Hence, if view does not apply
to x nor y, viewEquivalent tests for syntactic equality of x and y.

The functions for matching can be composed using the arrow interface, and
likewise, we can compose views. In fact, we use the same interface for the View
type constructor, which enables us to combine views. The build operation is also
an arrow since it is an ordinary function, except in the opposite direction. As
a consequence, we cannot implement the pure function for a view because we
cannot automatically compute the inverse of a function. Views are closely related
to the bidirectional arrows proposed by Alimarine et al. [1].

2.5 Choosing the Canonical Form

We continue the example of adding two fractions. Now that we can determine
the lowest common denominator of two fractions (lcd), we need a rule to scale
one of these fractions accordingly. For this purpose, we define build functions
for matchCon , matchPlus , and matchDiv . The view for positive and negative
constants (conView) pairs matchCon with a function that turns an integer value
back into an Expr value.

conView :: View Expr Integer
conView = View{match = matchCon , build = buildCon }

buildCon :: Integer → Expr
buildCon n | n � 0 = Nat n

| otherwise = Negate (Nat (abs n))

This definition results in a proper view, and it respects the invariant imposed by
the Nat constructor. When defining the builder for the plus view (the counterpart
of matchPlus), we have another look at the algebraic laws in Figure 1. The
matching function maps each of the expressions 3 + (−5), 3 − 5, and −(−3 + 5)
to the pair (3, −5). In the definition of the builder, we choose 3 − 5 as the
canonical representation for this pair.

(.+.) :: Expr → Expr → Expr
Nat 0 .+. b = b -- law [A3]
a .+. Nat 0 = a -- law [A3] (and [A2])
a .+. Negate b = a :−: b -- law [N3]
a .+. b = a :+: b

Here, we write the builder as the infix function .+., which should not be confused
with the constructor function :+:. With the function uncurry, we turn .+. into
a function of type (Expr , Expr) → Expr , which we use in the plus view.

plusView :: View Expr (Expr , Expr)
plusView = View{match = matchPlus , build = uncurry (.+.)}

The builder function of the division view uses law [N6]: we omit its definition.
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We conclude this section with a definition for the rule that scales a fraction to
a certain denominator, in which we use a composed view both for matching and
for building. For this occasion, we make a view that constrains the numerator
and the denominator to be constant.

fractionView :: View Expr (Integer , Integer)
fractionView = divView >>> (conView ∗∗∗ conView)

The rule that scales a fraction can then be defined as follows:

scaleFraction :: Integer → Expr → Maybe Expr
scaleFraction n e = do (a, b) ← match fractionView e

let (c, zero) = n ‘divMod ‘ b
guard (zero ≡ 0)
Just (build fractionView (c ∗ a, n))

We calculate the scale factor (c), and test whether the target value of the de-
nominator (n) is a multiple of the old value (b). Then, we build an expression
from the scaled fraction using the same view.

3 Granularity of Rewrite Steps

In this section, we return to the example of the introduction, and we take a
closer look at the size (or granularity) of the rewrite steps in the derivation.
For some exercises, the steps that a student is expected to take correspond
exactly to the laws that are known for that domain. This is, for instance, the
case in most exercise assistants in the area of logic, where propositions have to
be manipulated using only a handful of rules, typically the ones appearing in
textbooks on this subject. In such a scenario, the granularity of user steps is not
an issue. In other cases, terms can be simplified automatically without an interest
in intermediate values. For example, when performing Gaussian elimination, the
focus of the student should be on applying the elementary row operations, not
on simplifying the elements appearing in the matrix. It seems reasonable that a
tool performs these simplifications automatically.

In the example of solving a linear equation, we are interested in intermediate
results, but the steps should be at a conceptually higher level than the alge-
braic laws listed in Figure 1. Worked-out examples that are generated by the
system should be at the right conceptual level (like the derivation in the intro-
duction), just as hints about the direction to go. We start by making some of
our assumptions explicit before we discuss the conceptual level of this exercise.

– Associativity of operators is implicit, meaning that a user cannot and should
not distinguish a+(b+c) from (a+b)+c. The system can thus minimize the
use of parentheses in presenting terms. Commutativity, on the other hand,
should be used with care. We want to respect the order in which terms
appear as much as possible for a better user experience.
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view view type description

plusView (Expr ,Expr) match an addition (:+:) at top-level
divView (Expr ,Expr) match a division (:/:) at top-level
conView Integer match a natural number, possibly preceded by

some negations
sumView [Expr ] order preserving summation (e1+ . . . +en)
productView (Bool , [Expr ]) order preserving multiplication (e1· . . . ·en):

the Bool indicates negation of the product
rationalView Rational reduce by folding constants recursively
linearView (Rational ,Rational) normalize a linear expression in x : use all laws

to turn the expression into the form a·x + b

Fig. 2. Summary of views on expressions

– Constant terms are normalized aggressively: the skills to manipulate frac-
tions and integers are assumed to be present.

– The distribution of multiplication over addition (law [M5]) is an explicit step
in the derivation. Laws to manipulate the sign of a term (laws [N1] up to
[N6]) can be performed automatically.

Keeping the assumptions above in mind we define four operations to rewrite
an equation until it is in a solved form. In an exercise assistant, these operations
could be offered to a user as buttons, allowing the student to focus on the
strategy, while the tool is doing the calculations. The operations are:

1. Add a term to both sides of the equation ([E1]). The term can be negative,
in which case we are actually performing a subtraction.

2. Multiply both sides by a non-zero constant factor ([E2]): since this exercise is
restricted to linear equations there is no point in allowing variables to appear
in this factor. Division can be mimicked by multiplying by a fraction.

3. Remove parentheses, i.e., apply the distribution law ([M5]). In the remaining
part of this section we make more precise where and how this is done.

4. Merge “similar” terms: this too will be made more precise.

3.1 Sum View and Product View

We define more views that help to implement the operations on an equation.
Figure 2 gives a summary of the views on expressions in this paper. The sum view
is similar to the plus view defined earlier, except that we now take associativity
of the addition operator into account. The sum view converts an expression
to a list of terms. Like the plus view, we push negations inside. For example,
3x − (1 − 2x

5 ) is viewed as a list of three elements, namely [3x , −1, 2x
5 ]. The

function for matching can be defined as1:

1 Although intuitive, a more efficient definition would avoid having to concatenate
lists (++) from recursive calls, especially for left-biased abstract syntax trees.
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matchSum :: Match Expr [Expr ]
matchSum = Just ◦ f False -- laws [A1], [N1], [N3], [N4]

where f n (a :+: b) = f n a ++ f n b
f n (a :−: b) = f n a ++ f (¬ n) b
f n (Negate a) = f (¬ n) a
f n a = [if n then Negate a else a ]

The first parameter of the helper-function f is a boolean indicating whether
or not the expression has to be negated. The function matchSum is total: for
an expression without top-level additions, such as 3(x + 1), a singleton list is
returned. For the builder of the sum view, we pass (.+.) and addition’s neutral
element to the foldl function, which constructs a left-biased tree.

sumView :: View Expr [Expr ]
sumView = View matchSum (foldl (.+.) (Nat 0)) -- laws [A1], [A3]

A list is a natural data structure for viewing associative operators. If we also
take commutativity into account, we can sort the list, or use the bag (multi-set)
data structure. If the operator is also idempotent, such as logical conjunction,
we can turn to sets.

We define the product view similarly. Contrary to the sum view, we propagate
negations upwards such that we find negations that cancel each other out (law
[N1]). The type signature of the product view is View Expr (Bool , [Expr ]). The
boolean in the pair indicates whether or not the product has to be negated:
we omit its definition, but give some examples instead. Matching the expression
3·(−x ·15) gives the pair (True, [3, x , 1

5 ]). Although there is no special notation for
the reciprocal function, we can also decompose divisors (but we don’t have to),
thereby also using law [D3] and taking care of its side-condition. The reciprocal
function is its own inverse, and plays the same role as negation did for the
sum view. The expression (1 + 1)· x

4 / 7 could then be viewed as the pair (False,

[1 + 1, x , 1
4 , 7 ]). The builder of the product view takes care of neutral elements

(law [M4]) and absorbing elements (law [M3]).

3.2 Normalizing Sums and Products

We discuss a normalization procedure for a list of expressions produced by the
product view. Constant expressions (i.e., terms without variables) can be re-
duced to a rational number using constant folding techniques. Let us assume
that the rational view (of type View Expr Rational) takes care of this. Products
are normalized as follows: combine all constant rational numbers, even if they are
not adjacent in the list. This operation is sound because multiplication is com-
mutative. The order of the other, non-constant elements is left unchanged. The
first occurrence of a constant rational number is replaced by the new, combined
constant. Let this procedure be:

normalizeProduct :: [Expr ] → [Expr ]
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For instance, consider the list [1 + 1, x , 2
8 , 7 ]. The rational view is applied to

each element, giving [Just 2, Nothing, Just (1 / 4), Just 7 ]. The product of the
constants is 7 / 2 of type Rational . We use the rational view to turn this into an
expression. This expression is placed in a list before the variable x .

When normalizing sums, we combine constants (using the rational view), but
we also merge terms that are “similar”. For example, 2x and 3x should be turned
into 5x by using the commutative variant of [M5] (from right to left) and constant
folding. Product normalization is used for finding similar terms.

Constant folding in sums and products seems straightforward, but preserving
the order makes it more involved. We want to emphasize that this is necessary
for a tool in order to react naturally on user requests. For example, adding 3 to
both sides of the equation 1+x = 2x −1 would (ideally) result in 4+x = 2x +2,
even though the constants appear at different sides of the addition operator.

3.3 A Strategy for Solving Linear Equations

We briefly sketch a strategy for solving linear equations using our strategy com-
binators [10]. A strategy prescribes the order of rewrite steps in a derivation. If
both sides of the equation have the form a·x +b, then we are done in three steps:
move x to the left (law [E1]), move the constant to the right (again law [E1]),
and finally scale the equation such that the a on the left-hand side becomes one
(law [E2]). Each step can be skipped under certain circumstances. Let this be
the basic strategy:

basicEquation = try varToLeft <∗> try conToRight <∗> try scaleToOne

Views are used to implement the rewrite steps of the strategy, i.e., varToLeft ,
conToRight , and scaleToOne, in the same way as scaleFraction was defined in
Section 2.5. For more involved equations, we first have to apply the distribu-
tion rule (law [M5]), after which we merge “similar” terms, and multiply both
sides (law [E2]) to get rid of divisions. The overall strategy, which produces the
derivation shown in the introduction, is:

solveEquation = repeat (merge <|> distribute <|> removeDivision)
<∗> basicEquation

4 Recognizing Strategy Steps

In this section, we briefly discuss how interactive exercise assistants can deal
with formulas entered by a student. Such a submitted expression can be an
intermediate answer in a larger derivation. We do not only want to validate that
the intermediate term is correct, but we also want to recognize which rewrite
rule has been applied. Three terms are involved in such a diagnosis: the term
submitted by the student, the previous term in the derivation, and the term that
was expected at this point. We use a strategy definition, such as solveEquation ,
to predicted the expected term (possibly more than one).
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On a submission, we use an equivalence relation to compare the submitted
term with both the previous term and the expected term. We could use the
semantic interpretation for checking equivalence, but this only establishes the
soundness of the step, and ignores the direction in which the student continues
the derivation. Using syntactic equality is also not an option since this test does
not take minor differences in representation into account.

The equivalence relation should preferably be congruent, that is, compatible
with the semantic interpretation of the symbols [2]. If not, it will be hard to
predict whether or not two terms belong to the same equivalence class. The views
we have seen operate at top-level: they are shallow. As a result, an equivalence
relation that belongs to a view (defined in Section 2.4) is often not congruent.
For example, the equivalence relations derived from the plus view and the div
view are not congruent. To define a congruence relation using views, we have to
recursively apply views.

We return to our running example of solving a linear equation. Each linear
expression in x can be written as a·x +b, where a and b are expressions in which
x does not occur. In the remainder we assume that a and b are both constant
rational numbers. We introduce two new views:

linearView :: View Expr (Rational , Rational)
equationView :: View (Equation Expr) Rational

The linear view returns a pair containing the a and b values. This view can easily
be extended to the equation view, which first subtracts one side of the equation
from the other, then applies the linear view, and finally divides the b value
by −a. In fact, the equation view can be used as the semantic interpretation of
our exercise. The view is not applicable to non-linear terms, or to terms that are
not well-formed (e.g., division by zero).

With the equation view, we check whether or not a submitted term is correct.
The linear view is used to test if the two sides of the equation still have the
same meaning: if this is the case, we can exclude application of an equation
rule ([E1] and [E2]). The derivation in the introduction is correct, and indeed,
all equations in the derivation are equivalent under the equation view. In the
middle part of the derivation, merging and distribution operations are performed.
These operations work on expressions, not on equations. The left-hand sides of
these equations (12 − 4(4x + 2), 12 − 16x − 8, and 4 − 16x ) and the right-hand
sides (36x − 3(5x − 1), 36x − 15x + 3, and 21x + 3) are equivalent under the
linear view.

However, if we want to recognize distributions of multiplication over addition
(law [M5]), then we need to distinguish 12− 4(4x + 2) from 12− 16x − 8. These
expressions are equivalent under the linear view. With the help of the sum and
product views, and the normalization functions for sums and products, we can
define a congruence relation that distinguishes these terms. The details of this
relation are omitted from this paper. Merging alike terms, such as 12 − 16x − 8
becoming 4 − 16x , results in an expression from the same equivalence class.

We want some congruence relation for recognizing the steps of a user, but
which? From a theoretic point of view, this relation should come from an
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equational theory based on a collection of laws or axioms. This way, we know
which laws are available for testing equivalence. Unfortunately, it is not feasible
to automatically derive an equivalence relation from a set of laws. Consequently,
we have to restrict ourselves to certain collections.

5 Related Work

A popular approach in constructing computer aided assessment (CAA) systems
is to delegate all calculations to a computer algebra system (CAS). This ap-
proach will give good instant results, since CAS typically have advanced built-in
algorithms, and are very good in simplifying complex formulas. These systems
are, however, not designed for interaction with a CAA system, and they cannot
be configured easily for a finer control of the simplification procedure [11]. This
becomes even more of a problem when dealing with interactive exercises.

The purpose of views is related to the design principles of MathPert [3,4]. We
follow the guidelines for cognitive fidelity (the software solves the problem as a
student does), glassbox computation (you can see how the software solves the
problem), and customization of the software to the level of a user.

Beeson [4] claims that rewriting technology [2] is not enough to implement
interactive systems that satisfy the above principles. He concludes that every
operation has to be implemented as a function in the underlying programming
language. We agree with his claim that rewriting alone is insufficient, however, we
believe that a function implementing an operation can be given more structure:
it is a rewriting step in the context of a view. The advantage of this separation
is that we can still see operations as rewrite steps, but in the context of a view.
Views can be reused for different exercise classes, and rewrite rules stay simple.

Interactive exercise assistants like the DWO [5] can be used to stepwise solve
exercises. Most of these tools have no knowledge of strategies for solving exer-
cises. As a consequence, intermediate steps are only compared against the final
solution, and no hints or worked-out examples can be calculated. Most of these
tools perform simplifications automatically, with similar results as we obtain.
We have not found descriptions of how these tools implement canonical forms.

Proof planners that use computer algebra systems in their proofs run into
similar problems as exercise assistants do: the form of the expression returned
by the CAS might not coincide with the canonical form expected by the proof
assistant. For example, Sorge [16] uses similar techniques as we do in the proof
planner Ωmega. No concept of views is introduced though.

6 Conclusions and Future Work

In this paper, we have introduced views for specifying canonical forms. A view
consists of a function for matching and one for reconstructing. Reconstruction
after matching maps an expression to its canonical form, and matching after
reconstruction is the identity function. The arrow combinators can be used to
compose views, which makes them reusable for multiple exercise classes.
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We have proposed views as a solution to the research questions posed in
the introduction. A view defines a canonical form, which is used to show intu-
itive representations to users. It abstracts over a set of algebraic laws, which we
have made explicit for the views introduced in this paper. This is helpful for
determining the granularity of a rewrite step, which should correspond to the
background of the student, but also for describing rewrite rules without having
to worry about slightly different representations. Views help us to recognize ex-
pressions entered by students, provide helpful hints on how to proceed with the
exercise, and generate worked-out examples with the right level of detail.

Views are useful in any situation where we need canonical forms of expressions:
if for some reason a+(−b) is to be preferred over a−b, we can define a view that
calculates such a canonical form. In a strategy for solving an exercise, multiple
views can coexist, for instance to show more detail at the start of a calculation.

The examples presented in this paper are exercises in calculating with frac-
tions, and solving a linear equation. Views are also applicable to exercises outside
the domain of mathematics. We are working on interactive exercises assistants
for relation algebra and for an introductory programming course, and we believe
that views will play a fundamental role within these exercise classes too.

We will proceed our research in the following directions. Multiple domain
reasoners for classes of mathematical exercises are to be investigated for the up-
coming European MathBridge project. Views will be used for implementing these
reasoners. We have integrated our tools with the DWO, such that our step recog-
nition technology can be used. The results are promising, and are expected to be
used in mathematics courses in Dutch high schools next year. Further investiga-
tion is needed to understand how views can be incorporated in our generalized
rewriting framework, in which we use generic programming techniques [12]. More
information about our tools can be found on http://ideas.cs.uu.nl/.
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Abstract. Since Mathematics really is about what mathematicians do,
in this paper, we will look at the mathematical practice of framing , in
which an object of interest is viewed in terms of well-understood math-
ematical structures. The new perspective not only allows to deepen the
understanding of a resp. object, it also facilitates new insights. We pro-
pose a model for framing in the context of theory graphs, and show how
framing can be exploited to enhance the interaction with MKM systems.
We use the framing extension of our SACHS system — a semantic help
system for MS Excel — as a concrete example.

1 Introduction

It has often been said that to understand mathematics one has to understand
what mathematicians do, and in fact the value of a mathematical education is
usually appraised more for the practices and abstract skills acquired with it,
than for the concrete knowledge gained. For the field of Mathematical Knowl-
edge Management (MKM) this suggests that we have to support mathematical
practices in our systems and representation formats (see [KK06] for a call to
arms to do just this).

A particular mathematical practice that comes to mind is to view objects
of interest in terms of already understood structures and make creative use of
this new perspective. For instance, we can understand certain point sets in three-
dimensional space by viewing them as zeroes of polynomials. Then we may derive
insights about these point sets by studying the algebraic properties of polyno-
mials. For the purposes of this paper we will say that we are framing the point
sets as algebraic varieties (sets of zeroes of polynomials). Other intuitive exam-
ples of framing in mathematics consist e.g. in equipping a differentiable manifold
with a (differentiable) group operation (arriving at a Lie group), or interpret-
ing a Boolean algebra as a field of sets via Stone’s representation theorem. The
practice of framing is so valuable, since it allows to transport insights between
seemingly disparate fields. Indeed, in mathematics many of the most famous
theorems earn their recognition because they establish profitable framings.

We adopt the term ‘framing’ for the mathematical practice we want to study
because we want to highlight the particular approach to context mathematicians

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 341–356, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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choose. In contrast to many MKM applications where ‘to contextualize’ means to
manipulate appearances (presentations), we are interested here in the potential
of manipulating substances (representations). We do not want to use the term
‘view’ since that is already taken in MKM and fails to address either the cognitive
process aspect or its collaborative aspect. The term ’frame’ has been used e.g.
in Communication Research as “schemata of interpretation that enable individuals

to locate, perceive, identify and label occurrences within their life space and the world

at large.” [SRWB86]; a frame is understood as a scaffolding of concepts that
influence the understanding of situations. Therefore it seems to sit well with our
demands.

In this paper, we will argue that framing in mathematics usually involves some
kind of mapping or even isomorphism between the participating structures. We
will propose a model for the mathematical practice of framing in the context of
theory graphs, and we will show how framing can be exploited in the interac-
tion design with MKM systems using our extension of the SACHS system — a
semantic help system for MS Excel —- as an example.

2 Modelling the Practice of Framing

We will set the mathematical practice of framing in the context of theory graphs
following the “little theories approach” proposed in [FGT92], in which separate
mathematical contexts are represented by separate theories. Structural relation-
ships between contexts are represented as theory morphisms, which serve as con-
duits for passing information (e.g., axioms, definitions, and theorems) between
theories (see [Far00]).

2.1 Semi-formal Theory Graphs and Framing

Theory graphs are one of the theoretical underpinnings of what is sometimes
called Formal Digital Libraries (FDL), which have been a focus of the MKM
community. FDL have evolved from the libraries of theorem proving and verifica-
tion systems, and the theory graph structure is used there for modularization by
compartmentalizing knowledge about objects into modules (theories) and link-
ing them by inheritance links (morphisms). This aspect seems to be an appealing
starting point for modelling framing. But FDL are of rather limited use for math-
ematicians as most mathematics is not born formal. Indeed, formalization is a
very specialized framing practice, which is more often than not at the very end of
mathematical creative processes. Therefore, for our purposes we draw on Semi-
Formal Digital Libraries (SFDL), where axioms, definitions, theorems, and
even theories can be given as annotated text fragments. As semi-formal repre-
sentation formats like MathML, OpenMath, LATEX, XHTML+MathML, Math-
Lang [KWZ08], MathDox [CCB06] concentrate on mathematical formulae only
or lack theory-level features, we will use our OMDoc format [Koh06], which gen-
eralizes the structural invariants of theory graphs to an informal level [RK08],
but also accommodates fully formal representations. In the following, we will
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assume an OMDoc-based background SFDL with a fine-grained theory graph
structure which acts as a content commons that contains our examples as the-
ory subgraphs.

We will use the formal techniques and results about modular theory graphs
from [MAH01, RK09] in an informal setting without checking the various
category-theoretic prerequisites. This is generally justifiable by current prac-
tice in mathematics (see [BC00] for an extensive discussion): Arguments are
presented informally and are considered rigorous , if they could in principle be
elaborated into a formal system like first-order logic with set theory axioms
which does meet the formal prerequisites. Even though such an elaboration is
almost never done in practice, enough examples have been carried out that we
can be confident that it is possible in all informal but rigorous arguments (in
this paper). Thus we use the informal theory graph representation of the OM-
Doc format [Koh06], which provides an infrastructure for theory morphisms and
inter-theory reasoning without requiring formality.

Let us now briefly recap the salient features of semi-formal theory graphs
to make the paper self-contained. A theory consists of a signature — i.e.
a set of concepts or symbols — together with a set of axioms — i.e. distin-
guished members of the set of sentences induced by the signature — which act
as basic assumptions of the theory. A signature mapping is called a theory
morphism, iff all axioms of the source theory are consequences of the target
theory’s axioms. Thus we can use theory morphisms for the modularization

Monoid

G, ◦, e
a◦(b◦c)=(a◦b)◦c

e◦a=a. . .

Comm Group

·−1

a◦b=b◦a

a◦a−1=e

Ring

R,+, 0,−, ∗, 1
(a+b)∗c=a∗c+b∗c

i:Id m:σ

k:τ

Fig. 1. A Theory Graph for Rings

of mathematics: Consider the diagram on
the right where we have depicted theories
as boxes consisting of the theory name, sig-
nature, axioms and theorem morphisms as
arrows labeled with i:ϕ, where i is a name
and ϕ a signature morphism. In our ex-
ample we have a theory of monoids called
Monoid (i.e. structures 〈G, ◦〉, where G is
a set and ◦: G × G → G an associative bi-
nary operation on G, such that there is an
element e with a ◦ e = a and e ◦ a = a).
To extend this to a theory of commuta-
tive groups, we only have to add axioms
for the existence of inverses and commu-
tativity to the monoid axioms. So in a theory graph we only have to repre-
sent these local axioms and import the ones from Monoid. Note that the iden-
tity signature morphism induced by the import becomes a theory morphism
by fiat. But we can do even more: to define the theory of rings called Ring,
we can just import the Monoid axioms into the Ring theory via a signature
morphism σ: = {G �→ R∗, ◦ �→ ∗, e �→ 1} and the Comm Group axioms via
τ : = {G �→ R, ◦ �→ +, e �→ 0, ·−1 �→ −} and add the distributivity axiom.

The distinguishing property of theory morphisms is that they preserve the-
orems, i.e. after translation, all theorems from the source theory are theorems
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of the target theory. This is trivial for the definitional morphisms we have seen
above, but also holds for views: theory morphisms, where we prove all the proof
obligations (i.e. the translated axioms of the source) in the target theory. The
representation theorems alluded to above give rise to views in this sense. We
will need one more notion below: we will call a theory morphism σ: S → T
conservative, iff σ(s) is a theorem of T , iff s is one of S, i.e. the target the-
ory does not introduce new knowledge about objects that can be expressed in
terms of the source theory. Note that adding axioms to the target theory will
usually render a theory morphism non-conservative; an exception are definitions
like G∗: = G\{e} in Monoid. The significance of conservative theory morphisms
is that any theorem that can be expressed only in terms of the source language
can be transported back to the source theory.

Concretely, we model the framing practice by defining a framing to be the
establishment (creating or choosing) of a theory morphism from a source theory
(the framing theory) into the theory representing the problem (the framed
theory). The theory morphism itself is called a frame. In situations where
there is a unique morphism from a theory S to T , we will also say that S is a
frame for T in a slight abuse of terminology. But note that in many situations
we naturally have more than one morphism between two theories, for instance
above we have the morphisms m and k◦i (theory morphisms compose naturally to
theory morphisms). Mathematically, m frames Ring in terms of its multiplicative
monoid structure and k ◦ i as the additive one. Note that for every theory S,
the identity is a theory morphism, we call it the natural frame for S. Finally,
we will say that frames fi: S → Ti are frame variants, iff the Ti are pairwise
inconsistent. In most practical cases the theories Ti add a single axiom each, e.g.
specializing a parameter that was left unspecified in S in different ways. We will
call these axioms the loci of the variants. We assume that frame variant relations
(and their loci) are explicitly annotated in SFDL metadata; see [KMM07] for a
proposal to integrate such data into the OMDoc format.

To strengthen our intuition about framing and the suggested model, we will
have a closer look at three typical framing practices used in mathematics. From
them we will draw more general conclusions concerning SFDL formalization and
requirements for the interaction with frames.

2.2 Understanding Abstract Objects by Examples

A fine example of framing is the mathematical practice of supplying examples
for abstract concepts. For instance most expositions of the concept of a monoid
will give the natural numbers with addition as an example, and use it as a
“near-miss” counterexample for being a group.

In [Koh06, section 15.4] we had argued that examples are triples 〈o, P, A〉,
where o is a mathematical object (〈N, +〉 in our example), P is a property (being
a monoid), and A is an assertion establishing P (o). Re-interpreting examples as
theory morphisms allows to package the same information much more plausibly.
Consider the following theory graph fragment, where the theory N+Ex builds on
the natural numbers (specified e.g. by the Peano Axioms) and is connected by
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NatNums
N, s, 0
P1,. . . P5

Monoid
G, ◦, e
e◦a=a. . .

N+Ex

+
n+0=n

n+s(m)=s(n+m)

Group

∀x:G.∃y:G.x◦y=e

NonGrpMon

∃x:G,∀y:G.x◦y 	=e

ϕ =

⎧⎨
⎩

G �→ N

◦ �→ +
e �→ 0

⎫⎬
⎭

e:ϕg

c:ϕ

f

a view e to Monoid.
Note that e carries
with it a set of proof
obligations, which to-
gether state the fact
that the structure
〈N, +〉 is a monoid.
To make N+Ex into a
counterexample for a
group (not all natural numbers have additive inverses) we introduce a theory
NonGrpMon of non-group monoids with a local axiom that states that there is
an element x for which no y is an inverse (note that this is just the negation of
the group axiom). Then any framing c for N+Ex naturally acts as a counterex-
ample to the assumption that it is a group, since the local axioms of Group and
NonGrpMon are contradictory. In our terminology, the frames f and g are frame
variants and the local axioms are the variant loci — we show this by the dotted
bidirectional arrow.

2.3 Problem Solving

Another example of framing arises in word problems, i.e. mathematical problems
clothed in words. Problems like the following one appear in many high school
textbook on elementary trigonometry.

Problem 0.8.15: How can you measure the height of a tree you cannot
climb, when you only have a protactor and a tape measure at hand.

The standard solution is to assume that the tree
in question stands on flat ground, to mark the tree
at eye height and to use the protractor for sight-
ing the top of the tree and the mark to determine
the angle α between the sightings. The tape mea-
sure can be used to determine the eye height (h0)
and the distance d between sighting point and the
center of the tree. Then the height h of the tree is

h = h0 + hα = h0 + d tan(α) according to the sketch on the right.
Even in this simple situation, framing is complex; consider what happens in

the solution process. The first step is to realize that certain concrete properties
of the problem do not matter, in this case the shape of the tree, its color, and
indeed that it is a tree at all; so in a first framing step, we map the problem to
a simpler one of determining the length of a mathematical line segment without
directly measuring it. The second step in solving the problem is to carefully add
further objects to the problem (e.g. the mark and the sighting point) so that a
solution can be found. And in a third step, the solution is mapped back to the
original problem and verified there.

In our example, we would posit a theory graph like the one on the right,
grounded in a theory “Planar Geometry (PG)”, which supplies knowledge
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about right triangles, angles, and trigonometry. On this, we build a theory “Pla-
nar Geometry for our Problem (PGP)” that abstracts from all biological

PG

PGP

PGSProblem

SOL

Forestry

q

p’:ϕ

p:ϕ

q

Fig. 2. Framing and Extending a Problem

details of trees (they come from
a Forestry theory) and only ex-
tends PG with two perpendicular
line segments l and g and a point
p at the end of l. This will be
framing theory for our problem;
the framing is given by the the-
ory morphism p:ϕ, where ϕ maps
p to the tree top, l to the center
of the tree’s trunk, and g to the
ground the tree stands on. Since
our problem also inherits from the theory Forestry that contains assumptions
like the one that the trunks of (fir) trees are straight and grow vertically, p is a
view and thus constitutes a frame in our model. Note that all the theory mor-
phisms in the graph up to now are conservative, so by [MAH01, Proposition 12]
we can extend it by the union theory “Solution (SOL)” and the two dashed
theory morphisms p′ and q′, which are again conservative. SOL contains the full
information to understand the solution. As q′ is conservative over Problem, the
computed height is the correct one for the problem.

2.4 Problem Transformation

In the third example, we study the contribution of framing to understanding
and anchoring of mathematical structures using the well-studied “Mutilated
Checker Board Problem (MCBP)” (see [Win01, KP06] and references there).
The MCBP is based on a combinatorial problem, which we can formalize as a
pair covering problem which (following a formulation of McCarthy [Win01]),
we can pose as follows. Given a set S and a relation D on S, then we call a
relation R ⊆ D a partial covering, iff the pairs in R are pairwise disjoint, and
a covering of S, iff the union of all pairs in R is S. Now the “Pair Covering
Problem (PCP)” is to find a covering R for a given set S and relation D or to
show that no covering exists. We are going to look at two special PCP.

In the “Adjacent Fields Covering Problem (AFCP)”, S ⊆ N × N, and
〈〈i, j〉, 〈k, l〉〉 ∈ D, iff |i − k| + |j − l| = 1. In the “Disjoint Set Covering
Problem (DSCP)”, S is the disjoint union of sets B and W and D = B × W .
In the MCBP S is a mutilated checker board (the squares of the board minus
the black ones in the corners) and D is the adjacency relation. Finally, the
“Matchmaker Problem (MMP)” is given as follows in [Sch09].

In a small but very proper Russian village, there were 32 bachelors and 32 un-

married women. Through tireless efforts, the village matchmaker succeeded in

arranging 32 highly satisfactory marriages. The village was proud and happy.

Then one drunken Saturday night, two bachelors in a test of strength, stuffed

each other with pirogies and died. Can the matchmaker, through some quick

arrangements come up with 31 satisfactory marriages among the 62 survivors?
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PCP

DSCP AFCP

MMP MCBP

a b

c d
e

Obviously, the DSCP and AFCP specialize the PCP, and
the MMP specializes the DSCP, if we take the set B to be
the set of village bachelors and W the set of unmarried
women. Similarly, the MCBP specializes the AFCP if we iden-
tify checker board squares with their positions in N × N, so
we have the theory graph on the right. There are two crucial
insights that are important for solving the MCBP and that are driven by framing.
The first one is that the DSCP is unsolvable unless |B| = |W |, as framing the
problem as a matchmaking exercise will make clear even to non-mathematicians.
The other insight is that by mapping the sets B and W in DSCP with the set of
black and white squares respectively, then we obtain a view e into MCBP1. This
allows to transport the insight that DSCP is unsolvable to the MCBP.

2.5 Conclusions for SFDL Formats and Interaction with Frames

Let us now see how the theory-morphism based model fares with respect to the
different aspects of framing shown in the examples and which insights it provides
for SFDL formats as well as interaction design for implementing framing.

The first example uses frames to specialize abstract objects into concrete
examples, adding details by fixing the base set of the monoid to N and the
operation to the addition function. At the same time the frame can be used to
generalize 〈N, +〉 by abstraction. If we want to exploit frames for user interaction
in MKM systems, the user should be enabled to select and change frames. In a
theory graph a frame generalization can be seen as an extension from a frame f
to a frame f◦g. In this sense the framing e above can be seen as the generalization
c ◦ f, where we have generalized N+Ex from an example for a non-group monoid
to an example of a monoid. Here, the only possible frame specialization is taking
back this generalization since we cannot change the framed theory. The example
also shows that frame variants play an important role in understanding abstract
mathematical objects and theories, and should therefore be supported by the
interface (see for instance Figure 8 for a concrete example). If variant relations
and loci are annotated in a SFDL, the explication of mathematical objects may
become a simple planning exercise on theory graphs. Note that in our model of
framing we can interpret the practice of giving examples as supplying the reader
with a basic supply of prototypical framings (here Monoid is the framing theory
for N+Ex) that the reader can later draw upon for problem solving.

In the second example we see that the framing morphism drives problem
solving. It opens the real-world situation to methods from Planar Geometry,
identifies the salient features, and pulls back the geometric solution into the
original problem over a conservative morphism. We can also observe another
effect: the opportunity to model framing in the SFDL allows us to (partially)
tackle the formalization divide. The current practice in formal methods is that
informal problem descriptions remain as unstructured texts outside the (formal)

1 Note that even if we frame the set S in the AFCP as squares in a rectilinear grid,
they are still uncolored, therefore the target theory of the frame e has to be MCBP.
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system. As a consequence, the relation between the original and the formal
representation of the problem remains unclear and has to be accepted by a leap
of faith. If we view formalization as a framing process in the SFDL, we can
support it by MKM systems and take the guessing out of formalization.

In the third example we have used framing in two facilities: for problem solving
via conservative extensions, but also in the form of views of the problems into
situations that appeal to the intuitions of the (human) reader. This allows to
anchor the abstract, mathematical concepts in the real world and thus trigger
insights that help problem solving. There is an interesting situation for user
interaction: say the user started out with the natural frame for MCBP, which
she then generalized to d to view it as an AFCP and then further generalized the
frame to d◦b to consider the original problem as a Pair Covering Problem. In this
situation she can specialize the PCP to a Disjoint Set Covering Problem via a.

A

A′
B

g

f

g′Formally, we call a frame change g �→ g′ a frame specialization
via f, iff g′ ◦ f = g. And indeed d ◦ b �→ e is one in our example.
But in the problem solving phase, framing is not safe, therefore in
the envisioned user interface, we need to allow speculative frame
specialization. In the example we might want to further specialize d ◦ b to c ◦ a
(beyond what is known in the theory graph) to study the Mutilated Checker
Board Problem as a Matchmaker Problem and possibly establish a suitable the-
ory morphism that justifies the frame specialization a posteriori.

Note that in all three examples the different, salient aspects of framing could
directly be tied to the existence of suitable theory morphisms in the underlying
content commons. In the following we will present a first MKM system that
illustrates how framing can extend the user interaction.

3 SACHS: A Semantic Help System for MS Excel

We will illustrate how framing can extend the user interaction in a semantic
help system under development at the German Center for Artificial Intelligence
(DFKI), Bremen. The SACHS system (Semantic Annotation for a Controlling
Help System [KK08a]), aims to address usability problems in spreadsheet-based
applications. For details about the ideas and design decisions behind the SACHS
system we refer the reader to our paper “Compensating the Computational Bias
of Spreadsheets with MKM Techniques” in this volume. We only recap those
aspects here that are relevant for our framing extension — which we refer to as
“framing-aware SACHS”.

A controlling system is a means for the organization to control finances, i.e.
to understand profits and losses and draw conclusions, thus a lack of overview
hampers the process: if users are not sufficiently informed they cannot optimize
the company outcome. Even though MS Excel spreadsheets have the potential to
serve well as an interface for a financial controlling system, they are more often
than not too complex in practice. Even longtime users cannot interpret all data
and are not certain about their origins.

A key observation in SACHS is that spreadsheets are active documents whose
surface structure can adapt to the environment and user input. For SACHS we
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take a foundational stance and analyze spreadsheets as semantic documents,
where the formula representation is the computational part of the semantic re-
lations about how values were obtained. To compensate the diagnosed com-
putational bias we propose to augment the two existing semantic layers of a
spreadsheet — the surface structure and the formulae by one that makes the
intention of the spreadsheet author explicit. We encode this intention in SFDL
and can use it as a basis to provide multi-layered, semantic help services. As
we cannot disclose DFKI financial data, we will use the traditional spreadsheet
from [Win06] as a running example (see Figure 3).

Fig. 3. A Simple Spreadsheet after [Win06]

The central concept
we establish is that of a
functional block in a
spreadsheet, i.e. a rect-
angular region in the
grid where the cells can
be interpreted as in-
put/output pairs of a
function. For instance,
the cell range [E9:F9]
(highlighted with the se-
lection of [E9] by a bor-
derline) is a functional
block, since the cells rep-
resent projected salary
costs as a function π of

time; the pair 〈1987, 0.617〉 of values of the cells [E4] and [E9] is one of the
pairs of π. The semantic help functionality of the SACHS system is based on
an interpretation, i.e. a meaning-giving function that maps functional blocks
to concepts in a SFDL. For instance our functional block [E9:F9] is interpreted
to be the function of the projected salaries in a year for a business which we
assume to be available as semantic background.

In [KK08a] we have presented the SACHS information and system architec-
ture, and have shown how the semantic background can be used to give seman-
tic help to the user on several levels like labels, explanations (as showcased in
Figure 7) and dependency graphs (see Figure 4 on the right). For example, a
user may not be aware that the spreadsheet concerns the profit statement of
“SemAnteX Corp.”, but can learn this from SACHS’s dependency graph feature
presented in Figure 4 by selecting cell [E9].

While the information about functional blocks and the meaning of their values
(e.g. units), the provenance of data, and the meaning of formulae provided by
the semantic background is a nice-to-have, in the development process it became
painfully obvious that the interpretation (hence the information provided by the
SACHS system to the user) is strongly dependent on the standpoint of the author
— how she frames the data. In fact even the interpretation into a SFDL itself
can be seen as a large frame. Therefore in the work reported in this paper we
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Fig. 4. Dependency Graph with ’uses’-Edges

went one step further and integrated framing as part of the interface to give the
user of the spreadsheet more control over the interaction.

3.1 Framing in SACHS

Semantic help systems need various kinds of information: concepts of the sys-
tem, its user interface, input/output data, etc. For all of these, we need to know
a lot about the objects themselves and their relations, i.e. we need ontologies
about them. Generally, when we talk about interacting with knowledge-based
systems, we have to distinguish knowledge about the system itself from knowl-
edge structures about the domain the system addresses. We consider the first
kind of knowledge as part of the system ontology and the second kind part of
the domain ontology.

To distinguish between the system and domain ontologies, the following test
suggests itself: anything the system is parametric in must be part of the domain
ontology, anything that is particular to the system belongs to the system ontology.
For instance, in SACHS the system ontology contains information about concepts
like spreadsheet cells, functional blocks, the interpretation, etc. whereas domain
ontologies include knowledge about monetary systems, accounting concepts, or
prognosis. If the SACHS system were applied to grading spreadsheets, the system
ontology that is tied to the underlying spreadsheet application would remain fixed,
but the domain ontologies would need to talk about grades, students, semesters,
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Fig. 5. SACHS’s Functional Block Panel

courses, etc. Accordingly in semantics-based systems like SACHS, the domain-
level functionality is driven by an explicit representation of the domain ontology
— in the case of the SACHS system as an OMDoc-based SFDL.

As a consequence, we can also distinguish system- from domain-level framings
in semantic help systems. Domain-level framings are triggered by theory mor-
phisms in the SFDL, whereas the interaction design of the system must account
for system-ontology level framings directly. In Figure 5 we find the SACHS panel
extended by framing features. Once a cell is selected, the assigned definition in
the SFDL with its home theory is shown as the framed theory. The natural
framing theory determines the framing theory in the first step and all the back-
ground information is subsequently shown with respect to this frame. On the
system-level the user is offered to change the frame via frame generalization or

prognosispolynomial

charpolynomial lagrangeinterpolation crystalball

linear-lagrange quadratic-lagrange cubic-lagrange

sax-salarycosts

sax-prognosisSemAnteX

sax-salarycosts-projected

Fig. 6. A Fragment of the SACHS Domain-
Ontology Theory Graph

frame specialization.Moreover,
in the field labeled “∼Definition”
the corresponding definition in
the chosen framing theory is
presented. The user might also
choose to recover domain-
dependent variants from the se-
mantic background.

To get a better understand-
ing of the role of framing in
the interaction with the SACHS
system, let us have a closer look
at the more specific use exam-
ple for cell [E9] bearing the de-
pendency graph in Figure 4 in



352 A. Kohlhase and M. Kohlhase

mind, which tells us (among other stuff) that the number 0,617 was computed
a) using a prognosis function adapted to SemAnteX, that is b) based on the
Quadratic Lagrange Extrapolation function that is c) a Lagrange Extrapolation
that is d) a function used for prognosis. To illustrate the framing potential we
have to turn to the theory level of the semantic background sketched in Fig-
ure 6. Note that the home theory of cell [E9] — i.e. the theory that contains
the definition sax-salarycosts-projected.def in the interpretation — is the theory
sax-salarycosts-projected. It imports the theories sax-salarycosts and sax-prognosis.
These theories can hence be used as frame generalizations . If we are more inter-
ested in the latter theory, we select it and get a new choice of frame generaliza-
tions SemAnteX and quadratic-lagrange. Choosing the latter the only available
frame generalization becomes lagrangeinterpolation. Finally, here we can select
prognosis as a frame for the projected salary costs at SemAnteX Corp.

Fig. 7. Explanations within Distinct Frames

Importantly, with each change of frame the semantic information given
to the user changes. For instance, in Figure 7 we can see different explanations for
the same selected cell with respect to the resp. distinct frames. Note that usually
the user can only get the information with respect to the author’s framing as the
resp. OMDoc document is fixed and consequently the imports-relation for the
home theory. Another author might have chosen to e.g. import the lagrangein-
terpolation theory directly instead of importing the more specific sax-prognosis.
Here, the SACHS panel broadens the user’s opportunities and takes back the
rigor and subjectivity of the author’s choice of framing.

The set of frame specializations wrt. a certain framing theory consists of all
theories that import this framing theory. Frame specializations can supply the
user with surprising insights. For example, the theory prognosis is imported by
the theory crystallball, which offers the prognosis method of sitting in front of a
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crystal ball and — disregarding the data set — coming up with a mapping from
times to values. With this, the reader may realize that there are always worse
possible prognosis functions.

Another interesting service a framing-aware SACHS can offer is the display
of variants . That is, the concrete framing assumption reified in the MS Excel
formula for a cell can be changed. The conventional way to deal with such vari-
ants in a spreadsheet is to just replace the formulae in the functional block with
new ones and see what the result is; a destructive and error-prone process at
best. Given enough background knowledge we can do better. In our example,
we have three theories specializing lagrangeinterpolation with concrete Lagrange
extrapolations of different order, from which we can derive spreadsheet formulae,
which in turn can be entered into the spreadsheet. In the example in Figure 8,
we are looking for variants for the ’∼Definition’ lagrangeinterpolation.def in the
framing theory for the definition sax-salarycostsperti-projected.def assigned by the
author to cell [E9]. Concretely, selecting the option “Variants” in the SACHS
panel shown in Figure 5 leads to the opening of the “Variants Panel” demon-
strated in Figure 8. We see that there are three possible variants for the Lagrange

Fig. 8. Frame-based Variants

extrapolation function: the linear, the quadratic, and the cubic Lagrange extrap-
olations. Remember that the quadratic one was used as the SemAnteX prognosis
function, this is marked by the arrow in front of this variant. In the example the
user selected the variant linear-extrapolator.def. Once the check box is checked
the SACHS system generates new space in the spreadsheet (the light grey row
10 in Figure 8) enabling the presentation of the variant values for the entire
functional block. The according variant formula (in the MS Excel formula box at
the top of Figure 8) is evaluated. Note that framing influences which concrete
variants are available: if we have framed [E9] as the result of a Lagrange extrap-
olation, we should be allowed to vary the order k of the Lagrange Polynomial (if
we have enough data points). If we have however framed [E9] only as the result
of a general prognosis function then we should also have crystal ball prognosis
at our disposition as a variant.
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4 Conclusion

In this paper we have analyzed a common mathematical practice from an MKM
perspective, i.e. with an eye towards finding the underlying knowledge structures
and representing them in content markup formats so that they can be exploited
to support the practices in mathematical software systems. We model this prac-
tice of framing a mathematical object as establishing a theory morphism into a
theory describing it. We have shown that in many paradigmatic framing cases,
the model is able to account for the salient aspects of framing. The theory graph
based model is appealing for MKM, since it allows to leverage a large body of
existing work.

To test the model further, we have applied it in a situation that is only loosely
coupled with classical mathematics: a semantic help system based on spread-
sheets. The connection to our model of framing is that the semantic facilities
feed on a semiformal digital background library that is theory graph structured.
We have shown that taking framings into account in the user interface allows
users to find their subjective perspective in the semantic help system. The neces-
sary framing possibilities were naturally present in the background theory graph
for our example. We attribute this to the fact that the theory graph was devel-
oped as a comprehensive overview over the background knowledge and not just
tailored to the single spreadsheet application at hand.

Framing-aware interactions allow users to choose the right level of abstrac-
tion of explanations. But note that this is more than just another form of
user-adaptivity. Frame-driven interaction broadens the users’ opportunities as it
allows them to become independent of the author’s framing — e.g. her choice of
concepts and level of rigor — by framing the material to fit their own particular
background, their concrete situation, and their subjective goals. In a framing-
blind interface, the author dominates the choice of these parameters.

In [KK08b, Section 3.3] we have analyzed requirements for semantic formats
to be used in educational technology. In particular, we distinguished three con-
texts in educational situations: a “content context”, a “learner context” and an
“interaction context”. Usually only the first two are recognized and operational-
ized in systems. Here, the choice of frames and the navigation between framings
are part of the interaction context made explicit in the SACHS user interface.
Interestingly, theory graphs that have been thought of as exclusively belonging
to the content context now enable a simple formulation of a complex aspect of
the interaction context.

Incidentally various learning theories discuss the framing practice as the basis
for abstraction processes and ultimately as ‘causes’ for learning. For example,
Klaus Holzkamp argues that every human being engages in an ever-present
“inner dialogue” [Hol95, p. 25], the result of which turns into her specific actions.
The dialogue entertains the idea of at least two distinct frames that inform
the learning process. This suggests that framing is also an essential practice in
any learning environment, hence the application of this MKM technology might
reach much further than the application discussed in this paper.
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Finally, framing-aware systems allow the user to explore variants afforded by
the background knowledge. In controlling systems this seems to be especially
useful to test variant modeling assumptions (like our prognosis functions), but
testing variants is a central practice in the sciences and engineering as well.

To close the circle to our introduction, we believe that eventually, the MKM
community should build systems that support what mathematicians do. In par-
ticular, they should exploit theory graphs to support the practice of framing in
the mathematical domain proper as we strongly conjecture that such systems
will be better suited to re-enliven reified mathematical knowledge.
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Abstract. Spreadsheets are mathematical documents that are heavily
employed in administration, financial forecasting, education, and science
because of their intuitive, flexible, and direct approach to computation.
In this paper we show that spreadsheets are interesting applications for
MKM techniques which can alleviate usability and maintenance prob-
lems as spreadsheet-based applications grow evermore complex and long-
lived. We present the software and information architecture of a semantic
enhancement of MS Excel spreadsheets that aims at compensating the
computational bias in spreadsheets.

1 Introduction

Spreadsheets programs are mathematical software systems: they contain math-
ematical formulae and are used in financial forecasting, education, and science
because of their intuitive, flexible, and direct approach to mathematical com-
putation. It has been estimated that each year tens of millions professionals
and managers create hundreds of millions of spreadsheets [Pan00]. This prob-
ably makes spreadsheets the most heavily used mathematical software systems
at this point of time and should therefore be an interesting testbed for MKM
applications. But it seems that the MKM community has not risen to this oppor-
tunity; possibly since the mathematical aspects are geared almost exclusively to
computational concerns and the declarative aspects of mathematical knowledge
that are the concern of the MKM community seem to play a subordinate role in
spreadsheets at first glance.

In this paper we show that semantic knowledge management techniques can
be used to enhance the interaction with spreadsheets and alleviate usability
problems appearing with spreadsheet complexity: in many spreadsheet-based
applications even longtime users cannot interpret all data and are not certain
about their origins (see [AE06] and its references for a discussion), which often
results in errors on the data level and misinterpretation or misapprehension of
the underlying model.

In the next section we will start out with an analysis of the semantic layers
of spreadsheets. To compensate the diagnosed computational bias we propose to
augment the two existing semantic layers of a spreadsheet — the surface struc-
ture and the formulae — by a third that makes the intention of the spreadsheet
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author explicit. In the SACHS project we encode the intention as an accompany-
ing OMDoc [Koh06] document and can thereby provide multi-layered, semantic
help services.

2 Semantic Layers in Spreadsheets

Instead of developing the general theory, we will expose the salient parts of our
approach using Winograd’s example spreadsheet from [Win06] (re-represented
in MS Excel in Figure 1 on page 359) as a running example. We will differentiate
the three semantic layers in turn and draw conclusions viewing this spreadsheet
as both an active and a semantic document.

2.1 Active and Semantic Documents

We call a document semantic, iff it contains an infrastructure that distinguishes
between content and form. Note that such an infrastructure can range from su-
perficial styling information in PowerPoint slide masters or LATEX document
classes, over RDFa [W3C08] annotations in web pages to formal logic specifica-
tions of program behaviors. The idea is that this infrastructure makes relations
between the objects described in the document explicit, so that they can be
acted upon by machines. In particular, semantic documents can be interpreted
by “presentation engines” that operationalize the semantic relations by allowing
the reader to interact with various aspects of the semantic properties. We call the
combination of a semantic document with a presentation engine that can adapt
the surface structure of the document to the environment and user input an
active document. Our definition is between the concept of embedding seman-
tic networks into hyper-documents employed by Gaines and Shaw in [GS99]
and the rather visionary notion of documents that can answer arbitrary ques-
tions about their content proposed by Heinrich and Maurer [HM00]. Crucially
both presuppose some kind of content representation in or near the document
and a suitable “presentation engine”.

For the purposes of this paper, we will neglect the fact that most presenta-
tion engines also incorporate editing facilities and concentrate on the interac-
tion with active documents for reading and exploration. This view is similar to
what [UCI+06] call “intelligent documents”.

A paradigmatic example of an active document is a Mathematica note-
book [Wol02], where equations and mathematical objects can be inspected, vi-
sualized, and manipulated by the user. Here, the semantic document is written in
the Mathematica markup language which includes a content markup scheme
for mathematical formulae and a high-level programming language. The presen-
tation engine is the Mathematica front-end which presents interactive docu-
ments to the user and calls the Mathematica kernel for evaluation of program
fragments and computation of mathematical properties.

Spreadsheets are another paradigmatic class of active documents. Here the se-
mantic document contains representations of the cell values or formulae together
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with display information such as cell color, font information, and current view-
port. The presentation engine is a spreadsheet program like MS Excel, which
presents the semantic document to the user by giving it a grid layout and re-
calculates values from formulae after each update. But what is the underlying
semantic model, i.e. what is the “activeness” of spreadsheets based on?

2.2 The Surface/Data Layer

If we look at the example in Figure 1, we see that the grid of cells can be
roughly divided into three areas. The darker, ochre area in the center contains
values of actual and past expenses and revenues; the lighter, yellow box on the
right contains values projected from these. The white region that surrounds
both boxes supplies explanatory text or header information that helps users to
interpret these numbers. Generally, non-empty cells that do not contain input or
computed values usually contain text strings that give auxiliary information on
the cells that do; we call these cells collectively the legend of the spreadsheet,
since they serve the same purpose as the legend of a map.

Fig. 1. A Simple Spreadsheet after [Win06]

Observe that row 17 displays
the central values of the spread-
sheet: the profit/loss situation
over time (i.e., in the years
1984-1988 as indicated by the
values in row 4). Moreover note
that the meaning of the values
in row 17 is that they represent
profits and losses as a function π
of time: recall that a function is
a right-unique relation — i.e., a
set of pairs of input values and
output values. In our example
the pair 〈1984, 1.662〉 of values
of the cells [B4] and [B17] is one
of the pairs of π. We will call
such a grid region a functional block, and the function it corresponds to its
intended function. Empirically, all non-legend, semantically relevant cells of
a spreadsheet can be assigned to a functional block, so we will speak of the
functional block and the intended function of a cell.

Often a functional block consists of multiple rows and columns and represents
a binary function whose values depend on two (main) parameters which are
usually in the cells of the column on the left and the row on top of the block.
In our example the block with cells [B9:D13] represents a binary function that
ranges over expense categories (given in [A9:A13]) and years (given in [B4:D4]).
In the general case, the intended function of a functional block can have any
arity; its arguments again correspond to functional blocks, which we call input
blocks.
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Our notion of a functional block is related to, but different from Abraham

and Erwig’s of a “table” [AE04, AE06], which also contains row and column
header and footer blocks. Our functional blocks roughly correspond to their
“table core”, whereas we would consider their header blocks as input blocks or
legend cells (but there may be non-header input blocks in our model) and their
footer blocks which contain aggregation cells as separate functional blocks.

2.3 The Formula Layer

A spreadsheet cell c may not only be associated with a simple data item (or
value) [[c]], it may also be connected with a formula [[[c]]], which evaluates to
the cell value. A formula is an expression built up from constants, an extended
set of numeric and logic operators, and references to other cells.

In our example, the value of π can be computed from the yearly revenues in
R: = [B6:F6] and the total expenses in E : = [B15:F15] by a simple subtraction,
the total expenses can in turn be computed by summing up the various particular
expense categories listed in cells [A9:A13].

Note that the formulae of cells in a functional block have to be “cp-similar”
[BSRR02], i.e., they can be transformed/copied into each other by adjusting the
respective rows and columns. We call a functional block computed if all of its
formulae are cp-similar. In our example, the functional block P : = [B17:F17] is
computed: let γ range over the columns B to F in P . Note that the formulae
[[[γ17]]] = γ6− γ15 in cells [γ17] are indeed cp-similar. Together, they make up
the function

F(P): = {〈[[γ6]], [[γ15]], [[γ17]]〉|γ ∈ {B, . . . , F}}

We call F(P) the function induced by the (formulae in) block P . But we also
observe that not all functional blocks in a spreadsheet are computed, for instance
the formulae in the block [B9:D13] are all different constants representing the
measured values, so they cannot be cp-similar. We call such blocks data blocks
and note that the property of being a functional block only depends on a func-
tional correspondence (a conceptual aspect of the data) and not on the existence
of formulae (a property of the spreadsheet).

With spreadsheet formulae, users can express data dependencies on a generic
level, so that the spreadsheet program can do much computational work in the
background. By this virtualization of the traditional ledger sheet (see above),
the user’s role is lifted to a layman programmer and offers according potential.
But Abraham and Erwig report an error rate of up to 90% (!) in spread-
sheets [AE06], which shows that this potential comes with a substantial risk.
They analyze the source of many of these errors to be in a mismatch between
what the spreadsheet author wants to express and the formulae he writes. They
try to address this situation by static analysis techniques (type checking) of
the formulae and supplying the author with “spreadsheet templates”. To under-
stand this mismatch better, let us now turn to the model the author intends to
convey.
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2.4 The Intention Layer

Note that even though F(P) and π compute the same values, they are completely
different functions. π is defined via the actual or projected profits or losses of
an organization, while F(P) is a finite, partial binary arithmetic function. Even
when we compose F(P) with F(R) and F(E) and restrict them to the years
1984-86 yielding F : = F(P) ◦ 〈F(R), F(E)〉

∣∣
[[B4:D4]], the functions F and π are

only extensionally equal (they are equal as input/output relations) and still differ
intensionally.

Surprisingly, only F is explicitly represented in the spreadsheet of Figure 1,
moreover, this explicit representation is invisible to the user if she doesn’t look
at the formula boxes — thus, leaving the user to figure out the ‘intention’ (the
function π) from the implicit information given in the white part by herself. This
is why we speak of a computational bias of spreadsheet programs, as some
layers of the semantics are explicated but others are not.

Generally, we can assume that spreadsheet program authors use spreadsheets
to express and compute (measurable) properties of situations; if we look a little
closer then we see that these are not properties of the world as such, but of a
high-level, abstract, or mental model of the world, which we subsume under the
term intention of the spreadsheet. In our example, the function π could be
seen as a concept from the intention, whereas the function F can be seen as its
implementation. In our simple example the intention is easy to deduce from the
text in the legend and basic financial accounting knowledge.

But even here, some parts of the spreadsheet’s intention remain unclear: e.g.
for what company or department are the profits and losses computed or what are
the methods of projection for the years 1987/8. Let us now take stock of what
the cells in the spreadsheet mean and what information we need to infer from
this. As we already remarked above, the values of cells [B17:D17] are (the scalar
parts of) the actual profits/losses in the years 1984-1986. We need information
from cell [A3] for the unit of measurement, from cells [B3:D3] that they are
actual, and from [A17] for the interpretation as a ‘profit/loss’. To understand
the full meaning of these cells, we also need to know about profits and losses
of companies — e.g. that high profits of a company I am employed by or that
I own stock in are good for me, the fact that the company is based in the
Europe and therefore calculates finances in e, and that values that are actual
are computed from measured values. Finally, we need to know that the profit/loss
of an organization over a time interval is defined as the difference between its
revenues and expenses over this interval. This knowledge allows to compute the
values of cells in P with the respective formulae from the values of cells in R∪E
(i.e., using the function F). The values of the cells in E can be similarly computed
from the values of the cells [B9:D13]. Note that while the definition of profits
and losses above is general accounting knowledge, this definition is particular to
the respective company, as the applicable expenses vary with the organization.

A similar account can be given for the projected profits/losses in cells
[E17:F17], only that the interpretation of the cells wrt. the intention is even
more difficult — even though the situation is simple if taken at face value. Cell
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[[E17]] is the projected profit in the year 1987, which is computed from the rev-
enue and expenses in column E. But in contrast to the values in the actual block
[B6:D6] ∪ [B9:D13], the values in the projected block [E6:F6] ∪ [E9:F13] are not
measured, but projected from the actual values by some financial forecasting
method that is reflected in the respective formulae. Note that the correspon-
dence of the formula need not be as direct as in the case of the total expenses
above. It might be that the forecasting method is defined abstractly, and the
concrete formula is derived from it making some simplifying assumptions. Fur-
thermore, to fully understand the values we need to know what assumptions the
forecasting method makes, what parameter values are employed and why, how
reliable it is, etc. All of these concerns are not addressed at all in the spreadsheet
as an active document. Abraham and Erwig describe this situation as follows:

There is a high level of ambiguity associated with spreadsheet template
inference since spreadsheets are the result of a mapping of higher-level ab-
stract models in the user’s mind to a simple two-dimensional grid struc-
ture. Moreover, spreadsheets do not impose any restrictions on how the
users map their mental models to the two-dimensional grid (flexibility
is one of the main reasons for the popularity of spreadsheets). There-
fore the relationship between the model and the spreadsheet is essentially
many-to-many [...]. [AE06, p. 5]

3 Compensating the Computational Bias

Our analysis of the example above has shown us that large parts of the intention
of a spreadsheet is left implicit, even though it is crucial for a user’s comprehen-
sion. In particular, a user needs to know the following for a spreadsheet:

– The ontology, i.e., background information about relations between con-
cepts and objects of the intention. The objects in the intention include the
functions represented in the spreadsheets e.g. π, their properties, e.g. the
units of their arguments and values, and thus of the values in the cells.

– The provenance of data in a cell, i.e., how the value of this data point was
obtained, e.g. by direct measurement, by computation from other values via
a spreadsheet formula, or by import from another source; see [MGM+08] for
a general discussion of provenance.

– The interpretation, i.e., a correspondence between functional blocks and
concepts or objects of the intention. We distinguish three parts here
• The functional interpretation, that specifies the intended function of

the functional block.
• The value interpretation, i.e. a bijective function that specifies how

to interpret the values of the block cells as ontology objects.
• The formula interpretation that links the formulae of a block to an

object in the ontology. This mapping must be a refinement in the sense
that the interpretations of proper formulae compute the same value as
the formulae itself and the pseudo-formulae input is mapped to a prove-
nance object.
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In some spreadsheets that are the digital equivalent to “back-of-the-envelope
calculations”, the interpretation, provenance, and ontology information is simple
to infer, so that the un-documented situation is quite tolerable. Indeed this shows
the cognitive strength of the table metaphor, in our example it is no problem for
the human reader to interpret the legend item “(in Millions)” as a specification of
the value interpretation of the cells [B6:F17] (but not of the years Y: = [B4:D4]).

In many cases spreadsheets have developed into mission-critical tools that
are shared amongst whole departments, because they encapsulate important,
non-trivial, institutional knowledge. The intention of such spreadsheets is much
harder to infer, a fact that is witnessed by the fact that companies spend con-
siderable energy to train employees in the usage (and intention) of such spread-
sheets.

In this situation, it would be natural to make spreadsheets even more active
to support the user’s comprehension of the spreadsheet intention. Thus, in light
of the discussion of Section 2.1, we suggest to compensate for the computa-
tional bias diagnosed above by extending the underlying semantic document of
a spreadsheet. Concretely, we propose to represent the intention (as the prove-
nance and ontology) and to tie the cells in the spreadsheets to concepts in the
intention (via an interpretation function).

3.1 Fixing the Ontology

We have (at least) two possibilities to extend spreadsheets with an ontology
and provenance component: we can either extend spreadsheets by ontology and
provenance facilities or we can extend them by interpretation facilities that ref-
erence external representations of the intention. As we have seen above, the
intention contains quite a lot of information, and making it explicit in a software
framework means a large investment. Therefore we contend that an external
representation of the intention is more sensible, since it can leverage pre-existing
tools and profit from interoperability.

We use the OMDoc format (Open Mathematical Documents, see [Koh06]) to
represent the intention model. OMDoc is an XML-based format for representing
semi-formal, semantically structured document collections. It allows to factor-
ize knowledge into “content dictionaries” that serve as constitutive contexts for
knowledge elements. OMDoc provides a mathematically inspired infrastructure
for knowledge representation: document fragments are classified by their epis-
temic role as e.g. axioms, definitions, assertions, and proofs and mathematical
formulae are represented in the OpenMath [BCC+04] or MathML [ABC+03]
formats. Furthermore, OMDoc provides a strong, logically sound module system
based on structured “theories” (content dictionaries (CD) extended by concept
inheritance and views) [RK09]. Finally, the language has been extended to deal
with units and measurable quantities [HKS06] as a prerequisite for interacting
with the physical world. We make use of all of these features for modeling the
intentions of spreadsheets. In contrast to other ontology modeling languages like
OWL [MvH04], the OMDoc format does not commit to a formal logical lan-
guage, and therefore lacks a native concept of inference but also does not force
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the author to fully formalize the spreadsheet intention and to work around the
expressivity limitations of the underlying logical system. Instead, OMDoc allows
to locally formalize elements — and thus provide partial inference — with what-
ever formal system is most suitable; in our application, we mainly use an formal
system for arithmetics as a counterpart for spreadsheet formulae.

For the intention model in our example we divide the background knowledge
into theories that inherit functionalities from each other via the imports relation.
At the very basis we would have a CD Revenues that defines the concept of the
revenue of an organization over a time interval. This theory defines the concept
of a binary revenue function ρ, such that given an organization o and a natural
number n the value ρ(o, n) is the revenue (as a monetary quantity) of o over
the span of the year n (AD) in the Gregorian calendar. Note that we use this
very naive notion of revenues for didactic purposes only. For instance ρ was
chosen as a binary function to highlight that there is no automatic agreement
between functional correspondences in the table and objects of the intention.
We would be perfectly free to analyze the concepts more thoroughly, embarking
into representing monetary systems, theories of time, etc. For the purposes of
this paper, we assume that we can either appeal to the intuition of the user or
inherit these representations from a suitable foundational ontology.

In the same way we proceed with a CD Expenses, which imports from a CD
Salaries. Finally, we build a CD Profits that imports from both. In the OMDoc
document pictured in Figure 2 we have summarized some of the relevant CDs
and the concepts they introduce.

3.2 Fixing the Provenance

We enrich our ontology with provenance information: As we have required the
formula interpretation to be a refinement, we need to represent an abstract
notion of spreadsheet computation in the ontology. This can be readily done
making use of e.g. the CASL libraries [CoF04]. For modeling the provenance of
user inputs in spreadsheets, we can be extremely minimalistic, just establishing
a stub content dictionary that lifts the concept of “user input” to the ontology
level. But in our example we can already see what a more elaborate provenance
model could give us: We could specify that the salary values in [B9:F9] are not
only user inputs, but really manually copied over from another spreadsheet — the
top spreadsheet “Salaries” in Figure 2. To take advantage of this (see details in
the next section) we have to develop CDs for provenance, adapting and extending
first formalizations reported on in [MGM+08]. As this goes beyond the scope of
this paper, we leave this to future work.

3.3 Fixing the Interpretation

To interpret the cells in P for example, we need to

– fix the functional interpretation: Identify that P and R form functional
blocks with input row Y.
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In Section 2.2 we have already discussed the functional interpretation of P :
it is just the intended function π. Similarly, we link the revenues block R
with a unary function ρ(c, ·), where c is the representation of our example
company. Then we have to express the semantic counterpart of the spread-
sheet formulae. In our OMDoc format we can simply represent this function
as λy.ρ(c, y) in OpenMath or MathML.

– fix the value interpretation: In our example we observe that the values
in P are actually only the scalar parts of measurable quantities, in this
case measured “in millions” (of e presumably) according to the spread-
sheet legend. Similarly, the (string) values Salaries, Utilities, . . . in [A9:A13]
have to be interpreted as objects in the ontology. Thus in our example,
we choose i: = {y �→ y(AD)} as the value interpretation of block Y and
j: = {x �→ 106xe} for block P ; obviously both are bijective.

– fix the formula interpretation: our example the formulae γ6− γ15 in the
functional block P would be linked to the formula π(year) = ρ(year) −
ε(year) in the Profit/Year definition. Furthermore, we would link R to a
semantic provenance object “imported from Salaries.xsl”.

In Figure 2 we show the functional interpretation mappings as red, dotted arrows
and the formula interpretation as purple, dot-dash-arrows. The totality of cell
interpretations in a spreadsheet induces an associated set of CDs we call the
intention model. Note that this is indeed a representation of the intention of
this spreadsheet.

We can think of the value interpretations as parser/generator pairs that me-
diate between the scalar function represented by the formulae in the spreadsheet
and the intended function in the intention — which is usually a function between
measurable

intention

spreadsheet

year profit

Y P

π

F

i j−1

quantities. In particular the functions F
and π are related via the commutative
diagram on the right , where the function
F is induced by the spreadsheet formu-
lae as discussed in Section 2.4 above. We
see that the three components of the in-
terpretation fully specify the correspondence between functional blocks in the
spreadsheet and objects induced by the intention model. To see the strength of
this construction let us return to our example and look at the import of salaries
from Salaries.xsl. There we have a different value interpretation for the func-
tional block [F6:F6]: this spreadsheet does not calculate in millions, so we chose
k: = {x �→ x} and get the import functions k ◦ j−1 = {xe �→ 10−6xe} in the
intention and j−1 ◦ k = {x �→ 10−6x} in the spreadsheet.

In conclusion we observe that setting the ontology, provenance, and the inter-
pretation of a functional block gives us a full and explicit account of its intention,
and we can relegate all further semantic services to the intention model. For in-
stance we can verify (using inference in the intention model) this part of the
spreadsheet by establishing the equality of j−1 ◦ F ◦ j and ρ(c).
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Fig. 2. The SACHS Information Architecture and Control/Search Panel

4 A Semantic Help System for Spreadsheets with
Intentions

The SACHS system is a work-in-progress add-in for MS Excel (written in Vi-
sual Basic for Applications) that aims at providing semantic help facilities for
spreadsheets. Though it has been developed for the DFKI controlling system, it
works for any spreadsheet whose intention has been encoded as an OMDoc doc-
ument, e.g. our running example, and mash-up information has been provided1.
We have designed SACHS as invasive technology that extends well-used (and
therefore well-known) software systems from within to overcome usage hurdles —
see [Koh05b] for a discussion. We designed the semantic services in SACHS to al-
low the user to explore the intention of a spreadsheet from her micro-perspective,
i.e., from her here-and-now. In particular, all semantic help facilities start from
the cell level. Moreover, we tried to implement a process-based interaction de-
sign, i.e., a design where the semantic help evolves in a user-steered process.

For services that visualize the intention, the cells in the spreadsheet must be
interpreted, i.e., linked to elements of the accompanying OMDoc document as
e.g. shown in Figure 2. Generally, all cells in a functional block are linked to

1 We will spare the reader the technical details of this mash-up for lack of space.
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an OMDoc definition — the definition of its intended function, while OMDoc
assertions justify their formulae. This assignment is internally represented by
an extra worksheet within the spreadsheet we call the “SACHS interpretation”.
This is manually maintained by the spreadsheet author. Once the interpretation
is established we can directly make use of the various elements of the OM-
Doc information for the respective objects (see the dashed arrows in Figure 2).
Concretely, for instance, the Dublin Core metadata element dc:subject of an
OMDoc definition can be used as a SACHS label for the cell it interprets. MS
Excel’s comment functionality is hijacked to create SACHS comments that draw
on the respective dc:description element, which contains a concise description
of the object in question. In contrast, the CMP element of the OMDoc definition
contains a detailed explanation using semantically marked up representations
of objects from the intention model. These can be mathematical formulae en-
coded as OpenMath objects like the revenue function ρ or technical terms like
“difference” which we have decorated in angle brackets in Figure 2. The added
value of semantic annotation here is that the meaning of both can be further
explored: The front end item “SACHS explanations” allows this by providing
“jump points” from within the text to those cells that are assigned to the def-
initions of those symbols via the SACHS interpretation sheet. Once jumped
the user can look up the available semantic information of that particular cell
and so on.

A formula underlying a cell is mirrored in the formula element FMP of the
respective definition in the semantic document (see Figure 2) in the OpenMath

format, this allows us to present it to the user in math notation:
∑5

i=1 εi(1985)
is more readable than “=SUM(C9:C13)”.

Fig. 3. Navigating the Spreadsheet Intention

In Figure 2 we have already shown the main control panel of the SACHS
system in the right bottom hand corner. This allows the user to enable var-
ious semantic enhancements in the spreadsheet and also search the intention
semantically. From a semantic point of view, contextual views of the spread-
sheet intention as the one in Figure 3 are probably most interesting and helpful.
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Such views allow a user to understand the connections between spreadsheet cells
and background information. This view aggregates information about

– the intention of a cell in terms of the intended function of its functional
block, and the intended arguments.

– how the cell value is computed from the values of its arguments.
– and the intentions of the arguments.

All information points in the pop-up are hyperlinked to their respective sources
in the OMDoc document or in the spreadsheet so that the graph view can also
serve as a meaning-driven navigation tool. In a future version of SACHS, these
hyperlinks could pre-instantiate the intention model with the argument values
and allow an exploration from the view of the current cell — in our example in
Figure 3 the intention specialized to the year 1985. Note that our example here
only shows the situation for a formula-computed cell. For other provenances,
the pop-up would visualize the provenance object given by the formula inter-
pretation. For instance, for cell [B9] the provenance object is “imported from
Salaries.xls[B5]”, so we can visualize the data from that cell using the exist-
ing SACHS pop-up.

As OMDoc is organized by theories, the provision of multi-level theory graphs
as in the CPoint system [Koh05a] are nice-to-have services one can think of.

4.1 Evaluation: Estimating the Semantic Overhead in SACHS

As always the interesting question at the end of the implementation of exciting
new ideas is whether it was worth the effort. Even though we can’t answer that
yet objectively, we can at least give an estimate for the costs of the semantic
overhead and its reuse.

At the moment, our approach presupposes that the spreadsheet author doc-
uments the spreadsheet intention as an OMDoc document and also annotates
the spreadsheet with interpretation information. Both tasks place a heavy bur-
den on the author and currently restrict our approach to mission-critical or very
complex spreadsheets.

For our example we have semi-formalized the background knowledge in a
collection of 47 theories (see Figure 4), which serve as the source of the new
SACHS services reported here. Of these, 27 theories contain general knowledge

Fig. 4. The Theory Graph of Background Knowledge for our Example Spreadsheet
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about quantities, units, basic cost accounting, and prognosis. Only 20 were de-
veloped specially for our example: a theory about the SemAnteX Corp. itself and
union theories specializing accounting and prognosis to the SemAnteX Corp. pe-
culiarities. A dozen general theories about real arithmetic were not taken into
account here, since they were available externally.

By size, the specific theories only amounted to ca. 25% of the semi-formaliza-
tion. We are currently developing a background knowledge corpus for a central
part of the DFKI controlling system, which has three orders of magnitude more
cells than the expository example in this paper. But the semi-formalization of
this is only double in size, conceivably since the controlling system is relatively
regular, for instance it is organized in about 20 analogous sheets for the respective
DFKI departments.

In general, we expect the burden of specifying the ontology to decrease as
more and more OMDoc content dictionaries for common models (e.g. standard
accounting techniques) appear. Our case study has shown that for an efficient
development of background ontologies we need to integrate editing facilities into
the graph view in Figure 3. For the interpretations, we plan to adapt techniques
of header, unit, and template inference [AE04, AE06] to partially automate the
annotation process via suggestions.

For evaluating the usefulness of the SACHS system we are currently under-
taking a formal user study on the DFKI controlling system — our expository
example in Figure 2 is too simple to require a help system really. First informal
feedback was encouraging, for instance, users highly appreciated being made
aware of the differing reference periods data that were implicit in the concrete
spreadsheet layout.

5 Conclusion and Outlook

We have analyzed the reasons for users’ difficulties in understanding and ap-
propriating complex spreadsheets, as they are found e.g. in financial controlling
systems. We claim that the ultimate cause is that spreadsheets are weak as active
documents, because their underlying semantic documents are biased to compu-
tational aspects and fail to model the provenance, interpretation, and ontological
relations of the objects and concepts operationalized by the system. To remedy
the situation we propose to explicitly model the intention of a spreadsheet as
an intention model in a collection of OMDoc content dictionaries which serve
as an explicit knowledge base for the spreadsheet. Finally, we present the work-
in-progress SACHS system that draws on such intention models to offer various
semantic services that aid the user in understanding and interacting with the
spreadsheets.

In essence, our approach makes double use of the following duality identified
by Fensel in [Fen08]

– Ontologies define formal semantics for information, consequently al-
lowing information processing by a computer.
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– Ontologies define real-world semantics, which makes it possible to
link machine processable content with meaning for humans based on
consensual terminologies.

In the analysis we look at the formal semantics of spreadsheets and find a compu-
tational bias that hampers understanding since it fails to model consensual ter-
minologies and therefore leads to real-world usability problems. In our proposed
solution we extend the formal semantics of spreadsheets to draw on explicitly
represented consensual terminologies.

While a semantic help system for a spreadsheet-based controlling system was
the original motivation for our analysis, we feel that an explicit representation
of the intention model of a spreadsheet has many more applications: it can be
used for verification of the formulae, for change management along the lines
of [MW07], and automated generation of user-adapted spreadsheets.

Our approach seems to be related to “Class Sheets” [EE05] introduced by
Engels and Erwig. Their class descriptions can also be counted as an external,
structured intention model, which is referenced by an interpretation mapping.
We will have to study the relation to our work more closely, but it seems that
their work suffers the same computational bias as the spreadsheets themselves.
But classes with extensive documentation or UML diagrams might go some ways
towards generating a help system like SACHS.

In the future we plan to extend the repertoire of semantic services of the
SACHS system. For instance, we envision a dual service to the one in Figure 3
which could visualize where the value of a cell is used to get an intuition for the
relevance of a cell value.

As a theoretical extension, we can see the interpretation mappings as logic
morphisms [RK09], and logic morphisms in the domain knowledge as mathemat-
ical framings (ways to view mathematical objects in terms of well-understood
ones). This allow us to re-use much of the higher-level MKM techniques and
OMDoc functionalities based on theory graphs: we have already extended the
user interaction of the SACHS to be framing-aware [KK09], which allows the
user to customize the interaction to her subjective background and goals.

But future extensions are not limited to spreadsheets. Note that the semantic
analysis in Section 2 is largely independent of the computational information
that is at the heart of spreadsheets. The semantic information we are after only
pertains to the use of data grids as a user interface to complex functions. In
the future we plan to generalize the intention model architecture presented in
Section 3 to the case of data grids — e.g. tables of experimental results or raster
data from satellite images. Moreover, we want to develop a native infrastructure
for representing “data grids” as a user interaction feature in OMDoc: In accor-
dance with the format, the provenance and interpretation functionality would
allow to link grid presentations to their intention without leaving the language.
OMDoc-based systems could then pick up the semantics and offer complex inter-
actions based on them. This would lead to much more general active documents.
We could even turn the approach presented in this paper around and generate
SACHS spreadsheets from OMDoc documents as active documents.
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Abstract. Converting mathematical documents from a human-friendly
natural language to a form that can be readily processed by comput-
ers is often a tedious, manual task. Translating between varied comput-
erised forms is also a difficult problem. MathLang, a system of methods
and representations for computerising mathematics, tries to make these
tasks more tractable by breaking the translation down into manageable
portions. This paper presents a method for creating rules to translate
documents from MathLang’s internal representation of mathematics to
documents in the language of the Isabelle proof assistant. It includes a
set of example rules applicable for a particular document. The resulting
documents are not completely verifiable by Isabelle, but they represent
a point to which a mathematician may take a document without the
involvement of an Isabelle expert.

1 Introduction

When a mathematician describes a piece of mathematics in written form, it may
be of interest to use computers to process this text in a variety of ways. They
may use editing software to write the text as they are developing the ideas.
Similarly, it is very common for such a text to be typeset so it is pleasing to the
eye. It may also be useful to identify the semantics, for presentation to those with
disabilities, or there may exist in the document partial calculations which the
computer should process for the benefit of the original author or other readers.
These are a few ways in which a computer may be used to directly benefit a
human who wants to understand the mathematics.

In addition to providing output for humans, a computer may be useful for
verifying the correctness of a document, in a variety of ways. These include
checking of spelling and grammar in the natural language; syntax checking for
mathematical notation; checking soundness of the interrelations between defini-
tions, theorems, and proofs; and formally verifying the logical structure of the
document, at different levels of rigour. These are ways in which the computer
may provide evaluation and feedback on the document.

For mathematicians, systems falling at the formal end of that spectrum are
currently of limited use, as they require considerable investment to gain profi-
ciency. It is possible for a mathematician to author a paper and then pass it on
to an expert in some formal system, but this requires the expert to completely
comprehend each natural-language document received so as to ensure a faithful

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 373–388, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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translation. The current methods of translation are almost entirely manual. This
leaves a vast chasm between original and formalised documents, in which may
be introduced semantic discrepancies. Furthermore, if the original document is
changed, there is some risk that necessary changes in the formalised counterpart
will be overlooked when the time comes for revision.

1.1 Contributions

This paper describes developments in MathLang (a system for computerising
mathematics, described in Section 2) which may help close the gap between
natural language and formalised documents. MathLang is a system which tries
to give as much flexibility to the user as possible, trying to process any style that
a person may use to express their mathematics. The existing parts of MathLang,
which are assumed to be the starting point for the developments in this paper,
are overviewed in Section 2.1.

This paper offers a process for arriving at rules for translation. Our goal is
to produce, from the already-computerised MathLang document, a text in the
language of a formal system. Our chosen target language is Isabelle. To do this,
rules are created which operate recursively on a document. The nature of these
rules is described in Section 3.1, and is illustrated by a detailed example.

1.2 Related Work

In the context of the MathLang project, this work provides tools which provide
output which is closer to existing formal systems than ever before. Specifically,
it uses the facilities provided by [1,2] to translate the bulk of a text to the syntax
of the proof assistant Isabelle. This is in parallel with [3], which was translating
the same kind of document to Mizar [4]. However, in that work the focus was
on identifying relevant theories from the Mizar Mathematical Library to include
in the environment of a new Mizar document, moreso than translating the main
text of a MathLang document to Mizar.

In the larger field, there are a number of projects which are attempting to
bridge the gap between human-friendly mathematical texts and easily-processed
and -verified computer documents. Most focus primarily on one side or another.
On the formal end of the spectrum are projects like Mizar [4], Theorema [5] and
Isar [6,7]. These three computer proof systems are designed with syntax that is
constructed to be similar to the way that mathematicians write in natural En-
glish. A similar approach is being taken in the work of Muhammad Humayoun
on MathNat [8], in which he tries to express both mathematical proofs and natu-
ral language. In the cases of Mizar and Isar, the language is like natural English,
but does not provide the author with much flexibility. MathNat and Theorema
allow much greater flexibility – in MathNat’s case due to its incorporation of
GF [9] – but still force the user to employ a controlled language, which may
often be a subset of what an author would normally employ. MathLang endeav-
ours to accommodate any writing style through the use of flexible annotation,
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accommodating documents that were never intended to be computerised, such
as Euclid’s Elements [10] and Landau’s Grundlagen der Analysis [11].

On the other side of the natural–formal gap, Aarne Ranta’s system GF [9]
has a flexible system for defining grammars, and provides an API for interfacing
with other programs, but is not, itself, designed to process documents to further
formal states. We wish to process such documents in other interesting ways.

Finally, there are systems such as Isabelle [6] and Coq [12], which are systems
for computer proof, along with Logiweb [13], which is a system for document
processing that interfaces with arbitrary systems. Each of these allow natural
language text to be interleaved with formal expressions in a kind of literate
proof document in the manner of CWEB [14]. However, care during revision is
necessary to ensure that natural language and formalism remain consistent.

1.3 Conclusion

The rules presented in this document are very limited, but they represent a
pattern which may be used to develop a library of rules which may be useful in
translating a variety of documents to Isabelle syntax. The documents that result
from translation are very incomplete, but they may be a useful middle ground
between a mathematician who has little knowledge of proof systems, and an
Isabelle expert who is trying to formalise the mathematics that the original
author has written. The system needs to be extended and tested extensively,
but the current work shows a valuable proof-of-concept which merits further
investigation.

2 Relevant Systems

This section describes systems and theories that the current work relies upon,
but which the reader may not be familiar with. First it describes the system
called MathLang. It first provides an overview, then a detailed description of
the relevant portions of operational theory. A second section gives an example
Isabelle document, drawing the reader’s attention to relevant features of the
language.

2.1 System Aspects

The current MathLang system [16] is designed to computerise mathematical
texts like that seen in Fig. 1. By computerising, we mean operating on documents
which are easily accessed and modified by computers. We also mean processing
documents so they may be easily accessed and modified. Currently MathLang
provides several ways to achieve this. They are classified into domains called
aspects of MathLang. The current aspects are the Text and Symbol aspect [1,17],
the Core Grammatical aspect [2,17], and the Document Rhetorical aspect [3].
For the current paper we restrict our focus to the first two.
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Rings

Definition 1. A ring R is a nonempty set with two binary operations, addition (denoted by a + b) and

multiplication (denoted by a b), such that for all a, b, c in R:

1. a + b = b +a.

2. (a + b) + c = a + (b + c).

3. There is an additive identity 0. That is, there is an element 0 in R such that a + 0 = a for all a

in R.

4. There is an element − a in R such that a + (− a)= 0.

5. a(b c)= (a b)c.

6. a(b + c)= a b + a c and (b + c)a = b a + c a.

Theorem 2.

1. a0= 0a =0.

2. a(− b) = (− a)b = − a b.

Proof.

Consider rule 1.

Clearly,

0+ a0 = a0 = a(0+ 0) =a0+a0. (1)

So, by cancellation, 0=a0. Similarly, 0a=0.

To prove rule 2, we observe that a(− b)+ ab =a(− b + b)= a0 = 0.

Adding − (ab) to both sides yields a(− b)= − (ab). The remainder of rule 2 is done analogously.
�

Fig. 1. Ring theory text as taken from Contemporary Abstract Algebra [15]

The Text and Symbol aspect. The Text and Symbol aspect (TSa) is the as-
pect of MathLang which is directly concerned with the ways in which documents
present mathematics to a reader or author. A particular focus of the aspect is
the way in which mathematical concepts are abbreviated, such as combining a
pair of equations a = b and b = c into the single string a = b = c.

It also provides the details for sensible presentation of the fruits of other
aspects of MathLang: these others augment the text with information, but TSa
governs how this extra information is symbolised in relation to the original text.
The document in Fig. 1, for instance, has been enhanced in Fig. 2 to show the
extra information provided with the Core Grammatical aspect, below.

The Core Grammatical aspect. The Core Grammatical aspect (CGa) pro-
vides analysis for the sentence level of the document. It provides a type system
for objects, definitions, and assertions and a means for checking the document
for type correctness. The types of CGa are summarised in Table 1.

For instance, the variable x and number 1 could be declared as having the
type term. The operation + might have type term → term → term. Thus,
x+1 would also be considered a term. However, this expression can also perhaps
be considered as an instance of the noun polynomial. Furthermore, the adjective
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preface

equal # # set-equal # # in # # and # # not # emptyset

Rings

definition

ring

Definition 1. A ring RR is not set-equal Ra non emptysetempty set with two binary operations, addition

(denoted by plus #a + #b) and multiplication (denoted by times #a #b), such that for all map list aa, bb, c c in

RR:

1. equal plus aa + bb = plus bb + aa.

2. equal plus( plus aa + b b)+ cc = plus aa + ( plus bb + cc).

3. There is an additive identity 0. That is, there is an element zero0 in RR such that equal plus aa +
zero0 = aa for all a in R.

4. There is an element negative
−

#a in R such that equal plus aa +( negative
−

aa) = zero0.

5. equal times aa( times bb c c) = times( times aa b b) cc.

6. equal times aa( plus bb + c c) = plus times aa b b + times aa cc and equal times( plus b b + cc) aa = plus times bb aa +

times cc aa.

theorem

Theorem 2. r ring

1. mrule1 and equal r.times r.aa r.zero0 = shared r.times r.zero0 r.aa equal = r.zero0.

2. mrule2 and equal r.times r.aa( r.negative
−

r.b b) = hook r.times( r.negative
−

r.aa) r.b b equal loop = r.negative
−

r.times r.aa r.bb.

proof

Proof. r ring

mrule1Consider rule 1.

Clearly,

equal r.plus r.zero0 + r.times r.aa r.zero0 = shared r.times r.aa r.zero0 equal = shared r.times r.aa( r.plus r.zero0 +

r.zero0) equal= r.plus r.times r.aa r.zero0+ r.times r.aa r.zero0. (1)

So, by cancellation, equal r.zero0= r.times r.aa r.zero0. Similarly, equal r.times r.zero0 r.aa= r.zero0.

To mrule2prove rule 2, we observe that equal r.plus r.times r.aa( r.negative
−

r.b b) + r.times r.aa r.bb =

shared r.times r.aa( r.plus r.negative
−

r.b b + r.b b) equal = shared r.times r.aa r.zero0 equal = r.zero0.

Adding − (ab) to both sides yields equal r.times r.aa( r.negative
−

r.b b) = r.negative
− ( r.times r.aa r.bb). The

remainder of rule 2 is done analogously.

�

Fig. 2. Ring theory text (Fig. 1) enhanced with CGa information (See Sec. 2.1)
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Table 1. Elements of C (primitive grammatical categories), with associated colour
(see Definition 4) and ontological meaning

Cat. Colour Description
term blue common mathematical objects
set red collections of terms
noun orange families of terms
adj yellow adjectives used to construct new nouns from old
stat green statements which have some truth value
decl dk. gray declarations of new terms, sets, nouns, adjs, or stats
defn lt. gray definitions of new symbols
step salmon groups of mathematical assertions
cont purple contexts containing preliminaries prior to a step

linear can be used to modify polynomial to create a new noun, linear polynomial,
which also classifies x+1. The manner in which these types are shown to a reader
(as in Fig. 2) is defined in Section 2.2.

2.2 Operational System

In this section we define the operational system of MathLang. This definition is
covered more extensively in an earlier paper [1]. Portions are reproduced here for
the benefit of the reader. Some readers may find it beneficial to keep in mind the
definition of the XML XPath data model [18], as there exist strong conceptual
parallels with the following definition.

Let N denote the natural numbers, use (−;−) to denote ordered pairs, and
let functions be sets ϕ of ordered pairs. Every function has a domain dom(ϕ) =
{a | ∃b ) (a; b) ∈ ϕ} and a range ran(ϕ) = {b | ∃a ) (a; b) ∈ ϕ}. A sequence
is a function σ for which dom(σ) = {n | 0 ≤ n < k} for some k ∈ N. We
write [] for the empty sequence and [x0, x1, . . . , xn] for the sequence σ such that
σ(i) = xi for each i ∈ dom(σ) = {0, . . . , n}. Upon that sequence is defined
the metric |σ| = n + 1. We define σ1, σ2 to concatenate σ1 and σ2 as the new
sequence σ such that dom(σ1, σ2) = {0, . . . , |σ1| + |σ2| − 1} where σ(i) = σ1(i)
for i ∈ dom(σ1) and σ(i) = σ2(i) for i − |σ1| ∈ dom(σ2). Concatenation is
associative. Moreover, [], σ = σ and σ, [] = σ. For any set S, say [S] denotes
{σ | ran(σ) ⊆ S}.

Let L = F ∪G ∪S be a set of labels such that elements of F, G and S are for-
matting, grammatical, and souring labels, respectively. The set F, of formatting
instructions, varies according to rendering system. We define G = C × I, where
C = {term, set, noun, adj, stat, decl, defn, step, cont}, and contains identi-
fiers for the primitive grammatical categories of Table 1. The set I consists of
strings used for identifying abstract interpretations. We let �, f , g, c and i range
over L, F, G, C and I, respectively.
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We let s range over S = Su ∪ Si where Su contains souring identifiers to be
employed directly by the user while Si holds several identifiers used internally
for rewriting. Su and Si are disjoint, defined as follows:

Su={fold-left,fold-right,map,base,list,hook,loop,shared}∪({position}×N)

Si={hook-travel,head,tail,daeh,liat,right-travel,left-travel}∪({cursor}×N)

Definition 1 (Document). Let D be the smallest set such that:

1. [] ∈ D,
2. if d ∈ D and � ∈ L then [(�; d)] ∈ D, and
3. if both d1 and d2 are elements of D then (d1, d2) ∈ D.

A MathLang document is an element of the set D. In addition, we denote by DF ,
DG, DF∪G, DG∪S and DF∪G∪S the sets of documents whose labels are restricted
to the respective subscripted set. The variables d, dn (where n ∈ N) denote mem-
bers of D, unless otherwise noted.

Remark 2 (Notational convention). We use �〈d 〉 to denote [(�; d)]. When not am-
biguous, � denotes �〈[]〉. A box with black border and coloured background,
i d , is used to represent (c; i)〈d〉 (a document with grammatical label), where
the background colour of the box corresponds to c as shown in Table 1 (See Ex-
ample 6, below). Similarly, a box with thick pink border and white background,
s d , is used to represent s 〈d〉, documents with souring labels.

It is worth noting that these notations have been developed for ease of reading,
and particularly interactive annotation of texts. One of MathLang’s biggest mo-
tivations is for humans to be able to type a mathematical text in a natural way
on the computer, and then add the grammatical and souring information with
ease. The prototype based on TEXmacs is described in detail in [17].

Formatting systems are treated as a set of formatting instructions F, a blank
formatting instruction ε, a concatenation operator •, and a hole-filling function
fill : F × [F] → F, which takes two arguments, a formatting instruction f
and a sequence of instructions σ. Instruction f may have holes, denoted n ,
where 0 ≤ n < |σ|. The instruction f is rewritten so that each n is replaced
by σ(n).

Definition 3 (Souring). Souring is a rewriting process that was described in
[1]. The particulars of the procedure are not important to this paper. We may
regard the souring function as a black box function sour : D → DF∪G.

The motivation for souring is as follows: as syntactic sugar is added to a for-
mal document to make it easier to read for humans, syntax souring is added
to natural-language documents to make them easier for a computer to process.
Before processing a document with the rules in Section 3.1, we typically sour the
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document by applying this function to the document, then further processing the
result. An example of a typical souring operation would be to convert a = b = c
to a = b, b = c.

Definition 4 (Rendering functions). Let r : D → F be defined as

r([]) = ε (REN1)
r(f〈d〉) = fill(f, [r(d(0)), . . . , r(d(|d|−1))]) (REN2)

r((c; i)〈d〉) = i r(d) (REN3)

r(s〈d〉) = s r(d) (REN4)

r(d1, d2) = r(d1) • r(d2) (REN5)

where the background colour of the box given by (REN3) is the colour from Ta-
ble 1 (i.e., r((term; i)〈d〉) = i r(d) , r((set; i)〈d〉) = i r(d) , etc.)

Definition 5 (Extract original document). Usually, some d ∈ D consists
of a “typical” mathematical text plus some information which is stored in the
labels from G ∪S. For any document which has this property, it may be useful to
filter d with the function od : D → DF , defined as

od([]) = [] (OD1)

od(�〈d〉) =
{

�〈od(d)〉 if � ∈ F
d otherwise (OD2)

od(d1, d2) = od(d1), od(d2). (OD3)

It is then possible to obtain the mathematician’s original text as r(od(d)).

Example 6. In this example, formatting instructions are taken to be from the
LATEX typesetting system. Consider the document d given as

�$ 0$�〈(stat; equal)〈� 0= 1�〈[(term; times)〈
[(term; zero)〈0〉, (term; a)〈a〉]〉, (term; a)〈a〉]〉〉〉.

The document will be rendered, r(d), as
equal times zero 0 a a = a a , while the

filtered document od(d), �$ 0$�〈� 0= 1�〈[� 0= 1�〈0, a, a]〉〉〉, would be rendered
as 0a = a.

2.3 Overview of Isabelle

For the benefit of the reader, the following provides a brief overview of perti-
nent parts of the proof assistant Isabelle. Isabelle/HOL was chosen as a target for
translation from MathLang because it is a popular, mature system with extensive
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7 theory Groebner_Basis
8 imports NatBin

· · ·
14 begin

· · ·
259 locale gb_field = gb_ring +
260 f ixes divide : : " ’a \< Rightarrow > ’a \< Rightarrow > ’a"
261 and inverse : : " ’a \< Rightarrow > ’a"
262 assumes divide : " divide x y = mul x ( inverse y)"
263 and inverse : " inverse x = divide r1 x"

· · ·
338 lemma no_zero_divirors_neq0 :
339 assumes az : "(a :: ’ a :: no_zero_divisors ) \< noteq > 0"
340 and ab : "a*b = 0" shows "b = 0"
341 proof −
342 { assume bz : "b \< noteq > 0"
343 from no_zero_divisors [ OF az bz ] ab have False by blast }
344 thus "b = 0" by blast
345 qed

· · ·
440 end

Fig. 3. Excerpts of code [19] from Isabelle/HOL distribution

documentation. The authors of the current paper do not consider themselves to
be Isabelle experts, but it was straightforward to learn the basics of the system
in order to begin making basic proof documents. Isabelle [6] allows a user to
express and record formulae and reasoning steps. It is designed to work with a
variety of logical foundations, the most popular being HOL. Isar [7] enhances
the language of Isabelle for a more declarative proof style.

What follows is a summary of certain Isabelle features which may be useful
in understanding the remainder of this document, referencing Figure 3.

In Isabelle, formal developments are organised into theories, which are given
unique names and stored in separate text files. The theory in Figure 3, for in-
stance, is stored in Groebner Basis.thy and begins with the indicated line 7
(The previous lines in the file are all comments). Line 8 of this example shows
that the current theory may need to use results formalised in the Isabelle the-
ory NatBin. This imports directive allows access to definitions and results of
the other theory. The rest of the file, which will develop new formalisations, is
enclosed with the keywords begin (line 14) and end (line 440).

A locale is an Isabelle construct which defines a local scope in which assump-
tions and symbols are declared. Theorems may then depend on locales for the
premises on which they are proved. Line 259 starts the declaration of a locale,
which in this case has the name gb field and inherits the properties of locale
gb ring. It starts by declaring (fixing) a pair of constants with type signatures
and stating two axioms for the locale. This is followed by a lemma and proof.

3 Rules for Translating Documents

Section 2.2 described the operational representation of MathLang documents.
The documents are stored as an assembly of labels, each of which has a particular
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role (formatting, grammatical, or souring). It may be of interest to reformat
the document into another form. In this section, we give a set of translation
rules which could be recursively applied to a MathLang document, and easily
extended to be applied to other documents. This set of rules converts some of
the information of the document to Isabelle syntax.

3.1 Example Rules for Translating to Isabelle

In this section, we describe a set of rules which are sufficient to translate the
document in Figure 2 to the language of Isabelle. These are given to show how
rules can be created to cover different cases in MathLang documents. Suppose
that d is a document which has been soured (see Definition 3). Then we apply
mutually recursive translation rules T : DG → DF as partial translations of d
into the syntax of Isabelle. These are defined from the top down: each rule may
rely on other rules which are defined later in the section. Figure 4, in Section 3.2,
shows the translation given by the rules.

In the first rule, (*name*) is an Isabelle comment which should be replaced
with a name for the theory. Similarly, (*theories*) is a list of other theories
which contain required prior knowledge. Constructing this list of theories is
outside the scope of this paper. For the current work, we leave this task to an
Isabelle expert, to fill in the blanks. The root document tree may be translated
by the following rule.

Troot(d) = fill(�theory (*name*) imports (*theories*)

begin 1 end�, [Tmain(d)]) (ROOT1)

This inserts the main frame for the theory and then invokes Tmain, as defined
below. Note that the aforementioned (*theories*) list would likely depend on
the contents of any preface, but that is outside of the scope of this paper, so
(MAIN1) returns an empty string, ignoring its contents.

Tmain

(
preface d

)
= �� (MAIN1)

Tmain

(
definition d

)
= Tdef(d) (MAIN2)

Tmain

(
theorem

i [] i′ [] , d

)
= Tthm(i′, d) (MAIN3)

Tmain

(
proof d

)
= Tpf(d) (MAIN4)

Tmain(d1, d2) = Tmain(d1) • Tmain(d2) (MAIN5)

When the main text contains a definition annotation surrounding nouns, this
kind of annotation may be translated with the following rule.
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Tdef

(
i

i []
i′ props d

)
= fill (�locale 0= 1�, [i, Tdef(d)]) (D1)

Tdef

(
i [] i′ []

)
= fill (�fixes 0::"’r" assumes " 0: 1"�, [i, i′]) (D2)

Tdef

(
i d

)
= fill

(
�fixes 0::" 1"�,

[
i, Tty

(
i d

)])
(D3)

Tdef

(
i []

)
= fill (�fixes 0::"’r set"�, [i]) (D4)

Tdef

(
i d

)
= fill

(
�assumes " 1"�,

[
Tpfx

(
i d

)])
(D5)

Tdef(d1, d2) = Tdef(d1) • Tdef(d2) (D6)

For Tty, for i ∈ I, d ∈ D we have i d ∈
{

i d , i d , i d
}

(term, set, or statement).
This rule extracts the type signature for the given expression.

Tty

(
i d

)
= fill (� 0=> 1�, [Tty(d) , i]) (TY2)

Tty

(
i d , d′

)
= fill

(
� 0=> 1�,

[
Tty(d′) , Tty

(
i d

)])
(TY3)

Tty

(
i []

)
= �’r� Tty

(
i []

)
= �’r set� Tty

(
i []

)
= �bool� (TY1)

Example 7. When (D3) is applied to the annotated expression

addition (denoted by
plus

# a+ # b )

the result of the translation is
8 f ixes plus : : "’r => ’r => ’r"

where all three of the symbols in the type signature are ’r because the three
inner boxes were all terms.

If, on the other hand, we want to convert several boxes – again, for i ∈ I, d ∈ D
we have i d ∈

{
i d , i d , i d

}
(term, set, or statement) – the following rules turn

the boxes into a prefix notation that is Isabelle-friendly, although it is not perfect
(See Note 9, below).

Tpfx

(
i []

)
= i (PFX1)

Tpfx

(
i d

)
= fill (� 0 1�, [i, Tpfx-inner(d)]) (PFX2)

Tpfx-inner

(
i [] , d′

)
= fill (� 0 1�, [i, Tpfx-inner(d)]) (PFX3)

Tpfx-inner

(
i d , d′

)
= fill (�( 0 1) 2�, [i, Tpfx-inner(d) , Tpfx-inner(d′)]) (PFX4)
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Example 8. We see that the annotated expression

not set-equal
R a non emptyset empty set

which may then be manipulated to

7 assumes "not (set-equal R emptyset)"

Note 9. It is possible, on a case-by-case basis, to translate expressions such
as emptyset to the more Isabelle-friendly {}, or even equals zero (times a
zero) to zero = a * zero, but this kind of automated translation may not be
useful or even desirable for the user. We leave it, for the moment, to future work.

Example 10. To illustrate the way that Tdef, Tty, and Tpfx work together, note

ring
ring

Definition 1. A
R
ring R R is

carriernonempty not set-equal
R a non emptyset empty set with two

binary operations,
plus

addition (denoted by
plus # a+ # b ) . . .

would be translated into
5 locale ring =
6 f ixes R : : "’r set"

7 assumes "not (set-equal R emptyset)"

8 f ixes plus : : "’r => ’r => ’r"

Tthm

(
p, i [] i d

)
=

fill(�theorem (in 0) 1: " 2"�, [p, i, Tpfx

(
i d

)
]) (THM1)

Tthm(p, (d1, d2)) = Tthm(p, d1) • Tthm(p, d2) (THM2)

Example 11. If the above rule is applied to the theorem in Figure 2,

mrule1 mrule1

and equal
times a a zero 0 = times zero 0 a a

equal
times zero 0 a a = zero 0

it would result in the output
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28 theorem ( in ring ) mrule1 :
29 shows "and (equal (times a zero) (times zero a))

30 (equal (times zero a) zero)"

The final rules are filled in as follows. We note that in Isabelle, theorems pass
their locale information on to their associated proof. Thus, although we see the
declaration of a ring as context for both theorems and definitions (as denoted

r ring in Figure 2), and this is necessary for MathLang’s internal type check-
ing, we do not need this information in the translation. Thus, (PF1) returns an
empty string.

Tpf
(

d
)

= �� (PF1)

Tpf

(
i d

)
= fill

(
�have " 0"�,

[
Tpfx

(
i d

)])
(PF2)

Example 12. This will translate
equal

zero 0 = times a a zero 0 to the code

40 have "equal zero (times a zero)"

3.2 Resulting Code

With the aid of the rules from Section 3, the Isabelle code in Figure 4 may be
constructed (again based on the annotations of the small ring theory in Figure 2).
The rules described in this section are sufficient to translate the document given
in Figure 2 to Isabelle syntax, and even to get the user very close to a formal proof
sketch, but the rules as defined are only sufficient for an extremely small subset
of examples. It is not difficult to find a new document for which the translation
rules give us an Isabelle-like text which is an insufficient representation of the
original mathematics.

The translation shown in Figure 4 shows several specific drawbacks: First,
the document does not successfully pass through the Isabelle system for several
reasons. There are some trivial things, like the theory name on Line 1, which
are simple to add but are not easily provided by an intelligent system. Providing
the list of imported theories, also, is difficult for a person who does not know
the existing libraries nor how to search them for relevant information. The main
failure of the resulting locale definition is the form of expressions such as equality.
On a case-by-case basis, such things could be converted (in the case of equal
and set-equal, an infix ‘=’ would satisfy Isabelle nicely), but it is hard to
say that such transformations would be generally useful without being highly
context-sensitive.

In addition to these shortcomings, the relationship between theorems and
proofs is not ordered well. In the original text, it makes perfect sense for the
author to write what are essentially two theorems, then prove them in the same
order. However, Isabelle prefers proofs to directly follow their assertions, and the
fact that lines 36–41 should be moved just before line 35 is not addressed well.
It may not even immediately evident to the human eye that it is these lines,
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theory (* name *)
imports (* theories *)
begin

5 locale ring =
f ixes R : : " ’r set "
assumes " not ( set - equal R emptyset )"
f ixes plus : : " ’r => ’r => ’r"
f ixes times : : " ’r => ’r => ’r"

10 f ixes a : : " ’r"
assumes "a : R"
f ixes b : : " ’r"
assumes "b : R"
f ixes c : : " ’r"

15 assumes "c : R"
assumes " equal ( plus a b) ( plus b a)"
assumes " equal ( plus ( plus a b) c) ( plus a ( plus b c )) "
f ixes zero : : " ’r"
assumes " zero : R"

20 assumes " equal ( plus a zero ) a"
f ixes negative : : " ’r => ’r"
assumes " equal ( plus a ( negative a )) zero "
assumes " equal ( times a ( times b c )) ( times ( times a b) c)"
assumes " equal ( times a ( plus b c )) ( plus ( times a b) ( times a c )) "

25 assumes "( times ( plus b c) a) ( plus ( times b a) ( times c a )) "

theorem ( in ring ) mrule1 :
shows " and ( equal ( times a zero ) ( times zero a ))

30 ( equal ( times zero a) zero )"

theorem ( in ring ) mrule2 :
shows " and ( equal ( times a ( negative b )) ( times ( negative a) b ))

( equal ( times ( negative a) b) ( negative ( times a b )) "
35

have " equal ( plus zero ( times a zero )) ( times a zero )"
have " equal ( times a zero ) ( times a ( plus zero zero )) "
have " equal ( times a ( plus zero zero ))

( plus ( times a zero ) ( times a zero )) "
40 have " equal zero ( times a zero )"

have " equal ( times zero a) zero "

have " equal ( plus ( times a ( negative b )) ( times a b ))
( times a ( plus ( negative b) b )) "

45 have " equal ( times a ( plus ( negative b) b )) ( times a zero )"
have " equal ( times a zero ) zero "
have " equal ( times a ( negative b )) ( negative ( times a b )) "

end

Fig. 4. Isabelle code created using rules from Section 3 on annotations in Figure 2

exactly, which should be associated with theorem mrule1. There is the smaller
matter that these proofs should be surrounded with proof . . . qed pairs, but this
issue goes hand-in-hand with the aforementioned problem of discerning which
proof lines ago with which theorem.

The major hurdle, however, is that for Isabelle to find this theory correct, it
requires much more information. None of the proof claims (have "...") are jus-
tified, and there are significant holes in the reasoning. This is largely due to the
fact that the original author simply left many holes which would be evident to a
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human reader, considering them unnecessary. When this theory file is developed
to a point at which Isabelle is completely satisfied, it is approximately 10 times
longer.

While these problems are significant, we believe that the current end-result
has merit. One of the major benefits is that this can be performed by a math-
ematician who knows little-to-nothing about Isabelle. The (very incomplete)
theory in Figure 4 can then be given to an Isabelle expert for development into
a robust theory. This way, they have a starting point in Isabelle syntax, which
may save them time in understanding the intent of the document.
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K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema:
Towards Computer-Aided Mathematical Theory Exploration. Journal of Applied
Logic, 470–504 (2006)

6. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

7. Wenzel, M.T.: Isar – a generic interpretative approach to readable formal proof
documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
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Abstract. The semantic web ontology languages RDFS and OWL are
widely used but limited in both their expressivity and their support for
modularity and integrated documentation. Expressivity, modularity, and
documentation of formal knowledge have always been important issues
in the MKM community. Therefore, we try to improve these ontology
languages by well-tried MKM techniques.

Concretely, we propose embedding the language concepts intoOMDoc
to make use of its modularity and documentation infrastructure. We show
how OMDoc can be made compatible with semantic web ontology lan-
guages, focusing on knowledge representation, modular design, documen-
tation, and metadata. We evaluate our technology by re-implementing the
Friend-of-a-friend (FOAF) ontology and applying it in a novel metadata
framework for technical documents (including ontologies).

1 Introduction

The concept of an “ontology” as a formalization of a shared conceptualization is
at the heart of the semantic web – the web of data and intelligent agents. RDFS
(RDF Schema/Vocabulary Description Language [BG04]) and OWL (Web On-
tology Language [MvH04]), the major semantic web ontology languages, have
a limited expressivity: The common OWL sublanguages OWL-Lite and OWL-
DL implement two different description logics – decidable subsets of first-order
logic [BCM+07]. This was a deliberate design goal as decidability is a prerequi-
site for web scalability. A common experience in ontology design is, however, that
certain axioms in the domains to be modeled exceed the expressivity of the lan-
guages chosen for implementation. Sometimes, dumbing down the model to less
expressive special cases1 is sufficient, whereas in other cases, a prose description
of the actual axiom is added to the documentation of the ontology.

An example for the latter can be seen in the Friend-of-a-Friend (FOAF) on-
tology [BM07] for modeling user profiles and simple social relationships: Usually,
a foaf:Group has members of type foaf:Agent, where an agent can be a group, a
person, or an organization. The foaf:membershipClass property can be used to
be more specific about the type of the members of a group by linking an instance
1 as has, e. g., been done for the DOLCE ontology, a simplified version of which has

been formalized in OWL-DL; cf. http://www.loa-cnr.it/DOLCE.html

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 389–404, 2009.
© Springer-Verlag Berlin Heidelberg 2009

http://www.loa-cnr.it/DOLCE.html


390 C. Lange and M. Kohlhase

of foaf:Group to an RDFS or OWL Class. We can, e. g., require that all members
of the KWARC research group in Bremen be computer scientists. Then, if we
state that Michael is a member of KWARC, we would like a reasoner to infer
that he is a computer scientist, or, vice versa, to complain, if he is classified as a
type of person that is not consistent with being one. This combination of ABox
and TBox (instance- and terminology-level) reasoning is not supported by OWL
reasoners, though. Therefore, foaf:membershipClass is not formally described in
the OWL-DL implementation of FOAF, but an informal text in the specification
explains how application developers can implement hand-crafted support for the
missing inference step2. Such informal descriptions are often ambiguous3 and
have to be turned into algorithms manually.

In the MKM domain, tensions between high expressivity desired by authors
and decidability or even tractability required for web-scalable automated in-
ference are well-known. Earlier, we have discussed the problem of representing
expressive mathematical knowledge, such as the theorem that all differentiable
functions are continuous and its proof, which involves higher order logic, in
semantic web systems [LK08]. This paper proposes a solution by applying well-
tried techniques from mathematical knowledge representation to semantic web
ontology engineering. We show how the expressive mathematical markup lan-
guage OMDoc can be used to express and document semantic web ontologies
in a way that complies with existing semantic web tools. We also discuss the
particular requirement of extensible metadata vocabularies for ontology doc-
umentation, which we address by applying our technologies. We evaluate our
approach by applying it to FOAF and conclude with a survey of related work
and a summary and outlook. This paper is based on [LK09], which provides
additional details.

2 Mathematical Semantic Markup with OMDoc

OMDoc [Koh06] is a three-layered semantic markup language for mathematical
knowledge. On every layer, the author is free to choose the degree of formal-
ity; anything from informal text to shallow annotations to a full formalization
(as needed for symbolic computation or automated deduction) is possible. Ob-
jects can be complex numbers, derivatives, etc. They are usually composed
of symbols and represented in content markup, using OpenMath [BCC+04]
or MathML [W3Ca]. Statements are made about objects and model knowl-
edge about our environment in the respective domain. Statement types include
model assumptions, their consequences, hypotheses. They have in common that
they state relationships between objects and have to be verified or falsified
in theories or experiments. A model is fully determined by its assumptions
2 Note that a way has been found to replace foaf:membershipClass by a semantically

equivalent OWL-DL-compatible construct using property restrictions [Alf07]. Never-
theless, we keep this as an example as it is easy to understand, the proposed solution
has not yet been officially implemented, and is less intuitive for non-experts.

3 as can be seen in the mail thread following [Alf07].
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(also called axioms); all consequences are deductively derived from them (via
theorems and proofs); hence, their experimental falsification uncovers false as-
sumptions of the model. Theories put symbols and statements into a context.
Even the meaning of a single symbol is determined by its context – e. g., the
identifier h can stand for the height of a triangle or Planck’s quantum of action,
and – depending on the current assumptions – a statement can be true or false.
While mathematicians fix and describe the context of a statement, these struc-
tures have to be modeled explicitly for computer-supported management. For
instance, in logic, a theory is the deductive closure of a set of axioms, that is,
the (often infinite) set of logical consequences of the model assumptions. Even
though, in principle, this fully explains the phenomenon of context, important
aspects like the reuse of theories, knowledge inheritance, and the management of
theory changes are disregarded completely. Finally, documents consist of nar-
rative and content layers. Content layers contain statements or theories, whereas
narrative layers sequentially order snippets from content layers. This facilitates
the reuse of content from a shared knowledge base (also called “content com-
mons”) in documents that are actually consumed by humans: scientific articles,
books, or slide shows.

One can easily identify the following correspondences between the seman-
tic web ontology languages RDFS/OWL and OMDoc: Classes, Properties,
and Individuals correspond to objects or symbols. Axioms and Rules corre-
spond to statements, as they state properties of resources. However, a distinction
between proper axioms and facts derived from them is not usually made in on-
tologies. OMDoc, following the “little theories” approach [FGT92], allows for
modeling this distinction and thus reducing theories to their core, while still
enabling authors to document selected logical consequences of this core within
the same theory. Ontologies correspond to theories. Both are often designed
modularly and import other ontologies or theories. Both entities of an ontology
and symbols of an OMDoc theory are identified by URIs (Uniform Resource
Identifiers [BLFM05]) within the namespace of the whole theory/ontology.

We claim that OMDoc particularly performs better in integrated documenta-
tion and modularity. It supports mixing formal, semiformal, and informal knowl-
edge in a literate-programming style, and integrating this into documents that
can then be adapted to human audiences (cf. Sect. 3.4). As RDFS/OWL axioms
could be reified, i. e. treated as resources of their own, by giving them a URI, one
could in principle attach documentation to all parts of an ontology. In practice,
this is supported less well. RDFa as a way of embedding ontologies into XHTML
documents [ABMP08] and certain semantic wikis supporting ontology author-
ing (e. g. IkeWiki [Sch06]) are notable, but to date not yet completely adequate
exceptions (cf. Sect. 6 for a discussion of RDFa for ontology authoring). Mod-
ularity in semantic web ontologies is optional at best: In RDFS, entities from
external ontologies can be reused without restrictions, just by writing down their
URIs. This does not make dependencies explicit at all and can easily lead au-
thors into creating inconsistency. If possible at all, one would have to collect all
URI references mentioned in an RDFS ontology and then apply some heuristics
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to these URIs in order to get hold of the actual ontologies depended upon. OWL
improves on this by allowing explicit imports of ontologies via the owl:imports
declarative – which only permits literal reuse of imported symbols, though. OM-
Doc greatly enhances modularity by supporting imports via theory morphisms
(symbol or formula mappings) and allows for parametric theories. Even literal
imports are not yet widely used in web ontologies, and tools usually do not
enforce their usage; improvements are to be expected with a more widespread
adoption of OWL 2 [CGHM+08]. OMDoc applications rely on proper imports
and can already check their consistency; see [RK08] for details.

3 OMDoc as a Semantic Web Ontology Language

OMDoc is XML-based and thus complies with basic web standards like URIs,
and any desired logical foundation can be formalized in OMDoc. We can thus
make use of the similarities to semantic web ontology languages pointed out
above and use OMDoc for modeling ontologies – provided that we overcome
certain obstacles, which are addressed in the following subsections: 1. Since OM-
Doc is uncommitted to a particular logical foundation, it does not have a na-
tive understanding of the RDF4, RDFS, and OWL(-DL) syntax and semantics.
Therefore, these foundations have to be modeled as OMDoc meta-theories first.
2. OMDoc theories can import other theories for a modular design, but they
cannot directly reference existing semantic web ontologies in order to enhance
them. Therefore, we have to specify an import syntax and semantics. 3. OMDoc
itself is not supported by any description logic reasoner5. Therefore, we need to
provide a way to extract semantic web ontologies from theories.

3.1 Knowledge Representation

As a foundation for expressing semantic web ontologies in OMDoc, we wrote
theories for RDF, RDFS, and OWL, which declare as symbols all classes, prop-
erties, and individuals of these languages. An ontology is then written as follows:
Classes, properties, and individuals are declared as symbols with a type6. The
type of an object property is, e. g., owl#ObjectProperty, i. e. the symbol Ob-
jectProperty from our owl theory. Class definitions like “Student = Person� ≥
1 enrolledIn” (“A student is a person, and is enrolled at least once”) are given
4 RDF (Resource Description Framework [RDF04]) is the foundation of knowledge

representation on the semantic web. It represents knowledge as a graph, where nodes
are instances of classes defined in ontologies, edges are instances of properties. An
edge is usually read as a “subject predicate object” triple.

5 There are converters from and to the native languages of several common first-order
or higher-order theorem provers, though, which demonstrate OMDoc’s utility as a
mathematical exchange format.

6 OMDoc has a foundationally unconstrained infrastructure for type systems: objects
can be associated with types that are objects themselves. The particular choice of
types is only governed by the available theories. Here we define types as part of the
RDF, RDFS, and OWL theories.
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as OMDoc definitions (cf. Listing 1.17). This is a machine-oriented represen-
tation that a user would not usually see, but which would render as three
lines in Figure 2 and be edited by a tool like the OMDoc-based semantic wiki
SWiM [Lan08b, LGP08] using a dedicated formula editor (cf. Fig. 1).

Fig. 1. The definition in SWiM, using the Sentido formula editor. The formula can be
edited in OWL abstract syntax [MvH04], or using the tool palette.

Listing 1.1. An OWL ontology in OMDoc: class definition and documentation

<theory name="university">
<imports from="owl.omdoc#owl"/> <!−− The OWL meta−theory −−>
<imports from="foaf.omdoc#foaf"/> <!−− OMDoc wrapper for FOAF −−>
<omtext type="introduction"><CMP>For our "university" ontology, we first import

FOAF and then introduce the concept of a student. ...</CMP></omtext>
<symbol name="Student" xml:id="student.sym">

<metadata>
<meta property="dc:description">A student</meta>

</metadata>
<type system="owl">

<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMS cd="owl" name="Class"/></OMOBJ></type>

</symbol>
<!−− left out a similar declaration of enrolledIn −−>
<definition for="#student.sym" type="simple">

<CMP>A student is a person who is enrolled at least once.</CMP>
<OMOBJ xmlns="http://www.openmath.org/OpenMath">

<OMA>
<OMS cd="owl" name="intersectionOf"/>
<OMS cd="foaf" name="Person"/>
<OMA>

<OMS cd="owl" name="Restriction"/>
<OMS cd="university" name="enrolledIn"/>
<OMA>

7 OMS is the OpenMath syntax for a symbol. OMA applies a symbol (usually a function
or an operator) to some arguments. OMI is an integer.
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<OMS cd="owl" name="minCardinality"/>
<OMI>1</OMI></OMA></OMA></OMA></OMOBJ>

</definition></theory>

All other statements can be expressed as OMDoc axioms in such a way that
a property is applied to two arguments: a subject and an object. This is the
most direct way of representing RDF in OMDoc but does not take advantage
of the higher expressivity of OMDoc. However, the author has the possibility
to annotate redundant axioms (as introduced in Sect. 2) as theorems instead,
which can then be proven on the OMDoc level, using other axioms of the
same ontology plus the inference rules of the respective ontology language, as
represented in the RDF, RDFS, and OWL theories.

3.2 Connecting OMDoc and Semantic Web URIs

OMDoc and RDF have different ways of giving URIs to symbols. RDF-based
ontologies have a namespace URI, which is usually considered to be the URI of
the ontology, and all entities within the ontologies have local names. An absolute
URI is formed by concatenating the namespace URI and a local name.

OMDoc uses an extended URI-based mechanism for addressing semantic
objects. Following the addressing schemes of OpenMath and MathML3, we
can address objects by their local name n in their home theory θ, which in
turn is referenced by an import path in an OMDoc document identified by a
URI g. Thus the URI of a semantic object is of the form g?θ?n; see [RK08] for
details. OMDoc allows theory inheritance via renamings – a crucial feature for
modularity and ontology interoperability. As a consequence the semantic URIs
of OMDoc go beyond traditional URIs and allow to reference objects that are
only virtually represented by inheritance.

This difference is largely conventional and does not hinder the integration of
OMDoc with RDF-based semantic web ontologies. The only situation where
the difference needs to be overcome is where an existing semantic web ontology
is rewritten in OMDoc, e. g. for the purpose of documenting it or making its
modular structure more explicit, and whenever an OMDoc ontology imports a
semantic web ontology. In order to have OMDoc ontologies generate RDF-style
URIs, we allow for attaching the namespace URI of the original ontology to a
theory via the special metadata field odo:semWebBase, which is recognized by
our OMDoc→OWL translation presented in the following section. Here is how
this would be done for FOAF:
<theory name="foaf">

<metadata>
<link rel="odo:semWebBase" href="http://xmlns.com/foaf/0.1/"/>
<meta property="dc:title">Friend of a Friend (FOAF) vocabulary</meta>

</metadata>
<!−− imported theories and ontologies left out −−>
<symbol name="Agent"><!−− declaration omitted −−></symbol>
<!−− ... −−></theory>

This makes sure that the OMDoc→OWL translation gives the Agent class
its correct URI, i. e. http://xmlns.com/foaf/0.1/Agent. We can create an
OMDoc theory from a semantic web ontology by simply providing a suitable

http://xmlns.com/foaf/0.1/Agent


A Mathematical Approach to Ontology Authoring and Documentation 395

odo:semWebBase metadata field, only adding symbol declarations, definitions,
axioms, etc., later. This is a low-cost way for starting OMDoc-based ontologies
which, does not preclude making use of OMDoc’s possibilities for documen-
tation and expressive knowledge representation later. Thus we have a suitable
migration path from web ontologies to OMDoc.

3.3 Reasoning

Our intention with promoting OMDoc as a more expressive semantic web ontol-
ogy language is not to replace well-tried technologies for semantic web reasoning.
While OMDoc does, in principle, allow for alternative approaches to reasoning,
being an exchange format for automated theorem provers, this is not the focus
of this paper. So in order to allow for writing expressive ontologies in OMDoc
while still being able to use optimized reasoners on their tractable/decidable
fragments, we defined and implemented a translation from OMDoc to OWL
as a module within our Krextor XML→RDF extraction framework [Lan08a].
While the implementation is hard-coded, we aim at giving an exact specification
by OMDoc axioms: There is, for example, a set of direct subject–predicate–
object axioms (cf. Sect. 3.1) in the OWL theory that state that any application
of the owl#Restriction symbol to suitable arguments translates to an anony-
mous RDF resource of type owl:Restriction that has certain RDF properties.
Extracting RDF triples from OMDoc symbol declarations and axioms is mostly
straightforward, but the generation of correct URIs for entities of semantic web
ontologies is more involved. We traverse the graph of theory imports and collect
the namespace URIs of all theories that carry an odo:semWebBase metadatum.
Whenever we encounter a reference to a symbol onto#sym for an ontology that
is implemented as an OMDoc theory onto, we generate the semantic web com-
pliant URI as the concatenation of the namespace URI of the theory and the
name of the symbol. Here is the RDF generated from the example introduced in
Listing 1.1 above8:
<.../uni.omdoc?university> rdf :type owl:Ontology ;

owl:imports foaf : .
<.../uni.omdoc?university?Student> rdf:type owl:Class ;

owl:equivalentClass _:d24e43 .
_:d24e43 owl: intersectionOf _:collection−d24e44 .
_:collection−d24e44 rdf : first foaf :Person ;

rdf : rest _:collection−d24e44−1 .
_:collection−d24e44−1 rdf : first _:d24e47 ;

rdf : rest rdf : nil .
_:d24e47 rdf :type owl:Restriction ;

owl:onProperty
<.../uni.omdoc?university?enrolledIn> ;

owl:minCardinality "1"^^xsd:nonNegativeInteger .

The result looks is somewhat illegible (compared e. g. to Fig. 2); in fact there
are less technical representations of OWL [HPS08], but in practice it does not
8 This is Turtle, a text-oriented serialization for the RDF data model. Identifiers pre-

fixed with _ denote anonymous (“blank”) nodes that are only accessible within the
current RDF graph. The class, which a student is defined to be equivalent to, is
represented as a union class of a set of classes, represented as a linked list.
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make a difference, as all OWL tools are required to support the RDF representa-
tion. Most of the statement- and theory-level structure of OMDoc, such as the
distinction between defined and inferred statements and theory morphisms, is
lost and uniformly translated to less expressive OWL axioms. Thus, our trans-
lation works like a compiler and linker that creates (OWL/RDF) object code
from a higher-level OMDoc source code.

3.4 Documentation and Presentation

OMDoc comes with an elaborate, adaptive presentation framework for creat-
ing human-readable documents from semantic markup [KMR08]. Mathematical
formulae are rendered as Presentation MathML; structures on the statement
and theory levels, and complete documents, are rendered as XHTML. For every
mathematical symbol, one or more notations can be defined – compare, e. g.,
our initial OWL example in the German DL notation (Student = Person� ≥
1 enrolledIn) vs. the Manchester syntax [HPS08]:

Class: Student
EquivalentTo: Person that enrolledIn min 1

A default notation is usually provided by the author of a theory, but users can
also author their own ones to customize the presentation to their preferences.
Initially, the renderer collects all available notation definitions from all imported
theories. For every symbol in a content formula as the one in Listing 1.1, the
renderer selects from those notation definitions that match the symbol the most
appropriate one for the current presentation context, which is made up of, e. g.,
the language of the enclosing document, the domain of application, or user pref-
erences. The output is parallel markup [W3Ca, section 5.4], which allows for
implementing additional services that facilitate browsing and reading – for ex-
ample linking rendered symbols to the place where they are introduced. A reader
who does not know, e. g., the symbol � in our sample formula, can click on it
and thus navigate to the section of the document rendered from the owl OM-
Doc theory that declares (and documents!) the symbol owl:intersectionOf. We
have implemented this in SWiM using XLinks; the JOBAD active document
framework even displays definitions as tooltips without forcing the user to leave
the document [GLR09]. Documentation can be given in metadata blocks (cf.
Sect. 4), which can be attached to any element on the statement and theory level
(cf. Listing 1.1). Textbook or literate-programming style is also possible: A the-
ory can not only contain formal statements but also informal text sections, and
definitions, axioms, and theorems can have both formal and informal content
(CMP and FMP ; cf. Listing 1.1).

4 Scalable Metadata for Technical Specifications

In the previous sections, we have already used metadata for documenting ontolo-
gies. Simple metadata vocabularies like Dublin Core (DC [Dub08]) or Creative
Commons licensing information (CC [AALY08]) are suitable for retrieval, e. g.
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Fig. 2. FOAF in OMDoc, rendered (slightly shortened cf. Sect. 5). We defined some
custom notations, e. g. rendering foaf:member like set membership, and we combined
domain and range of a property into a “relation type”.

using a search engine. Specialized document and knowledge management tasks
require more complex metadata. In practical application scenarios where OM-
Doc is used to author formal specifications of safe and secure technical devices,
we have particularly experienced a need for documenting the change history of a
formal document within that document. Note that a revision log within a docu-
ment is not intended to replace a versioned repository on the server side – which
we also use for OMDoc –, but as an extension for certain use cases. Sometimes,
for example, a persistent revision log is required for legal reasons.

4.1 Metadata in OMDoc 1.2

OMDoc allows for attaching a metadata record to any element on the document,
theory, and statement level [Koh06, chapter 12]. The current version 1.2 provides
XML syntax for all DC and CC properties, plus a few extensions9, most notably
a simple vocabulary for recording revision histories, which has been added to
the dc:date XML element: The additional who attribute refers to the URI of a
dc:creator or dc:contributor element in the same metadata record, and the
action attribute can have values like “updated”, “created”, or “imported”.

This way of representing metadata has various drawbacks: The vocabulary is
hard-coded and not extensible. There is no easy way of adding other vocabular-
ies to OMDoc. Secondly, OMDoc is not aware of the formal semantics of these
vocabularies. They have been integrated into the syntax of OMDoc, but their
9 Here, we only give a short summary. Please see the OMDoc 1.2 specification [Koh06]

and the extended version of this paper [LK09] for details.
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semantics is only available informally as a part of the natural-language speci-
fication of OMDoc [Koh06, chap. 12]. More formal semantics for DC and CC
would be available as RDFS ontologies, but those have not been incorporated
into OMDoc. Even worse, OMDoc’s DC extension for revision histories does
not have any formal semantics at all. This lack of formal semantics has restricted
the attractivity of OMDoc’s metadata for application developers. So far, sup-
port for them has not been implemented by any OMDoc-aware application,
except our own semantic wiki SWiM [Lan08b] and the e-learning environment
ActiveMath [GUM+04]. ActiveMath makes use of additional vocabularies for
educational metadata, but they are hard-coded into the XML schema in an even
less extensible way than in OMDoc 1.2, as they are not distinguished by different
namespaces [GUM+04] (ActiveMath’s document format forked off OMDoc1.1.).

4.2 The New Metadata Framework

Requirements for a new metadata framework for OMDoc were as follows:

1. Stay backwards-compatible with OMDoc 1.2 concerning expressivity. That
is, continue supporting DC and CC, and the custom extensions.

2. Make the formal semantics of vocabularies available to OMDoc applications.
3. Incorporate vocabularies for versioning (for technical documents in particu-

lar) and people (for bibliographical data).
4. Don’t hard-code a fixed set of vocabularies into the language but stay flexible

and extensible for many applications, even future and unknown ones.

Given the fact that many existing metadata vocabularies, including DC and
CC, have an RDF semantics, and that with RDFa [ABMP08] a standard for
flexibly embedding metadata into X(HT)ML documents had recently stabi-
lized, we chose to incorporate a subset of RDFa into OMDoc, and to look
for RDF-compatible metadata vocabularies to satisfy our further requirements.
So far, RDFa has only been specified for the “host languages” XHTML and SVG
(cf. [W3Cb]), but the specification foresees the integration into other XML-
based languages. The new metadata framework introduces the elements meta
and link with the same semantics as their XHTML counterparts as children of
any metadata block. Resources with document-local identifiers only, i. e. blank
nodes, can be created using the resource element:

Element Attributes Children
meta property, content, datatype literal text or XML (optional)
link rel, rev, href (resource|meta|link)*

resource about, typeof (meta|link)*

Due to the inherent flexibility of RDFa, any metadata vocabulary can be
used. However, we give particular recommendations for metadata in the above-
mentioned domains of special interest. Using DC and CC metadata with the
new RDFa syntax for OMDoc is trivial. Our previous DC extensions for revi-
sion logs were not immediately RDF-compatible, as they were given as additional
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annotations to triples, and no formal semantics was defined for them. There-
fore, we replaced them by a completely re-engineered versioning ontology. This
ontology reuses the core of the ModelDriven.org versioning ontology [Mod08],
with classes DataAsset (of which anything on the statement, theory, or docu-
ment level of OMDoc is a subclass), Revision, and Change, where an DataAsset
has Revisions, and a Change represents a transition from one Revision to the
following one. As we made Change a subclass of the Event class from the event
ontology [RA07], a change can have a date and an agent. Instead of a generic
Change, a more specific subclass can be chosen. In future, we plan to introduce
specific change types (e. g. for adding a type declaration to a symbol), in a sim-
ilar way as the OMV Ontology Metadata Vocabulary does for semantic web
ontologies [HPHGP07].

Here is a part of the metadata block of a digital library edition of Fermat’s last
theorem that documents the revision history. The resource has two revisions; for
each, the act of creation has an author and a date given as additional metadata:
<link rel="rev:created_by_act" href="[_:creation]"/>
<link rel="rev:current_version" href="[_:current]"/>
<link rel="rev:has_version">

<resource about="[_:v1]" typeof="rev:Revision">
<link rel="rev:content" href="fermats−last−theorem?rev=1"/>
<link rel="rev:created_by_act">

<resource about="[_:creation]" typeof="chg:Creation">
<link rel="event:agent" href=".../Pierre_de_Fermat"/>
<meta property="dc:date">1637−06−13T00:00:00</meta>

</resource></link></resource></link>
<!−− revision 2 (proof by Wiles) omitted to save space −−>
<link rel="rev:has_version">

<resource about="[_:current]" typeof="rev:Revision">
<link rel="rev:content" href="fermats−last−theorem?rev=3"/>
<link rel="rev:created_by_act">

<resource typeof="chg:Import">
<link rel="event:agent" href="http://.../kohlhase"/>
<meta property="dc:date">2006−08−28T00:00:00</meta>
<link rel="rev:prior_version" href="[_:v2]"/>

</resource></link></resource></link>

As we modeled our metadata ontologies in OMDoc, we are now able to extend
it by a formal specification of certain rules that had only informally been stated
in the OMDoc 1.2 specification: for example, that most DC metadata propa-
gate from document sections down into subsections unless subsections specify
different values, or that any dc:creator of a subsection of a document becomes
a dc:contributor to the whole document.

4.3 Extracting Metadata to RDF

Similarly to the extraction of RDF representations of OWL ontologies written in
OMDoc (cf. Sect. 3.3), we implemented a Krextor extraction module for RDFa.
We then divided the RDFa extraction rules into XHTML-specific ones and into
generic ones, the latter of which we combined with support for our OMDoc-
specific metadata syntax. The extraction of RDFa from OMDoc is performed
both in the extraction of OWL from OMDoc, where it enriches the extracted
ontologies with metadata, and in the extraction of RDF outlines from OMDoc
in terms of the OMDoc’s own document ontology. The latter is a foundation
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for semantic web applications having OMDoc (and not OWL) as their native
language, such as the semantic wiki SWiM [Lan08b].

4.4 Annotation

As the listing in Sect. 4.2 shows, the new RDFa-based metadata syntax is much
more verbose than the old one of OMDoc 1.2. Therefore, we suggest two ways of
facilitating the annotation: For manual authoring, we keep the old, “pragmatic”
OMDoc 1.2 syntax and specify a transformation of such annotations to the new,
“strict” RDFa syntax – implementable, e. g., in XSLT. Having a rich pragmatic
syntax that is convenient to author and a strict syntax that is more suited
for automated processing and validation is actually a general strategy that we
first introduced in MathML 3 and also employ for other aspects of OMDoc. In
certain application settings, we can generate part of the metadata automatically.
In the SWiM wiki [Lan08b], for example, the names of the author and the
contributors of a document are known from the user profiles of these persons
and only inserted into the metadata record of a document when it is exported
from the wiki to a file. The same holds for the revision history.

5 Evaluation and Discussion

We evaluated our approach on a reimplementation of FOAF in OMDoc. From
studying the OWL implementation and the specification of FOAF, we noticed
the following problems, which we were able to solve using OMDoc:

1. FOAF references entities from other ontologies (DC, WordNet, Geo Positioning,
etc.), but it does not import them. With OMDoc tools (as described in [RK08]),
we can identify imports missing in an OMDoc ontology, and our OMDoc→OWL
translation (Sect. 3.3) adds them to the OWL ontology resulting from the trans-
lation.

2. The source code contains notes for developers as XML comments. In the OMDoc
version of FOAF, we were instead able to create informal text sections for them.
Other XML comments divide the ontology into sections like “naming properties”. In
OMDoc, we were able to model document sections without disrupting the logical
structure of the ontology.

3. Some of these comments were attached to individual triples, e. g. foaf:mbox_
sha1sum rdf:type owl:DatatypeProperty. Thanks to literate programming in OM-
Doc, we could precisely add them as informal comments (CMPs) to the respective
OMDoc statements.

4. The following properties are inverses of each other: foaf:maker = foaf:made−,
foaf:depiction = foaf:depiction−, foaf:topic = foaf:page−, and foaf:primaryTopic =
foaf:isPrimaryTopicOf −. While for each p = q−, an OWL reasoner can infer
q = p−, using its built-in axioms for DL reasoning, FOAF redundantly declares
each inverse relationship for both participating properties for the purpose of docu-
mentation. OMDoc allows for making the difference explicit: For any of the above
p, q property pairs, we picked one p and stated p = q− as an axiom, but q = p− as
an assertion that can (provably) be derived from the axiom and the semantics of
owl:inverseOf , as shown in Fig. 2. Domain and range of inverse properties can be
handled similarly.
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5. We were able to express the non-OWL semantics of foaf:membershipClass (cf.
Sect. 1). We chose the first-order-logic representation shown in Fig. 2.

6. The correspondence of foaf:maker to dc:creator is only defined in prose. The spec-
ification suggests using foaf:maker whenever the agent who created something is
known by URI, and to use the less semantic dc:creator, which neither has range nor
domain declared, when the creator is only known by a string. Then, it also infor-
mally states a rule that the foaf:name or rdfs:label of the foaf:maker of something
is the same as the dc:creator of that thing. The rule can be captured by a first-
order-logic expression in OMDoc, or alternatively by an OWL 2 property chain
inclusion [CGHM+08]. The notion that foaf:maker is similar to dc:creator but has
a stronger semantics can be captured by having the FOAF theory import the DC
theory and defining a view on DC, namely a morphism that maps dc:creator to
foaf:maker. Views frequently occur in mathematics. We can, for example, model
the theory of integers by a view {◦ �→ +, e �→ 0} on the theory of monoids, where
◦ is the binary operation and e the unit element of the monoid.

7. Finally, we were able to include the informal sections and descriptions of the FOAF
specification [BM07] right into the ontology document. This allows for a unified
management of the formal specification and its informal explanation, including
the introductory chapters and the change log, in a single, coherent document, of
which both OWL and XHTML can be generated. The original FOAF specification
is generated from the OWL ontology and a set of HTML snippet files with detailed
informal descriptions as input using a script, a FOAF-independent version of which
is also available [Boj].

This enhanced expressivity of the OMDoc implementation comes at the ex-
pense of much more verbosity. While in RDF one can easily attach another axiom
to a class (stating, e. g., a subclass relationship or disjointness), most of these
triples have to be represented as a individual axiom in OMDoc, unless there is
an intuitive way of capturing their semantics as types. While better annotation
tools could help (cf. Sect. 4.4), there is also a mathematical approach to im-
proving this: One could add additional axioms to the OMDoc theory for OWL,
which introduce operators for shorthand notations (such as pairwise disjointness
of a whole set of classes) that imply multiple atomic statements– but then all
these axioms would have to be applied before generating OWL from OMDoc.
This can be done by supporting λ-calculus at the meta level and β-reducing all
OMDoc axioms before generating OWL.

As the new metadata framework has not yet been deployed to the OMDoc
users, our evaluation focused on the coverage of the RDFa extraction. We first
implemented XHTML+RDFa support and then generalized that, so we could
evaluate our implementation against the W3C RDFa test suite [HY07], of which
it currently passes 90 out of 100 test cases.

6 Related Work

Concerning expressive ontologies, the Common Algebraic Specification Lan-
guage (CASL) and its extensions for various logics are related to OMDoc and
its module system. For the CASL-based Heterogeneous Tool Set (Hets), it has
been investigated how to integrate OWL-DL and more expressive logics within
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a logical framework [KLMN08]. However, CASL is a purely formal language and
does not allow for integrating documentation. Concerning integrated ontology
documentation, RDFa in combination with RDF-based ontologies is similar to
our approach. RDFa has mainly been used for ABox knowledge so far; we are
only aware of one application of RDFa for TBox knowledge: Ontology Online is
a web site for browsing and querying OWL and RDFS ontologies. Every page vi-
sualizes one entity of an ontology – as XHTML with the original OWL or RDFS
embedded as RDFa annotations [Dec07]. Metadata for technical specifica-
tions are supported by DocBook [Wal08], a semantic markup language that had
originally been conceived for software documentation. DocBook has hard-coded,
non-extensible markup for metadata, covering general DC-like metadata, revi-
sion histories, and more. None of this has an RDF semantics. There is, however, a
workaround for adding RDF-compatible annotations to DocBook: Any DocBook
element can carry XLink attributes, from which RDF can be harvested [Dan00].

7 Conclusion and Further Work

By connecting the semantic markup language OMDoc and techniques from
MKM to the semantic web standards OWL and RDFa, we contributed a lan-
guage for ontologies and technical specifications that supports different levels of
expressivity and formality but still remains compatible with the existing seman-
tic web infrastructure. As an anonymous reviewer pointed out, we use (MK)M –
i. e. techniques from the management of mathematical knowledge – for M(KM)
– i. e. for managing knowledge in a mathematical way. We consider our scalable
metadata framework applicable to other MKM languages, such as OpenMath
CDs, as well. For example, it has been proposed to add a metadata field for the
author to OpenMath 3 content dictionaries10. Simply employing RDFa with an
appropriate ontology would facilitate such decisions.

Our next planned step is identifying further possibilities to modularize the on-
tologies that we have implemented in OMDoc so far – including the OMDoc
formalizations of RDF, RDFS, and OWL –, or making existing modularity more
explicit, and then integrating our OMDoc→OWL translation with Hets to
enable heterogeneous reasoning [KLMN08]11. Finally, we want to apply existing
OMDoc applications to ontologies written in OMDoc, enhance the SWiM wiki
by user interface elements for more conveniently editing and browsing such on-
tologies, and evaluate its usability in a case study involving ontology engineers.
Our group is working on a distributed database for mathematical documents
(TNTBase [Zho09]). This database will also employ our document renderer and
then follow the practice of content negotiation that is well established on the
semantic web [SC08]: OMDoc-aware clients will get OMDoc, semantic web
clients will get extracted RDF, and web browsers will get XHTML+MathML –
a foundation for a mathematical semantic web.

10 See http://trac.mathweb.org/OM3/ticket/12
11 See http://trac.kwarc.info/krextor/roadmap for work in progress.

http://trac.mathweb.org/OM3/ticket/12
http://trac.kwarc.info/krextor/roadmap
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Abstract. This paper presents a proof language based on the work of
Sacerdoti Coen [1,2], Kirchner [3] and Autexier [4] on λ̄μμ̃, a calculus
introduced by Curien and Herbelin [5,6]. Just as λ̄μμ̃ preserves several
proof structures that are identified by the λ-calculus, the proof language
presented here aims to preserve as much proof structure as reasonable;
we call that property being logically saturated. This leads to several ad-
vantages when the language is used as a generic exchange language for
proofs, as well as for other uses.

We equip the calculus with a simple rendering in pseudo-natural lan-
guage that aims to give people tools to read, understand and exchange
terms of the language. We show how this rendering can, at the cost of
some more complexity, be made to produce text that is more natural
and idiomatic, or in the style of a declarative proof language like Isar or
Mizar.

1 Introduction

Effective Mathematical Knowledge Management requires languages for the rep-
resentation of proofs at a level that is aware of the logical reasoning without
committing to the technical details of a proof representation in e.g. a proof as-
sistant or a derivation system. We aim at a proof language that is general enough
to capturase different notions of proofs and that captures the logical structure of
a proof in detail; a language that differentiates distinct proofs, but identifies two
texts that represent the same proof. Such a proof language can be used as a com-
mon ground for interchange between different systems, as a language to speak
about proofs and transformations thereof (e.g. automatic proof enhancement,
rendering into natural language, . . . ).

Another requirement of such a proof language would be to have a nice natu-
ral language-style pretty-printing; the latter transformation ideally being simple
enough to be done in one’s head, so that a term in that language be readable
by itself for someone that knows the language. In this respect, the natural lan-
guage transformation of λ̄μμ̃ in [1] is very attractive: the transformation is purely
structural, and the term is read strictly from left to right. However, it does not
satisfyingly treat the whole calculus and λ̄μμ̃ (as extended to predicate logic in
Fellowship [3]) still identifies proofs we’d like to differentiate.

This paper presents a more discerning extension of λ̄μμ̃ and a basic rendering
of it in pseudo-natural language. We show how the rendering can be enhanced to

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 405–421, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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produce text that is more pleasing to read, and sketch how λ̄μμ̃ can be translated
into the input language of proof assistants. The language presented here covers
only implicational logic and disjunction (with an extension to full propositional
logic given in the appendix and in [7]) and only proofs where every step taken
is an atomic step of reasoning. So, seen from the viewpoint of proof assistants,
we only deal with proofs where no automation is used. Naturally, the language
will be extended in future work to address these limitations.

1.1 What Is a Proof?

From a logician’s point of view, a proof is a derivation in a formal system of rules.
From a more general mathematician point of view, it is a text that convinces his
peers, for example a text that convinces that if they would spend enough time,
they would be able to produce a fully formal derivation.

With our view centred on proof assistants, we consider the user input to the
proof assistant to be a good candidate for the right notion of proof. A good test
for the suitability of a candidate proof format is thus how well it captures these
“proof assistant proofs”.

This notion of proof is both coarser and finer than logician’s proofs:

– It is coarser, because it glosses over automation done by the proof assistant;
if the automation procedure changes, and finds a different logician’s proof of
a step done by automation, we still consider it the same proof.

– It is finer, because it separates cases where the same logician’s proof (e.g. a
natural deduction derivation) is produced in different ways, e.g. by a top-
down proof or by a bottom-up proof, or by a proof that is partially top-down
and partially bottom-up.

1.2 Design

Differentiating Power. We have already mentioned that we want our proof
language to distinguish texts that code for different proofs, but identify texts
that code for the same proof. This naturally begs the question: when do two
texts represent different proofs and when do they represent the same proof?

We want to preserve the intentional content of a proof, the story that is
being told. For example, a proof that first establishes A, then B and from these
two concludes C is not the same as a proof that first established B, then A
and then concludes. So we want our language to distinguish the order in which
things happen, and to distinguish a forward-style (bottom-up) proof from a
backward-style (top-down) proof, and to distinguish these from proofs that are
done partially forwards and partially backwards.

As we focus on the logical content of proofs, it seems natural that we identify
texts that vary only by purely linguistic differences. For example, the proofs at
the right differ only linguistically from the corresponding proof at the left:

case 1: A holds . . . either A . . .
case 2: ¬A holds . . . or ¬A . . .
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H: A by B H: A by B
hence C thus C by H

But if the difference comes from application of a different reasoning step, a
different deduction rule, then it is not the same proof and the language should
distinguish them. For example:

we have A → C ∧ B we have A → C ∧ B
in particular we have A → C that is, we have A → C (x)
we already established A in lemma 5 and we have B (y)
thus C by lemma 5 and x, we conclude C

The left proof uses a projection (from A∧B, we deduce only A), while the right
proof uses a full decomposition (from A∧ B, we deduce both A and B), it is not
the same deduction rule.

Saturated System. In the design of a proof language, one usually tries to
make it minimal at the logical level: A deduction rule that can be derived from
others is considered superfluous and is therefore removed. We however, aim for
a language that is saturated : Any step that an author can reasonably see as an
atomic step, as a rule of reasoning that his reader will not doubt, should be a
rule of the language. Any deduction rule that a proof assistant, or a logic, can
reasonably choose as part of its “minimal set” should be a rule of the language.
We don’t claim that our system is the final answer to the quest for a saturated
system, but we think we have come a long way. It should be tested on concrete
proof examples to see whether anything is missing. We now give a pointwise
discussion of the use of a saturated language for proofs.
• When the language is used as a proof interchange language, it allows the lan-
guage to be neutral towards the choices of primitives made by different proof
assistants; the language then is not closer to any one specific family of proof
assistants than to another. By its saturation, it is close to all of them. A prime
example of this is the implementation of classical logic: Some proof assistants
implement intuitionistic logic augmented with an axiom, e.g. excluded middle.
Others, such as PVS, use the reasoning with multiple goals of sequent calculus,
where proving any one of the goals finishes the proof. A proof in one style can
be transformed into the other style mechanically, but this produces a different
proof of the same proposition. A language that provides classical logic solely
through the double negation rule cannot faithfully represent PVS proofs.
• It makes the language particularly well suited to talk about proof manipula-
tions, e.g. an algorithm that transforms proofs from one system into another.
Because the saturated language has the concepts and rules from both systems,
the transformation can be expressed as a transformation of terms of that
language.
• It gives a tool to study and characterise what kinds of proofs a system can han-
dle, because these can be expressed as sublanguage of the saturated language.
• When the language is used as a proof authoring language, it has the advantage
to present all choices in a uniform way, without arbitrary distinction between
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which (in the user’s intuition) atomic step is atomic for the system and which
step is a lemma application. There is no reason the user should have to care
about that distinction.

Taking all this together, imagine a user that wants to work in classical logic,
but is used only to its expression as intuitionistic logic plus double negation
law. He ploughs on with his proof, but his proof assistant keeps track of the
alternative goals he could be proving instead of the goal he is thinking of, and
informing him of that list in a side-window. The user keeps an eye on it, and
notices that this other goal seems easier to prove at this point. He does so. He
doesn’t understand the proof he has written, but he asks the system to trans-
form it into an intuitionistic logic plus excluded middle proof, and he has a proof
he can read and understand. By being based on a saturated logical system, the
proof assistant has made its user’s life easier.

Naturally, the kernel of the proof assistant can still happen in a minimal
system, interpreting the other rules as lemma applications. A next version of
the proof assistant may actually use a different minimal set of rules, and no one
will notice. This is a kind of “abstract datatype” approach to logic: One does
not need to look into the choices the proof assistant has made; one is free to do
the things the logic one works in allows, the system implementing the abstract
signature maps some steps to atomic steps and some others to lemmas, but this
is none of our concern.

Human Factor. The proof language should also cater for human use, which
amounts to the following two criteria.
• Understandability. Expressions of the language should mean something to
a reader, be understandable. This is ensured if the user knows a transformation
to natural language that is simple enough that he can do it in his head, if every
construct of the language has a clear semantics and maps to a concept or a rule
that the reader recognises.
• Flexibility. The language should capture different notions of a human’s nat-
ural language view of a rigorous proof.

2 λ̄μμ̃

The λ̄μμ̃ calculus, which covers implication logic, is made up of three interde-
pendent syntactical categories, namely terms, environments and commands :

Syntax Typing judgement
v ::= x | λx : T.v | μα : T.c Γ � v : T | Δ

e ::= α | v ◦ e | μ̃x : T.c Γ | e : T � Δ

c ::= 〈v e〉 c : (Γ � Δ)

Its typing makes use of a hypothesis context (Γ , which is a set of declarations
{x1 : T1, . . . , xn : Tn} where the Ti are simple types and all xi are different) and
a goal context (Δ, which is a set of declarations {α1 : T1, . . . , αn : Tn} where the
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Ti are simple types and all αi are different). The part between � and | is the
stoup and contains a distinguished nameless formula.

Γ, x : T � x : T | Δ Γ | α : T � α : T, Δ

c : (Γ � α : T, Δ)
Γ � (μα : T.c) : T | Δ

c : (Γ, x : T �Δ)
Γ | (μ̃x : T.c) : T �Δ

Γ � v : T | Δ Γ | e : T � Δ

〈v e〉 : (Γ � Δ)
Γ � v : T | Δ Γ | e : T ′ � Δ

Γ | v ◦ e : T → T ′ � Δ

Γ, x : T � v : T ′ | Δ

Γ � (λx : T.v) : T → T ′ | Δ

Intuitionistic Fragment. Intuitionistic logic is obtained by restricting the use
of environment variables to only the most recently (innermost) bound one.

Definition 1. α is said to be used intuitionistically in c iff it occurs only in
positions where it is the most recently bound environment variable. Equivalently,
no path from the μ that binds α to an occurrence of α traverses a μ.

The three syntactical categories are to be understood as:

term v proves the sequent Γ � T, Δ. T is singled out as the thesis one is cur-
rently working on; switching is allowed, but is an explicit step: a μ captures
the current thesis, gives it a name so that it can be referred back to later
and goes to a “neutral” state where no formula is distinguished.
The natural language rendering of a term v thus naturally is some text that
is a proof of the sequent that types v, with the type of v as focus (current
thesis) at the beginning of the text.

environment e expects (consumes) a proof of T (a term v typed by Γ � v :
T | Δ) and continues further with the proof of sequent Γ, T � Δ, using the v
it has consumed. A μ̃ is the dual of μ; it captures the consumed proof and
gives it a name.
The natural language rendering of an environment thus naturally is a con-
text; that is some text containing a placeholder, a hole, such that if the
placeholder is filled in with a proof of Γ � T, Δ, then the result is a proof of
Γ � Δ. Furthermore, in this paper, the placeholder will, in the spirit of [1],
always be at the very beginning of the rendering.

command combination of a term and an environment (a provider and a con-
sumer) typed by the same Γ , T and Δ into a “closed” whole proving the
sequent Γ � Δ, which is the type of c. The type of commands does not have
a stoup (no singled out formula).
The natural language rendering of the command 〈v e〉 thus naturally is
the rendering of e with the placeholder filled in with the rendering of v. In
this paper, this amounts to the concatenation of the rendering of v and the
rendering of e.

Definition 2. A command whose environment ends in α is said to conclude α.
It ultimately concludes α if it concludes α or ends in a binder (i.e. μ̃x : T.c)
whose binding domain (i.e. c) ultimately concludes α.

For example, 〈v v′ ◦ α〉 concludes α, but 〈v v′ ◦ μ̃y : T. 〈v0 v1 ◦ α〉〉 does not.
The latter ultimately concludes α.
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3 Basic Pseudo-natural Language Rendering

The purpose of this rendering is to be a purely depth-0 structural, left-to-right
reading of λ̄μμ̃ expressions, that is faithful to the proof the expression codes for.
It is the rendering of [1], extended to handle the whole calculus and not only
the intuitionistic fragment. ↪→ is an increase in indentation level and ←↩ a
decrease.

[[x]] := by x [[α]] := ←↩ done proving α

[[λx : T.v]] := assume T (x) [[v]] [[v ◦ e]] := and [[v]] [[e]]
[[μα : T.c]] := thesis T (α) [[μ̃x : T.c]] := we have proven T (x)

↪→ [[c]] [[c]]
[[ 〈v e〉]] := [[v]] [[e]]

Example 1. This term

λxR : P → R.λxP : Q → S → P.λyS : S.λyQ : Q.μα : R.

〈xP yQ ◦ yS ◦ μ̃yP : P. 〈xR yP ◦ α〉〉

of type (P → R) → (Q → S → P ) → S → Q → R renders as

assume P → R (xR)
assume Q → S → P (xP )
assume S (yS)
assume Q (yQ)
thesis R (α)

by xP and by yQ and by yS

we have proven P (yP )
by xR and by yP

done proving α

The following term of the same type:

λxR : P → R.λxP : Q → S → P.λyS : S.λyQ : Q.μα : R.〈
xR

(
μβ : P. 〈xP yQ ◦ yS ◦ β〉

)
◦ α

〉
renders as

assume P → R (xR)
assume Q → S → P (xP )
assume S (yS)
assume Q (yQ)
thesis R (α)

by xR and thesis P (β)
by xP and by yQ and by yS

done proving β
done proving α
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The previous term was a forward (bottom-up) proof, this is backward
(top-down) proof. In this manner, λ̄μμ̃ allows to choose at every step whether
it is done backwards or forwards.

Classical Logic. Sequent calculus handles classical logic by allowing a set of
formulas on the right hand side of the �. In terms of ordinary logical arguments,
this means that one maintains a set of goals throughout the reasoning; concluding
any one of these goals concludes the whole proof. In a λ̄μμ̃ term, there is one
goal “in focus” (the one before the stoup) and the other ones are named by
environment variables; we can switch to another goal by using its name. To
show how our extension of the [1] rendering to classical logic works we give as
an example a proof of Peirce’s law, ((P → Q) → P ) → P . This uses the “goal
switching” facility.

λx : (P → Q) → P.μα : P. 〈x (μβ : P → Q. 〈λy : P.μγ : Q. 〈y α〉 β〉) ◦ α〉

which renders as

assume (P → Q) → P (x)
thesis: P (α)

by x and thesis P → Q (β)
assume P (y)
thesis: Q (γ)

by y
done proving α

done proving β
done proving α

The classical logic step is the first “done proving α”. Intuitionistically, one would
have to prove γ at this point, but we conclude α instead, which concludes the
whole proof.

4 Enhanced Pseudo-natural Language

We present several enhancements to the basic transformation, that do not break
faithfulness to the proof the expression embodies. In order to keep the presen-
tation simple, we will not discuss the interaction between the enhancements
explicitly, unless there is an interesting or problematic point.

Backwards Proofs. This enhancement, namely replacing “and thesis” by “the
thesis is reduced to”, was already proposed in [1].

[[(μα : T.c) ◦ e]] := the thesis is reduced to T (α)
↪→ [[c]] [[e]]

It makes the intent of backwards proofs much more clear. Read the previous
example again while mentally doing the replacement.
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Intuitionistic Logic. Here, we recognise when single-goal logic (i.e. intuitionis-
tic logic, plus eventually a classical logic axiom) is used and adapt the rendering.
This consists in omitting the “(α)” when rendering a μα : T.c when α is used
intuitionistically in c, combined with these rules; ↵ is a line break.

[[α]] when the innermost parent μ binds α

:= ←↩ done
[[μα : T.c]] when c ultimately concludes α

:= we have to prove T (α)↵ ↪→ [[c]]

With this improvement, our natural language translation gives the same result
as the one in [1] on single-goal (sub)proofs, and also handles multiple-goal proofs.

Announcing Thesis Changes. The basic rendering informs the reader that
what has been proven was not what the reader thinks of as “the current thesis”
only at the end of a subproof. We see that e.g. in “done proving β” or “we have
proven T (x)”. That is essentially inherited from a prefix depth-first left-right
reading of λ̄μμ̃ terms. It enhances the readability of the proof if such changes are
announced at the start of the corresponding subproof, rather than at the end.
This is typically also required in the proof input language of proof assistants.
There are essentially three situations where such a thesis change happens:

Switching to another goal in Δ, a thing that is implicit in the standard se-
quent calculus, but is made explicit by the stoup structure of λ̄μμ̃. This
corresponds to the pattern μα : T.c where c does not ultimately conclude
α (but, say β : T ′). We want to announce the thesis T ′(β), however, in a
pattern like μα : T. 〈v μ̃x : T ′′. 〈v′ c〉〉 we want to delay the announcement
until we are under the μ̃ binder. As a solution, we use a subscript in the
transformation to keep track of the thesis currently active in the natural
language text.

[[ 〈v e〉]]β when e does not conclude β and concludes α

:= we now consider thesis α

[[v]]α[[e]]α
[[μβ : T.c]]α := thesis T (β)↵ ↪→ [[c]]β

This rendering keeps implicit in the natural language text that the active
thesis is the most recently introduced one.

A cut. If the root of the term of a command is a μ, then the basic rendering
already makes the announcement; we just tweak the text a bit:

[[ 〈μα : T.c e〉]] := we now prove T (α)
↪→ [[c]]

[[e]]

As to the pattern 〈λx : T.v e〉, it is dismissed as “bad style”: It is a proof
that does a thesis change, but refuses to announce it; fixing it crosses the
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line of showing a better proof than the one written, not the proof written.
It is suggested to η-expand this term to 〈μα : T. 〈v α〉 e〉, which can be
done programmatically as part of a “proof enhancement” transformation. A
similar thing happens with the pattern v◦e, where the root of v is a recursive
constructor other than μ (e.g. λ), with the same solution.

The pattern 〈v v1 ◦ . . . ◦ vn ◦ μ̃x : T.c〉. We can describe the environment
part more succinctly by writing e(μ̃x : T.c): it is an environment that finishes
with μ̃x : T.c and e(·) is that environment with the μ̃ removed and replaced
by a placeholder ·. A rendering would be

[[·]] := ←↩ done
[[ 〈v e(μ̃x : T.c)〉]] := we now prove T (x)

↪→ [[v]] [[e(·)]]
[[c]]

It forms a critical pair with the “detect a cut” rule, resolved with

[[ 〈μα : T.c μ̃x : T.c′〉]] := we now prove T (x, α)
↪→ [[c]]

[[c′]]
[[ 〈μα : T.c e(μ̃x : T ′.c′)〉]] := we now prove T ′ (x)

↪→ we now prove T (α)
↪→ [[c]]
[[e(·)]]

[[c′]]

These rules catch occurrences of μ when its type is not the current thesis in the
text; this allows to enhance the rendering of the other occurrences (those that
capture the current thesis and give it a name):

[[μα : T.c]] := left to prove: T (α)
↪→ [[c]]

Remark 1. The rules introduced here have the big disadvantage that their struc-
tural depth (the depth at which they have to look into an expression before de-
ciding how to render its root) is unbounded. This can be fixed by changing the
syntax a bit, so that in a command the terminal constructors of the environment
are available at depth 1:

E ::= · | v ◦ E all non-terminal environment constructors
e ::= α | μ̃x : T.c all terminal environment constructors
c ::= 〈v E e〉

The meaning of the new syntax command 〈v v1 ◦ . . . ◦ vn ◦ · e〉 is just 〈v v1 ◦ . . .
◦ vn ◦ e〉 The typing rules can be adapted accordingly.
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From Binary to n-ary. ◦ is a binary constructor, but one can recognise se-
quences of it and treat it as an n-ary constructor; this is here combined with
controlling its interaction with term variables and μ more closely:

[[x0 ◦ x1 ◦ · · · ◦ xn ◦ e]] := by x0, x1, . . . , xn−1 and xn [[e]]
[[ 〈x x0 ◦ x1 ◦ · · · ◦ xn ◦ e〉]] := by x, x0, x1, . . . , xn−1 and xn [[e]]

[[(μα0 : T0.c0) ◦ · · · ◦ xj ◦ . . .

· · · ◦ (μαi : Ti.ci) ◦ · · · ◦ e]] := the thesis is reduced to:
• T0 (α0)

↪→ [[c0]]
. . .

• assumption xj

. . .

• Ti (αi)
↪→ [[ci]]

. . .

[[e]]

5 Saturation

There is a variety of alternative ways to handle implication in the calculus in
[6]. In our quest for a saturated calculus, we examine them all and give them a
natural language rendering.
ι2 The first, and the only one we decide to keep as is, is called ι2 in [6], but this
conflicts with another constructor with the same notation; we thus rename it to
λ_ : A, in line with the convention that _ is a special name for “do not bind”:

v ::= . . . | λ_ : A.v
Γ � v : T ′ | Δ

Γ � (λ_ : T.v) : T → T ′ | Δ

[[λ_ : T.v]] := assumption T in thesis is not necessary. [[v]]

If the transformation has access to typing information (e.g. because every ex-
pression is annotated with its type), then one can use:

[[λ_ : T.v]] := it suffices to prove t(v). [[v]]

where t(v) is the type of v. This introduces some redundancy if a μ follows
immediately; this redundancy can be avoided with

[[λ_ : A.μα : B.c]] := it suffices to prove B (α)↵ ↪→ [[c]]
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ι1 As to its companion ι1,

v ::= . . . | ι1(e)
Γ | e : A � Δ

Γ � ι1(e) : A → B | Δ

while the logical step performed is naturally and immediately accepted as admis-
sible, it is not intuitively seen as one atomic step; it is more natural to decompose
it into two steps, namely assuming A and erasing goal B. We thus introduce a
“no binding” version of μ:

v ::= . . . | μ_ : T.c
c : (Γ � Δ)

Γ � (μ_ : T.c) : T | Δ

[[μ_ : T.c]] := we give up on the current thesis ↵ ↪→ [[c]]

This μ_ : T.c has a natural dual in a putative μ̃_ : T.c:

e ::= . . . | μ̃_ : T.c
c : (Γ � Δ)

Γ | (μ̃_ : T.c) : T � Δ

but while μ_ : T.c fulfils a real role (e.g. in λx : Tx.μ_ : ⊥. 〈x β〉, the current
goal ⊥ really is not useful in the rest of the proof; it is thus not useful to bother
to give it a fresh name α to never refer to it later), any instance of μ̃_ : T.c
shows that the proof contains a completely non useful part: it takes the effort
to prove T , but then just throws that result away. 〈x y ◦ μ̃_ : T. . . . 〉 would
correspond to something like “by x and y, we have proven T , but don’t use that
fact in the rest of the proof . . . ”.

Furthermore, ι1 is an instance of a bigger problem in the context of the rest
of the natural language translation: term constructors that syntactically recurse
into the environment category do not fit well. We have not found a nice phrase
that turns what follows (which, being the translation of an environment, con-
sumes a proof) into something which provides a proof. The best we could do was
a rather weak and unnatural “the other goals follow from A↵ [[e]]”, which had to
be combined with changing the translation for μ̃x : T.c to “we can now assume
T ↵ [[c]]”, because e.g. in the expression ι1(μ̃x : A.c) of type A → B, A has not
been proven, but assumed, so “we have proven” does not fit anymore. It makes
the translation of μ̃ in other situations weaker, but not wrong:

〈μα : T. . . . μ̃x : T. . . . 〉

thesis T (α)
. . .

done proving α
we can now assume T (x)
. . .

A construct that has no good natural language rendering cannot be a natural
proof step for vernacular proofs and is thus not necessary to form a saturated
system.
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λ(x : A, α : B).c naturally feels like two steps and is advantageously replaced
by λx : A.μα : B.c.

v ::= . . . | λ(x : A, α : B).e
c : (Γ, x : A � α : B, Δ)

Γ � (λ(x : A, α : B).c) : A → B | Δ

λα : B takes an environment as argument, which raises the problems already
discussed.

v ::= . . . | λα : B.e
Γ | e : A � α : B, Δ

Γ � (λα : B.e) : A → B | Δ

[[λα : B.e]] := we now prove B, which follows from A

6 Link to Proof Assistants

We here succinctly treat the transformation of intuitionistic-logic λ̄μμ̃ terms (not
the extended calculus) to Isar proofs by way of an example. A transformation into
Mizar is similar (except that Mizar can only do forward steps, no backward step).
Also a transformation into PVS has been designed, but it is less direct. Both
are not included here for lack of space. All these translations have been tested
by evaluating them manually on a few examples and having the corresponding
prover accept the result. It should be noted that not all λ̄μμ̃ terms can be mapped
faithfully to an Isar proof: there are proof constructs in our saturated system that
Isar cannot capture. We could syntactically single out the λ̄μμ̃ terms that map
to an Isar proof, but we take a different approach by describing a transformation
of λ̄μμ̃ terms. The terms that are invariant under this transformation are the
ones corresponding to Isar proofs.
Replace any pattern in the left column by the one in the right column:

〈v · · · ◦ (λx : T.v′) ◦ . . . 〉 〈v · · · ◦ (μα : Tα. 〈λx : T.v′ α〉) ◦ . . . 〉
〈λx : T.v v0 ◦ . . . 〉 〈λx : T.v μ̃y : T ′. 〈x v0 ◦ . . . 〉〉
〈v · · · ◦ (μα : Tα.c) ◦ x ◦ . . . 〉 〈v · · · ◦ (μα : Tα.c) ◦ (μβ : Tβ. 〈x β〉) ◦ . . . 〉
〈μα : Tα.c e〉 c{α := e}
λx : T.x′ λx : T.μα : T ′. 〈x α〉

Most of these transformation rules are interesting by themselves and fall under
“the pattern on the left is bad proof style”, but others have their origins in
idiosyncrasies of Isar.

We do not deal here with mapping Isar proofs to λ̄μμ̃, but we claim that any
Isar proof that does not use automation can be mapped faithfully to λ̄μμ̃. The
Isar commands not used by the transformation below are mostly either syntactic
sugar or logically equivalent to a basic command that we do use, or are concerned
with automation.

The transformation follows. The purpose of cl is to count the lambdas in a
term; we don’t spell out its definition. We use the alternate syntax of page 413
for clarity.



A Logically Saturated Extension of λ̄μμ̃ 417

[[μα : Tα. 〈v E μ̃x : Tx.c〉]] := have x : T [[ 〈v E α〉]]
[[μα : Tα.c]]

[[μα : T.c]] := show T [[c]]
[[λx : T.v]] := assume x : T [[v]]

[[ 〈x y0 ◦ · · · ◦ yn−1 ◦ · α〉]] := by (rule mp, ...(n times)..., rule mp,

fact x, fact y0, ..., fact yn−1)

[[ 〈x y0 ◦ · · · ◦ yn−1 ◦ v0 ◦ · · · ◦ vp−1 ◦ · α〉]] :=
proof (rule mp, ...(n + p times)..., rule mp,

fact x, fact y0, ..., fact yn−1) ↪→
[[v0]]
. . .
[[vp−1]] ←↩

qed
[[ 〈v · α〉]] :=

proof (rule impI, ...cl(v) times..., rule impI) ↪→
[[v]] ←↩

qed

In the rule for [[μα : Tα. 〈v E μ̃x : Tx.c〉]], 〈v E α〉 is not well-typed (the α may
be unbound or of the wrong type), but that doesn’t matter, because the ‘name’
α is never used in the Isar output (it translates to qed). One can vary on this
translation, producing different Isar proofs – that we claim have the same logical
structure.

7 Disjunction

As an example to extension to propositional logic, we briefly treat disjunction;
again these constructs are catalogued in [6]; the natural language rendering is
ours:

v ::= . . . | ι1,2(v) | [α : A, β : B].c | λ1,2α : A.v

e ::= . . . | [e, e]

Γ � v : T | Δ

Γ � ι1(v) : T ∨ T ′ | Δ

Γ � v : T ′ | Δ

Γ � ι2(v) : T ∨ T ′ | Δ

c : (Γ � β : T ′, α : T, Δ)
Γ � ([α : T, β : T ′].c) : T ∨ T ′ | Δ

Γ | e : T � Δ Γ | e′ : T ′ � Δ

Γ | [e, e′] : T ∨ T ′ � Δ

Γ � v : T ′ | α : T, Δ

Γ � (λ1α : T.v) : T ∨ T ′ | Δ

Γ � v : T | α : T ′, Δ

Γ � (λ2α : T ′.v) : T ∨ T ′ | Δ
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[[ι1(v)]] := it suffices to prove the left part of the disjunction [[v]]
[[ι2(v)]] := it suffices to prove the right part of the disjunction [[v]]

[[λ1,2α : A.v]] := keeping in mind that we may prove A (α), [[v]]

[[[α : A, β : B].c]] := thesis A (α) or B (β) [[[e, e′]]] := either
↪→ [[c]] ↪→ [[e]]

or
↪→ [[e′]] ←↩

Many of the improvements of section 4 apply to disjunction mutadis mutandis.
This is further detailed in [7], but here are a few examples:

– [α : A, β : B] is a μ-like construct; the definitions and extended rules that
deal with μ should thus deal also with it, suitably adapted. For example, the
“backwards proofs” enhancement:

[[([α : A, β : B].c) ◦ e]] := the thesis is reduced to T (α) or T’ (β)
↪→ [[c]] [[e]]

Similarly, the definition of “α is used intuitionistically in c” has to be changed
to “no path from the μ that binds α to an occurrence of α traverses a μ or
a [·, ·]”. In particular, if α is bound by a [·, ·], it is not used intuitionistically;
[·, ·] is an inherently non-intuitionistic construct.

– λ1,2, ι1,2 and [e, e′] benefit particularly strongly from typing information:

[[ι1,2(v)]] := it suffices to prove t(v) [[[e, e′]]] := either t(e)
[[v]] ↪→ [[e]]

[[λ1α : A.(v)]] := keeping in mind we may prove A (α), or t(e′)
we proceed with the proof of t(v) ↪→ [[e′]] ←↩

– Just as sequences of ◦ can be collected in an emulation of n-ary implication,
sequences of ι1, ι2 can be collected in an emulation of n-ary disjunction.

The introduction of [·, ·] has interesting consequences for the enhanced ren-
dering: there is not anymore unicity of the terminal environment constructor
(the first environment constructor that does not syntactically recurse back into
category e). For example, [. . . α, . . . μ̃x : T.c].

Definition 3. If all terminal environment constructors of an environment e are
the same (the same α or μ̃x : T.c with the same x and the same T), then e is said
to terminate uniformly in that constructor. Similarly, e (ultimately) uniformly
concludes α if all its branches (ultimately) conclude α.
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The adaptation to that situation is to then defer the decisions (on commands)
that depend on the terminals of the environment, when these are not uniform.
For example, the “announce thesis changes” enhancement:

[[[e, e′]]]β := either t(e) ↪→
if e does not conclude β and uniformly concludes α

we now consider thesis α

[[e]]α
else if e terminates uniformly in μ̃x : T.c

we now prove T (x)
↪→ [[e(·)]]β

[[c]]β
else

[[e]]β
end if
or t(e′) ↪→
the same for e′

←↩

Similarly, in the alternative syntax of remark 1 page 413, a command now needs
to take a list of es whose length matches the number of ·s in the E.

8 Future Work

There are several directions in which this can be taken further. The most obvious
is extending, with the same concern for saturation, to some predicate logic. The
second glaring need is that the problem of capturing automation in theorem
provers needs to be addressed for the language to be really functional in practise
as a proof interchange language. A natural idea is to store as part of the term a
witness provided by the automation, which would be used to produce a proof in
a system whose automation is weaker. Alas, it may not be practical or possible to
get a witness from some provers’ automation (no access to its source code, prover
not structured in De Bruijn criterion conformant way (that is the automation is
not already forced to provide a witness to a kernel), . . . ).

Also, our calculus is not completely saturated in its treatment of classical
logic; one can convincingly argue that e.g. De Morgan laws and classical decom-
position of disjunction tend to be considered as valid atomic deduction steps in
the vernacular; a saturated calculus should thus have constructs for them.

The proof of the pudding being in the eating, we will concretely implement the
transformations from and to various proof languages (various proof assistants,
but also e.g. a standard sequent calculus); this would find a natural place as part
of a proof assistant.
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On a more theoretical side, our natural language rendering has an underlying
concept of structure of a natural language proof, which (when restricted to single-
goal logic) is quite close to the structure of declarative proof languages like Mizar
or Isar. But, in particular in its notion of active thesis, and when a change of it
needs to be explicitly announced (i.e. always), it is not in complete agreement
with the structure of proofs in LKμμ̃ (sequent calculus with ‘stoup’, basically just
λ̄μμ̃ without term/expression/command information). One would like changes
in the active thesis to be characterised as either a cut, or an explicit active thesis
change. We will thus define a sequent calculus whose notion of cut matches the
notion of introducing an arbitrary new thesis (a forward step) in our natural
language, and that matches the natural language’s need for an explicit switch
action between the theses. Restricting the hypothesis-creating children of a left
introduction rule to a left introduction rule or an axiom may be the main thing
needed to achieve the former. It would then be interesting to study proof intent
conserving transformations between that calculus, LKμμ̃, standard stoup-free
sequent calculus and other proof formats.
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A Basic Propositional Logic

v ::= . . . |(v, v)|λ¬x : A.v| � |TE(T )|DN(v)
e ::= . . . |π1,2[e]|(x : A, y : B).c|λ1,2x : A.e|¬[v]| � |DN(e)

Γ � v : T |Δ Γ � v′ : T ′|Δ
Γ � (v, v′) : T ∧ T ′|Δ

c : (Γ, x : T, x′ : T ′ � Δ)
Γ |((x : T, x′ : T ′).c) : T ∧ T ′ � Δ

Γ, x : T |e : T ′ � Δ

Γ |(λ1x : T.e) : T ∧ T ′ � Δ

Γ, x : T ′|e : T � Δ

Γ |(λ2x : T ′.e) : T ∧ T ′ � Δ

Γ |e : T � Δ

Γ |π1[e] : T ∧ T ′ � Δ

Γ |e : T ′ � Δ

Γ |π2[e] : T ∧ T ′ � Δ

Γ, x : T � v : ⊥|Δ
Γ � (λ¬x : T.v) : ¬T |Δ

Γ � � : �|Δ
Γ � v : T |Δ

Γ |¬[v] : ¬T � Δ Γ |� : ⊥ � Δ

Γ � TE(P ) : P ∨ ¬P |Δ
Γ � v : ¬¬T |Δ

Γ � DN(v) : T |Δ
Γ |e : T � Δ

Γ |DN(e) : ¬¬T � Δ

[[(x : A, y : B).c]] := we have proven A (x) and B (y)
[[c]]

[[λ1,2x : T.e]] := we have proven T (x) and [[e]]
[[ DN(v)]] := proof by contradiction
[[DN(e)]] := and by double negation elimination

[[(v, v′)]] := • [[v]] [[π1,2[e]]] := in particular [[e]]
• [[v′]]

[[[α : A, β : B].c]] := thesis A (α) or B (β) [[¬[v]]] := and [[v]]
↪→ [[c]] ←↩ done (ECQ)

[[[e, e′]]] := either [[�]] := true
↪→ [[e]] [[�]] := ←↩ done (EFQ)

or [[λ¬x : A.v]] := assume A (x) [[v]]
↪→ [[e′]] ←↩ [[ TE(T )]] := by TE

ECQ is an abbreviation for “ex contradictione (sequitur) quodlibet” (from a
contradiction, anything follows), EFQ for “ex falso (sequitur) quodlibet” (from
falsehood, anything follows) and TE for “(principium) tertii exclusi” (principle
of excluded middle).

Again, some natural language rendering enhancements apply mutatis mu-
tandis; others need to be adapted. For example, dually to what happens with
disjunction, (x : A, y : B).c is a μ̃-like construct and the enhancements that deal
with μ̃ need to similarly deal with it. Also, the definition of “e concludes α” has
to be changed so that e.g. � and ¬[v] conclude α for any α.
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Abstract. The extraction of the relations of nested table headers to content cells 
is automated with a view to constructing narrow domain ontologies of semi-
structured web data. A taxonomy of tessellations for displaying tabular data is 
developed. X-Y tessellations that can be obtained by a divide-and-conquer 
method are asymptotically only an infinitesimal fraction of all partitions of a 
rectangle into rectangles. Admissible tessellations are the even smaller subset of 
all partitions that correspond to the structures of published tables and that con-
tain only rectangles produced by successive guillotine cuts. Many of these can 
be processed automatically. Their structures can be conveniently represented by 
X-Y trees, which facilitate relating hierarchical row and column headings to 
content cells. A formal grammar is proposed for characterizing the X-Y trees of 
layout-equivalent admissible tessellations. Algorithms are presented for trans-
forming a tessellation into an X-Y tree and hence into multidimensional, layout- 
independent Category Trees (Wang abstract data types).  

Keywords: document understanding, tables, rectangular tilings, X-Y trees,  
table grammars, Wang notation. 

1   Introduction 

Most quantitative data available in electronic form appears in the form of tables. We 
study formal aspects of web tables with a view to extracting their content. Various 
configurations of rectilinear tessellations defined on a grid can convey information in 
tabular form to human readers. In order to simplify the development of algorithms 
that recover the information from frequently occurring configurations automatically 
we construct a taxonomy of tabular layouts that may be considered equivalent from 
the perspective of table analysis.  

Our work differs from earlier work w.r.t. (1) focusing on computer-constructed 
web tables rather than tables from scanned documents, (2) making use of commercial 
software to import web tables into a spreadsheet, (3) describing tables by X-Y trees 
and, most importantly, (4) facilitating content analysis by extracting the relationship 
of headers to content cells rather than only the geometric cell structure. This research 
is part of a larger project [1] to generate narrow-domain ontologies (e.g., for automo-
biles, obituaries, geopolitics) from semi-structured web data, which is itself a step 
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towards realization of the Semantic Web [2,3]. Concentrating on tabular sources of 
quantitative information avoids some difficulties of natural language processing.  

Comprehensive reviews of two decades of research on table processing appear in 
[4,5]. Algorithms were first developed for specifying cell location in terms of rulings 
or, in the case of unruled tables, according to the geometric alignment and typo-
graphic similarity of cell content. A recent proposal for an end-to-end system divides 
the task into table detection, segmentation, function analysis, structural analysis and 
interpretation, but was not implemented and does not define which tables can and 
cannot be processed [6]. None of the methods that address web tables (e.g. [7]), car-
ries the analysis to the layout-independent multi-category level.  

This paper formalizes the methods we used in an experiment on 200 tables randomly 
chosen from eight large web sites. The 200 tables were imported into Excel and edited 
into a form that could be processed algorithmically. The average size of the tables was 
587 cells, and editing required on average 104 seconds [8]. Augmentations such as ag-
gregates, annotations, footnotes and titles that are important componenents of most 
tables were also processed, but they are not included in the formalism presented here. 

1.1   Rectangular Tessellations 

A discrete rectilinear tessellation, or a rectangular tiling, is the partition of an iso-
thetic rectangle into rectangles defined on an m x n lattice. The geometry of such a 
construct can be uniquely represented by the locations and types of all its junction 
points, i.e., points at which two non-collinear lines meet or cross. The number of 
tilings, Nall(m) ≡ Nall(m,m), increases exponentially with the size of the grid. A quick 
count reveals that even a 4x4 grid has 70,878 different partitions. Some of these, 
called X-Y-tessellations, can be obtained by a divide-and-conquer method based on 
successive horizontal and vertical guillotine cuts. Klarner and Magliveras proved that 
the number Nxy(m) of X-Y-tilings decreases quickly with the size of the grid [9]. 
Although Nxy(4) = 68,480, which does not differ in order of magnitude from 70,878,  

xy allm
lim N (m) / N (m) 0

→∞
= . 

Figure 1 shows a simple X-Y-tessellation, and Figure 2 shows tilings that are not X-
Y-tessellations. In the VLSI literature these are known as nonslicing structures [10].  
It is known that horizontal and vertical polar graphs (that are duals of each other) can 
be drawn for any rectangular tiling, and that for a slicing structure (X-Y-tessellation) 
the polar graphs are series parallel. The concept of polar graph goes back to a 1940 
paper on the dissection of rectangles into squares [11]. 

Polar graphs abstract away the geometry of rectangular tilings but preserve the ad-
jacency relationship between the tiles in the horizontal and vertical directions. X-Y 
 
 

 

Fig. 1. A simple X-Y tessellation 

 

Fig. 2. Two non-X-Y tessellations 
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trees similarly abstract the geometry X-Y of tessellations by providing a structural 
representation of the rectangles obtained by horizontal and vertical cuts at alternating 
levels. Such partitions can be represented by X-Y trees that we originally proposed 
for page layout analysis [12, 13]. They have been periodically rediscovered and are 
also known by other names like puzzle tree or treemap [14]. They transform a 2-D 
structure into two interlaced 1-D structures, thereby facilitating analysis. Figure 3 
shows two X-Y-tessellations defined on a 4 x 4 lattice that are geometrically different 
but are both represented by the X-Y tree shown on the right. We don’t know the num-
ber of structurally different X-Y tessellations, NS,xy(m), but it clearly is much smaller 
than the number of (geometrically) different X-Y tessellations Nxy(m). The transfor-
mation of an X-Y-tessellation to an X-Y tree is discussed in Section 2. 

 

 
 

Fig. 3. Two geometrically different but structurally identical tessellations 

1.2   Web Tables  

The layout of tables for the presentation of information is dictated by convention. The 
Chicago Manual of Style [15] and the US Government Printing Office Style Manual 
[16] both have lengthy chapters describing these conventions. All tables have a stub, 
column headings, row headings, and data cells. Several common layouts are illus-
trated in Figure 4. Tessellations that correspond to such layouts are called admissible 
tessellations or table candidates because the location of each data cell is specified by a 
set of hierarchical row and column headings.  

Many tables that appear in the literature do not strictly follow conventions yet are 
readily understandable by their intended readers. For example, a common occurrence is  
 

 
 
 
 
 
    (a)     (b) 
 
 
 
 
 
  (c)     (d) 
 

Fig. 4. Common table layouts. The blank top-left area is the stub. Only the column and row 
headings are labeled. The gray areas are content (delta) cells. Combinations of (a) for columns 
and (b) for rows are popular.  (c) and (d) are more unusual hybrids.  

the absence of a root, or spanning heading, for a category. Let us call the mathemati-
cally indefinable and unknown number of human-understandable tables NT,S,xy(m). We 
propose to process tables in this category by interactively transforming them into a 
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smaller set of admissible tables that can be formally described and algorithmically 
analyzed. The number of admissible tables is NA,S,xy(m).  

For the purpose of algorithmic analysis we need consider only layout-equivalent 
admissible table candidates that do not differ in the number of categories, but only 
with respect to the depth of their heading hierarchies, or the number of rows and col-
umns, as do the examples in Figure 5.  

 
 
 
 

Fig. 5. Layout equivalent tables. The blank areas must be empty. Gray areas contain data. 

Context-free grammars can help to characterize entire families of layout-equivalent 
admissible tessellations, as first demonstrated in [17, 18, 19] and revived here in Sec-
tion 3. A few such families account for the vast majority of tables encountered in 
books, journals, and the web. The number of different layout-equivalent admissible 
table candidates is NL,S,xy(m). We cannot yet process automatically all structurally 
equivalent admissible tables, therefore  NL,S,xy(m) < NA,S,xy(m).  

X-Y trees represent only the physical layout of a table, which can be modified to 
suit page size or column width, or display characteristics. The first step in understand-
ing a table is to analyze its logical structure, which is independent of the presentation 
aspects. Interpretation requires understanding the relationship between headings and 
content cells. An abstract data structure for this purpose was proposed by Wang in 
1996 [20]. It represents headings in terms of category trees (labeled domains), whose 
Cartesian product provides the paths to every content cell (called delta cells). The 
number of categories in a table is called its dimensionality. Figure 6 displays the cate-
gory trees for a simple table. The size of the table is the product of the number of rows 
and columns of delta cells, and it is also equal to the product of the number of leaf 
nodes in the category trees. An algorithm for extracting the Wang Notation from the 
X-Y trees is presented in Section 4. 

Labeled table candidates for which Wang Notation exists are called Well Formed 
Tables (WFT). They are only a subclass of tables encountered in practice. However, 
 

 
 
Category notation: 

    (A,{(A1,{(A11,Φ),(A12,Φ)}),(A2,Φ)}) 
(C, {(C1,Φ),(C2,Φ)}) 
(D, {(D1,Φ),(D2,Φ)}) 
 
Delta notation:     A       C            D 
δ({A.A1.A11,C.C1,D.D1}) = d11 
δ({A.A1.A12,C.C1,D.D1}) = d12 
… 
 

Fig. 6. Wang notation for the categories and data cells of a simple 3-category table 
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most such tables can be transformed to WFT format with little effort. Figure 7 shows 
a table that is not well formed, and its WFT equivalent, obtained by the addition of 
virtual headings. The headings shown are sensible, but any arbitrary labels would do 
for the Wang notation. 

Analyzing the logical structure of a table is necessary but by no means sufficient 
for understanding it. Understanding most tables requires considerable context and 
knowledge that extends far beyond the table under consideration. There is ample 
evidence that automating table understanding, or even merely verifying claims to this 
effect, is very difficult [21, 22, 23].   

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Top: Rootless categories: not an admissible table. Bottom: Virtual headings added to 
obtain an admissible configuration that is also a WFT. 

 

As mentioned, our project is the front end of a larger undertaking that endeavors to cre-
ate narrow-domain ontologies by combining information from web tables [1, 24, 25]. 
Suppose, for instance, that we process the left-hand table in Figure 8 and include it into the 
ontology. Then when we encounter the right-hand table we hope to be able to learn that 
the hepth of goldam is 320 gd [26]. Our current plans to build interactive software for 
harvesting web tables based on the formalisms described above are outlined in Section 5.  

Our approach to the gradual automation of table processing is based on the follow-
ing inequalities, which show that useful tessellations are only a very small fraction of 
all possible tessellations. The various classes of tables are illustrated in Fig. 9. 

NL,S,xy(m) < NA,S,xy(m) < NT,S,xy(m) << NS,xy(m) << Nxy(m) << Nall(m). 

 

 

Fig. 8. Two tables with overlapping information 

 
fleck 

gonsity 
(ld/gg) 

hepth 
(gd) 

burlam 1.2 120 
falder 2.3 230 
multon 2.5 350 

goldam 1.3 ld/gg 320 gd 

falder 2.3 ld/gg 230 gd 

elmer 2.9 ld/gg 350 gd 

CITY Summ er Winte r Sum mer W inter Sum mer W in ter
Montreal 35 11 3 6 2 37 13

Va ncouver 28 18 2 9 19 30 20
James Bay 8 4 9 5 10 6

Table I  M axim um temperatu re

200 0 2001 2002
YEAR

SEASON

Summer Winter Summer Winter Summer Winter
Montreal 35 11 36 2 37 13

Vancouver 28 18 29 19 30 20
James Bay 8 4 9 5 10 6

2000 2001 2002
Table I  Maximum temperature
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NL,S,xy(m) < NA,S,xy(m) < NT,S,xy(m) << NS,xy(m) << Nxy(m) << Nall(m).

Tessellations in Nall(m) but not in Nxy(m) (no X-Y tree representation). 

Both tessellations in Nxy(m), but only one (either one) in NS,xy(m) 
These tessellations are structurally equivalent, but they are not admissible
and therefore not table candidates.  

Both tessellations in NS,xy(m), but only one (either one) in NA,S,xy(m). 
These tables are layout equivalent, but we cannot yet parse them,  
and therefore they are not in NL,S,xy(m). 

       

They are two different admissible tessellations in NL,S,xy(m). We can parse both.

       

The table on the left is a four-dimensional Well Formed Table. The table on the right 
is not a WFT, because the category paths {A,A1; B,B1; C,C2;  D,D1} cannot 
distinguish between the two content cells marked  X. 
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Fig. 9. Discrete rectangular isothetic tessellations. Our taxonomy does not include human-
readable tables to which Wang Notation is inapplicable. The top table without a row header in 
Fig. 7 is certainly in  NT,S,xy(m), but we cannot formally define all human-readable tables. 

2   Tessellations to X-Y Trees 

As discussed above, the X-Y tree is an economical representation of layouts that are 
of interest in table processing. Similar table layouts yield X-Y trees with similar struc-
tures. We can identify tables from which we can algorithmically extract Wang Nota-
tion. We shall also attempt to characterize families of inadmissible table structures 
that can be converted into admissible structures by a few editing steps. We expect to 
be able to automate such frequently used editing protocols. 

 



428 R.C. Jandhyala et al. 

The horizontally and vertically ordered lists of the indices of the junction points of 
a tessellation are not sufficient to derive the corresponding X-Y tree, although the 
combination of pre-order and post-order traversals uniquely characterizes general 
trees. The lists do not characterize the adjacency topology of the tessellations suffi-
ciently for table analysis. Figure 10 illustrates tilings that are not differentiated by the 
structure of their X-Y trees, and different tilings with identical lists. For table analy-
sis, the lists and trees must contain additional data, i.e., the vertical or horizontal loca-
tion of the junction points and the type (e.g. NE-corner, T-connection, crossing) of 
each junction. This allows checking the alignment of cuts in separate subtrees. 

 
 
 
    
     (a)            (b)            (c)         (d) 

Fig. 10. The vertical cut X-Y tree (a) is the same for tilings (b) and (c), but not for (d). How-
ever, tilings (c) and (d) have the same lists of junction point coordinates.  

The recursive algorithm EX2XY obtains the X-Y tree for any tessellation for 
which the tree exists. We use it to transform web tables imported into Excel.  For 
portability, EX2XY produces an XML file. It takes the junction-points data for an X-
Y tessellation and produces a fully-parenthesized representation for it, which can 
either be printed (saved) as a linear string of leaf-block labels and the two kinds of 
parentheses. It can also include geometric information attached to the labels and the 
left parentheses (of either type) in an internal data structure. The latter representation 
is useful for geometric and lexical checks.  

The workhorses of the algorithm are two functions CutV(R) and CutH(R) which 
cut the given rectangle R, respectively, in vertical and horizontal directions. R may be 
specified as (x1,y1,x2,y2), where (x1,y1) are their top-left and (x2,y2) are the bottom-
right junction points. 

CutV and CutH return the first (leftmost or topmost) sub-rectangle of R, obtained 
by a guillotine cut. In the example rectangle of Fig. 11, CutV((1,1,4,4)) would return 
the sub-rectangle (1,1,3,4) and CutH((1,1,4,4)) would return the sub-rectangle 
(1,1,4,2). The cut may be trivial or degenerate, e.g  for R = (2,1,3,2) in the example, 
CutV(R) = CutH(R) = R.  

CutV and CutH are used in a pair of procedures, P1 and 
P2, which call each other recursively (Fig 12).  P1 cuts a 
given rectangle vertically, submitting the leftmost sub-
rectangle to P2 for horizontal cuts. Similarly, P2 cuts a 
given rectangle horizontally, submitting the topmost sub-
rectangle to P1 for vertical cuts.  The main procedure calls 
P1 with the outermost rectangle (1,1,4,4) for vertical-cut 
first, and P2 for horizontal-cut first.  

Although most of our illustrations contain simple exam-
ples created directly in Excel, Figure 13 shows part of an 
actual web table, its Excel version created by the built-in 
IMPORT functionality, and its appearance after editing. 

Fig. 11. A simple exam-
ple to illustrate algo-
rithm EX2XY 
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P1(R); {  
 Declare S: rectangle 
 

S = CutV(R); 
if (S == R) then {if CutH(R) == R) then {print(label(R)); return} }  
/* Also, attach coordinates of R with the label of R */ 
 
else /* have a non-trivial cut */ 
{ 

  print(“[“); /* Also, attach coordinates of  R with this “[“ */ 
 

  Loop { 
   P2(S);  /* H-Cut S */ 

R = R-S; 
S = CutV(R); 

} until S==R; 
 
P2(S);  /* H-Cut the last rectangle */ 
  

  print(“]”) 
} 

} 
 
P2(R); {  
 Declare S: rectangle 
 

S = CutH(R); 
if (S == R) then {if CutV(R) == R) then {print(label(R)); return} }  
/* Also, attach coordinates of R with the label of R */ 
 
else /* have a non-trivial cut */ 
{ 

  print(“{“); /* Also, attach coordinates of  R with this “{“ */ 
 

  Loop { 
   P1(S);  /* V-Cut S */ 

R = R-S; 
S = CutH(R); 

} until S==R; 
 
P1(S);  /* V-Cut the last rectangle */ 
  

  print(“}”) 
} 

} 
 

Fig. 12. Algorithm EX2XY 
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U.S. Coal Supply, Disposition, and Prices  
 

  Report No.: DOE/EIA 0584 (2007) 
  Report Released: September 2008 
  Next Release Date: September 2009 

Table ES1.    xls    pdf     Annual Coal Report 
 

Table ES1. U.S. Coal Supply, Disposition, and Prices, 2006-2007 
(Million Short Tons and Dollars per Short Ton) 

Item 2006 2007 

Production by Region       
 Appalachian          391.2   377.8 
 Interior    151.4   146.7 
 Western   619.4   621.0 
 Refuse Recovery   0.8   1.2 
Total   1,162.8   1,146.6 
Consumption by Sector       
 Electric Power        1,026.6   1,045.1 
 Coke Plants            23.0   22.7 
 Other Industrial Plants         59.5   56.6 
 Residential/Commercial   3.2   3.5 
Total         1,112.3   1,128.0  

 

     (a) 

       (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (b) 
  (b) 
 
      (c) 

Fig. 13. Part of a US  Energy Information Administration table. (a) As it appears on the web;  
(b) Imported into Excel; (c) After editing. http://www.eia.doe.gov/cneaf/coal/page/acr/ 
tables1.html 

 

Item 200 6 2007

 Appalachian         3 91.2   377.8

 In te rior   1 51.4   146.7

 We stern   6 19.4   621.0

 R efuse  Recovery   0.8   1.2

Tota l   1,1 62.8   1,146.6

 Ele ctric Power       1,0 26.6   1,045.1

 C oke  Plants           23.0   22.7

 Other Indus trial  Plants        59.5   56.6

 R eside ntial/Com m ercia l   3.2   3.5

Tota l        1,1 12.3   1,128.0

Yea r-End Coa l S tocks       

 Ele ctric Power       1 41.0   151.2

Table ES1 . U.S. Coal Supply, Disposition, a nd Prices , 2 006-2007

(Million Short Tons and Dollars pe r Shor t Ton)

Production by Region      

Consum ption by Sector      

  
2006 2007

 Ap pa lach ia n         391.2   3 77.8

 Interior   151.4   1 46.7

 Wes tern   619.4   6 21.0

 Refuse  Reco ve ry   0.8   1.2

Total   1 ,162.8   1 ,1 46.6

 Electric  P ower       1 ,026.6   1 ,0 45.1

 Coke  P la nts           23.0   22.7

 Other Ind ustria l  P la nts        59.5   56.6

 Reside ntia l/Com m ercial   3.2   3.5

Total         1 ,112.3   1 ,1 28.0

Year-End Coal Stocks       

 Electric  P ower       141.0   1 51.2

 Coke  P la nts           2.9   1.9

Table ES1. U.S. Coal Supply, Disposition, and Prices, 200 6-2007

(Million Short Tons and Dollars pe r Short Ton)

Item

P ro duction by 
Region

Co nsu mption  b y 
S ector      
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3   A Grammar for Table Candidates 

Although EX2XY produces X-Y trees as verbose XML files, in this section we repre-
sent the trees with nested parentheses notation. This notation has a 1:1 correspon-
dence with general trees provided that the order of the symbols is preserved [27]. We 
present the notation and the Look Ahead Left to Right (LALR) grammar G1 [28,29] 
constructed to parse the X-Y trees of table-like tessellations by means of an example. 
The grammar was implemented in yacc [30]. 

Consider the following column headings for two Wang categories of Employment 
Status and Education (Fig. 14) which result in the derivation of Fig. 15. 

 
Employment Status 

Unemployed Employed 

Education 

College College 
High School 

or Less BS/BA 
Graduate 

Degree 

High School 
or Less BS/BA 

Graduate 
Degree 

Fig. 14. Sample table row heading for grammar G1 

Textual labels (like Employment Status) have no bearing on the structure, so we 
will replace them by the generic symbol c. We alternate brackets and braces for ease 
of reading, but they are equivalent. The X-Y tree “sentence” SXY for this partition of 
the tessellation is: 

SXY =  { c [ c c ] c [ c { c [ c c ] } c { c [ c c ] } ] } 

Grammar G1 for parsing all layout-equivalent tessellations of this kind is: 

S  : =   A 
A  : =   { B }  
B  : =   c [ X ] B   |   c [ X ]  
X  : =   c X   |   A X   |   A   |   c 

This grammar can parse fully parenthesized input for column headers of tables  
with arbitrary dimensions and any number of levels in each dimension. It is a simple 
matter to add a mirror-image grammar to parse the row headings and delta cells. The 
non-terminals in G1 serve the following functions. 

S is the start symbol (eventually to generate all admissible strings for tables). 
A is the nonterminal that generates all admissible strings for column headers. 
B generates one or more instances of categories in the form “c[X]”. 
  Each c becomes a root category and X generates its subcategory tree. X generates 

strings of length ≥ 1, with arbitrary occurrences of c and A. 

We rewrite the grammar in the following equivalent form for ease of reference: 
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G1   RULES: 

1. S  :=  A 3. B  :=  c [ X ] B 5. X := cX 7. X := A 
2. A  :=  { B }  4. B  :=  c [ X ] 6. X := AX 8. X := c 

 
Action Stack state Remaining Input 

 
- Null      { c [ c c ] c [ c { c [ c c ] } c { c [ c c ] } ] } 
Shift5 { c [ c c                          ] c [ c { c [ c c ] } c { c [ c c ] } ] } 
R 8 { c [ c X                                  ] c [ c { c [ c c ] } c { c [ c c ] } ] } 
R 5 { c [ X ] c [ c { c [ c c ] } c { c [ c c ] } ] } 
Shift9 { c [ X ] c [ c { c [ c c                                                          ] } c { c [ c c ] } ] }  
R 8 { c [ X ] c [ c { c [ c X                                                          ] } c { c [ c c ] } ] }  

R 5 { c [ X ] c [ c { c [ X                                                          ] } c { c [ c c ] } ] }  

Shift { c [ X ] c [ c { c [ X ]                                                            } c { c [ c c ] } ] }  

R 4 { c [ X ] c [ c { B                                                            } c { c [ c c ] } ] }  

Shift { c [  X ] c [ c { B }                                                              c { c [ c c ] } ] }  

R 2 { c [ X ] c [ c A                                                              c { c [ c c ] } ] }  

Shift6 { c [ X ] c [ c A c { c [ c c                                                                              ] } ] }  

R 8 { c [ X ] c [ c A c { c [ c X                                                                              ] } ] }  

R 5 { c [ X ] c [ c A c { c [ X                                                                              ] } ] }  

Shift { c [ X ] c [ c A c { c [ X ]                                                                                } ] }  
R 4 { c [ X ] c [ c A c { B                                                                                } ] }  

Shift { c [ X ] c [ c A c { B }                                                                                  ] }  

R 2 { c [ X ] c [ c A c A                                                                                  ] }  

R 7 { c [ X ] c [ c A c X                                                                                  ] }  

R 5 { c [ X ] c [ c A X                                                                                  ] }  

R 6 { c [ X ] c [ c X                                                                                  ] }  

R 5 { c [ X ] c [ X                                                                                  ] }  

Shift { c [ X ] c [ X ]                                                                                    }  

R 4 { c [ X ] B                                                                                    }  

R 3 { B                                                                                    }  

Shift { B }   
R 2 A  

R 1 S  

Fig. 15. Derivation for the example of Fig. 14 

An LALR is a shift-reduce parser that at each step either shifts the next input on to 
the stack or reduces the symbols on top of the stack according to a rule of the gram-
mar. It produces leftmost reductions as it scans the input from left to right, which 
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yields a rightmost derivation in reverse order. The first column in Fig. 15 shows the 
action (shift or reduce); with Shiftn denoting n consecutive shifts and R m denoting 
reduction according to rule number m. The bold characters represent the handle 
(right-hand side) of the production that is reduced to the left-hand symbol by the rule 
listed on the next row. 

This example demonstrates both the power and the limitations of using a gram-
matical approach to parsing: A grammar can be written to recognize a broad class of 
tilings. On the other hand, a context-free grammar is not powerful enough to check 
that the headings are labeled appropriately for a WFT. If a candidate structure is ac-
cepted by G1, then we must conduct additional geometrical alignment and lexical 
checks to verify the Wang Notation. 

4   X-Y Tree to Wang Notation 

In this section we demonstrate XY2WANG an algorithm that converts an X-Y tree 
generated from a restricted family of admissible tables to Wang Notation. An exam-
ple of this family can be seen in Figure 4(a). Figure 16 shows a simple example from 
this family that that XY2WANG can process. Although in Section 3 we used paren-
thesis notation for the trees, here we use an indented table-of-contents that reveals the 
underlying data structure (Figure 17). Figure 18 shows the top level pseudo-code for 
XY2WANG (which was implemented in Python and produces XML output). The 
algorithm accepts table trees with an arbitrary number of categories and levels of 
headings. For the selected example, the algorithm returns the Wang notation (in a 
verbose XML format) for a two-category table T = (C,d): 
 

Category Notation ( Labeled Domains ): 

C = {  (A,{ (A1,F),(A2,Φ) } ), (B,{ (B1,Φ),(B2,Φ),(B3,Φ) } )   } 
 

Delta Mappings: 

δ({A.A1,B.B1}) = d11 
δ({A.A1,B.B2}) = d12 
δ({A.A1,B.B3}) = d13 

 
 

The algorithm first locates the four principal regions of the table in the XY tree: the 
stub, row-headings, column-headings, and content cells. It then extracts the Wang 
labeled domains from the category regions under the assumption that each spanning 
cells in the row header is the parent category of smaller cells to its right, and each 
spanning cell in the column header is the parent of smaller cells below it. After the 
category notation is generated, the Cartesian product of the category paths is com-
puted and each key is matched to the content of a delta cell.  
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Fig. 16. Example table for XY2WANG 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Data structure created by XY2WANG for the X-Y tree of the table in Fig. 17. The 
index represents a depth-first traversal of the X-Y tree, which has 8 internal nodes (including 
the root) and 14 leaf nodes corresponding to the cells of the table. Children are listed top-to-
bottom or left-to-right. Borders enclose the four principal regions of the table. 

 
XY2WANG must be able to handle more complex scenarios than Figure 16, such 

as higher Wang dimensionality, deeper nesting of headers, repetitive headers, and the 
detection of not well-formed tables. Provisions for such scenarios are included in the 
Python program outlined by the pseudo-code of Figure 18.  
 

B1 B2 B3
A1 d11 d12 d13
A2 d21 d22 d23

A

B

Index Parent Children H x W
1 None 2,9 4x5
2 1 3,4 2x5
3 2 None 2x2
4 2 5,6 2x2
5 4 None 2x1
6 4 7,8 2x1
7 6 None 1x1
8 6 None 1x1
9 1 10,11,15,19 4x3

10 9 None 1x3
11 9 12,13,14 1x3
12 11 None 1x1
13 11 None 1x1
14 11 None 1x1
15 9 16,17,18 1x3
16 15 None 1x1
17 15 None 1x1
18 15 None 1x1
19 9 20,21,22 1x3
20 19 None 1x1
21 19 None 1x1
22 19 None 1x1

d21
d22
d23

B3
d11+d12+d13

d11
d12
d13

d21+d22+d23

B
B1+B2+B3

B1
B2

Node
Outer Frame

Left Side

Right Side

Stub
 A+(A1+A2)

A
(A1+A2)

A1
A2
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Pseudo-code for XY2WANG 
 

Divide Left Side into Stub and Row-headings // (Stub is first child of Left Side) 
Divide Right Side into Col-headings and Data Cells // separate using stub-height 
Separate row-category subtrees at nodes with spanning heights 
Separate column-category subtrees at nodes with spanning widths 
Traverse breadth-first each category tree while removing duplicate labels 
Return Wang Category notation 
Form Cartesian product of unique paths 
Compare size of product to number of data cells 
If it differs from number of leaf nodes in Data Cells, return “tree not well formed” 
Else assign a data cell in Data Cells to each path 
Return Wang Delta notation 

Fig. 18. Top-level pseudo-code for algorithm XY2WANG 

5   Conclusion 

Web tables intended for human readers are generally laid out on a grid. The data cells 
are referenced by row and column headings which form labeled domains of catego-
ries. The hierarchical structure of categories and the flat structure of the data cells can 
be recovered by interleaved vertical and horizontal partitions represented as X-Y 
trees. An X-Y tree represents a generic rectangular tiling and indiscriminately makes 
all the cuts in each direction. The table grammar reorders the cuts so as to represent 
the structure of the table according to specific style(s) of tables.  

We defined geometric and topological equivalence classes on tessellations and 
their X-Y trees. Many tables encountered in practice correspond to well-defined sub-
sets of these equivalence classes. They can be identified by parsing the X-Y tree with 
a context-free grammar. If the labels of the headings are consistent, then the table is 
well formed, and we can algorithmically extract its Wang category notation.  

The current formalism does not account for augmentations although our experi-
mental system does process them and includes them in the XML output. Common 
augmentations are aggregates (sums, averages and weighted averages, medians), 
footnotes, units, annotations, table titles and captions. As Wang noted and our 200-
table experiment confirms, these are essential components of most tables. Because 
they are not revealed by the tiling itself, so far we have not been able to treat them 
uniformly, but they must eventually be integrated into any practical table understand-
ing system. 

The precise representation of layout-invariant table syntax is the first step towards 
semantic interpretation of groups of conceptually overlapping tables. The approach 
we propose towards this goal is to import the web tables into a spreadsheet, interac-
tively edit them as necessary, and then algorithmically transform the data into Wang 
Notation in a portable XML format. We believe that syntactic analysis of the X-Y 
trees will allow identifying tables requiring similar edit steps, so that these edit steps 



436 R.C. Jandhyala et al. 

can be applied automatically. This will effectively expand the number of admissible 
layouts and thereby reduce the amount of necessary interaction.  
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Abstract. Representation theory is a branch of algebra that allows the
study of groups through linear applications, i.e. matrices. Thus problems
in abstract groups can be reduced to problems on matrices. Representa-
tion theory is the basis of character theory. In this paper we present a
formalization of finite groups representation theory in the Coq system
that includes a formalization of Maschke’s theorem on reducible finite
group algebra.

Keywords: Representation theory, Maschke’s theorem, linear algebra,
Coq, SSReflect.

1 Introduction

The use of proof assistants for the formalization of mathematical theories has
increased considerably in recent years. Success stories like the formal proofs of
the Four Colour theorem [1] or the prime number theorem [2] have shown that
formal proof systems have reached the age of maturity. After these successes, am-
bitious projects were launched, for example the Flyspeck [3] project which aims
to develop a formal proof of Kepler’s conjecture. Projects such as the C-CoRN [4]
have developed large repositories of mathematical formal proof libraries, but the
number of formal mathematics libraries remains low compared to the number
of libraries developed in Computer Algebra System (CAS) like Mathematica [5]
or GAP [6]. This is one of the reasons for the limited number of users of formal
proof systems, especially among mathematicians.

This work is a part of the Mathematical Components project [7] which aims
to develop a formal proof of the Feit-Thompson theorem [8]. Finite group rep-
resentation theory is among the large variety of mathematical theories covered
by the proof of the Feit-Thompson Theorem.

This paper presents a formalisation of finite group representation theory and
generic libraries for linear algebra : theory of finitely generated modules over alge-
bras and fields. A formal proof of the Maschke theorem was also developed. This
is done using the SSReflect [9] extension of the Coq proof assistant [10,11].

The paper is organized as follows. In Section 2 we give an introduction to
finite group representation theory and show how it is linked to module theory. In
Section 3, we present the Mathematical Components project, the Coq extension
� This research work was funded by the Microsoft Research INRIA joint centre.
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SSReflect and the project libraries we reused in our development. Finally, in
Section 4, we present the two components of this development : the linear algebra
and representation libraries.

2 Representations Theory

Finite group representation theory studies the structure of a finite group by
presenting it as a matrix. For example, the symmetric group of index three S3
can be represented as the group of the isometries of an equilateral triangle. The
symmetric group of index four S4 can be represented as the group of rotations of
a cube. This same technic can be used to study other algebraic structures likes
associative algebra and Lie algebra. Historically the theory was introduced in
the second half of the nineteenth century by Frobenius to solve problems from
Galois theory. It was largely developed afterwards to be a basic tool for the
classification of finite groups and an important part of the proof of the Feit-
Thompson theorem. Representation theory is used in algebraic number theory
through the class field theory. It is also used in the Langlands program [12], an
active field of contemporary mathematical research.

Algebra representation : Given a field F , an integer n and an F -algebra A, a
representation of A is an algebra homomorphism φ : A → Mn(F ), where Mn(F )
is the algebra of square matrix of size n and coefficients in F . Generally, A can
be an associative algebra or Lie algebra.

In representation theory literature [13,14,15], a common way to study repre-
sentations is to see them as modules. In Isaacs book [13], which is the reference
for representation theory for the proof of Feit-Thompson theorem, a theory of
finitely generated modules over algebra is developped to introduce representa-
tion theory. A module over a finite algebra has also a structure of finite F -vector
space, since for any F -algebra A, F.1 = {c1|c ∈ F} is a subalgebra of A. Thus a
module over an F -algebra A is a F -vector space V with a right action of A on
V such that for all x, y ∈ A, v, w ∈ V and c ∈ F the following properties hold :

- (v + w)x = vx + wx,
- v(x + y) = vx + vy,
- (vx)y = v(xy),
- (cv)x = c(vx) = v(cx),
- v1 = v

With this definition we have that for any F -algebra A, every representation of A
has an A-module structure and conversely every A-module provides a representa-
tion of A. Thus we have an equivalence between representations and A-modules.
The advantage of this approach is that many definitions and results on repre-
sentations can be borrowed from module theory. With this equivalence we can
introduce some definitions on representations. In the following, A is an F -algebra
and V is a representation (in others words an A-module) :
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- A subrepresentation of V is an A submodule W of V or an F subspace W
of V which is stable under the action of A. A subrepresentation is also a
representation.

- V is irreducible if its only submodules are 0 and V . It is semisimple if for
every submodule W ⊆ V , there exists another submodule U ⊆ V such that
V = W ⊕ U in other words V is the direct sum of W and U .

- A representation or more generally a module is semisimple if it is the finite
direct sum of irreducible submodules. These two last definitions are equiva-
lent.

Finite group representation : Let G be a finite group, F a field and GL(n, F )
the multiplicative group of non-singular n×n matrices on F . An F -representation
of G is a group homomorphism ρ from G to GL(n, F ). The integer n is called
the degree of ρ. Thus a representation is a function ρ : G → GL(n, F ) such that :

ρ(1G) = In and ∀g h ∈ G ρ(gh) = (ρg)(ρh)

Group algebra is a key structure in representation theory. It links the definition
above of group representation to that of algebra representation and modules
theory. Given a finite group G and a field F , the group algebra F [G] is the
set {

∑
g∈G agg | ag ∈ F}. This set has a structure of F -vector space and F -

algebra. Indeed, the function that associates to any element g of G the element∑
h∈G ahh with ag = 1 and ah = 0 if h �= g embeds G into F [G], so we can see

G as a basis for F [G]. The addition and external multiplication are defined as
follows :∑

g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g α
∑
g∈G

agg =
∑
g∈G

(α ∗ ag)g

The F [G] internal multiplication law is defined by considering the group multi-
plication :

(
∑
g∈G

agg)(
∑
h∈G

bhh) =
∑
k∈G

(
∑

gh=k

agbh)k

With this law and 1G, F [G] has a structure of an F -algebra. It follows that for
any finite group G, an F -representation of G can be seen as the restriction on
G ⊂ F [G] of a representation of F [G]. Thus any group representation has an
F [G]-module structure and vice versa.

An important result on finite group representation is the Maschke’s theorem.
It states that :

For any finite group G and a field F whose characteristic does not divide | G |,
every representation (F [G]-module) is semisimple.

Maschke’s theorem reduces the study of group representations into the study
of irreducible representations. This is given by the fact that every group rep-
resentation is the direct sum of irreducible representations. In order to know
all the representations of a finite group, it suffices to know all its irreducible
representations.
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3 Mathematical Component Project

In the classification of finite groups, the Feit-Thompson theorem is a central
result. His proof revolutionized group theory not only by the techniques it intro-
duces but also by its length. The original paper [8] is more than 250 page long
and remains roughly the same despite all the efforts to simplify it. The verifi-
cation of the paper proof took about a year for a team of specialists in group
theory. More generally, several results in the theory of classification have been
published in papers whose length reaches hundreds of pages. The formalization
of these proofs is a real challenge for proof assistants. Based on the experience
gained in the proof of the Four Colour theorem, the Mathematical Components
project aims to develop a formal proof of Feit-Thompson theorem.

SSReflect

In the Mathematical Components project, the development enviroment is SSRe-

flect, a Coq extension who was developed by G. Gonthier for the formal proof
of the Four Colour theorem. SSReflect (for Small Scale Reflection) introduces
a new language for tactics that eases the development of proof scripts. It allows
the user to write more concise proof scripts than those written using the standard
Coq tactic language. Another main feature is the generic reflection mechanism.
In the Coq proof system, the default logic is intuitionistic. In this logic, logical
propositions and boolean values are distinct. Logical propositions are objects of
type Prop which is the carrier of intuitionistic reasoning. The boolean type is an
inductive type with two values : true and false. These two structures are com-
plementary. The first one makes it possible to have structured proofs by using
natural deduction whereas the second makes it possible to perform computation.
SSReflect introduces a generic reflection mechanism that allows to combine
the best of the two views and to switch from the propositional version of a de-
cidable predicate to its boolean version. More details on the SSReflect tactics
language and the view mechanism are presented in the SSReflect manual [9].

Libraries

In the project, we have a large variety of libraries that gives definitions and
properties for a variety of mathematical structures. In all this development,
libraries are independent from the excluded middle and the choice axiom. The
logical requirements are internalized in the structure definitions.

SSReflect includes, among others, the following libraries :

– eqtype: type with a a decidable equality which is equivalent to the Leibniz
one.

– choice: type with choice operator.
– fintype: type with finite elements.
– finfun: type of function of finite domain.
– bigops: generic indexed “big” operations, like

∑n
i=0 f(i) or maxi∈I f(i).
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– groups: finite groups theory.
– ssralg: algebraic structures from abelian group to algebraic closed field.
– matrix: determinant theory and matrix decomposition (LUP decomposi-

tion).

The libraries include also results on finite groups theory like the Sylow theorems
and the Cauchy-Frobenius lemma. The Cayley-Hamilton theorem about matrix
and polynomial was also formalised. For more precise details on theses libraries
we refer to [16,17].

4 Formalization

The Feit-Thompson theorem covers a variety of different mathematical theories
such as linear algebra and finite group theory. The work of formalization of such
large theory requires an approach similar to software engineering. In this design
process, the choice of which data structure to use to represent a mathematical
concept is important. This choice must take into account the needs of genericity
and reusability. The proof assistant Coq provides mechanisms such as dependent
types and records, coercions or canonical structures that meet those needs.

Coq’s dependent records [18] are useful to encode data types such as algebraic
structures where we have a set of axioms and operations associated to the type of
elements. They have been used in several algebraic hierarchy formalization such
as [19] and [20]. Coercions provides a sub-typing mechanisms. They facilitate
the development of generic theories and sharing of notations for abstract struc-
tures. This is very useful especially for the development of theory on algebraic
structures where it is common to have inheritance : vector spaces are a sub-type
of commutative groups and algebras are a sub-type of vector spaces and rings.
Canonical structures allow the inference of a specific structure for a specific type.
It works in the opposite direction to that of coercions. For example the matrix
type can be equiped in a canonical way by a ring structure. With canonical struc-
tures, this structure can be implicitly infered by the system. When A and B are
matrices, when writing the expression A + B, the system automatically infers
that the + corresponds to the additive group law of matrices. When m and n are
integers, when writing the expression m + n, it automatically infers that the +
corresponds to the additive group law of integers. It is common in mathematical
literature to let the reader infer from the context the corresponding operation.

The use of ssralg requires that the domain type on which the algebraic
structure is defined has a decidable equality and a choice operator. This two
requirements are internalized in the structures eqType and choiceType. This
means that in order to use the theories implemented by this library for a certain
type, this axioms should be valid on the elements of the type.

In an intuitionistic type theory base proof assitant like Coq, this design ap-
proch gives a general quotient construction, like ideal quotient or canonical basis
for finitely generated modules. It also allows the use of Coq’s powerfull rewrit-
ing system thanks to the inclusion of the decidable equality in the Leibniz’s one
(Coq’s default equality). The alternative to this approach is the use of Setoids
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[21] like what is done in [19] and [20]. The corresponding equivalence relation
has then to be handled explicitly. This approach is costly especially when, as in
our case, we deal with advanced mathematicals statements that involve several
mathematical structures. Also, in the proof of the Feit-Thompson theorem, the
algebraic structures handled are mainly finite groups or finite dimension vector
spaces over finite fields or the algebraic number field. For these structures the
decidable equality and the choice operator can be defined constructively.

4.1 Linear Algebra

As already said in Section 2, finite group representation theory inherits many
definitions and results from linear algebra. Our main motivation is the formaliza-
tion of finite group representation theory but the part on linear algebra can be
used independently in other formalizations. In finite group representation the-
ory, modules that are taken into consideration are all of finite dimension and are
either defined over a field (finite or not) or on an algebra. We formalized a linear
algebraic structures hierarchy that covers the theories of :

– finite dimension vector space
– finite dimension algebra
– finitely generated module over an algebra

The development is built on top of the algebraic hierarchy given by the ssralg
library. It consists of three layers. The first layer defines the interfaces and

Fig. 1. The hierarchy for linear algebra
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provides the generic theory for the domain of the considered structures. The
second layer defines the interfaces and provides the generic theory for the special
sets associated with the domain type structures of the first layer: sub-vector
spaces, sub-algebras and sub-modules. The third layer is dedicated to morphisms
of structures: linear applications, algebra and module morphisms.
Figure 1 provides an overview of the composition of these layers. In this figure,
the plain arrows represent the sub-typing, for example AlgebraType is a subtype
of VectorType and ringType. The dashed arrows represent type dependency, for
example VectorType type depends on a fieldType.

Structures domains : An abstract algebraic structure is a combination of a
representation type (domain), constants and operations on this type, and ax-
ioms satisfied by this constant and operations. For example, a group is a set G
together with a constant e, an internal operation ∗ and a list of axioms (neutral
element, associativity of ∗ ...). Also, algebraic structures are defined according to
a hierarchical scheme. A vector space is a commutative group that has an exter-
nal law which acts from a field. An algebra is the combination of a vector space
and a ring structure with additional axioms. For the definition of our domains
of algebraic structures, we apply the generic method introduced in the ssralg
library. This method gives a design pattern for the definition of such domains.
It is mainly motivated by problems of packaging (inheritance and sharing) and
performances. For example, Figure 2 gives the interface of the finite dimension
vector space.

We use the Coq Module system to create a separate name space for the F -
vector space structure and avoid any clash of definitions, since the declaration
of other algebraic structures follows the same scheme. In Figure 2, zmodType
represents the type of commutative group that also has a decidable equality on
its elements and a choice operator. The module Equality packages types with a
decidable equality and the module Choice packages types with a choice operator.
In this figure, different structures are defined :

- The mixin_of structure packages the additional operator (external law), the
constants (basis) and the axioms needed by a commutative group to be an
F -vector space.

- The class_of structure packages all the theories needed by a representation
type (here V : Type) to be an F -vector space. The first projection base is
a proposition that states that V has a structure of commutative group. The
second projection ext is a proposition that states that the zmodType built
on V (with the call of the function Zmodule.Pack) with the structure base
has the additional structure to be an F -vector space.

- The type structure corresponds to the F -vector space interface. In this struc-
ture, the declaration sort :> Type makes the sort projection a coercion
from type to Type. This form of explicit sub-typing allows any V : vecType
to be used as a Type, e.g., the declaration x : V is understood as x : sort
V. It is useful for getting generic theorems for abstracts structures.

- The declarations eqType, choiceType and zmodType at the end of the Module
define the inheritance rules.
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Module Vector.

Section VectorTypeDef.

Variable F : fieldType.

Structure mixin_of (V : zmodType) : Type := Mixin {

mul : F -> V -> V;

_ : forall a b u, mul a (mul b u) = mul (a * b) u;

_ : forall u, mul 1 u = u;

_ : forall a, {morph mul a : u v / u + v};

_ : forall a b u, mul (a + b) u = (mul a u) + (mul b u);

basis : seq V;

_ : forall s, \sum_(i < size basis) mul s‘_i basis‘_i = 0 -> forall i

, i < size basis -> s‘_i = 0;

_ : forall v, exists s, v = \sum_(i < size basis) mul s‘_i basis‘_i

}.

Structure class_of (V : Type) : Type := Class {

base :> Zmodule.class_of V;

ext :> mixin_of (Zmodule.Pack base V)

}.

Structure type : Type :=

Pack {sort :> Type; _ : class_of sort}.

...

Definition eqType cT := Equality.Pack (class cT) cT.

Definition choiceType cT := Choice.Pack (class cT) cT.

Coercion zmodType cT := Zmodule.Pack (class cT) cT.

End VectorTypeDef.

End Vector.

...

Notation "a *: v" := (mulv a v) (at level 40) : ring_scope.

Fig. 2. Vector space interface

- The last line of the listing declares *: as a notation for the external law of
the vector space.

The other structures of the hierarchy, algebra and finitely generated modules
over algebra are defined following the same design pattern. The only difference
comes from the composition of the structures mixin_of and class_of.

Set of Structures: In finite group representation theory, questions about re-
lations between different representations of a given group are very frequent. Is
it true that a given representation of a group is irreducible? Is it true that two
representations are equivalent or complementary? As we have already said, these
questions can be reduced to questions on relations between modules defined on
an algebra. In the case of representations, the algebra will be the group algebra.
We have thus formalized a theory of sub-vector spaces. The algebraic structures
we are interested in are algebras and modules of algebras. They have a structure
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of vector space. Thus, the corresponding sub-structures are sub-vector spaces
with an additional property on the internal multiplicative law (algebra) and the
external law (module).

In a type theory framework, sub algebraic structure, likes sub-group or sub-
space, are usually defined as a propositional or boolean predicate. For example,
in the Coq system, they can be represented as a dependent structure with two
elements : a propositional predicate and a closure property. The type of sub-
groups of given group can be defined as follows :

Structure sub_group (G : group) : Type := SubGroup {

set :> G -> Prop;

is_sub_group : forall a b : G, set (a - b)

}.

The problem with this representation is that in order to have equality between
sub-structures, we need an axiom of extensionality. In finite dimension vector
space theory, there is no need for this axiom. A set of vectors of a finite dimension
vector space always has a family of generators. If, in addition, this family is free
then the set is a vector space. Conversely, every family of vectors defines a sub-
space. Thus, a sub-space of finite dimension vector space can be represented
by a list of vectors : the generators. Deciding the membership to a family of
generators is equivalent to deciding if there is a solution for a linear system. To
be able to view a set of vectors as a boolean predicate, we have added two axioms
assuming that for all linear systems the problem of the existence of a solution is
decidable :

Axiom system_dec : forall m n (F : fieldType),

matrix F m n -> matrix F m 1 -> bool.

Axiom system_dec_ex : forall m n (F : fieldType) (A : matrix F m n) v,

(exists vs, A *m vs = v) <-> (system_dec A v).

These two axioms can be removed once a procedure for solving linear systems
is formalized. In the project libraries, we are not far from having one since the
matrix LUP decomposition has already been formalized.

We define the type of sub-spaces of a vector space as a list of vectors with a
predicate specifing that it is the canonical family of generators. We use choose,
the choice operator, to quotient with the spanning set equality relation and then
identify with a Leibniz equality all the families that generate the same vector
space.

Variable (K : fieldType) (vT : vecType K).

Structure vspace : Type := VSpace {

gf :> seq vT;

_ : gf == choose [pred x | free_gf x && gf_eq gf x ] (basis_for_gf gf)

}.

In this definition seq vT is the type of lists over vT. The notation == corresponds
to the decidable equality associated with the type seq vT. Thanks to canonical
structures, Coq will automatically infer the corresponding equality. The function
choose is provided by the Choice interface. It takes two parameters: a predicate
and an element. It returns a“canonical”element that satisfies the given predicate
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if the element given as parameter satisfies already the parameter predicate, i.e. it
is the witness that the predicate is satisfiable. In the definition above, we require
that the list of vectors is equal to the result of the application of choose to the
predicate that checks if a given family of vector is free (free_gf) and the set
its generates is equal to the one generated by gf (relation gf_eq). The function
basis_for_gf returns a free basis for a given family of generators. It proceeds
by removing the dependent vectors.

After that, and in order to be able to view sub-vector spaces as extensional
sets (functions of type vT -> bool) which are more practical for proofs, we
have declared a coercion from the vspace type to predPredType. It is a generic
interface for the type of boolean predicates provided by the SSReflect library
ssrbool :

Coercion pred_of_vs :=

(fun F (vT : vecType F) (V : vspace vT) => mem_gf V : _ -> _).

We constructively define sub-space operations likes the sum and intersection of
two sub-spaces and the complement of a given sub-spaces. We also prove some
membership properties for sub-vector spaces :

Lemma vs_mul : forall c v, c *: v \in V = ((c == 0) || (v \in V)).

Lemma eq_vsP : forall V1 V2,

(forall v, v \in V1 = (v \in V2)) <-> (V1 == V2).

In this statement, the equality = stands for Coq standard equality between
boolean values. The first lemma provides a rewriting rule for the membership
of a product. The second lemma gives an equivalence between the extensional
equality of sub-spaces and their decidable equality. It allows switching between
the two views.

We define sub-algebras and sub-modules as boolean predicates over vspace :

Definition is_sub_algebra (V : {vspace aT}) :=

forallb i : ’I_(\dim_V), forallb j : ’I_(\dim_V), (V‘_i * V‘_j) \in V.

Definition module (A : salgebra aT) (V : {vspace mT}) :=

forallb i : ’I_(\dim_A), forallb j : ’I_(\dim_V), (V‘_j :* A‘_i) \in V.

In these definitions, forallb is a notation for the boolean universal quantifier
and ’I_(dim_V) is the finite type of all integers less than dim_V the dimension
of the sub-space V.

In order to check if a sub-space of an algebra is a sub-algebra we only need to
check that the multiplication of any two elements of the basis is included in the
basis. The definition of the module predicate is parametrized by a sub-algebra
and not the whole algebra domain. Indeed, any module on an algebra has also the
structure of module on every sub-algebra of the original algebra. The genericity
will be useful when defining sub-group representations.

Morphisms: A linear application between two vector spaces V and W is a
function f : V → W such that :

∀a u v, f(a ∗ u + v) = a ∗ fu + fv
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If V and W are of finite dimension, then every linear application from V to W
can be represented as a matrix. Conversely, every n × m matrix defines a linear
application. The functional view is more practical to handle when doing proofs.
The matrix view gives a finite description, which is suitable for encoding, and
inherits Leibniz equality and choice operator from the corresponding field of the
vector spaces.

We represent linear applications as singleton type that contains a matrix. In
order to be able to see them as functions, we define a coercion from the type of
linear applications to that of functions :

Variable (K : fieldType) (vT wT : vecType K).

Inductive linear_map : Type :=

LinearMap of (matrix K (size (basis wT)) (size (basis vT))).

Definition lmap_mx f := let: LinearMap M := f in M.

Definition fun_of_lmap := (fun K vT wT f v =>

let fv := (@lmap_mx K vT wT f) *m (@mx_of_vec K vT [:: v]) in

\sum_(i < size (basis wT)) fv i (Ordinal (ltnSn 0)) *: (basis wT)‘_i).

The library also provides a constructor of linear applications (elements of type
linear_map) from a function. It builds the matrix corresponding to the image
of the basis of the domain according to the basis of the codomain.

Definition lmap_of_fun := (fun K (vT wT : vecType K) (f : vT -> wT) =>

let m := size (basis wT) in let n := size (basis vT) in

let M := \matrix_(i < m, j < n) (decomp (f (basis vT)‘_j))‘_i in

LinearMap M).

In the library we have constructively defined the kernel of a linear application
and the linear projection on a sub-space. The canonical vector space construction
for the linear application type is also defined.

4.2 Representations

The main motivation of this work is the formalization of finite group represen-
tation theory. In this development, our main reference is the book by I. Martin
Isaacs[13]. That is why we started our work by formalizing a theory of free mod-
ules on algebras and fields. We also found inspiration in the ideas presented
in [15].

Definitions : The representation type is defined using the Coq dependent type
record.

Variables (gT : finGroupType) (F : fieldType) (n : pos_nat).

Structure representation (A : {set gT}) : Type := RepPack {

ro_ :> gT -> (matrix F n n);

_ : {in A &, forall g h, ro_ (g * h) = ro_ g * ro_ h};

_ : ro_ 1 = 1

}.



Finite Groups Representation Theory with Coq 449

The definition is parametrized by a finite group domain type gT, a field F and
a positive integer n. The representation type is defined for a given set A of the
finite group domain gT. The first component of the structure is a function from
the finite group domain gT to the type of square matrix of size n on F. The two
other components state that a representation is a group morphism.

In this definition and thanks to the use of Canonical Structures, the struc-
ture of ring for matrix is automatically infered by Coq. This allow us to use
the standard notations for ring structures : the ring multiplication * and neutral
element 1 in the second part of the last two statements.
Group algebra: To link the above definition of representation to the module
theory, the group algebra is defined. This is done using the SSReflect finfun
library which contains a complete formalization of finite domain functions theory.
For a finite group G and a field F, the group algebra F [G] is defined as the type
of functions of type G -> F.

Variables (F : fieldType) (G : finGroupType).

Notation Local "F ,[ G ]" := {ffun G -> F}.

Definition gA0 : F,[G] := [ffun g => 0].

Definition gA1 : F,[G] := [ffun g => if g == 1 then 1%R else 0].

Definition opprgA (v : F,[G]) : F,[G] := [ffun g => - (v g)].

Definition addrgA (v1 v2 : F,[G]) : F,[G] := [ffun g => (v1 g) + (v2 g)].

Definition mulvgA (a : F) (v : F,[G]) : F,[G] := [ffun g => (a * (v g))%R

].

Definition mulrgA (v1 v2 : F,[G]) : F,[G] :=

[ffun g => \sum_(k : G) (v1 k) * (v2 ((k^-1) * g)%g) ].

Definition gAbasis : seq F,[G] :=

map (fun g => [ffun k => if k == g then 1%R else 0]) (enum G).

The ring and vector space operations for this type are defined using the generic
constructor [ffun g => E] which constructs the graph of the function that as-
sociates to g the expression E. We also define the associated sub-algebra structure
for a sub-group of the original group domain. It is the sub-space of F [G] gener-
ated by the elements of the sub-group.
Maschke’s Theorem: Our library for representations theory includes a for-
mal proof of Maschke’s theorem. The Coq’s statement of the theorem is the
following :

Section Maschke.

Variables (gT : finGroupType) (G : {group gT}) (F : fieldType).

Variable (mT : modType F,[gT]).

Notation Local "|G|" := (#|G| %:R : F).

Notation Local "[F/G]" := (groupSAlg F G).

Hypothesis (HcardG : |G| != 0).

Theorem Maschke :

forall V : {vspace mT}, module [F/G] V -> semisimple [F/G] V.

Proof.

...

Qed.
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In this statement [F/G] is the notation for the F[gT] sub-algebra associated
to the sub-group G. The proposition semisimple expresses the fact that every
sub-module W of V has a direct complement.

The idea of the proof [13] is to take, for a sub module W of V , an F -linear
projection on it. From this projection, we build a new F [G]-projection on it. The
kernel of this new projection is an F [G] sub-module of V and also a complement
of W . In our formalization, the proof is 34 line long, the doube of the standard
paper proof.

5 Related Works

In the proof assistant community, there has been some developments on linear
algebra that cover part of what we have formalized. To our knowledge, none has
tackled representation theory.

The set-theoretic Mizar Mathematical Library (MML) [22], which has the
largest library of formal mathematics, contains formalizations of algebraic struc-
tures such as groups, rings, modules and real vector spaces. This structures are
defined in various articles and by various authors.

In the Coq system, there are essentially two constructive algebraic hierar-
chy that have been developed. The first is the seminal Algebra repository [20],
which constructs algebraic structures from monoids to modules. The second is
the C-CoRN hierarchy [19], mainly devoted to a constructive formalisation of
real numbers and including a proof of the fundamental theorem of algebra. Both
are setoid based and have been proved difficult to extend with theories like linear
or multilinear algebra.

6 Conclusion

The work we present here provides a formalization of finite group representation
theory in the Coq system. It also include also a formal proof of the Maschke’s
theorem. It shows that the different components of our development work well
together.To facilitate the reuse of this development, we used a modular approach.
This is an important point especially for large formalizations such as the one we
work on in the Mathematical Component project. The formalization of algebraic
theory is not an easy task especially in terms of packaging and reuse. Coq’s
dependent types, Coercions and Canonical Structure have contributed to the
achievement of this work. They provide a powerful mechanisms for formalizing
abstract algebraic structures. SSReflect and its large libraries of formal proofs
and theories have also been very useful. We have used several of these libraries
and especially ssrlag for basic algebraic structures (groups, rings, field ...) and
bigops for indexed operations.

In this formalization, representations are defined as a subclass of algebras
and modules. For the latter we have formalized a theory of linear algebra which
covers the theories of finitely generated modules over algebras or fields. This
development consists of four libraries. Together, they are about 2800 lines of
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code. In these libraries, approximately 95 % of lemmas are proved. The sources
are available at the following address : http://www-sop.inria.fr/marelle/
Sidi.Biha/reptheo

The first perspective of this work is the formalization of more advanced re-
sults of representation theory. The Artin-Wedderburn theorem is an example of
such results. Once this achieved, a formalization of character theory is possible.
Another interesting perspective is to link this work with work on representations
theory that has already been done in computer algebra system like GAP. We
can use GAP to compute the irreducible representations of a given group and
import it in Coq. We did some experiments to links the two systems by using
XML to encode the data exchanged (a finite group generated in GAP), but work
on the external communication interfaces of the two systems is still needed.
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Abstract. The lack of an assistance support may result in disturbance of coau-
thors by beginners who ask for help when they are in trouble to produce or reuse 
shared resources. Additionally, collaborators may not be sure if their respective 
production is consistent with the collaborative common contribution. We tackle 
this issue by developing a group awareness knowledge based system that takes 
the responsibility to automatically evaluate and reuse mathematical formulae, 
and deduces which participant is a possible expert to help others. 

Keywords: Knowledge based systems, awareness, collaborative writing, 
MathML. 

1   Introduction 

In order to coordinate the cooperative production, it is important that collaborators are 
aware of: What objects are being modified? What action is performed? Who is present? 
This information highlights the "Object" and "Changes" awareness elements that have 
been well identified in [5]. Hence, as a result of using inadequate notification services, 
users are not able to produce consistently. In addition, a groupware requires tools to 
evaluate collaborative production, without them, this task needs a lot of patience and 
skill. An editorial scenario depicts this situation: A new author Jorge, is confronted with 
producing MathML statements, in a large document, while one of the editors Sara, 
checks periodically whether expressions are well formed after getting confirmation from 
user's production updates. 

Our research focused on how people interact within the workspace, how useful 
workspace information can be obtained, and the way in which that information can be 
presented, as awareness information is the key of coordination support for a group-
ware. Some collaborative writing applications are: Basic Support for Cooperative 
Work, BSCW [1], EquiText [7], REal-time Distributed, Unconstrained Cooperative 
Editing system, REDUCE [8]. However, none of the above cooperative writing appli-
cation provides implicitly or explicitly assistance to users when they may have produc-
tion problems. Thus, in order to improve the coauthoring production (Section 2) we 
have implemented a group awareness assistant as a knowledge based system (Section 
3). One of the goals of our group awareness system is to help "beginners", allowing 
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them to be assisted by “experts” establishing a focused communication. Furthermore, 
our application provides the facility to reuse fragments of the document (figures, for-
mulas, tables) as a resource (Section 4).       

2   Cooperative Writing 

In our studied test bed application [3], the writing actions (document handling, editing, 
presentation decoration/style) performed by authors on the produced document are 
captured in the form of events by means of a distributed event management service 
(DEMS) [4]. An event represents a state change of a shared entity. A shared entity may 
be a document, hardware/software, and participants. However, several actions, not 
necessarily cause a change within a resource, such as select and copy or highlight any 
part of the document, and they are also perceived as events. DEMS acts as a communi-
cation mechanism between the producer and consumer applications of events: - Pro-
ducer generates events and can be configured for extending or restricting broadcasting 
of some events depending upon their scope. Consumer subscribes to DEMS to receive 
events. There are some rules to filter events by category and their sources. When an 
author wants to stay intensively focused on his production, he may allow those events 
to be received which are resulted from coauthors who annotate the part of document he 
produces, whereas, other event notifications are restricted. 

In order to deliver events to consumers, DEMS maintains a dedicated storage space 
to memorize them. Events are maintained as long as user is present in the session, in 
such case the event storage space is volatile. Whereas, non-volatile storage space 
maintains events in the form of a log file which can be used at any later stage. This 
space is also updated periodically until the manager of the shared production decides 
it, for instance, when the production is considered as completed and accepted. 

Producers and consumers are uniquely identified to control the event broadcasting, 
and different meta-data is associated to events: - Entity user who produces events 
(login, his ID, the working site from where the user works, as well as the coopera-
tive/non-cooperative application from which events are generated). - Entity resource 
within the cooperative environment (document fragment, figure, MathML statement) 
on which writing actions are performed. - Entity action is any performed action 
within the environment using cooperative/non cooperative application. 

In the following scenario: “tito” user works from the “galaxy” site, and selects a 
MathML statement. Due to the “select” action DEMS identifies who is on line and his 
working site. The produced event is: galaxy_tito_writing-editor_MathML_select. 

3   Group Awareness Knowledge Based System 

Our designed and developed group awareness knowledge based system [6] uses rules 
written in the first order predicate logic. A rule is composed of the premise and the ac-
tion part. The Inference Engine (IE) deduces new knowledge or trigger actions to pro-
vide a dynamic user environment. When a user starts a session IE is automatically 
launched until session is closed. The steps followed by IE are: - Information catching: 
The retrieval of facts like opening/closing session, data consultation, writing actions,  
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user's role on each fragment, nature of the produced section, working and storage sites, 
communication interest of users. - The deduction of new knowledge: Using caught 
facts, IE verifies which rules are satisfied and deduces other facts like the number of 
well structured formulas, their complexity, users in trouble, requirement of communica-
tion services. - The proposition of actions: IE suggests some tools to be used or char-
acterizes user's production (multimedia, mathematical, annotation) to detect experts 
(mathematical or multimedia producer). 

Our authoring application uses MathML[2] to write, represent, and interpret 
mathematical statements. Specific events are generated during the production or se-
lection of an expression. As a result of selecting, the author is notified about whether 
a formula is well-structured (wsf), implicit contextual functions related with (key-
board shortcuts), rewriting it as infix, prefix, or postfix form, transformation from one 
to another MathML constructor, as observed below. A formula is a wsf if all elements 
composing a MathML pattern are completed and each expression, in its turn is a wsf 
too. IE notifies possible errors: missing operator, bad symbol. Once a formula is up-
dated, IE informs this fact to users who makes reference to it. 

Startrule "Selecting Mathematical object" 
If author(fragment)= X  
nature(fragment)= "Formula"     /*the nature of the fragment is a formula*/ 
action(X)= "select_element"  /* X selects an element of the formula */ 
Then              /* evaluation and  related contextual function are notified */ 
announce(X)←evaluate_wsf(fragment) 

*/the symbol ”←” stands for a function of 1:1 assignment */ 
announce(X)←list_tools(Math_handling) 
Endrule 

Many tools have been introduced to check/spell/evaluate textual documents but as 
far as we know mathematical statements are not included in the evaluation. In our 
approach, a criterion is established to evaluate the complexity of a formula that can be 
modified by modifying the specific rule. A weight to the following steps is assigned: 
a) the way by which it is created: by producing a sequence of symbols or by using the 
Math Menu option, b) steps taken to produce it: sequence of characters from the stan-
dard input (keyboard) or using menus dialog boxes or mathematical symbol palette, c) 
elapsed time to complete it, d) computation involved. 

4   Online Support Awareness Service: Expert Assistance 

The dedicated online support service for coauthors provides technical assistance for 
writing, production questions, and diagnostic advice that may include quick reference, 
task specific help, full explanation, and tutorial. This support does not require that 
users have knowledge of the collaborative writing application. Users are assisted step 
by step to complete their task. A user who produces many (resp few) elaborated well-
structured formulas of high complexity (resp elementary) in the same session and 
continuously adds different kind of elements, can be considered as an expert (resp 
beginner). Experts avoid loss of recent changes by saving the document after a grad-
ual period of time, or certain number of characters, or after addition of a figure, or 
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concluding a section. By contrast, beginners take a lot of time to perform a simple 
task doing irrelevant and unneeded actions because they do not know how to proceed. 
User characterization is stored in the database (DB), including working site and avail-
ability to communicate with, as we see in the rule. 

          Startrule "Writing formula expertise" 
If author(fragment) = X 
role(X)="Writer" 
nature(fragment)="Formula"  /*X authors a formula */ 
update(fragment) ="True"  /* fragment is brought up to date */ 

 computed_complexity(fragment)=”High”/*formula complexity calculation*/ 
summary_wsf(formula) = “Many”   /* number of  produced wsf */ 
status_open(authors_definition_DB)="True” /* DB characterization exists */ 
Then      /*multiple assigned values for author definition */ 
author_definition(X)<=="expert_MathML"  

/* the symbol <== stands for a function of 1:N assignment*/ 
Endrule 

A context-based communication is characterized by synchronous exchange of mes-
sages between collaborators focused on selected objects (a formula, table, figure). The 
object on which coauthors center their discussion is named work focus. Thanks to the 
unique identifier (ID) associated to each element of the structured document, our 
awareness functionality has the possibility to send, display, and highlight it within the 
environment of all concerned coauthors distributed on the Internet (Fig. 1). 

Suppose, Jorge is reviewing a document mainly composed of formulas and he 
wants to suggest the producer Carmin to write an alternative expression. Jorge starts a 
synchronous communication with Carmin, so she asks him to make precise the topic 
of discussion. He selects the expression (Reader focus). This event is recovered by 
DEMS and sent to IE. IE retrieves the ID and displays its content in the Carmin's en-
vironment. The "Work focus communication Reader-Writer" rule is applied. Collabo-
rators must have access to the same document. Once the communication is established 
(talking session) and the work focus is selected (1), it is highlighted in both environ-
ments (Reader focus and Writer perception). When a user performs modifications on 
a section that affects the current contextual work focus, the highlighted selection is 
updated and concerned users are notified about this fact. 

Startrule "Work focus communication Reader-Writer" 
If author(fragment) = X 
author(fragment) = Y 
role(X)= "Writer" 
role(Y)= "Reader"  /* Y has the reader role on fragment */ 
action(Y)= "select_element"  /* reader Y selects an object */ 
sync_comm(X)="True"  /* communication is enabled */ 
sync_comm(Y)="True" 
Then        /* the unique ID of the selected object is transmitted */ 
display(Y)←send(id_fragment) 
announce(Y)←”successfully sent Information" 
Endrule 
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The assistant observes sequence of user actions on the basis of which suggestions 
or hints may be useful to complete a specific task. As this kind of help may become 
intrusive, users can avoid it at any time. However, whenever a user starts to produce a 
new object and IE deduces that many irrelevant actions are performed (do/undo, tex-
tual based actions while a formula has been started) IE informs about experts present 
(open session) who may solve problems. Synchronous communication focused on 
particular elements gives to collaborators the possibility to coordinate their activities 
and to be more efficient. 

 
Fig. 1. Context-based Communication 

Mathematical Expression as Resource. MathML offers constructors characterized 
by the number of components to be filled as arguments (one, two, and three). The 
structure of a constructor is represented by a tree, thus, it is feasible to reuse these 
expressions by transforming one pattern (A, n) to the targeted pattern (B, m), where n 
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and m represent respectively the number of components of each one: Transformation 
((A, n) (B, m)). Some cases are presented: 

a) When patterns have equal number of components and different functions, the trans-
formation only moves the content of A to the content of B: 

Startrule "Exchanging patterns 2:2 ((A, n) (B, m))" 
If nature(fragment) = "Formula" 
action(X) = "transform_element" 
Number_parameter(A) = Number_parameter(B)=2 
RootNode(A)≠RootNode(B)   /* different patterns */ 
Then 
FirstChildNode(B)←FirstChildNode(A) 
SecondChildNode(B) ←SecondChildNode(A) 
Endrule 

Similar rules are included for the case of one and three components, eliminating 
the second action (SecondChildNode(B)←SecondChildNode(A)) for the former and 
adding a third action (ThirdChildNode(B)←ThirdChildNode(A)) for the second case.  

b) When patterns represent the same function and the number of components is equals 
to 3. The transformation represents a permutation of components contents of the pat-
tern, as it is done by the following rule. To proceed with all the permutations, it is 
necessary to write 4 other rules. All cases are displayed on the user's environment, so 
users can select one. 

Startrule "Permutation of components contents ((A, n) (B, m))" 
If nature(fragment)="Formula" 
action(X)="transform_element" 
Number_parameter(A) = Number_parameter(B)=3 
RootNode(A)=RootNode(B)  /* both patterns are the same */ 
Then 
FirstChildNode(B) )← SecondChildNode(A) /* exchange contents */ 
SecondChildNode(B) )←FirstChildNode(A) 
ThirdChildNode(A))←ThirdChildNode(B) 
Endrule 

c) When n is smaller than m, the contents of the children nodes of A are assigned to 
the children of B whereas, remained children nodes are vacant, and they will be blink-
ing to indicate that they must be completed. As this transformation may produce more 
than one possibility, the above rule can be later applied. 

Startrule "Completing components ((A, n) (B, m))" 
If nature(fragment) = "Formula" 
action(X) = "transform_element" 

Number_parameter(A)←Number_parameter(B)  

Then 
FirstChildNode(B))←FirstChildNode(A) 
SecondChildNode(B))←SecondChildNode(A)  

/* whether it exists or Nil otherwise */ 
Blinking (Vacant_Child_Node(B))    /* blinking vacant/empty nodes */ 
Endrule 
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One of possible application of transformations is to produce reusable expressions to 
construct other more complex than the former. Depending upon the current produced 
object, the assistant informs whether this kind of resource exists in the database. 

5   Conclusions 

There are some applications that support the single user environment to produce 
mathematical expressions like the Open Math Editor [9], MathType [10], WIRIS [11], 
Mathematica [12]. Some ones detect syntactical errors, others have friendly interface, 
but none of them provides the facility to transform from one pattern to other like our 
cooperative writing application. Our approach takes advantage of produced atomic or 
composite events to enhance group awareness among collaborators. It means, from 
events taken as facts, it is possible to infer other knowledge and adapt the user work 
space. The awareness knowledge based system provides functionalities to assist users 
during their collaboration. Users have the possibility to establish a synchronous con-
textual communication to coordinate their actions and produce consistent documents. 
Thus, collaborators are concentrated in their production and the group awareness sys-
tem informs them about all what is going on the shared environment. 

One of the future extensions of our platform is to include the management of dif-
ferent versions of the shared document in order to evaluate, for instance, the graphical 
production which is produced in more than one session. 
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Abstract. Recent work on computer recognition of handwritten math-
ematical symbols has reached the state where geometric analysis of iso-
lated characters can correctly identify individual characters about 96%
of the time. This paper presents confidence measures for two classifica-
tion methods applied to the recognition of handwritten mathematical
symbols. We show how the distance to the nearest convex hull of near-
est neighbors relates to the classification accuracy. For multi-classifiers
based on support vector machine ensembles, we show how the outcomes
of the binary classifiers can be combined into an overall confidence value.

1 Introduction

Recognition of handwritten mathematics is a substantially different problem
from natural language text recognition. Because mathematical formulae use a
larger variety symbols, which are better segmented, and because the applica-
bility of dictionary-based classification methods is limited in the mathematical
context, the problem of recognition of individual mathematical symbols is of
special importance. In case of online recognition, it can be thought of as the
problem of classification of parametric plane curves.

Previous work has proposed a model for classification of curves based on the
representation of the curves in a finite-dimensional vector space by the coeffi-
cient vectors of their coordinate functions in an orthogonal functional basis. It
has been shown that truncated Legendre-Sobolev series of order about 10 approx-
imate most handwritten character curves to the extent that the approximation
is visually indistinguishable from the original curve [1,2,3]. Furthermore, robust
classification methods based on linear support vector machines and distance to
the convex hull of nearest neighbors can be applied to this representation. These
methods achieve a correct retrieval rate of over 96% for about 230 symbol classes
and at least 9 training samples per class [4,5,6].

Our next goal is to incorporate individual symbol recognition into the clas-
sification of entire mathematical expressions. Earlier work [7] has shown that,
depending on the mathematical area, statistically, there is a strong preference
towards certain symbols or their combinations. This statistical information pro-
vides a measure of likelihood of a given symbol within its context, which can be
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used to improve the classification results. In order to combine this information
with the outcome of the individual symbol recognizer, the latter must have a
similar format: namely, together with the suggested class or list of classes, it
must supply confidence values associated to each choice. These values represent
the likelihood that the choice made by the character recognizer is correct.

For nearest-neighbor-based classification, it is natural to use the distance to
the nearest neighbor(s) to produce a confidence measure. In this paper, we show
that the error rate increases with the distance following a cubic law, which be-
comes nearly quadratic for large distances. For support vector machines, the
distance to the separating hyperplane can be used. For binary linear classifiers,
we show that, independent of the choice of the class pair, the error rate de-
creases exponentially with the distance to the hyperplane. For an ensemble of
binary linear classifiers, we give a formula to combine the confidence values of
the individual binary classifiers into a final confidence value, which reflects the
likelihood of correctness of the majority vote. Finally, we compare the nearest-
neighbor-based and SVM-based confidence measures.

2 Representation and Classification

Initially, handwritten symbols are usually represented as a sequence of points,
which is sampled in real time by a digital pen. Given the sequences of X and Y
coordinates of the points, we compute the moments of the coordinate functions,
that is, approximations of the integrals

∫ T

0 x(t)tk dt and, similarly, for y(t). From
the moment integrals, we obtain the Legendre-Sobolev coefficients of the coor-
dinate functions through a linear transformation of the moment vector [1,2,3].
By translating and normalizing the Legendre-Sobolev coefficient vector, we cen-
ter and normalize the curve with respect to size. We obtain a representation of
the symbol curve as a point in a 20–30 dimensional vector space, which is device-
independent and invariantwith respect to variations in the speed of writing. Then,
vector-space-based classification techniques can be applied to this representation.

Among such techniques, linear support vector machines and the nearest con-
vex hull of nearest neighbors have been considered. These techniques yield high
correct retrieval rates (about 95–96%) and allow fast classification among mul-
tiple classes [4,5,6]. Moreover, as will be shown in the next two sections, the de-
cisions produced by these classifiers can be accompanied by reliable confidence
measures, without incurring any significant computational overhead.

3 Confidence of SVM Classification

As classes of handwritten symbol curves are highly linearly separable [5], it is
natural to apply linear support vector machines for classification. It has been
observed previously [8] that the distance to the separating hyperplane can be
used to produce a reliable measure of confidence in the classifier’s outcome. Our
experiments with various pairs of handwritten symbol classes confirm that the
error rates decrease exponentially with the distance to the separating hyperplane,
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Fig. 1. Left: Error rate vs distance to hyperplane. Thin curves are for different class
pairs, thick curve for exponential fit. Right: Ensemble uncertainty (horizontal/vertical
error bars correspond to 95th percentiles of the normal/Bernoulli distributions.)

see Fig. 1 (left). The thick line, which fits in the envelope of the frequency curves,
is y = 0.5 exp(−4.4x), which we take for the confidence measure of the binary
linear classifier. Note that, when the distance to the hyperplane approaches zero,
the error rate tends to 50%, which agrees with the intuition that points on the
hyperplane should equally likely belong to either class.

In a multi-class setting, we use a majority voting scheme, with each binary
linear classifier casting one vote for the winning class in the pair. If more than one
class gets the maximal number number of votes, the tie is broken randomly. The
confidence values for the individual classifiers can be combined into an ensemble
confidence value using the following observation. Each individual binary classifier
makes a decision with a certain confidence, which approximates the likelihood
of this decision being correct. On the other hand, with a certain probability, the
decision is incorrect, in which case the vote will go to the opposite class. As a
result, the winner of the election may lose enough votes, and another class gain
enough votes, so that the outcome of the election changes. The probability of
this event is the uncertainty of the ensemble classifier.

An exact computation of this uncertainty would incur exponential complexity.
We therefore compute its approximation using the following assumption. Let C1
be the class that has won the election, and let Ci be another class, for which
we are going to compute the probability of winning the election instead of C1.
We assume that this different outcome can occur as a result of (some of) the
following events:

1. The vote between C1 and Ci is reversed.
2. C1 loses a vote to another class Cj , j �= i.
3. C1 wins a vote from another class Cj , j �= i.
4. Ci loses a vote to another class Cj , j �= 1.
5. Ci wins a vote from another class Cj , j �= 1.

In other words, we assume that the probability that C1 or Ci wins/loses more
than one vote from/to another class can be neglected.

Let ξij be the probability that the vote between classes i and j is correct
(approximated by the confidence value of the binary classifier between Ci and
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Cj). Then the probability that the vote between C1 and Ci is reversed equals
1− ξ1i. If W1 denotes the set of classes Cj , j �= i, from which C1 has won a vote,
then 1 −

∏
j∈W1

ξ1j is the probability of the second event in the above list. The
probabilities of the remaining events are given by similar formulae.

Given the current numbers of votes collected by C1 and Ci, we select those
combinations of the events 1–5 that would result in Ci taking over C1, and com-
pute the sum of the probabilities of these combinations (for combinations that
lead to a tie between C1 and Ci, we divide the corresponding probability by 2).
This sum, denoted η1i, represents the probability that C1 has wrongly defeated
Ci in the election, because of possible errors made by the binary classifiers. Then,∏

i�=1(1 − η1i) is the probability that C1 is the correct winner of the election.
The error rate versus the resulting measure of uncertainty (equal to one minus

confidence) is shown in Fig. 1 (right). Apart from the uncertainty values that
are very close to or very far from zero, we can see that the error rates are closely
approximated by the uncertainties, the latter being slightly higher. This small
difference is due to the fact that, in our setting, the classes may overlap, so more
than one class can be considered as correct winner of the election.

4 Confidence of Nearest Neighbor Classification

The distance to the convex hull of nearest neighbors [9] is the technique that
has so far yielded the highest correct retrieval rates for classes of handwritten
symbol curves [6]. Since this technique is much slower than SVM classification,
we apply it only at the last stage, to distinguish among the top few classes
that have received many votes. In each of the top S classes, we find k nearest
neighbors to the test sample and compute the distance from the sample to their
convex hull. The class with the closest convex hull is then chosen.

In Figure 2 (left), the dependence of the error rate on this distance is shown
(computed for S = 10 and k = 11). However, the error bars, corresponding to
the 95% confidence intervals, are too wide to allow a definite conclusion about
the dependence of the error rate on the distance. The outcome is also influenced
by the choice of the bins used to compute frequencies. This especially applies
to distances near zero, where the error bars may cross an axis, rendering the
corresponding points meaningless, as well as far away from zero, where few data
points are available.

A more accurate estimate, which avoids the direct calculation of frequencies in
subintervals, can be obtained as follows. Let e(ρ) and N(ρ) be the percentages of
misclassified and all samples, respectively, whose distance to the nearest convex
hull does not exceed ρ. These cumulative distributions are smooth functions, for
which a good fit can be found in the family fa,b,c,d(t) = (atb + c)−1 + d. The
values of the parameters that provide the lowest root mean square approximation
errors are summarized in Table 4. Given the analytic formulae for e(ρ) and N(ρ),
we can calculate the error rate as e′(ρ)/N ′(ρ). The graphs of this quotient, for
dimensions 12, 16, 20, and 24, are shown in Figure 2 (right). The lowest curve
(for dimension 24) models the direct error measurement shown in Figure 2 (left).
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Fig. 2. Error rate vs distance to the nearest convex hull of nearest neighbors

5 Comparison of Confidence Measures

A good confidence measure should yield a high value for most correctly classified
samples and a low value for most misclassified samples. Let X be the set of all
samples, and let X+ and X− be the subsets of correctly classified and misclassi-
fied samples, respectively. As a measure of quality of a confidence measure f(x)
on X , we propose the function

q(ξ) = (#{x ∈ X+ | f(x) ≥ ξ} + #{x ∈ X− | f(x) ≤ ξ}) / #X,

where ξ ranges over all possible confidence values, that is, over the interval [0, 1].
When deciding between the outputs of the character recognizer and another
independent classifier (such as the statistical character predictor described in
the introduction), we will always choose the more confident one (it is easy to
show that this choice is optimal). Then, if ξ is the confidence of the character
predictor, then the greater q(ξ), the more likely we will make a correct choice.

The qualities of the two proposed confidence measures are shown in Fig. 3
(left), and their difference in Fig. 3 (right). We can see that the SVM confidence
measure is better at accepting correct classification results and should be used
for high confidence values, while the confidence measure based on the distance
to the convex hull of nearest neighbors is better at rejecting incorrect results
and should be used for low confidence values. The dividing line between the two
is at about 96%, which is the mean correct retrieval rate.

Fig. 3. Left: Qualities of confidence measures. Solid is SVM, dashed is convex hull of
nearest neighbors. Right: Their difference.



Confidence Measures in Recognizing Handwritten Mathematical Symbols 465

Dim ae be ce de error aN bN cN dN error
12 0.18 -2.98 22.5 -0.00023 0.00021 0.0010 -3.00 1.0037 0.024 0.0038
14 0.21 -3.31 28.9 -0.00004 0.00013 0.0012 -3.08 1.0043 0.022 0.0030
16 0.29 -3.39 33.3 -0.00014 0.00013 0.0013 -3.16 1.0058 0.022 0.0027
18 0.39 -3.49 35.3 -0.00014 0.00012 0.0014 -3.22 1.0065 0.021 0.0025
20 0.42 -3.63 36.4 -0.00014 0.00016 0.0015 -3.29 1.0074 0.021 0.0027
22 0.44 -3.77 37.5 -0.00014 0.00012 0.0017 -3.33 1.0078 0.021 0.0026
24 0.40 -3.95 38.9 -0.00010 0.00011 0.0019 -3.36 1.0079 0.021 0.0026

Fig. 4. Parameters of the best fits to cumulative distributions

6 Combining Prediction and Recognition

When human readers interpret a handwritten mathematical formula, they recog-
nize some symbols and infer the others from context. A handwriting recognition
system can also use both approaches in order to achieve high retrieval rates. One
way to take into account a symbol’s context is by looking at the frequencies of
the n-grams involving it and neighboring symbols. This approach assumes that
at least some neighbors have been recognized with a high confidence and that
there are only a few high-frequency choices for the symbol under consideration.
In such a setting, we would have several choices proposed by the n-gram predic-
tor, with a probability associated to each choice. It would be convenient to have
the character recognizer’s output in a similar format. Then, assuming that these
two classifiers are independent (indeed, their decisions are based on very differ-
ent considerations), we can combine their outputs by maximizing the posterior
probability. This implies that we choose the class for which the product of the
probabilities associated by the character recognizer and the n-gram predictor is
maximal. We may also let the value of n (the size of n-grams) vary in order to
maximize this product.

Using the confidence values presented in this paper, we can obtain a distribu-
tion on the set of all classes as follows. Let the confidence value be the probability
associated to the winning class (denote it p1). Then, discard the winning class
from consideration and repeat the classification process. Associate to the new
winner the resulting confidence value, multiplied by (1 − p1). Our experiments
show that these probabilities decrease very rapidly. In fact it takes on average 7
and at most 26 iterations for the probabilities to become less than 10−10.

Moreover, in the case of SVM classification, we do not need to collect all
the votes again, but instead we discard only the ones that involve the winning
class and recalculate the ensemble confidence values. This will incur only a mild
computational overhead. Indeed, let

Wi = {j | Ci won the vote Ci − Cj}, Li = {j | Ci lost the vote Ci − Cj},

where i and j range over the indices of classes still under consideration. Assume
that the products

∏
j∈Wi

ξij ,
∏

j∈Li
ξij have been computed. When the winning

class is discarded, exactly one element will be removed from Wi or Li, for each
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i; call it ji. Then the above products for the set of remaining classes can be
obtained using a single division by ξiji . Using the new values of the products,
the probabilities of events 1–5 in Section 3 can be obtained in time proportional
to the number of classes. Since the computation of ξij is quadratic in the number
of classes, and since the number of times we need to discard the winner and
calculate the new confidence values is small, the complexity of computing the
probabilities is by an order of magnitude lower than the complexity of computing
the initial confidence values.

In the case of distance-based classification, very little additional computation
is needed to obtain the probabilities, since the confidence values for all classes
are derived directly from the distances.

7 Conclusions

We have derived confidence measures for two classifiers, one based on SVM and
one based on nearest neighbor geometry. We have demonstrated quantitatively
that the SVM ensemble confidence measure performs better than the distance to
the convex hull of nearest neighbors at samples classified with high confidence.
Future work will be to combine the character recognizer with statistical frequency
data using the proposed confidence measures.
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Abstract. Mathematical Knowledge can be encoded by means of Open
Mathematical Documents (OMDoc) to interface both Computer Alge-
bra and Proof Assistant systems. In this paper, we show how a unique
OMDoc structure can be used to dynamically generate, both a Graphical
User Interface for a Computer Algebra system and a script for a Proof
Assistant. So, the OMDoc format can be used for representing differ-
ent aspects. This generic approach has been made concrete through a
first prototype interfacing the Kenzo Computer Algebra system and the
ACL2 Theorem Prover, both based on the Common Lisp programming
language. An OMDoc repository has been developed allowing the user
to customize the application in an easy way.

1 Introduction

OpenMath [2] is an XML standard widely adopted to express mathematical
knowledge. In [9] we presented an architecture based on OpenMath and allowing,
in principle, to dynamically load new modules in a Graphical User Interface (GUI)
for the Kenzo system [3] (a Common Lisp system devoted to Symbolic Computa-
tion in Algebraic Topology). The main obstacle to plug-in dynamically new mod-
ules, was that OpenMath content dictionaries (the OpenMath technology used in
that paper) are not designed to store code parts. So, in our new development we
have moved from OpenMath content dictionaries to Open Mathematical Docu-
ments, OMDoc [11], which allow us to encode information on both the user inter-
face specification and the code, carrying out the functionality of the GUI. This
fulfills our objective of dynamically loading new modules into the GUI.

In addition, we realized that it was possible to take advantage of the OM-
Doc technology to represent different kinds of information allowing us to extend
our system by including deduction capabilities. In order to do this we have ex-
ploited the content dictionaries’ capacities for representing richer mathematical
knowledge. To be precise, each mathematical structure used in Kenzo has been
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represented by means of an algebraic specification which has been embedded in
OMDoc documents. These OMDoc documents are the basis to construct some
encapsulates in the ACL2 theorem prover [10]. ACL2 is a system for proving
properties of programs written in (a subset of) Common Lisp.

Thus, from some OMDoc documents all the pieces needed to dynamically
customize a GUI and to integrate a Computer Algebra system, Kenzo [3], with
a Proof Assistant, namely ACL2 [10], can be generated. Therefore, the definitions
and examples included in the OMDoc documents can be formally validated.

2 Specifying with Open Mathematical Documents

The Kenzo system works with the main mathematical categories used in Com-
binatorial Algebraic Topology, [12]. In [9], a framework wrapping Kenzo with
a Phrasebook as external interface was developed, so the unique possible inter-
action with it is by means of OpenMath. In addition, an OpenMath content
dictionary [2] was defined for each mathematical category which the Kenzo sys-
tem works with.

In order to make the development of clients of our framework easier, we have
intended to supplement it with information related to both the user interaction
and functionality of the user interface. For this task, we have used OMDoc.

The OMDoc [11] format is an open markup language for mathematical doc-
uments and the knowledge encapsulated in them which allows for the repre-
sentation of three levels of information in mathematical knowledge: formulæ,
mathematical statements and mathematical theories. Different sub-languages
including only part of the OMDoc functionality have been specified, and the re-
spective modules developed. We have focused on three of them, namely the Basic
OMDoc, OMDoc content dictionaries and MathWeb OMDoc sub-languages; the
complete list of sub-languages and their descriptions can be found in [11].

The first task we have had to deal with has been to specify with OMDoc doc-
uments the basic mathematical structures used in Kenzo as well as the Kenzo
functionality itself. On the one hand, the OpenMath content dictionaries devel-
oped for the Kenzo system provide not only the different objects used in the
Kenzo system (spheres, Moore spaces, loop spaces and so on) but also a spec-
ification of the mathematical structures that they represent. So, the signature
(which consists of the headers of the functions) and their formal properties (this
will be useful to interact with theorem provers) are included in the content dic-
tionaries. The sub-language for OMDoc content dictionaries allows us to specify
the meaning of basic mathematical objects (symbols) by axioms and definitions;
and grouping them, it is possible to refer to the symbols defined via their the-
ory. In general, OMDoc content dictionaries can add some functionalities with
respect to the OpenMath content dictionaries, so our previous OpenMath con-
tent dictionaries can be embedded into OMDoc content dictionaries. On the
other hand, an OMDoc document including the functionality of our framework
(related to that mathematical structure) has been written. This functionality
has been included into the OMDoc document by using the <code> tag of the
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EXT OMDoc Module, which is aimed at embedding pieces of program code into
an OMDoc document. This OMDoc document can be interpreted as a Kenzo
wrapper.

Starting from these OMDoc documents, we have specified both the interaction
and functionality of a user interface for Kenzo and the integration with the ACL2
Theorem Prover.

2.1 Generating Dynamically a GUI for the Kenzo System

Thinking about increasing the usability of Kenzo, a GUI has been developed to
interact with the system, making the interaction with the user easier. The first
GUI presented, detailed in [8], allowed the user to build different spaces (like
spheres, Moore spaces, loop spaces and so on) and compute homology and some
homotopy groups, using the Kenzo system as its kernel. Although it worked in a
correct way, it had an extensibility problem. At this moment the Kenzo system
keeps on growing. So it would be desirable that our GUI could evolve with Kenzo.
To add new functionality to the Kenzo system, a file with the new functions must
be included; the Kenzo main code is not modified. It is worthwhile having an
extensibility system for the GUI that consists in including only a file with the
new functionality, as it is done in Kenzo itself.

The first approach consisted in extracting all the functionality included in the
first version of the GUI, changing from a static to a dynamic GUI. So the starting
point was a meaningless GUI, and OpenMath content dictionaries dealt with the
evolution of the interface itself: when loading a content dictionary, the interface
changed, with new options appearing in the toolbar. Each content dictionary
had a module associated with it, including the extension of the system, both
the GUI and the functionality. Even if this extensibility way worked in a correct
way, it had a drawback: adding the necessary modules to our GUI in order to
extend its functionality had to be programmed in Allegro Common Lisp [4].

In [6], a proposal for the declarative programming of user interfaces (UI) was
presented with the aim of abstracting the ingredients for high-level UI program-
ming. To be precise, three constituents are distinguished: structure, functionality
and layout. To be based on the previous proposal, the structure of our GUI is
provided by XUL (XUL, [7], is Mozilla’s XML-based user interface language
that lets us build feature rich cross-platform applications defining all the ele-
ments of a UI), functionality has been programmed in Allegro Common Lisp
and the default layout has been used, although we could have used a style sheet
to customize our application. Thus, we have all the ingredients to extend our
meaningless GUI.

Some OMDoc documents being based on the MathWeb sub-language and
containing all the information needed to dynamically add the Kenzo function-
ality to the GUI have been defined. For each Kenzo mathematical structure,
an OMDoc document including the definition of the GUI corresponding to
the specific mathematical structure has been written. This OMDoc document
contains the structure, functionality and layout of our GUI. In order to in-
clude the XUL containing the structure and the layout, an OpenMath Foreign
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object (<OMForeign>), which allows us to associate NON-OpenMath objects
with OpenMath objects, has been used. With respect to the functionality, that
is, the event handlers, it has been included into a <code> tag again.

Note that the <code> tag would be able to include code for different appli-
cations allowing us to build several UIs. This last aspect is related to transform
our desktop application into a Web User Interface.

2.2 An Interpreter from OpenMath to the ACL2 Theorem Prover

With the aim of including some deductive capabilities in our system, we have
added, in our content dictionaries, the properties which the mathematical struc-
tures encoded in our OMDoc documents must really satisfy. This opens the pos-
sibility of interfacing our system with the Common Lisp theorem prover ACL2
(some aspects of Simplicial Topology has already been formalized in [1]).

ACL2 [10] supports the constrained introduction of new function symbols by
means of the encapsulate notion. An encapsulate in ACL2 is composed of a set
of function signatures, a set of properties of these functions and a “witness” for
each one of the functions, where a witness is an existing function that can be
proved to have the required properties.

We have included signatures in OpenMath object definitions. In addition, we
have specified their properties in two different ways (by means of <FMP> and
<CMP> tags) and we have associated an instance example with them. Gathering
together all the previous aspects, it is possible to include in the content dic-
tionaries all the needed information to generate an ACL2 encapsulate from an
OMDoc content dictionary.

By using the OMDoc content dictionaries sub-language to define the objects,
an interpreter which transforms each OMDoc content dictionary into an exe-
cutable encapsulate in ACL2 has been developed.

The necessary functions to transform the OMDoc content dictionaries into
the respective ACL2 encapsulates are stored in an OMDoc document which is
based on the MathWeb sub-language. By collecting all OMDoc documents of
this kind a specific purpose interpreter from OpenMath to ACL2 is obtained.

3 Integrating All the Pieces

Finally, the Basic OMDoc sub-language is sufficient for mathematical documents
that do not introduce new symbols or concepts. In our system, a Basic OMDoc
document glues the different documents associated with a specific mathematical
structure together. To be precise, for a specific mathematical structure three
different OMDoc documents are provided: the first one gives an algebraic spec-
ification of the mathematical structure using the OMDoc content dictionaries,
the second one supplies the functions to build these mathematical structures in
our system (abstracting the ones of Kenzo), and the last one defines the GUI
that can be loaded as a new module of our main GUI. These documents try
to make the interaction with Kenzo easier. In addition, some OMDoc documents
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represent the integration with other systems. These documents can be considered
as interpreters from Kenzo (by means of OMDoc) to the specific system. To sum
up, both mathematical knowledge and different kinds of interactions have been
specified by means of OMDoc documents.

From these different kinds of documents, templates customizing the system
can be generated. If a user wants to work with a specific structure of the Kenzo
system, he must create a document that links to the documents that provide
the corresponding content dictionaries, the necessary Kenzo functionality and
the part of the GUI which must be added to the meaningless GUI. Besides, if
he wanted to interact with another system, he must supply an interpreter from
Kenzo OMDoc documents to the system and a client to interact (for instance, a
GUI, a web service, and so on). If some of the OMDoc documents is not available,
the user can develop them and in this way the system grows up. In addition the
different templates, that is, an OMDoc grouping all the OMDoc documents
needed for an specific interaction, can also be added to the repository to be used
by any other clients.

To define these templates the Basic OMDoc sub-language is used. Namely,
the DOC module provides the document infrastructure (in particular, the
<omgroup> tag allows us to group the references to other documents) and the
DC module supplies the metadata.

Now, we can present a concrete example which integrates all the pieces ex-
plained in the previous sections. On the one hand, we want to be able to work with
the simplicial sets using the Kenzo functionalities, for instance, compute their ho-
mology and homotopy groups. On the other hand, we want to use ACL2 to prove
that the simplicial sets built by Kenzo (spheres, Moore Space, cartesian product
and so on), and used in our system, are really simplicial sets. In this way, repre-
sentation, computation and deduction will be integrated in the same system.

In our OMDoc repository, we can find almost all the ingredients to customize
our application to achieve our objective. The relations among the components
and their role in the workflow of our system customization in this example is
shown in Figure 1. For the simplicial sets, an OMDoc content dictionary defin-
ing their mathematical structure (SS-definition), the logic to interact with
Kenzo (SS-Kenzo-functionality) and the presentation for the GUI (SS-GUI)
are available. With respect to ACL2, an interpreter (ACL2-interpreter) which
is able to translate from an OMDoc content dictionary (in particular, simplicial
sets content dictionary) into an ACL2 encapsulate can be found. An OMDoc
document to customize the GUI (ACL2-GUI) allowing the ACL2 system to inter-
act with our system has been developed.

As can be seen in Figure 1, the only interaction made by the user consists in
loading the Basic OMDoc document. The numbers in the diagram indicate the
execution workflow.

Figure 2 shows a customized Kenzo GUI for simplicial sets integrating and
ACL2 GUI.

All this work is made without any changes in the code of our previous frame-
work. The only thing that must be done consists in loading an OMDoc document,
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Fig. 1. Workflow diagram

Fig. 2. Screen-shots of our customized Kenzo GUI

containing all the necessary information to customize the application adding
the new functionality.

4 Conclusions and Further Work

In this paper we have reported on an OMDoc documents repository. This repos-
itory is composed of several OMDoc documents which have been defined using
different OMDoc sub-languages to reach different goals. On the one hand, some
OMDoc documents, based on the OMDoc content dictionaries sub-language,
supply the mathematical structures of our system. On the other hand, OMDoc
documents in the MathWeb sub-language provide us with the necessary tools to
specify user interfaces, the functionality of these interfaces, the functionality of
the system itself and also the interaction with other systems.

As an example of the use of this repository we have described a first prototype
that allows an integration of the Kenzo computer algebra system and the ACL2
theorem proving system. The interaction part of our OMDoc documents gener-
ates new modules in the GUI, and the axiomatic part generates an encapsulate
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in ACL2, allowing us to check, in an automated way, that the properties are
consistent. This allows us, to a limited extent, to integrate, in a same system
interaction (i.e. representation), computation (through the Kenzo kernel) and
deduction (by means of ACL2). Other prototypes can be developed in order to
integrate our system with different mathematical systems (for instance, GAP [5]
has already been connected with Kenzo through OpenMath in [13]).

Once the ACL2 and the Kenzo systems are integrated in a same GUI, much
more work is needed to implement more interesting interactions. For instance,
the encapsulates should be the basis for more complex theorem proving inside the
system. As an example, let us consider the construction of a sphere in Kenzo. The
GUI should prepare an ACL2 script stating that this concrete (Common Lisp)
object is a (functional) instance of the encapsulate simplicial-set. ACL2 very
likely will not be able to prove those statements automatically, and some user
interaction will be needed. Then, both the interface and the OMDoc documents
should be enriched to cope with the user actions, allowing the system to recover,
in further sessions, the full proof script, and then automating the verification of
each construction generated in the system.
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Abstract. In this short communication we want to give an overview of
how OpenMath is used in the European project “SCIEnce” [12]. The
main aim of this project is to allow unified communication between dif-
ferent computer algebra systems (CASes) or different instances of one
CAS. This may involve one or more computers, clusters, and even grids.

The main topics are the use of OpenMath to marshal mathematical
objects for transport between different CASes, an alternative textual
OpenMath representation more suitable for human reading and writing,
and finally the publicly released Java Library developed for the project.

1 Marshaling Mathematics in SCSCP

When designing a uniform communication interface for Computer Algebra Sys-
tems, the first problem that needs to be solved is how to transport the mathe-
matical objects from one system to another. Here, the obvious choice for us was
OpenMath [6], since it is a widely used standard with a long history of assisting
communication between CASes [1,2]. In this section we briefly comment on the
problems faced and the choices made.

To simplify the communication between the various CASes, we have developed
a protocol called “Symbolic Computation Software Composability Protocol”,
abbreviated SCSCP [9,13]. This protocol does not only enable the computation
of simple commands in a different system or on a different machine, but it
will also serve as a means of conveying constituents of larger, more complex,
computations.

The protocol is XML-based; in particular, the protocol messages are in the
OpenMath language, and its TCP-sockets based implementation uses XML pro-
cessing instructions to delimit these messages and convey small pieces of infor-
mation on a higher level. Communication takes place using port 26133, reserved
for SCSCP by the Internet Assigned Numbers Authority (IANA). At the mo-
ment of writing the protocol has reached version 1.3 and both client and server
implementations exist in GAP, KANT, Maple, and MuPAD. The TRIP system
also supports the protocol, using their own publicly available implementation of
SCSCP [3]. Moreover, we have developed a Java library org.symcomp.scscp

J. Carette et al. (Eds.): Calculemus/MKM 2009, LNAI 5625, pp. 474–479, 2009.
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[14] to facilitate third party developers in exposing their own applications
using SCSCP.

Apart from two OpenMath Content Dictionaries accompanying the SCSCP
protocol [10,11] several other Content Dictionaries were developed in the project,
concerning for example efficient matrix representations or polynomial factoriza-
tion. We expect to submit these to the OpenMath community for consideration
in the Summer of 2009.

2 POPCORN – A Tasty OpenMath Representation

When handling OpenMath objects, one frequently finds oneself typing and read-
ing lots of OMAs, OMSs, and so on. This may lead one to the conclusion that hu-
mans were not designed to parse XML. Therefore, whenever people discuss their
experiences with OpenMath, they tend to use more human-readable shortcuts,
often inspired by LATEXor a Maple-like syntax.

That is why we decided to produce an OpenMath representation taking this
into account, and created POPCORN, which is an acronym standing for “Possi-
bly Only Practical Convenient OpenMath Replacement Notation”. For the sake
of typographic beauty, we write it as “Popcorn”.

We emphasize that Popcorn is merely an OpenMath representation that we
consider convenient for humans, similar to the XML representation that is obvi-
ously more convenient for machines. Furthermore, if a two-dimensional environ-
ment such as a web browser is available, more sophisticated editors such as the
MathDox formula editor [5] are even better. However, we still think Popcorn is
a valuable addition, e.g. for quick tests, command line applications, etc.

Parsing of Popcorn is sufficiently fast for small examples, but for larger Open-
Math trees the XML representation can be parsed more efficiently, if only be-
cause when parsing Popcorn code an intermediate abstract syntax tree has to
be constructed, while such a tree is inherent to the XML representation.

The Popcorn language itself not easily user-extensible, but because the Pop-
corn grammar is included in the libraries, an advanced user may change the
grammar, e.g. add infix operators, special symbols, etc, and use it in his or her
own application.

2.1 Elementary OpenMath in Popcorn

We first look at the notation used for the elementary OpenMath objects.

Integers are typed just as one expects: as decimal numbers without whitespace
inside or prefixed with 0x in hexadecimal representation;

Floats are typed either as, e. g. 2.34e12 or 0f### where the # represent hex-
characters as in the hex attribute of OMF;

Strings are wrapped in " or ’ ;
References are given either in the simple form #name (for local references

<OMR href="#name"/> ) or the more complex form ##http://somewhere/
something/## (for non-local references);
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Variables are whitespace-free strings prefixed with $;
Symbols are written as cdname.name.

To add an id value to any object, simply postpone it with :theid.

2.2 Compound OpenMath in Popcorn

Application is encoded by postponing the parenthesized arguments to the ap-
plied object, e. g. arith1.plus(1,2,3);

Binding is done by typing square brackets behind the bound object. Within
the brackets the comma-separated bound variables are separated from the
expression by ->, e. g. quant1.forall[$x, $y -> ...];

Attribution is done by adding key/value-pairs as a comma-separated list in
braces to the attributed object, e. g. 1.2{aa.bb -> "cc", "dd" -> 3}

2.3 Syntactically Sugared/Salted Popcorn

To allow for more intuitive notation, we added some shortcuts:
For the arith1 symbols plus, times, and the relation1 symbols we added

the obvious infix symbols +, *, =, <, <=, and so on. The same is true for the
logic1 symbols, all with a well-defined operator precedence.

For a reasonably large number of frequently used symbols, we decided to get
the cdname-free name into the global context, e. g., sum, sin, true, lambda, pi,
i, etc.

To construct a list1.list, one may simply use square brackets, and to
construct set1.set, braces can be used (The Popcorn parser automatically
checks whether for example an expression in square brackets matches the
binding pattern, so that no confusion arises). Constructing nums1.rational
can be done by separating numerator and denominator with //. Similarly
nums1.complex cartesian can be constructed by separating the real and imag-
inary part with |.

Also, some of the functionality of the experimental prog1 Content Dictionary
is exposed in a Maple-like syntax.

2.4 Popcorn Examples

sin(3) <OMA>
<OMS cd="arith1" name="sin">
<OMI>3</OMI>

</OMA>

lambda[$x->1+$x] <OMBIND>
<OMS cd="fns1" name="lambda" />
<OMBVAR>
<OMV name="x" />

</OMBVAR>
<OMA>
<OMS cd="arith1" name="plus" />
<OMI>1</OMI>
<OMV name="x" />

</OMA>
</OMBIND>
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$a := [1//2, (2|8):x] <OMA>
<OMS cd="prog1" name="assign" />
<OMV name="a" />
<OMA>
<OMS cd="list1" name="list" />
<OMA>

<OMS cd="nums1" name="rational" />
<OMI>1</OMI><OMI>2</OMI>

</OMA>
<OMA id="x">

<OMS cd="nums1" name="complex cartesian" />
<OMI>2</OMI><OMI>8</OMI>

</OMA>
</OMA>

</OMA>

1.2{aa.bb -> "cc"} <OMATTR>
<OMATP>
<OMS cd="aa" name="bb" />
<OMSTR>cc</OMSTR>

</OMATP>
<OMF dec="1.2" />

</OMATTR>

Here another motivation for the name Popcorn can be seen – it turns some-
thing pretty small into something rather giant.

3 org.symcomp.openmath – Convenient Handling of
OpenMath with Java

For the development of tools and applications within SCIEnce, Java seemed a
natural choice because of its portability and the availability of many libraries.
Although there are some Java OpenMath Libraries available [7,8], these are older
(last update in 2000 and 2004, respectively) and we disagreed with some of the
design choices made.

We therefore created a new library that takes advantage of the recent devel-
opments in Java, such as annotations and generics, and we designed it from the
ground up to be as easily extensible as possible. It provides many convenience
classes and handy methods to traverse, construct, and analyze OpenMath trees.
Furthermore, it has completely transparent support for OpenMath Attributions,
eliminating the need to handle these objects in any special way.

Import and export to OpenMath 2 XML, OpenMath 2 Binary, and Popcorn
are included. Moreover, we have implemented export to LATEX to demonstrate
the great extensibility of the library, and because it easily enables rendering
of OpenMath in browsers using the well known jsMath package. We expect to
include Strict Content MathML 3 soon as well, in view of the recent developments
with respect to OpenMath 3.

We hope to clarify the simplicity and elegance this library offers by means of
the small example in Listing 1.1 (the usual Java preliminaries have been omitted).

3.1 Custom Renderers

To feed OpenMath data into other applications, it is often necessary
(or at least convenient) to produce a specific format. This is wired into
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1 // Creating an OpenMath application
OMSymbol s = new OMSymbol ("somecd", "add");
assert s.isSymbol ("somecd", "add");
OpenMathBase[] params = new OpenMathBase[] {

new OMInteger(1),
6 new OMString ("lala")

};
OMApply oma = s.apply(params );
assert oma.isApplication(" somecd", "add");

11 // Creating the same OpenMath object from Popcorn
OpenMathBase oma2 = OpenMathBase.parse("somecd.add(1, ’lala ’)");
assert oma.equals(oma2);

// Creating an OpenMath object from the XML representation
16 OpenMathBase omi = OpenMathBase.parse("<OMOBJ ><OMI >42</OMI ></OMOBJ >");

assert omi.deOMObject().isInteger(42);

// Creating an OpenMath Binding , using a combination of pure Java
// creations and Popcorn.

21 OMVariable[] omvs = new OMVariable[] { new OMVariable("x") };
OMBind ombind = s.bind(omvs , OpenMathBase.parse("$x + 1"));
assert ombind.isBinding(s);

// Convenient equality testing (note that it is a literal comparison ,
26 // e.g. alpha - conversion is not included)

assert ombind.toPopcorn(). equals("cdname.name[$x -> $x + 1]");

Listing 1.1. Using the org.symcomp.openmath library

org.symcomp.openmath as custom renderers. We designed these classes in such
a way that producing e. g. a renderer for the Magma language took only a few
lines of code.

The LATEX- and Popcorn-renderer are made using the same mechanism. These
also give the user a great starting point for developing his/her own custom
renderer.

4 Conclusion

In this short communication we have given an overview of the current develop-
ments in the European project “SCIEnce,” in particular the implementation of
the OpenMath based SCSCP protocol. We presented two Java libraries assist-
ing this implementation, one for conveniently handling OpenMath objects, the
other for executing the SCSCP protocol itself. These libraries enable a developer
to expose his own application to other systems using OpenMath and SCSCP,
requiring nothing but the strictly necessary from that developer.

Future activities include extending OpenMath support in the participating
systems, porting the libraries to C++, both for developers using C or C++ as
well as for improved performance, and adding MathML support to the library
once OpenMath3 and MathML3 have been finalized.

5 License and Availability

The org.symcomp.openmath library and the SCSCP library org.symcomp.
scscp are released under the Apache 2 License. In February 2009 the first public
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release was made [14]. The libraries are available as binaries, source packages or
they may be used as Maven [4] dependencies. Available on the website is also a
comprehensive (and continuously improving) API documentation.

Part of this release is an extensive example that uses both the OpenMath
and SCSCP library, and shows how little is needed to use the libraries to set up
SCSCP clients and servers.
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Abstract. Taking the specific problem domain of indefinite integration,
we describe the on-going development of a repository of mathematical
knowledge based on transformation rules. It is important that the repos-
itory be not confused with a look-up table. The database of transfor-
mation rules is at present encoded in Mathematica, but this is only one
convenient form of the repository, and it could be readily translated into
other formats. The principles upon which the set of rules is compiled is
described. One important principle is minimality. The benefits of the ap-
proach are illustrated with examples, and with the results of comparisons
with other approaches.

1 Introduction

Ever since the automating of the simplification of mathematical expressions was
first attempted, there has been a lively discussion as to whether a rule-based
approach should complement algorithmic methods, and if so which should be
tried first. We contend that a computer algebra system should try rules first, and
turn to general purpose algorithms only if no rules apply. This frees developers
of algorithms from having to worry about the annoying and trivial problems
and the special cases, and instead focus on the genuinely hard and interesting
problems.

Unfortunately, rule-based systems, owing to poor implementations, have a rep-
utation for being inefficient and plagued by endless loops. For the problem area
of indefinite integration, this paper describes the development of a rule-based
repository of knowledge that is compact, efficient, transparent and modular. For
the purposes of this preliminary discussion, we shall not address questions of
combining our approach with algorithmic approaches, in order to arrive at a full
integration system, but concentrate on the questions of constructing a database
of knowledge and show examples of how it performs in practice.

It must be emphasized that what is not being described is a scheme for table
look-up. Such schemes were described, for example, in [2]. Their approach was
to consider data structures and search techniques which would allow them to
encode all the entries is reference books such as [1]. Adopting this approach for
integration — or a fortiori for all simplification — would result in huge databases
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which would be unwieldy to maintain, debug and utilize. The set of rules whose
development is described here is relatively compact, verifiable and efficient.

2 Proper Definition of Transformation Rules

Many of the problems common to rule-based systems can be avoided by defining
transformation rules according to the principles below. A transformation rule
will be written as A → B, where A and B are mathematical expressions.

– Define Functionally. The right side of a properly defined rule consists of a
mathematical expression followed by any required restrictions on the do-
mains of the variables in the rule. Procedural programming constructs such
as loops or conditionals are not allowed, and nor are assignments to global or
fluid variables. The application of rules defined this way results in a single,
comprehensible step in the simplification of an expression.

– Restrict to domains of validity. Many rules are valid only if their variables are
restricted to a certain domain. Conditions on a properly defined rule must
restrict its application to the domain over which it is valid. For example, the
transformation

√
z2 → z should only be applied if z is known to be purely

imaginary or in the right half of the complex plane (unrestricted versions of
this transformation caused the well remembered ‘square-root bug’ in Maple).

– Restrict to simplification. To avoid infinite loops, applications of rules must
eventually result in an expression that can be made no simpler (i.e. an
expression to which no rules applies). The conditions attached to a rule
must limit its application to those expressions for which its application re-
sults in a simpler expression. For example, if F stands for any trigonomet-
ric function and n for a rational number, the goal of transformations of
F (nπ) is to reduce the magnitude of the angle. Thus, specifically, although
sin(nπ) → cos((n − 1/2)π) is valid for all real and complex n, it should only
be applied if n is in the interval (π/2, π), thereby reducing the angle to the
interval (0, π/2). Note that if n is negative, application of this rule would
actually increase the magnitude of the angle.

– Provision for local variables. Sometimes it is convenient to assign a value to
a local variable so it can be used multiple times in a rule’s conditions or body
without having to recompute it. To provide for this need while preserving
the functional nature of rules, assignments to local variables are allowed in
properly define rules. However, assignments to fluid and global variables are
not allowed.

– Mutually exclusive For a collection of transformation rules to be properly
defined, at most one of the rules can be applicable to any given expres-
sion. Mutual exclusivity is critical to ensuring that rules can be added,
removed or modified without affecting the other rules. Such stand-alone,
order-independent rules make it possible to build a rule-based repository of
knowledge incrementally and as a collaborative effort.
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3 Transformation Rules versus Mathematical Identities

There exist numerous collections of mathematical formulas and identities avail-
able in books and on the Internet (e.g. the Wolfram Functions website functions.
wolfram.com lists over 300,000 formulas). Superficially, properly defined trans-
formation rules and mathematical identities look the same, since both have left
and right sides which are mathematical expressions that are equivalent. The
obvious question is then why build a repository of knowledge based on rules,
when huge libraries of formulas and identities already exist? The answer to that
question requires that we understand the difference between collections of rules
and collections of identities; they are fundamentally different in nature.

– Rules are active; formulas are passive. Rules are precise instructions on when
and how to transform expressions of a particular form into equivalent, but
simpler, ones. Identities, on the other hand, are statements of the fact that
their left and right sides are mathematically equivalent.

– Rules include application restrictions. Both rules and identities specify the
domains of their variables over which they are valid. Properly defined rules
include additional conditions so that they are applied only if a simplification
actually results and so that collections of rules are mutually exclusive.

– Rule collections are minimized; formula collections are maximized. When
crafting a rule-based repository of knowledge, one goal is to minimize the
number of rules, by making them mutually exclusive while at the same time
maximizing their generality. However, for a library of formulas, one goal is to
include all commonly occurring cases of more general formulas, so readers are
not required to derive special cases. For example, a library may have dozens
of identities giving the algebraic equivalents of trigonometric functions of
special angles. However, a repository would have just the handful of rules
required to transform trigonometric functions of special angles into algebraic
form.

– Integration formulas give final results; Rule collections may not. The ideal
entry in an integration table gives an algebraic expression for an integral,
and expressing one integral in terms of another is a less satisfactory formula.
However, many rules in a repository will express one integral in terms of
another, and even if it is possible to express an integral directly in algebraic
terms, such a transformation may be excluded in order to keep the repository
compact. Thus although ideally an integration table could be used in one
pass, a transformation repository will necessarily be recursive.

4 Integration Examples

One conspicuous benefit of rule-based integration is the greater simplicity of
its results. Simplicity can include not just one integral, but consistent behavior

functions.wolfram.com
functions.wolfram.com
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over families of integrals. For example, the following integrals show symmetry
between trigonometric and hyperbolic functions:

∫
dx√

a + x
√

b + x
= 2 arctanh

√
a + x√
b + x

, (1)

∫
dx√

a + x
√

b − x
= −2 arctan

√
b − x√
a + x

. (2)

In contrast, Mathematica and Maple express integral (2) using arctangent as
shown, but use logarithm for the integral (1):

∫
dx√

a + x
√

b + x
= ln

(
a + b + 2x + 2

√
a + x

√
b + x

)
. (3)

The current version of the repository is being tested on a database of over 5000
integrals, and the results compared with other major computer algebra systems.
The comparisons are based on a variety of metrics; for example, simplicity is
measured by counting the leaves of the tree structures used to represent the
expressions. These metrics, and the results of the comparisons, will be detailed
in a future publication.

5 Platform Requirements

An efficient and reliable software platform is required to build a rule-based repos-
itory of knowledge. As a minimum the support platform needs to provide the
following services:

– Transformation rules. The platform must make it possible to define and
recursively apply transformation rules to expressions of a specified form.
This requires a flexible and natural syntax for the patterns used to specify
the form of expressions.

– Efficient pattern matching. A rule-based system may have thousand of rules,
and hundreds of rule applications may be required to simplify an expression.
Thus when given an expression to simplify, it is essential that the pattern
matcher quickly find the applicable rule, if any. Thoughts on how to imple-
ment an efficient pattern matcher is discussed below.

– Exact and arbitrary precision arithmetic. Numerical routines are required
for built-in functions and operators since a rule-based approach is usually
not appropriate for numerical computations.

– Programming environment. The platform must provide the ability to input,
evaluate and display expressions, as well as provide a suitable environment
for testing and debugging the repository.
Since most modern computer algebra systems provide the above capabilities,
they are suitable platforms for crafting a rule-based repository of knowledge.
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6 Efficient Pattern Matching

A general purpose repository might require thousands or even tens of thousands
of rules. Obviously sequentially searching a list of that many rules to find a
match would be unacceptably slow. Even having a separate list of rules for each
built-in function or operator is insufficient, since some functions may have a
large number of rules associated with it (e.g. our integrator requires over a 1000
rules).

Therefore instead of a list, the software platform supporting a repository
should store the rules in the form of a discrimination net based on the tree
structure of expressions. Then, for example, all rules applicable to expressions of
the form sin(u) will be collected in one branch of the tree, all differentiation rules
in another, all integration rules in another, etc. Then the rules in each branch
will be recursively subdivided based on the form of its arguments, etc.

With the rules stored in such a discrimination net, the rule applicable to a
given expression can be quickly found by a simple tree walk in log(n) time, where
n is the number of rules in the repository.

7 Advantages

The following summarizes the advantages of storing mathematical knowledge in
the form of a repository based on properly defined transformation rules:

– Human and machine readable. Since rules are defined using mathematical
formulas rather than procedural programming constructs, they express a self-
contained mathematical fact that can be attractively displayed in standard
two-dimensional mathematical notation.

– Able to show simplification steps. The successive application of rules exactly
corresponds to the steps required to simplify an expression. Thus when a rule
is applied, it can display itself in standard mathematical notation as justifi-
cation for the step, and then suspend further simplification so the partially
simplified result is returned.

– Mechanical rule verification. Since the right side of a properly defined rule is
just a mathematical expression, the rules validity can often be mechanically
verified. For example, the right side of integration rules can be differentiated
to see if they equal the integrand on the left.

– Facilitates program development. The fact that properly defined rules are
inherently self-contained and free of side-effects makes it easy to test the
effect on the system of selectively adding, modifying or deleting rules. Al-
though collections of rules may be highly recursive, each individual rule must
be able to stand on its own, thus making it possible to test it on examples
before adding it to the collection.

– Platform independent. Since properly defined transformation rules consists
only of mathematical expressions and pattern matching specifications, the
translation of rules from the syntax of one computer algebra system to an-
other is relatively straight-forward.
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– White box transparency. For the most part, computer algebra systems ap-
pear as mysterious black boxes to users with little or no explanation given
as to how results are obtained. However, if the source file of rules on which a
CAS is based were included with the system, it becomes a transparent white
box, making it possible for users to modify existing rules and even add new
ones.

– Fosters community development. The open source nature of a rule-based
repository of knowledge would foster an active community of users. A website
blog dedicated to a repository could provide developers the ability to propose
new rules and improvements to existing ones. Developers would vie with
one another to get credit for adding new rules to the repository. Others
would shoot down defective ones. Thus the system would grow and evolve
in Darwinian fashion much the same way Wikipedia does.

– An active repository. Encyclopedias and reference manuals, even on-line
ones, are inherently passive repositories in the sense that users have to find
the knowledge required to solve a given problem, and then manually apply it.
However, given a problem a rule-based repository actively finds and applies
the knowledge required to solve it. Thus the knowledge in such repositories
is in a much more useful form.
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Abstract. Matita is a proof assistant characterised by a rich, user ex-
tensible, output facility based on a widget for the rendering of MathML
Presentation, and by the automatic handling of overloading by means of
a flexible disambiguation mechanism. We show how to use these features
to obtain a simple learning environment for natural deduction, without
modifying the source code or Matita.

1 Introduction

There is at least one good reason for pushing the adoption of Interactive Theorem
Provers as teaching instruments that go beyond any pedagogical consideration:
make students familiar with Interactive Theorem Provers, grasping their interest
for future project works or thesis assignments.

To do that, Interactive Theorem Provers have to be turned into learning
platforms, for example tools for learning induction or other fundamental concepts
like formal proofs. Learning logics, students meet formal proofs as derivation
trees, for example following the natural deduction calculus.

In this paper we present our effort in implementing on top of the Matita
Interactive Theorem Prover [2] a learning environment for Natural Deduction,
exploiting the flexibility of the notational mechanism the tool offers and its
peculiar ambiguity management. Our requirements were:

– allow students to input possibly incorrect derivation trees
– force the user to input exactly the same information he would write on paper,

even if redundant or inferable by the system
– notify the user highlighting erroneously applied derivation rules, but allow

him to complete the tree
– graphically display the derivation tree, facilitating its navigation in the fre-

quent case of huge derivations not fitting the screen
– allow a quick (batch) correction of exercises to the teacher
– introduce the user to a textual syntax for the procedural construction of

derivation trees in order to smooth the transition from derivation trees to
procedural/declarative scripts

– help the user in learning such syntax and haste the input phase
� Partially supported by the Strategic Project “DAMA: Dimostrazione Assistita per

la Matematica e l’Apprendimento” of the University of Bologna.
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� �

lemma ex1: ¬ (∃ x.P x) ⇒∀ x.¬ P x.
apply rule (prove (¬ (∃ x.P x) ⇒∀ x.¬ P x));
apply rule (⇒i [h1] (∀ x.¬ P x));
apply rule (∀ i {l} (¬P l));
apply rule (¬ i [h2] (⊥));
apply rule (¬ e (¬ (∃ x.P x)) (∃ x.P x));

[ apply rule (discharge [h1]);
| apply rule (∃ i {l} (P l));

apply rule (discharge [h2]);
]

qed.
� �

Fig. 1. Input palette and proof script

We presents the input and output interfaces in Section 2. The real contribution
of the paper is in Section 3 where we show how to achieve the aforementioned
goals without modifying the system and exploiting the MathML Presentation
based notational system [4] and the peculiar management of notational over-
loading [6] Matita provides.

2 User Interface

Derivation trees are described using the following subset of the procedural lan-
guage of Matita:
� �

apply rule (rule name arguments. . .); [ subproof | subproof . . . ]
� �

The apply-rule tactic is the standard application of a proof-term (which is
usually, but not in our case, the name of a lemma), while square brackets are
standard tacticals used to structure the proof script. Unlike other systems like
LCF, Coq or Isabelle, the execution of a structured script is performed in Matita
one tactic at a time [5], so that the incremental build of a structured proof is
comfortable.

To apply a derivation rule the user is asked to list after the rule name all
the information he would write as a side condition and above the inference line.
For example the partial derivation tree of Figure 2 is obtained by executing the
script of Figure 1 up to the end of the blue region in Figure 2.

The choice of annotating rules with the name of the hypotheses they discharge
was a teacher choice, and it reflects the way the teacher wants the students to
write the tree even on paper. Similarly, hypotheses are discharged by labelling
them with their names (e.g. [ · ]h1) and witnesses are explicitly provided for
existential elimination. Missing sub-derivations are represented by numbered
question marks; clicking on them the user is reminded of what assumptions are
in scope.
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Fig. 2. Rendering of a partial derivation tree

Fig. 3. Rendering of a partially collapsed incorrect tree

The concrete syntax consistently uses round brackets for formulae, square
brackets to name hypotheses and curly brackets to name terms/variables.

A palette (Figure 1) can be used to insert in the script a template for every
derivation rule, where no formula or term is inserted for the user. It is thus
possible that the user incorrectly applies a rule. In such a case, the rule name is
coloured in red as in Figure 3.

To improve readability, correct sub-trees can be collapsed to “[unfold]” by
clicking on their root formula (see Figure 3).
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3 Implementation

The notational system of Matita is based on three different languages for the
representation of formulae and proofs: semantics, which is logic dependent, con-
tent, where we use MathML Content and OMDoc, and presentation, where we
use MathML Presentation within a simple layout language called BoxML [3].
The user may define two sets of rules to map back and forth semantic objects
to content objects, and to map content objects to presentation objects [1].

The two mappings need not to be one-to-one, and disambiguation is employed
in the parsing phase to resolve overloading in favour of the interpretation that
is meaningful (i.e. the well typed semantics objects).

Thanks to MathML Presentation we can render derivation trees in a partially
satisfactory way as fractions (<mfrac>) and we can use <maction> nodes to
collapse sub-trees and to show hypotheses in scope; finally we can use <mstyle>
to highlight errors in red.

Disambiguation is used to associate to the same rule name two different se-
mantics objects. The first one is the constant corresponding to the introduc-
tion/elimination rule in the logic of Matita. Thus, the object is well typed (i.e.
meaningful for the disambiguation engine) only if its conclusion matches the
current goal and its arguments are the expected ones. The second interpreta-
tion, that is always meaningful and is only used when the former fails, uses an
(axiomatic, non admissible) cast operator to fix the incorrect rule application.
Another notational rule associates <mstyle>, that produces the rendering in red,
to occurrences of that particular cast constant.

The second interpretation can be deactivated by the teacher to make the
system reject incorrect proofs. This is useful for batch correction of exercises.

We show now all the definitions, interpretations (from semantics to content)
and notations (from content to presentation) that deal with logical conjunction
and its elimination rule.
� �

inductive And (A,B:CProp) : CProp :=And intro: A →B →And A B.

definition And elim l : ∀A,B.And A B →A :=
λ A,B,f. match f with [ And intro l r ⇒l].

axiom any : CProp.
� �

Note that the definition of conjunction is the standard one used in Matita,
and not an embedding only useful for natural deduction. This allows the reuse
of the standard machinery of Matita (e.g. automation, type checking) and of its
library (e.g. in order to propose proofs of arithmetical statements). It also allows
to progressively drop the natural deduction trees when the student is ready to
embrace the full procedural language, or the declarative or to mix the three
modes. The any proposition is necessary in the interpretation of a badly-applied
conjunction elimination rule.

Show is used to make statements of sub-proofs explicit (so that notation can
label the root of every subtree with the formula it proves). Cast is used to accept
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� �

(∗ Used to replace a proof ‘p‘ of ‘P‘ with ‘(show P p)‘ to use ‘P‘ in rendering ∗)
definition show: ∀A:CProp.A→A :=λ A,a.a.
axiom cast: ∀A,B:CProp.B →A.

� �

a formula erroneously typed by the user by “casting” a proof of any proposition
B to any proposition A.

We present now the output notations and relative interpretations used to
render the conjunction elimination rule.
� �

notation < ”\infrule ab a mstyle color #ff0000 (∧ e l)”
with precedence 19 for @{ ’And elim l ko ab a }.

interpretation ”And elim l ko” ’And elim l ko ab a =
(show a (cast (And elim l (cast ab)))).

notation < ”maction (\infrule ab a (∧ e l)) [unfold]”
with precedence 19 for @{ ’And elim l ok ab a }.

interpretation ”And elim l ok” ’And elim l ok ab a = (show a (And elim l ab)).
� �

The first output notation displays the content symbol ’And elim l ko with an
\ infrule layout (mapped to MathML <mfraction> plus <mstyle> directions to
avoid font shrinking in fractions of fractions) colouring the rule name in red. Its
corresponding interpretation is associated to a term containing the cast constant.
The second output rule displays a correct rule application, adding the possibility
to fold the tree clicking on it (<maction> node, whose default behaviour is to
toggle between its children).

Dually, we introduce an input notation and two corresponding interpretations,
respectively for a correct and a wrong application of conjunction elimination.
� �

notation > ”∧ e l term 90 ab” with precedence 19 for @{ ’And elim l (show ab ?) }.
interpretation ”And elim l KO” ’And elim l ab =

(cast (And elim l (cast (And any any) ab))).
interpretation ”And elim l OK” ’And elim l ab = (And elim l ab).

� �

The input notation is associated to the rule name. The second interpretation is
preferred and inserts no cast constant, while the first one, used only if the second
fails, applies the rule casting both its conclusion and premise. In particular, the
premise is cast to the conjunction of two occurrences of the previously declared
dummy proposition any in order to apply elimination of conjunction.

4 Conclusion

Matita is a proof assistant based on the Curry-Howard isomorphism: proofs are
internally represented at the semantics level with proof terms. Thus the machin-
ery used to associate the familiar mathematical notation to formulae can as well
be used to render proofs. In particular, in place of the usual rendering as natural
language text with embedded MathML formulae, we can output derivation trees
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as interactive MathML formulae, exploiting <mfrac>, <maction> (to collapse
and expand sub-trees) and <mstyle> (to highlight incorrect parts of the proof).
Thanks to the typical MKM layered representation of knowledge (semantics,
content and presentation [1]) that is at the core of the notational machinery
of Matita, we have been able to achieve the latter result without changing the
source code, and with around 800 lines of notation and interpretation commands.

We then proceeded to fulfil the minimal requirements for a learning system,
that we identified in the possibility for the student to input exactly the same
information he would write on paper and to be allowed to commit errors and con-
tinue. We achieved this easily thanks to the disambiguation engine of Matita [6]
that allows to resolve overloading in favour of the interpretations that yield
meaningful formulae: by introducing an axiomatic, non admissible cast rule, any
derivation tree becomes legal, but incorrect trees can be easily distinguished and
displayed accordingly.

This way of implementing the learning system using only notational devices
allows to progressively abandon the derivation trees in favour of the standard
declarative or procedural language of Matita, when the students are ready. The
system was adopted in a first course of logic for computer scientists at the Uni-
versity of Bologna in the academic year 2008/2009.

The only current limitation is the impossibility to develop derivation trees in
a bottom-up fashion, from the leaves to the root, by working with hypotheses
that will be discharged only later. This reflects the way proofs are developed in
Fitch style and in informal mathematics, and in class we carefully avoid making
students work with un-assumed hypotheses anyway. On the other hand, sub-
proofs (containing no free assumptions) can be proved in advance and plugged
in the main proof.
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